

FOCUSED SUB-SLAB VAPOR INVESTIGATION

FUTURE KIDDIE ACADEMY PROPERTY

8701 Greenwood Avenue North Seattle, WA 98103

Prepared for:

Attn: Maninder Singh 1260 NE 85th Street, Suite 108 Kirkland, Washington 98033

Issued on:

February 23, 2022

EVREN NORTHWEST, INC. Project No. 1581-21001-02

FOCUSED SUB-SLAB VAPOR INVESTIGATION

Future Kiddie Academy Property

8701 Greenwood Avenue North Seattle, Washington 98103

Report for:

Attn: Maninder Singh 12620 NE 85th Street Suite-112 Kirkland, Washington 98033

and its assignees

Issued February 23, 2022 by:

Engineering Geologist 2037

Lynn D. Green

Paul M. Trone

Paul M. Trone L.G. Principal Geologist Lynn D. Green, L.E.G.
Principal Engineering Geologist

Table of Contents

1.0	Intro	duction	1
2.0	Back	ground	1
	2.1	Scope of Work	1
3.0	Site [Description	2
4.0	Meth	nods	3
	4.1	Work Objectives	
	4.2	Preparation Activities	4
	4.3	Scope of Work	4
	4.4	Sub-Slab Vapor Sampling Locations	4
	4.5	Sub-Slab Vapor Sampling Methodology	4
		4.5.1 Waste Management and Disposal	6
	4.6	Analytical Methods	6
	4.7	Cleanup Standards	6
5.0	Findi	ngs	7
	5.1	Laboratory Results	7
		5.1.1 Sub-Slab Vapor Sample Results	7
6.0	Discu	ussion	7
7.0	Conc	lusions and Recommendations	8
8.0	Limit	ations	8
0.0	-111111	W. C.	

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

- 4-1 Summary of Sampling Locations
- 4-2 Sub-slab Vapor Screening Results
- 4-3 Analytical Methods

AFTER TEXT (following 'Tables' tab)

1 Summary of Analytical Data, Sub-Slab Vapor and Soil Gas

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Sample Location Diagram
- 4 Benzene Sub-Slab Vapor Isopleth Diagram

Appendices

- A Site Photographs
- B Field Sampling Data Sheets
- C Laboratory Analytical Report

List of Acronyms and Abbreviations

amsl above mean sea level bgs below ground surface

Client Kiddie Academy

COPC constituent of potential concern

CSM conceptual site model

CULs cleanup levels

cVOCs chlorinated volatile organic

constituents

DRO diesel-range organics

EAS Environmental Analytical Services,

Inc.

Ecology Washington Department of

Ecology

ENW EVREN Northwest, Inc.

EPA US Environmental Protection

Agency

FSDS Field Sampling Data Sheet GRO gasoline-range organics

IPA isopropyl alcohol (or 2-propanol)

mL/min milliliters per minute

μg/m³ micrograms per cubic meter

MTCA Model Toxics Control Act

PAHs polynuclear aromatic

hydrocarbons

PID photoionization detector
ppmv parts per million by volume
PVI petroleum vapor intrusion
RRO residual (oil)-range organics

SOW scope of work

TMB trimethylbenzene

USGS U.S. Geological Survey

VI vapor intrusion

VOCs volatile organic constituents

1.0 Introduction

At the request of Kiddie Academy (Client), EVREN Northwest, Inc. (ENW) conducted a Focused Sub-Slab Vapor Investigation (FSSVI) at the commercial property located at 8701 Greenwood Avenue North in Seattle, Washington (Subject Site, Figures 1 and 2). The scope of work completed during this investigation further assesses the data gaps identified in ENW's Work Plan¹ to fulfill Washington Department of Ecology's (Ecology's) site closure² pursuant to Client's plans to redevelop the subject property as a child daycare facility.

This report summarizes previous environmental work and describes the sub-slab vapor survey at the onsite building and evaluates the vapor intrusion (VI) potential of selected petroleum-related volatile organic constituents (VOCs) and selected chlorinated VOCS (cVOCs) at the subject site. This work was authorized by the Client on December 29, 2021.

2.0 Background

Site background is detailed in ENW's previously submitted work plan¹. Based on this history, ENW prepared the *Data Gap Investigation Work Plan* (Work Plan), which is the basis of the Scope of Work (SOW) outlined in the following section and followed in the sub-slab vapor sampling activities presented in this report.

2.1 Scope of Work

This work was performed in accordance with the SOW provided in ENW's proposal dated December 7, 2021.

The SOW included the following tasks:

- Prepared an internal Sample/Analysis Plan for sample collection.
- Ordered a utility clearance to identify public utilities in the area.
- Collected six sub-slab vapor samples beneath the current commercial building.
- Submitted samples to an independent laboratory for analysis.
- Evaluated analytical data against MTCA's Method B screening levels.
- Completed this report describing the above activities and findings.

Appendix A presents photos of work conducted on site during this SOW.

EVREN Northwest, Inc. Project No. 1581-21001-02

¹ ENW, December 8, 2021. *December 2021 Work Plan for Focused Data Gap Investigation*, Future Kiddie Academy, Former Texaco #2111544, 8701 Greenwood Avenue North, Seattle, Washington, Facility/Site ID# 6416: Prepared for Kiddie Academy.

² Ecology, March 8, 2021. *Response to Change of Use Request at the Following Cleanup Site*: Name: Texaco 211544, Address: 8701 Greenwood Ave N, Seattle, Washington, Facility/Site No.: 63538329, Cleanup Site ID No.: 6416.

3.0 Site Description

A conceptual site model (CSM) is presented in ENW's *Work Plan*.¹ Key elements of the CSM are summarized in this section.

Site and Vicinity General Description. The subject property is located on the northwest corner of the intersection of Greenwood Avenue N and N 87th Street in the Greenwood neighborhood of North Seattle, Washington. The site is located approximately six miles north-northwest of downtown Seattle, Washington and approximately four miles west of Lake Washington. The King County Assessor's Office identifies the site as Parcel #2920700030 and describes the property as rectangular in shape and 32,728 square feet in area.

The subject property is in a mixed residential and commercial area of King County. The site is bordered to the north by single-family residence, west by an alley beyond which are single-family residences, to the east by Greenwood Avenue North, beyond which is a vacant commercial building and parking lot, and to the south by N 87th Avenue, beyond which is a multi-family residential building and street-level retail businesses.

The subject property was developed in 1997 with the current commercial building in the southern portion of the site. Other site improvements include an asphalt-paved parking lot in the northern portion of the site, drainage features and landscaped areas.

Geographic Setting. According to the U.S. Geological Survey (USGS) Seattle North, Washington 7.5-minute quadrangle (Figure 1), the subject property lies at an approximate elevation of 260 feet above mean sea level (amsl). Topography in the area of the subject property is indicated as sloping gently to the west-southwest.

Geologic Setting. Seattle is within the Puget Lowland, an elongate structural and topographic basin between the Cascade Range and Olympic Mountains. The Seattle area has experienced repeated glacial advancements during the past 2 million years causing cyclic glacial scouring and deposition and later modified by landsides and stream erosion. Seattle is located on a complex succession of glacial and nonglacial deposits that overlie an irregular bedrock surface. According to the Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle),³ the upper most geology beneath the site is mapped as Holocene age Peat deposits, which are accumulations of wood and other plant material forming layers of greater than about 1 meter and of mappable extent. These units are gradational within other non-glacial deposits. The mapped stratigraphy underlying these surficial deposits are mapped as Pleistocene age glacial deposits consisting of glacially transported silt, sand and subrounded to well-rounded gravel.

Previous investigations have identified a silt and peat layer present between approximately seven (7) and 15 feet bgs that appears to act as a confining layer separating lower saturated soils from the overlying vadose zone. Between 14 and 17 feet bgs across the site there is a transition to a gray gravel/silt hard pan layer with relatively high density compared to overlying native sediments.

-

³ Booth, D.B., Goetz, K., Schimel, S.A., 2009, Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigations Map 3065, Map 1:24,000.

Hydrogeology. No surface water bodies, lagoons, or manmade drainages are located on the subject property. The nearest surface water body is Green Lake, located approximately 0.95 miles southeast of the site. Well log data in the area indicates ground water occurs as shallow as four feet bgs. Previous investigations reported first ground water in borings occurring at the site between nine and 17 feet bgs. Shallow ground water has been reported to occur within a silty/sandy layer located directly above a sand and gravel hardpan layer at depth. Shallow ground water within glacial deposits in the Seattle area commonly occurs as a seasonal perched ground water table recharged primarily by infiltrating precipitation during the wet season. At the subject site, first ground water was generally encountered within silts and sands below the overlying peat layer. Ground water has been reported to recharge slowly into existing monitoring wells. Stabilized static ground water levels in monitoring wells have been reported ranging from approximately 0.5 feet bgs to seven feet bgs. Relying on results from historical ground water monitoring data at -the property, the shallow ground water flows generally to the west-northwest, consistent with surface topography.

Constituents of Potential Concern (COPCs). According to ENW's Work Plan, COPCs are as follows:

- On-site dry-cleaning-related COPCs include gasoline-range organics (GRO), diesel-range organics (DRO), and cVOCs.
- On-site gasoline service station-related COPCs and off-site COPCs from the north-adjoining property include GRO, DRO, residual (oil)-range organics (RRO), VOCs, and polynuclear aromatic hydrocarbons (PAHs).

Nature and Extent and Associated Data Gaps. Data gaps¹ being addressed in this SOW are associated with the further evaluation of the VI pathway as follows:

• Soil Vapor. The building is located within the 30-foot exclusion zone around the area of known soil contamination. Previous soil gas and sub-slab vapor sampling suggest benzene, bromodichloromethane, xylenes, 1,2,4-trimethylbenzene (TMB) and naphthalene are COPCs in soil vapor. Potential preferential migration pathways along utility corridors have not been investigated (data gap) and will be address as part of this work scope.

4.0 Methods

This section describes the methods used to conduct the SOW. Field activities for this project are documented in the photographic log included as Appendix A.

4.1 Work Objectives

The objective of this work was to quantitatively determine whether petroleum-related VOCs and/or cVOCs may be present in the sub-slab beneath the building at the site at concentrations that present a vapor encroachment condition. In addition, the following general objectives were followed:

- To perform the work efficiently and cost-effectively, minimizing interference with any site operations.
- To perform the work in a safe manner for technical personnel and site employees / visitors.

• To document information and data generated in a professional manner that is valid for the intended use.

4.2 Preparation Activities

ENW performed or coordinated the following activities prior to conducting site characterization activities:

Plan Preparation. An in-house Sampling and Analysis Plan was prepared for the project.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.

Planning. ENW scheduled and coordinated with the Client to begin site work.

4.3 Scope of Work

ENW conducted the following SOW for this project:

- Collected six sub-slab vapor samples according to established environmental procedures for analysis of the full scan of VOCs, GRO and isopropyl alcohol (IPA) by EPA Method TO-15 Modified.
- Submitted samples to an approved, independent laboratory for analysis.
- Evaluated analytical data with regard to risk associated with vapor intrusion of petroleum-related VOCs and cVOCs into the commercial building.
- Completed this report describing the above work and findings.

4.4 Sub-Slab Vapor Sampling Locations

Sampling locations are summarized in Table 4-1 and shown on Figure 3.

Date Depth Sampled Location ID Sampled by: **Location and Comments** Sampled (feet bgs) SUB01 1/25/2022 0.5 **ENW** Slab beneath NE building corner 1/25/2022 SUB02 0.5 ENW Slab beneath Ecentral part of building SUB03 1/25/2022 0.5 ENW Slab beneath SE building corner 1/25/2022 SUB04 0.5 ENW Slab beneath SW building corner SUB05 1/25/2022 0.5 ENW Slab beneath W central part of building SUB06 1/25/2022 0.5 ENW Slab beneath NW building corner

Table 4-1. Summary of Sampling Locations

4.5 Sub-Slab Vapor Sampling Methodology

To evaluate the VI pathway beneath the building at the site, ENW installed and collected samples from six sub-slab vapor pins (SUB01 through SUB06) installed in the building's interior slab floor. Field sampling activities were conducted in general accordance with the methods and procedures presented in Ecology's

Draft Guidance for Evaluating Vapor Intrusion in Washington State (Ecology Guidance),⁴ Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion Implementation (Appendix B in Ecology Guidance⁴) and Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings (Appendix E in Ecology Guidance⁴).

Sub-slab vapor samples SUB01 through SUB06 were collected beneath the existing building and analyzed for petroleum and non-petroleum-related VOCs. Sample locations are presented on Figure 3.

Vapor Pin Installation. Sub-slab vapor samples were collected from temporary stainless-steel Vapor Pin® inserts installed through the floor slab of the building. A roto-hammer was used to drill a 5/8-inch hole through the concrete slab at each sample location, into which a Vapor Pin® with disposable silicon seal was installed. A section of Teflon® tubing secured to the Vapor Pin® provided a sealed vapor pathway to the sampling manifold.

Leak Testing. Leak testing was performed over a minimum of five minutes. Sampling manifolds were tested for leaks by shutting the inlet valve on the manifold and applying a vacuum using a pre-evacuated SUMMA cannister. Pressure was monitored using the attached vacuum gauge. Any drop in pressure suggested a potential leak in the system. If pressure was not maintained, all connections were rechecked, and the leak test repeated until no drop in vacuum was observed over the 5-minute period.

Sample Collection. The Teflon sample tubing from each sampling point was connected to a sample manifold, which in turn was connected to two laboratory-supplied SUMMA cannisters. One 6-liter SUMMA cannister served as a purging vessel and one 3-liter batch-certified Summa cannister was used at each location for collecting the sample.

Prior to the start of sample collection, each system was purged to remove at least three volumes of stagnant air from the sample train.

Sampling was initiated by opening the valve on the batch-certified SUMMA canisters. Sampling rates were maintained at a flow rate ranging from 100 to 150 milliliters per minute (mL/min) by a calibrated flow regulator attached to the SUMMA cannister. Rags treated with isopropyl alcohol (2-propanol or IPA) were placed overt sample train connections and Vapor Pin® to provide secondary leak detection during sample collection.

Soil sampling was terminated when a sufficient volume of sample had been collected, indicated by negative pressure readings of -5 inches mercury or less. Sample data recorded by the ENW personnel were recorded onto Field Sampling Data Sheets (FSDS) included in Appendix B.

Sub-slab vapor samples were uniquely labelled, packaged, and shipped to the laboratory under chain-of-custody protocols. Following sample collection, a photoionization detector (PID) was used to screen soil gas for VOCs. Initial screening results of the samples are presented on Table 4-2.

٠

⁴ Ecology, October 2009. *Draft Guidance for Evaluating Vapor Intrusion in Washington State, Investigation and Remedial Action:* WDOE Toxics Cleanup Program Publication No. 09-09-047, last revised April 2018, draft for public comment November 2021.

Table 4-2.
Sub-slab Vapor Screening Results

	Sample ID	SUB01	SUB02	SUB03	SUB04	SUB05	SUB06
Dat	e Sampled	01/25/2022	01/25/2022	01/25/2022	01/25/2022	01/25/2022	01/25/2022
Depth S	ampled (ft)	0.5	0.5	0.5	0.5	0.5	0.5
S	ampled by	ENW	ENW	ENW	ENW	ENW	ENW
	Location	Slab beneath NE building corner	Slab beneath E central part of building	Slab beneath SE building corner	Slab beneath SW building corner	Slab beneath W central part of building	Slab beneath NW building corner
Parameter of interest	Note:	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
PID (Total Volatiles)	1	0.3	0.6	0.6	0.7	0.4	0.2

^{1 =} Photoionization detector

All sampling equipment was decontaminated before and after sampling by undergoing a wash sequence of Alconox® solution, tap water, and then deionized water final rinse. Clean Nitrile gloves were used during sample collection.

4.5.1 Waste Management and Disposal

Equipment decontamination water generated during sub-slab vapor sampling activities was placed into a 55-gallon drum, labeled, and left on-site in a secure location pending receipt of sample laboratory results. Sampling gloves, rags, and tubing, which were disposed of as solid waste.

4.6 Analytical Methods

Table 4-3. Analytical Methods

Analytical Method	Constituents	Sub-slab/Soil Gas
Environmental Protection Agency (EPA) Method TO-15 Modified	Full scan VOCs, gasoline-range organics (GRO) and 2- Propanol (as leak detection)	All samples

4.7 Cleanup Standards

The State of Washington MTCA Regulations (Chapter 173-340-750 of the Washington Administrative Code) sets numeric cleanup standards to determine if air emissions at a site pose a threat to human health or the environment. These standards apply to ambient (outdoor) air and air within any building, utility vault, manhole or other structure large enough for a person to fit into, and concentrations of hazardous substances in the air originating from other contaminated media or a remedial action at the site. Cleanup levels (CULs) to protect air quality shall be based on estimates of the reasonable maximum exposure expected to occur under both current and future site use conditions. The department has determined that residential site use will generally require the most protective air cleanup levels and that exposure to hazardous substances under these conditions represents the reasonable maximum exposure. Air cleanup levels shall use this presumed exposure scenario and be established in accordance with Method B air CULs unless the site qualifies for a Method C air CUL.

Method B air CULs consist of standard and modified cleanup levels, either of which may be used at any site. Standard Method B air CULs for air shall be at least as stringent as all of the following:

- Applicable state and federal laws. Concentrations established under applicable state and federal laws; and
- Human health protection. Ecology's Equation 750-1 shall be used for hazardous substances for which sufficiently protective health-based criteria or standards have not been established under applicable state and federal laws.

Modified Method B air CULs are standard Method B air cleanup levels modified with chemical-specific or site-specific data. When making these adjustments, the resultant cleanup levels shall meet applicable state and federal laws, health risk levels and explosive limit limitations required for standard Method B air CULs. Modified Method B air CULs are not used in this report.

5.0 Findings

Elevated levels of VOCs were not suggested while screening sub-slab vapor points following sample collection with a PID (max. 0.7 parts per million by volume ([ppmv]).

5.1 Laboratory Results

5.1.1 Sub-Slab Vapor Sample Results

Laboratory analytical sub-slab vapor results are presented in Table 1 (after the text).

GRO. As indicated in Table 1, GRO was detected at a maximum concentration of 994.71 micrograms per cubic meter ($\mu g/m^3$) (SUB06), which is less than the MTCA Method B generic cleanup level for total petroleum hydrocarbons of 4,700 $\mu g/m^3$.

VOCs. Several VOCs were detected in sub-slab vapor samples. However, only benzene in the sample from SUB04 was detected at a concentration exceeding the MTCA Method B screening level for sub-slab vapor.

IPA concentrations were less than ENW's in-house screening level of 5,000 $\mu g/m^3$, which represents approximately 5-percent contribution of ambient air into the sample, and conservatively assumes an initial ambient air concentration of 100-percent 2-propanol. Leak detection compound concentrations suggest sampling integrity was preserved in all samples during this sampling event.

6.0 Discussion

Benzene (Sub-slab). Current data shows that benzene is the only VOC in sub-slab vapor exceeding a MTCA Method B screening level. This is consistent with February 2021 sub-slab vapor sampling results, which also reported benzene in two of three samples (SS1 and SS2) at concentrations greater than MTCA Method B screening levels. Error! Bookmark not defined.

Benzene (Sub-slab Isopleths). Figure 4 is a benzene isopleth map compiled from current sub-slab vapor data and February 2021 sub-slab vapor data. This data suggests a possible benzene vapor source west of the former tank farm on the southern part of the site.

Benzene (exposure point concentration). Data collected during this investigation was further evacuated using the EPA's ProUCL software to determine the exposure point concentration for benzene in sub-slab

vapor. Only data collected during this investigation were utilized in this calculation since this sampling event including previous sub-slab sample locations. The exposure point concentration calculated in sub-slab vapor beneath the building was 11.5 $\mu g/m^3$, which is essentially equal to the MTCA cleanup level and therefore concentrations of benzene in sub-slab vapor are not currently an unacceptable vapor intrusion risk.

Benzene (Air). An 8-hour time-weighted sample collected inside the building (sample "1") and outside the building (sample "2") detected benzene at concentrations greater than the MTCA Method B air screening level. None of the other detected VOCs exceeded a MTCA air screening level. Upon subtracting the level of benzene in outdoor air from indoor air, the contribution of benzene from sub-slab vapor to indoor air is less than the screening level. This further suggests that sub-slab concentrations of benzene are not likely leading to unacceptable exposure in indoor air to future receptors.

7.0 Conclusions and Recommendations

Benzene in one of six sub-slab vapor samples exceeds the MTCA Method B sub-slab/soil gas screening level, suggesting that benzene may be a vapor intrusion risk at the site. However, based on the following:

- The exposure point concentration calculated in sub-slab vapor beneath the building was 11.5 μg/m³, which is essentially equal to the MTCA cleanup level and therefore concentrations of benzene in sub-slab vapor are not currently an unacceptable vapor intrusion risk.
- April 2021 ambient indoor and outdoor air sampling results suggest that when the proportion of benzene contributed from outdoor air is subtracted from indoor air, the net indoor air benzene concentrations is less than the MTCA air screening level. This further suggests that sub-slab concentrations of benzene are not likely leading to unacceptable exposure in indoor air to future receptors.

Based on sub-slab benzene vapor isopleths, the potential source of benzene in sub-slab vapor may be west of the former tank farm on the southern part of the site. While concentrations of benzene in sub-slab vapor do not appear to be a current concern that require mitigation, since the building will be undergoing extensive renovations as part of the redevelopment of the site, ENW recommends installation of a vapor barrier throughout the building floor area, to mitigate potential vapor intrusion concerns.

We recommend this report is kept as part of the permanent property records.

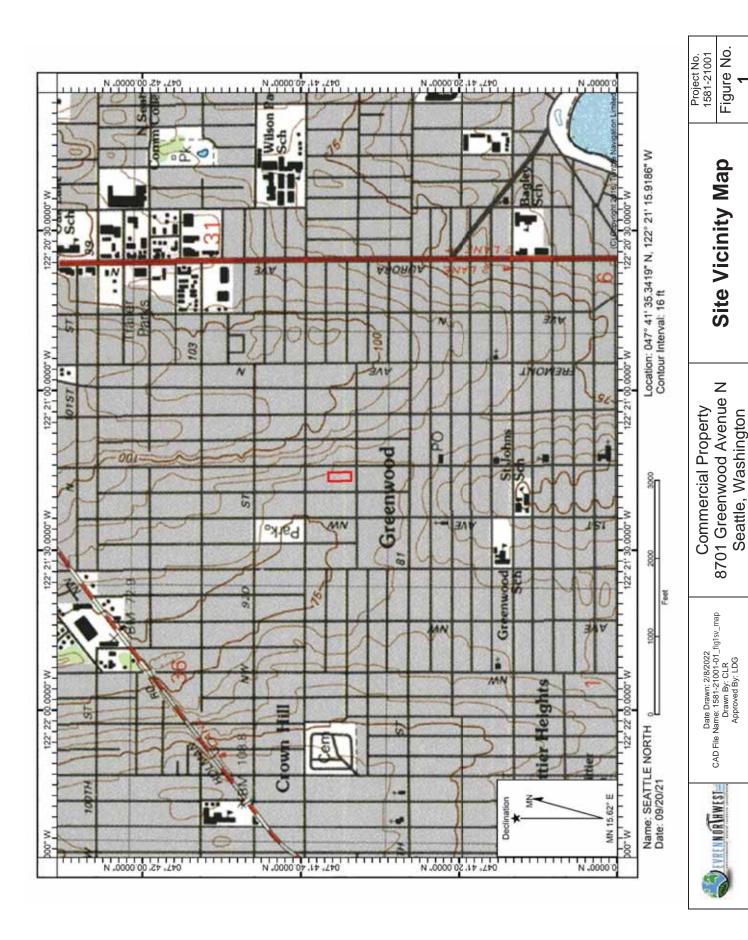
8.0 Limitations

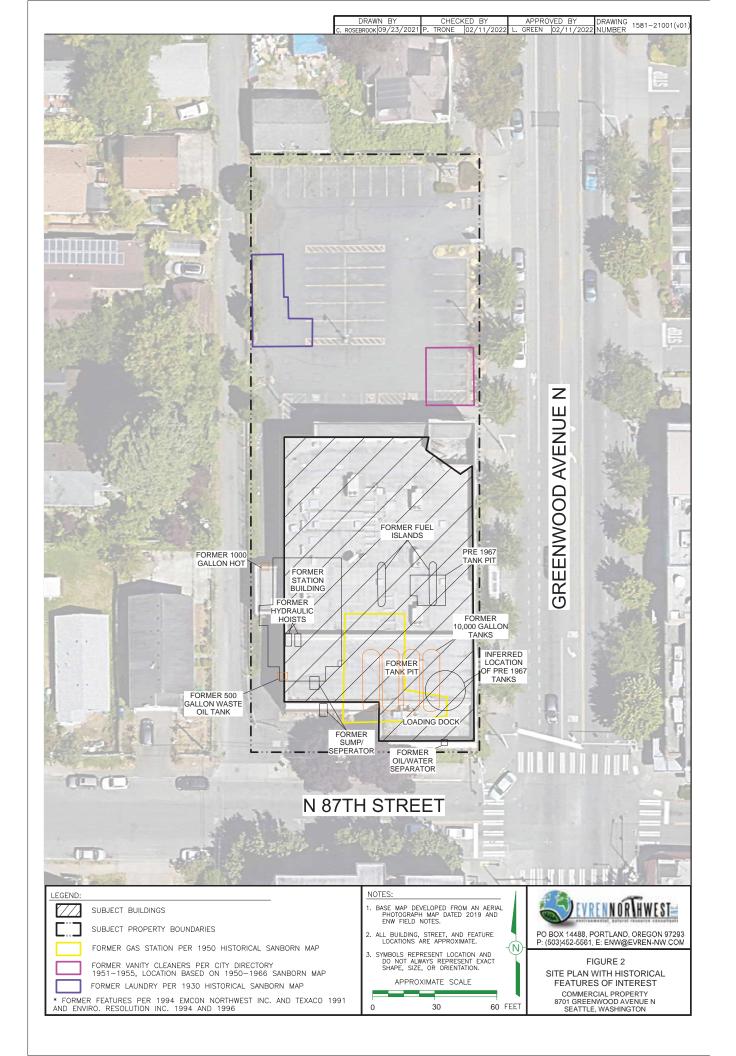
The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

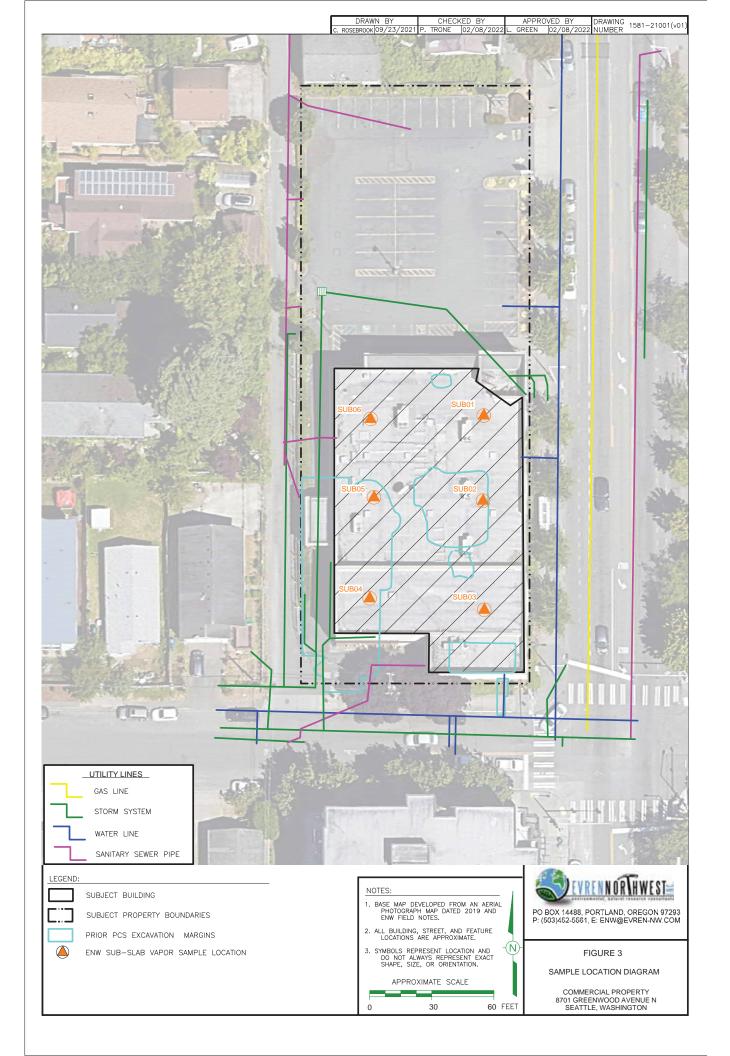
The focus of the site closure does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

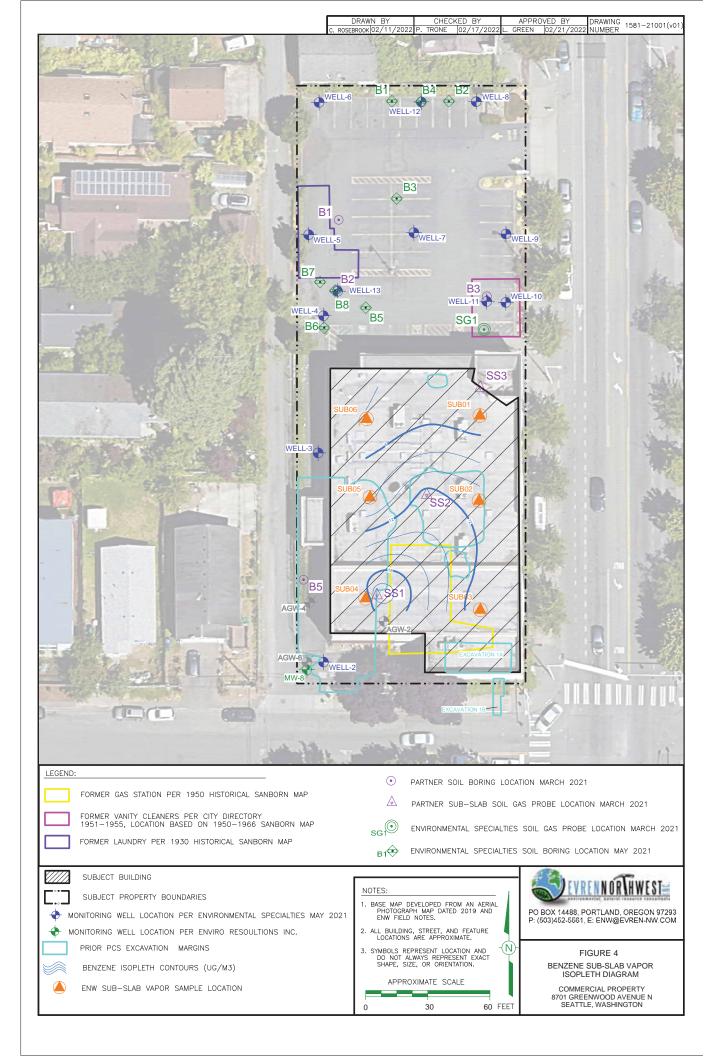
Naturally occurring toxic or hazardous substances in the subsurface soils, geology and water,

- Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,
- Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.


There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW have endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.


We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.


ENW performed this study under a limited scope of services per our agreement. It is possible, despite the use of reasonable care and interpretation, that ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.


Table 1. Summary of Analytical Data, Sub-Slab Vapor and Soil Gas

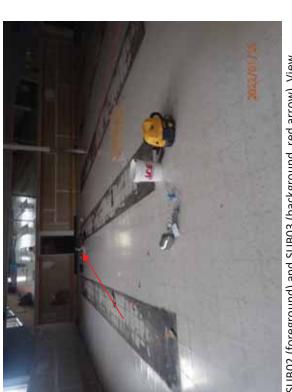
רפ	Location ID	B2-SG	B3-SG	B4-SG	B5-SG	SS1	SS2	SS3	3	SUB01	SUB02	SUB03	SUB04	SUB05	SUB06			
S	Sample ID	B2-SG	B3-SG	B4-SG	B5-SG	SS1	SS2	SS3	3	SUB01-220125	SUB02-220125	SUB03-220125	SUB04-220125	SUB05-220125	SUB06-220125			
Date	Date Sampled	2/18/2021	2/18/2021	2/18/2021	2/18/2021	2/18/2021	2/18/2021	2/18/2021	4/28/2021	1/25/2022	1/25/2022	1/25/2022	1/25/2022	1/25/2022	1/25/2022	- 4	TCA Cub. Clab	Population of
Depth Sampled (feet)	oled (feet)	-	2	-	2	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	Maximum Soil		Potential
Sar	Sampled By	Partner	Partner	Partner	Partner	Partner	Partner	Partner	ES	ENW	ENW	ENW	ENW	ENW	ENW	- 0,	Screening Level	Concern
	Location	Central portion of proposed outdoor fi play area 2	Central portion of former dry cleaning facility	Central portion of north property boundary	Central portion of exterior area of suspected impacted su	South portion of interior area of suspected impacted soil	Central interior area of subject property building	Northeast interior area of subject property building	Well-11	Slab beneath NE building corner	Slab beneath E central part of building	Slab beneath SE building comer	Slab beneath SW building corner	Slab beneath W central part of building	Slab beneath NW building corner	Concentration	Method B1	(COPC)?³
Constituent of Interest	Note	na/m ₃	na/m ₃	na _i m ₃	na/m ₃	na/m ₃	na _f m ₃	na/m ₃	na/m³	na(m ₃ (bbb)	(gdd) (bgg)	na/m³ (ppb)	ua/m³ (ppb)	(qdd) (mybn)	na/m³ (ppb)	na _{fm3}	pg/m3	ΑW
Volatile Organic Constituents (VOCs)																		
Acetone	nc, v	29.0	32.6	18.3	27.1	471 E	190	182		70.59	162.43	96.62	613.60	291.13	390.14	613.60	470000	z
Benzene	۵, ۷	425	022	164	98.1	22.0	12.7	5.69	4.0	4.52	10.96	10.25	15.89	7.50	4.06	0//	11.0	¥
Bromodichloromethane	C, V	2.95	<1.34 (ND)	4.70	<1.34 (ND)	<1.34 (ND)	<1.34 (ND)	<1.34 (ND)		<3.39 (ND)	<3.39 (ND)	<3.39 (ND)	<3.39 (ND)	<3.39 (ND)	<3.39 (ND)	<4.7 (ND)	2.3	W
Bromoform	c, nv	<621 (ND)	<6.21 (ND)	<6.21 (ND)	<621 (ND)	<6.21 (ND)	<6.21 (ND)	<621 (ND)		<3.47 (ND)	<3.47 (ND)	<3.47 (ND)	<3.47 (ND)	<3.47 (ND)	<3.47 (ND)	<621 (ND)	92	z
Bromomethane	nc, v	<0.776 (ND)	<0.776 (ND)	<0.776 (ND)	<0.776 (ND)	<0.776 (ND)	<0.776 (ND)	<0.776 (ND)		(ND) <4.89	<4.89 (ND)	<4.89 (ND)	(ND) <4.89	<4.89 (ND)	<4.89 (ND)	<4.89 (ND)	92	z
Carbon tetrachloride	۵, ۷	<126 (ND)	<1.26 (ND)	<1.26 (ND)	<126 (ND)	<1.26 (ND)	<1.26 (ND)	<126 (ND)		<7.46 (ND)	<7.46 (ND)	<7.46 (ND)	<7.46 (ND)	<7.46 (ND)	<7.46 (ND)	<7.46 (ND)	14	z
Chlorobenzene	nc, v	<0.924 (ND)	<0.924 (ND)	<0.924 (ND)	<0.924 (ND)	<0.924 (ND)	<0.924 (ND)	<0.924 (ND)		<5.25 (ND)	<5.25 (ND)	<5.25 (ND)	<525 (ND)	<5.25 (ND)	<5.25 (ND)	<5.25 (ND)	260	z
Chloroethane	۵, ۷	<0.528 (ND)	<0.528 (ND)	<0.528 (ND)	<0.528 (ND)	<0.528 (ND)	<0.528 (ND)	<0.528 (ND)	<13 (ND)	<3.32 (ND)	<3.32 (ND)	<3.32 (ND)	<3.32 (ND)	<3.32 (ND)	<3.32 (ND)	<13 (ND)	150000	z
Chloroform	nc, v	<0.973 (ND)	(N) \$26.0>	(ON) £26.0>	<0.973 (ND)	(ON) £200>	(ON) 8200>	<0.973 (ND)		<5.82 (ND)	<5.82 (ND)	<5.82 (ND)	<5.82 (ND)	<5.82 (ND)	<5.82 (ND)	<5.82 (ND)	3.6	3
Chloromethane	nc, v	1.90	3.37	98.9	2.11	0.485	<0.413 (ND)	0.448		<2.61 (ND)	<2.61 (ND)	<2.61 (ND)	<2.61 (ND)	<2.61 (ND)	<2.61 (ND)	(QN) 6:86>	1400	z
Dichlorobenzene, 1,2-	nc, v	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)		<7.53 (ND)	<7.53 (ND)	<7.53 (ND)	<7.53 (ND)	<7.53 (ND)	<7.53 (ND)	<7.53 (ND)	3000	z
Dichlorobenzene, 1,3-	nc, v	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)		<5.57 (ND)	<5.57 (ND)	<5.57 (ND)	<5.57 (ND)	<5.57 (ND)	<5.57 (ND)	<5.57 (ND)		z
Dichlorobenzene, 1,4-	٥, د	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)	<12 (ND)	<12 (ND)	<1.2 (ND)		<5.21 (ND)	<5.21 (ND)	<521 (ND)	<5.21 (ND)	<5.21 (ND)	<521 (ND)	<521 (ND)	7.6	z
Dichloroethane, 1,1-	٥, ٧	<0.802 (ND)	<0.802 (ND)	<0.802 (ND)	<0.802 (ND)	<0.802 (ND)	<0.802 (ND)	<0.802 (ND)	<2 (ND)	<5.06 (ND)	<5.06 (ND)	<5.06 (ND)	<5.06 (ND)	<5.06 (ND)	<5.06 (ND)	<5.06 (ND)	52	z
Dichloroethene, 1,1-	nc, v	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<2 (ND)	<4.92 (ND)	<4.92 (ND)	<4.92 (ND)	<4.92 (ND)	<4.92 (ND)	<4.92 (ND)	<4.92 (ND)	3000	z
Dichloroethene, cis-1,2-	nc, v	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<2 (ND)	<5.34 (ND)	<5.34 (ND)	<5.34 (ND)	<5.34 (ND)	<5.34 (ND)	<5.34 (ND)	<5.34 (ND)		z
Dichloroethene, trans-1,2-	nc, v	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<0.793 (ND)	<2 (ND)	<3.58 (ND)	<3.58 (ND)	<3.58 (ND)	<3.58 (ND)	<3.58 (ND)	<3.58 (ND)	<3.58 (ND)	610	Z
Dichloromethane	۵, ۷	<1.85 (ND)	<0.694 (ND)	<0.694 (ND)	<0.694 (ND)	<0.694 (ND)	<0.694 (ND)	<0.694 (ND)	-	<4.19 (ND)	<4.19 (ND)	<4.19 (ND)	<4.19 (ND)	<4.19 (ND)	<4.19 (ND)	<4.19 (ND)	2200	Z
EDB (1,2-dibromoethane)	۵, ۷	<1.54 (ND)	<1.54 (ND)	<1.54 (ND)	<1.54 (ND)	<1.54 (ND)	<1.54 (ND)	<1.54 (ND)		<4.67 (ND)	<4.67 (ND)	<4.67 (ND)	<4.67 (ND)	<4.67 (ND)	<4.67 (ND)	<4.67 (ND)	0.14	ω
EDC (1,2-dichloroethane)	C, V	<0.81 (ND)	<0.81 (ND)	<0.81 (ND)	<0.81 (ND)	<0.81 (ND)	<0.81 (ND)	<0.81 (ND)	<0.2 (ND)	<4.62 (ND)	<4.62 (ND)	<4.62 (ND)	<4.62 (ND)	<4.62 (ND)	<4.62 (ND)	<4.62 (ND)	3.2	ω
Ethylbenzene	۵, ۷	802	949	219	114	1.24	4.68	1.41	<2.2 (ND)	<5.75 (ND)	<5.75 (ND)	<5.75 (ND)	<5.75 (ND)	<5.75 (ND)	<5.75 (ND)	<949 (ND)	15000	z
MTBE (methyl t-butyl ether)	C, V	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)		<3.33 (ND)	<3.33 (ND)	<3.33 (ND)	<3.33 (ND)	<3.33 (ND)	<3.33 (ND)	<3.33 (ND)	320	Z
Naphthalene	nc, v	<3.3 (ND)	<3.3 (ND)	<3.3 (ND)	<3.3 (ND)	<3.3 (ND)	<3.3 (ND)	<3.3 (ND)	4.2	<2.10 (ND)	<2.10 (ND)	<2.10 (ND)	<2.10 (ND)	<2.10 (ND)	<2.10 (ND)	<4.2 (ND)	2.5	ω
Tetrachloroethene (PCE)	۵, ۷	<1.36 (ND)	<1.36 (ND)	<1.36 (ND)	<1.36 (ND)	<1.36 (ND)	<1.36 (ND)	<1.36 (ND)	<34 (ND)	<4.13 (ND)	<4.13 (ND)	1.86J	<4.13 (ND)	<4.13 (ND)	<4.13 (ND)	1.86 J	320	z
Toluene	nc, v	4970	8700	1520	742	12.2	11.5	7.91	<94 (ND)	2.96 J	10.23	21.65	10.16	8.59	12.27	8700	76000	z
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	nc, v	<1.53 (ND)	<1.53 (ND)	<1.53 (ND)	<1.53 (ND)	<1.53 (ND)	<1.53 (ND)	<1.53 (ND)	:	<9.18 (ND)	<9.18 (ND)	<9.18 (ND)	<9.18 (ND)	<9.18 (ND)	<9.18 (ND)	<9.18 (ND)	76000	z
I richloroethane, 1,1,1-	NC. V	(IN) (VI)	<1.09 (ND)	<1.09 (ND)	(UN) (VI)	<1.09 (ND)	(ND) (ND)	(UN) 60.1>	<2.7 (ND)	<6.06 (ND)	<6:06 (ND)	<6.06 (ND)	<6.06 (ND)	<6:06 (ND)	<6:06 (ND)	<6.06 (ND)	76000	z
Trichlocochons	11C, V	(ND) (VD)	<1.03 (ND)	<1.09 (ND)	<1.09 (ND)	4 07 (ND)	<1.09 (ND)	<1.09 (ND)	(ND)	(ND) 2010	(UN) 20.75	<0.02 (ND)	(ND) 20:12	<7.02 (ND)	(UND) 20.75	(UND) 20: 12	3.0	Ε×
Trickloredingreem athenes (Execut 44)		1 56	1 55	1.43	1.48	3 37	5.84	2.60	(011)		(AD) (2.00 /-		(AD) (AD)	(AD)		584	11000	: 2
Trimethylbenzene. 12.4-	nc. v	239	71.2	39.7	32.1	1.93	5,74	1.63		<6.25 (ND)	<6.25 (ND)	<6.25 (ND)	<6.25 (ND)	<6.25 (ND)	<6,25 (ND)	239	910	z
Trimethylbenzene, 1,3,5-	nc, v	130	44.5	24.9	15.6	<0.982 (ND)	1.72	<0.982 (ND)		<6.36 (ND)	<6.36 (ND)	<6.36 (ND)	<6.36 (ND)	<6.36 (ND)	<6.36 (ND)	130	910	z
Vinyl chloride	٥, د	<0.511 (ND)	<0.511 (ND)	<0.511 (ND)	<0.511 (ND)	<0.511 (ND)	<0.511 (ND)	<0.511 (ND)	<1.3 (ND)	<3.22 (ND)	<3.22 (ND)	<3.22 (ND)	<3.22 (ND)	<3.22 (ND)	<3.22 (ND)	<3.22 (ND)	9.5	z
Xylenes	nc, v	5191	3980	991	611	7.63	20.62	<8.22 (ND)	<2.2 (ND)	(QN) 09'5>	<6.60 (ND)	3.16J	4.49 J	4.08 J	3.47 J	5191	1500	٨
Non-Volatile Organic Constituents (SVOCs)																		
Dioxane, 1,4-	C, IIV	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	<0.721 (ND)	0.843	<0.721 (ND)	1.35		<7.38 (ND)	<7.38 (ND)	<7.38 (ND)	<7.38 (ND)	<7.38 (ND)	<7.38 (ND)	1.35	17	z
Styrene	nc, v	<0.851 (ND)	<0.851 (ND)	<0.851 (ND)	<0.851 (ND)	<0.851 (ND)	<0.851 (ND)	<0.851 (ND)		<5.52 (ND)	<5.52 (ND)	<5.52 (ND)	<5.52 (ND)	<5.52 (ND)	<5.52 (ND)	<5.52 (ND)	15000	z
Total Petroleum Hydrocarbons																		
GRO	nc, v		-		-	-			-	<854.59 (ND)	<854.59 (ND)	658.71 J	329.46 J	<854.59 (ND)	994.71	994.71	4700	z
						Leak	eak Detection									Maximum Soil Gas/Sub-Slab Concentration		Leak Suggested?
	ļ	(A) 2000	OF O	Caro and	1 00	0.02		0.55	ľ	(410)	O 00 0	24400	20110	(dis)	10000	-4030 AE		
Z-Propanol	1	<3.07 (ND)	6/19	c4:30 (ND)	4:03	2.60	36.1	5.14		<9.23 (ND)	<9.23 (ND)	514-20	244.97	<9.53 (ND)	4039.45	£4003.40	(CIAI)	z

Appendix A Site Photographs

Using a Hilti roto-hammer to drill a 5/8-inch hole through the slab at ${\sf SUB01-NE}$ building corner looking south.

Installing a temporary Vapor Pin at SUB01.

alcohol (IPA) -saturated rags placed over fittings and vapor pin for Sampling SUB01 using a certified 3-L SUMMA canister. Isopropyl leak checking.



8701 Greenwood Avenue N Commercial Property Seattle, Washington

Photographs Site

Project No. 1581-21001-02

Appendix

SUB02 (foreground) and SUB03 (background, red arrow). View looking south.

Measuring sub-slab VOCs using a PID following sample collection.

Sampling train set up on SUB04 (foreground) and SUB05 (background, yellow arrow). View north.

Sampling train at SUB06 (foreground), SUB05 (middle, yellow arrow), and SUB04 (background, red arrow). View south.

Commercial Property 8701 Greenwood Avenue N Seattle, Washington

Project No. 1581-21001-02

Site

Appendix

Photographs

Appendix B

Field Sampling Data Sheets

RESS: Pack Sample Depth Name E Sample Depth Name	EVREN	EVREN NORTHWEST	TS								503-7	PO Portland, 503-452-5561	PO Box 14488 Portland, Oregon, 97293 452-5561 Fax: 503-452-7669	8 97293 3-452-76	696
FROM: N NE E SE S S W N UCHT MEDIUM HEAVY	PROJECT	NAME/NUMB	10	1	-Noon	20				SAMPLI	LOCATION		was:	- 2(01	128
SETUP DATA NE	SITE ADDI	(ESS:	्र १	1	9	A A	2	*	100		DUP II				
SETUP DATA SET	WIND	DEVICE.	-	SE			LIGHT	MEDIU		AWY			Temp., C	Hum	Humidity (%)
1 125/240.51, 14(3)51, et	W				SAIN 5	201			,		ü		9	_	
1 125/24 0.5L, 11(3),5L, 6L 150,000 15	SOIL GAS	SETUP DATA	1						1						
1 1 1 1 1 1 1 1 1 1	Container Ty		Volume (L)		ile Depth (ft.)	Sample ID			Tow Controler			e Vessel ID			
Start Time Finish Time F	Tedlar/Sumn	-	J0.5L, 11(,3L)51	Larger			Some)		262	80				
Start Time Finish Time Mit Pressue (minHig) (SOIL GAS	SAMPLINGD	ATA			()		77	W 251-00	_E '					
12 0 12 4 9 2 8	Action	Start Time	Finish Time	Init Pressue	INW	sne	ä		32		73				
13.50		-	100	6											
	Leak-Test		1:38	33	97			ë							
Time Depth (ft) PID O ₂ CO CO ₂	Sample	- 2		27	5										i)
Time Depth (ft) PID O ₂ CO CO ₂															
Time Depth (ft) PID O2 CO CO2	SOIL GAS	SCREENING	2017					6							4
12.57 4.05 0.3 12.57 0.3 0.3 12.57 0.3 12.57 0.3 12.57 0.3 12.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 13.57 0.3 14.57 0.3 15.57 0.3	Date	Time	Depth (ft)	Old (mdd)	O ₂ (ppm)			O ₂ (md							
12:54 0.5 12:54 0.5 12:54 0.5 12:54 0.5 12:54 0.5 13:55 0.5 13:55 0.5 13:55 0.5 13:55 0.5 14:55 0.5 15:55 0.5	01/25/10		Sun	6.3											P
12.55 0.5	-	12:31		0.3							*				
NATAINER TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BIEXTPH (TO-4) PESTICIDEPCSS (TO-4) ALDEHYDESKEYTONES (TO-10) ALDEHYDESKEYTONES (TO-10) ALDEHYDESKEYTONES (TO-11) ALDEHYDESKEYTONES (TO-13) ALDEHYDESKEYTONES (TO-14) ALDEHYDESKEYTONES (TO-14		17:53		0.3			-								
NYTAINER TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BTEXTPH (TO-3) PESTICIDEPCSS (TO-4) ALDEHYDESKEYTONES (TO-10) ALDEHYDESKEYTONES (TO-11) . NON-WETHANE ORGANIC CMPDS (TO-12) PAHSISVOCS (TO-13) VOCS (TO-15) TPH as Dissel (TO-17) SPECIFIC CHEMICAL ANALYSIS []		12:54		500		-			ti,						
NITAINER TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BIEX/TPH (TO-3) PRESTICIDE/PCSs (TO-4) ALDEHYDE/SKEYTONES (TO-10) ALDEHYDE/SKEYTONES (TO-11) NON-METHANE ORGANIC CMFDS (TO-12) PAHS/SVOCS (TO-13) VOCS (TO-15) TPH as Diesel (TO-17) SPECIFIC CHEMICAL ANALYSIS I 1	>	12:45	7	0.3			-								
BTEXTPH (TO-3) PESTICIDEPCBS (TO-4) ALDEHYDES/KEYTONES (TO-5) PESTICIDES/PCBS (TO-10) ALDEHYDES/KEYTONES (TO-11) . NON-METHANE ORGANIC CAPDS (TO-12) PAHS/SVOCS (TO-13) .VOCS (TO-15) TPH as Dissel (TO-17) SPECIFIC CHEMICAL ANALYSIS []		NTAINER TYPE	TYPICAL ANAL)	YSIS ALLOWED F	PER BOTTLE T	YPE (Circle applica	ble or write non-	standard analysis	below)						ē
NON-WIETHANE ORGANIC CMPDS (TO-12) PAHSISVOCS (TO-13) VOCS (TO-15) TPH as Dissel (TO-17) SPECIFIC CHEMICAL ANALYSIS []	lowe Type		втехлен (по-з)	PESTICIDE/PCSs (7		ES/KEYTONES (TO-5) PESTICIDES/P	CBs (TO-10) ALD	EHYDESÆEYTONE	SS (TO-11)					ā
TPH as Diesel (TO-17) SPECIFIC CHEMICAL ANALYSIS [IA sir elltc		NON-METHANE OR	GANIC CMPDS (TO-		T) \$200, (E1-0T) &	0-15)						35		ă
SPECIFIC CHEMICAL ANALYSIS [nalys		TPH as Diesel (TO-17	0				747							
NOTES:	d d		SPECIFIC CHEMICA	L ANALYSIS [ă.	oj.	ij			
	NOTES:	#U \$2			Pr - Dr	a a									
			4								(Y			
SAMPLER:	SAMPLER:		~	V								1			

(PRINTED NAME)

EVREN NORTHWEST	RTHWES	H						PO E Portland, 0 503-452-5561	PO Box 14488 Portland, Oregon, 97293 452-5561 Fax: 503-452-7669	7293 452-7669
PROJECT NAME/NUMBER:	AME/NUMBE	ER:	1581-	210012	20		SAMPLE	SAMPLE LOCATION:	5UR 02-	220125
SITE	SS:	9	87N C	Green was	ad Are	2	Lowy	DUP ID:		
WIND FROM:	25	SUNNY (CLO	S	RAIN ?	M	LIGHT	MEDIUM HEAVY		Temp., C	Humidity (%)
SOIL GAS SETUP DATA	TUP DATA	-					6	2		
Container Type	Date	Volume (L)		Sample Depth (ft.)	Sample ID	Summa ID	Flow Controler Flow Meter ID	der ID Purge Vessel	0	
Tedlar/Summa	-	17922 0.51, 11, 31, 51, 6L	7.9 T9.7		5013 02-22012	364	(YES) NO 7666	9		
SOIL GAS SAMPLING DATA	AMPLING DA	ATA			ā		100-150 mL/min		ĺ	
Action	Start Time	Finish Time	Init Pressue (mmHg)	Final Pressue (mmHg)	<u> </u>		ā	Ø.		
Leak-Test	(1.28	1.23	730	7%			i i			
Purge	1228	12	29	00			c			ä
Sample	1230	1301	730	S						
SOIL GAS SCREENING	CREENING					2	Ī))
Date	Time	Depth (ft)	OId (bbm)	O ₂ (ppm)	(bdd)	CO ₂ (bbm)				
01/25/22	7051	126/02	0.0							
	(303	1.	0.6					28		
	1304	•5	9.0							ğ
	1305	3	2.0				,			
	1306	3	0.6							
	CONTAINER TYPE	TYPICAL ANAL	YSIS ALLOWED P	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)	Circle applicable or	write non-standard a	ralysis below)		190	
Lype		втехлен (то-з)	PESTICIDE/PCSs (T	10-4) ALDEHYDES/KE	YTONES (TO-5) PE	STICIDES/PCBs (TO-10)	BTEX.TPH (TO-3) PESTICIDE/PCSS (TO-4) ALDEHYDES/KEYTONES (TO-5) PESTICIDES/PCBs (TO-10) ALDEHYDES/KEYTONES (TO-11)			**
IIA ei		NON-METHANE OR	NON-METHANE ORGANIC CMPDS (TO-12)	(2) PAHS/SVOCs (TO-13)	-13) VOCs (TO-15)				E	*
nalys		TPH as Diesel (TO-17)	C.				23			
g d		SPECIFIC CHEMICAL ANALYSIS [AL ANALYSIS [**	-		
NOTES:				*						
		4								
SAMPLER:		- John	Call to	5				1		

SOLIC LASS SETTING The Part		i i	Î									PO Box 14488	
State Additionary State	EVKEN NO	KIHWEO			×						Fortlan 503-452-556		93 52-7669
II. N NE S S S N N N N N N N	PROJECT NA	ME/NUMBE		1	10012	20-	N			SAMPLELOC		508m	
NE E SE S SW W NW LICHT MEDIUM HENVY Temp., C Temp.,	SITE ADDRE	SS:	do	No. of the last	JE	Green	Loson	Are	2	20 attle	OUP ID:		
Volume	WIND F		1000	S	>	3	1.7 A.			SAVY		Temp., C	Humidity (%)
Volume Sample Depth Sample ID Summa ID Flow Controler Flow Meter ID	WEAL	HEK: SUL	L N						3			3.50	
Volume Sample Depth Sample ID Summa ID Flow Controler Flow Meter ID (IL)	SOIL GAS SE	TUP DATA										2	
11(31, 91, 61 6408 54, 84, 72, 73, 93, 73, 11 (YES) NO 246/9 11(31, 91, 61 74 74 74 75 13.24 24 25 13.25 24 25 13.26 25 13.26 25	Container Type		Volume (L)		ple Depth (ft.)	Sam	Dl eld	Summa ID	Flow Controler		Purge Vessel ID		
Init Pressue Final Pressue	Tedlar/Summa	11	11.[31.,54.	9	निक र	St. Bos.	22025	30	H	6992		38° - 287	
Sh Time Init Pressue Final Pressue Fin	SOIL GAS SA	AMPLING DA	ATA							X			
13:24	Action	Start Time	sh Time	Init Pressue (mmHg)		sssue (g)	9		80		ř.		
13:26 26 26 25 26 25 26 26	Leak-Test	1:36	10.1	29	29				1			2	
13:26 29 5 5 5 5 5 5 5 5 5	Purge	1.59	13:01	26	x								
Depth (ff) PID O ₂ CO CO ₃ CO CO ₄ CO CO ₅ CO CO ₆ CO CO ₇ CO CO CO ₇ CO ₇ CO CO ₇ CO CO CO ₇ CO CO CO C	Sample	13:01	13:26	62	x		, đ						
Time Depth (ff) PID O2 CO CO2	SOIL GAS SC	CREENING						.11					75
13:27	Date	Time	Depth (ft)	PID (mdd)	O ₂	~ ~	(mdd)	CO ₂ (ppm)					
13:25		13:27	10	0.6									06
13:30 0.00 13:30 0.00 14:30 0.00 15:31 0.00 15:31 0.00 15:31 0.00 15:31 0.00 15:31 0.00 15:31 0.00 15:32 0.00 15:32 0.00 15:32 0.00 15:32 0.00 15:32 0.00 15:32 0.00 16:3		(3:25		0.6							35		
13.32 0.6		17:29											6
NTAINER TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BTEXTPH (TO-3) PESTICIDE/PCSS (TO-4) ALDEHYDE/SKEYTONES (TO-10) ALDEHYDE/SKEYTONES (TO-11) . NON-METHANE ORGANIC CMPDS (TO-12) PAHSIS/NOCS (TO-13) .VOCS (TO-15) TPH as Dissel (TO-17) SPECIFIC CHEMICAL ANALYSIS]		13:30		0.0					N.				67
NTAINER TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BTEXTPH (TO-3) PESTICIDE/PCSS (TO-4) ALDEHYDES/REYTONES (TO-5) PESTICIDES/PCBS (TO-10) ALDEHYDES/REYTONES (TO-11) . NON-METHANE ORGANIC CAPIDS (TO-12) PAHEIS/NOCS (TO-13) VOCS (TO-15) TPH as Diesel (TO-17) SPECIFIC CHEMICAL ANALYSIS [0.0									
STEXTPH (TO-3) PESTICIDEPCSS (TO-4) ALDEHYDESKEYTONES (TO-16) ALDEHYDESKEYTONES (TO-11) . NON-METHANE ORGANIC CMPDS (TO-12) PAHSISVOCS (TO-13) VOCS (TO-15) TPH as Diesel (TO-17) SPECIFIC CHEMICAL ANALYSIS [TAINER TYPE	TYPICAL ANALY	SIS ALLOWED	O PER BOTTLE	: TYPE (Circle	applicable or wri	te non-standard and	rlysis below)	(#X)			Œ
NON-METHANE ORGANIC CMPDS (TO-12) PAHSISVOCS (TO-15) VOCS (TO-15) TPH as Dissel (TO-17) SPECIFIC CHEMICAL ANALYSIS [<u></u>		втехлен (го-з)	PESTICIDE/PCSs	s (TO-4) ALDEH	IYDES/KEYTON	ES (TO-5) PESTIC	CIDES/PCBs (TO-10)	ALDEHYDES/KEYTON	ES (TO-11) .			
TPH as Diesel (TO-17) SPECIFIC CHEMICAL ANALYSIS [IIA si eltto		NON-METHANE OR	GANIC CMPDS (T			VOCs (TO-15)						1
SPECIFIC CHEMICAL ANALYSIS I	et Bo		TPH as Diesel (TO-17	0					(4)				
NOTES:	nA q		SPECIFIC CHEMICAL	L ANALYSIS [. 10	-		
	NOTES:	E.				100					0		
				V									

	EVREN NORTHWEST				э		Port 503-452-5	PO Box 14488 Portland, Oregon, 97293 503-452-5561 enw@evren-nw.com	293 1-nw.com
	PROJECT NAME/NUMBER:	15-81-2000	2000			SAMPLELO	SAMPLE LOCATION / ID:	450cs	2
	SITE ADDRESS:	8701- Greenwood	po	the North	2	SA	SAMPLE DATE:	shops.	
	WIND FROM: N NE	E SE S	SW W	NW LIGHT	MEDIUM	HEAVY		Temp., C	Humidity (%)
	WEATHER: SUNNY	CLOUDY RAIN	IN OTHER:						
	(LI	William Association in the second sec	ourge Time (finish)				VOLUMEC	VOLUME CALCULATION	
	Time 7	Deplete (ppm)	\$53 mag	00 (mdd)	CO (mdd)	Flow Rate (mL/min)		Sample Time (min)	Total Volume (L)
S. S. P.	Ruge OX 25/22 1310 (62 025)	26	1400	01				
9	- 1		1	1000	2.0	Camm	CAMMA ID =	12 2x	4
Sample	01 025 22 320 10	358 730	2	1400	000	J'E	12	1663 Stat	10 P
	SAMPLING DATA					Som S	Ole true	Start	and I
		Sample, ID		Tube ID	Sample Depth	Sample Time (start)	Sample Time (finish)		,
			73						_
	CONTAINER TYPE TYPI	TYPICAL ANALYSIS ALLOWED PER BOTTLE		TYPE (Circle applicable or write non-standard analysis below)	standard analysis below)				¥
8	TPH 84	TPH as Diesel (TO-17)		nu (num) non home					
	SPECI	SPECIFIC CHEMICAL ANALYSIS [1	
	NOTES:	Junge to	cetra 9	gumma (P.	Q	*	Gumma		
	2	j O				J. J. V.	2	7558	Ē
C 2	g ¹				-	Sp:11 - op:1	京李	3%	
			ž.		Gard	1 the	ž.		
	SAMPLER:				W	d TAME -	10		

(PRINTED NAME)

i	FOLIA											PO Box 14488	4488	
EVKEN NOKI HWEST	KIHWEOI	×								rD	503-452-5561		Jregon, 97293 Fax: 503-452-7669	3 2-7669
PROJECT NA	PROJECT NAME/NUMBER:	138	1981-200	Ler					SAN	SAMPLE LOCATION:	ATION:	SURB	JA SA	
SITE ADDRESS:		Bron B	Bremuo	7	Ane	9		\$(Д	DUP ID:	5	1	
WIND FROM:	Z	ш ट	S	SW		NW LIGHT		MEDIUM	HEAVY			Temp.,C		Humidity (%)
WEAL										٦.				
SOIL GAS SETUP DATA	TUP DATA											1	72) OF	
Container Type	Date	Volume (L)	Samp	Sample Depth (ft.)	San	Sample ID	Summa ID	Flow Controler		Flow Meter ID	Purge Vessel ID	<u></u>		
Tedlar/Summa	Tedlar/Summa 01 /54276.5L, 1L, 32, 5L, 6L	, 11,32, 51, 1	6L 5WZ		4080x	1	619	. YES	NO N	2548		T		
			a	\ \	22	220125						1		
SOIL GAS SA	SOIL GAS SAMPLING DATA					я		•	•					
Action	Start Time Fin	Finish Time	Init Pressue (mmHg)	Final (m	Pressue mHg)	7.0			÷		×			
Leak-Test	1 2%	.29	29	29										
Purge	13:38	3:41	28	23				ē						31
Sample	-	025	28	h										
		,												
SOIL GAS SCREENING	REENING						ž	ĭ						
Date	Time D	Depth (ff)	Old (mdd)	O ₂ (bbm)	0	(bbm)	CO ₂ (ppm)							
200	147.0		4.0											ă A
	1451		4.0								2.			
•	1422		0.3								¥			æ
	1423		0.2											
														9
	CONTAINER TYPE TYP	YCAL ANALYS	SIS ALLOWED	PER BOTTLE	TYPE (Circl	e applicable or w	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)	nalysis below)					.5	940
јоме	BTE	втехитен (то-з) Р	ESTICIDE/PCSs	(TO-4) ALDEH	YDESKEYTO	VES (TO-5) PES	PESTICIDEFICES (TO-4) ALDEHYDES/KEYTONES (TO-5) PESTICIDES/PCBs (TO-10)	ALDEHYDES/KEYTONES (TO-11)	EYTONES (TO-	٠,				78
A sis	NON	HAETHANE ORG	NON-METHANE ORGANIC CMPDS (TO-12)	156	PAHS/SVOCs (TO:13)	VOCs (TO-15)						240		3
nalys	HAL	TPH as Diesel (TO-17)	30.00											
d	SPEC	SPECIFIC CHEMICAL ANALYSIS [ANALYSIS								-			
NOTES:	B)			S										
		1		-										
SAMPLER:	(PRINTED NAME)	1 Jan	000	3						(SIGNATUR	り を の の の の の の の の の の の の の			1
	V		1	1							7			

												000	0	
EVREN NORTHWEST	RTHWES'	<u>.</u>								4,	Portland, (503-452-5561		ox 14466 Dregon, 97293 Fax: 503-452-7669	699
PROJECT NAME/NUMBER:	ME/NUMBE		15B1-21001-0	20-10	V.				SAN	SAMPLE LOCATION:	ATION:	50B66	C	
SITE ADDRESS:	38:	835	Green	100	A po	ALC N	1. See	reath			DUP ID:			
WIND FROM:	320	m	S	N/S	3	NW LIG	LIGHT MI	MEDIUM	HEAVY			Temp.,C	H	Humidity-(%)
WEATHER:		SUNNY CLOUDY		KAIN 3	(1)					7				
SOIL GAS SETUP DATA	TUP DATA							ļ.					31	
Container Type	Date	Volume (L)	Samp	Sample Depth (ft.)	Sarr	Sample ID	Summa ID	Flow Controler		Flow Meter ID	Purge Vessel ID	les		
Tedlar/Summa (M	P1 257270.14	31,,51,	19	Swis	538	- 98	210	. YES N	NO N	7531				
)				220625	1		8					
SOIL GAS SAMPLING DATA	MIPLING DA	ATA				ě								
Action	Start Time	Finish Time	Init Pressue (mmHg)	Œ	essue (g)	tí					×			
Leak-Test	26:11	843)	30	Sh.	P									
Purge	1351	1258	42	23										8
Sample	1354	1426	30	h										
														*
SOIL GAS SCREENING	REENING						i	ſ						
Date	Time	Depth (ft)	Old (mdd)	O ₂ (ppm)	· e	(mdd)	CO ₂ (bbm)	,						
1/2/20	12/12/		0.2											3
	1241		1.0								2			
	1428		0.1					T						
	145		0.0					,						
	1430		0'0										٠	
	CONTAINER TYPE	TYPICAL ANALY	'SIS ALLOWED) PER BOTTLE	: TYPE (Circl	e applicable or	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)	analysis below)						×.
, Abe		втехлен (то-з)	PESTICIDE/PCSs (TO-4) ALDEHYDES/KEYTONES (TO-5)	(TO-4) ALDEH	YDESKEYTO		PESTICIDES/PCBs (TO-10)	0) ALDEHYDES/KEYTONES (TO-11)	TONES (TO-	. (1)				*
ollA a		NON-METHANE ORGANIC CMPDS (TO-12)	GANIC CMPDS (T	1	PAHS/SVOCs (TO:13)	VOCs (TO-15)						72		
slysi		TPH as Diesel (TO-17)	6					÷						
īA q		SPECIFIC CHEMICAL ANALYSIS [LANALYSIS[*	-			
NOTES:				Įģ.	7.6									
			,								0			
SAMPLER:	-	1	20/10	6						X	T	(
0	(PRINTED NAME)	ME)						Ĩ		(SIGNATIONE)	(E))		Ë

Appendix C Laboratory Analytical Report

Summary D T V LID? $\boxtimes Y$ S

nalytical Laboratory Data Validation Check Sheet

Project Name: iddie Academy	Project Number:	1581-21001-02	2		-
Date of Review: 02/11/2022	Lab. Name: S	Lab Batch ID	: 2220	42	-
Chain of Custody					
1.) Are all re uested analyses reported?			⊠yes	□no	
2.) Were the re uested methods used?			⊠yes	□no	
3.) Trip blan submitted?			□yes	⊠no	
4.) Field blan submitted?			\square yes	⊠no	
Timing					
5.) Samples extracted within holding time			⊠yes	□no	
If not, are all discrepancies footno			□yes	□no	$\boxtimes NA$
6.) Analysis performed within holding time			⊠yes	□no	
If not, are all discrepancies footno	oted?		□yes	□no	$\boxtimes NA$
uality Assurance/ uality Control	tado (MDLava MDLa/D	l a)	N		
7.) Are the re uired reporting limits report		LS)	⊠yes	□no	
8.) Are all reported values above either M			⊠yes	□no	⊠NIΛ
9.) Are all values between the MDL P10a.) Are reporting limits raised for other		aluta aana 2	□yes	□no	⊠NA
10b.) If so, are they footnoted?	reason besides nigh and	aryte conc.?	□yes □yes	⊠no □no	⊠NA
11.) Lab method blan completed?			□yes ⊠yes	□no	△INA
12.) Lab Field, or Trip Blan (s) report de	tections?		□yes	⊠no	
If yes, indicate blan type, chemical(s) and			⊔у с з		
42 \ For increasing and metals is there	no mothed blog for one	ah analutan			—————————————————————————————————————
13.) For inorganics and metals, is there o		ch analyte?	□yes	□no	⊠NA
If not, are all discrepancies footnot		io ?	□yes	□no	
14.) For VOCs, is there one method blan		IS?	⊠yes	□no	□NA
If not, are all discrepancies footnot		otob?	□yes	□no	
15.) For SVOC s, is there one method bla		alcn?	⊠yes	□no	□NA
If not, are all discrepancies footnot Accuracy	ntea?		□yes	□no	
16.) Is there a surrogate spi e recovery for	or all VOC SVOC sam	ples?	⊠yes	□no	\square NA
Do all surrogate spi e recoveries	meet accepted criteria?		⊠yes	\square no	
If not, are all discrepancies footno	oted?		□yes	□no	$\boxtimes NA$
17.) Is there a spi e recovery for all Labo	ratory Control Samples?	•	⊠yes	□no	\square NA
Do all LCS/LCSD spi e recoverie	s meet accepted criteria	?	⊠yes	□no	
If not, are all discrepancies footno	oted?		□yes	□no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within acce	ptable limits?		⊠yes	□no	\square NA
If not, are all discrepancies footno	oted?		□yes	□no	$\boxtimes NA$
Precision					
19.) Are all matrix spi e/matrix spi e dupl	licate recoveries within				
acceptable limits?			⊠yes	□no	□NA
If not, are all discrepancies footnoted			□yes	□no	$\boxtimes NA$
20.) Are all matrix spi e/matrix spi e dupl	licate RPDs within				
acceptable limits?	10		⊠yes	□no	□NA
If not, are all discrepancies footnoted		iti-0	□yes	□no	⊠NA
21.) Do all RPD calculations for Field Dup	olicates meet accepted of	criteria?	□yes	□no	⊠NA
Comments:					
Initial Review By: CR		inal Review B	sy:		

Thursday, February 10, 2022

Sample Delivery Group (SDG

222042

EAS Project Number:

17696

Lynn Green Evren Northwest Inc. 40 SE 24th Avenue, Suite A Portland, OR 97214

Lynn,

Enclosed is the analytical report for the samples received and analyzed by Environmental Analytical Service, Inc. for the following Project.

Revised Report

Client Project Name:

8701 Greenwood Ave

PO Number:

Client Project Number

1581-21001-02

Sample Event Date:

01/25/2022

If you have any questions on the report or the analytical data please contact me at (805) 781-3585.

Sincerely

Steven D. Hoyt Ph.D.

Laboratory Director

SDH/LIMS

173 Cross Street

San Luis Obispo

CA

93401-7597

805.781.3585

Fax 805.541.4550

Analytical Report

Project Name:

8701 Greenwood Ave

EAS SDG Number: 222042

Project Number: 17696

Client Project Manager: Lynn Green

Prepared For:

Evren Northwest Inc. Sample Event Date: 01/25/2022

40 SE 24th Avenue, Suite A Received Date: 1/28/2022

Portland OR 97214 Report Date: 2/2/2022

Revised Report 2/10/2022

Project Number: 1581-21001-02

PO Number:

This is the Laboratory Report for the samples in the indicated Sample Delivery Group (SDG). Each sample received in the group is assigned a Laboratory ID number. The combination of the SDG number and the Lab ID number is an unique identifier for the sample.

This Report Contains:

Laboratory Work Order

Project Sample Media

Laboratory Case Narrative and Chain of Custody

Method Description (when applicable)

Quality Control Reports

Analytical Reports

NELAC Certification: Florida E871125

173 Cross Street, San Luis Obispo, CA 93401 (805) 781-3585

Laboratory Work Order

SDG Number: 222042

Project Number: 17696

Client: Lynn Green

Received: 1/28/2022

Evren Northwest Inc.

SAMPLE DESCRIPTION AND ANALYSIS REQUESTED

Client Sample ID	EAS Lab No. Analysis Requested	Date Sampled
SUB01-220125	222042 1 EPA TO-15 VOC + IPA	1/25/2022
SUB02-220125	222042 2 EPA TO-15 VOC + IPA	1/25/2022
SUB03-220125	222042 3 EPA TO-15 VOC + IPA	1/25/2022
SUB04-220125	222042 4 EPA TO-15 VOC + IPA	1/25/2022
SUB05-220125	222042 5 EPA TO-15 VOC + IPA	1/25/2022
SUB06-220125	222042 6 EPA TO-15 VOC + IPA	1/25/2022

Project Sample Media

SDG Number: 222042

The following sample media was used for this Sample Delivery Group (SDG). The Sample Media column identifies the type of media. For canisters, the Sample Media Batch gives the canister number followed by the cleaning batch number, which is a unique identification. The initial pressure of the canister when it is received is recorded. If the canister is not pressurized, the final pressure will be the same as the initial pressure. If the canister is pessurized the final pressure will be recorded, and the canister dilution factor is calculated as the ratio of the final to initial pressure. The results are adjusted for the can dilution factor.

SDG Lab ID	Client Sample No.	Sample Media	Batch	Pressur Initial		Can actor
222042 1	SUB01-220125	935	122221B	695	695	1.00
222042 2	SUB02-220125	364	123021A	721	721	1.00
222042 3	SUB03-220125	311	123021A	679	679	1.00
222042 4	SUB04-220125	345	123021A	753	753	1.00
222042 5	SUB05-220125	313	122221B	742	742	1.00
222042 6	SUB06-220125	310	122221B	739	739	1.00

Laboratory Case Narrative

EAS SDG Number: 222042 Project Number: 17696

Client: Evren Northwest Inc.

The Laboratory Case Narrative for the SDG is below. The Chain of Custody form(s) follow the Laboratory Case Narrative.

Sample Control Narrative

The samples were all received in good condition and with proper preservation.

Analytical Methods

The methods used for sample analysis are listed on the Analytyical Report header, and have been modified as described in the EAS Quality Manual..

Case Narrative

QC Narrative

All analyses met EAS method criteria as defined in the Quality Manual, except as noted in the report or QC reports with data qualifiers.

Subcontract Narrative

No sample analysis was subcontracted for this project

Laboratory Certification

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness other than the condition(s) noted above. The Laboratory Report is property of EAS and its client. The entire report has been reviewed and approved.

Date Approved: 2/2/2022

Steven D. Hoyt, Ph.D.

Environmental Analytical Service Laboratory Director

Laboratory Director

San Luis Obispo, CA 93401 173 Cross Street 805 781-3585

ENVIRONMENTAL

CHAIN OF CUSTODY RECORD

Project Number 1591 / 31001-07 Project Name	3100	107	Project Na	1	8201	Sold will		Anie.	Quote		R	ednes	Requested TAT	IT standard
REPORT TO:		Section Street		3.5	165.00		Total a			1 m	Analy	Analytical Tests	ests	
Attention	3	Inr (reen	7			Matrix					(T		
Company	D	Justen	No	Northwes	Tr		A - An	A - Ambient Air			7	anc		
Address	<i>A</i>	B	Box	(44 DP	Q		8-98	SG - Soil Gas			201	7		
City, State, Zip	Q	Wila	and	OR	9	282	S - Source	nrce			C	her		
Phone/Fax	503		452-956	356			- Inde	I - Indoor Air				つ		
e-mail	3	NN 96	Lynn & Ocerren -nw. Com	ハーハジ	S	ز			SDG	22204S	51-	7	0	
Sample Description	Sample Date	Start Time	Stop Date	Stop	Stop Canister Time Number	Flow Reg Number	Matrix	Initial Pressure	Final Pressure	Laboratory ID	21	19	1	Comments
511201-2012 WHILE	01/25/23	10 and	otheten		935	, ,	56	22	7	Q	×,	×	7	
からんしている ag	-			1	296	7997	35	230	7	07	×	X	~	
34303-12012		13:01		13:26		7669	, v	29	Ŋ	03	×	^ X		
8 w Boy - 720125		(3:20		13:58		2559		>30	٧	ह	×	×		
54Box -720175		13:41		14:20	40	STUB		28	7	05	×	×		
Subol 12,012	*	1254	D	透	30	1852	8	30	Z	90	×	× ×		
				-	7			,				-		
Comments		* 5	54 Bob	s.A.g	Stop have	二年七	۹							
		\$4000000 N					>			Dato/Time				
BILLING INFORMATION:	.N.		¢			SAIVIFUED DI		(י ל				
ATTENTION	Ð	Sorbava	X	o and			*	7		22/22	7	<u>ĕ</u>	COC Number	
Company		Tren	>	Northwest	F	9	2			(4:00		C00	Cooler Temp	
Address		5	SOMMD. 0	as ab	about	5-140	}					Airbill	_	SIEE ATTA ONLED
City, State, Zip			7			RECEIVED FOR LAB	ED FOR	LAB						
Purchase Order		192	1561-21001-02	201		D				1/28/25/	1430			

Quality Control Report

EAS SDG Number: 222042 Project Number: 17696

QC Narrative

Samples were anlayzed in a daily analytical batch (DAB) designated by a QC batch number, and were analyzed using EAS standard laboratory QC specified in the EAS Quality Manual which may be different then the referrenced agency method. Any deviations from the EAS QC criteria are flagged in the Laboratory Control Reports or in the sample Analytical Reports.

Standard Laboratory QC Report

Unless project specific QC was requested, this Section containing the standard laboratory QC (Level 2) supplied with the Analytical Reports. Each sample is analyzed in a Daily Analytical Batch (DAB) which includes the method blank, a laboratory control spike (LCS) and a laboratory control duplicate (LCD). A Daily Analytical Batch QC report is supplied for each method requested.

Method Blank

The method blank is a laboratory generated sample which assesses the degree to which laboratory operations cause a false positive. The target analytes in the analytical reports for a daily analytical batch are "B" flagged if their concentrations are present in the Method Blank above the RL, unless the result is greater then ten times the blank value.

Laboratory Control Spike

A laboratory control spike is a well characterized matrix similar to the sample which is spiked and run in duplicate with each Daily Analytical Batch. The laboratory control spike results are reported as a percent recovery. The QC Criteria for the control spike is listed in the Laboratory Control Report. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report. The control spike contains an abbreviated list of compounds in the method, and may contain compounds not on the target list for the specified report.

Laboratory Control Duplicate

The laboratory control duplicate is a duplicate analysis of the laboratory control spike, a standard, or a sample depending on the method. The results are reported as a relative percent difference (RPD). The criteria for the duplicate is in the Laboratory Control Report for the Daily Analytical Batch. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report.

METHOD BLANK REPORT

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: LABQC

Laboratory ID: B01312

File Name: B01312D.D

Description: METHOD BLANK

Canister:

QC_Batch: 013122-MA1

Date Sampled:

Date Analyzed: 1/31/2022

Time:

Time: 13:47

Can Dilution Factor: 1.00

Air Volume: 200.00

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	1190
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	ND	2.36	7.08	ND	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	ND	2.97	8.92	ND	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	ND	1.60	3.20	ND	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5	cis-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	ND	1.89	4.92	ND	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	ND	2.30	5.76	ND	
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
		***************************************				QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				85	70	130	

METHOD BLANK REPORT

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: LABQC

Laboratory ID: B01312

File Name: B01312D.D

Description: METHOD BLANK

Date Sampled:

Time:

Date Analyzed: 1/31/2022

Time:

13:47

Canister:

QC Batch: 013122-MA1

Can Dilution Factor: 1.00

Air Volume: 200

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPB V	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	ND	284.86	854.59	ND	

METHOD BLANK REPORT

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: LABQC

Laboratory ID:

B01312

File Name:

B01312D.D

Date Sampled:

Time:

130

Date Analyzed: 1/31/2022

Time:

13:47

Can/Tube#:

2037-26-5

Description: METHOD BLANK

Can Dilution Factor: 1.00

QC_Batch:

013122-MA1

Toluene-d8

Air Volume: 200

85

ml

70

CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
67-63-0	2-propanol (Isopropyl Alcohol)	1.25	3.75	ND	3.08	9.23	ND	
	7. T.					QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag

QUALITY CONTROL REPORT

Laboratory Control Spike and Spike Duplicate Report

TO15

Volatile Organic Compounds by GC/MS

QC_Batch: 013122-MA1

Date:

01/31/22

		LCS		LCD		Spike	Limit		Duplicate	
		Recovery		Recovery		LCL	UCL	Duplicate	Limit	
CAS#	Compound	%	Flag	%	Flag	%	%	%	%	Flag
75-01-4	Vinyl chloride	92		86		70	130	7	25	
75-35-4	1,1-Dichloroethene	94		88		70	130	6	25	
75-09-2	Dichloromethane	107		99		70	130	7	25	
75-34-3	1,1-Dichloroethane	96		84		70	130	13	25	
67-66-3	Chloroform	81		82		70	130	1	25	
71-55-6	1,1,1-Trichloroethane	84		77		70	130	8	25	
107-06-2	1,2-Dichloroethane	82		73		70	130	11	25	
71-43-2	Benzene	83		82		70	130	2	25	
56-23-5	Carbon tetrachloride	91		80		70	130	13	25	
79-01-6	Trichloroethene	99		94		70	130	5	25	
108-88-3	Toluene	100		79		70	130	23	25	
106-93-4	1,2-Dibromoethane	119		95		70	130	23	25	
127-18-4	Tetrachloroethene	115		91		70	130	24	25	
100-41-4	Ethylbenzene	87		78		70	130	10	25	
1330-20-7	m,p-Xylenes	85		74		70	130	13	25	
95-47-6	o-Xylene	92		80		70	130	15	25	
108-67-8	1,3,5-Trimethylbenzene	101		84		70	130	18	25	
95-63-6	1,2,4-Trimethylbenzene	94		102		70	130	8	25	

LCS - Laboratory Control Spike LCD - Laboratory Control Duplicate

Flag - Q indicated out of Limits

Analytical Reports

EAS SDG Number: 222042 Project Number: 17696

The following pages contain the certified Analytical Reports for the samples submitted in the Sample Delivery Group (SDG) and are in order of the EAS Lab ID number. All of the analytical methods used are modifications of the published methods. Procedural method modifications, QC modifications, QC Criteria modifications, target lists, definitions of detection limits, and flags are all explained in detail in the EAS Quality Manual.

The Analytical Report has columns for the method detection limit (MDL), the reporting limit (RL), and the Amount. The Amount is the concentration of the compound in the sample. The report usually has the results reported with two commonly used units. The MDL, RL, and Amount are adjusted for the canister dilution factor and any dilution caused by sample matrix effects.

NELAC CERTIFICATION

EAS is accredited by the National Environmental Laboratory Accreditation (NELAC) with the Florida Department of Health, one of the NELAC certifying states. EAS is certified for the EPA TO-15, EPA TO-11 and EPA TO-4 methods. A list of accredited compounds is available on request.

DETECTION LIMITS

MDL: The MDL is lowest concentration that can be measured to be statistically above the noise level and is determined using the EPA 2016 method which uses the standard deviation of replicate measurements made over time. The method also incorporates systematic instrumentation blank levels. See Quality Manual for detailed explanation.

RL: The reporting limit (RL) is the lowest concentration that can be reliably reported for each compound that meets the QC Criteria for the method, background levels, or project specific considerations. The QC criteria level for the method blank is to be less then the RL See Quality Manual for more information.

DATA FLAGS

In the standard report, if a compound is not detected above the method detection limit, a "ND" is in the Amount column. The flag column is used for both the not detect flag and for any data flags.

- B This compound was detected in the batch method blank above the reporting limit and is greater then one tenth the amount in the sample.
- E This compound exceeds the calibration range for this sample volume.
- J The amount reported is estimated because it was below the RL and could be below the lowest calibration point, have higher uncertainty, or could be the result of system background

UNITS

PPBV or PPMV: Parts-per-billion (or million) by volume is a mole (volume) ratio of the moles of analyte divided by the moles of air (gas). This is the primary unit used to report air or gas concentrations and is independent of temperature and pressure.

UG/M3 OR MG/M3: The reported result was calculated based on 1 atm pressure and a temperature of 25C. The conversion from PPBV is: UG/M3 = PPBV x MW/24.46 where 24.26 is the gas constant and MW is the Compounds Molecular Weight (sometimes called Formula Weight)

EPA Method TO-15 Modified Full Scan GC/MS

TO-15 **Analytical Method:** Laboratory ID: 01

File Name: 2204201A.D Description: SUB01-220125

Canister: 935

QC_Batch: 013122-MA1

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022

Time: 12:20 Time: 17:27

SDG: 222042

Can Dilution Factor: 1.00

Air Volume: 200.00

0.10	₩ NASAN WAR	MDL	RL	Amount	MDL	RL	Amount	page (10,000)
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	41.86	2.36	7.08	79.03	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	29.66	2.97	8.92	70.59	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	. Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	1.41	1.60	3.20	4.52	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5	cis-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
108-88-3	Toluene	0.50	1.31	0.79	1.89	4.92	2.96	J
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	ii)

	MIC 320	MDL	RL.	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	ND	2.30	5.76	ND	
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND -	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
						QC	Limits	12174
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				78	70	130	

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

File Name: 2204201A.D

Description: SUB01-220125

Canister:

935

QC_Batch: 013122-MA1

Date Sampled: 1/25/2022

Time: Time: 12:20

Date Analyzed: 1/31/2022 Can Dilution Factor: 1.00

ml

17:27

Air Volume: 200

MDL RL Amount MDL RL Amount **PPBV** UG/M3 UG/M3 Flag **PPBV PPBV** UG/M3 Compound CAS# ND ND 284.86 854.59 1330-20-7 Gas Range Organics (C6-C10) 60.00 180.00

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG:

222042

Laboratory ID:

01

File Name:

2204201A.D

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022 Time:

12:20

Description: SUB01-220125 Can/Tube#: 935

2037-26-5

Can Dilution Factor: 1.00

Time:

130

Toluene-d8

17:27

QC_Batch: 013122-MA1

Air Volume: 200

78

ml

70

CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
67-63-0	2-propanol (Isopropyl Alcohol)	1.25	3.75	ND	3.08	9.23	ND	
			2.24			QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

Canister:

TO-15

SDG: 222042

Laboratory ID:

02

File Name: 2204202A.D Description: SUB02-220125

364 QC_Batch: 013122-MA1

Date Sampled: 1/25/2022

Time: 12:30

Date Analyzed: 1/31/2022

Time: 18:03

Can Dilution Factor: 1.00

Air Volume: 200.00 ml

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	23.40	2.36	7.08	44.18	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	68.26	2.97	8.92	162.43	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	2.62	3.90	7.23	8.17	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	4.32	2.95	7.52	12.76	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	3.43	1.60	3.20	10.96	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5	Salar and Superior of the Salar Salar Salar and Sa	0.25	1.30	ND	1.14	5.89	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	2.71	1.89	4.92	10.23	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	ND	2.30	5.76	ND	
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
<u></u>						QC	Limits	
	Surrogate Recovery			-144 - 8	% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				87	70	130	

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

02

File Name: 2204202A.D

Date Sampled: 1/25/2022

Time:

12:30

Description: SUB02-220125

Date Analyzed: 1/31/2022

Time:

18:03

Canister:

Can Dilution Factor: 1.00

364

QC_Batch: 013122-MA1

Air Volume: 200

dellementation in a	111110111111111111111111111111111111111	MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	ND	284.86	854.59	ND	

EPA Method TO-15 Modified Full Scan GC/MS SDG: 222042 **Analytical Method:** TO-15 Laboratory ID: 02 File Name: 2204202A.D Date Sampled: 1/25/2022 Time: 12:30 Description: SUB02-220125 Date Analyzed: 1/31/2022 18:03 Time: Can/Tube#: 364 Can Dilution Factor: 1.00 QC_Batch: 013122-MA1 Air Volume: 200 ml

CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
67-63-0	2-propanol (Isopropyl Alcohol)	1.25	3.75	ND	3.08	9.23	ND	
	ANAL STRUCTURE AND STRUCTURE A	37.2 00 111000		311.00		QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				87	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

File Name: 2204203A.D Description: SUB03-220125

Canister: 311

QC_Batch: 013122-MA1

Date Sampled: 1/25/2022

Date Analyzed: 1/31/2022

Time: 13:01 Time: 18:38

Can Dilution Factor: 1.00

Ai

ir	Vo	lume:	200.00	ml

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	7.90	2.36	7.08	14.92	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	40.61	2.97	8.92	96.62	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	3.20	1.60	3.20	10.25	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5	게임 IT 사용하다면서 바다 경기 경기 다가 있는 사람이 IT 사용 IT HE CONTROL IT H	0.25	1.30	ND	1.14	5.89	ND	

F17 25-51		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	5.74	1.89	4.92	21.65	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	0.27	1.02	4.13	1.86	J
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	0.73	2.30	5.76	3.16	J
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				82	70	130	

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

03

File Name: 2204203A.D

Date Sampled: 1/25/2022

Time:

13:01

Date Analyzed: 1/31/2022

Description: SUB03-220125

Can Dilution Factor: 1.00

18:38 Time:

Canister:

311

QC_Batch: 013122-MA1

Air Volume: 200

CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	137.22	284.86	854.59	658.71	J

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG:

222042

Laboratory ID:

03

File Name: 2204203A.D

Date Sampled: 1/25/2022

Time:

13:01

Description: SUB03-220125

Date Analyzed: 1/31/2022

Time:

Can/Tube#: 311

Can Dilution Factor: 1.00

18:38

QC_Batch: 013122-MA1

Air Volume: 200

0.10#		MDL	RL	Amount	MDL	RL	Amount	-
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
67-63-0	2-propanol (Isopropyl Alcohol)	1.25	3.75	208.91	3.08	9.23	514.20	
		HW		=	20,000	QC	Limits	_
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				82	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

File Name: 2204204A.D Description: SUB04-220125

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022 Time: 13:20 Time: 19:14

Canister:

345

Can Dilution Factor: 1.00

Air Volume: 200.00

ml

QC_Batch: 013122-MA1

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	51.03	2.36	7.08	96.34	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	257.87	2.97	8.92	613.60	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	4.97	1.60	3.20	15.89	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5		0.25	1.30	ND	1.14	5.89	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	2.69	1.89	4.92	10.16	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	1.03	2.30	5.76	4.49	J
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
				18/86		QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8	172.300	7-17-5		87	70	130	

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

04

File Name: 2204204A.D

Description: SUB04-220125

Canister: 345

QC_Batch: 013122-MA1

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022

Time: 13:20

Time:

19:14

Can Dilution Factor: 1.00

Air Volume: 200

CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	68.36	284.86	854.59	329.46	J

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG:

222042

Laboratory ID:

04

File Name: 2204204A.D

Date Sampled: 1/25/2022

Time:

13:20

Description: SUB04-220125

Date Analyzed: 1/31/2022

Time:

Can/Tube#: 345

Can Dilution Factor: 1.00

19:14

Air Volume: 200

mi

QC_Batch: 013122-MA1

			MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound		PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
67-63-0	2-propanol	(isopropyl Alcohol)	1.25	3.75	99.52	3.08	9.23	244.97	

			QC	Limits	
	Surrogate Recovery	% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8	87	70	130	

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 222042

Laboratory ID: 05

File Name: 2204205A.D Description: SUB05-220125 Date Sampled: 1/25/2022

Time: 13:41

Date Analyzed: 1/31/2022

Time: 19:51

Canister: 313

Can Dilution Factor: 1.00

QC_Batch: 013122-MA1

ml Air Volume: 200.00

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	29.48	2.36	7.08	55.66	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	122.35	2.97	8.92	291.13	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	2.34	1.60	3.20	7.50	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5		0.25	1.30	ND	1.14	5.89	ND	

***************************************		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	2.28	1.89	4.92	8.59	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	0.94	2.30	5.76	4.08	J
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
				-		QC	Limits	
	Surrogate Recovery	- was		TIME I	% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8		731 - 533	*	86	70	130	

EPA Method TO-15 Modified TPH

Analytical Method:

SDG: 222042

Laboratory ID:

05

File Name: 2204205A.D

Description: SUB05-220125

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022 Time: 13:41

Canister:

313

Can Dilution Factor: 1.00

Time:

19:51

QC_Batch: 013122-MA1

Air Volume: 200

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	ND	284.86	854.59	ND	

EPA Method TO-15 Modified Full Scan GC/MS SDG: 222042 Analytical Method: TO-15 Laboratory ID: 05 File Name: 2204205A.D Date Sampled: 1/25/2022 Time: 13:41 Description: SUB05-220125 Date Analyzed: 1/31/2022 Time: 19:51 Can/Tube#: 313 Can Dilution Factor: 1.00 QC_Batch: 013122-MA1 Air Volume: 200 ml

Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
2-propanol (Isopropyl Alcohol)	1.25	3.75	ND	3.08	9.23	ND	
TO STATE OF THE PARTY OF THE PA					QC	Limits	
Surrogate Recovery				% Rec.	LCL	UCL	Flag
Toluene-d8		-37-37/8		86	70	130	
	2-propanol (Isopropyl Alcohol) Surrogate Recovery	Compound PPBV 2-propanol (Isopropyl Alcohol) 1.25 Surrogate Recovery	Compound PPBV PPBV 2-propanol (Isopropyl Alcohol) 1.25 3.75 Surrogate Recovery	Compound PPBV PPBV PPBV 2-propanol (Isopropyl Alcohol) 1.25 3.75 ND Surrogate Recovery	Compound PPBV PPBV PPBV UG/M3 2-propanol (Isopropyl Alcohol) 1.25 3.75 ND 3.08 Surrogate Recovery % Rec.	Compound PPBV PPBV PPBV UG/M3 UG/M3 2-propanol (Isopropyl Alcohol) 1.25 3.75 ND 3.08 9.23 Surrogate Recovery % Rec. LCL	Compound PPBV PPBV PPBV UG/M3 UG/M3 UG/M3 2-propanol (Isopropyl Alcohol) 1.25 3.75 ND 3.08 9.23 ND Surrogate Recovery % Rec. LCL UCL

EPA Method TO-15 Modified Full Scan GC/MS

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

06

File Name: 2204206A.D Description: SUB06-220125

Canister: 310 QC_Batch: 013122-MA1

Date Sampled: 1/25/2022 Date Analyzed: 1/31/2022 Time: 13:54

Time: 20:27

Can Dilution Factor: 1.00

Air Volume: 200.00 ml

SERVICE CONTRACTOR		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Fla
75-71-8	Dichlorodifluoromethane	0.65	1.25	ND	3.22	6.19	ND	
74-87-3	Chloromethane	0.65	1.26	ND	1.34	2.61	ND	
76-14-2	Freon 114	0.25	1.26	ND	1.75	8.80	ND	
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.22	ND	
106-99-0	1,3-Butadiene	0.25	1.26	ND	0.55	2.79	ND	
74-83-9	Bromomethane	0.50	1.26	ND	1.94	4.89	ND	
75-00-3	Chloroethane	0.25	1.26	ND	0.66	3.32	ND	
64-17-5	Ethanol	1.25	3.75	41.75	2.36	7.08	78.83	
75-69-4	Trichlorofluoromethane	0.35	1.26	ND	1.97	7.09	ND	
67-64-1	Acetone	1.25	3.75	163.96	2.97	8.92	390.14	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.92	ND	
76-13-1	Freon 113	0.25	1.20	ND	1.92	9.18	ND	
75-09-2	Dichloromethane	0.50	1.20	ND	1.74	4.19	ND	
75-15-0	Carbon disulfide	1.25	2.32	ND	3.90	7.23	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
1634-04-4	Methyl tert butyl ether	0.25	0.92	ND	0.90	3.33	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.06	ND	
108-05-4	Vinyl acetate	0.25	1.10	ND	0.88	3.87	ND	
78-93-3	2-Butanone	1.00	2.55	ND	2.95	7.52	ND	
141-78-6	Ethyl acetate	0.50	1.10	ND	1.80	3.95	ND	
74-97-5	Bromochloromethane	0.25	0.67	ND	1.32	3.53	ND	
109-99-9	Tetrahydrofuran	0.50	1.26	ND	1.48	3.71	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.34	ND	
67-66-3	Chloroform	0.25	1.19	ND	1.22	5.82	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.37	6.06	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
110-82-7	Cyclohexane	0.25	0.96	ND	0.87	3.31	ND	
71-43-2	Benzene	0.50	1.00	1.27	1.60	3.20	4.06	
56-23-5	Carbon tetrachloride	0.23	1.19	ND	1.42	7.46	ND	
142-82-5	n-Heptane	1.25	3.03	ND	5.13	12.43	ND	
78-87-5	1,2-Dichloropropane	0.25	1.20	ND	1.16	5.57	ND	
123-91-1	1,4 Dioxane	1.00	2.05	ND	3.61	7.38	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.27	ND	
75-27-4	Bromodichloromethane	0.25	0.51	ND	1.68	3.39	ND	
80-62-6	Methyl methacrylate	1.00	3.38	ND	4.10	13.86	ND	
108-10-1	4-Methyl-2-pentanone	1.00	3.79	ND	4.10	15.53	ND	
10061-01-5	cis-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	

		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
108-88-3	Toluene	0.50	1.31	3.25	1.89	4.92	12.27	
10061-02-6	trans-1,3-Dichloropropene	0.25	1.30	ND	1.14	5.89	ND	
79-00-5	1,1,2-Trichloroethane	0.25	1.29	ND	1.37	7.02	ND	
591-78-6	2-Hexanone	1.25	3.55	ND	5.13	14.55	ND	
124-48-1	Dibromochloromethane	0.25	0.50	ND	2.13	4.26	ND	
106-93-4	1,2-Dibromoethane	0.25	0.61	ND	1.92	4.67	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.13	ND	
108-90-7	Chlorobenzene	0.25	1.14	ND	1.15	5.25	ND	
100-41-4	Ethylbenzene	0.53	1.32	ND	2.30	5.75	ND	
1330-20-7	m,p-Xylenes	0.53	1.32	0.80	2.30	5.76	3.47	J
100-42-5	Styrene	0.52	1.29	ND	2.21	5.52	ND	
75-25-2	Bromoform	0.25	0.34	ND	2.59	3.47	ND	
95-47-6	o-Xylene	0.52	1.29	ND	2.24	5.60	ND	
79-34-5	1,1,2,2-Tetrachloroethane	0.25	0.62	ND	1.70	4.25	ND	
622-96-8	4-Ethyltoluene	0.83	2.07	ND	4.08	10.20	ND	
108-67-8	1,3,5-Trimethylbenzene	0.52	1.29	ND	2.54	6.36	ND	
95-63-6	1,2,4-Trimethylbenzene	0.51	1.27	ND	2.50	6.25	ND	
541-73-1	1,3-Dichlorobenzene	0.50	0.93	ND	3.01	5.57	ND	
100-44-7	Benzyl chloride	0.50	3.03	ND	2.59	15.71	ND	
106-46-7	1,4-Dichlorobenzene	0.50	0.87	ND	3.01	5.21	ND	
95-50-1	1,2-Dichlorobenzene	1.00	1.25	ND	6.02	7.53	ND	
120-82-1	1,2,4-Trichlorobenzene	1.25	1.72	ND	9.29	12.78	ND	
91-20-3	Naphthalene	0.26	0.40	ND	1.34	2.10	ND	
87-68-3	Hexachlorobutadiene	0.25	0.32	ND	2.67	3.36	ND	
	See State of Calendarian	-		******		QC	Limits	111-27
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				82	70	130	Her Greenway

EPA Method TO-15 Modified TPH

Analytical Method:

TO-15

SDG: 222042

Laboratory ID:

06

File Name: 2204206A.D

Description: SUB06-220125

Date Analyzed: 1/31/2022

Time: 13:54

Canister:

310

Can Dilution Factor: 1.00

Time: 20:27

QC_Batch: 013122-MA1

Air Volume: 200

Date Sampled: 1/25/2022

CAS#	Compound	MDL PPBV	RL	Amount	MDL	RL	Amount	-
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
1330-20-7	Gas Range Organics (C6-C10)	60.00	180.00	206.39	284.86	854.59	994.71	

2037-26-5

Toluene-d8

	EPA Method TO-15 Modified Full So Analytical Method: TO-15		71110			Labo	SDG: oratory ID:	222042 06
File Name:	2204206A.D			Date	Sampled:	1/25/2022	Time:	13:54
Description:	SUB06-220125			Date /	Analyzed:	1/31/2022	Time:	20:27
Can/Tube#:	Can/Tube#: 310				an Dilution Factor: 1.00			
QC_Batch:	013122-MA1			Air	r Volume:	200	ml	
2000	422	MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
67-63-0	2-propanol (Isopropyl Alcohol)	1.25	3.75	1,641.12	3.08	9.23	4,039.45	
	TOTAL STATE OF THE			-		QC	Limits	

82

70

130