

January 18, 2022

Mr. Panjini Balaraju Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office P.O. Box 47775 Olympia, Washington 98504-7775

Sent via e-mail to PBAL461@ECY.WA.GOV

Subject: Groundwater Monitoring Report, September 2021 Lumen Longview Facility 1305 Washington Way, Longview, Washington 98632

Dear Mr. Balaraju:

Tetra Tech, Inc. (Tetra Tech) on behalf of Lumen Technologies, Inc. (Lumen) is providing this summary of the groundwater sampling event conducted on September 21, 2021 at the Lumen Facility in Longview, Washington. Groundwater monitoring events are being conducted as a continuation of the Groundwater Monitoring Plan developed in 2008 under the Voluntary Cleanup Program. Groundwater monitoring was conducted generally in accordance with the March 2015 Final Direct-Push Sampling Plan (Tetra Tech 2015) and approved by the Washington State Department of Ecology (Ecology).

Groundwater Levels

The depth to groundwater was measured using an electronic static water-level indicator that was lowered into each well. Depth to groundwater was measured to the nearest hundredth of a foot from the top of the well casing. Static water levels ranged from 1.53 to 1.65 feet above mean sea level (amsl) and are summarized in the table below and shown on Figure 1. Groundwater levels were approximately 2.18 to 2.22 feet lower than observed in March 2020 (the last monitoring event).

Location	Surveyed Top of Casing (ft amsl)	September 21, 2021 Depth to Water (ft)	September 21, 2021 Groundwater Elevation (ft amsl)
MW-01	15.64	14.03	1.61
MW-02	16.17	14.61	1.56
MW-03	15.02	13.37	1.65
MW-04	14.55	12.99	1.56
MW-05	14.75	13.22	1.53

SEPTEMBER 21, 2021 GROUNDWATER ELEVATIONS

Notes:

ft Feet ft amsl Feet above mean sea level MW Monitoring well Based on groundwater elevation data shown on Figure 1, the direction of groundwater flow appears to be southwest, with a gradient of approximately 0.0015 foot/foot. Historically, groundwater flow direction has typically ranged from west to northwest. Sitewide groundwater levels during this event and the March 2020 event are more uniform than typically observed and there is a flatter than normal gradient.

Groundwater Samples from Permanent Monitoring Wells

Groundwater samples were obtained from all five permanent monitoring wells at the facility. Per the groundwater monitoring plan, a field duplicate sample is collected during every other sampling event; because a field duplicate was not collected during the March 2020 sampling event, a field duplicate was collected during this event. After groundwater level measurements were documented, field personnel collected groundwater samples using a peristaltic pump. New dedicated tubing was used to collect the sample at each well. In accordance with the monitoring plan, low-flow sampling procedures were used. Sampling flow rates were kept below 500 milliliters per minute for purging and groundwater sample collection.

A calibrated YSI ProSeries Professional Plus multiparameter water quality meter was used to measure field parameters during well purging prior to sampling. A HACH 2100Q meter was used to measure turbidity. Water quality parameters measured with the YSI ProSeries Professional Plus included pH, dissolved oxygen, oxidation-reduction potential, temperature, and specific conductance. Low-flow pumping continued until field parameters stabilized within acceptable parameter limits before samples were collected. Attachment A includes the logs of field parameters measured during the low-flow sampling.

Groundwater Sample Analysis

Once obtained, groundwater samples were labeled in accordance with Tetra Tech standard operating procedures, placed in a cooler, and chilled to below 4 degrees Celsius. Samples were shipped to ALS Laboratories (ALS), located at 1317 S. 13th Avenue in Kelso, Washington. Samples were delivered following standard chain-of-custody protocol. The chain-of-custody form is included with the laboratory analytical reports in Attachment B.

ALS analyzed the samples for total petroleum hydrocarbons-diesel range organics (TPH-DRO) and total petroleum hydrocarbons-residual range organics (TPH-RRO) by Northwest Total Petroleum Hydrocarbons-Diesel Extended Range Methodology (Ecology 1997), without silica gel cleanup.

ALS analyzed the samples for polycyclic aromatic hydrocarbons (PAH) by U.S. Environmental Protection Agency (EPA) Method 8270-Selected Ion Monitoring (SIM). The PAH samples were requested to be filtered with a 0.7-micron (μ m) filter before analysis. However, the laboratory did not filter the samples. The PAH sample reanalysis on the filtered samples was performed outside of the holding time; therefore, all detected results for PAHs were qualified with a "J" to indicate that the results are estimated.

Groundwater Sample Analytical Results

Table 1 presents groundwater analytical results for the samples collected during the September 21, 2021 event. The data were reviewed by a qualified chemist in accordance with Tetra Tech standard operating procedure (SOP) 203-1 (Tetra Tech 2019) and met the quality control limits of the analytical methods. Samples analyzed for PAHs required reanalysis as these samples were not filtered prior to extraction as requested by Tetra Tech. The reanalysis was performed outside of the holding time; therefore, all detected results for PAHs were qualified with a "J" to indicate that the results are estimated.

The method blanks had low-level detections of 2-methylnaphthalene, benz(a)anthracene, dibenzofuran, naphthalene, TPH-DRO, and TPH-RRO. Based on method blank detections, the low-level detected results of the listed constituents were qualified as not detected at the reporting limit per the National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2020). The method reporting limit for TPH-RRO (520 to 530 micrograms per liter [μ g/L]) exceeds the Model Toxics Control Act (MTCA) Method A cleanup level for groundwater of 500 μ g/L. However, the TPH-RRO concentrations in these samples are either attributable to laboratory contamination or are likely present in the groundwater samples at concentrations below the cleanup level. The maximum TPH-DRO and TPH-RRO result reported by the laboratory was 690 μ g/L in sample MW-01. However, the laboratory noted for the results for TPH-DRO and TPH-RRO in sample MW-01 that the chromatographic fingerprint does not resemble a petroleum product. The remainder of the results for the chemicals not listed above are usable as reported by the laboratory.

Low concentrations of PAHs were detected in all monitoring well samples; Table 1 also summarizes these results. There are no total PAH or compound-specific MTCA Method A cleanup levels for PAHs. The MTCA Method A cleanup level for the carcinogenic PAHs of 0.1 μ g/L is based on the benzo(a)pyrene toxic equivalent quotient (BaP TEQ). Table 1 also shows the BaP TEQ results, which are based on the individual PAH analytical results multiplied by a toxicity equivalent factor (TEF). All BaP TEQ results were below the MTCA Method A cleanup level. All the constituents that are part of the BaP TEQ calculation were not detected for samples MW-02 through MW-05, thus the BaP TEQ results were also non-detect and below the MTCA Method A cleanup level. The BaP TEQ result of 0.0035 μ g/L in sample MW-01 was also below the MTCA Method A cleanup level. The original unfiltered BaP TEQ result in sample MW-01 is 0.0085 μ g/L, which is also below the MTCA Method A cleanup level of 0.1 μ g/L.

Table 2 summarizes the historical results for TPH-DRO and TPH-RRO for each monitoring well sample. Table 3 summarizes the historical results for BaP TEQ and total PAHs for each monitoring well sample.

Conclusions and Recommendations

For the September 2021 sampling event, analytical results from all six monitoring well samples, including one field duplicate, were below MTCA Method A cleanup levels for BaP TEQ.

Because of method blank contamination, the TPH-RRO results for MW-02 through MW-05 are reported as not detected at the reporting limit. The reporting limit exceeds the MTCA Method A cleanup level for TPH-RRO. However, the TPH-RRO concentrations in these samples are either attributable to laboratory contamination or are likely present in the groundwater samples at concentrations below the cleanup levels.

The results for TPH-DRO and TPH-RRO in sample MW-01 exceeded their respective MTCA Method A cleanup levels. However, the laboratory noted that the chromatographic fingerprint for these results does not resemble a petroleum product, which may mean that the detection is not related to the current diesel spill remediation.

The results from September 2021 were similar to other fall season sample results, when all concentrations were below the 500 μ g/L cleanup level for TPH-DRO and TPH-RRO. Results from September 2021 were also similar to those from the last sampling event in March 2020. Continued low groundwater TPH concentrations at downgradient wells MW-04 and MW-05 indicate that the TPH plume is stable and not migrating downgradient at significant concentrations.

Tetra Tech recommends that groundwater sampling at the five monitoring wells continue every 18 months to monitor plume stability and continued attenuation of contaminant concentrations to below MTCA Method A cleanup levels. These groundwater sampling events would alternate between spring and fall to obtain groundwater concentration data from high and low groundwater conditions. This monitoring schedule was discussed with Ecology's Mr. Steve Teel and Tetra Tech Engineer, Mr. Dave Berestka during a teleconference on March 22, 2017. Accordingly, the next groundwater monitoring events will be conducted in spring 2023 and fall 2024.

If you have any questions or concerns, please contact me at (303) 312-8813 or mark.reisig@tetratech.com.

Sincerely,

Mark R. Reising

Mark Reisig Program Manager Tetra Tech, Inc.

cc: Joe Robertson, Regional Environmental Health and Safety Manager, Lumen

Attachments:

- A Low-Flow Groundwater Sampling Parameter Forms
- B Laboratory Analytical Report and Chain-of-Custody Record

References

Tetra Tech. 2015. Direct-Push Groundwater Investigation and Sampling Plan: CenturyLink Longview facility, Longview, Washington. March 2.

Tetra Tech. 2019. SOP 203-1, Laboratory Analytical Data Verification. January.

- United States Environmental Protection Agency (EPA). 2020. National Functional Guidelines for Organic Superfund Methods Data Review. (<u>https://www.epa.gov/sites/default/files/2021-03/documents/nfg for organic superfund methods data review november 2020.pdf</u>). Accessed on December 13, 2021.
- Washington State Department of Ecology (Ecology). 1997. Analytical Methods For Petroleum Hydrocarbons. (<u>https://fortress.wa.gov/ecy/publications/documents/97602.pdf</u>). Accessed on December 13, 2021.

ANALYTICAL RESULTS TABLES

TABLE 1 GROUNDWATER SAMPLE ANALYTICAL RESULTS LUMEN LONGVIEW, WASHINGTON FACILITY

Analy	rte	TPH-DRO	TPH-RRO	Total PAHs	BaP TEQ
MTCA Method A Clea	500 (µg/L)	500 (μg/L)	NA (µg/L)	0.1 (µg/L)	
Location Date					
MW-01	9/21/2021	690 Z	690 Z	0.045 J	0.0035 J
MW-02	9/21/2021	260 U	520 U	0.0035 J	0.020 U
MW-03	9/21/2021	270 U	530 U	0.0078 J	0.020 U
MW-04	9/21/2021	270 U	530 U	0.0142 J	0.020 U
MW-04 DUP	9/21/2021	270 U	530 U	0.0148 J	0.020 U
MW-05	9/21/2021	270 U	530 U	0.0134 J	0.020 U

Notes:

Bold values indicate the concentration exceeds the MTCA Method A cleanup level.

µg/L	Micrograms per liter
BaP TEQ	Benzo(a)pyrene Toxic Equivalent Quotient
DUP	Duplicate
J	The result is an estimated value
MTCA	Model Toxics Control Act Method A for groundwater
NA	Not applicable (no applicable MTCA standard)
PAH	Polycyclic aromatic hydrocarbon
TPH-DRO	Total petroleum hydrocarbons diesel range organics
TPH-RRO	Total petroleum hydrocarbons residual range organics
U	Undetected at the method reporting limit shown
Z	The chromatographic fingerprint does not resemble a petroleum product

TABLE 2HISTORICAL GROUNDWATER SAMPLE RESULTS – DRO AND RROLUMEN LONGVIEW, WASHINGTON FACILITY

Analyte	Date	Sampling	MW-01	MW-02	MW-03	MW-04	MW-05
· · · · · , · ·		Method				-	
	3/25/1992	Bailer	82	112	50 U		
	12/16/2003	Bailer	250 U	250 U	250 U		
	8/10/2006	Bailer	50 U	140	50 U		
	9/23/2008	Bailer				50 U	140
	2/26/2010	Bailer				25 U	100
	9/2/2011	Bailer				73	120
	2/26/2013	Bailer				1,700	51 U
	6/3/2013	Bailer	50 U	66	50 U	210	50 U
	12/5/2013	Bailer	97	72	47	1,500	100
TPH-DRO	3/27/2014	Bailer	63	87	250 U	550	47
	6/25/2014	Bailer	50	33	260 U	1,100	260 U
(MTCA Method A	9/10/2014	Bailer	240	90	36	790	48
Cleanup Level =	3/5/2015	Low Flow	22	82	20	20	27
500 µg/L)	7/20/2015	Low Flow	22	77	21	24	30
	12/18/15	Low Flow	38	83	46	96	120
	3/31/16	Low Flow	41	1,500	58	30	30
	7/7/2016	Low Flow	24	330	22	34	21
	10/13/2016	Low Flow	23	130	39	39	48
	12/09/2016	Low Flow	37	120	63	70	67
	5/04/2017	Low Flow	42	570	47	24	23
	11/16/2018	Low Flow	48	96	61	60	77
	3/19/2020	Low Flow	280 U	280 U	280 U	270 U	280 U
	9/21/2021	Low Flow	690 Z	260 U	270 U	270 U	270 U
	3/25/1992	Bailer	200 U	200 U	200 U		
	8/10/2006	Bailer	250 U	250 U	250 U		
	9/23/2008	Bailer				250 U	250 U
	2/26/2010	Bailer				140	200
	9/2/2011	Bailer				350	210
	2/26/2013	Bailer				11,000	220
	6/3/2013	Bailer	150	100 U	100 U	1,600	100 U
	12/5/2013	Bailer	440	120	120	11,000	170
	3/27/2014	Bailer	370	63	500 U	3,900	190
TPH-RRO	6/25/2014	Bailer	340	62	21	8,400	51
/ · · · · · · · · · · · · · · · · · · ·	9/10/2014	Bailer	1,500	140	120	6,600	82
(MTCA Method A Cleanup Level =	3/5/2015	Low Flow	43	70	37	48	53
500 µg/L)	7/20/2015	Low Flow	52	71	49	52	42
()	12/18/15	Low Flow	84	160	81	81	82
	3/31/16	Low Flow	83	340	110	54	53
	7/7/2016	Low Flow	44	140	41	33	34
	10/13/2016	Low Flow	94	130	98	90	100
	12/09/2016	Low Flow	140	180	130	110	110
	5/04/2017	Low Flow	86	200	54	37	31
	11/16/2018	Low Flow	130	140	240	110	380
	3/19/2020	Low Flow	550 U	550 U	550 U	540 U	550 U
	9/21/2021	Low Flow	690 Z	520 U	530 U	530 U	530 U

Notes:

All concentrations in micrograms per liter (µg/L).

- All concentrations in micrograms per liter (µg/L).

 Bold values indicate the concentration exceeds the MTCA Method A cleanup level.

 For wells with duplicate samples, the highest value reported is shown for each constituent.

 MTCA
 Model Toxics Control Act Method A for groundwater

 TPH-DRO
 Total petroleum hydrocarbons diesel range organics

 TPH-RRO
 Total petroleum hydrocarbons residual range organics

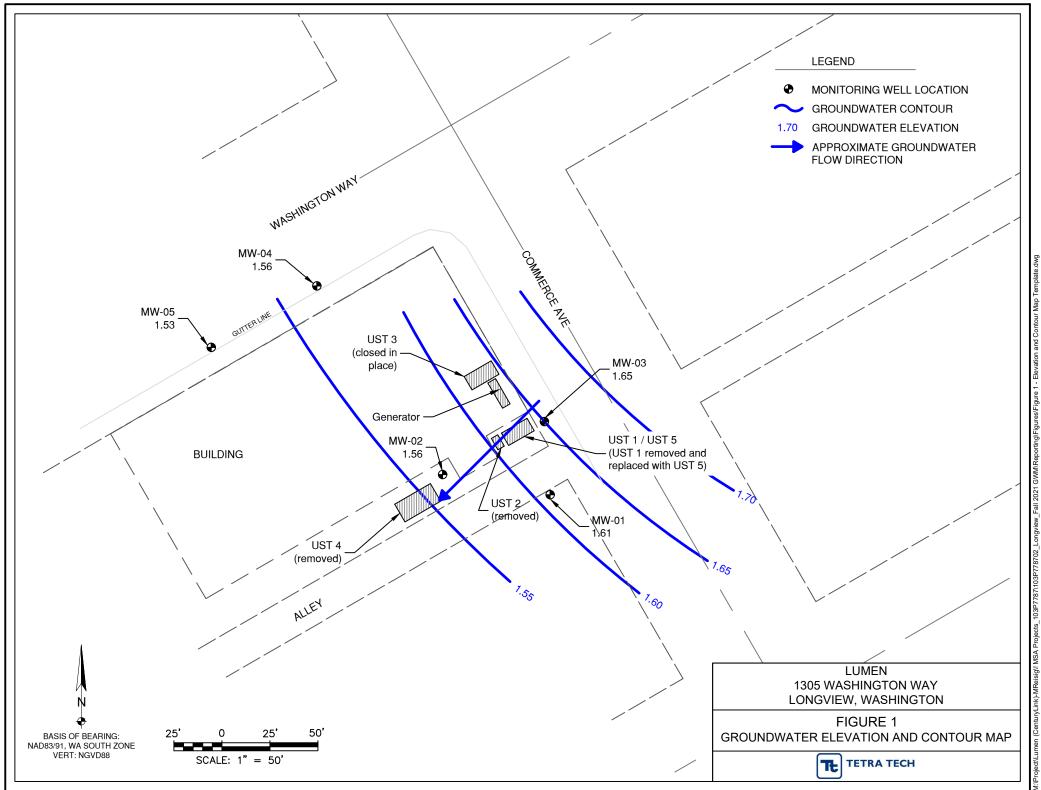
 Not sampled J U Z
- The result is an estimated value
- Undetected at the method reporting limit shown
- The chromatographic fingerprint does not resemble a petroleum product

TABLE 3 HISTORICAL GROUNDWATER SAMPLE ANALYTICAL RESULTS -**BAP TEQ AND TOTAL PAH** LUMEN LONGVIEW, WASHINGTON FACILITY

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
BaP TEQ	6/3/2013	Bailer	2.2	0.1 U	0.1 U	0.36	0.1 U
	12/5/2013	Bailer	0.20	0.027	0.074	1.4	0.0062
Unfiltered analysis (MTCA Method A	3/27/2014	Bailer	0.37	0.080	0.049	0.27	0.073
Cleanup Level = 0.1	6/25/2014	Bailer	0.39	0.012	0.00033	0.40	0.0054
μg/L)	9/10/2014	Bailer	0.14	0.090	0.0037	0.39	0.0051
	12/5/2013	Bailer	0.00033		0.00068	0.00084	
	3/27/2014	Bailer	0.019 U	0.019 U		0.019 U	0.019 U
	6/25/2014	Bailer	0.020 U			0.200 U	
	9/10/2014	Bailer	0.00030	0.00027		0.020 U	
	3/5/2015	Low Flow	0.00074	0.00038	0.019 U	0.00044	0.00029
BaP TEQ	7/20/2015	Low Flow	0.00029	0.020 U	0.021 U	0.021 U	0.021 U
Filtered analysis	12/18/2015	Low Flow	0.0065	0.00029	0.019 U	0.00050	0.00039
· ···· , ···	3/31/2016	Low Flow	0.00035	0.020 U	0.020 U	0.00026	0.020 U
(MTCA Method A	7/7/2016	Low Flow	0.020 U	0.020 U	0.00027	0.00035	0.020 U
Cleanup Level = 0.1	10/13/2016	Low Flow	0.0026 U	0.0026 U	0.00028	0.00040	0.00041
μg/L)	12/09/2016	Low Flow	0.00028	0.020 U	0.00032	0.00032	0.020 U
	5/04/2017	Low Flow	0.00026	0.020 U	0.00020	0.00023	0.00024
	11/16/2018	Low Flow	0.00020	0.00026	0.00020	0.00023	0.00019
	3/19/2020	Low Flow	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
	9/21/2021	Low Flow	0.0035 J	0.020 U	0.020 U	0.020 U	0.020 U
Total PAHs	6/3/2013	Bailer	16	1.6	0.1 U	8.7	0.1 U
	12/5/2013	Bailer	1.7	0.83	0.85	16	2.4
Unfiltered analysis	3/27/2014	Bailer	3.5	1.3	0.50	3.1	0.80
(No MTCA Method A	6/25/2014	Bailer	3.9	2.3	0.12	4.8	0.37
Cleanup Level)	9/10/2014	Bailer	1.2	1.5	0.049	6.0	5.5
	12/5/2013	Bailer	0.028		0.043	0.52	
	3/27/2014	Bailer	0.018	0.21		0.080	0.064
	6/25/2014	Bailer	0.063			0.11	
	9/10/2014	Bailer	0.012	0.041		0.42	
	3/5/2015	Low Flow	0.046	0.58	0.013	0.24	0.26
Total PAHs	7/20/2015	Low Flow	0.0077	0.019	0.0056	0.29	0.15
Filtered analysis	12/18/2015	Low Flow	0.039	1.9	0.019 U	9.7	8.5
Filtered analysis	3/31/2016	Low Flow	0.0035	0.032	0.020 U	0.041	0.0092
(No MTCA Method A	7/7/2016	Low Flow	0.020 U	0.019	0.0092	2.2	0.024
Cleanup Level)	10/13/2016	Low Flow	0.0083	0.034	0.016	0.68	2.8
	12/09/2016	Low Flow	0.0028	0.0070	0.029	4.7	1.1
	5/04/2017	Low Flow	0.015	0.70	0.01	0.017	0.0096
	11/16/2018	Low Flow	0.039	0.107	0.044	0.794	0.068
	3/19/2020	Low Flow	0.0082	0.078	0.0107	0.014	0.0101
	9/21/2021	Low Flow	0.045 J	0.0035 J	0.0078 J	0.01428 J	0.0134 J

Notes:

Bold values indicate the concentration exceeds the MTCA Method A cleanup level. For wells with duplicate samples, the highest value reported is shown for each constituent.


µg/L	Micrograms per liter
------	----------------------

---Not analyzed BaP TEQ MTCA PAH

Benzo(a)pyrene Toxic Equivalent Quotient Model Toxics Control Act Method A for groundwater Polycyclic aromatic hydrocarbon

Estimated Concentration Undetected at the method reporting limit shown J U

FIGURE

Source: Tetra Tech, Inc. field sketch, aerial photographs, and survey

ATTACHMENT A LOW-FLOW GROUNDWATER SAMPLING PARAMETER FORMS

TETRATECH EM INC.

00 .

	Well Name:	N8W-01		1		Screen Interval:			
		South Side of Building		-		Sample Depth:			
•	Project:			4		Static Water Level:		N The (· V. V. N.
	Fiolect	Lumen (CenturyLink) -	Longview			Depth to LNAPL:	NA		((((
	Sample Date:	9/21/21	·	1		Total Depth of Casing:			
	ng Personnel:	· · · ·		-		Begin Purge (Time):		1744	
Sampin	ng reisonnen.	D. 60200		4	Cas	sing Diameter (inches):	•	<u> </u>	
	Sample ID:	N834/01		7	Uac	Purge Method:			
	Sample Time:			1	Actu	al Final Purge Volume:			
	Duplicate ID:			-		niscible Layer Present:		<u>~</u>	
r:-u or				-	111111	insciple Layer Present.	110		
Field QC	Designation:			1					
			Water Quality	Information					
Time	Discharge	Dissolved Oxygen (mg/L)	pH	Eh/ORP	Temp (C°)	Sp. Cond (µmhos/cm)	Turbity	Depth to	
	Rate			(mV)			(NTU)	Water (ft)	
1751	(mL/min) 250	7101076 1	6.81	227.3	15.9	292.0	9:65	14.02	
		2.6º10 0.25 mg/L	1	223.1	1	289.0	8.99	14.02	
1754	250	2.0%, 0.20 mgk	4.82.	218.5	15.7 15.7		7.67	14.02	
1757	250	1.8%, 0.18 mg/5	4.83	1		288.3	7.64		
1800	250	1.7%, 0.17 mally	6.85	214.2	15.6	789.3	1	14.63	
1803	250	1.5% 0.15 male .	6.86	210.9	15.5	288.0	1.17	14.03	
1806	250	1.5%, 0.15 mg/L	6.86	208.0	15.6	287.9	5.61	14.04	
1809	250	1.4%, 0.14 mg/L	4.98	204.8	15.6	287.0	6.22	14.04	
1812	250	1.3%, 0.13 mail	4.89	202.3	15.5	289.4	6.81	14.64	
1815	250	1.2%. 0.12 334	6.91	200.1	155	286.	6.27	14.04	-
		· · · ·	ļ				ļ		-
			ļ				<u> </u>		-
									-
									1
							X		

				-				T
			•					
							~~~	
						1		
		· · · ·						-
			9998.x					
		· · · · · · · · · · · · · · · · · · ·					X	
						1	·····	
Stabilization Criteria	3 min. increments	± 0.05 mg/L for values < 1mg/L ± 0.2 mg/L for values > 1 mg/L	± 0.1	± 10 mV	± 0.1°	± 10 for values < 1,000 ± 20 for values > 1,000	± 10%	
Qualitative Obs	ervations: <b>We</b>	I cover missing botts.						
	To	itially unable to act tubing	post ~14 feet	below Toc. I	lowever, I	was able to move to	toing to app	ropriate
		Il cover missing botts. High unable to get tubing depth during lake attemp	F.				0	
		0 1						

.

٠

.

~~~·

| | Well Name: | MW-02 | | Screen Interval: | | | . ж | | |
|----------|-------------------|------------------------|---------------|--------------------|-------------|-------------------------|------------------|------------------------|--------------|
| W | ell Location: | South Side of Building | | Sample Depth | | | 211.A | | |
| | Project: | Lumen (CenturyLink) - | Longview | Static Water Level | | | 14.56 A | below Toc Q | with tubine) |
| | | | 201.911011 | | | Depth to LNAPL: | NA | | ل ک |
| \$ | Sample Date: | 9/21/21 | | | | Total Depth of Casing: | 19.93' | | |
| Samplin | g Personnel: | rsonnel: A. Gibson | | | | Begin Purge (Time): | 1623 | | |
| | | | | | Cas | ing Diameter (inches): | 2 | | |
| | Sample ID: | MW-02 | | | | Purge Method: | Peristaltic | | |
| S | Sample Time: | 1705 | | | Actua | al Final Purge Volume: | ~9.030 m | <u>n</u> L | |
| | Duplicate ID: | NA | | | Imm | niscible Layer Present: | No | | |
| Field QC | Designation: | NA | | | | | | | |
| | | | | | | | | | I |
| | | | Water Quality | | | | | | |
| Time | Discharge
Rate | | | Eh/ORP
(mV) | Temp (C°) | Sp. Cond (µmhos/cm) | Turbity
(NTU) | Depth to
Water (ft) | |
| | (mL/min) | | | () | | | ((110) | | |
| 1632 | 215 | 44.190, 4.17 mall | 4.87 | 221.5 | 18.1 | 2440.2 | 0.63 | 14.66 | |
| 1635 | 215 | 44.2%, 4.22 mg/L | 6.9 | 213.6 | 17.8 | 435.7 | 0.59 | 14.67 | |
| 1638 | 215 | 37.6% 3.60 mg/L | 6.89 | 209.1 | 17.8 | 431.0 | 0.38 | 14.67 | |
| 1641 | 215 | 32.6% 3.01 mg/L | 6.89 | 2048 | <u>h.</u>] | 425.9 | 0.75 | 14.61 | |
| 1644 | 215 | 28.8% 2.74 mg/L | 6.87 | 201.4 | 17.4 | 420.5 | 0.58 | 14.67 | |
| 1647 | 215 | 269%, 2.56 mall | 6.86 | 198.0 | 17.4 | 416.Z | 0.85 | 14.68 | |
| 1650 | 215 | 25.1%, 2.40 mg/L | 6.87 | 196.3 | 17.3 | 411.6 | 0.55 | 14.68 | |
| 1653 | 215 | 20.9%, Z.01 mill | 4.85 | 195.1 | 17.3 | 408.4 | 0.74 | 14.69 | |
| 1656 | 215 | 19.7%, 1.87 mg/L | 6.85 | 194.0 | 17.2 | 405.6 | 0.43 | 14.69 | |
| 1659 | 215 | 17.9%, 1.72 mil | 6.84 | 193.Z | 17.2 | 403.6 | 0.76 | 14.69 | |
| 1702 | 215 | 47.2%, 1.66 mgth | <i>6.</i> 83 | 1926 | 17.2 | 402.0 | 0.39 | 14.69 | |
| 1705 | 215 | 17.2% 1.66 male | 6.84 | 192.3 | 17.1 | 400.4 | 6.28 | 14-69 | |
| ······ | | · J | | | | | | | |
| | | | | | | | | | |
| | | | | | | | - Vo | | |
| | | | | <u> </u> | | | 5 | | |

.-

Micropurge Groundwater Sampling Data Sheet

| | | | 4 | | | | | |
|---------------------------|----------------------|--|-------|---------|--------|--|--------|---|
| | | | | | | | | |
| | | | | | _ | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | N | |
| | | | | | | | \sim | |
| | | | | | | | | / |
| Stabilization
Criteria | 3 min.
increments | ± 0.05 mg/L for values < 1mg/L
± 0.2 mg/L for values > 1 mg/L | ± 0.1 | ± 10 mV | ± 0.1° | ± 10 for values < 1,000
± 20 for values > 1,000 | ± 10% | |
| Qualitative Obs | ervations: N | * | | | | | | |

TETRATECH EM INC.

.

| | Well Name: | MW-03 | | Screen Interval: | | | | | | |
|----------|-------------------|-------------------------|---------------|--------------------|---------------------|----------------------------------|----------|--------------|---------------|----|
| w | /ell Location: | East Side of Building | | | | Sample Depth: | ~ 16 Set | bebu Tox | | ъ. |
| | Project: | Lumen (CenturyLink) - | Longview | | Static Water Level: | | | below Toc | (with tubing) | |
| | | Lumen (GenturyEinky | Longvien | Depth to LNAPL: WA | | | AU | | J S' | ć |
| | Sample Date: | 9/21/21 | | | | Total Depth of Casing: | 19.93' | | | |
| Samplin | ng Personnel: | D. Gibson | | | | Begin Purge (Time): | 1035 | | | |
| | | | | -1 | Cas | ing Diameter (inches): | 2 | | | |
| | Sample ID: MW-03 | | | | Purge Method: | Peristaltic | | | | |
| | Sample Time: | 1108 | | | Actua | al Final Purge Volume: | ~7,920 1 | nL. | | |
| | Duplicate ID: | | | | lmn | niscible Layer Present: | No | | | |
| Field QC | Designation: | HSIMSD | | | | | | | | |
| | | | | | | | | | | |
| | | | Water Quality | | | Co. Cood (unit of (or)) | Turbity | Depth to | | |
| Time | Discharge
Rate | Dissolved Oxygen (mg/L) | рН | Eh/ORP
(mV) | Temp (C°) | Sp. Cond (µmhos /cm) | (NTU) | Water (ft) | | |
| | (mL/min) | | | | | | | | | |
| 1041 | 240 | 10.3% 1.00 mall | 7.31 | 228.8 | 16.1 | 369.3 | 11.1 | 13.39 | - | |
| 1046 | 240 | 6.3%, 0.61 mail | 7.1 | 211.2 | 16.1 | 343.4 | 5.18 | 13.4 | - | |
| 1049 | 240 | 5.9% 0.58 JL | 7.66 | 203.0 | 16. | 361.0 | 4.05 | 13.39 | | |
| 1052 | 240 | 5.1%, 0.51 maje | 7.0 | <u> </u> | 16.1 | 360.6 | 3.53 | 13.39 | | |
| 1055 | 240 | 5.0%, 0.49 majl | 6.99 | 190.4 | 16.1 | 361.7 | 2.31 | 13.39 | | |
| 1659 | 240 | 4.6%, 0.42 mg L | 6.97 | 189.0 | 11e.1 | 361.1 | 1.78 | 13.39 | - | |
| 1102 | 240 | 4.0%, 0.38 mg 12 | 696 | 180.0 | 16.1 | 361.4 | 1.54 | 13.39 | | |
| 1105 | 240 | 3.20%, 0.31 mg/1. | 6.95 | 175.6 | 16.0 | 359.4 | 1.02 | 13.39 | - | |
| 1108 | 240 | 3.4% 0.34 mg/L | 6.95 | 1725 | 6. | 358.5 | 1.22 | 13.39 | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | · · · | | | | | | | | |
| | | | | | | | L | | | |
| | | | | | | | \vdash | \$ | | |
| | | | | } | <u> </u> | | | \mathbb{P} | | |
| | | | L | | | <u>I</u> | L | <u> </u> | 1 | |

ş

Micropurge Groundwater Sampling Data Sheet

| | | | | | <u> </u> | | | 1 |
|---------------------------|----------------------|--|-------|---------|----------|--|-------|---|
| | | | | | | | | |
| | | · · · · · · · · · · · · · · · · · · · | | | | | | |
| | | | | | | | ~ `` | |
| | | | | | | | X | |
| | | | | | | | | |
| Stabilization
Criteria | 3 min.
increments | ± 0.05 mg/L for values < 1mg/L
± 0.2 mg/L for values > 1 mg/L | ± 0.1 | ± 10 mV | ± 0.1° | ± 10 for values < 1,000
± 20 for values > 1,000 | ± 10% | |
| Qualitative Obs | ervations: N | 4 | | | | | | |
| | | | | | | | | |

15

e.,

| R | TETRA TECH | Eł |
|---|------------|----|
|---|------------|----|

MINC.

| | Well Name: | MW-04 | | | | Screen Interval: | | | |
|----------|-------------------------------|-------------------------|---------------|----------------|-----------|-------------------------|------------------|------------------------|-----------|
| w | ell Location: | North Side of Building | | | | Sample Depth: | ~ 16 feel } | 2000 Tac | |
| | Project: | Lumen (CenturyLink) - | Longview | | | Static Water Level: | 13.01 A but | ow Toc (wil | k tobina) |
| | | Eumon (Oonkaryemky | | | | Depth to LNAPL: | NA | ک | |
| ę | Sample Date: | 9 21 21 | | - | | Total Depth of Casing: | 19.73' | | |
| Samplin | g Personnel: | N. Gibson | | | | Begin Purge (Time): | 1438 | | |
| | | | | , | Cas | ing Diameter (inches): | 2 | | |
| | Sample ID: | MW-04 | | | | Purge Method: | | | 1 |
| S | Sample Time: | 1514 | | | | al Final Purge Volume: | ~ 8,640. | <u>mL</u> | 1 |
| | | HW-OH DUP | | | Imn | niscible Layer Present: | No | | |
| Field QC | Designation: Field duplicate. | | | | | | | | |
| | | | | | | | | | |
| | | | Water Quality | | | | | | |
| Tìme | Discharge
Rate | Dissolved Oxygen (mg/L) | pН | Eh/ORP
(mV) | Temp (C°) | Sp. Cond (µmhes/cm) | Turbity
(NTU) | Depth to
Water (ft) | |
| | (mL/min) | | | (, | | | | | |
| 1446 | 240 | 8.9% 0.87 mall | 6.77 | 217.6 | K.1 | 371.4 | 2.89 | 13.0 | |
| 1450 | 240 | 8.8%, 0.86 mall | 6.63 | 218.5 | 16.1 | 369.8 | 2.80 | 13.01 | |
| 1453 | 240 | 8.7% 0.86 mgl | 6.60 | 216.9 | [6.] | 367.8 | 1.29 | 13.01 | |
| 1456 | 240 | 8.8% , 0.87 mall | 4.59 | 215.0 | 16.\ | 3660.8 | 0.62 | 13.01 | |
| 1459 | 240 | 9.4%, 0.93 math | <u> </u> | 213.3 | 16.\ | 364.2 | 1.27 | 13.01 | |
| 150Z | 240 | 9.5%, 0.95 mil | 6.58 | 211.6 | 16.1 | 367.8 | 0.64 | 13.01 | - |
| 1505 | 240 | 9.6% 0.94 mall | 6.60 | 210.0 | 16.0 | 367.2 | 0.5 | 3.01 | |
| 1508 | 240 | 10.4 % 1.02 will | 6.60 | 209.4 | 16.1 | 367.9 | 0.44 | 13.01 | |
| 1511 | 240 | 10.7% 1.06 mall | 6.58 | 207.6 | 16.1 | 361.8 | 0.90 | 13.01 | |
| 1514 | 240 | 10.6%, 1.04 mg/L | 6.59 | 206.6 | 16.1 | 361.8 | 0.43 | 13.01 | |
| | | | | | · · · | | | | - |
| | | | | | | | | | |
| | | | | | | | | | - |
| | | | | <u> </u> | | | | | |
| | | | | 1 | | | X | 4 | - |
| | | | | - | | | | <u> </u> | |

. `

| | [] | ГГ | | <u> </u> | | 1 1 | | |
|---------------------------|----------------------|--|-------|----------|----------|--|-------|---|
| | | | | | <u> </u> | | | |
| | \sim 1 | | | | | | | |
| | | | | | | | | - |
| | | | | | | | | |
| | | | | | | | | |
| | | • | | | | | | 1 |
| | | | | | | | | 1 |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | - A | |
| Stabilization
Criteria | 3 min.
increments | ± 0.05 mg/L for values < 1mg/L
± 0.2 mg/L for values > 1 mg/L | ± 0.1 | ± 10 mV | ± 0.1* | ± 10 for values < 1,000
± 20 for values > 1,000 | ± 10% | |
| Qualitative Obs | ervations: Na | the in cabing. | | | | | | |
| | | | | | | | | |

•\*

•

4

1

| R | TETRA TECH | EM | INC. |
|---|------------|----|------|
|---|------------|----|------|

| | | | | | | | t | | |
|----------|-------------------------------|-------------------------|---------------|----------------|-----------|----------------------------------|------------------|------------------------|---|
| | Well Name: | MW-05 | | | | Screeň Interval: | | | |
| v | Vell Location: | North Side of Building | | | | Sample Depth: | ville feet | below Toe | |
| | Project: | Lumen (CenturyLink) | | | | Static Water Level: | 13.22.4b | with tub | |
| | | Lumen (GentaryEnnk) | Longview | | | Depth to LNAPL: | | | |
| | Sample Date: | 9/21/21 | | | | Total Depth of Casing: | | | |
| Samplin | ng Personnel: | j i - | | | | Begin Purge (Time): | 13300 1 | 345 | |
| | | | | - | Cas | ing Diameter (inches): | 2 | | |
| | Sample ID: | MW-05 | | | | Purge Method: | Peristaltic | | |
| : | Sample Time: 1408 | | | | Actu | al Final Purge Volume: | ∿ 5, 780 | mL | - |
| | Duplicate ID: | NA | | _ | Imn | niscible Layer Present: | No | | |
| Field QC | Designation: | A/A | | | | | | | |
| | () | | | | | | | | 1 |
| | | • | Water Quality | | | F | (| T | |
| Time | Discharge
Rate
(mL/min) | Dissolved Oxygen (mg/L) | pH | Eh/ORP
(mV) | Temp (C°) | Sp. Cond (µ mhe s/cm) | Turbity
(NTU) | Depth to
Water (ft) | |
| 1356 | 250 | 3.9%, 0.39 mall. | 4.69 | 2295 | 16.4 | 479.5 | 1.25 | 13.24 | |
| 1359 | 250 | 4.0% 0.40 mate | 6.63 | 226.6 | 16.4 | 478.3 | 0.56 | 13.24 | |
| 14.2 | 250 | 4.1%, 0.41 mall | 6.62 | 273.3 | 16.4 | 476.0 | 0.65 | 13.24 | |
| 1405 | 260 | 3.9% 0.39 mil | 6.61 | 219.6 | 16.4 | 478.1 | 0.61 | 13.24 | |
| 1408 | 260 | 3.9%, D.39 mg/L | 613 | 216.1 | 16.4 | 473.3 | 8ي.0 | 13.Z4 | - |
| | | | | | | | | | |
| | | | | | | | | | - |
| | | | | | | | | | 1 |
| | | ι. | | | | | | | |
| | | | 4 | | | | X | | 1 |
| | | | | | | | | \searrow | ╢ |
| | | | | | | | · · | | - |

, ,

Micropurge Groundwater Sampling Data Sheet

| | | | 1 | | | | | |
|-----------------|--------|--|------|---------|----------|--|-------|---|
| 1 | | | | 1 | | ··· | | |
| 1 1 | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | - | |
| | | | | | | | × × | |
| | | | | | | | ~ | / |
| Stabilization 3 | 3 min. | ± 0.05 mg/L for values < 1mg/L
± 0.2 mg/L for values > 1 mg/L | ±0.1 | ± 10 mV | ± 0.1° | ± 10 for values < 1,000
± 20 for values > 1,000 | ± 10% | |

.

ATTACHMENT B LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORD

Mark Reisig Tetra Tech, Inc. 1560 Broadway Suite 1400 Denver, CO 80202

Laboratory Results for: Lumen (Century Link)-Longview

Dear Mark,

Enclosed are the results of the sample(s) submitted to our laboratory September 23, 2021 For your reference, these analyses have been assigned our service request number **K2111119**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 43

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-LongviewSample Matrix:Ground Water

Service Request: K2111119 Date Received: 09/23/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six ground water samples were received for analysis at ALS Environmental on 09/23/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 10/28/2021:The analysis of samples was initially performed within the recommended holding time. Reanalysis was required due to samples not being filtered prior to extraction as client requested. The reanalysis was performed 29 days past the recommended holding time. The results from the second analysis were reported.

Method 8270D, 10/28/2021: The spike recovery of Carbazole for Laboratory Control Sample (LCS) was outside the lower control criterion. The analyte in question was not detected in the associated field samples above the MRL. The error associated with reduced recovery indicated a potential low bias. The data was flagged to indicate the problem.

Semivoa GC:

Method NWTPH-Dx, 10/17/2021:The upper control criterion was exceeded for diesel range organics in Continuing Calibration Verification (CCV) KQ2121142-02. The field samples analyzed in this sequence were ran multiple times with similar results. Since the apparent problem indicated a potential slight high bias, the data quality was not significantly affected. No further corrective action was required.

noe D. Oan

Approved by

Date 10/29/2021

SAMPLE DETECTION SUMMARY

| LIENT ID: MW-01 | | La | b ID: K2111 | 119-001 | | |
|---|---------|------|-------------|---------|-------|----------|
| Analyte | Results | Flag | MDL | MRL | Units | Method |
| 1-Methylnaphthalene | 0.0015 | J | 0.0013 | 0.020 | ug/L | 8270D |
| 2-Methylnaphthalene | 0.0024 | J | 0.0013 | 0.020 | ug/L | 8270D |
| Acenaphthylene | 0.0023 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Anthracene | 0.0013 | J | 0.00082 | 0.020 | ug/L | 8270D |
| Benz(a)anthracene | 0.0039 | J | 0.00097 | 0.020 | ug/L | 8270D |
| Benzo(a)pyrene | 0.0026 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Benzo(b)fluoranthene | 0.0041 | J | 0.00083 | 0.020 | ug/L | 8270D |
| Benzo(g,h,i)perylene | 0.0041 | J | 0.00086 | 0.020 | ug/L | 8270D |
| Benzo(k)fluoranthene | 0.0016 | J | 0.00094 | 0.020 | ug/L | 8270D |
| Carbazole | 0.0030 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Chrysene | 0.0026 | J | 0.00076 | 0.020 | ug/L | 8270D |
| Dibenzofuran | 0.0013 | J | 0.00096 | 0.020 | ug/L | 8270D |
| Fluoranthene | 0.0064 | J | 0.00082 | 0.020 | ug/L | 8270D |
| Indeno(1,2,3-cd)pyrene | 0.0026 | J | 0.00089 | 0.020 | ug/L | 8270D |
| Naphthalene | 0.0041 | J | 0.0014 | 0.020 | ug/L | 8270D |
| Phenanthrene | 0.0057 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Pyrene | 0.0072 | J | 0.0010 | 0.020 | ug/L | 8270D |
| Diesel Range Organics (C12 - C25 DRO) | 690 | Z | 12 | 260 | ug/L | NWTPH-Dx |
| Residual Range Organics (C25 - C36 RRO) | 690 | Z | 20 | 520 | ug/L | NWTPH-D> |

| CLIENT ID: MW-02 | | La | b ID: K2111 | 119-002 | | | |
|---|---------|------|-------------|---------|-------|----------|--|
| Analyte | Results | Flag | MDL | MRL | Units | Method | |
| 2-Methylnaphthalene | 0.0015 | J | 0.0013 | 0.020 | ug/L | 8270D | |
| Acenaphthene | 0.0014 | J | 0.0012 | 0.020 | ug/L | 8270D | |
| Acenaphthylene | 0.0021 | J | 0.0011 | 0.020 | ug/L | 8270D | |
| Benz(a)anthracene | 0.0028 | J | 0.00097 | 0.020 | ug/L | 8270D | |
| Dibenzofuran | 0.0010 | J | 0.00096 | 0.020 | ug/L | 8270D | |
| Naphthalene | 0.0024 | J | 0.0014 | 0.020 | ug/L | 8270D | |
| Diesel Range Organics (C12 - C25 DRO) | 170 | J | 12 | 260 | ug/L | NWTPH-Dx | |
| Residual Range Organics (C25 - C36 RRO) | 120 | J | 20 | 520 | ug/L | NWTPH-Dx | |

| | Lab ID: K2111119-003 | | | | | | |
|---------|--|--|---|--|---|--|--|
| Results | Flag | MDL | MRL | Units | Method | | |
| 0.0013 | J | 0.0013 | 0.020 | ug/L | 8270D | | |
| 0.0029 | J | 0.0013 | 0.020 | ug/L | 8270D | | |
| 0.0020 | J | 0.0012 | 0.020 | ug/L | 8270D | | |
| 0.0019 | J | 0.0011 | 0.020 | ug/L | 8270D | | |
| 0.0011 | J | 0.00082 | 0.020 | ug/L | 8270D | | |
| 0.0020 | J | 0.00097 | 0.020 | ug/L | 8270D | | |
| 0.0012 | J | 0.00096 | 0.020 | ug/L | 8270D | | |
| 0.0040 | J | 0.0014 | 0.020 | ug/L | 8270D | | |
| 0.0015 | J | 0.0011 | 0.020 | ug/L | 8270D | | |
| | 0.0013
0.0029
0.0020
0.0019
0.0011
0.0020
0.0012
0.0040 | Results Flag 0.0013 J 0.0029 J 0.0020 J 0.0011 J 0.0020 J 0.0011 J 0.0020 J 0.0021 J 0.0020 J 0.0020 J 0.0020 J 0.0020 J 0.0020 J 0.0020 J | ResultsFlagMDL0.0013J0.00130.0029J0.00130.0020J0.00120.0019J0.00110.0011J0.000820.0020J0.000970.0012J0.000960.0040J0.0014 | ResultsFlagMDLMRL0.0013J0.00130.0200.0029J0.00130.0200.0020J0.00120.0200.0019J0.00110.0200.0011J0.000820.0200.0020J0.000970.0200.0012J0.000960.0200.0040J0.00140.020 | ResultsFlagMDLMRLUnits0.0013J0.00130.020ug/L0.0029J0.00130.020ug/L0.0020J0.00120.020ug/L0.0019J0.00110.020ug/L0.0011J0.000820.020ug/L0.0020J0.000970.020ug/L0.0012J0.000960.020ug/L0.0040J0.00140.020ug/L | | |

SAMPLE DETECTION SUMMARY

| CLIENT ID: MW-03 | | | | | | |
|---|---------|------|-----|-----|-------|----------|
| Analyte | Results | Flag | MDL | MRL | Units | Method |
| Diesel Range Organics (C12 - C25 DRO) | 130 | J | 12 | 270 | ug/L | NWTPH-Dx |
| Residual Range Organics (C25 - C36 RRO) | 110 | J | 21 | 530 | ug/L | NWTPH-Dx |

| CLIENT ID: MW-04 | | | | | | |
|---|---------|------|---------|-------|-------|----------|
| Analyte | Results | Flag | MDL | MRL | Units | Method |
| 2-Methylnaphthalene | 0.0016 | J | 0.0013 | 0.020 | ug/L | 8270D |
| Acenaphthene | 0.011 | J | 0.0012 | 0.020 | ug/L | 8270D |
| Acenaphthylene | 0.0032 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Benz(a)anthracene | 0.0020 | J | 0.00097 | 0.020 | ug/L | 8270D |
| Naphthalene | 0.0028 | J | 0.0014 | 0.020 | ug/L | 8270D |
| Diesel Range Organics (C12 - C25 DRO) | 23 | J | 12 | 270 | ug/L | NWTPH-Dx |
| Residual Range Organics (C25 - C36 RRO) | 52 | J | 21 | 530 | ug/L | NWTPH-Dx |

| CLIENT ID: MW-04 DUP | | La | b ID: K2111 | 119-005 | | |
|---|---------|------|-------------|---------|-------|----------|
| Analyte | Results | Flag | MDL | MRL | Units | Method |
| 2-Methylnaphthalene | 0.0015 | J | 0.0013 | 0.020 | ug/L | 8270D |
| Acenaphthene | 0.010 | J | 0.0012 | 0.020 | ug/L | 8270D |
| Acenaphthylene | 0.0020 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Anthracene | 0.0014 | J | 0.00082 | 0.020 | ug/L | 8270D |
| Benz(a)anthracene | 0.0021 | J | 0.00097 | 0.020 | ug/L | 8270D |
| Fluorene | 0.0014 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Naphthalene | 0.0030 | J | 0.0014 | 0.020 | ug/L | 8270D |
| Diesel Range Organics (C12 - C25 DRO) | 120 | J | 12 | 270 | ug/L | NWTPH-Dx |
| Residual Range Organics (C25 - C36 RRO) | 98 | J | 21 | 530 | ug/L | NWTPH-Dx |

| CLIENT ID: MW-05 | | La | b ID: K2111 | 119-006 | | |
|---|---------|------|-------------|---------|-------|----------|
| Analyte | Results | Flag | MDL | MRL | Units | Method |
| 2-Methylnaphthalene | 0.0013 | J | 0.0013 | 0.020 | ug/L | 8270D |
| Acenaphthylene | 0.0017 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Anthracene | 0.0021 | J | 0.00082 | 0.020 | ug/L | 8270D |
| Benz(a)anthracene | 0.0020 | J | 0.00097 | 0.020 | ug/L | 8270D |
| Dibenzofuran | 0.0010 | J | 0.00096 | 0.020 | ug/L | 8270D |
| Fluorene | 0.0096 | J | 0.0011 | 0.020 | ug/L | 8270D |
| Naphthalene | 0.0022 | J | 0.0014 | 0.020 | ug/L | 8270D |
| Diesel Range Organics (C12 - C25 DRO) | 140 | J | 12 | 270 | ug/L | NWTPH-Dx |
| Residual Range Organics (C25 - C36 RRO) | 96 | J | 21 | 530 | ug/L | NWTPH-Dx |

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 43

SAMPLE CROSS-REFERENCE

| SAMPLE # | CLIENT SAMPLE ID | DATE | TIME |
|--------------|------------------|-----------|------|
| K2111119-001 | MW-01 | 9/21/2021 | 1815 |
| K2111119-002 | MW-02 | 9/21/2021 | 1705 |
| K2111119-003 | MW-03 | 9/21/2021 | 1108 |
| K2111119-004 | MW-04 | 9/21/2021 | 1514 |
| K2111119-005 | MW-04 DUP | 9/21/2021 | 1514 |
| K2111119-006 | MW-05 | 9/21/2021 | 1408 |

| | | | | | | | | 1 | 19 | 95 | 58 | 81 | 001 | | I | SR#_ <u></u>
COC Set_1
COC# |
|---|--|--------------|----------------------|-----------------|------------------|---------------------|----------------------|----|-------------------------------|-------|-----------|-------------------------|---------|------------------------------|--------|-----------------------------------|
| (ALS) Enuir | onmental | | 1317 Sou | th 13th | Ave, I | (elso, ' | WA 98 | | <sup>></sup> hone
www.a | | | 222 / 800-695-7222
n | / FAX (| (360) 636-1068 | | Page 1 of 1 |
| Project Name
<u>Luman</u> ((entruplink) - Long
Project Manager
Hark Reisig | | 18702 | | 70 | Ş | <u>}</u> | | | | | | | | | | ç |
| Company
Totra Tech | | | LERS | | | | | | | | | | | | | |
| | wite 1400, Denver, CO 80 | ZOZ | | | M | Hd | | | | | | | | | | |
| Phone # (301) 312-8813
Sampler Signature | email
Mart. rcisin @ that
Sampler Printed Name | | NUMBER OF CONTAINERS | AH SIM | SVM / Filter SVM | HTPH-Dx/NW_TPH | | | | | | | | | | |
| Domitte K. Ele | - Danielle Gibso | • | NUMBEI | 8270D / PAH SIM | Filter SVN | 1-Hd.LMN | F <sup></sup> | N | | 4 | 2 | Remarks | ; | | | |
| CLIENT SAMPLE ID | SAMPLIN
LABID Date Ti | NG
me Mat | rix | | | | | | | | | | | | | |
| 1. MW-01 | 9 21 21 18 | 315 64 | 15 | X | X | X | | | | | | | | | | |
| 2. HW-02 | <u></u> | 05 1 | 5 | | | | | | | | | | | | | |
| 3. HW-03 | | 08 | 15 | | | | | | | | | MSINSD | | | | |
| 4. MW-04 | 15 | ы н | 5 | Π | | | | | | | | | | | | |
| 5. MW-04 DUP | | 514 | 5 | Ш | | | | | | | | | | | | |
| 6. MW-05 | | 108 1 | 15 | V | | \mathbf{V} | | | | Π | Ī | | | | | |
| 7 | | | | | | | | | | | | | | | | |
| 8. | | | | L | | | | Ī | | | | · · · | | | | |
| 9. | | | | | | | - | | | | V | | | | | |
| 10. | | | | \square | | | | | | | 04 | | | | | |
| Report Requirements | Invoice Informa | ation | 1 | | | | | | | | | Circ | E | ch metals are to be analyzed | | |
| I. Routine Report: Method
Blank, Surrogate, as
required | P.O.# <u>\\83252</u>
Bill To: | | | | | | | | | | | e B Ca Cd Co | o Cr | Cu Fe Pb Mg Mn Mo N | | la Se Sr Ti Sn V Zn Hg |
| II. Report Dup., MS, MSD
as required | | | | | | | | | | 50 | ва | | | | | Na Se Sr Ti Sn V Zn Hg |
| III. CLP Like Summary
(no raw data) | Turnaround Requir | | Specia | | | | | | | | | *Indicate | State | Hydrocarbon Procedure: A | K CA W | Northwest Other(Circle One) |
| IV. Data Validation Report | 5 Day | | Retu | າດຳາງອ | Jun | υ 5<u>6</u>2 | Ь | on | ۵. | | | 1 | | | | |
| V. EDD | Requested Report Date | | - | | _ | | | | | | |) | | | | |
| Relinquished By: | Received By: | | Re | linq | uish | ed I | By: | , | 17 | A | \prec | Received By: | | Relinquishe | d By: | Received By: |
| Signature
Daniche Gibson
Printed Name | Signature | | ignature | | | | | | | gnal | · | VIEWE | 9~ | Signature | | Signature |
| Printed Name
Tctra Tcch
Firm | Printed Name | P | rinted N | ame | | | | | Pr | | i Na
S | ne | | Printed Name | | Printed Name |
| Firm
9/21/21 1300
Date/Time | Firm | | irm | | | | | | Fi | rni q | 12 | | 30 | | | Firm |
| Date/Time | Date/Time | 0 | ate/Tim | ś | | | | | TD: | ate/T | ime | | | Date/Time | | Date/Time |

| | | | | | | | | | <u>рм/Ла</u> | sk | | |
|-----------------------|--|------------------|---|--------------|--------------------------------|------------------|---------------------------------------|---------------|--------------|--------------|--|--|
| | Talu T | 1 | Cooler Receip | ot and Pr | reservatio | n Form | | | | | | |
| Client/ | etra fec | <u>h</u> | | | Serv | ice Request I | K21 <u>///</u> | <u>'19</u> | | | | |
| Received: | 9/23/21 | Opened: _ | 9/23/21 | By: | - pa- | Unloaded: _ | - 9/23 | 2 By:_ | <u>A</u> | | | |
| - | ere received via? | USPS | Fed Ex | UPS | DHL | PDX | Courier | Hand De | livered | | | |
| _ | ere received in: (cire | | oler Box | Env | velope | Other | ····· | | NA | | | |
| 3. Were <u>custod</u> | ly seals on coolers? | t j | NA (Y) N | If yes, how | w many and w | here? | LF | +113 | | | | |
| If present, w | ere custody seals in | ntact? | Y N | If present, | , were they sig | ned and dated | ? | () | Ν | | | |
| - | 4. Was a Temperature Blank present in cooler? NA (Y) N If yes, notate the temperature in the appropriate column below: | | | | | | | | | | | |
| If no, take th | ne temperature of a | representative | sample bottle contai | ined within | the cooler; no | tate in the colu | ımn "Sample ' | Temp": | | | | |
| 5. Were samples | s received within th | e method spec | ified temperature rat | nges? | | | | NĄ (Y) | N | | | |
| If no, were th | ney received on ice | and same day | as collected? If not, | notate the c | ooler # below | and notify the | PM. | (NA) Y | N | | | |
| If applicable, tis | sue samples were r | eceived: F | rozen Partially T | hawed I | Thawed | | | \smile | | | | |
| | - | 1 | | | an stade and the | Cardonale e os | esta le com | | | | | |
| | | | | | Out of temp | PM
Notifie | | | | | | |
| Temp Blank | Sample Temp | IR Gun | Cooler #/COC ID / | NA in | dicate with "X" | | | Tracking Numb | er NA | Filed | | |
| 3.0 | - | 7101 | 294 | | ····· | | 38 | 404188 | 9450 | | | |
| 2.6 | | (| 14934 | | ******* | | 28 | 404188 | 39461 | | | |
| | | | FM D | | | | | 1 | | | | |
| | | | | | | | | | | | | |
| | | | | | **** | | | | | + | | |
| 6. Packing ma | terial: Inserts E | Bappies Bul | ble Wrap Gel Pac | ks (Wei L | ce) Dry Ice | Sleeves | 1 | | | . I J | | |
| | dy papers properly | | and the second se | | 2 Diy he | Dice ves | | NA (V) | N | | | |
| | les received in good | • • | • | | | | | NA Q | | | | |
| 9. Were all sam | mple labels comple | te (ie, analysis | , preservation, etc.)? | 1 | | | | NA V | | | | |
| 10. Did all sam | ple labels and tags | agree with cus | tody papers? | | | | | NA 😥 | N | | | |
| 11. Were appro | priate bottles/conta | iners and volu | mes received for the | tests indica | ated? | | | NA (Y) | Ν | | | |
| 12. Were the pl | H-preserved bottles | (see SMO GE | N SOP) received at | the appropri | iate pH? India | cate in the tabl | e below | (NA) Y. | . N | | | |
| 13. Were VOA | vials received with | out headspace | ? Indicate in the tal | ole below. | | | | (NA Y | N | | | |
| 14. Was C12/R | es negative? | | | | | | | NA (Y |) N | | | |
| Sa | mple ID on Bottl | e | Samp | le ID on Çi | oc | | Ide | ntified by: | | | | |
| 10 | one | | MW-D | 5/1 | 802 9125 | 3) 8/ir | mindf | ontti | mesma | itch | | |
| n | onl. | | WW-0 | 03 (3 | $\sim C \downarrow \downarrow$ | | mindbe | | MIC MI | itel | | |
| | , . | | | | | | ∙₩╌╀┈┊ ┦╌┹╌ ┊┺┲╋┉┞ <u>┈╴</u> ╴ | <u></u> | HULSAIN | 45-4- | | |

ý

| Sample ID | Bottle Count
Bottle Type | Head-
space | Broke | pН | Reagent | Volume
added | Reagent Lot
Number | Initials | Time |
|-----------|-----------------------------|----------------|-------|----|---------|-----------------|-----------------------|----------|------|
| | | | | | | | | | |
| | | | | _ | | | · | | |
| | | | | | | | | | |

Notes, Discrepancies, Resolutions:\_\_\_\_\_

Page 9 of 43

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 10 of 43

Inorganic Data Qualifiers

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 11 of 43

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency | Web Site | Number |
|--------------------------|--|-------------|
| Alaska DEH | http://dec.alaska.gov/eh/lab/cs/csapproval.htm | UST-040 |
| Arizona DHS | http://www.azdhs.gov/lab/license/env.htm | AZ0339 |
| Arkansas - DEQ | http://www.adeq.state.ar.us/techsvs/labcert.htm | 88-0637 |
| California DHS (ELAP) | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx | 2795 |
| DOD ELAP | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm | L16-58-R4 |
| Florida DOH | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm | E87412 |
| Hawaii DOH | http://health.hawaii.gov/ | - |
| ISO 17025 | http://www.pjlabs.com/ | L16-57 |
| Louisiana DEQ | http://www.deq.louisiana.gov/page/la-lab-accreditation | 03016 |
| Maine DHS | http://www.maine.gov/dhhs/ | WA01276 |
| Minnesota DOH | http://www.health.state.mn.us/accreditation | 053-999-457 |
| Nevada DEP | http://ndep.nv.gov/bsdw/labservice.htm | WA01276 |
| New Jersey DEP | http://www.nj.gov/dep/enforcement/oqa.html | WA005 |
| New York - DOH | https://www.wadsworth.org/regulatory/elap | 12060 |
| North Carolina DEQ | https://deq.nc.gov/about/divisions/water-resources/water-resources-
data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-
certification | 605 |
| Oklahoma DEQ | http://www.deq.state.ok.us/CSDnew/labcert.htm | 9801 |
| Oregon – DEQ (NELAP) | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator
yAccreditation/Pages/index.aspx | WA100010 |
| South Carolina DHEC | http://www.scdhec.gov/environment/EnvironmentalLabCertification/ | 61002 |
| Texas CEQ | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html | T104704427 |
| Washington DOE | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html | C544 |
| Wyoming (EPA Region 8) | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water- | - |
| Kelso Laboratory Website | www.alsglobal.com
to our laboratory's NELAP-approved quality assurance program. A complete | NA |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

| ASTM | American Society for Testing and Materials |
|------------|---|
| A2LA | American Association for Laboratory Accreditation |
| CARB | California Air Resources Board |
| CAS Number | Chemical Abstract Service registry Number |
| CFC | Chlorofluorocarbon |
| CFU | Colony-Forming Unit |
| DEC | Department of Environmental Conservation |
| DEQ | Department of Environmental Quality |
| DHS | Department of Health Services |
| DOE | Department of Ecology |
| DOH | Department of Health |
| EPA | U. S. Environmental Protection Agency |
| ELAP | Environmental Laboratory Accreditation Program |
| GC | Gas Chromatography |
| GC/MS | Gas Chromatography/Mass Spectrometry |
| LOD | Limit of Detection |
| LOQ | Limit of Quantitation |
| LUFT | Leaking Underground Fuel Tank |
| M
MCL | Modified
Maximum Contaminant Level is the highest permissible concentration of a substance
allowed in drinking water as established by the USEPA. |
| MDL | Method Detection Limit |
| MPN | Most Probable Number |
| MRL | Method Reporting Limit |
| NA | Not Applicable |
| NC | Not Calculated |
| NCASI | National Council of the Paper Industry for Air and Stream Improvement |
| ND | Not Detected |
| NIOSH | National Institute for Occupational Safety and Health |
| PQL | Practical Quantitation Limit |
| RCRA | Resource Conservation and Recovery Act |
| SIM | Selected Ion Monitoring |
| TPH
tr | Total Petroleum Hydrocarbons
Trace level is the concentration of an analyte that is less than the PQL but greater than or
equal to the MDL. |

Analyst Summary report

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-Longview/103P778702

Service Request: K2111119

| Sample Name: | MW-01 | Date Collected: | 09/21/21 |
|----------------|--------------|-----------------|----------|
| Lab Code: | K2111119-001 | Date Received: | 09/23/21 |
| Sample Matrix: | Ground Water | | |

| Analysis Method | | Extracted/Digested By | Analyzed By |
|-----------------|-------|-----------------------|--------------------|
| 8270D | | WSTRUBLE | EBRUNO |
| NWTPH-Dx | | WVANDERHOFF | TPOTTSCHMIDT |
| | | | |
| Sample Name: | MW-01 | Date C | ollected: 09/21/21 |

| Sample Name: | IVI W-01 |
|----------------|------------------|
| Lab Code: | K2111119-001.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D

| Sample Name: | MW-02 |
|----------------|--------------|
| Lab Code: | K2111119-002 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D NWTPH-Dx

| Sample Name: | MW-02 |
|----------------|------------------|
| Lab Code: | K2111119-002.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D **Extracted/Digested By** WSTRUBLE

Analyzed By CWILLIAMS

Date Collected: 09/21/21 **Date Received:** 09/23/21

Date Received: 09/23/21

Extracted/Digested By WSTRUBLE WVANDERHOFF Analyzed By EBRUNO SSMITH

Date Collected: 09/21/21 **Date Received:** 09/23/21

Extracted/Digested By WSTRUBLE Analyzed By CWILLIAMS

Analyst Summary report

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-Longview/103P778702

Service Request: K2111119

| Sample Name: | MW-03 | Date Collected: 09 | 9/21/21 |
|----------------|--------------|--------------------|---------|
| Lab Code: | K2111119-003 | Date Received: 09 | 9/23/21 |
| Sample Matrix: | Ground Water | | |

| Analysis Method | | Extracted/Digested By | Analyzed By |
|-----------------|-------|-----------------------|----------------------------|
| 8270D | | WSTRUBLE | EBRUNO |
| NWTPH-Dx | | WVANDERHOFF | SSMITH |
| | | | |
| Sample Name: | MW-03 | Date C | Collected: 09/21/21 |

| Sample Mame. | IVI VV -0.3 |
|----------------|------------------|
| Lab Code: | K2111119-003.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D

| Sample Name: | MW-04 |
|----------------|--------------|
| Lab Code: | K2111119-004 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D NWTPH-Dx

| Sample Name: | MW-04 |
|----------------|------------------|
| Lab Code: | K2111119-004.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D Extracted/Digested By WSTRUBLE Analyzed By CWILLIAMS

Date Collected: 09/21/21 **Date Received:** 09/23/21

Date Received: 09/23/21

Extracted/Digested By WSTRUBLE WVANDERHOFF **Analyzed By** EBRUNO TPOTTSCHMIDT

Date Collected: 09/21/21 **Date Received:** 09/23/21

Extracted/Digested By WSTRUBLE Analyzed By CWILLIAMS

Analyst Summary report

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-Longview/103P778702

Service Request: K2111119

| Sample Name: | MW-04 DUP | Date Collected: 09/21/21 |
|----------------|--------------|--------------------------------|
| Lab Code: | K2111119-005 | Date Received: 09/23/21 |
| Sample Matrix: | Ground Water | |

| Analysis Method | | Extracted/Digested By | Analyzed By |
|-----------------|-----------|-----------------------|----------------------------|
| 8270D | | WSTRUBLE | EBRUNO |
| NWTPH-Dx | | WVANDERHOFF | SSMITH |
| | | | |
| Sample Name: | MW-04 DUP | Date | Collected: 09/21/21 |

| Sample Manie. | MIN 04 DOI |
|----------------|------------------|
| Lab Code: | K2111119-005.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D

| Sample Name: | MW-05 |
|----------------|--------------|
| Lab Code: | K2111119-006 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D NWTPH-Dx

| Sample Name: | MW-05 |
|----------------|------------------|
| Lab Code: | K2111119-006.R01 |
| Sample Matrix: | Ground Water |

Analysis Method 8270D **Extracted/Digested By** WSTRUBLE Analyzed By CWILLIAMS

Date Collected: 09/21/21 **Date Received:** 09/23/21

Date Received: 09/23/21

Extracted/Digested By WSTRUBLE WVANDERHOFF Analyzed By EBRUNO SSMITH

Date Collected: 09/21/21 **Date Received:** 09/23/21

Extracted/Digested By WSTRUBLE Analyzed By CWILLIAMS

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 17 of 43

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 43

Analytical Report

| Client: | Tetra Tech, Inc. | Service Request: K2111119 |
|----------------|--|---------------------------------------|
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Collected: 09/21/21 18:15 |
| Sample Matrix: | Ground Water | Date Received: 09/23/21 10:30 |
| Sample Name: | MW-01 | Units: ug/L |
| Lab Code: | K2111119-001 | Basis: NA |
| | | |

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | 0.0015 J | 0.020 | 0.0013 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0024 J | 0.020 | 0.0013 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Acenaphthene | ND U | 0.020 | 0.0012 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Acenaphthylene | 0.0023 J | 0.020 | 0.0011 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Anthracene | 0.0013 J | 0.020 | 0.00082 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Benz(a)anthracene | 0.0039 J | 0.020 | 0.00097 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Benzo(a)pyrene | 0.0026 J | 0.020 | 0.0011 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Benzo(b)fluoranthene | 0.0041 J | 0.020 | 0.00083 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Benzo(g,h,i)perylene | 0.0041 J | 0.020 | 0.00086 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Benzo(k)fluoranthene | 0.0016 J | 0.020 | 0.00094 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Carbazole | 0.0030 J | 0.020 | 0.0011 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Chrysene | 0.0026 J | 0.020 | 0.00076 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Dibenzofuran | 0.0013 J | 0.020 | 0.00096 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Fluoranthene | 0.0064 J | 0.020 | 0.00082 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | 0.0026 J | 0.020 | 0.00089 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Naphthalene | 0.0041 J | 0.020 | 0.0014 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Phenanthrene | 0.0057 J | 0.020 | 0.0011 | 1 | 10/28/21 11:41 | 10/27/21 | * |
| Pyrene | 0.0072 J | 0.020 | 0.0010 | 1 | 10/28/21 11:41 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 77 | 42 - 133 | 10/28/21 11:41 | |
| Fluorene-d10 | 85 | 42 - 131 | 10/28/21 11:41 | |
| Terphenyl-d14 | 69 | 32 - 129 | 10/28/21 11:41 | |

Analytical Report

| Client: | Tetra Tech, Inc. | Service Request: K2111119 |
|----------------|--|---------------------------------------|
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Collected: 09/21/21 17:05 |
| Sample Matrix: | Ground Water | Date Received: 09/23/21 10:30 |
| Sample Name: | MW-02 | Units: ug/L |
| Lab Code: | K2111119-002 | Basis: NA |
| | | |

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0015 J | 0.020 | 0.0013 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Acenaphthene | 0.0014 J | 0.020 | 0.0012 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Acenaphthylene | 0.0021 J | 0.020 | 0.0011 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Anthracene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Benz(a)anthracene | 0.0028 J | 0.020 | 0.00097 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Dibenzofuran | 0.0010 J | 0.020 | 0.00096 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Naphthalene | 0.0024 J | 0.020 | 0.0014 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Phenanthrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:07 | 10/27/21 | * |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 12:07 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 80 | 42 - 133 | 10/28/21 12:07 | |
| Fluorene-d10 | 87 | 42 - 131 | 10/28/21 12:07 | |
| Terphenyl-d14 | 72 | 32 - 129 | 10/28/21 12:07 | |

Analytical Report

| Client: | Tetra Tech, Inc. | Service Request: K2111119 |
|----------------|--|---------------------------------------|
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Collected: 09/21/21 11:08 |
| Sample Matrix: | Ground Water | Date Received: 09/23/21 10:30 |
| Sample Name: | MW-03 | Units: ug/L |
| Lab Code: | K2111119-003 | Basis: NA |
| | | |

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | 0.0013 J | 0.020 | 0.0013 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0029 J | 0.020 | 0.0013 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Acenaphthene | 0.0020 J | 0.020 | 0.0012 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Acenaphthylene | 0.0019 J | 0.020 | 0.0011 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Anthracene | 0.0011 J | 0.020 | 0.00082 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Benz(a)anthracene | 0.0020 J | 0.020 | 0.00097 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Dibenzofuran | 0.0012 J | 0.020 | 0.00096 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Naphthalene | 0.0040 J | 0.020 | 0.0014 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Phenanthrene | 0.0015 J | 0.020 | 0.0011 | 1 | 10/28/21 12:34 | 10/27/21 | * |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 12:34 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 80 | 42 - 133 | 10/28/21 12:34 | |
| Fluorene-d10 | 88 | 42 - 131 | 10/28/21 12:34 | |
| Terphenyl-d14 | 74 | 32 - 129 | 10/28/21 12:34 | |

Analytical Report

| Client: | Tetra Tech, Inc. | Service Request: K2111119 |
|----------------|--|---------------------------------------|
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Collected: 09/21/21 15:14 |
| Sample Matrix: | Ground Water | Date Received: 09/23/21 10:30 |
| Sample Name: | MW-04 | Units: ug/L |
| Lab Code: | K2111119-004 | Basis: NA |
| | | |

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0016 J | 0.020 | 0.0013 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Acenaphthene | 0.011 J | 0.020 | 0.0012 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Acenaphthylene | 0.0032 J | 0.020 | 0.0011 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Anthracene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Benz(a)anthracene | 0.0020 J | 0.020 | 0.00097 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Dibenzofuran | ND U | 0.020 | 0.00096 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Naphthalene | 0.0028 J | 0.020 | 0.0014 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Phenanthrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:00 | 10/27/21 | * |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 13:00 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 79 | 42 - 133 | 10/28/21 13:00 | |
| Fluorene-d10 | 86 | 42 - 131 | 10/28/21 13:00 | |
| Terphenyl-d14 | 72 | 32 - 129 | 10/28/21 13:00 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Date Collected:** 09/21/21 15:14 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water Date Received: 09/23/21 10:30 MW-04 DUP Sample Name: Units: ug/L Lab Code: K2111119-005 Basis: NA

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0015 J | 0.020 | 0.0013 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Acenaphthene | 0.010 J | 0.020 | 0.0012 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Acenaphthylene | 0.0020 J | 0.020 | 0.0011 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Anthracene | 0.0014 J | 0.020 | 0.00082 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Benz(a)anthracene | 0.0021 J | 0.020 | 0.00097 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Dibenzofuran | ND U | 0.020 | 0.00096 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Fluorene | 0.0014 J | 0.020 | 0.0011 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Naphthalene | 0.0030 J | 0.020 | 0.0014 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Phenanthrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:26 | 10/27/21 | * |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 13:26 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 82 | 42 - 133 | 10/28/21 13:26 | |
| Fluorene-d10 | 88 | 42 - 131 | 10/28/21 13:26 | |
| Terphenyl-d14 | 73 | 32 - 129 | 10/28/21 13:26 | |

 Analytical Report

 Tetra Tech, Inc.
 Service Request:
 K211119

 Lumen (Century Link)-Longview/103P778702
 Date Collected:
 09/21/21 14:08

 Ground Water
 Date Received:
 09/23/21 10:30

 MW-05
 Units:
 ug/L

Lab Code: K2111119-006

Client:

Project:

Sample Matrix:

Sample Name:

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

Analysis Method:8270DPrep Method:EPA 3511

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| 2-Methylnaphthalene | 0.0013 J | 0.020 | 0.0013 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Acenaphthene | ND U | 0.020 | 0.0012 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Acenaphthylene | 0.0017 J | 0.020 | 0.0011 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Anthracene | 0.0021 J | 0.020 | 0.00082 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Benz(a)anthracene | 0.0020 J | 0.020 | 0.00097 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Dibenzofuran | 0.0010 J | 0.020 | 0.00096 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Fluorene | 0.0096 J | 0.020 | 0.0011 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Naphthalene | 0.0022 J | 0.020 | 0.0014 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Phenanthrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 13:52 | 10/27/21 | * |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 13:52 | 10/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 77 | 42 - 133 | 10/28/21 13:52 | |
| Fluorene-d10 | 82 | 42 - 131 | 10/28/21 13:52 | |
| Terphenyl-d14 | 72 | 32 - 129 | 10/28/21 13:52 | |

Basis: NA

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 25 of 43

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. Date Collected: 09/21/21 18:15 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water Date Received: 09/23/21 10:30 Sample Name: MW-01 Units: ug/L Lab Code: K2111119-001 Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed Date Extracted | | Q |
|---|--------|-----|-----|------|------------------------------|---------|---|
| Diesel Range Organics (C12 - C25 DRO) | 690 Z | 260 | 12 | 1 | 10/26/21 17:57 | 9/27/21 | * |
| Residual Range Organics (C25 - C36 RRO) | 690 Z | 520 | 20 | 1 | 10/26/21 17:57 | 9/27/21 | |
| | | | | | | | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 98 | 50 - 150 | 10/26/21 17:57 | |
| n-Triacontane | 96 | 50 - 150 | 10/26/21 17:57 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. Date Collected: 09/21/21 17:05 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water **Date Received:** 09/23/21 10:30 Sample Name: MW-02 Units: ug/L Lab Code: K2111119-002 Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed Date Extracted | | |
|---|--------|-----|-----|------|------------------------------|---------|--|
| Diesel Range Organics (C12 - C25 DRO) | 170 J | 260 | 12 | 1 | 10/17/21 03:53 | 9/27/21 | |
| Residual Range Organics (C25 - C36 RRO) | 120 J | 520 | 20 | 1 | 10/17/21 03:53 | 9/27/21 | |
| | | | | | | | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 73 | 50 - 150 | 10/17/21 03:53 | |
| n-Triacontane | 87 | 50 - 150 | 10/17/21 03:53 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Date Collected:** 09/21/21 11:08 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water **Date Received:** 09/23/21 10:30 Sample Name: MW-03 Units: ug/L Lab Code: K2111119-003 Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed Date Extracted | | Q |
|---|--------|-----|-----|------|------------------------------|---------|---|
| Diesel Range Organics (C12 - C25 DRO) | 130 J | 270 | 12 | 1 | 10/17/21 04:15 | 9/27/21 | |
| Residual Range Organics (C25 - C36 RRO) | 110 J | 530 | 21 | 1 | 10/17/21 04:15 | 9/27/21 | |
| | | | | | | | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 92 | 50 - 150 | 10/17/21 04:15 | |
| n-Triacontane | 112 | 50 - 150 | 10/17/21 04:15 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Date Collected:** 09/21/21 15:14 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water Date Received: 09/23/21 10:30 MW-04 Sample Name: Units: ug/L Lab Code: K2111119-004 Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed Da | ate Extracted | Q |
|---|--------|-----|-----|------|------------------|---------------|---|
| Diesel Range Organics (C12 - C25 DRO) | 23 Ј | 270 | 12 | 1 | 10/25/21 18:48 | 9/27/21 | * |
| Residual Range Organics (C25 - C36 RRO) | 52 J | 530 | 21 | 1 | 10/25/21 18:48 | 9/27/21 | * |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 92 | 50 - 150 | 10/25/21 18:48 | |
| n-Triacontane | 90 | 50 - 150 | 10/25/21 18:48 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Date Collected:** 09/21/21 15:14 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water Date Received: 09/23/21 10:30 MW-04 DUP Sample Name: Units: ug/L Lab Code: K2111119-005 Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed D | ate Extracted | Q |
|---|--------|-----|-----|------|-----------------|---------------|---|
| Diesel Range Organics (C12 - C25 DRO) | 120 ј | 270 | 12 | 1 | 10/17/21 05:19 | 9/27/21 | |
| Residual Range Organics (C25 - C36 RRO) | 98 J | 530 | 21 | 1 | 10/17/21 05:19 | 9/27/21 | |
| | | | | | | | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 96 | 50 - 150 | 10/17/21 05:19 | |
| n-Triacontane | 115 | 50 - 150 | 10/17/21 05:19 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Date Collected:** 09/21/21 14:08 **Project:** Lumen (Century Link)-Longview/103P778702 Sample Matrix: Ground Water **Date Received:** 09/23/21 10:30 Sample Name: MW-05 Units: ug/L K2111119-006 Lab Code: Basis: NA

| Analysis Method: | NWTPH-Dx |
|------------------|-----------|
| Prep Method: | EPA 3510C |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed D | ate Extracted | Q |
|---|--------|-----|-----|------|-----------------|---------------|---|
| Diesel Range Organics (C12 - C25 DRO) | 140 J | 270 | 12 | 1 | 10/17/21 05:40 | 9/27/21 | _ |
| Residual Range Organics (C25 - C36 RRO) | 96 J | 530 | 21 | 1 | 10/17/21 05:40 | 9/27/21 | |
| | | | | | | | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 97 | 50 - 150 | 10/17/21 05:40 | |
| n-Triacontane | 119 | 50 - 150 | 10/17/21 05:40 | |

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 32 of 43

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 33 of 43

QA/QC Report

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-Longview/103P778702Sample Matrix:Ground Water

Service Request: K2111119

SURROGATE RECOVERY SUMMARY

| Analysis Method: | 8270D | | |
|--------------------|----------|--|--|
| Extraction Method: | EPA 3511 | | |

| | | Fluoranthene-d10 | Fluorene-d10 | Terphenyl-d14 |
|--------------------|--------------|------------------|--------------|---------------|
| Sample Name | Lab Code | 42-133 | 42-131 | 32-129 |
| MW-01 | K2111119-001 | 77 | 85 | 69 |
| MW-02 | K2111119-002 | 80 | 87 | 72 |
| MW-03 | K2111119-003 | 80 | 88 | 74 |
| MW-04 | K2111119-004 | 79 | 86 | 72 |
| MW-04 DUP | K2111119-005 | 82 | 88 | 73 |
| MW-05 | K2111119-006 | 77 | 82 | 72 |
| Method Blank | KQ2121144-04 | 78 | 86 | 73 |
| Method Blank | KQ2121144-05 | 80 | 87 | 62 |
| Lab Control Sample | KQ2121144-03 | 82 | 86 | 64 |
| MW-03 | KQ2121144-01 | 84 | 86 | 73 |
| MW-03 | KQ2121144-02 | 83 | 86 | 74 |

QA/QC Report

| Client:
Project:
Sample Matrix: | Tetra Tech, Inc.
Lumen (Century Link)-Longview/103P778702
Ground Water | | | | | Date (
Date 1
Date 1
Date 1 | e Request:
Collected:
Received:
Analyzed:
Extracted: | : K21
09/2
09/2
10/2
10/2 | 3/21
8/21 | |
|---------------------------------------|--|--------------|------------------------------|------------|--------------|--------------------------------------|--|---------------------------------------|--------------|----------|
| | | Polycycl | Duplicate M
ic Aromatic I | - | | • | | | | |
| Sample Nome | MW-03 | i olycyci | ic Aromatic | iiyuiocaii | Joins by GV | | Units: | 11.c./I | | |
| Sample Name: | | | | | | | | ug/L | | |
| Lab Code: | K2111119-003 | | | | | | Basis: | NA | | |
| Analysis Method: | 8270D | | | | | | | | | |
| Prep Method: | EPA 3511 | | | | | | | | | |
| | | | Matrix Sp | oike | D | uplicate Mat | rix Spike | | | |
| | | | KQ212114 | 4-01 | | KQ212114 | 4-02 | | | |
| | Sample | | Spike | | | Spike | | % Rec | | RPD |
| Analyte Name | Result | Result | Amount | % Rec | Result | Amount | % Rec | Limits | RPD | Limit |
| 1-Methylnaphthalene | 0.0013 J | 2.51 | 2.78 | 90 | 2.49 | 2.78 | 90 | 57-113 | <1 | 30 |
| 2-Methylnaphthalene | 0.0029 J | 2.49 | 2.78 | 90 | 2.47 | 2.78 | 89 | 58-111 | <1 | 30 |
| Acenaphthene | 0.0020 J | 2.71 | 2.78 | 97 | 2.66 | 2.78 | 96 | 63-121 | 2 | 30 |
| Acenaphthylene | 0.0019 J | 2.71 | 2.78 | 97 | 2.67 | 2.78 | 96 | 61-118 | 1 | 30 |
| Anthracene | 0.0011 J | 3.23 | 2.78 | 116 | 3.20 | 2.78 | 115 | 69-125 | <1 | 30 |
| Benz(a)anthracene | 0.0020 J | 2.93 | 2.78 | 105 | 2.89 | 2.78 | 104 | 71-127 | 1 | 30 |
| Benzo(a)pyrene | ND U | 2.97 | 2.78 | 107 | 2.93 | 2.78 | 105 | 69-132 | 1 | 30 |
| Benzo(b)fluoranthene | | 2.96 | 2.78 | 106 | 2.94 | 2.78 | 106 | 65-139 | <1 | 30 |
| Benzo(g,h,i)perylene | ND U | 2.82 | 2.78 | 102 | 2.78 | 2.78 | 100 | 63-129 | 2 | 30 |
| Benzo(k)fluoranthene | | 2.89 | 2.78 | 104 | 2.86 | 2.78 | 103 | 65-137 | 1 | 30 |
| Carbazole | ND U | 1.36 | 2.78 | 49 * | 1.33 | 2.78 | 48 * | 70-130 | 2 | 30 |
| Chrysene | ND U | 2.92 | 2.78 | 105 | 2.88 | 2.78 | 104 | 75-130 | 2 | 30 |
| Dibenz(a,h)anthracen | | 3.01 | 2.78 | 108 | 2.97 | 2.78 | 107 | 61-138 | 1 | 30 |
| Dibenzofuran | 0.0012 J | 2.76 | 2.78 | 99 | 2.52 | 2.78 | 91 | 62-127 | 9 | 30 |
| Fluoranthene | ND U | 2.49 | 2.78 | 90 | 2.47 | 2.78 | 89 | 69-125 | <1 | 30 |
| Fluorene | ND U | 2.74 | 2.78 | 99
112 | 2.70 | 2.78 | 97
112 | 66-123 | 1 | 30 |
| Indeno(1,2,3-cd)pyrer | | 3.15 | 2.78 | 113 | 3.11 | 2.78 | 112 | 62-142 | 1 | 30
20 |
| Naphthalene | 0.0040 J | 2.54 | 2.78 | 91
05 | 2.51 | 2.78 | 90
05 | 45-123 | 1 | 30 |
| Phenanthrene | 0.0015 J
ND U | 2.64
2.94 | 2.78
2.78 | 95
106 | 2.63
2.89 | 2.78
2.78 | 95
104 | 65-124
59-134 | <1
2 | 30
30 |
| Pyrene | ND U | 2.94 | 2.10 | 100 | 2.09 | 2.10 | 104 | 37-134 | L | 30 |

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Project:** Lumen (Century Link)-Longview/103P778702 Date Collected: NA Sample Matrix: Ground Water Date Received: NA Method Blank Sample Name: Units: ug/L Lab Code: KQ2121144-04 Basis: NA

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|-----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 09:55 | 10/27/21 | |
| 2-Methylnaphthalene | 0.0016 J | 0.020 | 0.0013 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Acenaphthene | ND U | 0.020 | 0.0012 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Acenaphthylene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Anthracene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Benz(a)anthracene | 0.0018 J | 0.020 | 0.00097 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Dibenzofuran | 0.00098 J | 0.020 | 0.00096 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Naphthalene | 0.0027 J | 0.020 | 0.0014 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Phenanthrene | 0.0012 J | 0.020 | 0.0011 | 1 | 10/28/21 09:55 | 10/27/21 | |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 09:55 | 10/27/21 | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 78 | 42 - 133 | 10/28/21 09:55 | |
| Fluorene-d10 | 86 | 42 - 131 | 10/28/21 09:55 | |
| Terphenyl-d14 | 73 | 32 - 129 | 10/28/21 09:55 | |

Analytical Report **Client:** Service Request: K2111119 Tetra Tech, Inc. **Project:** Lumen (Century Link)-Longview/103P778702 Date Collected: NA Sample Matrix: Ground Water Date Received: NA Method Blank Sample Name: Units: ug/L Lab Code: KQ2121144-05 Basis: NA

| Analysis Method: | 8270D |
|------------------|----------|
| Prep Method: | EPA 3511 |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed | Date Extracted | Q |
|------------------------|----------|-------|---------|------|----------------|----------------|---|
| 1-Methylnaphthalene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 09:28 | 10/27/21 | |
| 2-Methylnaphthalene | 0.0015 J | 0.020 | 0.0013 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Acenaphthene | ND U | 0.020 | 0.0012 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Acenaphthylene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Anthracene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Benz(a)anthracene | 0.0018 J | 0.020 | 0.00097 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Benzo(a)pyrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Benzo(b)fluoranthene | ND U | 0.020 | 0.00083 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Benzo(g,h,i)perylene | ND U | 0.020 | 0.00086 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Benzo(k)fluoranthene | ND U | 0.020 | 0.00094 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Carbazole | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Chrysene | ND U | 0.020 | 0.00076 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Dibenz(a,h)anthracene | ND U | 0.020 | 0.0013 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Dibenzofuran | 0.0011 J | 0.020 | 0.00096 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Fluoranthene | ND U | 0.020 | 0.00082 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Fluorene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Indeno(1,2,3-cd)pyrene | ND U | 0.020 | 0.00089 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Naphthalene | 0.0022 J | 0.020 | 0.0014 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Phenanthrene | ND U | 0.020 | 0.0011 | 1 | 10/28/21 09:28 | 10/27/21 | |
| Pyrene | ND U | 0.020 | 0.0010 | 1 | 10/28/21 09:28 | 10/27/21 | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|------------------|-------|-----------------------|----------------|---|
| Fluoranthene-d10 | 80 | 42 - 133 | 10/28/21 09:28 | |
| Fluorene-d10 | 87 | 42 - 131 | 10/28/21 09:28 | |
| Terphenyl-d14 | 62 | 32 - 129 | 10/28/21 09:28 | |

QA/QC Report

| Client: | Tetra Tech, Inc. | Service Request: | K2111119 |
|----------------|--|------------------|----------|
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Analyzed: | 10/28/21 |
| Sample Matrix: | Ground Water | Date Extracted: | 10/27/21 |

Lab Control Sample Summary

Polycyclic Aromatic Hydrocarbons by GC/MS SIM

| Analysis Method: | 8270D | Units: | ug/L |
|------------------|----------|---------------|--------|
| Prep Method: | EPA 3511 | Basis: | NA |
| | | Analysis Lot: | 744142 |

Lab Control Sample KQ2121144-03

| Analyte Name | Result | Spike Amount | % Rec | % Rec Limits |
|------------------------|--------|--------------|-------|--------------|
| 1-Methylnaphthalene | 2.45 | 2.78 | 88 | 47-119 |
| 2-Methylnaphthalene | 2.42 | 2.78 | 87 | 48-120 |
| Acenaphthene | 2.80 | 2.78 | 101 | 63-121 |
| Acenaphthylene | 2.67 | 2.78 | 96 | 58-124 |
| Anthracene | 3.22 | 2.78 | 116 | 68-127 |
| Benz(a)anthracene | 2.85 | 2.78 | 102 | 74-124 |
| Benzo(a)pyrene | 2.86 | 2.78 | 103 | 75-131 |
| Benzo(b)fluoranthene | 2.86 | 2.78 | 103 | 73-136 |
| Benzo(g,h,i)perylene | 2.74 | 2.78 | 99 | 63-127 |
| Benzo(k)fluoranthene | 2.78 | 2.78 | 100 | 74-134 |
| Carbazole | 1.43 | 2.78 | 52 * | 68-135 |
| Chrysene | 2.83 | 2.78 | 102 | 74-132 |
| Dibenz(a,h)anthracene | 2.92 | 2.78 | 105 | 59-135 |
| Dibenzofuran | 2.70 | 2.78 | 97 | 56-132 |
| Fluoranthene | 2.45 | 2.78 | 88 | 70-127 |
| Fluorene | 2.68 | 2.78 | 96 | 68-121 |
| Indeno(1,2,3-cd)pyrene | 3.08 | 2.78 | 111 | 63-136 |
| Naphthalene | 2.49 | 2.78 | 89 | 52-115 |
| Phenanthrene | 2.63 | 2.78 | 95 | 64-126 |
| Pyrene | 2.87 | 2.78 | 103 | 72-127 |

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 39 of 43

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Service Request: K2111119

Client:Tetra Tech, Inc.Project:Lumen (Century Link)-Longview/103P778702Sample Matrix:Ground Water

SURROGATE RECOVERY SUMMARY

| Analysis Method: | NWTPH-Dx |
|--------------------|-----------|
| Extraction Method: | EPA 3510C |

| | | o-Terphenyl | n-Triacontane | |
|------------------------------|--------------|-------------|---------------|--|
| Sample Name | Lab Code | 50-150 | 50-150 | |
| MW-01 | K2111119-001 | 98 | 96 | |
| MW-02 | K2111119-002 | 73 | 87 | |
| MW-03 | K2111119-003 | 92 | 112 | |
| MW-04 | K2111119-004 | 92 | 90 | |
| MW-04 DUP | K2111119-005 | 96 | 115 | |
| MW-05 | K2111119-006 | 97 | 119 | |
| MW-03 | KQ2118889-01 | 93 | 113 | |
| Method Blank | KQ2118889-04 | 88 | 107 | |
| Lab Control Sample | KQ2118889-02 | 91 | 103 | |
| Duplicate Lab Control Sample | KQ2118889-03 | 98 | 108 | |

QA/QC Report

| Client: | Tetra Tech, Inc. | Service Request: | K2111119 |
|----------------|--|------------------|----------|
| Project | Lumen (Century Link)-Longview/103P778702 | Date Collected: | 09/21/21 |
| Sample Matrix: | Ground Water | Date Received: | 09/23/21 |
| | | Date Analyzed: | 10/17/21 |

Replicate Sample Summary Semi-Volatile Petroleum Products by GC/FID

| Sample Name: | MW-03 | | | | | | Units: | ug/L | |
|--------------------------|-----------------|----------|-----|-----|--------|---|---------------|------|------------------|
| Lab Code: | K2111119-003 | | | | | | Basis: | NA | |
| | | Analysis | | | Sample | Duplicate
Sample
KQ2118889-
01 | | | |
| Analyte Name | | Method | MRL | MDL | Result | Result | Average | RPD | RPD Limit |
| Diesel Range Organics (C | C12 - C25 DRO) | NWTPH-Dx | 280 | 13 | 130 J | 140 J | 134 | 7 | 30 |
| Residual Range Organics | (C25 - C36 RRO) | NWTPH-Dx | 560 | 22 | 110 J | 120 J | 111 | 9 | 30 |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

| | Analytical Report | |
|----------------|--|---------------------------|
| Client: | Tetra Tech, Inc. | Service Request: K2111119 |
| Project: | Lumen (Century Link)-Longview/103P778702 | Date Collected: NA |
| Sample Matrix: | Ground Water | Date Received: NA |
| Sample Name: | Method Blank | Units: ug/L |
| Lab Code: | KQ2118889-04 | Basis: NA |

| Analysis Method: | NWTPH-Dx | | | | |
|------------------|-----------|--|--|--|--|
| Prep Method: | EPA 3510C | | | | |

| Analyte Name | Result | MRL | MDL | Dil. | Date Analyzed D | Date Extracted | Q |
|---|--------|-----|-----|------|-----------------|----------------|---|
| Diesel Range Organics (C12 - C25 DRO) | 80 J | 250 | 11 | 1 | 10/16/21 23:37 | 9/27/21 | |
| Residual Range Organics (C25 - C36 RRO) | 72 J | 500 | 19 | 1 | 10/16/21 23:37 | 9/27/21 | |

| Surrogate Name | % Rec | Control Limits | Date Analyzed | Q |
|----------------|-------|-----------------------|----------------|---|
| o-Terphenyl | 88 | 50 - 150 | 10/16/21 23:37 | |
| n-Triacontane | 107 | 50 - 150 | 10/16/21 23:37 | |

QA/QC Report

| Client:
Project:
Sample Matrix: | Tetra Tech, Inc.
Lumen (Century I
Ground Water | en (Century Link)-Longview/103P778702 | | | | | ice Reques
Analyzed
Extracted | : 10/ | 2111119
/16/21
/27/21 | | |
|--|--|---------------------------------------|--------|---------------|--------------|------------|-------------------------------------|--------|-----------------------------|-------|--|
| Duplicate Lab Control Sample Summary | | | | | | | | | | | |
| Semi-Volatile Petroleum Products by GC/FID | | | | | | | | | | | |
| Analysis Method: | NWTPH-Dx | | | | | Unit | s: | ug | /L | | |
| Prep Method: | EPA 3510C | | | | | Basis: | | | NA | | |
| | | | | Analysis Lot: | | | | 742 | 742854 | | |
| | | Lab Control Sample | | Dup | licate Lab C | ontrol San | nple | | | | |
| | | KQ2118889-02 | | | | KQ21188 | 889-03 | | | | |
| | | | Spike | | | Spike | | % Rec | | RPD | |
| Analyte Name | | Result | Amount | % Rec | Result | Amount | % Rec | Limits | RPD | Limit | |
| Diesel Range Organics (C12 - C25 DRO) | | 3240 | 3200 | 101 | 3460 | 3200 | 108 | 46-140 | 7 | 30 | |
| Residual Range Organics (C25 - C36
RRO) | | 1470 | 1600 | 92 | 1530 | 1600 | 96 | 45-159 | 4 | 30 | |