

PREPARED FOR: Earle M. Jorgensen Company 10650 S. Alameda Street Lynwood, CA 90262

^{BY:} Shannon & Wilson 400 N. 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8080 www.shannonwilson.com

REMEDIAL INVESTIGATION WORK PLAN Jorgensen Forge Corporation Property TUKWILA, WASHINGTON

This work plan has been broken into two parts. Parts 1 and 2 form a whole and should be read in conjunction with each other.

Part 2 of 2 Appendices E, F, G, and H Important Information

EIII SHANNON & WILSON

April 15, 2020 Shannon & Wilson No: 21-1-12596-013 Text, tables, figures, and appendices A, B, C, and D are provided within a separate PDF (Part 1).

APPENDIX E: SAMPLING AND ANALYSIS PLAN – REMEDIAL INVESTIGATION

Appendix E Sampling and Analysis Plan – Remedial Investigation

Jorgensen Forge Corporation Property, Tukwila, Washington

PREPARED FOR: Earle M. Jorgensen Company 10650 S. Alameda Street Lynwood, CA 90262

BY: Shannon & Wilson 400 N. 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

sampling and analysis plan – Remedial INVESTIGATION Jorgensen Forge Corporation Property TUKWILA, WASHINGTON

April 15, 2020 Shannon & Wilson No: 21-1-12596-013

1	Intr	oductio	on1
	1.1	Objec	tives and Scope of Work1
	1.2	Proje	ct Contact Information2
	1.3	Orga	nization3
2	Prej	paration	n3
	2.1	Site A	Access Requirements and Notifications
	2.2	Utilit	y Clearance4
	2.3	Equip	oment Preparation4
3	Ligł	ht Non-	Aqueous Phase Liquid (LNAPL) Investigation5
	3.1	Plum	e Delineation5
	3.2	Trans	missivity Testing7
4	Soil	Investi	gation7
	4.1	Direc	t-Push Soil Sampling9
	4.2	Hollo	w-Stem Auger (HSA) Soil Sampling9
	4.3	Soil S	ample Collection
5	Gro	undwa	ter Investigation11
	5.1	Moni	toring Well Installation11
	5.2	Moni	toring Well Development11
	5.3	Grou	ndwater Monitoring and Sampling11
		5.3.1	Groundwater Level Measurements
			5.3.1.1 Well Venting
			5.3.1.2 Wells Without Light Non-Aqueous Phase Liquid (LNAPL)12
			5.3.1.3 Wells with Light Non-Aqueous Phase Liquid (LNAPL)13
		5.3.2	Groundwater Sampling13
			5.3.2.1 Low-Flow Purging14
			5.3.2.2 Groundwater Sample Collection15
	5.4	Hydr	aulic Conductivity Testing17
6	Fiel	d Quali	ty Assurance/Quality Control (QA/QC) Requirements
	6.1	Samp	ele Handling, Chain-of-Custody (COC), and Transportation Procedures18

	6.1.1	Sample Labeling	
	6.1.2	Chain-of-Custody (COC)	19
	6.1.3	Sample Transportation	20
6.	.2 Quali	ty Assurance/Quality Control (QA/QC) Samples	20
	6.2.1	Field Duplicate Samples	21
	6.2.2	Trip Blank Samples	21
	6.2.3	Equipment Blank Samples	21
	6.2.4	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples	21
	6.2.5	Temperature Blank Samples	22
6.	.3 Equip	ment Decontamination	22
Ir	nvestigatio	on-Derived Waste (IDW) Management	22
Н	lealth and	Safety	23
R	eferences		23

Tables

7

8

9

Table 1:	Monitoring Well Status and Construction Details – Sorted by Status (2 pages)
Table 2A:	Proposed Investigation Locations and Sampling Schedule (4 pages)
Table 2B:	Proposed Sampling Schedule for Existing Monitoring Wells (2 pages)
Table 3:	Summary of Recent Water Level Measurements, LNAPL Thickness, and
	Groundwater Elevation Data (8 pages)

Figures

Figure 1:	Site Location Map
Figure 2A:	Proposed Investigation Locations
Figure 2B:	Proposed Investigation Locations - South of OA-11

Attachments

Attachment 1: Inadvertent Discovery Plan Attachment 2: Field Forms Attachment 3: Available Boring Logs Attachment 4: Per- and Polyfluoroalkyl Substances

1,1-DCE	1,1-dichloroethene
AFFF	aqueous film forming foam
ARI	Analytical Resources, Inc.
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
cis-1,2-DCE	cis-1,2-dichcloroethene
COC	chain-of-custody
DO	dissolved oxygen
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
HASP	Health and Safety Plan
HSA	hollow-stem auger
HVOC	halogenated volatile organic compound
IDP	Inadvertent Discovery Plan
IDW	investigation-derived waste
JFC	Jorgensen Forge Corporation
L/min	liters per minute
LIF	laser-induced fluorescence
LL	low-level
LNAPL	light non-aqueous phase liquid
mg/L	milligrams per liter
mL/min	milliliters per minute
MS/MSD	matrix spike/matrix spike duplicate
NELAP	National Environmental Laboratories Accreditation Program
NSZD	natural source zone depletion
NTU	nephelometric turbidity unit
NWTPH-Dx	Northwest Total Petroleum Hydrocarbons-Diesel Extended
NWTPH-Gx	Northwest Total Petroleum Hydrocarbons-Gasoline Extended
ORP	oxidation reduction potential
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PCE	tetrachloroethene
PFAS	per- and polyfluoroalkyl substances
PFBS	perfluorobutanesulfonic acid
PFHpA	perfluoroheptanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid

PID	photoionization detector
PPE	personal protective equipment
QA/QC	quality assurance and quality control
QAPP	Quality Assurance Project Plan
RI	Remedial Investigation
SAP	Sampling and Analysis Plan
SIM	selected ion monitoring
Site	8231 East Marginal Way South
SVOCs	semi-volatile organic compounds
TCE	trichloroethene
TDS	total dissolved solids
TPH-D	total petroleum hydrocarbons diesel
TPH-G	total petroleum hydrocarbons as gasoline-range organics
TPH-O	total petroleum hydrocarbons oil
trans-1,2-DEC	trans-1,2-dichloroethene
UCMR 3	EPA's third Unregulated Contaminant Monitoring rule
VOA	volatile organic analyte
work plan	Remedial Investigation Work Plan
°C	degrees Celsius
±	plus or minus

ACRONYMS

1 INTRODUCTION

This Sampling and Analysis Plan (SAP) has been prepared to detail field and laboratory procedures for the proposed activities outlined within the Remedial Investigation (RI) Work Plan (the work plan). This SAP and the associated Quality Assurance Project Plan (QAPP) and Health and Safety Plan (HASP) are included as appendices to the work plan.

This SAP has been revised in response to Washington State Department of Ecology (Ecology) comments dated December 20, 2019 (Ecology, 2019), on the submitted draft RI work plan dated January 31, 2019 (Shannon & Wilson, 2019).

The proposed activities are to be conducted at the Jorgensen Forge Corporation (JFC) facility located at 8531 East Marginal Way South, Tukwila, Washington (the Site). A Site location map is provided as Figure 1. Investigation locations are presented in Figure 2. Current monitoring well status and construction details are provided in Table 1.

1.1 Objectives and Scope of Work

The scope of work, as outlined in Section 10 of the work plan, consists of the following tasks and objectives:

- Light Non-Aqueous Phase Liquid (LNAPL) Investigation
 - Vertical and horizontal LNAPL plume delineation (including residual soil contamination) using direct-push borings, laser-induced fluorescence (LIF) technology, and a step-in/step-out approach.
 - LNAPL transmissivity testing to estimate the rate at which LNAPL flows laterally through the aquifer and to support the evaluation of future remedial design options.
 - Natural source zone depletion (NSZD) evaluation within the saturated zone. This
 will include groundwater monitoring and the collection and analysis of groundwater
 samples to evaluate if NSZD is occurring through dissolution and biodegradation.
 Monitoring and sampling will be completed along with groundwater investigation
 activities (discussed below).
- Soil Investigation
 - Completion of 49 soil borings (including 4 to be completed to support the LNAPL plume delineation) and collection of soil samples to address data gaps identified within Section 9 of the work plan.
 - Soil sampling and analysis from up to 27 borings to be completed as monitoring wells as part of the groundwater investigation activities (discussed below).

- Groundwater Investigation
 - Installation of up to 27 groundwater monitoring wells to address data gaps identified within Section 9 of the work plan.
 - Groundwater monitoring and sampling.
 - Hydraulic conductivity testing to support the evaluation of potential future remedial design options.

The LNAPL plume delineation within Areas 1 and 2 will be completed prior to other activities so that the findings from the delineation can be used to inform and adjust the subsequent activities.

The Site lies within an area that is designated as very highly likely to yield cultural materials by the Department of Archaeology and Historic Places. To support compliance with state cultural resource protection laws, an archeological company (Stell) prepared an Inadvertent Discovery Plan (IDP) to support the RI activities (Attachment 1).

1.2 Project Contact Information

Key contact information for the proposed scope of work includes:

- Project Manager: Shoshana Howard, (206) 695-6811
- Project Coordinator: Meg Strong, (206) 695-6787
- Quality Assurance Manager: David Randall, (206)-695-6918
- Facility Representative (JFC): Matteo Sanesi, (253) 878-6415
- Health and Safety Manager: Joe Laprade, (206) 695-6713
- Site Safety Officer: Christian Canfield, (206) 714-7637

As described in the work plan, it is our understanding that the property will be sold. When the sale occurs, the facility representative will change.

Analytical Resources, Inc. (ARI) of Tukwila, Washington and (an Ecology- and National Environmental Laboratories Accreditation Program [NELAP]-certified laboratory) and Eurofins TestAmerica of Sacramento, California (a NELAP-certified laboratory), will provide analytical testing services for the project.

Ms. Amanda Volgardsen – ARI 4611 S. 134th Place, Suite 100 Tukwila, WA 981168-3240 Telephone: (206) 695-6200 Eurofins TestAmerica 880 Riverside Parkway West Sacramento, CA 95605 Telephone: (916) 373-5600

Select soil samples will also be submitted to the Shannon & Wilson Seattle Soils Laboratory, an American Association of State Highway and Transportation Accreditation Programaccredited laboratory, for grain-size analysis.

Mr. Joe Laprade – Shannon & Wilson Seattle Soils Laboratory 400 N. 34th Street, Suite 100 Seattle, WA 98103 Telephone: (206) 695-6713

1.3 Organization

The remainder of this SAP is broken into eight sections. Section 2 outlines preparation activities to be completed prior to field sampling events. LNAPL investigation activities including LNAPL plume and residual soil contamination delineation and LNAPL transmissivity testing are discussed in Section 3. Soil investigation activities are outlined within Section 4. Section 5 describes groundwater investigation activities, including well installation and development, groundwater monitoring and sampling, and hydraulic conductivity testing. Section 6 describes the field quality assurance and quality control (QA/QC) procedures, including sample handling, QA/QC samples, and equipment decontamination. Investigation-derived waste (IDW) management is discussed within Section 7, and health and safety considerations are provided in Section 8. The IDP is provided in Attachment 1. Relevant field forms are provided in Attachment 2. Available boring logs from previous investigations are provided in Attachment 3. Attachment 4 includes a reference document for per- and polyfluoroalkyl substances (PFAS) that contains procedures and protocols for collecting PFAS samples.

2 PREPARATION

2.1 Site Access Requirements and Notifications

In accordance with Agreed Order number DE 14143, Ecology will be provided at least seven days' notice prior to the initiation of any sampling or work activities at the Site.

In accordance with the access agreement (recorded in the real property records of King County on April 24, 2017, under instrument number 20170424000779) between Star Forge, LLC (the property owner) and Earle M. Jorgensen Company, at least 24 hours' notice will be provided to the facility representative prior to entering the Site, unless an emergency occurs. In emergency situations, as much notice as practical under the circumstances will be provided to the facility representative.

2.2 Utility Clearance

Exploration locations will be placed to avoid known utilities. The locations will be marked in advance of the drilling activities and the public One-Call utility check system will be notified. Applied Professional Services, Inc., a private utility clearance contractor, will clear each location and area if flexibility on location is required (for example during LNAPL plume delineation). Vacuum excavation will be performed at each location in areas that cannot be cleared (such as below the areas where the slab is very thick or has rebar). When performed, vacuum excavation will be completed within the top 5 feet below ground surface (bgs). In locations where samples for volatile analyses will be collected within the top 5 feet bgs, hand augers will be used in lieu of vacuum excavation to clear the top 5 feet bgs and collect samples.

2.3 Equipment Preparation

Necessary field equipment and documentation materials will be prepared. A checklist of equipment required during sampling activities will be prepared and checked each morning. Laboratory-supplied sample containers will be inspected for the proper preservative and inventoried to ensure adequate containers are available.

Meters will be calibrated at the start of each work period or prior to arrival on the Site. Calibration will be valid for field conditions and will be completed in accordance with manufacturer recommendations. Calibration measurements will be documented in the field activity log for the project. Calibrations will be checked approximately every four hours thereafter, and will be recalibrated, as necessary, during the work period. At the end of each day, all meters will be checked against their last calibration to document any drift that may have occurred. Instrument and equipment inspection, maintenance, and calibration is further discussed within the QAPP (Appendix F of the work plan).

A field sampling tablet, in conjunction with a field label printer, will be used during the groundwater sampling activities. The tablet will be charged and setup prior to the start of each work period. Tablet setup will include pre-loading the tablet with the wells to be sampled, the analyses to be performed, and the bottles (quantity, type, size, and preservation information) needed for each sample.

3 LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL) INVESTIGATION

Within Area 1, cutting oil is present within soil and groundwater and as an LNAPL plume on groundwater. Elevated concentrations of total petroleum hydrocarbons oil (TPH-O) have been detected within borings located within the Hollowbore Area of the main building and within outside areas to the north. Within the main building, borings have contained elevated TPH-O within soil samples taken from the upper 2 feet. In outside areas, the contamination has been more prevalent within soil at depths greater than approximately 5 feet bgs. The data suggest that sources are shallow within the main building in Area 1, such as piping running to and from the lathes from the vaults. LNAPL has been observed within Area 1 groundwater monitoring wells MW-16 through MW-22 and MW-26 through MW-29 at thicknesses up to 12.6 feet.

Within Area 2, hydraulic oil and diesel are present within soil and groundwater and as an LNAPL plume on groundwater. Investigations within the area have identified elevated concentrations of TPH-O and total petroleum hydrocarbons diesel (TPH-D) in soil, primarily between depths of 7 and 10 feet bgs. A silt layer, encountered at approximately 10 feet in this area, may prevent downward migration of LNAPL. Though well investigated in outside areas to the north and south, greater LNAPL plume delineation is needed in the main building and to the east. In Area 2, LNAPL has been observed within existing groundwater monitoring wells MW-34 and MW-35 and within previous monitoring wells MW-2, MW-12, MW-13, and MW-33 at thicknesses up 9.15 feet.

3.1 Plume Delineation

Figure 2 shows the approximate extent of the Area 1 and Area 2 LNAPL plumes based on the observation of LNAPL within existing groundwater monitoring wells. The vertical and horizontal extent of LNAPL and residual soil contamination within the subsurface will be further delineated using a direct-push hydraulic probe rig and LIF technology.

Because facility equipment and tanks will have been removed for some time prior to the investigation, LNAPL-containing monitoring wells will be monitored prior to commencing with the LIF investigation to assess whether the removal of these features have significantly altered LNAPL thicknesses. Results from the monitoring will be used to adjust the investigation strategy, if needed. Procedures for monitoring LNAPL-containing monitoring wells are outlined in Sections 5.3.1.1 and 5.3.1.3.

LIF allows for rapid delineation of the vertical and horizontal extent of LNAPL and for the generation of three-dimensional LNAPL maps. The technology relies on the fact that

polycyclic aromatic hydrocarbons (PAHs), present within LNAPL, fluoresce. An in situ LIF survey is conducted using a windowed probe equipped with fiber optics. The probe is advanced at a continuous rate by a direct-push hydraulic probe rig. As the equipment is advanced, the fiber optics emit laser light onto the passing soil. Any responding fluorescence (due to the presence of LNAPL) is returned to the surface and processed in real time.

A Shannon & Wilson representative will be on site to observe the LIF surveys. Because the results are processed in real time, each LIF location will be selected based on the results from preceding points. The surveys will target horizontal and vertical delineation of the LNAPL plume and residual soil contamination.

The LNAPL plume delineation investigation will include the completion of plume-center borings and plume-perimeter borings. Proposed boring locations are shown in Figure 2. Borings within the Area 1 and Area 2 LNAPL plumes will be designated as A1- and A2borings, respectively. The actual locations and number of borings will be determined in the field as required to avoid utilities and in response to findings from previous borings.

Plume-center borings (A1-1, A1-2, A2-1, and A2-2 in Figure 2) will be completed within the anticipated central portion of each LNAPL plume with the objective of identifying the vertical extent of LNAPL and residual soil contamination. Plume-perimeter borings (A1-3 through A1-14 and A2-3 through A2-10 in Figure 2) will be completed to identify the edge of each LNAPL plume within multiple directions. A step-in/step-out approach will be utilized to identify the LNAPL plume edge with the objective of completing at least one boring within and one outside of the plume extents such that the plume edge can be inferred as being located between the two borings (with a target boring separation of 10 feet).

Plume-center borings will be completed to depths of up to 15 feet bgs or 5 feet deeper than observed petroleum-saturated soil, whichever is greater. Plume-perimeter borings will be completed to 5 feet deeper than observed petroleum-saturated soil or to depths of 5 feet deeper than observed groundwater (if no LNAPL is observed). Boring locations will be documented using a handheld global positioning system unit.

LIF investigations do not recover material for laboratory analysis. During the soil investigation (discussed in Section 4), direct-push borings will be completed at the locations of A1-1, A1-2, A2-1, and A2-2 (LNAPL plume-center borings) for the purposes of collecting soil samples. From each of these borings, one soil sample will be collected from the depth with the highest LIF response. This sample is intended to provide an understanding of the relationship between LIF response and concentration. A second sample will be collected

from the base of each of these borings to demonstrate that impacted soil has been delineated vertically. The samples will be analyzed for TPH-D and TPH-O by Method Northwest Total Petroleum Hydrocarbons-Diesel Extended (NWTPH-Dx) and for PAHs by U.S. Environmental Protection Agency (EPA) Method 8270D selected ion monitoring (SIM).

3.2 Transmissivity Testing

Rising head slug testing will be completed at three Area 1 and Area 2 wells (two within Area 1) in accordance with ASTM E2865-13 to estimate LNAPL transmissivity. Rising head slug tests involve rapidly (as close to instantaneous as possible) dropping the LNAPL level within the well and recording the recovery as the well returns to equilibrium. Testing will include the following:

- 1. Prior to slug removal, a pressure transducer will be installed in the well below the LNAPL-groundwater interface. The initial depth to LNAPL and depth to groundwater will be measured with an interface probe (procedures described within Section 5.3.1.3).
- 2. A disposable polyethylene bailer or peristaltic pump will be used to remove LNAPL within the well to reduce the LNAPL layer thickness as low as practically achievable without removing water. Product will be poured into a graduated 5-gallon bucket and the volume will be recorded.
- 3. The pressure transducer will be allowed to record until equilibrium conditions have returned; days or weeks may be required to obtain equilibrium.

Depth to LNAPL and groundwater will be periodically measured using the interface probe during recovery. Estimated transmissivity will be calculated using the initial volume of drawdown and the volumetric response derived from the LNAPL layer thickness.

4 SOIL INVESTIGATION

Soil samples will be collected from a total of 48 borings completed using a direct-push hydraulic probe rig (including the 4 plume-center borings mentioned in Section 3.1) and from up to 27 borings (to be installed as monitoring wells) completed using hollow-stem auger (HSA) drilling methods. Investigation activities will be sequenced with deeper borings completed (and samples analyzed) prior to shallow borings. This will allow for the shallow boring depths to be adjusted based on the initial findings to target vertical delineation. If apparent contamination is observed at the base of a boring, the boring depth may be increased in the field.

Direct-push borings will be completed to depths ranging from 8 to 30 feet bgs. Depths have been selected based on the location and intended purpose of each boring. HSA borings,

with the exception of the borings for wells MW-64 and MW-70, will be advanced to 20 feet bgs for well installation. The borings for MW-64 and MW-70 will be advanced into the deeper ("B") water-bearing zone to a total depth of approximately 60 feet bgs. Boring logs from previous investigations are provided in Attachment 3.

A Shannon & Wilson representative will be on site to locate the explorations, observe utility locating activities, observe drilling activities, screen for potential contamination, collect soil samples, and prepare descriptive logs of the materials encountered. Direct-push and HSA logs will present an interpretation of the materials encountered at each exploration and the depths of material changes. Soil screening methods will involve the use of a calibrated photoionization detector (PID), observation of discoloration and/or notation of odors, and sheen testing (Ecology, 2016). Sample collection points and depths, observations of the presence of potential contamination, and depths to saturated zones will be noted on the logs (Field Log of Boring or Field Log of Geoprobe, provided in Attachment 2).

Soil sampling will target potential contamination based on field screening and changes in lithology. In the absence of apparent contamination or lithology changes, the following sampling approach will be employed:

- Three borings (SB-2020-042 through SB-2020-044) will be completed adjacent to the decommissioned 24-inch property line pipe. The borings will be completed to just past the fill material (up to 8 feet bgs). One sample will be collected from each boring from within one foot of the bottom depth of the pipe.
- Borings SB-2020-001, SB-2020-002, SB-2020-028, SB-2020-029, and SB-2020-045 will be completed to 10 feet bgs to evaluate specific features within the main building. Samples will be taken from 5 feet and 10 feet bgs.
- Borings SB-2020-018 through SB-2020-025 will be completed adjacent to Boeing OA-11 to depths of 12 feet bgs. Six soil samples, including depth-discrete samples taken from between 0 to 2, 2 to 4, 4 to 6, 6 to 8, 8 to 10, and 10 to 12 feet bgs, will be collected at each boring. The samples taken from between 8 to 10 and 10 to 12 feet bgs will be held for potential analysis.
- Borings SB-2020-030 through SB-2020-037 will be completed to evaluate the former Area 3 Underground Storage Tanks, the Decommissioned Oil Storage Area vault, and the Decommissioned Diesel Storage Area vault and fill ports. The borings will be completed to depths of up to 15 feet bgs. Up to two soil samples will be collected from each of these borings. Fill material placed following tank removal activities will not be targeted. Samples will be taken from the first 2 feet below this material and from 15 feet bgs.
- At other 15-foot borings, up to three samples will be collected including samples taken from within the top 2 feet below surface or below subbase if present, from between 2 and 7 feet bgs, and from just above the water table.

- Up to five samples will be collected from 25-foot borings, including the same intervals sampled at 15-foot borings and samples taken from 20 and 25 feet bgs. The 20- and 25-foot samples will be held for potential analysis.
- Boring SB-2020-004 will be completed to 30 feet bgs due to the depth of the adjacent vault. Six samples will be collected including from the same intervals as the 25-foot borings and an additional 30 feet bgs sample. All samples from boring SB-2020-004 will be analyzed.
- At HSA borings, samples will be taken from within the top 2 feet below surface or below subbase if present, from between 2 and 7 feet bgs, and from just above the water table. Within the deeper HSA borings, soil samples will be collected from 20 feet bgs and from greater depths and will be held for potential follow-up analysis.

Additional soil samples may be collected if warranted, based on field screening. At select groundwater monitoring well locations, cores extracted during drilling will be archived for potential use during future bench scale testing.

If slag or swarf are noted within a boring, the soil surrounding the material will be sampled and will be analyzed for TPH-D, TPH-O, metals, and compounds detected at elevated concentrations within groundwater samples collected within the vicinity of the boring in which the slag or swarf was observed.

4.1 Direct-Push Soil Sampling

At direct-push locations, a hydraulic probe rig will use the static weight of the rig combined with percussive energy to advance a series of hollow rods. A 2-inch-diameter, 5-foot-long probe sampler fitted with removable plastic sampling (sleeve) tubes will be driven into undisturbed soil continuously from the ground surface to the desired depth of the boring. Upon retrieval of the sample sleeve, the plastic tube will be sliced open and the soil will be field-screened for contaminants and samples collected and logged.

4.2 Hollow-Stem Auger (HSA) Soil Sampling

Soil samples from the HSA borings will be collected using a standard 2-inch-outsidediameter, split-spoon sampler used in conjunction with the Standard Penetration Test. At each sample depth, the drill bit will be removed from the hole and the sampler will be attached to the end of the drill rods. The sampler will then be lowered down to the bottom of the hole. The sampler will typically be driven 1.5 feet or less into the soil at the bottom of the borehole, depending upon density. A second sampler will be driven at about the same interval if not enough soil was initially retrieved. After each sampler is removed from the borehole, a Shannon & Wilson field representative will open the sampler and screen the soil for potential contamination.

4.3 Soil Sample Collection

Field personnel will collect soil samples by first donning a new pair of disposable nitrile gloves. New disposable steel spoons will be used to transfer soil from the sample sleeve or the split-spoon sampler to the appropriate laboratory-supplied sample containers. Samples for volatile analyses will be collected using disposable syringes into methanol-preserved vials or pre-tared vials in accordance with EPA Method 5035. Once filled, the sample containers will be placed in a cooler with blue ice to maintain the samples within the acceptable temperature range of between 0 degree Celsius (°C) and 6°C. The samples will be transported under standard chain-of-custody (COC) procedures to ARI. Sample handling and field QA sample collection procedures are outlined within Section 6.

The following analyses will be completed in accordance with the sample schedule (Table 2A):

- Total petroleum hydrocarbons as gasoline (TPH-G) by Method Northwest Total Petroleum Hydrocarbon-Gasoline Extended (NWTPH-Gx) and benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA 8260C;
- TPH-D and TPH-O by Method NWTPH-Dx;
- Halogenated volatile organic compounds (HVOCs) including 1,1-dichloroethene (1,1-DCE), cis-1,2-dichcloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride by EPA Method 8260C;
- PAHs by EPA Method 8270D SIM;
- Full list semi-volatile organic compounds (SVOCs) by EPA Method 8720D SIM;
- Polychlorinated biphenyls (PCBs) as aroclors by EPA Method 8082A;
- Metals, including arsenic, barium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, vanadium, and zinc, by EPA Method 200.8;
- Mercury by EPA Method 7471B;
- Hexavalent chromium by EPA Standard Method 7196A; and
- Total organic carbon by EPA Method 9060A.

In addition to the analyses listed above, select samples will be submitted to the Shannon & Wilson Seattle Soils Laboratory for grain size and porosity analyses.

5 GROUNDWATER INVESTIGATION

5.1 Monitoring Well Installation

A total of up to 27 monitoring wells will be installed using HSA drilling methods. Soil sampling will be conducted at each location in accordance with Section 3. Monitoring wells will be screened across the water table at depth intervals ranging from 5 to 20 feet bgs with the exception of wells MW-64 and MW-70, which will be screened between approximate depths of 45 and 60 feet bgs. Screen interval depths may be adjusted based on field conditions. Wells will be surged during sandpack placement to optimize the well and prevent bridging of the sandpack during later redevelopment. A Shannon & Wilson representative will be on site to observe drilling activities, collect soil samples, log soil, and select screened intervals for the monitoring wells. Well construction logs will be completed for each well (Attachment 2).

5.2 Monitoring Well Development

Newly installed monitoring wells will be developed by Holt Services, Inc. under the supervision of Shannon & Wilson. Development will be completed using a pump-and-surge method with a surge block and submersible pump. Groundwater quality parameters, including conductivity, pH, turbidity, and temperature, will be measured periodically during development. Development will be considered complete when the measured turbidity is below 5 nephelometric turbidity units (NTUs) and the water becomes clear or at a maximum of four hours. Water levels, amount of water removed, observations of the discharge water, and turbidity measurements will be recorded on a Well Development Log (Attachment 2).

5.3 Groundwater Monitoring and Sampling

Four quarterly groundwater monitoring and sampling events will be completed. Groundwater monitoring and sampling will include collecting depth to water measurements at all locations, collecting depth to LNAPL and depth to LNAPLgroundwater interface measurements where applicable, measuring field parameters, and collecting groundwater samples for laboratory analysis. Well and chemical selection criteria are discussed in the RI work plan. Sampling schedules for the first two events are provided in Tables 2A and 2B. The sampling schedule for the second two events will be developed following receipt of analytical results from the first two events and will primarily include monitoring/sampling of new wells.

5.3.1 Groundwater Level Measurements

The collection of depth to water, depth to LNAPL, and depth to LNAPL-groundwater interface measurements will be completed at all Site wells prior to groundwater monitoring and sampling. To account for potential tidal influence at the Site, groundwater level measurements (at wells without LNAPL) will be completed within a two-hour timeframe by multiple teams working concurrently from west to east (toward East Marginal Way). If possible, the events will be scheduled to coincide with periods of minimal tidal exchange.

Wells that do not contain LNAPL will be monitored within the two-hour timeframe, followed by collection of measurements at the remaining LNAPL-containing wells. The event will be coordinated such that only a subset of well lids will be open at any given time. The following sections outline the procedures for collecting depth to water and depth to LNAPL measurements at each well. Measurements collected at the Site since 2009 are presented in Table 3.

5.3.1.1 Well Venting

Steps 1, 2, and 3, below, will be completed for all monitoring wells included in the study. Each well will be allowed to equilibrate for at least 15 minutes prior to proceeding to the appropriate step 4. Steps 1, 2, and 3 may be completed the day prior to beginning step 4.

- 1. The well monument lid will be opened. A PID will be used to screen the space within the monument for volatiles. Standing water and debris (i.e., sediment, vegetation, or refuse) will be cleaned out of the monument prior to removing the well cap. PID readings will be written on the Water Level Measurements Form (Attachment 2).
- 2. The cap will be removed carefully and any pressure or vacuum allowed to vent. The time that the well cap is removed and the initial conditions (i.e., well over-pressurized or under-pressurized relative to the atmosphere) will be recorded on the Water Level Measurements Form. A PID will be used to screen the space within the casing for volatiles.
- 3. The well cap will be left ajar and the lid will be replaced. If warranted (based on location), a cone will be placed on each location to prevent the well from being blocked.

5.3.1.2 Wells Without Light Non-Aqueous Phase Liquid (LNAPL)

- 4. The initial water level will be measured to the nearest 0.01 foot from the surveyed location (typically the north side of the top of well casing) using an electronic water level probe.
- 5. The water level measurement in each well will be duplicated to ensure that the reading is accurate. The results will be recorded (times, measured values, etc.) on the Water

Level Measurements Form. The duplicate depth to water measurement will be recorded if it is different than the original measurement.

- 6. The probe will be inspected to determine if LNAPL is present in the well before it is decontaminated in accordance with procedures discussed in Section 6.3.
- 7. The well cap will be replaced and the monument lid will be sealed tightly upon completing the water level measurement.

5.3.1.3 Wells with Light Non-Aqueous Phase Liquid (LNAPL)

In 2018, LNAPL was observed in wells MW-16 through MW-21, MW-26 through MW-29, and MW-35.

- 4. The initial depth to LNAPL will be measured to the nearest 0.01 foot from the surveyed location (typically the north side of the top of well casing) using an electronic oil-water interface probe. The probe will emit an audible alarm when product is encountered.
- 5. The measurement will be duplicated by lifting the probe from the surface until the alarm is silenced and re-lowering the probe to verify the depth to LNAPL. The results will be recorded on the Water Level Measurements Form. Duplicate measurements will be recorded if they differ from the original measurement.
- 6. The depth to the LNAPL-groundwater interface will be measured by lowering the probe to the LNAPL (audible alarm will sound) and then continuing to lower the probe. At the interface, the alarm will change to a second indicator sound. The probe will be slowly lifted and lowered to identify the point at which the alarm changes and this depth will be measured to the nearest 0.01 foot from the surveyed location (typically the north of the top of well casing).
- 7. The measurement will be duplicated to verify the reading. The results will be recorded on the Water Level Measurements Form. Duplicate measurements will be recorded if they are different from the original measurement.
- 8. The probe tip and the length of probe wire that was in contact with the LNAPL will be decontaminated in accordance with procedures discussed within Section 6.3.
- 9. The well cap will be replaced and the monument lid will be sealed tightly upon completing the measurements.

5.3.2 Groundwater Sampling

Groundwater sampling will take place over several days and will include purging the well while collecting field parameter readings followed by the collection of samples into laboratory-supplied and appropriately preserved containers.

Sampling of wells within the likely zone of tidal influence near the shoreline (MW-6, MW-39, MW-42, MW-43, MW-44, MW-47, MW-50, MW-51, MW-52, MW-53, MW-54,

MW-65, MW-68, MW-69, and MW-70) will be scheduled such that sample collection time will occur within one hour before low tide and no later than three hours after low tide.

Due to the use of aqueous film forming foam (AFFF) fire suppression systems at the Site, during one groundwater sampling event, select wells will be sampled for PFAS, an emerging contaminant. PFAS specific sampling and handling techniques, necessary to prevent cross-contamination, are provided within Attachment 4.

5.3.2.1 Low-Flow Purging

At wells without LNAPL, a peristaltic sampling pump fitted with disposable polyethylene and silicon (at the pump head and water quality instrument connections) tubing will be used to sample each monitoring well. At wells deeper than 25 feet, a peristaltic sampling pump will not be used; an in-well submersible pump fitted with disposable sample hose will be used to collect samples. At each location:

- 1. Dedicated tubing will be slowly lowered into the well until the intake is placed mid-screen. At wells within and downgradient of the Area 1 and Area 2 LNAPL plumes, the intake will be placed 2 to 3 feet below the water table or mid-screen (for B zone wells). The time will be recorded on the field tablet and the pump will be started.
- 2. Pumping rates will be measured with a stopwatch and container of known volume to adjust the flow rate to between 150 milliliters per minute (mL/min) and 1 liter per minute (L/min). The water level will be measured and field parameters will be recorded every three to five minutes. The pumping rate will be adjusted to maintain a steady water level. If possible, a drawdown of 0.3 foot or less will be maintained in the well and the water level will be maintained above the intake. The pumping rate will be lowered to a minimum of 150 mL/min, if necessary, to maintain the desired drawdown.
- 3. Field parameters, including pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), turbidity (NTU), salinity, and total dissolved solids (TDS), will be measured approximately every three to five minutes during purging. Measurements will be recorded to the following standards:
 - pH to plus or minus (±)0.01 pH units,
 - Specific conductivity to ±0.01 mmhos per centimeter,
 - Temperature to ±0.1°C,
 - DO to ±0.01 milligrams per liter (mg/L),
 - ORP to ±0.1 millivolt,
 - Turbidity to ±0.01 NTU,

- Salinity to ±0.01%, and
- TDS to ±0.001 gram per liter.
- 4. Samples will be collected following parameter stabilization. Stabilization occurs when three consecutive readings are within a specified tolerance from each other. The following criteria will be monitored for stabilization:
 - pH to ±0.1 pH units,
 - Specific conductivity to ±3% (readings within 3% of each other),
 - Temperature to ±3%,
 - DO to ±10%, and
 - Turbidity to ±10% or within 10% of 0.2 mg/L, whichever is greater.
- 5. If field parameters do not stabilize after one hour of pumping, the sample will be collected. Well purging data (including a notation when stabilization did not occur) will be recorded on the field tablet.
- 6. If the well yield is poor and the water level drops to the level of the intake, the pump will be stopped until the water level recovers to near the pre-pumping level. The process will then be repeated until the field parameters have stabilized. All measured water levels and pumping rate changes will be recorded on the field tablet.

5.3.2.2 Groundwater Sample Collection

Upon completion of purging and parameter stabilization, samples will be collected from the discharge end of the pump tubing into the laboratory-supplied containers. If the pump rate at the end of well purging is at or below 0.5 L/min, the same pump rate will be used during sample collection. If the pump rate at the end of well purging is greater than 0.5 L/min, the pump rate will be reduced to 0.5 L/min during sample collection.

Sample containers will be filled in order from most to least volatile in accordance with the sample schedule presented in Tables 2A and 2B. Sample handling and field QA sample collection procedures are outlined within Section 6.1.

Volatile organic analyte (VOA) vials will be filled by allowing the sample water to pour down the inside wall of the vials without splashing onto the base. VOAs will be filled to eliminate headspace and the seal/lid will be secured. Samples for dissolved metals analysis will not be field-filtered or preserved. Upon receipt, the laboratory will filter and preserve the samples with nitric acid. We will request laboratory filtering on the COC.

After sample collection is complete, the tubing/hose will be removed, the well cap will be replaced, and the monument lid will be secured. The following analyses will be completed in accordance with the sample schedule (Tables 2A and 2B):

- TPH-G by NWTPH-Gx and BTEX by EPA Method 8260C;
- TPH-D and TPH-O by Method NWTPH-Dx with the silica-gel cleanup preparation method;
- HVOCs, including 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, PCE, TCE, and vinyl chloride and methyl tert-butyl ether by EPA Method 8260C;
- PAHs by EPA Method 8270D;
- Full list SVOCs by EPA Method 8720D;
- Limited SVOCs, including bis(2-ethylhexyl phthalate), dibutyl phthalate, 1,2dichlorobenzene, 1,4-dichlorobenzene, 2,4-dimethyphenol, benzoic acid, butyl benzyl phthalate, n-nitrosodiphenylamine, and pentachlorophenol by EPA Method 8270D;
- PCBs as aroclors by EPA Method 8082A;
- Total and dissolved, metals including arsenic, barium, cadmium, total chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, silver, vanadium, and zinc by EPA Method 200.8;
- Total and dissolved mercury by EPA Method 7470A;
- Dissolved hexavalent chromium by EPA Standard Method 3500;
- PFAS, including EPA's third Unregulated Contaminant Monitoring rule [UCMR 3] list of six perfluorinated compounds (perfluorooctanesulfonic acid [PFOS], perfluorooctanoic acid [PFOA], perfluorobutanesulfonic acid [PFBS], perfluorohexanesulfonic acid [PFHxS], perfluoroheptanoic acid [PFHpA], and perfluorononanoic acid [PFNA]) by Method 537 (modified);
- Ferrous iron by EPA Standard Method 3500;
- Nitrate and nitrite as nitrogen by EPA Method 300.0;
- Sulfate by EPA Method 300.0;
- Sulfite by EPA Standard Method 4500;
- Manganese ion by EPA Method 200.8; and
- Methane by RSK-175.

SVOCs and PAHs are analyzed using EPA Method 8270D. Method 8270D includes the standard method, a low-level (LL) version, and SIM. SIM, which provides the lowest detection limits, is not available for the full suite of analytes on the EPA 8270D analyte list; the available SIM analyte list mainly includes PAHs. Similarly, the LL method does not include the full suite of analytes on the EPA 8270D analyte list. For the included analytes, the LL method provides lower detection limits than the standard method but less stringent than the SIM method. The standard method has been selected when the reporting limits are sufficient to meet the screening level requirements or if the analyte is not included within

the SIM or LL methods. The LL method has been selected when it is required to achieve the screening level requirements, or when it can get closer to the screening levels and SIM is not available. SIM has been selected when it is available and required to achieve or get closer to the screening levels.

As stated in Section 5.3.2, PFAS is an emerging contaminant. The regulatory environment is rapidly changing. While Method 537 (modified) is listed above, an alternative analytical method may be used if one is approved prior to the field event. The UCMR 3 list has been selected for analysis because PFOS and PFOA are the largest component of historical AFFF; because PFOS, PFOA, PFBS, PFHxS, PFHpA, and PFNA are the most frequently detected compounds observed in groundwater at AFFF-affected sites; and because PFOS and PFOA are the compounds for which the EPA has set a lifetime Health Advisory Level for drinking water.

5.4 Hydraulic Conductivity Testing

Falling head/rising head slug testing will be performed by a two-person crew at up to six monitoring wells to evaluate hydraulic conductivity. The results of the hydraulic conductivity testing will be used to support the evaluation of remedial design options.

Falling head slug tests involve rapidly (as close to instantaneous as possible) raising the water level within the well and recording the water level as the well returns to equilibrium. Rising head slug tests involve rapidly (as close to instantaneous as possible) dropping the water level within the well and recording the recovery as the well returns to equilibrium. These tests can be accomplished by adding an object of known size to the well to raise the water level. Once equilibrium has returned, the object can be removed to drop the water level.

The slug tests will include the following steps:

- A pressure transducer will be placed within the well and set at a sufficient depth to avoid interference with the slug once it is placed. The depth to water will be recorded. The datalogger will be set to record several readings per second for the first two minutes with gradually increasing reading intervals over time.
- 2. The falling head test will be initiated by rapidly lowering a slug consisting of a solid polyvinyl chloride pipe into the well and placing below the water table. The water level will rise as a result of this placement and the transducer will be allowed to record as the slug comes into equilibrium with the water table.
- 3. Readings will be collected until the water level has returned to equilibrium.

- 4. After a period of at least 24 hours, the datalogger will be reset to record several readings per second for first two minutes with gradually increasing reading intervals over time. The slug will then be pulled from the well, initiating the rising head test.
- 5. Readings will be collected until the water level has returned to equilibrium.

At least two tests will be performed within each well. The resulting data will be analyzed using a standard method such as Bouwer and Rice to estimate the hydraulic conductivity.

6 FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REQUIREMENTS

Laboratory QA/QC protocols are discussed within the QAPP (Appendix F of the work plan). Field QA/QC procedures, discussed below, have been established to ensure that samples can be tracked from collection through analysis, evaluate the efficiency and reproducibility of sampling procedures; and ensure that sampling activities do not result in cross-contamination.

6.1 Sample Handling, Chain-of-Custody (COC), and Transportation Procedures

All environmental samples collected during the project will be labeled, stored, and transported using standard Shannon & Wilson protocols. These protocols are summarized below.

6.1.1 Sample Labeling

Sample container labels will be completed immediately before or immediately following sample collection. Labels will be completed using indelible ink. At a minimum, container labels will include the following information:

- Date and time of collection,
- Location of the sample,
- Name or initials of sample collector,
- Unique sample identification,
- Analysis requested, and
- Chemical preservative used.

The established nomenclature for soil samples will be:

Boring Name:Sample Depth-Date

For example, a soil sample collected from 5.5 feet bgs from boring SB-2020-001 on February 1, 2020, would be identified as:

SB-2020-001:5.5-02012020

The established nomenclature for groundwater samples will be:

Well Name-Date

For example, a groundwater sample from well MW-53 collected on February 1, 2020, would be identified as:

MW-53-02012020

Duplicate samples will be labeled with a discrete well/boring name commencing at numeral 100. For example:

MW-100-02012020 or SB-2020-100:5.5-02012020

Equipment blanks will have the initials EB, will be numbered sequentially, and dated:

EB-1-02012020

Trip blanks will have the initials TB, will be numbered sequentially, and dated:

TB-1-02012020

Matrix spike/matrix spike duplicate (MS/MSD) samples will be identified with the initials MS/MSD, with the identification of the well or boring from which it was collected, and dated. For example, an MS/MSD sample collected from MW-43 on February 1, 2020, would be labeled:

MS/MSD-MW-43-02012020

6.1.2 Chain-of-Custody (COC)

Once a sample is collected, it will be placed within a cooler with blue ice and will remain in the custody of the sampler until shipment, pick-up, or delivery to the laboratory, or until the sample possession is transferred to another party. Sample information will be entered onto

a COC form along with the requested analyses. COC procedures are discussed in detail within the QAPP (Appendix F of the work plan).

Upon transfer of sample possession to subsequent parties, the COC form will be signed and time stamped by the person(s) transferring and receiving custody of the sample container. Upon receipt of samples at the laboratory, the condition of the samples will be recorded by the receiver. COC records will be included in the analytical report prepared by the laboratory.

Upon receipt of samples (which will be accompanied by a completed COC record detailing requested analyses), the Laboratory Coordinator(s) or his/her delegate will:

- Verify all paperwork, COC records, and similar documentation;
- Log in samples, assign unique laboratory sample numbers, and attach the numbers to the sample container(s);
- Perform any requested laboratory filtration and preservation;
- Open a project file and enter data into the file;
- Store samples in a refrigerated sample bank; and
- Email a record of the sample receipt and log-in form to the Shannon & Wilson Project Manager noting any problems with the samples.

6.1.3 Sample Transportation

Samples will be transported to the analytical laboratory within a cooler containing blue ice to ensure that samples are maintained within the appropriate temperature range (between 0°C and 6°C). Samples will be dropped at the laboratory by field personnel, picked up by the laboratory (or courier) at the Shannon & Wilson office, picked-up by the laboratory (or courier) at the Shannon & Wilson office, picked-up by the laboratory (or courier) at the Shannon & Wilson office. Carriers who are only involved in the transport of sealed coolers are not required to sign the COC. However, shipping documents will be included in the project files if a carrier is used to transport the project samples.

6.2 Quality Assurance/Quality Control (QA/QC) Samples

QA/QC samples will be collected during the event to evaluate the reproducibility of the sampling technique and the subsequent laboratory analysis. These will include field duplicate samples, trip blank samples, equipment blank samples, MS/MSD samples, and temperature blank samples. Evaluation of QA/QC samples is discussed within the QAPP (Appendix F of the work plan).

6.2.1 Field Duplicate Samples

Field duplicate samples are a second sample collected from a location. This sample is submitted to the laboratory with a "dummy" sample number and time as a regular sample. It is analyzed for the same suite as the original sample to allow for evaluation of the reproducibility of the sampling technique and the subsequent laboratory analysis. One field duplicate sample will be collected for every 20 groundwater and 20 soil samples. The field team will note in the field log where each duplicate sample was collected. During the event during which PFAS sampling is to occur, one of the field duplicates will be collected from a location that is undergoing PFAS analysis.

6.2.2 Trip Blank Samples

One trip blank will be submitted with each cooler containing samples for volatile analytes (HVOCs or TPH-G/BTEX). Samples for volatile analyses will be grouped into as few coolers as possible to minimize trip blanks. The trip blank sample will be analyzed for the same set of volatile constituents that is contained within the cooler.

6.2.3 Equipment Blank Samples

Because some of the screening levels for this project are significantly lower than drinking water standards, an additional equipment blank sample will be collected from the water source used to perform equipment decontamination. This sample will be collected in advance of the field activities to evaluate its adequacy for use.

During the field activities, equipment blank samples will be collected from the peristaltic pump tubing and from the hose used to collect the samples at MW-64 and MW-70. Two equipment blank samples will be taken to evaluate potential contributions from the tubing. Two equipment blank samples will be collected to evaluate the potential contributions from the hose. The samples will be collected by running laboratory-distilled water through equipment tubing into laboratory-supplied containers.

A pair of equipment blank samples will be collected during decontamination of a reusable piece of equipment (such as a water level probe). The first will be collected following the first distilled water rinse and the second will be collected following the final distilled water rinse. The purpose of the pair is to determine if there is an ongoing need to perform two rinses with distilled water.

6.2.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are used by the laboratory to evaluate potential matrix interferences and evaluate analytical accuracy. One soil MS/MSD sample will be collected for every week of

soil sampling and one groundwater MS/MSD sample will be collected during each groundwater sampling event.

6.2.5 Temperature Blank Samples

Temperature blank samples are used to determine whether the samples have been maintained within the appropriate temperature range. The samples are provided by the laboratory and are not analyzed for chemical constituents.

6.3 Equipment Decontamination

All non-disposable and non-dedicated sampling and monitoring equipment will be decontaminated prior to initial use, between sampling locations, and at the completion of the Site-specific sampling. The procedure will include:

- Tap water initial rinse (if needed),
- Tap water and non-phosphate detergent (AlconoxTM) mixture wash,
- Tap water rinse,
- Distilled water rinse, and
- Distilled water final rinse.

Additional decontamination steps may be incorporated as needed (such as during PFAS sampling). Oil absorbent pads may be used to aid in wiping product from equipment. Decontamination of personnel involved in sampling activities will be accomplished as described in a Site-specific HASP.

7 INVESTIGATION-DERIVED WASTE (IDW) MANAGEMENT

IDW is waste generated during Site activities. IDW generated during this effort will include soil cuttings, groundwater, and LNAPL purged from wells during development and sampling, and decontamination water generated during probing and drilling activities. Soil, water, and LNAPL will be placed into separate drums, sealed, labeled, and temporarily stored on site.

If possible, the diesel fueling and used oil storage building located in the northwest corner of the Site will be used to store IDW drums generated during this investigation. If the potential property sale or redevelopment prevent this building from being used, an alternative location will be selected with the input of the property owner. If necessary, a bermed containment area will be created such that the bermed area can contain at least 10% of the volume of free liquids within the area or 100% of the volume of the largest container. Following receipt of analytical results and disposal facility acceptance, the IDW will be picked up by an appropriately licensed waste transporter and disposed of offsite at the appropriate accepting disposal facility.

Miscellaneous IDW consists of used personal protective equipment (PPE), disposable sampling equipment (spoons, tubing, etc.), and other wastes that originated from Site activities. This IDW will be placed in doubled, heavy-duty plastic bags. The waste PPE and disposable sampling equipment will be disposed of in a dumpster at the Shannon & Wilson office.

8 HEALTH AND SAFETY

A Site-specific HASP is provided in Appendix G of the work plan. The HASP was prepared consistent with the requirements of the Washington State Division of Occupational Safety and Health Hazardous Waste Operations Regulation (Washington Administrative Code 296 843). The HASP includes a description of the project team, the scope of work, Site control, Site hazard information, Site hazard control, air monitoring, and emergency response. Information about the nearest hospital, including a map, is also provided.

9 REFERENCES

- Shannon & Wilson, 2019, Draft remedial investigation work plan, Jorgensen Forge Corporation Property, Tukwila, Washington: Report prepared by Shannon & Wilson, Seattle, Wash., 21-1-12596-010, for Earle M. Jorgensen Company, Lynwood, Calif., January 31.
- Washington State Department of Ecology (Ecology), Revised 2016, Guidance for remediation of petroleum contaminated sites: Toxics Cleanup Program, Olympia, Wash., Washington State Department of Ecology Publication No. 10-09-57, June.
- Washington State Department of Ecology (Ecology), 2019, Ecology comments on the draft remedial investigation work plan, Jorgensen Forge Corporation property, Tukwila, Washington, dated January 31, 2019 for: Name: Jorgensen Forge Corp Site, Address: 8531 East Marginal Way South, Tukwila, WA 98106, Facility/Site No.: 2382, Cleanup Site ID No.: 3689, Agreed Order No.: 14143: Comments prepared by Ecology, Bellevue, Wash., for Shannon & Wilson, Seattle, Wash., December 20.

Table 1 - Monitoring Well Status and Construction Details - Sorted by Status

			Hydro-	Screened	Top of Casing	
Identification	Date Installed	Installed By	Stratigraphic	(feet has) ¹		Status ³
MW/-3	05/21/01	SEACOR	Δ	(ieer bys) 1 5-10 75	17 327	Activo
N\/_4	05/21/91	SEACOR	Δ	4.5-13.73	17.327	Active
MW-6 (orig MW-2)	02/28/90		Δ	10-20	20.59	Active
MW-7 (orig MW-2)	02/28/90		Δ	10-20	20.33	Active
(01g 1010-3)	10/10/91	SEACOR	Δ	5-20	17 662	Active
N\/_9	03/19/92	SEACOR	Δ	5-20	17.002	Active
	03/19/92	SEACOR	Δ	5-20	17 649	Active
	08/27/92	SEACOR	Α	5-20	17.603	Active
 	08/27/92	SEACOR	Δ	5-20	17.608	Active
MW-16	08/29/92	SEACOR	Α	6-16	17.695	Active I NAPI
MW-17	03/04/93	SEACOR	Δ	8-23	17.566	
MW-18	08/29/92	SEACOR	Δ	6-15 75	17.466	
MW-19	08/28/92	SEACOR	Δ	6-16	17.916	
MW-19	08/28/92	SEACOR	Δ	<u> </u>	18.22	
MW-21	08/28/92	SEACOR	Δ	6-16	17.881	
MW-23	08/31/92	SEACOR	Δ	6-15 75	17 779	Active
M\\/_24	09/14/92	SEACOR	Δ	6-19.75	17.7792	Active
MW-25	09/14/92	SEACOR	Δ	6-19.75	17.652	Active
MW-26	11/03/93	SEACOR	Δ	7-22	18 278	
MW-20	11/03/93	SEACOR	Δ	7-22	18 081	
MW-21	12/03/93	SEACOR	Δ	5-20	18 277	
MW-20	12/03/93	SEACOR	Δ	7-20	18 151	
MW-29	01/30/9/	SEACOR	Δ	5-19.5	17 // 9	Active
MW-30	01/30/94	SEACOR	Δ	5-20	17.443	Active
MW-31	01/30/94	SEACOR	Δ	5-20	13.62	Active
MW-32	01/30/34	SEACOR	Δ	5-20	17.02	Active
MW-34	08/04/93	SEACOR	Δ	5-20	17.001	
	Unknown	Unknown	Δ	Unknown	17 383	Active
MW-30	09/02/09	Farallon	Δ	10-25	17.005	Active
	09/02/09	Farallon	Δ	5-20	17.450	Active
MW-30	11/02/09	Farallon	Δ	5-20	20.8	Active
MW-33	07/10/08	Farallon	<u> </u>	10.25	17 1/18	Active
M\\\/_41	07/19/08	Farallon	B	30-40	17.140	Active
MW/ 42	10/02/09	Farallon	<u>ل</u>	5 20	17.323	Active
MW/ 43	10/02/09	Farallon	A	30.40	17.404	Active
M\\\/ 44	05/02/09	Farallon	D	50.60	17.443	Active
M\N/ 45	05/02/09	Farallon	P	30-00	17.072	Active
M/M/ 46	11/02/09	Farallon	۵	5 20	17 67	Activo
<u></u> Μ/\Λ/ Λ7	11/02/09	Farallon	<u>^</u>	5-20	20 778	Active
<u>νινν-4</u>	12/02/03	FaidilUli	A	5-20	17 0/1	Active
IVIVV-40	02/12/09	Farallan	A	D-1/	17 005	Active
IVIVV-49	12/02/09	Faidliuli	A	0-17 70 07	17.200	Active
	12/02/09		A	23-21	17.000	Active
1/1/1/1	12/02/09	Faralion	А	23-21	17.395	ACTIVE

Monitoring Well Identification	Date Installed	Installed By	Hydro- Stratigraphic Unit	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet NAVD88) ²	Status ³
MW-52	12/02/09	Farallon	A	23-27	17.594	Active
MW-22	08/28/92	SEACOR	А	6-15.75	16.98	Inaccessible, LNAPL
MW-1	07/02/91	SEACOR	А	5-15	Unknown	Decommissioned (1991)
MW-2	07/02/91	SEACOR	А	5-15	Unknown	Decommissioned (unknown)
MW-5 (orig MW-1)	02/28/90	D&M	А	10-20	17.03	Decommissioned (2013)
MW-10	03/19/92	SEACOR	А	5-20	17.57	Decommissioned (2017)
MW-12	08/27/92	SEACOR	А	5-20	17.19	Decommissioned (2017)
MW-13	08/27/92	SEACOR	А	5-20	17.44	Decommissioned (2017)
MW-33	08/04/93	SEACOR	А	5-15	17.23	Decommissioned (2017)
PL2-JF01A	Unknown	Unknown	А	Unknown	Unknown	Decommissioned (unknown)
PL2-JF01AR	09/05/01	Weston	А	23-27	16.88	Decommissioned (2013)
PL2-JF01B	03/21/95	Weston	В	40-50	16.97	Decommissioned (2013)
PL2-JF01C	09/05/01	Weston	С	74-78	17.08	Decommissioned (2013)
PL2-JF02A	09/21/95	Weston	A	8-23	17.81	Decommissioned (2013)
PL2-JF03A	09/21/95	Weston	А	8-23	17.95	Decommissioned (unknown)
PL2-JF04A	02/16/05	Weston	A	8-18	Unknown	Decommissioned (unknown)

Table 1 - Monitoring Well Status and Construction Details - Sorted by Status

NOTES:

1 Screened interval of monitoring well in feet below ground surface (bgs).

2 Elevation of top of casing in feet relative to the North American Vertical Datum of 1988 (NAVD88), surveyed by True North Land Surveying, Inc., Seattle, Washington, August 2017, Bench Mark: 2" Brass Disc City of Seattle "3773-5101", located at the northeast corner of South 87th Street and East Marginal Way, Elevation 18.499 feet.

2017 survey did not include decommissioned or inaccessible wells (MW-1, MW-2, MW-5, MW-10, MW-12, MW-13, MW-22, MW-33, PL2-JF01A, PL2-JF01AR, PL2-JF01B, PL2-JF01B, PL2-JF01C, PL2-JF02A, PL2-JF03A, and PLW-JF04A); MW-20; and MW-32. Elevations for these locations surveyed by PLS, Inc., Issaquah, Washington, August 2003 and March 2009, City of Seattle Benchmark No. SNV-5293.

3 Well status = status of monitoring well viability for monitoring and sampling:

Active: Monitoring well is currently viable for monitoring and sampling.

Decommissioned: Monitoring well has been decommissioned or abandoned and is no longer viable for monitoring and sampling. If known, year of decommissioning is shown in parenthesis.

Inaccessible: Monitoring well is believed to have been paved over during recent paving activities.

LNAPL: Monitoring well contains measurable petroleum as LNAPL.

Shading indicates LNAPL observed in the well.

D&M = Dames & Moore; Farallon = Farallon Consulting, Inc.; LNAPL = light nonaqueous phase liquid; orig. = originally

			• ••	<u> </u>
I ahle 20 - Pro	noced investigation	I ocations and	Sampling	Schodulo
	poscu investigation	Locations and	Jamping	Juncault

Table 2	A - Proposed Inv	estigation Location	is and Sampling Schedule																							
										Soil An	alyses									Ground	lwate	r Analys	es			
LIF Boring Groundwater Monitoring Well	ව් වි ම අ ව ව ට ට ට ට ට ට ට ට ට ට ට ට ට ට ට ට ට	Location Description	Rationale	Depth or Screen Interval (ft bgs)	Number ¹ of Soil Samples	TPH-G	IPH-DX BTFX	HVOCS ²	PAHS	Full List SVOCs	PCB aroclors	Metals ³ Hevavalant Chromium	Total Organic Carbon	Porosity	Grain-Size Analysis	TPH-G	TPH-Dx	ВТЕХ	HVOCs	MTBE PAHs	Full List SVOCs	Limited SVOCs ⁴	PCB aroclors	PFAS ⁵ Metals ⁶	Hexavalent Chromium	Attenuation Indicators ⁷
Area 1																										
x	x A1-1 and A1-2	Area 1 LNAPL plume-	Provide vertical delineation of LNAPL extent and residual	15	2/boring ⁸		x		х																	
		Area 1 I NAPL plume-	soil contamination. Identify edge of I NAPL extents Provide vertical delineation		0																					
х	A1-3 through A1-14	perimeter borings	of LNAPL at each location.	15	0																					
х	MW-55	Outside and NW of Hollowbore Area	Monitor Area 1 LNAPL plume to the NW. ⁹	5-20	4		x		х			x x	ĸ		х		x	x	x	x				x	х	
x	MW-56	Outside and SW of Hollowbore Area	Monitor Area 1 LNAPL plume to the SW. ⁹	5-20	4		х		х			x					х	x	x	x				х		x
х	MW-57	S of Hollowbore Area	Monitor Area 1 LNAPL plume to the SE. ⁹	5-20	4	:	Х		Х			Х					Х	Х	Х	х				X		
х	MW-58	E of Hollowbore Area	Monitor Area 1 LNAPL plume to the E. ⁹ Evaluate Shipping Area.	5-20	4	2	x x	х	x			х			х		х	x	х	х				х		х
Х	MW-59	Outside and N of Hollowbore Area	Monitor Area 1 LNAPL plume to the N.9	5-20	4	1	х		х			х					х	х	x	x				х		
x	MW-22R	Outside and SW of Hollowbore Area	Optional well to be installed to replace lost well MW-22 (installed if MW-22 cannot be located).	5-20	4	х	(10		x ¹⁰			x ¹⁰														
Area 1/9																										
	x SB-2020-042	24-Inch JFOS Pipe	Evaluate decommissioned 24-inch pipe.	8	1	1	х		Х		Х															
	x SB-2020-043	24-Inch JFOS Pipe	Evaluate decommissioned 24-inch pipe.	8	1	1	х		Х		х															
	x SB-2020-044	24-Inch JFOS Pipe	Evaluate decommissioned 24-inch pipe.	8	1	1	х		х		х															
Area 2																										
x	A2-1 and A2-2	Area 2 LNAPL plume- center borings	Provide vertical delineation of LNAPL extent and residual soil contamination.	15	2/boring ⁸	:	х		х																	
x	A2-3 through A2-10	Area 2 LNAPL plume- perimeter borings	Identify edge of LNAPL extent. Provide vertical delineation of LNAPL at each location.	15	0																					
Х	MW-60	Forge Shop Area	Monitor Area 2 LNAPL plume to the W. ⁹	5-20	4	X 2	x x	Х	Х		Х	Х	Х		Х	Х	х	Х	Х	Х			Х	x x		Х
Х	MW-61	Forge Shop Area	Monitor Area 2 LNAPL plume to the SW. ⁹	5-20	4	X 2	х		Х		х	Х	Х		Х	х	Х	Х	Х	X				X		
х	MW-72	E of Decommissioned Diesel Storage Area	Provide monitoring well upgradient of the Decommissioned Diesel Storage Area.	5-20	4	2	х			х		х					х	x ¹¹	х	x ¹¹	х			x x		
х	MW-73	Within aluminum heat treat building	Monitor Area 2 LNAPL plume to the E. ⁹	5-20	4	x	x x	х	х		Х	х				х	х	х	х	х				х		
x	MW-13R	W of aluminum heat treat building	Optional well to replace monitoring wells within Area 2 LNAPL plume.	5-20	4																					
Х	MW-74	W of ring expander vault	Evaluate ring expander vault and hydraulic oil tank.	5-20	4	1	х		х		х	Х				Х	Х	Х	Х	Х				Х		
	x SB-2020-030	Decommissioned Diesel Storage Area Vault	Evaluate Decommissioned Diesel Storage Area.	15	2	2	х		х			х														
	x SB-2020-031	Decommissioned Diesel Storage Area Vault	Evaluate Decommissioned Diesel Storage Area.	15	2	2	х		х			x														
	x SB-2020-032	Decommissioned Diesel Storage Area Fill Ports	Evaluate Decommissioned Diesel Storage Area.	15	2	1	x		x			x														

Jorgensen Forge Corporation Property Sampling and Analysis Plan - Remedial Investigation

Table 2A -	Proposed	Investigation	Locations	and	Sampling	Schedule

							Soil Analyses								Groundwater Analyses															
LIF Boring Groundwater Monitoring Well	Probe Boring	Location Name	Location Description	Rationale	Depth or Screen Interval (ft bgs)	Number ¹ of Soil Samples	TPH-G	TPH-Dx	ВТЕХ	HVOCs ²	PAHS	Full List SVOCs	PCB aroclors	Metals ³	Hexavalent Chromium	Total Organic Carbon	Porosity	Grain-Size Analysis	D-H41	ХЛ-ИЛІ	BTEX	HVUCS	MTBE	PAHS	Full List SVOCs	Limited SVOCs ⁴	PCB aroclors	PFAS [*] Metals ⁶	Hexavalent Chromium	Attenuation Indicators ⁷
Area 3																														
	x	SB-2020-033	Former unregistered 2,000-gallon UST	Evaluate for compliance at location of former UST.	15	2	X	x	х	x ¹²																				
	X	SB-2020-034	Former unregistered 1,000-gallon UST	Evaluate for compliance at location of former UST.	15	2	x	X	х	x ¹²																				
	х	SB-2020-035	Former registered 8,000- gallon UST	Evaluate for compliance at location of former UST.	15	2	x	X	Х	x ¹²																				
Area 4																														
x		MW-10R	W of Decommissioned Oil Storage Area	Replace decommissioned well MW-10.	5-20	4		х	х	х	х			х)	x	x :	х		х			x	х		
	х	SB-2020-036	Decommissioned Oil Storage Area Vault	Evaluate Decommissioned Oil Storage Area.	15	2		х			х			х																
	х	SB-2020-037	Decommissioned Oil Storage Area Vault	Evaluate Decommissioned Oil Storage Area.	15	2		х			x			х																
		SB-2020-045	Machine Shop Area	Investigate Large Bullard.	10	2	x ¹³	х		x ¹⁴	х		х	х																
Area 5																														
Х		MW-62	W of MW-10R	Monitor downgradient of MW-10R.	5-20	4		Х			Х			Х	Х)	х	X	Х		Х			Х	<u> </u>		
Х		MW-63	W of MW-40/MW-41	Monitor downgradient of MW-40 and MW-41.	5-20	4		Х				Х		Х	Х)	х	X	Х			Х		X	<u>x x</u>		
Х		MW-64	W of MW-40/MW-41	Monitor deeper zone downgradient of MW-40 and MW-41.	45-60	3		Х			Х			Х)	х	X 2	Х		Х			X	<u>x x</u>		
х		MW-75	Machine Shop Area	Evaluate Machine Shop Area	5-20	4		Х	Х			Х		Х)	х	X 2	Х			Х		Х	<u> </u>		
	Х	SB-2020-001	N of bar peeler	Evaluate in vicinity of FB-3 TPH-O detection.	10	2		Х			Х			Х																
	Х	SB-2020-002	S of bar peeler	Evaluate in vicinity of FB-3 TPH-O detection.	10	2		Х			Х		Х	Х																
	Х	SB-2020-028	E of bar peeler	Evaluate in vicinity of FB-3 TPH-O detection.	10	2		Х			Х			Х																
	x	SB-2020-003	Heat Treat Area	Complete coverage within center of main building. Investigate West and East Craven Vaults.	15	3		x	х	х	Х			х																
	x	SB-2020-004	Heat Treat Area	Complete coverage within center of main building. Investigate Quench Tanks 1, 2, and 3 vault.	30	5		x	х	x	x		x	X		x		x												
	х	SB-2020-006	Forge Shop Area	Complete coverage within Forge Shop Area.	15	3		х			х			х																
	х	SB-2020-027	Machine Shop Area	Evaluate Machine Shop Area. Investigate Tacchi Lathe vault.	15	3		х			х			х																
	х	SB-2020-029	Machine Shop Area	Evaluate Machine Shop Area. Investigate Large Bullard.	10	2	x ¹³	х			Х			х																
	х	SB-2020-038	Heat Treat Area	Complete coverage within center of main building. Investigate West and East Craven Vaults.	15	3		х			x		х	х																

Jorgensen Forge Corporation Property Sampling and Analysis Plan - Remedial Investigation

Table 2A -	Proposed	Investigation	Locations	and	Sampling	Schedule

							Soil Analyses									Groundwater Analyses													
LIF Boring Groundwater Monitoring Well Probe Boring	Location Name	Location Description	Rationale	Depth or Screen Interval (ft bgs)	Number ¹ of Soil Samples	TPH-G	TPH-Dx	ВТЕХ	HVOCs ²	PAHS	Full List SVOCs	PCB aroclors	Metals ³	Hexavalent Chromium	Total Organic Carbon	Porosity	Grain-Size Analysis	TPH-G	TPH-Dx	ВТЕХ	HVOCs	MTBE	PAHS	Full List SVOCs	Limited SVOCs ⁴	PCB aroclors	PFAS ⁵	Metals* Hexavalent Chromium	Attenuation Indicators ⁷
Area 6																													
х	MW-66	N end of property west of Truck Scale	Monitor N property boundary. Assess former Bethlehem Steel galvanizing plant.	5-20	4		х	х	x	x			х		х		x		x	х	x		х			X		x	
X	MW-76	SE of Truck Scale	Complete coverage within Former BSF footprint.	5-20	4		х				х		Х						х	х	Х		Х	х			,	X	
x	SB-2020-005	W of Melt Bag House	Complete coverage within Former BSF footprint.	25	5		х	х	х	х			Х																
x	SB-2020-009	SW of Former Steam Clean Area	Complete coverage within Former BSF footprint. Evaluate Former Steam Clean Area.	15	3	х	x	Х	x	x			x																
x	SB-2020-039	N of Former Steam Clean Area	Complete coverage within Former BSF footprint. Evaluate Former Steam Clean Area.	15	3	х	х	х	х	х			х																
Area 6/8																													
x	MW-65	NW of stormwater treatment system	Monitor Former Bethlehem Steel Facility footprint with former embayment.	5-20	4		х	х	х	х		х	х	х	х		х	х	х	х	х		х		х	х		x	
X	SB-2020-007	E of Melt Bag House	Complete coverage within Former BSF footprint.	25	5		х			х		Х	х																
х	SB-2020-008	E MW-6	Complete coverage within Former BSF footprint.	25	5		х	х	х	х		Х	Х																
Area 7																													
Х	MW-67	SW of Former Metals Storage Area bins	Monitor within the Former Metals Storage Area and unpaved slag storage area.	5-20 ¹⁵	4		х		х		х		х	х	х		х		х	х	х			х		Х		x	
x	SB-2020-010	E of Arc Furnace Vault	Complete coverage within Former Melt Shop.	15	3		х			х			х																
x	SB-2020-012	N of Swarf Stockpile Area	Evaluate NE portion of Former Metals Storage Area.	15	3		х			х			х																
x	SB-2020-040	W of Arc Furnace Vault	Complete coverage within Former Melt Shop.	15	3		х			х			Х																
Area 7/8																													
х	MW-68	W of Former Metals Storage Area	Monitor downgradient of Former Metals Storage Area.	5-20	4		х	х	х		х	х	х						х	х	х			х		х	Х	x	
x	SB-2020-011	E of Former Metals Storage Area	Complete coverage E of Former Metals Storage Area and within unpaved slag storage area.	15 ¹⁵	3		х			x			х																
Area 8		, v																											
x	MW-53	Shoreline W of Melt Bag House	Monitor shoreline.	5-20	4		х	х	х	х		х	х						х	х	х		х		х	х		x	
x	MW-54	Shoreline S of Liquid Cooling Gas Storage	Monitor shoreline.	5-20	4		Х	х	х	х		х	х			х			х	х	х		х		х	x		x	
X	SB-2020-013	W of Former Acid Pit	Evaluate metals and PCBs along shoreline.	25	5		х			х		х	Х		Х		х												

Jorgensen Forge Corporation Property Sampling and Analysis Plan - Remedial Investigation
						Soil Analyses					Groundwater Analyses																	
LIF Boring Groundwater Monitoring Well Probe Boring	Location Name	Location Description	Rationale	Depth or Screen Interval (ft bgs)	Number ¹ of Soil Samples	TPH-G	TPH-Dx	ВТЕХ	HVOCS ²	PAHS	Full List SVOCs	PCB aroclors	Metals ³	Hexavalent Chromium	Total Organic Carbon	Porosity Crain Sizo Analysis	TPH-G	TPH-DX	BTEX	HVOCS	MTBE	PAHS	Full List SVOCs	Limited SVOCs ⁴	PCB aroclors	PFAS ⁵	Metals [®]	Hexavalent conformum Attenuation Indicators ⁷
Area 9																												
х	MW-69	NW of Black Shack Motor Storage	Monitor NW corner of property.	5-20	4		х	х	х	х		х	х		x	х	х	х	х	х				х	х		х	
x	MW-70	NW of Black Shack Motor Storage	Monitoring deeper zone in NW corner of property.	45-60	3												х	х	х	х		х			x		х	
x	MW-71	N property boundary east of Truck Scale	Monitor N property boundary.	5-20	4		х	х	x	х			х				х	х	х	х		х			х	х	х	
x	SB-2020-014	W of Black Shack Motor Storage	Evaluate TPH and PCBs in NW corner.	25	5	х	х	Х	x	х		х	х															
x	SB-2020-015	E of Black Shack Motor Storage	Evaluate TPH and metals in NW corner.	25	5	х	х	X	x	x		х	х															
x	SB-2020-016	S of Black Shack Motor Storage	Evaluate TPH and PCBs in NW corner.	25	5	х	х	х	х	x		Х	х															
Х	SB-2020-017	W of Truck Scale	Complete coverage.	15	3	Х	х	х	х	х		х	Х															
Х	SB-2020-041	E of Diesel Fueling and Used Oil Storage Building	Evaluate Diesel Fueling and Used Oil Storage Building.	15	3	х	х	х	х	х		х	x															
X	SB-2020-018 through SB-2020-026	S of OA-11	Provide further delineation of PCBs from Boeing OA-11.	12	6/boring		х					x																

NOTES:

1 Indicates number of soil samples to be collected; some (deeper) samples to be held for potential analysis. Additional samples may be collected based on field screening

2 HVOCs include 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride

3 Metals include arsenic, barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, silver, vanadium, and zinc

4 Limited SVOCs include bis(2)ethylhexyl phthalate, dibutyl phthalate, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-dimethyphenol, benzoic acid, butyl benzyl phthalate, n-nitrosodiphenylamine, and pentachlorophenol

5 To be analyzed during one event for EPA's third UCMR list of six perfluorinated compounds (perfluorobutanesulfonic acid, perfluorohexanesulfonic acid, perfluorohexanesulfonic acid, perfluorobetanoic acid, perfluorobetano

6 Metals include total and dissolved metals, including arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, vanadium, and zinc

7 Natural attenuation parameters include dissolved oxygen (field reading), nitrate, nitrite, sulfate, sulfate, ferrous iron, manganese, and methane

8 Soil samples to be collected from probe boring completed following LIF investigation. Soil samples to be collected from depth with highest LIF response and from below residual soil contamination

9 To be located outside of LNAPL plume footprint; position may be adjusted following plume delineation.

10 Analyze if visible LNAPL is not observed.

11 To be analyzed if TPH is detected within the sample.

12 Analyze the two soil samples with highest contamination within Area 3 (from two different borings) for HVOCs.

13 Analyze one sample (with highest contamination) for TPH-G

14 Analyze one sample for HVOCs.

15 Sample depths to include a near-surface soil sample

Investigation locations are shown in Figures 2A and 2B. Locations may be adjusted in the field as required to avoid utilities and in response to findings from previous point:

BSF = Bethlehem Steel Facility; BTEX = benzene, toluene, ethylbenzene, and xylenes; E = east; ft bgs = feet below ground surface; EPA = U.S. Environmental Protection Agency; HVOCs = halogenated volatile organic compounds; LNAPL = light nonaqueous phase liquid; N = north; NE = northeast; NSZD = natural source zone depletion; NW = northwest; OA-11 = Boeing Other Area 11; PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; PFAS = per- and polyfluoroalkyl substances; S = south; SE = southeast; SVOCs = semi-volatile organic compounds; SW = southwest; TPH-Dx = total petroleum hydrocarbons diesel extended; TPH-G = gasoline-range petroleum hydrocarbons; UCMR = Unregulated Contaminant Monitoring Rule; W = west.

Jorgensen Forge Corporation Property Sampling and Analysis Plan - Remedial Investigation

Well Identification Location on Site X	
Identification Location on Site □ <	tenuation dicators ^d
Area 1MW-9East of shipping areaxxxxxxMW-25West of hollowbore areaxxxxxxMW-30South of hollowbore areaxxxxxxMW-48West of hollowbore areaxxxxxxMW-24West of main officexxxxxxxMW-49North of snipping areaxxxxxxxxMW-49North of main officexxxxxxxxxxMW-49North of main officexxxxxxxxxxMW-49North of main officexxxxxxxxxxMW-49North of main officexxxxxxxxxxMW-49North of main officexxxxxxxxxxxxMW-49North of main officexxxxxxxxxxxxxxxMW-49North of main officexxxxxxxxxxxxxMW-49North of main officexxxxxxxxx	At
MW-9East of shipping areaxxxxxxxMW-25West of hollowbore areaxxxxxxxMW-30South of hollowbore areaxxxxxxxMW-48West of hollowbore areaxxxxxxxMW-48West of hollowbore areaxxxxxxxxArea 1/9XXXXXXXXXXXMW-49North of shipping areaxxxxxxxxxxxxMW-49North of main officexxx <td></td>	
MW-0Lessed of shipping areaxxxMW-25West of hollowbore areaxxxMW-30South of hollowbore areaxxxMW-48West of hollowbore areaxxxMW-23North of shipping areaxxxxMW-24West of main officexxxxMW-49North of main officexxxxxMW-49North of main officexxxxxxArea 10xxxxxxxxMW-24West of main officexxxxxxxMW-49North of main officexxxxxxxxxMW-49North of main officexxxxxxxxxxMW-40North of main officexxxxxxxxxxMW-49North of main officexxxxxxxxxxxxMW-40North of main officexxxxxxxxxxxxMW-40North of main officexxxxxxxxxxxxxxMW-40North of main officexxxx	
MW-20 South of hollowbore area x x MW-30 South of hollowbore area x x MW-48 West of hollowbore area x Area 1/9 MW-23 North of shipping area x X X X X MW-24 West of main office x X X X X X MW-49 North of main office X X	
MW-48 West of hollowbore area x Area 1/9 MW-23 North of shipping area x MW-24 West of main office x X X MW-49 North of main office x X X	x
Area 1/9 MW-23 North of shipping area x x x x x x MW-24 West of main office x x x x x MW-49 North of main office x x x x x x x	
MW-23 North of shipping area x x x x x x MW-24 West of main office x x x x x MW-49 North of main office x x x x x x x x x x x	
MW-20 North of main office X X X X MW-49 North of main office X </td <td>×</td>	×
MW-24 Wester main onlice x x x MW-49 North of main office x <td>X</td>	X
MW-7 Southeast corner of site	
MW-7 Solutieds comer of site x	
MW-14 Northeast of aluminum beat treat x x x x x	
MW-32 Fast of force shop area x x x x x x x x x x x	X
MW-34 West of aluminum heat treat area x x	
MW-36 East portion of forge shop area x x x x x x x x x x x x x x x x x x x	X
MW-37 South of forge shop area x x x x x x x x x x x x x x x x x x x	
Area 3	
MW-3 South of front gate x x x x x x	
MW-4 Near front gate x x x x x x x x x x x x x x x x x x x	
MW-8 Southwest of front gate x x x x x x x x x x x x x x x x x	
Area 4	
MW-11 East of human resources office x x x x x x x x x	
Area 5	
MW-40 West of 5,000-ton press x x x x x x x x x x x x x x x x x x	
MW-41 West of 5,000-ton press x x x x x x x x x x x x x x x x x x	
Area 6	
MW-31 West of machine shop x x x x x x	
MW-45 West of heat treat area x x x x x x x x x x x	
MW-46 West of laboratory x x x x x x x x x x x x x x x x x x x	
Area 6/8	
MW-6 Northwest of former melt shop x x x x x x x x x x x x x x x x x x x	
MW-38 Southwest of force shop area v v v v	
MW-39 Southwest of former melt shop v v v v v v v v v v v v v v v v v v v	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
Area 8	
MW-47 Southwest of hadhouse ¹ X Y Y Y	

Table 2B - Proposed Sampling Schedule for Existing Monitoring Wells

Jorgensen Forge Corporation Property Sampling and Analysis Plan - Remedial Investigation

21-1-12596-013-R1f-SAP-T1 T2 T3 - 4/14/2020/WP/AYA

Table 2B - Proposed Sampling Schedule for Existing Monitoring Wells

Well Identification	n Location on Site	TPH-G	TPH-Dx	ВТЕХ	HVOCS ^a	MTBE	PAHs	Full List SVOCs	Limited SVOCs ^b	PCBs (Aroclors)	PFAS ^c	Arsenic	Chromium	Manganese	Nickel	Cadmium	Cobalt	Copper	
Area 9																			
MW-50	East of black shack motor storage ¹			Х	Х					Х				Х					
MW-51	North of black shack motor storage ¹	Х			Х				Х	Х									
MW-52	South of black shack motor	х		Х	Х		Х			Х				Х					
NOTEO																			

NOTES:

1 Located near shoreline; sample collection to occur within one hour before low tide and no later than three hours after low tide.

a HVOCs to include 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride.

b Limited SVOCs to include bis(2-ethylhexyl phthalate), dibutyl phthalate, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-dimethyphenol, benzoic acid, butyl benzyl phthalate, n-nitrosodiphenylamine, and pentachlorophenol.

c To be analyzed during one event for EPA's third UCMR list of six perfluorinated compounds (perfluorobutanesulfonic acid, perfluorohexanesulfonic acid, perfluorohexanesulfonic acid, perfluorooctanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorohexanesulfonic acid, perfluorohexanesulfon d Natural attenuation parameters include dissolved oxygen (field reading), nitrate, nitrite, sulfate, sulfite, ferrous iron, manganese, and methane.

Quality Assurance/Quality Control (QA/QC) samples to be collected in accordance with Sampling and Analysis Plan and Quality Assurance Project Plan. Samples will include field duplicates, matrix spike/matrix spike dilution (MS/MSD) samples, equipment blanks, trip blanks, and temperature blanks. Field duplicates will be assigned a "dummy" name and time and will be analyzed for the same suite as the original well. MS/MSD samples will be labeled with "MS/MSD" and the source well identification. Two equipment blanks will be collected during the event by running distilled water through new (unused) sample tubing. One trip blank will be included within each cooler with volatile samples (grouped into as few coolers as possible). A temperature blank will be included in each cooler.

BTEX = benzene, toluene, ethylbenzene, and total xylenes; EPA = U.S. Environmental Protection Agency; HVOCs = halogenated volatile organic compounds; MTBE = methyl tert butyl ether; PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; PFAS = per- and polyfluoroalkyl substances; SVOCs = semivolatile organic compounds; TPH-Dx = total petroleum hydrocarbons as diesel extended; TPH-G = total petroleum hydrocarbons as gasoline; UCMR = Unregulated Contaminant Monitoring rule; x = analysis to be performed.

Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
MW-3	02/23/09	Farallon	14.05	11.56	_	0	2.49
MW-3	05/19/09	Farallon	14.05	11.34		0	2.71
MW-3	08/25/09	Farallon	14.05	12.02	_	0	2.03
MW-3	12/09/09	Farallon	14.05	11.15		0	2.90
MW-3	09/29/15	PES		11.51	_	_	
MW-3	08/15/17	S&W	17.33	11.21		0	6.12
MW-3	02/05/18	S&W	17.33	9.36		0	7.97
MW-4	02/23/09	Farallon	17.48	11.65	_	0	5.83
MW-4	05/19/09	Farallon	17.48	11.42	_	0	6.06
MW-4	08/25/09	Farallon	17.48	12.12	_	0	5.36
MW-4	12/09/09	Farallon	17.48	11.23	_	0	6.25
MW-4	09/29/15	PES	—	11.58	—	—	—
MW-4	08/15/17	S&W	17.45	11.27	—	0	6.18
MW-4	02/05/18	S&W	17.45	9.48	_	0	7.97
MW-5	02/23/09	Farallon	17.03	_	_	—	_
MW-5	05/19/09	Farallon	17.03	14.01	—	0	3.02
MW-5	08/25/09	Farallon	17.03	10.99	—	0	6.04
MW-5	12/09/09	Farallon	17.03	9.15	—	0	7.88
MW-5	—	PES	—	—	—	—	—
MW-6	02/23/09	Farallon	20.61	14.19	—	0	6.42
MW-6	05/19/09	Farallon	20.61	14.15	—	0	6.46
MW-6	05/21/09	Farallon	20.61	14.14	—	0	6.47
MW-6	08/25/09	Farallon	20.61	15.18	—	0	5.43
MW-6	12/09/09	Farallon	20.61	13.56	_	0	7.05
MW-6	09/29/15	PES	_	14.74	_	_	
MW-6	08/15/17	S&W	20.59	14.8	_	0	5.79
MW-6	02/05/18	S&W	20.59	12.88	_	0	7.71
MW-7	02/23/09	Farallon	20.84	15.18	_	0	5.66
MW-7	05/19/09	Farallon	20.84	14.98	_	0	5.86
MW-7	08/25/09	Farallon	20.84	15.65	_	0	5.19
MW-7	12/09/09	Farallon	20.84	14.78	_	0	6.06
MW-7	09/30/15	PES	—	15.09	_	—	—
MW-7	08/15/17	S&W	20.81	14.77	—	0	6.04
MW-7	02/05/18	S&W	20.81	12.99	—	0	7.82
MW-8	02/23/09	Farallon	17.70	11.29	—	0	6.41
<u>MW-8</u>	05/19/09	Farallon	17.70		_		
<u>MW-8</u>	08/25/09	Farallon	17.70	12.35	—	0	5.35
<u>MW-8</u>	12/09/09	Farallon	17.70	11.49	—	0	6.21
<u>MW-8</u>	09/29/15	PES		11.85	—		
<u>MW-8</u>	08/15/17	S&W	17.66	11.52	—	0	6.14
<u>MW-8</u>	02/05/18	S&W	17.66	9.75	_	0	7.91
<u>MW-9</u>	02/23/09	Farallon	17.79		_		
<u>MW-9</u>	05/19/09	Farallon	17.79	11.71	_	0	6.08
<u>MVV-9</u>	08/25/09	Farallon	17.79	12.78	—	0	5.01
<u>MVV-9</u>	12/09/09	Farallon	17.79	11.5	—	0	6.29
<u>IVIVV-9</u>	09/29/15	PES		11.86	—		
IVIVV-9	00/15/17	S&W	11.11	0.04	_	<u> </u>	<u>b.13</u>
MIVV-9	02/05/18	S&W	17.77	9.84	—	0	7.93

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-10	02/23/09	Farallon	17.57	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-10	05/19/09	Farallon	17.57	10.05	_	0	7.52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-10	08/25/09	Farallon	17.57	12.22	_	0	5.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-10	12/09/09	Farallon	17.57	10.35		0	7.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-10	_	PES	_	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	02/23/09	Farallon	17.70	_	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	05/19/09	Farallon	17.70	11.66	_	0	6.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	08/25/09	Farallon	17.70	12.39	—	0	5.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	12/09/09	Farallon	17.70	11.57	—	0	6.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	09/29/15	PES	—	11.86	_	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-11	08/15/17	S&W	17.65	11.58	_	0	6.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-11	02/05/18	S&W	17.65	9.78	—	0	7.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-12	02/23/09	Farallon	17.19	5.12	_	0	12.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-12	05/19/09	Farallon	17.19	—	—	—	—
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-12	08/25/09	Farallon	17.19	—	—	—	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-12	12/09/09	Farallon	17.19		_		—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-13	02/23/09	Farallon	17.44	1.64	—	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-13	05/19/09	Farallon	17.44	_	_		—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-13	08/25/09	Farallon	17.44	—	—	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-13	12/09/09	Farallon	17.44	—	—	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-14	02/23/09	Farallon	17.64		_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>MW-14</u>	05/19/09	Farallon	17.64	11./4	—	0	5.90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>MW-14</u>	08/25/09	Farallon	17.64	12.39	_	0	5.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>MW-14</u>	12/09/09	Farallon	17.64	11.5	—	0	6.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>MW-14</u>	09/29/15	PES		11.83	—		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>MVV-14</u>	08/15/17	S&W	17.60	11.58	—	0	6.02
MW-15 02/23/09 Farallon 17.65 11.9 0 5.75 MW-15 05/19/09 Farallon 17.65 11.7 0 5.95 MW-15 08/25/09 Farallon 17.65 12.39 0 5.26 MW-15 12/09/09 Farallon 17.65 11.5 0 6.15 MW-15 09/29/15 PES 11.82 MW-15 08/15/17 S&W 17.61 11.55 0 6.06 MW-16 02/05/18 S&W 17.61 9.46 0 8.15 MW-16 02/23/09 Farallon 17.72 10.98 5 MW-16 08/25/09 Farallon 17.72 11.51 3.88 MW-16 08/03/015 PES - - 10.49 4.9 MW-16 08/11/17	<u>IVIVV-14</u>	02/05/18	S&W	17.60	9.82		0	1.18
MW-15 05/19/09 Farallon 17.65 11.7 0 5.95 MW-15 08/25/09 Farallon 17.65 12.39 0 5.26 MW-15 12/09/09 Farallon 17.65 11.5 0 6.15 MW-15 09/29/15 PES - 11.82 - MW-15 08/15/17 S&W 17.61 11.55 - 0 6.06 MW-16 02/23/09 Farallon 17.72 - 10.98 5 MW-16 05/19/09 Farallon 17.72 - 10.49 4.9 MW-16 08/25/09 Farallon 17.72 - 10.49 4.9 MW-16 09/30/15 PES - - 10.94 > 4.45 MW-16 09/30/15 PES - - 10.94 > 4.45 MW-16 08/11/17 S	IVIV-15	02/23/09	Farallon	17.65	11.9		0	5./5
MW-1508/25/09Farallon17.6512.3905.20MW-1512/09/09Farallon17.6511.506.15MW-1509/29/15PES-11.82MW-1508/15/17S&W17.6111.5506.06MW-1502/05/18S&W17.619.4608.15MW-1602/23/09Farallon17.7210.985MW-1605/19/09Farallon17.7211.513.88MW-1608/25/09Farallon17.7210.494.9MW-1609/30/15PES10.94> 4.45MW-1609/30/15PES9.34> 6.09MW-1602/08/18S&W17.7015.2510.924.336.47MW-1702/23/09Farallon17.6113.910.63.3MW-1708/25/09Farallon17.6113.810.523.28MW-1708/25/09Farallon17.6118.1111.356.76MW-1708/25/09Farallon17.6118.1111.356.76MW-1708/25/09Farallon17.6116.8410.596.25MW-1708/21/117S&W17.5715.6410.615.036.60MW-1708/11/1	IVIV-15	05/19/09	Farallon	17.05	10.20		0	5.95
MW-1512/09/09Fatalion17.6311.506.15MW-1509/29/15PES-11.82MW-1508/15/17S&W17.6111.5506.06MW-1502/05/18S&W17.619.4608.15MW-1602/23/09Faralion17.7210.985MW-1605/19/09Faralion17.7211.513.88MW-1608/25/09Faralion17.7210.494.9MW-1609/30/15PES10.94> 4.45MW-1609/30/15PES10.94> 4.45MW-1602/08/18S&W17.7015.2510.924.336.47MW-1602/23/09Faralion17.6113.910.63.3MW-1702/23/09Faralion17.6113.810.523.28MW-1708/25/09Faralion17.6118.1111.356.76MW-1708/25/09Faralion17.6116.8410.596.25MW-1709/30/15PES18.8410.947.9MW-1708/11/17S&W17.5715.6410.615.036.60MW-1702/08/18S&W17.5713.598.684.918.55	IVIVV-15	12/00/00	Farallon	17.65	12.39		0	0.20 6.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IVIVV-15	12/09/09		C0.11	0.11 11 00	_	0	0.10
MW-15 00/13/17 3&W 17.01 11.35 0 0.00 MW-15 02/05/18 S&W 17.61 9.46 0 8.15 MW-16 02/23/09 Farallon 17.72 10.98 5 MW-16 05/19/09 Farallon 17.72 11.51 3.88 MW-16 08/25/09 Farallon 17.72 11.51 3.88 MW-16 08/25/09 Farallon 17.72 10.49 4.9 MW-16 09/30/15 PES - - 10.94 > 4.45 MW-16 09/30/15 PES - - 9.34 > 6.09 - MW-16 02/08/18 S&W 17.70 - 9.34 > 6.09 - MW-17 02/23/09 Farallon 17.61 13.9 10.6 3.3 - MW-17 08/25/09	MW 15	09/29/13		17.61	11.02			6.06
MW-1502/03/16Saw17.813.40 $-$ 00.13MW-1602/23/09Farallon17.72 $-$ 10.985 $-$ MW-1605/19/09Farallon17.7211.910.861.04 $-$ MW-1608/25/09Farallon17.72 $-$ 11.513.88 $-$ MW-1609/30/15PES $ -$ 10.494.9 $-$ MW-1609/30/15PES $ -$ 10.94> 4.45 $-$ MW-1608/11/17S&W17.7015.2510.924.336.47MW-1602/08/18S&W17.70 $-$ 9.34> 6.09 $-$ MW-1702/23/09Farallon17.6113.910.63.3 $-$ MW-1705/19/09Farallon17.6113.810.523.28 $-$ MW-1708/25/09Farallon17.6118.1111.356.76 $-$ MW-1709/30/15PES $-$ 18.8410.947.9 $-$ MW-1708/25/09Farallon17.6116.8410.596.25 $-$ MW-1708/11/17S&W17.5715.6410.615.036.60MW-1702/08/18S&W17.5713.598.684.918.55	MW/ 15	02/05/18	Saw	17.01	0.46		0	8 15
MW-10 $02/25/09$ Farallon 17.72 $ 10.30$ 3 $-$ MW-16 $05/19/09$ Farallon 17.72 11.9 10.86 1.04 $-$ MW-16 $08/25/09$ Farallon 17.72 $ 11.51$ 3.88 $-$ MW-16 $12/09/09$ Farallon 17.72 $ 10.49$ 4.9 $-$ MW-16 $09/30/15$ PES $ 10.94$ > 4.45 $-$ MW-16 $08/11/17$ S&W 17.70 15.25 10.92 4.33 6.47 MW-16 $02/08/18$ S&W 17.70 $ 9.34$ > 6.09 $-$ MW-17 $02/23/09$ Farallon 17.61 13.9 10.6 3.3 $-$ MW-17 $05/19/09$ Farallon 17.61 13.8 10.52 3.28 $-$ MW-17 $08/25/09$ Farallon 17.61 18.11 11.35 6.76 $-$ MW-17 $09/30/15$ PES $ 18.84$ 10.94 7.9 $-$ MW-17 $09/30/15$ PES $ 18.84$ 10.94 7.9 $-$ MW-17 $08/11/17$ S&W 17.57 15.64 10.61 5.03 6.60 MW-17 $02/08/18$ S&W 17.57 13.59 8.68 4.91 8.55	MW/ 16	02/03/10	Earallon	17.01	9.40	10.08	5	0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 	05/19/09	Farallon	17.72	11 9	10.30	1 04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 MW-16	08/25/09	Farallon	17.72		11 51	3.88	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-16	12/09/09	Farallon	17.72	_	10.49	4 9	_
MW-16 08/11/17 S&W 17.70 15.25 10.92 4.33 6.47 MW-16 02/08/18 S&W 17.70 - 9.34 > 6.09 - MW-16 02/08/18 S&W 17.70 - 9.34 > 6.09 - MW-17 02/23/09 Farallon 17.61 13.9 10.6 3.3 - MW-17 05/19/09 Farallon 17.61 13.8 10.52 3.28 - MW-17 08/25/09 Farallon 17.61 18.11 11.35 6.76 - MW-17 08/25/09 Farallon 17.61 18.84 10.59 6.25 - MW-17 09/30/15 PES - 18.84 10.94 7.9 - MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-16	09/30/15	PES	<u> </u>	_	10.45	> 4 45	_
MW-16 02/08/18 S&W 17.70 - 9.34 > 6.09 - MW-17 02/23/09 Farallon 17.61 13.9 10.6 3.3 - MW-17 02/23/09 Farallon 17.61 13.9 10.6 3.3 - MW-17 05/19/09 Farallon 17.61 13.8 10.52 3.28 - MW-17 08/25/09 Farallon 17.61 18.11 11.35 6.76 - MW-17 12/09/09 Farallon 17.61 18.84 10.59 6.25 - MW-17 09/30/15 PES - 18.84 10.94 7.9 - MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-16	08/11/17	S&W	17 70	15 25	10.92	4 33	6 47
MW-17 02/23/09 Farallon 17.61 13.9 10.6 3.3 MW-17 05/19/09 Farallon 17.61 13.8 10.52 3.28 MW-17 05/25/09 Farallon 17.61 18.11 11.35 6.76 MW-17 08/25/09 Farallon 17.61 18.11 11.35 6.76 MW-17 02/09/09 Farallon 17.61 16.84 10.59 6.25 MW-17 09/30/15 PES 18.84 10.94 7.9 MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-16	02/08/18	S&W	17.70		9.34	> 6.09	
MW-17 05/19/09 Farallon 17.61 13.8 10.52 3.28 — MW-17 08/25/09 Farallon 17.61 18.11 11.35 6.76 — MW-17 12/09/09 Farallon 17.61 18.11 11.35 6.76 — MW-17 09/30/15 PES — 18.84 10.94 7.9 — MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	02/23/09	Farallon	17.61	13.9	10.6	3.3	_
MW-17 08/25/09 Farallon 17.61 18.11 11.35 6.76 — MW-17 12/09/09 Farallon 17.61 16.84 10.59 6.25 — MW-17 09/30/15 PES — 18.84 10.94 7.9 — MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	05/19/09	Farallon	17.61	13.8	10.52	3.28	_
MW-17 12/09/09 Farallon 17.61 16.84 10.59 6.25 — MW-17 09/30/15 PES — 18.84 10.94 7.9 — MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	08/25/09	Farallon	17.61	18.11	11.35	6.76	_
MW-17 09/30/15 PES — 18.84 10.94 7.9 — MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	12/09/09	Farallon	17.61	16.84	10.59	6.25	_
MW-17 08/11/17 S&W 17.57 15.64 10.61 5.03 6.60 MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	09/30/15	PES	_	18.84	10.94	7.9	_
MW-17 02/08/18 S&W 17.57 13.59 8.68 4.91 8.55	MW-17	08/11/17	S&W	17.57	15.64	10.61	5.03	6.60
	MW-17	02/08/18	S&W	17.57	13.59	8.68	4.91	8.55

Monitoring	Data		Top of Casing Elevation	Depth to Water	Depth to LNAPL	LNAPL Thickness	Potentiometric Surface Elevation
			(IEEL NAVD00)		(10.51	(1961)	(IEELINAVDoo)
IVIVV-10 	02/23/09	Farallon	17.51	13.8	10.51	3.19	
M\\\/ 18	03/19/09	Farallon	17.51	12.00	11.65	0.44	
M\\\/ 18	12/00/00	Farallon	17.51	11.09	10.12	0.44	
 	09/30/15			11.01	11.00	0.09	
NW_18	09/30/13	S&W	17.47	11.30	9.95	1.84	7 39
 	02/08/18	S&W	17.47	10.58	7 97	2.61	9.33
N\/_19	02/00/10	Farallon	17.47	12 34	11 34	1	5.51
	05/19/09	Farallon	17.47	12.04			
MW_19	08/25/09	Farallon	17.47	11 25	11 16	0.09	
	12/09/09	Farallon	17.47	12.34	9.88	2 46	
MW-19	09/30/15	PES		11 47			_
MW-19	08/10/17	S&W	17 92	11.3	11.2	0.1	6 71
MW-19	02/08/18	S&W	17.92	9.82	9.2	0.62	8.67
MW-20	02/23/09	Farallon	18.22	14.52	9.51	5.01	_
MW-20	05/19/09	Farallon	18.22	14.6	9.34	5.26	_
MW-20	08/25/09	Farallon	18.22	14.82	10.24	4.58	_
MW-20	12/09/09	Farallon	18.22	14.68	9.4	5.28	_
MW-20	09/29/15	PES	_	_	_	—	—
MW-20	02/08/18	S&W	_	12.1	7.98	4.12	_
MW-21	02/23/09	Farallon	13.90	12.56	7.08	5.48	
MW-21	05/19/09	Farallon	13.90	13.75	6.7	7.05	
MW-21	08/25/09	Farallon	13.90	12.56	7.97	4.59	_
MW-21	12/09/09	Farallon	13.90	10.23	6.77	3.46	_
MW-21	09/29/15	PES	—	9.35	8.88	0.47	—
MW-21	08/11/17	S&W	17.88	9.74	8.25	1.49	9.53
MW-21	02/08/18	S&W	17.88	7.35	6.49	0.86	11.33
MW-22	02/23/09	Farallon	16.98	10.21	7.23	2.98	_
MW-22	05/19/09	Farallon	16.98	11.05	6.95	4.1	_
MW-22	08/25/09	Farallon	16.98	14.13	8.03	6.1	—
MW-22	12/09/09	Farallon	16.98	8.48	7.1	1.38	—
MW-22		PES			—		
MW-23	02/23/09	Farallon	17.84	11.88	_	0	5.96
MW-23	05/19/09	Farallon	17.84	11.7	_	0	6.14
MW-23	08/25/09	Farallon	17.84	12.36	_	0	5.48
<u>MW-23</u>	12/09/09	Farallon	17.84	11.5	—	0	6.34
MW-23	09/29/15	PES	47.70	11.89	_		-
MW-23	08/11/17	S&W	17.78	11.64	_	0	6.14
IVIVV-23	02/05/18	S&W	17.78	9.87		0	7.91
N/V/ 24	02/23/09	Faralion	17.00	11.9		0	5.90 6.01
NIV/ 24	03/19/09	Farallon	17.00	11.0/		0	0.01 5.40
<u></u>	12/00/00	Farallon	17.00	11 59		0	6 20
<u></u>	00/20/15		17.00	11.00		U	0.30
M/W/ 24	08/11/17	<u> </u>	17 70	11.99			5.00
MW-24	02/05/18		17 70	10.27		0	7 59
MW-25	02/23/09	Farallon	17 64	11 7		0	5 94
MW-25	05/19/09	Farallon	17 64	11.8		0	5.84
		i alanon				~	0.01

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								Potentiometric
Monitoring Elevation Depth to Water LNAPL Thickness Elevation Well JD Date Collected By (reel NAVD8) ¹ (reet) 5.64 MW-25 08250/9 Faralion 17.64 11.36 — 0 5.32 MW-25 09239/15 PES — 9.44 — — — — — — 0 5.95 MW-25 02205/18 S&W 17.65 7.4 — 0 10.25 MW-26 05219/09 Faralion 18.36 NE 10.23 3.33 — — — — — — — — — — — … … … … … … … … … … … … … … …				Top of Casing		Depth to	LNAPL	Surface
Weil ID Date Collected By (reet NAVD88) (reet)	Monitoring			Elevation	Depth to Water	LNAPL	Thickness	Elevation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Well ID	Date	Collected By	(feet NAVD88)	(feet) ²	(feet)	(feet)	(feet NAVD88) ³
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-25	05/21/09	Farallon	17.64	12	—	0	5.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-25	08/25/09	Farallon	17.64	12.32	—	0	5.32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-25	12/09/09	Farallon	17.64	11.36	—	0	6.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-25	09/29/15	PES	_	9.44	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-25	08/11/17	S&W	17.65	11.7	_	0	5.95
MW-26 0.223/09 Farallon 18.36 NE 10.23 3.33 MW-26 0.8125/09 Farallon 18.36 -	MW-25	02/05/18	S&W	17.65	7.4	—	0	10.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-26	02/23/09	Farallon	18.36	NE	10.26	3.3	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-26	05/19/09	Farallon	18.36	NE	10.23	3.33	—
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-26	08/25/09	Farallon	18.36	—	_	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-26	12/09/09	Farallon	18.36	—	_	_	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-26	09/29/15	PES			10.64	> 2.66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-26	08/11/17	S&W	18.28	16.45	10.05	6.4	7.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-26	02/08/18	S&W	18.28	16.22	8.62	7.6	9.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-27	02/23/09	Farallon	18.15	21.21	11.16	10.05	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-27	05/19/09	Farallon	18.15	18.5	11.27	7.23	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-27	08/25/09	Farallon	18.15	19.65	11.96	7.69	—
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-27	12/09/09	Farallon	18.15	18.36	10.96	7.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-27	09/29/15	PES		19.84	11.5	8.34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-27	08/11/17	S&W	18.08	20.37	10.83	9.54	6.58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-27	02/08/18	S&W	18.08	21.8	9.18	12.62	8.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>MW-28</u>	02/23/09	Farallon	18.35	13.06	6.02	7.04	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>MW-28</u>	05/19/09	Farallon	18.35	16.5	11.15	5.35	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>MW-28</u>	08/25/09	Farallon	18.35	16.68	12.15	4.53	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>MW-28</u>	12/09/09	Farallon	18.35	15.44	10.95	4.49	—
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>MW-28</u>	09/29/15	PES		14.28	11.95	2.33	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>MVV-28</u>	08/11/17	S&W	18.28	12.55	11.04	1.51	7.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>IVIVV-28</u>	02/08/18	<u>S&W</u>	18.28	14.4	9.25	5.15	8.67
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/23/09	Faralion	18.24	18.28	11.42	0.80	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>IVIVV-29</u>	05/19/09	Faralion	18.24	21.95	11	10.95	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/25/09	Faralion	18.24	21.1	11.75	9.35	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12/09/09	Faralion	18.24	Z1.0Z	10.7	10.32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/29/15	PEO	10.15	10.10	11.32	7 10	6 50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		02/08/18	<u> </u>	10.10	10.10	0.42	<u> </u>	<u>0.09</u> 9.13
MW-30 02/23/09 Farallon 17.46 11.02 0 5.80 MW-30 05/19/09 Farallon 17.48 11.65 0 5.83 MW-30 08/25/09 Farallon 17.48 12.23 0 5.25 MW-30 12/09/09 Farallon 17.48 11.37 0 6.11 MW-30 09/30/15 PES 11.39 MW-30 09/30/15 PES 11.5 0 5.95 MW-30 08/11/17 S&W 17.45 11.5 0 5.95 MW-30 02/05/18 S&W 17.45 9.04 0 8.41 MW-31 02/23/09 Farallon 17.50 11.63 0 5.80 MW-31 05/19/09 Farallon 17.50 11.85 0 5.65 MW-31 08/25/09	MW/ 20	02/00/10	Earallon	17.19	11.62	9.42	0.0	5.86
MW-30 03/13/05 Parallon 17.43 11.03 — 0 3.63 MW-30 08/25/09 Farallon 17.48 12.23 — 0 5.25 MW-30 12/09/09 Farallon 17.48 11.37 — 0 6.11 MW-30 09/30/15 PES — 11.39 — — — — MW-30 08/11/17 S&W 17.45 11.5 — 0 5.95 MW-30 02/05/18 S&W 17.45 9.04 — 0 8.41 MW-31 02/23/09 Farallon 17.50 11.63 — 0 5.87 MW-31 05/19/09 Farallon 17.50 11.85 — 0 5.65 MW-31 05/20/09 Farallon 17.50 11.85 — 0 5.65 MW-31 08/25/09 Farallon 17.50 11.42 — 0 6.08 MW-31 09/29	MIN/ 30	02/23/09	Farallon	17.40	11.02	_	0	5.83
MW-30 00/25/05 Farallon 17.40 12.25 — 0 5.25 MW-30 12/09/09 Farallon 17.48 11.37 — 0 6.11 MW-30 09/30/15 PES — 11.39 — — — — MW-30 08/11/17 S&W 17.45 11.5 — 0 5.95 MW-30 02/05/18 S&W 17.45 9.04 — 0 8.41 MW-31 02/23/09 Farallon 17.50 11.63 — 0 5.87 MW-31 05/19/09 Farallon 17.50 11.85 — 0 5.80 MW-31 05/20/09 Farallon 17.50 11.85 — 0 5.65 MW-31 08/25/09 Farallon 17.50 12.24 — 0 5.26 MW-31 08/25/09 Farallon 17.50 11.42 — 0 6.08 MW-31 09/29	 	03/19/09	Farallon	17.40	12.23		0	5.05
MW-30 12/03/05 Parallon 17.40 11.37 — 0 0.11 MW-30 09/30/15 PES — 11.39 — …	 	12/00/09	Farallon	17.40	11 37		0	6 11
MW-30 03/30/13 FES Image: Model of the second s	 	09/30/15		17.40	11.37		0	0.11
MW-30 02/05/18 S&W 17.45 9.04 0 8.41 MW-31 02/23/09 Farallon 17.50 11.63 0 5.87 MW-31 02/23/09 Farallon 17.50 11.63 0 5.87 MW-31 05/19/09 Farallon 17.50 11.7 0 5.80 MW-31 05/20/09 Farallon 17.50 11.85 0 5.65 MW-31 08/25/09 Farallon 17.50 12.24 0 5.26 MW-31 08/25/09 Farallon 17.50 11.42 0 6.08 MW-31 09/29/15 PES 11.87 MW-31 08/11/17 S&W 17.47 11.58 0 5.89		08/11/17		17 45	11 5		0	5 95
MW-31 02/23/09 Farallon 17.50 11.63 — 0 5.87 MW-31 05/19/09 Farallon 17.50 11.63 — 0 5.87 MW-31 05/19/09 Farallon 17.50 11.7 — 0 5.80 MW-31 05/20/09 Farallon 17.50 11.85 — 0 5.65 MW-31 05/20/09 Farallon 17.50 12.24 — 0 5.26 MW-31 12/09/09 Farallon 17.50 11.42 — 0 6.08 MW-31 09/29/15 PES — 11.87 — — — MW-31 08/11/17 S&W 17.47 11.58 — 0 5.89		02/05/18		17 45	9.04		0	8 41
MW-31 05/19/09 Farallon 17.50 11.7 0 5.80 MW-31 05/20/09 Farallon 17.50 11.7 0 5.80 MW-31 05/20/09 Farallon 17.50 11.85 0 5.65 MW-31 08/25/09 Farallon 17.50 12.24 0 5.26 MW-31 12/09/09 Farallon 17.50 11.42 0 6.08 MW-31 09/29/15 PES 11.87 MW-31 08/11/17 S&W 17.47 11.58 0 5.89		02/23/09	Farallon	17.50	11 63	_	0	5 87
MW-31 05/20/09 Farallon 17.50 11.85 0 5.65 MW-31 08/25/09 Farallon 17.50 12.24 0 5.65 MW-31 12/09/09 Farallon 17.50 12.24 0 5.26 MW-31 12/09/09 Farallon 17.50 11.42 0 6.08 MW-31 09/29/15 PES 11.87 MW-31 08/11/17 S&W 17.47 11.58 0 5.89		05/19/09	Farallon	17.50	11 7	_	0	5 80
MW-31 08/25/09 Farallon 17.50 12.24 — 0 5.26 MW-31 12/09/09 Farallon 17.50 11.42 — 0 5.26 MW-31 09/29/15 PES — 11.87 — — — — MW-31 08/11/17 S&W 17.47 11.58 — 0 5.89		05/20/09	Farallon	17.50	11 85	_	0	5 65
MW-31 12/09/09 Farallon 17.50 11.42 — 0 6.08 MW-31 09/29/15 PES — 11.87 — …	MW-31	08/25/09	Farallon	17 50	12.24		0	5.26
MW-31 09/29/15 PES — 11.87 — 0 5.89 _	MW-31	12/09/09	Farallon	17.50	11.42	_	0	6.08
MW-31 08/11/17 S&W 17.47 11.58 — 0 5.89	MW-31	09/29/15	PES		11.87	_	_	
	MW-31	08/11/17	S&W	17.47	11.58		0	5.89

Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
MW-31	02/05/18	S&W	17 47	10.29		0	7 18
MW-32	02/23/09	Farallon	13.62	11 44	_	0	2 18
MW-32	05/19/09	Farallon	13.62	12 45	_	0	1 17
MW-32	08/25/09	Farallon	13.62	11.96		0	1.66
MW-32	12/09/09	Farallon	13.62	11.08		0	2.54
MW-32	09/29/15	PES		11.44	_	_	_
MW-32	08/11/17	S&W	13.62	11.19	_	0	2.43
MW-32	02/05/18	S&W	13.62	9.48	_	0	4.14
MW-33	02/23/09	Farallon	17.23	1.53	_	_	_
MW-33	05/19/09	Farallon	17.23	_	_	_	_
MW-33	08/25/09	Farallon	17.23	_	_	_	_
MW-33	12/09/09	Farallon	17.23	—	_	—	—
MW-34	02/23/09	Farallon	17.13	12.74	11.3	1.44	—
MW-34	05/19/09	Farallon	17.13	11.41	11.29	0.12	—
MW-34	08/25/09	Farallon	17.13	11.81	—	0	5.32
MW-34	12/09/09	Farallon	17.13	10.97	—	0	6.16
MW-34	09/29/15	PES	_	11.26	Sheen	Sheen	_
MW-34	08/11/17	S&W	17.06	11.05	_	0	6.01
MW-34	02/05/18	S&W	17.06	9.4	_	0	7.66
MW-35	02/23/09	Farallon	13.96	17.49	10.79	6.7	_
MW-35	05/19/09	Farallon	13.96	17.8	10.7	7.1	_
MW-35	08/25/09	Farallon	13.96	17.85	11.44	6.41	—
MW-35	12/09/09	Farallon	13.96	17.56	10.45	7.11	—
MW-35	09/29/15	PES		17.75	10.79	6.96	
MW-35	08/11/17	S&W	17.44	17.25	10.4	6.85	6.49
<u>MW-35</u>	02/08/18	S&W	17.44	17.49	8.89	8.6	7.86
MW-36	02/23/09	Farallon	17.41	11.67		0	5.74
MW-36	05/19/09	Farallon	17.41	11.6	_	0	5.81
<u>MW-36</u>	08/25/09	Farallon	17.41	12.19	—	0	5.22
<u>MW-36</u>	12/09/09	Farallon	17.41	11.33	—	0	6.08
<u>IVIVV-36</u>	09/29/15	PES	47.00	11.67	_		
IVIV-30	00/15/17	S&W	17.30	11.45		0	<u> </u>
IVIVV-30	02/05/18	<u>S&W</u>	17.58	9.84		0	1.54
IVIV-37	02/23/09	Farallon	17.00	11.01	_	0	5.74
	09/19/09	Farallon	17.55	12.26	_	0	5.79
M\\/_37	12/09/09	Farallon	17.55	11/0		0	<u> </u>
M\\/_37	00/20/15		17.55	11.45		0	0.00
MW-37	08/15/17	S&W	17.50	11.61		0	5.89
MW-37	02/05/18	S&W	17.50	10		0	7 50
	02/23/09	Farallon	17 45	11 73		0	5 72
MW-38	05/19/09	Farallon	17,45	11.9	_	0	5.55
MW-38	05/21/09	Farallon	17.45	12.24	_	0	5.21
MW-38	08/25/09	Farallon	17.45	12.29		0	5.16
MW-38	12/09/09	Farallon	17.45	11.39	_	0	6.06
MW-38	09/29/15	PES		12.89	_		_
MW-38	08/15/17	S&W	17.38	11.69	_	0	5.69
MW-38	02/05/18	S&W	17.38	10.68	_	0	6.70

Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
MW-39	02/23/09	Farallon	20.83	14.47	_	0	6.36
MW-39	05/19/09	Farallon	20.83	14.74	_	0	6.09
MW-39	05/21/09	Farallon	20.83	17.69	_	0	3.14
MW-39	08/25/09	Farallon	20.83	14.96	_	0	5.87
MW-39	12/09/09	Farallon	20.83	12.42	—	0	8.41
MW-39	09/29/15	PES	_	14.91	_	_	
MW-39	08/15/17	S&W	20.80	14.8	—	0	6.00
MW-39	02/05/18	S&W	20.80	15.04	—	0	5.76
MW-40	02/23/09	Farallon	17.19	11.38	—	0	5.81
MW-40	05/19/09	Farallon	17.19	11.59	—	0	5.60
MW-40	08/26/09	Farallon	17.19	11.9	—	0	5.29
MW-40	12/18/09	Farallon	17.19	10.98	—	0	6.21
MW-40	09/30/15	PES	—	11.42	—	—	—
MW-40	08/15/17	S&W	17.15	11.28	_	0	5.87
MW-40	02/05/18	S&W	17.15	9.79	—	0	7.36
MW-41	02/23/09	Farallon	17.37	11.56	_	0	5.81
MW-41	05/19/09	Farallon	17.37	11.6	_	0	5.77
MW-41	08/26/09	Farallon	17.37	12.1	_	0	5.27
MW-41	12/18/09	Farallon	17.37	11.19	_	0	6.18
MW-41	09/30/15	PES	—	11.62	_	—	—
MW-41	08/15/17	S&W	17.33	11.44	_	0	5.89
MW-41	02/05/18	S&W	17.33	9.95	—	0	7.38
MW-42	02/23/09	Farallon	17.54	11.46	_	0	6.08
MW-42	05/19/09	Farallon	17.54	11.95	—	0	5.59
MW-42	05/21/09	Farallon	17.54	11.98	—	0	5.56
MW-42	08/25/09	Farallon	17.54	12.23	_	0	5.31
MW-42	12/09/09	Farallon	17.54	11.49	—	0	6.05
MW-42	09/29/15	PES		11.39	—		
MW-42	08/15/17	S&W	17.48	11.77	—	0	5.71
MW-42	02/05/18	<u>S&W</u>	17.48	10.45	—	0	7.03
MW-43	02/23/09	Farallon	17.49	10.27	_	0	7.22
<u>MW-43</u>	05/19/09	Farallon	17.49	11.98	—	0	5.51
<u>MW-43</u>	08/25/09	Farallon	17.49	11.33	—	0	6.16
<u>MIVV-43</u>	12/09/09	Farallon	17.49	9.6	—	0	7.89
MVV-43	09/29/15	PES	47.44	13.3	—		
IVIVV-43	08/15/17	S&W	17.44	11.04		0	0.40
IVIVV-43	02/05/18	5&//	17.44	14.71		0	2.13
IVIVV-44	02/25/09	Farallon	17.14	12.73		0	4.41
<u>IVIVV-44</u>	09/19/09	Farallon	17.14	11.0		0	5.04
	12/19/00	Farallon	17.14	10.4		0	0.90 7.04
	12/10/09	DEC	17.14	10.1	_	U	1.04
	09/29/10	C 2 1 / / /	17.07	11.01	_		6.06
	00/10/17	50VV C2W/	17.07	1/ 1	_	0	2.00
<u></u>	02/03/10	Farallon	17.07	11 21		0	<u> </u>
MN/ 45	02/23/09	Farallon	17.10	11.31	—	0	5.00
MW-45	05/21/00	Farallon	17.10	11.00		0	5.01
MW/ 15	03/21/03	Farallon	17.10	11.45		0	5.71
10100-40	00/20/09	Faidliuli	17.10	11.9	_	U	0.20

Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
MW-45	12/09/09	Farallon	17.16	11.05	_	0	6.11
MW-45	09/29/15	PES	_	11.49	_	_	_
MW-45	08/15/17	S&W	17.04	11.2	_	0	5.84
MW-45	02/05/18	S&W	17.04	9.84		0	7.20
MW-46	02/23/09	Farallon	17.74	11.99	_	0	5.75
MW-46	05/19/09	Farallon	17.74	12.18	—	0	5.56
MW-46	05/21/09	Farallon	17.74	12.42	_	0	5.32
MW-46	08/25/09	Farallon	17.74	12.61	_	0	5.13
MW-46	12/09/09	Farallon	17.74	11.85	_	0	5.89
MW-46	09/29/15	PES	_	11.95	_		_
MW-46	08/15/17	S&W	17.67	12.05	_	0	5.62
MW-46	02/05/18	S&W	17.67	11.14	_	0	6.53
MW-47	02/23/09	Farallon	20.80	11.47	_	0	9.33
MW-47	05/19/09	Farallon	20.80	15.42		0	5.38
MW-47	05/21/09	Farallon	20.80	15.9	_	0	4 90
MW-47	08/25/09	Farallon	20.80	15.6	_	0	5 20
MW-47	12/09/09	Farallon	20.80	14.6		0	6.20
MW-47	09/29/15	PES		Drv	_		_
MW-47	08/15/17	<u>S&W</u>	20 78	15.32	_	0	5 46
MW-47	02/05/18	S&W	20.78	14.9	_	0	5.88
MW-48	02/23/09	Farallon	17.33	11 44	_	0	5.89
MW-48	05/19/09	Farallon	17.33	11.5	_	0	5.83
MW-48	05/21/09	Farallon	17.33	11.66	_	0	5.67
MW-48	08/25/09	Farallon	17.33	12.01		0	5.32
MW-48	12/09/09	Farallon	17.33	11.11		0	6.22
MW-48	09/29/15	PES	_	11.65	_	_	_
MW-48	08/15/17	S&W	17.24	11.36	_	0	5.88
MW-48	02/05/18	S&W	17.24	10.02	_	0	7.22
MW-49	02/23/09	Farallon	17.33	11.33	_	0	6.00
MW-49	05/19/09	Farallon	17.33	11.23	_	0	6.10
MW-49	08/25/09	Farallon	17.33	11.85	_	0	5.48
MW-49	12/09/09	Farallon	17.33	10.95	_	0	6.38
MW-49	09/29/15	PES	_	11.36	_	_	
MW-49	08/15/17	S&W	17.24	11.15	_	0	6.09
MW-49	02/05/18	S&W	17.24	9.45	_	0	7.79
MW-50	02/23/09	Farallon	17.69	11.28	_	0	6.41
MW-50	05/19/09	Farallon	17.69	12.16		0	5.53
MW-50	05/21/09	Farallon	17.69	15.05	_	0	2.64
MW-50	08/25/09	Farallon	17.69	11.82		0	5.87
MW-50	12/09/09	Farallon	17.69	10.41		0	7.28
MW-50	09/29/15	PES		13.44	_		
MW-50	08/15/17	S&W	17.64	11.41		0	6.23
MW-50	02/05/18	S&W	17.64	13.57		0	4.07
MW-51	02/23/09	Farallon	17.46	11.03		0	6.43
MW-51	05/19/09	Farallon	17.46	12.17		0	5.29
MW-51	05/21/09	Farallon	17.46	14.9	_	0	2.56
MW-51	08/25/09	Farallon	17.46	11.58	_	0	5.88
MW-51	12/09/09	Farallon	17.46	10.22		0	7.24

Monitoring Well ID	Date	Collected By	Top of Casing Elevation (feet NAVD88) ¹	Depth to Water (feet) ²	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Potentiometric Surface Elevation (feet NAVD88) ³
MW-51	09/30/15	PES	—	10.95	_	—	_
MW-51	08/15/17	S&W	17.40	11.18	—	0	6.22
MW-51	02/05/18	S&W	17.40	13.40	—	0	4.00
MW-52	02/23/09	Farallon	17.67	10.92	—	0	6.75
MW-52	05/19/09	Farallon	17.67	12.15	_	0	5.52
MW-52	05/21/09	Farallon	17.67	16.45	_	0	1.22
MW-52	08/25/09	Farallon	17.67	11.37	_	0	6.30
MW-52	12/09/09	Farallon	17.67	9.74	_	0	7.93
MW-52	09/29/15	PES	_	14.28	_	_	_
MW-52	08/15/17	S&W	17.59	11.15		0	6.44
MW-52	02/05/18	S&W	17.59	14.85	_	0	2.74

Attachment 1 Inadvertent Discovery Plan

CULTURAL RESOURCES REPORT COVER SHEET

Author: <u>Sarah M.H. Steinkraus</u>
Title of Report: <u>8531 East Marginal Way South Remedial Investigation Project</u>
Cultural Resources Monitoring and Inadvertent Discovery Plan
Date of Report: <u>March 20, 2020</u>
County(ies): <u>King</u> Section: <u>33</u> Township: <u>4</u> Range: <u>4</u> E Quad: <u>Seattle North</u> Acres: <u>20.7</u>
PDF of report submitted (REQUIRED) 🛛 Yes
Historic Property Inventory Forms to be Approved Online? 🗌 Yes 🔀 No
Archaeological Site(s)/Isolate(s) Found or Amended? 🗌 Yes 🔀 No
TCP(s) found? 🗌 Yes 🖂 No
Replace a draft? 🗌 Yes 🖂 No
Satisfy a DAHP Archaeological Excavation Permit requirement? Yes # No
Were Human Remains Found? 🗌 Yes DAHP Case # 🛛 No
Archaeological Site #

Archaeological Site #: <u>HPI 720360</u> <u>HPI 720357</u> <u>HPI 720359</u>

- _____
- _____
- _____
- _____

8531 East Marginal Way South Remedial Investigation Project Cultural Resources Monitoring and Inadvertent Discovery Plan

King County, Washington

March 20, 2020

Prepared for:

Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Stell 6100 219th St. SW, Suite 480 Mountlake Terrace, WA 98043

By Sarah M.H. Steinkraus, MS, RPA

TABLE OF CONTENTS

ТАВ	LE OI	F CONTENTS 1	1-1
FIG	URES.	1	1-1
1	INTF	RODUCTION	1-2
	1.1	PROJECT INFORMATION	1-2
	1.2	PROJECT AREA	1-2
	1.3	PROJECT BACKGROUND	1-1
	1.4	REGULATORY ENVIRONMENT	1-1
2	ARC	HAEOLOGICAL MONITORING PLAN	2-1
	2.1	ON-SITE MONITORING	2-1
		2.1.1 MONITORING LOG	2-1
		2.1.2 MONITORING REPORT	2-2
		2.1.3 HEALTH AND SAFETY	2-2
3	REFI	ERENCES	3-1
APP	ENDL	X A: INADVERTENT DISCOVERY PLAN	3-0
APP	ENDL	X B- HPI FORMS	1

FIGURES

Figure	1.	Project	area	location	map	projected	on	the	USGS	(2019)	topographic	
		quadra	angle	(from Ea	rley a	nd Heidem	an 2	2019))	•••••	••••••	. 1-3

1 INTRODUCTION

1.1 PROJECT INFORMATION

Stell was contracted by Shannon & Wilson, Inc. to create a cultural resources monitoring and inadvertent discovery plan for the 8531 East Marginal Way South Remedial Investigation Project, King County, Washington project (Project) (Figure 1) (see Appendix A for Inadvertent Discovery Plan). This project is being conducted on behalf of Earle M. Jorgensen who owned the the property from 1965 to 1992. The remedial investigation is being completed under an Agreed Order ith the Washington State Department of Ecology (AO DE 14143).

The current project will include:

- Laser-induced fluorescence (LIF) investigation This will use direct-push probe drilling but will NOT remove soil from the subsurface (a windowed probe with fiber optics is used).
- Direct-push soil sampling (2 inch)
- Hollow-stem auger (HSA) soil sampling (2 inch)
- Installation of wells in above-mentioned HSA boreholes
- Groundwater sampling from existing and new wells

The Project area is within an area designated as very highly likely to yield cultural materials by the Department of Archaeology and Historic Places (DAHP) predictive model. A total of 19 Cultural Resources surveys have been conducted within 0.5 miles of the Project area and a total of 9 archaeology sites (including precontact, historic-era, and multicomponent sites) have been documented within 1 mile of the Project area.

1.2 PROJECT AREA

The Project area is located on the right (eastern) bank of the Lower Duwamish Waterway (LDW), approximately four miles upstream from the mouth of the Duwamish River, in Section 33 of Township 24 North, Range 4 East, Willamette Meridian. The Project is located in King County Parcel No. 000160-0023, in King County, Washington (see Figure 1).

Figure 1. Project area location map projected on the USGS (2019) topographic quadrangle (from Earley and Heideman 2019).

1.3 PROJECT BACKGROUND

A cultural resources review within the Project area (which did not include any fieldwork) was conducted in October of 2019 by Perteet (Earley and Heideman 2019). This was for a separate project within the current Project area. In the report, one of the recommendations made was that archaeological monitoring should be conducted within this parcel due to the likelihood of locating previously undocumented cultural materials. Please see Earley and Heideman (2019) for more background information of the Project area.

1.4 REGULATORY ENVIRONMENT

This Project is being conducted on behalf of Earle M. Jorgensen who owned the property from 1965 to 1992. The remedial investigation is being completed under an Agreed Order with the Washington State Department of Ecology (AO DE 14143).

2 ARCHAEOLOGICAL MONITORING PLAN

To satisfy the requirements of Washington State DAHP, Stell will provide on-site monitoring, daily logs during monitoring activities, and a technical report at the close of monitoring for the 8531 East Marginal Way South Project. Sarah M.H. Steinkraus, MS, RPA will be the lead archaeologist on this Project. Ms. Steinkraus meets the Secretary of the Interior's, and thus Washington State's, criteria for a Professional Archaeologist. Ms. Steinkraus has extensive experience in conducting archaeological surveys, assessments, and monitoring in the Puget Sound region.

2.1 ON-SITE MONITORING

The archaeological monitor will watch any ground disturbing activities within the Project area. LIF surveys will not be monitored as there is no way to monitor any potential impacts of this procedure. The monitor will closely look for any organic or shell midden deposits, signs of soil oxidation, lithic or bone artifacts, or animal or human bones. Nine historic buildings are located within the Project area. Two were recommended as potentially eligible for the National Register of Historic Places (Earley and Heideman 2019). A total of three Historic Property Inventories (HPIs) that are potentially eligible for the National Register of Historic Places are located within the Project area (see Appendix B). Aside from these buildings no previously recorded cultural resources are located within the Project area. If artifacts or other potential archaeological deposits are observed, the archaeological monitor will direct the contractor to temporarily cease work in the immediate vicinity while the monitor conducts a close inspection.

The archaeological monitor may from time to time request a temporary halt to work activities in order to document archaeological materials or for a closer inspection an area or spoils. Such documentation usually takes a few minutes (entailing photographs and written descriptions) but may take longer. The archaeologist will give an estimate of the amount of time needed to document materials to the equipment operator and/or foreman and will update them of any changes to the estimate.

If potentially significant archaeological deposits are discovered during the investigation while the archaeological monitor is on site, the monitor will direct the contractor to cordon off the area within 30 feet of the discovery and initiate the find reporting and evaluation processes described in the Inadvertent Discovery Plan (Attachment A). If evidence of cultural resources is found in exposed surfaces within the Project area, it will be further investigated to establish whether it is eligible for listing in the National Register of Historic Places (NRHP).

If human remains are encountered, the King County Sherriff and Medical Examiner will be immediately notified (Attachment A). If the remains are determined not to be associated with a criminal investigation, the DAHP will be immediately contacted, as well as any affected tribes, if applicable (Attachment A).

2.1.1 MONITORING LOG

The archaeological monitor will complete a monitoring log for each monitoring session to document time in the field, the day's progress and findings, and any difficulties encountered, and actions proposed or taken to alleviate them.

2.1.2 MONITORING REPORT

Following the conclusion of archaeological monitoring activities, Stell will prepare a report describing the conduct and findings of this work effort. The report will include a discussion of the Project, the methods used in monitoring, and observations about site geology, environmental history, and any cultural resources that were observed. Photographs, sketches, or maps may be included, as needed. The report will be submitted to Shannon & Wilson, Inc. in complete draft form prior to it being sent to the Washington State DAHP and affected tribes for review.

2.1.3 HEALTH AND SAFETY

Stell will create a Health and Safety Plan for use by their staff for this Project. Staff will be briefed on that plan and will at all times comply with it. Field staff will have all necessary training and certification prior to commencing monitoring activities including Hazardous Waste Operations and Emergency Response (HAZWOPER) training.

3 REFERENCES

Earley, Amber, and Eileen Heideman

2019 *Cultural Resources Assessment of the Star Forge Development Project, King County, Washington.* Prepared for Star Forge LLC. Prepared by Perteet, Seattle, Washington.

APPENDIX A: INADVERTENT DISCOVERY PLAN

Inadvertent Discovery Plan for the 8531 East Marginal Way South Remedial Investigation Project King County, Washington

1 INTRODUCTION

Shannon & Wilson, Inc. plans to complete remedial investigation activities within the project area in King County, Washington. This will include laser-induced fluorescence investigation (using direct-push probe drilling but will NOT remove soil from the subsurface. A windowed probe with fiber optics is used); direct-push soil sampling (2 inch); hollow-stem auger (HSA) soil sampling (2 inch); installation of wells in above-mentioned HSA boreholes; and groundwater sampling from existing and new wells. The following Inadvertent Discovery Plan (IDP) outlines procedures to follow, in accordance with federal laws, if archaeological materials or human remains are discovered.

State laws are in place which protect archaeological resources. The Archaeological Sites and Resources law (RCW Chapter 27.53) outlines the protection of archaeological resources. Shannon & Wilson, Inc. will act in accordance with State laws in dealing with the treatment of cultural resources and the consultation of concerned parties. Potentially concerned parties include: the Duwamish Tribe, Suquamish Tribe, Snoqualmie Tribe, Tulalip Tribes, Muckleshoot Tribe, Stillaguamish Tribe, and the Department of Archaeology & Historic Preservation (DAHP), and the City of Tukwila.

The monitoring archaeologist will have the ability to halt construction if they observe or identify any cultural materials and will have adequate time to assess, record, and potentially analyze any resources that might be uncovered. DAHP will be notified of all discoveries that occur during the course of the Project. The results of this monitoring effort will be documented at the completion of the project.

This document serves as the plan for dealing with any discoveries of human skeletal remains, artifacts, sites, or any other cultural resources that are potentially eligible for listing in the National Register of Historic Places (NRHP). This plan is intended to provide guidance to Shannon & Wilson, Inc. so they can:

- 1. Comply with applicable local and State laws and regulations, particularly Title 27 Revised Codes of Washington Chapter 27.44 Indian Graves and Records, Chapter 27.53 Archaeological Sites and Resources, and Title 68 Chapter 60.050 Protection of historic graves,
- 2. Describe to regulatory and review agencies the procedures that Shannon & Wilson, Inc. will follow to prepare for and deal with inadvertent discoveries, and
- 3. Provide direction and guidance to project personnel on the proper procedures to be followed should an inadvertent discovery occur.

2 RECOGNIZING CULTURAL MATERIALS

A cultural resource discovery could be from the precontact or historic eras. Examples include:

- An accumulation of shell, burned rocks, or other food related materials;
- Bones or small pieces of bone;
- An area of charcoal or very dark stained soil with artifacts;
- Stone tools or waste flakes (i.e. an arrowhead, or stone chips);
- Clusters of tin cans or bottles, logging or agricultural equipment that appears to be older than 50 years;
- Buried railroad tracks, decking, or other industrial materials; and
- Historic structures, portions of historic structures, or associated utilities aged 40 years or older.

When in doubt, assume the material is a cultural resource.

3 ON-SITE RESPONSIBILITIES

STEP 1: STOP WORK. If any Shannon & Wilson, Inc. employee, contractor, or subcontractor believes that they have uncovered a cultural resource at any point during the project, all work adjacent to the discovery must stop. The discovery location should be secured at all times.

STEP 2: NOTIFY MONITOR. If there is an archaeological monitor for the project, notify that person. If there is a monitoring plan in place, the monitor will follow its provisions. If there is no archaeological monitor in place the Project Manager should be notified at which time they should contact a professional archaeologist to examine the find and determine if it is a cultural resource or not and provide significance recommendations.

STEP 3: NOTIFY AND CONSULT WITH DAHP. Immediately contact DAHP to assist in the significance evaluation of all inadvertent discoveries of cultural resources. Any discovery deemed eligible for listing in the National Register of Historic Places (NRHP) will be assessed and treated per the provisions set forth in this document (Attachment A). If the state agency representatives determine that the discovery is an eligible cultural resource, they and the affected tribe(s), will consult to determine appropriate treatment to be presented and agreed upon in a Memorandum of Agreement (MOA) or other appropriate documentation.

Mitigation measures will be developed in consultation with City of Tukwila, DAHP, and the affected tribes (where appropriate), which could include avoidance through redesign, conducting data recovery and/or relocating materials or remains. Agreed upon treatment measures performed by Shannon & Wilson, Inc. may include protecting in place or data recovery such as mapping, photography, limited probing, and sample collection, or other measures. This information is covered by the Public Records Act (RCW 42.17.250) and specific components of the records are exempt from disclosure (RCW 42.17.310(1)(k)) to avoid the looting or depredation of such sites.

4 PROTOCOL FOR TREATMENT OF HUMAN REMAINS

As per RCW 68.50.645, in the event that human remains, or material evidence of burial sites are encountered within the Project Area, whether during planned maintenance and construction activities, authorized archaeological excavations, or as a result of natural processes, the following protocol will be strictly followed:

- 1. If human skeletal remains are located within the Project Area, then all activity that may cause further disturbance to the remains will cease within at least 30 feet.
- 2. The area of the find will be secured and protected from further disturbance.
- 3. The finding of human skeletal remains will be reported to the King County Medical Examiner and local law enforcement in the most expeditious manner possible. The remains will not be touched, moved, or further disturbed.
- 4. The county medical examiner will assume jurisdiction over the human skeletal remains and make a determination of whether those remains are forensic or non-forensic. If the county medical examiner determines the remains are non-forensic, then they will report that finding to the Department of Archaeology and Historic Preservation (DAHP) who will then take jurisdiction over the remains.
- 5. The DAHP will notify any appropriate cemeteries and all affected tribes of the find.
- 6. The State Physical Anthropologist will make a determination of whether the remains are Indian or Non-Indian and report that finding to any appropriate cemeteries and the affected tribes.
- 7. The DAHP will then handle all consultation with the affected parties as to the future preservation, excavation, and disposition of the remains.

Failure to follow this human remains protocol is a misdemeanor in Washington State.

5 PROTOCOL FOR RESPONSE TO VANDALISM

Vandalism consists of disturbance to historic properties, including unauthorized digging into archaeological sites or collection of artifacts. The probability for vandalism within the project is low; however, if at any time, employees or contractors encounter unauthorized visitors who appear to be digging or collecting materials from the ground surface, or are in possession of excavation equipment, or if a Shannon & Wilson, Inc. representative encounters evidence of recent unauthorized excavations or abandoned digging equipment (such as screens or shovels), the following protocol will be implemented.

- 1. If a possible vandal or looter is present, the Shannon & Wilson, Inc. representative will note information about the person, their equipment, and their vehicle and immediately relay the information to the work supervisor, who will confirm the information and notify the King County Sheriff's Office.
- 2. If the Shannon & Wilson, Inc. representative notes abandoned excavations or digging equipment, they will notify within 24 hours the cultural resources coordinator, who will notify the King County Sheriff's Office and the DAHP. The cultural resources coordinator will visit the site as soon as possible to assess any damage.
- 3. If a Native American site has been vandalized, the cultural resources coordinator will notify representatives of the affected tribes and the DAHP about this assessment and will invite them to attend the site inspection.
- 4. The assessment of impact will be described in a formal letter report from Shannon & Wilson, Inc. to the City of Tukwila, affected tribes, and DAHP, if applicable.
- 5. In consultation with the City of Tukwila, affected tribes, and DAHP, Shannon & Wilson, Inc. will identify what actions, if any, should be taken to mitigate damage to an affected site and/or prevent further damage.
- 6. Any act of vandalism or looting that involves human remains will also trigger the protocol for the treatment of human remains outlined above.
- 7. All acts of vandalism or looting will be referred to the King County Sheriff for investigation and possible prosecution.

6 PROTOCOL FOR EMERGENCY RESPONSE

A number of events can occur within the Project that require a rapid response in order to safeguard facilities, provide for protection of wildlife habitat, protect public and private property, and prevent serious injury or loss of human life. These include, but are not limited to; wild fire, wind and electrical storms, mass wasting events (erosion), flood, earthquake, and dam or other Project facility failure. The emergency response protocol is designed to be implemented after such events have occurred.

- 1. The supervisor of response will notify the cultural resources coordinator of the location and nature of the emergency activities.
- 2. The cultural resources coordinator will check relevant databases for historic properties in the vicinity of the emergency.
- 3. If historic properties are in the area of the emergency or the response (for example, both the area of the wild fire and the location of the construction of a fire line), then the cultural resources coordinator will be responsible for conducting a professional review by a qualified person of the condition of those properties.
- 4. The cultural resources coordinator will use existing documentation as a comparison to a field visit to determine if historic properties and/or cultural resources have been destroyed, damaged, or endangered by the emergency event or the response. If any of these conditions exist, then the cultural resources coordinator will document them in the field with mapping, photographs, and, in the case of imminent loss, collection of artifacts. The cultural resources coordinator will prepare a report documenting the nature and location of the emergency event, the nature of the response, the impact on the historic properties and/or cultural resources, and any proposals to prevent further damage to the properties and to mitigate for the loss. This report will be submitted to the City of Tukwila, affected tribes, and DAHP within 4 months of the event for review and comment. After a 30-day comment period, the comments of all of the participating parties.
- 5. If no alteration to the condition of the properties has occurred, a letter to that effect noting the date(s) of the field visit(s) will be placed on file in lieu of the formal report.

7 AGENCY CONTACTS

Shannon & Wilson, Inc.

Primary Contact: Shoshana Howard *Mobile*: 206-695-6811

Cultural Resources Specialist, Stell

Primary Contact: Sarah Steinkraus, Principal Investigator/ Senior Archaeologist Mobile: 360-620-5840

Washington Dept. of Ecology Primary Contact: Maureen Sanchez Mobile: 425-649-7254

King County Medical Examiner Contact Number: 206-731-3232

King County Sheriff

Contact Number: 206-296-3311 or 911

City of Tukwila Police Department *Contact Number*: 206 433-1808

Department of Archaeology & Historic Preservation Office

Primary Contact: Stephanie Jolivette, Local Government Archaeologist Office: 360-586-3088

Secondary Contact: Dr. Guy Tasa, State Physical Anthropologist Office: 360-586-3534

Tribal Contacts:

Duwamish Tribe Primary Contact: Cecile Hansen, Chairwoman Office: 206-431-1582

<u>Suquamish Tribe</u> *Primary Contact*: Dennis Lewarch, Tribal Historic Preservation Officer *Office*: 360-394-8529

Snoqualmie Nation

Primary Contact: Steve Mullen-Moses, Director of Archaeology and Historic Preservation *Office*: 425-495-6097

<u>Tulalip Tribes</u> *Primary Contact*: Richard Young, Cultural Resources Director *Office*: 360-716-2652

<u>Muckleshoot Indian Tribe</u> *Primary Contact*: Laura Murphy, Archaeologist *Office*: 253-876-3272

<u>Stillaguamish Tribe</u> *Primary Contact*: Kerry Lyste, Tribal Historic Preservation Officer *Office*: 360-652-7362 ext. 226

APPENDIX B- HPI FORMS

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

Location

Address:	8531 E Marginal Way S, Seattle, WA, 98108, USA
Geographic Areas:	King Certified Local Government, King County, T24R04E33, SEATTLE SOUTH Quadrangle

Information

Number of stories: N/A

Construction Dates:

Construction Type	Year	Circa
Built Date	1942	
Addition	1943	
Addition	1962	
Addition	1965	
Addition	1966	
Addition	1967	
		2

Historic Use:

Category	Subcategory
Industry/Processing/Extr action	Industry/Processing/Extraction - Manufacturing Facility
Industry/Processing/Extr action	Industry/Processing/Extraction - Manufacturing Facility

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

Historic Context:			
Category			
Industry/Manufacturing			
Military			
Maritime - Protecting our Sh	nores		
Architect/Engineer:			
Category N	ame or Company		
Thematics:			
Local Registers and Districts	;		
Name D	ate Listed	Notes	
Project History			
Project Number, Organizati Project Name	on, Resource Inven	tory SHPO Determination	SHPO Determined By, Determined Date
2019-10-08126, , Star Forge	10/25/2019	Determined Eligible	Holly Borth, 11/21/2019
2019-10-08126, , Star Forge	2/6/2020	Survey/Inventory	

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

Photos

East end of Billet Yard, Forge Shop and Heat Treat (left to right), view to the northwest.

Isaacson Forge & Heat Treat Elevations - 1941.jpg

Isaacson Power House Electrical - 1941.jpg

Isaacson Plant Number Two Forge & Heat Treat Sections - 1942.jpg

Issacson Plant Number Two Framing Plan Machine & Erection Shop - 1941.jpg

Isaacson Power House E&W Elev - 1941.jpg

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

Isaacson Plant Number Two Top Chord Framing Plan - 1942.jpg

Isaacson Plant Number Two Shipping Office & Locker Rooms - 1942.jpg

Isaacson Plant Number Two Melt Shop Retaining Wall Details - 1942.jpg

Isaacson Plant Number Two Stores & Anchor Warehouse - 1953.jpg

Isaacson Plant Number Two Melt Shop Steam & Oil Lines - 1943.jpg

Isaacson Plant Number Two Machine Shop & Shipping Elevations & Sections - 1941.jpg

Resource Name: Isaacson Iron Works Plant Number Two

Isaacson Plant Number Two Forge Shop Louvres - 1943.jpg

DSC_0271.JPG

DSC_0270.JPG

DSC_0268.JPG

DSC_0269.JPG

DSC_0267.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0266.JPG

DSC_0265.JPG

DSC_0264.JPG

DSC_0262.JPG

DSC_0263.JPG

DSC_0261.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0260.JPG

DSC_0258.JPG

DSC_0256.JPG

DSC_0257.JPG

DSC_0255.JPG

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

DSC_0254.JPG

DSC_0253.JPG

DSC_0252.JPG

DSC_0250.JPG

DSC_0251.JPG

DSC_0249.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0247.JPG

DSC_0246.JPG

DSC_0244.JPG

DSC_0245.JPG

DSC_0243.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0242.JPG

DSC_0241.JPG

DSC_0240.JPG

DSC_0238.JPG

DSC_0239.JPG

DSC_0237.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0236.JPG

DSC_0235.JPG

DSC_0234.JPG

DSC_0280.JPG

DSC_0281.JPG

DSC_0279.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0276.JPG

DSC_0275.JPG

DSC_0273.JPG

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

DSC_0272.JPG

DSC_0230.JPG

DSC_0229.JPG

DSC_0227.JPG

DSC_0228.JPG

DSC_0226.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0225.JPG

DSC_0223.JPG

DSC_0221.JPG

DSC_0222.JPG

DSC_0220.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0219.JPG

DSC_0218.JPG

DSC_0217.JPG

DSC_0215.JPG

DSC_0216.JPG

DSC_0214.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0213.JPG

DSC_0212.JPG

DSC_0211.JPG

DSC_0209.JPG

DSC_0210.JPG

DSC_0208.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0207.JPG

DSC_0206.JPG

DSC_0205.JPG

DSC_0203.JPG

DSC_0204.JPG

DSC_0202.JPG

Resource Name: Isaacson Iron Works Plant Number Two

DSC_0201.JPG

DSC_0200.JPG

DSC_0199.JPG

DSC_0197.JPG

DSC_0198.JPG

DSC_0196.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0195.JPG

DSC_0194.JPG

DSC_0193.JPG

DSC_0191.JPG

DSC_0192.JPG

DSC_0190.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0189.JPG

DSC_0188.JPG

DSC_0187.JPG

DSC_0233.JPG

DSC_0186.JPG

DSC_0232.JPG

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

DSC_0231.JPG

DSC_0145.JPG

DSC_0144.JPG

DSC_0127.JPG

DSC_0143.JPG

DSC_0126.JPG

Resource Name: Isaacson Iron Works Plant Number Two

Property ID: 720357

DSC_0125.JPG

DSC_0124.JPG

DSC_0123.JPG

DSC_0151.JPG

DSC_0152.JPG

DSC_0150.JPG

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

DSC_0149.JPG

DSC_0148.JPG

DSC_0147.JPG

South side of Plant Two following construction of Melt Shop in 1943 (scrap metal storage in foreground) (Isaacson Iron Works 1943)

DSC_0146.JPG

East side of the Machine Shop (Isaacson Iron Works 1943)

Resource Name: Isaacson Iron Works Plant Number Two

East end of the shipping area with southern portion of plant in background, view to the southwest.

northwest corner of Melt Shop Warehouse, with Melt Shop in background, view to the southeast.

North end of Plant Number Two: (left to right) Erection Shop (Hollowbore), Machine Shop, Heat Treat, Melt Shop. View to the southeast.

West end of Erection Shop (Hollowbore)

West half of Plant Number Two: Melt Shop and Melt Shop Warehouse (far right).

PDF0917-01 - Isaacson Plant Number Two Machine Shop & Shipping - 1941.pdf

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

PDF0916-01 - Isaacson Plant Number Two Melt Shop West Floor Plan - 1943.pdf

PDF0913-01 - Isaacson Plant Number Two E&W Elevations - 1942.pdf

PDF0911-01 - Isaacson Plant Number Two EMJ Div Machine Shop - 1941.pdf

PDF0914-01 - EMJ Plant Number Two Melt Shop Floor Plan - 1966.pdf

PDF0912-01 - Isaacson Plant Number Two Machine Shop Addn - 1942.pdf

PDF0910-01 - Isaacson Womens Service Bldg - 1942.pdf

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

PDF0908-01 - Isaacson Plot Plan Oxygen Lines - 1956.pdf

PDF0907-01 - Isaacson Power House Floor - 1941.pdf

PDF0904-01 - Isaacson Power House Foundation - 1941.pdf

Property ID: 720357 Resource Name: Isaacson Iron Works Plant Number Two

Inventory Details - 10/25/2019

Common name:	Jorgensen Forge Corporation
Date recorded:	10/25/2019
Field Recorder:	Eileen Heideman
Field Site number:	IIW-19-01
SHPO Determination	

Detail Information

Item
Concrete - Poured
Utilitarian
Varied Roof Lines
Metal - Corrugated
Metal - Corrugated
Metal - Steel
Irregular

Surveyor Opinion

Property appears to me	et criteria for the National Register of Historic Places: Yes
Property is located in a	potential historic district (National and/or local): Yes
Property potentially con	tributes to a historic district (National and/or local): Yes
Significance narrative:	The bulk of the building was constructed in 1942, with the addition of the Melt Shop in 1943, and the later additions of the Melt Shop Warehouse (1962), Shipping (ca.1965), the Billet Yard (1967), and the Ladle and Furnace Roof Shop (1966) (King County Department of Assessments 1941-1974; Wayne Turk, personal communication, September 23, 2019). The core of the building, dating to the original construction period of 1942-1943, is easily recognizable among the later additions, and the interior spaces largely retained their original use throughout the active use of the plant. Removal of equipment from the plant occurred in 2019 (personal communication, Wayne Turk, September 23, 2019).
	This building is associated closely with the massive buildup of industry associated with the Second World War, with Isaacson Iron Works employees forging much of the material used to build and operate the Liberty ships that provided material to the Allied

to the Allied Army throughout the war as well as the bulldozers used by the Seabees in construction of Pacific theater runways and bases. Although the construction of the Billet Yard, Melt Shop Warehouse and Shipping areas in the 1960s resulted in some loss of integrity of design, the core of the building is largely unaltered and is easily recognizable from the exterior as the World War Two-era building. This building is significant under Criterion A for its association with the wartime industry and is recommended eligible for the National Register of Historic Places.

Physical description:	As the primary building and center of industry on the property, Plant Number Two was largely identified by areas of use. These areas include the Melt Shop and Melt Shop Warehouse, Forge Shop, Heat Treating Shop (Heat Treat), Machine Shop, Erection Shop (now called Hollowbore), Shipping, Automotive Shop, Billet Yard, and maintenance, lunch and locker rooms. These areas are to a certain degree defined on the exterior of the building by different rooflines (i.e., the Machine Shop has a sawtooth roof to allow for increased natural light for machine tooling of products, while the Melt Shop, Heat Treat and the Forge Shop have high rooflines to accommodate the larger equipment and higher temperatures required in these areas. The interior of the building is connected and designed for a flow of raw materials to finished product. The building has an irregular footprint that forms a rough L shape. A variety of materials were used in construction, but the majority of the building is constructed with steel, resting on a poured concrete foundation, with the exterior and most of the roof clad in corrugated metal. Some windows are steel multi-light fixed and awning windows, although some windows consist of fiberglass panels, particularly on the south and west sides of the building.
Bibliography:	 Earley, Amber and Eileen Heideman 2019 Cultural Resources Assessment of the Star Forge Development Project, King County, Washington. Report prepared for Star Forge, LLC. Perteet, Seattle, Washington and Cascade Heritage Consultants, Seattle, Washington. King County Department of Assessments 1941-1974 Property cards, Parcel Number 000160-0023. On file at Puget Sound Regional Branch, Washington State Archives, Bellevue, Washington. 2019 Parcel Number 000160-0023 https://blue.kingcounty.com/Assessor/eRealProperty/Dashboard.aspx? ParcelNbr=0001600023, accessed October 2019. Sanborn Map Company 1957 Sanborn Fire Insurance Maps of Seattle, Volume 8, 1929 Updated to 1960, Sheet 1384. Sanborn Map Company, New York. Forging Ahead (FA). Volumes 1-7. Isaacson Iron Works, Seattle, Washington. 1943c "The Victory Fleet is on the Way." Volume 3, Number 1, October 1943: 3-5. 1944a "The American Merchant Marine and its Part in the War Effort." Special Issue, May 22 :10-11. 1944c "Buldozer's[sic] Prominent in the War News." Volume 4, Number 2, June: 14-15.

Resource Name: Isaacson Iron Works Plant Number Two Property ID: 720357

Inventory Details - 2/6/2020

Common name:

Date recorded: 2/6/2020

Field Recorder: Mindy Graddon

Field Site number:

SHPO Determination

Resource Name: Isaacson Iron Works Power House

Property ID: 720359

Location

Address: 8 Geographic Areas: H	8531 E Marginal Way S, Seattle, WA, 98108, USA King Certified Local Government, King County, T24R04E33, SEATTLE SOUTH Quadrangle		
Information			
Number of stories:	N/A		
Construction Dates:			
Construction Type	Year	Circa	
Built Date	1943		
Historic Use:			
Category	Subcategory		
Industry/Processing/Extr action	tr Industry/Processing/Extraction - Energy Facility		
Industry/Processing/Extr	Industry/Processing/Extraction - Energy Facility		

Historic Context:

Category

action

Industry/Manufacturing

Architect/Engineer:

Category

Name or Company

Resource Name: Isaacson Iron Works Power House

Thematics:

Local Registers and Districts					
Name	Date Listed	Notes			
Project History					
Project Number, Organiza Project Name	ation, Resource Invento	ory SHPO Determination	SHPO Determined By, Determined Date		
2019-10-08126, , Star For	ge 10/25/2019	Determined Eligible	Holly Borth, 11/21/2019		
2019-10-08126, , Star For	ge 2/6/2020	Survey/Inventory			

Resource Name: Isaacson Iron Works Power House

Property ID: 720359

Photos

South end of building (Plant Number Two to left), view to the north.

DSC_0139.JPG

DSC_0140.JPG

DSC_0138.JPG

Resource Name: Isaacson Iron Works Power House

DSC_0137.JPG

DSC_0136.JPG

DSC_0135.JPG

DSC_0133.JPG

DSC_0134.JPG

DSC_0132.JPG

Resource Name: Isaacson Iron Works Power House

DSC_0131.JPG

DSC_0130.JPG

DSC_0129.JPG

Power House in 1961, prior to conversion to Aluminum Heat Treat, view to the southwest (King County Department of Assessments 1941-1974).

DSC_0128.JPG

Northwest corner of building, view to the southeast.

Resource Name: Isaacson Iron Works Power House

Northeast corner of building, view to the southwest.

Power House with power lines and electrical equipment to right and Plant Number Two to left, view to the northwest.

Resource Name: Isaacson Iron Works Power House

Property ID: 720359

Inventory Details - 10/25/2019

Common name:	Jorgensen Forge Corporation Aluminum Heat Treat Building
Date recorded:	10/25/2019
Field Recorder:	Eileen Heideman
Field Site number:	IIW-1903
SHPO Determination	

Detail Information

Characteristics:	
Category	Item
Foundation	Concrete - Poured
Form Type	Utilitarian
Roof Type	Gable
Roof Material	Metal - Corrugated
Cladding	Metal - Corrugated
Structural System	Metal - Steel
Plan	L-Shape

Surveyor Opinion

Property appears to meet criteria for the National Register of Historic Places:				
Property is located in a potential historic district (National and/or local):				
Property potentially contributes to a historic district (National and/or local):				
Significance narrative:	This building was constructed in 1942 or 1943 and se	erved a		

gnificance narrative: This building was constructed in 1942 or 1943 and served as the Power House for Plant Number Two, which required a large amount of electricity to keep the plant in operation around the clock during its wartime production period. The building was later converted by the Jorgensen Forge Corporation into an Aluminum Heat Treat Building, but with the exception of the replacement of the garage doors and removal of some electrical equipment, the exterior of the building is largely unaltered. These changes resulted in some loss of integrity of association and design, but the exterior is still easily recognizable as the power plant. This building is closely associated with World War Twoera production at Isaacson Iron Works Plant Two, and, together with the main plant building, is recommended eligible for the National Register of Historic Places under Criterion A.

Resource Name: Isaacson Iron Works Power House

Physical description:	This building is a tall (two-story), gable-roofed building with a north/south-oriented ridge and a shorter, single-story shed ell on the northern two-thirds of the building's east side. The building is clad with corrugated steel siding, and the roof is also covered with corrugated metal. The building is lit with steel multi-light fixed, awning and pivot windows. Some of these windows have been painted over or otherwise covered, but are largely intact. Large industrial ventilators line the ridge. The building is accessed by large garage openings on the north end of the building's west side, and at the south end of the building. Power line poles and electrical equipment stand near the southeast corner of the building.
Bibliography:	Earley, Amber and Eileen Heideman 2019 Cultural Resources Assessment of the Star Forge Development Project, King County, Washington. Report prepared for Star Forge, LLC. Perteet, Seattle, Washington and Cascade Heritage Consultants, Seattle, Washington. King County Department of Assessments 1941-1974 Property cards, Parcel Number 000160-0023. On file at Puget Sound Regional Branch, Washington State Archives, Bellevue, Washington. 2019 Parcel Number 000160-0023 https://blue.kingcounty.com/Assessor/eRealProperty/Dashboard.aspx? ParcelNbr=0001600023, accessed October 2019. Sanborn Map Company 1957 Sanborn Fire Insurance Maps of Seattle, Volume 8, 1929 Updated to 1960, Sheet 1384. Sanborn Map Company, New York.

Resource Name: Isaacson Iron Works Power House

Property ID: 720359

Inventory Details - 2/6/2020

Common name:

Date recorded: 2/6/2020

Field Recorder: Mindy Graddon

Field Site number:

SHPO Determination

Resource Name:

Isaacson Iron Works Office Headquarters Property ID: 720360

Location

Address:	8531 E Marginal Way S, Seattle, WA, 98108, USA		
Geographic Areas:	King Certified Local Government, King County, T24R04E33, SEATTLE SOUTH Quadrangle		
Information			
Number of stories:	N/A		
Construction Dates:			
Construction Type	Year	Circa	
Built Date	1950		
Remodel	1970		
Historic Use:			
Category	Subcategory		
Industry/Processing/Ex action	xtr		
Industry/Processing/Ex action	xtr		
Historic Context:			
Category			
Industry/Manufacturir	ng		
Architect/Engineer:			
Category	Name or Company		

2/6/2020

Resource Name: Isaacson Iron Works Office Headquarters

Thematics:

2019-10-08126, , Star Forge

Local Registers and Districts					
Name	Date Lis	ted I	Notes		
Project History					
Project Number, Organiz Project Name	ation,	Resource Inventor	ry SHPO Determination	SHPO Determined By, Determined Date	
2019-10-08126, , Star Fo	rge	10/25/2019	Determined Eligible	Holly Borth, 11/21/2019	

Survey/Inventory

Resource Name:

e: Isaacson Iron Works Office Headquarters

Photos

Office headquarters, view to the northwest.

AdminBuildingInterior 08.jpg

AdminBuildingInterior 06.jpg

AdminBuildingInterior 09.jpg

AdminBuildingInterior 07.jpg

AdminBuildingInterior 05.jpg

Resource Name:

Isaacson Iron Works Office Headquarters Property ID: 720360

AdminBuildingInterior 03.jpg

AdminBuildingInterior 04.jpg

AdminBuildingInterior 02.jpg

AdminBuildingExterior 09.jpg

AdminBuildingInterior 01.jpg

AdminBuildingExterior 08.jpg

Resource Name:

Isaacson Iron Works Office Headquarters Property ID: 720360

AdminBuildingExterior 07.jpg

AdminBuildingExterior 05.jpg

AdminBuildingExterior 03.jpg

AdminBuildingExterior 06.jpg

AdminBuildingExterior 04.jpg

AdminBuildingExterior 02.jpg

Resource Name:

Isaacson Iron Works Office Headquarters

Property ID: 720360

AdminBuildingExterior 01.jpg

Window opening on south side of building, showing extent of infill, view to the north.

West end of building, view to the southeast.

Southwest corner of building, view to the northeast.

Northeast corner of building, view to the southwest.

Resource Name: Isaacson Iron Works Office Property ID: 720360 Headquarters

Inventory Details - 10/25/2019

Common name:	Jorgensen Forge Corporation Office Headquarters
Date recorded:	10/25/2019
Field Recorder:	Eileen Heideman
Field Site number:	IIW-19-04
SHPO Determination	

Detail Information

Characteristics:	
Category	Item
Foundation	Concrete - Poured
Form Type	Utilitarian
Roof Type	Flat with Eaves
Roof Material	Metal - Standing Seam
Cladding	Brick
Structural System	Masonry - Poured Concrete
Plan	Rectangle
Styles:	
Period	Style Details
Modern Movement	Modern

Surveyor Opinion

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Significance narrative: The office headquarters building was built in 1950 for the Isaacson Iron Works and was later altered by the Jorgensen Forge Corporation (King County Department of Assessments 1941-1974). Alterations include replacement and alteration of the roof form, removal and partial replacement of the windows, and redesign of the main entrance. These changes have caused loss of integrity of design, materials, and workmanship. This building was constructed after the main period of significance for Plant Number Two and lacks association with this period of the property history. This building is therefore recommended not eligible for the National Register of Historic Places.

Resource Name: Isaacson Iron Works Office Headquarters

Physical description:	Hollowbore section of Plant Two. The building has a flat roof with overhanging, boxed-in eaves (a later alteration). The building is lit with metal-frame awning windows, a replacement of the original multi-light steel-frame windows, which were also partially filled in. The single-story main entrance is located on the east end of the building and is covered by a flat roof with boxed-in eaves. A rear entrance on the south side of the building is sheltered by a small porch with a south wall and a flat roof. The building has undergone extensive alterations since its construction and bears little resemblance to its original appearance.							
Bibliography:	Earley, Amber and Eileen Heideman 2019 Cultural Resources Assessment of the Star Forge Development Project, King County, Washington. Report prepared for Star Forge, LLC. Perteet, Seattle, Washington and Cascade Heritage Consultants, Seattle, Washington. King County Department of Assessments 1941-1974 Property cards, Parcel Number 000160-0023. On file at Puget Sound Regional Branch, Washington State Archives, Bellevue, Washington. 2019 Parcel Number 000160-0023 https://blue.kingcounty.com/Assessor/eRealProperty/Dashboard.aspx? ParcelNbr=0001600023, accessed October 2019. Sanborn Map Company 1957 Sanborn Fire Insurance Maps of Seattle, Volume 8, 1929 Updated to 1960, Sheet 1384. Sanborn Map Company, New York.							

Resource Name: Isaacson Iron Works Office Headquarters	Property ID:	720360
---	--------------	--------

Inventory Details - 2/6/2020

Common name:	
Date recorded:	2/6/2020
Field Recorder:	Mindy Graddon
Field Site number:	
SHPO Determination	

Attachment 2 Field Forms

CONTENTS

- Field Log of Boring
- Field Log of Geoprobe
- Well/VWP Construction Log
- Well Development Log
- Water Level Measurements Form
- Water Sampling Log

GENTECHNICAL AND ENVIRONMENTAL CONSULTANTS

FIELD LOG OF BORING

DRILL	COMPA	NY/DRILL	ER:					JOB NO: BORING NO:				
DRILL	. RIG EQI		:					JOB NAME:				
DRILL	ING MET	HOD:						LOGGE	D	BY:		
HAMN	IER TYPE	:		ROE	TYPE/C	0IA.:	_	LOCAT	10	N:	ELEV.:	
HAMN	IER WEI	GHT:		HAM	MER DR	OP:		START	D	ATE:	END DATE:	
CASI	NG SIZE/1	TYPE:			HOLE S	IZE:	-	WEATH	IEI		RING DRILLING:	
TIME	SAMP, NO.	∓ FROM	DRIVING	L. REC.		SAM			L	ONIGT	FIELD IDENTIFICATION	
DATE	TYPE	DEPT OT DEPT	RESISTANCE BLOWS / 6 INCH	# JARS	ACTION	GROUNDWATER	PID	ENV. SAMPLE		%	 [Density/consistency, color, Group Name (USCS); moisture; constituent properties (particle size, plasticity, etc.); organics; structure; other; unit name 	
									G			
									s			
									F			
									G			
									S			
									F G			
									s		·····	
									 F			
									G			
									s		····	
									F			
									G			
									S			
									F			
									9			
									G			
									s			
									F			
		S	UMMARY FIE	LD LOG	OF BOR	ING				COM	MENTS (i.e. materials used, visitors, problems, etc.):	
DE FROM	PTH TO	USCS CLASSIF.	GENERAL	IZED SOIL	DESCRIPT	ION FOR DRAFTED (GINT L	OG				
										10/07		
										WA		
									ŀ		SUMMARY OF TIME AND FOOTAGE	
									ĺ	FOOT	TAGE SAMPLES: Attempted	
										DRILL	LED: Recovered	
									I	DRILL	L/SAMPLE hrs. STANDBY: hrs.	
										SETU	JP/CLEANUP:hrs. WELL INSTALL:hrs.	
										OTHE	ER:	
									ľ	BOD		
										DOKI	SHEEI UF	

BEDTECHNICAL AND ENVIRONMENTAL CONSULTANTS

FIELD LOG OF GEOPROBE

PROB PROB	BING CON BE RIG EC	IPANY/DF QUIPMEN	RILLER:			JOB NO: PROBE NO:							
PROB	SING MET	"HOD:				LOGGE	D BY:						
PROB	BE DIAM.:			TYP.	RUN LENGTH:	LOCATION: ELEV.:							
WEAT	THER DU	RING DRI	LLING:			START DATE: END DATE:							
					PROBE RUN A	ND SAMP	LE DATA						
TIME		z FROM	LENGTH		FIELD CLASSIF			PID		TH LE	FROM	SAMPLE PURPOSE	
DATE	RUN NO.	ТО	RECOVERED	Uens	moisture; structure; other; (Geold	en trace constituents; assification.]	READING	SAMPLE NO.	SAM	то	OR COMMENT		
				P									
	* - -				· · · · · · · · · · · · · · · · · · ·								
					·								
					<u> </u>								
					<u></u>	· · ·							
					······································								
	1		<i>.</i> ۴.			•							
	a ¹¹				·								
										-			
					······································								
					· · · · · · · · · · · · · · · · · · ·								
							· · · · ·						
							<u>.</u>				·		
					······								
					·			Î					
						· · · · · · · · · · · · · · · · · · ·							
I		SU	MMARY FIELD	LOG	OF GEOPROBE		COMMENTS (i.e.	materials	used, ∨isitors	. probl	ems, etc	:.):	
DEF	PTH	USCS	GENERAL	IZED SO	IL DESCRIPTION FOR DRAFTED GINT	LOG							
FROM	то	CLASSIF.			·								
			·····		We Welk also be the second and the second				· · · · · · · · · · · · · · · · · · ·				
			William				·						
			-A					GRO	UNDWATER	DATA			
							WATER DEPTH		TIME			DATE	
					-								
										·		·	
					2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016		St	UMMARY	OF TIME AN	D F00	TAGE		
							PROBE/SAMPLE		hrs.	STAND	BY:	hrs.	
							- SETUP/CLEANUP:		hrs.	C	DECON:	hrs.	
							- OTHER:				-		
					*************	· · · · · · · · · · · · · · · · · · ·							
							BORING:		SHEET			OF	

	EWD SHANNON & WILSON, INC. WELL / VWP CONSTRUCTION LOG JOB NO															
BORING	NO:				APPROX. GR		D ELEV:		ft.	S	URFACI	Е МС	оли	MENT DETAILS	5	
INSPEC	FOR:				LOCATION: _						1					
INSTALL	DATE:				(ir	ndicat	e if several					ł				_ in.
ECOL. T	AG NO:					Stalla	tion dates)							—— Distance		ft.
TOTAL E	DRILLED D	EPTH:			ft.				Ļ	· · · y · · · · · · · · · · · · · · · ·	<u>v</u>				<u> </u>	
TOTAL S	SAMPL. DE	:PTH:			ft.					V/N/.	~		$\overline{}$		\sim	
DRILLIN		D:			(F	ISA, N	Mud Rotary, ec	:t.)						Distance		ft.
DRILLIN		SED:			(B	entor	nite, Polymer, e	ect.)				<u> </u>	٦			
			 2.		III									Key No:		_
DRILL MUD REMUVAL RMKS:																
	PIPE / IN	ISTRUM	ENT	DET	AILS			SKETCH	I	HOLE BACKFILL DETA				LL DETAILS	1	
DEF	PTH	WELL /	LD	LED	DESCRIPTION (include OD/ID, slot	Ч	SAND	B	ENT. CHIPS	DEF	PTH	IER	AL	DESCRIPTION (include seal or	ЯN	MIE
FROM	то	VWP NO.	so	SL0 ⁻	width, pipe material, schedule, etc.)	>	BENT. GRC	ОЛТ 🖾 В	ENT. CEMENT	FROM	то	Ē	SE	filter type, size, gINT code, etc.)	PG	TRE
							SOIL									
									Screen							
									Length							
									ft.							
									- Sump							
								\vdash	Length							
								\bigvee	ft.							
							N Use Re	IOT TO S	CALE e if Desired							
	AD	DITIONA			DETAILS					/WP INI		TION		TAILS		
CENTRA	ALIZERS:	☐ Yes 、		- T	vpe:			TRANS	SDUCER DEPT	H:	VWP #1			ft.		
		No No	_	► Dep	oths:						VWP #2 _			ft.		
CASING	JOINTS:	Thread	ded	Er	nd Cap Type:			SFR #	/ PRESSURE F	RATING	VWP #1			1		nsi
		Glued		Н	low Secured:			OLIV.#	/ I ILEGOORE I	Vinito.	VWP #2 _			1		psi
DEPTH ⁻	TO WATEF	R AFTER II	NSTA	LLATI	ION:		ft.		VWP # and	Zero	Zero	[Date a	nd Time Readou	ıt	
									Reading Type	Reading	Temp		of Re	eading Box S/	N	
INSTA	LLATION	MATER	lAL	SUS	ED				#1 <u>Un</u> saturated							
		SAND:		ba	ıgs				#1 Saturated							
	CE	MENT:		ba	ıgs				#2 Unsaturated							
BENTO	ONITE POV	WDER:		ba	ıgs				#2 Saturated							

ilename: J:\Support\library\FIELD AND LAB FORMS\AutoCAD_Well_VWP Construction Log.dwg Date: 02-10-2011

BENT. CHIPS/PELLETS: _____ bags

SLOTTED PVC: _____ ft.

BLANK PVC: ______ ft.

ADDITIONAL COMMENTS:

Login: sac

JOB NO. _____ PAGE _____ OF _

OWNER / LOCATION:	DATE:
WELL NO: WEATHER:	PERSONNEL:
ECOLOGY TAG NO: MEASURING POINT (MP):	_
LOCK NO. OR COMBINATION: CASING DIA: in. CASING: gal / ft. TIME	E / PID HEADSPACE: ppm
CASING STICKDOWN < OPEN MON. RIM: ft. MON. HEIGHT: ft. MON	UMENT TYPE & DIA: in.
SURGE BLOCK TYPE: PRODUCT THICKNESS: ft. PRODUCT MEASU	JREMENT METHOD:
TIME / STATIC WL < MP: ft. DEVELOPMENT METHOD: (Bailer-SS, Teflon, HDPE) (Hand Waterra)	(Powered Waterra) (Other)
TIME / VWP READING: (Digits, Temp.) VWP READOUT BOX ID:	DECON. METHOD:
WELL DEPTH < MP: ft. (Hard or Soft?)	VOLUME IN WELL: gal.
WATER VOLUME ADDED? (Tap or Distilled?) VOLUME PURGED: gal.	REPAIRS NEEDED?
MEANS OF SEDIMENT MEASUREMENT IN PURGE WATER:	SCREEN LENGTH:ft.

FIELD PARAMETERS											
START TIME/ WATER VOLUME ADDED, if any (gal)	END TIME	INTERVAL SURGED/ PURGED (ft > TD*)	TOTAL VOLUME PURGED (gal)	SEDIMENT THICKNESS (in or ml)	COLOR/ ODOR/ SHEEN?	FIELD	PARAMETERS, if any (including units)				
		 letoT = TT*	Denth of Well								
				г							
			Deald Made 1				<i>(</i> , <u>)</u> , <u>,</u> , , , , , , , , , , , , , , , , ,	0.00			
RELATIVE RECOVE	RY RATE:	(Rapid - Moderate	e-510W) FINA	L WELL DEPTH	1 < MP:	_ ft. SHEEN / OD	UR?			
COMMENTS:											
CASING CAP LEFT	LOOSE OR	TIGHT ?				WAS ALL	SEDIMENT REMOV	'ED?			

ſ

PAGE _____ OF _____

JOB NO.:

Project:

Conducted by:

Weather:

WATER LEVEL MEASUREMENTS

Location			PID Reading (ppm)		Measuring	Depth to Water from	Depth to LNAPL from	Comments (i.e. pressure change when opened,
ID	Date	Time	Monument	Casing	Point (MP)	MP (feet)	MP (feet)	inaccesibility, etc.)

Comments:

Checked By:

SHANNON & WILSON, INC.

WATER SAMPLING LOG

JOB NO. DACE

	CAL AND ENVIRONM	LOON, INC.		IER	SAMP		J LU	G	PAGE	0	=
OWNER / LOO									DATE:		
WELL NO:		SAMP	LE NO:		ECOLOG	Y TAG NO:				NO:	
WEATHER: _							MS / MSD?	Yes 🗌	No 🗌		
WELL SITE C <i>(MI</i>	ONDITIONS P is typically t	/ MP DEFINITION / MP DEFINITI	ON: <i>im)</i>								
				SA	MPLING DA	TA					
TIME STARTE	ED:					LNAF	PL THICKNE	ESS:		ft.	Sample 🗌
PID HEAD SP	ACE:		ppm	DNA	PL THICKNI	ESS:		ft.	Sample 🗌		
MP DISTANC	E ABOVE / B	ELOW GROUN	ND SURFACE:		ft.					_	
TOTAL DEPT	H OF WELL E	BELOW MP:			ft.	Num	nber	SAMPL Size	E CONTAINER Typ	S e	Pres.
DTW BELOW	MP:		ft.								
WATER COLU	JMN IN WELL	.:			ft.						
CASING DIAN					_ in.						
GALLONS PE	R FOOT:										
GALLONS IN	WELL:										
TIME PURGIN	NG STARTED	:									
		1	1	FIEL		IERƏ				1	
GALLONS REMOVED	TEMP. (C°)	D.O. (mg / L)	SP.COND. (ms / cm ³)	TDS (g / L)	SALINITY (ppt)	pН	ORP	TURBIDI (NTU)	TY COLOR	TIME	DTW (ft)
Initial											
After Sampling											
EVACUATION											
PUMP INTAK	E DEPTH (if a	applicable):									
PURGE WAT	ER DISPOSI	ΓΙΟΝ (e.g., dru	ım #):								
WATER QUAI	_ITY (e.g., she	een, odor):									
WATER QUA		(S) USED; CA	LIBRATION DA	TE / TIME:							
SAMPLING M	ETHOD:								SAMPLE TIM	E:	
SAMPLING PI	ERSONNEL:								DUPLICATE '	'TIME": _	
REMARKS (e.	g., recovery r	ate):									

TIME COMPLETED:

Attachment 3 Available Boring Logs

BORING LOG

BORING: <u>MW-1</u> PAGE <u>1</u> of <u>1</u>

PROJECT Jorgenson Steel SURFACE ELEVATION START SAMPLER J GIEBER MONITO	8531 East Marginal Way South, LOCATION
SUBCONTRTACTOR AND EQUIPMENT	Environmental Drilling, Mobile B-61; 8" HSA
COMMENTS Grab samples collected for log	ging purposes

Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Well C	Tempo	rary tion 1	Details	5
			0	Asphaltic Concrete						
				Dark Brown Sand moist, medium sand					Bento Sea	nite 1
				dark gray, wet, oily odor saturated	SP				2" Bli PV(Casir - Filte San (Color Silic 10/2 2" PV Scree (0.02	ank C ng d adc 2a 0) /C en 0"
			15						slots Botto Caj	s) om P
			20	Boring terminated at 15 feet. Groundwater encountered at approximately 11 feet during drilling. Boring converted to a temporary ground water monitoring well on 2-7-91. Well abondoned by removing top (i.e. blank) casing joint, filling with bentonite slurry and capping with asphaltic cold patch at the surface on 3-6-91.						

.: ..

. . .

•

BORING LOG

BORING: <u>MW-2</u> PAGE <u>1</u> of <u>1</u>

PRO SUI STA SAI SUI CO	DJECT <u>J</u> RFACE EI ART <u></u> MPLER BCONTRT MMENTS	LEVA 10:30 J GIEI	n Steel FION 2-7-91 BER DR AND Grab san	LOCATION CASING TOP FINISH2: MONITORING DEVICE EQUIPMENTEnvironmental Drill nples collected for logging purposes	8531 Ea ELEV 00 2-7- ing, Mol	st Marginal Way South, Seattle, WA ATION -91 bile B-61; 8" HSA
Penetration Results Blows 6"-6"-6"	Sample Depth Interval feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Well Construction Details
			0	Asphaltic Concrete		Cement
				Brown Silty Sand moist	SM	Bentonite Seal
			5	Dark Brown Sand moist,oily odor		2" Blank PVC Casing Filter
			1111		SP	Sand (Colorado Silica 10/20)
				dark gray, saturated		2" PVC Screen (0.020" slots)
						Bottom
			15 	Boring terminated at 15 feet. Groundwater encountered at approximately 11 feet during drilling		
				Boring converted to a ground water monitoring well on 2-7-91.		
			20 			
			25			

Jorgensen Forge Corporation 104(e) Response

SEACOR

BORING LOG

BORING: MW-3 PAGE 1 of 1

PROJECT_I	EARLE M. JORGENSON	N; 00075-005-01	LOCATION_	SEATTLE, WA	
SURFACE E	LEVATION		CASING TOP	ELEVATION_	14.05*
START	5/21/91 0855		FINISH	5/21/91 0930	
SAMPLER	C. VAN DUK	MONITORI	NG DEVICE	PHOTOIONIZATI	ON DETECTOR
SUBCONTR	TACTOR AND EQU	JIPMENT ENVI	RONMENTAL D	RILLING, MOBILE	B-61, 8" HSA
COMMENTS	S SOIL SAMPLES CO	LLECTED USING	A 2 INCH O.D. S	PLIT SPOON SAM	PLER

Penetration Results	Depth al,feet	D g (ppm)	Below c, feet	Lithologic Description	d Soil cation	Boring Abandonment/
Blows 6"-6"-6"	Sample Interv	Pl	Depth Surfac		Unifie	Well Construction Details
1.11	1.1.1.1	11.11	0	Asphaltic Concrete		
				Dark Brown Gravelly SAND moist, loose, medium to very coarse grained, (fill)	SP	Well Head Concrete Bentonite Seal PVC Blank Casing 2 inch
1-1-5		15		Dark Grey SAND saturated, loose, fine- grained, with silt	SP	Filter Sand (Colorado Silica 10/20)
3-5-8		80		Dark Grey SAND saturated, medium dense, fine- to medium-grained	SP	PVC Screen 2 inch (0.020 inch slots)
1-4-7		30	20	medium- to coarse-grained		Bottom Cap
			25	Boring terminated at 21.5 feet. Groundwater encountered at approximately 10 feet during drilling. Boring converted to a groundwater monitoring well on 5/21/91.	No.	*NOTE: Casing Top Elevation relative to SEACOR TBM with an assumed elevation of 15.00 feet above Mean Sea Level.

BORING LOG

BORING: MW-4 PAGE 1 of 1

PROJECT E	ARLE M. JORGENSON	00075-005-01	LOCATION	SEATTLE, WA	
SURFACE E	LEVATION	-	CASING TOP	PELEVATION_	14.05*
START	5/21/91 1240		FINISH	5/21/91 1315	
SAMPLER	C. VAN DUK	MONITORI	NG DEVICE	PHOTOIONIZATIO	ON DETECTOR
SUBCONTR	TACTOR AND EQU	IPMENT ENVI	RONMENTAL I	DRILLING, MOBILE	EB-61, 8" HSA
COMMENT	S SOIL SAMPLES COL	LECTED USING	A 2 INCH O.D. S	SPLIT SPOON SAM	PLER

Penetration Results	bepth al,feet	(mqq) g	Below e, feet	Lithologic Description	d Soil cation	Boring Abandonment/
Blows 6"-6"-6"	Sample Interv	PI	Depth Surfac	Dialonge Description	Unifie	Well Construction Details
1.1.1			0	Asphaltic Concrete		Well Head
				Dark Brown Gravelly SAND moist, loose, medium to very coarse grained, (fill)	SP	PVC Blank Casing 2 inch
1-2-2		50		Dark Grey Silty SAND saturated, loose, fine- grained	SM	Filter Sand (Colorado Silica 10/20)
2-3-4		200		Dark Grey SAND saturated, loose, fine- to medium-grained	SP	PVC Screen 2 inch (0.020 inch slots)
2-9-10	/////	200	20	medium- to coarse-grained		Bottom Cap
			25	Boring terminated at 21.5 feet. Groundwater encountered at approximately 10 feet during drilling. Boring converted to a groundwater monitoring well on 5/21/91.		*NOTE: Casing Top Elevation relative to SEACOR TBM with an assumed elevation of 15.00 feet above Mean Sea Level.

Current Well MW-5

Current Well MW-6

Current Well MW-7

(

L

BORING LOG

BORING: MW-8 PAGE 1 of 1

PRO SUI STA SAI SUI CO	DJECT RFACE I ART MPLER BCONTH MMENT	EARLE N ELEVA 10/10/ F RACTO S ASI	M. JORGENSI TION 91; 1000 P. SCHMIDT R AND EQ PHALT PARK	ENMONITOR UIPMENTMC UNG/DRIVEWAY	LOCATIO CASING T FINISH ING DEVIC	N 40 FEET TOP ELEVA 10/10/91 E NA LLING, GP 1	WEST OF GUARD SHAC ATION ; 1230 000R
enetration Results	Depth	(mqq)	Jelow , feet			Soil ation	Boring Abandonment/

BORING LOG MW-9

BORING: MW-9 PAGE 1 of 1

PRO SUI STA SAI SUI CO	DJECT RFACE EI ART _0830 MPLER BCONTRA MMENTS	JORGE LEVA 3-19-9 G, El ACTO 8" HS SPLIT	NSEN TION2 HLERS R AND H A, SOIL S T SPOON S	LOCATION CASING TOP FINISH 1030 MONITORING DEVICE PI EQUIPMENT LAYNE ENVIRONME AMPLES COLLECTED USING A 3.0 INC SAMPLER, 140 LB. HAMMER	MW-9 ELEV. 3-19-92 10TOIC NTAL : H O.D.	ATION DNIZATION DETECTOR SERVICES; CME-75 , 2 FOOT LONG
Penetration Results Blows 6"-6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
3-6-4-4 1-2-2-1 1/12,1/12 2-4-6-9 1-1-1-1		0 0 0 0 0		0-2" ASPHALTIC CONCRETE 2"-6" Gray crushed GRAVEL (base coarse) Brown SAND loose to medium dense, damp, fine-grained Gray SILT soft, wet, some wood fragments, organic odor Red Brown SAND loose, damp, some interlayered silt lenses 1" thick becomes medium-grained at 5.0 feet. no odor gray, saturated, fine-grained, two 1" layers of coarse sand. no odor at 7 feet Gray SILT very soft, saturated, some wood fragments and layers of very fine sand grades to very fine sandy silt at 10.0' Dark Gray SAND loose, saturated, medium-grained red specks 4' of heave @17.0', no sample collected water added during drilling Boring terminated at approx. 20.0 feet. Groundwater encountered at approx. 8.5 feet during drilling. Boring converted to a groundwater monitoring well on 3-19-92. Approx. 60 gallons of water added	SP ML SP ML SP	Flush Mount Monument Concrete Bentonite Seal 2" Schedule 40 PVC Casing (blank) Filter Sand (Colorado Silica 10/20) 2" Schedule 40 PVC Screen (0.020) inch slots)

00075-013-01

BORING LOG MW-10

BORING: MW-10 PAGE 1 of 1

00075-013-01

BORING LOG MW-11

BORING: MW-11 PAGE 1 of 1

PRO SUI STA SAI SUI CO	DJECT RFACE EI ART4 MPLER BCONTRA MMENTS	JORGE LEVA 15 3-19 G.E ACTO 8" HS SPLT	NSEN TION	LOCATION CASING TOP FINISH 1515 MONITORING DEVICE PH GQUIPMENT LAYNE ENVIRONME AMPLES COLLECTED USING A 3.0 INCL SAMPLER, 140 LB, HAMMER	MW ELEV 3-19-92 10TOIO NTAL H O.D.	-11 ATION 2 DNIZATION DETECTOR SERVICES; CME-75 , 2 FOOT LONG
Penetration Results Blows 6"-6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
3-4-5-7 1-2-1-2 1-2-3-3 2-5-4-6 1-2-4-7		0		0-3" ASPHALTIC CONCRETE 3"-6" Gray Crushed GRAVEL (base coarse) Brown SAND loose, damp Gray Brown SILT soft, damp Brown SAND loose, damp, medium-grained golden brown, with 2" layer of silty fine sand at 5 feet dark gray, wet to saturated at 7 feet Dark Gray SILT soft, saturated, some wood fragments and some fine sand Dark Gray Silty SAND loose, saturated, fine-grained Dark Gray SAND loose, soft, saturated, medium-grained, red specks becomes medium- to coarse- grained at 14.5 feet no sample collected	SP ML SP ML SM	Flush Mount Monument Concrete Bentonite Seal 2" Schedule 40 PVC Casing (blank)
			20	Boring terminated at 20.0 feet. Groundwater encountered at approximately 8.5 feet during drilling. Boring converted to a groundwater monitoring well on 3-19-92. Approximately 20 gallons of water added during drilling.		

00075-013-01

Jorgensen Forge Corporation 104(e) Response

SEACOR

l

BORING LOG

BORING: <u>MW-12</u> PAGE 1 of 1

PRO SUI STA SAI SUI CO	DJECT <u>F</u> RFACE EI ART <u>8</u> MPLER ST BCONTR/ MMENTS	ORGE F LEVA 27/92 VILLE/P ACTO SOIL	OSTLETH R AND H	AREA 2 LOCATION 2 CASING TOP I FINISH 2 WAITE MONITORING DEVICE H GOUIPMENT <u>CASCADE DRILLING, INC</u> COLLECTED CONTINOUSLY USING A 3" O	8531 E. I SEATTL ELEV 8/27/92 INU 	MARGINAL WAY S. E WA. ATTON 13.71 D. HSA IT SPOON SAMPLER
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	5" X 6" BRASS SLEEVES	Unified Soil Classification	Boring Abandonment/ Well Construction Details / Flush Mount
Hand Auger to 5'				ASPHALTIC CONCRETE Gray arkosic SAND no fines, few pebbles, very fine to coarse-grained, very well graded, loose, dry	sw	Cement grout Locking Thermal Cap Hole Plug Bentonite
14/15/16 8/9/11		0.4 0.4	5			Seal 2" PVC Blank
5/6/7 9/8/9		1.0 1.4	10	Clayey Silty SAND with organic material, fine to coarse-grained, loose, slightly plastic moist	SM	2" 0.020
17/18/21 11/12/14 10/13/15		1.6 1.8 0.2		Gray arkosic SAND no fines/gravel, very fine to coarse-grained, very well graded, loose, wet	sw	PVC Screen 8/12 CSSI Silica Sand
8/9/12 8/9/11		2.8 1.2				
8/12/14		0.4	20	Boring terminated at 20 feet Groundwater encountered at approximate- ly 11 feet		Threaded PVC end cap

Jorgensen Forge Corporation 104(e) Response

SEACOR

ſ

BORING LOG

BORING: MW-13 PAGE 1 of 1

PRO SUJ STJ SAJ SUJ CO	DJECT <u>F</u> RFACE EI ART <u>8</u> MPLER <u>st</u> BCONTRA MMENTS	ORGE I LEVA /27/92 /ILLE/P ACTO SOII LINE	TION OSTLETHY R AND H SAMPLES D WITH 2.2	AREA 2 LOCATION SI CASING TOP I FINISH WAITE MONITORING DEVICE H EQUIPMENT CASCADE DRILLING, INC COLLECTED CONTINOUSLY USING A 3" O 5" X 6" BRASS SLEEVES	531 E. M EATTLE ELEV. 8/27/92 INU C. 8" O.I D. SPL	ARGINAL WAY S. E WA. ATION 13.99 D. HSA IT SPOON SAMPLER			
Penetration Results Blows 6"-6"-6"	Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet PID Reading (ppm)	PID Reading (ppm)	PID Reading (ppm)	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details / Flush Mount Monument
Hand Auger to 5'				ASPHALTIC CONCRETE Gray arkosic SAND no fines, very fine to coarse-grained, very well graded, loose, dry	sw	-Cement grout Locking Thermal Cap Hole Plug Bentonite Seal			
10/11/12 9/11/12		4.8 1.6	5	3" Clay lens moist		2" PVC Blank			
3/5/6 9/11/12		1.2 0.8	10	Clayey Silty SAND with organic material, fine to coarse-grained, loose, slightly plastic moist. Dark green Clayey SILT Gray arkosic SAND no fines, very fine to	SM ML	2" 0.020 PVC			
10/12/14 16/17/18 8/12/14		0.2 0.3 0.5		coarse-grained, very well graded, loose, wet	SW	Screen 8/12 CSSI Silica Sand			
8/9/13 11/12/14		0.6 0.4							
8/11/13		1.8		Boring terminated at 20 feet Groundwater encountered at approximate- ly 10.5 feet		Threaded PVC end cap			

BORING LOG

PRO SU ST SA	DJECT RFACE EL ART8 MPLER SP	FORGE	FACILITY . TION	AREA 2 LOCATION <u>s</u> CASING TOP FINISH WAITE MONITORING DEVICE	8531 E. MARGINAL WAY S. LOCATION <u>SEATTLE WA.</u> CASING TOP ELEVATION <u>14.13</u> FINISH <u>8/27/92</u> ORING DEVICE HNU		
SU CO	BCONTRA	SOIL	R AND E SAMPLES	EQUIPMENT <u>CASCADE DRILLING, IN</u> COLLECTED CONTINUUSLY USING A 3" O. "X 6" BRASS SLEEVES	C. 8" O.I D. SPLIT	D. HSA I'SPOON SAMPLER	
Penetration Results	e Depth al,feet	(ID) (D)	l Below ce, feet	Lithologic Description	d Soil fication	Boring Abandonment/	
Blows 6"-6"-6"	Sampl	Readin	Depth Surfa		Unifie Classif	Flush Mount Monument	
			_ 0	ASPHALTIC CONCRETE		Cement grout	
Hand Auger to 5'			hhh	Gray arkosic SAND no fines or gravel, very fine to coarse-grained, very well graded, dry	sw	Locking Thermal Cap Hole Plug Bentonite Seal	
7/7/8		3.0	5			2" PVC Blank	
4/4/5		1.0	=	moist			
3/3/4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.2	E				
8/10/11		0.6	10	Dark Gray Clayey SILT, slightly plastic, damp	ML	2" 0.020 PVC	
10/11/12		0.8	E		≤ 1	Screen	
12/18/17		0.8	E	Gray arkosic SAND no fines or gravel,	SW	8/12 CSSI	
7/9/12		2.0	-15	very fine to coarse-grained, very well graded, wet			
9/12/13		0.6	E	brown			
8/9/16		0.6	E	dark gray			
8/11/13		1.8	E			Threaded	
			20	Boring terminated at 20 feet Groundwater encountered at approximate- ly 10.5 feet		PVC end cap	

BORING LOG

BORING: <u>MW-15</u> PAGE 1 of 1

PRO SU ST SA SU CO	DJECTF RFACE EI ART MPLER SI BCONTRA MMENTS	ORGE I LEVA 8/27/9 VILLE/ ACTO SOIL	FACILITY / TION2 POSTLET R AND I SAMPLES	AREA 2 LOCATION CASING TOP FINISH	8531 E. MARGINAL WAY S. LOCATION SEATTLE WA. CASING TOP ELEVATION 14.15 FINISH 8/27/92 FORING DEVICE HNU CASCADE DRILLING, INC. 8" O.D. HSA TINOUSLY USING A 3" O.D. SPLIT SPOON SAMPLER			
		LINE	D WITH 2.	5" X 6" BRASS SLEEVES				
Penetration Results Blows	iample Depth Interval, feet	PID (eading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil	Boring Abandonment/ Well Construction Details		
0-0-0	0	2			-0	Monument		
Hand Auger to 5'	land luger o 5'			ASPHALTIC CONCRETE Brown arkosic SAND, no fines or gravel subrounded, very fine to coarse-grained, very well graded, dry	sw	-Cement grout Locking Thermal Cap Hole Plug Bentonite Seal		
9/12/13		0	s			2" PVC Blank		
13/15/15			=		110			
3/3/4		0.2	=					
3/6/7		6.2	10	Dark Gray Clayey SILT, slightly plastic moist	ML	2" 0.020 PVC		
4/4/4		0	E	Clayey Sandy SILT, moist to wet	ML	Screen		
5/10/12		0	E	Dark gray Silty SAND, very fine graded, poorly graded, wet	SM	8/12 CSSI Silice Sand		
8/10/11		0	-15	Gray arkosic SAND no fines of gravel, very fine to coarse-grained, very well	SW			
7/9/12		0	E	graded, wet				
7/13/15		0	E					
9/12/15		0	20	Boring terminated at 20 feet Groundwater encountered at approximate- ly 11 feet		Threaded PVC end car		

BORING LOG

BORING: MW-16 PAGE 1 of 1

BORING LOG

BORING: MW-17 PAGE 1 of 1

SU ST. SA SU CO Penetration Results Blows 6"-6"-6"	RFACE EI ART MPLER SI BCONTR/ MMENTS MMENTS	LEVA <u>1-29-92</u> VILLE/ SOIL SOIL (bbin)	Deptit Below	CASING TOP FINISH 8 FINISH 8 F	Classification	ATION
		14.2 17.1 13.1		CONCRETE Gray arkosic SAND, no fines/gravel, sub- rounded, very fine to coarse-grained, very well graded, medium dense to loose, dry Boring terminated at 2.5 feet due to refusal Groundwater not encountered	SW	Concrete grout Hole Plug Bentonite Pellets

BORING LOG

PRO SU ST SA SU CO	OJECT_ <u>F</u> RFACE EI ART <u>{</u> MPLER <u>SI</u> BCONTRA MMENTS	ORGE LEVA 3-29-92 VILLE ACTO SOIL LINE	FACILIT TION 1220 POSTLET R AND I SAMPLES D WITH 2	AREA 1 LOCATION S CASING TOP FINISH 8 HWAITE MONITORING DEVICE M EQUIPMENT GEOBORING & DEVEL S CONTINUOUSLY COLLECTED USING 5" X 6" BRASS SLEEVES	531 E. EATTI ELEV -29-92 MICRO OPMEN A 3" O.	MARGINAL WAY S. <u>E. WASHINGTON</u> ATION <u>48.77'</u> 1400 <u>1400</u> <u>17IP PID</u> <u>VT, INC.; 8" O.D. HSA</u> <u>D. SPLIT SPOON SAMPLER</u>
Penetration Results Blows	mple Depth iterval, feet	PID ading (ppm)	epth Below urface, feet	Lithologic Description	nified Soil Issification	Boring Abandonment/ Well Construction Details
6"-6"-6"	Sau In	Re	Q N		Cla Cla	Flush Mount Monument
Hand	1		- 0	CONCRETE	1.1	Lockable
Auger to 5'		0	E	Brown arkosic SAND, no fines/gravels, sub- rounded, very fine to coarse-grained, very	SW	Cap
		ŏ	- • · · ·	Gray Silty SAND, very fine-grained, dense, dry	SP	Cement grout
		0000	5	Brown arkosic SAND, no fines/gravels, sub- rounded, very fine to coarse-grained, very well graded, medium dense, dry	aw	Hole Plug Bentonite Seal
4/7/8	4444	0			1.1	DUC 2" DVC
9/7/7		0	Ē	gray		blank
6/4/3		0	E	Grav SAND, very fine-grained, dry Grav SAND, very fine-grained, as above, dry	SW	2" 0.020
1/3/2		0	10	Dark gray Clayey SILT with organics, very stiff, slightly plastic, loose, moist	ML	slot PVC screen
3/5/6		0	E	Dark gray SAND, no gravels, few fines,	SP	Silica Sand
4/4/3		0	Ε	dense, wet		
4/5/5		0	15 11 11 12 20	Boring terminated at 16 feet Groundwater encountered at approximately 11.5 feet		End Cap
			25			· · · · ·

BORING LOG

BORING: <u>MW-19</u> PAGE <u>1</u> of <u>1</u>

PRO SUI STA SAI SUI CO	OJECT <u>F</u> RFACE EI ART <u>MPLER SI</u> BCONTRA MMENTS	ORGE LEVA VILLE/ ACTO SOIL LINE	FACILITY TION POSTLET R AND I SAMPLES D WITH 2	AREA 1 LOCATION SI CASING TOP I FINISH HWAITE MONITORING DEVICE AUIPMENT CASCADE DRILLING IN CONTINUOUSLY COLLECTED USING S CONTINUOUSLY COLLECTED USING 5" X 6" BRASS SLEEVES	531 E. 1 EATTL ELEV -28-92 <u>MICRO</u> VC.; 8" A 8" O	MARGINAL WAY S. E. WASHINGTON ATION <u>48.62'</u> 1026 TIP PID O.D. HSA D. SPLIT SPOON SAMPLER
Penetration Results Blows 6"-6"-6"	Sample Depth Interval, feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details Flush Mount Monument
2/3/4		2.3		ASPHALTIC CONCRETE Brown arkosic SAND, no fines/gravel, very fine to coarse-grained, very well sorted loose, dry	sw	Lockable Thermal Cap
3/6/7 6/6/7			5	Dark gray SILT Brown arkosic SAND, no fines/gravel, very fine to coarse-grained, very well sorted loose, dry	ML SW	Hole Plug Bentonite Seal 2" PVC blank
3/3/3 3/4/5 4/5/6 3/5/8 10/12/16		6.0 0 0		with organics, hydrocarbon-like odor Dark gray Clayey SILT with organics, moist Gray arkosic SAND, no fines/gravel, very fine to coarse-grained, very well solved, loose, saturated Dark gray SAND, very fine-grained, poorly sorted, wet, hydrocarbon-like odor presence of oil Boring terminated at 16 feet Groundwater encountered at approximately 11.5 feet	ML SW SP	blank 2" 0.020 slot PVC screen 8/12 CSSI Silica Sand Threaded End Cap
			- 25			

BORING LOG

BORING: <u>MW-20</u> PAGE 1 of 1

PR SU ST SA SU CO	OJECT RFACE EI ART MPLER SI BCONTRA MMENTS	ORGE LEVA 8/28 VILLE/ ACTO SOIL	FACILIT TION 8/92 POSTLET R AND I SAMPLE	8: Y AREA 1 LOCATION S CASING TOP I FINISH HWAITE MONITORING DEVICE EQUIPMENT CASCADE DRILLING, D S CONTINUOUSLY COLLECTED USING	8531 E. MARGINAL WAY S. LOCATION <u>SEATTLE WASHINGTON</u> CASING TOP ELEVATION <u>49.44'</u> FINISH <u>8/28/92 1030</u> TORING DEVICE <u>MICROTIP PID</u> CASCADE DRILLING, INC.; 8" O.D. HSA <u>Y COLLECTED USING A 3" O.D. SPLIT SPOON SAMPLER</u>		
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details	
18/18/18	777777	0	•	ASPHALTIC CONCRETE Brown arkosic SAND, no fines/gravel, very fine to coarse-grained, very well graded, dry	SW	Lockable Thermal Cap Cement grout Hole Plug Bentonite	
12/13/15 11/13/13		0 0	5	gray, medium dense presence of oil		Seal 2" PVC blank	
4/4/7 6/6/6 8/10/11 6/12/14 6/11/14		0 3.2 0 0.8 1.7 1.5 0.6		Gray SAND, no fines/gravels, very fine- grained, poorly graded, medium dense, moist, petroleum-like odor wet dense, presence of oil	SP	2" 0.020 slot PVC screen 8/12 CSSI Silica Sand Threaded End Cap	
			20	Boring terminated at 16 feet Groundwater encountered at approximately 11.5 feet			

BORING LOG

BORING: MW-21 PAGE 1 of 1

	D WITH 2	S CONTINUOUSLY COLLECTED USING 5" X 6" BRASS SLEEVES	INC.; 8' A 3" O.	TIP PID " O.D. HSA D. SPLIT SPOON SAMPLER
PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
2 0.2 0.4 0 0 0.3 2 0.8 0.2 0.1 0		ASPHALTIC CONCRETE Brown arkosic SAND, no fines/gravel, subrounded, very fine to coarse-grained, very well sorted, very dense, dry dense moist with organics Gray SAND, very fine-grained,poorly sorted, wet Dark gray Clayey SILT with sand, wood fragments, very stiff Dark gray SAND, very fine- grained, poorly sorted, medium dense, wet Boring terminated at 16 feet Groundwater encountered a approximately 11.5 feet	SW SP ML SP	Lockable Thermal Cap Cement grout Hole Plug Bentonite Seal 2" PVC blank 2" 0.020 slot PVC screen 8/12 CSSI Silica Sand Threaded End Cap
	0.2 0.4 0 0.3 0.3 0.2 0.1 0 0 0.3	Galage 0 0.2 0.4 0 0.3 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0 1 15 20	Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Secon	Constraint Constraint
SEACOR

BORING LOG

BORING: MW-22 PAGE 1 of 1

PR SU ST SA SU CO	OJECT RFACE EI ART MPLER <u>SI</u> BCONTRA MMENTS	ORGE LEVA VILLE/ ACTO SOIL LINED	FACILIT TION 8/28/9 POSTLET R AND I SAMPLES WITH 2.	AREA 1 LOCATION SI CASING TOP 1 CASING TOP 1 CASING TOP 1 FINISH HWAITE MONITORING DEVICE EQUIPMENT CASCADE DRILLING CONTINUOUSLY COLLECTED USING S CONTINUOUSLY COLLECTED USING	531 E. N EATIL ELEV 8/28 MICRO G, INC.; A 3" O.	MARGINAL WAY S. E. WASHINGTON ATION 48.26 /92 1514 /7IP PID 8" O.D. HSA D. SPLIT SPOON SAMPLER
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details Flush Mount Monument
25/18 8/10/12		0	0	ASPHALTIC CONCRETE Brown, arkosic SAND, no fines/gravel, sub- rounded, very fine to coarse-grained, very well graded, dense, dry	SW	Lockable Thermal Cap
18/25/28		0	Ē	SAND, as above, very dense	ML. SW	Hole Plug Bentonite
5/7/8		0	= 5	Dark gray SILT, medium dense, dry SAND with wood fragments, very fine- grained, medium dense, moist	ML SP	Seal
6/7/8 6/7/8		0		SAND. as above. medium dense, moist SAND with organics, very fine-grained, medium dense, moist	sw SP	
5/8/9 5/6/6		0	10	Dark gray Clayey SILT, very stiff, low plasticity, medium dense, moist to wet	ML	slot PVC screen 8/12 CSSI
7/8/9		0	Ē	Dark gray SAND, very fine-grained, poorly sorted, medium dense, wet,	SP	Silica Sand
6/8/10		0		Gray arkosic SAND, no fines/gravels, subrounded, very fine to coarse-grained, medium dense, wet Boring terminated at 16 feet Groundwater encountered at approximately 11.5 feet	SW	Threaded End Cap

0075-018-01

00075-018-01

00075-018-01

SEACOR

BORING LOG

BORING: MW-25 PAGE 1 of 1

		FARALLON	Log of Boring: MW-37									
		975 5th Avenue Northwest Issaquah, Washington 98027									Page 1 of 1	
Cli	ent	: Jorgensen Forge Corp.	Date/Time Started	:	02/09	9/09	1143	Sa	mpler Type: 18	3" Split spo	on	
Pro	ojeo	ct: Jorgensen Forge	Date/Time Comple	eted:	02/09	9/09 75	1205	Dri	ve Hammer (Ibs	.): D (ft bas):	300 16	
Lo	cat	ion:Seattle, WA	Equipment: Drilling Company:		Case	75 ade	Drilling	To	tal Boring Depth	l (ft bas):	26.5	
Fa	all	on PN: 394-002	Drilling Foreman:		Davio	d Go	se	То	tal Well Depth (f	t bgs):	25	
	aa	ed By: D. Clement	Drilling Method:		Hollo	w st	em auge	er				
	99											
Depth (feet bgs.)	Sample Interval	Lithologic Descript	ion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed OO	oring/Well nstruction Details	
0-					1	1						
-	-	0-5 feet Vac trucked out									Concrete	
5-		Well-graded SAND with gravel (85% sand, 15% gra sand, fine gravel, brown, very loose, moist, no odo	ivel), fine to coarse r/	sw		66	2/2/3	1.6	MWS-37- 020909-1 FD-020909		Bentonite	
- 10 -		Well-graded SAND with gravel (85% sand, 15% gra sand, fine gravel, brown, loose, moist, no odor.	ivel), fine to coarse	sw		66	1/3/5	2.5	MWS-37- 020909-2		Sand pack	
- 15		Well-graded SAND with gravel (85% sand, 15% gra sand, fine gravel, brown, loose, moist, no odor. SILT (100% silt), brown, medium stiff, wet at 16 fee	ivel), fine to coarse , musty organic	SW ML SP		100	2/3/4	1.7	MWS-37- 020909-3		Screen ▼	
20 -		Poorly-graded SAND (100% sand), fine to medium, musty organic odor.	grey, loose, wet,								Sand pack	
-		Poorly-graded SAND (100% sand), fine to medium, no odor.	black, loose, wet,	SP		100	3/3/5	1.1	MWS-37- 020909-4			
25		Poorly-graded SAND (100% sand), fine to medium, no odor.	black, loose, wet,	SP		100	6/7/8	0.5	MWS-37- 020909-5		Sand pack	
30 -												

Well Construction Information Monument Type: Heavy-duty flush mount Ground Surface Elevation (ft): NA Filter Pack: 2/12 Sand pack Casing Diameter (inches): 2 Top of Casing Elevation (ft): NA Surface Seal: Concrete Sand Screen Slot Size (inches): 0.010 Boring Abandonment: Screened Interval (ft bgs): 10-25 Annular Seal: Bentonite Surveyed Location: X: NA Y: NA

		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of I	Bori	ng:	MW-38		Page 1 of 1
Clic Pro Loc Fai	ent ojec cat rallo ggo	Tesaquah, Washington 98027 Tesaquah, Tesaqua	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	l: eted: :	02/09/09 0943 02/09/09 1005 CME 75 Cascade Drilling David Gose Hollow stem auger			Sa Dri De To To	mpler Type: 18 ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	oon 300): 9.5 25.5 20	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed O m	3oring/Well onstruction Details
0		0-4 feet Vac trucked out									Concrete Bentonite
- 5-		Poorly-graded SAND (100% sand), fine to medium loose, moist, no odor. SILT (100% silt), brown, soft, moist, no odor.	sand, brown, very	SP		100	2/2/3	1.0	MWS-38- 020909-1		
- 10 — -		Poorly-graded SAND (100% sand), fine to medium loose, moist, no odor. Sandy SILT (60% silt, 40% sand), fine sand, brown,	sand, brown, very	SP ML		100	1/2/3	2.2	MWS-38- 020909-2		
- - 15 -		Poorly-graded SAND (100% sand), fine to medium loose, wet, no odor, aluminum-like metal shards.	sand, brown,	SP		100	2/3/4	2.6	MWS-38- 020909-3		Screen
- - 20 -		Well-graded SAND (100% sand), fine to coarse san dense, wet, no odor, aluminum-like metal shards.	d, black, medium	SW		100	7/8/10	3.1	MWS-38- 020909-4		Sand pack
- - 25 -		Well-graded SAND (100% sand), fine to coarse san wet, no odor, aluminum-like metal shards.	d, black, loose,	SW		100	5/5/8	3.6	MWS-38- 020909-5		Bentonite
30 -		Wel	Construction I	nforn	natio	on					

Ground Surface Elevation (ft): Monument Type: Heavy-duty flush mount NA Filter Pack: 2/12 Sand pack Casing Diameter (inches): 2 Top of Casing Elevation (ft): NA Surface Seal: Concrete Bentonite Screen Slot Size (inches): 0.010 Boring Abandonment: Screened Interval (ft bgs): 5-20 Annular Seal: Bentonite Surveyed Location: X: NA Y: NA

		FARALLON consulting 975 5th Avenue Northwest		Lo	g c	of	Bori	ng:	MW-39		D	ogo 4 of 4
Cli Pro Lo Fa	ent ojec cat rallo ggo	Issaquah, Washington 98027 Jorgensen Forge Corp. Ct: Jorgensen Forge ion: Seattle, WA Dn PN: 394-002 Ed By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	l: eted:	02/1 ² 02/1 ² CME Caso David Hollo	1/09 1/09 75 ade d Go w st	0815 1020 Drilling ose em auge	Sa Dri De To To	mpler Type: 18 ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	י" Split .): D (ft bg (ft bgs):	spoon (3 (3) (3) (3) (3) (3) (3) (3) (3) (3)	300 10 26.5 20
Depth (feet bgs.)	Sample Interval	Lithologic Descript	ion	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Bori Con: D	ing/Well struction etails
		0-5 feet Vac trucked out Poorly-graded SAND (60% sand, 35% gravel, 5% s sand, fine to coarse gravel, brown, dense, moist, nd Silty GRAVEL with sand (55% gravel, 30% sand, 19 coarse sand, fine to coarse gravel, brown, dense, w approximately 10.25 feet, musty odor. No recovery, metal or rocks in boring. No recovery, metal or rocks in boring. Metal fragme auger soil coming out of boring. No recovery, metal or rocks in boring.	ilt), fine to coarse o odor. 5% silt), fine to vet below	GM		80	12/22/33	1.3	MWS-39- 021109-1 MWS-39- 021109-2			Concrete Bentonite Sand pack Screen Sand pack Bentonite
- 00 -		Wel	Il Construction I	nforn	natio	on	Gr		Surface Elevatio			

Monument Type: Stickup			ONSTRUCTION INTORM	Ground Ground	Surface Elevation	(ft): NA
Casing Diameter (inches):	2	Filter Pack:		Top of	Casing Elevation (f	t): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring	Abandonment:	Sand, bentonite
Screened Interval (ft bgs):	5-20	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA

	FARALLON CONSULTIN 975 5th Avenue Northwee Issaquah, Washington 9802			Lo	g c	of I	Bori	ng:	MW-40		Page 1 of 1
Cli Pro Lo Fai	ent ojeo cat rallo ggo	Seature, Washington 98027 Seattle, Washington Seattle, Washington PN: 394-002 By: Jeff Keller	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	l: eted: :	7/19/ 7/19/ LA H Casc Curti Hollo	/08 1 /08 1 ISA cade s A. ow St	200 400 Drilling, tem Aug	San Dri De Inc.Tof Tof er	mpler Type: N/ ve Hammer (Ibs pth of Water ATI tal Boring Depth tal Well Depth (f	A .): D (ft b) (ft bgs):	NA gs): 15.5 is): 25 : 25
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		Boring not logged or sampled. See boring log for MW-41 for lithology.									Casing Bentonite

Monument Type: Flush Mou	nt HD	Well Co	onstruction Informa	ation	Ground	Surface Elevation	(ft): NA	
Casing Diameter (inches):	2	Filter Pack:	Sanu		Top of C	asing Elevation (f	t): NA	
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete		Boring A	bandonment:	NA	
Screened Interval (ft bgs):	10-25	Annular Seal:	Bentonite	Surveyed Lo	ocation:	X: NA	Y: NA	

		FARALLON consulting		Lo	g o	of I	Boriı	ng:	MW-41			
		Issaquah, Washington 98027									F	Page 1 of 1
	ent	: Jorgensen Forge Corp.	Date/Time Started	l: eted:	7/19/ 7/19/	08 0 08 1	930 200	Sa Dri	mpler Type: Da ve Hammer (Ibs	&Μ S .):	S 16	300
	cat	ion: Seattle Washington	Equipment:		LA H	SA		De	pth of Water AT	D (ft	bgs):	15.5
Eor	rall	on PN: 304.002	Drilling Company	:	Casc	ade	Drilling, I	nc.To	tal Boring Depth	(ft b)gs):	41.5
	an		Drilling Foreman: Drilling Method:		Hollo	s A. w Si	tem Auge	er	tai wen Deptii (i	r nga	<i>,</i> ,.	40
LO	gg	ed By: Jell Kellel										
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Bo Cor I	ring/Well Istruction Details
0-		Airknife										
-	-											
5	-											
-	X	Poorly-graded SAND, medium to coarse, brown, me	edium dense,	SP		100	5/11/15	0.0	MWS 41- 071908-01			
-	-		/									
10 -	\times	Poorly-graded SAND, medium to coarse, brown, ve	ry loose, moist, no	SP		30	6/4/2	0.1	MWS 41- 071908-02			Casing
- 15 -		Poorly-graded SAND, fine to coarse, black, medium	dense, wet, no	SP		100	11/14/25	2.2	MWS 41- 071908-03			<u>v</u>
- 20 -												
20 -	X	Poorly-graded SAND, fine to coarse, black, very der	nse, wet, no odor	SP		50	25/50	0.4	MWS 41- 071908-04			Bentonite
-	-											
25	X	Poorly-graded SAND, fine to coarse, black, very de	nse, wet, no odor	SP		10	24/28/40	0.1	MWS 41- 071908-05			
30 -						10	50	0.0				
-		Poorly-graded SAND, fine to coarse, black, very der	nse, wet, no odor	SP		10	50	0.9	071908-06			
-	-											Screen
35 -	-	No recovery										
-	-		/									Sand Pack
40 -												
-	-	Heaving sands - no recovery.	/									
-	-											
45 -												
1		Wal	Construction I	nforn	natio	n						

Monument Type: Flush mou	int HD	Well C	onstruction Informa	ation Gro	ound Surface Elevation (ft)): NA
Casing Diameter (inches):	2	Filter Pack:	Sanu	Тој	p of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Bo	ring Abandonment:	NA
Screened Interval (ft bgs):	30-40	Annular Seal:	Bentonite	Surveyed Locat	tion: X: NA Y:	NA

		FARALLON consulting 975 5th Avenue Northwest		Lo	g c	of I	Bori	ng:	MW-42		Page 1 of 1
Cli Pro Lo Fai	ent ojeo cat rallo ggo	: Jorgensen Forge Corp. ct: Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	02/10 02/10 CME Caso David Hollo	0/09 0/09 75 cade d Go ow st	1300 1515 Drilling ose em auge	Sa Dri De To To	mpler Type: N ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	5 .): D (ft bgs): (ft bgs): t bgs):	300 NS 20 20
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	ring/Well Istruction Details
		Boring not logged or sampled. See boring log for MW-44 for lithology.									Concrete Bentonite Sand pack Screen Sand pack
- 30 -						•	•				

Monument Type: Heavy-duty	/ flush mount	Well Co	ONSTRUCTION INFORMA	Ground Ground	Surface Elevation	(ft): NA
Casing Diameter (inches):	2	Fliter Pack:	2/12 Sanu pack	Top of	Casing Elevation (f	t): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring	Abandonment:	NA
Screened Interval (ft bgs):	5-20	Annular Seal:	Bentonite	Surveyed Location:	X : NA	Y: NA

	FARALLON consulting 975 5th Avenue Northwest	Lo	og c	of Bo	oring:	MW-43	Pa	ae 1 of 1
Client Proje Locat Farall	t: Jorgensen Forge Corp. ct: Jorgensen Forge tion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	02/10 02/10 CME Caso David Hollo	0/09 104 0/09 130 75 cade Dri d Gose ow Stem	45 Sa 00 Dri De Illing To To	mpler Type: NA ive Hammer (Ibs.) pth of Water ATD tal Boring Depth (tal Well Depth (ft I	: N (ft bgs): N (ft bgs): 4 bgs): 4	IA IS 0
Depth (feet bgs.) Sample Interval	Lithologic Descript	ion	USGS Graphic	% Recovery	Blow Counts 8/8/8 PID (ppm*)	Sample ID	Sample Analyzed Cons Do	ng/Well truction etails
	Boring not logged or sampled. See boring log for MW-44 for lithology.							Concrete
								Casing
								Bentonite
20								Casing
25								Bentonite
30 -								Screen
40								Sand Pack

Monument Type: Heavy-duty	/ flush mount	Well C	onstruction Inform	hation	Ground	Surface Elevation	(ft): NA
Casing Diameter (inches):	2"	Fliter Pack:	2/12 Sanu		Top of C	asing Elevation (ft): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	I	Boring A	bandonment:	NA
Screened Interval (ft bgs):	30-40	Annular Seal:	Bentonite	Surveyed Lo	ocation:	X: NA	Y: NA

	-	FARALLON consulting	Log of Boring: MW-44								
		975 5th Avenue Northwest Issaquah, Washington 98027									Page 1 of 2
Clic Pro Loc Fai	ent ojec cati rallo	: Jorgensen Forge Corp. ct: Jorgensen Forge ion: Seattle, WA on PN: 394-002	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:			5/09 5/09 75 ade d Go	0840 1115 Drilling se	San Driv Dep Tot Tot	npler Type: 4 ve Hammer (Ibs oth of Water AT al Boring Deptl al Well Depth (1	' Macrocore s.): NA FD (ft bgs): 15 h (ft bgs): 60 (ft bgs): 60	
Lo	gge	ed By: D. Clement	Drilling Method:		Direc	t Pu	sh samp	ling / H	ollow Stem Aug	jer install	
Depth (feet bgs.)	Sample Interval	Lithologic Descript	ion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	oring/Well nstruction Details
0-		Well-graded SAND (100% sand), fine to coarse sar	nd, brown, moist,	SW							
-	V	no odor. Concrete-like material at approximately 8 feet 1 inc	h thick								Concrete
-	A	SILT (60% silt, 40% sand), fine sand, red-brown, m	oist no odor at 10								
		feet, 0.5 inch thick.				100		5.9	MWS-44- 020509-1		Casing
10 -	$\left(\right)$	Well-graded SAND with gravel (85% sand 15% gra	avel) fine to coarse	SW		100		16.0	MWS-44- 020509-2		
-	$\left \right\rangle$	Silty SAND (85% sand, 15% silt), fine to medium sa estimated dense, moist then wet starting at 15 feet, then marine odor.	and, brown, no odor to 15 feet	SM		100		12.3	MWS-44- 020509-3		Bentonite
15 - - -	$\left \right\rangle$					100		9.4	MWS-44- 020509-4		▼
- 20						100		11.8	MWS-44-		Casing
-		SILT (100% silt), black, wet, marine odor.		ML					020509-5		
25 -		Poorly-graded SAND (95% sand, 5% silt), fine to m wet, marine odor, wood fragments.	edium sand, black,	SP		100		11.1	MWS-44- 020509-6		Bentonite
-	/	SILT (100% silt), black to brown, wet, marine odor.		ML		100		13.1	MWS-44- 020509-7		
30 -	\ /	Poorly-graded SAND (95% sand, 5% silt), black, we	et, marine odor.	SP					020003-1		
Mon	ume	nt Type: Heavy-duty flush mount	I Construction I	nforr	natic	n	Gr	ound S	Surface Elevation	on (ft): N/	4

2/12 Sand Filter Pack: Top of Casing Elevation (ft): NA Casing Diameter (inches): 2" Surface Seal: Concrete NA Screen Slot Size (inches): Boring Abandonment: 0.010 Surveyed Location: X: NA Screened Interval (ft bgs): 50-60 Annular Seal: Bentonite Y: NA

		FARALLON consulting 975 5th Avenue Northwest	Log of Boring:MW-44 Page 2 of 2							Page 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Well onstruction Details
-		SILT (100% silt), black to brown, wet, marine odor, wood fragments.	ML							Casing
35 -		Poorly-graded SAND (95% sand, 5% silt), fine to medium sand, brown, wet, marine odor. SILT (100% silt), black, wet, marine odor at 35 feet, 2 inches thick.	SP		100		18.9	MWS-44- 020509-8		
		Poorly-graded SAND (100% sand), fine to medium sand, brown, wet, marine odor.	SP		100		20.9	MWS-44- 020509-9		Bentonite
40 -		Poorly-graded SAND (95% sand, 5% silt), fine to medium sand, black, wet, marine odor.	SP		100		20.3	MWS-44- 020509-10		Casing
45 -					100		24.5	MWS-44- 020509-11		
50 -					100		38.7	MWS-44- 020509-12		Sand pack
55 -					100		35.2	MWS-44- 020509-13		Screen
60 -					100		39.7	MWS-44- 020509-14 MWS-44-		
.					100		0.0	020509-15		

Monument Type: Heavy-duty flush mount Filter Pack: 2/12 Sand Ground Surface Elevation (ft): NA Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Screen Slot Size (inches): 0.010 Surface Seal: Concrete Boring Abandonment: NA Screened Interval (ft bgs): 50-60 Annular Seal: Bentonite Surveyed Location: X: NA Y: NA	Well Construction Information Ground Surface Elevation (ff): NA											
Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Screen Slot Size (inches): 0.010 Surface Seal: Concrete Boring Abandonment: NA Screened Interval (ft bgs): 50-60 Annular Seal: Bentonite Surveyed Location: X: NA	Monument Type: Heavy-duty flush mount	Filter Pack: 2/12 Sand	Ground Sunace Elevation (it).									
Screen Slot Size (inches):0.010Surface Seal:ConcreteBoring Abandonment:NAScreened Interval (ft bgs):50-60Annular Seal:BentoniteSurveyed Location:X:NA	Casing Diameter (inches): 2"		Top of Casing Elevation (ft): NA									
Screened Interval (ft bgs): 50-60 Annular Seal: Bentonite Surveyed Location: X: NA Y: NA	Screen Slot Size (inches): 0.010	Surface Seal: Concrete	Boring Abandonment: NA									
	Screened Interval (ft bgs): 50-60	Annular Seal: Bentonite	Surveyed Location: X: NA Y: NA									

	2	FARALLON consulting	Log of Boring: MW-45									
Clie Pro Loc Far	ent: oject: catio rallon gged	975 5th Avenue Northwest Issaquah, Washington 98027 Jorgensen Forge Corp. Jorgensen Forge n: Seattle, WA PN: 394-002 By: D. Clement	Date/Time Started: 0 Date/Time Completed: 0 Equipment: 0 Drilling Company: 0 Drilling Foreman: 0 Drilling Method: 0			02/05/09 1130 ed: 02/05/09 1220 CME 75 Cascade Drilling David Gose Direct Push samp			Sampler Type: 4' Macrocore Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): 9 Total Boring Depth (ft bgs): 40 Total Well Depth (ft bgs): 40 pling / Hollow Stem Auger install			
Depth (feet bgs.)	Sample Interval	Lithologic Descript	ion	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	oring/Well onstruction Details	
	P c P t	ac trucked out	ravel), fine to sand, brown, moist	SP SP ML SP		100 100 100		0.1 0.1 0.0	MWS-45- 020509-1 MWS-45- 020509-2 FD-020509 MWS-45- 020509-3 MWS-45- 020509-4		Concrete Casing Bentonite Casing	
Monu Casir Scree Scree	ument T ng Diar en Slot ened In	Fype: Heavy-duty flush mount Wer neter (inches): 2" Filter Pacl Size (inches): 0.010 Surface S .terval (ft bgs): 30-40 Annular S	k: 2/12 Sand eal: Concrete eal: Bentonite		Sur	veye	Gro Toj Boi d Locat	ound S o of Ca ring Ab tion:	urface Elevatio sing Elevation pandonment: X: NA	n (ft): 1 (ft): 1 Y: NA	VA VA VA	

		FARALLON consulting 975 5th Avenue Northwest	Lo	og (of	Bor	ing	:MW-45		Page 2 of 2
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Well Construction Details
					100		0.0	MWS-45- 020509-5		Bentonite
30 -		Poorly-graded SAND (100% sand), brown-black, wet, musty odor. Approximately 60% of the sample is woody debris mixed in with the soil.	SP		100		0.0	MWS-45- 020509-6		Screen
35 -					100		0.1	MWS-45- 020509-7		
		Poorly-graded SAND (100% sand), black, wet, no odor.	SP		100		0.1	MWS-45- 020509-8		Sand Pack
40 -	-				100		0.0	MWS-45- 020509-9		
45 -										

Well Construction Information Ground Surface Elevation (ft): NA										
wonument Type: Heavy-duty llush mount	Filter Pack	2/12 Sand	Ground							
Casing Diameter (inches): 2"	There add.	_, 00.10	Top of Ca	asing Elevation (ft):	NA					
Screen Slot Size (inches): 0.010	Surface Seal:	Concrete	Boring A	bandonment:	NA					
Screened Interval (ft bgs): 30-40	Annular Seal:	Bentonite S	urveyed Location:	X : NA Y : N	IA					

	FARALLON consulting 975 5th Avenue Northwest		Lo	g o	fl	Bori	ng:	MW-46		Page 1 of 1
Client: Project: Location: Farallon Pl Logged B	Issaquah, Washington 98027 Jorgensen Forge Corp. Jorgensen Forge Seattle, WA N: 394-002 y: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	02/11 02/11 CME Casc David Hollo	I/09 I/09 75 ade d Go w st	1245 1315 Drilling se em auge	Sar Dri Dej Tot Tot	mpler Type: 18 ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	2000 2000 2005 200	
Depth (feet bgs.) Sample Interval	Lithologic Descript	ion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	oring/Well onstruction Details
0 - 0-5 fe	eet Vac trucked out									Concrete Bentonite
5 Well- mois	graded SAND (100% sand), fine to coarse san t, no odor.	id, brown, loose,	SW		100	3/5/6	0.5	MWS-46- 021109-1		Sand pack
10 Well- mois SILT odor	-graded SAND (100% sand), fine to coarse san t, no odor. (100% silt), grey with red mottling, medium sti from 10.5 to 11 feet.	nd, brown, loose,	SW		100	1/3/5	0.6	MWS-46- 021109-2		✓ Screen
15 Poor wet,	ly-graded SAND (100% sand), fine to medium no odor.	sand, black, loose,	SP		100	5/3/9	0.7	MWS-46- 021109-3		Sand pack
20 Poor medi	ly-graded SAND (100% sand), fine to medium um dense, wet, no odor.	sand, black,	SP		100	8/12/13	0.5	MWS-46- 021109-4		Bentonite
25 Poor medi 30	ly-graded SAND (100% sand), fine to medium um dense, wet, musty organic odor.	sand, black,	SP		100	13/18/15	0.8	MWS-46- 021109-5 FD-021109		

Monument Type: Heavy-duty	y flush mount		ONSTRUCTION INFORM	Ground Ground	Surface Elevation	(ft):	NA	
Casing Diameter (inches):	2	Filter Pack:		Top of C	asing Elevation (f	t):	NA	
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring A	bandonment:		Sand,	bentonite
Screened Interval (ft bgs):	5-20	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA		

		FARALLON consulting 975 5th Avenue Northwest		Lo	g c	of I	Bori	ng:	MW-47		Page 1	of 1
Clic Pro Loc Far	ent ojec cati callo ggo	: Jorgensen Forge Corp. : Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	02/1 ² 02/1 ² CME Caso David Hollo	1/09 1/09 75 ade d Go w st	1400 1530 Drilling se em auge	Sar Dri De Tot Tot	mpler Type: Na ve Hammer (Ibs pth of Water AT al Boring Depth al Well Depth (f	6 .): D (ft b (ft bç t bgs)	300 gs): NS gs): 20 : 20	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/V Construc Details	Vell tion S
0-		Boring not logged or sampled.									Cono	roto
-												ele
-											Bento	nite
5-												
-												
-											Sand	pack
10 -												
-												
-											Scree	n
15 -												
-												
-											Sand	pack
20 -												
-												
-												
25 -												
-												
-												
- 30 -												

Monument Type: Heavy-duty	/ flush mount	Well Co	onstruction Informa	ation Ground	Surface Elevation	(ft): NA
Casing Diameter (inches):	2	Filter Pack:	2/12 Sanu pack	Top of (Casing Elevation (ft	:): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring	Abandonment:	NA
Screened Interval (ft bgs):	5-20	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA

	2	FARALLON consulting		Lo	g c	of I	Bori	ng:	MW-48		
		975 5th Avenue Northwest Issaquah, Washington 98027									Page 1 of 1
Clie Proj Loc Fara	nt: ject: atio allon jged	Jorgensen Forge Corp. Jorgensen Forge n: Seattle, WA PN: 394-002 By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	02/12 02/12 CME Caso David Hollo	2/09 2/09 75 ade d Go w ste	1255 1320 Drilling se em auge	Saı Dri Dej Tot Tot	mpler Type: 18 ve Hammer (Ibs. pth of Water ATI tal Boring Depth tal Well Depth (fi	" Split spo .): D (ft bgs): (ft bgs): t bgs):	on 300 6, 15 27 17
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	oring/Well nstruction Details
	V	ac trucked out									Concrete
-											Bentonite
5-	P	Poorly-graded SAND (100% sand), fine to medium soose, moist, no odor.	sand, brown,	SP		100	2/3/5	0.6	MWS-48- 021209-1		Sand pack ☑
-	\ w	Vell-graded SAND (100% sand), fine to coarse san vet, no odor.	d, black, loose,						0212001		
10 -		Vell-graded SAND (100% sand), fine to coarse san vet, no odor.	d, black, loose,	SW		100	2/3/5	0.4	MWS-48- 021209-2		Screen
-	\s	ILT (100% silt), black, medium stiff, wet, organic o	dor.								
15 -	s	ILT (100% silt), black, medium stiff, saturated at 1	5, no odor/	ML		100	2/5/6	0.6	MWS-48- 021209-3		Sand pack
	/~	Vell-graded SAND (100% sand), fine to coarse san vet, no odor.	d, black, loose,	<u>sw</u>							
20 -	M d	Vell-graded SAND (100% sand), fine to coarse san ense, wet, no odor.	d, black, medium	SW		100	7/8/8	0.4	MWS-48- 021209-4		Bentonite
25 -	× •	Vell-graded SAND (100% sand), fine to coarse san /et, organic odor, wood fragments.	d, black, loose,	SW		100	6/7/8	0.4	MWS-48-		Bentonite
									021209-5 GR-MW48- 021209 @23-27 feet bgs		
									FD-021209		
		Wel	I Construction I	nforn	natio	n					•
Monu	ment] a Dian	I ype: Heavy-duty flush mount Filter Pack	c: 2/12 Sand pack	C C			Gr To	ouna t n of Ca	asing Elevation	(ft): N	η Δ

Casing Diameter (inches): 2 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5-17

 Weil Construction Information
 Ground Surface Elevation (ft):

 Filter Pack:
 2/12 Sand pack
 Top of Casing Elevation (ft):

 Surface Seal:
 Concrete
 Boring Abandonment:

 Annular Seal:
 Bentonite
 Surveyed Location:
 X: NA
 Y: NA

NA

		FARALLON		Lo	g o	of	Bori	ng:	MW-49		
		975 5th Avenue Northwest Issaquah, Washington 98027									Page 1 of 1
Cli	ent	: Jorgensen Forge Corp.	Date/Time Started	:	02/13	3/09 8/00	0818	Sa	mpler Type: 18	" Split sp	200
Pro	ojec	ct: Jorgensen Forge	Equipment:	eleu.	CME	75	0050	De	pth of Water ATI	.). D (ft bgs)): 12
LO	cat		Drilling Company:	:	Casc	ade	Drilling	To	tal Boring Depth	(ft bgs):	27
Fai	ralle	on PN: 394-002	Drilling Foreman:		Davio	d Go	se	To	tal Well Depth (f	t bgs):	17
Lo	gge	ed By: D. Clement	Drining Method.					1			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed O m	Boring/Well onstruction Details
0-		Vac trucked out									
-											Concrete
-	-										Bentonite
5-	\sim	Poorly-graded SAND (95% sand 5% silt) fine to m	edium sand	SP							Sand pack
-	\square	brown, dense, moist, no odor.				100	8/15/16	1.4	MWS-49-		
									021309-1		
10 -	\bigvee	Poorly-graded SAND (95% sand, 5% silt), fine to m	edium sand.	\ SP		22	0/20/22	2.4			Screen
		brown, medium dense, moist, no odor.		<u> </u>	/	33	9/20/22	2.4	021309-2		•
-											
15 -	\mathbf{N}	Poorly-graded SAND (95% sand, 5% silt), fine to me	edium sand,	SP		100	12/18/22	1.2	MWS-49-		Sand pack
-		brown, dense, moist to 12 feet then wet, no odor.	/						021309-3		
-											
20 -	\mathbf{N}	Poorly-graded SAND (95% sand, 5% silt), fine to m	edium sand,	SP							Bentonite
		brown, medium dense, wet, no odor.	/			100	10/12/18	1.1	MWS-49-		
-									021309-4		
-											
25 -	X	Poorly-graded SAND (95% sand, 5% silt), fine to me	edium sand,	SP							Bentonite
		brown, meaium dense, wet, no odor.				100	8/10/10	1.2	MWS-49- 021309-5		
-									GR-MW49-		
30 -									021309 @23-27 feet bgs		
									RB-021309		
		Wel	I Construction I	nforn	natio	n				··· (54)-	
Mon Casi	ume ng D	nt rype: Heavy-duty flush mount biameter (inches): 2 Filter Pack	c: 2/12 Sand pack				Gro Top	o of Ca	asing Elevation	(ft):	NA

0.010

5-17

Screen Slot Size (inches):

Screened Interval (ft bgs):

Surface Seal: Concrete

Annular Seal: Bentonite

Boring Abandonment:

Surveyed Location: X: NA

NA

Y: NA

		FARALLON consulting		Lo	g o	of I	Bori	ng:	MW-50		
		Issaquah, Washington 98027									Page 1 of 1
Cli	ent	Jorgensen Forge Corp.	Date/Time Started	:	02/12	2/09	0935	Sa	mpler Type: 18	3" Split spoo	n
Pro	ojeo	ct: Jorgensen Forge	Date/Time Comple	eted:	02/12 CMF	2/09	1000	Dri De	ve Hammer (lbs pth of Water AT	.): D (ft bas):	300 11
Lo	cat	ion:Seattle, WA	Drilling Company:		Casc	ade	Drilling	То	tal Boring Depth	(ft bgs):	27
Fa	rall	on PN: 394-002	Drilling Foreman:		Davio	d Go	se	То	tal Well Depth (f	t bgs):	27
Lo	gg	ed By: D. Clement	Drilling Method:		Hollo	w st	em auge	er	I		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	ring/Well nstruction Details
0-		Vee trucked out									
											Concrete
5-		Wall graded SAND (05% cand 5% gravel) find to a	parso cand fina	S/W							
	X	gravel, brown, loose, moist, no odor.	oarse sand, nne	300		100	E 10 10	0.4			
						100	5/6/8	0.1	021209-1		Bentonite
	1										
10 -											
	X	Well-graded SAND (95% sand, 5% gravel), fine to c gravel, brown, very loose, moist, no odor,	oarse sand, fine	SW		100	21212	0.7	MW/S-50-		×
		Sandy SILT (60% silt, 40% sand), brown, soft, wet, i	musty organic	_ML_/	/			0.7	021209-2		
		odor.									Casing
15 -	$\mathbf{\nabla}$	Poorly-graded SAND (95% sand, 5% silt), black, loo	ose, wet, no odor.	SP							
	\square					100	2/4/6	0.3	MWS-50-		
									021209-3		
											Rontonito
20 -											Denionite
	X	Poorly-graded SAND (95% sand, 5% silt), brown, lo	ose, wet, no odor.	SP							
						100	3/6/9	0.2	MWS-50- 021209-4		
25											Screen
25	X	Poorly-graded SAND (95% sand, 5% silt), brown, lo	ose, wet, no odor.	SP							
						100	3/3/4	0.2	MWS-50-		Sand pack
									021209-5		
	-										
30 -	1	1			1						1
		14/-1									

Monument Type: Heavy-duty	/ flush mount	Well Co	onstruction Informa	ation Ground	Surface Elevation	(ft): NA
Casing Diameter (inches):	2	Filter Pack:	2/12 Sanu pack	Top of C	asing Elevation (ft	:): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring A	bandonment:	NA
Screened Interval (ft bgs):	23-27	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA

		FARALLON		Lo	g o	of I	Bori	ng:	MW-51		
		975 5th Avenue Northwest Issaquah, Washington 98027									Page 1 of 1
Cli	ent	: Jorgensen Forge Corp.	Date/Time Started:	:	02/12	2/09	1118	Sa	mpler Type: 18	3" Split s	poon
Pro	oje	ct: Jorgensen Forge	Date/Time Complet	ted:	02/12	2/09	1140	Dri	ve Hammer (Ibs	.): D (ft bac	300
Lo	cat	ion: Seattle, WA	Equipment: Drilling Company:			75 ade	Drilling	To	tal Boring Depth	(ft bas)	;; 3.5, 10.5
Fa	rall	on PN: 394-002	Drilling Foreman:		David	d Go	se	То	tal Well Depth (f	t bgs):	27
Lo	gg	ed By: D. Clement	Drilling Method:		Hollo	w st	em auge	er			
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/Well Construction Details
, 0-											
	-	Vac trucked out									Concrete
5-											
	X	Well-graded SAND (100% sand), fine to coarse sand moist then wet at 5.5, no odor.	, brown, loose,	SW		100	3/3/7	1.2	MWS-51-		
	-								021209-1		Bentonite
	-										
	-										
10 -	\sim	Well-graded SAND (100% sand) fine to coarse sand	black verv	SW		100	4.14.10		N/N/O 54		.
		loose, moist then wet at 5.5, no odor.	, black, very			100	1/1/2	1.1	021209-2		
	1	SILT (100% silt), black, soft, saturated at 10.5, musty	organic odor.								
	1										Casing
15 -											
	X	Poorly-graded SAND (100% sand), fine to medium sa	and, black, very	SP							
						100	1/2/3	0.9	MWS-51-		
	-								021209-3		
											Bentonite
20 -		Dearly graded SAND (100% cand) find to medium a	and block loops	0							
	Å	wet, no odor.	and, black, loose,	35		100	0/5/0		N/N/O 54		
	1					100	2/5/6	0.2	021209-4		
	1										
25	1										Screen
20-	X	Poorly-graded SAND (100% sand), fine to medium sa	and, black, loose,	SP							
	\square	wer, no odor.				100	3/3/4	0.5	MWS-51-		Sand pack
	-								021209-5		
	-										
30 -											
		Wall	0								

Monument Type: Heavy-duty	/ flush mount	Well Co	onstruction Informa	ation Ground	Surface Elevation	n (ft): NA
Casing Diameter (inches):	2	Filter Pack:	2/12 Sanu pack	Top of (Casing Elevation (ft): NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring	Abandonment:	NA
Screened Interval (ft bgs):	23-27	Annular Seal:	Bentonite	Surveyed Location:	X: NA	Y: NA

		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of I	Bori	ng:	MW-52		Dave 4 of 4
Clia Pro Loc Fai	ent ojec cat rallo ggo	 Issaquah, Washington 98027 : Jorgensen Forge Corp. : Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement 	Date/Time Started:ODate/Time Completed:OEquipment:ODrilling Company:ODrilling Foreman:DDrilling Method:B			2/09 2/09 75 ade d Go	0750 0825 Drilling se em auge	Sa Dri De To To	300 5.5,15.5 27 27		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	oring/Well nstruction Details
0-	-	Vac trucked out									Concrete
5		Well-graded SAND with gravel (60% sand, 40% gra sand, fine to coarse gravel, brown, medium dense, 5.5, no odor.	vel), fine to coarse moist then wet at	SW		66	6/10/18	1.1	MWS-52- 021209-1		∽ Bentonite
		Well-graded SAND (100% sand), fine to medium, be wet, no odor.	rown, very loose,	SW		100	1/2/3	1.0	MWS-52- 021209-2		Casing
		Well-graded SAND (100% sand), fine to medium, bu wet, no odor. Sandy SILT (60% silt, 40% sand), fine sand, brown, 15.5, no odor.	rown, very loose, soft, saturated at	SW ML		100	2/2/2	1.4	MWS-52- 021209-3		Bentonite
		Well-graded SAND (100% sand), fine to coarse san loose, wet, no odor. Poorly-graded SAND (100% sand), fine to medium loose, wet, no odor.	d, brown, very	SW		100	2/2/2	1.5	MWS-52- 021209-4		Screen
		Poorly-graded SAND (100% sand), fine to medium wet, no odor.	sand, black, loose,	SP		100	2/3/4	2.1	MWS-52- 021209-5		Sand pack
		Wel	Construction I	nform	natio	n					

Monument Type: Heavy-duty	r flush mount	Well Co	onstruction Informa	ation Ground S	Surface Elevation (f	t): NA
Casing Diameter (inches):	2	Filter Pack:	Z/12 Sanu pack	Top of C	asing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring A	bandonment:	NA
Screened Interval (ft bgs):	23-27	Annular Seal:	Bentonite	Surveyed Location:	X: NA Y	: NA

SEACOR

BORING LOG EX-1

BORING: EX-1 PAGE 1 of 1

00075-013-01

- - -----

.

				MONITORING W	ELL	PL2-JF01C	
-				PROJECT Boeing - Pla	nt 2		
VAL	STUCE	N.		DATE COMPLETED _ 9. Ma	y 2001		
WANAGERS	DESIGNERS CONSUL	TANTS		DRILLING METHOD _ 8" 0	D HSA	- GeoTech Explorations	
E	>		CO	SAMPLING METHOD 2" C	D Splil	Spron, 1401b Hammer	
da)	oot over		cati	TOP OF CASING	_		
ging	r Fo	501	ssifue	GROUND SURFACE ELEV	_		
in all	s Pe	hic	Class	LOGGED BY D. Dinkuhn	- WES	TON	
D H	elow.	C ab	130	Lithological Bescription		well Construction	0
	1 1	1.1.1	GW I	An an and the local and the lo	o c	Flish mounted steel well	U
	E 3	1.		Sondy BRAVEL, (BH), proving action of the period trans orthoge	3	Concrete surface seal	-
		1	SP	SAND. (SP), greyish brown, the to inedian granies, trace peoples, loose to medium dense, damp to wet, silt interpeds, (alluvium)	1		5
	=				3 3		
		1			100		10
	1 7	1	1 4		3 3	▼5/17/0	15
		ŧ.				*u/// 0	11
	-	1	[]		N 64		
n.	-						21
)							
	-						2
)	E	1					
			11			Rentonite orout web seal	3
)	1 1	1				a mente greet ter ter ter	2
	E		1 1				
		1	1 1		1.1.1		
	1 4		1.1		Sec.		
0							4
		Ĩ	11		國國	6	
5	1	1					1
	E		1 1		Ter.		
3			1 1		1 · 1	2" well casing schedule 40 PVC	t J
2	1 3	ITT	ML	Sandy SILT, (ML), brown, 80% sur, 20% fine sand, wet, (allovidud	國國		
5		내는					1
0	1	H					
0 10	79						ł
0 40		4	58	SANC (LW) grey, the to medium graded, set, no businer sheen, (abuvium)			
E an	1 7		11		國國		ł
D 00	04	3		244	and and		
					2 8		
() 0,0	51	\leq		SAA	11 1	Filter pace	
-	1 =					и илд/20 БМС зала 	
5 0.0	33	DIT	T SM	Silry SAND, ISM, grey, line sand, wet no odor of sheets. (alloyum)		US AVE 0.01" SOLICE DIEDSES WELLSDIERD	
	1 3		1		j lel	- 2" thiessed endesp	
0.0	11	silii	ML	Sandy SILT (Mut, grey, line sand, wer, no soor or sheen, (alloyion)	i		
	1			BOR @ BLS teer bijs			
R.				Notes: Bie = Botrop of tore			
				PAA = pame as above the providence of approximation and study set.			
	1 1			The solid Sample's were numerical for interfaces and the Tribelogy for 0 to 60 feet taken from PL2 JFUIR log.		31 7	7
)()						51	ALC: 1
)(`)						- (L.1.7.)	2

Na Logo

Job No. 20136-002-005-

B-3

1

B - 6

B-7

..

2

.

2

٠

B - 10

ł

ì

B - 12

3

B - 13

B - 14

14.07

B - 16

, **,**

SB - 1

Fill; 10° crushed rock, slag, gravel, assorted debris.

Sity, Clayey Sand; dark grey, well sorted, fine to medium grained, firm, slightly molst, minor iron staining.

Sand; grey, medium to coarse grained, well sorted, subangular, moist, minor gravel.

Boring terminated at 31/2' on 3/1/90.

Job No. 20136-002-005-

Dames & Moore

SB - 2

Fill; 10° crushed rock, slag, assorted debris.

Fili; grey brown, white, black, orange, chrushed rocks, slag, asphalt?, scattered white coating on particles - possibly ash or acid residue, dry, very dense, minor coarse sand and gravel, no odor.

Boring terminated at 31/4' on 3/1/90.

NOTES: Borehole was backfilled with bentonite chips to one foot below grade then capped with concrete. No groundwater was observed during drilling. Drilled by GeoBoring, Inc. D&M Supervision by D. Watterson A disturbed composite sample was collected for laboratory analysis.

Job No. 20136-002-005

Dames & Moore.

BORING LOG

BORING: B-1 PAGE 1 of 1

۰.

PRO SUI STA SAI SUI CO	OJECT <u>J</u> RFACE EL ART <u>12:5</u> MPLER <u>BCONTRT</u> MMENTS	orgense EVA 0 12/1 T. Slott FACTO	en Steel FION 2/90 a OR AND	LOCATION CASING TOP FINISH 2:30 MONITORING DEVICE_F EQUIPMENT Environmental Wes	5' N of 1 ELEV 12/12/90 INU Pho at - Mobi	N corner of oil water separator ATION) otoionization Detector ile B-61
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
8 - 22 - 42 6 - 6 - 14				Asphalt grey silty sand with chunks of steel slag road base - very dense grey brown silty fine to medium Sand moist, medium, dense/ dense interbedded with a 6" grey sandy silt layer at 3' becomes medium dense@ 5'	GM SM/ ML	Bentonite
2 - 3 - 1 3 - 1 - 4 3 - 10 - 11				black silty fine to medium, Sand with decaying organic material (wood) hydrocarbon odor & sheen moist, medium dense becomes a sandy silt with same Groundwater @ 11.5' dark grey silty fine to coarse Sand saturated, medium dense	SM/ ML SM	hole plug
			15 	end of boring		
			 25			

BORING LOG

BORING: B-2 PAGE 1 of 1

PRO SU ST SA SU CO	OJECT <u>J</u> RFACE EI ART <u>2:30</u> MPLER <u>BCONTRT</u> MMENTS	LEVA D T. Slott	en Steel TION 12/12/90 12 OR AND	LOCATION CASING TOP FINISH MONITORING DEVICE_H EQUIPMENTEnvironmental West	12ft wes ELEV 12/12/ NU Pho Mobile	st of oil/H20 separator ATION 90 stoionization Detector B-61
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			0 	Asphalt grey silty Sand with angular pieces of steel slag brown silty fine to medium Sand maint medium	GM SM	
3 - 10 - 15				grey / brown silty fine to medium Sand moist, medium, dense	SM	Bentonite hole plug
1 - 2 - 8 12 - 14 - 20				grey sandy Silt with decaying organics (roots) moist, medium, dense light hydrocarbon appearance Groundwater at 11.5' dark grey silty fine to coarse Sand, saturated, dense end of boring	ML. SM	

BORING LOG

BORING: <u>B-3</u> PAGE <u>1</u> of <u>1</u>

CO	MMENTS		JR AND	EQUIPMENT Environmental West		÷ B-61
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
			0	Asphalt brown silty Sand with angular (1-2") Gravel moist,dense	GM	
6 - 14 - 13				brown silty fine to medium Sand. moist, medium, dense with an interbed of sandy Silt at 4'	SM/ ML	
3-6-9				grey silty fine to medium Sand moist, medium, dense grey sandy Silt moist, medium, dense,	ѕм	Bentor hole plug
2-4-6			10	with decaying organics wood, organic odor (sweet) Groundwater @ 10.5' grey silty fine to medium Sand moist medium dense	MI.	
				organic odor (sweet) end of boring	SM	

BORING LOG

BORING:<u>B-4</u> PAGE<u>1</u>of<u>1</u>

PR SU ST SA SU CO	OJECT RFACE EI ART MPLER BCONTRT MMENTS	Ja LEVA 9:30 T.Slottz FACTO	TION	Steel LOCATION CASING TOP FINISH MONITORING DEVICE_H EQUIPMENTEnvironmental V	5' N. of ELEV INU Pha West - M	f cutting oil holding tank ATION otoionization Detector loble B- 61
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
-				Asphalt grey brown silty fine to medium Sand, with angular (1-2") Gravel road base, moist, dense	GM	
				grey brown silty fine to medium Sand, moist medium dense	SM	
6-16-17				brown sandy Silt lense at 5.5' moist, medium dense grey brown silty fine to medium Sand moist medium	ML.	Bentonite
4-6-4				dense	SM	plug
2-2-4				grey sandy clayey Silt, very plastic, moist, medium dense	ML.	
				at 11 feet saturated, medium dense Groundwater at 11 feet	SM	
-				end of boring		
-						
			20 			
-						

BORING LOG

PRO SUI STA SAI SUI CO	OJECT RFACE EI ART MPLER BCONTRI MMENTS	Ja LEVA 10:30 T.Slottz FACTO	DR AND	teel LOCATION CASING TOP FINISH? FINISH? MONITORING DEVICE EQUIPMENT _Environmental West?? feet North and 2 feet east - same, moved 2	7" E of ELEVA INU Pho Moble 6 feet furt	cutting oil holding tank ATION otoionization Detector i1 her North - same
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
6"-6"-6"	Sa	Re	$\begin{array}{c c} a \\ s \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Asphalt grey brown silty fine to medium Sand with angular Gravel moist dense brown silty fine to medium Sand, moist, medium dense bu ried concrete @ 5' (see comments) (End of Boring)	⊃ Ū GM SM	Bentonite hole plug

HAND AUGER BORING LOGS

Boring HA-1A 1/24/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-0.5	-	Asphalt and gravel.
	0.5-4.9	SP	Dark brown SAND, medium grained, loose, moist.
	4.9-7.0	ML	Grey clayey SILT, medium stiff, moist, petroleum odor.
	7.0-8.5	SP	Grey SAND, medium grained, loose, wet, petroleum sheen on water surface. GROUNDWATER at 8.0 feet.

Boring HA-1-B 1/24/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
111111111			
	0-0.5	(Asphalt and gravel.
	0.5-6.0	SP	Dark brown SAND, medium grained, stiff, loose, moist.
	6.0-6.5	ML	Grey clayey SILT, medium stiff, moist.
HA-1-B			
@ 7.2'	6.5-8.0	SP	Grey SAND, medium grained, loose, moist to wet GROUNDWATER at 8.0 feet

USCS = Unified Soil Classification System

Boring HA-2 1/24/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-1.2	-	Asphalt and gravel
	1.2-3.6	SM	Grey brown silty SAND, fine to medium grained, loose, moist, oxide staining.
	3.6-5.6	SP	Dark brown SAND, medium grained, loose, moist.
	5.6-6.7	ML	Grey clayey SILT, medium stiff, moist, organic odor.
HA-2 @ 9.5'	6.7-10	SM	Grey silty SAND, fine to medium grained, loose, moist, petroleum odor and sheen on water surface. GROUNDWATER at 9.5 feet.

Boring HA-3 1/24/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-0.5		Asphalt and gravel.
	0.5-4.6	SP	Brown SAND, medium grained, loose, moist.
	4.6-5.8	ML	Grey clayey SILT, medium stiff, moist.
HA-3			
@ 10.3'	5.8-10.5	SP	Brown SAND, medium grained, loose, moist, petroleum sheen on water surface GROUNDWATER at 10.3 feet

USCS = Unified Soil Classification System

Boring HA-4 1/24/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-0.5		Asphalt and gravel.
	0.5-8.6	SP	Grey brown SAND, medium grained, loose moist, petroleum odor.
HA-4		10	
@ 9.2	8.6-9.5	ML	GROUNDWATER at 9.2 feet.

Boring HA-5 2/13/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-0.5		Gravel
	0.5-5	SP	Brown SAND, medium grained loose, moist.
	5-6	ML	Grey clayey SILT, medium stiff, moist.
HA-1 @ 9.5	6-10	SP	Brown SAND, medium grained, loose, moist GROUNDWATER at 9.5 feet.

Boring HA-6 2/13/91

Sample I.D.	Depth (Feet)	USCS Symbol	Description
	0-0.5		GRAVEL
	0.5-5	SP	Dark brown SAND, medium grained, loose, moist.
	5-6	ML	Grey clayey SILT, medium stiff, loose, moist
HA-2 @ 8'	6-8.5	SP	Brown SAND, medium grained, loose, moist to wet.

USCS = Unified Soil Classification System

.

(

BORING LOG

•

BORING: SB-9 PAGE 1 of 1 SB-9

WEST OF ABOVE GROUND PROJECT _EARLE M. JORGENSEN LOCATIONTANK FARM SURFACE ELEVATION CASING TOP ELEVATIONNA START 10/10/91; 1305 FINISH SAMPLER P. SCHMIDT MONITORING DEVICE SUBCONTRACTOR AND EQUIPMENT McGARRETT DRILLING, GP-1000R, 8" HSA COMMENTS _AC DRIVEWAY									
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details			
			0 	Asphaltic Concrete / Gravel Dark Brown to Slight Golden Silty SAND damp, lacks organics, loose, no distinctive odor graded blackish brown	SM	Advanced hole to 5 feet with hand auger.			
1 - 18" No Recovery 3-2-4 2-1-1				Gray CLAY damp to moist, organic rich, petroleum-like odor Dark Brown to Black SAND moist, clean, medium-grained, heavy sheen, strong petroleum-like odor, heavy black staining (oil-like)	CL SP	Boring backfilled with bentonite to 1 feet and capped with concrete			
1-1-1				Dark Gray Silty CLAY moist, slight organics, soft, no petroleum odor wet sandy clay at 10.9 - 11.0 feet Drilling terminated at 9.5 feet. Bottom hole at 11 feet.	CL	to grade.			
			25			-			

00075-009-01

BORING LOG

BORING: 4-SB-1 PAGE 1 of 1

¥.

BORING LOG

BORING: 4-SB-2 PAGE 1 of 1

PRO SUI ST/ SAI SUI CO	DJECT <u>I</u> RFACE EI ART <u>MPLER SI</u> BCONTRA MMENTS	FORGE LEVA 8/27/92 VILLE ACTO SO SA	FACILITY TION	<u>Y AREA 4</u> <u>CASING TOP</u> <u>FINISH</u> <u>8/27</u> <u>HWAITEMONITORING DEVICE</u> <u>EQUIPMENT</u> <u>CASCADE DRILLING IN</u> <u>ES CONTINUOUSLY COLLECTED USIN</u> <u>NED WITH 2.5"X6" BRASS SLEEVES</u>	8531 E. Seattle. ELEV. 7/92_15 PID NC.: 8" G A 3"	Marginal Way S. Washington ATION 45 O.D. HSA O.D. SPLIT SPOON
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
	Hand Auger Post-hole		0 	Asphaltic Concrete SAND Dark Gray SILT	SW	Cement
11-8-8 9-11-13		0 0	มปปิปปปปป	Brown Arkosic SAND, very fine to coarse grained, no sill/gravel, very well graded, dry dark gray, moist	sw	Hole Plug Bentonite Pellets
				Dark Gray Clayey SILT, slightly plastic, damp Boring terminated at 9.5 feet. Groundwater not encountered	ML	

6

00075-016-01

BORING LOG

BORING: <u>4-SB-3</u> PAGE <u>1</u> of <u>1</u>

PRO SUI STA SAI SUI CO	DJECT RFACE EI ART MPLER <u>SI</u> BCONTR/ MMENTS	FORGE LEVA 8/27/9 VILLE ACTO SO SPO	FACILITY TION 22 1550 POSTLET R AND F IL SAMPL DON SAM	LOCATION CASING TOP FINISH WAITEMONITORING DEVICE QUIPMENT CASCADE DRILLING IN ES CONTINUOUSLY COLLECTED USIN PLER LINED WITH 2.5"X6" BRASS SLEE	8531 Ea Seattle, ELEV 27/92 ID NC.: 8" G A 3" EVES.	ATION ATIONATIONATIONATION ATION ATI
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
-			- 0	Asphaltic Concrete		
	Hand Auger		E	FILL		Cement
	Post-hole to 5 feet		E I	Dark Gray SILT	ML	
9-11-12 9-10-11 9-11-13		0 0 0	มมโปปปป	Brown Arkosic SAND, very fien to coarse grained, no silt/gravel, very well graded, dry gray, moist moist to wet	sw	Hole Plug Bentonite Pellets
7-9-11		0.2		Dark Gray Clayey SILT, slightly plastic, damp to wet Backfill hole @ 1040 Boring terminated at 11 feet. Groundwater not encountered	ML	

BORING LOG

BORING: <u>4-SB-4</u> PAGE <u>1</u> of <u>1</u>

Penetration Results	Depth ,feet	SA (udd)	MPLER LI	NED WITH 2.5"X6" BRASS SLEEVES.	Soil ation	Boring Abandonment/
Blows 6"-6"-6"	Sample Interval	PIL	Depth B Surface	Lithologic Description	Unified Classific	Well Construction Details
	Hand Auger Post-hole to 5 feet			Asphaltic Concrete Dark Gray SAND, very fine grained, poorly graded Dark Gray SILT, some clay	SP ML	Cement
7-8-9 7-7-8 12-12-8		11.7 5.3 3.9	เป็นไปปน	Brown Arkosic SAND, Very fine to coarse grained, no silt/gravel, very well graded, dry gray with organics, wet	SW	Bentonite Pellets
6-6-8		3.5		Dark Gray Clayey SILT, slightly plastic, wet Boring terminated at 11 feet. Groundwater not encountered	ML	

	MAJOR I	DIVISIONS		TYPICAL NAMES		
	GRAVELS	CIFAN CRAVELS WITH	G₩	WELL-GRADED GRAVELS, GRAVEL-SAND WIXTURES		
S. SIEVE	MORE THAN HALF	LITTLE OR NO FINES	GP	POORLY GRADED GRAVELS, GRAVEL-SAND MOCTURES		
SOII No. 20	IS LARGER THAN No. 4 SIEVE SIZE	COAVELS WITH OVER	GM	SILTY GRAVELS, POORLY GRADED GRAVEL-SAND-SILT MIXTURES		
LINED		127 FINES	GC	CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY MIXTURES		
GRA IS LARG	SANDS	CLEAN SANDS WITH	SW	VEIL-GRADED SANDS, GRAVELLY SANDS		
COARSE- wore than half	MORE THAN HALF COARSE FRACTION	LITTLE OR NO FINES	SP	POORLY GRADED SANDS, GRAVELLY SANDS		
	No. 4 SIEVE SIZE	SANDS WITH OVER	SM	SILTY SANDS, POORLY GRADED SAND-SILT WIXTURES		
		127 FINES	SC	CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURE		
<i>m</i>			ML	INORGANIC SILTS AND VERY FINE SANDS, Rock Flour, silty or clayey fine sands, or clayey silts with slight placticity		
SOILS	SILTS LIQUID LI	AND CLAYS	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clay		
NED LF 15 SI			OL	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLACTICITY		
-GRAI THAN HU			MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS		
PINE-	SILTS LIQUID LIMIT	AND CLAYS GREATER THAN 50%	CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS		
н			OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGINIC SILTS		
	HIGHLY ORG	ANIC SOILS	РТ	PEAT AND OTHER HIGHLY ORGANIC SOILS		
		H	<u>(EY TO BO</u>	RING LOG		
E	🛛 = Un	disturbed soil	sample su	ibmited for laboratory analys		
	= Cla	assification sam	ple			
E	= No	sample recove	ery			
BL	OWS = Bloom Bloo	ows required to tervals with a 2	drive sa 140 pound	mpler 18 inches in 6 inch 1 hammer falling 30 inches.		
	PID = Ph Ca	otoionization d librated using	etector ro a 102ppm	eading (10.2 electron-volt lan 1 isobutylene standard gas).		
		DWN RB	SOIL	CLASSIFICATION CHART AND KEY		

DISK:0032 DWG:GEOLOGY2

BORING LOG

BORING: IB-1 PAGE 1_of 1_

PR SU ST SA SU CO	8531 E. MARGINAL WAY S. PROJECTFORGE FACILITY AREA 1LOCATION _SEATTLE. WASHINGTON SURFACE ELEVATION CASING TOP ELEVATION START8-29-92 1500 FINISH8-29-92 1600 SAMPLERSIVILLE MONITORING DEVICEMICROTIP PID SUBCONTRACTOR AND EQUIPMENT COMMENTSSOIL SAMPLES CONTINOUSLY COLLECTED USING A HAND AUGER							
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details		
		4.2 11.9 14.9		CONCRETE Light Gray arkosic SAND, no fines or gravel subrounded, very fine to coarse-grained, well graded, medium dense to loose, dry, odor at 1 foot Boring terminated at 2.5 feet due to refusal Groundwater not encountered	SW	- Cement grout Hole Plug Bentonite Pellets		

BORING LOG

BORING:<u>IB-2</u> PAGE<u>1</u>of<u>1</u>

8531 E. MARGINAL WAY S. PROJECTFORGE FACILITY AREA 1 LOCATION SEATTLE. WASHINGTON SURFACE ELEVATION CASING TOP ELEVATION START 8-29-92 1604 FINISH 8-29-92 1727 SAMPLER MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENT N/A COMMENTS SOIL SAMPLES CONTINOUSLY COLLECTED USING A HAND AUGER								
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details		
		0 15.9 11.4 0 0 6.5 4.6 3.6 5.1 0 0 2.1 0 2.1 0 2.8 9.4		CONCRETE Light Gray arkosic SAND, no fines/gravel, subrounded, very fine to coarse-grained, very well graded, medium dense to loose, dry Dark Gray SAND, some silt, no gravel, very fine-grained, poorly graded, medium dense to dense, moist Light Gray arkosic SAND, no fines/gravel, subrounded, very well graded, very fine to coarse-grained, medium dense to loose, dry with small gravel with organics Boring Terminated at 9.5 feet Groundwater not encountered	SW SP SW	- Cement grou Hole Plug Pellets		

BORING LOG

BORING: IB-3 PAGE 1 of 1

PR SU ST SA SU CO	OJECTE RFACE EI ART8 MPLER BCONTR/ MMENTS	ORGE LEVA <u>-29-92</u> SIVILI ACTO _SOIL	FACILITY TION 1750 .E R AND F .SAMPLE	AREA 1 LOCATION CASING TOP I FINISH 8 MONITORING DEVICE BQUIPMENT N/A S CONTINOUSLY COLLECTED USING A	8531 E. SEATT ELEV -29-92 MICRO	MARGINAL WAY S. LE WASHINGTON ATION 1910 TIP PID D AUGER
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
		313 225 603 38.4 24.6 8.8 27.1 33.0 26.3 29.6 39.9 19.1 6.7 7.4 6.3 5.9 1.6		CONCRETE Light Gray arkosic SAND, no fines/gravel subrounded, very fine to coarse-grained, very well graded, loose, dry, odor Dark Gray SAND, some silt, no gravel, very fine-grained, poorly sorted, medium dense to dense, moist Light Gray arkosic SAND, no fines/gravel subrounded, very fine to coarse-grained, very well graded, loose, moist with gravel with organics Boring Terminated at 9.5 feet Groundwater not encountered	SW SP SW	-Cement grout Hole Plug Pellets
1	L	I	1 23		1	1

00075-018-01

۶

BORING LOG

8531 E. MARGINAL WAY S. PROJECTFORGE FACILITY AREA 1 LOCATIONSEATTLE_WASHINGTON SURFACE ELEVATION CASING TOP ELEVATION START8-28-92 1530 FINISH8-28-92 1602 SAMPLER MONITORING DEVICE SUBCONTRACTOR AND EQUIPMENTCASCADE DRILLING INC.: 8" O.D. HSA COMMENTS SOIL SAMPLES CONTINOUSLY COLLECTED USING A 3"O.D. SPLIT SPOON SAMPLEJ LINED WITH 2.5" X 6" BRASS SLEEVES									
Penetration Results Blows 6"-6"-6"	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details				
12/13/15 7/10/11 15/15/12 9/12/15 9/10/12 5/8/8	0.6 0 22 11 1.2		ASPHALTIC CONCRETE BASAL GRAVEL Brown arkosic SAND, no fines/gravel, subrounded, very fine to coarse-grained very well graded, medium dense, dry Gray with petroleum-like odor, moist Dark Gray SAND, very fine-grained, poorly graded, medium dense, moist, presence of oil oil coating on brass sleeves with wood particles Boring terminated at 10 feet Groundwater not encountered	SW	- Cement grout Hole Plug Bentonite Pellets				

BORING LOG

BORING: <u>OB-3</u> PAGE <u>1</u> of <u>1</u>

PR SU ST SA SU CO	8531 E. MARGINAL WAY S. PROJECTFORGE FACILITY AREA 1 LOCATION <u>SEATTLE, WASHINGTON</u> SURFACE ELEVATION CASING TOP ELEVATION START8-31-92 1515 FINISH8-31-92 1550 SAMPLER <u>SIVILLE/POSTLETHWAITE MONITORING DEVICEMICROTIP PID</u> SUBCONTRACTOR AND EQUIPMENT <u>CASCADE DRILLING INC.; 8" O.D. HSA</u> COMMENTS <u>SOIL SAMPLE CONTINUOUSLY COLLECTED USING A 3" O.D. SPLIT SPOON SAMPLER</u> LINED WITH 2.5" X 6" BRASS SLEEVES									
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details				
15/18/22 15/16/18		0 0.1 0	0 	ASPHALTIC CONCRETE BASAL GRAVEL Brown, arkosic SAND very fine to coarse-grained, very well graded, dense, dry	SW	Hole Plug Bentonite Pellets				
5/8/13 7/8/9 6/9/12		0 0 0	5 5 	Gray SAND very fine-grained, poorly graded, medium dense, dry Brown, arkosic SAND, subrounded, very fine to coarse-grained, very well graded, medium dense, dry to moist	SP SW					
15/18/20		0		Dark gray SAND, very Ime-gramed, poorly graded, dense, moist to wet Boring terminated at 10 feet Groundwater not encountered	SP					

BORING LOG

BORING: <u>OB-4</u> PAGE <u>1</u> of <u>1</u>

BORING LOG

BORING: <u>OB-5</u> PAGE <u>1</u> of <u>1</u>

PROJECTFORGE FACILITY AREA 1 LOCATIONSEATTLE. WASHIGNTON SURFACE ELEVATION CASING TOP ELEVATION START8-31-92 1332 FINISH8-31-92 1415 SAMPLER SIVILLE/POSTLETHWAITE MONITORING DEVICE MICROTIP PID SUBCONTRACTOR AND EQUIPMENTCASCADE DRILLING INC.; 8" O.D. HSA COMMENTS SOIL SAMPLES CONTINOUSLY COLLECTED USING A 8" O.D. SPLIT SPOOON SAMPLEI LINED WITH 2.5" X 6" BRASS SLEEVES								
Penetration Results Blows 6"-6"-6" S	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details			
2/2/1 4/6/12 12/13/16 22/26/28 17/23/27 15/27/23	0 0 1.3 5.0 4.1 2.6 2.5 1.0 5.8 2.9 0.7		ASPALHTIC CONCRETE BASAL GRAVEL Brown arkosic SAND, subrounded, very fine to coarse-grained, very well graded, very loose to medium dense, dry Dark gray sandy SILT with organics, medium dense, dry Gray arkosic SAND, subrounded, very fine to coarse-grained, very well graded, medium dense, moist with small gravel presence of oil Dark gray SAND, very fine-grained, poorly graded, wet, presence of oil Boring terminated at 11.5 feet Groundwater encountered at approximately 11.5 feet	SW ML SW	-Cement grout Hole Plug Bentonite Pellets			

BORING LOG

BORING: <u>OB-6</u> PAGE <u>1</u> of <u>1</u>

PR SU ST SA SU CO	OJECTF RFACE EI ART { MPLER SI BCONTRA MMENTS	ORGE LEVA 3-31-92 VILLE/ ACTO SOIL LINE	FACILITY TION	AREA 1 LOCATION _S CASING TOP I FINISH HWAITE MONITORING DEVICE _M EQUIPMENT _CASCADE DRILLING IN S CONTINUOUSLY COLLECTED USING .5" X 6" BRASS SLEEVES	531 E. EATTI ELEV. 31-92 <u>11CRO</u> <u>1C.; 8"</u> A 3" O.	MARGINAL WAY S. <u>LE. WASHINGTON</u> ATION 1332 TIP PID O.D. HSA D. SPLIT SPOON SAMPLER
Penetration Results Blows 6"-6"-6"	Sample Depth Interval,feet	PID Reading (ppm)	Depth Below Surface, feet	Lithologic Description	Unified Soil Classification	Boring Abandonment/ Well Construction Details
38/47/43 18/20/23	~~~~	0		ASPHALTIC CONCRETE Brown arkosic SAND, subrounded, very fine to coarse-grained, very well graded, very dense to dense, dry	SW	Hole Plug Bentonite
21/28/32 22/39/25		0		Gray SAND, some silt, very fine-grained poorly sorted, very dense, dry Brown arkosic SAND, subrounded, very fine to coarse-grained, very well graded, very dense, moist	SP SW	Pellets
8/10/11 8/11/13		0	10	with small gravel wet Dark gray SAND, very fine-grained, poorly graded, wet Boring terminated at 10 feet	SP	
				Groundwater not encountered		
			20			

00075-018-01

В4

CACILITY OCATION START OGGED SUBCON COMMEN	LITY JORGENSEN FORGE FACILITY - AREA 2 JOB # 00075-025-01 BORIN ITION 8531 E. MARGINAL WAY, TUKWILA. WA. SURFACE ELEVATION IT 8/5/96 0800 FINISH 8/5/96 0900 CASING TOP ELEVATION GED BY H. RUIZ MONITORING DEVICE MICROTIP MP-1000 PID CONTRACTOR AND EQUIPMENT HOLT DRILLING, INC.; LIMITED ACCESS GEOPROBE RIG MENTS SAMPLED EVERY 1.6 FEET USING A 2" O.D. X 1.6" LONG SPLIT SPOON SAMPLER							ORING/WELL <u>SB-1</u> ON MG MER	
NETRATION RESULTS BLOWS 5'/6'/6	Somple Depth Interval leet	PID	Sheen	un Surface, feet	Lithologic Description	Inited Sol	Classification	- 1 - 1 Depth Below - Surface, feel	Boring Abandonment
	AND	5.8 6.5 6.6 7.2 23.3 134 65.3 8.2	25 12 12 12 12 12 12 12 12 12 12 12 12 12	0 5 ¥ 10 15 20	Aschaffic concrete Send, dark project hydrocarbon-die edor all, loans, darry Soluralus, slight hydrocarbon-die edor SR, Mack (2.5Y 2.5/1), compact, antursted, strong hydrocarbon-die edor Sand, Mack (2.5Y 2.5/1), compact, antursted, strong hydrocarbon-die edor Sand, Mack (2.5Y 2.5/1), masky maskum grained sond, some all, lease, soluraled Boring terminated at 12 test, sompler advanced to 13.5 feet. Groundwater snoountered at approximately 9 feet during drilling Boring abandoned on 8/3/96.	21		5 10 15 20	
Field Derm Press No Som	A Screen	n/Litho Somple Somple 7	Mogic	XX X X X X	Groundwoter Level et Time of Drilling Static Groundwater Level Sheen Defected No Sheen Defected Sheen Sheen		Concre Benton	*	10/20 Columbo Silker Sand

0922

10

J

Jorgensen Forge Corporation 104(e) Response

ACILITY OCATION TART OGGED SUBCONT	SILITY JORGENSEN FORGE FACILITY - AREA 2 JOB # 00075-025-01 BORING/WELL. CATION 8531 E. MARGINAL WAY, TUKWILA, WA, SURFACE ELEVATION RT 8/5/96 0923 FINISH 8/5/96 1030 CASING TOP ELEVATION GED BY H. RUIZ MONITORING DEVICE MICROTIP MP-1000 PtD GCONTRACTOR AND EQUIPMENT HOLT DRILLING, INC.; LIMITED ACCESS GEOPROBE RIG MMENTS SAMPLED EVERY 1.5 FEET USING A 2" O.D. X 1.5" LONG SPLIT SPOON SAMPLER							ORING/WELL_ <u>SB-2</u> ION NG PLER
IETRATION ESULTS BLOWS "/6"/6"	Somple Depth Intervol, feet	PID	Sheen	un Surfoce, feet	Lithologic Description	Unified Soil Classification	1 Depth Betow in Surface, leet	Boring Abandonment
		5.8 4.3 5.9 7.8 638 322 31.2	NS 50 50 NS	0 5 0×10 15 20 25	Ambolic concrete Sond, dat grayish known (2.57 4/2), woothy madum grained sond, some all hans, damp Hydrocartan-like ador Sit, Mack (2.57 2.5/1), compact, sohereied, hydrocartan-like eder Sond, Mack (2.57 2.5/1), mostly medium grained sond, some all, boex, Barling terminated at 10.5 feet, sompler advanced to 12 feet. Croundwater encountered at approximately 9.5 feet during dril Barling abandoned on 8/5/96.	Sar Contraction of the second se	0 5 10 15 20 25	
Field Desc Pres No Som	A Screen cription served 3 Recover	n/Litho Sample Somple Y	Mogic	- 25 VW 80 X5	Groundwoter Level of Time at Drilling Static Groundwater Level Contect Sheen Detected Contect No Sheen Detected Approximately		- 25	10/20 Colorado Slice Send

J 10

•

÷

CEC	OD
DLL	JUN
International	Incorperated

BLOWS during	PID	Sheen	Depth Be Surface,	Lithologic Description	Unified So Classificatio	Depth Belo Surface, le	Boring Abandonment
	3.7 5.1 4.5 27.9 508 71.8 562 180	8 8 8 8 3 3 3 3 4		Anthelis solution Sond dark projekt brown (2.57 4/2), mostly medium grännet sond, some all, base, darny Hydrocarton-dae ador SR, black (2.57 2.5/1), compaci, autorated, hydrocarton-dae ador SR, black (2.57 2.5/1), compaci, solurated, hydrocarton-dae ador Sond, black (2.57 2.5/1), resulty modum gräned and, some all, team, daring terminoled at 10.5 feet, somplar advanced to 12 feet. Groundwater encountered at approximately 9.5 feet during drike Boring abandoned on 8/5/96.		5 5 10 15 20	

J 10

0924
FACILITY LOCATION START LOGGED SUBCONT COMMEN		RGEN 31 E 31 E 10 11 H. RI TOR / AMPL	SEN MA 24 JIZ WD ED	EQUI	GE FACILITY - AREA 2 JOB / 000 AL WAY, TUKWILA WA. SURF. FINISH 8/5/98 1248 CASIN MONITORING DEVICE MICROTIP MP-100 IPMENT HOLT DRILLING, INC.; LIMITED ACCE. Y 1.5 FEET USING A 2° O.D. X 1.5° LONG SPL	T5-025-0 ACE ELE NG TOP O PID SS GEOP IT SPOOL	I BU VATION ELEVATI ROBE R N SAMP	ORING/WELL <u>SB-4</u> ON NG MER
ENETRATION RESULTS BLOWS 5 / 6 / 6	Somple Depth Interval, feet	PID Reading	Sheen	u Depth Below u Surface, feet	Lithologic Description	Unified Soil Classification	" Depth Betow us Surface, leel	Boring Abandonment
	MA MA MA MA MA MA MA MA	8.1 4.2 6.7 64.3 657 0 2.8 0	22 12 12 12 12 12 12 12 12 12 12 12 12 1		Anabalia cart projek krown (2.51 4/2), mostly muslem prived servic some all base, domp Hydrocarbon-like odor Sil, black (2.51 2.5/1), compact, solumvied, hydrocarbon-like odor Sil, black (2.51 2.5/1), compact, solumvied, hydrocarbon-like odor Sing, black (2.51 2.5/1), mostly modum preived servic, some sil, solumvied, pathy alwan Boring terminated of 13 feet, sompler advenced to 14.5 feet. Croundwater senceunitarial at approximately 9 feet during drilling Boring obandoned on 8/5/96.	SW	0 5 10 15 20 25	
Field Deex Area No Som Tor Anot	A Scree cription rerved Recover pole Sur Loborot yeig	n/Litho Somple Somple 7 bmitted lony	logic	SD NS NT (2.5Y 4	Groundwater Level of Time of Drilling Stelic Groundwater Level Sheen Detected No Sheen Detected No Trested (2) Munsel (1990) Soil Color Charts Contect Located Approximately Contect	- Concre - Concre	•	10/20 Calorado Silice Sand T AC Biant Coning T AC Coning Conin

-

.)

J 10

1

NETRATION RESULTS BLOWS 5 /6 /6	PID Reading Sheen	pth Betow face, feel	120-1-1- Description	* 8	11	
	1.1	5.0	Lithologic Description	Unified So Classification	Depth Berlow Surface, feel	Boring Abandonment
	0 0 MS 158 SD 45 SD 74.1 SD	Ans 5 M 5 BkGk 6 k 20	obstic canonie mit dat projek brow (2.57 4/2), weetly medien prime and, some i loos, dang and dat (2.57 2.5/1), compact, soherhiel, hydrocator-die star mit Matt (2.57 2.5/1), compact, soherhiel, hydrocator-die star mit Matt (2.57 2.5/1), mediy medien prime and, some sit, naturated, oring terminated at 10.5 feet, sampler advanced to 12 feet. roundwater encountered at approximately 9 feet during drilling oring obandoned on 8/5/98.			

•

CEC	M
DLL	SIL
International	Incorperated

)

ENETRATION RESULTS BLOWS 6'/6'/6	PID Reading	Sheen	u Ceptin Below	Lithologic Description	Unified Sol	1 Depth Balow un Surface, feet	Boring Abandonmen
MA MA MA MA MA MA MA	0 0 0 44 0 0 0	NS NS SS NS N	- 0 - 5 - 10 - 15 20	Apphologic concrete Send, dark graphs bream (2.57 4/2), mustly medium grained sand, more all, base, darap Hydrocartes-Bio ador SR, black (2.57 2.5/1), compact, solurated Sand, black (2.57 2.5/1), compact, solurated Sand, black (2.57 2.5/1), mustly medium grained sand, some sit, solurated, Boring terminated at 12 feet, scompler advanced to 13.5 feet, Groundwater encountered at approximately 9 feet during drilling. Boring abandoned on 8/5/96.		0 5 10 15 20 25	

J 10

FACILITY LOCATION START LOGGED SUBCONT COMMENT	JO 85 8/5/6 BY RACT	AMPL	SEN MA 520 MZ WD ED	EQUI	GE FACILITY - AREA 2 JOB # 000 AL WAY, TUKWILA, WA. SURF. FINISH <u>8/5/96 1555</u> CASH MONITORING DEVICE <u>MICROTIP MP-100</u> PMENT <u>HOLT DRILLING, INC.; LIMITED ACCE</u> Y 1.5 FEET USING A 2° O.D. X 1.5' LONG SPL	ACE ELL NG TOP O PID SS GEO IT SPOC	DI B VATION ELEVATI PROBE F ON SAMP	ORING/WELL <u>88-1</u> ON NG PLER
ENETRATION RESULTS BLOWS 5 / 6 / 6	Somple Depth Internal, feet	PID Reading	Sheen	I Depth Betow un Surface, leet	Lithologic Description	Unified Sol	Lapth Baloa un Surface, feet	Boring Abandonment
	WAY WAY WAY WAY WAY WAY	0 2.2 80.5 6.7 8.2	2 2 2 2 2 2 2 2 2 2		Aughstic coocres Sand, serb gruppe strem (2.57 4/2), anothy medium grained and, serm all loase, during Hydrocarbon Bio ador SR, black (2.57 2.5/1), compact, asturated Sand, black (2.57 2.5/1), medity medium grained sered, some pR, boos, Boring terminated at 10 feat, sampler advanced to 11.5 feet. Groundwater encountered at approximately 9 feet during drillin Boring standaned on 8/5/96.			
Field Desc Area Mo	Scree niption erved Recover	n/Litho Somph Somphe Y	logic	- 25 ¥ 50 NS	Groundwoter Level of Time of Drilling Stolic Groundwoter Level Contact Shreen Detected Contact No Sheen Detected Localed	Corec	- 25	10/20 Gabreets Silice Sand Entry Silice Sand Entry Sorest

J 10

FACILITY OCATION START OGGED SUBCON COMMENT	JOI 85 8/5/9 BY TRACT	AGEN 31 E. 6 10 H. RI OR A AMPL	SEN MA 115 DIZ WD ED	EQU	GE FACILITY - AREA 2 JOB # 0007 AL WAY, TUKWILA, WA. SURFA FINISH 0/5/98 1710 CASIN MONITORING DEVICE MICROTIP MP-1000 IPMENT HOLT DRILLING, INC.; LIMITED ACCES Y 1.5 FEET USING A 2" O.D. X 1.5" LONG SPL	ACE ELEN IG TOP L D PID SS GEOPI IT SPOON	B VATION ELEVATI ROBE A SAMP	ORING/WELL <u>SB-</u> ON NG MER
NETRATION RESULTS BLOWS 5 /6 /6	Sample Depth Intervol, leel	PID Reading	Sheen	u Surface, leet	Lithologic Description	Unified Soft	1 1 Dupth Batow ca Surface, feet	Boring Abandonment
	MAY MAY MAY MAY MAY MAY MAY	7.5 71.5 100 103 6.2 4.5 5.2	55 53 53 55 55 55 55 55 55 55	0 5 ¥ 10 15 20 25	Concrete Sond, dark groyich brown (2.57 4/2), wastly medium grained and, some int, loose, damp Hydrocarbon-Bie ador SR, Minck (2.57 2.5/1), compact, asturated Sand, Minck (2.57 2.5/1), compact, asturated Sand, Minck (2.57 2.5/1), manthy medium grained sund, some sR, loose, <u>submitted</u> Borling terminated et 10.5 feet, sompler advanced to 12 feet. Groundwater encountered at approximately 9 feet during drilling Borling oblandoned on 5/5/96.		0 5 5 10 15 20 25	
Field Desc Pres No Som	Sorear niption erved S Recovery	/Litho Somple ample		25 ¥¥ \$0 %5	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected No Sheen Detected	Concrete	23	10/20 Calcrosto Silice Sent

)

J 10

Jorgensen Forge Corporation 104(e) Response

FACILITY LOCATION START LOGGED SUBCONT COMMENT	JO 85 8/6/10 BY FRACE TS_S	RGEN 31 E. 56 0 H. RI TOR / AMPL	MA 845 UIZ ND ED	EQUI EVER	GE FACILITY - AREA 2 JOB # 000 AL WAY, TUKWILA, WA. SURF FINISH 8/6/96 0930 CASH MONITORING DEVICE MICROTIP MP-100 IPMENT HOLT DRILLING, INC.; LIMITED ACCE Y 1.6 FEET USING A 2° O.D. X 1.6° LONG SPL	75-025-0 ACE ELE NG TOP O PHD SS GEOP IT SPOOL	1B VATION ELEVATI ROBE R N SAMP	ORING/WELL <u>SB-9</u> ON NG TLER
NETRATION RESULTS BLOWS 5 / 6 / 6	Somple Depth Interval, feet	PID Reading	Sheen	Under Betar	Lithologic Description	Unified Sof	 Depth Below Surface, feet 	Boring Abandonment
	AND	3.6 12.1 5.8 240 208 311 15.9 95.5 241	22 23 23 23 23 23 23 23 23 23 23 23 23 2		Concrete Seed, data projek known (2.57 4/2), mostly medium proined and, annu Bill base, damp Hydrocarteen-Bie odor Sill, Mach (2.57 2.5/1), compact, sokuraled Sand, Mach (2.57 2.5/1), mustly medium grained send, some sill, been, astronad Boring terminoted et 12.5 feet, sampler advanced to 14 feet Groundwater encountered at approximately 9.5 feet during drill Boring obandoned on 8/5/96.		۵ ۵ ۵ ۵ ۵۵ ۵۵ ۵۵ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰	
Field Derec Derec No A Some	Screen niption erred : Recover	n/Lilho Somple Somple Y	logic	- 25 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Groundwoler Level of Time of Drilling Static Groundwater Level Contact Sheen Detected Contact No Sheen Detected Approximately	Concret Senton	- 25	10/20 Calcrade Silice Sand E Sand Sand Sand Calling Calling Calling Calling Calling Calling Calling

J 10

.

0930

ž

FACILITY LOCATION START LOGGED SUBCONT	 8/6/1 BY TRACT	RGEN 31 E 36 10 H. RU TOR A AMPL	SEN MA 030 UIZ WD ED	EQU EVER	GE FACILITY - AREA 2 JOB / 0007 AL WAY, TUKWILA, WA. SURFA FINISH 8/0/98 1100 CASIN MONITORING DEVICE MICROTIP MP-1000 IPMENT HOLT DRILLING, INC.; LIMITED ACCES Y 1.6 FEET USING A 2" O.D. X 1.5" LONG SPLI	G-028-0 ICE ELE IC TOP I PHD IS GEOP T SPOO	LB VATION ELEVATI ROBE R SAMP	ORING/WELL <u>SB-10</u> ON NG PLER
NETRATION RESULTS BLOWS 5 /6 /6	Sample Depth Intervol, Jeel	PID	Sheen	or Surface, feel	Lithologic Description	Unified Sol Clearification	- 1 - 1 Depth Below on Surface, feel	Boring Abandonment
	WAY WAY WAY WAY WAY WAY WAY WAY	1.6 0.8 0.7 0.5 1.0 2.4 27.7 1.8	25 25 25 25 25 25 25 25	0 5 ¥ 10 15 20	Canonda Sond, danty grafit brown (2.57 6/2), mustly medium preined sond, some all, base, danty SB, black (2.57 2.5/1), compared, unterview Sand, black (2.57 2.5/1), numbly medium preined sond, some all, base, makrated Borling larminoted at 11 feet, sampler advanced to 12.5 feet. Groundwater encountered at approximately 9 feet during drilling Borling abandoned on 8/6/96.			
Field Desk Pres Me Som	l Scree ription rerved Recover ple Sur Laborat	n/Litho Somple Somple 7 Dmitted ory	logie	N 10 10 10 10 10 10 10 10 10 10 10 10 10	Groundwater Level et Time of Drilling Static Groundwater Level Contact Sheen Detacted No Sheen Detacted Not Tested (10) How Mill Col Contact	Concret Services	•	10/20 Caloredo Silice Sand

-

1:2

J 10

Jorgensen Forge Corporation 104(e) Response

ription	Unified Sol	T Depth Below un Surfoce, feet	Boring Abandonment
		F 1	+
dum grained servit, een hecenhon-Bie eder a dwanced to 13 oby 9 feet during o	na SI BH Get. driling.		
	Contact Contact Contact	Contact Contac	-20 -25 Contract Cont

 \mathcal{J}

10

21

~ .

)

-

BLOWS 6'/6'/6	PID	Sheen	Children Depth Beiow Cr Surfoce, Ieel	Lithologic Description	Unified Soil Closelficotion	T Depth Below or Surface, feet	Boring Abandonment
AM AM AM AM AM AM AM AM AM	3.5 1.8 1.6 1.9 1.0 0.6 0.9 0.9 0.6	3 3 3 3 3 3 3 3 3 3 3 3 3	0 5 ¥ 10 15 20 25	Andread and an analysis and the series of th			

J 10

A DAMES & MOORE GROUP COMPANY

Job No. 31613-011-005

Drill contractor: TEG Northwest Drill date: 12/23/98

P-1 **GEOLOGIC BORING LOG**

Drill contractor: TEG Northwest Drill date: 12/23/98

Jorgensen Forge Facility Seattle, Washington

Drill contractor: TEG Northwest Drill date: 12/23/98

Jorgensen Forge Facility Seattle, Washington

Drill contractor: TEG Northwest Drill date: 12/23/98

Jorgensen Forge Facility Seattle, Washington

Drill date: 12/23/98

Geologist: VDA Drilling method: StrataProbe Sampling method: SS-Split Spoon, Geoprobe Water Sampler

Job No. 31613-011-005

P-5 **GEOLOGIC BORING LOG**

Job No. 31613-011-005

Drill contractor: TEG Northwest Drill date: 12/23/98

P-6 GEOLOGIC BORING LOG

Drill date: 12/23/98

Geologist: VDA Drilling method: StrataProbe Sampling method: SS-Split Spoon, Geoprobe Water Sampler

A DAMES & MOORE GROUP COMPANY

Job No. 31613-011-005

P-7 GEOLOGIC BORING LOG

Drill contractor: TEG Northwest Drill date: 12/23/98

P-9 GEOLOGIC BORING LOG

Jorgensen Forge Facility Seattle, Washington

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	fE	Boriı	ng:	SB-1		Page 1 of 1
Clie Pro Loc Far	ent: jec ati allo	EMJ/Jorgensen Forge t: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	8/26/0 8/26/0 Geop Casc Kase Geop	04 08 04 09 robe ade [y Gol robe	50 115 Drilling ble	Sar Driv Dep Tot Tot	npler Type: 4-fo ve Hammer (Ibs.): oth of Water ATD al Boring Depth (al Well Depth (ft I	ampler 140 ogs): 12 gs): 12): NA	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details
0	$\left \right $	FILLGRAVEL with silt minor sand. 65% fine-coars 15% fine sand. Brown, moist, no odor.	e gravel, 20% silt,			50	NA	NA	082604-0850-01	x	
-	$\left \right\rangle$	FILLGRAVEL minor sand trace silt. 80% fine-coal fine-coarse sand, and 5% silt. Brown, moist, no odd material at 3 feet bgs.	se gravel, 15% or. White brick			50	NA	NA	082604-0855-02	× ×	Well not installed
5—	$\left \right\rangle$	FILLSilty GRAVEL with sand. 45% fine-coarse gra 15% fine-coarse fine-course sand. Brown, moist, n	avel, 40% silt, and o odor.			50	NA		082604-0900-03		
_	\mathbb{N}	FILLSAND trace silt. 95% fine-coarse sand, 5% s no odor.	ilt. Brown, moist,			50	NA	NA	082604-0902-04	Ŷ	
-		SILT. 100% silt. Grey with orange mottling, moist,	no-odor.	мн		50			0826-04-0915-06	x	
-		SAME wet									Ŧ
-											
15	-										
20		Wa	II Construction		mati	on					
Mor Cas Scre Scre	ing l een s eene	ent Type: NA Filter Pac Diameter (inches): NA Surface S Slot Size (inches): NA Surface S d Interval (ft bos): NA Annular S	Seal: NA Seal: NA		S	urvey	Gi To Bo red Loca	round op of C oring / ation:	Surface Elevation Casing Elevation Abandonment: X: 122.30894	n (ff (ft): Y:	t): 14-feet NA Bentonite chips : 47.52696

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	fE	Boriı	ng:	SB-2		Page 1 of 1
Clie Pro Loc Far	ent: jec ati allo gge	EMJ/Jorgensen Forge t: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	08/26 08/26 Geop Casc Kase Geop	5/04 0 5/04 1 orobe ade [y Gol orobe	940 020 Drilling Die	Sar Dri [:] Dej Tot	npler Type: 4-fo ve Hammer (Ibs.) oth of Water ATD al Boring Depth (al Well Depth (ft	oots (ftl (ftb bgs	ampler 140 bgs): 14 gs): 16): NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details
0 -	X	FILLGRAVEL minor sand trace silt. 80% fine-coars fine-coarse sand, 5% silt. Brown. moist, no odor.	se gravel, 15%			40	NA	NA	082604-0940-07 082604-0943-08	x x	Well pot
5	X	FILLSAME with marbeling				50	NA	NA	082604-0945-09	x	installed
-		FILL-SAME with cobble and black obsidion like mate	ərial			70	NA	NA	082604-0952-10	x	
-		FILLGravel with sand trace silt. 70% fine-coarse g coarse sand, and 5% silt. Marbeled brown, moist, n	ravel, 25% fine- o odor.			50	NA	NA	082604-0956-11	x	
10-		FILLWhite brick FILLSAND minor gravel minor silt. 75% fine-coars coarse gravel, 10% silt. Grey, moist, no odor.	e sand, 15%			50	NA	NA	082604-1000-12	X	
		FILLSAND. 100% fine-coarse sand. Grey, moist, dense.	no odor, very			50	NA	NA	082604-1012-13	X	
15 -		SAME but not very dense. FILLSAND with gravel. 65% fine-coarse sand and gravel. Grey, wet, no odor	35% fine-coarse			60	NA	NA	082604-1020-14	x	×
20	<u> </u>	We	I Construction	 Infor	mati	on	<u>،</u>		Surface Elevation	⊥ n (fi	 :): 14-feet
Mor Cas Scr Scr	ing [een S eene	ent Type: NA Filter Pack Diameter (inches): NA Surface S Slot Size (inches): NA Surface S d Interval (ft bas): NA Annular S	k: NA eal: NA eal: NA		Sı	ırvey	To Bo ed Loca	op of C oring A ation:	Casing Elevation Abandonment: X: 122.30818	(ft): Y:	NA Bentonite chips 47.52657

	FARALLON CONSULTING 320 3rd Avenue NE Issaquah, WA 98027			Lo	g o	of E	Bori	ng:	SB-3		Pa	ge 1 of 1
Clie Pro Loc Far	ent jec ati allo gge	EMJ/Jorgensen Forge et: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	08/26 08/26 Geop Caso Kase Geop	5/04 1 5/04 1 brobe ade [by Gol brobe	055 300 Drilling ble	Sampler Type: 4-toot sampler Drive Hammer (Ibs.): 140 Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 10 Total Well Depth (ft bgs): NA				
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	N Cons De	Well struction etails
0	\mathbb{X}	FILLGRAVEL with sand minor silt. 65% fine-coarse fine-coarse sand, 15% silt. Brown, moist, no odor.	e gravel, 20%			50	NA	NA	082604-1105-15	X		
-		FILLGRAVEL with sand trace silt. 70% fine-coarse coarse sand, 5% silt. Brown, moist, no odor. Black material at 2 feet.	e gravel, 25% fine- obsidion like			60	NA	NA	082604-1106-16	×		Well not installed
5-		FILLGRAVEL minor sand. 90% fine-coarse gravel coarse sand. Marbeled brown, moist, no odor.	and 10% fine-			50	NA	NA	082604-1109-17	x		
-		FILLGRAVEL with sand trace silt. 75% fine-coarse coarse sand, 5% silt. Brown/orange, moist, no odor	e gravel, 20% fine-			65	NA	NA	082604-1118-18 082604-1240-19	X		
-		KREFUSALmove one foot north/				50	NA	NA	082604-1246-20	x		
10-		REFUSAL move one foot north, sampler breaks insi	de boring.			0	NA	NA				
15 -	-											
	-											
20			Construction	Infor	mati			<u> </u>				
Moi Cas Scr Scr	ing ing een eene	ent Type: NA Filter Pacl Diameter (inches): NA Surface S Slot Size (inches): NA Surface S d Interval (ft bɑs): NA Annular S	Well Construction Information Ground Surface Elevation er Pack: NA Top of Casing Elevation face Seal: NA Boring Abandonment: ular Seal: NA Surveyed Location: X: 122.30866				n (ft): 15-feet (ft): NA Bentonite chips Y: 47.52640					

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	fE	Boriı	ng:	SB-4		Page 1 of 1
Clie Pro Loc Far	ent: jec ati allc gge	EMJ/Jorgensen Forge t: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Complete Equipment: Drilling Company: Drilling Foreman: Drilling Method:		08/26 08/26 Geop Casc Kase Geop	5/04 1 5/04 1 probe ade [y Gol probe	300 345 Drilling ble	Sar Dri De Tot	mpler Type: 4-fc ve Hammer (Ibs.) pth of Water ATD tal Boring Depth (tal Well Depth (ft	ampler 140 bgs): 12 gs): 16 c): NA	
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details
0	\mathbb{N}	FILLGRAVEL with sand trace silt. 85% fine-coarse coarse sand, and 5% silt. Brown, moist, no odor.	gravel, 10% fine-			50	NA	NA	082604-1305-21	X	
_		REFUSALMove one foot north and begin at two fee previous in new boring.	t bgs. SAME as			50	NA	NA	082604-1308-22	×	Well not installed
5	$\left \right\rangle$	SAME				40	NA	NA	082604-1312-23	X	
-	$\left \right\rangle$					70	NA	NA	082604-1318-24	X	
-	$\left \right\rangle$					70	NA	NA	082604-1322-25	X	
-		FILLwood debris. Strong creosote odor, shiny, blac				80	NA	NA	082604-1326-26	×	×
-		SAME as 4-11.5' FILLSAND minor silt. 90% fine sand, 10% silt. Bro				80	INA	NA	082604-1335-28		
- 15 — -		FILLSAND minor silt. 85% fine sand, 15% silt. Blu strong petroleum odor, sheen observed on sand.	e/grey, wet,			20	NA	NA	082604-1345-29	×	
20											
Mon	ume	nt Type: NA Filter Pack	Construction I	nfor	matio	on	Gr	ound	Surface Elevation	ı (ft ft):): 21 feet NA
Scree Scree	ng (en S ene	Slot Size (inches): NA Surface Se Slot Size (inches): NA Surface Se d Interval (ft bas): NA Annular Se	al: NA al: NA	NA Boring Abandon NA Surveyed Location: X: 122.				bandonment: X: 122.30853	Y:	Bentonite chips 47.52620	

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027	Log of Boring: SB-5 Page 1 of 1									
Clic Pro Loc Far	ent: ojec cati callo gge	EMJ/Jorgensen Forge t: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		08/26 08/26 Geop Caso Kase Geop	26/04 1415 26/04 1510 oprobe scade Drilling sey Goble oprobe			npler Type: 4-fo ve Hammer (Ibs.) pth of Water ATD al Boring Depth (al Well Depth (ft	ampler 140 ogs): 12 gs): 16): NA		
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details	
0 -		FILLGRAVEL minor sand, trace silt. 80% fine-coars fine-coarse sand, 5% silt. Light brown, moist, no odo FILL-GRAVEL with sand, trace silt. 70% fine-coarse	se gravel, 15% r. gravel, 25% fine-			60 50	NA NA	NA	082604-1414-30 082604-1416-31	x x	Well not	
		coarse sand, 5% silt. Orangish brown, moist, no odor	r.			40	NA	NA	082604-1421-32	x	installed	
-						40	NA	NA	082604-1425-33	x		
10 -						40 50	NA NA	NA NA	082604-1428-34 082604-1455-35	x x		
		REFUSAL move one foot north and begin at 10 feet	bgs. /			20	NA	NA	082604-1500-36	x	×	
15 -		Brown, wet, no odor.	Ū			100	NA	NA	082604-1505-37	x		
	_											
20 Moi	nume	ent Type: NA Filter Pack	Construction I	nfor	mati	on	Gi	round	Surface Elevation	n (ft): 20-feet	
Cas Scr Scr	ing l een S eene	Diameter (inches): NA Surface Se Slot Size (inches): NA Surface Se d Interval (ft bos): NA Annular Se	eal: NA eal: NA		Sı	ırvey	To Bo ed Loca	op of C oring A ation:	asing Elevation (Abandonment: X: 122.30836	ית): Y:	Bentonite chips 47.52599	

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027	Log of Boring: SB-6								
Clie Pro Loc Far	ent ojec cati allo gge	EMJ/Jorgensen Forge et: Jorgensen Forge on: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		08/27/04 0845 1: 08/27/04 0948 Geoprobe Cascade Drilling Jaymen Lauer Geoprobe - Limite				mpler Type: 4-fo ve Hammer (Ibs.) pth of Water ATD tal Boring Depth tal Well Depth (ft ess	oots (ft (ft b bgs	sampler 140 bgs): 11.5 ygs): 16 s): NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details
0 -	X	FILLGRAVEL trace sand. 95% fine-coarse gravel a Brown, moist, no odor.	and 5% sand.			30 40	NA	NA	082704-0856-01	x x	
	X	SAME with white brick.				20	NA	NA	082704-0910-03	x	Well not installed
-	$\left \right\rangle$	FILLSAND. 100% fine-coarse sand. Tan, dry, no o	odor, very hard.			100	NA	NA	082704-0915-04 082704-0920-05	x	
-		FILLGRAVEL with sand trace silt. 75% fine-coarse coarse sand, and 5% silt. Brown, moist, no odor. FILLGRAVEL trace sand. 95% fine-coarse gravel, sand. Black with obsidion like material, moist, no od	gravel, 20% fine- 5% fine-coarse or.			100	NA	NA	082704-0930-06	x	
- 10		Ell L SAME og 7.5.8 wat soma rad brick				100 80	NA NA	NA	082704-0935-07	x x	¥
-		TILL-SAML as 7.5-0. wet, some red block				50	NA	NA	082704-0942-09	x	
- 15		SAND trace silt. 95% fine sand and 5% silty. Grey,	wet, no odor	sw							
20											
Mon	ume	ent Type: NA Filter Pack	Construction I	nforr	natio	on 🗌	Gr	ound	Surface Elevation	n (ft)): 22
Casi Scre	ing E en S	Diameter (inches): Geoprobe Fine Pack Slot Size (inches): NA Surface Se	al: NA				To Bo	op of C oring A	asing Elevation (bandonment:	ft):	NA Bentonite chips
Scre	eneo	d Interval (ft bas): NA Annular Se	eal: NA	Surveyed Location: X: 122.30840 Y: 47.5257					47.52576		

		Farallon Consulting 320 3rd Avenue NE Issaquah, WA 98027		Lo	g o	of E	Bori	ng:	SB-7		Page 1 of 1
Clic Pro Loc Far	ent ojec cati callo gge	EMJ/Jorgensen Forge t: Jorgensen Forge ion: Seattle, WA on PN: 831-003 ed By: JAK and JAS	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		e 08/27/04 1030 ted: 08/27/04 1120 Geoprobe Cascade Drilling Jaymen Lauer Geoprobe			Sa Dri De To	mpler Type: 4-fo ve Hammer (Ibs.) pth of Water ATD tal Boring Depth (ft tal Well Depth (ft	ampler 140 ogs): 13.5 gs): 16): NA	
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	n	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Well Construction Details
0		8-inches of concrete FILLGRAVEL with sand minor silt. 40% fine-coarse coarse sand, 20% silt. Brown, moist, no odor	gravel, 40%	CO		40	NA	NA	082704-1032-10	x	Well not installed
5		SAME but 50% red brick.				20	NA	NA	082704-1038-12 082704-1044-13	x	
-		SAME no brick FILLGRAVEL with sand, trace silt. 75% fine-coarse fine-coarse sand, and 5% silt. Brown with orangish b odor. Metal debris.	gravel, 20% rown, moist, no			60	NA	NA	082704-1054-14	x	
10-		FILLGRAVEL trace sand. 95% fine-coarse gravel a coarse sand. Brown, moist, no odor.	 nd 5% fine-			100	NA	NA	082704-1100-15	x	
		SAME as 6-8' interval. Brick throughout. Wet at 13.5	 ;			20	NA	NA	082704-1115-17	x	×
-											
20 Mor		ent Type: NA Eilter Back	Construction I	nforr	natio) Dn	Gr	ound	Surface Elevation) (ft)	: 25
Cas Scre Scre	ing I een S eene	Diameter (inches): NA Filter Pack: Slot Size (inches): NA Surface Sea d Interval (ft bos): NA Annular Sea	al: NA al: NA		Su	rveye	To Bo ed Loca	p of C ring A ition:	asing Elevation (bandonment: X: 122.30826	ft): Y:	NA Bentonite chips 47.52569

Major Divisions

USCS Classification and Graphic Legend

975	5th	Avenue Nori	hwest
Issaqu	iah.	Washington	98027

Т

SCS Graphic Symbo	SCS Letter Symbol	
l SC	SU	

Т

Т

Lithologic Description

Coarse-	GRAVEL	CLEAN GRAVEL (Little		GW	Well graded GRAVEL, well graded GRAVEL with sand
Soil (More	GRAVELLY	or no lines)		GP	Poorly graded GRAVEL, GRAVEL with sand
of material	than 50% of	GRAVEL WITH FINES		GP-GM	Poorly graded GRAVEL - GRAVEL with sand and silt
than No. 200 sieve	fraction retained on	fines)		GM	Silty GRAVEL
size)	No. 4 sieve)			GC	Clayey GRAVEL
	SAND AND	CLEAN SAND (Little or		SW	Well graded SAND
	SOIL (More	no incoj		SP	Poorly graded SAND
	coarse	SAND WITH FINES		SP-SM	Poorly graded SAND - silty SAND
	passed through No.	fines)		SM	Silty SAND
	4 sieve)			SC	Clayey SAND
				SM-ML	SILT - Silty SAND
Fine- Grained	SILT AND			ML	SILT
Soil (More than 50%	limit less		TH.	CL	CLAY
of material is smaller				OL	Organic SILT
than No. 200 sieve	SILT AND CLAY (Liquid			MH	Inorganic SILT
size)	limit greater than 50)			СН	Inorganic CLAY
			$\sim\sim$	ОН	Organic CLAY
		Highly Organic Soil	<u> </u>	PT	Peat
OTHER MATERIALS	PAVEMENT			AC	Asphalt concrete
				CO	Concrete
	OTHER			RK	Bedrock
				WD	Wood Debris
				DB	Debris (Miscellaneous)
				PC	Portland cement
	Sample In	terval		Le	gend Solid line indicates sharp
	Grah Sam		Ç	Cemen	t Grout Dashed line indicates gradational
	Water leve		2	2	contact between units. feet bgs = feet below ground surface
	water ieve	at time of utiling		Benton	ite NE = Not Encountered

Water level at time of sampling

Blank Casing

Screened Casing

Sand Pack

Well Cap

PN = Project Number *ppm = parts per million total organic vapors in isobutylene equivalents using a 10.6 electron volt lamp USCS = Unified Soil Classification System

NA = Not Applicable

PID = Photoionization Detector

E:\Forms\Boilerplates\LogPlot\Lithology\Coverpage

V

		FARALLON consulting 975 5th Avenue Northwest	Log of Boring: SB-1								Page 1 of [,]	1	
Cli Pro Lo Fa	ent ojeo cat rallo ggo	Stagual, Washington 96027 Sagual, Washington 96027 Seattle, Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	i: eted:	02/06 02/06 Geop Casca Kase	5/09 (5/09 (orobe ade l y Go t Pus	0743 0805 Drilling ebel sh	Sar Driv Dep Tot Tot	npler Type: 5' ve Hammer (Ibs oth of Water AT al Boring Depth al Well Depth (f	Macı .): D (ft ı (ft b t bgs	lacrocore : NA (ft bgs): 5 ft bgs): 16 bgs): NA		
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/We Constructio Details	ll >n	
0-		Asphalt, paving debris		AC									
5-		Well-graded SAND (100% sand), fine to coarse sand 5 feet then wet, no odor. Poorly-graded SAND (95% sand, 5% silt), fine to med brown, wet, marine odor.	, brown, moist to dium sand, dark	SW		100		45.1 48.2 50.3	SB-13- 020609-1 SB-13- 020609-2 SB-13- 020609-3		Bentonita	9	
15 -		Well	Construction I	nforr	natio	n		55.9	SB-13- 020609-4 GR-SB-13- 020609 @12-16 feet bgs				
Mon Casi	ume ng D	nt rype: NA Filter Pack: Diameter (inches): NA Filter Pack:	ck: NA Top of Casing Elevation (ft): NA						NA NA				

Surface Seal: NA

Annular Seal: NA

Screen Slot Size (inches):

Screened Interval (ft bgs):

NA

NA

Bentonite

Y: NA

Boring Abandonment:

Surveyed Location: X: NA

		FARALLON consulting	Log of Boring: SB-14									
		Issaquah, Washington 98027									Page 1 of 1	
Cli Pro	ent	: Jorgensen Forge Corp.	Date/Time Started	l: eted:	02/06	5/09 5/09	0810 0830	Sar Driv	npler Type: 5' /e Hammer (lbs	Macr	ocore NA	
Lo	cat	ion: Seattle, WA	Equipment:		Geop	orobe	•	Dep	oth of Water AT	, D (ft I	ogs): 5, 12	
Fai	rall	on PN: 394-002	Drilling Company	:	Casc	ade	Drilling	Tot Tot	al Boring Depth al Well Depth (f	n (ftb tbas	gs): 16	
		D Clomont	Drilling Method:		Direc	t Pus	sh	101	ai Weil Deptil (i	t bys)∙ NA	
LO	ggo	ed By: D. Clement								ТТ		
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/Well Construction Details	l n
0-		Asphalt, paving debris		AC								
-		Well-graded SAND (100% sand), fine to coarse sand 5 feet then wet, no odor.	, brown, moist to	SW								
5-						100		30.6	SB-14- 020609-1		Bentonite	1
- 10 -						100		59.0	SB-14- 020609-2			
		Poorly-graded SAND (95% sand, 5% silt), fine to mee brown, wet, saturated at 12 feet with red-colored wate	dium sand, dark er, marine odor.	SP		100		35.6	SB-14- 020609-3		V	
- 15 -	-							7.1	SB-14- 020609-4 GR-SB-14- 020609 @12-16 feet bgs			
20 -												
Mon Casi	ume ng D	nt Type: NA Well Diameter (inches): NA Filter Pack:	Construction I	nforr	natio	n	Gr To	ound S	ourface Elevation	on (ft) (ft):	NA NA	

Screen Slot Size (inches):

Screened Interval (ft bgs):

NA

NA

Surface Seal: NA

Annular Seal: NA

Bentonite

Y: NA

Boring Abandonment:

Surveyed Location: X: NA

	FARALLON consulting 975 5th Avenue Northwes Issaquah, Washington 9802		Log of Boring: SB-15								Page 1 of 1
Clic Pro Loc Fai	ent ojeo cat rallo ggo	Lissaqua, Washington 98027 Lissaqua, Washington 98027	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	02/06 02/06 Geop Caso Kase Direc	6/09 6/09 probe ade y Go	0836 0900 e Drilling oebel sh	San Dri De Tot	mpler Type: 5' ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	Macro .): D (ft b) n (ft bgs):	NA NA gs): 12 NA : NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0-		Asphalt, paving debris		AC							
		Well-graded SAND (100% sand), fine to coarse sand no odor. Poorly-graded SAND (95% sand, 5% silt), fine to me moist to 12 then wet, marine odor starting at 15.5 feet SILT (100% silt), grey, wet, marine odor at 15.5 feet	d, brown, moist, edium sand, grey, et. , 2 inches thick.	SW		100		40.2 60.2 16.6 30.4	SB-15- 020609-1 SB-15- 020609-2 SB-15- 020609-3 SB-15- 020609-4 GR-SB-15- 020609-4 GR-SB-15- 020609 @23-27 feet bgs		Bentonite
20 -	ume	nt Type: NA Well	Construction I	nforr	natio	on	Gr	ound §	Surface Elevatio	 n (ft):	

Monument Type: NA		Well C	onstruction Informa	ation	Ground S	Surface Elevation	(ft):	NA	
Casing Diameter (inches):	NA	Filter Pack:	NA	-	Top of C	asing Elevation (f	t):	NA	
Screen Slot Size (inches):	NA	Surface Seal:	NA	E	Boring A	bandonment:		Bentonite	
Screened Interval (ft bgs):	NA	Annular Seal:	NA	Surveyed Lo	cation:	X: NA	Y: NA		

		FARALLON consulting 975 5th Avenue Northwest	Log of Boring: SB-16										
Cli Pro Lo Fai	ent ojeo cat rallo ggo	Tesaquah, Washington 98027 Tesaquah, Tesa	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	02/00 02/00 Geop Caso Kase Direc	6/09 6/09 probe cade cy Go ct Pu	0913 0950 e Drilling bebel sh	Sar Dri Dej Tot	npler Type: 5' ve Hammer (Ibs oth of Water ATI al Boring Depth al Well Depth (f	Macro .): D (ft bg (ft bgs):	core NA gs): 12 s): 16 NA		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Boring/Well Construction Details		
0-		Asphalt, paving debris		AC									
5-		Well-graded SAND (100% sand), fine to coarse sand no odor. Poorly-graded SAND (95% sand, 5% silt), fine to me moist to 12 then wet, no odor, several lenses of SIL black, wet, no odor.	d, brown, moist, dium sand, black, Γ (100% silt),	SW		100		16.722.74.2	SB-16- 020609-1 SB-16- 020609-2 SB-16- 020609-3		Bentonite		
15 - - - - - - - - - - - - - - - - - - -		nt Type: NA	Construction I	nforr	natic	Dn	Gr	11.1	SB-16- 020609-4 GR-SB-16- 020609 @12-16 feet bgs Surface Elevatio	n (ft):	NA		

 Monument Type:
 NA
 Ground Surface Elevation (ft):
 NA

 Casing Diameter (inches):
 NA
 Filter Pack:
 NA
 Top of Casing Elevation (ft):
 NA

 Screen Slot Size (inches):
 NA
 Surface Seal:
 NA
 Boring Abandonment:
 Bentonite

 Screened Interval (ft bgs):
 NA
 Annular Seal:
 NA
 Surveyed Location:
 X:
 Y:
 NA

		FARALLON consulting 975 5th Avenue Northwest	Log of Boring: SB-17									
Cli Pro Loo Fai	ent ojec cat rallo ggo	 Issaquah, Washington 98027 : Jorgensen Forge Corp. : Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement 	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:			5/09 6/09 probe ade ey Go ey Go	1320 1020 e Drilling bebel sh	Sampler Type:5' MacrocoreDrive Hammer (lbs.):NDepth of Water ATD (ft bgs):NTotal Boring Depth (ft bgs):6Total Well Depth (ft bgs):N				NA NE S
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Bori Cons D	ing/Well struction etails
0-		Attempted 2/5/09, no recovery. Concrete cored 2/6/	09.	CO								
	-	Well-graded SAND (100% sand), fine to coarse sand no odor.	d, brown, moist,	SW		100		14.2	SB-17- 020609-1			
-	-	Sandy SILT (60% silt, 40% sand), fine sand, grey, m	ioist, no odor.	ML		100		20.7	SB-17- 020609-2			Bentonite
5-		Well-graded SAND (100% sand), fine to coarse sand no odor, several lenses of SILT (100% silt), brown-re	d, brown, moist, ed, moist, no odor.	SW		100		9.0	SB-17- 020609-3			
	-											
10 -		nt Type: NA Well	Construction In	forn	natio	on	Gr	ound S	Surface Elevatio	n (ft)): NA	

Monument Type: NA		Well Construction	n Information Ground Surface Elevation (ft)): NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y:	NA

		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of I	Bori	ng:	SB-18		Pi	age 1 of 1
Cli Pro Lo Fai	ent ojec cat rallo gge	: Jorgensen Forge Corp. ct: Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	02/08 02/08 Geop Caso Kase Direc	5/09 5/09 probe ade ey Go et Pus	1340 1400 e Drilling bebel sh	San Dri De Tot	mpler Type: 5' ve Hammer (Ibs pth of Water AT tal Boring Depth tal Well Depth (f	Mac .): D (ft (ft k t bgs	rocore bgs): 3 ogs): 6 s): 1	NA 3 5 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Bor Cons D	ing/Well struction etails
0-		Concrete cored		со								
5-		Well-graded SAND (100% sand), fine to coarse, bro odor. Poorly-graded SAND (100% sand), fine to medium s moist to 3 feet then wet, musty odor.	wn, moist, no	SW		100		8.6 15.1 39.1	SB-18- 020509-1 SB-18- 020509-2 SB-18- 020509-3			► Bentonite
Mon	ume	nt Type: NA Wel	Construction I	nforr	natio	on	Gr	ound §	Surface Elevatio	n (ft)): NA	

Monument Type: NA		Well Construction Inform	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y: NA	۱.

		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	3ori	ng:	SB-19		Pa	age 1 of 1
Clic Pro Loc Fai	ent ojec cati rallo gg@	: Jorgensen Forge Corp. : Jorgensen Forge ion: Seattle, WA on PN: 394-002 ed By: D. Clement	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	i: eted: :	02/08 02/08 Geop Casc Kase Direc	5/09 5/09 probe ade y Go t Pus	1400 1425 Prilling ebel	Sar Driv Dep Tot	npler Type: 5' ve Hammer (Ibs oth of Water ATI al Boring Depth al Well Depth (f	Macı .): D (ft ı (ft b i bgs	rocore bgs): 4 igs): 6 i): 1	VA 4.5 3 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm*)	Sample ID	Sample Analyzed	Bori Cons D	ing/Well struction etails
0-		Concrete cored		СО								
		Poorly-graded SAND (95% sand, 5% gravel), fine to gravel, brown with red mottling, moist to 4.5 feet ther	coarse sand, fine	SP		100		40.0	SB-19- 020509-1 SB-19- 020509-2			Bentonite T
	-	Poorly-graded SAND (100% sand), fine to medium, to acrid petroleum-like odor.	olack, wet, strong	SP				86.8	SB-19- 020509-3			
Mon	umei	nt Type: NA Site David	Construction I	nforn	natio	n	Gr	ound §	Surface Elevatio	on (ft)	: NA	
Casi Scre	ng D en S	iameter (inches): NA Filter Pack Iot Size (inches): NA Surface Se	al: NA				To Bo	p of Ca ring Al	asing Elevation bandonment:	(ft):	NA Bent	tonite

NA

Screened Interval (ft bgs):

Annular Seal: NA

Surveyed Location: X: NA

Y: NA

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,796.5 Longitude/Easting: 1,275,886.8 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 7.5 ft

Boring ID: T2B1

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Dark gray crushed gravel and slag (FILL)
			SM	Dark brown silty SAND with few small gravel, loose, dry (FILL). Gravel is mixed round and angular.
T2B1 3-5 (PID: 0.5 ppm)			SM	Dark gray silty SAND, dense, moist (FILL)
			SP	Brown-gray fine SAND, dense, wet (FILL)
				Saturated at 7.5 ft
T2B1 8-10 (0.6 ppm)		9	SM	Brown-gray very fine silty SAND, dense, very wet (FILL)
			SP	Reddish-brown fine SAND, very wet, mottled (NATIVE)
			SM	Dark gray fine silty SAND, very wet (NATIVE) Saturated after 13ft. Petroleum odor and sheen present at 13 .5 ft.
T2B1 13-15 (34 ppm)		14		

Notes:

FT BGS = Feet Below Ground Surface

= denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,797.9 Longitude/Easting: 1,275,856.3 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 9 ft

Boring ID: T2B2

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy/cloudy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

		0		Dark gray crushed gravel and slag (FILL)
			SW	Dark brown gravelly SAND, loose, dry (FILL). Some metallic slag-like material, whitish-yellow material (fire brick?) and red brick fragments.
T2B2 3-5		3 	SM	Brown silty fine SAND, loose, dry (FILL). Few 0.5-1" gravels and small brick fragments.
(PID: 1.1 ppm)		5		
			SP	Dark gray medium SAND, dense, moist, with pieces of glass (FILL)
			SP	Dark reddish-brown fine SAND, dense, wet (FILL). Red brick fragments at 7.5 ft. Lumber debri at 9.5 ft.
T2B2 8-10 (0.6				
ppm)		10 		
			SM	Brown silty SAND with few small gravel, wet (FILL)
		12 	SM	Gray silty SAND,loose, saturated (NATIVE)
T2B2 13-15 (0.9 ppm)				

Notes:

FT BGS = Feet Below Ground Surface

= denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,798.6 Longitude/Easting: 1,275,824.9 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 12.5 ft

Boring ID: T2B3

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy/cloudy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Crushed gravel and woody plant material
T2B3 2-4 (PID: 0.8 ppm)		3 	SM/SW	Brown silty fine SAND and gravelly fine SAND, loose, dry (FILL). Gravel is mixed round and angular.
T2B3 8-10 (0.8			SM/SW	same as above Black tar-like material (possibly asphalt) at 8.5 ft bgs.
ppm)				
		X	SM	Reddish-brown silty SAND wth few rounded gravel, wet, some oxidation, glass and brick fragments (FILL)
T2B3 13-15 (1.4 ppm)			SP	Dark gray fine SAND, saturated, with glass shards, lumber debris, and brick fragments (FILL) Note: Unable to drill to native material due to refusal and poor recovery at 15 ft bgs.

Notes:

- FT BGS = Feet Below Ground Surface
- USCS = Unified Soil Classification System, modified from ASTM D2488
- = denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,799.5 Longitude/Easting: 1,275,795.3 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 25 ft Groundwater ATD (ft bgs): 8.5 ft

Boring ID: T2B4

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Crushed gravel and woody plant material mixed with soil
T2B4 2-4 (PID: 0.9 ppm)			SM/SW	Dark brown silty SAND with gravel, moist (FILL). No petroleum sheen or odor.
(1.3			SW	Brown gravelly SAND, loose, wet (FILL). Gravel is small and mixed rounded and angular. Black, tar-like material at 9 ft. No petroleum sheen or oder present.
ppm)				Reddish-brown medium SAND with rounded gravel, wet (FILL)
(1.0 ppm)			SP	
T2B4 18-20			SP	Reddish-brown medium SAND with rounded gravel, loose, saturated (FILL). Glass shards and brick fragments. Petroleum odor and sheen observed. 2-inch layer of broken glass and crushed rock at 18 ft bgs
(37.4 ppm)				
T2B4		22	SP	Reddish-brown medium SAND with rounded gravel, loose, very wet (FILL). Few glass shards.
(31.5		24	SP	Gray fine SAND with few small pebbles, wet (NATIVE)

Notes:

FT BGS = Feet Below Ground Surface

= denotes start of water saturated soil
Boring L	ocation:	T2B4		Boring T2B4 Date 12/6/2012 Sheet 1 of 2 Job JFOS Job No. 010128-01.04 010128-01.04 Logged By NS/LG Weather Rain Drilled By Cascade 0 Drill Type/ Method Geoprobe Sampling Method 50'
DID	Sample (fe From	e Depth eet) To	Sample Recovery ¹	DESCRIPTION: Density, moisture, color, minor, MAJOR CONSTITUENT, non-soil substances: Odor, staining, sheen, slag, etc.
			15 	Very limited recovery in this interval included dark brown fine silty sand and gravel with heavy sheen. Recovered volume was poured into homogenization bowl for metals TCLP analysis. (Sample ID: T2B4-15- 20-121206)
0.0	23	24 5		Medium stiff, moist, grey, fine to medium well-graded SAND with few fines, no odor, no sheen (Sample ID: T2B4-23-24.5-121206)
			24	- 24 to 24.5 stiff, grey, clayey SILT, no odor, no sheen
0.0	25	27	26	Medium stiff, moist, grey, fine to medium well-graded SAND with few fines, no odor, no sheen (Sample IDs: T2B4-25-27-121206 and T2B4- 27-28.3-121206)
0.0	27	28.3	27 28 29	
0.0	30	32	30 31	Medium stiff, moist, grey, fine to medium well-graded SAND with few fines, no odor, light sheen at the top of from 30 to 31 (Sample IDs: T2B4-30-32-121206 and T2B4-32-33.3-121206)
0.0	32	33.3	32 33 34	

Boring L	ocation:	T2B4	Bc Jo Lo	ring T2B4 Date 12/6/2012 Sheet 2 of 2 b JFOS Job No. 010128-01.04 gged By NS/LG Weather Rain
			Dr	Il Type/ Method Geoprobe
			Bo	ttom of Boring 50'
DIA	Sample (fe	e Depth eet)	mple covery ¹	DESCRIPTION: Density maisture color minor MA IOR CONSTITUENT non-soil
	From	То	Re	substances: Odor, staining, sheen, slag, etc.
0.0	35	37	35	Medium stiff, moist, grey, fine to coarse well-graded SAND with few fines, no odor, no sheen (Sample IDs: T2B4-35-37-121206 and T2B4-
0.0	37	30	30	37-39-121206)
0.0	51	- 55	38	
			39	_
0.0	40	42	40	Medium stiff, moist, grey, fine to coarse well-graded SAND with few fines, no odor, no sheen (Sample ID: T2B4-40-42-121206)
			42	-
			43	
			44	- increasing fine sand with depth
			45	Medium stiff, moist, grey, fine to course well-graded SAND with few fines, no odor, no sheen. Fine sands increase with depth
			47	@45 to 45.5' decomposed wood debris layer
			48	
			49	
			50 —	

Notes:

1. No soil was collected from 0 to 15 feet below ground surface

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,770.3 Longitude/Easting: 1,275,888.6

Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 9.5 ft

Boring ID: T3B1

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location: 8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

		0		Crushed gravel with few slag
		1 1 	SW	Dark brown and black gravelly SAND with and red brick fragments, dry (FILL)
		2	SP	Reddish-brown fine SAND, loose, dry (FILL)
		3		Turns to gray color at 4.5 ft bgs.
T3B1 3-5		4		
(PID: 1.1 ppm)		5		
			SP	Grav fine SAND, dense, moist (FILL)
		6		
		7		
			SP	Dark gray medium sand, loose, moist (FILL). Tree branch fragment at 7.5 ft.
		8	SP	Gray coarse SAND, loose, moist (FILL)
T3B1		9		
8-10 (3.6			ML	Gray and reddish brown SILT, very soft, saturated (NATIVE)
ppm)		10	SM	Gray silty fine SAND, dense, saturated (NATIVE)
		12		
T3B1 13-15		14	ML/SP	Lense of gray fine sandy SILT 14 - 14.3 ft with gray very fine SAND below
(176 ppm)		15		Petroleum odor and sheen observed.

Notes:

- FT BGS = Feet Below Ground Surface
- USCS = Unified Soil Classification System, modified from ASTM D2488 = denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,771.6 Longitude/Easting: 1,275,859.1 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 14 ft

Boring ID: T3B2

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy, approx 50 degrees

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Crushed gravel
			SW	Dark brown gravelly SAND, loose, dry (FILL)
T3B2 3-5 (PID: 1.6 ppm)			SP	Brown very fine SAND with trace gravel, moist (FILL). No petroleum odor or sheen, no fill debris observed.
			SP	Brown fine SAND, moist (FILL). No gravel, no petroleum odor or sheen.
		7	SM	Light brown, silty SAND, stiff, dry (FILL?).
		8		Light reddish-brown, fine silty SAND, moist (NATIVE).
			SM	
T3B2 8-10 (1.9 ppm)			SP	Gray and red fine SAND, dense, moist (NATIVE).
FF,				
			SM	Llight brown, silty SAND mottled with light reddish-brown, moist (NATIVE).
		13	ML	Reddish-gray fine sandy SILT, very soft, moist (NATIVE). No gravel or debris fill noted. No petroleum sheen or odor.
T3B2 13-15 (1.9 ppm)			ML	Gray, sandy SILT, stiff, wet (NATIVE). No gravel or debris fill observed. No petroleum sheen or odor.

Notes:

- FT BGS = Feet Below Ground Surface
 - = denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,770.7 Longitude/Easting: 1,275,827.1

-0 г

Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 13 ft

Boring ID: T3B3

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather cloudy and rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Crushed gravel and woody plant material.
T3B3 3-5 (PID: 1.3			SP	Reddish-brown, fine SAND, moist with trace gravel and some asphalt pieces throughout, moist (FILL). No petroleum sheen or odor. No debris fill observed.
PP)				
T3B3 8-10 (1.8 ppm)			SP	Reddish-brown fine SAND, moist (FILL). Minimal recovery Whitish-red brick fragments at 10 ft bgs.
T3B3 13-15			SM	Gray very fine silty SAND, wet (NATIVE).
(2.2 ppm)		15		

Notes:

FT BGS = Feet Below Ground Surface

= denotes start of water saturated soil

FLOYD | SNIDER strategy • science • engineering

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,771.2 Longitude/Easting: 1,275,805.8 Drill Date: January 13, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 25 ft Groundwater ATD (ft bgs): 19 ft

Boring ID: T3B4

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Woody plant debris and crushed gravel.
		3		
T3B4 3-5		4	GP	Dark brown GRAVEL mixed with whitish-red degraded brick fragments (FILL). Minimal recovery.
(PID: 1.9 ppm)				
		9	SW	Gray and brown gravelly SAND (FILL) with black tar-like material (asphalt?).
(1.7 ppm)		10	SW /	Light brown gravelly SAND (FILL).
			SP	Plack SAND with trace small gravel maint (EILL). Some woody plant debris and
			01	black tar-like material. Slight sheen observed.
		13		
T3B4		14		
(0.5		15		Grav crushed GRAVEL (small and rounded) with minimal sand content moist
ppm)		16	GP	(FILL).
(10.2		17		
ppm)			SP	Reddish-brown fine SAND, dense, moist (FILL). No petroleum sheen or ordor.
		19	SP	Black coarse SAND with black tar-like material mixed with woody (plant?) debris (FILL). Saturated at 19 ft.
		21	SP	Dark gray SAND, wet (FILL). Some rounded gravel, glass fragments and woody plant debris.
T3B4				
23-25 (1.1		24	SM	Gray fine silty SAND, saturated (NATIVE). Petroleum sheen and odor at 24 ft.

Notes:

- FT BGS = Feet Below Ground Surface
- USCS = Unified Soil Classification System, modified from ASTM D2488

= denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,745.3 Longitude/Easting: 1,275,858.1 Drill Date: January 14, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 11.5 ft

Boring ID: T4B2

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Broken asphalt and crushed gravel
			SM	
		2		Dark brown silty SAND with gravel (FILL).
T4B2 3-5 (PID: 1.9 ppm)		4	SP	Brown fine SAND (FILL). No gravel or debris fill observed.
			SP	Light brown with orange, dense, dry SAND (FILL).
			SW	Dark brown coarse SAND (NATIVE).
			SP	Dark brown fine SAND (NATIVE).
T4B2 8-10 (1.5			ML	Reddish-gray/brown SILT, dry (NATIVE). No gravel or debris
ppin)				
			SM	Reddish-brown fine silty SAND, moist (NATIVE).
T4B2 13-15 (2.1 ppm)			ML	Light gray sandy SILT, soft wet (NATIVE).

Notes:

- FT BGS = Feet Below Ground Surface
 - = denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,755.6 Longitude/Easting: 1,275,828.2 Drill Date: January 14, 2011 Logged By: Lisa Meoli Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 12 ft

Boring ID: T4B3

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Crushed gravel and vegetation
			SM	Dark brown silty SAND (topsoil) with some vegetation and trace gravel.
T4B3 3-5 (PID: 0.8 ppm)		4 4 5 5	SP	Brown fine SAND, dry (FILL).
			SW	Dark brown coarse SAND, dry (FILL).
T4B3 8-10 (2.2 ppm)		9 	ML	Light reddish-brown SILT, very stiff with trace fine sand, dry, oxidized (FILL?)
			51/1	Readish brown very fine silty SAND, saturated.
T4B3 13-15 (2.8 ppm)			ML	Gray SILT, soft, wet (NATIVE).

Notes:

FT BGS = Feet Below Ground Surface

= denotes start of water saturated soil

Coordinate System: State Plane, NAD83 Ground Surface Elevation: NA Latitude/Northing: 195,715.3 Longitude/Easting: 1,275,855.9 Drill Date: January 14, 2011 Logged By: Dean Brame Drilled By: Cascade Drilling Drill Type: Direct Push Geoprobe Sample Method: direct push 2"x5' core Boring Diameter: 2 inches Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 9 ft

Boring ID: T5B3

Project: Jorgensen Forge PLO Task: BP2-JFOS Site Location:8351 E. Marginal Way S., Seattle, WA

Remarks: weather rainy

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
Type/Depth	RECOVERED	(FT BGS)	SYMBOL	

				Topsoil and crushed gravel
T5B3 3-5 (PID: 2.8			SW	Dark brown gravelly SAND, dry (FILL). Pale orange brick fragments 2.5 - 4 ft bgs. Light gray concrete at 3.5 ft bgs.
ppm)			50	Dark brown coarse SAND, moist (FILL).
T5B3 8-10 (3.3 ppm)		9 	CL SM CL SM	Brown to gray fine silty SAND, wet (FILL). Dark gray silty CLAY, medium plasticity, wet (FILL?). Dark grayish-brown fine sandy SILT, very wet (NATIVE).
T5B3 13-15 (2.8 ppm)			SP	Brown coarse SAND with orange mottling, wet (NATEIVE).

Notes:

- FT BGS = Feet Below Ground Surface
 - = denotes start of water saturated soil

DEPTH TO GROUNDWATER AT TIME OF DRILLING SOIL SAMPLE LOCATION AND IDENTIFICATION VOLATILE ORGANIC VAPOR MEASUREMENT USING PHOTOIONIZATION DETECTOR

INTERFACE TO NATIVE-TYPE SOIL, AS FIELD IDENTIFIED SILTY SAND AND SILTY SAND WITH GRAVEL

	-	LOG OF BOF	RING JF DGP1	
		JORGENS PHASE 2 SOI SEATTLE,	SEN FORGE L INVESTIGATION WASHINGTON	
FARALLON CON 975 5th Avenue M Issaquah, WA	ISULTING Northwest 98027	FARALLON	PN: 394-001	
Drawn By:DEW	Checked By: JP	Date:5/17/12	Disk Reference:394001	2

			FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Log of A JF-DGP1	ng 1	ed	B	oriı	ng:			F	Page 1 of 1	
Cli Pre	ient oje	t: ct:	Jorgensen Forge Corporation Jorgensen Forge	Date/Time Started Date/Time Comple Equipment:	l: eted:	3/29/ 3/29/ Geop	3/29/121400Drive Hammer (lbs.):3/29/121600Depth of Water (ft):GeoprobeVertical Boring Depth (Auto 12-15' bgs (ft bgs): 34.5		
Fa	cat rall	on	PN : 394-001	Drilling Company: Drilling Foreman:	Casc Elijah	ade I n Floy	Drilling /d	, LP Ir	iclined Boring Dept	h (ft)	-	40		
Lc	ogg	ed	By: Jon Peterson	Sampler Type:		5' Ma	5' Macrocore							
Vertical Depth (feet bgs)	Inclined Depth	Sample Interval	Lithologic Descriptio	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppmv)	Sample ID	Sample Analyzed	Bo Con [ring/Well Istruction Details	
0_	0		0-2' (lineal): Well-graded SAND with silt and grave sand and gravel, brown to black, moist, no odor, f substance*. (Silt is undifferentiated from clay).	el, fine to coarse ine black	SW-SN	/	40	NA	0.8	JF-DGP1-0-1.7	x		Bentonite	
- 5- -	5-		5-7' (lineal): Well-graded SAND with silt and grave sand and gravel, brown to black, moist, no odor, f substance*.	el, fine to coarse ine black	SW-SN	/	40		1.1	JF-DGP1-SO-4.3-6.1	x		Seal	
- 10 -	10 -		10-12.5' (lineal): Well-graded SAND with silt and g coarse sand and gravel, reddish brown to black, r wood, fine black substance*. (Silt is undifferentiate	gravel, fine to noist, no odor, ed from clay).	SW-SN	1	50		1.3	JF-DGP1-SO-8.7-10.8, JF-DGP1-SO-8.7-10.8[X			
- - 15 -	15 -		15-18' (lineal): Silty SAND with gravel, fine to coal gravel, orange to black, wet, no odor, light sheen, substance*.	rse sand and fine black	SM		60		1.2	JF-DGP1-SO-13-15.6	x	Ţ	2	
- 20 -	20 -		20-22.3' (lineal): Silty SAND with gravel, fine to co gravel, orange to black, wet, odor, sheen, wood, f substance*.	base sand and ine black	SM ML		70		2.3	JF-DGP1-SO-17.3-19.9 IF-DGP1-SO-17.3-19.9	, x X			
-	25 -		22.3-23.3 (inteal). Sandy Sic1, inte sand, gray to		SM		96		1.1	JF-DGP1-SO-21.7-24.2	2 x			
- 25 -	30 -		25-29.8' (lineal): Silty SAND, fine, gray, wet, no or downward. Soil below 25' (lineal) was field-identifi with "Native soils" identified in the Boeing Phase	dor, coarsening ed as consistent 1 investigation.	 		96		1.0 1.1	JF-DGP1-SO-24.2-25.8 JF-DGP1-SO-26-28.6	3 X X			
-		X	30-31' (lineal): Silty SAND, fine to medium sand, g	gray, wet, no	SM SW-SN	/			1.0	JF-DGP1-SO-28.6-30.1 (archived)				
30	35 -		31-34.8' (lineal): Well-graded SAND with silt, fine gray, wet, no odor, some thin silty layers.	to medium, dark	SW-SN		96		1.2 1.1					
35	40 -		35-39.8' (lineal): Well-graded SAND with silt, fine gray, wet, no odor.	to medium, dark										

	Well Construction Information											
Monument Type:	NA	Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA							
Casing Diameter (in):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft msl):	NA							
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location: X:	1275795.286							
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Y:	195799.4743							

٦

	FARALLON consulting 975 5th Avenue Avenue of 0002		Lo	g o	of E	Bor	'n	g: JF-DGF	2	Page 1 of 1
Client Projec Locat Farallo	Jorgensen Forge Corporation ct: Jorgensen Forge ion: Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	d: eted: :	3/29/12 0830 Sampler Type: 5' Macrocore 3/29/12 1030 Drive Hammer (Ibs.): Auto Geoprobe Depth of Water ATD (ft bgs): 6 Cascade Drilling, LP Total Boring Depth (ft bgs): 40 Elijah Floyd Total Well Depth (ft bgs): NA Direct Push Kerner						ocore Auto bgs): 6 igs): 40 ij: NA
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
$ \begin{array}{c} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	0-2' bgs: Well-graded SAND with silt and gravel, fine fine to coarse gravel, brown to black, moist, no odor substance*. 5-6' bgs: Well-graded SAND with silt and gravel, fine fine to coarse gravel, brown to black, moist, no odor substance*. 6-6.5' bgs: Sandy SILT with gravel, fine to coarse sa orange to brown, wet, no odor. 10-11.8' bgs: Sandy SILT with gravel, fine to coarse orange to brown, wet, no odor, glass, low plasticity, 10-11.8' bgs: Sandy SILT transitioning to poorly grade orange to brown, wet, no odor, silt clasts. Soil bell field-identified as consistent with "Native soils" ident Phase 1 investigation. 20-24.8' bgs: Poorly graded SAND with silt grades to SAND with silt, fine to medium, gray, wet, no odor, v 25-26' bgs: Well-graded SAND with silt, fine to medi odor. 27-29.8' bgs: Well-graded SAND with silt, fine to medi odor. 30-31' bgs: Well-graded SAND with silt, fine to medi odor. 31-31.5' bgs: Poorly graded GRAVEL, coarse grave medium sand, gray, wet, no odor. 35-38.8' bgs: Well-graded SAND with silt, fine to medi	e to medium sand, , fine black e to medium sand, , fine black ind and gravel, inorganic. ded SAND with ow 18' bgs was ified in the Boeing ded SAND with ow 18' bgs was ified in the Boeing diffed in t	SW-SN SW-SN ML ML SP-SN SP-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN SW-SN		 41 30 35 97 97 97 97 25 100 	NA	0.6 0.3 0.7 0.5 0.4 0.4 0.3 0.5 0.9 0.7	JF-DGP2-SO-00-02, JF-DGP2-SO-02 JF-DGP2-SO-05-06.5 JF-DGP2-SO-00-10 JF-DGP2-SO-10-11.8 JF-DGP2-SO-10-20 JF-DGP2-SO-10-20 JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-15-17, JF-DGP2-SO-20-22 JF-DGP2-SO-20-22 JF-DGP2-SO-20-22 JF-DGP2-SO-22-24 JF-DGP2-SO-25-27, JF-DGP2-SO-25-27, JF-DGP2-SO-25-27, JF-DGP2-SO-29-29.8 JF-DGP2-SO-30-31.5	x x x x x x x x x x x x x x x x x x x	Bentonite Seal T

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: 1275789.877 Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Y: 195806.697

	FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	Bor	ing	JF-DGP	' 3	Da	uge 1 of 1	
Client Projec Locat Farall	t: Jorgensen Forge Corporation ct: Jorgensen Forge ion: Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	3/28/ 3/28/ Geop Casc Elijah Direc	12 1 12 1 probe ade Floy	245 400 e Drilling yd sh	; [I, LP []]]	Page 1 or Sampler Type: 5' Macrocore Drive Hammer (Ibs.): Auto Depth of Water ATD (ft bgs): 10.5 Total Boring Depth (ft bgs): 35 Total Well Depth (ft bgs): NA				
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bori Cons De	ng/Well struction etails	
	0-3' bgs: Well-graded SAND with silt and gravel, fine fine to coarse gravel, black and gray, moist, no odor substance*. (Silt is undifferentiated from clay).	e to medium sand, , fine black	SW-SN	/	60	NA	1.0 1.3	JF-DGP3-SO-00-02 JF-DGP3-SO-02-03	x x		Bentonite Seal	
5	5-6' bgs: Well-graded SAND with gravel, fine to med coarse gravel, black and gray, moist, no odor, yellow black substance*.	dium sand, fine to	SW SW-SI		50		1.9 3.4	JF-DGP3-SO-05-07 JF-DGP3-SO-07-07.5	x x			
	and gravel, brown with black to red area past 7' bgs 10-12' bgs: Silty SAND with gravel, fine to medium s coarse gravel, orange, wet, no odor.	, moist, no odor.	SM		40		1.1	JF-DGP3-SO-10-12	x		•	
	15-16.5' bgs: Silty SAND with gravel, fine to medium some coarse gravel, gray, wet, faint odor, sheen. (S \undifferentiated from clay).	n sand, fine and ilt is	SM		25		18.6	JF-DGP3-SO-15-16.5, JF-DGP3-SO-15	x			
20	20-21' bgs: Well-graded SAND with gravel, fine to c y gravel, gray, wet, no odor, light sheen, glass, fine bl	oarse sand, fine ack substance*.	SW		20			JF-DGP3-SO-20-21	x			
25	25-29' bgs: Silty SAND, fine, gray, wet, no odor, ligh to coarse gravel at 27.5' bgs, wood. Soil below 25' identified as consistent with "Native soils" identified Phase 1 investigation.	t sheen, trace fine bgs was field- in the Boeing	SM		80		5.2	JF-DGP3-SO-25-27 JF-DGP3-SO-27-29, JF-DGP3-SO-27-29D	x x x			
30	30-34.8' bgs: Well-graded SAND with silt, fine sand, to wet, no odor, no sheen.	dark gray, moist	SW-SN	/	100		5.6 2.3	JF-DGP3-SO-30-32	x			
				1						L		

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X: 1275812.864 Screened Interval (ft bgs): NA Bentonite Y: 195805.095 Boring Abandonment:

Boring L	ocation:	JFDGP3		Boring JFDGP3 Date 12/6/2012 Sheet 1 of 1 Job JFOS Job No. 010128-01.04
OIA	Sample (fe From	e Depth eet) To	Sample Recovery ¹	DESCRIPTION: Density, moisture, color, minor, MAJOR CONSTITUENT, non-soil substances: Odor, staining, sheen, slag, etc.
0.0	32	34	30	Medium stiff, moist, grey, fine to medium well-graded SAND with few fines, no odor, no sheen (Sample ID: JFDGP3-32-34-121206)
0.0	35	37	35 — 36 —	Medium stiff, moist, grey, fine to course well-graded SAND with few fines, no odor, no sheen (Sample IDs: JFDGP3-35-37-121206 and JFDGP3-37-39-121206)
0.0	37	39	37 38 39	
0.0	40	42	40 41 42 43 44	Medium stiff, moist, grey, fine to course well-graded SAND with few fines, no odor, no sheen (Sample ID: JFDGP3-40-42-121206)
0.0	47	48.5	45 46 47 48 49 50	45 to 46 medium stiff, moist, grey, fine to medium silty SAND with few fines, no odor, no sheenm with decomposing wood debris. 46 to 48.5 Medium stiff, moist, grey, fine to course well-graded SAND, no odor, no sheen (Sample ID: JFDGP3-47-48.5-121206; not analyzed)

Notes:

1. No soils were collected at this location from 0 to 30 feet below ground surface.

-		FARALLON consulting 975 5th Avenue Northwest Issanuah, Washington 98027		Lo	g o	of E	Bor	inç	j: JF-DGF	9 4	Pi	age 1 of 1	
Cli Pro Lo Fa	ent oje cat rall	Jorgensen Forge Corporation Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	3/28/ 3/29/ Geop Casc Elijah Direc	12 1 712 1 probe ade n Floy	400 1200 e Drilling yd sh	Sampler Type: 5' Macrocore Drive Hammer (Ibs.): Auto Depth of Water ATD (ft bgs): 12 ling, LP Total Boring Depth (ft bgs): 35 Total Well Depth (ft bgs): NA					
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con: D	ing/Well struction letails	
0		0-3' bgs: Well-graded SAND with gravel, fine to coars gravel, brown to black, moist, no odor.	se sand and	sw		60	NA	0.5 0.5	JF-DGP4-SO-00-02 JF-DGP4-SO-02-03	x x		Bentonite	
5-		5-8' bgs: Well-graded SAND with gravel, fine to coars gravel, brown to black, moist, no odor, yellow flecks.	se sand and	sw		70		0.9 1.1	JF-DGP4-SO-05-07 JF-DGP4-SO-07-08.75 JF-DGP4-SO-08-8.8	x x x		Seal	
10 -		10-11' bgs: Well-graded SAND with silt and gravel, fi and gravel, brown to black, moist, no odor, fine black 11-13.8' bgs: Silty SAND with gravel, fine to medium	ne to coarse sand substance*.	SW-SN		70		1.1 1.3	JF-DGP4-SO-10-12 JF-DGP4-SO-12-13.75	x x		¥	
15 -		15-17.8' bgs: Well-graded GRAVEL with silt and san sand and gravel, orange to black, wet, odor and sheet depth, wood, fine black substance*.	d, fine to coarse en increasing with	GW-GN		50		3.4 14.9	JF-DGP4-SO-15-17 JF-DGP4-SO-17-17.5, JF-DGP4-SO-17	x X			
20 -		20-21.5' bgs: Well-graded SAND with silt and gravel, sand, mostly fine gravel, dark gray, wet, no odor, gla black substance*.	, fine to coarse ss, sheen, fine	SW-SN		70		23.8 5.9	JF-DGP4-SO-20-22, JF-DGP4-SO-21 JF-DGP4-SO-22-23.5	X X X			
25 -		21.5-23.5' bgs: Organic SOIL, trace fine sand, black faint odor, sheen, wood, organic, moderate plasticity 25-28' bgs: Sandy SILT, fine sand, black, wet, odor,	to brown, wet,	ML SM		95		28.1 10.7	JF-DGP4-SO-25-27, JF-DGP4-SO-25-27D, JF-DGP4-SO-26 JF-DGP4-SO-27-29 JF-DGP4-SO-27-29.5	xxx x x			
30 -		28-29.8' bgs: Silty SAND, fine to medium sand, gray, sheen, coarsening downward. Soil below 28' bgs wa as consistent with "Native soils" identified in the Boei i investigation.	wet, no odor, no s field-identified ing Phase 1	SW-SN		95		17.1 34.1 2.7	JF-DGP4-SO-30-32, JF-DGP4-SO-31 JF-DGP4-SO-32-34, JF-DGP4-SO-33 JF-DGP4-SO-34-35 (archived)	xx xx			
40 -		30-31' bgs: Silty SAND, fine to medium sand, gray to odor, no sheen. 31-34.8' bgs: Well-graded SAND with silt, fine to coa gray, wet, no odor, no sheen. (Lithology from 34-34.8 obtained from an adjacent boring on 3/30/12).	b brown, wet, faint rse sand, dark 3 ' bgs was						(GIONIYOU)				

Well Construction Information

Monument Type: NA		Filter Pack:	NA	Ground Surface Eleva	ation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:1275806	.080
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: 195798.5	570

-		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	Bor	ing	g: JF-DGP	°5	Page 1 of 1
Clic Pro Loc Fai	ent ojec cat rall gg	Jorgensen Forge Corporation Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	3/29/121015Sampler Type:5' Macrocore3/29/121400Drive Hammer (lbs.):GeoprobeDepth of Water ATD (ft bgs):Cascade Drilling, LPTotal Boring Depth (ft bgs):Elijah FloydTotal Well Depth (ft bgs):Direct Push						ocore Auto bgs): approx. 10 gs): 30): NA	
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_ - -		0-2' bgs: Well-graded SAND with gravel, fine to medi coarse gravel, brown, moist, no odor, rock fragments	ium sand, fine to at 2' bgs.	sw		40	NA	0.6	JF-DGP5-SO-00-02, JF-DGP5-SO-02	x x	Bentonite
5-		5-7' bgs: Well-graded SAND with gravel, fine to medi coarse gravel, brown, moist, no odor.	ium sand, fine to	sw		40		0.5	JF-DGP5-SO-05-07 JF-DGP5-SO-00-10	x x	Seal
- 10		10-11' bgs: Silty GRAVEL with sand, mostly fine graves sand, black, wet, no odor. 11-14.5' bgs: Silty SAND with gravel, fine to medium gray, wet, no odor.	vel, fine to coarse	GM SM		90		0.8 0.8	JF-DGP5-SO-10-12 JF-DGP5-SO-12-14 JF-DGP5-SO-14-14.5	x x x	-
15 - - - -		 15-17' bgs: Silty GRAVEL with sand, mostly fine gravely sand, black, wet, no odor, fine black substance*. (Silty undifferentiated from clay). 17-19' bgs: Silty SAND with gravel, fine to medium subrown to black, wet, no odor, fine black substance*. 	vel, fine to coarse t is/ and, fine gravel,/	GM GW		98		1.1 0.9	JF-DGP5-SO-15-17, JF-DGP5-SO-16 JF-DGP5-SO-17-19 JF-DGP5-SO-10-20 JF-DGP5-SO-19-19.8	x x x x x	
20 -		19-19.8' bgs: Well-graded GRAVEL with silt and san gravel and sand, gray, wet, no odor, glass and wood 20-21' bgs: Well-graded SAND with silt and gravel, fi sand, fine gravel, gray, wet, no odor, light sheen. 21-21.3' bgs: Silty GRAVEL with sand, coarse, black fine black substance*	d, fine to coarse	SW-SN		23		2.4	JF-DGP5-SO-20-21.25	x	
25 -		25-27.5' bgs: Well-graded SAND with silt, fine to med gray, wet, no odor, glass at 25.5' bgs. Soil below 26' identified as consistent with "Native soils" identified in Phase 1 investigation.	dium sand, dark bgs was field- n the Boeing	SW-SN	1	50		2.5 2.5	JF-DGP5-SO-25-27, JF-DGP5-SO-26 JF-DGP5-SO-27-27.5 JF-DGP5-SO-20-30	x x x x	

Well Construction Information

Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X:1275795.502 Screened Interval (ft bgs): NA Bentonite Y: 195791.735 **Boring Abandonment:**

-		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	3or	ing	JF-DGP	6	Page 1 of 1
Cli Pro Lo Fa	ent ojeo cat rallo	Jorgensen Forge Corporation Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	l: eted: :	3/30/ 3/30/ Geop Casc Elijah Direc	30/12 1000 Sampler Type: 5' 30/12 1200 Drive Hammer (Ibs. 30/12 1200 Depth of Water ATE 30probe Depth of Water ATE ascade Drilling, LP Total Boring Depth ijah Floyd Total Well Depth (ft rect Push					ocore Auto bgs): 7 gs): 35): NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		0-2.2' bgs: Well-graded SAND with silt and gravel, fin and gravel, brown to black, moist, no odor. (Silt is un from clay).	e to coarse sand differentiated	SW-SN	1	40	NA	0.9	JF-DGP6-SO-00-02 (archived)		Bentonite Seal
5-		5-7.5' bgs: Silty SAND with gravel, heterogenously m coarse sand and gravel, brown to black, moist to wet odor, fine black substance*.	ixed fine to at 7' bgs, no	SM		50		1.1 0.8	JF-DGP6-SO-05-07 (archived) JF-DGP6-SO-07-07.5 (archived)		•
10 -		10-11' bgs: Silty GRAVEL with sand, mostly fine grav sand, brown, wet, no odor. 11-14' bgs: Silty GRAVEL with sand, fine to coarse g black and orange, wet, no odor, fine black substance	rel, fine to coarse	GM GM		80		1.2 1.0	JF-DGP6-SO-10-12 JF-DGP6-SO-12-14	x x	
15 -		15-16.5' bgs: Silty GRAVEL with sand, fine to coarse black and orange, wet, no odor, fine black substance 16.5-19' and 20-22' bgs: Silty SAND with gravel, hete mixed fine sand and fine to coarse gravel, orange to	gravel and sand, *, no sheen. erogenously black, wet, odor,	GM SM		80		1.0 18.7	JF-DGP6-SO-15-17 JF-DGP6-SO-17-19, JF-DGP6-SO-18.5	x x x	
20 -		sheen, much wood and glass. 22-24.5' bgs: Silty SAND grading to SILT, fine sand, moist, no odor, no sheen, inorganic with low plasticity	brown, wet to	SM SM/ML		100		14.2 3.4 1.0	JF-DGP6-SO-20-22, JF-DGP6-SO-21 JF-DGP6-SO-22-24 JF-DGP6-SO-24-24.5	x x x	
30 -		 24.5-24.8' bgs: SILT, trace fine sand, gray, moist, no moderate plasticity. 25-29.8' bgs: Well-graded SAND with silt, fine to mec gray, moist, no odor, clay clasts. Soil below 25' bgs w as consistent with "Native soils" identified in the Boei investigation. 	odor, inorganic, dium sand, dark vas field-identified ng Phase 1	SW-SN	1	75		10.3 1.3	JF-DGP6-SO-25-27, JF-DGP6-SO-26 JF-DGP6-SO-27-28.5 (archived) JF-DGP6-SO-30-32	x x	
35 -		30-34.8' bgs: Well-graded SAND with silt, fine to mec gray, moist, no odor, clay clasts.	lium sand, dark	SW-SN				1.4	(archived) JF-DGP6-SO-32-34 (archived) JF-DGP6-SO-34-35 (archived)		

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X:195795.6768 Screened Interval (ft bgs): NA Bentonite Y: 1275795.03 Boring Abandonment:

Auto Auto t bgs): 12 bgs): 35 s): NA Boring/Well Construction Details
Boring/Well Construction Details
Bentonite Seal
×

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: NA X:1275823.287 Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Y: 195807.707

	FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	Bor	ing	J: JF-DGS	52	Pac	ae 1 of 1
Client: Project: Locatio Farallon	Jorgensen Forge Corporation : Jorgensen Forge on: Seattle, WA n PN: 394-001 d By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	3/28/12 0940 ed: 3/28/12 1100 Geoprobe Cascade Drilling, Elijah Floyd Direct Push				Sampler Type: 5' N Drive Hammer (Ibs.) Depth of Water ATD Total Boring Depth Total Well Depth (ft	core Au gs): 10 js): 28 : N,	uto) 5 A	
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Borir Const De	ng/Well truction tails
	0-0.2' bgs: Gravel and asphalt debris. 0.2-2.8' bgs: Well-graded SAND with silt and gravel, sand and gravel, brown and black, moist, no odor, fi substance*. (Silt is undifferentiated from clay).	fine to coarse ne black	SW-SN	1	55	NA	1.0	JF-DGS2-SO-00-02 (archived) JF-DGS2-SO-02-02.8 (archived)		E S	Bentonite Seal
5 -	5-5.5' bgs: Well-graded SAND with silt and gravel, fi and gravel, brown and black, moist, no odor, fine bla 5.5-7.8' bgs: Well-graded SAND with silt and gravel, sand fining with depth, mostly fine gravel, brown, mo s undifferentiated from clay).	ine to coarse sand ack substance*. / , fine to medium pist, no odor. (Silt	SW-SN	A	55		1.0	JF-DGS2-SO-05-07 (archived) JF-DGS2-SO-07-07.8 (archived)			
	10-12' bgs: Silty SAND with gravel, fine to coarse sa brange with black and brown, wet, no odor, fine blac	and and gravel, ck substance*.	SM		40		1.3	JF-DGS2-SO-10-12 (archived)			
	15-19.8' bgs: Silty SAND with gravel, fine to medium gravel, brown, wet, no odor, clay clasts. Soil below a bgs was field-identified as consistent with "Native so he Boeing Phase 1 investigation.	n sand, coarse approximately 17' oils" identified in	SM		100		0.8 0.9	JF-DGS2-SO-15-17 (archived) JF-DGS2-SO-17-19 (archived) JF-DGS2-SO-19-19.8			
	20-24' bgs: Silty SAND with gravel, fine to medium s gravel, brown, wet, no odor.	sand, coarse	SM		100		0.8 0.9	(arcnived) JF-DGS2-SO-20-22 (archived)			
	24-24.8' bgs: Well-graded SAND with silt, fine to me wet, no odor.	edium, dark gray,	SW-SN								

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X:1275816.832 Screened Interval (ft bgs): NA Bentonite Y: 195791.096 Boring Abandonment:

-		FARALLON consulting 975 5th Avenue Northwest Issanuah, Washington 98027		Lo	g o	of E	Bor	inę	g: JF-DGS	3	Р	age 1 of 1	
Clic Pro Loc Fai	ent ojec cat rallo ggo	Jorgensen Forge Corporation ct: Jorgensen Forge ion: Seattle, WA on PN: 394-001 ed By: Jon Peterson	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	l: eted: :	3/28/ 3/28/ Geop Casc Elijah Direc	/28/12 1100 Sampler Type: /28/12 1240 Drive Hammer (Geoprobe Depth of Water Cascade Drilling, LP Total Boring Depth Ciljah Floyd Total Well Depth					5' Macrocore 55.): Auto TD (ft bgs): 15 hth (ft bgs): 35 (ft bgs): NA		
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con D	ing/Well struction)etails	
0_		0-2.5' bgs: Well-graded SAND with silt and gravel, fin and gravel, brown, moist, no odor. (Silt is undifferent	ne to coarse sand iated from clay).	SW-SM	1	50	NA	0.8	JF-DGS3-SO-00-02 (archived) JF-DGS3-SO-02-02.5 (archived)			Bentonite Seal	
5-		5-7.8' bgs: Well-graded SAND with silt and gravel, fin and gravel, brown to black at 6' bgs, moist, no odor, substance*.	ne to coarse sand fine black	SW-SM		55		0.9	JF-DGS3-SO-05-07 (archived) JF-DGS3-SO-07-07.8 (archived)				
10		10-14.8' bgs: Well-graded SAND with silt and gravel sand and gravel, brown with black areas at 11.5 and odor, fine black substance*.	, fine to coarse 13' bgs, moist, no	SW-SN	1	100		1.1 1.1 0.9	JF-DGS3-SO-10-12 (archived) JF-DGS3-SO-12-14 (archived) JF-DGS3-SO-14-14.8				
15 - - - - 20 - - - -		15-15.8' bgs: Poorly graded GRAVEL (1/2" minus), g 15.8-18.3' bgs: Well-graded SAND with silt and grav sand and gravel, brown and gray, wet, no odor. 18.3-19.8' bgs: Well-graded SAND with silt, fine to m coarse gravel, black, wet, no odor, wood, sheen, fine substance*.	gray, wet, no odor. el, fine to coarse nedium sand, trace e black	GP SW-SM SW-SM		100		0.9 1.0 0.9 0.8	(archived) JF-DGS3-SO-15-17 (archived) JF-DGS3-SO-17-19, JF-DGS3-SO-18.3-19 (archived) JF-DGS3-SO-20-22 (archived) JF-DGS3-SO-22-24 (archived)			▼	
25		21.2-24' bgs: Silty SAND with gravel, fine to medium coarse gravel, gray, moist, no odor, wood, no sheen 24-24.8' bgs: Well-graded SAND with silt, fine to me- fine gravel, dark gray, wet, no odor. Soil below 24' bg identified as consistent with "Native soils" identified i Phase 1 investigation. 30-32' bgs: Well-graded SAND with silt fining to silty dark gray, wet, no odor.	sand, fine to dium sand, trace gs was field- n the Boeing SAND, fine sand,	SW-SN		0 50		0.7	JF-DGS3-SO-24-24.8 (archived) JF-DGS3-SO-30-32 (archived)				
_	X		/										

Well Construction Information Monument Type: NA Filter Pack: Ground Surface Elevation (ft): NA NA Casing Diameter (inches): NA Surface Seal: Top of Casing Elevation (ft): NA Concrete Screen Slot Size (inches): NA Annular Seal: NA Surveyed Location: X:1275805.772 Screened Interval (ft bgs): NA Bentonite Y: 195783.301 Boring Abandonment:

-		FARALLON consulting 975 5th Avenue Northwest		Lo	g o	of E	3or	ing	I: JF-DGT	1	Page 1 of 1
Cli Pro Lo Fai	ent ojec cat ^r allo ggo	Lissaquan, Washington 9827 Lissaquan, 1927 Lissaq	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	3/28/ 3/28/ Geop Casc Elijah Direc	12 0 12 0 probe ade l a Floy t Pus	830 1940 Drilling /d	5 [, LP T T	Gampler Type: 5' I Drive Hammer (Ibs.) Depth of Water ATD Total Boring Depth Total Well Depth (ft	Vacr):) (ft (ft b bgs	ocore Auto ogs): 11 gs): 25): NA
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	'n	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_ - - - - - - - - - - - - - - - - - - -		0-0.3' bgs: Gravel and asphalt debris. 0.3-2.7' bgs: Silty SAND, fine to medium sand, trace fi brown, moist, no odor. (Silt is undifferentiated from cla 5-6.3' bgs: Silty SAND with gravel, fine to coarse sand brown, moist, no odor. (Silt is undifferentiated from cla	ine gravel, ay). d and gravel, ay).	SM		25	NA	0.6	JF-DGT1-SO-00-02 (archived) JF-DGT1-SO-02-02.75 (archived) JF-DGT1-SO-05-06.25 (archived)		Bentonite Seal
10 - - - - - - - - - - - - - - - - - - -		 10-11' bgs: Silty SAND with gravel, fine to coarse gravel, fining downward, brown, moist, no odor. (Silt is undiffered value). 11-13.8' bgs: Silty SAND, fine to medium sand, brown gray, no odor, clay clast. 15-17.5' bgs: Silty SAND with gravel, fine to medium sand, brown gravel, gray, wet, no odor. Soil below 15' bgs is consist soils" identified in the Boeing Phase 1 investigation. 17.5-19.8' bgs: Sandy SILT, fine to medium sand finin gray, wet to moist, no odor, inorganic, low plasticity. 	vel and sand erentiated from , moist to wet, sand, coarse stent with "Native	SM SM SM		100		0.8 0.7 0.6 0.7	JF-DGT1-SO-10-12 (archived) JF-DGT1-SO-12-13.8 (archived) JF-DGT1-SO-15-17 (archived) JF-DGT1-SO-17-19 (archived)		
20 -		20-21' bgs: Well-graded SAND with silt, fine to mediur wet, no odor. 21-23' bgs: Sandy SILT, fine, gray, wet to moist, no od low plasticity. 23-24.8' bgs: Well-graded SAND with silt, fine to medi wet, no odor.	dor, inorganic,	SW-SN		100		0.8			

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Casing Diameter (inches): NA Top of Casing Elevation (ft): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: NA X:1275829.189 Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Y: 195783.598

Proj Loca Proj Cont Logg	ect ition ect No. ractor ied by	Boeing Plant 2 03709 Weston Tim Fi	Boeing Plant 2 RFI Plant 2 Seattle, WA 03709-034-300 Weston Tim Fitzgerald			tort Date <u>09/13/94</u> Finish Date <u>09/13/94</u> Filler <u>Clay Griffith</u> Filling Method <u>4 in ID HSA</u> ampling Method <u>3 in SPT, 140 Ib hmr</u> Boring Diam. Total Depth (
(0))	Old	Lab Analysis	Sample Number Sample	Recovery Blows/ft Graphic Loa	USCS Code	Lithological Desc	ription					
	BC	VOC BNA Metols	SB-Ø8918-ØØ2Ø		35	10% RR bollast, loose	, moist (FILL).					
5	BG	VDC BNA Metols	SB-Ø8918-Ø050		SP	Sand (SP), brown (10 loose, moist (FILL).	YR5/3), 100% medium sond,					
	BC				ML	Siit (ML), dork gray medium sand, stiff, 1	107R4/1), 90% silt, 10% noist.					
10	BG				SP	Sand (SP), dark gra; sand, loose, wet.	(10YR5/1), 100% medium					
15	BG	VOC BNA Metois	SB-08918-0125									
20												

Project Boeing Plant 2 RFI Location Plant 2 Seattle, WA Project No. 03709-034-300 Contractor Weston Logged by Tim Fitzgerald			Start I Driller Drilling Sampli	Date (<u>Clay</u> Mething Me	09/13/94 Griffith od <u>4 in ID HSA</u> thod <u>3 in SPT, 140</u>	Finish Date <u>09/13/94</u> Drilling Co. <u>PTL</u> <u>b hmr</u> Boring Diam. (in) <u>10</u> Total Depth (ft) <u>14.00</u>
PID PID	L ab Analysis	Sample Number Sample Recoverv	Blows/ft Graphic Log	USCS Code	Lithological Descrip	tion
	VOC Metais	SB-08921-0020		SP	Sand (SP), prown (10YR medium dense, moist.	5/3), 100% medium sand,
5	VOC Metals	SB-08921-0050				
10		SB-08921-0125		ML	Silt (ML), gray (10YR5/ stiff, maist, trace twigs	0, 90%silt, 10% sond,
	VDC Metals	58-08921-0125		SP	Sand (SP) brawn (10Y medium dense, damp. Sand (SP), dark gray (sand, medium dense, w	R5/3) 100% medium sand, 10YR4/13, 100% medium et.
15				SP	Sand (SP) dark gray medium dense, wet. Sand (SP) dark gray (medium dense, wet. Sand (SP) dark gray medium dense, wet.	(10YR5/1) 100% medium sand, (10YR5/1) 100% medium sand, (10YR5/1) 100% medium sand,
20						

Proj Loco Proj Con Logo	ect ation ect N racto ged b	Boeing Plant 2 o. 03709 or Weston y Tim F	Plant 2 RFI Seattle, WA -034-300 Fitzgerald		Start Driller Drilling Sampl	Dote (Clay (Metho ing Me	09/13/94 Griffith od <u>4 in ID HSA</u> thod <u>3 in SPT, 140 Ib</u>	Finish Date <u>09/13/94</u> Drilling Co. <u>PTL</u> hmr Boring Diam. (in) <u>10</u> Total Depth (ft) <u>14.00</u>
	PID	Lab Analysis	Sample Number	Sample Recovery	Blows/ft Graphic Loa	USCS Code	Lithological Descriptio	วก
	2	VOC Metals	SB-08923-0020	X	n	SP	Sand (SP), brown (10YR5/ gravel to 1.5 inches, medi chemical odor.	3), 90% medium sand, 10% um dense, moist, trace
5	BG	VOC Metals	SB-08923-0050	X	13	T SP	Sand (SP), brown (10YR5) medium dense, moist.	3), 100% medium sand,
	BG			X	9	ML	Silt (ML), gray (10YR5/1), sand, stiff, moist, trace to	90% silt, 10% fine igs.
10	BG			X	8			
	BG	VOC Metais	SB-08923-0125	X	9	SP	Sand (SP), dark gray (10 medium sand, 5% silt, loo	rR4/1), 95% fine to se, wet.
15								
20								

Pro Loci Pro Con Logi	iect otion iect tract ged	Boein Plant No. 0370 tor <u>Westo</u> by <u>Tim</u>	g Plant 2 RFI 2 Seattle, WA 9-034-300 on Fitzgerald		Start Driller Drilling Sampli	Date <u>Clay</u> Mething Me	09/12/94 Griffith and <u>4 in ID HSA</u> ethod <u>3 in SPT, 140 II</u>	Finish Date <u>09/12/94</u> Drilling Co. <u>PTL</u> <u>b hmr</u> Boring Diam. (in) <u>10</u> Total Depth (ft) 14.00
C(1)	PID	Lab Analysis	Sample Number	Recovery	Graphic Log	USCS Code	Lithological Descript Graveland sand - comp	ion acted adjacent to RR
	BC	VOC PCB HCID Metals	5B-09101-0020 X	X		SP	Sand (SP), grayish brown sand, 5% rounded gravel moist.	to 1/2 inch. loose,
5	BG	VOC PCB HCID Metals	SB-09101-0050	N				
	BC			16	Ī	ML	Silt (ML), gray (10YR5/1), sand, stiff, moist, some o twigs) throughout , © 12	90% silt, 10% fine organics (grass and ft - wet.
10	8C			16				
	BG	VOC PCB HCID Metais	SB-09101-0125	9				
15								
20								

Project Location Project I Contract Logged I	Boeing Plant 2 No. 03709- or Weston by Tim F	Plant 2 RFI Seattle, WA -034-300 Fitzgerald	Start Driller Drilling Sampli	Date (<u>Clay (</u> Methong Me	09/12/94 Finish Date 09/12/94 Griffith Drilling Co. PTL od 4 in ID HSA
PID	Lab Analysis	Sample Number Somple	Recovery Blows/ft Graphic	Lode Code	Lithological Description
BG	VOC PCB HCID Metals	SB-09105-0020	"	SP	Sand (SP), brown(10YR5/3), 90% medium sand, 5% gravei to 1/2 inch, 5% silt, loose, moist, trace twigs.
5 BG	VOC PCB HCID Metols	SB-09105-0050	8		
BG			8	ML	Silt (ML), gray (10YR5/1), 90% silt, 10% fine sond, stiff, moist, trace grass and twigs throughout.
10 BG			7		
BG	VOC PCB HCID Metals	SB-09105-0125			
15					
- 20				Ī	

Boeing Plant 2 RFI Location Plant 2 Seattle, WA Project No. 03709-034-300 Contractor Weston Logged by Tim Fitzgerald				Start Driller Drilling Samp	Start Date 09/12/94 Finish Date 09/12/94 Driller Clay Griffith Drilling Co. PTL Drilling Method 4 in ID HSA Sampling Method 3 in SPT, 140 Ib hmr Boring Diam. (in)							
	Old	L ab Analysis	Sample Number Sample	Kecovery Blows/ft Graphic Loa	USCS	Lithological Description						
	BC	VOC PCB HCID Metais	SB-09106-0020		SP	Sand (SP), brown (10YR5/3), 95% medium sand, 5% rounded gravel to 1/2 inch, trace silt, loase, moist.						
5	BG	VOC PCB HCID Metals	SB-09106-0050									
	BC				SM	Silty sond(SM), dork groy (10YR4/1), 80% medium sond, 20% silt, medium dense, moist.						
10	BG		SB-09106-0100		SP	Silt (ML), dork groy (10YR4/1), 90% silt, 5% fine sond, 5% twigs throughout, stiff, moist. Sond (SP), dork groy (10YR4/1), 100% medium sond, trace silt, loose, wet.						
	BG	VOC PCB HCID Metols	SB-09106-0125	6								
15												
0												

ProjectBoeingRFILocationPlant 2 Seattle, WAProject No.03709-034-300ContractorWestonLogged byHose			Start Date <u>03/10/95</u> Driller Drilling Method <u>S. S. Hand Auge</u> Sampling Method <u>S. S. Hand Au</u>			Finish Dote 03/10/95 Drilling Co. r Boring Diam. (in) <u>3</u> Total Depth (ft) <u>9.00</u>
PID PID	Lab Analysis	Sample Number Sample	Blows/ft Graphic Log	USCS Code	Lithological Descrip	ion
N/A				SP	Poorly graded sand (SP 100% sand, loose, moist.), dk brown (7.5YR3/2),
- 5 N/A	TPH-418.1 TPH-418.1	SB-09107-0035		SM	Silty sand (SM), very dk sand, 25% silt, soft, wet.	gray (7.5YRN3/0), 75%
NZA	TPH-418.1	SB-09107-0085		мн	Elostic silt (MH), very dk 100% silt, soft, wet.	gray (7.5YRN3/0),
- 10						
15						
20						

Attachment 4

Per- and Polyfluoroalkyl Substances Reference Document

RD-B74

PFAS

TABLE OF CONTENTS

1.0	SCOPE AND APPLICABILITY	2
2.0	RESPONSIBILITY	2
3.0	DEFINITIONS	2
4.0	REQUIRED MATERIALS / EQUIPMENT	3
5.0	PROCEDURES	5
6.0	HEALTH AND SAFETY	7
7.0	QUALITY ASSURANCE / QUALITY CONTROL	8
8.0	OTHER REFERENCES	8
9.0	DOCUMENTATION	9
10.0	TRAINING AND PREREQUISITES	9
11.0	ATTACHMENTS10	0
12.0	DOCUMENT HISTORY AND VERSION CONTROL	1

1.0 SCOPE AND APPLICABILITY

The procedures described herein define per- and polyfluoroalkyl substances (PFAS) specific sampling and handling techniques for various media, outline special considerations for communications about PFAS to clients and the general public, and provide additional guidance for projects involving PFAS. These techniques are necessary to prevent cross-contamination of water and soil samples collected for PFAS analysis and to navigate a rapidly changing and controversial regulatory environment.

This reference document (RD) is subject to change as new information becomes available. This RD is supplemental to current Shannon and Wilson, Inc. (SWI) RDs as befits the project. Additional RDs are listed in Section 8.0.

This RD defines a standard set of procedures applicable to a range of site conditions and projects. These procedures may be modified according to equipment limitations or project needs. Modifications to this RD will be described in a project-specific Work Plan or other document, and documented in the field notes, as applicable.

2.0 **RESPONSIBILITY**

The *Project Manager* (PM) is responsible for overseeing and ensuring that analytical samples are collected at required locations and with the appropriate frequency. The PM will ensure environmental samples are collected in accordance with this RD and any site-specific or project specific planning documents (e.g. approved Work Plan or Scope of Work).

It is the responsibility of the *Field Technician* (FT) to request the appropriate laboratory containers, coordinate with the analytical laboratory, and collect analytical water samples in accordance with this RD.

3.0 DEFINITIONS

PFAS are a group of man-made chemicals that include PFOA, PFOS, PFHxS, PFHpA, GenX, and many other compounds. These chemicals are considered an emerging contaminant.

4.0 REQUIRED MATERIALS / EQUIPMENT

The materials needed for this RD are project dependent. Materials may include but are not limited to the following:

- Field note paper and notebook
- Camera
- Residential Well Sampling Log (project specific)
- Well survey (project specific)
- Field Activities Daily Log
- Conversation record documents
- Business cards
- Chain of custody records (COCs)
- Sample cooler
- Gel ice packs
- YSI
- Nitrile gloves
- Sample labels
- Residential sampling bucket (green)
- Purge cup
- Ziploc baggies
- Paper towels
- Filter wrench(es)
- Plastic cups
- Extra buckets
- Garden hose

- Trash bags
- Toolbox (optional)
- Project specific sample jars or bottles
- Cell phone
- Public information packets, if applicable
- Clipboard
- Water sample bottles containing Trizma* (drinking-water samples)
- Water sample bottles without preservative (groundwater)
- Soil sample jars
- Plastic spoons (or other soil collection tool)
- PFAS-free water for field or equipment blanks
- Spare batteries
- Headlamp
- Peri-pump or whale pump and controller box
- Pump tubing
- Battery for pumps
- Water sounder
- Measuring tap
- Decontamination set-up

*see specific project details for water sample preservation requirements. Requirements may vary by state regulations and analyses requested.

- **4.1** Special considerations for materials when sampling for the presences of PFAS Investigations of the presence of PFAS in consumer products are ongoing. Future testing may change the general cautions outlined in this section. This list is not comprehensive. See *Special Considerations for PFAS Sampling* document.
 - 4.1.1 Sunblock and insect repellant ingredients should be verified PFAS-free prior to use during sampling.
 - 4.1.2 Clothing and personal protective equipment (PPE) treated for water, fire, or stain resistance, or UV protection should not be worn during sampling. Clothing should not be new or recently washed with fabric softeners.
 - 4.1.3 Food and food packaging should be avoided during sampling or near sampling areas.
 - 4.1.4 Do not use waterproof paper or notebooks.
 - 4.1.5 Use aluminum clipboards and ball point pens that are known to be PFAS free. Some felt-tip pens are known to have PFAS. Confirm Sharpie or other felt tip, erasable, or waterproof pens are PFAS free prior to use.
 - 4.1.6 Glues may contain PFAS, sticky type note pads (Post-it), adhesive labels, and tape should be verified PFAS free prior to use.
 - 4.1.7 Chemical ice packs should be verified PFAS free and placed in liner bags for use in sample coolers. Sample jars and/or bottles should not be allowed to touch the ice packs.
 - 4.1.8 Disposable, powderless, nitrile gloves should be worn during sampling and handling activities. Gloves should be changed frequently especially when potential contamination has occurred (i.e. touching clothing, skin, hair, or consumer products in the sampling area).
 - 4.1.9 If sampling during rain, snow, or cold, confirm that weather-protection gear is PFAS free or take extra care to avoid touching clothing and shoes.
 - 4.1.10 Pumps and pump tubing should be verified PFAS free.

5.0 **PROCEDURES**

5.1 General Sampling Procedures

- 5.1.1 All sample containers should be provided by the laboratory and made of polypropylene (PP) or high-density polyethylene (HDPE). PFAS are known to attach to the sample containers made of glass and other materials.
- 5.1.2 Any required sample preservatives should be laboratory provided and stored in PFAS-free containers.
- 5.1.3 If reusable equipment is used for sampling, proper decontamination is necessary before and after each sample. See *RD-B13- Equipment Decontamination*.
 - 5.1.3.1 Decontamination reagents must be PFAS free.
 - 5.1.3.2 Water used for final decontaminations rinse should be certified PFAS free by the laboratory, or a source water sample should be submitted for analysis.
 - 5.1.3.3 Verify decontamination reagents are effective at removing PFAS. See project manager to confirm effective decontamination agent.
- 5.1.4 Personal body products such as shampoos, moisturizers and cosmetics may contain PFAS. Limit or avoid use of such products on sampling days.
- 5.1.5 Equipment blanks should be used at the frequency described in the work plan or scope of work. Water used to collect equipment and field blanks should be certified PFAS-free water, provided by a laboratory.
- 5.1.6 Care should be taken to avoid cross contamination in PFAS samples, where samples for other analytes are also being collected. Gloves should be changed prior to collecting PFAS samples and PFAS samples should be bagged separately to avoid touching other sample jars and/or bottles.
- 5.1.7 Only handle sample containers while wearing gloves. Samples labels should be filled out prior to donning gloves for sample collection.
- 5.1.8 Avoid touching clothing, skin, hair, and/or consumer products while wearing gloves. Gloves should be changed frequently. A fresh pair should be donned immediately prior to collecting PFAS samples.
- 5.1.9 Sample containers should be stored in closed boxes or coolers when not in use. Storage boxes should be labeled as containing PFAS sampling equipment. Storing sample containers in plastic baggies is recommended to prevent inadvertent

exposure to potential contaminants. If leaving a storage container for long periods of time, a custody seal should be added.

5.1.10 Laboratory provided sample containers do not need to be and should not be rinsed prior to collection.

5.2 Groundwater Sampling Procedures

See *RD-B41 Analytical Water Sample Collection*, *RD-B42- Monitoring Well Sampling*, or *RD-B44- Potable Water (Private) Well Sampling* for general groundwater sample collection techniques.

- 5.2.1 Confirm purging requirements (e.g. three well volumes versus parameter stabilization) prior to collecting samples.
- 5.2.2 If a monitoring well has permanent fixtures that may contain PFAS, the sample results may need to be flagged or rejected in the analytical database at the discretion of the project manager.
 - 5.2.2.1 If dedicated tubing or fixtures that may contain PFAS can be removed from a monitoring well, extra precautions should be taken. This may include removal of equipment fourteen days prior to sample, or doubling purge requirements. Please confirm procedures with a project manager prior to sampling.
- 5.2.3 Do not filter samples prior to PFAS analysis.
- 5.2.4 Do not collect a sample through a hose or reusable tubing. Note on the sampling sheet if a sample was collected through a hose. Results may need to be flagged in the analytical database at the discretion of the project manager.
- 5.2.5 When collecting samples from private or public water-supply wells, note any fixtures or hardware that may contain PFAS that cannot be removed or bypassed for sample collection (Teflon plumbing tape, piping of unknown material, etc.). In residential/public spaces, it can be difficult or impossible to remove products that may contain PFAS from the sampling area. Take extra precautions to avoid touching products in the area and note any potential contamination sources in the sampling area. Where possible, locate a different sampling location.
- 5.2.6 If transfer containers are necessary, use PFAS-free plastic cups. Thoroughly rinse the transfer container with the water source being sampled prior to filling the sample bottles.
- 5.2.7 For private well samples, collect samples upstream of water treatment such as water softeners, chlorine systems, and filtration units. For some projects, we do

not consider small (i.e., less than 18 inches in height) particulate filters to be treatment. Discuss with your project manager prior to sample collection.

5.2.7.1 If a pre-treatment location cannot be accessed, samples results may need to be flagged in the analytical database at the discretion of the project manager.

5.3 Surface Water Sampling Procedures

See *RD-B45-Surface-Water Sampling* for general surface water sample collection techniques.

- 5.3.1 If transfer bottles are necessary to collect surface water, they must be PFAS-free and made of the same material as laboratory provided containers. Transfer bottles should be rinsed in the water to be sampled prior to filling the sample containers.
- 5.3.2 Avoid standing in the water you are sampling. If necessary, stand downstream of your sample collection point (in flowing water), and wait for disturbed sediment to settle prior to collecting the sample.
- 5.3.3 If collecting from a boat, wearing waders or waterproof footwear, using water column samplers or other equipment that may contain PFAS, sample results may need to be flagged in the analytical database at the discretion of the project manager. You should note on the sample log when these items are used.

5.4 Soil Sampling Procedures

Techniques may vary. See *RD-B31- Analytical Soil Sample Collection* for general soil sample collection techniques.

- 5.4.1 Surface soil samples should be collected using decontaminated stainless steels spoons, shovels, laboratory-provided sampling tools, or disposable PFAS free plastic spoons.
- 5.4.2 Equipment used for subsurface sampling or soil borings should be PFAS free.
- 5.4.3 Samples should be collected near the surface immediately below vegetation, where present.

6.0 HEALTH AND SAFETY

A Site Safety & Health Plan (SSHP) and/or Job Safety Analysis worksheet (JSA) will be prepared for each project and will discuss safety issues involved. Any staff working on the project must read and abide by the SSHP and sign the SSHP acknowledgement form.

Personnel using this procedure will utilize PPE in accordance with these plans.

The SSHP will provide Safety Data Sheets (SDSs) for any chemicals that will be used on the project or that are known possible exposure risks for the site. Personnel using this procedure must be trained on the information contained in the SDSs, any engineering controls, and any required PPE.

7.0 QUALITY ASSURANCE / QUALITY CONTROL

QC activities are designed to allow self-verification of the quality and consistency of the work.

7.1 Interferences and Potential Problems

- 7.1.1 Inability to locate or access pre-treatment sampling location.
- 7.1.2 Presence of PFAS or PFAS-containing products in sampling area, monitoring well structure, drilling equipment, plumbing, pumps, or other equipment. In these cases, a field blank may need to be collected along with the project sample.
- 7.1.3 Inability to achieve stable parameters in residential well sampling situations.

7.2 Applicable Quality Assurance Manual procedures:

- 7.2.1 QP 05 Preparation of Field Activity Reports
- 7.2.2 QP 13 Document Control and Retention

8.0 OTHER REFERENCES

- *RD-A11- Field notes and Documentation*
- *RD-A12- Field Instrument Calibration*
- *RD-B11- Environmental Sample Handling*
- *RD-B13- Equipment Decontamination*
- *RD-B15- Environmental Database Operations*

- RD-B25- Equipment Use YSI-SW
- *RD-B31- Analytical Soil Sample Collection*
- *RD-B34-Contaminated Soil Stockpiling and Sampling*
- *RD-B41-Analytical Water Sample Collection*
- *RD-B42- Monitoring-Well Sampling*
- RD-B43-Well-Point Sampling

- *RD-B44- Potable Water (Private) Well Sampling*
- RD-B45-Surface-Water Sampling
- RD-B46- Pore-Water Sampling
- *RD-B51-Monitoring Well Installation*
- *RD-B52- Monitoring Well Maintenance*
- RD-B54- Water Supply Well Decommissioning

- RD-B72- Sediment Sampling
- Special Considerations for PFAS Sampling
- Denly E, Occhialini J, Bassignani P, Eberle M, Rabah N. Per- and polyfluoroalkyl substances in environmental sampling products: Fact or fiction? *Remediation*. 2019;29:65–76. https://doi.org/10.1002/rem.21614

9.0 DOCUMENTATION

9.1 Review

The Project Manager will review the field-work records pertaining to the activities under their supervision. The elements of this review will include technical content, consistency, and compliance with the project plans, and RDs.

9.2 Archive

At the completion of the project, all original field logbooks and records will be stored in the project files in accordance with project procedures. Project file lifetime is established according to standard Shannon & Wilson file-retention procedures, or sometimes controlled and spelled out in contractual agreements with clients.

Correspondence (including email, telephone, and in-person conversations) with the clients, sub-contractors, and the public will be documented and stored in accordance with project procedures.

10.0 TRAINING AND PREREQUISITES

In order to perform sampling activities without supervision, the Field Technician must accomplish the following:

- Read this RD.
- Familiarize themselves with the applicable QAM procedures (listed in Section 7.2) as well as the references applicable to the project (Section 8.0).
- Complete supervised, on-the-job instruction with experienced field technicians or

project managers. Number of hours and days will differ for each individual, determined by a project manager or experienced field technicians.

• Residential sampling program training prior to sampling alone.

Environmental sampling will be performed by a State of Alaska Qualified Sampler (18 AAC 75.333[c] and 18 AAC 78.088[c]) and/or Qualified Environmental Professional (18 AAC 75.333[b], 18 AAC 78.088[b]), or a supervised individual in training to become a Qualified Sampler. Per ADEC, a Qualified Sampler will, at a minimum, hold a "completed degree in environmental science or another related scientific field... [and have] at least three months of experience in environmental sampling under the direct supervision of a qualified environmental professional."

Before performing this procedure, field staff will also be trained in analytical sample collection by an experienced staff member. Training will entail at least one day of supervised, on-the-job instruction.

11.0 ATTACHMENTS

A selection of relevant forms as of the publication date of this RD and are included here for reference only. Always obtain necessary forms from the project folder or project manager.

- Chain-of-Custody Form
- Well sampling log
- Field Activity Daily Log

- Monitoring well log
- Soil sample collection log

12.0 DOCUMENT HISTORY AND VERSION CONTROL

Version: 1.0 Date: 03/25/2020 Approved by:KRF

Version	Date	Reason/Description of Change(s)	Author	Reviews
1.0	3/25/2020	New.	ARM	KRF

APPENDIX F: QUALITY ASSURANCE PROJECT PLAN – REMEDIAL INVESTIGATION

Appendix F

Quality Assurance Project Plan – Remedial Investigation

Jorgensen Forge Corporation Property, Tukwila, Washington
PREPARED FOR: Earle M. Jorgensen Company 10650 S. Alameda Street Lynwood, CA 90262

BY: Shannon & Wilson 400 N, 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

QUALITY ASSURANCE PROJECT PLAN - REMEDIAL INVESTIGATION Jorgensen Forge Corporation Property TUKWILA, WASHINGTON

April 15, 2020 Shannon & Wilson No: 21-1-12596-013

1	Intro	oductio	n	1
	1.1	Backg	round	2
	1.2	Projec	t Description and Schedule	3
	1.3	Projec	t Organization and Responsibilities	4
		1.3.1	Earle M. Jorgensen Company (EMJ)	4
		1.3.2	Washington State Department of Ecology (Ecology)	5
		1.3.3	Star Forge LLC /Jorgensen Forge Corporation (JFC)	5
		1.3.4	Shannon & Wilson	5
		1.3.5	Analytical Laboratory	6
		1.3.6	Soils Laboratory	7
	1.4	Specia	al Training Requirements/Certifications	7
	1.5	Docu	mentation and Records	7
		1.5.1	Field Records	8
		1.5.2	Analytical Reports	9
		1.5.3	Data Report	9
2	Qua	lity Obj	jectives and Data Validation	9
	2.1	Analy	rtical Sensitivity	.10
		2.1.1	Reporting Limit Comparison to Screening Levels	.10
		2.1.2	Blank Samples	.11
			2.1.2.1 Method Blanks	.14
			2.1.2.2 Trip Blanks	.14
			2.1.2.3 Equipment Blanks	.14
	2.2	Accur	acy	.15
		2.2.1	Laboratory-Control Samples (LCSs)	.15
		2.2.2	Matrix Spike (MS) Samples	.16
		2.2.3	Surrogates	.17
		2.2.4	Calibration-Verification Samples	.18
	2.3	Precis	ion	.19
		2.3.1	Laboratory-Control Sample Duplicates (LCSDs)	.20
		2.3.2	Matrix Spike Duplicates (MSDs)	.20

		2.3.3	Laboratory Duplicates	20
		2.3.4	Field-Duplicate Samples	21
	2.4	Repres	sentativeness	21
	2.5	Comp	arability	21
	2.6	Comp	leteness	21
3	Data	Genera	ation and Acquisition	22
	3.1	Sampl	le Handling and Custody Quality Control (QC)	22
		3.1.1	Field Quality Control (QC)	22
			3.1.1.1 Sample Containers	22
			3.1.1.2 Chain-of-Custody (COC)	22
			3.1.1.3 Sample Preservation	23
			3.1.1.4 Sample Condition	25
			3.1.1.5 Hold Times	26
		3.1.2	Laboratory Quality Control (QC)	27
	3.2	Analy	tical Methods	27
	3.3	Instru	ment/Equipment Inspection, Maintenance, and Calibration	28
	3.4	Inspec	ction/Acceptance of Supplies and Consumables	29
	3.5	Data N	Management	29
4	Asse	ssment	and Corrective Actions	29
5	Repo	orting		30
6	Refe	rences .		

Exhibits

Exhibit 2-1: Elevated Reporting Limit Actions	11
Exhibit 2-2: Relationship Between DL, LOD, LOQ, and Corresponding Laboratory Result	
Flags and Screening Levels	11
Exhibit 2-3: Actions for Blank Detections	13
Exhibit 2-4: Example Qualification Criteria for Blank Detections Below LOQ	13
Exhibit 2-5: Actions for LCS/LCSD and MS/MSD Recovery Failures	16
Exhibit 2-6: Actions for Surrogate- or Internal Standard-Recovery Failures	18
Exhibit 2-7: Actions for Duplicate-Sample RPD Failures	20
Exhibit 3-1: Sample-Temperature Actions	24
Exhibit 3-2: Holding-Time Actions	26

Attachments

Attachment 1: Comparison of Laboratory Detection Limits Against Screening Levels Attachment 2: Analytical Limits of Detection and Project Screening Levels Attachment 3: Sample Containers, Preservatives, and Holding Times Attachment 4: PFAS Data-Validation Program Plan

1,1-DCE	1,1-dichloroethene
ADEC	Alaska Department of Environmental Conservation
AO	Agreed Order
ARI	Analytical Resources, Inc.
BTEX	benzene, toluene, ethylbenzene, and xylenes
CCV	continuing calibration verification
cis-1,2-DCE	cis-1,2-dichcloroethene
COC	chain-of-custody
DL	detection limit
DQO	data-quality objectives
Ecology	Washington State Department of Ecology
EDD	electronic data deliverables
EIM	Environmental Information Management
EM	Engineering Manual
EMJ	Earle M. Jorgensen Company
EPA	U.S. Environmental Protection Agency
HSA	hollow-stem auger
HVOCs	halogenated volatile organic compounds
ICV	initial calibration verification
JFC	Jorgensen Forge Corporation
LCS/LCSD	laboratory-control sample/laboratory-control sample duplicate
LL	low level
LNAPL	light non-aqueous phase liquid
LOD	limit of detection
LOQ	limit of quantitation
MRL	method reporting limit
MS/MSD	matrix spike/matrix spike duplicate
MTCA	Model Toxics Control Act
NELAP	National Environmental Laboratories Accreditation Program
NFG	EPA National Functional Guidelines
NSZD	natural source zone depletion
NWTPH	Northwest Total Petroleum Hydrocarbons
PAHs	polycyclic aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness,
	and sensitivity
PC	Project Coordinator
PCBs	polychlorinated biphenyls
PCE	tetrachloroethene
PFAS	per- and polyfluoroalkyl substances

PM	Project Manager
PQL	practical quantitation limit
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
%R	percent recovery
RI	Remedial Investigation
RPD	relative percent difference
SAP	Sampling and Analysis Plan
SIM	selected ion monitoring
Site	8231 East Marginal Way South
SOP	standard operating procedure
SRF	sample receipt form
SVOCs	semi-volatile organic compounds
TCE	trichloroethene
TPH	total petroleum hydrocarbons
TPH-Dx	total petroleum hydrocarbons as diesel and residual range organics
TPH-Gx	total petroleum hydrocarbons as gasoline range organics
trans-1,2-DCE	trans-1,2-dichcloroethene
USACE	U.S. Army Corps of Engineers
VOCs	volatile organic compounds
work plan	Remedial Investigation Work Plan
°C	degrees Celsius
<	less than
\leq	less than or equal to

1 INTRODUCTION

This Quality Assurance Project Plan (QAPP) has been prepared to accompany the Remedial Investigation (RI) Work Plan (the work plan) and Sampling and Analysis Plan (SAP) associated with remedial investigation (groundwater, soil, and soil vapor) activities to be completed at the Jorgensen Forge Corporation (JFC) facility, located at 8531 East Marginal Way South, Tukwila, Washington (Site). This QAPP, the associated SAP, and the Health and Safety Plan are included as appendices to the work plan.

This QAPP has been revised in response to Washington State Department of Ecology (Ecology) comments dated December 20, 2019 (Ecology, 2019), on the draft RI work plan dated January 31, 2019 (Shannon & Wilson, 2019).

The purpose of the QAPP is to describe project organization and responsibilities, projectspecific data-quality objectives (DQOs), sample-handling methods, analytical procedures, and data-quality control (QC) review and reporting requirements for the groundwater, soil, soil vapor, and light non-aqueous phase liquid (LNAPL) monitoring investigation. The RI is being conducted to characterize the nature and extent of contaminants at the Site and to collect further information about the physical characteristics of the Site.

This document has been prepared per the Ecology *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies* (Ecology, 2016) and the U.S. Environmental Protection Agency (EPA) publication *EPA Requirements for Quality Assurance Project Plans QA/R-5* (EPA, 2001). This QAPP describes the process for qualifying analytical data based on quality assurance (QA)/QC review of Level II laboratory reports and electronic data deliverables (EDDs). This QAPP is intended to provide guidance for conducting what the EPA refers to as a Stage 2a Validation (EPA, 2009). A more critical level of validation is beyond the scope of this QAPP, but the QAPP does present guidance for determining whether additional review should be conducted, based on information received from the laboratory. This QAPP also assesses the quality of the analytical data using precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS) parameters.

This QAPP provides information about references we use during the data-validation process and presents data qualifiers used to "flag" analytical data. Methods for applying data qualifiers are referenced primarily from the following EPA guidance documents:

- EPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review, January 2017 (EPA, 2017b) and
- EPA NFG for Inorganic Superfund Methods Data Review, January 2017 (EPA, 2017a).

In some cases, we also reference the following U.S. Army Corps of Engineers (USACE) guidance document as well to formulate our opinions when EPA guidance documents recommend exercising professional judgment:

 USACE Engineering Manual (EM) 200-1-10, Guidance for Evaluating Performance-Based Chemical Data, June 2005 (USACE, 2005).

In general, most data-review guidelines presented in this QAPP are drawn from federal guidance documents. However, in some cases, federal guidance is not consistent, is outdated, or does not account for specific issues addressed in this QAPP; in these cases, the guidance presented in the QAPP is based on standard industry practice or site-specific considerations, which are in turn based on Shannon & Wilson chemists' years of professional experience. When non-federal guidance documents are used, they are cited within the text and listed in Section 6.

Most QAPPs specify DQOs for items such as laboratory-control sample (LCS) recovery and target reporting limits. This document does not present such limits, but instead defers to internal laboratory-control limits that are statistically derived, frequently updated, and within the requirements of the laboratory's national certification, and thus compliant with federal requirements.

1.1 Background

The approximately 20-acre Site was a steel and aluminum forge and mill that produced custom steel and aluminum parts forged and machined to high precision specifications for various industrial clients. Operations remained relatively unchanged since the property was developed in the 1940s; however, melt operations were discontinued in 2015. Facility operations were discontinued in October 2018.

The Site is developed with an approximately 124,000-square-foot prefabricated steel building (main building), which is generally divided into the Hollowbore Area, the Machine Shop Area, the Heat Treat Area, the Forge Shop Area, and the Former Melt Shop Area.

Investigations began at the Site in 1990 and are described within the RI Work Plan. Investigations have included the completion of numerous borings and the installation of 52 groundwater monitoring wells, numbered MW-1 through MW-52, at the Site. Several additional wells were installed in the northwest corner of the Site by consultants for The Boeing Company, numbered as PL2-JF01A, PL2-JF01AR, PL2-JF01B, PL2-JF01C, PL2-JF02A, PL2-JF03A, and PL2-JF04A. The current groundwater monitoring network includes 44 monitoring wells. In August 2017, Shannon & Wilson completed groundwater monitoring well repair activities and conducted a comprehensive groundwater monitoring and sampling event. A second, less comprehensive, monitoring and sampling event was completed in February 2018. The findings from the August 2017 and February 2018 events have been incorporated into the RI Work Plan.

LNAPL plumes are present in Site Areas 1 and 2. The potential contaminants of concern for the Site include benzene, toluene, ethylbenzene, and xylenes (BTEX), halogenated volatile organic compounds (HVOCs), semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), and metals.

1.2 Project Description and Schedule

The RI is being undertaken to characterize the nature and extent of contaminants and to collect further information about the physical characteristics of the Site. Results from the investigation will be used to inform the selection of potential remedial approaches, as necessary, within the feasibility study.

Investigation activities will target data gaps identified within the RI Work Plan. The scope of work is broken into three major sections: LNAPL investigations, soil investigation, and groundwater investigations. A comprehensive SAP detailing field procedures is provided as a separate document. LNAPL investigations may include using laser-induced fluorescence technology to achieve vertical and horizontal LNAPL and residual soil contamination delineation within Areas 1 and 2, completing transmissivity tests within three wells (two within Area 1 and one within Area 2), and completing natural source zone depletion (NSZD) evaluations for each plume. The NSZD evaluation will consider the saturated zone and will include the collection of groundwater samples. The soil investigation will include completion of and soil sampling from 48 direct-push borings and up to 27 hollow-stem auger (HSA) borings that will be completed as permanent groundwater monitoring wells. Groundwater investigations will include installation of the groundwater monitoring wells, hydraulic conductivity testing at up to six wells, and completion of four quarterly groundwater monitoring and sampling events.

In advance of selecting a laboratory for the project, the detection and reporting limits of three laboratories (Fremont Analytical, Inc., ALS Environmental, and Analytical Resources, Inc. [ARI]) were compared against the most stringent groundwater screening levels provided by Ecology (potable) (Attachment 1). ARI in Tukwila, Washington, was selected as the project laboratory. ARI is best able to achieve the project screening levels.

Soil samples will be analyzed for TPH as gasoline range organics (TPH-Gx); TPH as diesel and residual range organics (TPH-Dx); volatile organic compounds (VOCs) analysis for BTEX and HVOCs, including 1,1-dichloroethene (1,1-DCE), cis-1,2-dichcloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride; PAHs; SVOCs (full list); PCBs as aroclors; metals, including arsenic, barium, cadmium, chromium, hexavalent chromium, cobalt, copper, lead, mercury, nickel, selenium, silver, vanadium, and zinc; total organic carbon; porosity; and for selected physical parameters including grain size analysis.

Groundwater samples will be analyzed for TPH-Gx; TPH-Dx; VOCs analysis for BTEX and HVOCs, including 1,1-DCE, cis-1,2-DCE, PCE, TCE, and vinyl chloride; PAHs; PCBs as aroclors; SVOCs (full list); limited SVOCs, including bis(2-ethylhexyl phthalate), dibutyl phthalate, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2,4-dimethyphenol, benzoic acid, butyl benzyl phthalate, n-nitrosodiphenylamine, and pentachlorophenol; total and dissolved metals, including arsenic, barium, cadmium, total chromium, hexavalent chromium (dissolved only), cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, vanadium, and zinc; and for natural attenuation indicators, including nitrate, nitrite, sulfate, sulfite, ferrous iron, manganese, and methane. Samples for dissolved metals will be filtered in the laboratory and then preserved with nitric acid.

Select soil and groundwater samples will be analyzed for full list SVOCs analysis to provide additional confirmation that SVOCs (other than those eliminated during chemical of potential concern evaluations) are not present at levels of concern.

During one groundwater sampling event, select wells will be sampled for per- and polyfluoroalkyl substances (PFAS). PFAS-specific procedures are provided within a separate data-validation program plan, provided in Attachment 4.

1.3 Project Organization and Responsibilities

The project organization is described in the following subsections, including duties and responsibilities of key personnel. Key personnel will review the approved QAPP prior to beginning work on the Site and will implement and adhere to the appropriate procedures described herein.

1.3.1 Earle M. Jorgensen Company (EMJ)

EMJ owned the Site property from 1965 to 1992 and has assumed responsibility for taking remedial actions at the Site under the oversight of Ecology pursuant to an Agreed Order (AO) under Washington's Model Toxics Control Act (MTCA) and MTCA's implementing

regulations. The EMJ project manager (PM) is Gil Leon. Deliverables will be directed to the EMJ PM.

The EMJ PM or his representative is responsible for authorizing changes to the scope of services and implementing the project and has the authority to commit the resources necessary to meet project objectives and requirements.

1.3.2 Washington State Department of Ecology (Ecology)

The Ecology Project Coordinator (PC) is currently Maureen Sanchez. The Ecology PC is responsible for reviewing and approving the work performed during the investigation and ensuring successful completion of the AO requirements. Ecology requires seven days' notice of any sampling activities.

1.3.3 Star Forge LLC / Jorgensen Forge Corporation (JFC)

The Site is currently owned by Star Forge doing business as JFC. Star Forge has granted EMJ, Ecology, and any consultant or contractor EMJ engages, non-exclusive access to the Site for the purpose of completing investigations and remedial actions. The Star Forge PM is Matteo Sanesi, the Supply Chain Manager for the facility. He can be reached at (253) 878-6415. Star Forge requires at least 24 hours' notice prior to entering the Site.

As described in the work plan, it is our understanding that the property will be sold. When the sale occurs, the facility representative will change.

1.3.4 Shannon & Wilson

Shannon & Wilson is providing environmental consulting services to EMJ and will conduct monitoring and reporting as specified in the current scope of work. Key personnel titles and responsibilities include the following:

Project Coordinator (PC) – The Shannon & Wilson PC is currently Meg Strong. The PC will serve as EMJ's and Ecology's principal point of contact for the project. The PC is responsible for overseeing the implementation of the AO. To the maximum extent possible, communications between Ecology and EMJ, and documents, including reports, approvals, and other correspondence, will be directed through the PC.

Project Manager (PM) – The Shannon & Wilson PM is currently Shoshana Howard. The Shannon & Wilson PM will be responsible for coordinating the project's planning and implementation, and will oversee field sampling, data interpretation, and reporting activities. The PM will work with technical staff to implement the program's scope and schedule in accordance with project requirements and the approved QAPP. Additionally,

the PM will conduct initial management review of statistical analysis results and supervise preparation of the technical document submittals.

Quality Assurance (QA) Officer – The QA Officer is currently David Randall. The QA Officer has overall responsibility to independently review whether planning, implementation, and reporting fulfill the objectives for data use, and to check if data quality is sufficient to support data used in the initial Site investigation. The QA Officer is responsible for seeing established data-validation procedures are followed, field and laboratory activities are conducted in accordance with the QAPP, and corrective actions are implemented. Preparing QAPP revisions or addenda, and communication with the other contractors, EMJ, or regulatory agencies regarding data-quality issues, are also the responsibility of the QA Officer. The QA Officer will review reports to check whether project objectives have been met.

Field Monitoring Personnel – Field monitoring personnel responsibilities will include arranging Site access, collecting project samples, measuring field parameters, and completing field-sampling forms. They will also conduct statistical analysis and database management of analytical data and prepare reports based on data from field forms, analytical laboratory results, and other relevant data collected during monitoring events.

Support Staff – Support staff will be available to provide support in data validation, statistical analysis, hydrology, technical engineering, and site-specific chemical issues, if the need arises.

1.3.5 Analytical Laboratory

ARI of Tukwila, Washington (an Ecology and National Environmental Laboratories Accreditation Program [NELAP]-certified laboratory) will provide analytical testing services for water and soil samples except water samples to be tested for PFAS. Eurofins TestAmerica of Sacramento, California (a NELAP-certified laboratory), will provide analytical testing services for PFAS. The current laboratory certifications for the requested analyses will be requested by Shannon & Wilson prior to collecting project samples. If the samples are to be analyzed by a laboratory certifications for the requested analyses from the alternative laboratory.

Laboratory Project Manager (PM) – The laboratory PMs will coordinate laboratory services and be the point of contact for this project. Laboratory QA staff will be responsible for oversight and QC review of laboratory analyses.

Laboratory personnel can be contacted at the following address and telephone number:

Ms. Amanda Volgardsen Johnson Analytical Resources, Inc. 4611 S. 134th Place, Suite 100 Tukwila, WA 981168-3240 Telephone: (206) 695-6200

Eurofins TestAmerica 880 Riverside Parkway West Sacramento, CA 95605 Telephone: (916) 373-5600

1.3.6 Soils Laboratory

The Shannon & Wilson Seattle Soils Laboratory, an American Association of State Highway and Transportation Officials Accreditation Program-accredited laboratory, will test selected soil samples for physical parameters.

Laboratory Project Manager (PM) – The Shannon & Wilson Seattle Soils Laboratory Manager will coordinate and be the point of contact for physical testing services.

Laboratory personnel can be contacted at the following address and telephone number:

Mr. Joe Laprade Shannon & Wilson Seattle Soils Laboratory 400 N. 34th Street, Suite 100 Seattle, WA 98103 Telephone: (206) 695-6713

1.4 Special Training Requirements/Certifications

Shannon & Wilson field staff used for this project are fully trained to collect, process, and handle groundwater, soil, and soil vapor samples; decontamination procedures; visual inspections; chain-of-custody (COC) procedures; and data validation. All sampling personnel will have completed the 40-hour Hazardous Waste Operations training course and eight-hour refresher courses, as necessary, to meet the Occupational Safety and Health Administration regulations (29 Code of Federal Regulations 1910.120).

1.5 Documentation and Records

The format for data reporting packages will be consistent with the requirements and procedures used for data validation and data assessment described in this QAPP. A summary report will be provided for each monitoring event. The recording media for the project will be both paper and electronic. The project will implement proper document

control procedures for both media, consistent with Shannon & Wilson's QA Manual. For instance, hand-recorded data records will be taken with indelible ink, and changes to such data records will be made by drawing a single line through the error with an initial by the responsible person. The Shannon & Wilson PC will have ultimate responsibility for any changes to records and documents. Similar controls will be put in place for electronic records.

The Shannon & Wilson QA Officer will retain updated versions of the QAPP and be responsible for distribution of the current version of the QAPP. The Shannon & Wilson QA Officer and the EMJ PM or their representative will approve any necessary updates. The Shannon & Wilson PC will retain copies of management reports, memoranda, and correspondence between Ecology and project-necessary personnel.

1.5.1 Field Records

Shannon & Wilson field staff will keep accurate written records of their daily activities on field-sampling forms. Form entries will be legible, written in waterproof ink, and contain accurate and inclusive documentation of sampling activities, including, but not limited to

- Project name;
- Field personnel on Site;
- Facility visitors;
- Weather conditions;
- Field observations;
- Notes on maps and/or drawings;
- Date and time sample collected;
- Sampling method and description of activities;
- Identification or serial numbers of instruments or equipment used;
- Deviations from the Work Plan, SAP, and QAPP; and
- Any additional information that may be pertinent.

Samples will be collected into labeled containers. The labels will include date and time the sample was collected, location of the sample, name of the person who collected the sample, unique sample identification number, analytical method, and any chemical preservative used. Sample jars will not be individually sealed with a custody seal.

1.5.2 Analytical Reports

A Level II laboratory report will be requested from the laboratory. A Level II laboratory report is required by EPA to provide a case narrative to document any QC or sample-handling problems, a signed copy of the COC, a summary of sample concentrations in proper units, dates for sample preparation and analysis, a summary of sample preparation QC samples (method blanks, LCS/laboratory-control sample duplicate [LCSD], matrix spike/matrix spike duplicate [MS/MSD], and laboratory duplicates), and sample receipt information.

1.5.3 Data Report

The laboratory will provide electronic data deliverables in a format consistent with Ecology's Environmental Information Management (EIM) database requirements. The laboratory analysis data from the proposed scope of work will be provided to Ecology, uploaded to EIM, and incorporated into the RI Report. Refer to Section 5 for reporting requirements.

2 QUALITY OBJECTIVES AND DATA VALIDATION

The DQOs for the current scope of work will be defined in this section to provide procedures to assess the quality of the data collected during this investigation. As mentioned in Section 1, this QAPP will assesses the DQOs of the analytical data using PARCCS parameters (precision, accuracy, representativeness, comparability, completeness, and sensitivity).

The analytical data will be validated by Shannon & Wilson to assess if the required DQOs have been achieved. As mentioned in Section 1, a Stage 2a Validation will be performed. The various stages of validation are briefly described below. A more detailed description of each stage is provided in EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA, 2009).

- Stage 1: Stage 1 Validation focuses on confirming consistency and completeness of the laboratory analytical package (such as confirming that documentation is complete, requested analyses were performed and reported, and sample receipt conditions are documented).
- Stage 2a: Includes validation performed during Stage 1 and includes review of samplerelated quality control procedures. This level of validation includes steps such as confirming that sample-related quality control data and acceptance criteria are provided, appropriate spikes have been added, holding times were followed, and the QC-sample

frequency is appropriate. Stage 2a Validation also includes a comparison of holding times and QC results to guidelines with the objective of evaluating sample results.

- Stage 2b: Includes validation performed during Stage 2a and includes review of instrument-related QC procedures (such as review of initial calibration verification [ICV] and continuing calibration verification [CCV] sample results).
- Stage 3: Includes validation performed during Stage 2b and includes recalculation of instrument and sample results using instrument responses and comparison of the recalculated results to the laboratory reported results.
- Stage 4: Includes validation performed during Stage 3 and includes evaluation of instrument outputs (such as chromatograms and mass spectra).

As mentioned in Section 1, the data will be qualified based on recommendations from the NFG (EPA, 2017a and 2017b) and the EM 200-1-10 (USACE, 2005). The following sections provide the criteria used to qualify the data based on these guidance documents.

2.1 Analytical Sensitivity

Analytical sensitivity refers to the amount of analyte necessary to produce a detector response that can be reliably detected or quantified (USACE, 2005). For this project, analytical sensitivity is evaluated by comparing the appropriate reporting limit (typically, the limit of detection [LOD]) for not-detected results to project-specific screening levels (Attachment 2), where such standards exist. Analytical sensitivity of the reporting limits may be affected by contaminants identified in the quality control blank samples, which are discussed in this section.

2.1.1 Reporting Limit Comparison to Screening Levels

The laboratory LODs are compared to the project-specific screening levels to assess if the analytical results reported by the laboratory are sufficiently sensitive for the project. Some laboratories define the reporting limit as limits of quantitation (LOQs), practical quantitation limits (PQLs), or method reporting limits (MRLs). In general, laboratory reporting limits used to check analytical sensitivity are less than the project screening levels, with some exceptions (Attachment 2).

In cases where the reporting limit (LOD, LOQ, PQL, etc.) exceeds the screening levels, a note will be added to the NFG data-review checklist. Associated results tables will include shading to indicate that the reporting limit exceeds the screening level. Reporting limits that exceed project screening levels should be identified using the following criteria listed in Exhibit 2-1.

Exhibit 2-1: Elevated Reporting Limit Actions

Analysis	Criteria	Action
All	$LOD \leq Screening Level$	No note.
	LOD > Screening Level	Note/shading should be added to the Checklist/Result Tables.

NOTES:

 \leq = less than or equal to; > = greater than

Exhibit 2-2, below, illustrates the relationship between the detection limit (DL), the LOD, and the LOQ, with a summary of laboratory result flags applied to each range and an example of acceptable and unacceptable (elevated) reporting limits.

Exhibit 2-2: Relationship Between DL, LOD, LOQ, and Corresponding Laboratory Result Flags and Screening Levels. Detection limit (DL), limit of detection (LOD), and limit of quantitation (LOQ) and screening level diagram with (a) result flags assigned to results by laboratory, (b) unacceptable LOD-to-screening-level relationship, and (c) acceptable LOD-to-screening-level relationship.

2.1.2 Blank Samples

Blank samples are analyzed to check for possible contributions to the analytical results from cross-contamination between samples or from sample contamination from an outside source. Typically, the following blank samples are reviewed in conjunction with project samples:

- Method blanks,
- Trip blanks (volatile analytes only), and
- Equipment blanks.

In addition to those listed above, additional method-specific blank samples may be analyzed by the laboratory (e.g., leaching blanks for toxic characteristic leaching potential samples); additional blanks should be evaluated on a case-by-case basis. Each of these blanks checks for sample-contamination issues at various steps between sample collection and analysis. Detections in blanks higher up on this list can cause related detections in blanks lower on this list; one can think of this list as a hierarchy of blanks. For example, a detection in a method blank (contamination at the extraction step) can cause detections in corresponding trip blanks or equipment blanks. Therefore, it is important to investigate blank detections to determine at what step sample contamination was first introduced; data qualification should proceed beginning at this level.

Instrument blanks are not discussed here as they are part of the analytical batch and are better addressed with a Level IV data validation. Any instrument blank detections that would be expected to affect data quality may also show up in the method blanks. Therefore, blank evaluation for purposes of this QAPP (Level II data review) should proceed using the following hierarchy:

- 1. Method blank,
- 2. Trip blank, and
- 3. Equipment blank.

Additional details are provided in individual blank sections below.

Data-qualification procedures are identical between blank types within a given matrix; however, the list of affected samples varies. In general, if an analyte that was detected in a blank is detected in a corresponding project sample within a factor of five of the concentration in the blank, it is considered not detected and flagged "UB" at the LOQ or the concentration in the sample, whichever is higher. If the analyte is detected in a corresponding project sample fivefold greater than the concentration in the blank, but within a factor of ten of the concentration, the result is considered estimated, biased high (flagged "JH") to indicate the potential contribution of the blank-identified contamination to the sample results. The following exhibit presents data-qualification criteria for samples affected by detections in blank samples; these criteria are generally consistent with those presented in EM 200-1-10 (USACE, 2005).

Concentration in Blank (y)	Concentration in Corresponding Sample (z)	Action
DL < y ≤ LOQ	Not detected	No qualification
	z ≤ LOQ	UB at the LOQ
	$LOQ < z \le 5y$	UB at the detected result (z)
	5y < z ≤ 10y	JH
	10y < z	No qualification
LOQ < y	Not detected	No qualification
	z ≤ LOQ	UB at the LOQ
	LOQ < z ≤ 5y	UB at the detected result (z)
-	5y < z ≤ 10y	JH
	10y < z	No qualification

Exhibit 2-3: Actions for Blank Detections

NOTES:

y = concentration in blank; z = concentration in corresponding sample

The following exhibit is a visual representation of example flagging criteria for a blank detection below the LOQ.

Exhibit 2-4: Example Qualification Criteria for Blank Detections Below LOQ. Example qualification criteria for blank detections. Project-sample results would be qualified as follows: (a) flagged "UB" at the limit of quantitation (LOQ), (b) flagged "UB" at the concentration detected in the sample, and (c) flagged "JH" at the concentration detected in the sample.

2.1.2.1 Method Blanks

Method blank samples are prepared by the laboratory with every preparatory batch (extraction batch), at a minimum rate of one method blank per 20 samples. Method blanks are samples of clean media (soil, water, etc.) that are subjected to the same procedures as project samples to extract a given analyte(s). Method blanks are evaluated to determine if the method of extraction, cleanup, or analysis introduces any contamination during the process.

A Shannon & Wilson chemist qualified to perform QA/QC review and data validation (the reviewer) will check that method blanks were prepared and analyzed by the laboratory at the required frequency and that no analytes were reported in the method blanks. If an analyte is reported in a method blank, all samples in the corresponding preparatory batch should be evaluated for that analyte. Data qualifiers should be applied per (above).

2.1.2.2 Trip Blanks

Trip blank samples are prepared by the laboratory and one trip blank should accompany each cooler containing samples for volatile analysis and stay with the samples at all times. A trip blank is not required for semi-volatile or non-volatile analytes. Trip blanks serve to check for cross-contamination or contamination from an outside source during sample collection, storage, transportation, and processing by the laboratory.

The reviewer will check that trip blanks were prepared, transported, and analyzed with any samples analyzed for VOCs, and that no analytes were reported in the trip blank. A minimum of one trip blank per cooler is required; the cooler containing the trip blank and samples for VOC analysis should be clearly identified on the COC. If an analyte is reported in a trip blank, all samples in the corresponding cooler should be evaluated for the detected analyte and, if necessary, qualified based on the criteria presented in Exhibit 2-3 (above). If the sampler did not document which cooler contained the trip blank, and there is more than one cooler containing samples for VOC analysis, all VOC samples in the work order should be considered potentially affected.

2.1.2.3 Equipment Blanks

Equipment blank samples are collected in the field by the sampling personnel. The equipment blank is used to determine if decontamination of reusable sampling equipment between sampling locations is sufficient. The project SAP requires a minimum collection frequency of one equipment blank for every 20 samples collected with reusable equipment. Because some of the screening levels for the project are lower than drinking water standards, an equipment blank will be collected from the water source used for decontamination. This sample will be collected in advance of the field activities to evaluate

whether the source is adequate for the project. An equipment blank is not required for samples collected with non-reusable equipment (i.e., disposable bailers) or if dedicated equipment is used. Equipment blank samples are also collected to evaluate if sampling equipment is a potential source of contaminants to the samples. Equipment blanks will be collected on two occasions from the tubing used for sample collection.

The reviewer will check that equipment blanks were collected at the required frequency and that no analytes were reported in the equipment blanks. If an analyte is reported in an equipment blank, all samples collected using the same sampling equipment on the same day will be evaluated (determined based on field-sampling logs), and if necessary, qualified based on the criteria presented in Exhibit 2-3 (above).

2.2 Accuracy

Accuracy is evaluated at multiple levels throughout the analytical process using a variety of techniques. It is assessed at the preparatory-batch level using recovery information from LCS and LCSD, MS and MSD, and analyte surrogates. MS/MSD and surrogate-recovery information is used to determine whether there is interference from the sample matrix that affects the accuracy of the reported results. Accuracy is also assessed at the analytical-batch level using recovery information from ICV and CCV samples.

2.2.1 Laboratory-Control Samples (LCSs)

LCSs (also referred to as blank spikes) are prepared by the laboratory with every preparatory batch, at a minimum of one LCS per 20 samples, where required. In some cases, analytical protocol requires the laboratory also analyze an LCSD. LCSs and LCSDs are blank samples that are spiked with a known amount of analyte(s) and prepared using the same method that is applied to field samples to extract the analyte(s). The laboratory reports a percent recovery (%R) of the spiked amount for each analyte added to the blank sample. The laboratory maintains acceptance limits for LCS/LCSD recovery; these limits are reported in the Level II laboratory report for comparison.

The reviewer will check that LCSs were reported at the required frequency and that LCS/LCSD recoveries are within laboratory-control limits. An LCS or LCSD recovery failure affects all corresponding samples in the same preparatory batch for the affected analyte(s). The following guidelines will be used for qualifying sample results associated with LCS/LCSD-recovery failures.

Exhibit 2-5: Actions for LCS/LCSD and MS/MSD Recovery Failures

	Action		
LCS Results	Detected Analytes	Analytes Not Detected	
%R < Control Limits	JL	UJ	
%R within Control Limits	No qua	lification	
%R > Control Limits	JH	No qualification	

NOTES:

JL = estimated with a low bias; UJ = not detected, results considered estimated

The reviewer should consider rejecting results for not-detected analytes where gross low-recovery failures are observed. In general, gross low-recovery failures, as defined in the NFGs (EPA, 2017a and 2017b), are less than (<) 20% for VOC analyses, <10% for SVOC analyses, <40% for LCS/LCSD metals analyses, and <30% for MS/MSD metals analyses. The NFG should be referenced when considering a gross low-recovery failure for metals, because there are exceptions to these limits.

In addition, the NFGs recommend rejecting results for not-detected PCB analytes for lowrecovery failures for LCS/LCSD samples. This qualification is specific to PCB and herbicide analyses, although herbicide analysis is not being requested for the current project.

2.2.2 Matrix Spike (MS) Samples

For certain methods, the laboratory analyzes an MS/MSD in addition to the LCS. MS/MSDs are prepared and analyzed on a preparatory-batch basis and are analyzed with every 20 samples when used. MS/MSD samples are field (native) samples that are spiked with a known concentration of analyte(s) and prepared using the same method that is applied to project samples to extract the analyte(s). The MS and MSD are used to determine the presence of matrix interferences and evaluate the analytical accuracy for a given method and matrix, expressed as a percent recovery of the spiked amount added to the field sample.

The reviewer will check to make sure that MS/MSDs were analyzed at the frequency required by analytical methods or project-specific requirements. The reviewer will check that percent recovery for each analyte is within laboratory-control limits. If there is a recovery failure, only the field sample utilized for the MS/MSD is typically considered affected; however, the reviewer should use professional judgment whether other samples in the same preparatory batch have sufficiently similar matrices to be considered affected as well (for inorganic analyses only). For example, if an MS/MSD recovery failure is reported for one of two duplicate samples, it should be assumed there were similar matrix effects in the duplicate, and corresponding results should also be qualified.

Before MS/MSD recovery is evaluated, two important factors must be considered:

- 1. Verify that the field sample chosen for the MS/MSD is part of the project-sample set currently being reviewed. The laboratory may run samples from other projects in the same preparatory batch and it is possible that the original sample selected for the MS/MSD may not be from the work order reviewed. In this case, recovery failures do not affect data quality for the project-sample set.
- 2. Verify that the spiking concentration is high relative to the native concentration of the analyte in accordance with EM 200-1-10 (USACE, 2005).

If the native concentration of a target analyte is high relative to the spiking concentration, then this may contribute a significant uncertainty to the recovery calculations; the MS recovery may not be representative of actual method performance for the matrix. In the absence of other guidance, *evaluate the MS recovery when the spiking concentration is at least two times greater than the native analyte concentration*.

Specifically, if the native concentration is greater than one-half the spiking concentration, the results are considered unaffected.

If the above criteria are met, then results associated with the failures in the original field sample should be qualified using the criteria listed in Exhibit 2-5.

However, for metals analysis where MS/MSD recovery failures occur, different criteria are used. For metals analysis by most analytical methods, if a matrix spike recovery failure occurs and the sample concentration is greater than the spike concentration, the laboratory is required to conduct a post-digestion spike. A post-digestion spike is where the original sample is spiked at twice the native concentration so that recovery can be evaluated. In this case, refer to the data-qualification criteria in the spike sample analysis section for the relevant analytical technique in the NFG for Inorganic Superfund Methods Data Review (EPA, 2017a).

2.2.3 Surrogates

Surrogates are organic compounds that are similar to the analytes being evaluated by a given method (often a deuterated version of the one of the analytes). They are used to identify matrix interferences and inefficiencies in sample extraction for organic analyses. The surrogates are introduced into a field- or laboratory-QC sample prior to sample preparation and analysis. Accuracy is expressed as a percent recovery of the spiked amount added to the sample.

The reviewer will check that surrogates and/or internal standards were analyzed for each sample for each organic analysis (including laboratory-QC samples) and that recoveries

were reported within laboratory-control limits. If there is a reported surrogate-recovery failure, it is considered to affect only analytes associated with the surrogate in the sample with the failure. However, there are a few special considerations when qualifying data based on surrogate-recovery failures:

- 1. **Matrix interference:** Recovery failures due to matrix interference (coelution of an interfering analyte or other matrix interactions) are considered to affect data quality, and results should be qualified as described in Exhibit 2-6 (below). The laboratory typically documents in the case narrative whether a surrogate-recovery failure was due to matrix interference or dilution.
- 2. **Dilution:** Recovery failures may be observed due to "diluting out" of the surrogates and are not considered to affect the data (USACE, 2005).
- 3. **Surrogate-recovery failure in laboratory-QC samples:** Surrogate-recovery failures in an LCS, LCSD, MS, or MSD are not considered to affect the data if the recovery of individual analytes associated with that surrogate are within the laboratory-control limits for the QC sample. However, gross or systematic surrogate-recovery failures should be considered along with all other QC information for the preparatory batch and the results evaluated according to professional judgment.

Excluding the exceptions listed above, data affected by surrogate-recovery failures should be qualified using the following criteria listed in Exhibit 2-6.

		Ac	tion
Analysis	Criteria	Detected Analytes	Analytes Not Detected
Other organic analyses	%R < range	JLÞ	UJa
-	%R within range	No qua	lification
-	%R > range	JHÞ	No qualification

Exhibit 2-6: Actions for Surrogate- or Internal Standard-Recovery Failures

NOTES:

a. Use professional judgment when evaluating gross recovery failures. The reviewer should consider rejecting the results where analytes are not detected if the associated surrogate recovery is below 20% (USACE, 2005).

b. Use professional judgment when the bias is poorly defined. Only impart a bias to the qualified data if the bias is well defined (i.e., if there is more than one surrogate in the analysis, where recovery failures are in the same direction). Otherwise, it may be more conservative to simply qualify the results as estimated ("J"; USACE, 2005).

2.2.4 Calibration-Verification Samples

Calibration-verification samples are not reported in the Level II data reports provided by the laboratory (aside from appearing in the EDD), and review of such samples is outside the scope of this QAPP. Additionally, the laboratory has requirements to re-calibrate the instrument if calibration-verification fails. However, this is not always possible, and occasionally calibration-verification failures occur and are reported in the case narrative or the Level IV laboratory report. Calibration-verification samples are described briefly below.

ICV samples are clean extraction solvent spiked with a known analyte concentration, using a different source than that of the primary calibration standards, and analyzed immediately following instrument calibration. Similarly, CCV samples are calibration standards that are analyzed at the beginning of each analytical batch and periodically throughout the run.

The laboratory evaluates ICV and CCV recovery information based on their internal acceptance criteria; in some cases, they also evaluate relative percent difference between CCVs to determine if drift is occurring. As stated above, calibration-level data review is beyond the scope of this QAPP and may be conducted as part of a Level IV data validation if calibration issues are identified in the case narrative. Professional judgment should dictate whether any samples in an analytical batch with unresolved CCV failures should be considered preliminary pending further investigation.

2.3 Precision

Precision refers to the repeatability of measurements (USACE, 2005). Precision is evaluated using laboratory QA/QC and field-duplicate samples. The following sections describe the duplicate-sample information that is commonly used to assess precision. However, this is not an exhaustive list and the laboratory may occasionally analyze other duplicate samples that should also be considered. For most analyses, at least one laboratory-QC-sample duplicate must be analyzed; this can include an LCSD, MSD, or laboratory duplicate of a project sample.

Each type of duplicate is evaluated in the same manner. A relative percent difference (RPD) is calculated between the duplicate results for a given analyte using the following formula, where R₁ is the primary result and R₂ is the duplicate result:

Formula 1.
$$RPD = \left(\frac{|R_1 - R_2|}{(R_1 + R_2)/2}\right) \times 100\%$$

The resulting RPD is compared to laboratory-control limits (for laboratory-QC samples) or project or regulatory DQOs for field duplicates. Water- and soil-sample DQOs of 30 and 50%, respectively, are used for this project (Alaska Department of Environmental Conservation [ADEC], 2017).

The following guidelines will be used for qualifying sample results associated with duplicate-sample RPD failures. The treatment of a failure is the same across types of duplicate samples, but the samples that are affected vary. Refer to the following sections for details.

Exhibit 2-7: Actions for Duplicate-Sample RPD Failures

	Act	ion
Criteria	Detected Analytes	Analytes Not Detected
$RPD \leq Control Limit or DQO$	No qual	ification
RPD > Control Limit or DQO	J	UJ

2.3.1 Laboratory-Control Sample Duplicates (LCSDs)

Precision can be evaluated between LCS and LCSD results for a given analyte. The laboratory calculates the RPD using Formula 1 (above) for each analyte. The reviewer will check that each RPD is within the laboratory-control limits. RPD failures for specific analytes in the LCS/LCSD are considered to affect the precision of that analyte in each sample in the preparatory batch. Affected results should be flagged according to the criteria presented in Exhibit 2-7.

2.3.2 Matrix Spike Duplicates (MSDs)

Precision can be evaluated between the MS and the MSD results for a given analyte. The laboratory calculates the RPD for each analyte. The reviewer will check that each RPD is within the laboratory-control limits. RPD failures for specific analytes in the MS/MSD are considered to affect the precision of that analyte in the field sample spiked for the MS/MSD. As noted in Section 2.2.2, professional judgment should be used to determine whether additional samples should be qualified (based on similarity of sample matrix, and only when inorganic analyses are being performed).

RPD failures should be considered to affect the data regardless of the concentration spiked as long as the laboratory calculates the RPD based on the total analyte concentration quantified in the MS/MSD. If the laboratory calculates the RPD based only on what was recovered of the spike, it should be treated as for MS/MSD recovery, with failures only considered to affect data quality if the spiking concentration is at least double the native concentration of the analyte. Affected results should be flagged according to the criteria presented in Exhibit 2-7.

2.3.3 Laboratory Duplicates

For select analyses, or when insufficient volume is submitted for analysis of an MS and MSD, the laboratory may analyze a project sample twice (referred to as a laboratory duplicate). The laboratory calculates an RPD between the original result and the duplicate-sample result for each analyte. The reviewer will check that each RPD is within the laboratory-control limits. As with MS/MSDs, laboratory-duplicate RPD failures are

considered to affect the precision of the affected analyte only in the field sample used for the duplicate analysis.

2.3.4 Field-Duplicate Samples

Field-duplicate samples are duplicate samples collected from the same location and submitted to the laboratory performing the requested analysis. The duplicate sample will have a "dummy" sample number and be submitted to the laboratory as a regular sample (i.e., the duplicate is submitted "blind"). These field duplicates are used to determine the reproducibility of the sampling technique as well as the subsequent laboratory analysis. Sample homogeneity is necessary to obtain acceptable values for the RPD and any heterogeneity should be noted during sampling.

For field-duplicate pairs, the reviewer will calculate an RPD using Formula 1 (above). An RPD will only be calculated if at least one of the sample results is above the LOQ. The calculated RPD will be compared to the standard DQOs of 30% for water samples and 50% for soil samples (ADEC, 2017). Field-duplicate RPD failures are considered to affect only the results of the duplicate pair; affected data will be qualified based on the criteria in Exhibit 2-7 (above).

In the event that one of the results is above the LOQ but the other result is below the DL (not detected), this may be evidence of samples having been mislabeled (in the field or the laboratory); further investigation may be warranted.

2.4 Representativeness

Sample log sheets will be reviewed to ensure the samples were collected according to the SAP, and the results, therefore, represent the location and depth sampled. In addition, where possible, the analytical result for each sample will be compared to the historical results to check that the result is consistent with the broader data set for that location.

2.5 Comparability

The reviewer and data users should qualitatively assess the comparability between historical and current data sets and use caution in combining data sets if the quality of the data is uncertain. For example, current analytical methods used to analyze for BTEX may not be comparable to historical BTEX methods where the MRL was elevated.

2.6 Completeness

The overall data set from a sampling event will be evaluated to determine if the completeness goal of 90% useable data was achieved. Completeness is calculated by

comparing the amount of useable data to the overall number of samples. A completeness value below 90% may be cause for collecting additional analytical samples.

3 DATA GENERATION AND ACQUISITION

This section describes the procedures and DQOs for sample handling and custody, analytical methods, instrument/equipment calibration, instrument/equipment inspection and maintenance, inspection/acceptance of supplies and consumables, and data management. Procedures for sample-collection methods are presented in the SAP.

3.1 Sample Handling and Custody Quality Control (QC)

Field activities will be conducted in accordance with the procedures outlined in the Ecologyreviewed SAP. Laboratory activities will be conducted in accordance with the procedures outlined in the laboratory's QAPP. By conducting these activities in this manner, the data should meet the specified DQOs for the project and be legally defensible. Sample containers, preservatives, and method holding times are presented in Attachment 3.

3.1.1 Field Quality Control (QC)

This section identifies the field QC DQOs, including proper containers for sample collection, sample custody, sample condition, and hold times for requested analyses.

3.1.1.1 Sample Containers

Sample containers will be provided by the laboratory and pre-preserved with appropriate compounds, if required. Groundwater samples for volatile analyses will be filled first and inspected to check that zero headspace is present in the container. Soil samples for volatile analyses will be collected in accordance with EPA 5035 procedures into methanol-preserved vials. The sample containers for metals and other non-volatile parameters will be filled close to the top of the containers.

Sample containers will be labeled to include date and time the sample was collected, location of the sample, name of the person who collected the sample, unique sample identification number, analytical method, and any chemical preservative used. Sample jars will not be individually sealed with a custody seal.

3.1.1.2 Chain-of-Custody (COC)

Evidence of sample custody from the time of collection to the time of receipt by the laboratory is documented via the COC record. If the samples are transferred to a reference

laboratory, ARI begins a new COC record that documents sample custody from their laboratory through receipt at the reference laboratory. Additionally, each laboratory maintains an internal COC document through disposal of the project samples, including, but not limited to analysis. A COC contains the signatures of individuals collecting, shipping, and receiving each sample. The COC is reviewed to verify it is signed and dated by the sampler, the local receiving staff (unless shipped directly), and the laboratory's receiving staff. Carriers who are only involved in the transport of sealed coolers are not required to sign the COC. However, shipping documents will be included in the project files if a carrier is used to transport the project samples. A sample is in custody if it is:

- In a person's actual possession,
- In view, after being in physical possession,
- Sealed so no one can tamper with it, after having been in physical custody, or
- In a secured area, restricted to authorized personnel.

If the COC record is not complete and accurate (e.g., signatures missing, date/time discrepancies, lack of custody seals), professional judgment may be used as to whether to qualify the data. The reviewer should consider rejecting data and recollecting the samples, if possible, if it is suspected that custody was intentionally breached and the samples may have been tampered with. However, if there is a simple omission or minor discrepancy, the data may be usable without qualification as long as the source of the omission or discrepancy is known, accounted for, and documented.

The COC also specifies the requested analyses for each documented sample. COCs are reviewed to check that the correct analyses were requested and that sample names match those on the sample-collection logs. Where discrepancies are noted, the laboratory will coordinate with the sampling team to check that the correct sample names are used in reporting the results.

3.1.1.3 Sample Preservation

Evidence of sample condition and preservation is documented on the laboratory's sample receipt form (SRF) upon delivery. SRFs document QC non-conformance issues during sample handling, where such information exists. SRFs are reviewed to verify samples are received within the acceptable temperature range; temperature of the coolers and/or temperature blanks are documented at each receiving location. Samples are considered to be within the acceptable temperature range if received between 0 degree Celsius (°C) and 6°C, when temperature preservation is required. This range is based primarily on the less than or equal to \leq 6°C temperature cutoff in SW-846 (EPA, 2007) and the understanding that water samples below this cutoff are acceptable in the absence of ice. Furthermore, the

Federal Register (EPA, 2012) states that the $\leq 6^{\circ}$ C limit supersedes the 4°C or $<4^{\circ}$ C requirement of some individual SW-846 methods and that aqueous samples "should not be frozen unless data demonstrating that sample freezing does not adversely impact sample integrity is maintained on file and accepted as valid by the regulatory authority." This citation is interpreted to mean the acceptable temperature range is 0°C to 6°C in the absence of ice.

Data qualification based on temperatures outside the acceptable criteria may vary for different analyses and sample matrices. For example, soil samples collected frozen (<-7°C) may be maintained frozen until sub-sampled and preserved, if allowed by the project work plan. Also, depending on the matrix and analytical method, certain sample results may be acceptable at higher temperatures (e.g., PCBs in oil [EPA, 2007]). Exhibit 3-1 (below) provides general guidelines for qualifying results for samples received outside the acceptable temperature range; however, the individual extraction or analytical methods should be consulted and professional judgment used.

		Ac	tion
Matrix	Criteria	Detected Analytes	Analytes Not Detected
Water	0°C – 6°C	No qua	alification
	0°C – 6°C; ice in samples	J	UJ
	<0°C; no ice in samples	No qua	alification
	<0°C; ice in samples	J	UJ
	>6°C	JL	UJa
Soil	0°C – 6°C	No qua	alification
	<0°C	No qua	lification ^b
	>6°C	JL	UJa

Exhibit 3-1: Sample-Temperature Actions

NOTES:

a. Use professional judgment when qualifying sample results based on temperature exceedance, taking into account the volatility of the analyte. If temperatures are higher than 10°C or are suspected to have been above 6°C for an extended period of time (e.g., over 24 hours), reviewer should consider rejecting sample results for volatile analytes that were not detected.

b. Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

Some analyses require addition of sample preservatives in addition to maintaining the samples within the acceptable temperature range. Various guidance documents and individual EPA extraction methods list sample-preservation requirements for individual methods and matrices; ARI has condensed this information into one concise table in their bottle guide. The laboratory SRF documents whether samples were received with proper preservative and within relevant pH limits. Laboratory-filtered samples for metals analysis will be preserved with nitric acid.

In most cases where sample preservation is inadequate, sample results should be considered estimated with a low bias; results where analytes are not detected should be flagged "UJ" and detections flagged "JL." However, not all data are affected the same way by failure to properly preserve the samples. For inorganic analytes in aqueous samples, if the pH is outside method requirements upon receipt but the laboratory adjusts the pH immediately upon receipt at the laboratory and allows the method-specified time for the sample to equilibrate prior to digestion, the sample results are considered not affected (EPA, 2017a). In the case where one analyte is the degradation byproduct of another analyte, the degraded species may increase in a sample following storage with inadequate preservation (USACE, 2005); the same may occur if holding times are exceeded (see below). Furthermore, adding preservative where it is not required can have unforeseen effects on data for certain analytes. For example, if metals speciation is being performed (e.g., Fe²⁺ vs. Fe³⁺) acidification can result in an increase in the reduced form and a decrease in the oxidized form. Professional judgment should be used for qualifying data for any samples with preservation issues.

3.1.1.4 Sample Condition

Sample condition is documented on the laboratory's SRF(s). Professional judgment should be used to determine if qualification of analytical results is necessary for cases where sample condition is compromised. Some common circumstances that may affect sample results are listed below:

- 1. **Broken container**: When the samples are received in broken containers, it is important to note which samples were received as such. Sometimes, 1-L bottle lids crack upon tightening but no liquid is lost; as long as the lid is replaced prior to sample shipment (e.g., the lid may be replaced by the laboratory sample-receiving office), results are not considered affected. Most water analyses require at least a duplicate bottle to be filled. If only one of the bottles is broken and the analysis is performed with the intact bottle, no qualification is required other than noting the broken container on the NFG laboratory data-review checklist. However, if the sample with the broken container was used for analysis, the analytes in question could oxidize, volatilize, degrade, or react, causing the concentration to be biased low; professional judgment should be used to determine if the analyses are affected by the addition of air. Affected sample results for detected analytes should be flagged "JL" and sample results for analytes not detected should be flagged "UJ" or "R" (rejected), depending on the analyte and professional judgment of the reviewer (i.e., take into account how much sample leaked, if any, and the volatility of the analyte).
- 2. **Headspace in volatile organic analysis vial**: For the analysis of VOCs in water samples, the absence of headspace is necessary to prevent the volatile analyte from partitioning out of the aqueous phase. Bubbles larger than 6 millimeters in diameter are considered

an unacceptable level of headspace (EPA, 2007). When unacceptable headspace is present, detections should be flagged "JL" and non-detections should be flagged "R."

Any other sample-condition anomalies should be addressed using the reviewer's professional judgment.

3.1.1.5 Hold Times

Samples are required to be extracted and/or analyzed within method-specific holding times following collection. Holding times are presented in the same reference documents listed above for sample preservation; again, the ARI bottle guide is referenced for holding times for standard analyses. Holding times are calculated on a per-day basis, with the exception of short-holding-time analyses (where the technical holding time is measured in hours, typically 72 hours or less).

The way holding times are evaluated varies based on the matrix and method. Certain methods list a collection-to-analysis holding time (e.g., analysis of VOCs in soil, where extraction occurs at the time of collection), while others list separate holding times for collection to extraction and for extraction to analysis (e.g., analysis of SVOCs in water).

Where holding times are exceeded, sample results shall be qualified using the following criteria listed in Exhibit 3-2. Hold-time exceedances can be differentiated between a *marginal* exceedance and a *gross* exceedance, and different qualifications may be applied depending on the circumstance. This differentiation is similar to guidelines in EM 200-1-10 (USACE, 2005), as presented below.

	Action		
Criteria	Detected Analytes	Analytes Not Detected	
t≤HT	No qua	alification	
HT < t ≤ 2xHT (marginal exceedance)	JL	UJ	
t > 2xHT (gross exceedance)	JL	R	

Exhibit 3-2: Holding-Time Actions

NOTES:

HT = method (technical) holding time; t = actual holding time; 2x = two times

As with sample preservation, professional judgment must be used when qualifying data based on holding-time exceedances, as there can be situations where certain analytes are affected differently than others (such as in the case of analytes that are degradation products of one another). Also, sample-preservation failures coupled with a marginal holding-time exceedance may warrant rejection of results for analytes that were not detected.

3.1.2 Laboratory Quality Control (QC)

The data quality for this project will be assessed by comparing QC-sample results to pre-established numerical DQOs defined in Section 2.

3.2 Analytical Methods

Analytical samples will be submitted to the contract laboratory ARI of Tukwila, Washington. The laboratory is Ecology and NELAP certified for the requested analyses. Groundwater samples for PFAS analysis will be submitted to Eurofins TestAmerica of Sacramento, California. Groundwater samples will be submitted for the following analyses:

- TPH-Gx by Method Northwest Total Petroleum Hydrocarbons-Gasoline (NWTPH-Gx)
- TPH-Dx by Method NWTPH-Dx
- HVOCs, MTBE, and BTEX by Method EPA 8260C
- PAHs and SVOCs by EPA Method 8270D
- PCBs as aroclors by EPA Method 8082A
- Total and dissolved metals by EPA Method 200.8
- Total and dissolved mercury by EPA Method 7470A
- Dissolved hexavalent chromium by EPA Standard Method 3500
- PFAS, including EPA's third Unregulated Contaminant Monitoring rule list of six perfluorinated compounds (perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluorobutanesulfonic acid, perfluorohexanesulfonic acid, perfluoroheptanoic acid, and perfluorononanoic acid) by Method 537 (modified);
- Ferrous iron by EPA Standard Method 3500
- Nitrate and nitrite as nitrogen by EPA Method 300.0
- Sulfate and sulfite by EPA Method 300.0 and EPA Standard Method 4500
- Manganese ion by EPA Method 200.8
- Methane by RSK-175

The soil samples will be analyzed for the following analyses:

- TPH-Gx by NWTPH-Gx
- TPH-Dx NWTPH-Dx
- HVOCs and BTEX by EPA Method 8260C
- PAHs and SVOCs by EPA Method 8270D
- PCB aroclors by EPA Method 8082A

- Metals by EPA Method 200.8
- Mercury by EPA Method 7471B
- Hexavalent chromium by EPA Method 7196A
- Total organic carbon by EPA Method 9060A

SVOCs and PAHs are analyzed using EPA Method 8270D. Method 8270D includes the standard method, a low level (LL) version, and selected ion monitoring (SIM). SIM, which provides the lowest detection limits, is not available for the full suite of analytes on the EPA 8270D analyte list; the available SIM analyte list mainly includes PAHs. Similarly, the LL method does not include the full suite of analytes on the EPA 8270D analyte list. For the included analytes, the LL method provides lower detection limits than the standard method but less stringent than the SIM method. The standard method has been selected when the reporting limits are sufficient to meet the screening level requirements or if the analyte is not included within the SIM or LL methods. The LL method has been selected when it is required to achieve the screening level requirements or when it can get closer to the screening levels and SIM is not available. SIM has been selected when it is available and required to achieve or get closer to the screening levels.

Select soil samples will be submitted to the Shannon & Wilson Seattle Soils Laboratory for physical parameters, including:

- Grain size analysis by ASTM D6913 and ASTM D1140
- Porosity analysis by ASTM D72633-09 and calculation

3.3 Instrument/Equipment Inspection, Maintenance, and Calibration

Instrument and equipment inspection, maintenance, and calibration allows for collection of accurate and reliable measurements. Field instruments and equipment are inspected prior to each sampling event for damage, wear, and missing parts by experienced Shannon & Wilson field staff. Maintenance of field instruments and equipment will be documented in the instrument/equipment maintenance log. Field instrument and equipment will be calibrated and adjusted to operate within the manufacturer's specifications at a frequency of not less than the manufacturer's recommendation. Calibration measurements will be documented in the field activity log for the project.

Calibration of the temperature, pH, conductivity, and dissolved oxygen meters may be performed prior to arrival on the Site. Calibration will be valid for field conditions. The equipment or instruments will be calibrated with standards recommended or approved by the manufacturer. Calibration standards that have reached their expiration dates will not be used for calibration and will be discarded in accordance with the manufacturer's recommendation or local, state, and federal regulations.

Laboratory instrument and equipment will be inspected, maintained, and calibrated in accordance with the laboratory's standard operating procedures (SOPs) or QA program. The laboratory is required to maintain logs of inspections, maintenance, and calibration of all instruments and equipment. The laboratory QC PM is responsible for verification that inspections, maintenance, and calibrations are performed and documented at the frequency established in the laboratory SOP or QA program.

3.4 Inspection/Acceptance of Supplies and Consumables

Field supplies and consumables will be inspected by experienced Shannon & Wilson field staff. All supplies and consumables will be traceable to documented, reliable, commercial sources. The supplies and consumables will be inspected upon receipt and stored according to manufacturer's instructions. Any discrepancies will be documented in the project daily field form.

3.5 Data Management

Field forms will be reviewed for completeness and accuracy by the Shannon & Wilson PM or QA manager. The field forms will be maintained in paper and electronic form in the project files. Laboratory analytical results will be stored in the project database and submitted in the summary report along with the laboratory report.

4 ASSESSMENT AND CORRECTIVE ACTIONS

A QC review of the field data and analytical laboratory data will be performed to assess data quality. The QC review will use the DQOs established in Section 2 and procedures described in Section 3 to assess the data quality. Any deviations from these DQOs and procedures will be documented and appropriate corrective actions will be taken and documented in the summary report.

The laboratory is required to comply with their SOPs and the QA Program. The laboratory QA manager is responsible for ensuring that any deviations from laboratory SOPs and the QA Program are documented and appropriate corrective actions are implemented. The laboratory QA Manager is required to notify the Shannon & Wilson PM in the event of corrective actions. This is typically documented in the laboratory report's case narrative and any affect to the data quality is reported in the NFG laboratory data-review checklist.

5 REPORTING

Shannon & Wilson will submit the laboratory analytical results to the Ecology PC and EMJ PM within two weeks of receipt and validation and will upload the data to the EIM database. The findings will be incorporated into the RI Report.

6 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), Division of Spill Prevention and Response, Contaminated Sites Program, 2017, Field sampling guidance: Juneau, Alaska, ADEC, 92 p., August.
- Shannon & Wilson, 2019, Draft remedial investigation work plan, Jorgensen Forge Corporation Property, Tukwila, Washington: Report prepared by Shannon & Wilson, Seattle, Wash.., 21-1-12596-010, for Earle M. Jorgensen Company, Lynwood, Calif., January 31.
- U.S. Army Corps of Engineers (USACE), 2005, Engineering Manual 200-1-10, Guidance for Evaluating Performance-Based Chemical Data, 2005.
- U.S. Environmental Protection Agency (EPA), 2001, EPA Requirements for Quality Assurance Project Plans, March.
- U.S. Environmental Protection Agency (EPA), 2007, SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.
- U.S. Environmental Protection Agency (EPA), 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, January 13.
- U.S. Environmental Protection Agency (EPA), 2012, Federal Register Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; Analysis and Sampling Procedures; Final Rule, May 18, 2012, v. 77. no. 97.
- U.S. Environmental Protection Agency (EPA), 2017a, National Functional Guidelines for Inorganic Superfund Methods Data Review, January.
- U.S. Environmental Protection Agency (EPA), 2017b, National Functional Guidelines for Organic Superfund Methods Data Review, January.
- Washington State Department of Ecology (Ecology), 2016, Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies, December 2016.
Washington State Department of Ecology (Ecology), 2019, Ecology comments on the draft remedial investigation work plan, Jorgensen Forge Corporation property, Tukwila, Washington, dated October 25, 2017 for: Name: Jorgensen Forge Corp Site, Address: 8531 East Marginal Way South, Tukwila, WA 98106, Facility/Site No.: 2382, Cleanup Site ID No.: 3689, Agreed Order No.: 14143: Commenced prepared by Ecology, Bellevue, Wash., for Shannon & Wilson, Seattle, Wash., December 20.

Attachment 1

Comparison of Laboratory Detection Limits Against Screening Levels

CONTENTS

- Attachment 1A Comparison of Laboratory Detection Limits Against Screening Levels Groundwater
- Attachment 1B Comparison of Laboratory Detection Limits Against Screening Levels Soil

				Fremont Analytic	al		ALS Environment	al		Analytical Resources	s, Inc.
Analyte	CAS	Ecology PCUL ¹	Method	MDL	RL ²	Method	MDL	RL ²	Method	MDL	RL ²
Metals											
Aluminum	7429-90-5	1.60E+04	200.8	2.18E+01	1.00E+02	6020A	9.60E+00	5.00E+01	EPA 6010C	8.50E-03	5.00E-02
Antimony	7440-36-0	9.00E+01	200.8	7.95E-02	1.00E+00	6020A	1.10E-01	1.00E+00			
Arsenic (total)	7440-38-2	8.00E+00	200.8	5.89E-01	1.75E+00	6020A	1.50E-01	1.00E+00	EPA 6010C	4.70E-03	5.00E-02
Barium	7440-39-3	2.00E+02	200.8	1.66E-01	2.50E+00	6020A	2.20E-01	1.00E+00	EPA 6010C	7.00E-04	3.00E-03
Beryllium	7440-41-7	4.38E+00	200.8	1.09E-02	2.00E-01	6020A	1.00E-01	1.00E+00	EPA 6010C	2.00E-04	1.00E-03
Cadmium	7440-43-9	1.19E+00	200.8	1.36E-02	2.00E-01	6020A	1.20E-01	1.00E+00	EPA 6010C	3.00E-04	2.00E-03
Chromium, total (or III)	7440-47-3	6.05E-02	200.8	2.00E-01	1.00E+00	6020A	1.00E-01	2.00E+00	EPA 6010C	1.30E-03	5.00E-03
Chromium (VI)	18540-29-9	5.00E+01	200.8			7196	1.80E+00	1.00E+01	SM 3500-Cr B-09	1.00E-02	1.00E-02
Cobalt	7440-48-4	4.80E+00	200.8	1.28E-01	1.00E+00	6020A	8.00E-02	1.00E+00	EPA 6010C	2.00E-04	3.00E-03
Copper	7440-50-8	3.10E+00	200.8	2.03E-01	1.00E+00	6020A	2.70E-01	2.00E+00	EPA 6010C	7.00E-04	2.00E-03
Iron	7439-89-6	3.20E+04	200.8	2.44E+01	1.00E+02	6020A	5.76E+00	5.00E+01	EPA 6010C	1.30E-03	5.00E-02
Lead	7439-92-1	8.10E+00	200.8	6.52E-02	5.00E-01	6020A	9.00E-02	1.00E+00	EPA 6010C	1.90E-03	2.00E-02
Manganese	7439-96-5	1.00E+02	200.8	1.45E-01	2.00E+00	6020A	1.10E-01	2.00E+00	EPA 6010C	3.00E-04	1.00E-03
Mercury (elemental)	7439-97-6	2.50E-02	245.1	7.53E-03	1.00E-01	7470	3.63E-02	2.00E-01	EPA 7470A	1.30E-05	1.00E-04
Methylmercury	16056-34-1	3.00E-02									
Molybdenum	7439-98-7	8.00E+01	200.8	5.24E-01	5.00E+00	6020A	9.00E-02	1.00E+00	EPA 6010C	6.00E-04	5.00E-03
Nickel	7440-02-0	8.20E+00	200.8	1.90E-01	2.50E+00	6020A	5.10E-01	2.00E+00	EPA 6010C	2.80E-03	1.00E-02
Selenium	7782-49-2	7.10E+01	200.8	1.24E+00	5.00E+00	6020A	1.14E+00	4.00E+00	EPA 6010C	5.00E-03	5.00E-02
Silver	7440-22-4	1.90E+00	200.8	1.71E-02	2.50E-01	6020A	7.00E-02	1.00E+00	EPA 6010C	5.00E-04	3.00E-03
Thallium	7440-28-0	6.19E-02	200.8	2.71E-03	2.00E-01	6020A	2.40E-01	1.00E+00	EPA 6010C	3.70E-03	5.00E-02
Tin	7440-31-5	9.60E+03	200.8	6.13E-01	5.00E+00	6020A	3.00E-01	2.00E+00	EPA 6010C	1.50E-03	1.00E-02
Vanadium	7440-62-2	8.00E+01	200.8	2.68E-01	1.00E+00	6020A	3.40E-01	2.00E+00	EPA 6010C	4.00E-04	3.00E-03
Zinc	7440-66-6	8.10E+01	200.8	4.75E-01	2.50E+00	6020A	7.40E-01	2.50E+00	EPA 6010C	2.10E-03	1.00E-02
Polychlorinated Biphenyls (PCBs)											
PCB - Aroclor 1016	12674-11-2	7.00E-06	8082 or 608	1.44E-02	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1221	11104-28-2	7.00E-06	8082 or 608	1.44E-02	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1232	11141-16-5	7.00E-06	8082 or 608	1.44E-02	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1242	53469-21-9	7.00E-06	8082 or 608	1.44E-02	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1248	12672-29-6	7.00E-06	8082 or 608	8.84E-03	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1254	11097-69-1	7.00E-06	8082 or 608	8.84E-03	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.48E-03	1.00E-02
PCB - Aroclor 1260	11096-82-5	7.00E-06	8082 or 608	8.84E-03	1.00E-01	8082	2.22E-02	1.00E-01	8082A	2.76E-03	1.00E-02
Volatile Organic Compounds (VOCs)											
Acetone	67-64-1	7.20E+03	8260 or 624	7.72E-01	5.00E+00	8260	2.25E-01	2.50E+01	8260C	2.06E+00	5.00E+00
Acrolein	107-02-8	1.10E+00							8260C	2.48E+00	5.00E+00
Acrylonitrile	107-13-1	2.80E-02	8260 or 624	1.37E-01	1.00E+00	8260	1.91E-02	1.00E+01	8260C	6.00E-01	1.00E+00
Benzaldehyde	100-52-7	8.00E+02									
Benzene	71-43-2	1.60E+00	8260 or 624	7.47E-02	1.00E+00	8260	9.35E-03	2.00E+00	8260C	3.00E-02	2.00E-01
Bromobenzene	108-86-1	6.40E+01	8260 or 624	4.60E-02	1.00E+00	8260	1.36E-02	2.00E+00	8260C	6.00E-02	2.00E-01
Bromochloromethane	74-97-5	NE	8260 or 624	8.79E-02	1.00E+00	8260	3.82E-02	2.00E+00	8260C	6.00E-02	2.00E-01
Bromodichloromethane	75-27-4	1.80E+00	8260 or 624	6.09E-02	1.00E+00	8260	1.97E-02	2.00E+00	8260C	5.00E-02	2.00E-01
Bromoethane	74-96-4	NE							8260C	4.00E-02	2.00E-01
Bromoform	75-25-2	1.20E+01	8260 or 624	8.58E-01	1.00E+00	8260	1.76E-02	2.00E+00	8260C	6.00E-02	2.00E-01
Bromomethane	74-83-9	1.29E+01	8260 or 624	1.18E-01	1.00E+00	8260	4.81E-02	2.00E+00	8260C	2.50E-01	1.00E+00
2-Butoxyethanol	111-76-2	8.00E+02									
n-Butylbenzene	104-51-8	4.00E+02	8260 or 624	7.94E-02	1.00E+00	8260	1.75E-02	2.00E+00	8260C	2.00E-02	2.00E-01
sec-Butylbenzene	135-98-8	8.00E+02	8260 or 624	8.22E-02	1.00E+00	8260	6.26E-03	2.00E+00	8260C	2.00E-02	2.00E-01
tert-Butylbenzene	98-06-6	8.00E+02	8260 or 624	6.07E-02	1.00E+00	8260	1.69E-02	2.00E+00	8260C	3.00E-02	2.00E-01
Carbon disulfide	75-15-0	3.99E+02	8260 or 624	1.05E-01	1.00E+00	8260	1.81E-02	2.00E+00	8260C	4.00E-02	2.00E-01

				Fremont Analytic	al		ALS Environmer	ntal		Analytical Resource	s, Inc.
Analyte	CAS	Ecology PCIII	Method	MDI	RI ²	Method	MDI	RI ²	Method	MDI	RI ²
Carbon tetrachloride	56-23-5	3.50E-01	8260 or 624	5.34E-01	1 00E+00	8260	8.32E-03	2 00E+00	8260C	4 00F-02	2 00E-01
Chlorobenzene	108-90-7	2.00E+02	8260 or 624	7.02E-02	1.00E+00	8260	7.98E-03	2.00E+00	8260C	2.00E-02	2.00E-01
Chlorodibromomethane / Dibromochloromethane	124-48-1	2.20E+00	8260 or 624	5.28E-02	1.00E+00	8260	2.48E-02	2.00E+00	8260C	5.00E-02	2.00E-01
Chloroethane	75-00-3	1.85E+04	8260 or 624	1.99E-01	1.00E+00	8260	3.87E-02	2.00E+00	8260C	9.00E-02	2.00E-01
2-Chloroethyl vinyl ether	110-75-8	NE							8260C	2.50E-01	1.00E+00
Chloroform	67-66-3	1.19E+00	8260 or 624	1.10E-01	1.00E+00	8260	4.62E-02	2.00E+00	8260C	3.00E-02	2.00E-01
Chloromethane	74-87-3	1.53E+02	8260 or 624	7.89E-01	1.00E+00	8260	7.69E-02	2.00E+00	8260C	9.00E-02	5.00E-01
3-Chloro- 1-propene	107-05-1	2.08E+00									
2-Chlorotoluene	95-49-8	1.60E+02	8260 or 624	7.29E-02	1.00E+00	8260	1.06E-02	2.00E+00	8260C	2.00E-02	2.00E-01
4-Chlorotoluene	106-43-4	NE	8260 or 624	7.73E-02	1.00E+00	8260	1.33E-02	2.00E+00	8260C	2.00E-02	2.00E-01
Dibromochloromethane	124-48-1	2.20E+00	8260 or 624	5.28E-02	1.00E+00	8260	2.48E-02	2.00E+00	8260C	5.00E-02	2.00E-01
1,2-Dibromo-3-Chloropropane	96-12-8	2.00E-01	8260 or 624	2.87E-01	1.00E+00	8260	3.32E-02	1.00E+01	8260C	3.70E-01	5.00E-01
Dibromomethane	74-95-3	8.00E+01	8260 or 624	9.88E-02	1.00E+00	8260	2.36E-02	2.00E+00	8260C	1.40E-01	2.00E-01
1,2-Dibromoethane	106-93-4	5.00E-02	8260 or 624	8.61E-02	6.00E-02	8260	7.89E-03	1.00E-02	8260C	7.00E-02	2.00E-01
Dichlorobromomethane	75-27-4	1.82E+00	8261 or 624	6.09E-02	1.00E+00	8260	1.97E-02	2.00E+00			
trans-1, 4-Dichloro-2-butene	110-57-6	NE	8260 or 624	7.86E-01	2.00E+00				8260C	3.20E-01	1.00E+00
1,2-Dichlorobenzene	95-50-1	4.61E+00	8260 or 624	6.00E-02	1.00E+00	8260	9.45E-03	2.00E+00	8260C	4.00E-02	2.00E-01
1,3-Dichlorobenzene	541-73-1	2.00E+00	8260 or 624	7.00E-02	1.00E+00	8260	1.38E-02	2.00E+00	8260C	4.00E-02	2.00E-01
1,4-Dichlorobenzene	106-46-7	4.93E+00	8260 or 624	3.80E-02	1.00E+00	8260	1.50E-02	2.00E+00	8260C	4.00E-02	2.00E-01
Dichlorodifluoromethane (CFC-12)	/5-71-8	5.65E+00	8260 or 624	1.09E-01	1.00E+00	8260	3.14E-02	2.00E+00	8260C	5.00E-02	2.00E-01
1,1-Dichloroethane	/5-34-3	<u>1.11E+01</u>	8260 or 624	9.00E-02	1.00E+00	8260	9.94E-03	2.00E+00	8260C	5.00E-02	2.00E-01
1,2-Dichloroethane (EDC)	107-06-2	4.22E+00	8260 or 624	8.30E-02	1.00E+00	8260	4./1E-03	2.00E+00	8260C	7.00E-02	2.00E-01
	15-35-4	1.29E+02	0260 or 624	2.07E-01	1.00E+00	8260	4.58E-03	2.00E+00	82600	5.00E-02	2.00E-01
CIS-1,2-DICNIOROEINVIENE	150-59-2		8260 or 624	1.90E-02	1.00E+00	8260	2.27E-02	2.00E+00	82600	4.00E-02	2.00E-01
trans-1,2-Dichloroethylene	100-00-0	1.00E+03	0200 0F 024		1.00E+00	020U	J.ZJE-UZ	2.00E+00	02000	0.UUE-U2	2.00E-01
	240-29-0 78 87 5		0200 01 024				 2 12E 02	 2.00E+00	 8260C	 1 00E 02	
	563-58 6	3.10E+00	8260 or 624			8260	2.12E-UZ		82600	4.00E-02 3.00E 02	
	1/2 28 0		8260 or 624	7 80 5 02		8260	2.24E-02 2.21E 02		82600		
cis-1 3-Dichloronronene	10061_01_5		8260 or 624	1 02E-02	1.00E+00	8260	1 59F-02	2.00E+00	82600	6 00E-02	2.002-01
trans-1.3-Dichloropropene	10061-07-6	2.00E+00	8260 or 624	1.020-01	1 00E+00	8260	1.00E-02	2.00E+00	82600	8 00E-02	2.00E-01
2 2-Dichloropropane	594-20-7	NF	8260 or 624	7 82F-01	2 00F+00	8260	1 38F-02	2.00E+00	82600	5 00F-02	2.00E-01
Ethane	74-84-0	NE	RSK175	4.06E+00	1.62E+01	RSK-175	1.30E-03	1.00E-02	RSK-175	3.90E-01	1.23E+00
Ethylbenzene	100-41-4	3.10E+01	8260 or 624	8.70E-02	1.00E+00	8260	9.73E-03	2.00E+00	8260C	4.00E-02	2.00E-01
Ethylene	74-85-1	NE	RSK175	4.18E+00	1.51E+01	RSK-175	2.30E-03	1.00E-02	RSK-175	2.40E-01	1.14E+00
Ethyl ether	60-29-7	1.60E+03									
Ethylene dibromide (EDB)	106-93-4	2.71E-01	8011	3.00E-03	1.00E-02	8260	7.89E-03	1.00E-02			
Formaldehyde	50-00-0	1.60E+03									
2-Hexanone	591-78-6	4.00E+01	8260 or 624	5.39E-01	1.00E+00	8260	3.12E-01	1.00E+01	8260C	9.00E-01	5.00E+00
Hexachloro-1,3-butadiene	87-68-3	1.00E-02	8260 or 624	1.97E-01	4.00E+00	8260	2.31E-02	2.00E+00	8260C	7.00E-02	5.00E-01
Hexane; n-	110-54-3	4.80E+02	8260 or 624	1.75E-01	1.00E+00				8260C	1.00E-01	2.00E-01
lodomethane	74-88-4	NE	8260 or 624	1.01E-01	1.00E+00				8260C	2.30E-01	1.00E+00
Isopropylbenzene (Cumene)	98-82-8	7.15E+02	8260 or 624	5.88E-02	1.00E+00	8260	1.27E-02	2.00E+00	8260C	2.00E-02	2.00E-01
p-Isopropyltoluene/4-Isopropyltoluene	99-87-6	NE	8261 or 624	7.98E-02	1.00E+00	8260	1.15E-02	2.00E+00	8260C	3.00E-02	2.00E-01
Methyl ethyl ketone/2-Butanone (MEK)	78-93-3	1.75E+06	8260 or 624	9.05E-01	5.00E+00	8260	4.72E-01	1.00E+01	8260C	8.10E-01	5.00E+00
Methylene iodide	74-88-4	NE	See lodomethane								
Methylene chloride	75-09-2	1.00E+02	8260 or 624	3.96E-01	1.00E+00	8260	2.26E-01	5.00E+00	8260C	4.80E-01	1.00E+00
Methyl isobutyl ketone/4-Methyl-2-pentanone (MIBK)	108-10-1	4.70E+05	8260 or 624	3.04E-01	5.00E+00	8260	1.14E-01	1.00E+01	8260C	9.70E-01	5.00E+00
Methyl tert-butyl ether (MTBE)	1634-04-4	6.05E+02	8260 or 624	5.70E-02	1.00E+00	8260	1.14E-02	2.00E+00	8260C	7.00E-02	5.00E-01
Naphthalene	91-20-3	1.40E+00	8260 or 624	2.05E-01	1.00E+00	8260	1.84E-02	2.00E+00	8260C	1.20E-01	5.00E-01
2-Pentanone	107-87-9	NE							8260C	5.00E+00	5.00E+00

				Fremont Analytica	I		ALS Environmenta	I		Analytical Resources	. Inc.
Analuto	CAS	Ecology DCI II 1	Method	мп	PI ²	Method	MDI	PI ²	Method	МП	рі ²
n Dranylhanzana	102 65 1		8260 or 624			8260			8260C		
Styrene	100-00-1	8 10E+02	8260 or 624	5 10E-02	1.00E+00 1.00E+00	8260	6.65E-03	2.00E+00 2.00E+00	82600	5.00E-02	2.00E-01 2.00E-01
1 1 1 2-Tetrachloroethane	630-20-6	7 36E+00	8260 or 624	5.40E-02	1.00E+00	8260	2 92E-02	2.00E+00	82600	4 00F-02	2.00E-01
1 1 2 2-Tetrachloroethane	79-34-5	3 00E-01	8260 or 624	1 10E-01	1.00E+00	8260	9.63E-03	2.00E+00	82600	6 00E-02	2.00E-01
Tetrachloroethene (PCE)	127-18-4	2 90E+00	8260 or 624	8 50E-02	1.00E+00	8260	7 77E-03	2.00E+00	82600	5 00E-02	2.00E-01
	108-88-3	1 30E+02	8260 or 624	9 10E-02	1.00E+00	8260	5.09E-03	2.00E+00	82600	4 00F-02	2.00E-01
1 2 3-Trichlorobenzene	87-61-6	NF	8260 or 624	7 70F-02	4 00E+00	8260	1.51E-02	2.00E+00	8260C	1 10F-01	5 00E-01
1 2 4-Trichlorobenzene	120-82-1	3 70F-02	8260 or 624	6.30E-02	2 00E+00	8260	1.56F-02	2.00E+00	8260C	1 10E-01	5 00E-01
1 1 1-Trichloroethane	71-55-6	5 46F+03	8260 or 624	8 40F-02	1.00E+00	8260	1.97F-02	2.00E+00	8260C	4 00F-02	2 00E-01
1.1.2-Trichloroethane	79-00-5	9.00E-01	8260 or 624	1.07E-01	1.00E+00	8260	1.73E-02	2.00E+00	8260C	1.30E-01	2.00E-01
Trichloroethene (TCE)	79-01-6	7.00E-01	8260 or 624	9.50E-02	5.00E-01	8260	1.78E-02	2.00E+00	8260C	5.00E-02	2.00E-01
Trichlorofluoroethane	27154-33-2	NE									
Trichlorofluoromethane (CFC-11)	75-69-4	2.40E+03	8260 or 624	1.27E-01	1.00E+00	8260	1.49E-02	2.00E+00	8260C	4.00E-02	2.00E-01
1.2.3-Trichloropropane	96-18-4	1.46E-03	8260 or 624	2.53E-01	1.00E+00	8260	7.59E-03	2.00E+00	8260C	1.30E-01	5.00E-01
Trichlorotrifluoroethane (CFC-113)	76-13-1	1.83E+02	8261 or 624	1.73E-01	1.00E+00						
1,2,3-Trimethylbenzene	526-73-8	8.00E+01									
1,2,4-Trimethylbenzene	95-63-6	2.39E+02	8260 or 624	6.10E-02	1.00E+00	8260	1.79E-02	2.00E+00	8260C	2.00E-02	2.00E-01
1,3,5-Trimethylbenzene	108-67-8	8.00E+01	8260 or 624	6.10E-02	1.00E+00	8260	1.37E-02	2.00E+00	8260C	2.00E-02	2.00E-01
Vinyl Acetate	108-05-4	7.81E+03	8260 or 624	1.11E-01	1.00E+00				8260C	7.00E-02	2.00E-01
Vinyl chloride	75-01-4	1.80E-01	8260 or 624	8.20E-02	2.00E-02	8260	1.05E-02	2.00E-01	8260C	6.00E-02	2.00E-01
m-Xylenes	179601-23-1	3.03E+02	8260 or 624	1.73E-01	1.00E+00	8260	3.52E-02	4.00E+00	8260C	5.00E-02	4.00E-01
m,p-Xylenes	179601-23-1	1.60E+03	8260 or 624	1.73E-01	1.00E+00	8260	3.52E-02	4.00E+00	8260C	5.00E-02	4.00E-01
o-Xylene	136777-61-2	4.32E+02	8260 or 624	6.88E-02	1.00E+00	8260	2.31E-02	2.00E+00	8260C	3.00E-02	2.00E-01
Xylenes, Total	1330-20-7	3.32E+02	—	—					8260C	9.00E-02	6.00E-01
Polycyclic Aromatic Hydrocarbons (PAHs)											
Acenaphthene	83-32-9	5.34E+00	8270	3.10E-02	5.00E-01	8270-SIM	3.64E-03	2.00E-02	8270D	3.00E-01	1.00E+00
Acenaphthylene	208-96-8	NE	8270	2.40E-02	5.00E-01	8270-SIM	2.46E-03	2.00E-02	8270D	3.00E-01	1.00E+00
Anthracene	120-12-7	2.15E+00	8270	2.00E-02	5.00E-01	8270-SIM	2.72E-03	2.00E-02	8270D	3.00E-01	1.00E+00
Benzo(a)anthracene	56-55-3	1.60E-04	8270 SIM	1.59E-02	1.00E-01	8270-SIM	1.02E-03	2.00E-02	8270D-SIM-LL	8.00E-04	1.00E-02
Benzo(b)fluoranthene	205-99-2	1.60E-04	8270 SIM	2.16E-02	1.00E-01	8270-SIM	3.04E-03	2.00E-02	8270D-SIM-LL	5.00E-04	1.00E-02
Benzo(k)fluoranthene	207-08-9	1.60E-03	8270 SIM	4.11E-02	1.00E-01	8270-SIM	4.87E-03	2.00E-02	8270D-SIM-LL	3.00E-03	1.00E-02
Total Benzofluoranthenes	E	NE							8270D	8.00E-01	2.00E+00
Benzo(g,h,i)perylene	191-24-2	NE	8270	4.30E-02	5.00E-01	8270-SIM	1.99E-03	2.00E-02	8270D	5.00E-01	1.00E+00
Benzo(a)pyrene	50-32-8	1.60E-05	8270 SIM	9.57E-03	1.00E-01	8270-SIM	2.29E-03	2.00E-02	8270D-SIM-LL	2.00E-03	1.00E-02
Chrysene	218-01-9	1.60E-02	8270 SIM	2.20E-02	1.00E-01	8270-SIM	2.06E-03	2.00E-02	8270D-SIM-LL	9.00E-04	1.00E-02
Dibenz(a,h)anthracene	53-70-3	1.60E-05	8270 SIM	2.74E-03	1.00E-01	8270-SIM	3.56E-03	2.00E-02	8270D-SIM-LL	1.00E-03	1.00E-02
Dibenzofuran	132-64-9	1.60E+01	8270	3.50E-02	1.00E+00				8270D	3.00E-01	1.00E+00
Fluoranthene	206-44-0	1.82E+00	8270	2.50E-02	5.00E-01	8270-SIM	6.10E-04	2.00E-02	8270D	4.00E-01	1.00E+00
Fluorene	86-73-7	3.67E+00	8270	3.20E-02	5.00E-01	8270-SIM	1.09E-03	2.00E-02	8270D	3.00E-01	1.00E+00
Indeno(1,2,3-cd)pyrene	193-39-5	1.60E-04	8270 SIM	7.11E-03	1.00E-01	8270-SIM	1.85E-03	2.00E-02	8270D-SIM-LL	1.00E-03	1.00E-02
Methyl isopropyl phenanthrene	483-65-8	NE									
1-Methylnaphthalene	90-12-0	1.50E+00	8270	1.70E-02	5.00E-01	8270-SIM	1.01E-03	2.00E-02	8270D	3.00E-01	1.00E+00
2-Methylnaphthalene	91-57-6	3.20E+01	8270	1.50E-02	5.00E-01	8270-SIM	1.74E-03	2.00E-02	8270D	2.00E-01	1.00E+00
Naphthalene	91-20-3	1.40E+00	8270	1.70E-02	5.00E-01	8270-SIM	7.84E-04	2.00E-02	8270D	2.00E-01	1.00E+00
Phenanthrene	85-01-8	NE	8270	2.50E-02	5.00E-01	8270-SIM	2.11E-03	2.00E-02	8270D	2.00E-01	1.00E+00
Pyrene	129-00-0	2.01E+00	8270	1.40E-02	5.00E-01	8270-SIM	1.26E-03	2.00E-02	8270D	3.00E-01	1.00E+00
Semivolatile Organic Compounds (SVOCs) - Other											
Aniline	62-53-3	7.70E+00	8270	1.74E-02	2.00E+00	8270D	8.61E-01	2.00E+00	8270D	9.00E-01	1.00E+00
Azobenzene	103-33-3	8.00E-01	8270	1.42E-02	1.00E+00	8270D	5.45E-01	2.00E+00	8270D	2.00E-01	1.00E+00
Benzidine	92-87-5	2.30E-05								5.00E+00	1.00E+01

				Fremont Analytica	al		ALS Environmenta	nl		Analytical Resources	, Inc.
Analyte	CAS	Ecology PCI II ¹	Method	MDI	RI ²	Method	MDI	RI ²	Method	MDI	RI ²
Benzoic Acid	65-85-0	5 90E+02	8270	4 47E-02	2 00E+00	82700	8 14E-01	1 00E+01	82700	3 00E+00	2 00E+01
Benzyl Alcohol	100-51-6	8.00E+02	8270	2.33E-02	1 00E+00	8270D	3 43E-01	2 00E+00	8270D	6.00E-01	2.00E+01
Carbazole	86-74-8	NF	8270	2.00E 02	5 00E+00	8270D	5 54E-01	2.00E+00	8270D	4 00F-01	1 00E+00
4-Chloroaniline	106-47-8	2 20F-01	8270	3 35E-02	5.00E+00	8270D	6.28E-01	2.00E+00	82700-11	4 00F-02	1.00E+00
Bis(2-chlorethoxy)methane	111-91-1	NF	8270	1 93E-02	1 00E+00	8270D	3 50E-01	2.00E+00	82700	3 00E-01	1.00E+00
Bis(2-chloroethyl)ether	111-44-4	6.00F-02	8270	2 35E-02	2 00E+00	8270D	3 13E-01	2.00E+00	8270D-LL	3 00E-02	2 00E-01
Bis(2-chloroisopropyl)ether/2 2'-Oxybis(1-	108-60-1	9.00E+02	8270	3 95E-02	1.00E+00					2 00F-01	1 00E+00
4-Bromonhenvl-nhenvlether	101-55-3	NF	8270	6.54E-02	1.00E+00	82700	2 62E-01	2 00E+00	82700	3 00E-01	1.00E+00
2-Chloronaphthalene	91-58-7	1.00E+02	8270	2 10F-02	1.00E+00	8270D	3 01E-01	2.00E+00	8270D	3 00E-01	1.00E+00
4-Chlorophenyl-phenylether	7005-72-3	NF	8270	3 01F-02	1.00E+00	8270D	2 45E-01	2.00E+00	8270D	3 00F-01	1.00E+00
3.3-Dichlorobenzidine	91-94-1	3 30E-03				8270D	1.50E+00	2.00E+00	8270D-LL	3 00E-01	1.00E+00
2 4-Dinitrotoluene	121-14-2	1 80F-01	8270	3 51E-02	1 00F+00	8270D	2 59E-01	2.00E+00	8270D-LL	1 00F-01	1.00E+00
2 6-Dinitrotoluene	606-20-2	2.97E+02	8270	3 79F-02	1 00E+00	8270D	6 07E-01	2.00E+00	8270D	1 20F+00	3 00E+00
Hexachlorobenzene	118-74-1	5.00E-06	8270	4 16F-02	1.00E+00	8270D	2 11F-01	2.00E+00	8270D-LL	4 00F-02	2 00F-01
Hexachlorobutadiene	87-68-3	1 00F-02				8270D	6 54E-01	2.00E+00	8270D-LL	4 00F-02	2 00F-01
Hexachlorocyclopentadiene	77-47-4	1 00E+00	8270	4 40F-02	1 00F+00	8270D	9 80E-01	2.00E+00	8270D-LL	1 00E-01	1 00E+00
Hexachloroethane	67-72-1	2 00F-02	8270	3 83E-02	1.00E+00	8270D	6.67E-01	2.00E+00	8270D-LL	4 00F-02	2 00F-01
Isophorone	78-59-1	1 10F+02	8270	1.08F-02	1 00E+00	8270D	3.91E-01	2.00E+00	8270D	2 00F-01	1 00E+00
Nitrobenzene	98-95-3	1.00E+02	8270	3 82E-02	2 00E+00	8270D	3.96F-01	2.00E+00	8270D	2 00F-01	1 00E+00
n-Nitrosodimethylamine	62-75-9	3 40F-01	8270	2.57E-02	1 00E+00	8270D	5.02E-01	2.00E+00	8270D-LL	4 00F-02	4 00F-01
n-Nitrosodinhenvlamine	86-30-6	6 90F-01	8270	7 97F-03	1.00E+00	8270D	3.08E-01	2.00E+00	8270D-LL	2 00F-02	2 00E-01
n-Nitrosodi-n-propylamine	621-64-7	5 80F-02	8270	3 26E-02	1.00E+00	8270D	7 02E-01	2.00E+00	8270D-LL	4 00F-02	2 00E-01
Butyl benzyl ohthalate	85-68-7	1.30E-02	8270	3.84E-02	1.00E+00	8270D	2.22E-01	2.00E+00	8270D-LL	7.00E-02	2.00E-01
Butyl diphenyl phosphate	2752-95-6	NE								2.00E-01	1.00E+00
2.6-Bis(1.1-dimethylethyl) phenol	128-39-2	NE									
Bis(2-ethylhexyl)phthalate	117-81-7	4.60E-02	8270	4.12E-02	2.00E-01	8270D	2.69E-01	2.00E+00	8270D-LL	2.00E-01	2.00E-01
Dibutyl phthalate	84-74-2	8.00E+00	8270	1.39E-02	1.00E+00	8270D	2.77E-01	2.00E+00	8270D	3.00E-01	1.00E+00
Diethyl phthalate	84-66-2	9.26E+01	8270	2.89E-02	1.00E+00	8270D	2.65E-01	2.00E+00	8270D	3.00E-01	1.00E+00
Dimethyl phthalate	131-11-3	6.00E+02	8270	1.14E-02	1.00E+00	8270D	2.29E-01	2.00E+00	8270D	4.00E-01	1.00E+00
Di-n-octyl phthalate	117-84-0	3.92E-03	8270	2.34E-02	1.00E+00	8270D	2.91E-01	2.00E+00	8270D-LL	4.00E-02	2.00E-01
1,2,4-Trichlorobenzene	120-82-1	3.70E-02	8270	5.04E-02	1.00E+00	8270D	3.74E-01	2.00E+00	8270D-LL	3.00E-02	2.00E-01
4-Chloro-3-methylphenol	59-50-7	3.60E+01	8270	3.41E-02	5.00E+00	8270D	3.96E-01	2.00E+00	8270D	1.00E+00	3.00E+00
2-Chlorophenol	95-57-8	1.70E+01	8270	1.69E-02	1.00E+00	8270D	2.84E-01	2.00E+00	8270D	3.00E-01	1.00E+00
Dibutyl phenyl phosphate	2528-36-1	NE								1.00E-01	1.00E+00
1,2-Dichlorobenzene	95-50-1	4.61E+00	8270	1.95E-02	1.00E+00	8260	4.78E-01	2.00E+00	8260	2.00E-01	1.00E+00
1,3-Dichlorobenzene	541-73-1	2.00E+00	8270	1.95E-02	1.00E+00	8260	4.57E-01	2.00E+00	8260	2.00E-01	1.00E+00
1,4-Dichlorobenzene	106-46-7	4.93E+00	8270	3.09E-02	1.00E+00	8260	3.42E-01	2.00E+00	8260	2.00E-01	1.00E+00
2,4-Dichlorophenol	120-83-2	1.00E+01	8270	2.79E-02	2.00E+00	8270D	2.62E-01	2.00E+00	8270D	8.00E-01	3.00E+00
2,4-Dimethylphenol	105-67-9	6.34E+00	8270	2.66E-02	1.00E+00	8270D	2.91E-01	2.00E+00	8270D	4.00E-01	3.00E+00
4,6-Dinitro-2-methylphenol	534-52-1	7.00E+00	8270	4.70E-02	5.00E+00	8270D	8.32E-01	2.00E+00	8270D-LL	4.00E-01	2.00E+00
2,4-Dinitrophenol	51-28-5	1.00E+02	8270	1.69E-01	2.00E+00	8270D	9.78E-01	1.00E+01	8270D	4.20E+00	2.00E+01
1,4-Dioxane	123-91-1	4.38E-01	8260SIM	9.00E-02	3.00E+00				8270D	2.00E-01	4.00E-01
1,2-Diphenylhydrazine	122-66-7	2.00E-02									
2-Methoxynaphthalene	93-04-9	NE									
2-Methylphenol (o-Cresol)	95-48-7	2.70E+01	8270	1.69E-02	1.00E+00	8270D	4.31E-01	2.00E+00	8270D	2.00E-01	1.00E+00
4-Methylphenol (p-Cresol)	106-44-5	8.00E+02	8270	1.61E-02	1.00E+00	8270D			8270D	4.00E-01	2.00E+00
2-Nitroaniline	88-74-4	1.60E+02	8270	3.80E-02	5.00E+00	8270D	2.54E-01	2.00E+00	8270D	1.60E+00	3.00E+00
3-Nitroaniline	99-09-2	NE	8270	3.69E-02	5.00E+00	8270D	4.51E-01	5.00E+00	8270D	1.70E+00	3.00E+00
4-Nitroaniline	100-01-6	NE	8270	1.95E-02	5.00E+00	8270D	7.52E-01	2.00E+00	8270D	1.90E+00	3.00E+00
2-Nitrophenol	88-75-5	NE	8270	1.66E-02	2.00E+00	8270D	3.81E-01	2.00E+00	8270D	5.00E-01	3.00E+00
4-Nitrophenol	100-02-7	NE	8270	1.08E-01	5.00E+00	8270D	1.51E+00	2.00E+00	8270D	9.00E-01	1.00E+01

			Fremont Analytical				ALS Environment	al	Analytical Resources, Inc.			
Analyte	CAS	Ecology PCUL ¹	Method	MDL	RL ²	Method	MDL	RL ²	Method	MDL	RL ²	
Pentachlorophenol	87-86-5	2.00E-03	8270	5.72E-02	2.00E+00	8270D	1.23E+00	5.00E+00	8270D-LL	1.00E-01	1.00E+00	
Phenol	108-95-2	3.65E+02	8270	1.41E-02	2.00E+00	8270D	3.50E-01	2.00E+00	8270D	2.00E-01	1.00E+00	
Pyridine	110-86-1	8.00E+00	8270	3.04E-02	1.00E+00	8270D	1.10E+00	2.00E+00	8270D	1.30E+00	5.00E+00	
2,4,5-Trichlorophenol	95-95-4	6.00E+02	8270	3.48E-02	2.00E+00	8270D	5.11E-01	2.00E+00	8270D	1.00E+00	5.00E+00	
2,4,6-Trichlorophenol	88-06-2	2.80E-01	8270	3.90E-02	2.00E+00	8270D	2.99E-01	2.00E+00	8270D-LL	2.00E-01	1.00E+00	
Total Petroleum Hydrocarbon Compounds												

Gasoline	 8.00E+02	NWTPH-Gx	7.24E+00	5.00E+01	NWTPH-Gx	4.58E+00	5.00E+01	NWTPH-Gx	5.74E+01	2.50E+02
Gasoline (w/benzene)	 8.00E+02	NWTPH-Gx	7.24E+00	5.00E+01	8021	1.16E-01	1.00E+00	NWTPH-Gx	5.74E+01	2.50E+02
Diesel range organics	 5.00E+02	NWTPH-Dx	8.40E+00	5.00E+01	NWTPH-Dx	3.95E+01	1.30E+02	NWTPH-Dx	2.17E+01	1.00E+02
Heavy Oil	 5.00E+02	NWTPH-Dx	6.67E+00	1.00E+02	NWTPH-Dx	3.62E+01	2.50E+02	NWTPH-Dx	4.43E+01	2.00E+02

NOTES:

1 Laboratory reporting limits were compared to the most stringent groundwater preliminary cleanup level (PCUL) for nonpotable groundwater provided by Ecology (June 2018).

2 The RL represents the level of the lowest calibration standard (i.e., the laboratory practical quantitation limit [PQL]); the RL may not always be achievable

Units are micrograms per liter.

Blue shading indicates that there is no PCUL established for nonpotable groundwater; the highlighted PCUL is for potable groundwater

Grey shading indicates that there is no PCUL established for nonpotable groundwater, the highlighted value is the background concentration

Green shading indicates an RL or MDL exceeds the PCUL.

Analytical method selections may be modified to best meet objective of reaching screening levels.

-- = not available

CAS = Chemical Abstracts Service; Ecology PCUL = Ecology Preliminary Cleanup Level; MDL = method detection limit; NE = not established; NWTPH = Northwest Total Petroleum Hydrocarbons; SIM = selected ion monitoring

				Fremont Analyti	cal		ALS Environmer	tal		Analytical Resource	s, Inc.
Analyte	CAS	Ecology PCUL ¹	Method	MDL	RL ²	Method	MDL	RL ²	Method	MDL	RL ²
Metals			-								
Aluminum	7429-90-5	3.30E+04	200.8	1.25E+00	5.50E+00	6020A	1.61E+00	1.00E+01	6010C	8.00E-04	5.00E+00
Antimony	7440-36-0	4.10E+00	200.8	1.40E-02	2.00E-01	6020A	1.60E-02	1.00E-01	6010C	4.00E-04	5.00E+00
Arsenic (total)	7440-38-2	7.30E+00	200.8	7.80E-02	2.50E-01	6020A	4.90E-02	2.00E-01	6010C	5.00E-04	5.00E+00
Barium	7440-39-3	8.30E+00	200.8	2.20E-02	5.00E-01	6020A	9.00E-03	1.00E-01	6010C	7.00E-05	3.00E-01
Beryllium	7440-41-7	3.50E+00	200.8	1.00E-03	2.00E-01	6020A	2.30E-02	1.00E-01	6010C	2.00E-05	1.00E-01
Cadmium	7440-43-9	7.70E-01	200.8	1.00E-03	3.00E-01	6020A	1.50E-02	1.00E-01	6010C	3.00E-05	2.00E-01
Chromium, total (or III)	7440-47-3	4.80E+01	200.8	2.60E-02	1.00E-01	6020A	2.50E-02	1.00E-01	6010C	1.00E-04	5.00E-01
Chromium (VI)	18540-29-9	9.60E-01	200.8	3.20E-02	5.00E-01	7196	9.00E-01	5.00E+00	7196A	4.00E-01	4.00E-01
Cobalt	7440-48-4	2.00E+01	200.8	9.00E-03	5.00E-01	6020A	2.00E-02	1.00E-01	6010C	2.00E-05	3.00E-01
Copper	7440-50-8	3.60E+01	200.8	2.70E-02	2.00E-01	6020A	1.60E-02	1.00E-01	6010C	7.00E-05	2.00E-01
Iron	7439-89-6	5.60E+04	200.8	1.60E+00	5.50E+00	6020A	2.24E+00	1.00E+01	6010C	1.00E-04	5.00E+00
Lead	7439-92-1	5.00E+01	200.8	4.00E-03	2.00E-01	6020A	1.60E-02	1.00E-01	6010C	2.00E-04	2.00E+00
Manganese	7439-96-5	1.10E+03	200.8	1.60E-02	5.00E-01	6020A	1.90E-02	1.00E-01	6010C	3.00E-05	1.00E-01
Mercury (elemental)	7439-97-6	7.00E-02	245.1	4.00E-04	2.50E-01	7471	1.36E-03	2.00E-02	7471B	5.25E-03	2.50E-02
Methylmercury	16056-34-1	4.00E-01									
Molybaenum	7439-98-7	2.00E+00	200.8	5.00E-02	2.50E-01	6020A	2.80E-02	1.00E-01	6010C	6.00E-05	5.00E-01
NICKEI	7440-02-0	4.80E+01	200.8	2.50E-02	5.00E-01	6020A	2.90E-02	1.00E-01	60100	3.00E-04	1.00E+00
Selenium	7/02-49-2	3.00E-01	200.8	0.00E-02	5.00E-01	6020A	2.14E-01 1.50E-02	1.00E+00	60100	5.00E-04	2.00E+00
	7440-22-4		200.8	1.00E-03	1.00E-01	6020A	1.30E-02	1.00E-01	60100		3.00E-01
	7440-20-0	4.40E-03	200.0	4.00E-04 3.42E-01	2.00E-01	6020A	2.90E-01	 2 00E 01	60100		5.00E+00 1.00E+00
Vanadium	7440-31-3	2.00E+01	200.8			6020A		2.00E-01	60100		1.00E+00 3.00E 01
Zinc	7440-62-2	8.50E+01	200.8	6 10E-02	5.00E-01	6020A	1 68F-01	5.00E-01	6010C	1 60F-01	1.00E+00
Delychloringtod Binhonyle (DCDc)		0.002.01	200.0	0.102 02	0.002 01	002011		0.002 01	00100	1.002 01	1.002.00
POlychioninated Biphenyis (PCBS)	40074 44 0		0000 000			0000			00004		
PCB - Arocior 1016	12674-11-2	2.20E-06	8082 or 608	1.49E-03	1.00E-01	8082	3.90E-04	1.00E-01	8082A	1.60E-03	2.00E-02
PCB - Aroclor 1221	11104-28-2	2.20E-06	8082 OF 608	1.49E-03	1.00E-01	8082	3.90E-04	1.00E-01	8082A	1.60E-03	2.00E-02
PCB - Aroclor 1232	<u> </u>	2.20E-00	0002 01 000	1.49E-03	1.00E-01	0002	3.90E-04	1.00E-01	000ZA	1.00E-03	
PCB Arador 1242	12672 20 6	2.20E-00	8082 or 608	1.49E-03	1.00E-01	8082	3.90E-04	1.00E-01	8082A	1.00E-03	
PCB - Aroclor 1254	11007_60_1	2.202-00	8082 or 608	2.01E-03	1.000-01	8082	3.90E-04	1.000-01	8082A	1.60E-03	2.00L-02
PCB - Aroclor 1260	11096-82-5	2.20E-00	8082 or 608	2.01E-03	1.00E-01	8082	3.90E-04	1.00E-01	8082A	6.00E-03	2.00E-02
	11030-02-3	2.202-00	0002 01 000	2.012-00	1.002-01	0002	0.000-04	1.002-01	0002/	0.000-04	2.002-02
Acetone	67-64-1	7 20F+04	8260 or624	8 80F-02	2 50E-01	8260	4 30F-04	5 00F-02	82600	4 80F-04	5 00F-03
Acrolein	107-02-8	4.00E+01							8260C	3.81E-03	5.00E-03
Acrylonitrile	107-13-1	1.90E+00	8260 or624	2.00E-03	2.50E-02	8260	2.38E-04	5.00E-02	8260C	1.03E-03	5.00E-03
Benzaldehyde	100-52-7	8.00E+03									-
Benzene	71-43-2	5.60E-04	8260 or624	7.00E-03	2.00E-02	8260	7.40E-06	5.00E-03	8260C	3.00E-04	1.00E-03
Bromobenzene	108-86-1	6.40E+02	8260 or624	8.00E-03	2.00E-02	8260	2.56E-04	1.00E-02	8260C	1.50E-04	1.00E-03
Bromochloromethane	74-97-5	NE	8260 or624	2.00E-03	2.00E-02	8260	3.95E-04	1.00E-02	8260C	3.20E-04	1.00E-03
Bromodichloromethane	75-27-4	NE	8260 or624	1.00E-03	2.00E-02	8260	2.31E-04	1.00E-02	8260C	2.50E-04	1.00E-03
Bromoethane	74-96-4	NE							8260C	4.40E-04	2.00E-03
Bromoform	75-25-2	5.00E-03	8260 or624	2.00E-03	5.00E-02	8260	2.64E-04	1.00E-02	8260C	3.00E-04	1.00E-03
Bromomethane	74-83-9	7.90E-02	8260 or624	1.50E-02	5.00E-02	8260	1.85E-04	1.00E-02	8260C	1.90E-04	1.00E-03
2-Butoxyethanol	111-76-2	8.00E+03									-
n-Butylbenzene	104-51-8	4.00E+03	8260 or624	7.00E-03	2.50E-02	8260	1.92E-04	1.00E-02	8260C	2.60E-04	1.00E-03
sec-Butylbenzene	135-98-8	8.00E+03	8260 or624	5.00E-03	5.00E-02	8260	2.16E-04	1.00E-02	8260C	2.40E-04	1.00E-03
tert-Butylbenzene	98-06-6	8.00E+03	8260 or624	9.00E-03	2.50E-02	8260	2.37E-04	1.00E-02	8260C	3.10E-04	1.00E-03
Carbon disulfide	75-15-0	8.00E+03	8260 or624	4.00E-03	2.50E-02	8260	2.27E-04	1.00E-02	8260C	5.60E-04	1.00E-03

				Fremont Analytic	cal		ALS Environme	ntal		Analytical Resource	s, Inc.
Analyte	CAS	Fcology PCUI ¹	Method	MDL	RL^2	Method	MDL	-RL ²	Method	MDL	RL^2
Carbon tetrachloride	56-23-5	1.50E-04	8260 or624	1.80E-02	2.50E-02	8260	2.33E-04	1.00E-02	8260C	2.10E-04	1.00E-03
Chlorobenzene	108-90-7	1.00E-01	8260 or624	1.00E-02	2.50E-02	8260	2.46E-04	1.00E-02	8260C	2.20E-04	1.00E-03
Chlorodibromomethane / Dibromochloromethane	124-48-1	NE	8260 or624	1.00E-03	2.50E-02	8260	3.55E-04	1.00E-02	8260C	2.70E-04	1.00E-03
Chloroethane	75-00-3	NE	8260 or624	1.20E-02	5.00E-02	8260	2.22E-04	1.00E-02	8260C	4.60E-04	1.00E-03
2-Chloroethyl vinyl ether	110-75-8	NE							8260C	2.80E-04	5.00E-03
Chloroform	67-66-3	5.20E-02	8260 or624	5.00E-03	2.00E-02	8260	2.28E-04	1.00E-02	8260C	2.30E-04	1.00E-03
Chloromethane	74-87-3	NE	8260 or624	3.00E-03	5.00E-02	8260	2.31E-04	1.00E-02	8260C	2.60E-04	1.00E-03
3-Chloro- 1-propene	107-05-1	4.80E+01									
2-Chlorotoluene	95-49-8	1.60E+03	8260 or624	9.00E-03	2.50E-02	8260	2.55E-04	1.00E-02	8260C	3.00E-04	1.00E-03
4-Chlorotoluene	106-43-4	NE	8260 or624	8.00E-03	2.50E-02	8260	3.67E-04	1.00E-02	8260C	2.80E-04	1.00E-03
Dibromochloromethane	124-48-1	7.70E-04	8260 or624	1.37E-03	2.50E-02	8260	3.55E-04	1.00E-02	8260C	2.70E-04	1.00E-03
1,2-Dibromo-3-Chloropropane	96-12-8	1.30E+00	8260 or624	1.10E-02	5.00E-01	8260	3.04E-04	5.00E-02	8260C	5.90E-04	5.00E-03
Dibromomethane	74-95-3	8.00E+02	8260 or624	4.00E-03	2.00E-02	8260	2.61E-04	1.00E-02	8260C	1.50E-04	1.00E-03
1,2-Dibromoethane	106-93-4	NE	8260 or624	3.00E-03	5.00E-03	8260	7.70E-06	5.00E-03	8260C	1.80E-04	1.00E-03
Dichlorobromomethane	75-27-4	9.60E-04	8261 or624	1.37E-03	2.00E-02	8260	2.31E-04	1.00E-02			
trans-1, 4-Dichloro-2-butene	110-57-6	NE	8260 or624	7.00E-03	2.50E-02				8260C	4.40E-04	5.00E-03
1,2-Dichlorobenzene	95-50-1	NE	8260 or624	8.00E-03	2.00E-02	8260	2.59E-04	1.00E-02	8260C	2.90E-04	1.00E-03
1,3-Dichlorobenzene	541-73-1	NE	8260 or624	7.00E-03	2.00E-02	8260	2.59E-04	1.00E-02	8260C	2.30E-04	1.00E-03
1,4-Dichlorobenzene	106-46-7	NE	8260 or624	9.00E-03	2.00E-02	8260	2.40E-04	1.00E-02	8260C	2.30E-04	1.00E-03
Dichlorodifluoromethane (CFC-12)	75-71-8	1.60E+04	8260 or624	5.00E-03	2.00E-02	8260	3.68E-04	1.00E-02	8260C	2.10E-04	1.00E-03
1,1-Dichloroethane	75-34-3	1.80E+02	8260 or624	4.00E-03	2.00E-02	8260	2.23E-04	1.00E-02	8260C	3.40E-04	1.00E-03
1,2-Dichloroethane (EDC)	107-06-2	2.40E-02	8260 or624	3.00E-03	2.00E-02	8260	5.80E-06	1.00E-02	8260C	1.90E-04	1.00E-03
1,1-Dichloroethylene	75-35-4	1.40E+00	8260 or624	8.00E-03	2.00E-02	8260	9.90E-06	1.00E-02	8260C	3.40E-04	1.00E-03
cis-1,2-Dichloroethylene	156-59-2	1.60E+02	8260 or624	3.00E-03	2.00E-02	8260	2.40E-04	1.00E-02	8260C	2.40E-04	1.00E-03
trans-1,2-Dichloroethylene	156-60-5	3.20E-01	8260 or624	4.00E-03	2.00E-02	8260	2.20E-04	1.00E-02	8260C	2.70E-04	1.00E-03
1,2-Dichloroethylene (mixed isomers)	540-59-0	7.20E+02	8260 or624	3.48E-03	2.00E-02						
1,2-Dichloropropane	78-87-5	1.00E-03	8260 or624	3.00E-03	2.00E-02	8260	2.06E-04	1.00E-02	8260C	1.60E-04	1.00E-03
1,1-Dichloropropene	563-58-6	NE	8260 or624	1.60E-02	2.00E-02	8260	2.05E-04	1.00E-02	8260C	3.10E-04	1.00E-03
1,3-Dichloropropane	142-28-9	NE	8260 or624	5.00E-03	2.50E-02	8260	2.39E-04	1.00E-02	8260C	2.10E-04	1.00E-03
cis-1,3-Dichloropropene	10061-01-5	6.30E-04	8260 or624	2.00E-03	2.00E-02	8260	2.38E-04	1.00E-02	8260C	2.30E-04	1.00E-03
trans-1,3-Dichloropropene	10061-02-6	6.30E-04	8260 or624	2.00E-03	2.00E-02	8260	2.45E-04	1.00E-02	8260C	2.20E-04	1.00E-03
2,2-Dichloropropane	594-20-7	NE	8260 or624	1.00E-03	1.00E-01	8260	2.28E-04	1.00E-02	8260C	2.90E-04	1.00E-03
Ethane	/4-84-0	NE	RSK175			RSK-1/5					
Ethylbenzene	100-41-4	1.50E-02	8260 or624	1.00E-02	2.50E-02	8260	2.41E-04	1.00E-02	8260C	2.00E-04	1.00E-03
Ethylene	/4-85-1	NE	RSK175			RSK-175					
Ethyl ether	60-29-7	1.60E+04									
Ethylene dibromide (EDB)	106-93-4	5.00E-01	8011	2.99E-03	5.00E-03	8260	1.10E-06	5.00E-03			
		1.00E+04									
Z-mexanone	07 60 0	4.00E+02	0200 0024		2.50E-01	0200	1.50E-U4	5.00E-02	02000		5.00E-03
	01-00-3		0200 01024			0200	2.012-04	1.00E-02	02000	4.10E-04	
nexane; n-	110-04-3		0200 00024		5.00E-02				02000	1.00E-03	
	14-00-4		0200 01024						02000		
	30-02-0 00 97 6		0200 01024	5.00E-03		0200			02000	2.30E-04	
p-isopropyiloiuene/4-isopropyiloiuene Methyl ethyl ketene/2 Butenene (MEK)	33-01-0 70 02 2		0201 01024	5.00E-03		0200	1.//E-U4		02000		
Methylopp iodide	10-93-3	4.00E+04	0200 01024		2.302-01	0200	3.20⊏-04	0.00 ⊏ -02	02000	J.10⊑-04	0.UUE-UJ
	75.00.2		See louomemane	2 505 02	2 005 02	8260			82600		2 00 = 03
Methylicabutyl ketone// Methyl 2 poptopopo (MIPK)	108 10 1	5.00E-02 6.10E+02	8260 or624	2.30E-02 3.30E 0.2		8260	4.00⊑-04 2.27⊑ 04		82600		
Methyl tert-hutyl ether (MTRE)	163/_0/ /	5 60E±03	8260 or624	1 10E_02	5 00E-07	8260	2 30 E-04	1.00E-02	82600	2 30E-04	1.00E-03
	91_20_3		8260 or621	6 00F-02	5.00E-02	8260	2.502-04	1.000-02	82600		5 00E-03
2 Dentanono	107.87.0		0200 01024	0.002-03	J.UUL-UZ	0200	2.042-04		82600		5 00E 03
	101-01-3	INL .	1						02000	J.UUL-UJ	J.00L-0J

				Fremont Analytic	cal		ALS Environmer	ntal		Analytical Resource	es, Inc
Analyte	CAS	Ecology PCI II ¹	Method	MDI	RI ²	Method	MDI	RI ²	Method	MDI	RI ²
n-Propylbenzene	103-65-1	8 00E+03	8260 or624	9.00E-03	2 50E-02	8260	2 46F-04	1 00F-02	8260C	2 70E-04	1.00E-03
Styrene	100-42-5	3.00E+02	8260 or624	4.00E-03	2.50E-02	8260	1.86E-04	1.00E-02	8260C	1.40E-04	1.00E-03
1.1.1.2-Tetrachloroethane	630-20-6	3.80E+01	8260 or624	2.00E-03	2.50E-02	8260	1.91E-04	1.00E-02	8260C	2.30E-04	1.00E-03
1,1,2,2-Tetrachloroethane	79-34-5	1.10E-04	8260 or624	2.00E-03	2.00E-02	8260	2.54E-04	1.00E-02	8260C	2.50E-04	1.00E-03
Tetrachloroethene (PCE)	127-18-4	1.60E-03	8260 or624	9.00E-03	2.50E-02	8260	1.53E-05	1.00E-02	8260C	2.60E-04	1.00E-03
Toluene	108-88-3	5.50E-02	8260 or624	2.00E-03	2.00E-02	8260	2.36E-04	1.00E-02	8260C	1.50E-04	1.00E-03
1,2,3-Trichlorobenzene	87-61-6	2.00E+01	8260 or624	4.00E-03	2.00E-02	8260	2.41E-04	1.00E-02	8260C	3.00E-04	5.00E-03
1,2,4-Trichlorobenzene	120-82-1	NE	8260 or624	5.00E-03	2.50E-02	8260	2.25E-04	1.00E-02	8260C	3.30E-04	5.00E-03
1,1,1-Trichloroethane	71-55-6	2.10E+01	8260 or624	2.00E-03	2.50E-02	8260	2.05E-04	1.00E-02	8260C	2.30E-04	1.00E-03
1,1,2-Trichloroethane	79-00-5	3.30E-04	8260 or624	5.00E-03	2.00E-02	8260	2.46E-04	1.00E-02	8260C	2.90E-04	1.00E-03
Trichloroethene (TCE)	79-01-6	2.70E-04	8260 or624	2.00E-03	2.00E-02	8260	1.59E-05	1.00E-02	8260C	2.10E-04	1.00E-03
Trichlorofluoroethane	27154-33-2	NE									
Trichlorofluoromethane (CFC-11)	75-69-4	2.40E+04	8260 or624	4.00E-03	2.00E-02	8260	1.95E-04	1.00E-02	8260C	2.70E-04	1.00E-03
1,2,3-Trichloropropane	96-18-4	3.30E-02	8260 or624	3.00E-03	2.50E-02	8260	2.68E-04	1.00E-02	8260C	5.20E-04	2.00E-03
Trichlorotrifluoroethane (CFC-113)	76-13-1	2.40E+06	8261 or624								
<u>1,2,3-Trimethylbenzene</u>	526-73-8	8.00E+02									
1,2,4- I rimethylbenzene	95-63-6	8.00E+02	8260 or624	5.00E-03	2.00E-02	8260	1.99E-04	1.00E-02	8260C	2.30E-04	1.00E-03
1,3,5- I rimethylbenzene	108-67-8	8.00E+02	8260 or624	7.00E-03	2.50E-02	8260	1.84E-04	1.00E-02	8260C	2.50E-04	1.00E-03
Vinyl Acetate	108-05-4	8.00E+04	8260 or624	7.00E-03	5.00E-02				8260C	3.80E-04	5.00E-03
Vinyl chloride	/5-01-4	5.50E-05	8260 or624	9.00E-03	2.50E-02	8260	9.50E-06	1.00E-02	8260C	2.40E-04	1.00E-03
m-Xylenes	179601-23-1	1.60E+04	8260 0r624			8260	<u>4.34E-04</u>	2.00E-02	82600	<u>3.90E-04</u>	2.00E-03
p-Xylenes	179601-23-1	1.60E+04	8260 0f624	4.00E-03	5.00E-02	8260	4.34E-04	2.00E-02	82600	3.90E-04	2.00E-03
O-Aylene Vulence Total	130///-01-2	1.00E+04	8260 01624	7.00E-03	2.30E-02	8200	2.08E-04	1.00E-02	82600	2.20E-04	1.00E-03
Polycyclic Aromatic Hydrocarbons	1330-20-7	1.002 04							02000	0.202-04	2.002-03
Acenaphthene	83-32-9	2.80E-02	8270-SIM	8.94E-01	4.00E+01	8270-SIM	8.81E-04	2.00E-02	8270D	5.10E-03	2.00E-02
Acenaphthylene	208-96-8	1.30E+00	8270-SIM	1.73E+00	4.00E+01	8270-SIM	9.48E-04	2.00E-02	8270D	4.80E-03	2.00E-02
Anthracene	120-12-7	5.10E-02	8270-SIM	8.41E-01	4.00E+01	8270-SIM	1.45E-03	2.00E-02	8270D	5.90E-03	2.00E-02
Benzo(a)anthracene	56-55-3	5.70E-05	8270-SIM	4.87E+00	4.00E+01	8270-SIM	1.10E-03	2.00E-02	8270D-SIM-LL	7.00E-05	5.00E-04
Benzo(b)fluoranthene	205-99-2	2.00E-04	8270-SIM	6.80E+00	4.00E+01	8270-SIM	1.46E-03	2.00E-02	8270D-SIM-LL	7.00E-05	5.00E-04
Benzo(k)fluoranthene	207-08-9	2.00E-03	8270-SIM	7.75E+00	4.00E+01	8270-SIM	1.21E-03	2.00E-02	8270D-SIM-LL	1.00E-04	5.00E-04
I otal Benzotluoranthenes	<u> </u>	3.20E+00							8270D	1.02E-02	4.00E-02
Benzo(g,h,i)perylene	191-24-2	6.70E-01	8270-SIM	3.33E+00	4.00E+01	8270-SIM	1.88E-03	2.00E-02	8270D	5.80E-03	2.00E-02
Benzo(a)pyrene	50-32-8	1.60E-05	8270-SIM	8.52E+00	4.00E+01	8270-SIM	1.18E-03	2.00E-02	8270D-SIM-LL	9.00E-05	5.00E-04
Chrysene	218-01-9	<u>6.40E-03</u>	8270-SIM	3.75E+00	4.00E+01	8270-SIM	1.49E-03	2.00E-02	8270D	5.20E-03	2.00E-02
Dibenz(a,n)anthracene	53-70-3	2.90E-05	8270-SIM	5.12E+00	4.00E+01	8270-SIM	1.66E-03	2.00E-02	8270D-SIM-LL	1.00E-04	5.00E-04
Dibenzofuran	132-64-9	5.40E-01	8270-SIM	5.90E+00	7.50E+01				82/UD	4.60E-03	2.00E-02
Fluoranthene	206-44-0	9.00E-02	8270-SIM	5.73E+00	4.00E+01	8270-SIM	1.38E-03	2.00E-02	82/UD	4.50E-03	2.00E-02
Fluorene Indene/1.2.2.ed/m/rene	00-7-3-7 102-20-5		0270-SIM	7.33E-UI	4.00E+01	0270-SIW	1.200-00	2.00E-02		0.00E-03	2.00E-02
Mothyl icopropyl phononthrono	193-39-3	0.00E-04	0270-511VI 8270 SIM	0.100+00	4.00E+01	0270-5111	1.41E-03	2.00E-02	0270D-SIIVI-LL	9.00E-00	3.00E-04
1 Mothylpaphthalono	403-03-0		0270-311VI 8270 SIM	 8 70E+00		 8270 SIM	1.06E.03	2 00 = 02	 8270D	 6 00E 03	2 00 = 02
2 Mothylnaphthalono	01 57 6	2.90E+01 6.70E-01	8270 SIM	3.555+00	4.00E+01	8270 SIM	1.00E-03		8270D	5 70E 03	
<u>z-meurymaphulaiche</u> Nanhthalene	91-37-0	2 10E-01	8270-SIM	7.65E+00	4.00E+01	8270-SIM	1.29E-03	2.00E-02	82700	2 00E-03	1 00E-02
Phenanthrone	85-01-8	1 50E+00	8270-SIM	2 02E+00	4 00E+01	8270-SIM	1 70E-03	2.00L-02	82700	5 20E-04	2 00E-03
Pyrene	129-00-0	1 40F-01	8270-SIM	4 65E+00	4 00E+01	8270-SIM	1 49F-03	2.00L-02 2.00E-02	82700	5.20E-03	2.00L-02 2.00E-02
1 yiono	120-00-0			T.00L .00			1.702-00		02100	0.000-00	2.VVL-V2
Semivolatile Organic Compounds (SVOCs)	62-53-3	1.50F+02	8270	6 24F+00	1 00F+02	82700	1 925-02	1.00F-01	82700	1 69F-02	1.00F-01
Azobenzene	103-33-3	7 80F+00	8270	7.06E+00	1.00E+02	8270D	1.32E-02	1.00E-01	8270D	4 60F-03	2 00F-02
Renzidine	92-87-5	3 70E-03							8270D	1 00E-01	2 00F-01
BonElanio	02 01 0	0.102 00	1						02100	1.000 01	

				Fremont Analytic	cal		ALS Environment	al		Analytical Resource	s, Inc.
Analyte	CAS	Ecology PCUI ¹	Method	MDL	RL ²	Method	MDL	RL^{2}	Method	MDL	RL^{2}
Benzoic Acid	65-85-0	1 70F-01	8270	2 00E+01	5 00E+02	8270D	2 96E-01	1.00E+00	8270D-SIM	1.34E-02	1 00E-01
Benzyl Alcohol	100-51-6	5.70E-02	8270	1.53E+01	1.00E+02	8270D	2.12E-02	1.00E-01	8270D	1.49E-02	2.00E-02
Carbazole	86-74-8	NE	8270	1.21E+01	7.50E+01	8270D	4.46E-02	2.50E-01	8270D	7.40E-03	2.00E-02
4-Chloroaniline	106-47-8	8.10E-01	8270	6.73E+00	7.50E+01	8270D	2.35E-01	1.00E+00	8270D	3.37E-02	1.00E-01
Bis(2-chlorethoxy)methane	111-91-1	NE	8270	5.90E+00	7.50E+01	8270D	5.01E-02	2.50E-01	8270D	6.30E-03	2.00E-02
Bis(2-chloroethyl)ether	111-44-4	2.20E-05	8270	1.15E+01	1.00E+02	8270D	4.00E-02	2.50E-01	8270D	6.80E-03	2.00E-02
Bis(2-chloroisopropyl)ether/2.2'-Oxybis(1-	108-60-1	NE	8270	1.21E+01	1.00E+02				8270D	5.70E-03	2.00E-02
4-Bromophenyl-phenylether	101-55-3	NE	8270	1.79E+01	7.50E+01	8270D	1.51E-02	1.00E-01	8270D	6.10E-03	2.00E-02
2-Chloronaphthalene	91-58-7	6.40E+03	8270	1.73E+01	7.50E+01	8270D	1.32E-02	1.00E-01	8270D	4.40E-03	2.00E-02
4-Chlorophenyl-phenylether	7005-72-3	NE	8270	7.80E+00	7.50E+01	8270D	1.72E-02	1.00E-01	8270D	7.00E-03	2.00E-02
3.3-Dichlorobenzidine	91-94-1	3.30E-06				8270D	7.11E-02	2.50E-01	8270D	3.12E-02	1.00E-01
2,4-Dinitrotoluene	121-14-2	6.90E-05	8270	1.83E+01	1.00E+02	8270D	8.95E-03	1.00E-01	8270D	2.29E-02	1.00E-01
2,6-Dinitrotoluene	606-20-2	1.10E-01	8270	1.71E+01	1.00E+02	8270D	1.54E-02	1.00E-01	8270D	2.67E-02	1.00E-01
Hexachlorobenzene	118-74-1	4.00E-07	8270	1.95E+01	7.50E+01	8270D	1.49E-02	1.00E-01	8270D-SIM	7.00E-04	5.00E-03
Hexachlorobutadiene	87-68-3	5.40E-04				8270D	5.41E-02	5.00E-01	8270D-SIM	7.00E-04	5.00E-03
Hexachlorocyclopentadiene	77-47-4	2.00E-01	8270	2.16E+01	1.00E+02	8270D	1.03E-02	1.00E-01	8270D	4.13E-02	1.00E-01
Hexachloroethane	67-72-1	4.10E-05	8270	1.31E+01	1.00E+02	8270D	8.48E-03	1.00E-01	8270D	5.60E-03	2.00E-02
Isophorone	78-59-1	3.70E-02	8270	7.12E+00	1.00E+02	8270D	2.92E-02	1.00E-01	8270D	7.80E-03	2.00E-02
Nitrobenzene	98-95-3	4.10E-02	8270	1.30E+01	1.00E+02	8270D	8.08E-03	1.00E-01	8270D	8.00E-03	2.00E-02
n-Nitrosodimethylamine	62-75-9	1.70E-02	8270	1.18E+01	1.00E+02	8270D	1.11E-02	1.00E-01	8270D-SIM	3.00E-03	2.50E-02
n-Nitrosodiphenylamine	86-30-6	1.10E-03	8270	2.00E+01	1.00E+02	8270D	1.41E-02	1.00E-01	8270D-SIM	1.30E-03	5.00E-03
n-Nitrosodi-n-propylamine	621-64-7	1.80E-05	8270	1.37E+01	1.00E+02	8270D	3.88E-02	2.50E-01	8270D-SIM	1.70E-03	2.00E-02
Butyl benzyl phthalate	85-68-7	1.80E-04	8270	9.91E+00		8270D	9.33E-03	1.00E-01	8270D-SIM	7.00E-04	5.00E-03
Butyl diphenyl phosphate	2752-95-6	NE							8270D	2.40E-02	6.70E-02
2,6-Bis(1,1-dimethylethyl) phenol	128-39-2	NE									
Bis(2-ethylhexyl)phthalate	117-81-7	5.10E-03	8270	1.61E+01	1.00E+02	8270D	9.15E-03	1.00E-01	8270D	2.88E-02	5.00E-02
Di-n-butyl phthalate	84-74-2	1.50E-02	8270		1.00E+02	8270D	1.41E-02	1.00E-01	8270D	5.30E-03	2.00E-02
Diethyl phthalate	84-66-2	3.40E-02	8270	1.21E+01	1.00E+02	8270D	1.75E-02	1.00E-01	8270D	1.77E-02	2.00E-02
Dimethyl phthalate	131-11-3	7.10E-02	8270	1.03E+01	1.00E+02	8270D	1.75E-02	1.00E-01	8270D	6.40E-03	2.00E-02
Di-n-octyl phthalate	117-84-0	3.30E-01	8270	1.13E+01	1.00E+02	8270D	9.03E-03	1.00E-01	8270D	8.70E-03	2.00E-02
1,2,4-Trichlorobenzene	120-82-1	7.20E-05	8270	9.10E+00	7.50E+01	8270D	2.94E-02	1.00E-01	8270D-SIM	2.70E-03	5.00E-03
4-Chloro-3-methylphenol	59-50-7	NE	8270	7.87E+00	2.00E+02	8270D	1.34E-01	5.00E-01	8270D	2.89E-02	1.00E-01
2-Chlorophenol	95-57-8	1.10E-02	8270	1.17E+01	1.00E+02	8270D	4.05E-02	2.50E-01	8270D	6.50E-03	2.00E-02
Dibutyl phenyl phosphate	2528-36-1	NE							8270D	2.90E-02	6.70E-02
1,2-Dichlorobenzene	95-50-1	3.10E-03	8270	1.05E+01	7.50E+01	8260	9.78E-03	1.00E-01	8270D-SIM	7.00E-04	5.00E-03
1,3-Dichlorobenzene	541-73-1	NE	8270	1.69E+01	7.50E+01	8260	1.09E-02	1.00E-01	8270D	5.10E-03	2.00E-02
1,4-Dichlorobenzene	106-46-7	8.10E-03	8270	6.99E+00	7.50E+01	8260	9.86E-03	1.00E-01	8270D-SIM	4.40E-03	2.00E-02
2,4-Dichlorophenol	120-83-2	4.30E-03	8270	9.31E+00	1.00E+02	8270D	1.02E-01	5.00E-01	8270D	3.20E-02	1.00E-01
2,4-Dimethylphenol	105-67-9	3.10E-03	8270	4.41E+00	1.00E+02	8270D	2.66E-02	1.00E-01	8270D-SIM	2.20E-03	2.50E-02
4,6-Dinitro-2-methylphenol	534-52-1	NE	8270	2.30E+01	2.00E+02	8270D	1.18E-02	1.00E-01	8270D	5.05E-02	2.00E-01
2,4-Dinitrophenol	51-28-5	2.90E-02	8270	3.44E+01	5.25E+02	8270D	2.19E-02	1.00E-01	8270D	4.13E-02	2.00E-01
1,4-Dioxane	123-91-1	8.50E+00	8260SIM	2.40E-04	7.20E-04				8270D	1.70E-02	3.35E-01
1,2-Diphenylhydrazine	122-66-7	1.10E+00									
2-Methoxynaphthalene	93-04-9	NE									
2-Methylphenol (o-Cresol)	95-48-7	1.00E-02	8270	7.75E+00	1.00E+02	8270D	1.41E-02	1.00E-01	8270D-SIM	1.10E-03	5.00E-03
4-Methylphenol (p-Cresol)	106-44-5	6.70E-01	8270	5.94E+00	1.00E+02	8270D			8270D-SIM	9.00E-04	5.00E-03
2-Nitroaniline	88-74-4	8.00E+02	8270	1.29E+01	1.00E+02	8270D	7.84E-03	1.00E-01	8270D	3.02E-02	1.00E-01
3-Nitroaniline	99-09-2	NE	8270	9.65E+00	1.00E+02	8270D	2.41E-01	1.00E+00	8270D	3.77E-02	1.00E-01
4-Nitroaniline	100-01-6	NE	8270	9.61E+00	1.00E+02	8270D	5.27E-02	2.50E-01	8270D	3.49E-02	1.00E-01
2-Nitrophenol	88-75-5	NE	8270	1.51E+01	1.00E+02	8270D	1.28E-02	1.00E-01	8270D	6.90E-03	2.00E-02
4-Nitrophenol	100-02-7	7.00E+00	8270	1.45E+01	5.00E+02	8270D	2.26E-02	1.00E-01	8270D	4.44E-02	1.00E-01

				Fremont Analytical			ALS Environmen	tal		Analytical Resource	s, Inc.
Analyte	CAS	Ecology PCUL ¹	Method	MDL	RL ²	Method	MDL	RL ²	Method	MDL	RL ²
Pentachlorophenol	87-86-5	1.80E-06	8270	1.17E+01	1.00E+02	8270D	6.03E-02	5.00E-01	8270D-SIM	2.10E-03	2.00E-02
Phenol	108-95-2	1.20E-01	8270	1.41E+01	1.00E+02	8270D	1.65E-02	1.00E-01	8270D	8.20E-03	2.00E-02
Pyridine	110-86-1	8.00E+01	8270	1.61E+01	2.00E+02	8270D	1.83E-02	2.00E-01	8270D	8.66E-02	1.00E-01
2,4,5-Trichlorophenol	95-95-4	1.10E+00	8270	1.15E+01	1.00E+02	8270D	1.63E-02	1.00E-01	8270D	2.69E-02	1.00E-01
2,4,6-Trichlorophenol	88-06-2	1.90E-04	8270	1.41E+01	1.00E+02	8270D	1.65E-02	1.00E-01	8270D	2.54E-02	1.00E-01

Total Petroleum Hydrocarbon Compounds

Gasoline	na	3.00E+01	NWTPH-Gx	7.70E-01	5.00E+00	NWTPH-Gx	2.91E-01	3.00E+00	NWTPH-Gx	2.50E+00	5.00E+00
Gasoline (w/benzene)	na	3.00E+01	NWTPH-Gx	7.70E-01	5.00E+00	8021	5.70E-03	3.00E-02	NWTPH-Gx	2.50E+00	5.00E+00
Diesel range organics	na	2.60E+02	NWTPH-Dx	4.06E+00	2.00E+01	NWTPH-Dx	3.93E+00	2.50E+01	NWTPH-Dx	2.50E+01	5.00E+01
Heavy Oil	na	2.00E+03	NWTPH-Dx	7.25E+00	5.00E+01	NWTPH-Dx	7.63E+00	5.00E+01	NWTPH-Dx	5.00E+01	1.00E+02

NOTES:

1 Laboratory reporting limits were compared to the most stringent soil preliminary cleanup level (PCUL) for nonpotable groundwater provided by Ecology (June 2018).

2 The RL represents the level of the lowest calibration standard (i.e., the laboratory practical quantitation limit [PQL]); the RL may not always be achievable

Units are milligrams per kilogram.

Green shading indicates an RL or MDL exceeds the PCUL.

Analytical method selections may be modified to best meet objective of reaching screening levels.

-- = not available

CAS = Chemical Abstracts Service; Ecology PCUL = Ecology Preliminary Cleanup Level; MDL = method detection limit; NE = not established; NWTPH = Northwest Total Petroleum Hydrocarbons; SIM = selected ion monitoring

Attachment 2 Analytical Limits of Detection and Project Screening Levels

CONTENTS

- Attachment 2A Analytical Limits of Detection and Project Screening Levels Groundwater
- Attachment 2B Analytical Limits of Detection and Project Screening Levels Soil

Attachment 2A - Analytical Limits of Detection and Project Screening Levels - Groundwater

		Ecology	Analyti	cal Resources	, Inc.
Analyte	CAS	PCUL ¹	Method	MDL	RL ²
Metals					
Arsenic (total)	7440-38-2	8 00E+00	EPA 6010C	4 70E-03	5 00E-02
Barium	7440-39-3	2 00E+02	EPA 6010C	7.00E-04	3.00E-03
Cadmium	7440-43-9	1 19F+00	EPA 6010C	3.00E-04	2 00F-03
Chromium total (or III)	7440-47-3	6.05E-02	EPA 6010C	1 30F-03	5.00E-03
Chromium (VI)	18540-29-9	5 00E+01	SM 3500-Cr B-09	1.00E-02	1 00F-02
Cobalt	7440-48-4	4.80E+00	EPA 6010C	2.00E-04	3.00E-03
Copper	7440-50-8	3.10E+00	EPA 6010C	7.00E-04	2.00E-03
Lead	7439-92-1	8.10E+00	EPA 6010C	1.90E-03	2.00E-02
Manganese	7439-96-5	1.00E+02	EPA 6010C	3.00E-04	1.00E-03
Mercury (elemental)	7439-97-6	2.50E-02	EPA 7470A	1.30E-05	1.00E-04
Nickel	7440-02-0	8 20F+00	EPA 6010C	2 80F-03	1.00E-02
Selenium	7782-49-2	7 10F+01	EPA 6010C	5 00E-03	5 00F-02
Silver	7440-22-4	1.90E+00	EPA 6010C	5.00E-04	3.00E-03
Vanadium	7440-62-2	8.00E+01	EPA 6010C	4.00E-04	3.00E-03
Zinc	7440-66-6	8 10F+01	EPA 6010C	2 10F-03	1 00F-02
Delychloringtod Pinhonyls (DCPs)	1110 00 0	0.102 01		2.102.00	
POlychioninated Diphenyis (PCDS)	10674 11 0	7 005 06	00000	2 100 02	
PCB - Alociol 1010	1110/ 28 2	7.00E-00	000ZA 9092A	2.400-03	
PCB - Arodor 1221	11104-20-2	7.00E-00	000ZA	2.400-03	1.00E-02
PCB - Aroclor 1232	<u> </u>	7.00E-00	0002A	2.40E-03	1.00E-02
PCD - Alociol 1242	10670 00 6		000ZA	2.400-03	
PCB - Alociol 1240	12072-29-0	7.00E-00	000ZA	2.40E-03	1.00E-02
PCB - Aroclor 1254	11097-09-1		000ZA	2.40E-03	1.00E-02
	11090-02-5	7.00E-00	000ZA	2.70E-03	1.00E-02
Volatile Organic Compounds (VOCs)					
Benzene	71-43-2	1.60E+00	8260C	3.00E-02	2.00E-01
1,1-Dichloroethylene	75-35-4	1.29E+02	8260C	5.00E-02	2.00E-01
cis-1,2-Dichloroethylene	156-59-2	NE	8260C	4.00E-02	2.00E-01
Ethylbenzene	100-41-4	3.10E+01	8260C	4.00E-02	2.00E-01
Methyl tert-butyl ether (MTBE)	1634-04-4	6.05E+02	8260C	7.00E-02	5.00E-01
Tetrachloroethene (PCE)	127-18-4	2.90E+00	8260C	5.00E-02	2.00E-01
Ioluene	108-88-3	1.30E+02	8260C	4.00E-02	2.00E-01
Irichloroethene (ICE)	79-01-6	7.00E-01	8260C	5.00E-02	2.00E-01
Vinyl chloride	/5-01-4	1.80E-01	8260C	6.00E-02	2.00E-01
m-Xylenes	179601-23-1	3.03E+02	8260C	5.00E-02	4.00E-01
m,p-Xylenes	1/9601-23-1	1.60E+03	8260C	5.00E-02	4.00E-01
0-Xylene	136777-61-2	4.32E+02	8260C	3.00E-02	2.00E-01
Xylenes, Total	1330-20-7	3.32E+02	8260C	9.00E-02	6.00E-01
Polycyclic Aromatic Hydrocarbons (PAHs)					
Acenaphthene	83-32-9	5.34E+00	8270D	3.00E-01	1.00E+00
Acenaphthylene	208-96-8	NE	8270D	3.00E-01	1.00E+00
Anthracene	120-12-7	2.15E+00	8270D	3.00E-01	1.00E+00
Benzo(a)anthracene	56-55-3	1.60E-04	8270D-SIM-LL	8.00E-04	1.00E-02
Benzo(b)fluoranthene	205-99-2	1.60E-04	8270D-SIM-LL	5.00E-04	1.00E-02
Benzo(k)fluoranthene	207-08-9	1.60E-03	8270D-SIM-LL	3.00E-03	1.00E-02
Total Benzofluoranthenes	E	NE	8270D	8.00E-01	2.00E+00
Benzo(g,h,i)perylene	191-24-2	NE	8270D	5.00E-01	1.00E+00
Benzo(a)pyrene	50-32-8	1.60E-05	8270D-SIM-LL	2.00E-03	1.00E-02

Attachment 2A - Analytical Limits of Detection and Project Screening Levels - Groundwater

		Ecology	Analytica	al Resources, I	nc.
Analyte	CAS	PCUL ¹	Method	MDL	RL ²
Chrysene	218-01-9	1.60E-02	8270D-SIM-LL	9.00E-04	1.00E-02
Dibenz(a,h)anthracene	53-70-3	1.60E-05	8270D-SIM-LL	1.00E-03	1.00E-02
Dibenzofuran	132-64-9	1.60E+01	8270D	3.00E-01	1.00E+00
Fluoranthene	206-44-0	1.82E+00	8270D	4.00E-01	1.00E+00
Fluorene	86-73-7	3.67E+00	8270D	3.00E-01	1.00E+00
Indeno(1,2,3-cd)pyrene	193-39-5	1.60E-04	8270D-SIM-LL	1.00E-03	1.00E-02
Methyl isopropyl phenanthrene	483-65-8	NE			
1-Methylnaphthalene	90-12-0	1.50E+00	8270D	3.00E-01	1.00E+00
2-Methylnaphthalene	91-57-6	3.20E+01	8270D	2.00E-01	1.00E+00
Naphthalene	91-20-3	1.40E+00	8270D	2.00E-01	1.00E+00
Phenanthrene	85-01-8	NE	8270D	2.00E-01	1.00E+00
Pyrene	129-00-0	2.01E+00	8270D	3.00E-01	1.00E+00

Semivolatile Organic Compounds (SVOCs) - Other

Benzoic Acid	65-85-0	5.90E+02	8270D	3.00E+00	2.00E+01
n-Nitrosodiphenylamine	86-30-6	6.90E-01	8270D-LL	2.00E-02	2.00E-01
Butyl benzyl phthalate	85-68-7	1.30E-02	8270D-LL	7.00E-02	2.00E-01
Bis(2-ethylhexyl)phthalate	117-81-7	4.60E-02	8270D-LL	2.00E-01	2.00E-01
Dibutyl phthalate	84-74-2	8.00E+00	8270D	3.00E-01	1.00E+00
1,2-Dichlorobenzene	95-50-1	4.61E+00	8260	2.00E-01	1.00E+00
1,4-Dichlorobenzene	106-46-7	4.93E+00	8260	2.00E-01	1.00E+00
2,4-Dimethylphenol	105-67-9	6.34E+00	8270D	4.00E-01	3.00E+00
Pentachlorophenol	87-86-5	2.00E-03	8270D-LL	1.00E-01	1.00E+00

Total Petroleum Hydrocarbon Compounds

Gasoline	 8.00E+02	NWTPH-Gx	5.74E+01	2.50E+02
Diesel range organics	 5.00E+02	NWTPH-Dx	2.17E+01	1.00E+02
Heavy Oil	 5.00E+02	NWTPH-Dx	4.43E+01	2.00E+02

NOTES:

1 Laboratory reporting limits were compared to the most stringent groundwater preliminary cleanup level (PCUL) for nonpotable groundwater provided by Ecology (June 2018).

2 The RL represents the level of the lowest calibration standard (i.e., the laboratory practical quantitation limit [PQL]); the RL may not always be achievable Units are in micrograms per liter.

Blue shading indicates that there is no PCUL established for nonpotable groundwater; the highlighted PCUL is for potable groundwater

Grey shading indicates that there is no PCUL established for nonpotable groundwater, the highlighted value is the background concentration Green shading indicates an RL or MDL exceeds the PCUL.

Analytical method selections may be modified to best meet objective of reaching screening levels.

-- = not available

CAS = Chemical Abstracts Service; Ecology PCUL = Ecology Preliminary Cleanup Level; MDL = method detection limit; NE = not established; NWTPH = Northwest Total Petroleum Hydrocarbons; SIM = selected ion monitoring

Attachment 2B - Analytical Limits of Detection and Project Screening Levels - Soil

		Ecology	Anal	ytical Resource	es, Inc.
Analyte	CAS	PCUL ¹	Method	MDL	RL ²
Metals					
Arsenic (total)	7440-38-2	7.30E+00	6010C	5.00E-04	5.00E+00
Barium	7440-39-3	8.30E+00	6010C	7.00E-05	3.00E-01
Cadmium	7440-43-9	7.70E-01	6010C	3.00E-05	2.00E-01
Chromium, total (or III)	7440-47-3	4.80E+01	6010C	1.00E-04	5.00E-01
Chromium (VI)	18540-29-9	9.60E-01	7196A	4.00E-01	4.00E-01
Cobalt	7440-48-4	2.00E+01	6010C	2.00E-05	3.00E-01
Copper	7440-50-8	3.60E+01	6010C	7.00E-05	2.00E-01
Lead	7439-92-1	5.00E+01	6010C	2.00E-04	2.00E+00
Mercury (elemental)	7439-97-6	7.00E-02	7471B	5.25E-03	2.50E-02
Nickel	7440-02-0	4.80E+01	6010C	3.00E-04	1.00E+00
Selenium	7782-49-2	3.00E-01	6010C	5.00E-04	5.00E+00
Silver	7440-22-4	1.60E-02	6010C	5.00E-05	3.00E-01
Vanadium	7440-62-2	2.00E+00	6010C	4.00E-05	3.00E-01
Zinc	7440-66-6	8.50E+01	6010C	1.60E-01	1.00E+00
Polychlorinated Biphenyls (PCBs)					
PCB - Aroclor 1016	12674-11-2	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1221	11104-28-2	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1232	11141-16-5	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1242	53469-21-9	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1248	12672-29-6	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1254	11097-69-1	2.20E-06	8082A	8.00E-03	2.00E-02
PCB - Aroclor 1260	11096-82-5	2.20E-06	8082A	8.00E-03	2.00E-02
Volatile Organic Compounds (VOCs)					
Benzene	71-43-2	5.60E-04	8260C	3.00E-04	1.00E-03
1,1-Dichloroethylene	75-35-4	1.40E+00	8260C	3.40E-04	1.00E-03
cis-1,2-Dichloroethylene	156-59-2	1.60E+02	8260C	2.40E-04	1.00E-03
Ethylbenzene	100-41-4	1.50E-02	8260C	2.00E-04	1.00E-03
Tetrachloroethene (PCE)	127-18-4	1.60E-03	8260C	2.60E-04	1.00E-03
Toluene	108-88-3	5.50E-02	8260C	1.50E-04	1.00E-03
Trichloroethene (TCE)	79-01-6	2.70E-04	8260C	2.10E-04	1.00E-03
Vinyl chloride	75-01-4	5.50E-05	8260C	2.40E-04	1.00E-03
m-Xylenes	179601-23-1	1.60E+04	8260C	3.90E-04	2.00E-03
p-Xylenes	179601-23-1	1.60E+04	8260C	3.90E-04	2.00E-03
o-Xylene	136777-61-2	1.60E+04	8260C	2.20E-04	1.00E-03
Xylenes, Total	1330-20-7	1.60E+04	8260C	6.20E-04	2.00E-03
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	83-32-9	2.80E-02	8270D	5.10E-03	2.00E-02
Acenaphthylene	208-96-8	1.30E+00	8270D	4.80E-03	2.00E-02
Anthracene	120-12-7	5.10E-02	8270D	5.90E-03	2.00E-02
Benzo(a)anthracene	56-55-3	5.70E-05	8270D-SIM-LL	7.00E-05	5.00E-04
Benzo(b)fluoranthene	205-99-2	2.00E-04	8270D-SIM-LL	7.00E-05	5.00E-04
Benzo(k)fluoranthene	207-08-9	2.00E-03	8270D-SIM-LL	1.00E-04	5.00E-04
Total Benzofluoranthenes	E	3.20E+00	8270D	1.02E-02	4.00E-02
Benzo(g,h,i)perylene	191-24-2	6.70E-01	8270D	5.80E-03	2.00E-02
Benzo(a)pyrene	50-32-8	1.60E-05	8270D-SIM-LL	9.00E-05	5.00E-04
Chrysene	218-01-9	6.40E-03	8270D	5.20E-03	2.00E-02
Dibenz(a,h)anthracene	53-70-3	2.90E-05	8270D-SIM-LL	1.00E-04	5.00E-04

Attachment 2B - Analytical Limits of Detection and Project Screening Levels - Soil

		Ecology	Analy	ytical Resource	s, Inc.
Analyte	CAS	PCUL ¹	Method	MDL	RL ²
Dibenzofuran	132-64-9	5.40E-01	8270D	4.60E-03	2.00E-02
Fluoranthene	206-44-0	9.00E-02	8270D	4.50E-03	2.00E-02
Fluorene	86-73-7	2.90E-02	8270D	5.00E-03	2.00E-02
Indeno(1,2,3-cd)pyrene	193-39-5	5.60E-04	8270D-SIM-LL	9.00E-05	5.00E-04
Methyl isopropyl phenanthrene	483-65-8	NE			
1-Methylnaphthalene	90-12-0	2.90E+01	8270D	6.00E-03	2.00E-02
2-Methylnaphthalene	91-57-6	6.70E-01	8270D	5.70E-03	2.00E-02
Naphthalene	91-20-3	2.10E-03	8270D	2.00E-04	1.00E-03
Phenanthrene	85-01-8	1.50E+00	8270D	5.20E-03	2.00E-02
Pyrene	129-00-0	1.40E-01	8270D	5.60E-03	2.00E-02

Total Petroleum Hydrocarbon Compounds

Gasoline	na	3.00E+01	NWTPH-Gx	2.50E+00	5.00E+00
Diesel range organics	na	2.60E+02	NWTPH-Dx	2.50E+01	5.00E+01
Heavy Oil	na	2.00E+03	NWTPH-Dx	5.00E+01	1.00E+02

NOTES:

1 Laboratory reporting limits were compared to the most stringent soil preliminary cleanup level (PCUL) for nonpotable groundwater provided by Ecology (June 2018).

2 The RL represents the level of the lowest calibration standard (i.e., the laboratory practical quantitation limit [PQL]); the RL may not always be achieve Units are in milligrams per kilogram

Green shading indicates an RL or MDL exceeds the PCUL.

Analytical method selections may be modified to best meet objective of reaching screening levels.

-- = not available

CAS = Chemical Abstracts Service; Ecology PCUL = Ecology Preliminary Cleanup Level; MDL = method detection limit; NE = not established; NWTPH = Northwest Total Petroleum Hydrocarbons; SIM = selected ion monitoring

Attachment 3 Sample Containers, Preservatives, and Holding Times

Attachment 3 - Sample Containers, Preservatives, and Holding Times

		Con	tainer ^a		Holding
Method	Analysis	Туре	Size	Preservation	Time
Soil Samples					
EPA 8082A	PCB aroclors	Glass	8 oz.	Cool 0 - 6°C	14 days
EPA 200.8	Metals ^b	Glass	4 oz.	Cool 0 - 6°C	180 days
EPA 7471B	Mercury	Glass	4 oz.	Cool 0 - 6°C	28 days
EPA SM3500	Hexavalent Chromium	Glass	4 oz.	Cool 0 - 6°C	28 days
EPA 8270D	SVOCs	Glass	8 oz.	Cool 0 - 6°C	14 days
EPA 8260C	VOCs	Glass	8 oz./3 x 40 ml	MeOH(1); NaHSO4(2), Cool 0 - 6°C	14 days
NWTPH-G	TPH - Gasoline	Glass	8 oz./2 x 40 ml	MeOH, Cool 0 - 6°C	14 days
NWTPH-Dx	TPH - Diesel and Residual Range	Glass	8 oz.	Cool 0 - 6°C	14 days
9060A	Total Organic Carbon	Glass	4 oz.	Cool 0 - 6°C	14 days
Groundwater	Samples				
EPA 200.8	Total Metals ^b	HDPE	500 mL	HNO3, Cool 0 - 6°C	180 days
EPA 7470A	Total Mercury	HDPE	500 mL	HNO3, Cool 0 - 6°C	28 days
EPA 200.8	Dissolved Metals ^b	HDPE	500 mL	HNO3, Cool 0 - 6°C	180 days
EPA 7470A	Dissolved Mercury	HDPE	500 mL	HNO3, Cool 0 - 6°C	28 days
EPA SM3500	Dissolved Hexavalent Chromium	Glass	250 mL	Cool 0 - 6°C ^c	28 days
EPA 8082A	PCB aroclors	Amber Glass	2 x 500 mL	Cool 0 - 6°C	7 days
EPA 8260C	VOCs	Glass Vial	3 x 40 mL	HCL, Cool 0 - 6°C	14 days
EPA 8270D	SVOCs/PAHs	Amber Glass	2 x 500 mL	Cool 0 - 6°C	7 days
NWTPH-G	TPH - Gasoline	Glass Vial	2 x 40 mL	HCL, Cool 0 - 6°C	14 days
NWTPH-Dx	TPH - Diesel and Residual Range	Amber Glass	2 x 500 mL	Cool 0 - 6°C	7 days
EPA 300.0	Nitrate, nitrite, sulfate	Glass	250 mL	Cool 0 - 6°C	24 hours
EPA SM4500	Sulfite	Glass	250 mL	EDTA, Cool 0 - 6°C	6 hours
EPA SM3500	Ferrous iron	Amber Glass	250 mL	HCL, Cool 0 - 6°C	24 hours
EPA 200.8	Manganese ion	HDPE	500 mL	HNO3, Cool 0 - 6°C	180 days
RSK-175	Methane	Glass Vial	2 x 40 mL	Cool 0 - 6°C	7 days

NOTES:

a The size and number of containers may be modified by the analytical laboratories.

b Metals include arsenic, cadmium, chromium, cobalt, copper, iron (groundwater only), lead, manganese (groundwater only), nickel, selenium, silver, and zinc.

c Dissolved metals and hexavalent chromium collected in unpreserved bottles. Upon receipt at lab, samples to be filtered and preserved.

 $^{\circ}$ C = degrees Celsius; Dx = diesel-extended; EDTA = ethylenediaminetetraacetic acid; EPA = U.S. Environmental Protection Agency; G = gasoline; HCL = hydrochloric acid; HDPE = high density polyethylene; HNO3 = nitric acid; MeOH = methanol; mL = milliliters; NAHSO4 = sodium bisulfate; NaOH = sodium hydroxide; NWTPH = Northwest Total Petroleum Hydrocarbons; oz. = ounce; PAH = polycyclic aromatic hydrocarbons; PCB = polychlorinated biphenyls; SVOCs = semi-volatile organic compounds; TPH = total petroleum hydrocarbons; VOCs = volatile organic compounds

Attachment 4 PFAS Data-Validation Program Plan

SUBMITTED FOR: PFAS-Sampling Projects

^{BY:} Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709

(907) 479-0600 www.shannonwilson.com

DATA-VALIDATION PROGRAM PLAN S&W PFAS Validation VARIOUS SITES

April 2020 Shannon & Wilson No: 21-1-12596-013

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

1	Intr	oduction2
2	Lab	oratory Certification and Deliverables3
	2.1	Laboratory Certification3
	2.2	Laboratory Deliverables
3	Cha	in-of-Custody3
4	Sam	ple Handling, Condition, Preservation, and Holding Times4
	4.1	Acceptable Temperatures4
	4.2	Sample Preservation5
	4.3	Holding Times
	4.4	Sample Condition7
5	Ana	alytical Sensitivity
6	Blar	nk Samples10
	6.1	Method Blanks
	6.2	Field Blanks14
	6.3	Equipment Blanks
7	Acc	uracy14
	7.1	Laboratory Control Samples15
	7.2	Matrix Spike Samples15
	7.3	Surrogates and Isotope Dilution Analytes16
	7.4	Calibration Verification Samples18
8	Prec	cision
	8.1	Laboratory Control Sample Duplicates20
	8.2	Matrix Spike Duplicates
	8.2 8.3	Matrix Spike Duplicates20Laboratory Duplicates20
	8.2 8.3 8.4	Matrix Spike Duplicates20Laboratory Duplicates20Field-Duplicate Samples20
9	8.2 8.3 8.4 Rep	Matrix Spike Duplicates 20 Laboratory Duplicates 20 Field-Duplicate Samples 20 presentativeness 21
9 10	8.2 8.3 8.4 Rep Lab	Matrix Spike Duplicates20Laboratory Duplicates20Field-Duplicate Samples20presentativeness21oratory Applied Flags22
9 10 11	8.2 8.3 8.4 Rep Lab Con	Matrix Spike Duplicates20Laboratory Duplicates20Field-Duplicate Samples20presentativeness21oratory Applied Flags22nparability23
9 10 11 12	8.2 8.3 8.4 Rep Lab Con	Matrix Spike Duplicates20Laboratory Duplicates20Field-Duplicate Samples20oresentativeness21oratory Applied Flags22nparability23npleteness24

14	References	.25	,
----	------------	-----	---

Exhibits

Exhibit 1-1: Definition of Flags	1
Exhibit 4-1: Sample-Temperature Actions	5
Exhibit 4-2a: PFAS Groundwater Preservation Requirements	6
Exhibit 4-2b: Preservation Actions	6
Exhibit 4-3: Holding-Time Actions	7
Exhibit 4-4: Sample Condition Actions	8
Exhibit 5-1: Elevated Reporting Limit Actions	9
Exhibit 5-2: Relationship between DL, LOD, LOQ, and Corresponding Laboratory Result	
Flags and Cleanup Levels.	9
Exhibit 6-1: Actions for Blank Detections	11
Exhibit 6-2: Example Qualification Criteria for PFAS Blank Detections	12
Exhibit 7-1: Actions for LCS/LCSD and MS/MSD Recovery Failures	15
Exhibit 7-2: Actions for Surrogate or Isotope Dilution Analyte Recovery Failures	18
Exhibit 8-1: RPD Calculation	19
Exhibit 8-2: Actions for Duplicate-Sample RPD Failures	19
Exhibit 9-1: Actions for Deviations from Sampling Program	22
Exhibit 10-1: Actions for Common Laboratory Applied Flags	23

Appendix

Appendix A: Surrogate and Isotope Dilution Analyte Associations

CCV	continuing calibration verification
COC	chain-of-custody
°C	degrees Celsius
DQO	data quality objective
EB	equipment blank
EDD	electronic data deliverable
FB	field blank
GRO	gasoline range organics
ICV	initial calibration verification
IDA	isotope dilution analyte
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
MB	method blank
mm	millimeter
MRL	method reporting limit
MS	matrix spike
MSD	matrix spike duplicate
%R	percent recovery
PFAS	per- and polyfluoroalkyl substances
PQL	practical quantitation limit
QAPP	quality assurance program plan
QA	quality assurance
QC	quality control
RPD	relative percent difference
SDG	sample delivery group
SGS	SGS North America, Inc.
SOP	standard operating procedure
SRF	sample receipt form
USACE	US Army Corps of Engineers
USEPA	US Environmental Protection Agency
VOC	volatile organic compound
WO	work order

Flag	Displayed as	Description		
U	< [reporting limit]	The analyte was not detected; the result is listed as less than the reporting limit.		
UJ	< [reporting limit] J*	The analyte was not detected; the listed reporting limit may not represent the true reporting limit due to sample-handling or laboratory quality-control (QC) failures (i.e., the listed reporting limit may be inaccurate or imprecise).		
UB	< [LOQ or reported concentration] B*	The analyte is considered not detected due to sample- contamination identified in a blank; the result is listed as less than the limit of quantitation (LOQ) or the concentration originally reported in the sample (higher of the two values).		
J	[Result] J – Flag applied by laboratory [Result] J* – Flag applied by reviewer	The result is an estimated quantity. The analyte was detected below the LOQ or was affected by QC failures.		
JL	[Result] JL*	The result is an estimated quantity and may be biased low due to QC failures.		
JH	[Result] JH*	The result is an estimated quantity and may be biased high due to QC failures.		
JN	[Result] JN*	The analyte was tentatively identified, and the result is an estimated quantity.		
R	R*	The results are unusable. The sample results are rejected due to severe QC deficiencies. The analyte may or may not be present in the sample.		

Exhibit 1-1: Definition of Flags

NOTES:

* Flag applied by reviewer.

LOQ = limit of quantitation, QC = quality control

1 INTRODUCTION

This per- and polyfluoroalkyl substances (PFAS) Data-Validation Program Plan (the Plan) was prepared to describe the procedures used by Shannon & Wilson staff for reviewing and qualifying analytical PFAS data in an objective and consistent manner.

This Plan describes the process for qualifying analytical data based on quality assurance/quality control (QA/QC) review of Level II laboratory reports and electronic data deliverables (EDDs). This Plan is intended to provide guidance for generally conducting what the US Environmental Protection Agency (USEPA) refers to as a Stage 2a Validation (USEPA 2009). A more critical level of validation is beyond the scope of this Plan, but the Plan does present guidance for determining whether additional review should be conducted, based on information received from the laboratory. This Plan also assesses the quality of the analytical data using PARCCS parameters (precision, accuracy, representativeness, comparability, completeness, and sensitivity).

This Plan provides information about references we use during the data-validation process and presents data qualifiers used to "flag" analytical data. The standard set of flags we use to validate analytical data along with their definitions are presented in Exhibit 1-1. Methods for applying data qualifiers are referenced primarily from the following USEPA guidance documents:

- USEPA National Functional Guidelines for Organic Methods Data Review, January 2017 (USEPA 2017b); and
- USEPA Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537, November 2018 (USEPA 2018a).

In some cases, we also reference the following US Army Corps of Engineers (USACE) guidance document to formulate our opinions when USEPA guidance documents recommend exercising professional judgment:

 USACE Engineering Manual 200-1-10, Guidance for Evaluating Performance-Based Chemical Data, June 2005 (USACE 2005).

Additional references are listed in Section 12.0 and cited throughout the text.

In general, most data-review guidelines presented in this Plan are drawn from federal guidance documents. However, in some cases federal guidance is not consistent, is outdated, or does not account for specific issues addressed in this Plan; in these cases, the guidance presented in the Plan is based on standard industry practice or site-specific considerations, which are based on Shannon & Wilson chemists' years of professional experience.

Most quality assurance program plans (QAPPs) specify data quality objectives (DQOs) for items such as laboratory control sample (LCS) recovery and target reporting limits. This document does not present such limits, but instead defers to internal laboratory control limits that are statistically derived, frequently updated, and within the requirements of the laboratory's national certification, and thus compliant with federal requirements.

2 LABORATORY CERTIFICATION AND DELIVERABLES

2.1 Laboratory Certification

Prior to submitting samples to a laboratory, we will request the laboratory certifications for the requested analyses. In cases where the original laboratory subcontracts analysis to a network or referral laboratory ("ref lab"), the referral laboratory must be certified for the requested analyses.

2.2 Laboratory Deliverables

Laboratory Level II reports and EDDs are obtained directly from the laboratory via e-mail or laboratory data websites. The laboratory reports and EDDs are reviewed for completeness and revised reports are requested where there is missing or incorrect information. Laboratory reports are provided in Adobe Acrobat (.pdf) format, while EDDs are provided in extensible markup language (.xml) format, or another similar format. It may be necessary to engage with the laboratory regarding a database compatible EDD format.

Laboratory reports and EDDs are grouped by the work order (WO) number assigned when the laboratory receives the sample delivery group (SDG). SDGs are determined by the samples and analyses listed on the chain-of-custody (COC) record.

3 CHAIN-OF-CUSTODY

Evidence of sample custody from the time of collection to the time of receipt by the laboratory is documented via the COC record. A COC contains the signatures of individuals collecting, shipping, and receiving each sample. The COC is reviewed to verify it is signed and dated by the sampler, the local receiving staff (unless shipped directly), and the laboratory's receiving staff. Carriers who are only involved in the transport of sealed coolers (e.g., Lynden Transport, Inc.) are not required to sign the COC. A sample is considered to be in custody if it is:

in a person's actual possession;

- in view, after being in physical possession;
- sealed so no one can tamper with it, after having been in physical custody; or
- in a secured area, restricted to authorized personnel.

If the COC record is not complete and accurate (e.g., signatures missing, date/time discrepancies, lack of custody seals), professional judgment must be used as to whether to qualify the data. The reviewer should consider rejecting data and recollecting the samples, if possible, if it is suspected that custody was intentionally breached, and the samples may have been tampered with. If instead there is a simple omission or minor discrepancy, the data may be usable without qualification if the source of the omission or discrepancy is known and accounted for.

The COC also provides the requested analyses for each documented sample. COCs are reviewed to verify the correct analyses were requested, and that sample names match those on the sample-collection logs. Where discrepancies are noted, the laboratory will coordinate with the sampling team to confirm the correct sample names are used in reporting the results.

4 SAMPLE HANDLING, CONDITION, PRESERVATION, AND HOLDING TIMES

Evidence of sample condition is documented on the laboratory's sample receipt form (SRF) upon delivery. SRFs document QC non-conformance issues during sample handling, where such information exists. In some cases, samples are delivered to a local sample-receiving office prior to transport to the analytical laboratory; SRFs are completed at each location.

The following sections generally apply to soil and water. For sample-handling requirements for other media besides soil and water sample, we will refer to the individual USEPA sampling and analysis methods and/or laboratory sampling guides. In general, data qualification based on sample-handling failures is the same for other media as for soil and water samples; however, the sample-handling requirements may be different and must be assessed on a method-specific basis.

4.1 Acceptable Temperatures

SRFs are reviewed to verify samples are received within the acceptable temperature range. Temperature of the coolers and/or temperature blanks should be documented at each receiving location. Samples are considered to be within the acceptable temperature range if received between 0 degrees Celsius (°C) and 6 °C, where temperature preservation is required. This range is referenced in multiple guidance (e.g. USEPA 2017a, 2017b, 2018b) noting that water samples received below this cutoff are acceptable in the absence of ice.

Data qualification based on temperatures outside the acceptable criteria may vary for different analyses and sample matrices. For example, PFAS analysis for samples exceeding 6 °C is unlikely to have the same reduction in concentration as a sample submitted for volatile organic compound (VOC) analysis. Another notable exception to the temperature range criteria is for samples that collected frozen (<-7 °C). These samples may be maintained frozen until sub-sampled and preserved, if allowed by the project work plan.

Exhibit 4-1 provides general guidelines for qualifying results for samples received outside the acceptable temperature range; however, the individual extraction or analytical methods should be consulted, and professional judgment used.

		Action		
Matrix	Criteria	Detected Analytes	Analytes Not Detected	
	0°C-6°C	No qualification		
_	0 °C – 6 °C; ice in samples	J	UJ	
Water	< 0 °C; no ice in samples	No qualification		
_	< 0 °C; ice in samples	J	UJ	
	> 6 °C	JL	UJ ¹	
	0°C-6°C	No qua	alification	
Soil	< 0 °C	No qualification ²		
_	> 6 °C	JL	UJ^1	
	0 °C – 10 °C³	No qualification		
PFAS Impacted Soil and Water	< 0 °C	No qualification ²		
	> 10 °C	JL	UJ	

Exhibit 4-1: Sample-Temperature Actions

NOTES:

1 Use professional judgment when qualifying sample results based on temperature exceedance, considering the volatility of the analyte. If temperatures are higher than 10 °C or are suspected to have been above 6 °C for an extended period (e.g., over 24 hours), reviewer should consider rejecting sample results for volatile analytes that were not detected.

2 Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

3 Samples shall be protected from light and refrigerated at ≤ 6°C (but not frozen) from the time sample collection until receipt at the laboratory.

°C = degrees Celsius, PFAS = per- and polyfluoroalkyl substances

4.2 Sample Preservation

Some analyses require addition of sample preservatives in addition to maintaining the samples within the acceptable temperature range. Various guidance documents (USEPA

2018b; USACE 2005) and individual USEPA extraction methods list sample-preservation requirements for individual methods and matrices. The laboratory SRF documents whether samples were received with proper preservative and in good condition. Requirements for groundwater samples collected for PFAS analysis are shown in Exhibit 4-2a below.

Analyte	Matrix	Containers	Preservation Requirements	Preparation Holding Time	Analytical Holding Time
PFAS	Groundwater	2 x 250 mL HDPE Bottles	4 ± 2 °C	14 days	40 days

Exhibit 4-2a: PFAS Groundwater Preservation Requirements

Not all data are affected the same way by failure to properly preserve samples, therefore, individual extraction or analytical methods should be consulted, and professional judgement used. For example:

 In the case where one analyte is the degradation byproduct of another analyte, the degraded species may increase in a sample following storage with inadequate preservation (USACE 2005); the same may occur if holding times are exceeded (see Section 4.3, below).

In most cases where sample preservation is inadequate, sample results should be considered estimated and qualified using the criteria listed in Exhibit 4-2b below.

	Act	Action	
Criteria	Detected Analytes	Analytes Not Detected	
Adequate Preservation ^{1,2}	No qual	No qualification	
Inadequate Preservation ^{1,2}	JL	UJ	

Exhibit 4-2b: Preservation Actions

NOTES:

1 Per regulatory guidance and/or method specific or preservation requirements.

2 Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

4.3 Holding Times

Samples are required to be extracted and/or analyzed within method-specific holding times. The holding time begins immediately following sample collection. Holding times for PFAS groundwater samples are listed in Exhibit 4-2a above. Holding times are calculated on a perday basis, except for short-holding-time analyses where the holding time is measured in hours (typically for analyses listed with a holding time of 72 hours or less).

Holding times are evaluated based on the matrix and method. Certain methods list a collection-to-analysis holding time (e.g., analysis of volatile organic compounds in soil,

where extraction occurs in the field at the time of collection), while others list separate holding times for collection to extraction and for extraction to analysis.

In general, where holding times are exceeded, sample results shall be qualified using the criteria listed in Exhibit 4-3.

		Action		
Analysis	Criteria	Detected Analytes	Analytes Not Detected	
	t≤HT	No qualification		
PFAS	t > HT	J	UJ	
TTAO	t > 2x HT	I	D	
	(gross exceedance)	0	IX IX	
	t≤HT	No qualification		
	HT < t ≤ 2 x HT	Ш	UJ	
All Others ¹	(marginal exceedance)	JL		
	t > 2x HT	Ш	D	
	(gross exceedance)	JL	IX.	

Exhibit 4-3: Holding-Time Actions

NOTES:

1 Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

HT = method (technical) holding time; t = actual holding time

As with sample preservation, professional judgment must be used when qualifying data based on holding-time exceedance, as there can be situations where certain analytes are affected differently than others (such as in the case of analytes that are degradation products of one another). Also, preservation failures coupled with a marginal holding-time exceedance may warrant rejection of results for analytes that were not detected.

4.4 Sample Condition

Sample condition is documented on the laboratory's SRF(s). Professional judgment should be used to determine if qualification of analytical results is necessary for cases where sample condition is compromised. Some common circumstances that may affect sample results are listed below:

1. **Broken Container**: Sometimes lids crack upon tightening, but no liquid is lost. As long as the lid is replaced prior to sample shipment (may be replaced by the laboratory sample-receiving office), results are not considered affected. Most water analyses require at least one duplicate bottle to be filled. If only one of the bottles is broken and the analysis is performed with the intact bottle, no qualification is required other than noting the broken container on the data-review checklist. However, if the sample with the broken container was used for analysis, professional judgment should be used to

determine if the analyses are affected by the addition of air. Affected sample results shall be qualified using the criteria listed in Exhibit 4-4.

2. Soil analysis reported using "wet weight": When collecting soil samples an additional jar is provided for the laboratory to determine the percent solids. In the absence of the additional percent-solids jar, the laboratory may report soil concentrations using the "wet weight." The overall concentration of the analyte is determined by dividing the mass of the analyte by the mass of the soil. In cases where a dry weight was not determined, the concentration may be reported using a wet weight. The results for samples reported using the wet weight shall be qualified using the criteria listed in Exhibit 4-4.

Other sample-condition anomalies than those listed above may occur. These anomalies should be addressed using available guidance, individual extraction or analytical methods, and the reviewer's professional judgement.

Exhibit 4-4: Sample Condition Actions

	Action		
Criteria	Detected Analytes	Analytes Not Detected	
Broken Container	JL	UJ^1	
Soil Analysis Reporting "Wet Weight"	JL	UJ	

NOTES:

1 Use professional judgement and consider rejecting data depending on how much sample leaked or the volatility of the analyte. mm = millimeter

5 ANALYTICAL SENSITIVITY

Analytical sensitivity refers to the amount of analyte necessary to produce a detector response that can be reliably detected or quantified (USACE 2005). Analytical sensitivity is evaluated by comparing the appropriate reporting limit (generally the limit of detection [LOD]) for not-detected results to the relevant cleanup level or action limit, where such standards exist. Where LODs are not available, limits of quantitation (LOQs), practical quantitation limits (PQLs), or method reporting limits (MRLs) may be used. We note the LOQ, PQL and MRL are interchangeable terms and depends on the laboratory for which term is used in reporting the results. For the purposes of this data validation plan, we reference the LOQ.

In general, regulatory limits used to check analytical sensitivity are provided by state or federal agencies for soil and water; analytes without regulatory limits are compared to the relevant, project-specific or analyte-specific action limit at the time of comparison.

In cases where the reporting limit (LOD, LOQ, PQL, etc.) exceeds the regulatory limit, a note will be added to the data-review checklist and associated results tables noting the reporting limit is elevated. Reporting limits that exceed regulation limits should be identified using the following criteria listed in Exhibit 5-1.

Exhibit 5-1: Elevated Reporting Limit Actions

Criteria	Action
Reporting Limit ¹ \leq Cleanup Level / Action Level	No note
Reporting Limit ¹ > Cleanup Level / Action Level	Note should be added to the Checklist and Results Tables

NOTES:

1 The reporting limit used for the analytical sensitivity comparison should be described in the DEC data-review checklist.

Exhibit 5-2 illustrates the relationship between the DL, LOD, and LOQ, with a summary of laboratory result flags applied to each range and an example of acceptable and unacceptable (elevated) reporting limits.

Exhibit 5-2: Relationship between DL, LOD, LOQ, and Corresponding Laboratory Result Flags and Cleanup Levels.

a. Results flagged "J" by laboratory where analyte is detected above the DL, but below the LOQ.

b. Unacceptable LOD-to-cleanup-level relationship.

c. Acceptable LOD-to-cleanup-level relationship.

Note that these are example scenarios; not all data are compared using the LOD, and therefore this figure does not apply to data received from all laboratories.

DL = detection limit; LOD = limit of detection; LOQ = limit of quantitation.

6 BLANK SAMPLES

Blank samples are analyzed to check for possible contributions to the analytical results from cross-contamination between samples, or from sample-contamination from an outside source. Typically, the following blank samples are reviewed in conjunction with project samples, where appropriate:

- method blanks;
- trip blanks (volatile analytes only);
- field blanks; and
- equipment blanks.

Each of these blanks check for sample-contamination issues at various steps between sample collection and analysis. Detections in one blank can cause related detections in other blank samples. For example, a detection in a method blank can cause detections in corresponding trip blanks or equipment blanks. Therefore, it is important to investigate blank detections to determine at what step sample-contamination was first introduced; data-qualification should proceed beginning at this level.

For the purposes of this Plan (Level II data review), blank detection evaluation should proceed using the following hierarchy:

- 1. method blank;
- 2. field blank; and
- 3. equipment blank

Additional details regarding these types of blanks are provided in sections 6.1 through 6.4 below.

Additional blanks collected or analyzed by the lab for method-specific requirements should be evaluated on a case-by-case basis.

Data-qualification procedures are identical between blank types within a given matrix; however, the list of affected project samples vary. Exhibit 6-1 presents data-qualification criteria for samples affected by detections in a blank sample; these criteria are generally consistent with those presented in EM 200-1-10 (USACE 2005).

Analysis	Concentration in blank (y)	Concentration in corresponding project sample (z)	Action
	 DL < y < 2x LOQ	z = Not Detected	No qualification
		z < LOQ	UB at the LOQ
DEAG		$LOQ \le z \le 10y$	UB at the detected result (z)
PFA5		z ≥ 10y	No qualification
	$y \ge 2x \text{ LOQ}^2$ (gross contamination)	z = Not Detected	No qualification
		z = Detect	R

Exhibit 6-1: Actions for Blank Detections

NOTES:

1 Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

2 Use professional judgment to assess the reported LOQ. If elevated, reference a typical LOQ for a non-detect result.

DL = detection limit, LOQ = limit of quantitation (also known as PQL or MRL), y = concentration in blank, z = concentration in corresponding sample

Exhibits 6-2 and 6-3 presents a visual example of flagging criteria for a blank detection for PFAS and all other analyses, respectively.

Exhibit 6-2: Example Qualification Criteria for PFAS Blank Detections

Project-sample results would be qualified as follows:

a) Flag 'UB' at the LOQ.

b) Flag 'UB' at the concentration detected in the sample.

c) Flag 'R' for any detection in the sample.

DL = detection limit; LOD = limit of detection; LOQ = limit of quantitation (also known as PQL or MRL).

Exhibit 6-3: Example Qualification Criteria for Non-PFAS Blank Detections

NOTES:

Project-sample results would be qualified as follows:

- a) Flag 'UB' at the LOQ.
- Flag 'UB' at the concentration detected in the sample. b)
- Flag 'JH' at the concentration detected in the sample. C)
- DL = detection limit; LOD = limit of detection; LOQ = limit of quantitation (also known as PQL or MRL).

Method Blanks 6.1

Method blank (MB) samples are prepared by the laboratory with every preparatory batch, at a minimum rate of one MB per 20 samples. MBs are samples of clean media (soil, water, etc.) that are subjected to the same procedures as project samples to extract a given analyte(s). MBs are evaluated to determine if the method of extraction, cleanup, or analysis introduces any contamination during the process.

The reviewer will check that MBs were prepared and analyzed by the laboratory at the required frequency, and that no analytes were reported in the MBs. If an analyte is reported in an MB, all samples in the corresponding preparatory batch should be evaluated for that analyte. Data qualifiers should be applied according to Exhibit 6-1, above.

6.2 Field Blanks

Field blank (FB) samples are collected in the field by sample personnel. The sampler opens a sample bottle in the same air space as the corresponding project sample and collects the field blank by filling the bottle with laboratory provided deionized water. The FB is used to assess for possible contamination from the sampling site. If an analyte is reported in the FB, the corresponding sample should be evaluated for the detected analytes and, if necessary, qualified based on the criteria presented in Exhibit 6-1, above.

6.3 Equipment Blanks

Equipment blank (EB) samples are collected in the field by the sampling personnel. The EB is used to determine if decontamination of reusable sampling equipment between sampling locations is sufficient. The reviewer will check that EBs were collected at the required frequency, and that no analytes were reported in the EBs. If an analyte is reported in an EB, all samples collected using the same sampling equipment on the same day will be evaluated (determined based on field sampling logs, and if necessary, qualify based on the criteria presented in Exhibit 6-1, above.

7 ACCURACY

Accuracy is evaluated at multiple levels throughout the analytical process, using a variety of techniques. It is assessed at the preparatory batch level using recovery information from LCS and laboratory control sample duplicates (LCSDs), matrix spike samples (MSs) and matrix spike duplicates (MSDs), and surrogates or isotope dilution analytes (IDAs). MS/MSD and surrogate or IDA recovery information are used to determine whether there is interference from the sample matrix that affects the accuracy of the reported results. The following sections discuss these QC samples in association with the preparatory batch. However, we note there are some analytical methods for inorganics that do not require a preparatory batch and the LCS, LCSD, MS, and MSD QC sample are assessed at the analytical-batch level. Accuracy is also assessed at the analytical-batch level using recovery information (ICV) and continuing calibration verification (CCV) samples, where information is available in the Level II data deliverable.

7.1 Laboratory Control Samples

LCSs (also referred to as blank spikes) are prepared by the laboratory with every preparatory batch, at a minimum of one LCS per 20 samples, where required. In some cases, analytical protocol requires the laboratory also analyze an LCSD to assess laboratory precision (see Section 8.1 for assessment of laboratory precision). LCSs and LCSDs are prepared using the same extraction method that is applied to the project samples using laboratory-grade, blank-matrix samples spiked with a known concentration of analyte(s). The laboratory reports a percent recovery (%R) of the spiked amount for each analyte added to the blank sample. The laboratory maintains acceptance limits for LCS/LCSD recovery; these limits are reported in the Level II laboratory report for comparison.

The reviewer will check that LCSs were reported at the required frequency, and that LCS/LCSD recoveries are within laboratory control limits. An LCS or LCSD recovery failure affects all corresponding samples in the same preparatory batch for the affected analyte(s). The following guidelines in Exhibit 7-1 will be used for qualifying sample results associated with LCS/LCSD-recovery failures.

	LCS/LCSD or MS/MSD	D Action		
Analysis	Results	Detected Analytes	Analytes Not Detected	
	%R < 10%	JL	R	
PFAS	$10\% \le \%R < LCL$	JL	UJ	
	%R > UCL ²	JH	No qualification	

Exhibit 7-1: Actions for LCS/LCSD and MS/MSD Recovery Failures

NOTES:

1 Use professional judgment and refer to method-specific requirements for non-standard analyses and matrices.

2 If LCS/LCSD recovery is grossly outside control limits (recoveries less than 10% or greater than 250%) the reviewer should use professional judgment when qualifying the data. The reviewer should consider rejecting results for analytes not detected where the recovery was below 10% (USACE 2005).

LCL = lower control limit, %R = percent recovery, UCL = upper control limit

7.2 Matrix Spike Samples

For certain methods, the laboratory analyzes an MS/MSD in addition to the LCS. MS/MSDs are prepared and analyzed on a preparatory batch basis and are analyzed with every 20 samples when used. They consist of project (native) samples spiked with a known concentration of analyte(s) and prepared using the same method that is applied to project samples to extract the analyte(s). The MS and MSD are used to determine the presence of matrix interferences and evaluate the analytical accuracy for a given method and matrix, expressed as a %R of the spiked amount added to the field sample.

The reviewer will check to make sure that MS/MSDs were analyzed at the frequency required by analytical methods or project-specific requirements. Some methods may require the analysis of an MS/MSD pair, but insufficient sample volume may prevent the laboratory from providing these QC samples. The laboratory's standard operating procedures (SOPs) may allow for an LCSD instead of an MS/MSD for these cases.

The reviewer will check that %R for each analyte is within laboratory control limits. If there is a recovery failure, only the field sample utilized for the MS/MSD (the parent sample) is typically considered affected; however, the reviewer should use professional judgment whether other samples in the same preparatory batch have sufficiently similar matrices to be considered affected as well. For example, if an MS/MSD recovery failure is reported for one of two field duplicate samples, it should be assumed there were similar matrix effects in the duplicate, and corresponding results should also be qualified.

Before MS/MSD recovery is evaluated, two important factors must be considered:

- 1. Verify that the field sample chosen for the MS/MSD is part of the project-sample set currently being reviewed. The laboratory may run samples from other projects in the same preparatory batch and it is possible that the original sample selected for the MS/MSD may not be from the work order reviewed. In this case, we cannot confirm that the parent sample matrix is similar to the matrix in our project samples and the recovery failures do not affect data quality for the project-sample set.
- 2. Verify that the spiking concentration is high relative to the native concentration of the analyte. In accordance with EM 200-1-10 (USACE 2005):

If the native concentration of a target analyte is high relative to the spiking concentration, then this may contribute a significant uncertainty to the recovery calculations; the MS recovery may not be representative of actual method performance for the matrix. In the absence of other guidance, evaluate the MS recovery when the spiking concentration is at least two times greater than the native analyte concentration (USACE 2005).

If the above criteria are met, then results associated with the failures in the original project sample should be qualified using the criteria listed in Exhibit 7-1.

7.3 Surrogates and Isotope Dilution Analytes

Surrogates are organic compounds that are similar to the analytes being evaluated by a given method (often a deuterated version of the one of the analytes). They are used to identify matrix interferences and inefficiencies in sample extraction for organic analyses. The surrogates are introduced into a field- or laboratory-QC sample prior to sample preparation and analysis. Accuracy is expressed as a %R of the spiked amount added to the sample.

Some methods, including PFAS by USEPA Method 537, require analysis using an isotopedilution method, which uses IDAs instead of a surrogate, and corrects raw data of the associated analyte concentration based on the recovery of the IDA.

The reviewer will check that surrogates and/or IDAs were analyzed for each sample for each organic analysis (including laboratory QC samples), and that recoveries were reported within laboratory-control limits. If there is a reported recovery failure, it is considered to affect only the analytes associated with the surrogate/IDA (see Appendix A for a surrogate/IDA association list) for the corresponding project with the reported failure. However, there are a few special considerations when qualifying data based on surrogate-recovery failures:

- 1. Matrix interference: Recovery failures due to matrix interference (coelution of an interfering analyte or other matrix interactions) are considered to affect data quality, and results should be qualified as described in Exhibit 7-2. The laboratory typically documents in the case narrative whether a surrogate/IDA recovery failure was due to matrix interference.
- 2. Dilution: Recovery failures may be observed due to dilution of the surrogates and are not considered to affect the data (USACE 2005). The laboratory typically documents surrogate failures due to dilution in the case narrative. Refer to number 4 for IDA recovery failure assessments.
- 3. Surrogate/IDA recovery failures in laboratory QC samples: Surrogate/IDA failures in an LCS, LCSD, MS, or MSD are not considered to affect the project sample data as long as the recovery of individual analytes associated with that surrogate/IDA are within the laboratory control limits for the LCS/LCSD/MS/MSD sample. However, gross or systematic surrogate/IDA recovery failures should be considered along with all other QC information for the preparatory batch and the results evaluated according to professional judgment.
- 4. IDA recovery in project samples: As part of the analytical procedure for isotope-dilution methods, a given analyte concentration is corrected based on the recovery of the associated IDA. Therefore, recovery inefficiencies are somewhat self-correcting and one would expect less inaccuracy due to slight matrix effects. However, recovery outside the recovery limits may indicate there are significant matrix effects that the method is unable to adequately correct for. Results should be qualified as described in Exhibit 7-2.

Excluding the exceptions listed above, data affected by surrogate/IDA recovery failures should be qualified using the following criteria listed in Exhibit 7-2.

		Acti	on
Туре	Criteria	Detected Analytes	Analytes Not Detected
	%R < 10%	J	R
	10% ≤ %R < LCL	J	UJ
IDA	%R < LCL (diluted sample)	Use professional judgement	N/A ¹
	%R > UCL	J	No qualification
_	%R within range	No qualif	fication
	%R < range	JL ²	O_{13}
Surrogate	%R within range	No qualification	
	%R > range	JH ²	No qualification

Exhibit 7-2: Actions for Surrogate or Isotope Dilution Analyte Recovery Failures

NOTES:

1 Non-detects should be reported from the undiluted analysis.

2 Use professional judgment when the bias is poorly defined. Only impart a bias to the qualified data if the bias is well defined (i.e., if there is more than one surrogate in the analysis, where recovery failures are in the same direction). Otherwise, it may be more conservative to simply qualify the results as estimated ('J'; USACE 2005).

3 Use professional judgment when evaluating gross recovery failures. The reviewer should consider rejecting the results where analytes are not detected if the associated surrogate recovery is below 20% (USACE 2005).

LCL = lower control limit, %R = percent recovery, UCL = upper control limit

7.4 Calibration Verification Samples

Calibration verification samples are not typically reported in the Level II data reports provided by the laboratory (aside from appearing in the EDD), and review of such samples is outside the scope of this Plan. The laboratory may have requirements to re-calibrate the instrument if calibration verification fails or other corrective action. However, this is not always possible, and occasionally calibration verification failures occur and are reported in the case narrative of the Level II laboratory report. Calibration verification samples are described briefly below.

ICV samples are clean extraction solvent spiked with a known analyte concentration, using a different source than that of the primary calibration standards, and analyzed immediately following instrument calibration. Similarly, CCV samples are calibration standards that are analyzed at the beginning of each analytical batch and periodically throughout the run.

The laboratory evaluates ICV and CCV recovery information based on their internal acceptance criteria; in some cases, they also evaluate relative percent difference between CCVs to determine if drift is occurring. As stated above, calibration-level data review is beyond the scope of this Plan and may be conducted as part of a Level IV data-validation, if calibration issues are identified in the case narrative. Professional judgment should dictate whether any samples in an analytical batch with unresolved CCV failures should be

considered preliminary pending further investigation. For these circumstances, contact the laboratory for more direction and ask the Senior Laboratory Analyst to provide justification for using the data and any bias resulting from these QC failures. Request that the laboratory report be revised to include the justification.

8 PRECISION

Precision refers to the repeatability of measurements (USACE 2005). Precision is evaluated using laboratory QA/QC and field-duplicate samples. The following sections describe the duplicate-sample information that is commonly used to assess precision. However, this is not an exhaustive list and the laboratory may occasionally analyze other duplicate samples that should also be considered. For most analyses, at least one laboratory QC-sample duplicate must be analyzed; this can include a LCSD, MSD, or a laboratory duplicate.

Each type of duplicate is evaluated in the same manner (LCS/LCSD, MS/MSD, laboratory duplicate and field duplicates). A relative percent difference (RPD) is calculated between the duplicate results for a given analyte using the following equation presented in Exhibit 8-1.

Exhibit 8-1: RPD Calculation

Equation		Variable and Definition
	RPD	Relative Percent Difference
$RPD = \frac{ R_1 - R_2 }{(R_1 + R_2)/2} \times 100\%$	R1	Primary Result
$(n_1 + n_2)/2$	R2	Duplicate Result

The resulting RPD is compared to laboratory control limits (for laboratory QC samples), or project or regulatory DQOs for field duplicates. For purposes of this Plan, the recommended water-sample DQO of 30% and soil-sample DQO of 50% are used.

The guidelines presented in Exhibit 8-2 will be used for qualifying sample results associated with duplicate-sample RPD failures. The treatment of a failure is the same across types of duplicate samples, but the samples that are affected vary. Refer to the following sections for details.

Exhibit 8-2: Actions for D	uplicate-Sample RPD Failures
----------------------------	------------------------------

	Action		
Criteria	Detected Analytes	Analytes Not Detected	
RPD \leq Control Limit or DQO	DQO No qualification		
RPD > Control Limit or DQO	J	UJ	

DQO = data quality objective, RPD = relative percent difference

8.1 Laboratory Control Sample Duplicates

Precision can be evaluated between LCS and LCSD results for a given analyte. The laboratory calculates the RPD using the equation presented in Exhibit 8-1 for each analyte. The reviewer will check that each RPD is within the laboratory control limits. RPD failures for specific analytes in the LCS/LCSD are considered to affect the precision of that analyte in each corresponding project sample in the same preparatory batch. Affected results should be flagged according to the criteria presented in Exhibit 8-2.

8.2 Matrix Spike Duplicates

Precision can be evaluated between the MS and the MSD results for a given analyte. The laboratory calculates the RPD for each analyte. The reviewer will check that each RPD is within the laboratory control limits. RPD failures for specific analytes in the MS/MSD are considered to affect the precision of that analyte in the parent sample spiked for the MS/MSD. Professional judgment should be used to determine whether additional samples should be qualified (based on similarity of sample matrix).

RPD failures should be considered to affect the data regardless of the concentration spiked, as long as the laboratory calculates the RPD based on the total analyte concentration quantified in the MS/MSD. If the laboratory calculates the RPD based only on what was recovered of the spike, it should be treated as for MS/MSD recovery, with failures only considered to affect data quality if the spiking concentration is at least double the native concentration of the analyte. Affected results should be flagged according to the criteria presented in Exhibit 8-2.

8.3 Laboratory Duplicates

For select analyses, or when insufficient volume is submitted for analysis of an MS and MSD, the laboratory may analyze a project sample twice (referred to as a laboratory duplicate). The laboratory calculates an RPD between the original result and the duplicate-sample result for each analyte. The reviewer will check that each RPD is within the laboratory control limits. As with MS/MSDs, laboratory duplicate RPD failures are considered to affect the precision of the affected analyte only in the parent sample used for the duplicate analysis. Affected results should be flagged according to the criteria presented in Exhibit 8-2.

8.4 Field-Duplicate Samples

Field-duplicate samples are duplicate samples collected from the same location and submitted to the laboratory performing the requested analysis. The duplicate sample will

have a "dummy" sample number and submitted to the laboratory as a regular sample (i.e., the duplicate is submitted "blind"). These field duplicates are used to determine the reproducibility of the sampling technique, as well as the subsequent laboratory analysis. Sample homogeneity is necessary to obtain acceptable values for the RPD and any heterogeneity should be noted during sampling.

For field-duplicate pairs, the reviewer will calculate an RPD using the equation presented in Exhibit 8-1. An RPD will only be calculated if both sample results are detected above the detection limit. The calculated RPD will be compared to the standard DQOs of 30% for water or 50% for soil. Field-duplicate RPD failures are considered to affect only the results of the duplicate pair; affected data will be qualified based on the criteria in Exhibit 8-2.

In the event that one of the results is above the LOQ but the other result is below the detection limit (not detected) and J-flag detections are reported for the project, the reviewer should use professional judgment and consider qualifying the detected and non-detect result as estimated even though an RPD cannot be calculated. This may be evidence of samples having been mislabeled (in the field or the laboratory), sample heterogeneity, or some other issue; further investigation may be warranted.

9 REPRESENTATIVENESS

Representativeness is defined in Chapter One of the USEPA SW-846 Update V Revision 2 (USEPA 2014) as the degree to which data accurately and precisely represents a characteristic of a population for a sampling point. Representativeness is dependent on proper execution of the approved sampling program. To assess sample representativeness, sample-log sheets will be reviewed to ensure the samples were collected according to the approved sampling program and the results therefore represent the location and depth sampled. In addition, where possible, the analytical result for each sample will be compared to the historical results to check that the result is consistent with the broader data set for that location.

There are instances where sample collection procedures deviate from the sampling program and may affect the sample representativeness. Professional judgement is used to assess the data usability based on these deviations. Some of these infrequent instances are presented in Exhibit 9-1 along with qualifications to the data.

		Ac	Action	
Sampling Type	Description of Deviation	Detected Analytes	Analytes Not Detected	
Monitoring Well Sampling	Purging/stabilization criteria not met	J	UJ	

Exhibit 9-1: Actions for Deviations from Sampling Program

NOTES:

1 Use professional judgment. The reviewer should consider rejecting the results where organic analytes are not detected and samples were collected post carbon filter. At minimum, the non-detect results should be considered estimated and flagged 'UJ' to identify the sample collection discrepancy.

10 LABORATORY APPLIED FLAGS

The laboratory is required to qualify data that does not meet laboratory QC standards. The data qualifiers, flagging criteria, and flagging procedures are detailed in the laboratory's SOPs. The lab does not interpret the impact of an applied flag on the data, rather the flags are meant to draw the attention of the reviewer to an area where laboratory QC criteria is not met. When we review and validate the data, we take the information the laboratory reported and evaluate the effect of the QC deficiency on the data and apply appropriate flags as defined in this document.

In some cases, laboratory applied flags are not needed and may be removed for reporting. For example:

When an MS and/or MSD sample has a %R failure, but the spiking concertation is not high relative to the native parent sample concentration, then the %R failure is not applicable. The flag the lab applies to the data is therefore not necessary and is removed the analytical reporting table.

In some cases, laboratory applied flags are overwritten by flags applied by Shannon & Wilson. For example:

When a sample result exceeds the calibration range, the lab may flag the affected data with an 'E'. We flag calibration exceedances with a 'J' in the analytical reporting table overwriting the 'E' flag.

In either case listed above, laboratory applied flags are maintained in the laboratory report for reference.

See Exhibit 10-1 for common laboratory applied flags that are either overwritten by a S&W applied flag or are removed from the analytical reporting tables because they are deemed

unnecessary after our data-validation process. The flags remain in the laboratory report for reference.

Laboratory Applied Flag ¹	Flag Description	Shannon & Wilson Applied Flag
I	Value is the estimated maximum possible concentration. Case Narrative flag description: The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgement was used to positively identify the analyte.	J
Е	Result exceeded calibration range.	J
В	Compound was found in the blank sample	See Exhibit 6-1 for flagging criteria
*	LCS or LCSD is outside acceptance limits.	See Exhibit 7-1 for flagging criteria
*	Isotope dilution analyte is outside acceptance limits	See Exhibit 7-2 for flagging criteria
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	See Exhibit 7-2 for flagging criteria
F1	MS and/or MSD recovery is outside acceptance limits.	See Exhibit 7-2 for flagging criteria
F2	MS/MSD RPD exceeds control limits	See Exhibit 8-2 for flagging criteria

Exhibit 10-1: Actions	for Common	Laboratory Applie	d Flags
-----------------------	------------	-------------------	---------

NOTES:

1 This is not meant to be a comprehensive list of flags applied by the laboratory, but rather a list of the most encountered laboratory flags that are often not applicable after data-validation. Labs do not always use identical flags for the same QC failure; therefore, this information will be extrapolated to address the specific flags used by each laboratory and applied to each data set on a case-by-case basis.

LCS = laboratory control sample, LCSD = laboratory control sample duplicate, MS = matrix spike, MSD = matrix spike duplicate, RPD = relative percent difference.

11 COMPARABILITY

Chapter One of the USEPA SW-846 Update V Revision 2 (USEPA 2014) defines comparability as the expression of the degree of confidence with which one data set can be compared to another. Per the EPA SW-846 Update V Revision 2, a measurement is considered to be valid if they are unqualified or qualified as estimated data during validation. The reviewer and data users should qualitatively assess the comparability between historical and current data sets and use caution in combining data sets if the quality of the data is uncertain. For example, current analytical methods may not be comparable to historical methods where the MRL was elevated.

12 COMPLETENESS

Chapter One of the USEPA SW-846 Update V Revision 2 (USEPA 2014) defines completeness as the measure of valid data collected compared to the amount planned. The SW-846 defines a valid datum as a measurement that is "unqualified or qualified as estimated [biased high, low, or no direction] during (data) validation." The overall data set from a sampling event will be evaluated to determine if the completeness goal of 85-percent useable data was achieved. Completeness is calculated by comparing the amount of useable (valid) data to the overall number of samples planned. A completeness value below 85percent may be cause for collecting additional analytical samples.

13 DATA-VALIDATION PLAN UPDATES

This Data-Validation Program Plan will be reviewed and updated as necessary.

14 REFERENCES

- DoD. "Quality Systems Manual for Environmental Laboratories v5.3," by the United States Department of Defense, May 2019.
- USACE. Engineering Manual (EM) 200-1-10, Guidance for Evaluating Performance-Based Chemical Data. Guidance document, United States Army Corps of Engineers, June 2005.
- USEPA. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use." OSWER No. 9200.1-85 EPA 540-R-08-005, by Environmental Protection Agency, January 13, 2009.
- USEPA. "Chapter One Quality Control." In SW-846 Update V Revision 2 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, by United States Environmental Protection Agency, July 2014.
- USEPA. National Functional Guidelines for High Resolution Superfund Methods Data Review, by United States Environmental Protection Agency, Guidance document. EPA-542-B-16-001. April 2016.
- USEPA. National Functional Guidelines for Inorganic Methods Data Review. Guidance document, by United States Environmental Protection Agency, EPA-540-R-2017-001. January 2017a
- USEPA. National Functional Guidelines for Organic Methods Data Review. Guidance document, by United States Environmental Protection Agency, EPA-540-R-2017-002. January 2017b.
- USEPA. Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537, November 2018a.
- USEPA. "Chapter Four Organic Analytes." In SW-846 Update VI Revision 6 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, by United States Environmental Protection Agency, December 2018b.

APPENDIX A: SURROGATE AND ISOTOPE DILUTION ANALYTE ASSOCIATIONS

Appendix A Surrogate and Isotope Dilution Analyte Associations

Table 1 - Surrogate and Isotope Dilution Analyte Association

Analytical Method	Surrogate/ IDA	Surrogate/ IDA CAS No.	Associated Analyte	Associated Analyte CAS No.
	1802-PFHxS		Perfluorohexansulfonic acid (PFHxS)	355-46-4
-	13C2-PFHxA		Perfluorohexanoic acid (PFHxA)	307-24-4
-	13C4-PFHpA		Perfluoroheptanoic acid (PFHpA)	375-85-9
-	13C5-PFNA		Perfluorononanoic acid (PFNA)	375-95-1
-	13C3-PFBS		Perfluorobutanesulfonic acid (PFBS)	375-73-5
-	13C2-PFDA		Perfluorodecanoic acid (PFDA)	335-76-2
-	13C2-PFUdA		Perfluoroundecanoic acid (PFUnA)	2058-94-8
-			Perfluorododecanoic acid (PFDoA)	307-55-1
Modified EPA	1302-FFD0A		Perfluoroundecanoic acid (PFUnA)2058-94-8Perfluorododecanoic acid (PFDoA)307-55-1Perfluorotridecanoic acid (PFTrDA)72629-94-8Perfluorotetradecanoic acid (PFTeA)376-06-7	
537 (PFAS)	13C2-PFTeDA		Perfluorotetradecanoic acid (PFTeA)	376-06-7
-	13C3-HFPO-DA		Hexafluoropropylene oxide dimer acid (HFPO-DA)	13252-13-6
-			Perfluorooctanesulfonic acid (PFOS)	1763-23-1
	1204 DEOS		4,8-Dioxa-3H-perfluorononanoic acid (DONA)	919005-14-4
	1304-2203		9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	756426-58-1
			11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	83329-89-9
-	d3-MeFOSAA		N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	2355-31-9
-	d5-EtFOSAA		N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	2991-50-6
-	13C4-PFOA		Perfluorooctanoic acid (PFOA)	335-67-1

NOTES:

Surrogate associations for PFAS are based on information received February 2020 from Eurofins TestAmerica, Inc. and may not be representative of all laboratories. PFAS analytes are associated with isotope dilution standards.

CAS No. = Chemical Abstract Service Number; PFAS = per- and poly-fluorinated alkyl substances

Appendix G

Health and Safety Plan – Remedial Investigation

Jorgensen Forge Corporation Property, Tukwila, Washington

PREPARED FOR: Earle M. Jorgensen Company 10650 S. Alameda Street Lynwood, CA 90262

BY: Shannon & Wilson 400 N. 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

HEALTH AND SAFETY PLAN – REMEDIAL INVESTIGATION Jorgensen Forge Corporation Property TUKWILA, WASHINGTON

SHANNON & WILSON

March 31, 2020 Shannon & Wilson No: 21-1-12596-013

Hea	lth an	d Safety	v Contact Information			
1	Introduction					
2	Scope of Work2					
3	Site	Charact	teristics			
4	Pers	sonnel A	Assignments			
	4.1	Projec	t Manager (PM)3			
	4.2	Site Sa	afety Officer (SSO)			
	4.3	Field 7	Гeam Members4			
5	Trai	ning Re	quirements4			
	5.1	Site-Sp	pecific Training4			
	5.2	Daily	Safety Meeting5			
	5.3	Visito	r Training5			
6	Mec	lical Sur	veillance			
7	Haz	ard Ass	essment and Risk Analysis6			
	7.1	Chemical Hazards9				
	7.2	Physic	cal Hazards12			
		7.2.1	Vehicular Traffic			
		7.2.2	Slips, Trips, and Falls			
		7.2.3	Mechanical and Heavy Equipment Operations			
		7.2.4	Electrical Hazards			
		7.2.5	Heat Stress14			
		7.2.6	Cold Stress			
		7.2.7	Noise16			
		7.2.8	Heavy Lifting			
		7.2.9	Unsafe Structures			
		7.2.10	Confined Spaces17			
		7.2.11	Drowning Hazard17			
	7.3	Biolog	rical Hazards			
8	Site	Site Control				

	8.1	Comm	nunications	18	
	8.2	Buddy	7 System	18	
9	Safe	ty Pract	y Practices and Hazard Controls		
	9.1	Chem	ical Hazards	19	
		9.1.1	General Practices for Hazardous Waste Sites	19	
		9.1.2	Personnel Decontamination	20	
		9.1.3	Sampling Equipment Decontamination	21	
		9.1.4	Air Monitoring	21	
		9.1.5	Respiratory Protection	22	
		9.1.6	Physical Hazards	22	
		9.1.7	Safe Driving	22	
		9.1.8	Facility/Traffic	23	
		9.1.9	Slip/Trip/Hit/Fall Hazards	23	
		9.1.10	Heat Stress	24	
		9.1.11	Cold Stress	26	
		9.1.12	Back Injury Prevention	29	
		9.1.13	Drowning Prevention	31	
	9.2	Biolog	;ical Hazards	32	
10	Pers	onal Pr	otective and Safety Equipment	32	
	10.1	Modif	ied Level D Protection	32	
	10.2	Unkno	own Environments	33	
	10.3	Consid	derations for Selecting Levels of Protection	33	
	10.4	Persor	nnel Protective Equipment (PPE) for Visiting Personnel	34	
	10.5	Persor	nnel Protective Equipment (PPE) Inspections	34	
	10.6	Safety	Equipment	34	
11	Eme	rgency	Response and Contingency Procedure	34	
	11.1	Worke	er Injury or illness	35	
	11.2	Fire or	Explosion	35	
	11.3	Severe	e Weather	36	
	11.4	Chem	ical Release/Spill Containment Program		

		11.4.1	Spill Prevention	
		11.4.2	Large Spill Response	
	11.5	Post-Ir	ncident Follow-Up	
	11.6	Securit	y	
12	Wor	k Comp	leted within Suspected Polychlorinated Biphenyls (PCBs) Areas	
	12.1	Site Co	ontrol	
		12.1.1	Exclusion Zone (EZ)	40
		12.1.2	Contamination Reduction Zone (CRZ)	40
		12.1.3	Support Zone (SZ)	41
	12.2	Site Pr	eparation	42
	12.3	Comm	unication	43
	12.4	Person	nel Protective Equipment (PPE)	43
	12.5	Decon	tamination and Disposal	44

Exhibits

Exhibit 7-1: Activity Hazard Analyses	6
Exhibit 7-2: Anticipated Maximum Concentration of Chemical Hazards	10
Exhibit 7-3: Chemical Hazards Assessment	11
Exhibit 7-4: Physical Hazards and Effects	12
Exhibit 9-1: DOSH Heat-Related Illness Trigger Conditions	24
Exhibit 9-2: Wind Chill Factors	27
Exhibit 9-3: Cold Weather Work/Warm-Up Regimen	28
Exhibit 12-1: Illustration of Typical Work Zones	40

Attachments

Attachment A: Site Map Attachment B: Daily Safety Meeting Log Attachment C: Safety Data Sheets Attachment D: Site Maps to Nearest Walk-In Clinic and Hospital

HEALTH AND SAFETY PLAN SITE HEALTH AND SAFETY PLAN ACKNOWLEDGEMENT

Shannon & Wilson, Inc.

I understand and agree to abide by the provisions as detailed in the Shannon & Wilson, Inc. Health and Safety Plan detailed in this document. Failure to comply with these provisions may lead to disciplinary action, which may include dismissal from the work site and termination of employment.

We, the undersigned, have reviewed this plan, are familiar with its contents, and agree to abide by all the provisions herein:

Signature	Date	
Signature	Date	

CONTENTS

CFR	Code of Federal Regulations
CRC	Contamination Reduction Corridor
CRZ	Contamination Reduction Zone
dBA	decibels
DOSH	Washington State Department of Occupational Safety and Health
EMJ	Earle M. Jorgensen Company
EZ	Exclusion Zone
F	Fahrenheit
HASP	health and safety plan
HRI	Heat-Related Illness
IDW	investigation-derived waste
JFC	Jorgensen Forge Corporation
LNAPL	light nonaqueous phase liquid
OSHA	Occupational Safety and Health Administration
РСВ	polychlorinated biphenyl
PDS	Personnel Decontamination Station
PID	photoionization detector
PM	Project Manager
PPE	personal protective equipment
ppm	parts per million
SSO	Site Safety Officer
SZ	Support Zone
the Site	8531 East Marginal Way South, Tukwila, Washington
WAC	Washington Administrative Code

HEALTH AND SAFETY CONTACT INFORMATION

SITE LOCATION:	Star Forge, LLC (Star Forge) doing business as Jorgensen Forge Corporation (JFC) 8531 East Marginal Way South Tukwila, WA
PROJECT COORDINATOR:	Meg Strong, Shannon & Wilson, Inc. (206) 695-6787 (office) (425) 864-2096 (mobile)
PROJECT MANAGER:	Shoshana Howard, Shannon & Wilson, Inc. (206) 695-6811 (office) (206) 900-2720 (mobile)
HEALTH AND SAFETY MANAGER:	Joe Laprade, Shannon & Wilson, Inc. (206) 695-6713 (office) (206) 852-6754 (mobile)
SITE SAFETY OFFICER:	Christian Canfield, Shannon & Wilson, Inc. (206) 695-6716 (office) (206) 714-7637 (mobile)
FACILITY REPRESENTATIVE:	Matteo Sanesi (253) 878-6415
NEAREST WALK-IN CLINIC:	U.S. HealthWorks 3223 1 st Avenue South, Seattle, WA (206) 624-3651
NEAREST HOSPITAL:	Harborview Medical Center 325 9th Avenue, Seattle, WA

(206) 744-3000

1 INTRODUCTION

This health and safety plan (HASP) has been prepared to address health and safety considerations for the proposed activities outlined within the Remedial Investigation Work Plan (the work plan). This HASP, a Sampling and Analysis Plan (SAP), and a Quality Assurance Project Plan (QAPP), are included as appendices to the work plan.

This HASP addresses the conduct of Shannon & Wilson's employees. Contractors procured by Shannon & Wilson for the project will provide their own HASP, which will be reviewed by us for compliance with site requirements. Shannon & Wilson employees will also adhere to the health and safety rules required by Jorgensen Forge Corporation (JFC) for entry onto the property.

The proposed activities are to be conducted at the JFC facility located at 8531 East Marginal Way South, Tukwila, Washington (the Site). The site is owned and operated by Star Forge doing business as JFC. The activities are being completed on behalf of Earle M. Jorgensen Company (EMJ).

If required, we will implement appropriate steps to address Coronavirus Disease 2019 (COVID-19) distancing and hygiene requirements during field activities. Due to the fluid nature of the COVID-19 pandemic, the appropriate steps to protect workers will be determined upon scheduling of the field activities using the current (at the time of field activities) government recommendations.

2 SCOPE OF WORK

The scope of work, as outlined in Section 10 of the work plan, consists of a light nonaqueous phase liquid (LNAPL) investigation, a soil investigation, and a groundwater investigation. Activities will include completion of soil borings using direct-push methods; completion of borings and installation of groundwater monitoring wells using hollow-stem auger methods, groundwater monitoring and sampling, LNAPL plume delineation using direct-push drilling and laser-induced fluorescence technology, LNAPL monitoring, soil sampling, completion of LNAPL permeability tests, and completion of hydraulic conductivity tests. Investigative activities may be completed within an area of suspected polychlorinated biphenyl (PCB) contamination. Procedures for work within this area are discussed in Section 12.

This HASP will cover activities outlined within the work plan. This HASP will be revised to address the specific health and safety concerns related to activities outside the scope of work. Such work cannot be initiated until a revised HASP has been updated and approved.

3 SITE CHARACTERISTICS

The Site occupies approximately 20 acres between Slips 4 and 6 on the east bank of the Lower Duwamish Waterway. A site map is provided as Attachment A.

The Site was used as a steel and aluminum forge and mill that produced custom steel and aluminum parts forged and machined to high-precision specifications for various industrial clients. Operations remained relatively unchanged since the property was developed in the 1940s; however, melt operations were discontinued in 2015. The facility was shut down in October of 2018 and the plant commenced decommissioning in late 2018.

Currently, the structures on the Site remain. Asphalt, concrete paving, and buildings cover most the property. Portions of the ground surface along the western and northwestern areas of the property are covered with gravel that was placed in approximately 1990. The Site is developed with an approximately 124,000-square-foot prefabricated steel building (main building) that is generally divided into the Hollowbore Area, the Machine Shop Area, the Heat Treat Area, the Forge Shop Area, and the Former Melt Shop Area. Much of the facility machines/features have been removed from the main building, leaving exposed vaults and pits. These vaults and pits, which once housed equipment or tanks, or provided maintenance access to the overlying machines, are now fall hazards. A wood-frame office building is located on the northeastern section of the Site. A stormwater treatment system is in the center of the property just north of the Former Melt Shop area. A wood-frame laboratory used for physical testing of metal products and an office building are near the treatment system. In the southwestern section of the Site lies the Former Metals Storage Area that was used to store slag, chips, and swarf. The shoreline along the southwestern boundary is composed of a sloped embankment with riprap and on the southern portion of the property, a concrete panel bulkhead.

4 PERSONNEL ASSIGNMENTS

4.1 Project Manager (PM)

The PM is responsible for the overall management of the project, including safety, quality, and production. He/She is responsible to schedule, review, certify, and manage all submittals, including those of subcontractors, fabricators, suppliers, and purchasing agents, with attention to safety and health aspects of performance and procurement. The PM oversees the environmental/industrial hygiene and atmospheric testing performed by field personnel and outside testing laboratories. The PM has full authority to stop work due to health and safety deficiencies.

4.2 Site Safety Officer (SSO)

The SSO will be responsible for implementation of the HASP during all investigation activities. The SSO will ensure that field teams utilize all safety practices, and that during emergency situations, appropriate procedures are immediately and effectively initiated. He/She will also be responsible for the control of specific field operations and all related activities such as personnel decontamination, monitoring of worker heat or cold stress, distribution of safety equipment, and conformance with all other procedures established by the HASP. The SSO has full stop-work authority due to safety and health deficiencies. The SSO's primary responsibility is to provide the appropriate monitoring to ensure the safe conduct of field operations.

4.3 Field Team Members

The field team members (field personnel) are responsible for conducting their assigned work duties in a safe and healthy manner and following the procedures established in the site-specific HASP. Field personnel have full authority to stop work due to safety and health deficiencies.

5 TRAINING REQUIREMENTS

All personnel conducting site work involving intrusive activities where the potential exists for exposure to contaminated soils or groundwater (drilling, sampling, excavation, etc.) shall have completed 40 hours of classroom-style health and safety training and three days of on-site training, as required by the Occupational Safety and Health Administration (OSHA) 29 Code of Federal Regulations (CFR) 1910.120 and Washington Administrative Code (WAC) 296-843.

All supervisory personnel, including the Health and Safety Manager, will have received an additional eight hours of training as required for management of personnel and activities associated with hazardous waste site activities covering at a minimum the following topics: the employer's health and safety program, personal protective equipment (PPE) program, spill containment program, and health hazard monitoring procedures and techniques. Employees will also receive a minimum of eight hours' refresher training annually. Copies of current training certificates will be maintained in the Shannon & Wilson Corporate office.

5.1 Site-Specific Training

All on-site personnel will complete a site-specific initial training session or briefing, conducted by the SSO, prior to commencement of the project and/or entering the site. The

training session should be of sufficient duration to ensure that they are familiar with sitespecific hazards, protective equipment, site control, decontamination, emergency procedures, and security procedures. Elements to be covered as part of the site-specific training include:

- Personnel responsibilities;
- Site hazards and controls;
- Use of PPE;
- Action levels for upgrading/downgrading levels of PPE;
- Work practices by which the employee can minimize risks from hazards;
- Safe use of engineering controls and equipment on site;
- Medical surveillance requirements, including recognition of symptoms and signs that might indicate overexposure to hazards;
- Site-specific hazardous procedures (i.e., intrusive activities, etc.);
- Emergency information, including local emergency response team phone numbers, route to nearest hospital, and emergency response procedures; and
- Content and implementation of the HASP.

All training will be documented as to the contents of the training and personnel in attendance and kept in the project files.

5.2 Daily Safety Meeting

In addition to the initial site briefing conducted at the commencement of the project, supplemental brief safety meetings shall be conducted by the SSO to discuss potential health and safety hazards associated with upcoming tasks, and necessary precautions to be taken. Daily safety meetings will be completed prior to the beginning of each day's work and documented on a Daily Safety Meeting Log, provided as Attachment B.

5.3 Visitor Training

All visitors to the site will be required to check in with the PM/SSO. Depending on the purpose of their visit, the visitors will receive an orientation briefing from the PM/SSO, which will include site-specific hazards, ways to protect themselves from these hazards, locations of first aid and emergency equipment, and the emergency response procedures.

6 MEDICAL SURVEILLANCE

All field personnel must meet the medical monitoring requirements of 29 CFR 1910.120. The regulations require that employers implement a medical monitoring program consistent with paragraph (f) of this standard, which states that a medical examination will be completed for each employee prior to employment, annually thereafter (minimum), and as a follow-up to injuries or overexposures, and upon termination of their employment with the company. Employees who must receive medical examinations include those who wear a respirator for 30 or more days a year, and those who are or may be exposed to hazardous substances at or above permissible exposure levels, regardless of respirator use, for 30 days or more a year.

Any personnel injured or suspected of being injured as a result of an uncontrolled release of a hazardous substance or energy, or other emergency situation, will be given a medical evaluation as soon as possible thereafter.

Shannon & Wilson's employee medical records are available upon request from the Human Resources Manager, with the employee's permission. The SSO will confirm medical certification to work and wear respiratory protection and keep a copy of the certification (containing certifying physician's signature) in the personnel files in the Seattle office. Physical examination forms shall be released only with the individual employee's approval.

7 HAZARD ASSESSMENT AND RISK ANALYSIS

A summary of the activity hazard analysis is provided as Exhibit 7-1.

	Activity	Potential Hazards	Recommended Controls
1.	Driving to, on, and from the site	Vehicle breakdown/flat tire Getting lost Rough terrain Accident Severe weather	Equip vehicle with emergency supplies/spare tire. Have a map with directions to the site. Wear appropriate clothing for the weather. Wear seat belts at all times while vehicle is in motion Only licensed drivers allowed to operate vehicles. Obey all traffic rules. Do not drive over large holes, rocks, or down steep embankments. Avoid driving in severe weather, if possible. If not, reduce speed and turn on headlights.

Exhibit 7-1: Activity Hazard Analyses

Jorgensen Forge Corporation Property Health and Safety Plan – Remedial Investigation

	Activity	Potential Hazards	Recommended Controls
2.	Site reconnaissance	Severe weather Slips, trips, and falls Contact with dead animals Bites from snakes or insects	 Wear appropriate clothing for the weather. Avoid site reconnaissance during severe weather conditions. Stop work if potential for thunderstorms or winter storms. Be aware of surroundings and use caution when moving around the site. Stay away from snake or insect breeding habitats. Wear proper PPE and insect repellant. Stay away from animal carcasses unless wearing proper PPE. Use proper hygiene.
3.	Vegetation Clearing	Contact with rotating machinery and sharp blades from scythe Contact with potentially contaminated soil Noise Fires and/or explosions Electrical hazards Trips and falls	Personnel should not wear rings, loose-fitting clothes, straps, draw strings, etc. Safety guard for "weed-eater" should be in place. Emergency shut-off should be inspected daily to ensure proper functioning. Site personnel must wear appropriate PPE, including heavy gloves and safety glasses to protect from blackberries. Hearing protection must be used. Fuel will be stored in approved containers. A 2A10BC fire extinguisher must be in the vehicle. A first aid kit must be at the site. Wear appropriate clothing for the weather. Stop work if potential for thunderstorms or winter storms. Be aware of surroundings and use caution when moving around the site. Site personnel will exercise care when working next to a hill slope.
4.	Collect surface and subsurface soil samples	Contact with potentially contaminated soil Inhalation of volatile gases Bites from insects Contact with dead animals Severe weather Back injury	 Wear appropriate PPE, including nitrile gloves, work clothes, and safety glasses. Conduct air monitoring and remain upwind whenever possible. Wear appropriate clothing for the weather. Stop work if potential for thunderstorms or winter storms. Be aware of surroundings and use caution when moving around the site. Stay away from snake or insect breeding habitats. Wear proper PPE and insect repellant. Stay away from animal carcasses unless wearing proper PPE. Use proper hygiene. Use proper lifting techniques or request assistance.

	Activity	Potential Hazards	Recommended Controls
5.	Collect water samples	Contact with potentially contaminated water	Wear appropriate PPE, including nitrile gloves, work clothes, and safety glasses.
	·	Inhalation of volatile	Conduct air monitoring and remain upwind whenever possible.
		gases	Wear appropriate clothing for the weather.
		Bites from insects	Stop work if potential for thunderstorms or winter storms.
		Contact with dead	Be aware of surroundings and use caution when moving around the site.
		animals Severe weather	Stay away from snake or insect breeding habitats. Wear proper PPE and insect repellant.
		Potential fire or	Stay away from animal carcasses unless wearing proper PPE.
		explosion hazards	Use proper hygiene.
			When using the generator, do not stage it in an area of dry vegetation or if elevated PID measurements are being detected.
6.	Decontaminate equipment	Contact with potentially contaminated decontamination solutions	Wear appropriate PPE, including nitrile gloves, work clothes, and safety glasses.
7.	Field screening of samples	Contact with potentially contaminated soil or sediment	Wear appropriate PPE, including nitrile gloves, work clothes, and safety glasses.
8.	Sample packaging	Back strain	When possible, two people will handle heavy sample coolers, or multiple coolers containing fewer sample containers will be used.
9.	Handle investigation- derived waste drums	Back strain	Use proper drum handling procedures and equipment.
10.	Mobilize drill rig	General health and safety	Ensure that subcontractor employees have been informed of the contents of the site-specific Health and Safety Plan.
		Trips and falls	Communicate drilling hazards to all field personnel.
		Contact with equipment	Assure that qualified drillers are operating rig.
		Traffic control zones	Assure that drillers have a written rig inspection program.
			Assure that drillers have another required written program.
			Provide adequate storage for tools, augers, pipe, etc.
			Keep platforms free of tools, debris, and slick substances such as mud and grease.
			Drillers must not climb the mast/derrick unless they wear fall protection.
			Keep clear from the rear and sides of the rig or equipment (except drillers).
			Lower and level the jack pods before raising the mast/derrick.
			Lock the mast/derrick into place before drilling.
			Make sure traffic control zones are established and personnel are aware of perimeter distances.

	Activity	Potential Hazards	Recommended Controls							
11.	Perform drilling operations	Contact with rotating machinery, cables,	Drillers should not wear rings, loose-fitting clothes, straps, draw strings, etc.							
		pulleys, etc.	Broken, cut, or frayed wires on the rig should be replaced.							
		Contact with potentially	Pulleys must operate freely, and cable guards must be in place.							
	contaminated soil,	Pulleys will be proper size for cable diameter.								
groundwater, or free product	Emergency shut-off should be inspected daily to ensure proper functioning.									
		Noise Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Fires and/or explosions	Site personnel must wear appropriate PPE, including nitrile gloves and safety glasses.
Electrical hazards Trips and falls	Monitor breathing and perimeter zones with a PID. Remain upwind of activities.									
	Hearing protection must be used.									
			Fuel will be stored in approved containers.							
			A 2A10BC fire extinguisher must be on the rig. A first aid kit must be at the site.							
			All utilities must be located prior to drilling operations.							
			In the event of an electrical storm, drilling operations must be shut down and workers must move to a safe location.							
			Mast/derrick must be kept a minimum of 15 feet from overhead power lines at all times.							
			Borings will be placed a minimum of 2 feet from hill slope.							
			Site personnel will exercise care when working next to a hill slope.							

NOTES:

PID = photoionization detector; PPE = personal protective equipment; XRF = X-ray fluorescence

Hazards associated with this HASP can be grouped into three main categories: (a) chemical, (b) physical, and (c) biological.

7.1 Chemical Hazards

Chemical hazards identified for the subject property include the following:

- Metals (represented by arsenic, chromium VI, and mercury);
- Petroleum hydrocarbons;
- Volatile organic compounds (represented by benzene and vinyl chloride);
- Semi-volatile organic compounds (represented by benzo(a) pyrene);
- LNAPL contact; and
- PCBs.

The maximum concentration of the chemical hazards anticipated on site are listed in Exhibit 7-2. The primary routes of exposure for these contaminants are the inhalation of vapors, gases, or particulate; inhalation of contaminated soil particulate; direct skin contact

with contaminated media; or the accidental ingestion of contaminated soil or water. Use of proper PPE, awareness, and air monitoring, when necessary, will reduce the potential for exposure. Periodic evaluation of the hazards associated with different work tasks and the determination for any changes will be made by the SSO, with concurrence from the PM.

	Maximum Concentration	Maximum Concentration in Soil	
Identified Site Contaminants	in Groundwater (ppb)	(ppm)	DOSH PEL-TWA (STEL)
Arsenic	92	62.7	0.01 mg/m ³ (0.6 mg/m ³)
Chromium VI	unknown	unknown	0.005 mg/m ³
Mercury	0.9	0.694	0.05 mg/m ³
TPH (undifferentiated)	—	120,000	_
TPH-gasoline	1,200	9,400	300 ppm (500 ppm)
TPH-diesel	LNAPL	77,500	100 ppm (150 ppm)
TPH-oil	LNAPL	19,000	100 ppm (150 ppm)
Benzene	8.1	0.289	1 ppm (5 ppm)
Vinyl Chloride	100	0.01	1 ppm (5 ppm)
PCBs - 42% chlorine	0.41	274	1 mg/m ³ (3 mg/m ³)
- 54% chlorine			0.5 mg/m ³ (1.5 mg/m ³)
cPAHs [benzo(a)pyrene]	0.12	0.73	0.2 mg/m ³ (0.6 mg/m ³)

Exhibit 7-2: Anticipated Maximum Concentration of Chemical Hazards

NOTES:

cPAHs = carcinogenic polynuclear aromatic hydrocarbons; DOSH = Washington State Department of Occupational Safety and Health; LNAPL = light non-aqueous-phase liquids; mg/m³= milligrams per meter cubed; PCBs = polychlorinated biphenyls; PEL = permissible exposure levels; ppb = parts per billion; ppm = parts per million; STEL = short-term exposure limit; TPH = total petroleum hydrocarbons; TWA = 8-hour time-weighted average

An assessment of the chemical hazards as well as a discussion of symptoms are provided in Exhibit 7-3. Safety Data Sheets are provided in Attachment C. Air monitoring and respiratory protection are discussed within Section 9.1.

Signs and Symptoms

Route of Exposure

Petroleum Hydrocarbons (based on gasoline)	PEL-TWA = 300 ppm STEL = 500 ppm	Eye, Skin, Inhalation, Ingestion	Irritated eyes, skin, and mucous membranes; dermatitis; headache, fainting, blurred vision, dizziness, slurred speech, confusion, and convulsions; chemical pneumonia (aspiration); possible liver, kidney damage; carcinogen.
Polychlorinated Biphenyls	TLV = 0.5 mg/m ³ (skin) STEL = 5 mg/m ³	Inhalation, Skin, Ingestion, Eye	Skin and eye irritation on contact. Chloracne. Liver damage. Possible carcinogen. Headaches or numbness may occur if ingested.
Heavy Metals	TLV varies depending on the metal present	Skin, Ingestion, Eye	Skin and eye irritation, dermatitis, headache, and nausea. Ingestion can result in liver or kidney damage.
Volatile Organic Compounds (VOCs)	TLV varies depending on the VOC present	Inhalation, Skin, Ingestion, Eye	Irritated eyes, skin, nose, respiratory system; narcosis, headache, nausea, staggered gait, fatigue; anorexia; anesthesia, central nervous system depression, dermatitis; some may be carcinogens.
Polynuclear Aromatic Hydrocarbons (PAHs)	TLV varies depending on the PAH present	Skin, Ingestion, Eye	Irritated eyes, skin, upper respiratory, mucous membranes; dermatitis, headache, bronchitis, hyper pigmentation of skin; possible liver, kidney damage; some may be

Exhibit 7-3: Chemical Hazards Assessment

Chemical Hazard

TLV/PEL

NOTES:

mg/m3= milligrams per meter cubed; PEL = permissible exposure limit; ppm = parts per million (milligrams per liter [mg/L]); STEL = 15-minute short-term exposure; TLV = threshold limit value; TWA = time-weighted average

carcinogens.

7.2 Physical Hazards

Risk of exposure to physical hazards varies from task to task and often with the time of the year. Shannon & Wilson has developed a series of standard operating procedures for these physical hazards, which are provided within the Corporate HASP. Additional site hazard controls are discussed in Section 9.1.6. Field personnel shall follow these procedures while performing their specific work tasks. Exhibit 7-4 contains a summary of potential effects from physical hazards.

Physical Hazard	Effect
Noise	Hearing loss/disruption of communication
Rain/Humidity/Cold/Ice/Snow/ Lightning/Wind/Flood	Slips and falls/vehicle accident risk increase/instruments malfunction/electrocution/falling objects
Electrical	Electrical units used in wet environments
Ambient Heat	Heat rash/cramps/exhaustion/heatstroke
Cold	Hypothermia/frostbite
Heavy/Manual Lifting	Back strain/abdomen/arm/leg muscle/joint injury
Rough or Uneven Terrain	Vehicle accidents/slips/trips/falls
Unsafe Structures	Electrical buildings where polychlorinated biphenyl-containing equipment may have been located
Debris and Building Materials	Slips/trips/falls/punctures/cuts/fires/biological hazards
Biological Hazards	Insects, bears, cougars, poisonous plants
Traffic	Struck by vehicle/collision
Fire or Explosion Hazard	Burns
Materials Handling	Back injury/crushing from load shifts

Exhibit 7-4: Physical Hazards and Effects

The physical hazards identified at this site include the following:

7.2.1 Vehicular Traffic

All vehicular traffic routes that could impact worker safety must be identified and the locations communicated to field personnel. Whenever necessary, barriers or other methods must be established to prevent injury from moving vehicles. OSHA requirements for working in or around vehicular traffic must be communicated to and followed by all personnel. Safe practices for working within facilities with heavy vehicular traffic are discussed in more detail within Section 9.1.8.

7.2.2 Slips, Trips, and Falls

Slips, trips, and falls are of concern while working, especially in wet conditions. Personnel must be aware of their surroundings while moving about the site. Pathways and work areas must be kept free of debris and supplies to prevent unsafe walking and working conditions. Changes in elevation such as ruts, holes (including exposed vaults that once housed facility equipment), broken pavement, or berms should be pointed out to all field personnel. If possible, potential slip, trip, and fall areas should be marked with bright flagging or a similar type of marker.

When water is used during any of the work tasks, care must be taken to avoid creating muddy or slippery conditions. If slippery conditions are unavoidable, barriers and warning signs must be used to warn of these dangers. Additional strategies to minimize the occurrence of slips, trips, and falls are provided in Section 9.1.9.

7.2.3 Mechanical and Heavy Equipment Operations

Extreme caution must be taken by all personnel working around mechanical equipment, pumps, and heavy equipment such as an excavator or drill rig. Only authorized personnel should be allowed in the vicinity of such equipment. All personnel must avoid standing within the turning radius of the equipment or below any suspended load. Loose clothing, jewelry, long hair, or other items that have the potential to come in contact with rotating/operating equipment are prohibited. Job sites must be kept as clean and orderly as possible to prevent unsafe walking and working conditions.

When water is used, care must be taken to avoid creating muddy or slippery conditions. If slippery conditions are unavoidable, barriers and warning signs must be used to warn personnel of these dangers.

All equipment must be maintained in good working order and be operated in a safe manner. Heavy equipment must have audible back-up alarms, rollover protection, seatbelts, and be equipped with a fire extinguisher. Shannon & Wilson personnel shall not work near equipment they judge to be unsafe due to deterioration, missing parts, obvious defects, or improper operation.

7.2.4 Electrical Hazards

OSHA regulations require that employees who may be exposed to or required to work near electrical equipment be trained to recognize the associated hazards and use the appropriate control methods. Field personnel that will be required to perform such tasks will be properly trained in accordance with OSHA regulations prior to performing their tasks.
In addition, the following guidelines will be followed by all personnel while they are on site. All extension cords used for portable tools or other equipment must be designated for hard or extra usage and be three-wire pronged. All 120-volt, single-phase 15- and 20-ampere receptacle outlets located in areas of moisture or where water contact may occur must be equipped with a ground-fault circuit interrupter. Temporary lighting lamps for general illumination must be protected from accidental breakage and metal case sockets must be grounded.

7.2.5 Heat Stress

Heat stress at work can cause physical discomfort, loss of efficiency and attention to safety, and personal injury. Age, weight, degree of physical fitness, degree of acclimatization, metabolism, use of alcohol or drugs, and a variety of medical conditions such as hypertension all affect a person's sensitivity to heat. The type of clothing worn must be considered. Prior heat injury predisposes an individual to additional injury.

The fluid loss and dehydration resulting from physical activity puts outdoor laborers at particular risk. Certain medications predispose individuals to heat stress, such as drugs that alter sweat production (antihistamines, anti-psychotics, antidepressants) or interfere with the body's ability to regulate temperature. Persons with heart or circulatory diseases or those who are on low-salt diets should consult with their physicians prior to working in hot environments.

It is difficult to predict just who will be affected and when, because individual susceptibility varies. In addition, environmental factors include more than the ambient air temperature. Radiant heat, air movement, conduction, and relative humidity all affect an individual's response to heat.

All personnel must be instructed on the symptoms of the primary heat-related disorders and how to minimize their chances of becoming affected by them. These disorders, their symptoms, and first-aid measures are briefly outlined below:

- Fainting (Heat Syncope): Victims usually recover quickly after a brief period of lying down. Moving around, rather than standing still, will usually reduce the possibility of fainting.
- Heat Rash: Decreased ability to tolerate heat, raised red vesicle on affected areas, and clothes that chafe. Maintain good personal hygiene and use drying powders or lotions.
- Heat Cramps: Muscle spasms and pain in the extremities and abdomen. Rest in cool area and drink plenty of fluids. If pain persists, seek medical attention.

- Heat Exhaustion: Shallow breathing; pale, cool, moist, clammy skin; profuse sweating; dizziness; lassitude; and fainting. Rest in a cool area and drink plenty of fluids. Get medical attention prior to returning to work.
- Heat Stroke: Red, hot, dry skin; no perspiration; nausea; dizziness; confusion; strong rapid pulse; coma. Cool victim immediately with cool or cold water. Seek immediate medical attention.

At a minimum, personnel wearing non-breathable clothing at temperatures greater than 70 degrees Fahrenheit (F) should take a break every one to two hours and drink plenty of fluids. The intake of an average of one quart of fluids per hour is recommended. A cool or shaded rest area should be provided. Detailed operating procedures and guidelines to prevent heat-related disorders are provided in Section 9.1.10 of this plan.

7.2.6 Cold Stress

Field personnel will be instructed on the signs and symptoms and the prevention of cold-related disorders prior to performing specific work tasks. The two major effects of cold stress are frostbite and hypothermia. These disorders, their symptoms, and first-aid measures are outlined briefly below:

- Frostnip: Occurs when the face or extremities are exposed to a cold wind, causing the skin to turn white. Frostnip is considered a minor condition with no permanent damage, as long as the human tissue is warmed up in time. If not, the condition can progress to frostbite.
- Frostbite: Sudden blanching of the skin progressing to skin with a waxy or white appearance that is firm to the touch, but the tissue beneath the skin is resilient to the touch.
- Hypothermia: The symptoms of systematic hypothermia are exhibited as follows:
 (a) shivering; (b) apathy, listlessness, and (sometimes) rapid cooling of the body to less than 90 degrees F; (c) unconsciousness, glassy stare, slow pulse, and slow respiratory rate; (d) freezing of the extremities; and (e) death.
- Trench Foot: Swelling of the foot caused by long continuous exposure to cold without freezing, combined with persistent dampness or immersion in water. Edema (swelling), tingling, itching, and severe pain occurs, followed by blistering, necrotic tissue, and ulcerations.
- Chilblains: Similar symptoms as trench foot, except that other areas of the body are impacted. The cold exposure damages capillary beds in the skin, which in turn can cause redness, itching, blisters, and inflammation.
- Raynaud's Phenomenon: The abnormal constriction of the blood vessels of the finger on exposure to cold temperatures, resulting in blanching of the fingertips. Numbness, itching, tingling, or a burning sensation may occur during related attacks. The disease is

also associated with the use of vibrating hand tools in a condition sometimes called White Finger Disease. Persistent cold sensitivity, ulceration, and amputations can occur in severe cases.

Personnel will monitor themselves and other team members for signs of cold stress. If temperatures fall below 20 degrees F, as measured by the wind chill index, thermal clothing may be required. Field activities will be curtailed if equivalent wind chill temperatures are less than zero degrees F unless operations are of an emergency nature. Section 9.1.11 of this plan provides detailed operating procedures and guidelines for working in cold temperature extremes.

7.2.7 Noise

Heavy equipment or operating machinery may produce noise levels that exceed 85 decibels (dBA) scale for personnel working in or around these areas. Thus, hearing protection must be worn by personnel exposed to noise levels of 85 dBA or greater. Noise measurements, if conducted, should be performed with sound level meters in slow response mode, or with noise dosimeters having a beginning collection point established at 80 dBA. A general guideline to follow is if a conversation cannot be held with a person 4 feet from you without raising your voice, the noise levels are too high and hearing protection should be worn. Anyone within a 20-foot radius of heavy equipment or machinery in operation will wear hearing protection.

7.2.8 Heavy Lifting

The use of some sampling equipment involves heavy lifting. To assure personnel safety, the following lifting guidelines will be employed at the site:

- If available, use mechanical equipment to move heavy objects.
- If possible, use two individuals to lift heavy objects, such as sample coolers that are filled with samples.
- Establish steady footing when lifting the load.
- Spread feet no wider than shoulder width when lifting.
- Use only one person to give commands when conducting team-lifting activities.

Back injury prevention is discussed in more detail within Section 9.1.12.

7.2.9 Unsafe Structures

As part of the fieldwork, personnel may enter site structures to collect samples. Because the condition of these structures is unknown, prior to entering any structure, field personnel

will perform a cursory evaluation of the structure's exterior to determine if the building is safe to enter. Personnel will not enter any structure that is deemed to be unsafe.

7.2.10 Confined Spaces

OSHA defines a confined space as an area that is large enough for an employee to enter fully, not designed for continuous occupancy, and has a limited or restricted means of entry or exit. Confined spaces may exist at the worksite. Field personnel will inspect their work area prior to entering to determine the presence of confined spaces. Field personnel will not enter any confined spaces.

7.2.11 Drowning Hazard

Personnel may be required to work near or over deep bodies of water. Personnel must be aware of their surroundings at all times in order to avoid the hazards involved with drowning. Field personnel will perform a cursory inspection of the work site prior to commencing work in order to determine the need for additional controls associated with this hazard. Safe practices for working near or over water are discussed in more detail within Section 9.1.13.

7.3 Biological Hazards

The plant, animal, and/or microbial hazards most likely to be encountered by field personnel include animal bites, insect stings, or contact with irritant plants. Stinging insects, primarily bees and wasps, are prevalent during the warmer months. Stings are usually more of a nuisance than an immediate danger for most people, with the results of being stung including localized swelling, itching, and minor pain. The risk to these hazards will vary depending on the time of year and specific task performed.

8 SITE CONTROL

The purpose of site control is to minimize the health and safety risks to field personnel and the general public by means of establishing work zones and control procedures. A site map is included as Attachment A. Due to the nature and the anticipated chemicals of potential concern that may be encountered during the investigation, airborne exposures to contaminants are not anticipated. Therefore, the establishment of the three work zones as described by OSHA and U.S. Environmental Protection Agency hazardous waste regulations does not appear warranted, except as discussed within Section 12. Since field personnel will wear disposable PPE while they are performing the general reconnaissance and sampling activities, decontamination stations will not be required unless

non-disposable equipment or tools will be used in support of these activities. Necessary first-aid equipment will be located within the support vehicle. This area (Support Zone) is considered to be uncontaminated; thus, personnel shall remove any PPE that has come into contact with hazardous waste or materials prior to entering this zone.

While conducting fieldwork, field personnel will identify an immediate work zone around their work area. Depending on the location and available room, this zone may be demarcated with tape or cones.

8.1 Communications

A critical element to ensure site control and safety to both on-site and field personnel will be open-line communications. The written and visual symbols may include:

- Written notification regarding schedules and activities to be conducted,
- Hand signals between work crews,
- Visual/physical barriers notifying personnel of areas of hazards, and
- Security fencing.

The audible communications for field personnel and between on-site and field personnel will include:

- Telephone,
- Radio, and
- Air horn.

8.2 Buddy System

When conditions present a risk to personnel (both physical and chemical), the buddy system will be implemented. A buddy system requires two people to work as a team, each looking out for the other. Buddies must maintain continuous line-of-sight contact with one another and can physically assist should rescue be necessary.

9 SAFETY PRACTICES AND HAZARD CONTROLS

General worker safety gear, such as steel-toed boots, hardhat, hearing protection, and safety glasses or goggles, will be worn at all times by personnel working around heavy equipment, and face shields and/or safety glasses and long-sleeved shirts will be worn by personnel clearing vegetation. Additional PPE (gloves, neoprene boots, etc.) shall be available for

emergency use or for use on work tasks where this level of PPE has been selected for personnel safety.

Eating, drinking, smoking, and horseplay shall be strictly prohibited inside the Exclusion Zone (EZ). Inspections shall be made at the discretion of the SSO. Inspections will be conducted of all emergency response equipment, such as eyewash and first aid kits, and to ensure that fire extinguishers are available for use. Working upwind from wells helps to avoid exposure to vapors and contaminated dust. Intrinsically safe portable fans may be deployed if necessary.

Some activities require special safety considerations compared to routine tasks, such as vegetation clearing, handling of hazardous materials, and working over water. These tasks shall be performed in accordance with this HASP and the applicable regulatory requirements.

Washing facilities will be established on site or near the site. All personnel shall be informed of the location of these facilities. If necessary, mobile washing facilities will be established in the support vehicle and will consist of water, soap, means of drying, and receptacles for waste. An adequate supply of drinking water will be available near work areas. Water coolers or water bottles will be clearly marked as to their contents. Toilet facilities are available nearby.

Field operations shall be conducted in accordance with the minimum safety practices described below required for all Shannon & Wilson employees on all projects.

9.1 Chemical Hazards

9.1.1 General Practices for Hazardous Waste Sites

- Shannon & Wilson field personnel are to be thoroughly briefed on the anticipated hazards, equipment requirements, safety practices, emergency procedures, and communications methods, both initially and in daily briefings.
- At sites with known or suspected contamination, appropriate work areas for field personnel support, contaminant reduction, and exclusion will be designated and maintained.
- Eating, drinking, chewing gum or tobacco, smoking, or any practice that increase the probability of hand-to-mouth transfer and ingestion of materials is prohibited in any area where the possibility of contamination exists.
- Hands must be thoroughly washed when leaving a contaminated or suspected contaminated area before eating, drinking, or any other activities.

- Contaminated protective equipment shall not be removed from the work area until it has been properly decontaminated or containerized on site.
- Avoid activities that may cause dust. Removal of materials from protective clothing or equipment by blowing, shaking, or any means that may disperse materials into the air is prohibited.
- All field personnel will, whenever possible, remain upwind of drilling rigs, open excavations, boreholes, etc.
- Field personnel are specifically prohibited from entering into excavations, trenches, or other confined spaces deeper than 4 feet. Unattended boreholes must be properly covered or otherwise protected.
- When collecting LNAPL samples, Tyvek overalls and boot covers will be used as a protective outer layer. If the LNAPL damages the Tyvek overall, a higher grade overall such as Saranex will be used.

9.1.2 Personnel Decontamination

Decontamination requirements will be established prior to site work on a case-by-case basis. The SSO will be responsible for determining these requirements.

Direct contact with pure contaminants is not anticipated. Instead, a more likely scenario is physical contact with materials such as decontamination water used for cleaning sampling supplies. Disposal PPE will be worn by field personnel performing general field investigation and decontamination activities. For protection, simple personnel decontamination will be performed near the work area using the following steps:

- Step 1: Remove outer boot covers or wipe down boots.
- Step 2: Remove hardhat and outer coveralls or Tyvek and wipe clean.
- Step 3: Remove gloves.
- Step 4: Depart the work area.
- Step 5: Wash hands and face before drinking, eating, or smoking.

Because gross contamination is not anticipated, all disposable PPE shall be placed into heavy-duty plastic bags and disposed of with the general base refuse. If it is determined that a location has the potential to be or is suspected to be heavily contaminated such that the establishment of three zones is required based on the hazards present (Section 12), all personnel and portable equipment used in the work zone shall be subject to a thorough decontamination process. All reusable boots and gloves will be decontaminated using soap and water solution and scrub brushes, or simple removal and disposal, if the PPE is disposable. All wastewater generated during decontamination procedures will be stored on site in 55-gallon drums for subsequent disposal pending the associated analytical results. All disposable PPE will be disposed of in a trash bag. If necessary, disposal of decontamination wastes will be through certified disposal transporters/operators per the waste characteristics.

9.1.3 Sampling Equipment Decontamination

Before daily use, all portable monitoring equipment will be bagged or contained in such a way as to allow for simple decontamination procedures. Exposed parts shall be cleaned with wet cloths and/or alcohol wipes.

Sampling equipment will be decontaminated. The following procedures will be used to decontaminate equipment:

- Dislodge gross contamination from sampling utensils.
- Scrub with appropriate brush in a phosphate-free detergent.
- Rinse with tap water.
- Rinse with deionized water.
- Rinse a second time with deionized water.
- Air dry.

9.1.4 Air Monitoring

Air monitoring using a photoionization detector (PID) will be conducted when well monument lids are opened, an odor is detected, or LNAPL is present. The instrument will provide real-time measurements of airborne contaminant concentrations and provide the site workers with an additional level of protection against exposure to contaminants. The meter will be calibrated in accordance with the manufacturer's guidelines on a daily basis prior to the start of that day's field activities.

An action level of 5.0 parts per million (ppm) sustained for one minute in the worker's breathing zone has been established for this project. If PID readings exceed this established action level, the area may have to be evacuated for a period of time to allow levels to return to below action levels, alternative engineering controls may be implemented to lower the levels such as keeping all field personnel upwind of the borehole, or an upgrade to Modified Level C PPE will be required, which includes the use of respirators. If sustained elevated PID readings are obtained during the fieldwork, personnel will evaluate whether they are due to an external source such as a generator or vehicle or if the elevated readings are due to the presence of site contamination.

9.1.5 Respiratory Protection

- The Shannon & Wilson Respiratory Protection Program will be followed whenever a respirator is required.
- Field personnel must use the "buddy system" when wearing any respiratory protective devices. Communications between members must be maintained at all times.
 Emergency communications shall be prearranged in case unexpected situations arise.
 Visual contact must be maintained between pairs on site, and team members should stay close enough to assist each other in the event of an emergency.
- Personnel should be cautioned to inform each other of subjective symptoms of chemical exposure such as headache, dizziness, nausea, and irritation of the respiratory tract.
- No excessive facial hair that interferes with a satisfactory fit of the facepiece-to-face seal will be allowed on personnel required to wear respiratory protective equipment.
- The selection, use, and maintenance of respiratory protective equipment shall meet the requirements of established Shannon & Wilson procedures, recognized consensus standards (American Industrial Hygiene Association, American National Standards Institute, and National Institute for Occupational Safety and Health), and shall comply with the requirements set forth in 29 CFR 1910.134 and WAC 296-841.

9.1.6 Physical Hazards

9.1.7 Safe Driving

Operators of vehicles on company business must:

- Evaluate conditions of the vehicle and observe deficiencies of the vehicle before commencing operation.
- Driver must be in possession of a valid driver's license.
- Wear seat belts/available safety restraint systems in all vehicles.
- Drive defensively, be courteous, and obey all traffic rules and regulations.
- Do not exceed posted speed limits.
- Do not pick up hitchhikers.
- Do not use cell phones while driving.
- Under no circumstances should a Shannon & Wilson employee operate a vehicle while under the influence of intoxicating beverages, drugs, or other substances.
- Operate the vehicle at a SAFE speed in cases of inclement weather, heavy traffic, or other road hazards. Be especially aware of the hazards of black ice, particularly on bridges and overpasses.
- Remove keys and lock unattended vehicles.

All accidents involving a vehicle being operated on business, regardless of circumstances or severity, will be reported to the PM within 24 hours. It is important to note that this is done not to find fault, but to analyze specific incidents for future accident prevention.

9.1.8 Facility/Traffic

Cargo/transfer terminal sites and other work sites with high traffic flow and limited visibility present a significant hazard to Shannon & Wilson field staff. Since this is an area of extremely high risk, it is important that the following health and safety policies and procedures are followed. While visual devices are generally effective, the use of a structural barrier (such as a company vehicle) is a more effective method of protection should a vehicle driver fail to see an employee. Barriers shall be used on work sites when it is possible to do so without adversely affecting the project work or other client considerations. Employees are reminded to maintain a high degree of awareness of moving vehicles on the site. The following guidelines concerning traffic warning devices should be followed when working in traffic flow areas:

- Meet with the Facility Manager at the start of fieldwork to discuss equipment and personnel access to the work area;
- Obtain any facility-related emergency information, i.e., facility alarms, response phone numbers, evacuation areas, and special hazards;
- High-visibility vests shall be worn by employees when working around traffic flow areas. Ensure that there is a clear line of sight between approaching traffic and the work area;
- Orange cones are typically used to direct traffic flow on roadways but are not always appropriate as a flagging device on Shannon & Wilson project sites. Due to the low height, a cone can be easily overlooked, especially when a motorist is backing up. Tubular markers at least 4 feet high with flags attached at the top are more visible. Alternatively, a Type I barricade with flagging at the top may be used. One option often used with cones is to place an object on the cones that will make noise if struck by a car; and
- When two or more Shannon & Wilson employees are together on a site and a site-specific activity has a high risk of impact from vehicular traffic, one employee shall act as a look-out for the other employee performing the specific work activity.

9.1.9 Slip/Trip/Hit/Fall Hazards

Slip/trip/hit and fall injuries are the most frequent of all injuries to workers. They occur for a wide variety of reasons, but can be minimized by the following prudent practices:

Spot check the work area to identify hazards;

- Establish and utilize a pathway that is most free of slip and trip hazards;
- Beware of trip hazards such as wet floors, slippery surfaces, and uneven surfaces or terrain;
- Carry loads that you can see over;
- Keep work area clean and free of clutter, especially in storage rooms and walkways;
- Communicate hazards to on-site personnel;
- Secure all loose clothing and ties, and remove jewelry while around machinery;
- Report and/or remove hazards; and
- Keep a safe buffer zone between workers using equipment and tools.

9.1.10 Heat Stress

The Washington State Department of Occupational Safety and Health (DOSH) regulates heat-related illness in WAC 296-62. DOSH defined Heat-Related Illness (HRI) triggers based on the type of clothes worn, ambient temperature, and whether the work is conducted in sun or shade. Exhibit 9-1 provides trigger conditions at which provisions of the HRI rule become mandatory.

Exhibit 9-1: DOSH Heat-Related Illness Trigger Conditions

Type of Clothes Worn	Work in Direct Sun	Work in Shade
Work clothes (standard construction clothes)	89°F	96°F
Double-layer woven clothes (coveralls over work clothes)	77°F	87°F
Vapor barrier (Tyvek, etc.)	52°F	62°F

NOTES:

DOSH = Washington State Department of Occupational Safety and Health; °F = degrees Fahrenheit

The HRI rule includes requirements for a written procedure, water on site, and training of staff and supervisors.

Written Procedures. The employer must establish, implement, and maintain written procedures to reduce to the extent feasible the risks of heat-related illness that include the following elements:

- Identification and evaluation of temperature, humidity, and other environmental factors associated with heat-related illness
- Provisions to reduce to the extent feasible the risks of heat-related illness that include the following elements:

- The provision of rest breaks as needed to reduce to the extent feasible the risks of heat-related illness.
- Encourage frequent consumption of water.
- Procedures for responding to signs or symptoms of possible heat-related illness and accessing medical aid.
- Employees are responsible for monitoring their own personal factors for heat-related illness, including ensuring they consume adequate water.

Drinking Water. Drinking water must be provided and made readily available in sufficient quantity to provide at least one quart per employee per hour. Employers may begin the shift with smaller quantities of drinking water if they have effective procedures for replenishment during the shift as needed to allow employees to drink one quart or more per hour.

Training. Training in the following topics must be provided to all employees who may be exposed to a heat-related illness hazard.

- The environmental factors that contribute to the risk of heat-related illness;
- General awareness of personal factors that may increase susceptibility to heat illness including, but not limited to, an individual's age, degree of acclimatization, medical conditions, water consumption, alcohol consumption, caffeine consumption, nicotine use, and use of prescription and nonprescription medications that affect hydration or other physiological responses to heat;
- The employer's procedures for identifying, evaluating, and controlling exposure;
- The importance of removing PPE that increases exposure to heat-related illness hazards during all breaks when feasible;
- The importance of frequent consumption of small quantities of water. One quart or more over the course of an hour may be necessary when the work environment is hot and employees may be sweating more than usual in the performance of their duties;
- The importance of acclimatization;
- The different types of heat-related illness and the common signs and symptoms of heatrelated illness;
- The importance of immediately reporting to the employer, directly or through the employee's supervisor, symptoms or signs of heat illness in themselves, or in co-workers;
- The employer's procedures for responding to symptoms of possible heat-related illness, including how emergency medical services will be provided should they become necessary; and
- The purpose and requirements of this standard.

Prior to supervising employees who are working in conditions that may present heat-related illness hazards, supervisors must have training on the following topics:

- The procedures the supervisor is to follow to implement the HRI rule;
- The procedures the supervisor is to follow when an employee exhibits signs or symptoms consistent with possible heat-related illness, including emergency response procedures;
- Procedures for moving employees to a place where they can be reached by an emergency medical service provider, if necessary; and
- How to provide clear and precise directions to the emergency medical provider who needs to find the work site.

9.1.11 Cold Stress

To reduce adverse health effects from cold exposure, adopt the following work practices:

- Provide adequate dry insulating clothing to maintain core temperature above 98.6 degrees F to workers if work is performed in air temperature below 40 degrees F. Wind chill cooling rates and the cooling power of air are critical factors. The higher the wind speed and the lower the temperature in the work area, the greater the insulation value of the protective clothing required.
- If the air temperature is 32 degrees F or less, hands should be protected by gloves or mittens.
- If available clothing does not give adequate protection to prevent cold injury, work should be modified or suspended until adequate clothing is made available, or until weather conditions improve.
- Use heated warming shelters available nearby (e.g., on-site trailer) at regular intervals, the frequency depending on the severity of the environmental exposure. When entering the heated shelter, remove the outer layer of clothing and loosen the remainder of clothing to permit heat evaporation or change to dry work clothing.
- Provide warm, sweet drinks (e.g., hot chocolate) and soups at the work site for calorie intake and fluid volume. Limit the intake of coffee because of the diuretic and circulatory effects of caffeine.
- Include the weight and bulk of clothing in estimating the required work performance and weights to be lifted by the worker.
- Implement a buddy system in which workers are responsible for observing fellow workers for early signs and symptoms of cold stress.
- Employees that are not acclimatized should not work full time in cold until they become accustomed to the working conditions and required protective clothing.

Exhibit 9-2 describes the cooling power of wind on exposed flesh. This information can be used as a guide for determining equivalent chill temperatures when the wind is present in cold environments.

Estimated	Actual Temperature Reading (°F)												
Wind Speed (in mph)	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	
Equivalent Chill Temperature (%)													
Calm	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	
5	48	37	27	16	6	-5	-15	-26	-36	-47	-57	-68	
10	40	28	16	4	-9	-24	-33	-46	-58	-70	-83	-95	
15	36	22	9	-5	-18	-32	-45	-58	-72	-85	-99	-112	
20	32	18	4	-10	-25	-39	-53	-67	-82	-96	-110	-121	
25	30	16	0	-15	-29	-44	-59	-74	-82	-104	-118	-133	
30	28	13	-2	-18	-33	-48	-63	-79	-94	-109	-129	-140	
35	27	11	-4	-20	-35	-51	-67	-82	-98	-113	-129	-145	
40	26	10	-6	-21	-37	-53	-69	-85	-100	-116	-132	-148	
(Wind speeds LITTLE DANGER		INCREASING			GREAT DANGER								
greater than 40	In less	In less than an hour with dry				DANGER			Flesh may freeze within 30 seconds.				
mph have little	skin.	skin. Maximum danger of				Danger from freezing of							
additional	fals	e sense	of secu	ırity.	exposed flesh within one minute.								
enecty													
Trench foot may occur at any point on this chart.													

Exhibit 9-2: Wind Chill Factors

NOTES:

* Developed by U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts.

°F = degrees Fahrenheit; mph = miles per hour

Field personnel will observe work and warming regimen as shown in Exhibit 9-3.

Air Temperature - Sunny Sky		No Noticeable Wind		5 mph Wind		10 mph Wind		15 mph Wind		20 mph Wind		
°C (approx.)	⁰F (approx.)	Maximum Work Period	Number of Breaks	Maximum Work Period	Number of Breaks	Maximum Work Period	Number of Breaks	Maximum Work Period	Number of Breaks	Maximum Work Period	Number of Breaks	
-26 to -28	-15 to -19	(No Brea	orm ks) 1	(No Brea	orm ks) 1	75 min.	2	55 min.	3	40 4 min.		
-29 to -31	-20 to -24	(No Brea	orm ks) 1	75 min.	2	55 min.	3	40 min.	4	30 5 min.		
-32 to -34	-25 to -29	75 min.	2	55 min.	3	40 min.	4	30 min.	5	non- emergency work should cease		
-35 to -37	-30 to -34	55 min.	3	40 min.	4	30 min.	5	non- emergency work should cease		non- emergency work should cease		
-38 to -39	-35 to -39	40 min.	4	30 min.	5	nc emerg work s cea	on- gency should ase	non- emergency work should cease		non- non emergency emerge work should work sh cease ceas		n- gency should ase
-40 to -42	-40 to -44	30 min.	5	non- emergency work should cease		non- emergency work should cease		non- emergency work should cease		non- emergency work should cease		
-43 and below	-45 and below	nc emer work s cea	on- gency should ase	non- emergency work should cease		non- emergency work should cease		non- emergency work should cease		non- emergency work should cease		

Exhibit 9-3: Cold Weather Work/Warm-Up Regimen

NOTES:

* Developed by the American Conference of Governmental Industrial Hygienists. °C = degrees Celsius; °F = degrees Fahrenheit; min. = minute; mph = miles per hour

9.1.12 Back Injury Prevention

Back injuries on the job are costing employers in the U.S.A. approximately \$6.5 billion annually. Eight out of ten people will suffer a back injury during their life time, either on or off the job. Many of these injuries could be prevented by adhering to the following proper lifting concepts:

- Keep the load close to the body. Arrange tasks so that the load will be close to the body and at a proper and safe height that will not require bending or stooping. Tighten stomach muscles to offset the force of the load.
- Keep the load within reach. Try to arrange tasks to eliminate handling loads below 20 inches or above 50 inches. Try to keep the lifting zone between your shoulders and the knuckles.
- Control the load size. Loads that extend beyond 16 inches in front of the body put excessive lifting stress on the body and should be handled by two people or lifting aids should be employed.
- Maintain proper alignment of body. The task should be designed so that twisting of the body is minimized or eliminated. Twisting while carrying a load increases injury potential significantly.
- Lift with your legs. Your leg muscles are the strongest in your body. Always bend your knees and use your leg muscles when you go toward the floor whether you have a load or not. Do not bend at your waist if it can be avoided.
- Balance your load if possible. An evenly balanced load is much easier and much safer to handle than an off-balance load. Grasp the object at opposite corners if possible.
- **Avoid excessive weights if possible.** Mechanical aids should be used for loads that are greater than those which can be handled safely by one person.
- Lift in a comfortable manner. Workers should use a lifting position that feels comfortable for them; however, they should bend their knees and keep their back as straight as possible when performing a lift. Your feet should be shoulder-width apart in order to get the best footing possible.
- Lift smoothly and gradually. Quick jerking lifting motions increase sudden and abrupt stress to the back. This type of aggressive movement can affect the discs, muscles, and the ligaments. A well-controlled and smooth lifting motion will reduce the likelihood of injury.
- Most importantly, think before lifting.

In addition to these lifting techniques, it is also important to implement the proper carrying techniques as follows:

- Eliminate carrying where possible. If possible, conveyors, trucks, small loaders, and other mechanical equipment should be considered. Carts and dollies should be employed when surface conditions permit. Surface conditions can be altered with plywood or other materials.
- Use two-handed carries where possible. Using a two-handed carry method helps to balance the load and even out the body stress.
- **Keep the load close to the body.** Keeping the load in close and lifting in as erect a position as possible helps to reduce the stress to the lower spine.
- **Keep your arms straight.** Less stress is created on the muscles and ligaments when your arms are kept straight during a carry. Contraction of the muscles will quickly increase fatigue and the possibility of an accident.
- **Balance the load.** A balanced load is similar to the two-handed carry. The load is evenly distributed across the body and the stress is also evenly shared.
- Avoid carrying any material on stairs. Carrying on stairs will obstruct your vision and increase the likelihood of slip and fall. The bumping of the load on your leg as you climb or descend increases the chance of an injury.
- Reduce the weight if possible. When the weight of the lifts is high, look for ways to
 reduce the weight. Use smaller containers, put less in containers, indicate fill levels, and
 locate lighter containers.
- Use handles. Make the task easier by adding handles where possible. If numerous repetitions are required, it may be possible to design a handled device to accommodate a two-handed carrying task.

In addition to these lifting and carrying techniques, it is also important to consider pushing and pulling tasks:

- Eliminate manual pushing and pulling where possible. Look at those tasks that are repeated often to see if they can be modified or altered in a way that reduces pushing and pulling. Consider mechanical aids, powered conveyors, gravity slides, and chutes.
- Reduce the necessary force. Force required is a function of weight, gravity, and friction. Look for opportunities to reduce these factors. Improved bearings, larger wheels, reduced weight, improved rolling surfaces, lubrication, and improved regular maintenance are all opportunities for reducing work force and stress.
- Push load instead of pulling. Studies indicate that pushing loads rather than pulling them is the safest approach. There is less stress on muscles, joints, and ligaments. As in lifting, pushing pressure should be applied firmly, but gradually. Avoid aggressive impacts.

There are also a number of guidelines to follow when addressing tasks that involve shoveling operations:

- Choose correct shovel type. The shovel should be appropriate for the material and the project. Light, loose, and fluffy materials should be handled with a scoop-type shovel. A smaller shovel like a spade should be used for more dense material.
- Use a long-handled shovel. A long-handled shovel should be provided to avoid stooping during shoveling activities. Take the time to obtain the correct tool for the job.
- Maintain load to 10 pounds per shovelful. The general rule of thumb for the average work situation is 10 pounds per shovel load. Work performed is a function of repetition and load. Increasing shovel loads will increase fatigue as repetitions increase and it will also increase the potential for injury.

Drum handling operations can be made safer by considering the following techniques:

- Use a drum cart where feasible. A four-wheel cart is preferred for drum handling because it is more stable, better latched, and has a better handle positioning. In addition, it is more easily tipped back and held in place when the drums are loaded.
- Do not rotate from horizontal to vertical unless nearly empty. Only empty or nearly empty drums should be rotated from horizontal to vertical. A tipster or forklift with a proper drum handling attachment is the preferred method.
- Use handling equipment for moving drums from one level to another. Whenever
 possible, pallets, scales, and conveyors should be recessed in the floor to avoid raising
 drums to another level. If not, drums should be handled on a low platform or an incline
 adapter should be provided.
- Limit drum weight to 450 to 500 pounds. Regardless of the material involved, drums should only be filled to a maximum weight of 700 pounds. Drums over 300 pounds shall not be handled by hand. Use of mechanical equipment is required. (*Example: water* = 8.6 lb per gallon x 52 gallons = 447.2 lbs)
- Limit travel distance to 30 feet. The other general guideline regarding drum handling involves keeping drum transport to a maximum of 30 feet.

9.1.13 Drowning Prevention

To assure personnel safety, the following guidelines will be employed when the threat of drowning exists at the site:

- Do not work alone.
- Wear a U.S. Coast Guard-approved personal flotation device (PFD-Type III).
- Check weather reports to confirm safe working conditions (avoid storms).
- Take care when exiting and entering the boat from land or barge.
- Make sure the barge or boat is securely anchored at the work location.

- If possible, use two individuals to lift heavy objects, such as sample coolers that are filled with samples.
- Stop work if water conditions become hazardous (e.g., high swells, storms, etc.)

9.2 Biological Hazards

Animal bites, especially in remote areas, always pose a risk. This can be minimized by being observant and not approaching animals exhibiting unusual behavior. Avoiding contact with poison ivy, poison oak, or poison sumac, where present, will minimize the hazards from poisonous plants. Ways to reduce potential exposures to microbial hazards include using proper sanitation prior to eating or drinking liquids and limiting eating or drinking to areas outside the EZ. Treatment of stings can be handled by basic first-aid treatment. However, if personnel are allergic to bees or wasps, they should make this known to co-workers and have prescribed medication available while they are on site so that appropriate action can be taken. If a rodent nest or fecal pile is found, the area should be sprayed/soaked with bleach (again, a respirator and gloves should be worn). The materials used to perform the disinfecting of the area should also be disposed of in a dumpster. Personnel should be aware of their surroundings and wear the appropriate work clothing to minimize the amount of exposed skin.

10 PERSONAL PROTECTIVE AND SAFETY EQUIPMENT

The level of protection required to ensure the health and safety of field personnel will be determined by the SSO based on the specific site activities, available instrumentation readings, and professional experience and judgment. Based on the specific tasks associated with the work plan, field personnel shall wear Modified Level D PPE, depending on the task. Higher levels of PPE are not currently anticipated for this project. However, the Health and Safety Manager and SSO will adjust the level of PPE required for a specific work task, as necessary.

The Health and Safety Manager, in conjunction with the SSO, will establish action levels for minimum levels of protection for each area of the site where investigation activities will occur. The action levels will remain the same, but the level of protection may change due to changing site conditions.

10.1 Modified Level D Protection

Modified Level D PPE will be the initial requirement for all scoped tasks associated with the work plan. The Health and Safety Manager and SSO will upgrade and/or change the level of PPE as field conditions warrant. Modified Level D PPE includes the following:

- Coveralls or work clothes (dictated by weather).
- Tyvek coveralls (optional).
- Gloves (outer), chemical/liquid-resistant when there is a potential for wet work or contact with contaminated materials.
- Gloves (inner), chemical/liquid-resistant (surgical nitrile) when there is a potential to contact contaminated materials.
- Leather safety boots/shoes with chemical-resistant soles and steel-toed shanks when necessary.
- Safety glasses.
- Chemical-resistant boot covers when chemical hazards are present.
- Chemically protective safety boots as an alternative to leather boots with boot covers.
- Hardhat (with splash shield during high splash activities) and safety glasses.
- Hearing protection (where appropriate).

Use of Tyvek coveralls on site where work functions preclude splashes of chemicals or longterm contact with contaminated soil or water will be at the discretion of the SSO.

10.2 Unknown Environments

The requirement of field personnel entering unknown environments is not anticipated as part of the scope of work for this delivery order. If an unknown environment is encountered, personnel shall not enter the area until the chemical or physical hazards in the area can be identified and measures taken to reduce or eliminate those hazards.

10.3 Considerations for Selecting Levels of Protection

Factors to be considered in selecting the appropriate level of PPE include heat and cold stress; air-monitoring results; chemical, physical, and biological hazards associated with the task; routes of exposure; and weather conditions. The Health and Safety Manager will determine the level of PPE required for the specific work task following an evaluation of these factors. The SSO will be responsible for ensuring that all field personnel adhere to the PPE requirements. Based on existing information and data for the activities to be performed, modified Level D PPE will be the initial requirement for all scoped tasks. Exposure to elevated airborne concentrations of contaminants above the respective permissible exposure levels is considered to be low for the work plan; thus, the use of respiratory protection is anticipated only for collecting swipe samples inside on-site structures. However, if site conditions, field activities, or air-monitoring results indicate the need for respiratory protection during other field activities, the SSO and the Health and Safety Manager will evaluate the initial activities to be performed by site personnel, and if necessary, modifications to the PPE requirements will be implemented.

10.4 Personnel Protective Equipment (PPE) for Visiting Personnel

Site visitors will be required to have the appropriate PPE prior to site entry. No personnel will be allowed to enter the site if they do not have the appropriate PPE.

10.5 Personnel Protective Equipment (PPE) Inspections

All PPE shall be inspected prior to, during, and after use. Inspectors will look for rips, tears, discolorations that may indicate bleed-through of chemicals, delamination, or any other signs of wear or degradation that would affect the effectiveness of protection. PPE will be stored in a manner that prevents degradation and is consistent with the manufacturer's instructions. Consideration should be given to ultra-violet damage, inability to dry/air-out, and unnecessary folds/creases. The SSO or the Health and Safety Manager will determine the need to repair or replace PPE.

10.6 Safety Equipment

Basic emergency and first aid equipment will be available in the support vehicle. All field personnel will be informed of the locations of the safety equipment and the proper use of the equipment. For the duration of the work plan, weekly inspections of the safety equipment will be performed by the SSO.

11 EMERGENCY RESPONSE AND CONTINGENCY PROCEDURE

This section describes contingencies and emergency planning procedures to be implemented during the work plan. All incidents will be dealt with in a manner to minimize health risks to field personnel and the surrounding environment. In the event of an incident, the following procedures shall be completed at a minimum:

- First aid and other appropriate initial action will be administered by properly trained personnel closest to the incident. This assistance will be conducted in a manner to assure individuals rendering assistance are not placed in a situation of unacceptable risk.
- All incidents will be reported to and documented by the SSO, who is responsible for coordinating the emergency response in an efficient, rapid, and safe manner. The SSO will perform emergency equipment inspections to check that standard equipment is available on site to address likely emergencies.

In the event of an accident or emergency, all workers on site are responsible to conduct themselves in a mature, calm manner to avoid spreading danger to themselves, the surrounding workers, or the community in general.

The initial response to any emergency will be to protect human health and safety. Secondary response to the emergency will be identification, containment, treatment, and disposal of contaminated materials. The local Fire Department will be called in all situations in which fires or explosions have occurred by dialing 911.

All field personnel will have access to the contact list provided in this HASP. If an emergency occurs that requires outside agency assistance or notification, site employees are instructed never to leave an emergency notification on an answering machine, but rather call the 24-hour emergency answering service number if no one answers the primary number.

Potential incidents fall under four general classifications: (a) worker injury or illness; (b) fire or explosion; (c) severe weather conditions such as tornado and lightning storms; and (d) chemical releases to the atmosphere, soil, or surface water.

11.1 Worker Injury or illness

If a non-life-threatening/serious injury occurs, the local hospital will be contacted for assistance prior to transporting the victim(s). The local hospital is Harborview Medical Center. Address and contact information are located prior to Section 1.0. A copy of a map showing the directions from the site to the Hospital is provided as Attachment D.

In the event of a medical emergency, personnel will take direction from the SSO (or alternate team leader if the SSO is injured), notify the appropriate emergency organization, and implement the following procedures:

- Call 911.
- Identify location, request medical assistance, and provide name and telephone number.
- Notify Shannon & Wilson's Health and Safety Manager and file an accident report.

11.2 Fire or Explosion

In the event of an emergency that necessitates the evacuation of the site, such as a fire or severe weather, field personnel will implement the following procedures:

 Field personnel will be alerted by sounding a portable horn, radio contact, or direct verbal means. (When air horns are used, two sustained blasts followed by one or two blasts will notify all personnel to exit.)

- Personnel in the work zone may or may not perform field decontamination prior to leaving the work zone, depending on the nature of the incident requiring the evacuation.
- Concurrent with the evacuation of field personnel, notification will be immediately made by dialing 911, indicating location of the incident, and providing information to local responders.

Immediately following an evacuation, a head count will be taken. Upon his/her arrival, the SSO, or his designated alternate will advise the fire commander of the location, nature, and identification of the hazardous materials on site.

11.3 Severe Weather

When a severe storm warning has been issued or when a lightning storm occurs, the information will be immediately relayed to all field personnel who shall be notified to stand by for emergency procedures. After the storm warning is cancelled and the storm passes, the SSO will inspect all on-site equipment to ensure its readiness for operation. If any equipment has been damaged, the work will not be restarted until the equipment has been repaired or replaced.

If the SSO's inspection indicates that a fire, explosion, or release has occurred as the result of a severe weather condition, he/she will follow the appropriate procedures outlined in this section.

In regard to lightning, personnel will follow the "30/30 rule," which states that personnel will seek appropriate shelter when working outdoors if thunder is heard less than 30 seconds after the strike is seen. Personnel who have sheltered may resume working 30 minutes after the last thunder is heard.

11.4 Chemical Release/Spill Containment Program

The objective of this part of the HASP is to meet the requirements of 29 CFR 1910.120(b)(4)(ii)(j).

11.4.1 Spill Prevention

All hazardous substances will be stored in secure locations in containers of suitable type, properly labeled, with tight-fitting lids. Any investigation-derived wastewater or free product will be stored in 55- or 16-gallon drums until properly disposed of. Spill containment drip pans and duck ponds will be utilized, when applicable, to contain small leaks during sampling activities and transfer.

11.4.2 Large Spill Response

The primary spill response kit is located in the support vehicle. The kit contains absorbent pads, shovels, and personal safety equipment. In the event of a spill of a hazardous substance, immediate action will be taken by all personnel present. The following actions will be taken in the event of a spill, when applicable:

- Attend to significantly injured personnel.
- Stop the source (e.g., shut off a pump, stand up fallen container).
- Control the spill by berming, ditching, or immediately absorbing the substance.
- Report spill to the SSO, PM, the Health and Safety Manager, and applicable regulating agencies.

If the PM determines that clean up can be performed safely with project personnel, the SSO may act as the spill team leader and designate required procedures. Before work begins, the SSO must conduct a hazard identification and assessment with response personnel. The following must be discussed and established:

- Levels of PPE and safety procedures.
- Safety and work zones.
- All steps of the response activities.
- Most effective procedures for cleanup.
- Means of containment.
- Decontamination procedures.
- Emergency decontamination.

11.5 Post-Incident Follow-Up

The PM or SSO must implement the necessary steps to ensure that the incident is properly documented and that the emergency response equipment is replenished. The PM must direct the necessary corrective actions to present recurrence and evaluate the response.

11.6 Security

During activation of the emergency procedures, the SSO or designated representative will control access to the site and maintain a security incident log that will include at a minimum:

- Time of entry
- Expected exit time
- Task being performed
- Location of task
- Rescue and response equipment used
- Protective equipment used

12 WORK COMPLETED WITHIN SUSPECTED POLYCHLORINATED BIPHENYLS (PCBs) AREAS

The work plan includes collection of soil samples within an area with PCB contamination. Activities completed within this area require the use of additional measures to ensure that worker safety is protected, and that the field activities do not result in the contamination of previously uncontaminated areas. The following sections summarize additional site control, site preparation, communication, PPE, and decontamination and disposal procedures for investigation activities to be completed within the area with PCB contamination.

All field staff should be sufficiently trained in the standard guidelines for the sampling method they intend to use and should review and understand these procedures prior to going into the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work.

12.1 Site Control

Access to the work site will be restricted to designated personnel. To reduce the accidental spread of hazardous substances by workers or equipment from the contaminated area to the clean area, zones should be delineated on the site where different types of operations will occur, and the flow of personnel among the zones should be controlled. The establishment of work zones will help ensure that: personnel are properly protected against the hazards present where they are working, work activities and contamination are confined to the appropriate areas, and personnel can be located and evacuated in an emergency.

The area of PCB investigation will be separated into zones as needed to meet operational and safety objectives. It is intended that the area be separated by the use of cones and tape into zones as follows:

- Exclusion Zone (EZ), the contaminated area.
- Contamination Reduction Zone (CRZ), the area where decontamination takes place.
- Support Zone (SZ), the uncontaminated area where workers should not be exposed to hazardous conditions.

Movement of personnel and equipment among these zones should be minimized and restricted to specific Access Control Points to prevent cross-contamination from contaminated areas to clean areas.

An EZ/CRZ, and SZ will be set up for work being conducted within the limits of the work area. The full area designated for investigation of PCBs (where drilling and logging of borings will be undertaken) is the EZ. Only authorized personnel shall be permitted access to the EZ/CRZ. The drilling work in the EZ area will be completed before the drilling rig is moved outside of the EZ. In the EZ plastic will be placed on the ground around the boring area, and plastic will be placed on and below the boring logging table to prevent soil from the spilling to the ground. Tyvek overalls will be worn. Staff will decontaminate all equipment and gear as necessary prior to exiting the CRZ. Staff will take care to prevent the transport of contaminated soils during decontamination, and decontamination areas may be constructed with plastic sheeting on the ground to reduce transport of contaminated soils from the EZ to the SZ.

Exhibit 12-1: Illustration of Typical Work Zones Provided by OSHA.gov

12.1.1 Exclusion Zone (EZ)

The EZ is the area where contamination does or could occur. The primary activities performed in the EZ are:

Completion of borings and soil sampling.

The personnel working in the EZ may include the field team members, the SSO, the PM, and specialized personnel such as heavy equipment operators. All personnel within the EZ should wear appropriate PPE (Section 12.4).

Impermeable plastic must be placed across the surface within the EZ where contaminated soil is located to prevent spills from contacting unpaved surfaces (Section 12.2). Use of impermeable plastic can create a slip/trip/fall hazard; safety practices for this type of hazard were discussed in Section 9.1.9.

12.1.2 Contamination Reduction Zone (CRZ)

The CRZ is the transition area between the contaminated area and the clean area. This zone is designed to reduce the probability that the clean SZ will become contaminated or affected

by other site hazards. The distance between the EZ and SZ provided by the CRZ, together with decontamination of workers and equipment, limits the physical transfer of hazardous substances into clean areas. The boundary between the CRZ and the EZ is called the Hotline. The degree of contamination in the CRZ decreases as one moves from the Hotline to the SZ, due both to the distance and the decontamination procedures.

Decontamination procedures take place in a designated area within the CRZ. Two lines of decontamination stations should be set up within the CRC: one for personnel and one for heavy equipment. Access into and out of the CRZ from the EZ is through the Access Control Point. The equipment will only enter and exit once at the beginning and end of the drilling.

Personnel entering the CRZ shall be required to wear the personal protective clothing and equipment prescribed for working in the CRZ. To reenter the SZ, workers should remove any protective clothing and equipment worn in the CRZ and leave through the personnel exit Access Control Point.

The CRZ must be well designed to facilitate:

- Decontamination of equipment, PDS operators, and personnel.
- Emergency response: first-aid equipment (such as bandages, blankets, eye wash, splints, and water); and containment equipment (absorbent and fire extinguisher).
- Equipment resupply: personal protective clothing and equipment (such as booties and gloves), sampling equipment (such as bottles and jars), and tools.
- Sample packaging and preparation for onsite or offsite laboratories.
- Worker temporary rest area: Water and other potable liquids should be clearly marked and stored properly to ensure that all glasses and cups are clean. Wash facilities should be located near drinking facilities to allow employees to wash before drinking. Drinking, and washing, should be located in a safe area where protective clothing can be removed.
- Drainage of water and other liquids that are used during decontamination.

Personnel within the CRZ should be required to maintain internal communications; line-ofsight contact with work parties; work party monitoring (e.g., fatigue, heat stress, and hypothermia); and site security.

12.1.3 Support Zone (SZ)

The SZ is the location of the administrative and other support functions needed to keep the operations in the EZ and CRZ running smoothly. Any function that need not or cannot be performed in a hazardous or potentially hazardous area is performed here. The Command Post Supervisor should be present in the SZ. Other personnel present will depend on the

functions being performed, and may include the field team members who are preparing to enter or who have returned from the EZ.

Personnel may wear standard PPE (10.1) within this zone. Any potentially contaminated clothing, equipment, and samples must remain in the CRZ until decontaminated.

SZ personnel are responsible for alerting the proper agency in the event of an emergency. All emergency telephone numbers, evacuation route maps, and vehicle keys should be kept in the SZ.

When setting up support facilities, consider factors such as:

- Accessibility. Topography, open space available, locations of highways and railroad tracks, and ease of access for emergency vehicles.
- Resources. Adequate roads, power lines, telephones, shelter, and water.
- Visibility. Line-of-sight to all activities in the EZ.
- Wind direction. Upwind of the EZ, if possible. If upwind locations are not feasible due to fencing or structures, the best cross-wind location should be selected.
- Distance. As far from the EZ as practicable.

12.2 Site Preparation

Time and effort must be spent in preparing a site to ensure that worker safety is protection, field activities go smoothly, that the field activities do not result in the contamination of previously uncontaminated areas, and that contamination is not transported outside of the EZ. Safety measures should be afforded the same level of care at this stage as during other field activities. Proper site preparation includes:

- Arrange traffic control signage to ensure safe and efficient operations.
- Eliminate physical hazards from the work area as much as possible, including:
 - Ignition sources in flammable hazard areas.
 - Exposed or ungrounded electrical wiring, and low overhead wiring that may entangle equipment.
 - Sharp or protruding edges, such as glass, nails, and torn metal, which can puncture protective clothing and equipment and inflict puncture wounds.
 - Debris, holes, loose steps or flooring, protruding objects, slippery surfaces, or unsecured railings, which can cause falls, slips, and trips.

- Unsecured objects, such as bricks and gas cylinders, near the edges of elevated surfaces, such as catwalks, roof tops, and scaffolding, which may dislodge and fall on workers.
- Debris and weeds that obstruct visibility.
- Provide adequate illumination for work activities. Equip any temporary lights with guards to prevent accidental contact.
- The EZ must have impermeable plastic placed across the work area surfaces where feasible prior to work activity. Damage to the plastic can be repaired with the addition of impermeable plastic and duct tape.

The hotline should be clearly marked by lines, placards, hazard tape and/or signs; or enclosed by physical barriers, such as chains, fences, or ropes. Access Control Points should be established at the periphery of the EZ to regulate the flow of personnel and equipment into and out of the zone and to help verify that proper procedures for entering and exiting are followed. If feasible, separate entrances and exits should be established to separate personnel and equipment into and out of the EZ. The following steps describe how to establish the hotline:

- Visually survey the immediate site vicinity.
- Evaluate the results of previous soil and water sampling.
- Consider the physical area necessary for site operations.
- Consider meteorological conditions and the potential for contaminants to be blown from the area.
- Secure or mark the hotline.
- Modify its location, if necessary, as more information becomes available.

12.3 Communication

All site work will occur in teams and the primary means of communication on-site and with off-site contacts will be via cell phones. An agreed-upon system of alerting via air horns and/or vehicle horns may be used around heavy equipment to signal an emergency if shouting is ineffective. Any emergencies or significant incident situations will be immediately reported the PM.

12.4 Personnel Protective Equipment (PPE)

At a minimum, the work will be conducted in accordance with the HASP and workers will wear the appropriate personal protective equipment, which is expected to be Modified Level D outlined in Section 10.1.

The following hazard controls, based on the tasks identified in the field activities above, are required for field staff responsible for oversight, sample collection, inspection, and measuring tasks during active construction, performed from the SZ:

 Level D PPE, which includes hard hat, steel-toed boots, safety glasses, hearing protection, task-appropriate gloves, and a reflective safety vest.

The following hazard controls should be added when performing tasks within the EZ and/or CRZ:

- Chemical resistant coveralls or Tyvek.
- Chemical resistant boots or boot covers.

12.5 Decontamination and Disposal

All reusable equipment that comes into contact with soil should be decontaminated prior to moving to the next sampling location. Stainless steel bowls and spoons, and any tools used for sample processing will be decontaminated between each sample; alternatively, disposable bowls and spoons may be used.

Particulate matter and surface film will be removed using a brush followed by hot water pressure washing using potable water and Liquinox® detergent, or equivalent. Additionally, direct-push rods will be fitted with disposable plastic liners for sample collection to ensure that sample material does not come into contact with the interior of the direct-push rod. This process is the industry standard of care for decontamination of downhole drilling equipment.

Decontamination wash water will be containerized separately from decontamination wash water from elsewhere on the Site and profiled for treatment or for off-site disposal. Excess soil will be placed in a drum, labeled as investigation-derived waste (IDW) pending characterization, and temporarily stored in a secure location for bulk disposal concurrent with excavation. If soil characterization data show that PCBs are present at concentrations greater than or equal to 50 ppm in any given sample associated with a particular drum (or drums) of IDW, then the entire drum(s) will be transported to a Subtitle C facility for disposal. All miscellaneous solid waste, such as PPE and disposable sampling equipment will be containerized or bagged in heavy-duty plastic bags and disposed of as municipal solid waste.

The drilling rig and equipment will be placed on plastic and brushed down with a hard brush before exiting the CRZ. Other drilling equipment will be decontaminated following the same procedure as sampling equipment.

Attachment A Site Map

Attachment B Daily Safety Meeting Log

BEDTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Common State

DAILY SAFETY MEETING LOG

JOB NAME:		JOB NO:			BORING NO:		
LOCATION:			DA	TE: /	/ TIN	/IE: :	
SUBCONTRACTOR:			S&W RI	EP:	S&W F	PM:	
WORK DESCRIPTION:							
CHECK APPLICABLE HAZARDS: Hea	avy Equipmer	nt □, Vehicle	es □, Overhea	ıd □, Too	ols □, Temper	rature □,	
Lifting \Box (Use Mechanical Means Instea	ad), Site Hou	sekeeping 🗆	(Clear Walkwa	ys to Prev	ent Slips, Trips	, Falls),	
Awkward Work Area □, Public □, Sect	urity ⊡, Plant	s ⊡, Animal	s □, Noise □,	Vibration	□, Dust □, Ra	adiation \Box ,	UV
exposure \Box , Repetitive Motion \Box , Su	spected Conta	amination \Box ,	Chemical Expo	osure □,	Flammable/Exp	olosive 🗆	
OTHER HAZARDS:							
EQUIPMENT ON SITE:							
DOCUMENTATION SSHSP On Site? Hospital Map On Site? Fall Protection Plan On Site? Respiratory Protection Plan On Si Confined Space Entry Plan On Si Traffic Control Plan? Other Plan? Current Fit Test? Cards/Certs Required? Hazards & Controls Discu	l: ite? te? <i>List Below</i> ussed?		Boots - Safety T Safety Glasses Vest - Class II / Hard Hat Ear - Plugs / M Gloves - Type: Face Shield Respirator Oth Need to Up	PPE: Toe / Oth Class III fuffs / Bo her PPE? odate SSH	er oth <i>List Below</i> SP?		
	ove nazarus,		plaits trave bee			HAS ALL	PPE
PRINT NAME	SIGNATUR	E	CC	OMPANY	CARDS	On?	

Attachment C Safety Data Sheets

Right to Know Hazardous Substance Fact Sheet

Common Name: ARSENIC

Synonyms: Gray Arsenic; Arsen

Chemical Name: Arsenic

Date: June 1998 Revision: April 2008

Description and Use

Arsenic is a silver-gray or white metallic, odorless, brittle solid. It is used as an alloying agent for heavy metals, and in solders, medicines and herbicides.

Reasons for Citation

- Arsenic is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing. Seek medical attention.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- ▶ Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	7440-38-2
RTK Substance Number:	0152
DOT Number:	UN 1558

EMERGENCY RESPONDERS >>>> SEE BACK PAGE

Hazard Summary		
Hazard Rating	NJDOH	NFPA
HEALTH	4	-
FLAMMABILITY	0	-
REACTIVITY	0	-
CARCINOGEN		

POISONOUS GASES ARE PRODUCED IN FIRE

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Arsenic can affect you when inhaled and may be absorbed through the skin.
- ► Arsenic is a CARCINOGEN and may cause reproductive damage. HANDLE WITH EXTREME CAUTION.
- Skin contact can cause irritation, burns, rash and loss of pigment
- Eye contact can cause irritation and burns.
- Inhaling Arsenic can irritate the nose and throat and can cause an ulcer or hole in the "bone" (septum) dividing the inner nose.
- Exposure to Arsenic can cause weakness, poor appetite, nausea, vomiting, headache, and even death.
- Arsenic may damage the nervous system and the liver.
- Arsenic is a noncombustible solid, but when in *dust* or *fine powder* form it can EXPLODE when exposed to heat, flame or hot surfaces.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is **0.01 mg/m³** averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is **0.002 mg/m³**, which should not be exceeded at any time.
- ACGIH: The threshold limit value (TLV) is **0.01 mg/m³** averaged over an 8-hour workshift.
- Arsenic is a CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

ARSENIC

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.ni.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- ➤ You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to **Arsenic**:

- Skin contact can cause irritation, burns, rash and loss of pigment.
- ► Eye contact can cause irritation, burns and red, watery eyes.
- Inhaling Arsenic can irritate the nose and throat causing coughing and wheezing.
- Exposure to Arsenic can cause weakness, poor appetite, nausea, vomiting, headache, muscle cramps and even death.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Arsenic** and can last for months or years:

Cancer Hazard

- Arsenic is a CARCINOGEN in humans. It has been shown to cause skin and lung cancer.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

- Chronic Arsenic exposure has been associated with spontaneous abortions and still births.
- There is limited evidence that Arsenic is a teratogen in animals. Until further testing has been done, it should be treated as a possible teratogen in humans.

Other Effects

- Repeated skin contact can cause thickened skin and/or patchy areas of darkening and loss of pigment. Some persons may develop white lines on the nails.
- Long-term exposure can cause an ulcer or hole in the "bone" (septum) dividing the inner nose, hoarseness and sore eyes.
- Arsenic may damage the nervous system causing numbness, "pins and needles," and/or weakness in the hands and feet.
- ► Arsenic may damage the liver.

Medical

Medical Testing

Before first exposure and every 12 months thereafter, OSHA requires your employer to provide (for persons exposed to greater than **0.005 mg/m³** of *Arsenic*) a work and medical history and exam which shall include:

- ► Chest x-ray
- Exam of the nose, skin and nails
- Test for urine Arsenic. This is most accurate at the end of the workday. Eating shellfish or fish may elevate Arsenic levels for up to two days. At NIOSH recommended exposure levels, urine Arsenic should not be greater than 100 micrograms per liter of urine.

After suspected overexposure, repeat these tests and consider exam of the nervous system and liver function tests. Also examine your skin periodically for abnormal growth. Skin cancer from **Arsenic** can be easily cured when detected early.

OSHA requires your employer to provide you and your doctor with a copy of the OSHA *Inorganic Arsenic* Standard (29 CFR 1910.1018).

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

More than light alcohol consumption can cause liver damage. Drinking alcohol may increase the liver damage caused by Arsenic.

Conditions Made Worse By Exposure

May scientists believe that skin changes such as thickening and pigment changes make those skin areas more likely to develop skin cancer.

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- ► Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.
- In addition, the following may be useful or required:
- Specific engineering controls are required for this chemical by OSHA. Refer to the OSHA *Inorganic Arsenic* Standard (29 CFR 1910.1018).
- Use a vacuum or a wet method to reduce dust during cleanup. DO NOT DRY SWEEP.
- Use a high efficiency particulate air (HEPA) filter when vacuuming. Do <u>not</u> use a standard shop vacuum.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

Avoid skin contact with Arsenic. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.

- Safety equipment manufacturers recommend Nitrile, Natural Rubber or Silver Shield® for gloves and DuPont Tyvek®, or
- the equivalent, as protective materials for clothing.
 All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- ► Wear impact resistant eye protection with side shields.
- ► Wear a face shield with goggles when working with corrosive, high irritating or toxic substance.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure not higher than
 0.1 mg/m³, use a half-mask air purifying respirator equipped with high efficiency filters.
- Where the potential exists for exposure not higher than 0.5 mg/m³, use a full facepiece, air purifying respirator with high efficiency filters.
- Where the potential exists for exposure not higher than 5 mg/m³, use any powered-air purifying respirator with high efficiency filters or a half-mask supplied-air respirator operated in a positive pressure mode.
- ▶ Leave the area immediately if (1) while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect **Arsenic**, (2) while wearing particulate filters abnormal resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Consider all potential sources of exposure in your workplace. You may need a combination of filters, prefilters or cartridges to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Exposure to 5 mg/m³ is immediately dangerous to life and health. If the possibility of exposure above 5 mg/m³ exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

if employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Arsenic is noncombustible, however, Arsenic dust or fine powder can explode when exposed to heat, flame or hot surfaces.
- Use dry chemical, CO₂, water spray or foam as extinguishing agents.
- ► POISONOUS GASES ARE PRODUCED IN FIRE, including Arsenic Oxides.
- ▶ Use water spray to keep fire-exposed containers cool.

Spills and Emergencies

if employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Arsenic is spilled, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- ► Eliminate all ignition sources.
- Collect powdered material in the most convenient and safe manner, or use a HEPA-filter vacuum for clean-up, and deposit in sealed containers.
- ► Ventilate area of spill after clean-up is complete.
- ► DO NOT wash into sewer.
- It may be necessary to contain and dispose of Arsenic as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Arsenic** you should be trained on its proper handling and storage.

- ► A regulated, marked area should be established where Arsenic is handled, used or stored as required by the OSHA Inorganic Arsenic Standard (29 CFR 1910.1018).
- ► Arsenic reacts with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) to cause fires and explosions.
- Arsenic reacts with ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC) and HYDROGEN GAS to produce toxic Arsine gas.
- Arsenic is not compatible with *powdered* METALS (such as ZINC, LITHIUM, RUBIDIUM and PLATINUM); BROMINE AZIDE; LEAD MONOXIDE; and MERCURY OXIDE.
- Store in tightly closed containers in a cool, well-ventilated area away from COMBUSTIBLES and HEAT.
- ► DO NOT store in metal tanks.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

ARSENIC

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS number** is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A **flammable** substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database maintained by federal EPA. The database contains information on human health effects that may result from exposure to various chemicals in the environment. **LEL** or **Lower Explosive Limit**, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A **mutagen** is a substance that causes mutations. A **mutation** is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

PIH is a DOT designation for chemicals which are Poison Inhalation Hazards.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A **teratogen** is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a measure of how readily a liquid or a solid mixes with air at its surface. A higher vapor pressure indicates a higher concentration of the substance in air and therefore increases the likelihood of breathing it in.

Common Name: ARSENIC

Synonyms: Gray Arsenic; Arsen CAS No: 7440-38-2 Molecular Formula: As RTK Substance No: 0152

Description: Silver-gray or white metallic, odorless, brittle solid

HAZARD DATA		
Hazard Rating	Firefighting	Reactivity
4 - Health	Arsenic is noncombustible, however, Arsenic dust or fine powder can explode when exposed to heat,	Arsenic reacts with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES,
0 - Fire	flame or hot surfaces.	CHLORATES, NITRATES, CHLORINE, BROMINE and
0 - Reactivity	Use dry chemical, CO ₂ , water spray or foam as	FLUORINE) to cause fires and explosions.
DOT#: UN 1558	POISONOUS GASES ARE PRODUCED IN FIRE,	SULFURIC and NITRIC) and HYDROGEN GAS to
ERG Guide #: 152	including Arsenic Oxides.	produce toxic Arsine gas.
Hazard Class: 6.1 (Poison)	Use water spray to keep fire-exposed containers cool.	Arsenic is not compatible with <i>powdered</i> METALS (such as ZINC, LITHIUM, RUBIDIUM and PLATINUM); BROMINE AZIDE; LEAD MONOXIDE; and MERCURY OXIDE.

SPILL/LEAKS

Isolation Distance:

Spills: 25 to 50 meters (75 to 150 feet)

Fire: 800 meters (1/2 mile)

Moisten spilled material first or use a HEPA-filter vacuum for clean-up.

DO NOT wash into sewer.

Toxic to aquatic organisms.

EXPOSURE LIMITS

 OSHA:
 0.01 mg/m³, 8-hr TWA

 NIOSH:
 0.002 mg/m³, 15-min Ceiling

 ACGIH:
 0.01 mg/m³, 8-hr TWA

 IDLH:
 5 mg/m³

HEALTH EFFECTS		
Eyes:	Irritation, burns, red and watery eyes	
Skin:	Irritation, burns, itching, rash and loss of pigment	
Inhalation:	Nose and throat irritation with coughing, wheezing and hoarseness	
	Weakness, headache, nausea, vomiting, and muscle cramps	
Chronic:	Cancer (skin and lung) in humans	

PHYSICAL PROPERTIES

Odor Threshold:	Odorless
Flash Point:	Noncombustible solid
Vapor Pressure:	1 mm Hg at 701°F (372°C)
Specific Gravity:	5.7 (water = 1)
Water Solubility:	Insoluble
Boiling Point:	1,350°F (613°C)
Ionization Potential:	9.87 eV
Molecular Weight:	74.9

	PROTECTIVE EQUIPMENT
Gloves:	Natural Rubber, Nitrile or Silver Shield®
Coveralls:	DuPont Tyvek®
Respirator:	<0.1 mg/m ³ - Full facepiece APR with High efficiency filter
	<0.5 mg/m -Supplied air

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn. Seek medical attention.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water.

Begin artificial respiration if breathing has stopped and CPR if necessary.

Transfer to a medical facility.

April 2008

Hazardous Substance Fact Sheet

Common Name: BENZENE

Synonyms: Benzin; Benzol; Phenyl Hydride

Chemical Name: Benzene

Date: January 2001 Revision: October 2008

Description and Use

Benzene is a clear, colorless liquid with a sweet *Petroleum*-like odor. It is used as a solvent and in making plastics, resins dyes and pesticides. It is also found in *Gasoline*.

► ODOR THRESHOLD= 12 ppm

 Odor thresholds vary greatly. Do not rely on odor alone to determine potentially hazardous exposures.

Reasons for Citation

- Benzene is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS, NFPA and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- ▶ Remove the person from exposure
- Begin rescue breathing (using universal precautions) if
- breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	71-43-2
RTK Substance Number:	0197
DOT Number:	UN 1114

EMERGENCY RESPONDERS >>>> SEE BACK PAGE

Hazard Summary		
Hazard Rating	NJDOH	NFPA
HEALTH	4	2
FLAMMABILITY	-	3
REACTIVITY	-	0
CARCINOGEN		
FLAMMABLE		
POISONOUS GASES AF	RE PRODUCED IN FI	RE
CONTAINERS MAY EXP	PLODE IN FIRE	

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Benzene can affect you when inhaled and by passing through the skin.
- ▶ Benzene is a CARCINOGEN and MUTAGEN. HANDLE WITH EXTREME CAUTION.
- ▶ Benzene can irritate the skin and eyes with drying and scaling of the skin.
- ► Inhaling Benzene can irritate the nose and throat.
- Benzene can cause headache, dizziness, nausea and vomiting. Convulsions and coma, or sudden death from irregular heartbeat, may follow high exposure.
- Repeated exposure can cause damage to the blood cells (aplastic anemia).
- ► Benzene is a FLAMMABLE LIQUID and a DANGEROUS FIRE HAZARD.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is **1 ppm** averaged over an 8-hour workshift and **5 ppm**, not to be exceeded during any 15-minute work period.
- NIOSH: The recommended airborne exposure limit (REL) is **0.1 ppm** averaged over a 10-hour workshift and **1 ppm**, not to be exceeded during any 15-minute work period.
- ACGIH: The threshold limit value (TLV) is **0.5 ppm** averaged over an 8-hour workshift and **2.5 ppm** as a STEL (short-term exposure limit).
- Benzene is a CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.nj.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- ➤ You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to **Benzene**:

- ► Contact can irritate the skin and eyes.
- Inhaling Benzene can irritate the nose and throat causing coughing and wheezing.
- Benzene can cause headache, dizziness, lightheadedness, nausea and vomiting. Convulsions and coma, or sudden death from irregular heartbeat, may follow high exposure.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Benzene** and can last for months or years:

Cancer Hazard

- ▶ Benzene is a CARCINOGEN in humans. It has been shown to cause leukemia.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

There is limited evidence that Benzene is a teratogen in animals. Until further testing has been done, it should be treated as a possible teratogen in humans.

Other Effects

- ▶ Benzene can cause drying and scaling of the skin.
- Repeated exposure can cause damage to the blood cells (aplastic anemia).

Medical

Medical Testing

Before first exposure and every 12 months thereafter, OSHA requires your employer to provide (for persons exposed to greater than **0.5 ppm** of *Benzene*) a work and medical history and exam, which shall include:

- Thorough physical examination
- Complete blood count (CBC)
- Any other tests determined necessary by the examining physician

OSHA requires your employer to provide you and your doctor with a copy of the OSHA *Benzene* Standard (29 CFR 1910.1028).

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- ► Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.
- In addition, the following may be useful or required:
- Specific engineering controls are required for this chemical by OSHA. Refer to the OSHA *Benzene* Standard (29 CFR 1910.1028).
- Before entering a confined space where Benzene may be present, check to make sure that an explosive concentration does not exist.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Benzene. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Polyvinyl Alcohol, Silver Shield®/4H®, Viton and Fluoroelastomer for gloves and Tychem® CPF 3, F, BR, LV, Responder®, and TK; Zytron® 300; and ONESuit® TEC, or the equivalent, as protective materials for *Hydrocarbons*, *Aromatic*.

All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear indirect-vent, impact and splash resistant goggles when working with liquids.
- Wear non-vented, impact resistant goggles when working with fumes, gases, or vapors.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.
- Do not wear contact lenses when working with this substance.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 0.5 ppm, use a NIOSH approved full facepiece respirator with an organic vapor cartridge. Increased protection is obtained from full facepiece powered-air purifying respirators.
- Leave the area immediately if (1) while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect Benzene, (2) while wearing particulate filters abnormal resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Consider all potential sources of exposure in your workplace. You may need a combination of filters, prefilters or cartridges to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Where the potential exists for exposure over 5 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
- Exposure to 500 ppm is immediately dangerous to life and health. If the possibility of exposure above 500 ppm exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

if employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- ▶ Benzene is a FLAMMABLE LIQUID.
- Use dry chemical, CO₂, water spray or foam as extinguishing agents.
- Use water as fog, as spray may be ineffective and may scatter and spread fire.
- ▶ POISONOUS GASES ARE PRODUCED IN FIRE.
- ▶ CONTAINERS MAY EXPLODE IN FIRE.
- Use water spray to reduce vapors and keep containers cool.
- Vapors may travel to a source of ignition and flash back.
- Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source.

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Benzene is spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- ▶ Eliminate all ignition sources.
- Absorb liquids in vermiculite, dry sand, earth, or a similar material and deposit in sealed containers.
- ► Ventilate area of spill or leak.
- Keep Benzene out of confined spaces, such as sewers, because of the possibility of an explosion.
- Use water spray to reduce vapors and keep containers cool.
- ► DO NOT wash into sewer.
- It may be necessary to contain and dispose of Benzene as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Benzene** you should be trained on its proper handling and storage.

- A regulated, marked area should be established where Benzene is handled, used or stored as required by the OSHA Benzene Standard (29 CFR 1910.1028).
- ► Benzene reacts violently or explosively with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC).
- ► Benzene ignites on contact with CHROMIC ANHYDRIDE.
- ► Benzene is not compatible with LIQUID OXYGEN, HYDROGEN, and RANEY NICKEL.
- Store in tightly closed containers in a cool, well-ventilated area away from AIR and HEAT.

- Benzene attacks some RUBBER, COATINGS and PLASTICS.
- Sources of ignition, such as smoking and open flames, are prohibited where Benzene is used, handled, or stored.
- Metal containers involving the transfer of Benzene should be grounded and bonded.
- Use explosion-proof electrical equipment and fittings wherever Benzene is used, handled, manufactured, or stored.
- Use only non-sparking tools and equipment, especially when opening and closing containers of Benzene.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

BENZENE

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS number** is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A **flammable** substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database maintained by federal EPA. The database contains information on human health effects that may result from exposure to various chemicals in the environment. LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A **mutagen** is a substance that causes mutations. A **mutation** is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

PIH is a DOT designation for chemicals which are Poison Inhalation Hazards.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A **teratogen** is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a measure of how readily a liquid or a solid mixes with air at its surface. A higher vapor pressure indicates a higher concentration of the substance in air and therefore increases the likelihood of breathing it in.

Common Name: BENZENE

Synonyms: Benzin; Benzol; Phenyl Hydride CAS No: 71-43-2 Molecular Formula: C₆H₆ RTK Substance No: 0197

Description: Clear, colorless liquid with a sweet Petroleum-like odor

HAZARD DATA		
Hazard Rating 4 - Health 3 - Fire 0 - Reactivity DOT#: UN 1114 ERG Guide #: 130 Hazard Class: 3	Firefighting FLAMMABLE LIQUID Use dry chemical, CO ₂ , water spray or foam as extinguishing agents. Use water as fog, as spray may be ineffective and may scatter and spread fire. POISONOUS GASES ARE PRODUCED IN FIRE. CONTAINERS MAY EXPLODE IN FIRE. Use water spray to reduce vapors and keep containers cool.	Reactivity Benzene reacts violently or explosively with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC). Benzene ignites on contact with CHROMIC ANHYDRIDE. Benzene is not compatible with LIQUID OXYGEN, HYDROGEN, and RANEY NICKEL.
(Flammable)	Vapors may travel to a source of ignition and flash back. Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source.	

SPILL/LEAKS

Isolation Distance:

OSHA: NIOSH: ACGIH:

IDLH:

Small Spill: 30 meters (100 feet) Large Spill: 60 meters (200 feet)

Fire: 800 meters (1/2 mile)

Absorb liquids in vermiculite, dry sand, earth, or a similar material and deposit in sealed containers. Keep Benzene out of confined spaces, such as sewers, because of the possibility of an explosion. DO NOT wash into sewer.

Benzene is very toxic to aquatic organisms.

......

EXPOSURE LIMITS
1 ppm, 8-hr TWA; 5 ppm, 15-min STEL
0.1 ppm, 10-hr TWA; 1 ppm, 15-min STEL
0.5 ppm, 8-hr TWA; 2.5 ppm, 15-min STEL

500 ppm

ERPG-1: 50 ppm; ERPG-2: 150 ppm EPRG-3: 1,000 ppm

	HEALTH EFFECTS
Eyes:	Irritation
Skin:	Irritation
Inhalation:	Nose and throat irritation with coughing and wheezing
	Headache, dizziness, convulsions and coma
Chronic:	Cancer (leukemia) in humans

PHYSICAL PROPERTIES

Odor Threshold:	12 ppm
Flash Point:	12ºF (-11ºC)
LEL:	1%
UEL:	8%
Auto Ignition Temp:	928° to 1,076°F (498° to 580°C)
Vapor Density:	2.7 (air = 1)
Vapor Pressure:	75 mm Hg at 68°F (20°C)
Specific Gravity:	0.88 (water = 1)
Water Solubility:	Slightly soluble
Boiling Point:	176°F (80°C)
Freezing Point:	42°F (6°C)
Ionization Potential:	9.24 eV
Molecular Weight:	78.1

	PROTECTIVE EQUIPMENT
Gloves:	Polyvinyl Alcohol, Silver Shield®/4H®, Viton and Fluoroelastomer (>8-hr breakthrough)
Coveralls:	Tychem® CPF 3, F, BR, LV, Responder®, and TK; Zytron® 300; and ONESuit® TEC (>8-hr breakthrough for <i>Hydrocarbons</i> ,
Respirator:	Aromatic)
	>0.5 ppm - Supplied air or SCBA

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

- Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.
- Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water.
- Begin artificial respiration if breathing has stopped and CPR if necessary.

Transfer promptly to a medical facility.

Right to Know Hazardous Substance Fact Sheet

Common Name: BENZO(a)PYRENE

Synonyms: 3,4-Benzopyrene; B[a]P

Chemical Name: Benzo[a]pyrene

Date: July 1998 Revision: October 2007

Description and Use

Benzo(a)pyrene is a pale yellow, crystalline solid or powder with a faint aromatic odor. In its pure form it is used as a laboratory reagent. It also forms as a gaseous by-product when certain carbon substances burn, such as coal tar chemicals, and is found in cigarette smoke.

Reasons for Citation

- Benzo(a)pyrene is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS, and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing.

Skin Contact

Remove contaminated clothing. Wash contaminated skin with soap and water.

Inhalation

- ▶ Remove the person from exposure.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	50-32-8
RTK Substance Number:	0207
DOT Number:	UN 3077

EMERGENCY RESPONDERS >>>> SEE BACK PAGE

Hazard Summary			
Hazard Rating	NJDOH	NFPA	
HEALTH	3	-	
FLAMMABILITY	1	-	
REACTIVITY	0	-	
CARCINOGEN			

POISONOUS GASES ARE PRODUCED IN FIRE

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Benzo(a)pyrene can affect you when inhaled and by passing through the skin.
- Benzo(a)pyrene is a CARCINOGEN. HANDLE WITH EXTREME CAUTION.
- Benzo(a)pyrene may damage the developing fetus.
- Contact can irritate and burn the eyes.
- Benzo(a)pyrene can irritate the skin causing a rash or burning feeling on contact.
- Repeated exposure can cause thickening and darkening of the skin.
- Except in laboratories, Benzo(a)pyrene is usually found mixed with other "coal tar pitch" chemicals.
- For more information, consult the Right to Know Hazardous Substance Fact Sheets on COAL TAR PITCH, CREOSOTE, CHRYSENE, and ANTHRACENE.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is **0.2 mg/m³** (as Coal Tar Pitch Volatiles) averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is **0.1 mg/m³** (as the *Cyclohexane-extractable fraction*) averaged over a 10-hour workshift.
- ACGIH: Recommends that exposure by all routes be controlled to levels as low as possible.
- Benzo(a)pyrene is a PROBABLE CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.nj.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to **Benzo(a)pyrene**:

- ► Contact can irritate and burn the eyes.
- Benzo(a)pyrene can irritate the skin causing a rash or burning feeling on contact. Exposure to a combination of sunlight and this chemical can increase these effects.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Benzo(a)pyrene** and can last for months or years:

Cancer Hazard

- Benzo(a)pyrene is a PROBABLE CARCINOGEN in humans. There is some evidence that is causes stomach, skin, lung, blood, spleen, pancreas, and mammary cancer in animals.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

- Benzo(a)pyrene may damage the developing fetus.
- There is limited evidence that Benzo(a)pyrene may damage the male and female reproductive systems.

Other Effects

 Repeated exposure can cause thickening and darkening of the skin and warts.

Medical

Medical Testing

There is no special test for this chemical. However, seek medical attention if illness occurs or overexposure is suspected.

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

- Sunlight may cause a rash to develop in people exposed to Benzo(a)pyrene and increases the risk of skin cancer.
- Tobacco smoke also contains Benzo(a)pyrene. Smoking may increase the risk of lung cancer with exposure to Benzo(a)pyrene.

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- ► Label process containers.
- Provide employees with hazard information and training.
- ► Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.

Common Name: GASOLINE

Synonyms: Benzin, Motor Fuel; Petrol CAS No: 8006-61-9 Molecular Formula: C_5H_{12} to C_9H_{20} (Mixture of hydrocarbons which vary by grade) RTK Substance No: 0957

Description: Clear, colorless to amber-colored liquid with a petroleum odor

			IAZ	ARD DAT	A
Hazard R	ating	Firefighting			Reactivity
2 - Health 3 - Fire 0 - Reactivit DOT#: UN ERG Guide Hazard Clas (Flar	ty 1203 #: 128 ss: 3 nmable)	FLAMMABLE LIQUID Use dry chemical, CO ₂ , alcohol-re- other foam extinguishing agents, a effective in fighting fires. POISONOUS GASES ARE PROD CONTAINERS MAY EXPLODE IN Use water spray to keep fire-expose Vapors may travel to a source of ig Vapor is heavier than air and may cause a fire or explosion far from	sistar as wa UCE FIRE sed co nition trave	nt foam or ater may not be D IN FIRE. E. ontainers cool. n and flash back. I a distance to ource.	Gasoline may react violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and NITRIC ACID.
	SP	ILL/LEAKS		tate charges.	PHYSICAL PROPERTIES
Isolation Di Spill: 50 me Fire: 800 me Absorb liquid similar mate disposal. Keep Gasoli sewers, bed Use only nor when openin DO NOT wa Gasoline is marine pollu ACGIH: 300 The Protectiv PAC-1 = 50 PAC-2 = 50	stance: ters (150 eters (1/2 ds in verm erial and p ine out of cause of th n-sparking and close sh into ser harmful to tant. EXPO: 0 ppm, 8-h ve Action (00 ppm, 00 ppm	feet) mile) iculite, dry sand, earth, or a lace into sealed containers for confined spaces, such as te possibility of an explosion. tools and equipment, especially sing containers of Gasoline . wer. aquatic organisms and is a SURE LIMITS r TWA; 500 ppm, STEL Criteria values are:	C C F	Odor Thresho Flash Point: LEL: UEL: Auto Ignition Vapor Densit; Vapor Pressu Specific Grav Water Solubil Boiling Point: Molecular We	old: 0.25 ppm -36°F (-38°C) 1.2% 7.6% Temp: 536° to 853°F (280° to 456°C) y: 3 to 4 (air = 1) are: 38 to 300 mm Hg at 68°F (20°C) vity: 0.73 (water = 1) lity: Insoluble : 140° to 390°F (60° to 199°C) eight: 72 to 100 PROTECTIVE EQUIPMENT litrile and Viton (>8-hr breakthrough) 'ychem® BR, LV, Responder® and TK (>8-hr reakthrough) '300 ppm - Supplied air or SCBA
<u></u>			Ē	EIDET	
Eyes: Skin: Inhalation:	Irritation Irritation Nose, th coughing breath Headach blurred v passing	and burns and burns roat and lung irritation with g, wheezing and shortness of ne, nausea, weakness, dizziness, rision, irregular heartbeat, and out	R F C I B T	Contact lenses if Aurickly remove of arge amounts of Regin artificial res ransfer prompting	AID AND DECONTAMINATION son from exposure. arge amounts of water for at least 15 minutes. Remove worn. Seek medical attention. contaminated clothing and wash contaminated skin with i soap and water. spiration if breathing has stopped and CPR if necessary. y to a medical facility

GASOLINE

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS** number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion. **mg/m³** means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Gasoline is spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Absorb liquids in vermiculite, dry sand, earth, or a similar material and place into sealed containers for disposal.
- Keep Gasoline out of confined spaces, such as sewers, because of the possibility of an explosion.
- Use water spray to keep containers cool.
- Ventilate and wash area after clean-up is complete.
- DO NOT wash into sewer.
- It may be necessary to contain and dispose of Gasoline as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Gasoline** you should be trained on its proper handling and storage.

- Gasoline may react violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and NITRIC ACID.
- Store in tightly closed containers in a cool, well-ventilated area.
- Sources of ignition, such as smoking and open flames, are prohibited where Gasoline is used, handled, or stored.
- Metal containers involving the transfer of Gasoline should be grounded and bonded.
- Use explosion-proof electrical equipment and fittings wherever Gasoline is used, handled, manufactured, or stored.
- Use only non-sparking tools and equipment, especially when opening and closing containers of Gasoline.
- Flow or agitation may generate electrostatic charges.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

GASOLINE

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctribanding/.

The following work practices are also recommended:

- ► Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- ► Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.
- In addition, the following may be useful or required:
- Before entering a confined space where Gasoline may be present, check to make sure that an explosive concentration does not exist.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Gasoline. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Nitrile and Viton for gloves, and Tychem® BR, LV, Responder® and TK, or the equivalent, as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear indirect-vent, impact and splash resistant goggles when working with liquids.
- If additional protection is needed for the entire face, use in combination with a face shield. A face shield should not be used without another type of eye protection.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

Where the potential exists for exposure over 300 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- ► Gasoline is a FLAMMABLE LIQUID.
- Use dry chemical, CO₂, alcohol-resistant foam or other foam extinguishing agents, as water may not be effective in fighting fires.
- ▶ POISONOUS GASES ARE PRODUCED IN FIRE.
- ► CONTAINERS MAY EXPLODE IN FIRE.
- ▶ Use water spray to keep fire-exposed containers cool.
- > Vapors may travel to a source of ignition and flash back.
- Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.nj.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to Gasoline:

- Contact can irritate and burn the skin and eyes with possible eye damage.
- Inhaling Gasoline can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath.
- High exposure can cause headache, nausea, weakness, dizziness, blurred vision, irregular heartbeat, poor coordination, lightheadedness, and passing out.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Gasoline** and can last for months or years:

Cancer Hazard

- Gasoline may be a CARCINOGEN in humans since it has been shown to cause liver cancer in animals.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

There is limited evidence that Gasoline may damage the developing fetus and may affect female fertility.

Other Effects

- Prolonged or repeated exposure can cause drying and cracking of the skin with redness.
- Repeated high exposure may affect the lungs and brain.
- Gasoline may damage the liver.

Medical

Medical Testing

If symptoms develop or overexposure is suspected, the following are recommended:

- Chest x-ray and lung function tests
 - Liver function tests
- Exam of the nervous system
- ► EEG

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

- Smoking can cause heart disease, lung cancer, emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
- More than light alcohol consumption can cause liver damage. Drinking alcohol can increase the liver damage caused by Gasoline.

Right to Know Hazardous Substance Fact Sheet

Common Name: GASOLINE

Synonyms: Benzin; Motor Fuel; Petrol

Chemical Name: Gasoline, Natural

Date: April 2003 Revision: December 2008

Description and Use

Gasoline is a clear, coloriess to amber-colored liquid with a petroleum odor. It is a blend of hydrocarbons used as an automotive fuel and as a solvent.

ODOR THRESHOLD= 0.25 ppm

 Odor thresholds vary greatly. Do not rely on odor alone to determine potentially hazardous exposures.

Reasons for Citation

- Gasoline is on the Right to Know Hazardous Substance List because it is cited by ACGIH, DOT, NIOSH, DEP, IARC and NEPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	8006-61-9
RTK Substance Number;	0957
DOT Number:	UN 1203

EMERGENCY RESPONDERS >>>> SEE BACK PAGE

Hazard Summary				
Hazard Rating	NJDOH	NFPA		
HEALTH	2	1		
FLAMMABILITY	-	3		
REACTIVITY	(SE)	0		
CARCINOGEN FLAMMABLE POISONOUS GASES AI CONTAINERS MAY EXE	RE PRODUCED IN F	IRE		

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=savere

- Gasoline can affect you when inhaled and by passing through the skin.
- Gasoline should be handled as a CARCINOGEN-WITH EXTREME CAUTION.
- Contact can irritate and burn the skin and eyes with possible eve damage.
- Inhaling Gasoline can irritate the nose, throat and lungs.
- High exposure can cause headache, dizziness, lightheadedness, and passing out.
- Prolonged or repeated exposure can cause drying and cracking of the skin with redness.
- Repeated high exposure may affect the lungs and brain.
- ► Gasoline may damage the liver.
- Gasoline may contain Lead and Benzene. For more information, consult the Right to Know Hazardous Substance Fact Sheets on BENZENE and TETRAETHYL LEAD.
- ► Gasoline is a FLAMMABLE LIQUID and a DANGEROUS FIRE HAZARD.

Workplace Exposure Limits

- NIOSH: Recommends that exposure to occupational carcinogens be limited to the lowest feasible concentration.
- ACGIH: The threshold limit value (TLV) is **300 ppm** averaged over an 8-hour workshift and **500 ppm** as a STEL (short-term exposure limit).
- ▶ Gasoline may be a CARCINOGEN in humans. There may be <u>no</u> safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

Common Name: CHROMIUM

Synonyms: Chrome; Metallic Chromium CAS No: 7440-47-3 Molecular Formula: Cr RTK Substance No: 0432

Description: Hard, gray, odorless solid with a metallic luster

HAZARD DATA				
Hazard Rating	Firefighting	Reactivity		
2 - Health 3 - Fire 0 - Reactivity DOT#: UN 3089 ERG Guide #: 170 Hazard Class: 4.1 (Flammable Solid)	Extinguish fire using an agent suitable for type of surrounding fire. Chromium itself does not burn. Chromium in <i>powder</i> form is FLAMMABLE and a DANGEROUS FIRE HAZARD. It may also spontaneously explode in air. Use dry sand or dry chemical extinguishing agents to fight Chromium <i>powder</i> fires. POISONOUS GASES ARE PRODUCED IN FIRE. CONTAINERS MAY EXPLODE IN FIRE. DO NOT get water inside container.	Chromium may react violently or explosively with AMMONIUM NITRATE; CARBON DIOXIDE ATMOSPHERES; BROMINE PENTAFLUORIDE; LITHIUM; NITROGEN OXIDES; and SULFUR DIOXIDE. Chromium is not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); STRONG ACIDS (such as HYDROCHLORIC and SULFURIC); and ALKALI		

Odor Threshold;

Vapor Pressure:

Specific Gravity:

Water Solubility:

Boiling Point:

Melting Point:

Flash Point:

SP	ILL	LE/	AKS
----	-----	-----	-----

Isolation Distance:

Spill: 25 meters (75 feet)

Fire: 800 meters (1/2 mile)

Moisten spilled material first or use a HEPA-filter vacuum for clean-up and place into sealed containers for disposal. Keep Chromium *powder* out of confined spaces, such

as sewers, because of the possibility of an explosion. DO NOT wash into sewer.

EXPOSURE LIMITS

 OSHA:
 1 mg/m³, 8-hr TWA

 NIOSH:
 0.5 mg/m³, 8-hr TWA

 ACGIH:
 0.5 mg/m³, 8-hr TWA

 IDLH:
 250 mg/m³

The Protective Action Criteria values are: PAC-1 = 1.5 mg/m³ PAC-3 = 250 mg/m³ PAC-2 = 2.5 mg/m³

Molecular W	leight: 52
	PROTECTIVE EQUIPMENT
Gloves:	Nitrile or Natural Rubber
Coveralis:	Tyvek®
Bennington	

7.2 (water = 1)

4,788°F (2,642°C)

3,452°F (1,900°C)

Respirator: >0.5 mg/m³ - full facepiece APR with High efficiency filters >1.5 mg/m³ - SCBA

PHYSICAL PROPERTIES

Noncombustible solid, Flammable powder

<0 mm Hg at 68°F (20°C) (approximate)

Odorless

Insoluble

	HEALTH EFFECTS
Eyes:	Irritation, burns and possible eye damage
Skin:	Irritation, burns, itching, rash and skin ulcers
Inhalation:	Nose and throat irritation with coughing and wheezing
	Headache, fever and chills

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 30 minutes. Remove contact lenses if worn. Seek medical attention.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water.

Begin artificial respiration if breathing has stopped and CPR if necessary. **Transfer** promptly to a medical facility.

CHROMIUM

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS** number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion. **mg/m³** means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Page 4 of 6

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Chromium powder is spilled, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Moisten spilled material first or use a HEPA-filter vacuum for clean-up and place into sealed containers for disposal.
- Keep Chromium powder out of confined spaces, such as sewers, because of the possibility of an explosion.
- Ventilate and wash area after clean-up is complete.
- DO NOT wash into sewer.
- It may be necessary to contain and dispose of Chromium as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Chromium** you should be trained on its proper handling and storage.

- Chromium may react violently or explosively with AMMONIUM NITRATE; CARBON DIOXIDE ATMOSPHERES; BROMINE PENTAFLUORIDE; LITHIUM; NITROGEN OXIDES; and SULFUR DIOXIDE.
- Chromium is not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE): STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE): STRONG ACIDS (such as HYDROCHLORIC and SULFURIC); and ALKALI METALS (such as SODIUM and POTASSIUM).
- Store in tightly closed containers in a cool, well-ventilated area.
- Sources of ignition, such as smoking and open flames, are prohibited where Chromium powder is used, handled, or stored.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- ► Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.
- In addition, the following may be useful or required:
- Before entering a confined space where Chromium powder may be present, check to make sure that an explosive concentration does not exist.
- Use a vacuum or a wet method to reduce dust during cleanup. DO NOT DRY SWEEP.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Chromium. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Nitrile and Natural Rubber for gloves, and Tyvek®, or the equivalent, as a protective material for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear eye protection with side shields or goggles.
- If additional protection is needed for the entire face, use in combination with a face shield. A face shield should not be used without another type of eye protection.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 0.5 mg/m³, use a NIOSH approved negative pressure, air-punfying, particulate filter respirator with an N, R or P95 filter. More protection is provided by a full facepiece respirator than by a half-mask respirator, and even greater protection is provided by a powered-air purifying respirator.
- ► Leave the area immediately if (1) while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect Chromium, (2) while wearing particulate filters abnormal resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Consider all potential sources of exposure in your workplace. You may need a combination of filters, prefilters or cartridges to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Where the potential exists for exposure over 5 mg/m³, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
- Exposure to 250 mg/m³ is immediately dangerous to life and health. If the possibility of exposure above 250 mg/m³ exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressuredemand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Extinguish fire using an agent suitable for type of surrounding fire. Chromium itself does not burn.
- Chromium in powder form is FLAMMABLE and a DANGEROUS FIRE HAZARD. It may also spontaneously explode in air.
- Use dry sand or dry chemical extinguishing agents to fight Chromium powder fires.
- ▶ POISONOUS GASES ARE PRODUCED IN FIRE.
- ► CONTAINERS MAY EXPLODE IN FIRE.
- DO NOT get water inside container.

Page 2 of 6

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.ni.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Facl Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to Chromium:

- Contact can irritate and burn the skin and eyes with possible eye damage.
- Inhaling Chromium can irritate the nose and throat causing coughing and wheezing.
- Exposure to Chromium fumes can cause "metal fume fever." This is a flu-like illness with symptoms of metallic taste in the mouth, headache, fever and chills, aches, chest tightness and cough. The symptoms may be delayed for several hours after exposure and usually last for a day or two.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Chromium** and can last for months or years:

Cancer Hazard

While Chromium has been tested, it is not classifiable as to its potential to cause cancer.

Reproductive Hazard

There is no evidence that Chromium affects reproduction. This is based on test results presently available to the NJDHSS from published studies.

Other Effects

- Inhaling Chromium can cause a sore and/or a hole in the "bone" (septum) dividing the inner nose, sometimes with bleeding, discharge, and/or formation of a crust.
- Chromium may cause a skin allergy. If allergy develops, very low future exposure can cause itching and a skin rash.
- Chromium may cause an asthma-like allergy. Future exposure can cause asthma attacks with shortness of breath, wheezing, coughing, and/or chest tightness.
- Prolonged skin contact can cause burns, blisters and deep ulcers
- Chromium may affect the liver and kidneys.

Medical

Medical Testing

For frequent or potentially high exposure (half the TLV or greater), the following are recommended before beginning work and at regular times after that:

Lung function tests. The results may be normal if the person is not having an attack at the time of the test.

If symptoms develop or overexposure is suspected, the following are recommended:

- Examine your skin periodically for little bumps or blisters, the first sign of "chrome ulcers." If not treated early, these can last for years after exposure.
- Evaluation by a qualified allergist can help diagnose skin allergy.
- Liver and kidney function tests

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

- Smoking can cause heart disease, lung cancer, emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
- More than light alcohol consumption can cause liver damage. Drinking alcohol can increase the liver damage caused by Chromium.

Hazardous Substance Fact Sheet

Common Name: CHROMIUM

Synonyms: Chrome; Metallic Chromium

Chemical Name: Chromium

Date: January 2000 Revision: March 2009

Description and Use

Chromium is a hard, gray, odorless solid with a metallic luster. It is used in staintess and alloy steels, in making alloys, and as an isotope in medicine and research.

Reasons for Citation

- Chromium is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, DEP, IARC and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 30 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- Remove the person from exposure
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Controi: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	7440-47-3
RTK Substance Number:	0432
DOT Number:	UN 3089

EMERGENCY RESPONDERS >>>> SEE LAST PAGE

Hazard Summary

Hazard Rating	NJDOH	NFPA
HEALTH	2	
FLAMMABILITY	3	+
REACTIVITY	0	-

FLAMMABLE POWDER

POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Chromium can affect you when inhaled.
- Contact can irritate and burn the skin and eyes with possible eye damage.
- Inhaling Chromium can irritate the nose and throat.
- Exposure to Chromium fumes can cause a flu-like illness called metal fume fever.
- Chromium may cause a skin allergy and an asthma-like allergy
- Inhaling Chromium can cause a sore and/or a hole in the "bone" (septum) dividing the inner nose.
- Chromium may affect the liver and kidneys.
- Chromium in powder form is FLAMMABLE and a DANGEROUS FIRE HAZARD. It may also spontaneously explode in air.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is 1 mg/m³ averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is 0.5 mg/m³ averaged over a 8-hour workshift.
- ACGIH: The threshold limit value (TLV) is 0.5 mg/m³ averaged over an 8-hour workshift.

Common Name: BENZO(a)PYRENE

Synonyms: 3,4-Benzopyrene, B[a]P CAS No: 50-32-8 Molecular Formula: C₂₀ H₁₂ RTK Substance No: 0207

Description: Pale yellow, crystalline solid or powder

HAZARD DATA		
Hazard Rating	Firefighting	Reactivity
3 - Health 1 - Fire 0 - Reactivity DOT#: UN 3077 ERG Guide #: 171 Hazard Class: 9 (Miscellaneous Hazardous Materials)	Benzo(a)pyrene may burn, but does not readily ignite. Use dry chemical, CO ₂ , water spray or foam as extinguishing agents. POISONOUS GASES ARE PRODUCED IN FIRE.	Benzo(a)pyrene reacts with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) to cause fires and explosions.

SPILL/LEAKS

Isolation Distance: 50 meters (150 feet)

Moisten spilled material first or use a HEPA-filter vacuum for clean-up.

Toxic to aquatic organisms.

EXPOSURE LIMITS

OSHA: 0.2 mg/m³, 8-hr TWA NIOSH: 0.1 mg/m³, 10-hr TWA ACGIH: lowest level possible IDLH LEVEL: 80 mg/m³ (as Coal Tar Pitch Volatiles)

HEALTH EFFECTS

Eyes:	Irritation and burns
Skin:	Irritation, rash and burning feeling
Chronic:	Cancer (stomach, skin, lung, blood, spleen, pancreas, and mammary) in animals.
	May affect the developing fetus
	Thickening and darkening of the skin and warts

PHYSICAL PROPERTIES

Odor Threshold:	Faint aromatic odor
Flash Point:	No information
Specific Gravity:	1.35
Vapor Density:	8.7 (air = 1)
Vapor Pressure:	5.49 X 10 ⁹ mm Hg at 77°F (25°C)
Water Solubility:	Insoluble
Boiling Point:	590° - 594°F (310° - 312°C)
Melting Point:	347° - 354 F (175° - 179°C)

PROTECTIVE EQUIPMENT

Gloves: Coveralis:	No information DuPont Tychem®, CPF-2, SL, CPF-4, Responder® (all >8-hr permeation time)
Boots:	No information
Respirator:	>0.1 mg/m ³ - Supplied air

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.

Remove contaminated clothing and wash contaminated skin with soap and water.

Transfer to a medical facility.

BENZO(a)PYRENE

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The CAS number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database maintained by federal EPA. The database contains information on human health effects that may result from exposure to various chemicals in the environment. LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

PIH is a DOT designation for chemicals which are Poison Inhalation Hazards.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a measure of how readily a liquid or a solid mixes with air at its surface. A higher vapor pressure indicates a higher concentration of the substance in air and therefore increases the likelihood of breathing it in.

BENZO(a)PYRENE

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

BENZO(a)PYRENE

- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

- Use a Class I, Type B, biological safety hood when working with Benzo(a)pyrene in a laboratory.
- Use a vacuum or a wet method to reduce dust during cleanup. DO NOT DRY SWEEP.
- ► Use a high efficiency particulate air (HEPA) filter when vacuuming. Do <u>not</u> use a standard shop vacuum.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Benzo(a)pyrene. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend DuPont Tychem® CPF-2, SL, CPF-4 and Responder® as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear eye protection with side shields or goggles.
- Do not wear contact lenses when working with this substance.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

Where the potential exists for exposure over 0.1 mg/m³, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positivepressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode. Exposure to 80 mg/m³ (as Coal Tar Pitch Volatiles) is immediately dangerous to life and health. If the possibility of exposure above 80 mg/m³ (as Coal Tar Pitch Volatiles) exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressuredemand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Benzo(a)pyrene may burn, but does not readily ignite.
- Use dry chemical, CO₂, water spray or foam as extinguishing agents.
- POISONOUS GASES ARE PRODUCED IN FIRE.

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Benzo(a)pyrene is spilled, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- ► Moisten spilled material first to reduce dust or use a HEPAfilter vacuum for clean-up.
- Ventilate and wash area after clean-up is complete.
- It may be necessary to contain and dispose of Benzo(a)pyrene as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP), Nuclear Regulatory Commission (NRC) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with Benzo(a)pyrene you should be trained on its proper handling and storage.

- A regulated, marked area should be established where Benzo(a)pyrene is handled, used, or stored.
- Benzo(a)pyrene reacts with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE).
- Store in tightly closed containers in a cool, well-ventilated area.
- Sources of ignition, such as smoking and open flames, are prohibited where Benzo(a)pyrene is used, handled, or stored in a manner that could create a potential fire or explosion hazard.

NUHealth Hazardous Substance Fact Sheet

Common Name: MERCURY, ELEMENTAL AND INORGANIC COMPOUNDS

Synonyms: Colloidal Mercury; Quicksilver

Chemical Name: Mercury

Date: May 2009 Revision: November 2009

Description and Use

Mercury is a heavy, silvery, liquid metal. It is used for gold recovery and in dental amalgams, thermometers, barometers and other gauges, and in dry cell batteries.

Reasons for Citation

- Mercury is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, DEP, IARC, IRIS and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention immediately.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water. Seek medical attention immediately.

Inhalation

- Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	7439-97-6
RTK Substance Number:	1183
DOT Number:	UN 2809

EMERGENCY RESPONDERS >>>> SEE LAST PAGE

nazara Summary		
Hazard Rating	NJDOH	NFPA
HEALTH	3	-
FLAMMABILITY	0	-
REACTIVITY	0	-
CORROSIVE		

POISONOUS GASES ARE PRODUCED IN FIRE

CICCICCO CAGES ARE I RODUCED IN FIRE

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Mercury can affect you when inhaled and may be absorbed through the skin.
- Contact can irritate the skin and eyes.
- Inhaling Mercury can irritate the nose, throat and lungs.
- Exposure can cause metallic taste in the mouth, nausea and vomiting, and abdominal pain.
- Mercury may cause a skin allergy and make the skin turn gray.
- Repeated exposure can cause Mercury poisoning with tremors, personality changes, trouble remembering and concentrating, and gum problems.
- Mercury may damage the kidneys.
- Mercury is a DOT CORROSIVE material.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is 0.1 mg/m³ averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is **0.05 mg/m³** (as Mercury vapor) averaged over a 10-hour workshift and **0.1 mg/m³** (as Mercury), not to be exceeded at any time.
- ACGIH: The threshold limit value (TLV) is 0.025 mg/m³ averaged over an 8-hour workshift.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website
 (www.nj.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file,
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to Mercury:

- Contact can irritate the skin and eyes.
- Inhaling Mercury can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath.
- Exposure can cause metallic taste in the mouth, nausea and vomiting, and abdominal pain.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Mercury** and can last for months or years:

Cancer Hazard

While Mercury has been tested, it is not classifiable as to its potential to cause cancer.

Reproductive Hazard

- There is limited evidence that Mercury may cause an increase in spontaneous abortions and menstrual disorders in exposed women.
- There is limited evidence that Mercury may affect male fertility.
- Mercury may also damage the developing fetus in animals.

Other Effects

- Mercury can imitate the lungs. Repeated exposure may cause bronchitis to develop with coughing, phlegm, and/or shortness of breath.
- Mercury may cause a skin allergy. If allergy develops, very low future exposure can cause itching and a skin rash.
- Long-term contact can cause the skin to turn gray, brown staining in the eyes, and may affect peripheral vision (ability to see to the sides).
- ▶ Repeated exposure or a very high single exposure can cause Mercury poisoning. Symptoms include tremors (shaking), trouble remembering and concentrating, gum problems, increased salivation, loss of appetite and weight, and changes in mood and personality. These can be severe and cause hallucinating and psychosis.
- Mercury may damage the kidneys.

Medical

Medical Testing

For frequent or potentially high exposure (half the TLV or greater), the following are recommended before beginning work and at regular times after that

- Exam of the nervous system (including handwriting test to detect early hand tremor)
- Urine Mercury level (usually less than 0.02 mg/liter)
- Kidney function tests

If symptoms develop or overexposure is suspected, the following is recommended:

- Lung function tests
- Exam of the eyes and vision
- Evaluation by a qualified allergist can help diagnose skin allergy.

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

- Smoking can cause heart disease, lung cancer, emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
- Creams to whiten or bleach skin may contain Mercury. If you use them, you may be at increased risk of Mercury poisoning. A high fish diet, especially of marine predatory fish (fish-eating fish), also may increase your blood Mercury levels.

MERCURY, ELEMENTAL AND INORGANIC COMPOUNDS

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctribanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

For clean-up, use a specialized charcoal-filtered vacuum or suction pump to avoid generating *Mercury vapor*. Do not disturb spilled material.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Mercury. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Butyl, Nitrile, Neoprene, Polyvinyl Chloride, Silver Shield®/4H® and Viton for gloves, and Tychem® fabrics, or the equivalent, as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear non-vented, impact resistant goggles when working with fumes, gases, or vapors.
- If additional protection is needed for the entire face, use in combination with a face shield. A face shield should not be used without another type of eye protection.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 0.05 mg/m³ (as Mercury vapor), or over 0.1 mg/m³ but less than 1 mg/m³ (as Mercury), use a NIOSH approved half-mask respirator with cartridges specific for Mercury vapor. These cartridges have end of service life indicators (ESLI) which visually indicate when filters must be changed.
- If while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect Mercury, or if while wearing particulate filters abnormal resistance to breathing is experienced, or eye irritation occurs while wearing a full facepiece respirator, leave the area immediately. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Be sure to consider all potential exposures in your workplace. You may need a combination of fitters, prefilters or cartridges to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Where the potential exists for exposure over 0.5 mg/m³ (as Mercury vapor) or over 1 mg/m³ (as Mercury), use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
- Exposure to 10 mg/m³ (as Mercury) is immediately dangerous to life and health. If the possibility of exposure above 10 mg/m³ exists, use a NIOSH approved selfcontained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Extinguish fire using an agent suitable for type of surrounding fire. Mercury itself does not burn.
- POISONOUS GASES ARE PRODUCED IN FIRE.
- Use water spray to keep fire-exposed containers cool.

MERCURY, ELEMENTAL AND INORGANIC COMPOUNDS

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Mercury is spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- ► Eliminate all ignition sources.
- Cover with a Sulfur compound to keep from vaporizing and collect with a charcoal filter vacuum. Kits specific for the clean-up of Mercury spills are available. DO NOT USE a regular or shop vacuum.
- ► Use Zinc or Copper flakes and a flashlight to check for remaining Mercury after clean-up.
- ▶ Ventilate and wash area of spill or leak.
- ▶ DO NOT wash into sewer.
- It may be necessary to contain and dispose of Mercury as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Mercury** you should be trained on its proper handling and storage.

- Mercury reacts with ACETYLENE to form explosive Acetylide.
- Mercury can form explosive compounds with AMMONIA and will explode when mixed with CHLORINE DIOXIDE; OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); and METHYL AZIDE.
- Mercury is not compatible with COMBUSTIBLE MATERIALS; METALS (such as ALUMINUM and COPPER); CALCIUM; SODIUM CARBIDE; AMINES; LITHIUM; and RUBIDIUM.
- Store in tightly closed containers in a cool, well-ventilated area.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

MERCURY, ELEMENTAL AND INORGANIC COMPOUNDS

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS** number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion. mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Common Name: MERCURY, ELEMENTAL AND INORGANIC COMPOUNDS

Synonyms: Colloidal Mercury; Quicksilver CAS No: 7439-97-6 Molecular Formula: Hg RTK Substance No: 1183 Description: Heavy, silvery, liquid metal

HAZARD DATA

Hazard Rating	Firefighting	Reactivity
3 - Health	Extinguish fire using an agent suitable for	Mercury reacts with ACETYLENE to form explosive <i>Acetylide</i> .
0 - Fire	does not burn.	explode when mixed with CHLORINE DIOXIDE; OXIDIZING
0 - Reactivity	POISONOUS GASES ARE PRODUCED IN FIRE.	AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE,
DOT#: UN 2809	Use water spray to keep fire-exposed	BROMINE and FLUORINE); STRONG ACIDS (such as
ERG Guide #: 172	containers cool.	HYDROCHLORIC, SULFURIC and NITRIC); and METHYL AZIDE.
Hazard Class: 8		Mercury is not compatible with COMBUSTIBLE MATERIALS;
(Corrosive)		METALS (such as ALUMINUM and COPPER); CALCIUM; SODIUM CARBIDE; AMINES; LITHIUM; and RUBIDIUM.

SPILL/LEAKS	PH	YSICAL PROPERTIES	
Isolation Distance:	Odor Threshold:	Odorless	
	Flash Point:	Nonflammable	
Spill: 50 meters (150 teet)	Vapor Density:	6.9 (air = 1)	
Fire: 500 meters (1/3 mile)	Vapor Pressure:	0.002 mm Hg at 77°F (25°C)	
Cover spill with a Sulfur compound to prevent	Specific Gravity:	13.6 (water = 1)	
vaporization and collect with a charcoal filter vacuum.	Water Solubility:	Insoluble	
Use Zinc or Copper flakes and a flashlight to check for	Boiling Point:	674°F (357°C)	
remaining Mercury after clean-up.	Melting Point:	-38°F (-39°C)	
Mercury is very toxic to aquatic life and	Ionization Potential:	10.4 eV	
bioaccumulates.	Molecular Weight:	200.6	

EXPOSURE LIMITS

NIOSH: 0.05 mg/m³, 10-hr TWA (as Mercury vapor) 0.1 mg/m³, Ceiling (as Mercury) ACGIH: 0.025 mg/m³, 8-hr TWA (as Mercury) **IDLH:** 10 mg/m³ (as Mercury)

The Protective Action Criteria values are:

- $PAC-1 = 0.3 \text{ mg/m}^3$
- PAC-2 = 2.05 mg/m³
- $PAC-3 = 4.1 \text{ mg/m}^3$

HEALTH EFFECTS

Eyes: Skin: Inhalation:	Irritation Irritation Nose, throat and lung irritation with coughing, wheezing and/or shortness of breath
	Nausea, vomiting and abdominal pain

Nonflammable
6.9 (air = 1)
0.002 mm Hg at 77°F (25°C)
13.6 (water = 1)
Insoluble
674°F (357°C)
-38°F (-39°C)
10.4 eV
200.6

PROTECTIVE EQUIPMENT

Gloves:	Butyl, Nitrile, Neoprene, Polyvinyl Chloride, Silver Shield®/4H® and Viton (>8-hr breakthrough)
Coveralls:	Tychem® fabrics (>8-hr breakthrough)
Respirator:	>0.025 mg/m ³ - full facepiece APR with cartridges specific for Mercury >0.3 mg/m ³ - SCBA

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn. Seek medical attention immediately.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water. Seek medical attention immediately. Begin artificial respiration if breathing has stopped and CPR if necessary. Transfer promptly to a medical facility.

November 2009

Right to Know Health Hazardous Substance Fact Sheet

Common Name: POLYCHLORINATED BIPHENYLS

Synonyms: Aroclor; Chlorodiphenyls; PCBs

Chemical Name: 1,1'-Biphenyl, Chloro Derivs.

Date: April 2002 **Revision: November 2008**

Description and Use

Polychlorinated Biphenyls are light yellow or colorless, thick, oily liquids. They are used in hydraulic and heat transfer liquids. They were formally used in electrical capacitators and transformers.

Reasons for Citation

- > Polychlorinated Biphenyls are on the Right to Know Hazardous Substance List because they are cited by OSHA. ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS, NFPA and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- Remove the person from exposure
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	1336-36-3	
RTK Substance Number:	1554	
DOT Number:	UN 2315	

EMERGENCY RESPONDERS >>>> SEE BACK PAGE Hazard Summary

NJDOH	NFPA
3	2
-	1
-	0
	NJDOH 3

Hazard Rating Key: 0=minimal, 1=slight, 2=moderate, 3=serious 4=severe

- Polychlorinated Biphenyls can affect you when inhated and by passing through the skin.
- Polychlorinated Biphenyls should be handled as CARCINOGENS and may be TERATOGENS. HANDLE WITH EXTREME CAUTION.
- Contact can irritate the skin and eves.
- Polychlorinated Biphenyls may cause brownish pigmentation of the skin, eyes and fingernails.
- Skin contact may cause an acne-like rash (chloracne).
- Inhaling the vapors can irritate the nose, throat and lungs.
- Exposure to Polychlorinated Biphenyls can cause headache, nausea, vomiting, loss of weight and abdominal pain.
- High exposure can damage the nervous system causing headache, numbness, weakness, and tingling ("pins and needles) in the arms and leas.
- Polychlorinated Biphenyls may damage the liver.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is 1 mg/m³ (42% Chlorine) and 0.5 mg/m³ (54% Chlorine) averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is 0.001 mg/m³ averaged over a 10-hour workshift.
- ACGIH: The threshold limit value (TLV) is 1 mg/m³ (42% Chlorine) and 0.5 mg/m³ (54% Chlorine) averaged over an 8-hour workshift.
- Polychlorinated Biphenyls are PROBABLE CARCINOGENS and TERATOGENS in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
- The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.ni.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- ➤ You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to **Polychiorinated Biphenyls**:

- Contact can irritate the skin and eyes.
- Inhaling the vapors can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath.
- Exposure to Polychlorinated Biphenyls can cause headache, nausea, vomiting, loss of weight and abdominal pain.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Polychlorinated Biphenyls** and can last for months or years:

Cancer Hazard

- ► Polychlorinated Biphenyls are PROBABLE
- CARCINOGENS in humans. There is evidence that they cause cancer of the skin, brain, and pancreas in humans and have been shown to cause liver and pituitary cancer, and leukemia, in animals.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

- Polychlorinated Biphenyls may be TERATOGENS in humans since they are teratogens in animals.
- There is limited evidence that Polychlorinated Biphenyls may affect male and female fertility.

Other Effects

- Polychlorinated Biphenyls may cause brownish pigmentation of the skin, eyes and fingernails.
- Skin contact may cause an acne-like rash (chloracne).
- High exposure can damage the nervous system causing headache, numbness, weakness, and tingling ("pins and needles) in the arms and legs.
- Polychlorinated Biphenyls may damage the liver.

Medical

Medical Testing

Before beginning employment and at regular times after that, for frequent or potentially high exposures, the following are recommended:

- Liver function tests
- Exam of the skin and fingemails

If symptoms develop or overexposure is suspected, the following are recommended:

- ► Blood PCB levels
- Exam of the nervous system

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

More than light alcohol consumption can cause liver damage. Drinking alcohol can increase the liver damage caused by Polychlorinated Biphenyls.

POLYCHLORINATED BIPHENYLS

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctribanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

Where possible, transfer Polychlorinated Biphenyis from drums or other containers to process containers in an enclosed system.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Polychlorinated Biphenyls. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Butyl, Neoprene, Polyvinyl Chloride, Silver Shield®/4H® and Viton for gloves, and Tychem® CPF 2, SL, CPF 4 and Responder®, or the equivalent, as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear indirect-vent, impact and splash resistant goggles when working with liquids.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134),

- Where the potential exists for exposure over 0.001 mg/m³, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
- Exposure to 5 mg/m³ is immediately dangerous to life and health. If the possibility of exposure above 5 mg/m³ exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Polychiorinated Biphenyls may burn, but do not readily Ignite.
- Use dry chemical, CO₂, water spray or alcohol-resistant foam as extinguishing agents.
- POISONOUS GASES ARE PRODUCED IN FIRE, including Polychlorinated Dibenzofurans and Chlorinated Dibenzo-pdioxins.
- Use water spray to keep fire-exposed containers cool.

POLYCHLORINATED BIPHENYLS

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If **Polychlorinated Biphenyls** are spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Absorb liquids in vermiculite, dry sand, earth, or a similar material and place into sealed containers for disposal.
- Ventilate and wash area after clean-up is complete.
- ▶ DO NOT wash into sewer.
- It may be necessary to contain and dispose of Polychlorinated Biphenyls as HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Polychlorinated Biphenyls** you should be trained on its proper handling and storage.

- ► Polychlorinated Biphenyls are not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC).
- Store in tightly closed containers in a cool, well-ventilated area away from STRONG ULTRAVIOLET LIGHT and SUNLIGHT.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

POLYCHLORINATED BIPHENYLS

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS number** is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion. mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A **teratogen** is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Hydrogen*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Common Name: POLYCHLORINATED BIPHENYLS

Synonyms: Aroclor; Chlorodiphenyls; PCBs CAS No: 1336-36-3 Molecular Formula: C₁₂H_{10-n}Cl_n RTK Substance No: 1554

Description: Light yellow or colorless, thick, oily liquids

	HAZARD DATA		
Hazard Rating	Firefighting	Reactivity	
3 - Health	Polychlorinated Biphenyls may burn, but do not readily ignite.	Polychlorinated Biphenyls are not compatible with OXIDIZING AGENTS (such as PERCHI ORATES	
1 - Fire	Use dry chemical, CO2, water spray or alcohol-	PEROXIDES, PERMANGANATES, CHLORATES,	
0 - Reactivity	resistant foam as extinguishing agents.	NITRATES, CHLORINE, BROMINE and FLUORINE) and	
DOT#: UN 2315	POISONOUS GASES ARE PRODUCED IN FIRE, including <i>Polychlorinated Dihenzafurans</i> and	STRONG ACIDS (such as HYDROCHLORIC, SUI FURIC and NITRIC)	
ERG Guide #: 171	Chlorinated Dibenzo-p-dioxins.		
Hazard Class: 9	Use water spray to keep fire-exposed containers		
(Miscellaneous Hazardous Materials)	cool.		

SPILL/LEAKS

Isolation Distance:

Spills: 50 meters (150 feet)

Fire: 800 meters (1/2 mile)

Absorb liquids in vermiculite, dry sand, earth, or a similar material and place into sealed containers for disposal.

DO NOT wash into sewer.

Polychiorinated Biphenyls bioaccumulate and are hazardous to the environment.

EXPOSURE LIMITS

OSHA: 1 mg/m³, 8-hr TWA (42% *Chlorine*) and 0.5 mg/m³, 8-hr TWA (54% *Chlorine*)

NIOSH: 0.001 mg/m³, 10-hr TWA

ACGIH: 1 mg/m³, 8-hr TWA (42% *Chlorine*) and 0.5 mg/m³, 8-hr TWA (54% *Chlorine*)

IDLH: 5 mg/m³

HEALTH EFFECTS

Eyes: Skin:	Irritation Irritation
Inhalation:	Nose, throat and lung irritation with coughing, wheezing and shortness of breath
	Headache, nausea, vomiting, and abdominal pain
Chronic:	Cancer (skin, brain, pancreas) in humans

PHYSICAL PROPERTIES

Flash Point:	286° to 385°F (141° to 196°C)
Auto Ignition Temp:	464⁰F (240⁰C)
Vapor Pressure:	0.001 mm Hg at 68°F (20°C)
Specific Gravity:	1.3 (water = 1)
Water Solubility:	Insoluble
Boiling Point:	617° to 734°F (325° to 390°C)
Melting Point:	-2° to 50°F (-19° to 10°C)
Molecular Weight:	258 to 326

PROTECTIVE EQUIPMENT

Gloves:	Butyl, Neoprene, Polyvinyl Chloride, Silver Shield®/4H® and Viton (>4-hr breakthrough)
Coveralls:	Tychem® CPF 2, SL, CPF 4 and Responder® (>8-hr breakthrough)
Respirator:	>0.001 mg/m ³ - Supplied air or SCBA

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water.

Begin artificial respiration if breathing has stopped and CPR if necessary. **Transfer** promptly to a medical facility

NJHealth Hazardous Substance Fact Sheet

Common Name: PETROLEUM DISTILLATES

Synonyms: Crude Oil; Petroleum Oil

Chemical Name: Petroleum

Date: August 2011

Description and Use

Petroleum Distillates are dark yellow to brown or green-black liquids with a mild *gasoline* or *kerosene*-like odor. They are a complex blend of *Hydrocarbons* used in making petroleum products.

Reasons for Citation

- Petroleum Distillates are on the Right to Know Hazardous Substance List because they are cited by OSHA, DOT, NIOSH and IARC.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing.

Skin Contact

Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water.

Inhalation

- ▶ Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	8002-05-9
RTK Substance Number:	2648
DOT Number:	UN 1268

EMERGENCY RESPONDERS >>>> SEE LAST PAGE

Hazard Summary

Hazard Rating	NJDOH	NFPA
HEALTH	2	-
FLAMMABILITY	3	_
REACTIVITY	0	-

FLAMMABLE

POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE

Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe

- Petroleum Distillates can affect you when inhaled and may be absorbed through the skin.
- Contact can irritate and burn the skin and eyes.
- Inhaling Petroleum Distillates can irritate the nose, throat and lungs.
- Petroleum Distillates can affect the nervous system causing headache, dizziness, nausea, and loss of balance and coordination.
- Petroleum Distillates may affect the liver and kidneys.
- Petroleum Distillates are FLAMMABLE LIQUIDS and DANGEROUS FIRE HAZARDS.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is 3,500 ppm averaged over an 8-hour workshift.
- NIOSH: The recommended airborne exposure limit (REL) is 88 ppm averaged over a 10-hour workshift and 450 ppm, not to be exceeded during any 15-minute work period.

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website
 (www.nj.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act and the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- ► The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to Petroleum Distillates:

- Contact can irritate and burn the skin and eyes.
- Inhaling Petroleum Distillates can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath.
- Petroleum Distillates can affect the nervous system causing headache, dizziness, nausea, vomiting, blurred vision, confusion, and loss of balance and coordination. Higher levels may cause coma and death.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to **Petroleum Distillates** and can last for months or years:

Cancer Hazard

While Petroleum Distillates have been tested, they are not classifiable as to their potential to cause cancer.

Reproductive Hazard

There is limited evidence that Petroleum Distillates may affect female fertility.

Other Effects

- Prolonged or repeated exposure can cause drying and cracking of the skin with redness.
- Petroleum Distillates can irritate the lungs. Repeated exposure may cause bronchitis to develop with coughing, phlegm, and/or shortness of breath.
- ▶ Petroleum Distillates may affect the liver and kidneys.

Medical

Medical Testing

For frequent or potentially high exposure (half the REL or greater), the following are recommended before beginning work and at regular times after that:

Liver and kidney function tests

If symptoms develop or overexposure is suspected, the following are recommended:

- Chest x-ray and lung function tests
- Exam of the nervous system

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

- Smoking can cause heart disease, lung cancer, emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
- More than light alcohol consumption can cause liver damage. Drinking alcohol may increase the liver damage caused by Petroleum Distillates.

PETROLEUM DISTILLATES

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

Before entering a confined space where Petroleum Distillates may be present, check to make sure that an explosive concentration does not exist.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Petroleum Distillates. Wear personal protective equipment made from material that can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- The recommended glove materials for Hydrocarbons are Silver Shield®/4H®, Viton, Viton/Butyl and Barrier®.
- The recommended protective clothing materials for Hydrocarbons are Tychem® BR, CSM and TK; and Trelichem® HPS and VPS, or the equivalent.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

Wear indirect vent goggles when working with liquids that may splash, spray or mist. A face shield is also required if the liquid is severely irritating or corrosive to the skin and eyes.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 88 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus or an emergency escape air cylinder.
- Exposure to 1,100 ppm is immediately dangerous to life and health. If the possibility of exposure above 1,100 ppm exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressuredemand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Petroleum Distillates are FLAMMABLE LIQUIDS.
- Use dry chemical, CO₂, alcohol-resistant foam or other foam extinguishing agents, as water may not be effective in fighting fires.
- POISONOUS GASES ARE PRODUCED IN FIRE.
- ► CONTAINERS MAY EXPLODE IN FIRE.
- Use water spray to keep fire-exposed containers cool.
- Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source and flash back.
- Flow or agitation may generate electrostatic charges.
- Petroleum Distillates may form an ignitable vapor/air mixture in closed tanks or containers.

PETROLEUM DISTILLATES

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Petroteum Distillates are spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Absorb liquids in dry sand, earth, or a noncombustible material and place into sealed containers for disposal.
- Ventilate area of spill or leak.
- Keep Petroleum Distillates out of confined spaces, such as sewers, because of the possibility of an explosion.
- ► DO NOT wash into sewer.
- It may be necessary to contain and dispose of Petroleum Distillates as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Petroleum Distillates** you should be trained on its proper handling and storage.

- Petroleum Distillates may react violently with OXIDIZING AGENTS (such as NITROGEN TETROXIDE, PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE) and NITRIC ACID.
- Store in tightly closed containers in a cool, well-ventilated area.
- Sources of ignition, such as smoking and open flames, are prohibited where Petroleum Distillates are used, handled, or stored.
- Metal containers involving the transfer of Petroleum Distillates should be grounded and bonded.
- Use explosion-proof electrical equipment and fittings wherever Petroleum Distillates are used, handled, manufactured, or stored.
- Use only non-sparking tools and equipment, especially when opening and closing containers of Petroleum Distillates.
- Petroleum Distillates may accumulate static electricity when being filled into properly grounded containers.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

PETROLEUM DISTILLATES

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS number** is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

The critical temperature is the temperature above which a gas cannot be liquefied, regardless of the pressure applied.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A fiammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer,

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Air*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Common Name: PETROLEUM DISTILLATES

Synonyms: Crude Oil; Petroleum; Petroleum Oil CAS No: 8002-05-9 Molecular Formula: Varies RTK Substance No: 2648

Description: Dark yellow to brown or green-black liquids with a mild gasoline or kerosene odor

HAZARD DATA		
Hazard Rating	Firefighting	Reactivity Petroleum Distillates may react violently with
2 - Health 3 - Fire 0 - Reactivity	Use dry chemical, CO ₂ , alcohol-resistant foam or other foam extinguishing agents, as water may not be effective in fighting fires.	OXIDIZING AGENTS (such as NITROGEN TETROXIDE, PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FI LIORINE) and NITRIC ACID.
DOT#: UN 1268 ERG Guide #: 128	POISONOUS GASES ARE PRODUCED IN FIRE. CONTAINERS MAY EXPLODE IN FIRE. Use water spray to keep fire-exposed containers cool.	
Hazard Class: 3 (Flammable)	Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source and flash back.	
	Flow or agitation may generate electrostatic charges. Petroleum Distillates may form an ignitable vapor/air mixture in closed tanks or containers.	

SPILL/LEAKS	PH	PHYSICAL PROPERTIES	
Isolation Distance:	Odor Threshold:	Mild gasoline or kerosene-like	
Spill: 50 meters (150 feet)	Flash Point:	-40° to -86°F (-40° to -66°C)	
Fire: 800 meters (1/2 mile)	LEL:	1.1%	
Absorb liquids in dry sand, earth, or a noncombustible	UEL:	5.9%	
material and place into sealed containers for disposal.	Vapor Pressure:	40 mm Hg at 68°F (20°C) (approximately)	
Bond and ground containers when transferring Petroleum Distillates.	Specific Gravity:	0.78 to 0.97 (water = 1)	
Use only non-sparking tools and equipment.	Water Solubility:	Insoluble	
Keep Petroleum Distillates out of confined spaces,	Boiling Point:	86 ° to 460°F (30° to 238°C)	
such as sewers, because of the possibility of an	Freezing Point:	-99⁰F (-73⁰C)	
explosion.	Molecular Weight:	98 (approximately)	

DO NOT wash into sewer.

EXPOSURE LIMITS

OSHA:	500 ppm, 8-hr TWA
NIOSH:	88 ppm, 10-hr TWA; 450 ppm, Ceiling (15-minute)
IDLH:	1,100 ррт
The Prot	ective Action Criteria values are:
PAC-1	= 87.5 ppm PAC-2 = 450 ppm
	PAC-3 = 1,100 ppm

HEALTH EFFECTS

Eyes:	Imitation and bums	
Skin:	Irritation and burns	
Inhalation:	Nose, throat and lung irritation, with coughing, wheezing and shortness of breath	
	Headache, dizziness, confusion and loss of balance	

Gloves:	Silver Shield®/4H®, Viton, Viton/Butyl and Barner® (>8-hr breakthrough for Hydrocarbons)
Coveralis:	Tychem® BR, CSM and TK; and Trellchem® HPS and VPS (>8-hr breakthrough for <i>Hydrocarbons</i>)
	Use turn out gear or flash protection if ignition/fire is the greatest hazard.

PROTECTIVE EQUIPMENT

Respirator: >88 ppm - SCBA

FIRST AID AND DECONTAMINATION

Remove the person from exposure.

Flush eyes with large amounts of water for at least 15 minutes. Remove contact lenses if worn.

Quickly remove contaminated clothing and wash contaminated skin with large amounts of soap and water.

Begin artificial respiration if breathing has stopped and CPR if necessary. **Transfer** promptly to a medical facility.

ealth Hazardous Substance Fact Sheet

Common Name: VINYL CHLORIDE

Synonyms: Chloroethylene; Monochloroethylene; VCM

Chemical Name: Ethene, Chloro-

Date: June 2001 Revision: November 2010

Description and Use

Viny! Chioride is a colorless gas, with a sweet odor at high concentrations, that is usually handled as a liquid under pressure. It is used to make *Polyvinyl Chloride* for pipes, wire, and cable coatings, and in furniture, automobiles, and adhesives.

- ODOR THRESHOLD = >3,000 ppm
- Odor thresholds vary greatly. Do not rely on odor alone to determine potentially hazardous exposures.

Reasons for Citation

- Vinyl Chloride is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC, IRIS, NFPA and EPA.
- This chemical is on the Special Health Hazard Substance List.

SEE GLOSSARY ON PAGE 5.

FIRST AID

Eye Contact

Immediately flush with large amounts of water for at least 30 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention.

Skin Contact

Immerse affected part in warm water. Seek medical attention.

Inhalation

- Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802

CAS Number:	75-01-4
RTK Substance Number:	2001
DOT Number	UN 1086

EMERGENCY RESPONDERS >>>> SEE LAST PAGE

Hazard Summary

4	2
4	4
2	2
	4 2

FLAMMABLE AND REACTIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE

Hazard Rating Key: 0=minimal, 1=slight; 2=moderate; 3=serious; 4=severe

- > Vinyl Chloride can affect you when inhaled.
- ► Vinyl Chloride is a CARCINOGEN and MUTAGEN. HANDLE WITH EXTREME CAUTION.
- Vinyl Chloride can cause reproductive damage.
- Exposure to Vinyl Chloride can severely irritate and burn the skin and eyes with possible eye damage. Contact with the liquid or gas can cause frostbite.
- Inhaling Vinyl Chloride can irritate the nose, throat and fungs.
- Vinyl Chloride can cause headache, nausea, vomiting, dizziness, fatigue, weakness and confusion. Higher levels can cause lightheadedness and passing out.
- Prolonged or repeated exposure can damage the liver, nervous system and lungs.
- Repeated exposure can damage the skin (scleroderma), bones (acro-osteolysis) and blood vessels in the hands (Raynaud's Syndrome).
- Vinyl Chloride is FLAMMABLE and REACTIVE and a DANGEROUS FIRE and EXPLOSION HAZARD.
- ► EXPLOSIVE POLYMERIZATION may occur at elevated temperatures if Vinyl Chloride is not inhibited.

Workplace Exposure Limits

- OSHA: The legal airborne permissible exposure limit (PEL) is 1 ppm averaged over an 8-hour workshift and 5 ppm, not to be exceeded during any 15-minute work period.
- NIOSH: Recommends that exposure to occupational carcinogens be limited to the lowest feasible concentration.
- ACGIH: The threshold limit value (TLV) is 1 ppm averaged over an 8-hour workshift.
- Vinyl Chloride is a CARCINOGEN in humans. There may be <u>no</u> safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.

Page 2 of 6

Determining Your Exposure

- Read the product manufacturer's Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.ni.gov/health/eoh/rtkweb) or in your facility's RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act and the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below.

Health Hazard Information

Acute Health Effects

The following acute (short-term) health effects may occur immediately or shortly after exposure to Vinyl Chloride:

- Exposure to Vinyl Chloride can severely irritate and burn the skin and eyes with possible eye damage. Contact with the *liquid or gas* can cause frostbite.
- Inhaling Vinyl Chloride can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath.
- Vinyl Chloride can cause headache, nausea, vomiting, dizziness, fatigue, weakness and confusion. Higher levels can cause lightheadedness and passing out.

Chronic Health Effects

The following chronic (long-term) health effects can occur at some time after exposure to Vinyt Chloride and can last for months or years:

Cancer Hazard

- Vinyl Chloride is a CARCINOGEN in humans. It has been shown to cause liver, brain, lung, and other types of cancer.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard

- ▶ Vinyl Chloride may damage the developing fetus.
- There is limited evidence that Vinyl Chloride is a teratogen in animals. Until further testing has been done, it should be treated as a possible teratogen in humans.
- There is limited evidence that Vinyl Chloride may damage the male reproductive system (including decreasing the sperm count) and may affect male fertility.
- An excess of spontaneous abortions has been reported among spouses of workers who had been exposed to Vinyl Chloride.

Other Effects

- Prolonged or repeated exposure can damage the liver, nervous system and lungs.
- Repeated exposure can cause a disease called "scleroderma." This causes the skin to become very smooth, tight and shiny. It causes the bones of the fingers to erode (acro-osteolysis), and damages the blood vessels in the hands or feet (Raynaud's syndrome). This causes the fingers or toes to turn numb, pale or blue, with even mild cold exposure.

Medical

Medical Testing

Before first exposure and every 12 months thereafter, OSHA requires your employer to provide (for persons exposed to **0.5 ppm of Vinyl Chloride**) a work and medical history and exam which shall include:

- ► Liver function tests
- Chest x-ray and lung function tests

If symptoms develop or overexposure is suspected, the following are recommended:

- Exam of the nervous system
- Exam of the skin

OSHA requires your employer to provide you and your doctor with a copy of the OSHA **Vinyl Chloride** Standard (29 CFR 1910.1017).

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are <u>not</u> a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures

More than light alcohol consumption can cause liver damage. Drinking alcohol may increase the liver damage caused by Vinyl Chloride.

VINYL CHLORIDE

Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.
- In addition, the following may be useful or required:
- Specific actions are required for this chemical by OSHA. Refer to the OSHA Vinyl Chloride Standard (29 CFR 1910.1017).
- Before entering a confined space where Vinyl Chloride may be present, check to make sure that an explosive concentration does not exist.
- Transfer Vinyl Chloride from cylinders or other containers to process containers in an enclosed system.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Vinyi Chloride. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- The recommended glove materials for Vinyl Chloride are Viton, Viton/Butyl, Silver Shield®/4H® and Barrier®.

- The recommended protective clothing materials for Viny! Chloride are Tychem® BR, CSM and TK; and Trellchem® HPS and VPS or the equivalent.
- Where exposure to cold equipment, vapors, or liquid may occur, employees should be provided with *insulated* gloves and special clothing designed to prevent the freezing of body tissues.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear non-vented, impact resistant goggles when working with fumes, gases, or vapors.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.
- Do not wear contact lenses when working with this substance.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 1 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus or an emergency escape air cylinder.
- DO NOT ÚSE CHEMICÁL CARTRIDGE OR CANISTER RESPIRATORS.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Vinyi Chloride is a FLAMMABLE AND REACTIVE GAS that can EXPLOSIVELY POLYMERIZE if not inhibited.
- DO NOT attempt to extinguish fire unless flow can be stopped. Shut off supply or let burn.
- ▶ Use dry chemical or CO₂ for small fires.
- POISONOUS GASES ARE PRODUCED IN FIRE, including Hydrogen Chloride and Phosgene.
- CONTAINERS MAY EXPLODE IN FIRE.
- Use water spray to reduce vapors and to keep containers cool.
- Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source or flash back.
- Flow or agilation may generate electrostatic charges.
- Vinyl Chloride may form an ignitable vapor/air mixture in closed tanks or containers.

Spills and Emergencies

If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Vinyl Chloride is leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate ignition sources.
- Ventilate area of leak to disperse the gas.
- Stop flow of gas. If source of leak is a cylinder and the leak cannot be stopped in place, remove the leaking cylinder to a safe place in the open air, and repair leak or allow cylinder to empty.
- Absorb liquids in dry sand, earth, or a similar material and place into sealed containers for disposal.
- Turn leaking cylinder with leak up to prevent escape of gas in liquid state.
- ▶ Ventilate area of spill or leak.
- Keep Vinyl Chloride out of confined spaces, such as sewers, because of the possibility of an explosion.
- ► DO NOT wash into sewer.
- It may be necessary to contain and dispose of Vinyl Chloride as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage

Prior to working with **Vinyl Chloride** you should be trained on its proper handling and storage.

- A regulated, marked area should be established where Vinyl Chloride is handled, used or stored as required by the OSHA Vinyl Chloride Standard (29 CFR 1910.1017).
- Vinyl Chloride can polymerize rapidly or explosively when exposed to elevated temperatures (over 125°F (52°C)), or when exposed to AIR or LIGHT in the presence of a CATALYST.
- ► Vinyl Chloride reacts violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE).
- Vinyl Chloride is not compatible with WATER; METALS (such as COPPER, ALUMINUM, IRON and STEEL); METAL CARBIDES; and METAL ALLOYS as fires and/or explosions may occur.
- Phenol should be used as an inhibitor to prevent violent polymerization of Vinyl Chloride.
- Store in tightly closed containers in a cool, well-ventilated area away from MOISTURE, HEAT SOURCES and METALS.
- Sources of ignition, such as smoking and open flames, are prohibited where Vinyl Chloride is used, handled, or stored.
- Metal containers involving the transfer of Vinyl Chloride should be grounded and bonded.
- Use explosion-proof electrical equipment and fittings wherever Vinyl Chloride is used, handled, manufactured, or stored.
- Use only non-sparking tools and equipment, especially when opening and closing containers of Vinyl Chloride.
- ► Vinyl Chloride may accumulate static electricity.

Occupational Health Information Resources

The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health Right to Know PO Box 368 Trenton, NJ 08625-0368 Phone: 609-984-2202 Fax: 609-984-7407 E-mail: rtk@doh.state.nj.us Web address; http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.

VINYL CHLORIDE

GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The **CAS number** is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

The critical temperature is the temperature above which a gas cannot be liquefied, regardless of the pressure applied.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The **flash point** is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually *Air*), at the same temperature and pressure.

The **vapor pressure** is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.

Common Name: VINYL CHLORIDE

Synonyms: Chloroethylene; Monochloroethylene, VCM CAS No: 75-01-4 Molecular Formula: CH₂ = CHCI RTK Substance No: 2001

		HAZARD DAT	TA
Hazard Rating	Firefighting		Reactivity
4 - Health 4 - Fire 2 - Reactivity DOT#: UN 1086 ERG Guide #: 11 Hazard Class: 2. (Flammable Gas)	FLAMMABLE AND REACTIVE GAS to EXPLOSIVELY POLYMERIZE if not in DO NOT attempt to extinguish fire unil stopped. Shut off supply or let burn. Use dry chemical or CO ₂ for small fire POISONOUS GASES ARE PRODUC including <i>Hydrogen Chloride</i> and <i>Pho</i> 6P CONTAINERS MAY EXPLODE IN FIR Use water spray to reduce vapors and cool. Vapor is heavier than air and may trav cause a fire or explosion far from the back. Flow or agitation may generate elector Vinyt Chloride may form an ignitable closed tanks or containers.	that can inhibited. less flow can be es. EED IN FIRE, osgene. RE. d to keep containers vel a distance to i source or flash ostatic charges. e vapor/air mixture in	Vinyl Chloride can polymerize rapidly or explosively when exposed to elevated temperatures (over 125°F (52°C)), or when exposed to AIR or LIGHT in the presence of a CATALYST. Vinyl Chloride reacts violently with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE). Vinyl Chloride is not compatible with WATER; METALS (such as COPPER, ALUMINUM, IRON and STEEL); METAL CARBIDES; and METAL ALLOYS as fires and/or explosions may occur. <i>Phenol</i> should be used as an inhibitor to prevent violent polymerization of Vinyl Chloride. Vinyl Chloride may accumulate static electricity.
9	PILL/LEAKS		PHYSICAL PROPERTIES
Isolation Distance Spill: 100 meters (3) Fire 800 meters (1) Stop flow of gas. If i cannot be stopped i safe place in the op empty. Absorb liquids in dry place into sealed co Keep Vinyl Chlorida because of the poss Turn teaking cylinde liquid state. Use nonsparking to when transferring V	e: 30 feet) 32 mile) source of leak is a cylinder and the leak n place, remove the leaking cylinder to a en air, and repair leak or allow cylinder to sand, earth, or a similar material and intainers for disposal. e out of confined spaces, such as sewers, sibility of an explosion. r with leak up to prevent escape of gas in ols and ground and bond containers inyl Chloride. arardous to the environment.	Odor Threshold: Flash Point: LEL: UEL: Auto Ignition Ter Vapor Density: Vapor Pressure: Specific Gravity: Water Solubility: Boiling Point: Freezing Point: Ionization Potent Critical Tempera Molecular Weigh	 >3,000 ppm -108°F (-78°C) 3.6% 33% np: 882°F (472°C) 2.2 (air = 1) 2,524 mm Hg at 68°F (20°C) 0.9 (water = 1) Very slightly soluble 17°F (-8.3°C) -245° to -256°F (-154° to -160°C) 9.99 eV ture: 306° to 317.3°F (152° to 158.5°C) t: 62.5
EXF	OSURE LIMITS		PROTECTIVE EQUIPMENT
OSHA: 1 ppm, 8- NIOSH: Lowest fe ACGIH: 1 ppm, 8- The Protective Actio PAC-1 = 250 ppr PAC-3	hr TWA; 5 ppm, Ceiling asible concentration hr TWA n Criteria values are: n PAC-2 = 1,200 ppm 3 = 4,800 ppm	Gloves: Coveralis: Respirator:	Insulated Viton, Viton/Butyl, Silver Shield®/4H@ and Barrier® (>8-hr breakthrough) Tychem® BR, CSM and TK; Treilchem HPS and VPS (8-hr breakthrough) >10% of the LEL wear flash protection or tumout gear SCBA T AID AND DECONTAMINATION
HE	ALIHEFFECIS	Fiks	
Eyes: Inita may Skin: Inita may Inhalation: Nos whe Hea pase	ation and burns, contact with <i>liquid</i> or gas cause frostbite tion and burns, contact with <i>liquid</i> or gas cause frostbite e, throat and lung irritation with coughing, ezing and shortness of breath dache, dizziness, lightheadedness and sing out	Flush eyes with la contact lenses if v Immerse affected Begin artificial res Transfer promptly	arge amounts of water for at least 30 minutes. Remove worn. Seek medical attention. I part in warm water. Seek medical attention. spiration if breathing has stopped and CPR if necessary. y to a medical facility.

by Tyco Fire Suppression & Building Products

ANSULITE 3% AFFF (AFC-3-A)

Product Code: 1010-2-016 ANa

Issue Date: 08-30-2010

1. P	roduct and	Company	Identification
------	------------	---------	----------------

Material name	ANSULITE 3% AFFF (AFC-3-A)
Version #	01
Revision date	08-30-2010
CAS #	Mixture
Product Code	1010-2-016 ANa
Product use	Fire extinguishing agent
Manufacturer / Importer / Supplier	
Name	Tyco Fire Suppression and Building Products
Address	One Stanton Street Marinette, WI 54143-2542
Phone	715-735-7411
Internet	http://www.ansul.com
Emergency Phone Number	CHEMTREC 800-424-9300 or 703-527-3887

2. Hazards Identification

Emorgoney everyiew	WARNING! Causes skin and eve irritation		
Emergency overview	WARNING: Causes skill and eye initiation.		
OSHA regulatory status	This product is considered hazardous under 29 CFR 1910.1200 (Hazard Communication).		
Potential health effects			
Routes of exposure	Eye contact. Skin contact. Inhalation. Ingestion.		
Eyes	Do not get this material in contact with eyes.		
Skin	Avoid contact with the skin. Frequent or prolonged contact may defat and dry the skin, leading to discomfort and dermatitis.		
Inhalation	Do not breathe vapor. May be irritating.		
Ingestion	Not a likely route of entry. Do not ingest.		
Target organs	Eyes. RESPIRATORY SYSTEM. Skin. Central nervous system.		
Chronic effects	Frequent or prolonged contact may defat and dry the skin, leading to discomfort and dermatitis.		
Signs and symptoms	Irritation of nose and throat. Irritation of eyes and mucous membranes. Defatting of the skin. Rash. Skin irritation.		

3. Composition / Information on Ingredients

Components	CAS #	Percent
Butyl Carbitol	112-34-5	2.5 - 10
Other components below reportable levels		> 90

4. First Aid Measures

First aid procedures	
Eye contact	Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention if irritation persists after washing.
Skin contact	Wash off with warm water and soap. Get medical attention if irritation develops and persists.
Inhalation	Move to fresh air. For breathing difficulties, oxygen may be necessary. Get medical attention, if needed.
Ingestion	Rinse mouth. Do not induce vomiting without advice from poison control center. IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. If vomiting occurs, keep head low so that stomach content doesn't get into the lungs.
Notes to physician	Symptoms may be delayed.

If you feel unwell, seek medical advice (show the label where possible). Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves. Show this safety data sheet to the doctor in attendance.

5. Fire Fighting Measures		
Flammable properties	No unusual fire or explosion hazards noted.	
Extinguishing media		
Suitable extinguishing media	This product is not flammable. Use extinguishing agent suitable for type of surrounding fire.	
Protection of firefighters		
Specific hazards arising from the chemical	None known.	
Specific methods	None known.	
Hazardous combustion products	May include oxides of nitrogen.	
6. Accidental Release Me	asures	
Personal precautions	Local authorities should be advised if significant spillages cannot be contained. Surfaces may become slippery after spillage.	
Environmental precautions	Prevent further leakage or spillage if safe to do so. Avoid discharge into drains, water courses or onto the ground.	
Methods for containment	Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Prevent entry into waterways, sewer, basements or confined areas.	
Methods for cleaning up	Should not be released into the environment.	
	Large Spills: Dike far ahead of spill for later disposal. Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal.	
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece).	
	Never return spills in original containers for re-use. Following product recovery, flush area with water. Clean surface thoroughly to remove residual contamination.	
7. Handling and Storage		
Handling	Do not get this material in contact with eyes. Avoid contact with skin. Avoid prolonged exposure. Handle and open container with care.	

8. Exposure Controls / Personal Protection

Personal protective equipment

Storage

ersonal protective equipment	
Eye / face protection	Do not get in eyes. Wear approved chemical safety glasses or goggles where eye exposure is reasonably probable.
Skin protection	Wear appropriate chemical resistant clothing. Chemical resistant gloves.
Respiratory protection	When workers are facing concentrations above the exposure limit they must use appropriate certified respirators.
General hygiene considerations	Handle in accordance with good industrial hygiene and safety practice. When using, do not eat, drink or smoke. Avoid contact with skin.

Store in cool place. Store in a well-ventilated place. Keep container tightly closed. Keep out of the reach of children. Use care in handling/storage.

9. Physical & Chemical Properties

Appearance	
Form	Liquid.
Color	Light yellow. Clear.
Odor	Mild. Sweet.
Physical state	Liquid.
рН	6.5 - 8.5
Melting point	Not available.
Freezing point	Not available.
Boiling point	206.6 °F (97 °C)

Flash point	> 212 °F (> 100 °C)		
Evaporation rate	Not available.		
Flammability limits in air, upper,% by volume	Not available.		
Flammability limits in air, lower, % by volume	Not available.		
Vapor pressure	Not available.		
Vapor density	Not available.		
Specific gravity	1.02		
Relative density	Not available.		
Solubility (water)	Not available.		
Partition coefficient (n-octanol/water)	Not available		
Auto-ignition temperature	Not available.		
Decomposition temperature	Not available.		
VOC	Not available.		
10. Chemical Stability & Re	ectivity Information		
Chemical stability	Material is stable under normal conditions.		
Conditions to avoid	None known.		
Incompatible materials	Alkaline metals. Strong acids, alkalies and oxidizing agents.		
Hazardous decomposition products	Nitrogen oxides (NOx). Sulfur oxides. Carbon oxides.		
11. Toxicological Informati	on		
Toxicological information	The toxicity of this product has not been tested.		
Toxicological data			
Components	Test Results		
Butyl Carbitol (112-34-5)	Acute Dermal LD50 Rabbit: 2700 mg/kg		
	Acute Oral LD50 Guinea pig: 2000 mg/kg		
	Acute Oral LD50 Rabbit: 2200 mg/kg		
	Acute Oral LD50 Rat: 6560 mg/kg		
	Acute Other LD50 Mouse: 850 mg/kg		
	Acute Other LD50 Rat: 500 mg/kg		
Local effects	Components of the product may be absorbed into the body through the skin. Contact may irrita or burn eyes.		
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.		
12. Ecological Information			
Ecotoxicological data			
Components	Test Results		
Butyl Carbitol (112-34-5)	EC50 Algae: > 100 mg/l 96.00 Hours		
	EC50 Water flea (Daphnia magna): 3184 mg/l 24.00 hours		
	LC50 Bluegill (Lepomis macrochirus): 1300 mg/l 96.00 hours		
Ecotoxicity	Not expected to be harmful to aquatic organisms.		
Environmental effects	An environmental hazard cannot be excluded in the event of unprofessional handling or disposal.		
Persistence and degradability	Not available.		

13. Disposal Considerations

Disposal instructions	This product, in its present state, when discarded or disposed of, is not a hazardous waste according to Federal regulations (40 CFR 261.4 (b)(4)). Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product meets RCRA criteria for hazardous waste. Dispose of waste material according to Local, State, Federal, and Provincial Environmental Regulations.
Waste from residues / unused products	Dispose of in accordance with local regulations.

14. Transport Information

DOT

Not regulated as dangerous goods.

15. Regulatory Information

US federal regulations	This product is a "Hazardo Standard, 29 CFR 1910.1 All components are on the	ous Chemical" as defined by the OSHA Haza 200. 9 U.S. EPA TSCA Inventory List.	ard Communication
US EPCRA (SARA Title III) \$	Section 313 - Toxic Chemic	al: De minimis concentration	
Butyl Carbitol (CAS 112-	34-5)	1.0 % N230	
US EPCRA (SARA Title III) \$	Section 313 - Toxic Chemic	al: Listed substance	
Butyl Carbitol (CAS 112-	34-5)	Listed. N230	
CERCLA (Superfund) reportable	quantity		
Superfund Amondmente and D	authorization Act of 1096		
Superrund Amendments and Re	Acute Health Ves	(SARA)	
Hazard Categories	Chronic Health - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No		
Section 302 extremely hazardous substance	No		
Section 311 hazardous chemical	No		
Inventory status			
Country(s) or region	Inventory name		On inventory (yes/no)*
Australia	Australian Inventory of Ch	emical Substances (AICS)	Yes
Canada	Domestic Substances List	(DSL)	No
Canada	Non-Domestic Substances	s List (NDSL)	No
China	Inventory of Existing Cher	nical Substances in China (IECSC)	No
Europe	European Inventory of Exi Substances (EINECS)	sting Commercial Chemical	Yes
Europe	European List of Notified (Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and I	New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (E	CL)	Yes
New Zealand	New Zealand Inventory		Yes
Philippines	Philippine Inventory of Che (PICCS)	emicals and Chemical Substances	No
United States & Puerto Rico	Toxic Substances Control	Act (TSCA) Inventory	Yes
*A "Yes" indicates that all compo	nents of this product comply wit	h the inventory requirements administered by the	governing country(s)
State regulations	This product does not con defects or other reproduct	tain a chemical known to the State of Califor ive harm.	nia to cause cancer, birth
US - New Jersey Communit	y RTK (EHS Survey): Repo	rtable threshold	
Butyl Carbitol (CAS 112-	34-5)	500 LBS	
US - Pennsylvania RTK - Ha	zardous Substances: Liste	ed substance	
Butyl Carbitol (CAS 112-	34-5)	Listed.	

16. Other Information	
Further information	HMIS® is a registered trade and service mark of the NPCA.
HMIS® ratings	Health: 1 Flammability: 0 Physical hazard: 0
NFPA ratings	Health: 1 Flammability: 0 Instability: 0
Disclaimer	The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.
Issue date	08-30-2010

Attachment D Site Maps to Nearest Walk-In Clinic and Hospital

Appendix H

Cross-Reference of Feature Identifications

Jorgensen Forge Corporation Property, Tukwila, Washington

CONTENTS

- Table H-1 Cross-Reference of Vault Names to SoundEarth's Identification
- Table H-2 Cross-Reference of AST/UST Names to SoundEarth's Identification

	Table H-1 - Cross-Reference of	Vault Names with	SoundEarth's	Identification
--	--------------------------------	------------------	--------------	----------------

Name of Vault	SoundEarth's Vault Name	SoundEarth's Number
Area I - Hollowbore Area	Outside Hellowhere Cutting Fluid Tank Voult	24
Hollowbore 59/60 Latries Cutting Oil Holding Tank Vaul	Outside Hollowbore Cutting Fluid Tank Vaul	2A
Office Deilding Leating Oil Holding Tank		2
		1
Hollowbore 59 Lathe Vault	Hollowbore 59	3
Frenchman 63 Lathe Vault	Frenchman	4
	Ingersoli	6
	Carlton	/
	Tacchi #1	8
MAE	MAE	10
Small Freight Scale Pit in Shipping	Small Freight Scale Pit in Shipping	65
Large Freight Scale in Shipping / Inspection	Large Freight Scale in Shipping / Inspection	66
Hollowbore 60 Lathe Vault	Hollowbore 60	3A
Hollowbore 58 Oil-Return Trench	Hollowbore 58	3B
Tacchi #2	Tacchi #2	3C
Hollowbore 58 Lathe Vault	Inside Hollowbore Cutting Fluid Vault	5A
Area 2 - Oil-Water Separator and Decommissioned Diesel	Storage Area	
660-Ton Press	660 Press	22
660-Ton Press Pump Room	660 Press Pump Room	22A
1,250-Ton Press	1250 Press	19
1,250-Ton Press Pump Room	1250 Press Pump Room	19A
5,000-Ton Press Vault	5K Press	24
Billet Storage Scale	Billet Storage Scale	80
Decommissioned Diesel Storage Area Vault	Large Vault at 8 Tank Lcoation	171
F-21 Gear Box Pit	F-21 Gear Box Pit	47
F-23 Gear Box Pit	F-23 Gear Box Pit	48
F-25 Gear Box Pit	F-25 Gear Box Pit	49
F-35 Gear Box Pit	F-35 Gear Box Pit	53
Former Truck Scale	Aluminum Heat Treat Scale	77
H-2 Gear Box Pit	H-2 Gear Box Pit	59
L and F Press Vault and Hydraulic Plant	LMF Press	23
Oil-Water Separator (West of Aluminum Heat Treat Building)	API (Oil Water Separator)	15
Outdoor Railroad Scale Vault	Outside Rail Road Freight Scale	27
Portable Quench Tank 4 (Q4)	Quench Tank #Q4	72
Portable Quench Tank 9 (Q9)		-
Quench Tank 5 (Q5)	Quench Tank #Q5	73
Quench Tank 6 (Q6)	Quench Tank #Q6	74
Quench Tank 7 (Q7)	Quench Tank #Q7	71
Quench Tank 8 (Q8) Vault	Tank in Aluminum Heat Treat	18A
Ring Expander Vault	Ring Expander	21
Ring Mill Vault and Coolant Storage Vault	Ring Mill	20
Small Ring Mill	Small Ring Mill	25
Steam Tunnel	Press Tunnel Fast to West Forge Shop	63

Table H-1 -	Cross-Reference of	f Vault Names wit	h SoundEarth's	Identification
	01000 1101010100 0			aontinoution

Name of Vault	SoundEarth's Vault Name	SoundEarth's Number
Area 4- Decommissioned Oil Storage Area		
Decommissioned Oil Storage Area Vault	Large Vault at 10 Tank Location	16K
H-18 Gear Box Pit	H-18 Gear Box Pit	61
Oil-Water Separator (Decommissioned Oil Storage Area)	Oil Recycling Center Tanks	14
Waste Oil Tank	Oil Recycling Center Tanks	14
Waste Oil Tank Vault	Oil Recycling Center Pit	14A
Area 5 - Remaining Building Interior Area		
2,500-Ton Press Pump Room	2500 Press Pump Room	26A
2,500-Ton Press Vault	2500 Press	26
Billet Grinder Rotator Vault	West Grinder Pits (#2)	67A
Bueltmann Bar Peeler Oil-Return Vault	Bultmann	9
East Craven Lathe Vault	East Craven	12
Electrical Trench	Electrical Trench East to West Machine Shop	62
F-11 Gear Box Pit	F-11 Gear Box Pit	43
F-13 Gear Box Pit	F-13 Gear Box Pit	44
F-15 Gear Box Pit	F-15 Gear Box Pit	45
F-19 Gear Box Pit	F-19 Gear Box Pit	46
F-3 Gear Box Pit	F-3 Gear Box Pit	41
F-5 Gear Box Pit	F-5 Gear Box Pit	42
Former Underground Quench Tank	Former Underground Quench Tank	79
H-10 Gear Box Pit	H-10 Gear Box Pit	57
H-4 Gear Box Pit	H-4 Gear Box Pit	54
Large Bullard	Large Bullard	37
Large Hypro	Large Hypro	39
Quench Tanks 1, 2, and 3 (Q1, Q2, and Q3)	Vertical Quench Tanks	13
Quench Tanks 1, 2, and 3 (Q1, Q2, and Q3) Vault	Vertical Quench Tanks Vault	13A
Small Bullard	Small Bullard	36
The Planner (Kysor)	The Planner (Kysor)	35
West Craven Lathe Vault	West Craven	11
West Grinder Pit #1	West Grinder Pit #1	67
West Grinder Pit #3	West Grinder Pit #3	67B
Area 7 - Former Metals Storage Area		
Arc Furnace Vault	Melt Furnace #1, Melt Furnace #2	32, 32A
AOD Scale Vault	AOD Causeway Scale	76B
AOD Tapping Vault	AOD Pit	31
Cooling Tower Pit South Side Melt Shop	Cooling Tower Pit South Side Melt Shop	75
Electrical Trench North to South Melt Shop	Electrical Trench North to South Melt Shop	64
F-1 Gear Box Pit	F-1 Gear Box Pit	40
Ingot Mold Vaults	North Side Teeming Pit, South Side Teeming Pit	29, 29A
Outdoor Scrap Metal Scale Vault	Outside Melt Scale	33
Soaking Furnace Vault	Soaking Pit	28
Vacuum-Degassing Vaults	Vacuum Degasser Pit	30

Table H-1 - Cross-Reference of Vault Names with SoundEarth's Identification

Name of Vault	SoundEarth's Vault Name	SoundEarth's Number
Area 8 - Shoreline and Embayment		
Melt Shop Baghouse Cooling Tower Vaults	Cooling Tower Pits	34

NOTES:

- indicates that no identifier was assigned.

AOD = argon-oxygen decarbonization; UST = underground storage tank

		SoundEarth's AST/UST
AST/UST Identification	AST/UST Name	Identification ¹
UST-1	Hollowbore 59/60 Lathes Cutting Oil Holding Tank	UST-2
UST-2	Hollowbore 59/60 Horizontal Lathes Intermediate Cutting Oil Tank	AST-17
UST-3	Hollowbore 58 Horizontal Lathe Clean Cutting Oil Tank	AST-15
UST-4	Hollowbore 58 Horizontal Lathe Cutting Cutting Oil Tank	AST-16
UST-5	Tacchi Cutting Oil Tank	AST-18
UST-6	Office Building Heating Oil UST	UST-1
UST-7	5,000-Ton Press Hydraulic Oil Tank	-
UST-8	Ring Expander Hydraulic Oil Tank	AST-4
UST-9	Ring Mill Coolant Tank	AST-9
UST-10	Ring Mill Coolant Tank	AST-10
UST-11	Quench Tank 5 (Q5)	-
UST-12	Quench Tank 6 (Q6)	-
UST-13	Quench Tank 7 (Q7)	-
UST-14	Quench Tank 8 (Q8)	Q-8
UST-15 through UST-22	Decommissioned Diesel Storage Area Tanks (8 tanks)	AST-33 through AST-40
UST-23	Former Regulated Gasoline UST	-
UST-24	Former Unregulated Gasoline UST	-
UST-25	Former Unregulated Gasoline UST	-
UST-26 through UST-33	Decommissioned Oil Storage Area Tanks (10 Tanks)	AST-23 through AST-32
UST-36	Waste Oil Tank	AST-21
UST-37	West Craven Lathe	AST-14
UST-38	East Craven Lathe	-
UST-39	Quench Tank 1 (Q1)	-
UST-40	Quench Tank 2 (Q2)	-
UST-41	Quench Tank 3 (Q3)	-
UST-42	Arc Furnace Hydraulic Oil Tank	AST-1
UST-43	Arc Furnace Hydraulic Oil Tank	AST-2
AST-1	Former Cutting Oil Suuply Tank	-
AST-2	660-Ton Press Hydraulic Oil Tank	AST-5
AST-3	1,250-Ton Press Hydraulic Oil Tank	AST-8
AST-4	L and F Press Hydraulic Oil Tank	AST-7
AST-5	Used Oil Centrifuge	AST-19
AST-6	Clean Hydraulic Oil Tank	AST-20
AST-7	2,500-Ton Press Hydraulic Oil Tank	AST-3
AST-8	Quench Tank 4 (Q4)	AST-11
AST-9	Quench Tank 9 (Q9)	AST-12
AST-10	Former Gasoline AST	-
AST-11	Diesel Fuel Tank	AST-22

Table H-2 - Cross-Reference of AST/UST Names with SoundEarth Identification

NOTES:

¹ SoundEarth AST/UST IDs obtained from SoundEarth Strategies, LLC, 2019, Star Forge, LLC - October 2019 UST Site Visit, Former Jorgensen Forge Facility, 8531 East Marginal Way, Tukwila, Washington, Project Number 0995-002, November 21.

- indicates that no identifier was assigned.

AST = aboveground storage tank; UST = underground storage tank

Important Information

About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining

your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims

being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland