

GROUND WATER MONITORING: FIRST QUARTER 2022

FUTURE KIDDIE ACADEMY PROPERTY

8701 Greenwood Avenue North Seattle, WA 98103

Prepared for:

Attn: Maninder Singh
1260 NE 85th Street
Suite-108
Kirkland, Washington 98033

Issued on:

February 28, 2022

EVREN NORTHWEST, INC. Project No. 1581-21001-02

GROUND WATER MONITORING FIRST QUARTER 2022

Future Kiddie Academy Property

8701 Greenwood Avenue North Seattle, Washington 98103

Report for:

Attn: Maninder Singh
12620 NE 85th Street
Suite-108
Kirkland, Washington 98033

and its assignees

Issued February 28, 2022 by:

Engineering Geologist 2037

Lynn D. Green

EXP. 12/14/2022

Paul M. Irone

Paul M. Trone L.G. *Senor Geologist*

Lynn D. Green, L.E.G.
Principal Engineering Geologist

Table of Contents

1.0	Intro	duction	1
2.0	Backs	round	1
	2.1	Purpose	
	2.2	Scope of Work	
3.0	Site S	etting	2
4.0	Meth	ods	4
	4.1	Work Objectives	
	4.2	Preparation Activities	
	4.1	Ground Water Sample Collection	
	4.2	Waste Management and Disposal	
	4.3	Analytical Methods	5
	4.4	Cleanup Standards	5
5.0	Grou	nd Water Monitoring	6
		5.1.1 Water Level Measurements	6
	5.2	Monitoring Well Sampling	6
		5.2.1 Water Quality Parameters	6
		5.2.2 LNAPL Monitoring	7
	5.3	Laboratory Analytical Results	7
	5.4	Quality Control / Quality Assurance	8
6.0	Discu	ssion of Findings	8
7.0	Propo	sed Monitoring Activities	8
8.0	Limit	ations	8

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

4-1 Analytical Methods

AFTER TEXT (following 'Tables' tab)

- 1 Summary of Ground Water Elevations
- 2 Summary of Water Quality Parameters
- 3 Summary of Analytical Data, Ground Water Monitoring Wells

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Sample Location Diagram

Appendices

- A Site Photographs
- B Field Sampling Data Sheets
- C Laboratory Analytical Report

List of Acronyms and Abbreviations

bgs below ground surface

Client Kiddie Academy

COPCs constituents of potential concern

CSM conceptual site model

CUL cleanup level

cVOC chlorinated volatile organic

constituent

DO dissolved oxygen
DRO diesel-range organics

Ecology Washington Department of

Ecology

ENW EVREN Northwest, Inc.

EPA US Environmental Protection

Agency

F&BI Friedman and Bruya, Inc. GRO gasoline-related organics

LNAPL light non-aqueous phase liquid

mg/L milligrams per liter

mV millivolts

μg/L micrograms per liter

μS/cm microsiemens per centimeterMTCA Model Toxics Control ActORP oxidation-reduction potential

PAH polynuclear aromatic

hydrocarbon

PE polyethylene

PQL practical quantification limit RRO residual(oil)-range organics

SOW scope of work TOC top of casing

TPH total petroleum hydrocarbons

VOCs volatile organic constituents

WAC Washington Administrative Code

1.0 Introduction

At the request of Kiddie Academy (Client), EVREN Northwest, Inc. (ENW) conducted ground-water monitoring at the commercial property located at 8701 Greenwood Avenue North in Seattle, Washington (subject property; see Figures 1 and 2). The scope of work completed during this investigation further assesses the data gaps identified in ENW's Work Plan¹ to fulfill Washington Department of Ecology's (Ecology's) change of use requirements² pursuant to Client's plans to redevelop the subject property as a child daycare facility.

This report summarizes previous environmental work and describes the ground water monitoring scope of work, findings, and conclusions. This work was authorized by Client on December 29, 2021.

2.0 Background

Site background is detailed in ENW's previously submitted work plan.¹ Based on this history, ENW prepared the *Data Gap Investigation Work Plan* (Work Plan),¹ which is the basis of the scope of work (SOW) outlined in the following section and followed in the ground water sampling activities presented in this report.

2.1 Purpose

The SOW described below was designed to address Ecology's comments as outlined in ENW's *Work Plan*¹ and support state cleanup requirements of Ecology's Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 Washington Administrative Code (WAC).

2.2 Scope of Work

This work was performed in accordance with the SOW provided in ENW's proposal dated December 7, 2021.

The SOW included the following tasks:

- Prepared an internal Sample/Analysis Plan for sample collection.
- Gauged water levels in 12 monitoring wells (Well-2 through Well-13) and used low-flow purge and sampling methodology to sample each well.
- Submitted samples to an independent laboratory for analysis.
- Evaluated analytical data against MTCA Method A and B cleanup levels.
- Completed this report describing the above activities and findings.

Appendix A presents photos of work conducted on site during this SOW.

¹ ENW, December 8, 2021. December 2021 Work Plan for Focused Data Gap Investigation, Future Kiddie Academy, Former Texaco #2111544, 8701 Greenwood Avenue North, Seattle, Washington, Facility/Site ID# 6416: Prepared for Kiddie Academy.

² Ecology, March 8, 2021. Response to Change of Use Request at the Following Cleanup Site: Name: Texaco 211544, Address: 8701 Greenwood Ave N, Seattle, Washington, Facility/Site No.: 63538329, Cleanup Site ID No.: 6416.

3.0 Site Setting

A conceptual site model (CSM) is presented in ENW's *Work Plan*.¹ Key elements of the CSM are summarized in this section.

Site and Vicinity General Description. The subject property is located on the northwest corner of the intersection of Greenwood Avenue N and N 87th Street in the Greenwood neighborhood of North Seattle, Washington. The site is located approximately six miles north-northwest of downtown Seattle, Washington and approximately four miles west of Lake Washington. The King County Assessor's Office identifies the site as parcel number 2920700030 and describes the property as rectangular in shape and 32,728 square feet in area.

The subject property is in a mixed residential and commercial area of King County. The site is bordered to the north by single-family residence, west by an alley beyond which are single-family residences, to the east by Greenwood Avenue North, beyond which is a vacant commercial building and parking lot, and to the south by N 87th Avenue, beyond which is a multi-family residential building and street-level retail businesses.

The subject property was developed in 1997 with the current commercial building in the southern portion of the site. Other site improvements include an asphalt-paved parking lot in the northern portion of the site, drainage features and landscaped areas.

Geographic Setting. According to the U.S. Geological Survey Seattle North, Washington 7.5-minute quadrangle (Figure 1), the subject property lies at an approximate elevation of 260 feet above mean sea level (amsl). Topography in the area of the subject property is indicated as sloping gently to the west-southwest.

Geologic Setting. Seattle is within the Puget Lowland, an elongate structural and topographic basin between the Cascade Range and Olympic Mountains. The Seattle area has experienced repeated glacial advancements during the past 2 million years causing cyclic glacial scouring and deposition and later modified by landsides and stream erosion. Seattle is located on a complex succession of glacial and nonglacial deposits that overlie an irregular bedrock surface. According to the Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), the upper most geology beneath the site is mapped as Holocene age Peat deposits, which are accumulations of wood and other plant material forming layers of greater than about 1 meter and of mappable extent. These units are gradational within other non-glacial deposits. The mapped stratigraphy underlying these surficial deposits are mapped as Pleistocene age glacial deposits consisting of glacially transported silt, sand and subrounded to well-rounded gravel.

Previous investigations have identified a silt and peat layer present between approximately seven and 15 feet bgs that appears to act as a confining layer separating lower saturated soils from the overlying vadose zone. Between 14 and 17 feet below ground surface (bgs) across the site there is a transition to a gray gravel/silt hard pan layer with relatively high density compared to overlying native sediments.

_

³ Booth, D.B., Goetz, K., Schimel, S.A., 2009, Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigations Map 3065, Map 1:24,000.

Hydrogeology. No surface water bodies, lagoons, or manmade drainages are located on the subject property. The nearest surface water body is Green Lake, located approximately 0.95 miles southeast of the site. Well log data in the area indicates ground water occurs as shallow as 4 feet bgs. Previous investigations reported first ground water in borings occurring at the site between nine and 17 feet bgs. Shallow ground water has been reported to occur within a silty/sandy layer located directly above a sand and gravel hardpan layer at depth. Shallow ground water within glacial deposits in the Seattle area commonly occurs as a seasonal perched ground water table recharged primarily by infiltrating precipitation during the wet season. At the subject site, first ground water was generally encountered within silts and sands below the overlying peat layer. Ground water has been reported to recharge slowly into existing monitoring wells. Stabilized static ground water levels in monitoring wells have been reported ranging from approximately 0.0 feet bgs to 7 feet bgs.

Constituents of Potential Concern (COPCs). According to ENW's Work Plan,¹

- On-site dry-cleaning-related COPCs include gasoline-range organics (GRO), diesel-range organics (DRO), and chlorinated volatile organic constituents (cVOCs).
- On-site gasoline service station-related COPCs and off-site COPCs from the north-adjoining property include GRO, DRO, residual(oil)-range organics (RRO), volatile organic constituents (VOCs), and polynuclear aromatic hydrocarbons (PAHs).

Nature and Extent and Associated Data Gaps. Data gaps¹ being addressed in this SOW are associated with the nature and extent of petroleum impacts in ground water, ground-water gradient and flow direction, and seasonal effects on ground water constituent concentrations as follows:

- **Ground Water**. Shallow reconnaissance ground water samples reported GRO, benzene and vinyl chloride at concentrations above MTCA Method A cleanup level (CUL) in Partner's boring B2 (proposed outdoor play area). Benzene, DRO and RRO were also present in temporary wells in Partner borings B4 and B5, located at the central portion of the north property boundary and along the west side of the on-site commercial building (Figure 3).
 - o Four quarters of ground water monitoring of 12 on-site monitoring wells (Well-2 through Well-13) are proposed to establish a hydraulic gradient and ground water flow direction, and evaluate seasonal effects on dissolved constituent concentrations at the north-adjoining property boundary (Well-6, Well-8, and Well-12), within and downgradient of the proposed play area (Well-4, Well-5, and Well-13), the former dry cleaner area (Well-10 and Well-11), and west and southwest of the on-site commercial building (Well-2 and Well-3).

4.0 Methods

This section describes the methods used to conduct the SOW. Field activities for this project are documented in the photographic log included as Appendix A.

4.1 Work Objectives

The objective of this work was to quantitatively determine whether hazardous substances may be present in the subsurface beneath the subject site, and if their presence could potentially be considered an environmental concern. In addition, the following general objectives were followed:

- To perform the work efficiently and cost-effectively, minimizing interference with any site operations.
- To perform the work in a safe manner for technical personnel and site employees / visitors.
- To document information and data generated in a professional manner that is valid for the intended use.

The remainder of this section describes the methods and procedures used for this investigation. A photographic log of all the field work is presented in Appendix A, Field Data Sampling Sheets are included in Appendix B, and laboratory analytical reports are included in Appendix C. Findings are presented in Section 5.

4.2 Preparation Activities

ENW performed or coordinated the following activities prior to conducting site characterization activities:

Plan Preparation. An in-house Sampling and Analysis Plan was prepared for the project.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.

Planning. ENW scheduled and coordinated with the Client to begin site work.

4.1 Ground Water Sample Collection

Immediately following purging, ground water samples were collected using clean, dedicated PE tubing connected to a peristaltic pump set at its lowest setting (approximately 0.1 to 0.2 liters per minute). Samples were transferred slowly into laboratory-supplied containers minimizing turbulence. Samples for VOC analysis were confirmed to contain no air bubbles within the container before sealing. Each sample container was labeled with the sample identification, date, time, and sampler.

Samples were immediately placed in cooled storage pending delivery to the laboratory under chain-of-custody protocols. All analyses were performed by Friedman & Bruya, Inc. (F&BI), of Seattle, Washington, using the US Environmental Protection Agency (EPA) Methods specified below. The laboratory report and chain-of-custody documents are presented in Appendix C.

4.2 Waste Management and Disposal

Purge and decontaminate water generated during drilling activities were placed into a 55-gallon drum, labeled, and left on-site in a secure location pending receipt of sample laboratory results. Sampling gloves, rags, and tubing, which were disposed of as solid waste.

4.3 Analytical Methods

Samples were analyzed according to the analytical methods presented in Table 4-1. Samples were analyzed by F&BI of Seattle, Washington. The laboratory analytical reports are included in Appendix C.

Analytical Method	Constituents	Ground Water
NWTPH-Gx	Total Petroleum Hydrocarbons (TPH)–gasoline-range quantification (GRO)	All ground water monitoring wells
NWTPH-Dx	Total Petroleum Hydrocarbons (TPH)–Diesel-range quantification (DRO) and Residual oil-range quantification (RRO)	All ground water monitoring wells
EPA 8260B EPA 5035 (soil)	Petroleum-related Volatile Organic Compounds (benzene, ethylbenzene, EDB, MtBE, toluene, total xylenes)	All ground water monitoring wells
EPA 8260B EPA 5035 (soil)	Chlorinated Volatile Organic Compounds	Select ground water monitoring wells (Well-03, -04 and -10)
EPA 8270D SIM	Carcinogenic Polynuclear Aromatic Hydrocarbons (cPAHs)	All ground water monitoring wells

Table 4-1. Analytical Methods

4.4 Cleanup Standards

The State of Washington MTCA Regulations (Chapter 173-340 WAC) sets numeric cleanup levels for "routine cleanup actions". "Routine cleanup actions" are defined as those sites where: 1) cleanup standards for each hazardous substance are obvious and undisputed, allowing for an adequate margin of safety for protection of human health and the environment; 2) does not require preparation of an environmental impact statement, and 3) qualifies for an exclusion from conducting a terrestrial ecological evaluation. CULs are defined as the concentration of a hazardous substance in soil, water, air, or sediment that is determined to be protective of human health and the environment under specified exposure conditions. MTCA's three (3) methods for establishing cleanup levels are briefly described below.

Method A: Method A provides tables of cleanup levels that are protective of human health for the most common hazardous substances found in soil and ground water at sites. Note that these levels were developed by procedures of Method B. The Method A cleanup must meet the concentrations listed in the Method A table and, if not listed in the table, the concentration standards established under applicable state or federal laws. If neither the Method A table nor applicable state and federal laws provide an appropriate cleanup level, then natural background concentration or the practical quantification limit (PQL) may be used as the cleanup level. Method A is the simplest, most streamlined approach to cleanup, but is meant to be applied with sites that have releases of only a few, common, hazardous substances.

Method B: Method B provides cleanup levels using risk assessment equations developed for various exposure pathways, as well as by using standards specified by applicable state and federal

laws. Standard Method B uses generic default assumptions; Modified Method B uses chemical-specific and/or site-specific parameters in calculating the cleanup levels. Natural background concentrations and PQLs are also considered in this method. Method B is considered the universal approach to site closure and is the method most commonly used.

5.0 Ground Water Monitoring

5.1.1 Water Level Measurements

On January 26, 2022:

- All well monuments were opened and well casing expanding plugs removed to allow water levels to equilibrate to ambient barometric pressure.
- Following equilibration, static water levels were measured in each well (prior to sample collection).
 - Depth to water in monitoring wells WELL-1 through WELL-13 ranged from 0.00 feet (WELL-4, -7, and -13) to 2.78 feet (WELL-2) below top of casing (TOC).
- Inferred ground water elevation contours (presented on Figure 3) suggest a south=southwesterly ground water flow direction across the site, with flow in the northern portion of the site exhibiting a more west-southwesterly flow direction and the southern portion of the site exhibiting a more south-southwesterly flow direction. The hydraulic gradient across the northern part of the site was estimated at 0.044 vertical feet per lineal foot (ft/ft) and in the southern part of the site was estimate at 0.52 ft/ft, suggesting a fairly consistent flow gradient across the site.

Water level data was recorded onto Ground Water Sampling Field forms included in Appendix B. Table 1 (behind "Tables" tab after text) presents a summary of monitoring well TOC elevations, ⁴ depths to ground water, the calculated water level elevations, and depths to light non-aqueous phase liquid (LNAPL) (MW03) for previous monitoring events.

5.2 Monitoring Well Sampling

To produce representative samples, the wells were purged using a low-flow peristaltic pump and dedicated polyethylene (PE) tubing, recording various water quality parameters [pH, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), turbidity, and conductivity] until stabilized. The results were recorded onto Ground Water Sampling Field Forms which are included in Appendix A.

5.2.1 Water Quality Parameters

Table 2 (behind "Tables" tab after text) presents a summary of water quality parameters collected during purging during the fourth quarter 2021. In general:

• Temperature ranged from 8.99 (WELL-2) to 12.50°C (WELL-5).

⁴ The tops of casing of all wells have been surveyed to within 0.01 foot relative to mean sea level established by the City of Seattle benchmark #SNV-7595.

- Electrical conductivity is a measure of groundwater's ability to carry an electrical current. Greater
 conductivity suggests a greater concentration of ions and charged molecules in ground water,
 including chloride and reduced metals. Conductivity ranged from 277 (WELL-3) to 317 (WELL-2)
 microsiemens per centimeter (μS/cm).
- DO ranged from 0.44 milligrams per liter (mg/L) I WELL-10 to 1.38 mg/L in WELL-10.
 - Typically, concentrations of DO greater than 1 mg/L are suggestive of aerobic conditions.
 Monitoring wells WELL-2, -3, -4, -5, and -9 are currently aerobic based on DO concentrations, all located in the central/south portion of the subject site.
- pH measurements ranged between 6.81 (WELL-2) and 7.85 (WELL-3), which is at the middle of the range of pH of natural waters (6 to 9) in Washington.
- ORP ranged from -643 (WELL-4) to 90 (WELL-8) millivolts (mV).
 - O Positive ORP readings generally suggest oxidizing conditions, which is conducive to degradation of petroleum hydrocarbons. ORP is currently negative in all wells except WELL-6 and -8 and -12, all located along the northern boundary of the subject property. ORP is difficult to measure in the field and additional data will be needed to determine trends in ORP at each location.

5.2.2 LNAPL Monitoring

Prior to sampling, each well was checked for the presence of LNAPL using an interface probe. During the January 26, 2022 site-wide monitoring, measurable LNAPL was not detected in any of the wells.

5.3 Laboratory Analytical Results

Table 3 (behind "Tables" tab after text) presents cumulative analytical results for ground water samples collected from WELL-2 through WELL-13, and screens laboratory results against generic MTCAL CULs.

Summary of first quarter 2022 analytical results:

- Total Petroleum Hydrocarbons (as GRO, DRO and RRO). DRO and/or RRO were previously detected by others in monitoring wells WELL-2, -3, -5, -7, -8, -9, -10 and -11, of which only the detection of RRO in monitoring well WELL-3 exceeded its respective MTCA Method A CUL. However, during this current monitoring event DRO and/or RRO were only detected in monitoring wells WELL-5, and -11, both in the north-central portion of the subject site and at concentrations below MTCA Method A CULs. Additional data will be needed to determine if the previous exceedance is due to seasonal variability or is a possible outlier.
- **VOCs.** No VOCs have been detected in any of the monitoring wells at concentrations exceeding MCTA Method A or B CULs.
- PAHs. Only one PAH constituent (1-methylnaphthalene) was detected at a concentration exceeding its MTCA Method B CUL. The detection was in monitoring well WELL-11 and is located in the north-central portion of the site. The concentration detected (2.8 μg/L) only slightly exceeded its CUL (1.5 μg/L) and was reported by the laboratory as an estimated concentration. Additional data will be needed to confirm whether 1-methylnaphthalene is present at this location at concentrations above its MTCA Method B CUL.

5.4 Quality Control / Quality Assurance

The laboratory results of quality control samples are presented on Table 3 and summarized below.

- **Trip Bank.** All GRO-related VOCs were "non-detect," suggesting the samples were not affected by VOCs during storage on the site and during transport to the laboratory.
- Blind Sample Duplicate. Laboratory analysis of a blind sample duplicate collected from
 monitoring well WELL-10 (sample "MWFD") showed similar results, as there were no analytical
 detections in both samples. Results of the quality control samples for all constituents suggest that
 the accuracy and precision of both field and laboratory testing methods are within the data quality
 objectives.

6.0 Discussion of Findings

Ground Water Plume Delineation. Based on currently available data, only two monitoring well locations (WELL-3 and WELL-11) are associated with constituent detections exceeding CULs. Both wells are located in the central portion of the site and are delineated by both up- and down-gradient monitoring wells. Additionally, both detections are in question because one was estimate at just above the CUL by the laboratory (1-methylnaphthalene in WELL-11) and one was not reproduced during subsequent testing (RRO in WELL-3), suggesting some possible variability at this location. Addition data will be needed to confirm these detections and determine any seasonal variability.

7.0 Proposed Monitoring Activities

The following activities are proposed for the next quarter:

• Continue quarterly monitoring of all onsite monitoring wells for at least three more quarters to evaluate and monitor possible concentration trends.

8.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the site closure does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

- Naturally occurring toxic or hazardous substances in the subsurface soils, geology, and water,
- Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,

 Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW have endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. It is possible, despite the use of reasonable care and interpretation, that ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

Table 1. Summary of Ground Water Elevations

Monitoring Well Designation	Date	Top of Casing Elevation (feet)	Depth to Static Water Level (feet)	GW Elevation (feet)
WELL-2	1/26/2022	255.26	2.78	252.48
		Minumum	2.78	252.48
		Maximum	2.78	255.26
WELL-3	1/26/2022	259.53	1.54	257.99
		Minumum	1.54	257.99
		Maximum	1.54	259.53
WELL-4	1/26/2022	257.52	0.00	257.52
		Minumum	0.00	257.52
		Maximum	0.00	257.52
WELL-5	1/26/2022	258.22	0.02	258.20
		Minumum	0.02	255.26
		Maximum	0.02	258.20
WELL-6	1/26/2022	259.31	1.05	258.26
		Minumum	1.05	258.26
		Maximum	1.05	259.31
WELL-7	1/26/2022	260.39	0.00	260.39
		Minumum	0.00	260.39
		Maximum	0.00	260.39
WELL-8	1/26/2022	263.42	2.31	261.11
		Minumum	2.31	261.11
		Maximum	2.31	263.42
MW-8	1/26/2022	255.26		255.26
		Minumum	0.00	255.26
		Maximum	0.00	255.26
WELL-9	1/26/2022	262.74	1.48	261.26
		Minumum	1.48	261.26
		Maximum	1.48	262.74
WELL-10	1/26/2022	261.52	0.10	261.42
		Minumum	0.10	261.42
		Maximum	0.10	261.52
WELL-11	1/26/2022	261.05	0.05	261.00
		Minumum	0.05	261.00
		Maximum	0.05	261.05
WELL-12	1/26/2022	261.11	0.95	260.16
		Minumum	0.95	260.16
		Maximum	0.95	261.11
WELL-13	1/26/2022	258.39	0.00	258.39
		Minumum	0.00	258.39
		Maximum	0.00	258.39

Table 2. Summary of Water Quality Parameters

						Oxidation-	
			Specific	Dissolved		Reduction	
		Temp	Conductivity	Oxygen		Potential	Turbidity
Well ID	Date	(°C)	(µS/cm)	(mg/L)	рН	(mV)	(NTU)
WELL-2	1/26/2022	8.99	317	1.15	6.81	-22	102
•	Minumum	8.99	317	1.15	6.81	-22	102
	Maximum	8.99	317	1.15	6.81	-22	102
WELL-3	1/26/2022	10	277	1.34	7.85	-339	139
	Minumum	10	277	1.34	7.85	-339	139
	Maximum	10	277	1.34	7.85	-339	139
WELL-4	1/26/2022	11.68	278	1.22	7.78	-643	139
	Minumum	11.68	278	1.22	7.78	-643	139
	Maximum	11.68	278	1.22	7.78	-643	139
WELL-5	1/26/2022	12.50	278	1.24	7.65	-379	139
	Minumum	12.50	278	1.24	7.65	-379	139
	Maximum	12.50	278	1.24	7.65	-379	139
WELL-6	1/26/2022	9.19	282	0.88	7.22	72	23.4
	Minumum	9.19	282	0.88	7.22	72	23.4
	Maximum	9.19	282	0.88	7.22	72	23.4
WELL-7	1/26/2022	11.69	286	1.38	7.61	-348	143
	Minumum	11.69	286	1.38	7.61	-348	143
	Maximum	11.69	286	1.38	7.61	-348	143
WELL-8	1/26/2022	10.43	279	0.59	7.23	90	15.9
	Minumum	10.43	279	0.59	7.23	90	15.9
	Maximum	10.43	279	0.59	7.23	90	15.9
WELL-9	1/26/2022	11.00	281	1.33	7.13	-204	140
	Minumum	11.00	281	1.33	7.13	-204	140
	Maximum	11.00	281	1.33	7.13	-204	140
WELL-10	1/26/2022	9.36	282	0.44	7.09	-124	18.1
	Minumum	9.36	282	0.44	7.09	-124	18.1
	Maximum	9.36	282	0.44	7.09	-124	18.1
WELL-11	1/26/2022	9.21	287	0.76	7.05	-142	3.6
	Minumum	9.21	287	0.76	7.05	-142	3.6
	Maximum	9.21	287	0.76	7.05	-142	3.6
WELL-12	1/26/2022	9.61	284	0.80	7.21	20	14.5
	Minumum	9.61	284	0.80	7.21	20	14.5
	Maximum	9.61	284	0.80	7.21	20	14.5
WELL-13	1/26/2022	11.13	277	0.60	7.19	-61	19.6
	Minumum	11.13	277	0.60	7.19	-61	19.6
	Maximum	11.13	277	0.60	7.19	-61	19.6
			Geochemistry				0.0
	Minumum	8.99	277	0.44	6.81	-643	3.6
	Maximum	12.50	317	1.38	7.85	90	143

[°]C = degrees Celsius

 μ S/cm = microsiemens per centimeter

mV = millivolt

NTU = Nephelometric Turbidity Unit

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID	Well-2	Well-2	Well-3	Well-3	Well-4	Well-4	Well-5	Well-5	Well-6	Well-6
	Sample ID	Well #2	WELL-2-220126	Well #3	WELL-3-220126	Well #4	WELL-4-220126	Well #5	WELL-5-220126	Well #6	WELL-6-220126
	Date Sampled	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022
	Sampler	ES	ENW	ES	ENW	ES	ENW	ES	ENW	ES	ENW
	Location	Southwest Corner of Site	Southwest Corner of Site	West of Building, Next to Alley	West of Building, Next to Alley	South of Proposed Play Area	South of Proposed Play Area	Proposed Play Area	Proposed Play Area	North Parking Area - Northwest Corner	North Parking Area - Northwest Corner
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)
Volatile Organic Constituents (VOCs)		13 (11-7	13 (11 1)	P.5 (F1 *)	13 (11)	13. (11.7)	13 (11-7	F.5* (FF-7)	13 (11-7	13 (11-7)	13 (11)
Benzene	C. V	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)
Dichloroethylene;1,1-	nc. v	\ /	<1 (ND)	()	<1 (ND)	,	<1 (ND)	(/	<1 (ND)	\ /	<1 (ND)
Dichloroethylene;1,2-,cis	nc, v				<1 (ND)		<1 (ND)				
Dichloroethylene;1,2-,trans	nc, v				<1 (ND)		<1 (ND)				
Methylene Chloride	C, V				<5 (ND)		<5 (ND)				
Ethylene dibromide (EDB)	C, V		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)		<0.2 (ND)		<0.2 (ND)		<0.2 (ND)		<0.2 (ND)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)
Naphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)
Tetrachloroethylene (PCE)	C, V				<1 (ND)		<1 (ND)				
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Trichloroethane;1,1,1-	nc, v				<1 (ND)		<1 (ND)				
Trichloroethylene (TCE)	C, V				<0.5 (ND)		<0.5 (ND)				
Vinyl chloride	C, V				<0.02 (ND)		<0.02 (ND)				
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)
Polyaromatic Hydrocarbons (Carcinogenic)											
Acenaphthene	nc, v		<0.04 (ND)		<0.04 (ND)		1.5		4.1		<0.04 (ND)
Anthracene	nc, v		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benz[a]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[a]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[b]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[k]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Chrysene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Dibenz[a,h]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Fluoranthene	nc, nv		<0.04 (ND)		<0.04 (ND)		0.050		<0.04 (ND)		<0.04 (ND)
Fluorene	nc, v		<0.04 (ND)		<0.04 (ND)		0.29		1.3		<0.04 (ND)
Indeno[1,2,3-cd]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Naphthalene	C, V		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)
1-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)
2-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)
Pyrene	nc, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

Location II	Well-2	Well-2	Well-3	Well-3	Well-4	Well-4	Well-5	Well-5	Well-6	Well-6
Sample II		WELL-2-220126	Well #3	WELL-3-220126	Well #4	WELL-4-220126	Well #5	WELL-5-220126	Well #6	WELL-6-220126
Date Sampled	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022
Sample	r ES	ENW	ES	ENW	ES	ENW	ES	ENW	ES	ENW
Location	of Site	Southwest Corner of Site	West of Building, Next to Alley	West of Building, Next to Alley	South of Proposed Play Area	South of Proposed Play Area	Proposed Play Area	Proposed Play Area	North Parking Area - Northwest Corner	
Total Petroleum Hydrocarbons										
GRO nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)
DRO nc, nv	80 x	<50 (ND)	300 x	<50 (ND)	<50 (ND)	<50 (ND)	55 x	64	<50 (ND)	<50 (ND)
RRO nc, nv	410 x	<250 (ND)	510 x	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

— = not analyzed or not applicable. เพษ = ทอเ ดยเย่งเยด สเ อา สองขย เทย เทยเทอด เย่งอเเท่ญ แก่แ (เพ่ห⊾) อา practical quantitation limit (POL) shown

NE = not established.

(Y) indicates analyte not detected, but detection limit is above screening

concentration.

μg/L = micrograms per Liter

c = carcinogenic

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup

(Y) indicates analyte not detected, but detection limit is above screening concentration.

J = the identification of the analyte is acceptable; the reported value is an estimate
** Cleanup level of carcinogenic PAHs based on cleanup standard

for Benzo(a)pyrene

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID	Well-7	Well-7	Well-8	Well-8	Well-9	Well-9	Well-10	Well-10	Well-11	Well-11
	Sample ID	Well #7	WELL-7-220126	Well #8	WELL-8-220126	Well #9	WELL-9-220126	Well #10	WELL-10-220126	Well #11	WELL-11-220126
	Date Sampled	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022
	Sampler	ES	ENW	ES	ENW	ES	ENW	ENW	ENW	ENW	ENW
	Location	North Parking Area - Center	North Parking Area - Center	North Parking Area - Northeast Corner	North Parking Area - Northeast Corner	North Parking Area - East	North Parking Area - East	Former Dry Cleaner	Former Dry Cleaner	Former Dry Cleaner	Former Dry Cleaner
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)
Volatile Organic Constituents (VOCs)		10 (11 /	10 (11)	10 (11 /	15 (11)	10 (11 /	10 (11)	10 (11 /	10 (11 /	10 (11 /	10 (11 /
Benzene	C. V	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)
Dichloroethylene;1,1-	nc, v	,	<1 (ND)	,	<1 (ND)	,	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Dichloroethylene;1,2-,cis	nc, v							<1 (ND)	<1 (ND)	<1 (ND)	
Dichloroethylene;1,2-,trans	nc, v							<1 (ND)	<1 (ND)	<1 (ND)	
Methylene Chloride	C, V							<5 (ND)	<5 (ND)	<5 (ND)	
Ethylene dibromide (EDB)	C, V		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)		<0.2 (ND)		<0.2 (ND)	<1 (ND)	<0.2 (ND)	<1 (ND)	<0.2 (ND)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)		<1 (ND)
Naphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		26 jl
Tetrachloroethylene (PCE)	C, V							<1 (ND)	<1 (ND)	<1 (ND)	
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Trichloroethane;1,1,1-	nc, v							<1 (ND)	<1 (ND)	<1 (ND)	
Trichloroethylene (TCE)	C, V							<1 (ND)	<0.5 (ND)	<1 (ND)	
Vinyl chloride	C, V							<0.2 (ND)	<0.02 (ND)	<0.2 (ND)	
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)
Polyaromatic Hydrocarbons (Carcinogenic)		, ,	, , , ,	, i	`	, ,	, ,	` '		` '	ì
Acenaphthene	nc, v		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		6.9
Anthracene	nc, v		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benz[a]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[a]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[b]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Benzo[k]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Chrysene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Dibenz[a,h]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Fluoranthene	nc, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Fluorene	nc, v		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		2.3
Indeno[1,2,3-cd]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)
Naphthalene	C, V		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		26 jl
1-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		2.8 jl
2-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		<0.4 (ND)		0.83
Pyrene	nc, nv		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)		<0.04 (ND)

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

Location ID	Well-7	Well-7	Well-8	Well-8	Well-9	Well-9	Well-10	Well-10	Well-11	Well-11
Sample ID	Well #7	WELL-7-220126	Well #8	WELL-8-220126	Well #9	WELL-9-220126	Well #10	WELL-10-220126	Well #11	WELL-11-220126
Date Sampled	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022	5/4/2021	1/26/2022
Sampler	ES	ENW	ES	ENW	ES	ENW	ENW	ENW	ENW	ENW
Location	- Center	North Parking Area - Center	North Parking Area - Northeast Corner	Area - Northeast	North Parking Area - East	North Parking Area - East	Former Dry Cleaner	Former Dry Cleaner	Former Dry Cleaner	Former Dry Cleaner
Total Petroleum Hydrocarbons										
GRO nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)
DRO nc, nv	<50 (ND)	<50 (ND)	53 x	<50 (ND)	110 x	<50 (ND)	55 x	<50 (ND)	150 x	170
RRO nc, nv	300 x	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

— = not analyzed or not applicable. เพษ = ทอเ ดยเยอเยด สเ อา สอองย เทย เทยเทอด เยยอเเทg เเทเเเ (เพเน∟) อา practical

quantitation limit (POL) shown

NE = not established.

(Y) indicates analyte not detected, but detection limit is above screening concentration.

μg/L = micrograms per Liter

c = carcinogenic

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup

- (Y) indicates analyte not detected, but detection limit is above screening concentration.
- J = the identification of the analyte is acceptable; the reported value is an
- estimate
 ** Cleanup level of carcinogenic PAHs based on cleanup standard for Benzo(a)pyrene

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID	Well-12	Well-12	Well-13	Well-13	QA/0	QC				
	Sample ID	Well #12	WELL-12-220126	Well #13	WELL-13-220126	WELL-FD-220127	Trip Blank	1	MTCA Method A		1
	Date Sampled	6/2/2021	1/26/2022	6/2/2021	1/26/2022	1/26/2022	1/26/2022	Maximum		MTCA Method B	Constituent of
	Sampler	ES	ENW	ES	ENW	ENW	ENW	Ground Water	for Ground	Cleanup Levels	Potential
	Location	North Property Boundary	North Property Boundary	North Property Boundary	Proposed Play Area	Field duplicate of Well #10	Trip Blank	- Concentration (QA/QC not included)	Water (Unrestricted Land Use)	for Ground Water (lowest)	Concern (COPC)? ³
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	Y/N
Volatile Organic Constituents (VOCs)		13. (11.7)	13. (11.7)	1-3- (11-7	1.3 (11.7)	13 (11)	13 (11)	1 13 (11-7	13 (11-7	13 (11-7	
Benzene	C, V	<1 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	5	0.8	(Y)
Dichloroethylene;1,1-	nc, v	()	<1 (ND)	()	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	NE	400	N
Dichloroethylene;1,2-,cis	nc, v					<1 (ND)		<1 (ND)	NE	16	N
Dichloroethylene;1,2-,trans	nc, v					<1 (ND)		<1 (ND)	NE	160	N
Methylene Chloride	C, V					<5 (ND)		<5 (ND)	5	5.8	N
Ethylene dibromide (EDB)	C, V		<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	0.01	0.022	(Y)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)		<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<1 (ND)	5	0.48	(Y)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	700	800	N N
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	20	24	N
Naphthalene	nc, v		<0.4 (ND)		<0.4 (ND)	<0.4 (ND)	<0.4 (ND)	26 jl	160	160	N
Tetrachloroethylene (PCE)	C. V					<1 (ND)		<1 (ND)	5	21	N
Toluene	nc, v	2.0	<1 (ND)	9.4	<1 (ND)	<1 (ND)	<1 (ND)	9.4	1000	640	N
Trichloroethane;1,1,1-	nc, v					<1 (ND)		<1 (ND)	200	16000	N
Trichloroethylene (TCE)	C, V					<0.5 (ND)		<1 (ND)	5	0.54	(Y)
Vinyl chloride	C, V					<0.02 (ND)		<0.2 (ND)	0.2	0.029	(Y)
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	1000	1600	Ň
Polyaromatic Hydrocarbons (Carcinogenic)			\ /			\ /	7				
Acenaphthene	nc, v		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		6.9	NE	480	N
Anthracene	nc, v		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		0.04	NE	2400	N
Benz[a]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Benzo[a]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	0.1 (**)	0.023 (**)	(Y)
Benzo[b]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Benzo[k]fluoranthene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Chrysene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Dibenz[a,h]anthracene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Fluoranthene	nc, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.05 (ND)	NE	640	Ň
Fluorene	nc, v		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		2.3	NE	320	N
Indeno[1,2,3-cd]pyrene	c, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	**	**	(Y)
Naphthalene	C, V		<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		26 jl	160	160	N
1-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		2.8 jl	NE	1.5	Υ
2-Methylnaphthalene	nc, v		<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		0.83	NE	32	N
Pyrene	nc, nv		<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	NE	240	N

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

Location ID	Well-12	Well-12	Well-13	Well-13	QA/0	QC				
Sample ID	Well #12	WELL-12-220126	Well #13	WELL-13-220126	WELL-FD-220127	Trip Blank]	MTCA Method A		
Date Sampleo	6/2/2021	1/26/2022	6/2/2021	1/26/2022	1/26/2022	1/26/2022	Maximum Ground Water		MTCA Method B	Constituent of
Sample	ES	ENW	ES	ENW	ENW	ENW		for Ground	Cleanup Levels	
Location	North Property Boundary	North Property Boundary	North Property Boundary	Proposed Play Area	Field duplicate of Well #10	Trip Blank	(QA/QC not included) (Unre	Water (Unrestricted Land Use)	for Ground Water (lowest)	Concern (COPC)? ³
Total Petroleum Hydrocarbons										
GRO nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)		<100 (ND)	800	NE	N
DRO nc, nv	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)		300 x	500	NE	N
RRO nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)		510 x	500	NE	Y

Notes:

— = not analyzed or not applicable. เพษ = ทอเ ดอเออเลด at or above the method reporting innit (พหน) or practical

quantitation limit (POI) shown

NE = not established.

(Y) indicates analyte not detected, but detection limit is above screening concentration.

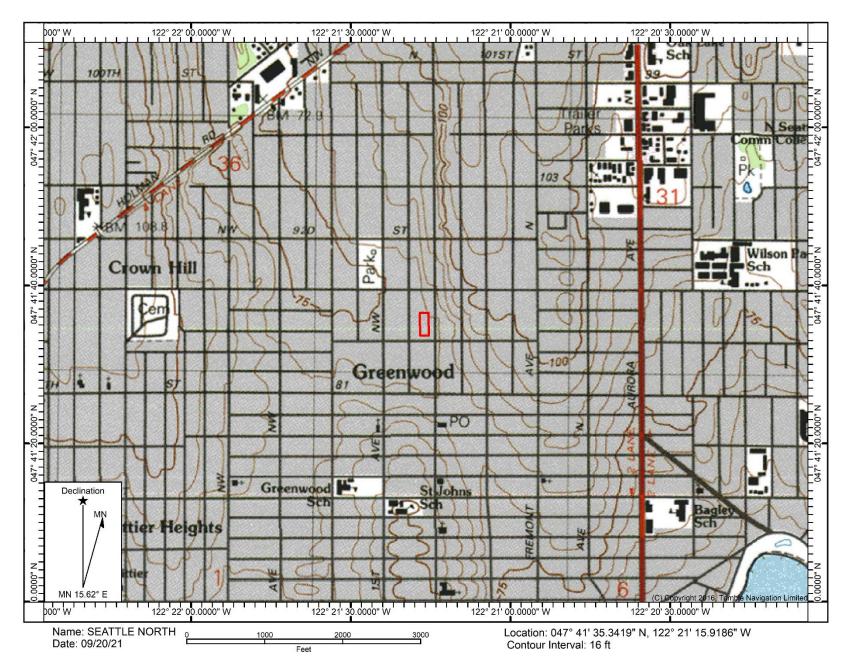
μg/L = micrograms per Liter

c = carcinogenic

nc = noncarcinogenic

v = volatile

nv = nonvolatile

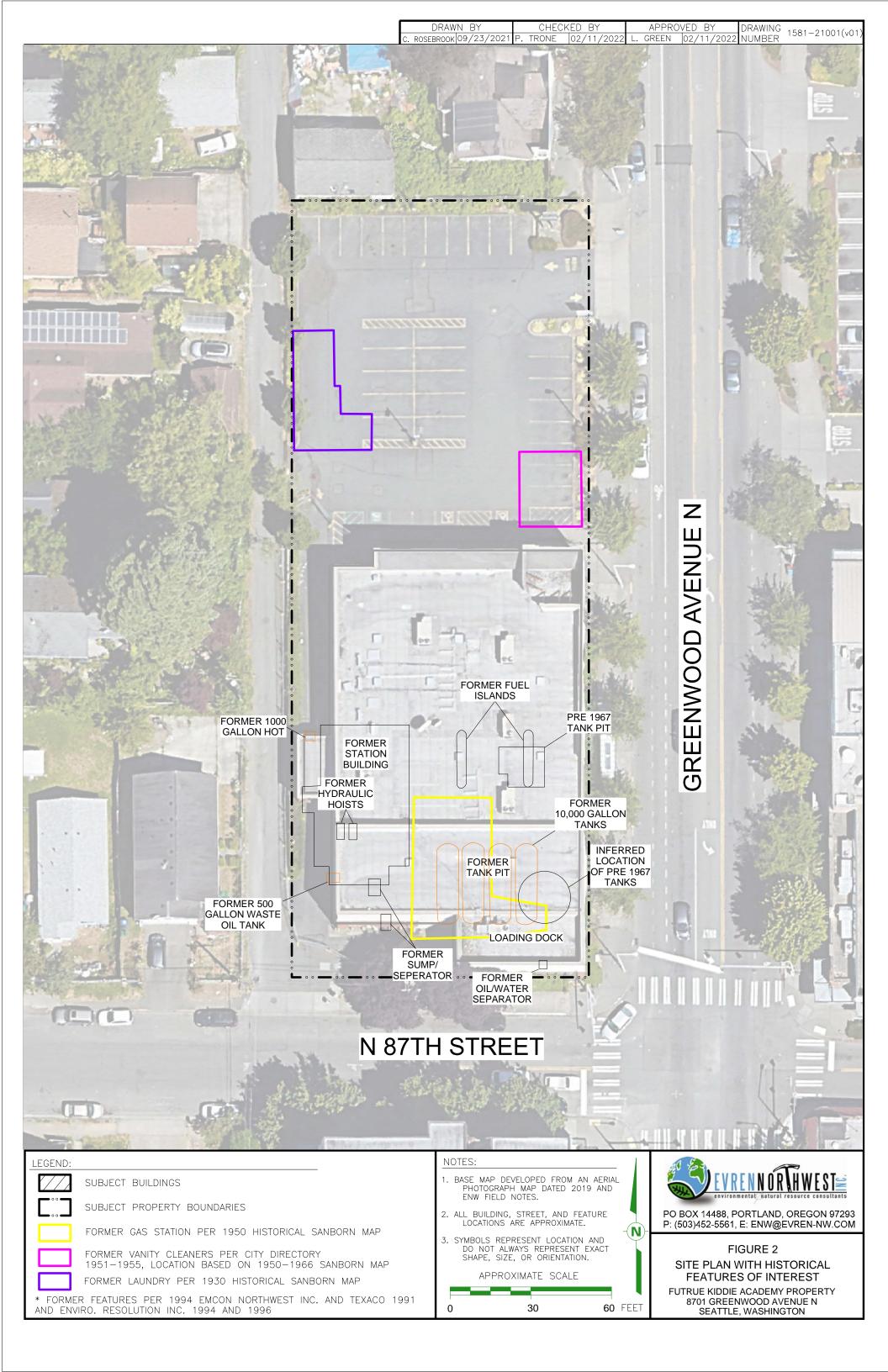

GRO = gasoline-range organics.

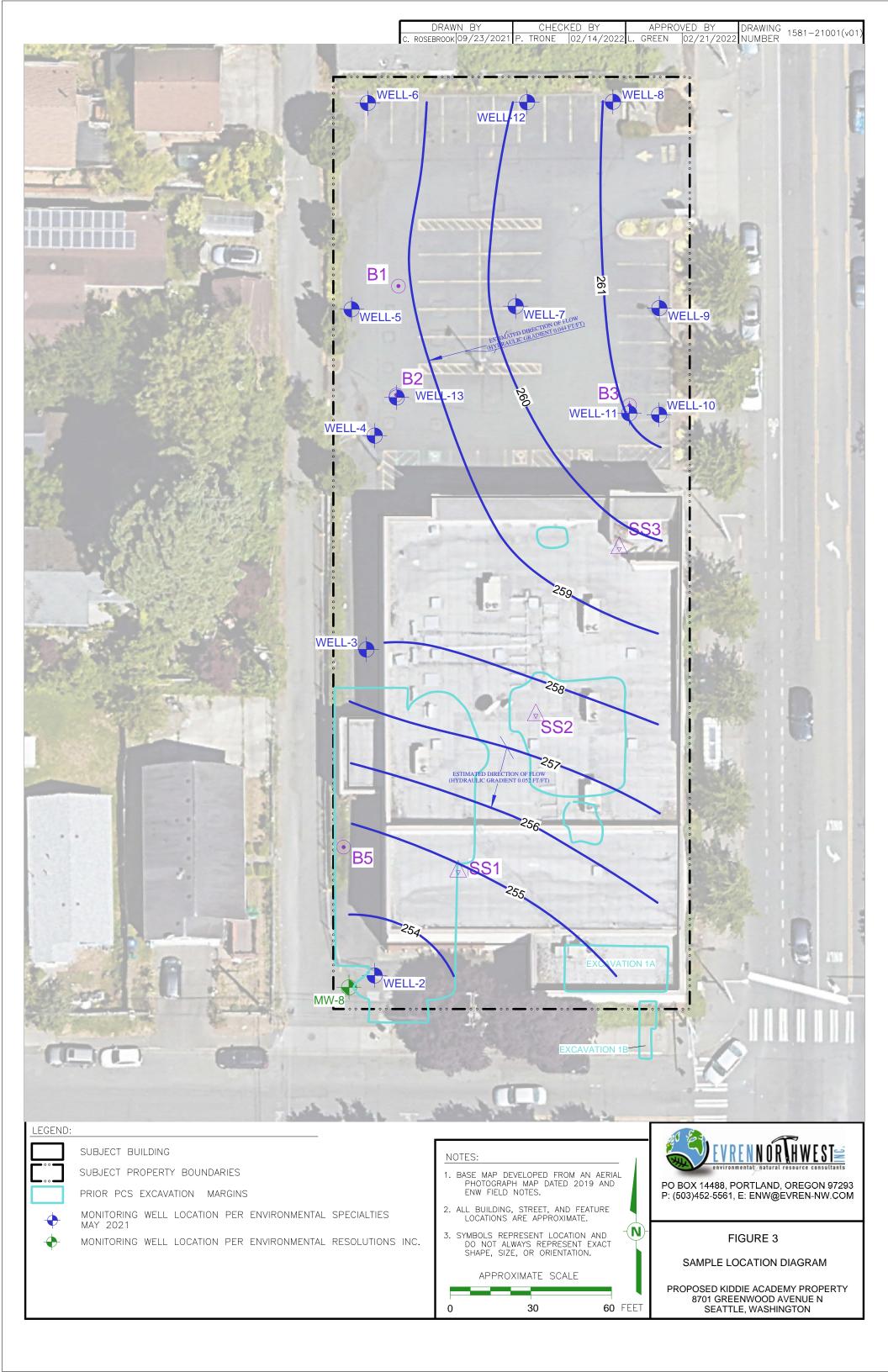
DRO = diesel-range organics.

RRO = residual-range organics.

Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup

- (Y) indicates analyte not detected, but detection limit is above screening concentration.
- J = the identification of the analyte is acceptable; the reported value is an
- estimate
 ** Cleanup level of carcinogenic PAHs based on cleanup standard for Benzo(a)pyrene




Date Drawn: 2/28/2022 CAD File Name: 1581-21001-01_fig1sv_map.docx Drawn By: CLR Approved By: LDG Future Kiddie Academy Property 8701 Greenwood Avenue N Seattle, Washington

Site Vicinity Map

Project No. 1581-21001

Figure No. **1**

Appendix A Site Photographs

Gauging Well #2 with a depth to water meter.

Low-flow purge and sampling set up on Well #10 next to eastern site boundary using a peristaltic pump (blue box).

Well casings was fitted with a locking compression cap.

Low-flow purge and sampling set up on Well #7 (foreground) and Well #5 (background).

Future Kiddie Academy Property 8701 Greenwood Avenue N Seattle, Washington

Site Photographs

Project No. 1581-21001-02 Appendix **A**

Well #5 along the western site boundary.

Future Kiddie Academy Property 8701 Greenwood Avenue N Seattle, Washington

Site Photographs

Project No. 1581-21001-02 Appendix **A**

Appendix B

Field Sampling Data Sheets

PROJECT NUMBER: 1581-21001-01 8701 Greenwood Avenue N. Seattle PROJECT NAME: **Event:** Ground Monitoring Date: Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: 1203 Weather Conditions: Start Time: 2-73 DTW (prior to purging): WELL PURGING INFORMATION Total DTW During Pumping Specific Dissolved Water Quantity Temperature ORP Turbidity Purging Rate Conductivity Oxygen рΗ Purged (feet) (mS/cm), ±3% (mg/L), $\pm 10\%$ (S.U.), , ±0.1% (mV), , ±10 mV (NTU), , ±10% (gallons/liters) Time (L/min) (degree C) surge - water stunt cell 1203 3.78 9.48 6.98 74 500 309 160 2.78 80.0 1206 4.34 33 68.7 6.90 960 2.11 9.66 309 1.08 110 6.89 4.56 1215 110 9.58 1.13 311 1400 4.95 1216 100 ~ 100 % 0.94 6.87 64.1 1500 9.41 314 1220 4.95 0.82 ~100 9.40 6.86 61.2 2200 5.68 316 1727 3.09 3000 9.45 1235 314 6.89 7 (000 mys tied frow cell sediment pauses. 1237 305 ~100 6.84 12.80 1240 -11 112 ~4000 1244 ~ (06 7.33 6.95 8.64 316 22 ~ 4500 8,99 1249 ~100 317 1.15 6-81 102 slowest setting Dossibly Total Purged: Tubing: Purge Pumping Rate (approx. L/m): Well casing (in. diam): Decontamination method: Approx. Pump/Intake Depth: Well Conversion Factors: 2" = 0.17 gal / foot; 5/8" = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: QA/QC Sample: Duplicate ☐ Lab QA/QC ☐ Equipment Blank ☐ None □ Dual Sampling Method: ☐ Grundfos Pump ☐ Peristaltic Pump ☐ Bladder Pump Valve SAMPLE INFORMATION Analytical Destination Bottle Number Time **Parameters** Preservative of bottles Sample ID Sampled Laboratory Size Gx, RBDM VOCs, F + B6 -2-220126 **HCI** 40ml Dx PAHs 1 none 500 ml Carcinogenic PAHs 1 none 500 ml Method of Transportation of samples: FedEx All samples were immediately placed into a cooler and packed with ice or "blue Ice" ☐ Yes ☐ No Field Observations/Notes of sampling event: 850

GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

EVREN Northwest

Signature of Field Personnel:

EVREN Northwest

GROUND WATER FIELD SAMPLING DATA FORM (FIELD) PROJECT NAME: 8701 Greenwood Avenue N. Seattle

PROJECT NAM Event: Grou	IE: 8701 G	reenwood A	Avenue N. Se	attle				R: 1581-210	01-01
Field Personnel: Weather Condition	s:	to and Erik Cl	cloup)	/ 37	°F		Monitoring Well I Start Tim	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	-3
DTW (prior to purg	ing):	.54	Mensey	PLIRGING IN	16/22 IFORMATION				
	DTW During Purging	Pumping Rate	Temperature	Specific Conductivity	Dissolved Oxygen	Water pH	ORP	(Ppn) Turbidity	Total Quantity
Time	(feet)	(L /min)	(degree C)	(mS/cm), ±3%		(S.U.), , ±0.1%	(mV), , ±10 mV		Purged (gallons/liters)
11:07			dischar	grag.	from 3	lanna	From a	ell	0.1
11:10	2.37	700	9.47	226	3.85	7.84	-275	139	0.7
મા:11 સા:11	3.60		9.99	277	217	794	-296	138	1.5
11:22	3.60	11	1044	222	1.57	2,90	- 320	138	2.3 3.1
11.76	4.25	31	10.12	234	172	1.88	-330	139	3.9
11:340	4.25	150	10.07	277	1.30	787	-355	139	4.5
11034	yrs	11	10.00	277	, l. 34	7.85	-339	139	5-1
				col	lect &	angle			
								Total Purged	l:
Tubing: Purge Pumping Rat Decontamination me Well Conversion Fa	ethod:	W. Au Thirth		WELL CON	DITION		/ell casing (in. diar Pump/Intake Dep	·	J C
Recommended Wel	I Repairs/Addition	al Notes:		WLLL OOK	JITION				
QA/QC Sample: Sampling Method:	20-20 20	icate	Lab QA/QC Peristaltic Pur	850 B B	ment Blank ler Pump	None Dual Valve			
	THE REAL PROPERTY.		S	AMPLE INFO	RMATION	Valvo		MELY EVIL	
Analyt Parame		Destinati Laborato	11111111111111111111111111111111111111	eservative	Bottle Size	Number of bottles	San	nple ID	Time Sampled
Gx, RBDN		F+B		HCI	40ml	6	4	3.220126	1 laste
Dx PA		u		none	500 ml		WELL-	5. 2 201215	1143
Carcinoger	nic PAHs		1	none	500 ml	1			
Method of Transpor All samples were in Field Observations	nmediately placed	into a cooler and		r "blue Ice"		Yes	□ No		
				19.10		- O bot	A. Granden		
		- Au	• >	<u></u>	49				
Signature of Field	Personnel:	634	~	100				2	

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD) PROJECT NAME: 8701 Greenwood Avenue N. Seattle PROJECT NUMBER: 1

PROJECT NUMBER: 1581-21001-01 Event: Ground Monitoring Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: Weather Conditions: cloud Start Time: :00 DTW (prior to purging): 100 WELL PURGING INFORMATION Total DTW During Pumping Specific Dissolved Water Quantity Purging Rate Temperature Conductivity Oxygen Hq ORP Turbidity Purged Time (feet) (L/min) (degree C) (mS/cm), ±3% (mg/L), ±10% (S.U.), , ±0.1% (mV), , ±10 mV (NTU), , ±10% (gallons/liters) 1508 400 61 139 2.53 453. 11 139 1.65 2.85 61 W 11 .73 .45 7.82 585 139 5.0 11 (2,26 0.02 1.34 7.80 - 614 139 6.6 279 7.9 12:30 325 139 NO:02 1.28 779 -629 12:34 9.2 0.02 77 B 1.22 -643 135 Total Purged: Purge Pumping Rate (approx. L/m): Well casing (in. diam): Decontamination method: Approx. Pump/Intake Depth: Well Conversion Factors: 2" = 0.17 gal / foot; 5/8" = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: QA/QC Sample: Duplicate ☐ Lab QA/QC ☐ Equipment Blank None □ Dual Sampling Method: ☐ Grundfos Pump Peristaltic Pump □ Bladder Pump Valve SAMPLE INFORMATION Analytical Destination Bottle Time Number **Parameters** Preservative Size of bottles Sample ID Sampled Laboratory Gx, RBDM VOCs. F+B HCI 6 40ml Dx PAHs 1 270126 500 ml none 1 Carcinogenic PAHs none 500 ml Method of Transportation of samples: FedEx Yes All samples were immediately placed into a cooler and packed with ice or "blue Ice" ☐ No Field Observations/Notes of sampling event: Signature of Field Personnel:

PROJECT NAME: 8701 Greenwood Avenue N. Seattle

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NUMBER: , 1581-21001-01

Event: Grou	und Monitoring					D	ate:	112610	2
Field Personnel:	Dan Sajk	o and Erik C					Monitoring Well I	D: WELL-	5
Weather Condition	is:	cloudy	3607		A		Start Tim	e: 1010	3
DTW (prior to purg	jing):	0.1	02 nea						
			WELL	PURGING IN	FORMATION				
Time	DTW During Purging (feet)	Pumping Rate	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
10:03	0.1	(ACTION)	(degree c)	w enter	(Hig/L), ±1070	1	1 ((110),, ±10%	Ø . (
10.07	N 0.30	225	1226	276	3.73	2.34	-328	์ เฮิจ	1.0
10:11	A 0.39	11	12.37	278	1.63	2.20	-354	139	1.9
10:15	~0.5	11	1229	248	1.42	2-3-3	-365	139	28
10:19	~0.53	11	1251	278	1.27	269	-347	139	3:7
10:23	10.6	11	12.50	278	1.24	3.66	- 377	139	4.6
10:27	10.6	, (1250	220	1.24	765	-329	139	5.5

	İ								
						1	**************************************	THE	<u></u>
	1/4"	LDPE						Total Purge	eu.
Tubing:		UPPO				14	Vell casing (in. dia	m): 24	we
Purge Pumping Ra							. Pump/Intake Dep		
Decontamination m Well Conversion Fa		al / foot: 5/8" = 1	0.02 gal/foot			Арргох	T uniprintant Dop	, , , , , , , , , , , , , , , , , , ,	
vveii Conversion Fa	actors. 2 - 0.17 g	ai / 1001, 5/0 -	0.02 gai/100t	WELL CON	DITION				
Recommended We	II Repairs/Addition	al Notes:							
Troopininonada Tro	in repair on tagition	<u> </u>							
7									
QA/QC Sample: Sampling Method:	☐ Dupl	icate idfos Pump	☐ Lab QA/QC ☐ Peristaltic Pu		oment Blank der Pump	None Dual Valve			
			S	AMPLE INFO	RMATION				Mill W
Analy Param		Destina Laborat		reservative	Bottle Size	Number of bottles	San	nple ID	Time Sampled
Gx, RBDI		F+	В	HCI	40ml	6	WELLS		6
Dx P		"		none	500 ml		wews		10:3
Carcinoge	nic PAHs	"		none	500 ml	_ 1			100.5
PARTYONG TEACH TRANS	7.0 W.C. B.C. W.C.	£378 ±344							
Method of Transpo				or "blue lee"		☐ Yes	☐ No		
Field Observation			nd packed with ice of	of blue ice		☐ 163	L 140		
Field Observation	is/Notes of sample	ing event.							
									1
		r							
Signature of Field	l Personnel	(2)							7
Signature of Field	0.001111011		1						

GROUND WATER FIELD SAMPLING DATA FORM (FIELD) REN Northwest PROJECT NUMBER: 1581-21001-01 8701 Greenwood Avenue N. Seattle FINOJECT NAME: **Event:** Ground Monitoring Date: 0 Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: Weather Conditions: Start Time: 1000 105 DTW (prior to purging): WELL PURGING INFORMATION Total Dissolved Water DTW During Specific Pumping Quantity Conductivity Oxygen ORP Turbidity Purging Temperature рΗ Rate Purged Time L/min) (mS/cm), ±3% (mg/L), $\pm 10\%$ (S.U.), $\pm 0.1\%$ (mV), $\pm 10 \ mV$ (NTU), , ±10% (gallons/liters) (feet) (degree C) 1.05 enters 00 water 0 cell 37.9 8.19 284 1.47 7.08 111 1.54 30 500 1004 34.5 1.26 8.93 7.01 105 130 282 1008 1.78 0.99 28.9 1560 9.08 283 88 1013 1.76 100 7.23 1018 24.7 1.78 100 9.09 283 0.95 2060 7.22 2460 0.93 283 1022 1-78 100 9.09 7.23 77 9.19 0.88 2860 1026 100 282 7.22 72 Total Purged: 2860 Tubing: Z''100 Purge Pumping Rate (approx. L/m): Well casing (in. diam): Decontamination method: Approx. Pump/Intake Depth: Well Conversion Factors: 2" = 0.17 gal / foot; 5/8" = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: QA/QC Sample: ☐ Duplicate ☐ Lab QA/QC Equipment Blank ■ None ☐ Dual Sampling Method: ☐ Grundfos Pump ☐ Peristaltic Pump ☐ Bladder Pump Valve SAMPLE INFORMATION Analytical Destination Bottle Number Time Parameters Laboratory Preservative Size of bottles Sample ID Sampled

Gx, RBDM VOCs. F + B4-220126 1030 HCI 40ml 6 Dx PAHs 1 none 500 ml Carcinogenic PAHs 1 none 500 ml Method of Transportation of samples: FedEx Courier

All samples were immediately placed into a cooler and packed with ice or "blue Ice"

Field Observations/Notes of sampling event:

☐ No

Signature of Field Personnel:

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD) 8701 Greenwood Avenue N. Seattle PROJECT NAME: PROJECT NUMBER: 1581-21001-01 Event: Ground Monitoring Date: Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: 36°E Weather Conditions: 9:09 Start Time: DTW (prior to purging): WELL PURGING INFORMATION Total DS DTW During Pumping Specific Dissolved Water Quantity Purging Rate Temperature Conductivity Oxygen Hq ORP Turbidity Purged Time (feet) (L/min) (degree C) (mS/cm), ±3% (mg/L), ±10% (S.U.), ±0.1% (mV), , ±10 mV (NTU), , ±10% (gallons/liters) 9:10 WA .30 255 205 11 46 156 - 310 2.61 0420 19 147 7.65 -328 3.00 9:30 1.82 11 43 3.72 .41 2.61 -343 .38 9:34 11 7.61 -348 143 Total Purged: 4 -5 LOVE Tubing: 211 200 Purge Pumping Rate (approx. L/m): Well casing (in. diam): 80 Decontamination method: Approx. Pump/Intake Depth: Well Conversion Factors: 2" = 0.17 gal / foot; 5/8" = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: ☐ Lab QA/QC □ Equipment Blank None None QA/QC Sample: Duplicate ☐ Dual Sampling Method: ☐ Grundfos Pump Peristaltic Pump □ Bladder Pump Valve SAMPLE INFORMATION Bottle Time Analytical Destination Number of bottles Sample ID Sampled **Parameters** Laboratory Preservative Size 6 Gx. RBDM VOCs. F+B HCI 40ml 1 220126 Dx PAHs none 500 ml 1 Carcinogenic PAHs none 500 ml

П No

Method of Transportation of samples:

Signature of Field Personnel:

Field Observations/Notes of sampling event:

FedEx

All samples were immediately placed into a cooler and packed with ice or "blue Ice"

Courier

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD) PROJECT NAME: 8701 Greenwood Avenue N. Seattle

PROJECT NA Event: Gro	ME: 8701 G ound Monitoring		Avenue N. Se	eattle			PROJECT NUMBE Date:	R: 1581-21	
Field Personnel:		co and Erik C	hapman				Monitoring Well I	D: \$	
Weather Conditio							Start Tim	e: 080	D
DTW (prior to pur	ging): 2	31							
			WELL	PURGING IN	FORMATION				
Time	DTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
0802		wate			w cee		_		
0806	2.500	160	8.5	272	10.3	6.86	135	49.6	500
0810	2.59	160	9.56	273	1.04	6.91	132	44.9	1300
0814	2.59	160	9.71	275	0.89	6.93	130	24.8	1920
08(8	2.59	160	10.03	274	0.77	6.96	124	18-9	2560
0822	2.59	160	10.24	274	0.71	7.01	117	17.1	3200
0826	2.59	160	10.34	278	10.61	7.08	108	16.4	3840
0830	2.59	(60	10.44	279	0.61	7.24	94	16.0	4480
0834	7.59	166	10.43		0.59	7-23	90	Total Purgeo	5120
Tubing: Purge Pumping Ra Decontamination n Well Conversion F		26 al / foot; 5/8" = 0					/ell casing (in. dian Pump/Intake Dep		
Recommended We	ell Repairs/Addition	al Notes:		WELL CONI	DITION				
QA/QC Sample: Sampling Method:	☐ Dupl	icate dfos Pump	☐ Lab QA/QC☐ Peristaltic Pu		ment Blank er Pump	☐ None ☐ Dual Valve			
			S	AMPLE INFO	RMATION	1			
Analy Param		Destinati Laborato		eservative	Bottle Size	Number of bottles	Sam	ple ID	Time Sampled
Gx, RBDI	M VOCs,	F + B		HCI	40ml	6	WELL-8		
Dx P	AHs	u		none	500 ml	1			
Carcinoge	nic PAHs	и		none	500 ml	1			
Method of Transpo	ortation of samples:	FedEx	Courier						
A1	mmediately placed			r "blue Ice"		☐ Yes	☐ No		
	s/Notes of sampl								
Ecology	1 BNN	845							
			are to the latest and	No. of the second secon		COMPANY THE CONTRACT TO SECURITY OF THE SECURITY OF THE CONTRACT TO SECURITY OF THE SECURI	a martiner we work of two par Williams Williams	unun ann Erichan Annard SWOSH SWORT ST. ST. ST. ST.	
Signature of Field	Personnel:	1							

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NAM Event: Grou	E: 8701 G nd Monitoring	reenwood	Avenue N. Se	eattle			PROJECT NUMBE	R: 1581-21	
Field Personnel: Weather Condition	s:	co and Erik C	M			***************************************	Monitoring Well I Start Tim		1-9
DTW (prior to purgi	ng):	32.40	btac (01/26/2	7				
			WELL	PURGING IN	FORMATION				Tatal
Time	DTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (MS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), ±10%	Total Quantity Purged (gallons/liters)
8:07			GW.	disch	rsm 6	on Man.	ra flese	ell	Ø
18:10	2.0	200	11.23	200	3.96	2.11	-177	<u> </u>	0.5
8:14	7.14	11	1631	281	3.97	7.17	- 200	141	1.3
B:18	7.20	11	1.20	781	3.49	7:17	-209	140	2.1
8:22	224	200	11.44	281	7.40	7.16	-208	140	2.9
6:26	2.26	11	(.35	281	1.55	7.16	-706	tho	3.7
6.30	2.26	11	11.69	201	1.42	7.14	-205	140	9.5
6.34	2.28	· · ·	1613	760	1.38	7.14	-204	140 140	
0:38	230			261	1.33	7.13	-204	ICO	6.(
				X \	mts	Tos	Total	duscol wed	-
Tubing: Purge Pumping Rate Decontamination me Well Conversion Fac	thod:	al / foot; 5/8" = 0	0.02 gal/foot	WELL COND	DITION		/ell casing (in. dian Pump/Intake Dept	.,	e C
Recommended Well	Repairs/Addition	al Notes:							
QA/QC Sample: Sampling Method:	☐ Dupli	icate idfos Pump	☐ Lab QA/QC ☐ Peristaltic Put		ment Blank er Pump	None Dual Valve			
			S	AMPLE INFO	RMATION		Manager 1		
Analyti Parame	ters	Destinati Laborato	ory Pr	eservative	Bottle Size	Number of bottles		ple ID	Time Sampled
Gx, RBDM		F+E	3	HCI	40ml	6	well-9	220/25	*
Dx PA				none	500 ml	1 1	well		8'S0
Carcinogen	ic PAHs			none	500 ml	1 1			
Method of Transport All samples were im				r "blue Ice"		Yes	□ No		
Field Observations	/Notes of sampli	ing event:					u ^d		
Signature of Field F	Personnel:		1,						

PROJECT NAME Event: Groun		reenwood A	lvenue N. Se	eattle			PROJECT NUMBE Date:	25/22	
Field Personnel:	Dan Saik	o and Erik Cl	nanman		WELL	-10	Monitoring Well II	UE:	
Weather Conditions:		Gunn			were		Start Time		
DTW (prior to purgin	ng):	0.1	T		MONTH MANAGEMENT OF THE PARTY O				_
			WELL	PURGING IN	FORMATION				e cylligin
Time 5.40 5.44 5.46 6.52 5.56 6:00 6:04	DTW During Purging (feet) 0.80 0.31 0.33 0.16 0.97 0.90	Pumping Rate (L/min) 225 4 11	Temperature (degree C) 7-87 9-49 9-49 9-46	Specific Conductivity (mS/cm), ±3% 0.283 0.283 0.281 0.281 0.281	Dissolved Oxygen (mg/L), ±10% D. F1 D. F1 O. Y9 O. Y6 O. Y6	Water pH (S.U.), ±0.1% 7.07 7.09 7.09 7.09 7.09	ORP (mV),, ±10 mV 60 -24 -64 -93 -109 -115 -124	Turbidity (NTU),,±10% 41.4 25.2 24.3 24.5 (9.4 18.3	Total Quantity Purged (gallons/liters) O.b L.S 2.4 3.3 4.1 4.9 5.7
Tubing: Purge Pumping Rate Decontamination met Well Conversion Fact	hod: tors: 2" = 0.17 g	al / foot; 5/8" = 0	dedicate 225 ml/ .02 gal/foot	WELL CONI	DITION		Vell casing (in. diar . Pump/Intake Dep		ed: 5.7
QA/QC Sample: Sampling Method:	Dupl		☐ Lab QA/QC		ment Blank er Pump	None Dual Valve			
			S	AMPLE INFO	RMATION	Valvo			
Analytic		Destinati	on		Bottle Size	Number of bottles	Sam	ple ID	Time Sampled
Paramet Gx, RBDM	the Committee of the Co	Laborato F + B	,	reservative HCl	40ml	6		0-22012	
Dx PA		F T D		none	500 ml	1			
Carcinogen		u		none	500 ml	1	LAELL-	FD-220	13-11:3
Carcinogen	10 1 71110			110110					
								1	
Method of Transporta							- 20		
All samples were imr			d packed with ice of	or "blue Ice"		Yes	☐ No		
Field Observations	wotes of sampl	ing event:							
						<u> </u>			
			1	_					
Signature of Field F	Personnel:	((-	Ann						

GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

EVREN Northwest

GROUND WATER FIELD SAMPLING DATA FORM (FIELD) **EVREN Northwest** PROJECT NUMBER: 1581-21001-01 8701 Greenwood Avenue N. Seattle PROJECT NAME: 22 Event: Ground Monitoring Date: Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: 430 F Weather Conditions: Sunn Start Time: 6:20 DTW (prior to purging): WELL PURGING INFORMATION Total DTW During Specific Dissolved Water Pumping Quantity Turbidity ORP Purging Temperature Conductivity Rate Oxygen рН Purged (NTU), , ±10% (gallons/liters) (feet) √(L/min) (degree C) (mS/cm), ±3% (mg/L), ±10% (S.U.), , ±0.1% (mV), , ±10 mV Time 16:32 8.24 50 1.36 ~0.07 6.85 B.BU all 6:36 0.99 700 1.20 0,07 0,789 - (31 73.5 6: 40 10 11 6.84 7.00 0.07 093 0.287 6:44 12 7.05 71.8 0.07 U -181 10 0.07 16. UP -145 21.9 3.0 7.04 0.07 705 36 23 0.287 Total Purged: 3 (_ LDPE Tubing: 71 Puc 150 ml/min Purge Pumping Rate (approx. L/m): Well casing (in. diam): Decontamination method: Approx. Pump/Intake Depth:

Well Conversion Factor	ors: 2" = 0.17 ga	al / foot; 5/8" = 0.02 gal/fo	oot				
			WELL CON	DITION			
Recommended Well R	Repairs/Additiona	al Notes:					
QA/QC Sample: Sampling Method:	☐ Duplio	200		ment Blank er Pump	None Dual Valve	27 AP 20 AP	
			SAMPLE INFO	RMATION			
Analytica Paramete	23.5	Destination Laboratory	Preservative	Bottle Size	Number of bottles	Sample ID	Time Sampled
Gx, RBDM \	/OCs,	F + B	HCI	40ml	6		
Dx PAH	ls	u)	none	500 ml	1	1054-11-220125	
Carcinogenio	PAHs	t t	none	500 ml	1		17:01
	ediately placed i	FedEx Cou into a cooler and packed			₩ Yes	□ No □	
Field Observations/N	lotes of sampli	ng event:	oder su	ells d	ecomp	ased Sulfur	

Signature of Field Personnel:

GROUND WATER FIELD SAMPLING DATA FORM (FIELD) **EVREN Northwest** PROJECT NAME: 8701 Greenwood Avenue N. Seattle PROJECT NUMBER: 1581-21001-01 Event: Ground Monitoring 1-26-22 Field Personnel: Dan Sajko and Erik Chapman Monitoring Well ID: 12 Weather Conditions: Start Time: 0856 DTW (prior to purging): WELL PURGING INFORMATION

Time (feet)		DTW During Purging	Pumping Rate	Temperature	Specific Conductivity	Dissolved Oxygen	Water pH	ORP	Turbidity	Total Quantity Purged
O 9 0 1										(gallons/liters)
0 9 0 3	0858	S		purge						.0
Q	0901	l f	low cel	i full						500
O 9 0 7	0903	1.19	185							925
D 9 15	0907	1.21		9.18	285	1.02	7.22	127	14.8	1665.
0927 19 150 9.35 285 0.84 7.21 9.3 14.7 406.5	6915	1.19								
150 9.46 2.84 0.80 7.20 45 14.6 5265 0.935 (.14 150 9.61 2.84 0.80 7.21 2.0 14.5 5865 1.45 1.45 1.45 1.45 5265 1.46 1.50 9.61 2.84 0.80 7.21 2.0 14.5 1.45 5865 1.46 1.50 9.61 2.84 0.80 7.21 2.0 14.5 1.46 1.45 5865 1.46 1.45 1.45 1.45 1.46 1.45 1.45 1.45 1.46 1.45 1.45 1.46 1.45 1.45 1.46 1.45 1.45 1.46 1.45	0923	(.19	150	9-35	285					
Total Purged: Total Purged	0931	6.19					·			5765
Total Purged: Total Purged: Total Purged: Total Purged: Total Purged: Total Purged: Well casing (in. diam): Z* Approx. Pump/Intake Depth: Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: GA/OC Sample:	0935	(-16			284	0.80				
Tubing:	***************************************									0000
Tubing:										
Tubing:	***************************************									
Tubing:						 	1 1			<u> </u>
Tubing:										
Tubing:				<u> </u>		1				
Tubing:						I I				
Tubing:						1	I.	ļ	Total Puras	i
Decontamination method: Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot WELL CONDITION Recommended Well Repairs/Additional Notes: Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 2* = 0.17 gal / foot; 5/8* = 0.02 gal/foot Well Conversion Factors: 3* Additional Notes: 3* Dual / valve Sample: Dual / valve Sample: Dual / valve Sample: Number of bottles Sample: 3* Sample: Dual / valve Sample: Number of bottles Sample: 3* Sample: Dual / valve Sample: Number of bottles Sample: 3* Sample: Dual / valve	Tubing:						14		44, 27 TOTA STREET ST. 20 JULY A 650 C 600	105 00 3 A5
WELL CONDITION Recommended Well Repairs/Additional Notes: WELL CONDITION WELL CONDITION Recommended Well Repairs/Additional Notes: WELL CONDITION WELL CONDITION None Dual Valve	2 3 5		(5	50 mc/m				2.75 (4)		
WELL CONDITION Recommended Well Repairs/Additional Notes: QA/QC Sample:							Approx.	Pump/Intake Dep	th:	
Sampling Method: Grundfos Pump Peristaltic Pump Bladder Pump Valve Sample Information Sa	Recommended We	II Repairs/Addition	al Notes:	110000000000000000000000000000000000000	WELL CONI	DITION				
SAMPLE INFORMATION Analytical Parameters Laboratory Preservative Size of bottles Sample ID Sample GX, RBDM VOCs, F + B HCI 40ml 6 WELL-[2-220126 5938] Dx PAHs " none 500 ml 1	QA/QC Sample:	☐ Dupl	icate	☐ Lab QA/QC	☐ Equip	ment Blank	☐ None			
Analytical Parameters Laboratory Preservative Size of bottles Sample ID Sample GX, RBDM VOCs, F + B HCI 40ml 6 WEU-12-220126 0936 Dx PAHs " none 500 ml 1 Carcinogenic PAHs " none 500 ml 1 Wethod of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event:	Sampling Method:	Simple		5 2 5-55	19-1106					
Parameters Laboratory Preservative Size of bottles Sample ID Sample Gx, RBDM VOCs, F+B HCI 40ml 6 WELL-IZ-2Z0126 938 Dx PAHs " none 500 ml 1 Carcinogenic PAHs " none 500 ml 1 Welthood of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event: Welthood of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Welthood of Transportation of sampling event:				S	AMPLE INFO	RMATION				Maria I
Gx, RBDM VOCs, F+B HCI 40ml 6 WEU-12-220126 0938 Dx PAHs " none 500 ml 1 Carcinogenic PAHs " none 500 ml 1 Wethod of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event:			27.5	22	120	1			g 0e	
Dx PAHs " none 500 ml 1 Carcinogenic PAHs " none 500 ml 1 Method of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event:	101.0001100000	W. Chinacho		,	A. C.					Sampled
Carcinogenic PAHs " none 500 ml 1 Method of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event:				3	HCI	40ml		WELL-12-	220126	0938
Method of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event: While Taylor All Samples were immediately placed into a cooler and packed with ice or "blue Ice" No No No No No No No No No N	Dx P	AHs			none	500 ml	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Method of Transportation of samples: FedEx Courier All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event:	Carcinoge	nic PAHs	u		none	500 ml	1	6		1
All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event: Well tag it										Ø
All samples were immediately placed into a cooler and packed with ice or "blue Ice" Field Observations/Notes of sampling event: Well tag it	Method of Transpo	rtation of samples:	FedEx	Courier						**
Ecology BMT 401 Well tag &					or "blue Ice"		Yes	☐ No		
Ecology BMT 401 Well tag &										
Well tong ex	Caloa	**************************************								
Signature of Field Personnel:	Well	Tank								
	Signature of Field	Personnel:			100					

PROJECT NAME: 8701 Greenwood Avenue N. Seattle Event: Ground Monitoring				PROJECT NUMBER: 1581-21001-01 Date:					
Field Personnel: Weather Condition	ons:	ko and Erik C		L > TOC		Monitoring Well ID: 13 Start Time: 104			
DTW (prior to pur	ging):	(6500		PURGING IN					
Time ((06:	DTW During Purging (feet) D.OD O.OO O.OO D.10	Pumping Rate (L/min) Wafur 175 175 180	Temperature (degree C) 9.08 10.31 10.67	Specific Conductivity (mS/cm), ±3% 285 278 280 280	Dissolved Oxygen (mg/L),±10% Cell 2-63 0-8+ 0-74 0-76	Water pH (S.U.), , ±0.1% 7 . 07 7 . 15 7 . 19	ORP (mV),,±10 mV 113 20 -(8 -33	Turbidity (NTU),,±10% 38.7 26.7 29.1 25.2	500 1400 2100
1128	0-05	180	11.13	217 217	0-61	7.18	-48 -61	22.4	3240 3960 5040
	(D	<i>y</i> 20.	.02						
Tubing: Purge Pumping Ra Decontamination r	nethod:		[80				/ell casing (in. dia Pump/Intake De	ım): Z "	ed: 5040
Well Conversion F	actors: 2" = 0.17 g	gal / foot; 5/8" = 0	1.02 gal/foot	WELL CONE	DITION				
Recommended W		nal Notes:	☐ Lab QA/QC		ment Blank	☐ None	-		
Sampling Method:	☐ Gru	ndfos Pump	Peristaltic Pu	ımp 🗌 Bladde	er Pump	☐ Dual Valve			
				AMPLE INFOR					
	ytical neters M VOCs,	Destinat Laborate F + E	ory Pi	reservative HCl	Bottle Size 40ml	Number of bottles		nple ID - 220126	Time Sampled
	PAHs enic PAHs	u u		none none	500 ml	1 1			
All samples were i	ortation of samples immediately placed ns/Notes of samp	l into a cooler an	Courier d packed with ice o	or "blue ice"		Yes	□ No		
Signature of Fiel	d Personnel:			-					

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

Appendix C Laboratory Analytical Report

Summary: DATA VALID?

☐ YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Kiddie Academy	Project Number	r: <u>1581-21001-02</u>		_
Date of Review: 02/04/2022	Lab. Name: F&BI	Lab Batch ID #:2013	73	_
Chain of Custody				
 Are all requested analyses reported Were the requested methods used? Trip blank submitted? Field blank submitted? Timing 		⊠yes ⊠yes ⊠yes ⊠yes	□no □no □no □no	
 5.) Samples extracted within holding tin If not, are all discrepancies foot 6.) Analysis performed within holding tin If not, are all discrepancies foot 	noted? nes?	⊠yes □yes ⊠yes □yes	□no □no □no □no	⊠NA ⊠NA
Quality Assurance/Quality Control 7.) Are the required reporting limits reported values above either	orted? (MRLs vs MDLs/	•	□no □no	
9.) Are all values between the MDL & F 10a.) Are reporting limits raised for other 10b.) If so, are they footnoted?		□yes	□no ⊠no □no	⊠NA ⊠NA
11.) Lab method blank completed?12.) Lab, Field, or Trip Blank(s) report of the second sec		⊠yes □yes	□no ⊠no	
13.) For inorganics and metals, is there			□no	⊠NA
If not, are all discrepancies foot 14.) For VOCs, is there one method bla If not, are all discrepancies foot	ank for each day of analy	□yes sis? □yes □yes	□no □no □no	□NA
15.) For SVOC's, is there one method by the lift not, are all discrepancies foot	olank for each extraction	-	□no □no	\Box NA
Accuracy 16.) Is there a surrogate spike recovery		•	□no	□NA
Do all surrogate spike recoverie If not, are all discrepancies foot	noted?	□yes	□no □no	⊠NA
17.) Is there a spike recovery for all Lab Do all LCS/LCSD spike recover	ies meet accepted criteri	a? □yes	□no ⊠no	□NA
If not, are all discrepancies foot 18.) Are all LCS/LCSD RPDs within acc If not, are all discrepancies foot Precision	ceptable limits?	yes ⊠yes □yes	□no □no □no	□NA □NA ⊠NA
19.) Are all matrix spike/matrix spike du acceptable limits?		⊠yes	□no	□NA
If not, are all discrepancies footnot 20.) Are all matrix spike/matrix spike du acceptable limits?		□yes ⊠yes	□no	⊠NA □NA
If not, are all discrepancies footnot 21.) Do all RPD calculations for Field D		□yes	□no □no	⊠NA □NA
Comments:				
Initial Review By: CR		Final Review By:		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 4, 2022

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on January 26, 2022 from the 1581-21001-02, F&BI 201373 project. There are 39 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0204R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2022 by Friedman & Bruya, Inc. from the Evren Northwest 1581-21001-02, F&BI 201373 project. Samples were logged in under the laboratory ID's listed below.

Evren Northwest
WELL-2-220126
WELL-3-220126
WELL-4-220126
WELL-5-220126
WELL-6-220126
WELL-7-220126
WELL-8-220126
WELL-9-220126
WELL-10-220126
WELL-11-220126
WELL-13-220126
WELL-FD-220126
Trip Blank
WELL-12-220126

Several compounds in the 8270E laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The affected data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

Date Extracted: 02/02/22 Date Analyzed: 02/02/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
WELL-2-220126 201373-01	<100	95
WELL-3-220126 201373-02	<100	93
WELL-4-220126 201373-03	<100	91
WELL-5-220126 201373-04	<100	94
WELL-6-220126 201373-05	<100	95
WELL-7-220126 201373-06	<100	93
WELL-8-220126 201373-07	<100	91
WELL-9-220126 201373-08	<100	90
WELL-10-220126 201373-09	<100	92
WELL-11-220126 201373-10	<100	93
WELL-13-220126 201373-11	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

Date Extracted: 02/02/22 Date Analyzed: 02/02/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
WELL-FD-220126 201373-12	<100	93
WELL-12-220126 201373-14	<100	91
Method Blank	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

Date Extracted: 01/31/22 Date Analyzed: 01/31/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$rac{ ext{Residual Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
WELL-2-220126 201373-01	<50	<250	145
WELL-3-220126 201373-02	<50	<250	134
WELL-4-220126 201373-03	<50	<250	141
WELL-5-220126 201373-04	64	<250	116
WELL-6-220126 201373-05	<50	<250	131
WELL-7-220126 201373-06	<50	<250	142
WELL-8-220126 201373-07	<50	<250	127
WELL-9-220126 201373-08	<50	<250	147
WELL-10-220126 201373-09	<50	<250	118
WELL-11-220126 201373-10	170	<250	123
WELL-13-220126 201373-11	<50	<250	134
WELL-FD-220126 201373-12	<50	<250	134

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

Date Extracted: 01/31/22 Date Analyzed: 01/31/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	Residual Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
WELL-12-220126 201373-14	<50	<250	128
Method Blank 02-0270 MB	<50	<250	146

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-2-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-01
Date Analyzed:	02/01/22	Data File:	020139.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	78	126
Toluene-d8	95	87	115
4-Bromofluorobenzene	97	92	112

4-Dromonuorobenzene	91
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	WELL-3-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373

Date Received: 01/26/22 Project: Date Extracted: 02/01/22 Lab ID: 201373-02 Date Analyzed: 02/02/22 Data File: $020216.\mathrm{D}$ Matrix: Water Instrument: GCMS11 Units: ug/L (ppb) RF Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	114	78	126
Toluene-d8	97	87	115
4-Bromofluorobenzene	93	92	112

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.02 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 Methyl t-butyl ether (MTBE) <1 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1

1,2-Dichloroethane (EDC) < 0.2 1,1,1-Trichloroethane <1 Benzene < 0.35 Trichloroethene < 0.5 Toluene <1 Tetrachloroethene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	WELL-4-220126	Client:	Evren Northwest
-------------------	---------------	---------	-----------------

Project: Date Received: 1581-21001-02, F&BI 201373 01/26/22 Lab ID: Date Extracted: 201373-0302/01/22 Date Analyzed: 02/02/22 Data File: 020217.DMatrix: Instrument: Water GCMS11 Units: ug/L (ppb) Operator: RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	78	126
Toluene-d8	94	87	115
4-Bromofluorobenzene	93	92	112

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.02
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	< 0.2
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	< 0.5
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-5-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-04
Date Analyzed:	02/02/22	Data File:	020218.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	78	126
Toluene-d8	88	87	115
4-Bromofluorobenzene	95	92	112

4-Dromonuorobenzene	90
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-6-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-05
Date Analyzed:	02/02/22	Data File:	020244.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	78	126
Toluene-d8	94	87	115
4-Bromofluorobenzene	96	92	112

4-Dromonuorobenzene	90
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-7-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-06
Date Analyzed:	02/02/22	Data File:	020245.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	99	92	112

4-Diomondonenzene	55
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-8-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-07
Date Analyzed:	02/02/22	Data File:	020246.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	98	92	112

4-Dromonuorobenzene	90
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-9-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-08
Date Analyzed:	02/02/22	Data File:	020247.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	116	78	126
Toluene-d8	94	87	115
4-Bromofluorobenzene	96	92	112

4-bromonuorobenzene	96
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: WELL-10-220126	Client:	Evren Northwest
----------------------------------	---------	-----------------

Project: 1581-21001-02, F&BI 201373 Date Received: 01/26/22 Lab ID: Date Extracted: 201373-09 02/01/22 Date Analyzed: 02/02/22 Data File: 020248.DMatrix: Instrument: Water GCMS11 Units: ug/L (ppb) Operator: RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	100	92	112

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.02
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	< 0.2
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	< 0.5
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-11-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-10
Date Analyzed:	02/02/22	Data File:	020249.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	78	126
Toluene-d8	92	87	115
4-Bromofluorobenzene	94	92	112

4-Dromonuorobenzene	94
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	WELL-13-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-11
Date Analyzed:	02/03/22	Data File:	020250.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	97	92	112

4-Bromofluorobenzene	97
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	WELL-FD-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373

Date Received: 01/26/22 Project: Date Extracted: 02/01/22 Lab ID: 201373-12 Date Analyzed: 02/03/22 Data File: $020251.\mathrm{D}$ Matrix: Instrument: GCMS11 Water Units: ug/L (ppb) RF Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	78	126
Toluene-d8	94	87	115
4-Bromofluorobenzene	95	92	112

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.02 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 Methyl t-butyl ether (MTBE) <1 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-13
Date Analyzed:	02/01/22	Data File:	020138.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	78	126
Toluene-d8	96	87	115
4-Bromofluorobenzene	102	92	112

4-Dromonuorobenzene	102
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WELL-12-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	02/01/22	Lab ID:	201373-14
Date Analyzed:	02/03/22	Data File:	020252.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	111	78	126
Toluene-d8	99	87	115
4-Bromofluorobenzene	101	92	112

4-Bromofluorobenzene	101
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	< 0.2
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

F&BI 201373

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Method Blank	Client:	Evren Northwes
Date Received:	Not Applicable	Project:	1581-21001-02,
D - D - 1		T 1 TT	

Date Extracted: 02/01/22 Lab ID: 02-0280 mbDate Analyzed: 02/02/22 Data File: 020215.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) RF Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	78	126
Toluene-d8	94	87	115
4-Bromofluorobenzene	94	92	112

Concentration Compounds: ug/L (ppb) < 0.02 Vinyl chloride Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 Methyl t-butyl ether (MTBE) <1 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) < 0.2 1,1,1-Trichloroethane <1 Benzene < 0.35 Trichloroethene < 0.5 Toluene <1 Tetrachloroethene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

G1: . G 1 TD	HIELT COOLS	CII.	T 17 .1
Client Sample ID:	WELL-2-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Data E-t-sastad.	01/91/00	Lab ID.	001979 01 1/0

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	10	60
Phenol-d6	31	10	49
Nitrobenzene-d5	104	15	144
2-Fluorobiphenyl	89	25	128
2,4,6-Tribromophenol	89	10	142
Terphenyl-d14	103	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-3-220126	Client:	Evren Northwest

Date Received: 01/26/22 Project: 1581-21001-02, F&BI 201373 Lab ID: Date Extracted: 201373-02 1/2 01/31/22 Date Analyzed: 02/01/22 Data File: 020111.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	10	60
Phenol-d6	31	10	49
Nitrobenzene-d5	102	15	144
2-Fluorobiphenyl	83	25	128
2,4,6-Tribromophenol	83	10	142
Terphenyl-d14	103	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-4-220126	Client:	Evren Northwest
Data Pagaired	01/96/99	Project:	1581 91001 09 F&B

1581-21001-02, F&BI 201373 Date Received: 01/26/22 Project: 201373-03 1/2 Date Extracted: 01/31/22 Lab ID: Date Analyzed: 02/01/22 Data File: 020112.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	41	10	60
Phenol-d6	28	10	49
Nitrobenzene-d5	101	15	144
2-Fluorobiphenyl	88	25	128
2,4,6-Tribromophenol	84	10	142
Terphenyl-d14	102	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	1.5
Fluorene	0.29
Phenanthrene	0.21
Anthracene	< 0.04
Fluoranthene	0.050
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-5-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	01/31/22	Lab ID:	201373-04 1/2
Date Analyzed:	02/01/22	Data File:	020113.D
Motrix	Water	Instrument	CCMS0

Date Analyzed: 02/01/22 Data File: 020113...

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: VM

Surmogatos	0/ Pogovomy	Lower Limit:	Upper Limit:
Surrogates:	% Recovery:	14111111.	14111111.
2-Fluorophenol	38	10	60
Phenol-d6	28	10	49
Nitrobenzene-d5	97	15	144
2-Fluorobiphenyl	83	25	128
2,4,6-Tribromophenol	87	10	142
Terphenyl-d14	102	41	138

< 0.04

< 0.04

< 0.04

< 0.04

< 0.08

Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene 4.1 Fluorene 1.3 Phenanthrene 0.36 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-6-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	01/31/22	Lab ID:	201373-05 1/2

Date Analyzed: 02/01/22 Data File: 020114.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	10	60
Phenol-d6	31	10	49
Nitrobenzene-d5	96	15	144
2-Fluorobiphenyl	89	25	128
2,4,6-Tribromophenol	82	10	142
Terphenyl-d14	93	41	138

Concentration ug/L (ppb)

-	
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-7-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Data Estadatad.	01/91/99	Lab ID.	201272 06 1/2

Date Extracted:01/31/22Lab ID:201373-06 1/2Date Analyzed:02/01/22Data File:020115.DMatrix:WaterInstrument:GCMS9Units:ug/L (ppb)Operator:VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	42	10	60
Phenol-d6	30	10	49
Nitrobenzene-d5	108	15	144
2-Fluorobiphenyl	93	25	128
2,4,6-Tribromophenol	88	10	142
Terphenyl-d14	100	41	138

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-8-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
D-4- E-44-1.	01/91/00	Lak ID.	001979 07 1/0

Date Extracted: 01/31/22 Lab ID: 201373-07 1/2 Date Analyzed: 02/01/22 Data File: 020116.DGCMS9Matrix: Water Instrument: Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	42	10	60
Phenol-d6	31	10	49
Nitrobenzene-d5	101	15	144
2-Fluorobiphenyl	93	25	128
2,4,6-Tribromophenol	83	10	142
Terphenyl-d14	101	41	138

$\begin{array}{c} & Concentration \\ Compounds: & ug/L\ (ppb) \end{array}$

Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-9-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373

 Date Extracted:
 01/31/22
 Lab ID:
 201373-08 1/2

 Date Analyzed:
 02/01/22
 Data File:
 020117.D

 Matrix:
 Water
 Instrument:
 GCMS9

 Units:
 ug/L (ppb)
 Operator:
 VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	19	10	60
Phenol-d6	17	10	49
Nitrobenzene-d5	57	15	144
2-Fluorobiphenyl	65	25	128
2,4,6-Tribromophenol	80	10	142
Terphenyl-d14	102	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-10-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	01/31/22	Lab ID:	201373-09 1/2

Date Analyzed: 02/01/22 Data File: 020118.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	39	10	60
Phenol-d6	28	10	49
Nitrobenzene-d5	94	15	144
2-Fluorobiphenyl	84	25	128
2,4,6-Tribromophenol	87	10	142
Terphenyl-d14	106	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-11-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	01/31/22	Lab ID:	201373-10 1/2
Date Analyzed:	02/01/22	Data File:	020119.D

Date Analyzed: 02/01/22 Data File: 020119.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

C	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	37	10	60
Phenol-d6	28	10	49
Nitrobenzene-d5	92	15	144
2-Fluorobiphenyl	81	25	128
2,4,6-Tribromophenol	88	10	142
Terphenyl-d14	101	41	138

< 0.08

Concentration ug/L (ppb) Naphthalene 26 jl 2-Methylnaphthalene 0.83 1-Methylnaphthalene 2.8 jl Acenaphthylene <0.04 Acenaphthene 6.9

Acenaphthene 6.9 Fluorene 2.3 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-13-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	38	10	60
Phenol-d6	30	10	49
Nitrobenzene-d5	93	15	144
2-Fluorobiphenyl	83	25	128
2,4,6-Tribromophenol	79	10	142
Terphenyl-d14	98	41	138

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-FD-220126	Client:	Evren Northwest
Date Received:	01/26/22	Project:	1581-21001-02, F&BI 201373
Date Extracted:	01/31/22	Lab ID:	201373-12 1/2

Date Analyzed: 02/01/22 Data File: 020121.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	32	10	60
Phenol-d6	24	10	49
Nitrobenzene-d5	83	15	144
2-Fluorobiphenyl	69	25	128
2,4,6-Tribromophenol	75	10	142
Terphenyl-d14	96	41	138

Compounds.	ug/Li (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	WELL-12-220126	Client:	Evren Northwest
D + D + 1	01/00/00	D	1701 01001 00 TO

Date Received: Project: 1581-21001-02, F&BI 201373 01/26/22 Lab ID: 201373-14 1/2 Date Extracted: 01/31/22 Date Analyzed: 02/01/22 Data File: 020122.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	40	10	60
Phenol-d6	29	10	49
Nitrobenzene-d5	89	15	144
2-Fluorobiphenyl	77	25	128
2,4,6-Tribromophenol	86	10	142
Terphenyl-d14	105	41	138

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
D + D + 1	AT . A 1. 1.1	D	1 7 01 01 001 00 TO

Date Received: Not Applicable Project: 1581-21001-02, F&BI 201373 01/31/22 Lab ID: Date Extracted: 02-271 mbDate Analyzed: 02/01/22 Data File: $020109.\mathrm{D}$

Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	22	10	60
Phenol-d6	14	10	49
Nitrobenzene-d5	91	15	144
2-Fluorobiphenyl	84	25	128
2,4,6-Tribromophenol	76	10	142
Terphenyl-d14	91	41	138

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 201443-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	108	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	120	120	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201373-01 (Matrix Spike)

·	Reporting	Spike	Sample	Percent Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	108	50-150
Chloroethane	ug/L (ppb)	10	<1	121	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	110	50-150
Methylene chloride	ug/L (ppb)	10	<5	112	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	104	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	103	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	106	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	106	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	110	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	105	50-150
Benzene	ug/L (ppb)	10	< 0.35	97	50-150
Trichloroethene	ug/L (ppb)	10	< 0.5	105	50-150
Toluene	ug/L (ppb)	10	<1	107	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	103	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	97	50-150
Ethylbenzene	ug/L (ppb)	10	<1	102	50-150
m,p-Xylene	ug/L (ppb)	20	<2	104	50-150
o-Xylene	ug/L (ppb)	10	<1	105	50-150

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Vinyl chloride	ug/L (ppb)	10	109	116	70-130	6	
Chloroethane	ug/L (ppb)	10	119	126	70-130	6	
1,1-Dichloroethene	ug/L (ppb)	10	107	114	70-130	6	
Methylene chloride	ug/L (ppb)	10	103	117	43-134	13	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	99	108	70-130	9	
trans-1,2-Dichloroethene	ug/L (ppb)	10	101	109	70-130	8	
1,1-Dichloroethane	ug/L (ppb)	10	103	110	70-130	7	
cis-1,2-Dichloroethene	ug/L (ppb)	10	103	111	70-130	7	
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	109	112	70-130	3	
1,1,1-Trichloroethane	ug/L (ppb)	10	103	111	70-130	7	
Benzene	ug/L (ppb)	10	96	100	70-130	4	
Trichloroethene	ug/L (ppb)	10	105	109	70-130	4	
Toluene	ug/L (ppb)	10	106	110	70-130	4	
Tetrachloroethene	ug/L (ppb)	10	107	111	70-130	4	
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	97	99	70-130	2	
Ethylbenzene	ug/L (ppb)	10	101	106	70-130	5	
m,p-Xylene	ug/L (ppb)	20	103	108	70-130	5	
o-Xylene	ug/L (ppb)	10	102	109	70-130	7	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/04/22 Date Received: 01/26/22

Project: 1581-21001-02, F&BI 201373

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

			Percent	Percent			
A 1-4 -	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Naphthalene	ug/L (ppb)	5	88	91 vo	62-90	3	
2-Methylnaphthalene	ug/L (ppb)	5	92	92	64-93	0	
1-Methylnaphthalene	ug/L (ppb)	5	95 vo	95 vo	64-93	0	
Acenaphthylene	ug/L (ppb)	5	94	95	70-130	1	
Acenaphthene	ug/L (ppb)	5	97	97	70-130	0	
Fluorene	ug/L (ppb)	5	105	101	70-130	4	
Phenanthrene	ug/L (ppb)	5	97	100	70-130	3	
Anthracene	ug/L (ppb)	5	95	100	70-130	5	
Fluoranthene	ug/L (ppb)	5	93	102	70-130	9	
Pyrene	ug/L (ppb)	5	96	100	70-130	4	
Benz(a)anthracene	ug/L (ppb)	5	100	102	70-130	2	
Chrysene	ug/L (ppb)	5	99	101	70-130	2	
Benzo(a)pyrene	ug/L (ppb)	5	92	94	70-130	2	
Benzo(b)fluoranthene	ug/L (ppb)	5	99	98	70-130	1	
Benzo(k)fluoranthene	ug/L (ppb)	5	103	103	70-130	0	
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	100	113	70-130	12	
Dibenz(a,h)anthracene	ug/L (ppb)	5	103	120	70-130	15	
Benzo(g,h,i)perylene	ug/L (ppb)	5	103	120	70-130	15	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone Dy 457-556 Email Murs Oenan W. Lorgroject specific RLs? - Yes City, State, ZIP Address_ Company_ Report To_ 1 on Hand JUZEN Marthuest

REMARKS CROWN PROJECT NAME SAMPLERS (signature) 1281- 2001-05 INVOICE TO

* 1 "Earman & Druya, 1nc. Nemid		men- 11-22012/10	MELL - 10-770125 09	% Duort - 6 - mam	+0921022-8- MAM	30 9210 22- t- MAN	MEH-6-220126 05	4092/022-5-179M	Men 7-72-16 03	20 921022 51773W	Ment, 7-170126 OIV-H 01/26/20	Sample ID	
Nemiguisned by:		(96	20	100	03	Constitution of the Consti	04-4	Lab ID	
	SIGNATURE	1021 12/52/10	01/25/20 16:20	01/16/22	01/26/2	2/2/10	1292/10	01/26/27	22/92/10	24/92/10	72/10	Date Sampled	
			[6:22	1	6 h:8	52:45	(030	(c:37	17:40	nonent of the post of the second of the seco	12:54	Time Sampled	
		ms	90	99	A0	SE SE	BB	(SW	90	6w	AF)	Sample Type	
/	RRIN	8	<u> </u>	ø	8	œ	SS.	20	တ	8	S	# of Jars	
٨	PRINT NAME	XX	X	X 又	X	X	ン	人 X	メッ	X V	X 火	NWTPH-Dx	,
′ ′										Andrew Commercial Control	\cap	NWTPH-Gx BTEX EPA 8021	
`		,							*	mar in chromata in the		NWTPH-HCID	
_	_	X	X	X	X	<u> </u>	<u>X</u>	X	X	X	X	VOCs EPA 8260	ANA
		$\widehat{}$			\triangle	メ	\succeq	×	<u>×</u>	*	X	PAHs EPA 8270	YSE
,	CON		X				:		×	×		PCBs EPA 8082	ZES REQUESTED
	COMPANY											evocs 8260	UES
	4						ż						CHIL
							•			-			
A A A A A A A A A A A A A A A A A A A	חאתה חוועה						4	34 2/11/1 50 30	ARE FOR FOR	\000 ≥ 8164	time=1247	Notes	***************************************

Seattle, WA 98119-2929
Ph. (206) 285-8282

Received by:

Relinquished by:

Tokasa Christman

N+12

01/26/27 14:37

Samples received at 10 oc

TX Z

3012 16th Avenue West

Received by:

SAMPLE CHAIN OF CUSTODY 61-26-

Page # VWS/LTCH

□ Archive samples □ Other_ Default: Dispose after 30 days Rush charges authorized by: NUSH turnaround TURNAROUND TIME SAMPLE DISPOSAL

Company_ City, State, ZIP Address_ _Email_ **7**2

TER	AMPLERS (signature)	MPLE CHAIN OF CUSTODY
		61-26-22
TURNAROUND TIME	Page# 7 of 2	tod/vw6/VW5/

							۵
Project specific RLs? - Yes / No		REMARKS	168/-2100/201	PROJECT NAME	A K	SAMPLERS (signature)	DAMILLE CHAIN OF CUSTODI 61-26-22
THE THE PROPERTY OF THE PROPER		INVOICE TO		#04			
Default: Dispose after 30 days	☐ Archive samples	SAMPLE DISPOSAL	Rush charges authorized by:	☐ Standard turnaround	TURNAROUND TIME	Page # 2 of 2	toy/vas/vac/

7h. (206) 285-8282 Recei	Seattle, WA 98119-2029 Relin	ن ب	- 1 1				The state of the s	WCH-12-220126	TVID Blank	VELL-FO-220125 12 4	WELV13-220126	Sample ID	
Received by:	Relinquished by:	Kennquished by:	sie		-			14 4-4	134-8	and the same of th	II A-H	Lab ID	
	dealle C	THE STATE OF THE S	SIGNATURE					01/26/DD 8938	Ohbler	othslea	22/01/10	Date Sampled	
			Address of the second s		,			8610		execution is to delicate the second	- i-ye	Time Sampled	
**************************************	Tokala							€.	Σ	Service military of the first of the service of the	E	Sample Type	
***************************************	k	No.	PRINT NAME					∞	7	හ	か	# of Jars	,
		k ^	N.T.	<u></u>				8		X	又	NWTPH-Dx	
	35	Z ,	ME					3		X	X	NWTPH-Gx	
-	Christensen	1	†							dina maranah		BTEX EPA 8021	
	E			-	,							NWTPH-HCID	A
		<u> </u>	lacksquare				:	8	X	\otimes	8	VOCs EPA 8260	NAI
	_							8		X	ᅩ	PAHs EPA 8270	YSE
	778		ြဋ္ဌ		·			,		areas van		PCBs EPA 8082	SRE
70	ශ්		COMPANY							X		cVocs	ANALYSES REQUESTED
dusc			A							un Acardo reverse			KIK
ples			7							THE PROPERTY OF THE PARTY OF TH			Ü
- jc(C			<u></u>						narwan udd			
Samples seceived at	22/92(10)		DATE					Addore		vandisə, ir və anar istə denili istə, anə, anə, ar vanır və arı	AN 24(2)	Notes	
<u>∫</u> 0.°C	14:31		TIME		·			0-76-22		v шист сасастичност п= пин/стт-ф.darn	X G	S tes	