Report Limited Phase II Environmental Site Assessment South 35th Street and Pacific Avenue Tacoma, Washington

March 31, 2021

Prepared for

Tacoma Community Redevelopment Authority
747 Market Street
Room 808
Tacoma, Washington 98402-3701

Limited Phase II Environmental Site Assessment Report South 35th Street and Pacific Avenue Tacoma, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by:

David E. Johnson, PE

Dimon: Author

Document reviewed by: Jeffrey Fellows, PE

Date: March 31, 2021 Project No.: 0094110.010.012

File path: P:\0094\110.010\R\Phase II ESA

Project Coordinator: KJG

This page intentionally left blank.

TABLE OF CONTENTS

		<u>Р</u>	age
LIS	Γ OF ABBRI	EVIATIONS AND ACRONYMS	v
1.0	INTRO	DUCTION	1-1
	1.1	Subject Property Conditions and Background	1-2
	1.2	Prior Investigations	1-2
	1.3	Summary of Phase II ESA Work	1-4
2.0	LIMITE	ED PHASE II INVESTIGATION	2-1
	2.1	Utility Locate	2-1
	2.2	Rotosonic™ Drilling	2-1
	2.2.1	Investigation Methods	2-1
	2.2.2	Sampling Results	2-2
	2.2.3	Equipment Decontamination and Investigation-Derived Waste	2-2
3.0	CONCI	LUSIONS AND RECOMMENDATIONS	3-1
	3.1.1	Cleanup Action Implementation During Subject Property Development	3-1
	3.1.2	In-situ Containment	3-2
	3.1.3	Soil Gas Venting and Monitoring	3-2
	3.1.4	Deed Restrictions	3-3
	3.1.5	Operations and Maintenance Manual	3-3
	3.1.6	Health and Safety Plan	3-3
4.0	USE O	F THIS REPORT	4-1
5.0	REFER	ENCES	5-1

FIGURES

<u>Figure</u> <u>Title</u>

1 Vicinity Map

2 Site and Exploration Location Plan

TABLES

<u>Table</u> <u>Title</u>

1 Soil Analytical Results

APPENDICES

<u>Appendix</u> <u>Title</u>

A Boring Logs

B Laboratory Analytical Report

LIST OF ABBREVIATIONS AND ACRONYMS

bgs	below ground surface
CAP	Cleanup Action Plan
COC	contaminants of concern
cPAHcard	cinogenic polycyclic aromatic hydrocarbons
CUL	cleanup level
Ecology	Washington State Department of Ecology
EDR	Engineering Design Report
EPA	US Environmental Protection Agency
ESA	environmental site assessment
eVCP	Expedited Volunteer Cleanup Program
FS	feasibility study
HASP	health and safety plan
I-5	Interstate 5
I-705	Interstate 705
LAI	Landau Associates, Inc.
mg/kg	milligrams per kilogram
MTCA	Model Toxics Control Act
NFA	no further action
NWTPH-Dx Northwest diesel-ra	nge total petroleum hydrocarbon extended
O&M	operation and maintenance
RCRA	Resource Conservation and Recovery Act
REC	recognized environmental condition
RI	remedial investigation
SVOC	semi-volatile organic compounds
TCRATac	coma Community Redevelopment Authority
TEQ	toxicity equivalence
TPCHD	. Tacoma-Pierce County Health Department
TPH	total petroleum hydrocarbon
TPH-D	diesel-range total petroleum hydrocarbons
TPH-Gga	soline-range total petroleum hydrocarbons
TPH-O	oil-range total petroleum hydrocarbons
VOC	volatile organic compound
VCP	
WAC	Washington Administrative Code

This page intentionally left blank.

1.0 INTRODUCTION

At the request of Tacoma Community Redevelopment Authority (TCRA), Landau Associates, Inc. (LAI) conducted a Limited Phase II environmental site assessment (ESA) of six parcels currently owned by the City of Tacoma, located east of South 35th Street and Pacific Avenue in Tacoma, Washington. These six parcels (Pierce County Parcel Nos. 2086130020, 2086130030, 2085140040, 2085140070, 2086140010, and 2086140020) are referred to collectively as the subject property (Figures 1 and 2). LAI previously conducted a Phase I ESA for the subject property during the first quarter of 2021 (LAI 2021).

The Limited Phase II ESA was completed on behalf of TCRA to assess potential environmental liability, current conditions, and potential impacts to future development on the subject property. This Limited Phase II ESA was conducted in general accordance with ASTM International's Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process E1903 – 11 and LAI's site-specific directives regarding follow up on Phase I ESA results. The scope of this investigation included evaluation of soil conditions to assess the presence of contamination associated with historical uses of the subject property.

The Phase I ESA report identified the following recognized environmental conditions (RECs):

- The presence of prior filling activities, which included placement of construction debris, organic materials, vactor waste (i.e., material from street catch basins), and street sweeping material within the fill at the subject property.
- The known presence of carcinogenic polycyclic aromatic hydrocarbon (cPAH)-contaminated soil above Model Toxics Control Act (MTCA) Method A cleanup levels, and residual arsenic and total petroleum hydrocarbon (TPH)-impacted soil at the subject property.
- The presence and degradation of organic debris (i.e., leaves, branches, yard waste, etc.) within the fill as the suspected source of the known presence of elevated methane gas levels at the subject property.

The Phase I ESA report provided the opinion that the identified *recognized environmental conditions* indicate the potential for concentrations of cPAHs in soil above MTCA Method A cleanup levels, residual TPH- and arsenic-impacted soil, and the elevated presence of methane gas to be present at the subject property. The potential exists for soil contamination to be present beneath the subject property from the above-stated RECs that may impact potential redevelopment strategies.

Based on the needs of redevelopment, further investigation was recommended in the Phase I ESA to evaluate the need for contaminated media management in association with the planned elements of redevelopment. The recommended further investigation would supplement the results of the remedial investigation (RI), feasibility study (FS), and Cleanup Action Plan (CAP; LAI 2008c) previously prepared for the landfill, which included a portion of the subject property. Most of the prior environmental investigation work was conducted on the northernmost parcels of the subject property

(LAI 2008c); therefore, the additional investigation conducted under this limited Phase II ESA scope focuses on the southern half of the subject property.

1.1 Subject Property Conditions and Background

Based on information collected during the Phase I ESA, LAI understands that a portion of the subject property was used as a landfill from the early 1960s through 1992 and often is referred to as "the 35th Street Landfill City Fill" or the "Former City of Tacoma's Street and Grounds Fill Site." Fill material was placed at the subject property in the 1960s. The fill was derived, primarily, from the Interstate-5 (I-5), Interstate-705 (I-705), and Highway 7 extensions; City of Tacoma Public Utilities construction projects; and various large private construction projects.

Between 1985 and 1990, the City of Tacoma disposed of street sweepings, vactor truck waste, and catch basin debris at the subject property and at adjacent properties to the north. By 1992, regrading activities had mixed the waste and debris into the fill material. Site characterization studies between 1990 and 2008 identified this fill material as the primary contributor to methane, metals, TPH, and cPAHs contamination at the subject property (LAI 2008c).

The subject property is currently undeveloped, vacant, land with high to moderate transient activity which consists of overnight camping. The subject property is bordered to the north by undeveloped forested land and to the south by an undeveloped field. To the east and northwest, the subject property is bordered by residential properties. Pacific Avenue is adjacent to the western property boundary and beyond the roadway, farther west, are commercial properties.

The subject property generally slopes gently downward to the northeast, with steeper north and northeast facing slopes descending into ravine at the northern property boundary. The subject property is underlain by Pleistocene-age glacial till, which typically consists of an unsorted, glacially transported and deposited mixture of sub-rounded to well-rounded clasts in a massive, silt- or sand-rich matrix (Minard 1985). Groundwater is expected to accumulate on the original ground surface soil horizon or relatively lower permeability layers below this surface to form isolated areas of perched groundwater and flow along the pre-existing grade northward towards the Thea Foss Waterway, and subsequently to Commencement Bay (LAI 2008c).

1.2 Prior Investigations

Previous investigations of the subject property were conducted by the City of Tacoma (City) and the Tacoma-Pierce County Health Department (TPCHD) from approximately 1990 to 2006. These investigations included soil, groundwater, seeps, and air sampling. These investigations confirmed that much of the near-surface fill consists of soil mixed with inert material such as waste concrete, asphalt, and brick. Data results also identified minor arsenic and TPH impacts to soil and the presence of low levels of methane (LAI 2008a).

LAI worked with the City to further investigate and characterize the landfill site, which includes the parcels comprising the subject property. The landfill site was included on the Washington State Department of Ecology's (Ecology) Confirmed and Suspected Contaminated Sites List after an initial investigation by the TPCHD in August 2005. LAI submitted a Voluntary Cleanup Program (VCP) application to Ecology on behalf of the City on February 27, 2008 to conduct independent remedial actions under Ecology supervision. LAI subsequently submitted an independent remedial action report on March 11, 2008 (LAI 2008a) and requested a no further action (NFA) determination for the landfill site based on previously collected data.

After reviewing the data, Ecology issued a further action determination on April 19, 2008 (Ecology 2008b) requiring additional remedial actions to characterize the landfill site. Based on previous investigations and site history, Ecology defined the primary contaminants of concern (COCs) at the site as TPH and cPAHs in soil (Ecology 2008b). These contaminants are consistent with the type of constituents related to vactor waste (i.e., material from street catch basins) and street sweeping material. Methane was also detected in soil gas and was likely generated from decomposition of organic debris (e.g., leaves, branches, yard waste, etc.) disposed along with soil and inert material.

In 2008, LAI provided a remedial investigation work plan (LAI 2008b), and subsequently completed a Remedial Investigation/Feasibility Study (RI/FS) and prepared a CAP in response to the Ecology's further action determination (LAI 2008c). The RI/FS/CAP report was prepared in accordance with MTCA (Washington Administrative Code [WAC] 173-340) under the VCP. The RI/FS/CAP was conducted to document current site soil, groundwater, surface water, and air conditions and to identify a final cleanup action that would be protective of human health and the environment and consistent with future development plans.

The results of the RI included the following:

- Based on the RI sampling data set, the only constituent that exceeded MTCA cleanup levels was cPAHs in soil. CPAHs were detected above the cleanup level from between 4 and 20 feet below ground surface (bgs) in eight of eleven samples. Three of the eight exceedances were from samples below the point of compliance (i.e., below 15 feet bgs). Overall, cPAH impacts to the landfill site, while above the cleanup standard, are considered low to moderate. CPAHs are relatively common constituents in urban environments and would be expected in vactor waste and street sweepings. The occurrence of cPAHs at the site is consistent with the historical use of this site as an area where these materials were placed.
- Based on the historical data set, some arsenic concentrations were detected above the MTCA soil cleanup level. However, the RI data set did not indicate an exceedance of arsenic in soil.
 For the purposes of site characterization, the RI data set is considered higher quality and therefore more representative.
- Impacts to groundwater are not a concern at the landfill site. Groundwater was not
 encountered in fill soil. The groundwater seep sample collected at the toe of the fill slope did
 not have detected constituents above cleanup levels. Evaluation of TPH-related constituents

- and arsenic indicate soil concentrations are below levels that would impact groundwater through the soil to groundwater pathway.
- Methane being generated at the site is likely from decaying organic matter within the fill material. The source of the organic matter was not identified in site explorations and is assumed to be distributed throughout the fill. Methane concentrations in RI wells are generally low but variable. Concentrations were detected above the lower explosive limit during at least one sampling event in three locations. These data indicate the potential for methane to accumulate in onsite structures without appropriate mitigation. Previous investigations suggest that methane concentrations are declining over time and are not present offsite.

The results of the FS and CAP are presented below:

- Potential cleanup actions were divided into active and passive actions. Cleanup actions were evaluated based on effectiveness, implementability, and cost. Applicable actions were combined into proposed cleanup action alternatives.
- Potentially viable active cleanup actions identified for the site were:
 - excavation and offsite disposal, soil stabilization or encapsulation, and containment.
- Potentially viable passive cleanup actions identified for the site were:
 - soil gas venting and monitoring, institutional controls, education, fencing or other access constraints.
- The recommended cleanup action alternative consisted of the following combination of active and passive cleanup actions:
 - In-situ containment of impacted soil left in place
 - Venting and monitoring of soil gas for methane
 - Deed restrictions in the form of a restrictive environmental covenant.
 - Preparation of an operation and maintenance manual for the site for compliance monitoring
 - Preparation of a health and safety plan.

The RI/FS/CAP report was reviewed by TPCHD and Ecology, and both agencies provided formal letter responses. The TPCHD letter states: the recommendation of the installation of a soil gas venting system with follow-up monitoring is adequate with the condition (noted in the report) that the technology would be flexible to allow for the inclusion of active pumping if deemed necessary based upon future monitoring (TPCHD 2008). Ecology issued an opinion letter, which states: Ecology has determined that, upon completion of your proposed cleanup, no further remedial action will likely be necessary to clean up contamination at the Site (Ecology 2008a).

1.3 Summary of Phase II ESA Work

LAI conducted a field investigation to assess current conditions associated with the identified RECs, supplement the prior RI/FS/CAP work, and assess potential impacts to future development on the

subject property. Subsurface samples were collected at three locations using Rotosonic™ drilling technology. Rotosonic borings were advanced to a maximum depth of approximately 31.5 feet bgs. Groundwater was not encountered during this investigation nor was the extent of methane investigated. The results of the Phase II investigation are included in Section 2.0 and conclusions and recommendations are in Section 3.0.

2.0 LIMITED PHASE II INVESTIGATION

Limited Phase II investigation activities were conducted on January 26, 2021. Exploration locations are shown on Figure 2. Soil samples collected for chemical testing were analyzed by Libby Environmental, Inc. located in Olympia, Washington.

2.1 Utility Locate

Prior to the completion of sampling and drilling activities, both a public and private utility locate were completed to identify utilities within the vicinity of the exploration locations. No underground utilities were identified within the proposed exploration areas.

2.2 Rotosonic™ Drilling

Rotosonic borings were advanced at three locations throughout the subject property (B-1 through B-3). Boring locations were chosen to supplement previous investigations conducted by LAI. Borings B-1 and B-2 were advanced near the center portion of the subject property. Boring B-3 was advanced along the southern boundary of the subject property.

2.2.1 Investigation Methods

Groundwater was not encountered at the maximum explored depth (approximately 31.5 feet bgs); therefore, groundwater sampling was not conducted. Soil samples were collected and field-screened at each boring location. Soil samples were visually classified for soil type. Where field screening indicated no evidence of contamination, one shallow soil sample and one sample from the bottom of the soil boring were collected for chemical analysis. If evidence of contamination was encountered in a boring, two samples were collected, one from the area with the highest apparent contamination (based on field-screening results) and one from a location within the upper 15 feet of each boring.

Soil samples were appropriately preserved and submitted under chain-of-custody procedures for the following analyses:

- Gasoline-range, diesel-range, and oil-range total petroleum hydrocarbons (TPH-G, TPH-D, and TPH-O, respectively), by Ecology-approved Methods Northwest gasoline-range and dieselrange total petroleum hydrocarbon extended (NWTPH-G and NWTPH-Dx; without silica gel sample preparation at laboratory)
- Volatile organic compounds (VOCs) by US Environmental Protection Agency (EPA)
 Method 8260D
- Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Method 6010A and 7471B
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270E.

2.2.2 Sampling Results

Subsurface soil analytical results and associated sampling depths are presented in Table 1 and discussed below. Soil boring logs and the laboratory analytical report are provided as Appendices A and B, respectively. The boring logs indicated the presence of construction debris including concrete, asphalt, and brick, and organic soils including woody debris. Field screening did not indicate the potential for contamination at the three boring locations, therefore two samples were collected at each boring location: one at approximately 5 feet bgs and one at approximately 30 feet bgs, which was near each boring's total exploratory depth.

The results from soil borings B-1 through B-3 were compared to MTCA Method A soil cleanup levels (CULs) for unrestricted land use, as summarized below.

- TPH: TPH-G, TPH-D, and TPH-O were not detected at concentrations exceeding the MTCA
 Method A soil CULs in all three sample locations. Sample B-2-05 did have a detection of TPH-O
 at 5 feet bgs of 1,400 milligrams per kilogram (mg/kg). The MTCA Method A soil CUL for TPH-O
 is 2,000 mg/kg. The other five samples did not have detections above the level of the
 laboratory reported sample quantitation limit.
- Metals: RCRA-8 metals, including arsenic, were not detected at concentrations exceeding their respective MTCA Method A soil CULs at all three sample locations.
- VOCs: VOCs were not detected at concentrations exceeding the laboratory reported sample quantitation limits and correspondingly their respective MTCA Method A soil CULs.
- SVOCs: SVOCs, including cPAHs, were not detected at concentrations exceeding their respective MTCA Method A soil CULs at all three sample locations, except in sample B2-05.
 - Benzo(a)pyrene and the cPAH toxicity equivalence (TEQ) were detected in sample
 B-2-05 at concentrations of 0.506 mg/kg and 0.672 mg/kg, respectively; these results exceed the MTCA Method A CUL of 0.1 mg/kg.

Analytical results indicate that shallow soil in the vicinity of B-2 is impacted with low to moderate levels of cPAHs exceeding MTCA Method A CULs. The other constituents analyzed were below their respective MTCA Method A soil CULs.

2.2.3 Equipment Decontamination and Investigation-Derived Waste

Non-dedicated sampling equipment was decontaminated between locations using an Alconox®/tap water solution, followed by a tap water rinse and a de-ionized water rinse. Downhole drilling equipment was decontaminated between borings using a pressure washer. Investigation-derived waste, including soil cuttings and decontamination water, was contained and stored in three 55-gallon Washington State Department of Transportation-approved drums, of which two contain soil and one water.

3.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the Limited Phase II ESA indicate the presence of cPAH contamination in shallow soil at the subject property that poses environmental liability and will impact potential redevelopment strategies. TPH, metals, and SVOCs were detected but did not exceed their respective MTCA Method A soil CULs. VOCs were analyzed in the six soil samples but were not detected above the level of the laboratory reported sample quantitation limit.

The analytical results of this limited Phase II ESA are similar to prior investigations, which also showed elevated cPAHs in soil above CULs, residual TPH-impacted soil below CULs, and residual arsenic-impacted soil below CULs. Overall, cPAH impacts to the subject property, while above the cleanup standard, are considered low to moderate. CPAHs are relatively common constituents in urban environments and would be expected in vactor waste and street sweepings. The occurrence of cPAHs at the subject property is consistent with the historical use of this site as an area where these materials were placed.

The cleanup action previously prepared in the RI/FS/CAP (LAI 2008c) is still relevant and recommended based on the results of this limited Phase II ESA. The recommended cleanup action alternative consisted of the following combination of active and passive cleanup actions:

- In-situ containment of impacted soil left in place
- Venting and monitoring of soil gas for methane
- Deed restrictions in the form of a restrictive environmental covenant
- Preparation of an operation and maintenance manual for the site for compliance monitoring
- Preparation of a health and safety plan.

The overall cleanup action plan was reviewed by TPCHD (TPCHD 2008) and Ecology (Ecology 2008b), and both agencies provided formal letter responses concurring that upon completion of the proposed cleanup, no further remedial action will likely be necessary to clean up contamination at the subject property.

3.1.1 Cleanup Action Implementation During Subject Property Development

The cleanup action can be implemented during subject property development activities. The subject property will likely be required to implement the following items during redevelopment activities:

- Re-enrollment of the site into Ecology's Volunteer Cleanup Program (VCP) or newly formed Expedited Volunteer Cleanup Program (eVCP).
- Preparation of an Engineering Design Report (EDR) to support proper engineering design of the *in-situ* containment, methane gas venting, and management of contaminated soil during construction activities. The EDR should include a health and safety plan and contaminated media management plan for use during construction activities and an operation and maintenance (O&M) manual for site compliance monitoring.

- Preparation of a final cleanup action report post-construction with a formal request to receive an NFA determination from Ecology.
- Implementation of long-term compliance monitoring, as required.

Specific conceptual details of each recommended item of the cleanup action are summarized below and provided in further detail in the RI/FS/CAP (LAI 2008). Some details may be revised pending development of actual redevelopment plan for the subject property.

3.1.2 *In-situ* Containment

The recommended *in-situ* containment activities consist of placing and maintaining a soil and vegetative cover over areas across the subject property where cPAH concentrations exceed MTCA cleanup standards in the upper 15 feet. Additional surface soil testing should be conducted to limit the extent of containment capping necessary. For now, it is assumed the entire subject property will require some level of *in-situ* containment.

The selected *in-situ* containment option for the subject property includes:

- Removal of any vegetation in areas where containment is necessary
- Placement of a 1.5-foot-thick soil layer consisting of clean soil or structural fill and placement
 of a vegetative surface layer over the fill. This cap would be placed in areas where cPAHs
 exceed cleanup levels but not in areas occupied by future buildings or paved surfaces or in
 areas where cPAHs are not present above cleanup levels, if additional shallow soil testing
 were completed.

3.1.3 Soil Gas Venting and Monitoring

The final design of the gas venting system would be developed as part of the building design with the primary objective of preventing the occurrence of methane gas within future buildings. It is anticipated that passive or active gas vents will be utilized beneath buildings in combination with a methane gas vapor barrier system for residential development or constructed building areas. Venting strategies will vary based on actual subject property development plans.

The gas vents will be installed within permeable backfill and will extend beneath the buildings. The permeable backfill should facilitate the development of positive pressure gradients towards the vents underneath the buildings, thereby passively intercepting methane gas before it migrates into the structure. If during building design its determined that passive venting may not be effective in preventing methane gas from entering the structure, a manifold and blower system will be installed for each constructed building within the development area.

Within the first month after the containment cap is installed, methane soil gas and/or air monitoring should be initiated to verify the effectiveness of soil gas venting construction. Methane monitoring procedures, frequency, and reporting requirements will be defined in the O&M manual.

3.1.4 Deed Restrictions

The subject property deed will be amended with a restrictive environmental covenant. The covenant will be consistent with the Uniform Environmental Covenants Act (Revised Code of Washington 64.70.040) and be signed by the property owner and Ecology. The covenant will document the occurrence of elevated cPAHs in soil and methane in soil gas, identify the locations of *in-situ* containment areas, require the maintenance of the *in-situ* containment areas, and outline protection requirements for site workers and the proper disposal of contaminated media, if generated during future construction work. The requirement for an O&M manual will also be included in the restrictive environmental covenant.

3.1.5 Operations and Maintenance Manual

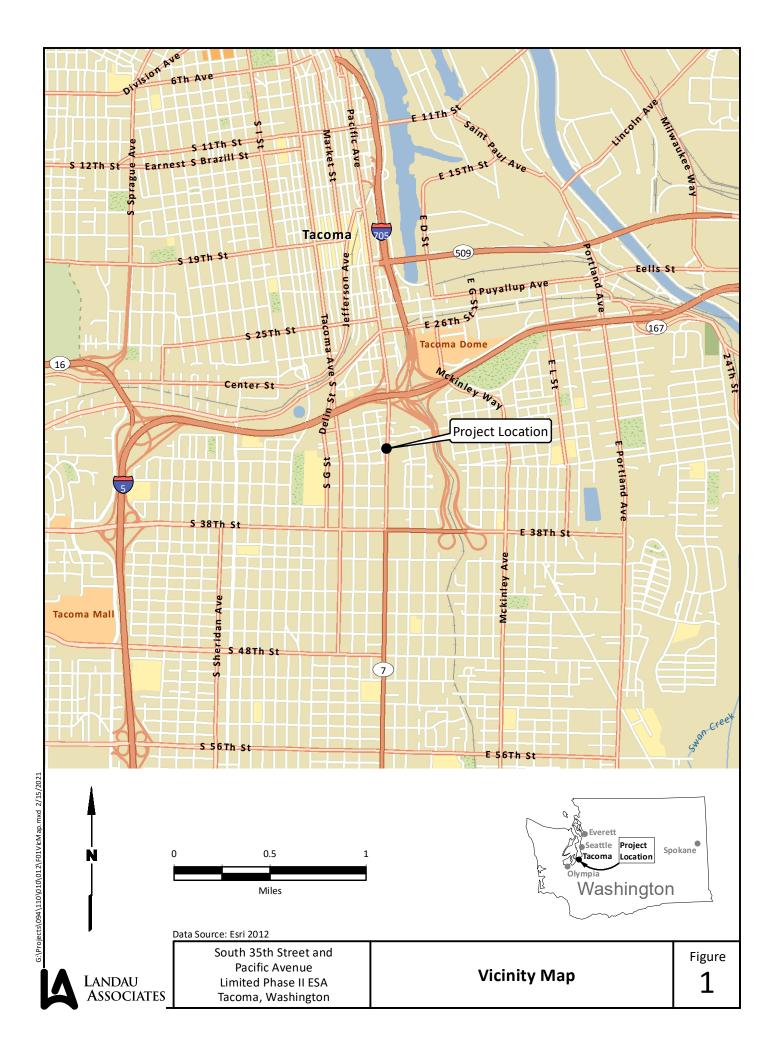
An O&M manual will be prepared for the subject property. The purpose of the manual will be to document current contamination conditions at the subject property and identify appropriate health and safety procedures and requirements for construction activities. The O&M manual will document the location and as-built specification of the *in-situ* containment areas and define specific procedures for their maintenance, define specific procedures for methane monitoring, and define worker health and safety procedures. The manual will also include procedures for documenting and maintaining subject property monitoring data. The subject property owner will maintain and implement the manual. The manual will be prepared as part of development activities and updated as appropriate during and following construction phases.

3.1.6 Health and Safety Plan

A health and safety plan (HASP) consistent with MTCA requirements in WAC 173-340-810 will be developed for construction activities at the subject property once the CAP is approved by Ecology. Appropriate health and safety protocols in the HASP will be implemented by the contractors and consultants working onsite during remedial actions. The HASP will address the potential for physical and chemical hazards.

The purpose of the plan will be to limit construction worker and site visitor exposure to environmental hazards while employed at the subject property. Elements of the HASP will include:

- Development of an air monitoring plan to monitor air emissions (e.g., methane) during
 construction activities. The plan will also include development of compliance criteria for
 methane in air based on potential worker exposure. The air monitoring plan will be consistent
 with the Puget Sound Clean Air Agency regulations for controlling air emissions for workers
 during construction activities.
- Requirements for worker education, training, and certification.
- Procedures for maintaining personal hygiene and associated facility requirements (i.e., hand and boot wash stations).
- Identification of applicable construction areas where the plan applies.


The HASP will be developed and approved prior to the beginning of construction activities. The plan will be incorporated into the subject property O&M Manual.

4.0 USE OF THIS REPORT

This Limited Phase II ESA has been prepared for the exclusive use of the Tacoma Community Redevelopment Authority for specific application to the South 35th Street and Pacific Avenue project. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of LAI. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, these services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. LAI makes no other warranty, either express or implied.

5.0 REFERENCES

- Ecology. 2008a. Letter Re: Opinion on Proposed Cleanup of the following Site: City of Tacoma 35th Street Landfill, 35th Street and Pacific Avenue, Tacoma; Facility/Site No. 5774537; VCP Project No. SW0938. From Charles Cline, Washington State Department of Ecology, SWRO Toxics Cleanup Program; to Eric Weber, Landau Associates, Inc. October 2.
- Ecology. 2008b. Letter: Further Action Determination under WAC 173-340-515(5) for the following Hazardous Waste Site: City of Tacoma 35th Street Landfill; 35th Street and Pacific Avenue, Tacoma; Facility/Site No. 5774537; VCP No. SW0938. From Charles Cline, SWRO Toxics Cleanup Program, Washington State Department of Ecology, to Eric Weber, Landau Associates. Inc. April 19.
- LAI. 2008a. Letter Report: 35th Street Landfill Additional Methane, Surface Water, and Soil Data. From Eric Weber and Jennifer Wynkoop, Landau Associates, Inc., to Scott Rose, Washington State Department of Ecology SWRO VCP Coordinator. March 11.
- LAI. 2008b. Remedial Investigation Work Plan, 35th Street Landfill, Tacoma, Washington. Prepared for City of Tacoma by Landau Associates, Inc. May 2.
- LAI. 2008c. Report: Remedial Investigation/Feasibility Study/and Cleanup Action Plan, 35th Street Landfill. Prepared for City of Tacoma by Landau Associates, Inc. August 5.
- LAI. 2021. Report: Phase 1 Environmental Site Assessment, South 35th Street and Pacific Avenue Tacoma, Washington. Prepared for Tacoma Community Redevelopment Authority, Tacoma, Washington. Landau Associates, Inc. March 31.
- Minard, J. P. 1985. Geologic Map of the Tacoma Quadrangle, Pierce and King Counties, Washington.
- TPCHD. 2008. Opinion Letter: From John Wright, Environmental Health Specialist, Environmental Health Program/Waste Management, Tacoma-Pierce County Health Department; to Eric Weber, Landau Associates, Inc. September 3.

Legend

- **B-1** Approximate Boring Location and Designation
- $\textbf{B-1} \ \bigoplus \ \text{Approximate Historical Boring/Geo-Probe Location and Designation}$
- **TP-1** H Approximate Historical Test Pit Location and Designation
 - **Approximate Pierce County Parcel Boundaries**
 - **Approximate Subject Property Parcel Boundaries**

Note

Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation.

Source: Google Imagery, 2018 South 35th Street and Pacific Avenue Limited Phase II ESA Tacoma, Washington

Site and Exploration Location Plan

Figure

	MTCA Method A	Sample Location, Depth, and Date										
	Cleanup Levels for	B1-05	B1-30	B2-05	B2-30	B3-05	B3-30					
Analyte	Unrestricted Uses	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021					
Petroleum Hydrocarbons (mg/kg; NWTP												
Gasoline Range Organics	30/100 (a)	10 U	10 U	10 U	10 U	10 U	10 U					
Diesel Range Organics	2,000	50 U	50 U	50 U	50 U	50 U	50 U					
Oil Range Organics	2,000	250 U	250 U	1,400	250 U	250 U	250 U					
Metals (mg/kg; SW-846 6020A, SW-846 7	7471B, SM 3500-CR-B)			·								
Lead	250	26	19	17	20	5.0 U	5.0 U					
Cadmium	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Chromium, Total	2,000 (b)	12	8.5	7.7	8.3	9.0	5.0 U					
Arsenic	20	5.0	6.2	5.0 U	5.4	5.9	5.1					
Barium	NL	84.1	91.3	55.2	72.9	68.2	57.5					
Mercury	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U					
Selenium	NL	1.17	1.04	1.02	0.985	0.903	0.865					
Silver	NL	0.0862 U	0.0897 U	0.0786 U	0.0902 U	0.0841 U	0.0843 U					
Volatile Organic Compounds (mg/kg; SW	-846 8260D)											
Dichlorodifluoromethane	NL	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U					
Chloromethane	NL	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U					
Vinyl Chloride	NL	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U					
Bromomethane	NL	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U					
Chloroethane	NL	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U					
Trichlorofluoromethane (CFC 11)	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
1,1-Dichloroethene	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Methylene Chloride	0.02	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U					
Methyl-tert-butyl ether	0.1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
trans-1,2-Dichloroethene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
1,1-Dichloroethane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
2,2-Dichloropropane	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
cis-1,2-Dichloroethene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Chloroform	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
1,1,1-Trichloroethane	2	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Carbon Tetrachloride	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
1,1-Dichloropropene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Benzene	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U					
1,2-Dichloroethane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Trichloroethene	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U					
1,2-Dichloropropane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Dibromomethane	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U					
Bromodichloromethane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
cis-1,3-Dichloropropene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Toluene	7	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U					
trans-1,3-Dichloropropene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
1,1,2-Trichloroethane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
Tetrachloroethene	0.05	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					
1,3-Dichloropropane	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Dibromochloromethane	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U					

	MTCA Method A	Sample Location, Depth, and Date						
	Cleanup Levels for	B1-05	B1-30	B2-05	B2-30	B3-05	B3-30	
Analyte	Unrestricted Uses	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	
Ethylene Dibromide	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	
Chlorobenzene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	
Ethylbenzene	6	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
1,1,1,2-Tetrachloroethane	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
Total Xylenes	9	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Styrene	NL	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	
Bromoform	NL	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Isopropylbenzene	NL	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
1,1,2,2-Tetrachloroethane	NL	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Bromobenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
n-Propylbenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
1,2,3-Trichloropropane	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
2-Chlorotoluene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
1,3,5-Trimethylbenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
4-Chlorotoluene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
tert-Butylbenzene	NL	0.04 UJ	0.04 U					
1,2,4-Trimethylbenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
sec-Butylbenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
4-Isopropyltoluene	NL	0.04 UJ	0.04 U					
1,3-Dichlorobenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
1,4-Dichlorobenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
n-Butylbenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
1,2-Dichlorobenzene	NL	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	
1,2-Dibromo-3-chloropropane	NL	0.15 UJ	0.15 U					
1,2,4-Trichlorobenzene	NL	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Hexachlorobutadiene	NL	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Naphthalene	5 (c)	0.15 UJ	0.15 U					
1,2,3-Trichlorobenzene	NL	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	
Semivolatile Organic Compounds (mg/kg;	SW-846 8270E)							
Phenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
bis(2-Chloroethyl) Ether	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2-Chlorophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
1,3-Dichlorobenzene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
1,4-Dichlorobenzene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
1,2-Dichlorobenzene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Benzyl Alcohol	NL	0.109 UJ	0.104 UJ	0.0964 UJ	0.104 UJ	0.106 UJ	0.0989 UJ	
2-Methylphenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Hexachloroethane	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
N-Nitrosodi-n-propylamine	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
4-Methylphenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Nitrobenzene	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Isophorone	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2-Nitrophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2,4-Dimethylphenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	

	MTCA Method A	Sample Location, Depth, and Date						
	Cleanup Levels for	B1-05	B1-30	B2-05	B2-30	B3-05	B3-30	
Analyte	Unrestricted Uses	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	
bis(2-Chloroethoxy) Methane	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
2,4-Dichlorophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
1,2,4-Trichlorobenzene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Naphthalene	5 (c)	0.0546 U	0.0521 U	0.0979	0.0521 U	0.0532 U	0.0495 U	
4-Chloroaniline	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Hexachlorobutadiene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
4-Chloro-3-methylphenol	NL	0.218 U	0.208 U	0.193 U	0.208 U	0.213 U	0.198 U	
2-Methylnaphthalene	5 (c)	0.0546 U	0.0521 U	0.0482 U	0.0521 U	0.0532 U	0.0495 U	
1-Methylnaphthalene	5 (c)	0.0546 U	0.0521 U	0.0482 U	0.0521 U	0.0532 U	0.0495 U	
Hexachlorocyclopentadiene	NL	0.109 UJ	0.104 UJ	0.0964 UJ	0.104 UJ	0.106 UJ	0.0989 UJ	
2,4,6-Trichlorophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2,4,5-Trichlorophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2-Chloronaphthalene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
2-Nitroaniline	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Acenaphthene	NL	0.0546 U	0.0521 U	0.0482 U	0.0521 U	0.0532 U	0.0495 U	
Dimethyl Phthalate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
2,6-Dinitrotoluene	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Acenaphthylene	NL	0.0546 U	0.0521 U	0.191	0.0521 U	0.0532 U	0.0495 U	
2,4-Dinitrophenol	NL	0.573 UJ	0.547 UJ	0.506 UJ	0.547 UJ	0.558 UJ	0.519 UJ	
Dibenzofuran	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
2,4-Dinitrotoluene	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
4-Nitrophenol	NL	0.546 U	0.521 U	0.482 U	0.521 U	0.532 U	0.495 U	
Fluorene	NL	0.0546 U	0.0521 U	0.0482 U	0.0521 U	0.0532 U	0.0495 U	
4-Chlorophenyl phenyl ether	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Diethyl Phthalate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
4,6-Dinitro-2-methylphenol	NL	0.218 UJ	0.208 UJ	0.193 UJ	0.208 UJ	0.213 UJ	0.198 UJ	
4-Bromophenyl phenyl ether	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Hexachlorobenzene	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Pentachlorophenol	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Phenanthrene	NL	0.0546 U	0.0521 U	0.134	0.059	0.0532 U	0.0495 U	
Anthracene	NL	0.0546 U	0.0521 U	0.117	0.0521 U	0.0532 U	0.0495 U	
Carbazole	NL	0.0819 U	0.0782 U	0.0723 U	0.0781 U	0.0797 U	0.0742 U	
Di-N-Butyl Phthalate	NL	0.109 U	0.147	0.0964 U	0.104 U	0.106 U	0.0989 U	
Fluoranthene	NL	0.0546 U	0.0521 U	0.557	0.0946	0.0532 U	0.0495 U	
Pyrene	NL	0.0546 U	0.0521 U	0.615	0.103	0.0532 U	0.0495 U	
Butyl Benzyl Phthalate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
bis(2-Ethylhexyl) adipate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Benzo(a)anthracene	NL	0.0546 U	0.0521 U	0.359	0.0521 U	0.0532 U	0.0495 U	
Chrysene	NL	0.0546 U	0.0521 U	0.429	0.0521 U	0.0532 U	0.0495 U	
bis(2-Ethylhexyl) Phthalate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Di-n-octyl Phthalate	NL	0.109 U	0.104 U	0.0964 U	0.104 U	0.106 U	0.0989 U	
Benzo(b)fluoranthene	NL	0.0546 U	0.0521 U	0.501	0.0521 U	0.0532 U	0.0495 U	
Benzo(k)fluoranthene	NL	0.0546 U	0.0521 U	0.363	0.0521 U	0.0532 U	0.0495 U	
Benzo(a)pyrene	0.1	0.0546 U	0.0521 U	0.506	0.0521 U	0.0532 U	0.0495 U	

	MTCA Method A	Sample Location, Depth, and Date									
	Cleanup Levels for	B1-05	B1-30	B2-05	B2-30	B3-05	B3-30				
Analyte	Unrestricted Uses	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021	1/26/2021				
Indeno(1,2,3-cd)pyrene	NL	0.0546 U	0.0521 U	0.266	0.0521 U	0.0532 U	0.0495 U				
Dibenzo(a,h)anthracene	NL	0.0546 U	0.0521 U	0.128	0.0521 U	0.0532 U	0.0495 U				
Benzo(g,h,i)perylene	NL	0.0546 U	0.0521 U	0.301	0.0521 U	0.0532 U	0.0495 U				
Total Benzofluoranthenes	NL	0.0546 U	0.0521 U	0.864	0.0521 U	0.0532 U	0.0495 U				
cPAH TEQ	0.1	0.077 U	0.0735 U	0.672	0.0735 U	0.075 U	0.0698 U				

Notes:

Bold text indicates detected analyte

Green shading indicates observed value exceeds its MTCA Soil Cleanup Level

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

UJ = The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

- (a) MTCA Method A cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1 percent of the gasoline mixture; otherwise the cleanup level is 30 mg/kg.
- (b) MTCA Method A cleanup level for chromium III.
- (c) MTCA Method A cleanup level for naphthalenes.

Acronyms/Abbreviations:

cPAH = carcinogenic polycyclic aromatic hydrocarbon

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

NL = not listed

TEQ = toxicity equivalence

Boring Logs

Soil Classification System

MAJOR DIVISIONS

USCS GRAPHIC LETTER SYMBOL SYMBOL⁽¹⁾

TYPICAL DESCRIPTIONS (2)(3)

	DIVISIONS		-	SYMBOL	DESCRIPTIONS (-7/67)
	GRAVEL AND	CLEAN GRAVEL	00000	GW	Well-graded gravel; gravel/sand mixture(s); little or no fines
SOIL rrial is s size)	GRAVELLY SOIL	(Little or no fines)	00000	GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines
_ W &	(More than 50% of coarse fraction retained	GRAVEL WITH FINES	5 5 5 5 5	GM	Silty gravel; gravel/sand/silt mixture(s)
-GRAINED 50% of mat No. 200 siev	on No. 4 sieve)	(Appreciable amount of fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
COARSE-GRAIN (More than 50% of arger than No. 200	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
SSE than than	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
OAR; Nore th	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of		SM	Silty sand; sand/silt mixture(s)
_ <u>a</u> ≥ ∪	through No. 4 sieve)	fines)		sc	Clayey sand; sand/clay mixture(s)
oll ian	SII T AI	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
SOIL % of ler than size)	-			CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay, silty clay; lean clay
-GRAINED SOIL fore than 50% of arial is smaller than 5. 200 sieve size)	(Liquid limit	less than 50)		OL	Organic silt; organic, silty clay of low plasticity
RAINI e than al is sm 200 sie	SII T AI	ND CLAY		MH	Inorganic silt; micaceous or diatomaceous fine sand
INE-GRAI (More tha material is: No. 200 s	-		СН	Inorganic clay of high plasticity; fat clay	
FINE. Mate	(Liquid limit g		ОН	Organic clay of medium to high plasticity; organic silt	
	HIGHLY OF	RGANIC SOIL		PT	Peat; humus; swamp soil with high organic content

OTHER MATERIALS

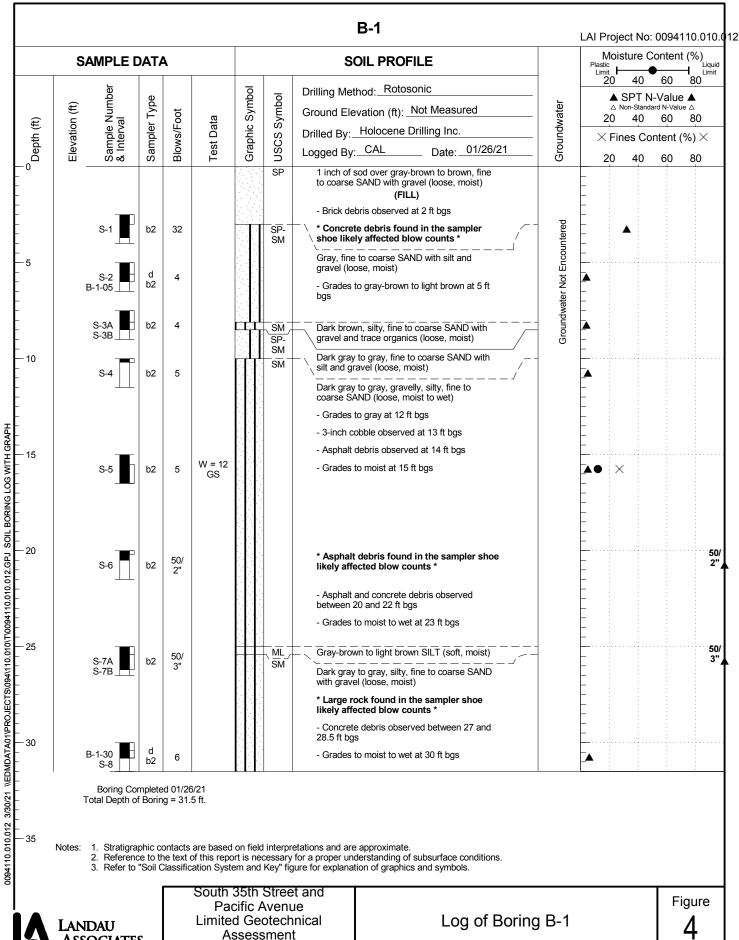
GRAPHIC LETTER SYMBOL SYMBOL

TYPICAL DESCRIPTIONS

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement
ROCK	RK	Rock (See Rock Classification)
WOOD	WD	Wood, lumber, wood chips
DEBRIS	Ø∕Ø∕Ø∕ DB	Construction debris, garbage

- Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
 - Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
 - 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

4. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating conditions, field tests, and laboratory tests, as appropriate.


Drilling and Sampling Key Field and Lab Test Data SAMPLER TYPE SAMPLE NUMBER & INTERVAL Code Description Code Description 3.25-inch O.D., 2.42-inch I.D. Split Spoon PP = 1.0 Pocket Penetrometer, tsf а b 2.00-inch O.D., 1.50-inch I.D. Split Spoon Sample Identification Number TV = 0.5Torvane, tsf Shelby Tube PID = 100 Photoionization Detector VOC screening, ppm С Recovery Depth Interval Moisture Content, % d Grab Sample W = 10Single-Tube Core Barrel D = 120Dry Density, pcf Sample Depth Interval Double-Tube Core Barrel -200 = 60 Material smaller than No. 200 sieve, % 2.50-inch O.D., 2.00-inch I.D. WSDOT GS Grain Size - See separate figure for data Portion of Sample Retained h 3.00-inch O.D., 2.375-inch I.D. Mod. California for Archive or Analysis ALAtterberg Limits - See separate figure for data Other - See text if applicable GT Other Geotechnical Testing Chemical Analysis 300-lb Hammer, 30-inch Drop CA 1 2 140-lb Hammer, 30-inch Drop Groundwater Pushed Approximate water level at time of drilling (ATD) Vibrocore (Rotosonic/Geoprobe) Approximate water level at time after drilling/excavation/well Other - See text if applicable

South 35th Street and Pacific Avenue Limited Phase II ESA Tacoma, Washington

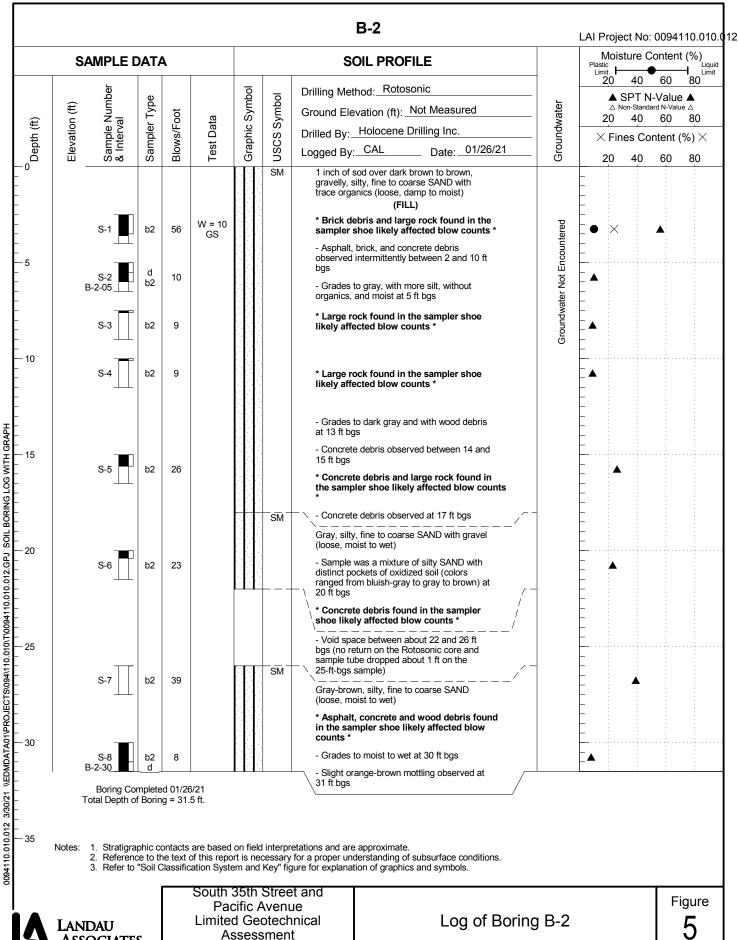
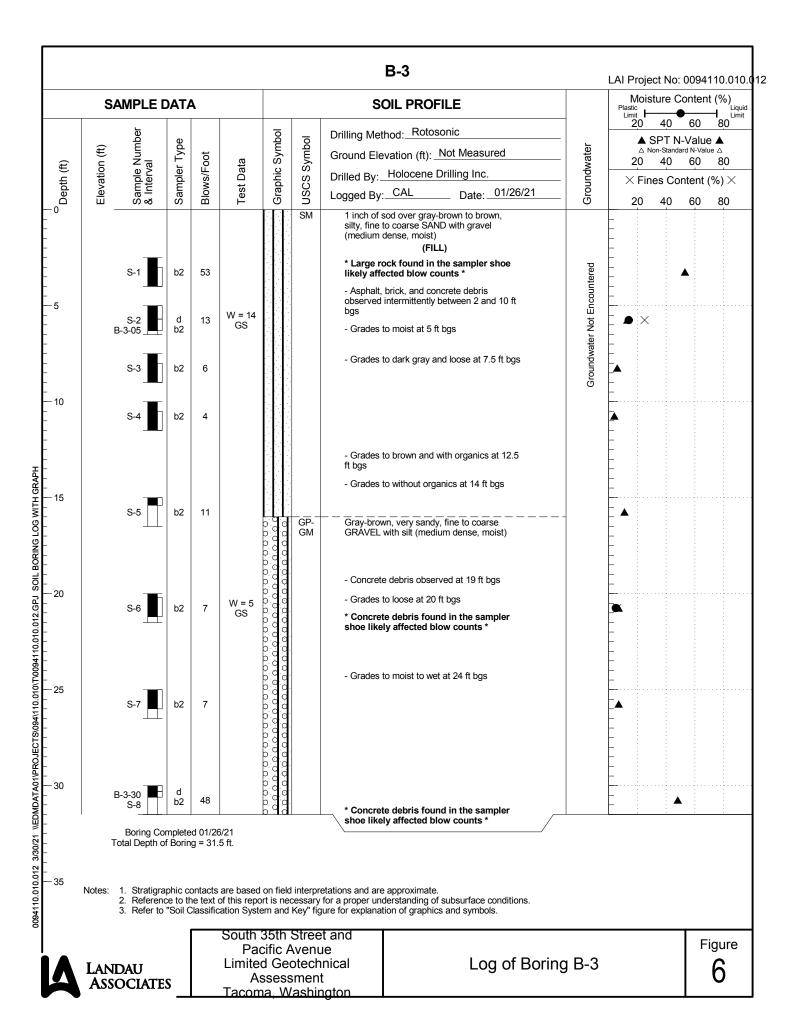

Soil Classification System and Key

Figure A-1


ASSOCIATES

Tacoma, Washington

ASSOCIATES

Tacoma, Washington

Laboratory Analytical Report

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

February 10, 2021

Dave Johnson Landau Associates 500 Columbia St NW, Ste 110 Olympia, WA 98501

Dear Mr. Johnson:

Please find enclosed the analytical data report for the $35^{\rm th}$ Street Landfill Project located in Tacoma, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Chain-of-Custody Record

Seattle/Edmonds (425) 778-0907	Spokane (509) 327-9737	Date	26	21	Turnaround Time:
☐ Tacoma (253) 926-2493	Portland (503) 542-1080	Page .	(of	Standard

															7
Project Name 35TH STREET											Test	ting F	Param	neter	s
Project Location/Event 5 3511		PACIFI	C AVE	, TACO	MA,	WF	1/		1699	/ /	/ /			/ /	Special Handling Requirements:
Sampler's Name C. LARAM	NE						/	/ /	4		//	/ /	/ /		///
Project Contact D. JOHNS	on,	D. Jos	RGENST	EN			1	Ya	7	//				/ /	Shipment Method:
Send Results To	n	**		• /	/	かせい	/_	X		/	/ /	/ /			Stored on ice: Yes / No
,				No. of		* ev	× 15		//				//	/ /	
Sample I.D.	Date	Time	Matrix	Containers	/~) 0	9 /	-	1	(/		-	Observations/Comments
BI-05-20210126	1/26/21	940	SOIL	4	X	×	*				1				All
B1-30-20210126		1020			X	X	X			-		-			Allow water samples to settle, collect aliquot from clear portion □
152-05-20210126		1120			×	X	X			-		-			NWTPH-Dx - Acid wash cleanup
B2-30 - 20210126		1245			×	×	X			-	-	-			- Silica gel cleanup
B3-05-20210126 B3-030-20210126		1340			X	×	X			-	-			-	
03-030-20110126	4	1430	+	-	×	X	X			-	1			-	Dissolved metal samples were field filtered
A A A A A A A A A A A A A A A A A A A							-						-		
															Other
				1								-			
										1					
															(
Relinquished by		Received by	1				Re	elinqui	hed by	1					Received by
Signature Coeff Joann		Signature _	/ / /.				Sig	gnature							Signature
Printed Name Coby CARAM	1E	Printed Name	1	Dixon			Pr	inted N	me						Printed Name
Company (A)		Company					Co	mpany					****		Company
Date 1261	5_	Date 1/26	121	Time 161	0		Da	ite			_ Tim	е			Date Time

Libby Environmental, Inc.

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	B1-05-	B1-05-	B1-30-	B2-05-	B2-30-
-		Blank	20210126	20210126	20210126	20210126	20210126
				Dup			
Date Sampled	Reporting	N/A	1/25/2021	1/25/2021	1/25/2021	1/25/2021	1/25/2021
Date Analyzed	Limits	1/27/2021	1/27/2021	1/27/2021	1/27/2021	1/27/2021	1/27/2021
•	(mg/kg)						
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
Chloroform	0.03	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.03	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.03	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.03	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.03	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.03	nd	nd	nd	nd	nd	nd

Libby Environmental, Inc.

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	B1-05-	B1-05-	B1-30-	B2-05-	B2-30-
		Blank	20210126	20210126	20210126	20210126	20210126
				Dup			
Date Sampled	Reporting	N/A	1/25/2021	1/25/2021	1/25/2021	1/25/2021	1/25/2021
Date Analyzed	Limits	1/27/2021	1/27/2021	1/27/2021	1/27/2021	1/27/2021	1/27/2021
•	(mg/kg)						
Bromoform	0.15	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.15	nd	nd	nd	nd	nd	nd
Bromobenzene	0.04	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.04	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.04	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.04	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.04	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.04	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.04	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.04	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.04	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.04	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.04	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.04	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.04	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.15	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.15	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.15	nd	nd	nd	nd	nd	nd
Naphthalene	0.15	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.15	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		134	114	108	117	111	107
1,2-Dichloroethane-d4		122	107	109	114	106	104
Toluene-d8		66	66	102	66	97	81
4-Bromofluorobenzene		88	77	79	82	89	78

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		B3-05-	B3-030-
Sample Description		20210126	20210126
		20210120	20210120
Date Sampled	Reporting	1/25/2021	1/25/2021
Date Analyzed	Limits	1/27/2021	1/27/2021
Date Analyzed	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride	0.00	nd	nd
Bromomethane	0.02	nd	nd
	0.09	nd	nd
Chloroethane			
Trichlorofluoromethane	0.05	nd	nd
1,1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.02	nd	nd
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.05	nd	nd
trans -1,2-Dichloroethene	0.03	nd	nd
1,1-Dichloroethane	0.03	nd	nd
2,2-Dichloropropane	0.05	nd	nd
cis -1,2-Dichloroethene	0.03	nd	nd
Chloroform	0.03	nd	nd
1,1,1-Trichloroethane (TCA)	0.03	nd	nd
Carbon tetrachloride	0.03	nd	nd
1,1-Dichloropropene	0.03	nd	nd
Benzene	0.02	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd
Trichloroethene (TCE)	0.02	nd	nd
1,2-Dichloropropane	0.03	nd	nd
Dibromomethane	0.04	nd	nd
Bromodichloromethane	0.03	nd	nd
cis-1,3-Dichloropropene	0.03	nd	nd
Toluene	0.10	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.03	nd	nd
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.003	nd	nd
Ethylbenzene	0.05	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd
Total Xylenes	0.05	nd	nd
Styrene	0.13	nd	nd
Styrelle	0.03	110	nu

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		В3-05-	B3-030-
_ _		20210126	20210126
Date Sampled	Reporting	1/25/2021	1/25/2021
Date Analyzed	Limits	1/27/2021	1/27/2021
	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.15	nd	nd
Isopropylbenzene	0.05	nd	nd
1,1,2,2-Tetrachloroethane	0.15	nd	nd
Bromobenzene	0.04	nd	nd
n-Propylbenzene	0.04	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd
2-Chlorotoluene	0.04	nd	nd
1,3,5-Trimethylbenzene	0.04	nd	nd
4-Chlorotoluene	0.04	nd	nd
tert-Butylbenzene	0.04	nd	nd
1,2,4-Trimethylbenzene	0.04	nd	nd
sec-Butylbenzene	0.04	nd	nd
p-Isopropyltoluene	0.04	nd	nd
1,3-Dichlorobenzene	0.04	nd	nd
1,4-Dichlorobenzene	0.04	nd	nd
n-Butylbenzene	0.04	nd	nd
1,2-Dichlorobenzene	0.04	nd	nd
1,2-Dibromo-3-Chloropropane	0.15	nd	nd
1,2,4-Trichlorolbenzene	0.15	nd	nd
Hexachloro-1,3-butadiene	0.15	nd	nd
Naphthalene	0.15	nd	nd
1,2,3-Trichlorobenzene	0.15	nd	nd
Surrogate Recovery			
Dibromofluoromethane		134	120
1,2-Dichloroethane-d4		131	114
Toluene-d8		82	97
4-Bromofluorobenzene		77	79

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

Matrix Spike Sample Identification: B1-05-20210126								
			ate Analyzed:					
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Dichlorodifluoromethane	0.25	0.30	0.23	120	92	26.4	65-135	
Chloromethane	0.25	0.22	0.17	88	68	25.6	65-135	
Vinyl chloride	0.25	0.23	0.18	92	72	24.4	65-135	
Bromomethane	0.25	0.36	0.31	144	124	14.9	65-135	S
Chloroethane	0.25	0.44	0.25	176	100	55.1	65-135	S,R
Trichlorofluoromethane	0.25	0.31	0.22	124	88	34.0	65-135	
1,1-Dichloroethene	0.25	0.27	0.22	108	88	20.4	65-135	
Methylene chloride	0.25	0.29	0.22	116	88	27.5	65-135	
Methyl tert- Butyl Ether (MTBE)	0.25	0.24	0.17	96	68	34.1	65-135	
trans -1,2-Dichloroethene	0.25	0.26	0.21	104	84	21.3	65-135	
1,1-Dichloroethane	0.25	0.32	0.26	128	104	20.7	65-135	
2,2-Dichloropropane	0.25	0.33	0.25	132	100	27.6	65-135	
cis-1,2-Dichloroethene	0.25	0.30	0.25	120	100	18.2	65-135	
Chloroform	0.25	0.35	0.27	140	108	25.8	65-135	S
1,1,1-Trichloroethane (TCA)	0.25	0.33	0.26	132	104	23.7	65-135	
Carbon tetrachloride	0.25	0.35	0.27	140	108	25.8	65-135	S
1,1-Dichloropropene	0.25	0.25	0.20	100	80	22.2	65-135	
Benzene	0.25	0.29	0.23	116	92	23.1	65-135	
1,2-Dichloroethane (EDC)	0.25	0.30	0.22	120	88	30.8	65-135	
Trichloroethene (TCE)	0.25	0.16	0.22	64	88	31.6	65-135	S
1,2-Dichloropropane	0.25	0.20	0.19	80	76	5.1	65-135	
Dibromomethane	0.25	0.20	0.21	80	84	4.9	65-135	
Bromodichloromethane	0.25	0.27	0.21	108	84	25.0	65-135	
cis-1,3-Dichloropropene	0.25	0.17	0.11	68	44	42.9	65-135	S, R
Toluene	0.25	0.22	0.15	88	60	37.8	65-135	S, R
Trans-1,3-Dichloropropene	0.25	0.20	0.19	80	76	5.1	65-135	
1,1,2-Trichloroethane	0.25	0.28	0.30	112	120	6.9	65-135	
Tetrachloroethene (PCE)	0.25	0.18	0.21	72	84	15.4	65-135	
1,3-Dichloropropane	0.25	0.22	0.20	88	80	9.5	65-135	
Dibromochloromethane	0.25	0.31	0.28	124	112	10.2	65-135	
1,2-Dibromoethane (EDB)	0.25	0.208	0.20	83	81	2.4	65-135	
Chlorobenzene	0.25	0.29	0.28	116	112	3.5	65-135	
Ethylbenzene	0.25	0.24	0.23	96	92	4.3	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.40	0.36	160	144	10.5	65-135	S
Total Xylenes	0.75	0.67	0.62	89	83	7.8	65-135	
Styrene	0.25	0.19	0.19	76	76	0.0	65-135	

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix S ₁	pike Sample I)126			
Date Analyzed: 1/27/2021								
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Bromoform	0.25	0.30	0.30	120	120	0.0	65-135	
Isopropylbenzene	0.25	0.17	0.16	68	64	6.1	65-135	S
1,1,2,2-Tetrachloroethane	0.25	0.23	0.22	92	88	4.4	65-135	
Bromobenzene	0.25	0.22	0.21	88	84	4.7	65-135	
n-Propylbenzene	0.25	0.20	0.18	80	72	10.5	65-135	
1,2,3-Trichloropropane	0.25	0.21	0.20	84	80	4.9	65-135	
2-Chlorotoluene	0.25	0.19	0.17	76	68	11.1	65-135	
1,3,5-Trimethylbenzene	0.25	0.17	0.16	68	64	6.1	65-135	S
4-Chlorotoluene	0.25	0.17	0.16	68	64	6.1	65-135	S
tert-Butylbenzene	0.25	0.15	0.15	60	60	0.0	65-135	S
1,2,4-Trimethylbenzene	0.25	0.18	0.17	72	68	5.7	65-135	
sec-Butylbenzene	0.25	0.19	0.18	76	72	5.4	65-135	
Isopropyltoluene	0.25	0.16	0.15	64	60	6.5	65-135	S
1,3-Dichlorobenzene	0.25	0.25	0.24	100	96	4.1	65-135	
1,4-Dichlorobenzene	0.25	0.26	0.26	104	104	0.0	65-135	
n-Butylbenzene	0.25	0.20	0.17	80	68	16.2	65-135	
1,2-Dichlorobenzene	0.25	0.22	0.21	88	84	4.7	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.16	0.14	64	56	13.3	65-135	S
1,2,4-Trichlorolbenzene	0.25	0.17	0.19	68	76	11.1	65-135	
Hexachloro-1,3-butadiene	0.25	0.27	0.26	108	104	3.8	65-135	
Naphthalene	0.25	0.11	0.13	44	52	16.7	65-135	S
1,2,3-Trichlorobenzene	0.25	0.20	0.19	80	76	5.1	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				133	114		65-135	
1,2-Dichloroethane-d4				126	103		65-135	
Toluene-d8				82	66		65-135	
4-Bromofluorobenzene				97	104		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;S" Spike compound recovery is outside acceptance limits.

[&]quot;R" High relative percent difference observed.

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

-	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Dichlorodifluoromethane	0.25	0.27	108	80-120	
Chloromethane	0.25	0.20	81	80-120	
Vinyl chloride	0.25	0.22	86	80-120	
Bromomethane	0.25	0.29	116	80-120	
Chloroethane	0.25	0.29	117	80-120	
Trichlorofluoromethane	0.25	0.28	113	80-120	
1,1-Dichloroethene	0.25	0.30	119	80-120	
Methylene chloride	0.25	0.29	116	80-120	
Methyl tert- Butyl Ether (MTBE)	0.25	0.25	101	80-120	
trans-1,2-Dichloroethene	0.25	0.28	113	80-120	
1,1-Dichloroethane	0.25	0.30	118	80-120	
2,2-Dichloropropane	0.25	0.29	117	80-120	
cis -1,2-Dichloroethene	0.25	0.29	117	80-120	
Chloroform	0.25	0.29	115	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.30	119	80-120	
Carbon tetrachloride	0.25	0.30	120	80-120	
1,1-Dichloropropene	0.25	0.29	115	80-120	
Benzene	0.25	0.21	85	80-120	
1,2-Dichloroethane (EDC)	0.25	0.27	107	80-120	
Trichloroethene (TCE)	0.25	0.20	80	80-120	
1,2-Dichloropropane	0.25	0.23	91	80-120	
Dibromomethane	0.25	0.24	96	80-120	
Bromodichloromethane	0.25	0.30	119	80-120	
cis-1,3-Dichloropropene	0.25	0.22	87	80-120	
Toluene	0.25	0.21	82	80-120	
Trans-1,3-Dichloropropene	0.25	0.20	82	80-120	
1,1,2-Trichloroethane	0.25	0.29	115	80-120	
Tetrachloroethene (PCE)	0.25	0.28	113	80-120	
1,3-Dichloropropane	0.25	0.23	90	80-120	
Dibromochloromethane	0.25	0.30	119	80-120	
1,2-Dibromoethane (EDB)	0.25	0.223	89	80-120	
Chlorobenzene	0.25	0.29	116	80-120	
Ethylbenzene	0.25	0.24	96	80-120	
1,1,1,2-Tetrachloroethane	0.25	0.29	114	80-120	
Total Xylenes	0.75	0.70	93	80-120	
Styrene	0.25	0.20	81	80-120	

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington Libby Project # L210126-1 Client Project # 0094110.010.012 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

Date Analyzed:	: 1/27/2021				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.25	0.29	116	80-120	
Isopropylbenzene	0.25	0.20	81	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.27	106	80-120	
Bromobenzene	0.25	0.28	112	80-120	
n-Propylbenzene	0.25	0.24	95	80-120	
1,2,3-Trichloropropane	0.25	0.26	104	80-120	
2-Chlorotoluene	0.25	0.22	89	80-120	
1,3,5-Trimethylbenzene	0.25	0.22	89	80-120	
4-Chlorotoluene	0.25	0.22	88	80-120	
tert-Butylbenzene	0.25	0.21	82	80-120	
1,2,4-Trimethylbenzene	0.25	0.22	86	80-120	
sec-Butylbenzene	0.25	0.27	107	80-120	
Isopropyltoluene	0.25	0.20	82	80-120	
1,3-Dichlorobenzene	0.25	0.30	119	80-120	
1,4-Dichlorobenzene	0.25	0.30	119	80-120	
n-Butylbenzene	0.25	0.21	83	80-120	
1,2-Dichlorobenzene	0.25	0.26	104	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.21	83	80-120	
1,2,4-Trichlorolbenzene	0.25	0.23	90	80-120	
Hexachloro-1,3-butadiene	0.25	0.29	117	80-120	
Naphthalene	0.25	0.20	80	80-120	
1,2,3-Trichlorobenzene	0.25	0.24	96	80-120	
Surrogate Recovery					
Dibromofluoromethane			134	65-135	
1,2-Dichloroethane-d4			110	65-135	
Toluene-d8			77	65-135	
4-Bromofluorobenzene			108	65-135	

ANALYSES PERFORMED BY: Melissa Harrington

35TH STREET LANDFILL PROJECT

Landau Associates
Tacoma, Washington
Libby Project # L210126-1
Client Project # 0094110.010.012

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110

FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	1/27/2021	66	nd
B1-05-20210126	1/27/2021	66	nd
B1-05-20210126 Dup	1/27/2021	102	nd
B1-30-20210126	1/27/2021	66	nd
B2-05-20210126	1/27/2021	97	nd
B2-30-20210126	1/27/2021	81	nd
B3-05-20210126	1/27/2021	82	nd
B3-030-20210126	1/27/2021	97	nd
Practical Quantitation Limit			10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;int" Indicates that interference prevents determination.

35TH STREET LANDFILL PROJECT

Landau Associates
Tacoma, Washington
Libby Project # L210126-1
Client Project # 0094110.010.012

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154

Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	1/27/2021	92	nd	nd
B1-05-20210126	1/27/2021	96	nd	nd
B1-05-20210126 Dup	1/27/2021	97	nd	nd
B1-30-20210126	1/27/2021	79	nd	nd
B2-05-20210126	1/27/2021	102	nd	1400
B2-30-20210126	1/27/2021	114	nd	nd
B3-05-20210126	1/27/2021	81	nd	nd
B3-030-20210126	1/27/2021	95	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jenny Anderson

[&]quot;int" Indicates that interference prevents determination.

35TH STREET LANDFILL PROJECT

Landau Associates
Tacoma, Washington
Libby Project # L210126-1
Client Project # 0094110.010.012

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110

FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Total Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic		
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Method Blank	1/29/2021	nd	nd	nd	nd		
B1-05-20210126	1/29/2021	26	nd	12	5.0		
B1-30-20210126	1/29/2021	19	nd	8.5	6.2		
B2-05-20210126	1/29/2021	17	nd	7.7	nd		
B2-30-20210126	1/29/2021	20	nd	8.3	5.4		
B3-05-20210126	1/29/2021	nd	nd	9.0	5.9		
B3-030-20210126	1/29/2021	nd	nd	nd	5.1		
B3-030-20210126 Dup	1/29/2021	nd	nd	nd	nd		
Practical Quantitation Lir	5.0	1.0	5.0	5.0			
"nd" Indicates not detected at the listed detection limits.							

ANALYSES PERFORMED BY: Sherry Chilcutt

QA/QC for Total Metals in Soil by EPA Method 7010 Series

Sample	Date	Lead	Cadmium	Chromium	Arsenic
Number	Analyzed	(% Recovery)	(% Recovery)	(% Recovery)	(% Recovery)
LCS	1/29/2021	96%	96%	90%	91%
B3-030-20210126 MS	1/29/2021	103%	83%	111%	96%
B3-030-20210126 MSD	1/29/2021	106%	80%	112%	107%
RPD	1/29/2021	3%	4%	1%	11%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

3322 South Bay Road NE

Olympia, WA 98506 Phone: (360) 352-2110

FAX: (360) 352-4154 Email: libbyenv@gmail.com

35TH STREET LANDFILL PROJECT Landau Associates Tacoma, Washington

Libby Project # L210126-1

Client Project # 0094110.010.012

Analyses of Total Mercury in Soil by EPA Method 7471

Sample	Date	Mercury				
Number	Analyzed	(mg/kg)				
Method Blank	2/2/2021	nd				
B1-05-20210126	2/2/2021	nd				
B1-30-20210126	2/2/2021	nd				
B2-05-20210126	2/2/2021	nd				
B2-30-20210126	2/2/2021	nd				
B3-05-20210126	2/2/2021	nd				
B3-030-20210126	2/2/2021	nd				
B3-030-20210126 Dup	2/2/2021	nd				
Practical Quantitation Limit		0.5				
"nd" Indicates not detected at the listed detection limits.						

ANALYSES PERFORMED BY: Sherry Chilcutt

QA/QC for Total Mercury by EPA Method 7471

Sample	Date	Mercury
Number	Analyzed	(% Recovery)
LCS	2/2/2021	105%
B3-030-20210126 MS	2/2/2021	95%
B3-030-20210126 MSD	2/2/2021	105%
RPD	2/2/2021	10%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

35TH STREET LANDFILL PROJECT Landau Associates Libby Project # L210126-1 Date Received 1/26/21 16:10 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody	<u>y</u>					
1. Is the Chain of Custo	ody complete?	√	Yes	☐ No		
2. How was the sample	e delivered?	V	Hand Delivered	☐ Picked U	р	☐ Shipped
Log In						
3. Cooler or Shipping C	Container is present.	√	Yes	☐ No		□ N/A
4. Cooler or Shipping C	Container is in good condition.	√	Yes	☐ No		□ N/A
5. Cooler or Shipping C	Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt mad	de to cool the samples?	V	Yes	☐ No		□ N/A
7. Temperature of cool	er (0°C to 8°C recommended)		1.0	°C		
8. Temperature of sam	ple(s) (0°C to 8°C recommended)		3.5	°C		
9. Did all containers arr	rive in good condition (unbroken)?	√	Yes	☐ No		
10. Is it clear what anal	yses were requested?	√	Yes	☐ No		
11. Did container labels	s match Chain of Custody?	√	Yes	☐ No		
12. Are matrices correct	ctly identified on Chain of Custody?	✓	Yes	☐ No		
13. Are correct contained	ers used for the analysis indicated?	✓	Yes	☐ No		
14. Is there sufficient sa	ample volume for indicated analysis?	✓	Yes	☐ No		
15. Were all containers	properly preserved per each analysis?	✓	Yes	☐ No		
16. Were VOA vials co	llected correctly (no headspace)?	√	Yes	☐ No		□ N/A
17. Were all holding tim	nes able to be met?	✓	Yes	☐ No		
Discrepancies/ No	otes					
18. Was client notified	of all discrepancies?		Yes	☐ No		☑ N/A
Person Notified:				_	Date:	
By Whom:				_	Via:	
Regarding:				_		
19. Comments.	VOAs pre-preserved			-		

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 35th Street Landfill

Work Order Number: 2101416

February 10, 2021

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 6 sample(s) on 1/27/2021 for the analyses presented in the following report.

Sample Moisture (Percent Moisture)
Semi-Volatile Organic Compounds by EPA Method 8270
Total Metals by EPA Method 6020B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 02/10/2021

CLIENT: Libby Environmental Work Order Sample Summary

Project: 35th Street Landfill **Work Order:** 2101416

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2101416-001	B1-05-20210126	01/26/2021 9:40 AM	01/27/2021 9:24 AM
2101416-002	B1-30-20210126	01/26/2021 10:20 AM	01/27/2021 9:24 AM
2101416-003	B2-05-20210126	01/26/2021 11:20 AM	01/27/2021 9:24 AM
2101416-004	B2-30-20210126	01/26/2021 12:45 PM	01/27/2021 9:24 AM
2101416-005	B3-05-20210126	01/26/2021 1:40 PM	01/27/2021 9:24 AM
2101416-006	B3-30-20210126	01/26/2021 2:30 PM	01/27/2021 9:24 AM

Case Narrative

WO#: **2101416**Date: **2/10/2021**

CLIENT: Libby Environmental Project: 35th Street Landfill

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2101416**

Date Reported: 2/10/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 9:40:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-001 **Matrix:** Soil

Client Sample ID: B1-05-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	ID: 31	181 Analyst: SB
Phenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Bis(2-chloroethyl) ether	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Chlorophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
1,3-Dichlorobenzene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
1,4-Dichlorobenzene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
1,2-Dichlorobenzene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benzyl alcohol	ND	109	Q	μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Methylphenol (o-cresol)	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Hexachloroethane	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
N-Nitrosodi-n-propylamine	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
3&4-Methylphenol (m, p-cresol)	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Nitrobenzene	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Isophorone	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Nitrophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4-Dimethylphenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Bis(2-chloroethoxy)methane	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4-Dichlorophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
1,2,4-Trichlorobenzene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Naphthalene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
4-Chloroaniline	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Hexachlorobutadiene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
4-Chloro-3-methylphenol	ND	218		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Methylnaphthalene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
1-Methylnaphthalene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Hexachlorocyclopentadiene	ND	109	Q	μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4,6-Trichlorophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4,5-Trichlorophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Chloronaphthalene	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2-Nitroaniline	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Acenaphthene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Dimethylphthalate	ND	109		μg/Kg-dry	1	1/27/2021 8:11:20 PM
2.6-Dinitrotoluene	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Acenaphthylene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4-Dinitrophenol	ND	573	Q	μg/Kg-dry	1	2/1/2021 6:25:41 PM
Dibenzofuran	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
2,4-Dinitrotoluene	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
4-Nitrophenol	ND	546		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Fluorene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
4-Chlorophenyl phenyl ether	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 9:40:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-001 **Matrix:** Soil

Client Sample ID: B1-05-20210126

Diethylphthalate 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether Hexachlorobenzene	ND ND	ethod 8270 109		Batch	ID:	31181 Analyst: SE
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether Hexachlorobenzene	ND	109				
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether Hexachlorobenzene				μg/Kg-dry	1	2/1/2021 6:25:41 PM
Hexachlorobenzene	ND	218	Q	μg/Kg-dry	1	2/1/2021 6:25:41 PM
	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
5	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Pentachlorophenol	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Phenanthrene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Anthracene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Carbazole	ND	81.9		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Di-n-butylphthalate	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Fluoranthene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Pyrene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Butyl Benzylphthalate	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
bis(2-Ethylhexyl)adipate	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benz(a)anthracene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Chrysene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
bis (2-Ethylhexyl) phthalate	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Di-n-octyl phthalate	ND	109		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benzo(b)fluoranthene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benzo(k)fluoranthene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benzo(a)pyrene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Indeno(1,2,3-cd)pyrene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Dibenz(a,h)anthracene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Benzo(g,h,i)perylene	ND	54.6		μg/Kg-dry	1	2/1/2021 6:25:41 PM
Surr: 2,4,6-Tribromophenol	75.3	13.4 - 144		%Rec	1	2/1/2021 6:25:41 PM
Surr: 2-Fluorobiphenyl	90.1	5.5 - 130		%Rec	1	2/1/2021 6:25:41 PM
Surr: Nitrobenzene-d5	90.9	5 - 116		%Rec	1	2/1/2021 6:25:41 PM
Surr: Phenol-d6	90.3	21.2 - 117		%Rec	1	2/1/2021 6:25:41 PM
Surr: p-Terphenyl	96.4	41.3 - 151		%Rec	1	2/1/2021 6:25:41 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B Batch ID: 31198

Barium	84.1	0.431	mg/Kg-dry	1	2/1/2021 11:55:39 AM
Selenium	1.17	0.431	mg/Kg-dry	1	1/29/2021 1:16:55 PM
Silver	ND	0.0862	mg/Kg-dry	1	1/28/2021 5:58:20 PM

Analyst: CO

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 9:40:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-001 **Matrix**: Soil

Client Sample ID: B1-05-20210126

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Sample Moisture (Percent Moisture)
 Batch ID: R64985
 Analyst: RL

 Percent Moisture
 10.1
 0.500
 wt%
 1
 1/29/2021 1:46:44 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 10:20:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-002 **Matrix:** Soil

Client Sample ID: B1-30-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	ID: 31	181 Analyst: SB
Phenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Bis(2-chloroethyl) ether	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Chlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
1,3-Dichlorobenzene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
1,4-Dichlorobenzene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
1,2-Dichlorobenzene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benzyl alcohol	ND	104	Q	μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Methylphenol (o-cresol)	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Hexachloroethane	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
N-Nitrosodi-n-propylamine	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
3&4-Methylphenol (m, p-cresol)	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Nitrobenzene	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Isophorone	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Nitrophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4-Dimethylphenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Bis(2-chloroethoxy)methane	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4-Dichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
1,2,4-Trichlorobenzene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Naphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
4-Chloroaniline	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Hexachlorobutadiene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
4-Chloro-3-methylphenol	ND	208		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Methylnaphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
1-Methylnaphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Hexachlorocyclopentadiene	ND	104	Q	μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4,6-Trichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4,5-Trichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Chloronaphthalene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2-Nitroaniline	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Acenaphthene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Dimethylphthalate	ND	104		μg/Kg-dry	1	1/27/2021 8:33:25 PM
2.6-Dinitrotoluene	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Acenaphthylene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4-Dinitrophenol	ND	547	Q	μg/Kg-dry	1	2/1/2021 6:48:03 PM
Dibenzofuran	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
2,4-Dinitrotoluene	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
4-Nitrophenol	ND	521		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Fluorene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
4-Chlorophenyl phenyl ether	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 10:20:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-002 **Matrix:** Soil

Client Sample ID: B1-30-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compo	unds by EPA M	ethod 8270		Batch	ı ID:	31181 Analyst: SE
Diethylphthalate	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
4,6-Dinitro-2-methylphenol	ND	208	Q	μg/Kg-dry	1	2/1/2021 6:48:03 PM
4-Bromophenyl phenyl ether	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Hexachlorobenzene	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Pentachlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Phenanthrene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Carbazole	ND	78.2		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Di-n-butylphthalate	147	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Fluoranthene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Pyrene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Butyl Benzylphthalate	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
bis(2-Ethylhexyl)adipate	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benz(a)anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Chrysene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
bis (2-Ethylhexyl) phthalate	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Di-n-octyl phthalate	ND	104		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benzo(b)fluoranthene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benzo(k)fluoranthene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benzo(a)pyrene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Indeno(1,2,3-cd)pyrene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Dibenz(a,h)anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Benzo(g,h,i)perylene	ND	52.1		μg/Kg-dry	1	2/1/2021 6:48:03 PM
Surr: 2,4,6-Tribromophenol	64.3	13.4 - 144		%Rec	1	2/1/2021 6:48:03 PM
Surr: 2-Fluorobiphenyl	68.7	5.5 - 130		%Rec	1	2/1/2021 6:48:03 PM
Surr: Nitrobenzene-d5	70.6	5 - 116		%Rec	1	2/1/2021 6:48:03 PM
Surr: Phenol-d6	74.9	21.2 - 117		%Rec	1	2/1/2021 6:48:03 PM
Surr: p-Terphenyl NOTES:	81.4	41.3 - 151		%Rec	1	2/1/2021 6:48:03 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Barium	91.3	0.449	mg/Kg-dry	1	2/1/2021 12:01:12 PM
Selenium	1.04	0.449	mg/Kg-dry	1	1/29/2021 1:22:28 PM
Silver	ND	0.0897	mg/Kg-dry	1	1/28/2021 6:03:54 PM

Analyst: CO

Batch ID: 31198

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 10:20:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-002 **Matrix**: Soil

Client Sample ID: B1-30-20210126

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Sample Moisture (Percent Moisture)
 Batch ID: R64985
 Analyst: RL

 Percent Moisture
 14.9
 0.500
 wt%
 1
 1/29/2021 1:46:44 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 11:20:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-003 **Matrix:** Soil

Client Sample ID: B2-05-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	1D: 31	181 Analyst: SB
Phenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Bis(2-chloroethyl) ether	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Chlorophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
1,3-Dichlorobenzene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
1,4-Dichlorobenzene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
1,2-Dichlorobenzene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benzyl alcohol	ND	96.4	Q	μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Methylphenol (o-cresol)	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Hexachloroethane	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
N-Nitrosodi-n-propylamine	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
3&4-Methylphenol (m, p-cresol)	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Nitrobenzene	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Isophorone	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Nitrophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4-Dimethylphenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Bis(2-chloroethoxy)methane	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4-Dichlorophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
1,2,4-Trichlorobenzene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Naphthalene	97.9	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
4-Chloroaniline	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Hexachlorobutadiene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
4-Chloro-3-methylphenol	ND	193		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Methylnaphthalene	ND	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
1-Methylnaphthalene	ND	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Hexachlorocyclopentadiene	ND	96.4	Q	μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4,6-Trichlorophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4,5-Trichlorophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Chloronaphthalene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2-Nitroaniline	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Acenaphthene	ND	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Dimethylphthalate	ND	96.4		μg/Kg-dry	1	1/27/2021 8:55:33 PM
2.6-Dinitrotoluene	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Acenaphthylene	191	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4-Dinitrophenol	ND	506	Q	μg/Kg-dry	1	2/1/2021 7:10:28 PM
Dibenzofuran	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
2,4-Dinitrotoluene	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
4-Nitrophenol	ND	482		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Fluorene	ND	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
4-Chlorophenyl phenyl ether	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM

Work Order: 2101416 Date Reported: 2/10/2021

Client: Libby Environmental Collection Date: 1/26/2021 11:20:00 AM

Batch ID: 31198

Project: 35th Street Landfill

Lab ID: 2101416-003 Matrix: Soil

Client Sample ID: B2-05-20210126

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compo	unds by EPA M	ethod 8270		Batch	ID: 3	31181 Analyst: SB
Diethylphthalate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
4,6-Dinitro-2-methylphenol	ND ND	193	Q	μg/Kg-dry μg/Kg-dry	1	2/1/2021 7:10:28 PM
4-Bromophenyl phenyl ether	ND ND	72.3	Q	μg/Kg-dry μg/Kg-dry	1	2/1/2021 7:10:28 PM
Hexachlorobenzene	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Pentachlorophenol	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Phenanthrene	134	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Anthracene	117	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Carbazole	ND	72.3		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Di-n-butylphthalate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Fluoranthene	557	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Pyrene	615	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Butyl Benzylphthalate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
bis(2-Ethylhexyl)adipate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benz(a)anthracene	359	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Chrysene	429	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
bis (2-Ethylhexyl) phthalate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Di-n-octyl phthalate	ND	96.4		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benzo(b)fluoranthene	501	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benzo(k)fluoranthene	363	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benzo(a)pyrene	506	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Indeno(1,2,3-cd)pyrene	266	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Dibenz(a,h)anthracene	128	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Benzo(g,h,i)perylene	301	48.2		μg/Kg-dry	1	2/1/2021 7:10:28 PM
Surr: 2,4,6-Tribromophenol	83.2	13.4 - 144		%Rec	1	2/1/2021 7:10:28 PM
Surr: 2-Fluorobiphenyl	95.1	5.5 - 130		%Rec	1	2/1/2021 7:10:28 PM
Surr: Nitrobenzene-d5	107	5 - 116		%Rec	1	2/1/2021 7:10:28 PM
Surr: Phenol-d6	90.7	21.2 - 117		%Rec	1	2/1/2021 7:10:28 PM
Surr: p-Terphenyl NOTES:	98.4	41.3 - 151		%Rec	1	2/1/2021 7:10:28 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Barium	55.2	0.393	mg/Kg-dry	1	2/1/2021 12:06:46 PM
Selenium	1.02	0.393	mg/Kg-dry	1	1/29/2021 1:28:02 PM
Silver	ND	0.0786	ma/Ka-drv	1	1/28/2021 6:09:27 PM

Analyst: CO

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 11:20:00 AM

Project: 35th Street Landfill

Lab ID: 2101416-003 **Matrix:** Soil

Client Sample ID: B2-05-20210126

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R64985 Analyst: RL

Percent Moisture 6.42 0.500 wt% 1 1/29/2021 1:46:44 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 12:45:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-004 **Matrix:** Soil

Client Sample ID: B2-30-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	1D: 31	181 Analyst: SE
Phenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Bis(2-chloroethyl) ether	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Chlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
1,3-Dichlorobenzene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
1,4-Dichlorobenzene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
1,2-Dichlorobenzene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benzyl alcohol	ND	104	Q	μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Methylphenol (o-cresol)	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Hexachloroethane	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
N-Nitrosodi-n-propylamine	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
3&4-Methylphenol (m, p-cresol)	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Nitrobenzene	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Isophorone	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Nitrophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4-Dimethylphenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Bis(2-chloroethoxy)methane	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4-Dichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
1,2,4-Trichlorobenzene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Naphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
4-Chloroaniline	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Hexachlorobutadiene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
4-Chloro-3-methylphenol	ND	208		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Methylnaphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
1-Methylnaphthalene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Hexachlorocyclopentadiene	ND	104	Q	μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4,6-Trichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4,5-Trichlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Chloronaphthalene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2-Nitroaniline	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Acenaphthene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Dimethylphthalate	ND	104		μg/Kg-dry	1	1/27/2021 9:17:48 PN
2,6-Dinitrotoluene	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Acenaphthylene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4-Dinitrophenol	ND	547	Q	μg/Kg-dry	1	2/1/2021 7:32:48 PM
Dibenzofuran	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
2,4-Dinitrotoluene	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
4-Nitrophenol	ND	521		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Fluorene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
4-Chlorophenyl phenyl ether	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 12:45:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-004 **Matrix:** Soil

Client Sample ID: B2-30-20210126

Semi-Volatile Organic Compou	nds by FPA M					
But the tr	IIGS DY LI A III	ethod 8270		Batch	ID: 3	1181 Analyst: SB
Diethylphthalate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
4,6-Dinitro-2-methylphenol	ND	208	Q	μg/Kg-dry	1	2/1/2021 7:32:48 PM
4-Bromophenyl phenyl ether	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Hexachlorobenzene	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Pentachlorophenol	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Phenanthrene	59.0	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Carbazole	ND	78.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Di-n-butylphthalate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Fluoranthene	94.6	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Pyrene	103	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Butyl Benzylphthalate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
bis(2-Ethylhexyl)adipate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benz(a)anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Chrysene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
bis (2-Ethylhexyl) phthalate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Di-n-octyl phthalate	ND	104		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benzo(b)fluoranthene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benzo(k)fluoranthene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benzo(a)pyrene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Indeno(1,2,3-cd)pyrene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Dibenz(a,h)anthracene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Benzo(g,h,i)perylene	ND	52.1		μg/Kg-dry	1	2/1/2021 7:32:48 PM
Surr: 2,4,6-Tribromophenol	54.3	13.4 - 144		%Rec	1	2/1/2021 7:32:48 PM
Surr: 2-Fluorobiphenyl	73.2	5.5 - 130		%Rec	1	2/1/2021 7:32:48 PM
Surr: Nitrobenzene-d5	64.0	5 - 116		%Rec	1	2/1/2021 7:32:48 PM
Surr: Phenol-d6	80.2	21.2 - 117		%Rec	1	2/1/2021 7:32:48 PM
Surr: p-Terphenyl	94.0	41.3 - 151		%Rec	1	2/1/2021 7:32:48 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Barium	72.9	0.451	mg/Kg-dry	1	2/1/2021 12:12:20 PM
Selenium	0.985	0.451	mg/Kg-dry	1	1/29/2021 1:33:35 PM
Silver	ND	0.0902	ma/Ka-dry	1	1/28/2021 6:15:01 PM

Analyst: CO

Batch ID: 31198

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 12:45:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-004 **Matrix**: Soil

Client Sample ID: B2-30-20210126

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R64985 Analyst: RL

Percent Moisture 12.7 0.500 wt% 1 1/29/2021 1:46:44 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 1:40:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-005 **Matrix:** Soil

Client Sample ID: B3-05-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	1D: 31	181 Analyst: SB
Phenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Bis(2-chloroethyl) ether	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Chlorophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
1,3-Dichlorobenzene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
1,4-Dichlorobenzene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
1,2-Dichlorobenzene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benzyl alcohol	ND	106	Q	μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Methylphenol (o-cresol)	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Hexachloroethane	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
N-Nitrosodi-n-propylamine	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
3&4-Methylphenol (m, p-cresol)	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Nitrobenzene	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Isophorone	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Nitrophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4-Dimethylphenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Bis(2-chloroethoxy)methane	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4-Dichlorophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
1,2,4-Trichlorobenzene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Naphthalene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
4-Chloroaniline	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Hexachlorobutadiene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
4-Chloro-3-methylphenol	ND	213		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Methylnaphthalene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
1-Methylnaphthalene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Hexachlorocyclopentadiene	ND	106	Q	μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4,6-Trichlorophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4,5-Trichlorophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Chloronaphthalene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2-Nitroaniline	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Acenaphthene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Dimethylphthalate	ND	106		μg/Kg-dry	1	1/27/2021 9:39:55 PM
2.6-Dinitrotoluene	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Acenaphthylene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4-Dinitrophenol	ND	558	Q	μg/Kg-dry	1	2/1/2021 7:55:07 PM
Dibenzofuran	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
2,4-Dinitrotoluene	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
4-Nitrophenol	ND	532		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Fluorene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
4-Chlorophenyl phenyl ether	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 1:40:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-005 **Matrix:** Soil

Client Sample ID: B3-05-20210126

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compo	unds by EPA M	ethod 8270		Batch	1D: 31	181 Analyst: SE
Diethylphthalate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
4,6-Dinitro-2-methylphenol	ND	213	Q	μg/Kg-dry	1	2/1/2021 7:55:07 PM
4-Bromophenyl phenyl ether	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Hexachlorobenzene	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Pentachlorophenol	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Phenanthrene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Anthracene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Carbazole	ND	79.7		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Di-n-butylphthalate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Fluoranthene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Pyrene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Butyl Benzylphthalate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
bis(2-Ethylhexyl)adipate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benz(a)anthracene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Chrysene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
bis (2-Ethylhexyl) phthalate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Di-n-octyl phthalate	ND	106		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benzo(b)fluoranthene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benzo(k)fluoranthene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benzo(a)pyrene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Indeno(1,2,3-cd)pyrene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Dibenz(a,h)anthracene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Benzo(g,h,i)perylene	ND	53.2		μg/Kg-dry	1	2/1/2021 7:55:07 PM
Surr: 2,4,6-Tribromophenol	61.2	13.4 - 144		%Rec	1	2/1/2021 7:55:07 PM
Surr: 2-Fluorobiphenyl	74.5	5.5 - 130		%Rec	1	2/1/2021 7:55:07 PM
Surr: Nitrobenzene-d5	66.5	5 - 116		%Rec	1	2/1/2021 7:55:07 PM
Surr: Phenol-d6	78.3	21.2 - 117		%Rec	1	2/1/2021 7:55:07 PM
Surr: p-Terphenyl NOTES:	92.6	41.3 - 151		%Rec	1	2/1/2021 7:55:07 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Barium	68.2	0.421	mg/Kg-dry	1	2/1/2021 12:17:54 PM
Selenium	0.903	0.421	mg/Kg-dry	1	1/29/2021 1:39:08 PM
Silver	ND	0.0841	mg/Kg-dry	1	1/28/2021 6:20:35 PM

Analyst: CO

Batch ID: 31198

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 1:40:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-005 **Matrix**: Soil

Client Sample ID: B3-05-20210126

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Sample Moisture (Percent Moisture)
 Batch ID: R64985
 Analyst: RL

 Percent Moisture
 7.86
 0.500
 wt%
 1
 1/29/2021 1:46:44 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 2:30:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-006 **Matrix:** Soil

Client Sample ID: B3-30-20210126

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compou	unds by EPA Met	hod 8270		Batch	n ID: 31	181 Analyst: SB
Phenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Bis(2-chloroethyl) ether	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Chlorophenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
1,3-Dichlorobenzene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
1,4-Dichlorobenzene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
1,2-Dichlorobenzene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benzyl alcohol	ND	98.9	Q	μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Methylphenol (o-cresol)	ND	98.9	~	μg/Kg-dry	1	2/1/2021 8:17:32 PM
Hexachloroethane	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
N-Nitrosodi-n-propylamine	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
3&4-Methylphenol (m, p-cresol)	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Nitrobenzene	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Isophorone	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Nitrophenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4-Dimethylphenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Bis(2-chloroethoxy)methane	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4-Dichlorophenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
1,2,4-Trichlorobenzene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Naphthalene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
4-Chloroaniline	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Hexachlorobutadiene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
4-Chloro-3-methylphenol	ND	198		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Methylnaphthalene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
1-Methylnaphthalene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Hexachlorocyclopentadiene	ND	98.9	Q	μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4,6-Trichlorophenol	ND	98.9	~	μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4,5-Trichlorophenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Chloronaphthalene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2-Nitroaniline	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Acenaphthene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Dimethylphthalate	ND	98.9		μg/Kg-dry	1	1/27/2021 10:02:03 PM
2,6-Dinitrotoluene	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Acenaphthylene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4-Dinitrophenol	ND	519	Q	μg/Kg-dry	1	2/1/2021 8:17:32 PM
Dibenzofuran	ND	74.2	•	μg/Kg-dry	1	2/1/2021 8:17:32 PM
2,4-Dinitrotoluene	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
4-Nitrophenol	ND	495		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Fluorene	ND	49.5		μg/Kg-dry μg/Kg-dry	1	2/1/2021 8:17:32 PM
4-Chlorophenyl phenyl ether	ND	74.2		μg/Kg-dry μg/Kg-dry	1	2/1/2021 8:17:32 PM

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 2:30:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-006 **Matrix:** Soil

Client Sample ID: B3-30-20210126

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Semi-Volatile Organic Compo	unds by EPA M	ethod 8270		Batch	ID: 3	31181 Analyst: SE
Diethylphthalate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
4,6-Dinitro-2-methylphenol	ND	198	Q	μg/Kg-dry	1	2/1/2021 8:17:32 PM
4-Bromophenyl phenyl ether	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Hexachlorobenzene	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Pentachlorophenol	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Phenanthrene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Anthracene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Carbazole	ND	74.2		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Di-n-butylphthalate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Fluoranthene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Pyrene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Butyl Benzylphthalate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
bis(2-Ethylhexyl)adipate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benz(a)anthracene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Chrysene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
bis (2-Ethylhexyl) phthalate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Di-n-octyl phthalate	ND	98.9		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benzo(b)fluoranthene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benzo(k)fluoranthene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benzo(a)pyrene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Indeno(1,2,3-cd)pyrene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Dibenz(a,h)anthracene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Benzo(g,h,i)perylene	ND	49.5		μg/Kg-dry	1	2/1/2021 8:17:32 PM
Surr: 2,4,6-Tribromophenol	80.6	13.4 - 144		%Rec	1	2/1/2021 8:17:32 PM
Surr: 2-Fluorobiphenyl	88.3	5.5 - 130		%Rec	1	2/1/2021 8:17:32 PM
Surr: Nitrobenzene-d5	81.9	5 - 116		%Rec	1	2/1/2021 8:17:32 PM
Surr: Phenol-d6	88.0	21.2 - 117		%Rec	1	2/1/2021 8:17:32 PM
Surr: p-Terphenyl NOTES:	102	41.3 - 151		%Rec	1	2/1/2021 8:17:32 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Total Metals by EPA Method 6020B

Barium	57.5	0.421	mg/Kg-dry	1	2/1/2021 12:23:27 PM
Selenium	0.865	0.421	mg/Kg-dry	1	1/29/2021 1:44:42 PM
Silver	ND	0.0843	mg/Kg-dry	1	1/28/2021 6:26:09 PM

Analyst: CO

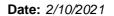
Batch ID: 31198

Work Order: **2101416**Date Reported: **2/10/2021**

Client: Libby Environmental Collection Date: 1/26/2021 2:30:00 PM

Project: 35th Street Landfill

Lab ID: 2101416-006 **Matrix**: Soil


Client Sample ID: B3-30-20210126

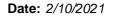
Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R64987 Analyst: RL

Percent Moisture 9.43 0.500 wt% 1 1/29/2021 2:27:21 PM

Work Order: 2101416


QC SUMMARY REPORT

CLIENT: Libby Environmental

Total Metals by EPA Method 6020B

Project: 35th Street	Landfill							Total Meta	als by EPA	Method	6020E
Sample ID: MB-31198	SampType: MBLK			Units: mg/Kg		Prep Date	e: 1/28/20 2	21	RunNo: 649	970	
Client ID: MBLKS	Batch ID: 31198					Analysis Date	e: 1/28/20 2	21	SeqNo: 130	06982	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	ND	0.403									
Selenium	ND	0.403									
Silver	ND	0.0806									
Sample ID: LCS-31198	SampType: LCS			Units: mg/Kg		Prep Date	e: 1/28/20 2	21	RunNo: 649	970	
Client ID: LCSS	Batch ID: 31198					Analysis Date	e: 1/28/20 2	21	SeqNo: 130	06983	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	36.8	0.376	37.59	0	97.9	80	120				
Silver	1.97	0.0752	1.880	0	105	80	120				
Sample ID: 2101443-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 1/28/20 2	21	RunNo: 649	970	
Client ID: BATCH	Batch ID: 31198					Analysis Date	e: 1/28/20 2	21	SeqNo: 130	06986	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	1.98	0.0819	2.048	0.05845	94.0	75	125				
Sample ID: 2101443-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 1/28/20 2	21	RunNo: 649	970	
Client ID: BATCH	Batch ID: 31198					Analysis Date	e: 1/28/20 2	21	SeqNo: 130	6987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	1.86	0.0825	2.064	0.05845	87.5	75	125	1.983	6.17	20	
Sample ID: LCS-31198	SampType: LCS			Units: mg/Kg		Prep Date	e: 1/28/20 2	21	RunNo: 649	970	
Client ID: LCSS	Batch ID: 31198					Analysis Date	e: 1/29/20 2	21	SeqNo: 130	7211	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Original Page 23 of 37

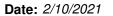
Work Order: 2101416

QC SUMMARY REPORT

CLIENT: Libby Environmental
Project: 35th Street Landfill

Total Metals by EPA Method 6020B

Sample ID: **LCS-31198** SampType: **LCS** Units: **mg/Kg** Prep Date: **1/28/2021** RunNo: **64970**


Client ID: **LCSS** Batch ID: **31198** Analysis Date: **1/29/2021** SeqNo: **1307211**

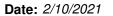
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 2101443-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 1/28/20	21	RunNo: 649	970	
Client ID: BATCH	Batch ID: 31198					Analysis Da	te: 1/29/20	21	SeqNo: 130	7214	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	183	0.410	40.97	146.8	88.3	75	125				
Selenium	4.98	0.410	4.097	1.038	96.2	75	125				
Seienium	4.98	0.410	4.097	1.038	96.2	75	125				

Sample ID: 2101443-001AMSD	SampType: MSD			Units: mg/	/Kg-dry	Prep Da	te: 1/28/20	21	RunNo: 649	970	
Client ID: BATCH	Batch ID: 31198					Analysis Da	te: 1/29/20	21	SeqNo: 130	7215	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	178	0.413	41.27	146.8	76.7	75	125	183.0	2.49	20	
Selenium	5.33	0.413	4.127	1.038	104	75	125	4.977	6.84	20	

Original Page 24 of 37

Work Order: 2101416

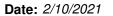

QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Project: 35th Street	Landfill							pou			
Sample ID: MB-31181	SampType: MBLK			Units: μg/Kg		Prep Dat	te: 1/27/20	21	RunNo: 650)39	
Client ID: MBLKS	Batch ID: 31181					Analysis Da	te: 1/27/20	21	SeqNo: 130)8146	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dimethylphthalate	ND	100									
Surr: 2,4,6-Tribromophenol	495		1,000		49.5	13.4	144				
Surr: 2-Fluorobiphenyl	410		500.0		82.1	5.5	130				
Surr: Nitrobenzene-d5	359		500.0		71.8	5	116				
Surr: Phenol-d6	772		1,000		77.2	21.2	117				
Surr: p-Terphenyl	430		500.0		85.9	41.3	151				
Sample ID: LCS-31181	SampType: LCS			Units: µg/Kg		Prep Dat	te: 1/27/20	21	RunNo: 650)39	
Client ID: LCSS	Batch ID: 31181					Analysis Da	te: 1/27/20	21	SeqNo: 130)8147	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Dimethylphthalate	685	100	1,000	0	68.5	49	150				
Surr: 2,4,6-Tribromophenol	767		1,000		76.7	13.4	144				
Surr: 2-Fluorobiphenyl	468		500.0		93.6	5.5	130				
Surr: Nitrobenzene-d5	403		500.0		80.6	5	116				
Surr: Phenol-d6	835		1,000		83.5	21.2	117				
Surr: p-Terphenyl	444		500.0		88.7	41.3	151				
Sample ID: 2101409-002AMS	SampType: MS		-	Units: μg/Kg-c	dry	Prep Dat	te: 1/27/20	21	RunNo: 650)39	
Client ID: BATCH	Batch ID: 31181					Analysis Dat	te: 1/27/20	21	SeqNo: 130)8150	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Dimethylphthalate	663	98.5	985.0	0	67.3	39.7	127				
Surr: 2,4,6-Tribromophenol	852		985.0		86.5	13.4	144				
Surr: 2-Fluorobiphenyl	459		492.5		93.3	5.5	130				
Surr: Nitrobenzene-d5	393		492.5		79.8	5	116				
Surr: Phenol-d6	780		985.0		79.2	21.2	117				
Surr: p-Terphenyl	425		492.5		86.3	41.3	151				

Original Page 25 of 37

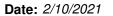

QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2101409-002AMSD	SampType: MSD			Units: µg/Kg-dry Prep Date: 1/27/2021)21	RunNo: 650	039		
Client ID: BATCH	Batch ID: 31181					Analysis Da	te: 1/27/20)21	SeqNo: 130	08151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dimethylphthalate	743	112	1,119	0	66.3	39.7	127	662.8	11.4	50	
Surr: 2,4,6-Tribromophenol	1,010		1,119		90.5	13.4	144		0		
Surr: 2-Fluorobiphenyl	494		559.7		88.3	5.5	130		0		
Surr: Nitrobenzene-d5	507		559.7		90.6	5	116		0		
Surr: Phenol-d6	987		1,119		88.1	21.2	117		0		
Surr: p-Terphenyl	486		559.7		86.9	41.3	151		0		
Sample ID: MB-31181	SampType: MBLK			Units: μg/Kg		Prep Da	te: 1/27/2 0)21	RunNo: 650	035	
Client ID: MBLKS	Batch ID: 31181					Analysis Da	te: 2/1/202	21	SeqNo: 130	08081	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyridine	ND	200									
Phenol	ND	100									
Bis(2-chloroethyl) ether	ND	100									
2-Chlorophenol	ND	100									
1,3-Dichlorobenzene	ND	75.0									
1,4-Dichlorobenzene	ND	75.0									
1,2-Dichlorobenzene	ND	75.0									
Benzyl alcohol	ND	100									Q
2-Methylphenol (o-cresol)	ND	100									
Hexachloroethane	ND	100									
N-Nitrosodi-n-propylamine	ND	100									
3&4-Methylphenol (m, p-cresol)	ND	100									
Nitrobenzene	ND	100									
Isophorone	ND	100									
2-Nitrophenol	ND	100									
2,4-Dimethylphenol	ND	100									
Bis(2-chloroethoxy)methane	ND	75.0									
2,4-Dichlorophenol	ND	100									
1,2,4-Trichlorobenzene	ND	75.0									

Original Page 26 of 37


QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

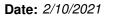
Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: MB-31181	SampType: MBLK			Units: µg/Kg)21	RunNo: 65	035	
Client ID: MBLKS	Batch ID: 31181					Analysis Da	ate: 2/1/202	21	SeqNo: 13	08081	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
4-Chloroaniline	ND	75.0									
Hexachlorobutadiene	ND	75.0									
4-Chloro-3-methylphenol	ND	200									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Hexachlorocyclopentadiene	ND	100									Q
2,4,6-Trichlorophenol	ND	100									
2,4,5-Trichlorophenol	ND	100									
2-Chloronaphthalene	ND	75.0									
2-Nitroaniline	ND	100									
Acenaphthene	ND	50.0									
2,6-Dinitrotoluene	ND	100									
Acenaphthylene	ND	50.0									
2,4-Dinitrophenol	ND	525									Q
Dibenzofuran	ND	75.0									
2,4-Dinitrotoluene	ND	100									
4-Nitrophenol	ND	500									
Fluorene	ND	50.0									
4-Chlorophenyl phenyl ether	ND	75.0									
Diethylphthalate	ND	100									
4,6-Dinitro-2-methylphenol	ND	200									Q
4-Bromophenyl phenyl ether	ND	75.0									
Hexachlorobenzene	ND	75.0									
Pentachlorophenol	ND	100									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Carbazole	ND	75.0									
Di-n-butylphthalate	ND	100									
Fluoranthene	ND	50.0									

Original Page 27 of 37

QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

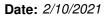

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: MB-31181	SampType: MBLK			Units: μg/Kg		Prep Date:	1/27/202	21	RunNo: 650	35	
Client ID: MBLKS	Batch ID: 31181					Analysis Date:	2/1/2021	1	SeqNo: 130	8081	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	ND	50.0									
Butyl Benzylphthalate	ND	100									
bis(2-Ethylhexyl)adipate	ND	100									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
bis (2-Ethylhexyl) phthalate	ND	100									
Di-n-octyl phthalate	ND	100									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2,4,6-Tribromophenol	520		1,000		52.0	13.4	144				
Surr: 2-Fluorobiphenyl	495		500.0		98.9	5.5	130				
Surr: Nitrobenzene-d5	439		500.0		87.9	5	116				
Surr: Phenol-d6	893		1,000		89.3	21.2	117				
Surr: p-Terphenyl	569		500.0		114	41.3	151				
NOTES:											

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: LCS-31181	SampType: LCS			Units: µg/Kg			21	RunNo: 65035			
Client ID: LCSS	Batch ID: 31181				Analysis Date: 2/1/2021			1	SeqNo: 130	08082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyridine	965	200	1,000	0	96.5	27.4	134				
Phenol	922	100	1,000	0	92.2	49.4	122				
Bis(2-chloroethyl) ether	865	100	1,000	0	86.5	42.3	129				
2-Chlorophenol	959	100	1,000	0	95.9	51.4	126				
1,3-Dichlorobenzene	911	75.0	1,000	0	91.1	32	119				
1,4-Dichlorobenzene	903	75.0	1,000	0	90.3	30.9	120				

Original Page 28 of 37

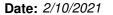

QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCS-31181	SampType: LCS			Units: μg/Kg				21	RunNo: 65035		
Client ID: LCSS	Batch ID: 31181					Analysis Da	te: 2/1/202	1	SeqNo: 130	08082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	934	75.0	1,000	0	93.4	37.1	124				
Benzyl alcohol	672	100	1,000	0	67.2	5	176				
2-Methylphenol (o-cresol)	845	100	1,000	0	84.5	45.8	135				
Hexachloroethane	898	100	1,000	0	89.8	35	116				
N-Nitrosodi-n-propylamine	1,030	100	1,000	0	103	52.5	138				
3&4-Methylphenol (m, p-cresol)	878	100	1,000	0	87.8	44.4	137				
Nitrobenzene	925	100	1,000	0	92.5	45.5	129				
Isophorone	818	100	1,000	0	81.8	51.3	140				
2-Nitrophenol	907	100	1,000	0	90.7	52.7	132				
2,4-Dimethylphenol	868	100	1,000	0	86.8	45.7	138				
Bis(2-chloroethoxy)methane	900	75.0	1,000	0	90.0	46.6	134				
2,4-Dichlorophenol	923	100	1,000	0	92.3	51.1	138				
1,2,4-Trichlorobenzene	972	75.0	1,000	0	97.2	49.3	133				
Naphthalene	966	50.0	1,000	0	96.6	54.3	127				
4-Chloroaniline	820	75.0	1,000	0	82.0	42.5	135				
Hexachlorobutadiene	934	75.0	1,000	0	93.4	44	138				
4-Chloro-3-methylphenol	791	200	1,000	0	79.1	40	156				
2-Methylnaphthalene	969	50.0	1,000	0	96.9	55.5	134				
1-Methylnaphthalene	948	50.0	1,000	0	94.8	53.7	133				
Hexachlorocyclopentadiene	1,020	100	1,000	0	102	5	184				
2,4,6-Trichlorophenol	848	100	1,000	0	84.8	39.3	135				
2,4,5-Trichlorophenol	948	100	1,000	0	94.8	45.6	149				
2-Chloronaphthalene	1,000	75.0	1,000	0	100	53.6	136				
2-Nitroaniline	903	100	1,000	0	90.3	50.4	143				
Acenaphthene	839	50.0	1,000	0	83.9	54.9	136				
2,6-Dinitrotoluene	945	100	1,000	0	94.5	55.1	144				
Acenaphthylene	855	50.0	1,000	0	85.5	56.4	140				
2,4-Dinitrophenol	939	525	2,000	0	47.0	5	121				
Dibenzofuran	948	75.0	1,000	0	94.8	24.2	162				
2,4-Dinitrotoluene	888	100	1,000	0	88.8	50.7	144				

Original Page 29 of 37


QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCS-31181	SampType: LCS			Units: µg/Kg				21	RunNo: 650	35	
Client ID: LCSS	Batch ID: 31181					Analysis Da	te: 2/1/202	:1	SeqNo: 130	8082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Nitrophenol	696	500	1,000	0	69.6	5	150				
Fluorene	887	50.0	1,000	0	88.7	52.7	139				
4-Chlorophenyl phenyl ether	991	75.0	1,000	0	99.1	50.6	142				
Diethylphthalate	937	100	1,000	0	93.7	51.9	144				
4,6-Dinitro-2-methylphenol	765	200	1,000	0	76.5	5	132				
4-Bromophenyl phenyl ether	921	75.0	1,000	0	92.1	51.3	140				
Hexachlorobenzene	1,040	75.0	1,000	0	104	46.6	146				
Pentachlorophenol	703	100	1,000	0	70.3	5	135				
Phenanthrene	929	50.0	1,000	0	92.9	47.8	146				
Anthracene	957	50.0	1,000	0	95.7	49.4	149				
Carbazole	898	75.0	1,000	0	89.8	45.8	151				
Di-n-butylphthalate	937	100	1,000	0	93.7	52.8	146				
Fluoranthene	1,010	50.0	1,000	0	101	50	145				
Pyrene	1,010	50.0	1,000	0	101	49	149				
Butyl Benzylphthalate	958	100	1,000	0	95.8	45.7	166				
bis(2-Ethylhexyl)adipate	888	100	1,000	0	88.8	42.3	173				
Benz(a)anthracene	943	50.0	1,000	0	94.3	49.2	149				
Chrysene	928	50.0	1,000	0	92.8	47.3	152				
bis (2-Ethylhexyl) phthalate	869	100	1,000	0	86.9	42.2	168				
Di-n-octyl phthalate	921	100	1,000	0	92.1	42.4	165				
Benzo(b)fluoranthene	874	50.0	1,000	0	87.4	47.1	152				
Benzo(k)fluoranthene	960	50.0	1,000	0	96.0	40.1	149				
Benzo(a)pyrene	989	50.0	1,000	0	98.9	50.3	151				
Indeno(1,2,3-cd)pyrene	955	50.0	1,000	0	95.5	56.1	146				
Dibenz(a,h)anthracene	970	50.0	1,000	0	97.0	56.3	146				
Benzo(g,h,i)perylene	985	50.0	1,000	0	98.5	53	145				
Surr: 2,4,6-Tribromophenol	957		1,000		95.7	13.4	144				
Surr: 2-Fluorobiphenyl	530		500.0		106	5.5	130				
Surr: Nitrobenzene-d5	522		500.0		104	5	116				
Surr: Phenol-d6	945		1,000		94.5	21.2	117				

Original Page 30 of 37

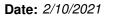
Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: LCS-31181 SampType: LCS RunNo: 65035 Units: µg/Kg Prep Date: 1/27/2021

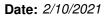

Client ID: LCSS Batch ID: 31181 Analysis Date: 2/1/2021 SeqNo: 1308082

%REC LowLimit HighLimit RPD Ref Val Analyte Result RL SPK value SPK Ref Val %RPD RPDLimit Qual

Surr: p-Terphenyl 502 500.0 41.3 151 100

Sample ID: 2101409-002AMS	SampType: MS			Units: μg/K	g-dry	Prep Da	te: 1/27/20	21	RunNo: 650	035	
Client ID: BATCH	Batch ID: 31181					Analysis Da	te: 2/1/202	1	SeqNo: 130	08085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyridine	863	197	985.0	0	87.6	27.4	134				
Phenol	794	98.5	985.0	0	80.6	34.3	109				
Bis(2-chloroethyl) ether	801	98.5	985.0	0	81.3	21.1	115				
2-Chlorophenol	788	98.5	985.0	0	80.0	23.1	120				
1,3-Dichlorobenzene	779	73.9	985.0	0	79.0	5.65	107				
1,4-Dichlorobenzene	768	73.9	985.0	0	77.9	5	111				
1,2-Dichlorobenzene	781	73.9	985.0	0	79.2	4.28	113				
Benzyl alcohol	509	98.5	985.0	0	51.7	5	108				
2-Methylphenol (o-cresol)	769	98.5	985.0	0	78.1	36	116				
Hexachloroethane	708	98.5	985.0	0	71.8	0.976	109				
N-Nitrosodi-n-propylamine	754	98.5	985.0	0	76.6	41.1	126				
3&4-Methylphenol (m, p-cresol)	749	98.5	985.0	0	76.1	32.5	120				
Nitrobenzene	795	98.5	985.0	0	80.7	29.5	117				
Isophorone	691	98.5	985.0	0	70.1	41.5	128				
2-Nitrophenol	827	98.5	985.0	0	84.0	23.9	134				
2,4-Dimethylphenol	797	98.5	985.0	0	80.9	14.2	136				
Bis(2-chloroethoxy)methane	841	73.9	985.0	0	85.3	34.8	122				
2,4-Dichlorophenol	751	98.5	985.0	0	76.2	28.2	130				
1,2,4-Trichlorobenzene	738	73.9	985.0	0	74.9	26.3	120				
Naphthalene	782	49.2	985.0	0	79.4	27.6	120				
4-Chloroaniline	498	73.9	985.0	0	50.5	15.1	109				
Hexachlorobutadiene	788	73.9	985.0	0	80.0	17.5	124				
4-Chloro-3-methylphenol	785	197	985.0	0	79.7	40.2	136				
2-Methylnaphthalene	797	49.2	985.0	0	80.9	36.3	124				

Page 31 of 37 Original


QC SUMMARY REPORT

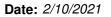
CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2101409-002AMS	SampType: MS			Units: μg/K	g-dry	Prep Da	te: 1/27/20	21	RunNo: 650	035	
Client ID: BATCH	Batch ID: 31181					Analysis Da	ite: 2/1/202	:1	SeqNo: 130	08085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	782	49.2	985.0	0	79.4	38	121				
Hexachlorocyclopentadiene	532	98.5	985.0	0	54.0	5	136				
2,4,6-Trichlorophenol	758	98.5	985.0	0	76.9	36.7	126				
2,4,5-Trichlorophenol	814	98.5	985.0	0	82.7	41.5	123				
2-Chloronaphthalene	828	73.9	985.0	0	84.1	40.3	119				
2-Nitroaniline	853	98.5	985.0	0	86.6	41.5	128				
Acenaphthene	737	49.2	985.0	0	74.8	42.3	124				
2,6-Dinitrotoluene	830	98.5	985.0	0	84.2	43.3	127				
Acenaphthylene	747	49.2	985.0	0	75.8	46.5	122				
2,4-Dinitrophenol	373	517	1,970	0	18.9	5	132				
Dibenzofuran	827	73.9	985.0	0	83.9	38.3	127				
2,4-Dinitrotoluene	751	98.5	985.0	0	76.3	36.3	131				
4-Nitrophenol	620	492	985.0	0	62.9	5	126				
Fluorene	819	49.2	985.0	0	83.1	40.4	127				
4-Chlorophenyl phenyl ether	840	73.9	985.0	0	85.3	41.6	123				
Diethylphthalate	814	98.5	985.0	0	82.7	42.1	127				
4,6-Dinitro-2-methylphenol	290	197	985.0	0	29.4	5	145				
4-Bromophenyl phenyl ether	836	73.9	985.0	0	84.8	41.9	124				
Hexachlorobenzene	848	73.9	985.0	25.02	83.5	39.1	127				
Pentachlorophenol	794	98.5	985.0	0	80.6	6.79	138				
Phenanthrene	805	49.2	985.0	26.56	79.0	37.2	133				
Anthracene	831	49.2	985.0	0	84.4	46.7	124				
Carbazole	756	73.9	985.0	0	76.7	38.9	133				
Di-n-butylphthalate	853	98.5	985.0	40.61	82.5	38.8	144				
Fluoranthene	892	49.2	985.0	77.88	82.6	36	133				
Pyrene	918	49.2	985.0	105.3	82.5	36.5	132				
Butyl Benzylphthalate	842	98.5	985.0	0	85.5	34.8	155				
bis(2-Ethylhexyl)adipate	797	98.5	985.0	0	80.9	26.7	168				
Benz(a)anthracene	788	49.2	985.0	39.88	75.9	33.2	141				
Chrysene	821	49.2	985.0	73.35	75.9	42.1	127				

Original Page 32 of 37

QC SUMMARY REPORT

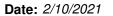

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2101409-002AMS	SampType: MS			Units: µg/Kg-dry Prep Date: 1/27/2021			21	RunNo: 650)35		
Client ID: BATCH	Batch ID: 31181					Analysis Da	te: 2 / 1 / 202	:1	SeqNo: 130	8085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
bis (2-Ethylhexyl) phthalate	2,210	98.5	985.0	1,374	85.4	36.1	163				
Di-n-octyl phthalate	854	98.5	985.0	0	86.7	30.7	171				
Benzo(b)fluoranthene	921	49.2	985.0	115.0	81.8	33.1	144				
Benzo(k)fluoranthene	814	49.2	985.0	85.45	73.9	28.8	140				
Benzo(a)pyrene	914	49.2	985.0	88.57	83.8	37.6	140				
Indeno(1,2,3-cd)pyrene	1,010	49.2	985.0	189.0	83.3	33.9	149				
Dibenz(a,h)anthracene	866	49.2	985.0	39.55	83.9	38.6	146				
Benzo(g,h,i)perylene	1,120	49.2	985.0	321.2	81.1	33.4	142				
Surr: 2,4,6-Tribromophenol	842		985.0		85.5	13.4	144				
Surr: 2-Fluorobiphenyl	409		492.5		83.1	5.5	130				
Surr: Nitrobenzene-d5	398		492.5		80.7	5	116				
Surr: Phenol-d6	866		985.0		87.9	21.2	117				
Surr: p-Terphenyl	446		492.5		90.7	41.3	151				

Sample ID: 2101409-002AMSD	SampType: MSD			Units: μg/K	g-dry	Prep Da	te: 1/27/20	21	RunNo: 650	035	
Client ID: BATCH	Batch ID: 31181					Analysis Da	ite: 2/1/202	:1	SeqNo: 130	08086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyridine	1,060	224	1,119	0	94.4	27.4	134	862.5	20.3	50	
Phenol	886	112	1,119	0	79.2	34.3	109	793.6	11.0	50	
Bis(2-chloroethyl) ether	953	112	1,119	0	85.1	21.1	115	801.0	17.3	50	
2-Chlorophenol	945	112	1,119	0	84.5	23.1	120	787.6	18.2	50	
1,3-Dichlorobenzene	915	83.9	1,119	0	81.7	5.65	107	778.5	16.1	50	
1,4-Dichlorobenzene	890	83.9	1,119	0	79.5	5	111	767.5	14.8	50	
1,2-Dichlorobenzene	897	83.9	1,119	0	80.1	4.28	113	780.5	13.9	50	
Benzyl alcohol	464	112	1,119	0	41.5	5	108	509.3	9.26	50	
2-Methylphenol (o-cresol)	865	112	1,119	0	77.3	36	116	769.2	11.8	50	
Hexachloroethane	841	112	1,119	0	75.2	0.976	109	707.6	17.3	50	
N-Nitrosodi-n-propylamine	853	112	1,119	0	76.3	41.1	126	754.5	12.3	50	
3&4-Methylphenol (m, p-cresol)	893	112	1,119	0	79.7	32.5	120	749.1	17.5	50	

Original Page 33 of 37


QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2101409-002AMSD	SampType: MSD			Units: μg/K				21	RunNo: 650)35	
Client ID: BATCH	Batch ID: 31181					Analysis Da	te: 2/1/202	1	SeqNo: 130	08086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrobenzene	931	112	1,119	0	83.1	29.5	117	794.7	15.8	50	
Isophorone	892	112	1,119	0	79.7	41.5	128	690.9	25.4	50	
2-Nitrophenol	927	112	1,119	0	82.8	23.9	134	827.3	11.4	50	
2,4-Dimethylphenol	946	112	1,119	0	84.5	14.2	136	796.8	17.1	50	
Bis(2-chloroethoxy)methane	1,000	83.9	1,119	0	89.5	34.8	122	840.7	17.5	50	
2,4-Dichlorophenol	953	112	1,119	0	85.1	28.2	130	750.7	23.7	50	
1,2,4-Trichlorobenzene	905	83.9	1,119	0	80.9	26.3	120	737.9	20.4	50	
Naphthalene	943	56.0	1,119	0	84.2	27.6	120	781.6	18.7	50	
4-Chloroaniline	668	83.9	1,119	0	59.6	15.1	109	497.7	29.2	50	
Hexachlorobutadiene	938	83.9	1,119	0	83.8	17.5	124	787.5	17.5	50	
4-Chloro-3-methylphenol	911	224	1,119	0	81.4	40.2	136	785.2	14.8	50	
2-Methylnaphthalene	938	56.0	1,119	0	83.8	36.3	124	797.1	16.2	50	
1-Methylnaphthalene	961	56.0	1,119	0	85.8	38	121	782.2	20.5	50	
Hexachlorocyclopentadiene	456	112	1,119	0	40.8	5	136	532.3	15.4	50	
2,4,6-Trichlorophenol	940	112	1,119	0	84.0	36.7	126	757.9	21.4	50	
2,4,5-Trichlorophenol	1,020	112	1,119	0	91.0	41.5	123	814.4	22.3	50	
2-Chloronaphthalene	936	83.9	1,119	0	83.6	40.3	119	828.0	12.3	50	
2-Nitroaniline	955	112	1,119	0	85.3	41.5	128	852.6	11.3	50	
Acenaphthene	891	56.0	1,119	0	79.6	42.3	124	736.6	19.0	50	
2,6-Dinitrotoluene	983	112	1,119	0	87.8	43.3	127	829.8	16.9	50	
Acenaphthylene	877	56.0	1,119	0	78.3	46.5	122	746.7	16.0	50	
2,4-Dinitrophenol	366	588	2,239	0	16.4	5	132	372.9	1.84	50	
Dibenzofuran	963	83.9	1,119	0	86.1	38.3	127	826.7	15.3	50	
2,4-Dinitrotoluene	988	112	1,119	0	88.2	36.3	131	751.2	27.2	50	
4-Nitrophenol	699	560	1,119	0	62.4	5	126	620.0	12.0	50	
Fluorene	926	56.0	1,119	0	82.7	40.4	127	818.6	12.3	50	
4-Chlorophenyl phenyl ether	964	83.9	1,119	0	86.2	41.6	123	840.1	13.8	50	
Diethylphthalate	924	112	1,119	0	82.5	42.1	127	814.2	12.6	50	
4,6-Dinitro-2-methylphenol	295	224	1,119	0	26.4	5	145	289.7	1.87	50	
4-Bromophenyl phenyl ether	924	83.9	1,119	0	82.5	41.9	124	835.6	10.0	50	

Original Page 34 of 37

QC SUMMARY REPORT

CLIENT: Libby Environmental Project: 35th Street Landfill

Semi-Volatile Organic Compounds by EPA Method 8270

Sample ID: 2101409-002AMSD	SampType: MSD			Prep Da	te: 1/27/20	21	RunNo: 650)35			
Client ID: BATCH	Batch ID: 31181					Analysis Da	te: 2/1/202	21	SeqNo: 130	08086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobenzene	992	83.9	1,119	25.02	86.3	39.1	127	848.0	15.6	50	
Pentachlorophenol	925	112	1,119	0	82.6	6.79	138	794.3	15.2	50	
Phenanthrene	1,020	56.0	1,119	26.56	89.0	37.2	133	805.2	23.8	50	
Anthracene	1,020	56.0	1,119	0	91.2	46.7	124	831.4	20.5	50	
Carbazole	932	83.9	1,119	0	83.3	38.9	133	755.9	20.9	50	
Di-n-butylphthalate	1,030	112	1,119	40.61	88.5	38.8	144	853.4	18.9	50	
Fluoranthene	1,010	56.0	1,119	77.88	83.1	36	133	891.9	12.3	50	
Pyrene	1,090	56.0	1,119	105.3	88.3	36.5	132	918.1	17.5	50	
Butyl Benzylphthalate	986	112	1,119	0	88.1	34.8	155	842.4	15.7	50	
bis(2-Ethylhexyl)adipate	905	112	1,119	0	80.8	26.7	168	796.5	12.7	50	
Benz(a)anthracene	968	56.0	1,119	39.88	82.9	33.2	141	787.6	20.6	50	
Chrysene	1,040	56.0	1,119	73.35	86.0	42.1	127	821.2	23.1	50	
bis (2-Ethylhexyl) phthalate	2,380	112	1,119	1,374	90.2	36.1	163	2,215	7.33	50	
Di-n-octyl phthalate	1,050	112	1,119	0	93.5	30.7	171	854.4	20.2	50	
Benzo(b)fluoranthene	1,060	56.0	1,119	115.0	84.3	33.1	144	920.5	14.0	50	
Benzo(k)fluoranthene	956	56.0	1,119	85.45	77.7	28.8	140	813.7	16.0	50	
Benzo(a)pyrene	1,040	56.0	1,119	88.57	84.9	37.6	140	914.5	12.7	50	
Indeno(1,2,3-cd)pyrene	1,030	56.0	1,119	189.0	75.0	33.9	149	1,010	1.87	50	
Dibenz(a,h)anthracene	977	56.0	1,119	39.55	83.8	38.6	146	866.2	12.1	50	
Benzo(g,h,i)perylene	1,160	56.0	1,119	321.2	74.7	33.4	142	1,120	3.31	50	
Surr: 2,4,6-Tribromophenol	917		1,119		81.9	13.4	144		0		
Surr: 2-Fluorobiphenyl	502		559.7		89.7	5.5	130		0		
Surr: Nitrobenzene-d5	492		559.7		88.0	5	116		0		
Surr: Phenol-d6	939		1,119		83.9	21.2	117		0		
Surr: p-Terphenyl	540		559.7		96.5	41.3	151		0		

Original Page 35 of 37

Sample Log-In Check List

Client Name:		LIBBY	V	Vork Ord	3				
Logged by:		Carissa True			ate Rec	eived:	1/27/202	21 9:24:00 AM	
Cha	in of Cust	ody							
	Is Chain of C	-	olete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample deliv	vered?		<u>UPS</u>				
<u>Log</u>	In								
	Coolers are p	oresent?			Yes	✓	No \square	na 🗆	
٥.	Coolers are p	orosont:			100			TV	
4.	Shipping con	tainer/cooler	in good condition?		Yes	✓	No \square		
			n shipping container/cooler? custody Seals not intact)		Yes		No 🗌	Not Present ✓	
6.	Was an atter	mpt made to	cool the samples?		Yes	✓	No \square	NA 🗌	
7.	Were all item	is received a	at a temperature of >2°C to 6°C	*	Yes	✓	No \square	NA 🗆	
8.	Sample(s) in	proper conta	ainer(s)?		Yes	✓	No \square		
9.	Sufficient sar	mple volume	for indicated test(s)?		Yes	✓	No 🗌		
10.	Are samples	properly pre	served?		Yes	✓	No \square		
11.	Was preserv	ative added	to bottles?		Yes		No 🗸	NA \square	
12	Is there head	Isnace in the	VOA vials?		Yes		No 🗆	NA 🗹	
			s arrive in good condition(unbroke	n)?		<u>✓</u>	No \square	14/1	
	Does paperw			, .		✓	No 🗆		
						_			
			entified on Chain of Custody?				No 🗌		
_			were requested?				No 🗌		
17.	Were all hold	ling times ab	le to be met?		Yes	✓	No 🗀		
Spe	cial Handl	ing (if apı	olicable)						
-		•	discrepancies with this order?		Yes		No \square	NA 🗸	
	Person	Notified:		Date:					
	By Who			Via:	eMail	Phon	e Fax	In Person	
	Regardi			7.0.					
	_	nstructions:	, 						
19.	Additional rei		,						
	Information								
ILCIII I	<u> </u>	Item #	Temp °C						

5.3

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environmental, Inc.				Chain of Custody Reco				cor	201414				www.LibbyEnvironmental.com						
3322 South Bay Road NE		360-352-2 360-352-4				Date:	0	124	1/21		Pic		Page		1		of	1	
Olympia, WA 98506						Project	Manag	120	horn	cvi (7.11							-	37
client: Libby Environ	nene	ac, I	110			Project								- 11	-				_
Address:								: 55	,,	SIFE					-			1.0	9 37
City: State: Zip:				Location:				City, State: Tacoma, WA Date of Collection: 1/26/21								Page			
Phone:		Fax:				Collect		2.L		_				of C	Collec	tion:	1261	21	
Client Project # L2 0 2 6	-1_					Email:	116	by e	enve	2 gm	rail.	un	1	,	,	, ,	7	,	
Sample Number	Depth	Time	Sample Type	Container Type	18/			8 1 15 1 8 1 15 1 8 1 15 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		10 /s	10	620		Fi	eld Not	es	
1B1-05-20210126		940	Soil	toz jar								X	Χ						
2 B1-30-20210126		1020		7								X	X						
382-05-20210126		1120										X	X						
482-30-20210126		1245										X	X						
583-05-20210126		1340										X	X						
6 B3-030-20210126		1430										*	X						
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
Relinquished by:	1/26	hi	Date / Time	Received by:				Dat	e / Time		ample		ceip		Ren	narks:			
Relinquished by	1/26	11		Received by:	1		190	Dat	e / Time		Condition? Temp.		Υ	"C					
US			22 M20 7/11/12	(1,7	ah	1/2	17/21	00	924		Temp.			°C	S	tand	and	TAT	
Relinquished by:			Date / Time	Received by:				Dat	e / Time	I Country	lumber of							-	E DAY
LECAL ACTION CLAUSE In the went of debut of new	ment ancilor failu	re to any. Client	screes to pay the co	sts of collection including	court costs and	reasonable atto	may fees to	be determin	nd by a cour		tainers		-		TA				5-DAY v - Originato