

#### GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

March 14, 2022 Project No. 104-21020

Ms. Jing Song Washington State Department of Ecology 15700 Dayton Avenue North Shoreline, WA 98133

jing.song@ecy.wa.gov (206) 594-0100

**RE:** Facility Site No:6865393

Seitz Property (Lots 25 & 26)

Brian Lane NW Silverdale, Washington VCP Project No.: NW3313

Dear Ms. Song:

We received your opinion letter of February 22, 2022. The purpose of this response is to clarify our understanding of the opinion and provide additional information relevant to the opinion. The main elements of the February 22, 2022 opinion, along with our understanding of the requests, are listed below:

- 1. Soil contamination is sufficiently characterized and remediated.
- 2. Additional groundwater monitoring wells are needed.

#### Former House and Drum Area

Ecology requested that we place an additional well in the former single-family residence (SFR) and drum area and that this well be sampled for TPHd and TPHo. MW-6 will be installed as requested and groundwater will be analyzed for TPHd and TPHo. Soil samples will be collected during installation and the well will be screened to straddle the water table year-round. Note, water has been detected in all monitoring wells for the last three quarters. We are scheduled to install this monitoring well at the end of March. Figure 6 shows the planned location for MW-6.

#### Former Debris Pile 1

Based on Figure 4 provided in the RI, Ecology noted that MW-4 was located south of the former debris pile area and requested an additional monitoring well located near and east of the Former Debris Pile 1. We intended to locate MW-4 within the former debris pile. During field work, the debris pile was found to be in a different location than indicated on the figures in our

previous reports. Based on the data quality objectives for MW-4, we field-located the monitoring well within the debris pile rather than the location identified in the RI. See the attached photographs showing the debris pile and the installation of the monitoring well (the same piece of sheet metal is identified as debris in both photos). This location fulfills the objectives for identifying groundwater impacts associated with the debris pile and better meets the criteria of representativeness based on actual site conditions. Unfortunately, we did not correct Figures 3 and 4 prior to submitting the RI. We believe that MW-4, as located in the field, is a direct measure of conditions in the location of the former debris pile. We respectfully request that you reconsider and retract your request for installation of a monitoring well in the vicinity of the former debris pile.

Please find attached revised Figure 4 and photographs showing the Former Debris Pile 1 area and drilling of the monitoring well within the former debris pile.

3. Further groundwater monitoring is needed. Ecology has requested that PAHs, PCBs, lead, and arsenic be removed from the analyte list in MW-1 through MW-5, and that future groundwater samples not be treated with Silica Gel Cleanup (SGC). We will not report SGC results for additional data collected. Groundwater data has been analyzed without SGC for all sampling and monitoring. SCG was an additional analysis for some of the groundwater sampling events. Please find attached groundwater data tables and lab reports from the third quarter groundwater monitoring report. Note that even without SGC, concentrations of TPH have been below site cleanup levels.

In order to achieve No Further Action (NFA), all monitoring wells should have at least four consecutive quarters where contaminant concentrations are below site groundwater cleanup levels. Note that we have three quarters of groundwater data showing that concentrations of petroleum and metals in groundwater are below site cleanup levels.

- 4. As requested, please see the attached updated Figure 3 with the surface soil sampling locations SS-12 through SS-14. Groundwater elevation contours for each groundwater monitoring event are provided in Figures 4, 5, and 6 (attached).
- 5. EIM data will be submitted in order to receive a final opinion.

The entire parcel is scheduled to be cleared and graded in May for new development. No evidence of buried drums has been verified on the site. The sources of contamination have been removed. Multiple sampling events have shown that any residual contamination on the site has been limited to near surface and has been excavated and removed.

Concentrations of contaminants in groundwater have been below site cleanup levels for three quarters in MW-1 through MW-5. However, TPH has been detected and there is no evidence of releases or buried materials on site to cause these results. Eric Young at Friedman & Bruya Inc. told us it is not uncommon for shallow groundwater in wooded areas to contain organic substances that indicate detections of what appears to petroleum. Mr. Young stated that the material in groundwater samples collected at the site "is exhibited as a ragged pattern of peaks eluting until approximately nC14 and most closely resemble what would be expected for naturally occurring organics or wood waste breakdown byproducts. Petroleum distillates tend to elute as unresolved complex mixtures (i.e. bell shaped curves with a distinct maximum) whereas the material in these samples is more indicative of several discrete compounds (no bell-shaped curve).

The samples 2021-GW-105 and 2021-GW-106 look like they may also have a low level of water-soluble fraction of diesel or gasoline in them and the material remaining after silica gel would agree with that. The before and after silica gel results for [2021-GE-101, 103, 104, 105, and 106] all show a significant reduction in concentrations following cleanup, which confirms the presence of polar organics. The patterns are more along the lines of what [the chemist] would expect from naturally occurring organics and are not consistent with typical petroleum degradation.

We respectfully request that if all groundwater contaminants continue to be found at concentrations below cleanup level results for the next (fourth) quarter in the five existing wells and if concentrations of contaminants are not detected in the new monitoring well MW-6 for initial sampling and one additional quarter of sampling (two events), the site be granted NFA. If MW-6 has detected concentrations of TPH below site cleanup levels, sampling will continue for two additional quarters in this well, and NFA will be requested at that point. In the unlikely event concentrations are above site cleanup levels, a feasibility study to treat groundwater will be submitted.

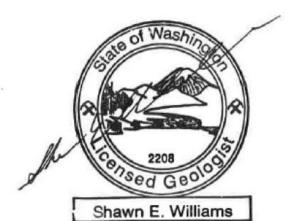
Please contact me at (360) 265-3984 or Shawn Williams at (360) 598-2126 if you have questions or concerns.

Respectfully submitted, Krista Webb Consulting

Krista Webb

Senior Environmental Scientist

and


Krazan & Associates, Inc.

Shawn E. Williams

Regional Environmental Manager

#### Attachments:

- Q3 Groundwater Tables
- Site Photographs
- Revised Figures 3 and 4
- Figures 5 and 6, (groundwater elevation contour maps for each subsequent groundwater monitoring event)
- Groundwater Laboratory Data



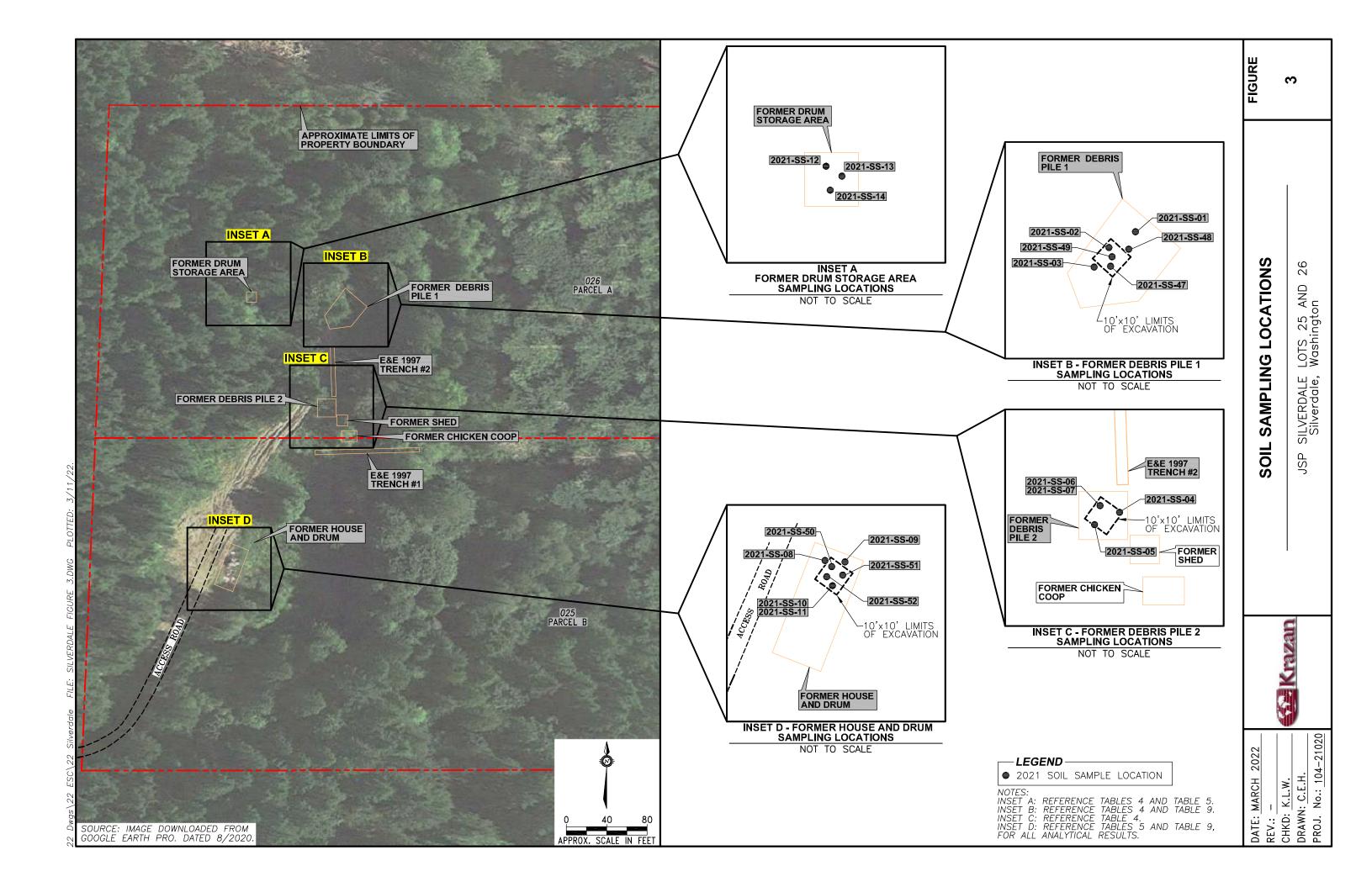
#### **Groundwater Level Measurements**

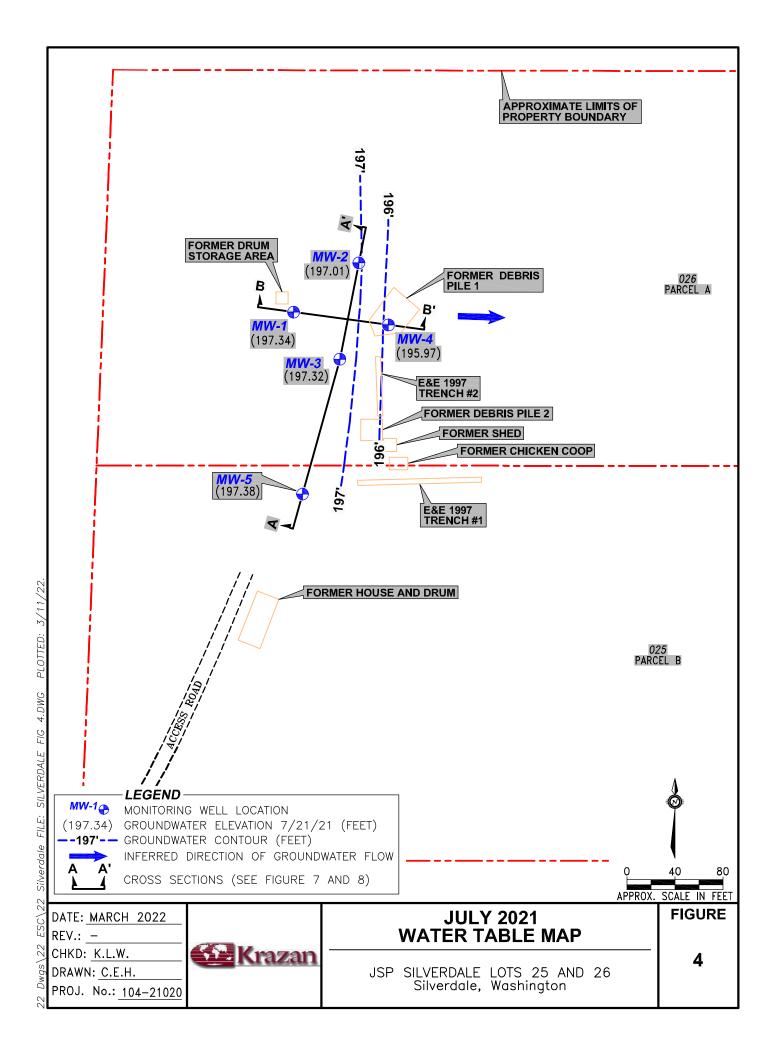
| Monitoring Well | Top of Casing<br>Elevation (feet) | Date    | Depth to<br>Water (feet) | Water Table<br>Elevation<br>(feet) |
|-----------------|-----------------------------------|---------|--------------------------|------------------------------------|
|                 |                                   | 7/21/21 | 19.92                    | 197.34                             |
| MW-1            | 217.26                            | 10/6/21 | 21.95                    | 195.31                             |
|                 |                                   | 1/21/22 | 19.25                    | 198.01                             |
|                 |                                   | 7/21/21 | 13.20                    | 197.01                             |
| MW-2            | 210.21                            | 10/6/21 | 14.70                    | 195.51                             |
|                 | 1/21/22                           | 12.20   | 198.01                   |                                    |
|                 |                                   | 7/21/21 | 16.40                    | 197.32                             |
| MW-3            | 213.72                            | 10/6/21 | 17.92                    | 195.80                             |
|                 |                                   | 1/21/22 | 16.20                    | 197.52                             |
|                 |                                   | 7/21/21 | 12.70                    | 195.97                             |
| MW-4            | 208.67                            | 10/6/21 | 14.05                    | 194.62                             |
|                 |                                   | 1/21/22 | 10.80                    | 197.87                             |
|                 |                                   | 7/21/21 | 18.36                    | 197.38                             |
| MW-5            | 215.74                            | 10/6/21 | 19.94                    | 195.80                             |
|                 |                                   | 1/21/22 | 17.50                    | 198.24                             |

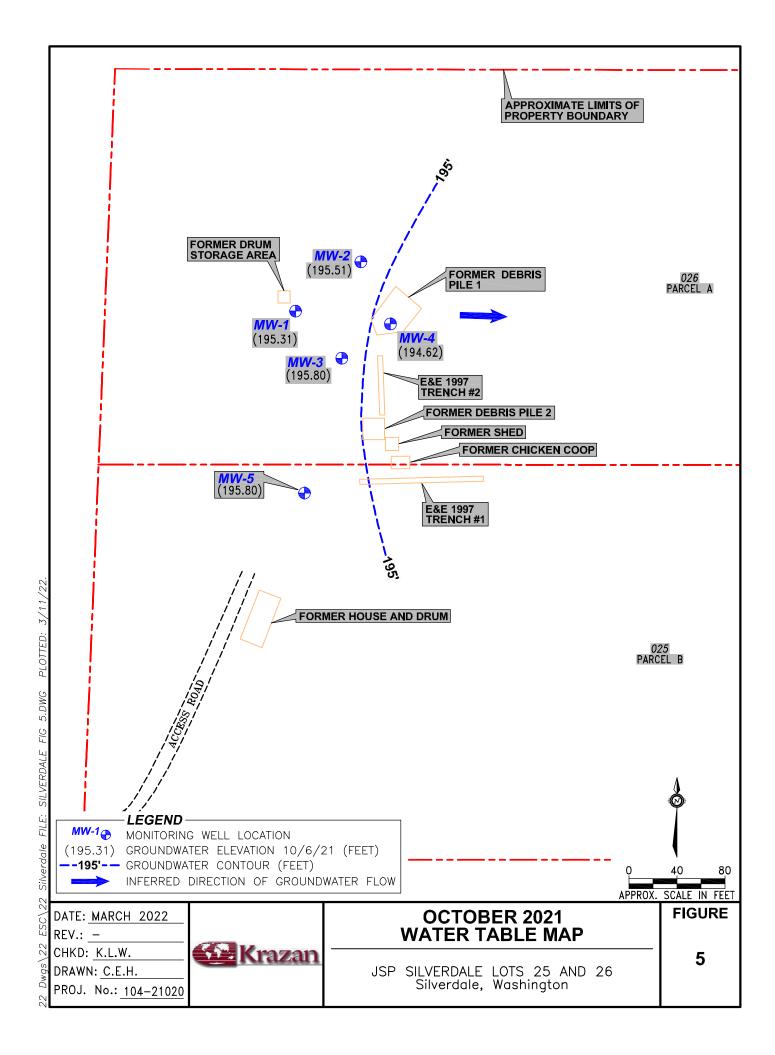


**Photo 1:** 6-18-21 Surface Soil Sampling – View showing location of Monitoring Well 4, in the area of former Debris Pile 1, prior to installation.




**Photo 2:** 7-13-21 Monitoring Well Installation – View showing the location of Monitoring Well 4 in the location of former Debris Pile 1.


JSP Silverdale Lots 25 and 26 Remedial Investigation Brian Lane NW Silverdale, Washington **Project No.** 104-21020


Date: March, 2022


**Approved by: SEW** 











# Groundwater Laboratory Data

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 29, 2021

Shawn Williams, Project Manager Krazan & Associates 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the results from the testing of material submitted on July 21, 2021 from the Lots 25 and 26, F&BI 107352 project. There are 38 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures KZP0729R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on July 21, 2020 by Friedman & Bruya, Inc. from the Krazan & Associates Lots 25 and 26, F&BI 107352 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Krazan & Associates |
|----------------------|---------------------|
| 107352 -01           | 2021-GW-101         |
| 107352 -02           | 2021-GW-102         |
| 107352 -03           | 2021-GW-103         |
| 107352 -04           | 2021-GW-104         |
| 107352 -05           | 2021-GW-105         |
| 107352 -06           | 2021-GW-106         |
| 107352 -07           | Trip Blank          |

All quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

Date Extracted: 07/27/21 Date Analyzed: 07/27/21

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID | <u>Benzene</u> | <u>Toluene</u> | Ethyl<br><u>Benzene</u> | Total<br><u>Xylenes</u> | Gasoline<br><u>Range</u> | Surrogate<br>(% Recovery)<br>(Limit 52-124) |
|----------------------------|----------------|----------------|-------------------------|-------------------------|--------------------------|---------------------------------------------|
| 2021-GW-101<br>107352-01   | <1             | <1             | <1                      | <3                      | <100                     | 82                                          |
| 2021-GW-102<br>107352-02   | <1             | <1             | <1                      | <3                      | <100                     | 81                                          |
| 2021-GW-103<br>107352-03   | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-104<br>107352-04   | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-105<br>107352-05   | <1             | <1             | <1                      | 3.3                     | 370                      | 79                                          |
| 2021-GW-106<br>107352-06   | <1             | <1             | <1                      | 3.1                     | 380                      | 80                                          |
| Method Blank<br>01-1658 MB | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

Date Extracted: 07/23/21 Date Analyzed: 07/23/21

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

|                                       |                          |                   | Surrogate      |
|---------------------------------------|--------------------------|-------------------|----------------|
| Sample ID                             | <u>Diesel Range</u>      | Motor Oil Range   | (% Recovery)   |
| Laboratory ID                         | $(C_{10}\text{-}C_{25})$ | $(C_{25}-C_{36})$ | (Limit 41-152) |
| 2021-GW-101<br>107352-01              | 180 x                    | <250              | 107            |
| 2021-GW-102<br>107352-02              | <50                      | <250              | 90             |
| 2021-GW-103<br>107352-03              | 210 x                    | <250              | 101            |
| 2021-GW-104<br>107352-04 1/1.2        | 130 х                    | <300              | 103            |
| 2021-GW-105<br>107352-05              | 420 x                    | <250              | 91             |
| 2021-GW-106<br>107352-06              | 340 х                    | <250              | 97             |
| Method Blank<br><sub>01-1728 MB</sub> | <50                      | <250              | 86             |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-101 f Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

 Date Extracted:
 07/28/21
 Lab ID:
 107352-01

 Date Analyzed:
 07/28/21
 Data File:
 107352-01.089

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-102 f Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

07/28/21 Lab ID: 107352-02 Date Extracted: Date Analyzed: 07/28/21 Data File: 107352-02.092 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-103 f Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: 107352-03 Date Extracted: 07/28/21 Date Analyzed: 07/28/21 Data File: 107352-03.093 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-104 f Client: Krazan & Associates

Date Received: 07/21/21Project: Lots 25 and 26, F&BI 107352

07/28/21 Lab ID: 107352-04 Date Extracted: Date Analyzed: 07/28/21 Data File: 107352-04.094 Matrix: Water Instrument: ICPMS2 Units: SP

ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-105 f Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: 107352-05 Date Extracted: 07/28/21 Date Analyzed: 07/28/21 Data File: 107352-05.095 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-106 f Client: Krazan & Associates

Date Received: 07/21/21Project: Lots 25 and 26, F&BI 107352

Lab ID: 107352-06 Date Extracted: 07/28/21 Date Analyzed: 07/28/21 Data File: 107352-06.096 Matrix: Water Instrument: ICPMS2 SP

Units: ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Method Blank f Client ID: Client: Krazan & Associates

Date Received: NA Project: Lots 25 and 26, F&BI 107352

07/28/21 Lab ID: Date Extracted: I1-455 mbDate Analyzed: 07/28/21 Data File: I1-455 mb.083 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SP

Operator:

Concentration Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-101 Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

07/23/21 Lab ID: 107352-01 Date Extracted: Date Analyzed: 07/23/21 Data File: 107352-01.164 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-102 Client: Krazan & Associates

Date Received: 07/21/21Project: Lots 25 and 26, F&BI 107352

07/23/21 Lab ID: 107352-02 Date Extracted: Date Analyzed: 07/23/21 Data File: 107352-02.167 Matrix: Water Instrument: ICPMS2 Units: SP

ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-103 Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

 Date Extracted:
 07/23/21
 Lab ID:
 107352-03

 Date Analyzed:
 07/23/21
 Data File:
 107352-03.168

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-104 Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

 Date Extracted:
 07/23/21
 Lab ID:
 107352-04

 Date Analyzed:
 07/23/21
 Data File:
 107352-04.169

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-105 Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

07/23/21 Lab ID: 107352-05 Date Extracted: Date Analyzed: 07/23/21 Data File: 107352-05.170 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-106 Client: Krazan & Associates

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

07/23/21 Lab ID: 107352-06 Date Extracted: Date Analyzed: 07/26/21 Data File: 107352-06.038 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Krazan & Associates

Date Received: NA Project: Lots 25 and 26, F&BI 107352

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | 2021-GW-101 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-01 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072311.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 43          | 11     | 65     |
| Phenol-d6            | 29          | 11     | 65     |
| Nitrobenzene-d5      | 75          | 50     | 150    |
| 2-Fluorobiphenyl     | 68          | 44     | 108    |
| 2,4,6-Tribromophenol | 95          | 10     | 140    |
| Terphenyl-d14        | 101         | 50     | 150    |

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.08

# ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

| Client Sample ID: | 2021-GW-102 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-02 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072312.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 35          | 11     | 65     |
| Phenol-d6            | 29          | 11     | 65     |
| Nitrobenzene-d5      | 72          | 50     | 150    |
| 2-Fluorobiphenyl     | 67          | 44     | 108    |
| 2,4,6-Tribromophenol | 85          | 10     | 140    |
| Terphenyl-d14        | 92          | 50     | 150    |

| Terphenyr-u14          | 32                          |
|------------------------|-----------------------------|
| Compounds:             | Concentration<br>ug/L (ppb) |
| Naphthalene            | < 0.4                       |
| 2-Methylnaphthalene    | < 0.4                       |
| 1-Methylnaphthalene    | < 0.4                       |
| Acenaphthylene         | < 0.04                      |
| Acenaphthene           | < 0.04                      |
| Fluorene               | < 0.04                      |
| Phenanthrene           | < 0.04                      |
| Anthracene             | < 0.04                      |
| Fluoranthene           | < 0.04                      |
| Pyrene                 | < 0.04                      |
| Benz(a)anthracene      | < 0.04                      |
| Chrysene               | < 0.04                      |
| Benzo(a)pyrene         | < 0.04                      |
| Benzo(b)fluoranthene   | < 0.04                      |
| Benzo(k)fluoranthene   | < 0.04                      |
| Indeno(1,2,3-cd)pyrene | < 0.04                      |
| Dibenz(a,h)anthracene  | < 0.04                      |
| Benzo(g,h,i)perylene   | < 0.08                      |
|                        |                             |

# ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

| Client Sample ID: | 2021-GW-103 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-03 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072313.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 26          | 11     | 65     |
| Phenol-d6            | 27          | 11     | 65     |
| Nitrobenzene-d5      | 73          | 50     | 150    |
| 2-Fluorobiphenyl     | 65          | 44     | 108    |
| 2,4,6-Tribromophenol | 67          | 10     | 140    |
| Terphenyl-d14        | 94          | 50     | 150    |

| Terphenyi-d14          | 94                          |
|------------------------|-----------------------------|
| Compounds:             | Concentration<br>ug/L (ppb) |
| Naphthalene            | < 0.4                       |
| 2-Methylnaphthalene    | < 0.4                       |
| 1-Methylnaphthalene    | < 0.4                       |
| Acenaphthylene         | < 0.04                      |
| Acenaphthene           | < 0.04                      |
| Fluorene               | < 0.04                      |
| Phenanthrene           | < 0.04                      |
| Anthracene             | < 0.04                      |
| Fluoranthene           | < 0.04                      |
| Pyrene                 | < 0.04                      |
| Benz(a)anthracene      | < 0.04                      |
| Chrysene               | < 0.04                      |
| Benzo(a)pyrene         | < 0.04                      |
| Benzo(b)fluoranthene   | < 0.04                      |
| Benzo(k)fluoranthene   | < 0.04                      |
| Indeno(1,2,3-cd)pyrene | < 0.04                      |
| Dibenz(a,h)anthracene  | < 0.04                      |
| Benzo(g,h,i)perylene   | < 0.08                      |
|                        |                             |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | 2021-GW-104 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-04 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072314.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 35          | 11     | 65     |
| Phenol-d6            | 28          | 11     | 65     |
| Nitrobenzene-d5      | 82          | 50     | 150    |
| 2-Fluorobiphenyl     | 71          | 44     | 108    |
| 2,4,6-Tribromophenol | 82          | 10     | 140    |
| Terphenyl-d14        | 101         | 50     | 150    |

< 0.04

< 0.04

<0.08

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | 2021-GW-105 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-05 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072315.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 27          | 11     | 65     |
| Phenol-d6            | 30          | 11     | 65     |
| Nitrobenzene-d5      | 81          | 50     | 150    |
| 2-Fluorobiphenyl     | 71          | 44     | 108    |
| 2,4,6-Tribromophenol | 59          | 10     | 140    |
| Terphenyl-d14        | 96          | 50     | 150    |

< 0.04

< 0.04

< 0.08

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | 2021-GW-106 | Client:     | Krazan & Associates         |
|-------------------|-------------|-------------|-----------------------------|
| Date Received:    | 07/21/21    | Project:    | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21    | Lab ID:     | 107352-06 1/2               |
| Date Analyzed:    | 07/23/21    | Data File:  | 072316.D                    |
| Matrix:           | Water       | Instrument: | GCMS12                      |
| Units:            | ug/L (ppb)  | Operator:   | VM                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 35          | 11     | 65     |
| Phenol-d6            | 29          | 11     | 65     |
| Nitrobenzene-d5      | 78          | 50     | 150    |
| 2-Fluorobiphenyl     | 69          | 44     | 108    |
| 2,4,6-Tribromophenol | 82          | 10     | 140    |
| Terphenyl-d14        | 99          | 50     | 150    |

< 0.04

< 0.08

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | Method Blank   | Client:  | Krazan & Associates         |
|-------------------|----------------|----------|-----------------------------|
| Date Received:    | Not Applicable | Project: | Lots 25 and 26, F&BI 107352 |
| Date Extracted:   | 07/22/21       | Lab ID:  | 01-1694 mb                  |

Date Extracted: 07/22/21 Lab ID: 01-1694 mt
Date Analyzed: 07/23/21 Data File: 072310.D
Matrix: Water Instrument: GCMS12
Units: ug/L (ppb) Operator: VM

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 20          | 11     | 65     |
| Phenol-d6            | 12          | 11     | 65     |
| Nitrobenzene-d5      | 81          | 50     | 150    |
| 2-Fluorobiphenyl     | 72          | 44     | 108    |
| 2,4,6-Tribromophenol | 63          | 10     | 140    |
| Terphenyl-d14        | 94          | 50     | 150    |

< 0.02

< 0.02

< 0.02

< 0.02

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 Phenanthrene < 0.02 Anthracene < 0.02 Fluoranthene < 0.02

Benzo(b)fluoranthene <0.02 Benzo(k)fluoranthene <0.02 Indeno(1,2,3-cd)pyrene <0.02 Dibenz(a,h)anthracene <0.02 Benzo(g,h,i)perylene <0.04

Pyrene

Chrysene

Benz(a)anthracene

Benzo(a)pyrene

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-101 | Client: | Krazan & Associates |
|-------------------|-------------|---------|---------------------|
|-------------------|-------------|---------|---------------------|

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-01 Date Analyzed: 07/23/21 Data File: 072312.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 33 24 127

Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-102 | Client: | Krazan & Associates |
|-------------------|-------------|---------|---------------------|
|-------------------|-------------|---------|---------------------|

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-02 Date Analyzed: 07/23/21 Data File: 072313.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 47 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-03 Date Analyzed: 07/23/21 Data File: 072314.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 43 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1

Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-104 | Client: | Krazan & Associates |
|-------------------|-------------|---------|---------------------|
|-------------------|-------------|---------|---------------------|

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-04 Date Analyzed: 07/23/21 Data File: 072315.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 42 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

 Aroclor 1262
 <0.1</td>

 Aroclor 1268
 <0.1</td>

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-105 | Client: | Krazan & Associates |
|-------------------|-------------|---------|---------------------|
|-------------------|-------------|---------|---------------------|

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-05 Date Analyzed: 07/23/21 Data File: 072316.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 42 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1

Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-106 | Client: | Krazan & Associates |
|-------------------|-------------|---------|---------------------|
|-------------------|-------------|---------|---------------------|

Date Received: 07/21/21 Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 107352-06 Date Analyzed: 07/23/21 Data File: 072317.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 53 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Krazan & Associates

Date Received: Not Applicable Project: Lots 25 and 26, F&BI 107352

Lab ID: Date Extracted: 07/23/21 01-1727 mb Date Analyzed: 07/23/21 Data File: 072310.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 49 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1

Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 107352-01 (Matrix Spike)

|              |            |       |        | Percent  | Percent  |            |            |
|--------------|------------|-------|--------|----------|----------|------------|------------|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Benzene      | ug/L (ppb) | 50    | <1     | 85       | 87       | 50-150     | 2          |
| Toluene      | ug/L (ppb) | 50    | <1     | 88       | 90       | 50-150     | 2          |
| Ethylbenzene | ug/L (ppb) | 50    | <1     | 95       | 97       | 50-150     | 2          |
| Xylenes      | ug/L (ppb) | 150   | <3     | 90       | 91       | 50-150     | 1          |
| Gasoline     | ug/L (ppb) | 1,000 | <100   | 92       | 95       | 53-117     | 3          |

|              |            |       | Percent  |            |
|--------------|------------|-------|----------|------------|
|              | Reporting  | Spike | Recovery | Acceptance |
| Analyte      | Units      | Level | LCS      | Criteria   |
| Benzene      | ug/L (ppb) | 50    | 94       | 65-118     |
| Toluene      | ug/L (ppb) | 50    | 98       | 72 - 122   |
| Ethylbenzene | ug/L (ppb) | 50    | 101      | 73 - 126   |
| Xylenes      | ug/L (ppb) | 150   | 96       | 74-118     |
| Gasoline     | ug/L (ppb) | 1,000 | 100      | 69-134     |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 107352-01 (Matrix Spike)

|                 |            |       |        | Percent  | Percent  |            |            |
|-----------------|------------|-------|--------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | <250   | 133      | 123      | 50-150     | 8          |

|                 |            |       | Percent  |            |   |
|-----------------|------------|-------|----------|------------|---|
|                 | Reporting  | Spike | Recovery | Acceptance |   |
| Analyte         | Units      | Level | LCS      | Criteria   |   |
| Diesel Extended | ug/L (ppb) | 2,500 | 115      | 63-142     | _ |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 107352-01 (Matrix Spike)

|         |            |       |        | Percent  | Percent  |            |            |
|---------|------------|-------|--------|----------|----------|------------|------------|
|         | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic | ug/L (ppb) | 10    | <1     | 98       | 97       | 75-125     | 1          |
| Lead    | ug/L (ppb) | 50    | <1     | 92       | 90       | 75 - 125   | 2          |

|         |            |       | $\operatorname{Percent}$ |            |
|---------|------------|-------|--------------------------|------------|
|         | Reporting  | Spike | Recovery                 | Acceptance |
| Analyte | Units      | Level | LCS                      | Criteria   |
| Arsenic | ug/L (ppb) | 10    | 94                       | 80-120     |
| Lead    | ug/L (ppb) | 50    | 92                       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 107352-01 (Matrix Spike)

|         |            |       |        | Percent  | Percent  |            |            |
|---------|------------|-------|--------|----------|----------|------------|------------|
|         | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic | ug/L (ppb) | 10    | <1     | 100      | 99       | 75-125     | 1          |
| Lead    | ug/L (ppb) | 10    | <1     | 99       | 99       | 75 - 125   | 0          |

|         |            |       | Percent  |            |
|---------|------------|-------|----------|------------|
|         | Reporting  | Spike | Recovery | Acceptance |
| Analyte | Units      | Level | LCS      | Criteria   |
| Arsenic | ug/L (ppb) | 10    | 93       | 80-120     |
| Lead    | ug/L (ppb) | 10    | 100      | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 107352-01 1/2 (Matrix Spike)

|                        |            |       |        | Percent | Percent  |            |            |
|------------------------|------------|-------|--------|---------|----------|------------|------------|
|                        | Reporting  | Spike | Sample |         | Recovery | Acceptance | RPD        |
| Analyte                | Units      | Level | Result | MS      | MSD      | Criteria   | (Limit 20) |
| Naphthalene            | ug/L (ppb) | 5     | < 0.4  | 76      | 65       | 50-150     | 16         |
| 2-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.4  | 81      | 70       | 50-150     | 15         |
| 1-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.4  | 82      | 70       | 50-150     | 16         |
| Acenaphthylene         | ug/L (ppb) | 5     | < 0.04 | 84      | 77       | 50-150     | 9          |
| Acenaphthene           | ug/L (ppb) | 5     | < 0.04 | 83      | 75       | 50-150     | 10         |
| Fluorene               | ug/L (ppb) | 5     | < 0.04 | 89      | 82       | 50-150     | 8          |
| Phenanthrene           | ug/L (ppb) | 5     | < 0.04 | 90      | 83       | 50-150     | 8          |
| Anthracene             | ug/L (ppb) | 5     | < 0.04 | 90      | 85       | 50-150     | 6          |
| Fluoranthene           | ug/L (ppb) | 5     | < 0.04 | 95      | 89       | 50-150     | 7          |
| Pyrene                 | ug/L (ppb) | 5     | < 0.04 | 98      | 88       | 50-150     | 11         |
| Benz(a)anthracene      | ug/L (ppb) | 5     | < 0.04 | 98      | 91       | 50-150     | 7          |
| Chrysene               | ug/L (ppb) | 5     | < 0.04 | 96      | 89       | 50-150     | 8          |
| Benzo(a)pyrene         | ug/L (ppb) | 5     | < 0.04 | 99      | 93       | 50-150     | 6          |
| Benzo(b)fluoranthene   | ug/L (ppb) | 5     | < 0.04 | 99      | 94       | 50-150     | 5          |
| Benzo(k)fluoranthene   | ug/L (ppb) | 5     | < 0.04 | 99      | 91       | 50-150     | 8          |
| Indeno(1,2,3-cd)pyrene | ug/L (ppb) | 5     | < 0.04 | 95      | 92       | 50-150     | 3          |
| Dibenz(a,h)anthracene  | ug/L (ppb) | 5     | < 0.04 | 94      | 90       | 50-150     | 4          |
| Benzo(g,h,i)perylene   | ug/L (ppb) | 5     | < 0.08 | 106     | 100      | 50-150     | 6          |

| Analyte                | Reporting<br>Units | Spike<br>Level | Percent<br>Recovery<br>LCS | Acceptance<br>Criteria |
|------------------------|--------------------|----------------|----------------------------|------------------------|
| Naphthalene            | ug/L (ppb)         | 5              | 74                         | 62-90                  |
| 2-Methylnaphthalene    | ug/L (ppb)         | 5              | 81                         | 64-93                  |
| 1-Methylnaphthalene    | ug/L (ppb)         | 5              | 81                         | 64-93                  |
| Acenaphthylene         | ug/L (ppb)         | 5              | 82                         | 70-130                 |
| Acenaphthene           | ug/L (ppb)         | 5              | 79                         | 70-130                 |
| Fluorene               | ug/L (ppb)         | 5              | 84                         | 70-130                 |
| Phenanthrene           | ug/L (ppb)         | 5              | 88                         | 70-130                 |
| Anthracene             | ug/L (ppb)         | 5              | 88                         | 70-130                 |
| Fluoranthene           | ug/L (ppb)         | 5              | 95                         | 70-130                 |
| Pyrene                 | ug/L (ppb)         | 5              | 95                         | 70-130                 |
| Benz(a)anthracene      | ug/L (ppb)         | 5              | 97                         | 70-130                 |
| Chrysene               | ug/L (ppb)         | 5              | 97                         | 70-130                 |
| Benzo(a)pyrene         | ug/L (ppb)         | 5              | 99                         | 70-130                 |
| Benzo(b)fluoranthene   | ug/L (ppb)         | 5              | 99                         | 70-130                 |
| Benzo(k)fluoranthene   | ug/L (ppb)         | 5              | 97                         | 70-130                 |
| Indeno(1,2,3-cd)pyrene | ug/L (ppb)         | 5              | 94                         | 70-130                 |
| Dibenz(a,h)anthracene  | ug/L (ppb)         | 5              | 92                         | 70-130                 |
| Benzo(g,h,i)perylene   | ug/L (ppb)         | 5              | 106                        | 70-130                 |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 07/29/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 107352-01 (Matrix Spike)

|              |            |       |        | Percent  | Percent  |            |            |   |
|--------------|------------|-------|--------|----------|----------|------------|------------|---|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |   |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |   |
| Aroclor 1016 | ug/L (ppb) | 0.25  | < 0.1  | 53       | 54       | 50-150     | 2          | • |
| Aroclor 1260 | ug/L (ppb) | 0.25  | < 0.1  | 58       | 57       | 50-150     | 2          |   |

|              |            |       | Percent  |            |
|--------------|------------|-------|----------|------------|
|              | Reporting  | Spike | Recovery | Acceptance |
| Analyte      | Units      | Level | LCS      | Criteria   |
| Aroclor 1016 | ug/L (ppb) | 0.25  | 52       | 25-111     |
| Aroclor 1260 | ug/L (ppb) | 0.25  | 81       | 23-123     |

#### **ENVIRONMENTAL CHEMISTS**

#### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

| -                            | ۶.                        | <i>A</i>                 | -                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |     | Τ    | -           | Т            | ·            |              | · · · · · · | ·           | · · · · · · · · · · · · · · · · · · · | ·                                                |                         |                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                             |                      |                          |                         |
|------------------------------|---------------------------|--------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|------|-------------|--------------|--------------|--------------|-------------|-------------|---------------------------------------|--------------------------------------------------|-------------------------|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|----------------------|--------------------------|-------------------------|
| <i>Ph. (206) 285-8282</i> Re | Seattle, WA 98119-2029 Re | 3012 16th Avenue West Re | Friedman & Bruya, Inc. Re |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     | •    | Trip Blank  | 2021- GW-106 | 2021- GW-105 | 2021- GW-104 | 2021-GW-103 | 2021-GW-102 | 2021-GW-101                           |                                                  | Sample ID               | ,                  | Phone 360-598-2176 Email Shauln Williams & | City, State, ZIP 1611/8/20, WH 19370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Address 1230 FINN ALL KOROLINI TUIK     | Company RIA Con             | CARA1                | Report To Shawn Williams | 107352                  |
| Received by:                 | Relinquished by:          | Received by              | Relinquished by:          | Ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |      | 67 A B      | 06 1         | 05           | 2            | 03          | 02 A-J      | OJ A-AD                               |                                                  | Lab ID                  |                    | ail <i>Shawin</i> w                        | WH 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIIII KOAD                              |                             |                      | D)illiams                |                         |
|                              |                           |                          |                           | NATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     | ŕ    | 1           | <b></b>      |              |              |             |             | 12/19/2                               |                                                  | Date<br>Sampled         |                    | illiams o                                  | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUC MINI                                |                             |                      |                          |                         |
|                              |                           |                          | 1                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |      | <del></del> | nivo cor: b  | 9:00am       | 9:50am       | W:05am      | 10:30 am    | 12:00pm Water                         |                                                  | Time<br>Sampled         | 1 1                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                             | PROJE                | SAMPL                    | SAMPLE CHAIN OF CUSTODY |
|                              |                           | Modigare                 | Chlos                     | The second secon |          |     |      | water       | <b>←</b>     |              |              |             | +           | 1                                     |                                                  | Sample<br>Type          |                    | Project specific RLs?                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VC.                                     | lots 25 and 26              | PROJECT NAME         | SAMPLERS (signature)     | CHAIN                   |
|                              | ,                         | D'                       | Bar                       | PRINT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |      | م           | (B)          | 0            | 0            |             | 0           | 30 ×                                  | ,                                                | # of<br>Jars            |                    | · Yes                                      | 1041 ARVamma/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessania/Accessani |                                         | ra S                        | -                    | ure                      | OF C                    |
|                              |                           | B.                       | riet                      | NAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,        |     |      |             | ×            | *            | X            | ×           | *           | ×                                     | <del>                                     </del> | WTPH-Dx<br>WTPH-Gx      |                    | / No                                       | осолиноскоски повысок                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 6                           | \$                   |                          | ish                     |
|                              |                           | NC   N                   | 7                         | ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |      |             | ×            | ×            | ×            | *           | ×           | ×                                     | BTI                                              | X EPA 8021              |                    |                                            | A111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                             | (                    | B                        | XGO                     |
|                              |                           | >                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |      |             |              |              | <u> </u>     |             |             |                                       | -                                                | TPH-HCID<br>Cs EPA 8260 | AN                 |                                            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                             |                      | H                        |                         |
|                              |                           |                          | 7                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |      |             | ×            | ×            | <u>×</u>     | ×           | ~           | ×                                     |                                                  | Is EPA 8270             | ALXSI              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INIXOICE MO                             |                             | #Oq                  |                          |                         |
| Samples received at          |                           | 7                        | Krog Zav                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |      |             | ×            | <b>×</b>     | ×            | <u> </u>    | <b>×</b>    | <u> ×</u>                             | PCI                                              | s EPA 8082              | ANALYSES REQUESTED |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                       |                             |                      |                          | ME                      |
| es rec                       | į.                        |                          | 2                         | COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |      |             | ×            | ×            | ×            | ×           | ×           | 4                                     | 10                                               | ad'                     | UESI               |                                            | NAME OF THE OWNER, WHEN THE OW |                                         |                             |                      | 1 e                      | <u>u</u>                |
| eived :                      | 1                         |                          | 1                         | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |      | ,           | ×.           | 4            | ×.           | ×           | *           | ×                                     | Ar                                               | unic                    | Ca.                | Defau                                      | d Archi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Rush cha                    | Sta                  |                          | 07/                     |
| 1                            |                           |                          |                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V .      | · . |      |             |              |              |              |             |             | ×                                     | Ms                                               | 1                       |                    | ılt: Di                                    | hive sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAND.                                   | on<br>charge                | ndard                | TURN                     | 121/                    |
| Do d                         |                           | 1/2/1/                   | -                         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     | (B)  | Addid       | ,            |              |              |             | SW          | 3.5                                   | Total                                            | N.                      |                    | Default: Dispose after 30 days             | 1 Archive samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IASOGSIC & IGMAS                        | Rush charges authorized by: | XStandard turnaround | TURNAROUND TIME          | <u>.</u><br>آ           |
|                              |                           | 1650                     |                           | HMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     | 7/22 | å           |              | ्द           |              | 3           | SW 7/22/21  | र २९                                  | Potal I Dissalwed                                | Notes                   |                    | er 30 d                                    | WATERSTON ASSESSMENT AND ADDRESS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TARC                                    | zed by:                     | Ď.                   | TIME of                  | VWS                     |
|                              |                           | Ď.                       |                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |      | SI.         | <u> -</u>    |              | ].           |             | 12          |                                       | <b>5</b> _                                       |                         |                    | ays                                        | ARTHUM POSTERO PORTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *************************************** |                             | ŭ                    | n K                      | × ×                     |

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 4, 2021

Shawn Williams, Project Manager Krazan & Associates 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the additional results from the testing of material submitted on July 21, 2021 from the Lots 25 and 26, F&BI 107352 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures KZP0804R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on July 21, 2020 by Friedman & Bruya, Inc. from the Krazan & Associates Lots 25 and 26, F&BI 107352 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Krazan & Associates       |
|----------------------|---------------------------|
| 107352 -01           | 2021-GW-101               |
| 107352 -02           | $2021	ext{-}	ext{GW-}102$ |
| 107352 -03           | 2021-GW-103               |
| 107352 -04           | 2021-GW-104               |
| 107352 -05           | 2021-GW-105               |
| 107352 -06           | 2021-GW-106               |
| 107352 -07           | Trip Blank                |

All quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 08/04/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

Date Extracted: 07/23/21 Date Analyzed: 08/02/21

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID | $rac{	ext{Diesel Range}}{	ext{(C}_{10}	ext{-C}_{25}	ext{)}}$ | Motor Oil Range<br>(C <sub>25</sub> -C <sub>36</sub> ) | Surrogate (% Recovery) (Limit 41-152) |
|----------------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|
| 2021-GW-101<br>107352-01   | <50                                                           | <250                                                   | 110                                   |
| 2021-GW-103<br>107352-03   | <50                                                           | <250                                                   | 96                                    |
| 2021-GW-104<br>107352-04   | <60                                                           | <300                                                   | 105                                   |
| 2021-GW-105<br>107352-05   | 86 x                                                          | <250                                                   | 99                                    |
| 2021-GW-106<br>107352-06   | 84 x                                                          | <250                                                   | 95                                    |
| Method Blank<br>01-1728 MB | <50                                                           | <250                                                   | 98                                    |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/21 Date Received: 07/21/21

Project: Lots 25 and 26, F&BI 107352

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

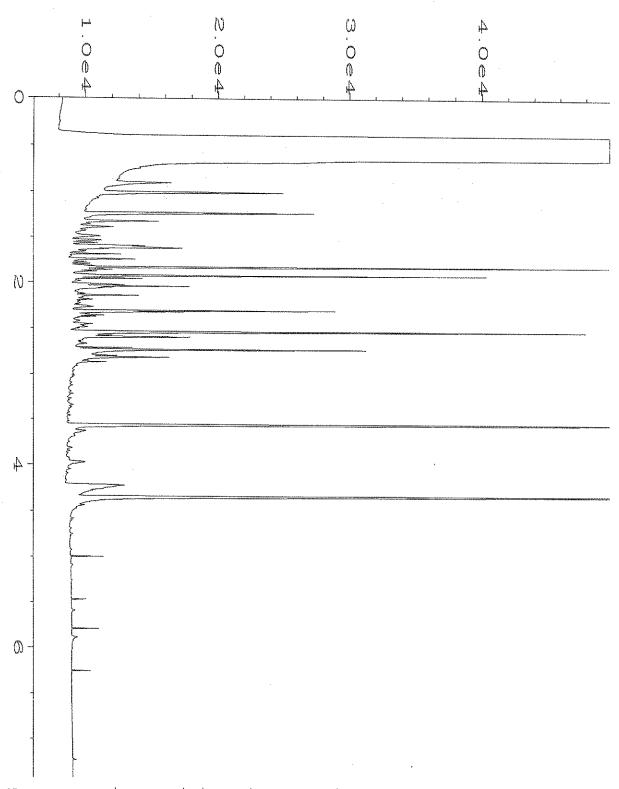
Laboratory Code: 107352-01 (Matrix Spike) Silica Gel

|                 |            |       |        | Percent  | Percent  |            |            |
|-----------------|------------|-------|--------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | <50    | 103      | 95       | 50-150     | 8          |

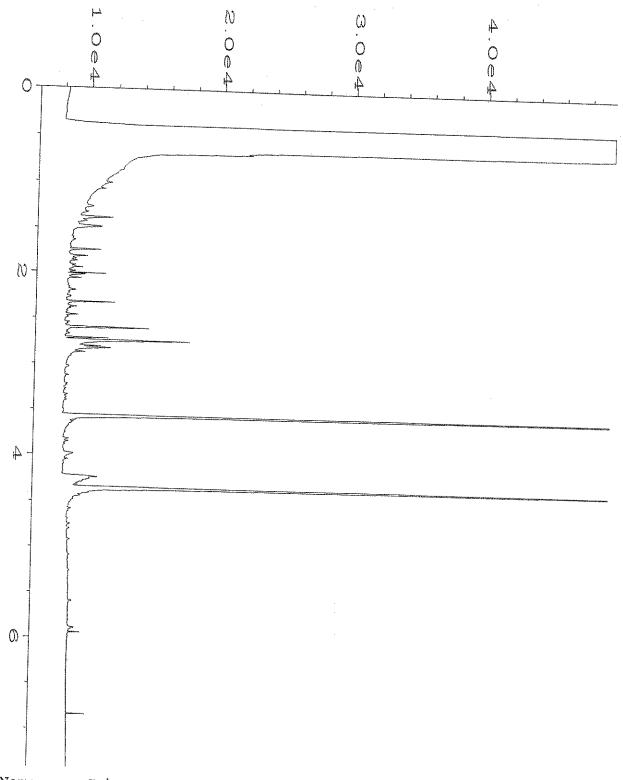
Laboratory Code: Laboratory Control Sample Silica Gel

|                 |            |       | Percent  |            |
|-----------------|------------|-------|----------|------------|
|                 | Reporting  | Spike | Recovery | Acceptance |
| Analyte         | Units      | Level | LCS      | Criteria   |
| Diesel Extended | ug/L (ppb) | 2,500 | 92       | 63-142     |

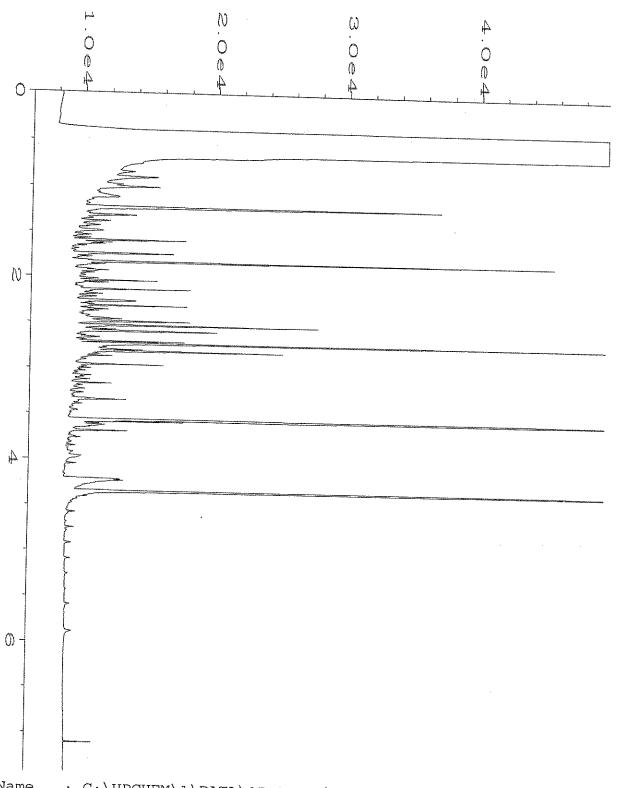
#### **ENVIRONMENTAL CHEMISTS**


#### **Data Qualifiers & Definitions**

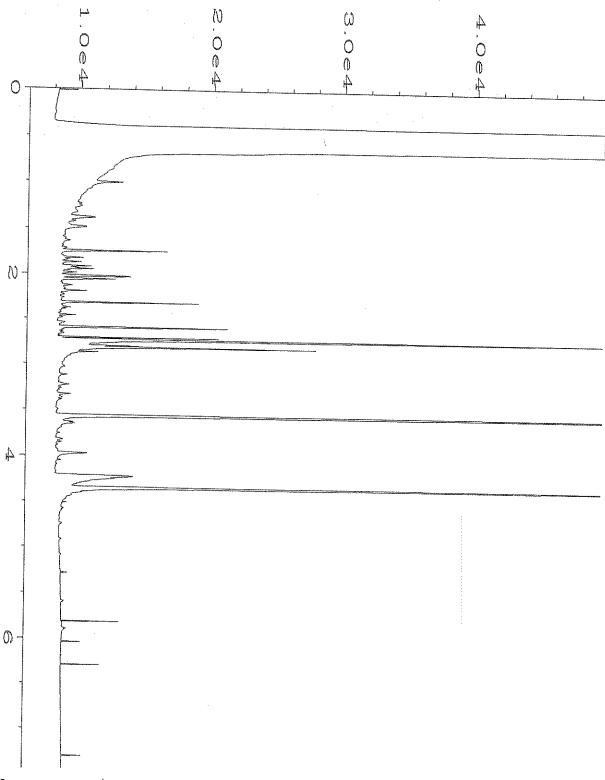
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


3 Friedman & Bruya, Inc. Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West 2021- GWI-106 ZUZI- GIM-105 Trip Blank 2021- GW-104 2021- GWI-103 2021-GW-102 2021-GW-101 Phone 340-596-2126 Email Shawh Williams & Project specific RLs? · Yes City, State, ZIP POULS DO, WA 96370 Report To Shawn Williams
Company Kratan Address 1230 Finn Hill Road NW Surt 102359 Sample ID Relinquished by Received by: Received by: Relinquished by: 67 A B 2 2 8 S 02 A-J 12 12 1 (14-11 10 Lab ID Sampled Date ڃ divo ori 9:Stam a DODAM 10:30 am W. DEAM Time Sampled to open water Lots 25 and 26 REMARKS · PROJECT NAME SAMPLERS (signature) raww Mos Barrett Sample Type で ら PRINT NAME O O 0 0 # of Jars (3) × STING! No メ × NWTPH-Gx × INVOICE TO WALYSES REQUESTED × PAHs EPA 8270 である。 Samples received at × ~< >< COMPANY M DxY/Silian Gel Thretive samples X/Standard turnaround Default: Dispose after 30 days Other Rush charges authorized by: SAMPLE DISPOSAL ~ × χ. × Arsenic TURNAROUND TIME MSD Dog アルド DATE B TOPLING THE 8/2/21 MC SW \$/22/21 Mark par Der Sw Notes 3 TIME Ball

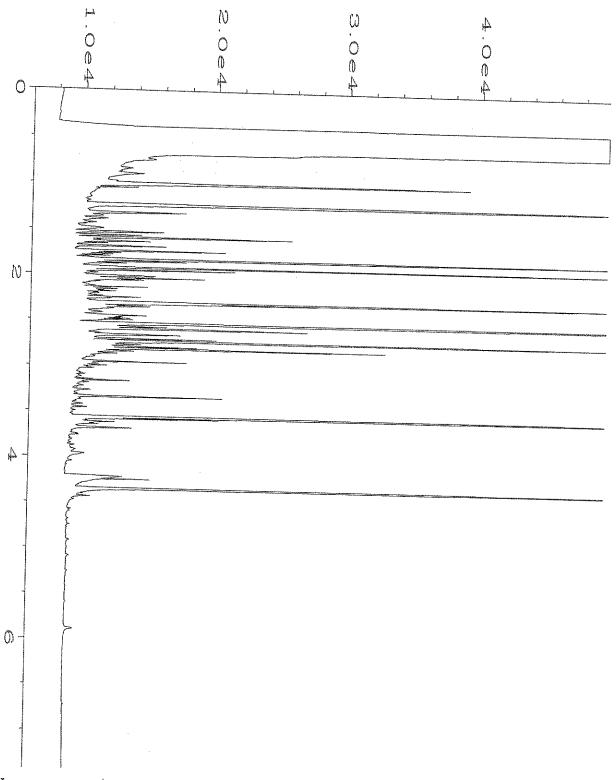
SAMPLE CHAIN OF CUSTODY


07/21/21

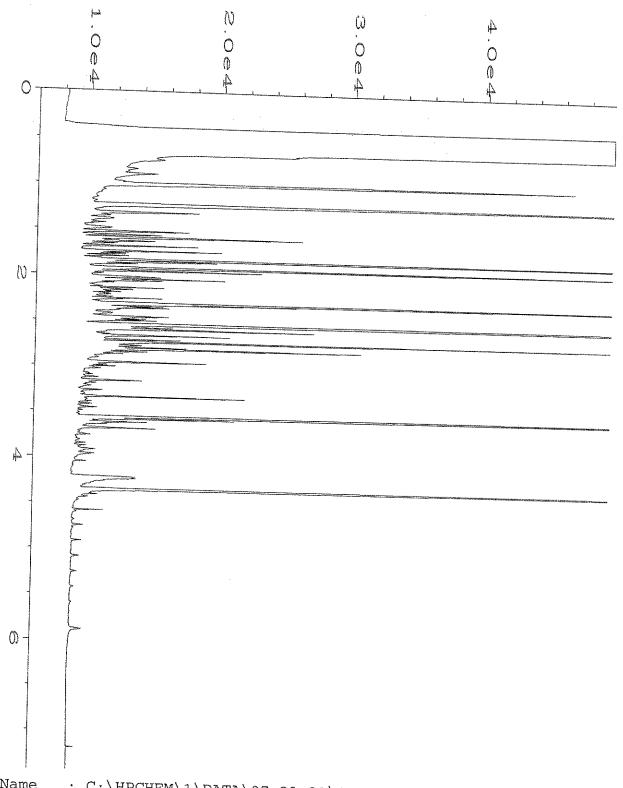



```
Data File Name
                : C:\HPCHEM\1\DATA\07-23-21\029F0501.D
Operator
                 : TL
                                               Page Number
Instrument
                                               Vial Number
                : GC1
                                                                : 29
Sample Name
                : 107352-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 5
Acquired on : 23 Jul 21
                             02:53 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Jul 21
                             12:14 PM
                                               Analysis Method : DEFAULT.MTH
```




```
Data File Name
                 : C:\HPCHEM\1\DATA\07-23-21\030F0501.D
Operator
                 : TL
                                                 Page Number
Vial Number
Instrument
                 : GC1
Sample Name
                                                                  : 30
                 : 107352-02
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line : 5
Acquired on
               : 23 Jul 21
                              03:05 PM
                                                Instrument Method: DX.MTH
Report Created on: 26 Jul 21
                              12:14 PM
                                                Analysis Method : DEFAULT.MTH
```




```
Data File Name
                 : C:\HPCHEM\1\DATA\07-23-21\031F0501.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                                                                  : 1
                 : GC1
Sample Name
                                                                  : 31
                 : 107352-03
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 23 Jul 21
                                                Instrument Method: DX.MTH
                              03:17 PM
Report Created on: 26 Jul 21 12:15 PM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                   : C:\HPCHEM\1\DATA\07-23-21\032F0501.D
Operator
Instrument
                   : TL
                                                      Page Number
                   : GC1
                                                      Vial Number : 32
Injection Number : 1
                                                                          : 32
Sample Name
                  : 107352-04
Run Time Bar Code:
                                                      Sequence Line : 5
Instrument Method: DX.MTH
Acquired on : 23 Jul 21
                                  03:28 PM
Report Created on: 26 Jul 21 12:15 PM
                                                      Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\1\DATA\07-23-21\033F0501.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                                                                 : 1
                 : GC1
Sample Name
                                                                 : 33
                 : 107352-05
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 23 Jul 21 03:40 PM
                                                Instrument Method: DX.MTH
Report Created on: 26 Jul 21 12:15 PM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\1\DATA\07-23-21\034F0501.D
Operator
                  TL
Instrument
                                               Page Number
                 : GC1
                                               Vial Number
Sample Name
                : 107352-06
                                                                : 34
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on
            : 23 Jul 21 03:52 PM
                                                                : 5
                                               Instrument Method: DX.MTH
Report Created on: 26 Jul 21 12:15 PM
                                               Analysis Method : DEFAULT.MTH
```

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 18, 2021

Shawn Williams, Project Manager Krazan & Associates (Poulsbo) 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the results from the testing of material submitted on October 7, 2021 from the Lots 25 and 26, F&BI 110159 project. There are 39 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures KZP1018R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on October 7, 2021 by Friedman & Bruya, Inc. from the Krazan & Associates (Poulsbo) Lots 25 and 26, F&BI 110159 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Krazan & Associates (Poulsbo) |
|----------------------|-------------------------------|
| 110159 -01           | 2021-GW-201                   |
| 110159 -02           | 2021-GW-202                   |
| 110159 -03           | 2021-GW-203                   |
| 110159 -04           | 2021-GW-204                   |
| 110159 -05           | 2021-GW-205                   |
| 110159 -06           | 2021-GW-206                   |
| 110159 -07           | Trip Blank                    |
|                      |                               |

The dissolved metals samples were filtered at Friedman and Bruya on October 8, 2020 at 12:22. The data were flagged accordingly.

All other quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

Date Extracted: 10/11/21 Date Analyzed: 10/11/21

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID | <u>Benzene</u> | <u>Toluene</u> | Ethyl<br><u>Benzene</u> | Total<br><u>Xylenes</u> | Gasoline<br><u>Range</u> | Surrogate<br>(% Recovery)<br>(Limit 50-150) |
|----------------------------|----------------|----------------|-------------------------|-------------------------|--------------------------|---------------------------------------------|
| 2021-GW-201<br>110159-01   | <1             | <1             | <1                      | <3                      | <100                     | 95                                          |
| 2021-GW-202<br>110159-02   | <1             | <1             | <1                      | <3                      | <100                     | 85                                          |
| 2021-GW-203<br>110159-03   | <1             | <1             | <1                      | <3                      | <100                     | 95                                          |
| 2021-GW-204<br>110159-04   | <1             | <1             | <1                      | <3                      | <100                     | 95                                          |
| 2021-GW-205<br>110159-05   | <1             | <1             | <1                      | <3                      | <100                     | 92                                          |
| 2021-GW-206<br>110159-06   | <1             | <1             | <1                      | <3                      | <100                     | 78                                          |
| Method Blank<br>01-2294 MB | <1             | <1             | <1                      | <3                      | <100                     | 95                                          |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

Date Extracted: 10/13/21 Date Analyzed: 10/13/21

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| Sample ID                  | <u>Diesel Range</u>      | Motor Oil Range          | Surrogate<br>(% Recovery) |
|----------------------------|--------------------------|--------------------------|---------------------------|
| Laboratory ID              | $(C_{10}\text{-}C_{25})$ | $(C_{25}\text{-}C_{36})$ | (Limit 41-152)            |
| 2021-GW-201<br>110159-01   | <60                      | <300                     | 109                       |
| 2021-GW-202<br>110159-02   | 73 x                     | <250                     | 100                       |
| 2021-GW-203<br>110159-03   | <60                      | <300                     | 107                       |
| 2021-GW-204<br>110159-04   | <50                      | <250                     | 113                       |
| 2021-GW-205<br>110159-05   | <50                      | <250                     | 108                       |
| 2021-GW-206<br>110159-06   | <50                      | <250                     | 109                       |
| Method Blank<br>01-2356 MB | <50                      | <250                     | 111                       |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-201 Client: Krazan & Associates (Poulsbo)
Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-01 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-01.209 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-202 Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-02 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-02.210 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-203 Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-03 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-03.213 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-204 Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-04 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-04.214 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-205 Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-05 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-05.215 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-206 Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-06 Date Extracted: 10/13/21 Date Analyzed: 10/14/21 Data File: 110159-06.216 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Krazan & Associates (Poulsbo)
Date Received: NA Project: Lots 25 and 26, F&BI 110159

Lab ID: Date Extracted: 10/13/21 I1-651 mb Date Analyzed: 10/13/21 Data File: I1-651 mb.054 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-201 f Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-01 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-01.220 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-202 f Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-02 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-02.221 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-203 f Client: Krazan & Associates (Poulsbo)
Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-03 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-03.222 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-204 f Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-04 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-04.223 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-205 f Client: Krazan & Associates (Poulsbo) Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-05 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-05.224 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: 2021-GW-206 f Client: Krazan & Associates (Poulsbo)
Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: 110159-06 Date Extracted: 10/08/21 Date Analyzed: 10/09/21 Data File: 110159-06.225 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank f Client: Krazan & Associates (Poulsbo)
Date Received: NA Project: Lots 25 and 26, F&BI 110159

Date Extracted: 10/08/21 Lab ID: I1-633 mb2
Date Analyzed: 10/09/21 Data File: I1-633 mb2.214

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

| Client Sample ID:              |                      | Client:               | Krazan & Associates (Poulsbo) |
|--------------------------------|----------------------|-----------------------|-------------------------------|
| Date Received: Date Extracted: | 10/07/21<br>10/12/21 | Project:<br>Lab ID:   | Lots 25 and 26, F&BI 110159   |
| Date Extracted: Date Analyzed: | 10/13/21             | Lao 1D:<br>Data File: | 110159-01<br>101314.D         |
| Matrix:                        | Water                | Instrument:           | GCMS12                        |
| Units:                         | ug/L (ppb)           | Operator:             | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 17          | 11     | 65     |
| Phenol-d6            | 15          | 11     | 65     |
| Nitrobenzene-d5      | 93          | 50     | 150    |
| 2-Fluorobiphenyl     | 86          | 44     | 108    |
| 2,4,6-Tribromophenol | 74          | 10     | 140    |
| Terphenyl-d14        | 93          | 50     | 150    |

| Terphenyl-d14          | 93                       | 50 | 18 |
|------------------------|--------------------------|----|----|
| Compounds:             | Concentration ug/L (ppb) |    |    |
| Naphthalene            | < 0.2                    |    |    |
| 2-Methylnaphthalene    | < 0.2                    |    |    |
| 1-Methylnaphthalene    | < 0.2                    |    |    |
| Acenaphthylene         | < 0.02                   |    |    |
| Acenaphthene           | < 0.02                   |    |    |
| Fluorene               | < 0.02                   |    |    |
| Phenanthrene           | < 0.02                   |    |    |
| Anthracene             | < 0.02                   |    |    |
| Fluoranthene           | < 0.02                   |    |    |
| Pyrene                 | < 0.02                   |    |    |
| Benz(a)anthracene      | < 0.02                   |    |    |
| Chrysene               | < 0.02                   |    |    |
| Benzo(a)pyrene         | < 0.02                   |    |    |
| Benzo(b)fluoranthene   | < 0.02                   |    |    |
| Benzo(k)fluoranthene   | < 0.02                   |    |    |
| Indeno(1,2,3-cd)pyrene | < 0.02                   |    |    |
| Dibenz(a,h)anthracene  | < 0.02                   |    |    |
| Benzo(g,h,i)perylene   | < 0.04                   |    |    |
|                        |                          |    |    |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | 2021-GW-202 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 10/07/21    | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21    | Lab ID:     | 110159-02                     |
| Date Analyzed:    | 10/13/21    | Data File:  | 101311.D                      |
| Matrix:           | Water       | Instrument: | GCMS9                         |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 6 vo        | 10     | 60     |
| Phenol-d6            | 11          | 10     | 49     |
| Nitrobenzene-d5      | 104         | 15     | 144    |
| 2-Fluorobiphenyl     | 94          | 25     | 128    |
| 2,4,6-Tribromophenol | 31          | 10     | 142    |
| Terphenyl-d14        | 106         | 41     | 138    |

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 Phenanthrene < 0.02 Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02 Benzo(g,h,i)perylene < 0.04

#### ENVIRONMENTAL CHEMISTS

| Client Sample ID: | 2021-GW-203 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 10/07/21    | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21    | Lab ID:     | 110159-03                     |
| Date Analyzed:    | 10/13/21    | Data File:  | 101315.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 7 vo        | 11     | 65     |
| Phenol-d6            | 11          | 11     | 65     |
| Nitrobenzene-d5      | 90          | 50     | 150    |
| 2-Fluorobiphenyl     | 82          | 44     | 108    |
| 2,4,6-Tribromophenol | 39          | 10     | 140    |
| Terphenyl-d14        | 95          | 50     | 150    |

| 30            |
|---------------|
| Concentration |
| ug/L (ppb)    |
| < 0.2         |
| < 0.2         |
| < 0.2         |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.02        |
| < 0.04        |
|               |

#### ENVIRONMENTAL CHEMISTS

| Client Sample ID: | 2021-GW-204 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 10/07/21    | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21    | Lab ID:     | 110159-04                     |
| Date Analyzed:    | 10/13/21    | Data File:  | 101316.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 5 vo        | 11     | 65     |
| Phenol-d6            | 10 vo       | 11     | 65     |
| Nitrobenzene-d5      | 92          | 50     | 150    |
| 2-Fluorobiphenyl     | 84          | 44     | 108    |
| 2,4,6-Tribromophenol | 20          | 10     | 140    |
| Terphenyl-d14        | 96          | 50     | 150    |

| Terphenyl-d14          | 96                       | 50 | 150 |  |
|------------------------|--------------------------|----|-----|--|
| Compounds:             | Concentration ug/L (ppb) |    |     |  |
| Naphthalene            | < 0.2                    |    |     |  |
| 2-Methylnaphthalene    | < 0.2                    |    |     |  |
| 1-Methylnaphthalene    | < 0.2                    |    |     |  |
| Acenaphthylene         | < 0.02                   |    |     |  |
| Acenaphthene           | < 0.02                   |    |     |  |
| Fluorene               | < 0.02                   |    |     |  |
| Phenanthrene           | < 0.02                   |    |     |  |
| Anthracene             | < 0.02                   |    |     |  |
| Fluoranthene           | < 0.02                   |    |     |  |
| Pyrene                 | < 0.02                   |    |     |  |
| Benz(a)anthracene      | < 0.02                   |    |     |  |
| Chrysene               | < 0.02                   |    |     |  |
| Benzo(a)pyrene         | < 0.02                   |    |     |  |
| Benzo(b)fluoranthene   | < 0.02                   |    |     |  |
| Benzo(k)fluoranthene   | < 0.02                   |    |     |  |
| Indeno(1,2,3-cd)pyrene | < 0.02                   |    |     |  |
| Dibenz(a,h)anthracene  | < 0.02                   |    |     |  |
| Benzo(g,h,i)perylene   | < 0.04                   |    |     |  |
|                        |                          |    |     |  |

#### ENVIRONMENTAL CHEMISTS

| Client Sample ID: | 2021-GW-205 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 10/07/21    | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21    | Lab ID:     | 110159-05                     |
| Date Analyzed:    | 10/13/21    | Data File:  | 101317.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 3 vo        | 11     | 65     |
| Phenol-d6            | 8 vo        | 11     | 65     |
| Nitrobenzene-d5      | 70          | 50     | 150    |
| 2-Fluorobiphenyl     | 69          | 44     | 108    |
| 2,4,6-Tribromophenol | 18          | 10     | 140    |
| Terphenyl-d14        | 100         | 50     | 150    |

| Terphenyl-d14          | 100                         | 50 | 150 |
|------------------------|-----------------------------|----|-----|
| Compounds:             | Concentration<br>ug/L (ppb) |    |     |
| Naphthalene            | < 0.2                       |    |     |
| 2-Methylnaphthalene    | < 0.2                       |    |     |
| 1-Methylnaphthalene    | < 0.2                       |    |     |
| Acenaphthylene         | < 0.02                      |    |     |
| Acenaphthene           | < 0.02                      |    |     |
| Fluorene               | < 0.02                      |    |     |
| Phenanthrene           | < 0.02                      |    |     |
| Anthracene             | < 0.02                      |    |     |
| Fluoranthene           | < 0.02                      |    |     |
| Pyrene                 | < 0.02                      |    |     |
| Benz(a)anthracene      | < 0.02                      |    |     |
| Chrysene               | < 0.02                      |    |     |
| Benzo(a)pyrene         | < 0.02                      |    |     |
| Benzo(b)fluoranthene   | < 0.02                      |    |     |
| Benzo(k)fluoranthene   | < 0.02                      |    |     |
| Indeno(1,2,3-cd)pyrene | < 0.02                      |    |     |
| Dibenz(a,h)anthracene  | < 0.02                      |    |     |
| Benzo(g,h,i)perylene   | < 0.04                      |    |     |
|                        |                             |    |     |

#### ENVIRONMENTAL CHEMISTS

| Client Sample ID: | 2021-GW-206 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 10/07/21    | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21    | Lab ID:     | 110159-06                     |
| Date Analyzed:    | 10/13/21    | Data File:  | 101318.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 2 vo        | 11     | 65     |
| Phenol-d6            | 1 vo        | 11     | 65     |
| Nitrobenzene-d5      | 82          | 50     | 150    |
| 2-Fluorobiphenyl     | 76          | 44     | 108    |
| 2,4,6-Tribromophenol | 2  vo       | 10     | 140    |
| Terphenyl-d14        | 98          | 50     | 150    |

| Terphenyl-d14          | 98                       | 50 | 15 |
|------------------------|--------------------------|----|----|
| Compounds:             | Concentration ug/L (ppb) |    |    |
| Naphthalene            | < 0.2                    |    |    |
| 2-Methylnaphthalene    | < 0.2                    |    |    |
| 1-Methylnaphthalene    | < 0.2                    |    |    |
| Acenaphthylene         | < 0.02                   |    |    |
| Acenaphthene           | < 0.02                   |    |    |
| Fluorene               | < 0.02                   |    |    |
| Phenanthrene           | < 0.02 js                |    |    |
| Anthracene             | < 0.02 js                |    |    |
| Fluoranthene           | < 0.02  js               |    |    |
| Pyrene                 | < 0.02  js               |    |    |
| Benz(a)anthracene      | < 0.02                   |    |    |
| Chrysene               | < 0.02                   |    |    |
| Benzo(a)pyrene         | < 0.02                   |    |    |
| Benzo(b)fluoranthene   | < 0.02                   |    |    |
| Benzo(k)fluoranthene   | < 0.02                   |    |    |
| Indeno(1,2,3-cd)pyrene | < 0.02                   |    |    |
| Dibenz(a,h)anthracene  | < 0.02                   |    |    |
| Benzo(g,h,i)perylene   | < 0.04                   |    |    |
|                        |                          |    |    |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | Method Blank   | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|----------------|-------------|-------------------------------|
| Date Received:    | Not Applicable | Project:    | Lots 25 and 26, F&BI 110159   |
| Date Extracted:   | 10/12/21       | Lab ID:     | 01-2354 mb                    |
| Date Analyzed:    | 10/13/21       | Data File:  | 101310.D                      |
| Matrix:           | Water          | Instrument: | GCMS9                         |
| Units:            | ug/L (ppb)     | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 23          | 10     | 60     |
| Phenol-d6            | 15          | 10     | 49     |
| Nitrobenzene-d5      | 109         | 15     | 144    |
| 2-Fluorobiphenyl     | 96          | 25     | 128    |
| 2,4,6-Tribromophenol | 75          | 10     | 142    |
| Terphenyl-d14        | 108         | 41     | 138    |

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 < 0.02 Phenanthrene Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02 Benzo(g,h,i)perylene < 0.04

#### ENVIRONMENTAL CHEMISTS

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-201 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 10/07/21    | Project: | Lots 25 and 26, F&BI 110159   |
|                   |             |          |                               |

Date Extracted: 10/13/21Lab ID: 110159-01 Date Analyzed: 10/13/21 Data File: 101316.DMatrix: Water Instrument: GC7Units: ug/L (ppb) Operator: VM

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 38          | 24     | 127    |

| TCMX         | 38            | 24 | 1: |
|--------------|---------------|----|----|
|              | Concentration |    |    |
| Compounds:   | ug/L (ppb)    |    |    |
| Aroclor 1221 | < 0.1         |    |    |
| Aroclor 1232 | < 0.1         |    |    |
| Aroclor 1016 | < 0.1         |    |    |
| Aroclor 1242 | < 0.1         |    |    |
| Aroclor 1248 | < 0.1         |    |    |
| Aroclor 1254 | < 0.1         |    |    |
| Aroclor 1260 | < 0.1         |    |    |
| Aroclor 1262 | < 0.1         |    |    |
| Aroclor 1268 | < 0.1         |    |    |
|              |               |    |    |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-202 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 10/07/21    | Project: | Lots 25 and 26, F&BI 110159   |
| D . D 1           | 10/10/01    | T 1 TD   | 110170 00                     |

Date Extracted: 10/13/21 Lab ID: 110159-02 Date Analyzed: 10/13/21 Data File: 101317.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 40 24 127

< 0.1

< 0.1

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242< 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

Aroclor 1262

Aroclor 1268

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

Client Sample ID: 2021-GW-203 Client: Krazan & Associates (Poulsbo)
Date Received: 10/07/21 Project: Lots 25 and 26, F&BI 110159

Lab ID: Date Extracted: 10/13/21 110159-03 Date Analyzed: 10/13/21 Data File: 101318.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 37 24 127

< 0.1

< 0.1

< 0.1

Aroclor 1260

Aroclor 1262

Aroclor 1268

#### ENVIRONMENTAL CHEMISTS

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-204 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 10/07/21    | Project: | Lots 25 and 26, F&BI 110159   |
|                   |             |          |                               |

Date Extracted: 10/13/21Lab ID: 110159-04 Date Analyzed: 10/13/21 Data File: 101319.D Matrix: Water Instrument: GC7Units: ug/L (ppb) Operator: VM

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 35          | 24     | 127    |

| TCMX         | % Recovery:<br>35           | 24 | 127 |
|--------------|-----------------------------|----|-----|
| Compounds:   | Concentration<br>ug/L (ppb) |    |     |
| Aroclor 1221 | <0.1                        |    |     |
| Aroclor 1232 | < 0.1                       |    |     |
| Aroclor 1016 | < 0.1                       |    |     |
| Aroclor 1242 | <0.1                        |    |     |
| Aroclor 1248 | <0.1                        |    |     |
| Aroclor 1254 | < 0.1                       |    |     |
| Aroclor 1260 | < 0.1                       |    |     |
| Aroclor 1262 | <0.1                        |    |     |
| Aroclor 1268 | < 0.1                       |    |     |
|              |                             |    |     |

#### ENVIRONMENTAL CHEMISTS

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-205 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 10/07/21    | Project: | Lots 25 and 26, F&BI 110159   |
| D . D . 1         |             | T 1 TT   |                               |

Date Extracted: 10/13/21Lab ID: 110159-05 Date Analyzed: 10/13/21 Data File: 101320.DMatrix: Water Instrument: GC7Units: ug/L (ppb) Operator: VM

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 40          | 24     | 127    |

| TCMX         | 40            | 24 | 127 |
|--------------|---------------|----|-----|
|              | Concentration |    |     |
| Compounds:   | ug/L (ppb)    |    |     |
| Aroclor 1221 | < 0.1         |    |     |
| Aroclor 1232 | < 0.1         |    |     |
| Aroclor 1016 | < 0.1         |    |     |
| Aroclor 1242 | < 0.1         |    |     |
| Aroclor 1248 | < 0.1         |    |     |
| Aroclor 1254 | < 0.1         |    |     |
| Aroclor 1260 | < 0.1         |    |     |
| Aroclor 1262 | < 0.1         |    |     |
| Aroclor 1268 | < 0.1         |    |     |
|              |               |    |     |

#### ENVIRONMENTAL CHEMISTS

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-206 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 10/07/21    | Project: | Lots 25 and 26, F&BI 110159   |
| D . D . 1         |             | T 1 TT   |                               |

Lab ID: Date Extracted: 10/13/21 110159-06Date Analyzed: 10/13/21 Data File: 101321.DMatrix: Water Instrument: GC7Units: ug/L (ppb) VMOperator:

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 31          | 24     | 127    |

| TCMX         | 31                       | 24 |  |
|--------------|--------------------------|----|--|
| Compounds:   | Concentration ug/L (ppb) |    |  |
| Aroclor 1221 | < 0.1                    |    |  |
| Aroclor 1232 | < 0.1                    |    |  |
| Aroclor 1016 | < 0.1                    |    |  |
| Aroclor 1242 | < 0.1                    |    |  |
| Aroclor 1248 | < 0.1                    |    |  |
| Aroclor 1254 | < 0.1                    |    |  |
| Aroclor 1260 | < 0.1                    |    |  |
| Aroclor 1262 | < 0.1                    |    |  |
| Aroclor 1268 | <0.1                     |    |  |
|              |                          |    |  |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Krazan & Associates (Poulsbo)
Date Received: Not Applicable Project: Lots 25 and 26, F&BI 110159

Lab ID: Date Extracted: 10/13/21 01-2355 mbDate Analyzed: 10/13/21 Data File: 101307.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 40 24 127

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 110159-02 Matrix Spike

|              |            |       |        | Percent  | Percent  |            |            |
|--------------|------------|-------|--------|----------|----------|------------|------------|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Benzene      | ug/L (ppb) | 50    | <1     | 98       | 96       | 50-150     | 2          |
| Toluene      | ug/L (ppb) | 50    | <1     | 98       | 94       | 50 - 150   | 4          |
| Ethylbenzene | ug/L (ppb) | 50    | <1     | 95       | 92       | 50 - 150   | 3          |
| Xylenes      | ug/L (ppb) | 150   | <3     | 94       | 91       | 50 - 150   | 3          |
| Gasoline     | ug/L (ppb) | 1,000 | <100   | 75       | 79       | 50 - 150   | 5          |

|              |            | Percent |          |            |  |  |
|--------------|------------|---------|----------|------------|--|--|
|              | Reporting  | Spike   | Recovery | Acceptance |  |  |
| Analyte      | Units      | Level   | LCS      | Criteria   |  |  |
| Benzene      | ug/L (ppb) | 50      | 103      | 72-119     |  |  |
| Toluene      | ug/L (ppb) | 50      | 101      | 71 - 113   |  |  |
| Ethylbenzene | ug/L (ppb) | 50      | 100      | 72 - 114   |  |  |
| Xylenes      | ug/L (ppb) | 150     | 99       | 72 - 113   |  |  |
| Gasoline     | ug/L (ppb) | 1,000   | 95       | 70-119     |  |  |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 110159-02 (Matrix Spike)

|                 |            |       |        | Percent  | Percent  |            |            |
|-----------------|------------|-------|--------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | <250   | 108      | 108      | 50-150     | 0          |

|                 |            |       | Percent  |            |   |
|-----------------|------------|-------|----------|------------|---|
|                 | Reporting  | Spike | Recovery | Acceptance |   |
| Analyte         | Units      | Level | LCS      | Criteria   |   |
| Diesel Extended | ug/L (ppb) | 2,500 | 84       | 63-142     | _ |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 110159-02 (Matrix Spike)

|         |            |       |        | Percent  | Percent  |            |            |
|---------|------------|-------|--------|----------|----------|------------|------------|
|         | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic | ug/L (ppb) | 10    | <1     | 97       | 99       | 70-130     | 2          |
| Lead    | ug/L (ppb) | 10    | <1     | 95       | 97       | 70-130     | 2          |

|         |            |       | $\operatorname{Percent}$ |            |
|---------|------------|-------|--------------------------|------------|
|         | Reporting  | Spike | Recovery                 | Acceptance |
| Analyte | Units      | Level | LCS                      | Criteria   |
| Arsenic | ug/L (ppb) | 10    | 90                       | 85-115     |
| Lead    | ug/L (ppb) | 10    | 91                       | 85-115     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

|         |            |       | $\operatorname{Percent}$ | Percent  |            |            |
|---------|------------|-------|--------------------------|----------|------------|------------|
|         | Reporting  | Spike | Recovery                 | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | LCS                      | LCSD     | Criteria   | (Limit 20) |
| Arsenic | ug/L (ppb) | 10    | 103                      | 101      | 80-120     | 2          |
| Lead    | ug/L (ppb) | 10    | 103                      | 101      | 80-120     | 2          |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 110159-02 (Matrix Spike)

|                        |            |       |        | Percent  | Percent |            |            |
|------------------------|------------|-------|--------|----------|---------|------------|------------|
|                        | Reporting  | Spike |        | Recovery |         | Acceptance | RPD        |
| Analyte                | Units      | Level | Result | MS       | MSD     | Criteria   | (Limit 20) |
| Naphthalene            | ug/L (ppb) | 5     | < 0.2  | 88       | 82      | 50-150     | 7          |
| 2-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.2  | 92       | 86      | 50-150     | 7          |
| 1-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.2  | 93       | 86      | 50-150     | 8          |
| Acenaphthylene         | ug/L (ppb) | 5     | < 0.02 | 98       | 93      | 50-150     | 5          |
| Acenaphthene           | ug/L (ppb) | 5     | < 0.02 | 95       | 89      | 50-150     | 7          |
| Fluorene               | ug/L (ppb) | 5     | < 0.02 | 98       | 93      | 50-150     | 5          |
| Phenanthrene           | ug/L (ppb) | 5     | < 0.02 | 95       | 93      | 50-150     | 2          |
| Anthracene             | ug/L (ppb) | 5     | < 0.02 | 98       | 96      | 50-150     | 2          |
| Fluoranthene           | ug/L (ppb) | 5     | < 0.02 | 101      | 98      | 50-150     | 3          |
| Pyrene                 | ug/L (ppb) | 5     | < 0.02 | 103      | 101     | 50-150     | 2          |
| Benz(a)anthracene      | ug/L (ppb) | 5     | < 0.02 | 101      | 100     | 50-150     | 1          |
| Chrysene               | ug/L (ppb) | 5     | < 0.02 | 102      | 100     | 50-150     | 2          |
| Benzo(a)pyrene         | ug/L (ppb) | 5     | < 0.02 | 103      | 99      | 50-150     | 4          |
| Benzo(b)fluoranthene   | ug/L (ppb) | 5     | < 0.02 | 101      | 97      | 50-150     | 4          |
| Benzo(k)fluoranthene   | ug/L (ppb) | 5     | < 0.02 | 107      | 102     | 50-150     | 5          |
| Indeno(1,2,3-cd)pyrene | ug/L (ppb) | 5     | < 0.02 | 93       | 95      | 50-150     | 2          |
| Dibenz(a,h)anthracene  | ug/L (ppb) | 5     | < 0.02 | 97       | 99      | 50-150     | 2          |
| Benzo(g,h,i)perylene   | ug/L (ppb) | 5     | < 0.04 | 95       | 100     | 50-150     | 5          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

| Laboratory Code. Laboratory Control Sample |            |       |          |            |  |  |
|--------------------------------------------|------------|-------|----------|------------|--|--|
|                                            |            |       | Percent  |            |  |  |
|                                            | Reporting  | Spike | Recovery | Acceptance |  |  |
| Analyte                                    | Units      | Level | LCS      | Criteria   |  |  |
| Naphthalene                                | ug/L (ppb) | 5     | 85       | 66-94      |  |  |
| 2-Methylnaphthalene                        | ug/L (ppb) | 5     | 88       | 68-98      |  |  |
| 1-Methylnaphthalene                        | ug/L (ppb) | 5     | 89       | 67-97      |  |  |
| Acenaphthylene                             | ug/L (ppb) | 5     | 95       | 70-130     |  |  |
| Acenaphthene                               | ug/L (ppb) | 5     | 92       | 70-130     |  |  |
| Fluorene                                   | ug/L (ppb) | 5     | 96       | 70-130     |  |  |
| Phenanthrene                               | ug/L (ppb) | 5     | 94       | 70-130     |  |  |
| Anthracene                                 | ug/L (ppb) | 5     | 98       | 70-130     |  |  |
| Fluoranthene                               | ug/L (ppb) | 5     | 99       | 70-130     |  |  |
| Pyrene                                     | ug/L (ppb) | 5     | 101      | 70-130     |  |  |
| Benz(a)anthracene                          | ug/L (ppb) | 5     | 101      | 70-130     |  |  |
| Chrysene                                   | ug/L (ppb) | 5     | 103      | 70-130     |  |  |
| Benzo(a)pyrene                             | ug/L (ppb) | 5     | 101      | 70-130     |  |  |
| Benzo(b)fluoranthene                       | ug/L (ppb) | 5     | 99       | 62-130     |  |  |
| Benzo(k)fluoranthene                       | ug/L (ppb) | 5     | 104      | 70-130     |  |  |
| Indeno(1,2,3-cd)pyrene                     | ug/L (ppb) | 5     | 96       | 70-130     |  |  |
| Dibenz(a,h)anthracene                      | ug/L (ppb) | 5     | 98       | 70-130     |  |  |
| Benzo(g,h,i)perylene                       | ug/L (ppb) | 5     | 97       | 70-130     |  |  |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 10/18/21 Date Received: 10/07/21

Project: Lots 25 and 26, F&BI 110159

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 110159-02 (Matrix Spike)

|              |            |       |        | Percent  | Percent  |            |            |  |
|--------------|------------|-------|--------|----------|----------|------------|------------|--|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |  |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |  |
| Aroclor 1016 | ug/L (ppb) | 0.25  | < 0.1  | 64       | 57       | 50-150     | 12         |  |
| Aroclor 1260 | ug/L (ppb) | 0.25  | < 0.1  | 82       | 77       | 50-150     | 6          |  |

|              |            |       | Percent  |            |
|--------------|------------|-------|----------|------------|
|              | Reporting  | Spike | Recovery | Acceptance |
| Analyte      | Units      | Level | LCS      | Criteria   |
| Aroclor 1016 | ug/L (ppb) | 0.25  | 55       | 25-111     |
| Aroclor 1260 | ug/L (ppb) | 0.25  | 66       | 23 - 123   |

#### **ENVIRONMENTAL CHEMISTS**

#### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone 360 5982126Email Shulibhubilliaps 60 | Pro Report To Shawn Williams Seattle, WA 98119-2029 3012 16th Avenue West City, State, ZIP Poulsbo, MA, 98370 Address 1230 NW FIND Hill Road Suite A Company Krazan and Associates Ph. (206) 285-8282 Friedman & Bruya, Inc. 2021- GW - 204 OH A-G 2021- GW-206 2021- GW-205 8- #G 2021 - GW- 203 2021- GW-202 2021-GW-201 Sample ID Black Relinquished by Received by: Relinquished by: Received by: 2 # 20 01 A-6 10/6/2 9:45 am Water S = S 03 A-G 8. H20 Lab ID Sampled Date SAMPLE CHAIN OF CHSTODY 8 40 am 10:30 am 10:30 am Sampled 9:15 an 10:55 SAMPLERS (signatury Project specific RLs? - Yes / No PROJECT NAME Time REMARKS Lots 25 and 24 SAR. Sample Type # of Jars S 4 2 4 PRINT NAME 4 X × × NWTPH-Dx BAPTLETT 4 <del>-</del>Z. 6 4 6 NWTPH-HCID INVOICE TO VOCs EPA 8260 PO# 6 4 ¥ PAHs EPA 8270 7 Krazan 7. PCBs EPA 8082 Samples received at COMPANY Ł Samples received at Goc ☐ Archive samples \*Standard turnaround Sdxy E03 Rush charges authorized by: Default: Dispose after 30 days 10/7/21 MS/MSD TURNAROUND TUME SAMPLE DISPOSAL 000 ではアイン かから みとかんだい Tutal+ Dissolved DATE Ju 12/2 /01 3 w Notes VW3/AIg TIME 10/18/

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 3, 2022

Shawn Williams, Project Manager Krazan & Associates (Poulsbo) 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the results from the testing of material submitted on January 24, 2022 from the Lots 25 and 26 Proj 104-21020, F&BI 201330 project. There are 33 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures KZP0203R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on January 24, 2022 by Friedman & Bruya, Inc. from the Krazan & Associates (Poulsbo) Lots 25 and 26 Proj 104-21020, F&BI 201330 project. Samples were logged in under the laboratory ID's listed below.

| <u>Laboratory ID</u> | Krazan & Associates (Poulsbo) |
|----------------------|-------------------------------|
| 201330 -01           | 2021-GW-301                   |
| 201330 -02           | 2021-GW-302                   |
| 201330 -03           | 2021-GW-303                   |
| 201330 -04           | 2021-GW-304                   |
| 201330 -05           | 2021-GW-305                   |
| 201330 -06           | 2021-GW-306                   |
| 201330 -07           | Trip Blank                    |

All quality control requirements were acceptable.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

Date Extracted: 01/31/22 Date Analyzed: 01/31/22

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID          | <u>Benzene</u> | <u>Toluene</u> | Ethyl<br><u>Benzene</u> | Total<br><u>Xylenes</u> | Gasoline<br><u>Range</u> | Surrogate<br>(% Recovery)<br>(Limit 52-124) |
|-------------------------------------|----------------|----------------|-------------------------|-------------------------|--------------------------|---------------------------------------------|
| 2021-GW-301<br><sup>201330-01</sup> | <1             | <1             | <1                      | <3                      | <100                     | 81                                          |
| 2021-GW-302<br><sup>201330-02</sup> | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-303<br><sup>201330-03</sup> | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-304<br><sup>201330-04</sup> | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-305<br>201330-05            | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| 2021-GW-306<br>201330-06            | <1             | <1             | <1                      | <3                      | <100                     | 80                                          |
| Method Blank<br>02-0166 MB          | <1             | <1             | <1                      | <3                      | <100                     | 81                                          |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

Date Extracted: 01/26/22 Date Analyzed: 01/28/22

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID          | $rac{	ext{Diesel Range}}{	ext{(C}_{10}	ext{-C}_{25}	ext{)}}$ | $\frac{	ext{Motor Oil Range}}{	ext{(C}_{25}	ext{-C}_{36}	ext{)}}$ | Surrogate<br>(% Recovery)<br>(Limit 41-152) |
|-------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| 2021-GW-301<br>201330-01            | <50                                                           | <250                                                              | 140                                         |
| 2021-GW-302<br><sup>201330-02</sup> | <50                                                           | <250                                                              | 140                                         |
| 2021-GW-303<br><sup>201330-03</sup> | <50                                                           | <250                                                              | 129                                         |
| 2021-GW-304<br><sup>201330-04</sup> | <50                                                           | <250                                                              | 125                                         |
| 2021-GW-305<br>201330-05            | <50                                                           | <250                                                              | 126                                         |
| 2021-GW-306<br><sup>201330-06</sup> | <50                                                           | <250                                                              | 128                                         |
| Method Blank<br>02-247 MB           | <50                                                           | <250                                                              | 136                                         |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

Date Extracted: 01/26/22 Date Analyzed: 01/26/22

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

| Sample ID<br>Laboratory ID          | $rac{	ext{Diesel Range}}{	ext{(C}_{10}	ext{-C}_{25}	ext{)}}$ | $\frac{	ext{Motor Oil Range}}{	ext{(C}_{25}	ext{-C}_{36})}$ | Surrogate<br>(% Recovery)<br>(Limit 41-152) |
|-------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|
| 2021-GW-301<br><sup>201330-01</sup> | <50                                                           | <250                                                        | 116                                         |
| 2021-GW-302<br><sup>201330-02</sup> | <50                                                           | <250                                                        | 114                                         |
| 2021-GW-303<br><sup>201330-03</sup> | <50                                                           | <250                                                        | 114                                         |
| 2021-GW-304<br><sup>201330-04</sup> | <50                                                           | <250                                                        | 114                                         |
| 2021-GW-305<br><sup>201330-05</sup> | <50                                                           | <250                                                        | 117                                         |
| 2021-GW-306<br>201330-06            | <50                                                           | <250                                                        | 122                                         |
| Method Blank<br>02-247 MB           | <50                                                           | <250                                                        | 126                                         |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-301 Client: Krazan & Associates (Poulsbo) Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-01 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-01.057 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-302 Client: Krazan & Associates (Poulsbo)
Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-02 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-02.058 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-303 Client: Krazan & Associates (Poulsbo) Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-03 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-03.059 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-304 Client: Krazan & Associates (Poulsbo) Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-04 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-04.060 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-305 Client: Krazan & Associates (Poulsbo)
Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-05 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-05.061 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: 2021-GW-306 Client: Krazan & Associates (Poulsbo) Date Received: 01/24/22 Project: Lots 25 and 26 Proj 104-21020

01/26/22 Lab ID: 201330-06 Date Extracted: Date Analyzed: 01/26/22 Data File: 201330-06.069 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Krazan & Associates (Poulsbo)
Date Received: NA Project: Lots 25 and 26 Proj 104-21020

Lab ID: Date Extracted: 01/26/22 I2-63 mb Date Analyzed: 01/26/22 Data File: I2-63 mb.034 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: | 01/24/22<br>01/26/22<br>01/27/22 | Client: Project: Lab ID: Data File: Instrument: | Krazan & Associates (Poulsbo)<br>Lots 25 and 26 Proj 104-21020<br>201330-01 1/2<br>012712.D<br>GCMS12 |
|-------------------------------------------------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Matrix:                                                                 | Water                            | Instrument:                                     | GCMS12                                                                                                |
| Units:                                                                  | ug/L (ppb)                       | Operator:                                       | VM                                                                                                    |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 35          | 11     | 65     |
| Phenol-d6            | 24          | 11     | 65     |
| Nitrobenzene-d5      | 76          | 50     | 150    |
| 2-Fluorobiphenyl     | 78          | 44     | 108    |
| 2,4,6-Tribromophenol | 76          | 10     | 140    |
| Terphenyl-d14        | 96          | 50     | 150    |

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.08

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: | 01/24/22<br>01/26/22<br>01/27/22 | Client: Project: Lab ID: Data File: | Krazan & Associates (Poulsbo)<br>Lots 25 and 26 Proj 104-21020<br>201330-02 1/2<br>012713.D<br>GCMS12 |
|-------------------------------------------------------------------------|----------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|
| Matrix:                                                                 | Water                            | Instrument:                         | GCMS12                                                                                                |
| Units:                                                                  | ug/L (ppb)                       | Operator:                           | VM                                                                                                    |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 40          | 11     | 65     |
| Phenol-d6            | 28          | 11     | 65     |
| Nitrobenzene-d5      | 84          | 50     | 150    |
| 2-Fluorobiphenyl     | 84          | 44     | 108    |
| 2,4,6-Tribromophenol | 81          | 10     | 140    |
| Terphenyl-d14        | 99          | 50     | 150    |

< 0.04

< 0.04

< 0.08

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

#### ENVIRONMENTAL CHEMISTS

#### Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

| Client Sample ID: | 2021-GW-303 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 01/24/22    | Project:    | Lots 25 and 26 Proj 104-21020 |
| Date Extracted:   | 01/26/22    | Lab ID:     | 201330-03 1/2                 |
| Date Analyzed:    | 01/27/22    | Data File:  | 012714.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 25          | 11     | 65     |
| Phenol-d6            | 24          | 11     | 65     |
| Nitrobenzene-d5      | 84          | 50     | 150    |
| 2-Fluorobiphenyl     | 83          | 44     | 108    |
| 2,4,6-Tribromophenol | 50          | 10     | 140    |
| Terphenyl-d14        | 90          | 50     | 150    |

| Terphenyl-d14          | 90                       | 50 |  |
|------------------------|--------------------------|----|--|
| Compounds:             | Concentration ug/L (ppb) |    |  |
| Naphthalene            | < 0.4                    |    |  |
| 2-Methylnaphthalene    | < 0.4                    |    |  |
| 1-Methylnaphthalene    | < 0.4                    |    |  |
| Acenaphthylene         | < 0.04                   |    |  |
| Acenaphthene           | < 0.04                   |    |  |
| Fluorene               | < 0.04                   |    |  |
| Phenanthrene           | < 0.04                   |    |  |
| Anthracene             | < 0.04                   |    |  |
| Fluoranthene           | < 0.04                   |    |  |
| Pyrene                 | < 0.04                   |    |  |
| Benz(a)anthracene      | < 0.04                   |    |  |
| Chrysene               | < 0.04                   |    |  |
| Benzo(a)pyrene         | < 0.04                   |    |  |
| Benzo(b)fluoranthene   | < 0.04                   |    |  |
| Benzo(k)fluoranthene   | < 0.04                   |    |  |
| Indeno(1,2,3-cd)pyrene | < 0.04                   |    |  |
| Dibenz(a,h)anthracene  | < 0.04                   |    |  |
| Benzo(g,h,i)perylene   | < 0.08                   |    |  |
|                        |                          |    |  |

#### ENVIRONMENTAL CHEMISTS

#### Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

| Client Sample ID: | 2021-GW-304 | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|-------------|-------------|-------------------------------|
| Date Received:    | 01/24/22    | Project:    | Lots 25 and 26 Proj 104-21020 |
| Date Extracted:   | 01/26/22    | Lab ID:     | 201330-04 1/2                 |
| Date Analyzed:    | 01/27/22    | Data File:  | 012715.D                      |
| Matrix:           | Water       | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)  | Operator:   | VM                            |
|                   |             |             |                               |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 36          | 11     | 65     |
| Phenol-d6            | 27          | 11     | 65     |
| Nitrobenzene-d5      | 87          | 50     | 150    |
| 2-Fluorobiphenyl     | 85          | 44     | 108    |
| 2,4,6-Tribromophenol | 70          | 10     | 140    |
| Terphenyl-d14        | 92          | 50     | 150    |

| Terphenyl-d14          | 92                          | 50 |
|------------------------|-----------------------------|----|
| Compounds:             | Concentration<br>ug/L (ppb) |    |
| Naphthalene            | < 0.4                       |    |
| 2-Methylnaphthalene    | < 0.4                       |    |
| 1-Methylnaphthalene    | < 0.4                       |    |
| Acenaphthylene         | < 0.04                      |    |
| Acenaphthene           | < 0.04                      |    |
| Fluorene               | < 0.04                      |    |
| Phenanthrene           | < 0.04                      |    |
| Anthracene             | < 0.04                      |    |
| Fluoranthene           | < 0.04                      |    |
| Pyrene                 | < 0.04                      |    |
| Benz(a)anthracene      | < 0.04                      |    |
| Chrysene               | < 0.04                      |    |
| Benzo(a)pyrene         | < 0.04                      |    |
| Benzo(b)fluoranthene   | < 0.04                      |    |
| Benzo(k)fluoranthene   | < 0.04                      |    |
| Indeno(1,2,3-cd)pyrene | < 0.04                      |    |
| Dibenz(a,h)anthracene  | < 0.04                      |    |
| Benzo(g,h,i)perylene   | < 0.08                      |    |
|                        |                             |    |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Date Extracted:<br>Date Analyzed:<br>Matrix: | 01/24/22<br>01/26/22<br>01/27/22<br>Water | Client: Project: Lab ID: Data File: Instrument: | Krazan & Associates (Poulsbo)<br>Lots 25 and 26 Proj 104-21020<br>201330-05 1/2<br>012711.D<br>GCMS12 |
|----------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Units:                                       | ug/L (ppb)                                | Operator:                                       | VM                                                                                                    |
|                                              |                                           |                                                 |                                                                                                       |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 39          | 11     | 65     |
| Phenol-d6            | 27          | 11     | 65     |
| Nitrobenzene-d5      | 82          | 50     | 150    |
| 2-Fluorobiphenyl     | 80          | 44     | 108    |
| 2,4,6-Tribromophenol | 82          | 10     | 140    |
| Terphenyl-d14        | 95          | 50     | 150    |

< 0.04

< 0.04

< 0.04

< 0.08

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: Date Received: Date Extracted: Date Analyzed: | 01/24/22<br>01/26/22<br>01/27/22 | Client: Project: Lab ID: Data File: | Krazan & Associates (Poulsbo)<br>Lots 25 and 26 Proj 104-21020<br>201330-06 1/2<br>012716.D |
|-----------------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|
| Matrix:                                                         | Water                            | Instrument:                         | GCMS12                                                                                      |
| Units:                                                          | ug/L (ppb)                       | Operator:                           | VM                                                                                          |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 34          | 11     | 65     |
| Phenol-d6            | 26          | 11     | 65     |
| Nitrobenzene-d5      | 87          | 50     | 150    |
| 2-Fluorobiphenyl     | 82          | 44     | 108    |
| 2,4,6-Tribromophenol | 61          | 10     | 140    |
| Terphenyl-d14        | 96          | 50     | 150    |

#### Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.08

#### ENVIRONMENTAL CHEMISTS

#### Analysis For Semivolatile Compounds By EPA Method 8270E

| Client Sample ID: | Method Blank   | Client:     | Krazan & Associates (Poulsbo) |
|-------------------|----------------|-------------|-------------------------------|
| Date Received:    | Not Applicable | Project:    | Lots 25 and 26 Proj 104-21020 |
| Date Extracted:   | 01/26/22       | Lab ID:     | 02-249 mb                     |
| Date Analyzed:    | 01/27/22       | Data File:  | 012710.D                      |
| Matrix:           | Water          | Instrument: | GCMS12                        |
| Units:            | ug/L (ppb)     | Operator:   | VM                            |

|                      |             | Lower  | Upper  |
|----------------------|-------------|--------|--------|
| Surrogates:          | % Recovery: | Limit: | Limit: |
| 2-Fluorophenol       | 21          | 11     | 65     |
| Phenol-d6            | 13          | 11     | 65     |
| Nitrobenzene-d5      | 77          | 50     | 150    |
| 2-Fluorobiphenyl     | 80          | 44     | 108    |
| 2,4,6-Tribromophenol | 74          | 10     | 140    |
| Terphenyl-d14        | 90          | 50     | 150    |

| Terphenyl-d14          | 90                          |
|------------------------|-----------------------------|
| Compounds:             | Concentration<br>ug/L (ppb) |
| Naphthalene            | < 0.2                       |
| 2-Methylnaphthalene    | < 0.2                       |
| 1-Methylnaphthalene    | < 0.2                       |
| Acenaphthylene         | < 0.02                      |
| Acenaphthene           | < 0.02                      |
| Fluorene               | < 0.02                      |
| Phenanthrene           | < 0.02                      |
| Anthracene             | < 0.02                      |
| Fluoranthene           | < 0.02                      |
| Pyrene                 | < 0.02                      |
| Benz(a)anthracene      | < 0.02                      |
| Chrysene               | < 0.02                      |
| Benzo(a)pyrene         | < 0.02                      |
| Benzo(b)fluoranthene   | < 0.02                      |
| Benzo(k)fluoranthene   | < 0.02                      |
| Indeno(1,2,3-cd)pyrene | < 0.02                      |
| Dibenz(a,h)anthracene  | < 0.02                      |
| Benzo(g,h,i)perylene   | < 0.04                      |
|                        |                             |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-301 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 01/24/22    | Project: | Lots 25 and 26 Proj 104-21020 |

01/26/22 201330-01 Date Extracted: Lab ID: Date Analyzed: 01/27/22 Data File:  $012706.\mathrm{D}$ Matrix: Water Instrument: GC9Units: ug/L (ppb) MGOperator:

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 48          | 25     | 160    |

< 0.1

| Compounds:   | Concentration<br>ug/L (ppb) |
|--------------|-----------------------------|
| Aroclor 1221 | <0.1                        |
| Aroclor 1232 | < 0.1                       |
| Aroclor 1016 | < 0.1                       |
| Aroclor 1242 | < 0.1                       |
| Aroclor 1248 | < 0.1                       |
| Aroclor 1254 | < 0.1                       |
| Aroclor 1260 | < 0.1                       |
| Aroclor 1262 | < 0.1                       |
|              |                             |

Aroclor 1268

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-302 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 01/24/22    | Project: | Lots 25 and 26 Proj 104-21020 |
|                   |             |          |                               |

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 45          | 25     | 160    |

| ICIVIA       | 40            |  |
|--------------|---------------|--|
| Common do    | Concentration |  |
| Compounds:   | ug/L (ppb)    |  |
| Aroclor 1221 | < 0.1         |  |
| Aroclor 1232 | < 0.1         |  |
| Aroclor 1016 | < 0.1         |  |
| Aroclor 1242 | < 0.1         |  |
| Aroclor 1248 | < 0.1         |  |
| Aroclor 1254 | < 0.1         |  |
| Aroclor 1260 | < 0.1         |  |
| Aroclor 1262 | < 0.1         |  |
| Aroclor 1268 | < 0.1         |  |
|              |               |  |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-303 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 01/24/22    | Project: | Lots 25 and 26 Proj 104-21020 |
|                   |             |          |                               |

Date Extracted: 01/26/22Lab ID: 201330-03Date Analyzed: 01/27/22 Data File:  $012708.\mathrm{D}$ Matrix: Water Instrument: GC9Units: ug/L (ppb) Operator: MG

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 27          | 25     | 160    |

| IUMA         | 21            | 2 |
|--------------|---------------|---|
|              | Concentration |   |
| Compounds:   | ug/L (ppb)    |   |
| Aroclor 1221 | < 0.1         |   |
| Aroclor 1232 | <0.1          |   |
| Aroclor 1016 | <0.1          |   |
| Aroclor 1242 | < 0.1         |   |
| Aroclor 1248 | < 0.1         |   |
| Aroclor 1254 | < 0.1         |   |
| Aroclor 1260 | < 0.1         |   |
| Aroclor 1262 | < 0.1         |   |
| Aroclor 1268 | < 0.1         |   |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-304 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 01/24/22    | Project: | Lots 25 and 26 Proj 104-21020 |

201330-04 01/26/22 Date Extracted: Lab ID: Date Analyzed: 01/27/22 Data File:  $012709.\mathrm{D}$ Matrix: Water Instrument: GC9Units: ug/L (ppb) Operator: MG

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 46          | 25     | 160    |

| Compounds:   | Concentration<br>ug/L (ppb) |
|--------------|-----------------------------|
| Aroclor 1221 | < 0.1                       |
| Aroclor 1232 | < 0.1                       |
| Aroclor 1016 | < 0.1                       |
| Aroclor 1242 | < 0.1                       |
| Aroclor 1248 | < 0.1                       |
| Aroclor 1254 | < 0.1                       |
| Aroclor 1260 | < 0.1                       |
| Aroclor 1262 | < 0.1                       |
| Aroclor 1268 | <0.1                        |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-305 | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|-------------|----------|-------------------------------|
| Date Received:    | 01/24/22    | Project: | Lots 25 and 26 Proj 104-21020 |
|                   |             |          |                               |

Date Extracted: 01/26/22 Lab ID: 201330-05Date Analyzed: 01/27/22 Data File: 012713.DMatrix: Water Instrument: GC9Units: ug/L (ppb) Operator: MG

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 45          | 25     | 160    |

| TCMX         | 45                       | 25 |
|--------------|--------------------------|----|
| Compounds:   | Concentration ug/L (ppb) |    |
| Aroclor 1221 | < 0.1                    |    |
| Aroclor 1232 | <0.1                     |    |
| Aroclor 1016 | <0.1                     |    |
| Aroclor 1242 | <0.1                     |    |
| Aroclor 1248 | <0.1                     |    |
| Aroclor 1254 | <0.1                     |    |
| Aroclor 1260 | <0.1                     |    |
| Aroclor 1262 | <0.1                     |    |
| Aroclor 1268 | <0.1                     |    |
|              |                          |    |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

| Client Sample ID: | 2021-GW-306   | Client:  | Krazan & Associates (Poulsbo) |
|-------------------|---------------|----------|-------------------------------|
| Date Received:    | 01/24/22      | Project: | Lots 25 and 26 Proj 104-21020 |
| T . T             | 0.4.10.0.10.0 | T 1 TD   | 224222                        |

Date Extracted: 01/26/22Lab ID: 201330-06Date Analyzed: 01/27/22 Data File:  $012710.\mathrm{D}$ Matrix: Water Instrument: GC9Units: ug/L (ppb) Operator: MG

|             |             | Lower  | Upper  |
|-------------|-------------|--------|--------|
| Surrogates: | % Recovery: | Limit: | Limit: |
| TCMX        | 41          | 25     | 160    |

| -            |                          |
|--------------|--------------------------|
| Compounds:   | Concentration ug/L (ppb) |
| Aroclor 1221 | < 0.1                    |
| Aroclor 1232 | < 0.1                    |
| Aroclor 1016 | < 0.1                    |
| Aroclor 1242 | < 0.1                    |
| Aroclor 1248 | < 0.1                    |
| Aroclor 1254 | < 0.1                    |
| Aroclor 1260 | < 0.1                    |
| Aroclor 1262 | < 0.1                    |
| Aroclor 1268 | < 0.1                    |
|              |                          |

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Krazan & Associates (Poulsbo)
Date Received: Not Applicable Project: Lots 25 and 26 Proj 104-21020

Lab ID: Date Extracted: 01/26/22 02-0248 mbDate Analyzed: 01/27/22 Data File: 012704.DMatrix: Water Instrument: GC9 Units: ug/L (ppb) Operator: MG

Surrogates: % Recovery: Limit: Limit: TCMX 42 25 160

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201330-05 Matrix Spike

|              |            |       |        | Percent  | Percent  |            |            |
|--------------|------------|-------|--------|----------|----------|------------|------------|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Benzene      | ug/L (ppb) | 50    | <1     | 94       | 98       | 50-150     | 4          |
| Toluene      | ug/L (ppb) | 50    | <1     | 92       | 94       | 50-150     | 2          |
| Ethylbenzene | ug/L (ppb) | 50    | <1     | 98       | 100      | 50 - 150   | 2          |
| Xylenes      | ug/L (ppb) | 150   | <3     | 94       | 95       | 50 - 150   | 1          |
| Gasoline     | ug/L (ppb) | 1,000 | <100   | 92       | 89       | 53 - 117   | 3          |

Laboratory Code: Laboratory Control Sample

|              |            |       | Percent  |            |
|--------------|------------|-------|----------|------------|
|              | Reporting  | Spike | Recovery | Acceptance |
| Analyte      | Units      | Level | LCS      | Criteria   |
| Benzene      | ug/L (ppb) | 50    | 104      | 65-118     |
| Toluene      | ug/L (ppb) | 50    | 100      | 72 - 122   |
| Ethylbenzene | ug/L (ppb) | 50    | 106      | 73 - 126   |
| Xylenes      | ug/L (ppb) | 150   | 100      | 74-118     |
| Gasoline     | ug/L (ppb) | 1,000 | 98       | 69-134     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 201330-05 (Matrix Spike) Silica Gel

|                 |            |       |        | Percent  | Percent  |            |            |
|-----------------|------------|-------|--------|----------|----------|------------|------------|
|                 | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | < 50   | 132      | 116      | 50-150     | 13         |

Laboratory Code: Laboratory Control Sample Silica Gel

|                 |            |       | Percent  |            |   |
|-----------------|------------|-------|----------|------------|---|
|                 | Reporting  | Spike | Recovery | Acceptance |   |
| Analyte         | Units      | Level | LCS      | Criteria   |   |
| Diesel Extended | ug/L (ppb) | 2,500 | 120      | 63-142     | _ |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

# QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 201330-05 (Matrix Spike)

|                 |            |       |        | $\operatorname{Percent}$ | Percent  |            |            |
|-----------------|------------|-------|--------|--------------------------|----------|------------|------------|
|                 | Reporting  | Spike | Sample | Recovery                 | Recovery | Acceptance | RPD        |
| Analyte         | Units      | Level | Result | MS                       | MSD      | Criteria   | (Limit 20) |
| Diesel Extended | ug/L (ppb) | 2,500 | < 50   | 123                      | 121      | 50-150     | 2          |

Laboratory Code: Laboratory Control Sample

|                 |            |       | Percent  |            |   |
|-----------------|------------|-------|----------|------------|---|
|                 | Reporting  | Spike | Recovery | Acceptance |   |
| Analyte         | Units      | Level | LCS      | Criteria   |   |
| Diesel Extended | ug/L (ppb) | 2,500 | 123      | 63-142     | _ |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 201330-05 (Matrix Spike)

|         |            |       |        | Percent  | Percent  |            |            |
|---------|------------|-------|--------|----------|----------|------------|------------|
|         | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Arsenic | ug/L (ppb) | 10    | <1     | 95       | 96       | 75-125     | 1          |
| Lead    | ug/L (ppb) | 10    | <1     | 95       | 96       | 75 - 125   | 1          |

Laboratory Code: Laboratory Control Sample

|         |            |       | Percent  |            |
|---------|------------|-------|----------|------------|
|         | Reporting  | Spike | Recovery | Acceptance |
| Analyte | Units      | Level | LCS      | Criteria   |
| Arsenic | ug/L (ppb) | 10    | 95       | 80-120     |
| Lead    | ug/L (ppb) | 10    | 97       | 80-120     |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 201330-05 1/2 (Matrix Spike)

|                        |            |       |        | Percent  | Percent |            |            |
|------------------------|------------|-------|--------|----------|---------|------------|------------|
|                        | Reporting  | Spike |        | Recovery |         | Acceptance | RPD        |
| Analyte                | Units      | Level | Result | MS       | MSD     | Criteria   | (Limit 20) |
| Naphthalene            | ug/L (ppb) | 5     | < 0.4  | 89       | 88      | 50-150     | 1          |
| 2-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.4  | 87       | 86      | 50-150     | 1          |
| 1-Methylnaphthalene    | ug/L (ppb) | 5     | < 0.4  | 90       | 89      | 50-150     | 1          |
| Acenaphthylene         | ug/L (ppb) | 5     | < 0.04 | 93       | 94      | 50-150     | 1          |
| Acenaphthene           | ug/L (ppb) | 5     | < 0.04 | 95       | 95      | 50-150     | 0          |
| Fluorene               | ug/L (ppb) | 5     | < 0.04 | 97       | 97      | 50-150     | 0          |
| Phenanthrene           | ug/L (ppb) | 5     | < 0.04 | 97       | 96      | 50-150     | 1          |
| Anthracene             | ug/L (ppb) | 5     | < 0.04 | 96       | 93      | 50-150     | 3          |
| Fluoranthene           | ug/L (ppb) | 5     | < 0.04 | 98       | 96      | 50-150     | 2          |
| Pyrene                 | ug/L (ppb) | 5     | < 0.04 | 107      | 108     | 50-150     | 1          |
| Benz(a)anthracene      | ug/L (ppb) | 5     | < 0.04 | 99       | 101     | 50-150     | 2          |
| Chrysene               | ug/L (ppb) | 5     | < 0.04 | 98       | 100     | 50-150     | 2          |
| Benzo(a)pyrene         | ug/L (ppb) | 5     | < 0.04 | 90       | 92      | 50-150     | 2          |
| Benzo(b)fluoranthene   | ug/L (ppb) | 5     | < 0.04 | 97       | 98      | 50-150     | 1          |
| Benzo(k)fluoranthene   | ug/L (ppb) | 5     | < 0.04 | 99       | 101     | 50-150     | 2          |
| Indeno(1,2,3-cd)pyrene | ug/L (ppb) | 5     | < 0.04 | 105      | 106     | 50-150     | 1          |
| Dibenz(a,h)anthracene  | ug/L (ppb) | 5     | < 0.04 | 109      | 112     | 50-150     | 3          |
| Benzo(g,h,i)perylene   | ug/L (ppb) | 5     | < 0.08 | 110      | 112     | 50-150     | 2          |

#### ENVIRONMENTAL CHEMISTS

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

|                        |                    |                | Percent         |                        |
|------------------------|--------------------|----------------|-----------------|------------------------|
| Analyte                | Reporting<br>Units | Spike<br>Level | Recovery<br>LCS | Acceptance<br>Criteria |
| Naphthalene            | ug/L (ppb)         | 5              | 87              | 62-90                  |
| 2-Methylnaphthalene    | ug/L (ppb)         | 5              | 90              | 64-93                  |
| 1-Methylnaphthalene    | ug/L (ppb)         | 5              | 93              | 64-93                  |
| Acenaphthylene         | ug/L (ppb)         | 5              | 91              | 70-130                 |
| Acenaphthene           | ug/L (ppb)         | 5              | 93              | 70-130                 |
| Fluorene               | ug/L (ppb)         | 5              | 96              | 70-130                 |
| Phenanthrene           | ug/L (ppb)         | 5              | 94              | 70-130                 |
| Anthracene             | ug/L (ppb)         | 5              | 95              | 70-130                 |
| Fluoranthene           | ug/L (ppb)         | 5              | 91              | 70-130                 |
| Pyrene                 | ug/L (ppb)         | 5              | 95              | 70-130                 |
| Benz(a)anthracene      | ug/L (ppb)         | 5              | 96              | 70-130                 |
| Chrysene               | ug/L (ppb)         | 5              | 96              | 70-130                 |
| Benzo(a)pyrene         | ug/L (ppb)         | 5              | 88              | 70-130                 |
| Benzo(b)fluoranthene   | ug/L (ppb)         | 5              | 95              | 70-130                 |
| Benzo(k)fluoranthene   | ug/L (ppb)         | 5              | 96              | 70-130                 |
| Indeno(1,2,3-cd)pyrene | ug/L (ppb)         | 5              | 93              | 70-130                 |
| Dibenz(a,h)anthracene  | ug/L (ppb)         | 5              | 100             | 70-130                 |
| Benzo(g,h,i)perylene   | ug/L (ppb)         | 5              | 98              | 70-130                 |

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 02/03/22 Date Received: 01/24/22

Project: Lots 25 and 26 Proj 104-21020, F&BI 201330

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 201330-05 (Matrix Spike)

|              |            |       |        | Percent  | Percent  |            |            |
|--------------|------------|-------|--------|----------|----------|------------|------------|
|              | Reporting  | Spike | Sample | Recovery | Recovery | Acceptance | RPD        |
| Analyte      | Units      | Level | Result | MS       | MSD      | Criteria   | (Limit 20) |
| Aroclor 1016 | ug/L (ppb) | 0.25  | < 0.1  | 66       | 60       | 50-150     | 10         |
| Aroclor 1260 | ug/L (ppb) | 0.25  | < 0.1  | 81       | 83       | 50-150     | 2          |

Laboratory Code: Laboratory Control Sample

|              |            |       | Percent  |            |
|--------------|------------|-------|----------|------------|
|              | Reporting  | Spike | Recovery | Acceptance |
| Analyte      | Units      | Level | LCS      | Criteria   |
| Aroclor 1016 | ug/L (ppb) | 0.25  | 60       | 25-165     |
| Aroclor 1260 | ug/L (ppb) | 0.25  | 73       | 25 - 163   |

#### **ENVIRONMENTAL CHEMISTS**

#### **Data Qualifiers & Definitions**

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Poulsbo, WA 98370 Report To Shawn Williams Phone 306-598-2126 Email Shawn Williams @ 1 Address 1230 NW Finn Hill Road SuikeA Company Krafan and Associates

# SAMPLE CHAIN OF CUSTODY

PROJECT NAME REMARKS WITH and witout Project specific RLs? Yes / No 2012-401 #PM

VW3/EOY/AIZ

SAMPLERS (signature) INVOICE TO

RUSH turnaround ☐ Archive samples Rush charges authorized by: TURNARÒUND TIME SAMPLE DISPOSAL

Default: Dispose after 30 days

|               |   |          |   | Trip Blank | 2021-GNV-306 | 2021-GW-305 | 2021- GW-304 | 2021- GW-303 | 2021- GW-302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2021-GW-301            | Sample ID            |                    |
|---------------|---|----------|---|------------|--------------|-------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|--------------------|
| 1 factivities | , |          |   | 8-4 to     | 06 R-G       | 05A-5       | A 170        | 03           | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O1 A-9                 | Lab ID               |                    |
|               |   |          |   |            | <del>\</del> |             |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-21-22 10:40 am Water | Date<br>Sampled      |                    |
|               | × |          |   |            | llisoam      | 10 Localm   | 11:200m      | 9:20cm       | 10 Yours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mp otical              | Time<br>Sampled      |                    |
| PRINT NAME    |   |          |   |            | *            |             |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iwaker                 | Sample<br>Type       | ANALYSES REQUESTED |
|               |   |          |   |            | 4            | ā           | 4            | 4            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                      | # of<br>Jars         |                    |
|               |   |          |   | <u> </u>   | ナ<br>ナ       | ~           | 4            | _            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>               | NWTPH-Dx             |                    |
|               |   | ļ        | · | -          |              | <u> </u>    | X            | 4            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\succeq$              | NWTPH-Gx             |                    |
|               |   | <u> </u> | ļ | ļ          | X            | 二           | ×            | 7            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | BTEX EPA 8021        |                    |
|               |   | <u> </u> |   | ļ          |              |             | <u> </u>     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | NWTPH-HCID           |                    |
| COMPANY       |   | ļ        |   |            | į            |             | ,            | _            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | VOCs EPA 8260        |                    |
|               | ļ | <u> </u> |   |            | 1            |             | 1            |              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                      | PAHs EPA 8270        |                    |
|               |   | -        | ļ |            |              |             | 1            |              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | PCBs EPA 8082        |                    |
|               |   |          |   |            | 7            | 8           | 7            | <b>×</b>     | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>               | Leard Arsenic        | SEU                |
| ANY           |   |          |   |            |              |             |              | ļ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>               |                      | THUS               |
|               |   | <u> </u> |   | ļ          | <u> </u>     | ×           | <u> </u>     | ļ.,          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Ms/MSD<br>Silica Get |                    |
|               |   |          |   | <u> </u>   | 1            | 1           | +            |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Silica Get           |                    |
| DATE          |   |          |   | Addis @    |              |             |              |              | The state of the s | POUSW Ilis/in          | Notes                |                    |
| TIME          |   |          |   | 1/25/22    |              |             |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/12/12                | tes                  |                    |

Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282 Received by: Received by

Relinquished by:

Friedman & Bruya, Inc.

Relinquished by:

STARTAIN S B

124/22

Samples received at .

0

ငိ