

REMEDIAL INVESTIGATION / FEASIBILITY STUDY

Rainier Mall Property 4208 Rainier Avenue South, Seattle, WA 98118 King County Parcel #7950301480

September 7, 2021

Prepared for:

Rainier & Genesee, LLC and

Lake Union Partners Affiliates

Prepared by:

Urban Environmental Partners Ilc

2324 1st Avenue, Suite 203

Seattle, WA 98121

John R Funderburk

John R. Funderburk, MSPH Principal Environmental Scientist

Table of Contents

1.0	Int	roduction	1
1.1	D	ocument Purpose	1
1	.1.1	Remedial Investigation	1
1	.1.2	Feasibility Study	1
2.0	Ba	ckground	2
2.1	L	ocation, Address, and Legal Description	2
2.2	C	urrent Improvements, Land Use, and Occupant Information	3
2.3	H	listorical Land Use Summary	3
2.4	P	hysical Settings	3
2	.4.1	Topographic Characteristics	3
2	.4.2	Groundwater Use Assessment	3
2.5	S	ummary of Environmental Investigations	4
2	.5.1	Hahn and Associates, Inc. Phase I and II Environmental Site Assessments, 2000	4
2	.5.2	SoundEarth Strategies, Inc. —Subsurface Investigation, 2017	5
2	.5.3	SoundEarth Strategies, Inc. – Passive Soil Vapor Assessment, 2017	6
2	.5.4	SoundEarth Strategies, Inc. – Subsurface Investigation, 2018	6
2	.5.5	Urban Environmental Partners – Subsurface Investigation, 2019	8
2	.5.6	Aestus – GeoTrax CSM+™ Ultra-High Resolution Site Characterization, 2019-2020	9
2	.5.7	Urban Environmental Partners – GeoTrax Survey™ Confirmation Drilling, 2020	11
2	.5.8	Urban Environmental Partners – Plume Boundary Investigation, 2020	13
2	.5.9	Urban Environmental Partners – Groundwater Sampling Event, March and April 2020	14
2	.5.10	Urban Environmental Partners – Additional Subsurface Investigation, April 2020	14
2	.5.11	Urban Environmental Partners – Northern Dry Cleaner Investigation, 2020	16
	.5.12	. 5	16
	.5.13	•	17
	.5.14		20
	.5.15		21
	.5.16	, , ,	22
2.6		ubsurface Conditions	23
	.6.1	Soil Conditions	23
2	.6.2	Groundwater Conditions	24

2.6.3	B Hydraulic Conductivity	25
3.0 C	onceptual Site Model	26
3.1	Confirmed and Suspected Source Areas	26
3.2	Contaminants of Concern	26
3.3	Media of Concern	26
3.4	Distribution of Contamination in Soil	27
3.5	Distribution of Contamination in Groundwater	28
3.6	Contaminant Fate and Transport	28
3.6.1	Chlorinated Solvents	28
3.6.2	Evaluation of Empirical Data for PAHs Associated with Treated Wood Piles	30
3.7	Exposure Pathways	31
3.7.1	Soil Pathway	31
3.7.2	? Groundwater Pathway	31
3.7.3	3 Vapor Pathway	32
3.8	Terrestrial Ecological Evaluation	32
4.0 F	easibility Study	33
4.1	Remedial Action Objectives	33
4.2	Applicable or Relevant and Appropriate Requirements	34
4.3	Proposed Cleanup Levels	34
4.3.1	Soil Cleanup Levels	34
4.3.2	Groundwater Cleanup Levels	35
4.3.3	Soil Vapor Screening Levels	35
4.4	Points of Compliance	36
4.4.1	Point of Compliance for Soil	36
4.4.3	Point of Compliance for Soil Vapor	36
4.5	Discussion on Creosote Treated Piles – Focused Feasibility Analysis	36
4.5.1	Alternative P1 - Complete Removal of Piles and Surrounding Soil	37
4.5.2	P. Alternative P2 - Removal of Piles to 4 Feet Below Grade Surface	37
4.5.3 Build	Alternative P3 — Repurpose for Re-Use the Existing Pile for Structural Foundation ling Slab.	n of New 38
4.5.4 Cont	P Evaluation and Selection of Remedial Alternatives for Treated Piles and As Caminated Soil	sociatea 39
4.6	Potential Remedial Technologies and Applicability for the CVOC Plume	41

UEPIIc .		
	Cantambar 7	202
	September 7,	, ZUZ

(max) (max)	353.70	- Septemi	, , , , , ,
1	6 1	In-Situ Chemical Oxidation Pilot Test (ISCO)	44
4.6.1 4.6.2			
		In-Situ Chemical Reduction (ISCR) Pilot Test	47
4.7	Pre	liminary Remedial Screening	50
4.8	Ren	nedial Alternative Assessment – CVOCs	51
	8.1 ?VI	Alternative 1: Excavation and Disposal of Soil with In-Situ Chemical Reduction (52	ISCR) using
	8.2 roundw	Alternative 2: Excavation and Disposal of Soil with Monitored Natural Attevater	nuation of 54
4.	8.3	Alternative 3: Dual Phase Extraction (DPE) with Air Sparging (AS)	55
4.	8.4	Alternative 4: Electrical Resistive Heating (ERH) with Soil Vapor Extraction (SVE)	<i>57</i>
	8.5 eductio	Alternative 5: Electrical Resistive Heating (ERH)/SVE with In-Situ Chemical Tre	eatment by 58
4.9	Eva	luation and Selection of Remedial Alternative	60
4.10) Dis _l	proportionate Cost Analysis and Selected Remedial Alternative	65
5.0	Prefe	erred Remedial Alternative	66
6.0	Refe	rences	67
Evhih	i+ A · I	Eiguros	
EXIIID	IL A. I	Figures	
	• F	igure 1: Site Location Map	
		igure 2: Site Features	
		igure 3: Exploration Location Plan	
		igure 4: CVOC Concentrations in Soil	
		igure 5: CVOC Concentrations in Groundwater	

- Figure 6: Passive Vapor Investigation Results
- Figure 7: CVOC Concentrations in Soil Gas and Sewer Gas
- Figure 8: Geotrax Survey Results
- Figure 9: PAH Pile Assessment and Empirical GW Data
- Figure 10: Pile Layout Plan for Safeway Building 1967
- Figure 11: Safeway Foundation and Pile Construction Details
- Figure 12: PanGeo Existing Timber Pile Evaluation (Figure 1)
- Figure 13: Coughlin Porter Lundeen Plan Sheet S2.01 Piling Plan
- Figure 14 Geologic Cross Section A-A'
- Figure 15: Groundwater Contour Map 4-14-20
- Figure 16: LUP-Rainier Mall Conceptual Site Model
- Figure 17: Cross Section A-A' with CVOC Concentrations in Soil
- Figure 18: Cross Section A-A' with CVOC Concentrations in GW
- Figure 19: Cross Section B-B' with CVOC Concentrations in Soil

- Figure 20: Cross Section B-B' with CVOC Concentrations in GW
- Figure 21A: Approved Lot Boundary Adjustment for 2 Development Parcels
- Figure 21B: Phased Development Plans and Area of Pile Removal
- Figure 22: Drive Aisle Planned Soil Confirmation Sampling and Pile Removal
- Figure 23: Treated Pile Removal Remedial Process
- Figure 24: Remedial Alternative 1 Excavation of Soil with In-Situ Chemical Reduction (ISCR)
- Figure 25: Remedial Alternative 2 Excavation of Soil with Monitored Natural Attenuation
- Figure 26: Remedial Alternative 3 DPE with Air Sparging
- Figure 27: Remedial Alternative 4 ERH with SVE
- Figure 28: Remedial Alternative 5 ERH with ISCR

Exhibit B: Tables

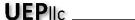

- Table 1: Soil Analytical Results for CVOCs
- Table 2: Soil Analytical Results for Petroleum Hydrocarbons and Select VOCs
- Table 3: Soil Analytical Results for Total Metals
- Table 4: Soil Analytical Results for PAHs
- Table 5: Groundwater Analytical Results for CVOCs
- Table 6: Groundwater Analytical Results for Petroleum Hydrocarbons and Select VOCs
- Table 7: Monitoring Well Construction Details
- Table 8: Soil Gas and Sewer Gas Results for CVOCs
- Table 9: Groundwater Analytical Results for PAHs
- Table 10: Field Parameters for Source Area Monitoring Wells (8/20)
- Table 11Feasibility Level Cost Estimate Alternative P1-Pile Removal to 15' bgs
- Table 12: Feasibility Level Cost Estimate Alternative P2 Partial Removal of Piles to 4' bas
- Table 13: Feasibility Level Cost Estimate Alternative P3 Repurpose Piles/No Removal
- Table 14: Focused Feasibility Comparison for Treated Pile Alternatives
- Table 15: Feasibility Level Cost Estimate Alternative 1 Soil Excavation and ISCR
- Table 16: Feasibility Level Cost Estimate Alternative 2 Soil Excavation and Monitored Natural Attenuation
- Table 17: Feasibility Level Cost Estimate Alternative 3 Dual Phase Extraction (DPE) with Air Sparging
- Table 18: Feasibility Level Cost Estimate Alternative 4 Electrical Resistive Heating with SVE
- Table 19: Feasibility Level Cost Estimate Alternative 5 Electrical Resistive Heating with ISCR
- Table 20: Summary of Evaluation Criteria and Costs 5 Site Remedial Alternatives
- Table 21: Cost-to-Benefit Ratio for 5 Site Remedial Alternatives

Exhibit C: Graphs

- Graph 1: Pilot Injection Test
- Graph 2: Monitoring Well MW09 Slug Tests
- Graph 3: Monitoring Well MW16 Slug Tests
- Graph 4: Monitoring Well MW18 Slug Tests
- Graph 5: Monitoring Well MW25 Slug Tests
- Graph 6: Monitoring Well MW26 Slug Tests

Appendices

- Appendix A Laboratory Analytical Reports
- Appendix B Boring Logs
- Appendix C TRS Design Plans for ERH
- Appendix D TRS Soil and Groundwater Sampling Protocols
- Appendix E Pilot Test Results for ISCR and Regenesis Information on ISCR/ERD Injection Products
- Appendix F Terrestrial Ecological Evaluation
- Appendix G PanGeo: Existing Timber Pile Evaluation, January 13, 2020

1.0 Introduction

On behalf of Rainier & Genesee, LLC and Lake Union Partners (LUP) Affiliates, Urban Environmental Partners IIc (UEP) has prepared this **DRAFT** Remedial Investigation (RI), and Feasibility Study (FS), for the Rainier Mall "Site" (Voluntary Cleanup Program [VCP] ID NW3261), addressed at 4208 Rainier Avenue South in Seattle, Washington (the Property) as shown on Figures 1 and 2.

As established in the Washington Administrative Code (WAC), Chapter 173-340-200, a "Site" is defined by the full vertical and lateral extent of contamination that has resulted from the release of hazardous substances into the environment. The Rainier Mall Site is defined by the historical release of chlorinated volatile organic compounds (CVOCs) associated with former dry-cleaning operations on the Property and by the use of creosote treated wood pilings to support the construction of an historic grocery store. The primary CVOCs at the Site include tetrachloroethylene, also known as perchloroethylene (PCE) and its degradation compounds trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), trans-1,2-dichloroethylene (trans-1,2-DCE), and vinyl chloride (VC). In addition, the chemical compounds of concern (COCs) at the Site that are associated with creosote treated wood piles are the polycyclic aromatic hydrocarbons (PAHs).

This report was prepared for submittal to the Washington State Department of Ecology (Ecology) under the VCP, and was developed to meet the general requirements of an RI and FS as defined by the Washington State Model Toxics Control Act (MTCA) Regulation in Chapters 173-340-350 through 173-340-370 of the WAC.

1.1 Document Purpose

1.1.1 Remedial Investigation

The purpose of the RI was to collect data necessary to adequately characterize the COCs at Site for the purposes of developing and evaluating remedial alternatives consistent with WAC 173-340-350(7). The RI components of this report present historical information regarding the former use of the Property, summarize the scope and findings of each environmental investigation that has been conducted at the Site, provide the Site data for soil, groundwater, and vapor studies from the remedial investigations, and present a Conceptual Site Model (CSM) for the contaminant release, transport, and potential exposure pathways at the Site.

1.1.2 Feasibility Study

The purpose of the FS is to utilize the data collected during the RI to develop and evaluate remedial alternatives for the Site and to select the most appropriate alternative based on the procedures in WAC

173-340-350(1) through (8), and the evaluation criteria listed below. According to MTCA, a cleanup alternative must satisfy all of the following threshold criteria as specified in WAC 173-340-360(2):

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and,
- Provide for compliance monitoring.

WAC 173-340-360(2)(b) also recommends that the selected cleanup action:

- Use permanent solutions to the maximum extent practicable;
- Provide for a reasonable restoration time frame; and,
- Consider public concerns related to potential impacts from the proposed cleanup action alternative.

The FS analysis proposes the cleanup levels to be applied to the impacted media at the Site, and shows how the Site will be brought into compliance with the proposed cleanup standards by the selected alternative.

2.0 Background

The following section provides a description of the Property, a presentation of the physical settings of the Property, and a summary of environmental investigations and interim actions conducted at the Site to date.

2.1 Location, Address, and Legal Description

The Property consists of a single, irregularly-shaped King County Tax Parcel (#7950301480), comprising 2.33 acres, addressed at 4208 Rainier Avenue South in Seattle, Washington (Figures 1 and 2). The Property is accessed from the north side of South Genesee Street on the south side of the Property.

The following is an abbreviated legal description of the Property as provided by the King County Department of Assessments:

SQUIRES LAKESIDE ADD & POR VAC ALLEY ADJ LESS ST

Plat Block: 9

Plat Lot: 7 THRU 38

2.2 Current Improvements, Land Use, and Occupant Information

The Property is currently improved with a 36,071 square foot (sf) vacant retail structure on the north half of the parcel, and has an associated asphalt parking lot on the south side of the Property that covers the remainder of the parcel.

2.3 Historical Land Use Summary

According to historical land use research conducted by Hahn and Associates, Inc. (Hahn) in 2000 as part of Phase I and Phase II Environmental Site Assessments (ESAs), the Property was formerly developed with up to three separate dry-cleaning facilities on the southwestern portion of the Property as shown on Figure 2. These historic dry cleaners reportedly operated in three distinct locations between approximately 1930 and 1968. The buildings were removed from the Property between 1967 and 1978.

According to Hahn's Phase I ESA, the current single-story retail building was constructed on the north end of the Property around 1967 and was initially occupied by a Safeway (Store No. 441) and then a mixed-use retail mall. Historical building plans associated with the construction of the Safeway indicate the building was constructed on approximately 174 treated wooden piles. Wooden piles of this era were commonly treated with creosote, which contains chemical compounds such as PAHs.

Safeway No. 441 ceased operations in approximately 1998, and the structure was then expanded and converted into a mixed-use mall (Rainier Mall) supporting multiple retail tenants. Rainier Mall closed in August of 2016 and has remained vacant since that time.

2.4 Physical Settings

2.4.1 Topographic Characteristics

The primary topographic gradient at the Site is gently sloped from west to east, with a localized depression throughout the central portion of the parking area. Elevations range from approximately 47 feet above mean sea level (AMSL) (NAVD 88 datum) near the western property boundary, to approximately 42 feet AMSL within the localized depression.

2.4.2 Groundwater Use Assessment

According to a database search of registered water wells with Ecology (Ecology 2020), there are no active water supply wells within a 0.5-mile radius of the Property.

Seattle Public Utilities (SPU) provides the potable water supply to the City of Seattle. SPU's main source of water is derived from surface water reservoirs located within the Cedar and South Fork Tolt River watersheds. According to King County's Interactive Map for the County's Groundwater Program, there

are no designated aquifer recharge or wellhead protection areas within several miles of the Site (King County iMAP 2020).

The King County Board of Health (BOH) requires connection to an existing water system where available (BOH-Code-Title-12, Section 12.32.010). The City of Seattle supplies potable water to the entire City; therefore, groundwater cannot be used as a potable water supply within the City limits.

The King County Groundwater Well Viewer indicates the nearest groundwater well is over 4,000 feet west of the site, and is 775 feet deep. There is no other information for the well, including whether it still exists.

Based on these findings, local groundwater in the vicinity of the Property does not serve as a source of drinking water.

2.5 Summary of Environmental Investigations

This report section summarizes the release discovery and subsequent environmental investigations conducted by various consulting companies at the Site. The types and locations of the historic explorations from the investigations are depicted on Figure 3, while the cumulative soil, groundwater and soil gas data results from the studies are tabulated on Tables 1 through 9. The primary contaminants of concern for the Site, and those that have been the focus of the majority of these environmental investigations, are the CVOCs - PCE and its degradation products (TCE, DCE, and VC). The concentrations of these CVOCs will be compared to the most conservative MTCA Method A or B Cleanup Levels (CULs), as appropriate.

The CVOC data results for soil and groundwater samples from the studies are depicted by location on plan view Figures 4 and 5, respectively, as well as on cross sectional Figures 14 and 17 through 20. Laboratory analytical reports are presented in Appendix A and boring logs for the explorations, if available, are presented in Appendix B.

2.5.1 Hahn and Associates, Inc. Phase I and II Environmental Site Assessments, 2000

In 2000, Hahn performed a Phase I ESA for the Property which identified the historical presence of up to three dry cleaning operations, operating in three distinct locations on the southwestern portion of the Property (Figure 2). This land use practice was identified as a Recognized Environmental Condition (REC) due to the common use, storage, and improper disposal hazardous cleaning solvents, and further environmental assessment was recommended in the Hahn report.

Hahn subsequently oversaw the advancement of eight borings (B-1 through B-8) on the Property to evaluate the environmental quality of soil and groundwater in the vicinity of these former dry cleaners.

Soil samples were collected from 4 locations at depths between 4.5 and 19.5 feet below ground surface (bgs).

Groundwater was encountered in borings B-1, B-3, B-4, B-5, and B-7 at depths between 26 and 32 feet bgs. Reconnaissance groundwater samples were collected at these 5 locations by inserting a temporary screened well point in the boring, purging the wells dry with a peristaltic pump, waiting for recharge, then extracting groundwater using a disposable polyethylene bailer.

Soil and groundwater samples collected during the investigation were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.

<u>Investigation Findings – Soil</u>

 One soil sample, collected from boring B-1 at a depth of 19.5 bgs, contained concentrations of PCE and TCE in excess of their respective MTCA CULs.

<u>Investigation Findings – Groundwater</u>

- Groundwater samples collected from borings B-1 and B-4 contained concentrations of PCE, TCE,
 1,1-DCE and/or VC in excess of their respective MTCA CULs.
- The groundwater sample collected from boring B-7 contained a detectable concentration of PCE, however the value was well below its MTCA CUL.

The results of the investigation indicated that a significant release of CVOCs had occurred to both soil and groundwater in the vicinity of the southern dry-cleaning facilities. The PCE release was reported to Ecology by the owner following Hahn's Phase II sampling.

2.5.2 SoundEarth Strategies, Inc. –Subsurface Investigation, 2017

During due diligence work between January and March of 2017, SoundEarth conducted a subsurface investigation to evaluate the nature and extent of the CVOC release identified by Hahn. The investigation consisted of the advancement of 13 borings (SB01 through SB08, and B01 through B05) across the southern portion of the Property in locations shown on Figure 3. Soil samples were collected from depths between 5 and 40 feet bgs.

One boring (B01), located in the suspected PCE source area, was completed as a 2-inch diameter groundwater monitoring well (B01/MW01) and was sampled in accordance with American Society of Testing and Materials (ASTM) Guideline D6771-02 "Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations" (ASTM low flow methodology). Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples from the SoundEarth borings/wells were analyzed for CVOCs by EPA Method 8260C.

Investigation Findings - Soil

Soil samples collected from borings SB01, SB02, SB08, B01, B02, B03, and B04, at depths between 12.5 and 32.5 feet bgs, contained concentrations of PCE, TCE, and/or VC in excess of their respective MTCA CULs, as shown by soil data presented on Figure 4.

<u>Investigation Findings – Groundwater</u>

• The groundwater sample collected from monitoring well MW01 contained an elevated concentration of PCE (8,700 ug/L) in excess of its MTCA CUL. TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and VC were not detected above their laboratory reporting limits in this early sample, however the reporting limits themselves were in excess of their respective MTCA CULs due to laboratory dilution. Groundwater data are presented on Figure 5.

2.5.3 SoundEarth Strategies, Inc. – Passive Soil Vapor Assessment, 2017


In December of 2017, SoundEarth performed a soil vapor assessment to further assess the CVOC source area and the extent of shallow soil impacts. Fifty-six passive soil vapor samplers (Gore Sorbers) were installed on the southern portion of the Property and into the adjacent sidewalk right-of-way (ROW) as shown on Figure 6.

Investigation Findings - Soil Vapor

Only 5 of the 56 soil vapor samples contained even detectable concentrations of CVOCs. These
low-level soil gas results provided inconclusive data with respect to the investigation purpose as
an obvious PCE source area was not found. Also, there was/is no direct correlation of the soil
gas data from this study with existing soil contamination data, or with CVOC concentrations in
groundwater. However, the soil gas results from the survey indicated that shallow soil (fill) on
the Property is not likely impacted with PCE.

2.5.4 SoundEarth Strategies, Inc. – Subsurface Investigation, 2018

In 2018, SoundEarth conducted a multi-phase supplemental subsurface investigation to further define the extent of the CVOC release, characterize the fill material across the Property, and assess the potential for vapor intrusion into the existing retail building. The investigation consisted of the advancement of 21 borings (B06 through B18 and TB01 through TB08) across the Property and three soil gas vapor sampling points (SG01 – SG03) in locations as shown on Figure 3. Soil samples were collected from depths between 5 and 46 feet bgs and the soil gas samples were collected at approximately 8 feet bgs to represent a sub-slab location for a future building.

Borings B12, B15, and B16 were drilled near the western Property boundary with Rainier Avenue South, at angles of approximately 46-48 degrees toward the adjacent ROW, to collect soil samples beneath known utilities in the sidewalk as shown on Figure 3.

Soil Borings B07, B09, B15 through B18, TB07 and TB08 were completed as 2-inch diameter groundwater monitoring wells. Monitoring wells B07/MW03, B09/MW02, B15/MW07, B16/MW06, B17/MW09, B18/MW08, TB07/MW04, and TB08/MW05 were sampled in accordance with ASTM low flow methodology. Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples were analyzed for: CVOCs by EPA Method 8260C; gasoline-range petroleum hydrocarbons (GRPH) by Northwest Method NWTPH-Gx; diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH) by Northwest Method NWTPH-Dx; MTCA 5 metals (arsenic, cadmium, chromium, lead, and mercury) by EPA Method 6020A; and/or polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D SIM.

The soil gas samples were analyzed for CVOCs by EPA Method TO-15.

Investigation Findings – Soil

- The soil sample collected from a fill area containing debris at TB05 at a depth of 5 feet bgs contained a concentration of ORPH in excess of its MTCA Method A Cleanup Level.
- Soil samples collected from borings B06, B12, B14, B18, and TB08, at depths between 10.5 and 20 feet bgs, contained concentrations of PCE and/or TCE in excess of their respective MTCA CULs.
- Select soil samples collected from borings TB01, TB03, TB04, B06, and B09 contained concentrations of metals consistent with natural background levels, which were below their respective MTCA CULs.
- Select soil samples collected from TB01, TB03, and B09 did not contain concentrations of PAHs above the laboratory detection limit and/or MTCA CULs.

<u>Investigation Findings – Groundwater</u>

- The groundwater samples collected from monitoring wells MW05, MW08, and MW09 contained concentrations of PCE, TCE, cis-1,2-DCE, and VC in excess of their respective MTCA CULs.
- The initial groundwater sample collected from monitoring well MW02 contained a concentration of VC slightly above its MTCA CUL.

 The groundwater samples collected from MW03, MW04, MW06, and MW07 showed no concentrations of CVOCs above their laboratory detection limits and/or MTCA CULs.

<u>Investigation Findings – Soil Gas</u>

- Concentrations of PCE were detected in all three soil gas samples at concentrations between 25 to 48 micrograms per cubic meter (μ g/m3), which is below the MTCA Method B screening level of 321 μ g/m3.
- Remaining CVOC concentrations were below the laboratory detection limit for all three soil gas samples.

The results of this 2018 soil and groundwater sampling provided additional detail regarding the nature of the CVOC release but did not adequately define the extent of impacts, specifically in the direction to the south.

The ORPH detected in soil from TB05 has been attributed to uncontrolled fill material, or isolated debris, and does not appear to be associated with a point source release on the Property.

The results of the soil gas sampling indicate that vapor intrusion is not a concern for the existing on-Property structure to the north.

Soil gas analytical results are tabulated on Table 8.

2.5.5 Urban Environmental Partners – Subsurface Investigation, 2019

In April of 2019, subsequent to the Site's enrollment into the Voluntary Cleanup Program, UEP conducted a subsurface investigation to evaluate potential CVOC impacts beneath the southern adjacent ROW (South Genesee Street). The investigation consisted of the advancement of 2 borings (UB10 and UB11) within the westbound traffic lane in South Genesee Street using hollow stem auger (HSA) drilling methods. Soil samples were collected from depths between 10 and 28 feet bgs.

Both borings were completed as 2-inch diameter groundwater monitoring wells. Monitoring wells UB10/MW10 and UB11/MW11 were sampled in accordance with ASTM low flow methodology. Monitoring well construction details are summarized in Table 7.

Select soil and groundwater samples were analyzed for CVOCs by EPA Method 8260C.

<u>Investigation Findings – Soil</u>

 Two soil samples collected from the eastern location in South Genesee at UB10 in the saturated soil zone at depths of 25 and 28 feet bgs, respectively, contained concentrations of PCE and/or TCE in excess of their respective MTCA CULs.

• The soil samples collected from the western location at UB11 between 13 and 28 feet bgs did not contain detectable concentrations of CVOCs.

<u>Investigation Findings – Groundwater</u>

- The initial groundwater sample collected from monitoring well MW10 contained concentrations of PCE, TCE, cis-1,2-DCE, and VC in excess of their respective MTCA CULs, however subsequent GW data for MW10 have been ND as discussed later..
- The groundwater sample collected from MW11 did not contain detectable concentrations of CVOCs.

2.5.6 Aestus – GeoTrax CSM+™ Ultra-High Resolution Site Characterization, 2019-2020

In December of 2019, Aestus, LLC (Aestus) began its GeoTrax Survey[™] work and applied an electrical resistivity imaging (ERI) technology to survey the Site. The goal was to use the Aestus imaging technology in further assessing the nature and extent of the CVOC release. The imaging survey evaluates potential geologic formations, soil types, preferential flow pathways, and levels of naturally occurring and enhanced bioactivity by bacteria using its electrical hydrogeology scanning technology. The ERI imaging results are used to update the Conceptual Site Model (CSM) with higher data density to more fully understand and develop the CSM.

ERI works by imparting an electrical current into the ground, and then simultaneously measuring voltage and soil resistance and conductivity at hundreds of locations along each of several straight survey line/transects. Based on these voltage conductance data, the apparent resistivity of subsurface materials is calculated using Ohm's Law. From thousands of ERI measurements collected from the survey area, the collected data are processed and converted to provide measurements of model resistivity or true resistivity at regular points in the survey area. Aestus uses specialty ERI methods developed specifically for the environmental industry with enough sensitivity and resolution to image non-aqueous phase liquids (NAPLs) and associated aqueous phase impacts, as well as to interpret hydrogeology and enhanced bioactivity at a Site.

Subsurface areas impacted with fresh or unweathered light or dense non-aqueous liquids (LNAPLs or DNAPLs, respectively) and related dissolved phase contamination, typically present in the ERI images as more resistive anomalous zones relative to areas that contain only non-impacted soils and pore fluids.

The presence of chloride and/or other ions from contaminants in soil create lower resistivity (i.e., higher electrical conductivity) in the subsurface. The Aestus technology routinely detects bioactive zones in the subsurface which create a very electrically conductive signature (less resistive) due to shifting

groundwater chemistry and the presence of nanowires between the bacteria and other organisms which may be present. Bioactivity signatures are typically the strongest electrical signal in Aestus' imagery.

Aestus performed 10 transect lines (labeled RAI-01 through RAI-10) across the property in the locations shown on Figure 8. Each transect line consisted of 56 stainless steel electrodes, installed in a straight line at specific intervals to a depth of approximately 12 inches. The electrodes were connected via geophysical cables and the cables were connected to Aestus' data acquisition field instruments. Once each survey line was laid out in the field, Aestus' specialized data acquisition methods gathered a significant amount of data related to the electrical properties of the subsurface in that transect area. Following field data collection, Aestus used their proprietary data processing techniques to develop a final electrical resistivity 2D image of the subsurface for each transect location. The depth of the 2D image is one-fifth of the transect line length on the ground surface, which was long enough to allow the Aestus survey to interpret soil conditions to depths of about 40 feet bgs.

Because Aestus' subsurface imaging technology is not a quantitative analytical tool, it does not immediately identify or quantify the chemical, geological, and biological (bioactivity) composition of anomalies detected in the imagery. Data integration of historical investigation work, and follow-up confirmation drilling is necessary to effectively "convert" or calibrate the Aestus electrical signatures back to the subsurface features of interest, such as physical (geology signatures), chemical (contamination presence/absence and relative concentration), and biological signatures (indicating potential presence/absence of bioactivity). The cumulative and multiple sources of data are integrated for calibration and interpretation purposes, which typically includes but is not limited to boring logs, site stratigraphy, analytical sample data, and fluid level measurements.

Investigation Findings

The Aestus GeoTrax ERI Survey™ identified three areas of potential concern at the Site apart from the known zones of impacts proximate to the former dry cleaners at the southwest corner of the Property which are illustrated on Figure 8. Specifically, these 3 areas exhibited anomalous electrically resistive or conductive properties which could be consistent with the presence of subsurface isolated contamination zones or preferential flow paths containing contaminant impacts and/or ongoing naturally occurring bioactivity.

Primary areas of interest from the Aestus survey included the following:

Area 1 – Potential Deeper Flow Path Proximate to Former Dry Cleaner at SW Corner of Site

The GeoTrax Survey™ imagery indicated an electrically anomalous, and possibly layered zone proximate to the know impacted monitoring wells in the Site's primary source area which may be consistent with a preferential flow path affecting the horizontal and vertical migration of the impacts.

Area 2 – Former Dry Cleaner Building at Northwest Corner of Site

The GeoTrax Survey™ imagery identified a high value resistor/conductor pair in the area of the former northern former dry cleaner at 4234 Rainier Avenue South (Figure 8). Previous investigations in this area have not identified CVOCs at elevated concentrations; however, the survey results indicated a potential secondary contaminant source in the indicated location that needed investigation.

The general area slightly north of the former cleaner showed the highest electrical resistivity values detected by Aestus' GeoTrax Survey™ imaging, however, high electrical resistivity values can also be caused by dry or coarse grain soils and/or fill materials.

Area 3 – Potential Subsurface Channel Feature Oriented North-South

The GeoTrax Survey™ imagery identified what appears to be a channel-like subsurface feature of anomalously low resistivity (high electrical conductivity) oriented north to south within the central portion of the Property as shown on Figure 8. This anomalous zone extended vertically to approximately 25 feet bgs, and could be indicative of a geologic feature as a preferential flow path containing the presence of impacts with ongoing bio-degradation activity.

2.5.7 Urban Environmental Partners – GeoTrax Survey™ Confirmation Drilling, 2020

In March of 2020, UEP conducted a subsurface investigation to evaluate the 3 areas of potential concern identified during Aestus' GeoTrax Survey™. The investigation consisted of the advancement of 8 borings (UB12 through UB19) in locations shown on Figure 3 using HSA or direct push drilling methods. Soil samples were collected from depths between 4 and 46 feet bgs. The sampling depths at each location which were specifically targeted based on the Geotrax Survey™ results.

Seven of the borings were completed as 2-inch diameter groundwater monitoring wells. Wells UB12/MW12 through UB18/MW18 were sampled in accordance with ASTM low flow methodology. Reconnaissance groundwater was also sampled from boring UB19 in accordance EPA 2005 publication Groundwater Sampling and Monitoring with Direct Push Technologies. Monitoring well construction details are summarized on Table 7.

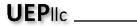
Select soil and groundwater samples from this Aestus confirmation work were analyzed in an on-site mobile laboratory using approved lab protocols for: VOCs by EPA Method 8260D; GRPH by Northwest Method NWTPH-Gx; and/or DRPH and ORPH by Northwest Method NWTPH-Dx. The mobile lab was used to provide immediate information during drilling to allow additional bounding investigation work, if it was indicated by the lab results.

<u>Investigation Findings – Soil</u>

- The soil samples collected from UB13 at depths between 9 and 43 feet bgs contained concentrations of PCE, TCE, and/or VC in excess of their respective MTCA CULs. The sample collected from 23 feet bgs also reported a concentration of GRPH, however this result was flagged by the laboratory, indicating that the value consists of a chlorinated compound with elevated concentrations.
- A soil sample collected from UB15 at a depth of 6 feet contained a concentration of PCE in excess of its MTCA CUL.
- The soil samples collected from the remaining borings contained CVOC concentrations below their laboratory detection limits and/or MTCA CULs.

<u>Investigation Findings – Groundwater</u>

- The groundwater samples collected from monitoring wells MW12, MW13, MW16, MW17, and MW18 contained concentrations of one or more CVOC in excess of their respective MTCA CULs.
- The groundwater samples collected from the remaining borings/monitoring wells contained CVOC concentrations below their laboratory detection limits and/or MTCA CULs.
- The groundwater samples collected from monitoring wells MW12, MW13, MW16, and MW18
 contained detectable concentrations of GRPH, however these results were flagged by the
 laboratory, indicating that the values consist of chlorinated compound(s) with elevated
 concentrations.


The lab data findings of the confirmation drilling from the GeoTrax Survey™ targets indicate the following results with respect to the 3 areas of potential concern:

Area 1

The CVOC concentrations detected in groundwater from monitoring wells MW12, MW13, MW16 and MW18 indicate a preferential pathway as a saturated sand unit not previously identified on the Property, which explains the southeasterly distribution of the dissolved phase contaminants. This Site feature is discussed further in Section 3.4.

<u>Area 2</u>

The PCE concentration detected in shallow soil at boring UB15 may explain the GeoTrax Survey™ results in this area, however follow up explorations (UB27 through UB29) presented later, show that the shallow PCE impact is not extensive based on deeper soil test results and lack of groundwater impacts.

Area 3

The CVOC concentrations detected in groundwater from monitoring wells MW16, MW17, and MW18 indicated a groundwater flow channel not previously identified on the Property, supporting the north/south distribution of contaminants. This Site feature is discussed further in Section 3.4.

2.5.8 Urban Environmental Partners – Plume Boundary Investigation, 2020

In March and April of 2020, UEP conducted a subsurface investigation to evaluate and bound the southern and eastern extents of groundwater impacts, and the southern extent of soil impacts. The investigation consisted of the advancement of 5 borings (UB20 through UB24) using HSA or direct push drilling methods to the south and east of the known plume extents. Soil samples were collected from depths between 25 and 35 feet bgs.

All five borings were completed as 1- or 2-inch diameter groundwater monitoring wells. Monitoring wells UB20/MW20 through UB24/MW24 were sampled in accordance with ASTM low flow methodology. Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples were analyzed for CVOCs by EPA Method 8260C.

<u>Investigation Findings – Soil</u>

- The saturated soil samples collected from UB20 at depths between 30 and 35 feet bgs contained concentrations of PCE, and/or TCE slightly exceeding their respective MTCA CULs.
- The soil samples collected from the remaining borings (UB21, UB22, and UB23) did not contain detectable concentrations of CVOCs.

<u>Investigation Findings – Groundwater</u>

- The initial groundwater sample collected from MW20, on the day after installation, contained concentrations of TCE and cis-1,2-DCE, slightly in excess of their respective MCTA CULs. This well was resampled after proper well development and equilibration period on April 10th, 2020, and that more representative sample contained no detectable concentrations of CVOCs.
- The groundwater samples collected from monitoring wells MW21 through MW24 contained no detectable concentrations of CVOCs.

The results from this investigation defined the contaminant plume boundary to the south and east of the Property as represented on Figure 5. Results from these bounding wells identified and targeted a saturated sand layer that begins at around 20-27 feet bgs on the Property, which is believed to be the primary preferential flow path for contaminants on the south end of the Property. This geologic feature is discussed further in Section 3.4.

2.5.9 Urban Environmental Partners – Groundwater Sampling Event, March and April 2020

In March and April of 2020, UEP resampled existing monitoring wells (MW01 through MW11) to assess current groundwater conditions across the Site. Many of these wells had not been sampled for several years since their initial installation. Samples were collected in accordance with ASTM low flow methodology and were analyzed for CVOCs by EPA Method 8260C

Investigation Findings

- The groundwater samples collected from MW01, MW05, MW08 in the source area, and from downgradient MW09 contained high concentrations of CVOCs in excess of their respective MTCA CULs. These results were consistent with previous sampling event(s), and indicate the primary source area of the release.
- The March groundwater sample collected from MW02 contained concentrations of CVOCs below their respective laboratory reporting limits and/or MTCA CULs. The sample previously collected from MW02 contained a concentration of VC slightly above the MTCA Method A Cleanup Level.
- The groundwater samples collected from MW03, MW04, MW07, and MW11 did not contain detectable concentrations of CVOCs. These results were consistent with previous sampling event(s), and appear to bound the edges of the dissolved phase plume.
- The UEP 2020 groundwater sample collected from MW06 contained concentrations of PCE, TCE, and VC in excess of their respective MCTA Method A CUL. This well previously (2010) did not contain detectable concentrations of CVOCs.
- The groundwater sample collected from MW10 did not contain detectable concentrations of CVOCs. These latest results represented a significant reduction in contaminant concentration from the initial 2019 sampling event after the MW10 well installation. To verify these results as accurate, an additional sampling event was conducted. One sample was collected from the well with the tubing placed at the center of the well screen, and the second sample with the tubing placed at the bottom of the well screen. Neither sample interval contained detectable concentrations of CVOCs, verifying the sample results that show groundwater within MW10 does not contain contaminants above laboratory detection limits.

2.5.10 Urban Environmental Partners – Additional Subsurface Investigation, April 2020

In April of 2020, UEP conducted an additional subsurface investigation to further evaluate the contaminant distribution and confirm the geology and primary preferential flow path on the Property. The investigation work consisted of the advancement of 2 borings (UB25 and UB26) using sonic drilling

technology to produce a continuous soil core which allowed for a detailed and continuous review of soil lithology to the maximum depth explored of 50 feet bgs. UB25 was positioned near the primary source area, while UB26 was positioned to the south and east of the source area, just inside the Property boundary. Continuous soil cores were observed from each boring, and select soil samples were collected from depths between 27 and 45 feet bgs.

Both borings were completed as 2-inch diameter groundwater monitoring wells. Monitoring wells UB25/MW25 and UB26/MW26 were sampled in accordance with ASTM low flow methodology. Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples were analyzed for CVOCs by EPA Method 8260C.

Investigation Findings – Soil

- Fill material was encountered in UB25 to a depth of approximately 14 feet bgs. The soil
 identified below the fill consisted primarily of a dense Recessional Lacustrine clay to
 approximately 27 feet bgs, underlain by discontinuous silty sand and sand layers to a depth of
 approximately 35 feet bgs. Dense glacially consolidated silt and clay was encountered between
 approximately 35 feet and the maximum depth explored of 50 feet bgs.
- Fill material was also encountered in UB26 to a depth of approximately 16 feet bgs. The soil identified below the fill consisted primarily of a dense Recessional Lacustrine clay to approximately 25 feet bgs, underlain by a continuous Recessional Outwash sand layer to a depth of approximately 40 feet bgs. Dense glacially consolidated silt and clay was encountered between approximately 40 feet and the maximum depth explored of 50 feet bgs.
- Soil samples collected from both borings within the saturated sand layer at depths of 30 and 35 feet bgs contained concentrations of PCE and TCE above their respective MTCA CULs.
- Soil samples collected from both borings within the dense glacially consolidated clay at or below 40 feet bgs did not contain detectable concentrations of CVOCs.

These soil observations from continuous cores, and data results in consolidation with observations from other borings indicate the presence of discontinuous lenses of sand in the vicinity of the primary source area, transitioning to a more continuous sand layer to the south and east of the source area. The geologic representation of the Site stratigraphy is shown as a north to south cross-section on Figure 14.

Based on the cumulative soil sample data set, the Site contaminants are shown not to have penetrated the dense glacially consolidated silty clay present ubiquitously at the Property at and below approximately 40 feet bgs.

<u>Investigation Findings – Groundwater</u>

• The groundwater samples collected from MW25 and MW26 contained concentrations of PCE, TCE, cis-1,2-DCE, and VC at expected values above their respective MTCA CULs.

2.5.11 Urban Environmental Partners – Northern Dry Cleaner Investigation, 2020

In April of 2020, UEP conducted a targeted subsurface investigation to evaluate the extent of soil impacts in the vicinity of UB15, where a concentration of PCE was previously detected in soil at 6 feet bgs. The investigation consisted of the advancement of 3 borings (UB27 through UB29) using direct push drilling methods. The borings were advanced approximately 12-15 feet to the northeast, southeast, and northwest from UB15. Soil samples were collected between 6 and 17 feet bgs.

Select soil samples were analyzed for CVOCs by EPA Method 8260C.

Groundwater was not sampled during this investigation, as the samples previously collected from both monitoring wells MW14 and MW15 contained no detectable concentrations of CVOCs.

Investigation Findings

 None of the soil samples from UB27 through UB29 contained detectable concentrations of CVOCs.

These findings confirm that the shallow soil impacts detected in UB15 at 6 feet bgs are isolated and bounded, and do not represent a significant source of contaminants at the Site.

2.5.12 Urban Environmental Partners – Soil Gas and Sewer Gas Sampling, April 2020

In April of 2020, UEP conducted a soil gas and sewer gas investigation to evaluate the potential for vapor intrusion into future on-Property structures and adjacent structures through contaminant migration within sewer conduits. The investigation consisted of the advancement of 2 soil gas probes (SG04 and SG05) using direct push drilling methods adjacent or near sewer laterals within the northwest portion of the parking area, and the collection of two sewer gas samples (sewer north and sewer south) collected from manhole access ports up-stream and down-stream of the CVOC source area (Figure 7).

The soil gas probes were advanced to approximately 18-inches bgs. Rigid inert tubing was cut to length and inserted to the bottom of the borings. Sand was then poured into the holes around the tubing and hydrated granular bentonite chips were used to seal the top of the holes from the atmosphere. The existing air within the tubing was then purged prior to sample collection to avoid any external cross contamination.

The sewer gas samples were prepped for collection by lowering a section of rigid inert tubing to the approximate depth of the sewer main (~10 feet bgs).

The samples were collected utilizing 1-liter Summa canisters fitted with flow regulators calibrated to a rate of between 150 to 200-milliliters per minute (ml/min).

The gas samples were analyzed for target list VOCs by EPA Method TO-15.

<u>Investigation Findings – Soil Gas</u>

Neither soil gas sample contained detectable concentrations of CVOCs.

<u>Investigation Findings – Sewer Gas</u>

- The sewer gas sample collected from up-stream of the source area, contained concentrations of TCE and VC above their respective MTCA Method B Screening Levels for Sub-slab Soil Gas.
- The sewer gas sample collected down-stream of the source area did not contain detectable concentrations of CVOCs.

These findings indicate that vapor intrusion is not an issue for current or future on-Property structures on the northern portion of the Property, or up-stream structures due to no evidence of contaminant migration within the sewer conduit adjacent to the Site.

These sewer gas results also suggest that dry cleaner originated contaminants have been introduced into the sewer from source(s) up-stream (south) of the Property.

Soil gas and sewer gas results are tabulated on Table 8.

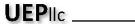
2.5.13 Urban Environmental Partners – Creosote Treated Pile Assessment, 2020

On April 27, 2020, UEP oversaw the excavation of a test pit/trench on the north side of the Property in a location next to the vacant retail building in order to expose and evaluate existing, treated wooden piles installed as the foundation of the building. The trench was advanced using a track mounted miniexcavator and was approximately 3 feet wide by 15 feet long, and about 4 feet deep (Figure 9). The positioning of the trench was determined using historical building plans which identified the likely placement of the treated wooden piles used for the foundation (Figures 10 and 11).

The trenching successfully exposed the 2 piles in this northern location. Upon exposure of the piles, it was visually evident that they had been treated with creosote due to the odor and dark staining of the surrounding soil which appeared to be a sand fill with discoloration next to the piles.

UEP collected soil samples at sequential intervals away from one of the piles at a depth of approximately 4 feet bgs to evaluate the migration distance of potential soil impacts proximate to the pile (3-inches, 6-inches, 12-inches) with PAHs, and also collected a sample at the middle distance between two pile systems (approximately 6 feet) as shown on Figure 9.

To assess potential groundwater impacts from the building's treated wood pile foundation, UEP oversaw the advancement of two soil borings (UB32 and UB33) on June 3, 2020 in locations south and downgradient from the former retail building (Figure 3 and Figure 22) using direct push drilling technology. In consultation with Ecology, the soil borings were positioned approximately 15 feet downgradient from the existing building, which would be approximately 40 feet from the nearest suspected pile locations as shown on Figure 22. Soil samples were collected from depths between 2 and 18 feet bgs.


Both borings were completed as 1-inch diameter monitoring wells (UB32/MW32 and UB33/MW33) which were sampled on June 8, 2020 in accordance with ASTM low flow methodology. The wells were installed to evaluate the potential for PAH leachability and mobility in soil and groundwater at the Site. Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples from both locations were analyzed for PAHs by EPA Method 8270E SIM, and the laboratory results were evaluated using Toxicity Equivalency Methodology detailed in WAC 173-340-708(e).

To evaluate the structural integrity of the treated wood piles, the project geotechnical engineer from PanGeo, and the project structural engineer from Coughlin Porter Lundeen (CPL) accompanied UEP on December 31, 2020, to expose and inspect the existing wood piles within the vacant Safeway building interior. In two new test pit areas (Figure 12), existing timber piles under the building were accessed by saw cutting the concrete floor, removing concrete pile caps above two locations, and excavating test pits next to the piles. The efforts and observations are reported by PanGeo in their Letter Report entitled *Existing Timber Pile Evaluation*, January 13, 2021 (provided as Appendix G). The PanGeo report presents observations and an analysis of the existing pile conditions in three representative areas of the building, which include examples of existing single pile, double pile, and triple pile systems under the building. Figure 10 is the original piling installation plan from 1967, which shows a total of 174 piles in 148 locations under the building. According to the plan, there are 125 single piles, 20 sets of double piles, and 3 sets of triple piles in the indicated locations.

<u>Investigation Findings – Existing Pile Conditions and Re-Use of Piles</u>

The PanGeo report concludes that the piles in the 3 observed locations are in satisfactory structural condition and are representative of the complete pile system. PanGeo reports that pile conditions are appropriate to allow repurposing of the existing piles to support the floor slab of the new proposed building that will be developed for the north part of the Property. The PanGeo report presents methods and means for the re-use of the existing piles to serve as the primary structural support for the new building. The structural design for re-use of existing piles is presented as the piling plan, prepared by CPL as Figure S2.01 - Piling Plan, provided as UEP Figure 13. The CPL figure shows the existing pile system

plan with an overlay of the proposed new building. Detailed call outs on the CPL plan present a photo of one of the exposed piles at PanGeo location Pile 109 (Test Pit 3), and schematic sections of the existing pile attachments, and cross-sections 1 and 2 on Figure 13, to show the construction methods planned for pile re-use. The CPL figure notes some new areas of the planned development that are outside of the present footprint of the Safeway building, and indicates these areas will receive suitable ground improvement methods to support the slab-on-grade floor structure.

Investigation Findings – Soil

- The soil sample collected in the UEP test pit at a distance of 3-inches away from a pile contained concentrations of PAHs in excess of the MTCA Method A Cleanup Level as shown on Figure 9.
- The soil samples collected 6- and 12-inches away from a pile contained detectable concentrations of PAHs, however the calculated toxicity equivalency concentrations were below the MTCA Method A Cleanup Level.
- The soil sample collected at the approximate central location between two pile systems (6 feet) did not contain detectable concentrations of PAHs.
- The soil samples collected from borings UB32 and UB33 between 2 and 18 feet bgs did not contain detectable concentrations of PAHs.

<u>Investigation Findings – Groundwater</u>

• The groundwater samples collected from MW32 and MW33 did not contain detectable concentrations of any PAHs (Table 9).

The results of this series of investigations have confirmed that the wood pilings were treated with creosote, and that PAHs from the creosote exceed the MTCA Method A soil cleanup level in a "halo" of soil impact in soil immediately adjacent to each treated pile. However, the migration of PAHs from the creosote treated piles is limited to soil within 3- to 6-inches from each of the piles. Moreover, data results from the groundwater sampling in MW32 and MW33 show that the presence of the treated piles is not a threat to groundwater quality. As discussed in subsequent sections, these wells were sampled on a quarterly basis for 1 year, and have shown no detectable concentrations of PAHs over that time.

It was concluded from the PanGeo timber pile evaluation that the piles can be repurposed to support the new building floor slab by having the top of each existing pile system cast directly into the new concrete slab. A pile re-use plan prepared by CPL (Figure 13), presents the construction methods for repurposing the existing pile system to serve as the foundation and structural support of the planned concrete slab floor for the future development building.

2.5.14 Urban Environmental Partners – Subsurface Investigation, 2020

In May of 2020, UEP conducted a focused subsurface investigation to validate data previously collected at the Site. Specifically, UEP suspected that the lab results for previous soil samples collected from borings UB12 and UB13 at depths of 37 and 43 feet bgs, respectively, were anomalous data. These 2 samples were collected from points within the upper edge of the consolidated glacial till layer beneath the Site, which has been shown in other Site areas to retard the transmission of contaminants. These 2 deeper soil samples (UB12-37' and UB13-43') were analyzed by a mobile laboratory, and the reported concentrations were suspected to result from gas chromatograph "column bleed" from previous high PCE concentrations from "hot" samples analyzed in a lab sequence ahead of these 2 borings/samples. Also, it was considered possible that the anomalous results may have been a result of potential contaminant drag down from the hollow stem auger drilling methodology that was used.

The focused investigation consisted of the advancement of 2 borings (UB30 and UB31) using sonic drilling technology, which allowed for a detailed and continuous soil core to allow observation of the complete lithology to the maximum depth explored. UB30 was positioned in a downgradient position close to the source area, while UB31 was positioned directly between UB12 and UB13, where the suspected samples with anomalous data were collected. Numerous discrete soil samples from UB30 (10 samples) and UB31 (8 samples) were collected in these sonic borings from depths between 12 and 43 feet bgs, targeting each specific geologic feature that was encountered.

Both borings were completed as 2-inch diameter groundwater monitoring wells, and the wells UB30/MW30 through UB31/MW31 were sampled in accordance with ASTM low flow methodology. Monitoring well construction details are summarized on Table 7.

Select soil and groundwater samples were analyzed for CVOCs by EPA Method 8260C.

<u>Investigation Findings – Soil</u>

- Fill was encountered in UB30 to a depth of approximately 17 feet bgs. The soil identified below the fill consisted primarily of a dense Recessional Lacustrine clay with intermixed fine sand to approximately 30 feet bgs, underlain by a medium to coarse Recessional Outwash sand to a depth of approximately 36 feet bgs. Dense glacially consolidated silt and clay was encountered between approximately 36 feet and the maximum depth explored of 40 feet bgs, with results as follows:
 - Soil samples from UB30 collected from within the Recessional Lacustrine clay did not contain detectable concentrations of CVOCs.

- Soil samples collected from within the medium coarse Recessional Outwash sand between 30 and 35 feet contained concentrations of PCE and/or TCE above their respective MTCA CULs.
- Two successive soil samples collected from within the glacially consolidated silt and clay below 35 feet contained concentrations of CVOCs below their laboratory reporting limit and/or MTCA CUL.
- Fill was encountered in UB31 to a depth of approximately 12 feet bgs. The soil identified below
 the fill consisted primarily of a dense Recessional Lacustrine clay to approximately 24 feet bgs,
 underlain by discontinuous layers of sand and sandy silt to a depth of approximately 30 feet bgs.
 Dense glacially consolidated silt and clay was encountered between approximately 30 feet and
 the maximum depth explored of 45 feet bgs with results as follows:
 - Soil samples collected from UB31 within the discontinuous layers of sand and sandy silt between 24 and 28 feet bgs contained concentrations of PCE and TCE above their respective MTCA CULs.
 - Numerous (5) soil samples collected from within the glacially consolidated silt and clay below 30 feet bgs did not contain detectable concentrations of CVOCs.

These results for the soil analysis in the targeted lithologies support the conclusion that the mobile laboratory data for samples collected from UB12 and UB13, within the glacially consolidated silt and clay, were anomalous and likely the result of laboratory error.

The data results from sonic borings UB30 and UB31 for the soil in various depths at these locations are also consistent with the previous understanding of Site geology and contaminant migration pathways, discussed in Section 3.4.

<u>Investigation Findings – Groundwater</u>

 As expected in the source area, the groundwater samples collected from MW30 and MW31 contained elevated concentrations of PCE, TCE, cis-1,2-DCE, and VC in excess of their respective MTCA CULs.

2.5.15 Urban Environmental Partners – ORPH Investigation, 2020

On June 3, 2020, UEP oversaw the advancement of two borings (UB34 and UB35) using direct push drilling technology at locations shown on Figure 3 near and downgradient from boring TB05, where ORPH was previously detected at concentrations exceeding the MTCA Method A Cleanup Level. The purpose of these borings was to confirm that the ORPH detection was due to variable fill material

(possible asphalt) and was not the result of a point source release. Soil samples were collected between approximately 3 feet and 14 feet bgs.

Groundwater was encountered in both borings at approximately 5 feet bgs was sampled in accordance with the EPA 2005 publication Groundwater Sampling and Monitoring with Direct Push Technologies.

Soil and groundwater samples were analyzed for DRPH and ORPH by Northwest Method NWTPH-Dx.

Investigation Findings - Soil

 As shown by data results on Table 2, none of the soil samples from around boring TB05 contained concentrations of DRPH or ORPH.

Investigation Findings – Groundwater

- The groundwater sample collected from boring UB34 contained a concentration of DRPH well below the MTCA Method A Cleanup Level, however this result was flagged by the laboratory for not resembling the fuel standard used for quantitation. It is possible this result is due to organic interference.
- The groundwater sample collected from UB35 did not contain detectable concentrations of DRPH or ORPH (Table 6).

The results of this investigation confirm that the ORPH detection in TB05 was the result of variable fill material, likely inclusive of asphalt debris. Based on these findings, this area does not appear to warrant further investigation or remedial action.

2.5.16 Urban Environmental Partners – Groundwater Sampling Event, August 2020

In August of 2020, UEP resampled all existing monitoring wells on Site (MW01 through MW18, MW20 through MW36, and MW30 through MW31) to assess current groundwater conditions. Samples were collected in accordance with ASTM low flow methodology and were analyzed for CVOCs by EPA Method 8260C.

Duplicate samples were also collected in several wells utilizing Passive Diffusion Bags (PDBs). PDBs are polyethylene tubes filled with analyte-free water, hung inside the monitoring wells for a period of at least 14-days to equilibrate with the surrounding groundwater conditions. These samples were collected to evaluate sample concentrations variation using this methodology and may be considered for future compliance sampling events. These samples were labeled with "PDB" or "DB" as shown on Table 5.

Investigation Findings - Groundwater

- The groundwater samples collected from MW01, MW05, MW08, MW12, MW13, MW25 and MW31 contained concentrations of CVOCs well in excess of their respective MTCA CULs. The concentrations in these wells have generally been the highest detected on Site and represent conditions within the primary source area of the release.
- The groundwater samples collected from MW02, MW06, MW09, MW17, MW18, and MW26 contained CVOC concentrations above their MTCA CULs, although the concentrations were much lower than those seen within the primary source area. This data is generally consistent with previous sampling events and represents conditions on the leading edges of the contaminant plume.
- The groundwater samples collected from MW03, MW04, MW07, MW10, MW11, MW14, MW15, and MW20 through MW24 did not contain detectable concentrations of CVOCs, or contained concentrations below their respective MTCA CULs. This data is generally consistent with previous sampling events and defines the extent of the Site.

2.6 Subsurface Conditions

Subsurface conditions have been evaluated at the Site through interpretation of soil characteristics, and observation of groundwater levels in monitoring wells that have been installed. This data and associated interpretation provide the basis for understanding the distribution and movement of the contamination at the Site. Additionally, the Seattle Geologic Map (Troost, K.G., Booth, D.B., Wisher, A.P., and Shimel, S.A., 2005) was referenced and provides a basis for understanding the off-Site movement of groundwater.

It should be noted that, historically, a glacial stream previously ran through the Site, as indicated on the 1908 topographic map of Seattle (U.S. Geological Survery, 1955). The stream pathway meandered from north to south/southeast, eventually turning to the east near the existing Rainier Playfield and discharging to Wetmore Slough. The Wetmore Slough at the time extended southward in what is now Genesee Park and Playfields, before being filled.

2.6.1 Soil Conditions

The Seattle Geologic Map indicates the Site is underlain by fill over Recessional Lacustrine soil. Based on the Site explorations, the fill consists of a highly variable mixture of gravel, sand, clay, and silt; and wood and concrete debris have been observed in places. The thickness of the fill ranges from approximately 8 to 17 feet bgs.

Underlying the fill in some explorations, an organic-rich silty sand to sandy silt was observed, generally less than 1-foot thick. This soil is likely a recent wetland deposit associated with the former stream.

The fill and wetland deposit are underlain by Recessional Lacustrine soil. The Recessional Lacustrine soil consists of mostly a silty clay although in some areas silt is the predominate soil type. In several explorations the clay was relatively plastic. Reddish brown mottling was observed in the upper portions of the deposit, likely as a result of iron oxide staining, which indicates the movement of water through the soil. The Recessional Lacustrine deposit ranges in thickness from approximately 10 to 20 feet.

In the central portion of the PCE impacted area, a sand layer with varying amounts of silt and occasional gravel is present below the Recessional Lacustrine deposit, and likely represents Recessional Outwash. The Recessional Outwash forms a channel-like structure running from northwest to southeast as shown on Figure 14. Also shown on Figure 14, the sand channel thickens from just a couple of feet in the northwest to approximately 15 feet to the southeast, with a decrease in the silt content to the southwest area of the Site.

Underlying the Recessional deposits are glacially consolidated soils. Based on the Seattle Geologic Map and our experience in the Seattle area, these soils are likely Pre-Vashon in age. In general, these soils consist of clay and silt, with some of the silt deposits exhibiting a till-like texture. These deposits are hard to very hard.

Although it was not observed on the Site, the Seattle Geologic Map shows a bedrock outcropping approximately 2 blocks south of the Site roughly parallel to South Alaska Street.

2.6.2 Groundwater Conditions

The depth to groundwater was measured in each of the Site monitoring wells and, the depth to groundwater ranges from approximately 6 to 15 feet bgs. The depth to water measurements were converted to elevations based on the recent survey of the wells. Groundwater elevations range from approximately 32 to 37 feet AMSL across the Site.

The groundwater elevations were contoured to identify groundwater flow patterns using data collected on April 14, 2020, as shown on Figure 15. The groundwater contours indicate that groundwater flows toward the primary area of soil contamination at the Site, then flows to the southeast toward monitoring well MW20. This flow pattern is a function of the sand channel observed at the Site, which provides a lower resistance to flow than the clay and silt, and serves as a preferential pathway for groundwater flow.

The hydraulic gradient across the Site ranges from approximately 0.1 feet per foot between monitoring wells MW05 and MW12 to 0.005 feet per foot between monitoring wells MW10 and MW20. These

gradients are consistent with the soil conditions at the Site, with higher resistance to flow within the silt and clay resulting in higher gradients, and lower hydraulic gradients within the sand channel.

2.6.3 Hydraulic Conductivity

Slug tests were performed in monitoring wells MW09, MW16, MW18, MW25, and MW26 on April 30 and May 1, 2020. The results of the slug testing can be used to provide a basis for estimating the hydraulic conductivity of the soil to support remedial evaluation. Additionally, the slug testing provided a method for understanding the presence of the sand layer in several wells where the sampling interval during drilling may have missed the sand.

A slug test involves displacement of water within the well and is accomplished by dropping a sealed, sand-filled PVC pipe in to the well. Introduction of the pipe causes water to rise in the well via displacement, and then fall back down to the static (original) water level; this is called the "falling head" portion of the test. Once the water level has recovered to the static level, the PVC pipe is removed, causing the water level to drop in the well and again rise to the static level; this is called the "rising head" portion of the test. Prior to each test, the static water level was checked using a water level tape. Recovery of water level back to static was measured using a pressure transducer/datalogger system set to collect water level on a 1-second interval. Following testing, the data was downloaded to a spreadsheet for evaluation. Graphs 2 through 6 presented after the report tables show the test data for each of the wells. Depending on the rate of recovery, one to three series of tests were performed in each well.

The slug test data was analyzed using the Bouwer and Rice method (Bouwer, H., and Rice, R.C., 1976) and Bouwer (Bouwer 1989). Although the Bouwer and Rice method was developed for use when testing unconfined aquifers, the method can be used for confined aquifers as indicated in Bouwer (Bouwer 1989) and has been used successfully for numerous slug tests performed in the Seattle area.

Monitoring wells that were known to be screened within the Recessional Outwash unit (MW09, MW25, and MW26) produced mean hydraulic conductivity values ranging from 0.0008 to 0.0018. While those that appear to be screened within the Recessional Lacustrine unit (MW16 and MW18) produced slow recovery and low mean hydraulic conductivity values between 0.00019 and 0.000024, which indicate that the sand layer is likely not present in this area, or is relatively thin at these locations. This data is consistent with the relatively low levels of contamination in groundwater in MW16 and MW18 when compared to other wells on Site.

3.0 Conceptual Site Model

This report section presents a conceptual understanding of the Site and identifies potential or suspected sources of hazardous substances, types and concentrations of hazardous substances, potentially contaminated media, potential exposure pathways and receptors, and contaminant fate and transport. The conceptual site model (CSM) is presented graphically on Figure 16 to show these issues for the Property.

3.1 Confirmed and Suspected Source Areas

The results of the RI indicate that the CVOC impacts confirmed in soil and groundwater beneath the Site are the result of dry-cleaning operations between approximately 1930 and 1968 from facilities that existed on the southwest corner of the Property. A minor surficial release may have also occurred near the northern dry-cleaning operation, but this area has been shown to have minimal impacts in shallow soil, and does not appear to represent a significant source at the Site.

No ongoing chlorinated solvent releases from the former dry cleaner(s) are now occurring at the Site. The highest soil and groundwater concentrations show the source area to be proximate to the vicinity of the locations of MW01, MW05, MW13, MW25, MW30, and MW31. The contaminated soil in this area continues to act as a secondary source to soil vapor and groundwater.

A second impacted area of the Site has been identified in association with treated wood piles that presently support the former Safeway building on the north half of the Property. As shown on Figure 9, the presence of PAH compounds above cleanup levels was confirmed in soil very close to each treated pile. The groundwater tests from monitoring wells (MW32 and MW33) downgradient from the pile system under the building provide empirical evidence that groundwater is not impacted by the presence of the treated piles.

3.2 Contaminants of Concern

Based on the results of the RI, the COCs the southern portion of the Site include PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and VC from the historic dry cleaner operations. PAHs in soil directly adjacent to the creosote treated piles were also identified as a COC in the northern portion of the Site.

3.3 Media of Concern

Based on the results of the RI, soil and groundwater are the confirmed media of concern for the Site.

Soil vapor will be retained as a media of concern for future on-Site structures based on CVOC concentrations detected in shallow groundwater that exceed the MTCA Method B Groundwater

Screening Level for indoor air risks associated with potential vapor intrusion; however, as discussed in Section 2.5.12, soil gas/vapor sampling results have not indicated an elevated risk for vapor intrusion for current on-Property structures.

3.4 Distribution of Contamination in Soil

CVOC concentrations in soil were identified in two areas: a) the primary source area, which contains concentrations ranging from 0.049 mg/kg to 510 mg/kg and may support some, but limited areas of residual PCE in soil, which could be contributing to groundwater impacts; and b) the leading plume edge that contains detectable PCE concentrations in saturated soil ranging from 0.027 mg/kg to 2.2 mg/kg which is likely more representative of impacted groundwater coming into contact with the soil. This soil area is not considered a continued source of groundwater impacts.

The lateral extent of CVOC soil contamination within the source area is limited to the southwestern corner of the Property, within the parcel boundaries (Figure 4). The northern limit is defined by the absence of impacts in borings B-6, B-8, B07, B08, and UB17; the eastern limit is defined by the absence of impacts in borings B09, UB18, and UB19; the southern limit is defined by the absence of impacts in borings SB05, TB07, B-2, and B13; and the western limit is defined by the absence of impacts in the angle borings B12 and B16 at locations beneath the western adjacent ROW. It should be noted that shallow soil samples, between approximately 0 and 16 feet bgs beneath the western adjacent ROW could not be collected due to the presence of multiple utilities.

The lateral extent of CVOC soil contamination within the leading plume edge is limited to the southcentral portion of the Property, the southern adjacent ROW, and the northern portion of the south adjacent property. These impacts are bounded laterally by the lack of soil contamination within the saturated Recessional Outwash sand in borings UB21 through UB23 (Figure 4).

The vertical extent of CVOC soil contamination within the source area ranges from approximately 10 feet bgs to approximately 35 feet bgs, while the vertical extent of soil contamination within the leading plume edge ranges from approximately 25 to 35 feet bgs within the saturated Recessional Outwash sand. The vertical extents in both zones are limited by the presence of glacially consolidated silt and clay consistently encountered around 35 to 40 feet bgs (Figures 17 through 20).

The lateral extent of PAH soil contamination associated with the creosote treated pile assemblage is limited to approximately 3 inches from the surface of each pile, with the vertical extent limited to the depth of the piles.

3.5 Distribution of Contamination in Groundwater

The lateral extent of groundwater contamination at the Site is limited to the southwestern portion of the Property, extending south beneath the adjacent ROW to the northern portion of the south adjacent property.

The northern plume boundary is defined by the absence of impacts in monitoring well MW03; the eastern leading plume edge is represented by the slight concentrations detected in MW02; the southeastern plume boundary is defined by the absence of impacts in monitoring well MW24, and the southern plume boundary is defined by the absence of impacts in monitoring wells MW21 through MW23 (Figure 5). The most recent groundwater sampling events have not detected CVOC concentrations in monitoring wells MW10 or MW20, indicating the groundwater plume may not extend far beyond the southern Property boundary, however this Site area will be considered impacted until four consecutive quarters of compliant groundwater data can be obtained.

The western plume boundary had previously been defined by the absence of CVOC contamination in the groundwater collected from MW06 and MW07. However, CVOC concentrations were recently detected in MW06 during the March 12, 2020 sampling event; the groundwater collected from MW07 contained non-detectable concentrations of CVOCs, consistent with previous sampling results. Access limitations due to utilities within the ROW of Rainier Avenue South prohibit the collection of more meaningful data (Figure 5) further to the west of MW06. Based on our understanding of the CSM, the contaminant transport mechanisms at the Site (fill depth, groundwater gradient and flow direction) do not support a westerly migration and distribution of contaminants, therefore MW06 will be proposed as the western point of compliance in combination with monitoring of vapors in the adjacent sewer main. The minor PCE concentrations recently shown in groundwater in this area will be treated by the selected remedial approach for the Site.

3.6 Contaminant Fate and Transport

3.6.1 Chlorinated Solvents

The understanding of the CVOC transport at the Site is based on soil and groundwater conditions observed as part of the exploration program and the distribution of contamination in the subsurface. Contamination appears to have moved through the fill material to the top of the native soil, which generally consists of silt and clay, then contamination has generally migrated from west to east on top of this confining layer.

Over time, the chlorinated solvents have migrated downward through the upper native silt and clay into variable lenses of sand. These sand layers have been shown to be less continuous within the source area, and then are more continuous to the south and east. In a number of explorations, the sand lens is

observed at a depth ranging from approximately 20 to 35 bgs as shown on Figure 14. This sand channel provides a pathway for contaminants in groundwater to migrate vertically downward, and downgradient to the southeast from the major area of soil contamination.

The sand channel is underlain by dense, hard glacially-consolidated till and fine-grained soil. These soils have a low hydraulic conductivity and serve to reduce the downward migration of contamination. In our opinion, the glacially consolidated soils served as the downward limit of Site contamination.

The downgradient extent of groundwater contamination is generally the south edge of the Property at the South Genesee Street boundary based on the most recent groundwater sampling data (monitoring wells MW10, MW11, and MW20).

The general absence of off- groundwater contamination (with the exception of very low levels within and across South Genesee Street) is attributed to anaerobic degradation that is occurring at the dissolved phase plume edge. Once PCE enters the subsurface, chemical processes such as hydrolysis, direct mineralization, and/or reductive dehalogenation by endemic bacteria facilitates a natural reduction or breakdown of the PCE into non-hazardous components. Biological attenuation processes such as reductive dechlorination and cometabolic degradation may also affect the reduction of PCE under conducive subsurface conditions. As reductive biodegradation of PCE occurs, we find the PCE degradation compounds in the plume to include TCE, cis-1,2-DCE, trans-1,2-DCE, and VC. In most of the monitoring wells where PCE has been detected in groundwater at the Site, these degradation products are present, including TCE, cis-1,2-DCE, and VC, demonstrating the biological degradation and possibly chemical attenuation processes are occurring at the Site. This process is most evident in the samples collected from monitoring wells MW01, MW05, MW09, MW12, MW13, MW16, MW18, MW25, MW26, MW30, and MW31, which all show the presence of these degradation compounds.

In addition, during the August 2020 groundwater sampling event, the average dissolved oxygen (DO) and oxidation-reduction potential (ORP) values within the primary area of groundwater contamination were approximately 0.57 mg/l and -8.2 millivolts (mV), respectively, as shown by data presented in Table 10). These values for these groundwater parameters indicate that there is anaerobic biological activity occurring. According to United States Geological Survey (USGS) Scientific Investigations Report 2006-5030, dissolved-oxygen concentrations greater than 1 mg/L generally indicate aerobic conditions and concentrations less than 1 mg/L indicate one of the anaerobic conditions. Regarding the ORP values, a positive value is representative of an oxidized state and a negative value indicates a reduced state.

3.6.2 Evaluation of Empirical Data for PAHs Associated with Treated Wood Piles

Under Washington Administrative Code (WAC) 173-340-747(9), Ecology allows for empirical demonstrations to show that minor cleanup level exceedances in soil have not, and will not, cause an exceedance of applicable groundwater cleanup levels and that no exposure scenarios are represented by the environmental conditions on the Property. WAC 173-340-747(9) states the following:

- (b) **Requirements**. To demonstrate empirically that measured soil concentrations will not cause an exceedance of the applicable ground water cleanup levels established under WAC 173-340-720, the following shall be demonstrated:
- (i) The measured ground water concentration is less than or equal to the applicable ground water cleanup level established under WAC 1733-340-720; and
- (ii) The measured soil concentration will not cause an exceedance of the applicable ground water cleanup level established under WAC 173-340-720 at any time in the future. Specifically, it must be demonstrated that a sufficient amount of time has elapsed for migration of hazardous substances from soil into ground water to occur and that the characteristics of the site (e.g., depth to ground water and infiltration) are representative of future site conditions. This demonstration may also include a measurement or calculation of the attenuating capacity of soil between the source of the hazardous substance and the ground water table using site-specific data.
- (c) **Evaluation criteria**. Empirical demonstrations shall be based on methods approved by the department. Those methods shall comply with WAC-173-340-702(14), (15), and (16).

As presented in Section 2.5.13 and on Figure 9, the PAH impacts in soil associated with the treated piles are present above CULs within a limited 3-inch radius around each timber pile. However, the Site meets the empirical demonstration requirements stated above from WAC 173-340-747(9). The limited PAH-impacted soil that is present immediately adjacent to the piles has not and will not cause exceedances of the applicable groundwater cleanup levels. This scenario is shown based on the following conditions:

Soil samples and multiple groundwater samples collected from UB32/MW32 and UB33/MW33 installed in the downgradient direction from the treated pile assemblage, have not exhibited detectable concentrations of PAHs. To date, four consecutive quarterly groundwater samples have been collected from MW32 and MW33 (Table 9). These compliant soil and groundwater results for properly placed monitoring wells indicate that soil impacts associated with the creosote-treated timber piles beneath the existing building have not leached and have not caused exceedances of applicable groundwater cleanup levels.

• Since the 1968 construction of the retail structure, the Property has remained developed with the existing building encompassing a treated wood pile foundation. Property conditions have been consistent over that time, therefore the creosote-treated wood timber piles have been in place for over 52 years. This period is a sufficient amount of time for the PAHs present in soil to have leached into groundwater, however the data collected from monitoring wells MW32 and MW33 show that leaching has not occurred at the Site, and is not likely to occur in the future.

Based on these results, the soil to groundwater pathway is incomplete and human exposure scenarios can be managed through targeted remediation efforts and implementation of engineering and institutional controls where appropriate.

3.7 Exposure Pathways

This section discusses the confirmed and potential human health and ecological exposure pathways at the Site.

3.7.1 Soil Pathway

Potential exposure pathways for soil contamination include volatilization into soil vapor and subsequent exposure through the vapor pathway discussed below, or via the direct contact pathway, which comprises direct contact via dermal contact with and/or ingestion of soil beneath the Site.

Contamination at the Site is currently capped with asphalt or concrete. Until such time that the soil contamination is removed, remediated, or institutional controls are in place to prevent direct contact, this pathway will be considered complete.

3.7.2 Groundwater Pathway

Potential exposure pathways for groundwater contamination include volatilization into soil vapor and subsequent exposure through the vapor pathway discussed below, or via the direct contact pathway, which comprises both the dermal contact and ingestion pathways.

Dermal contact scenarios could include construction workers encountering shallow seated groundwater during remediation or utility work, therefore this exposure pathway will remain complete until contamination is remediated or institutional controls are in place to prevent direct contact.

Based on the groundwater use assessment discussed in Section 2.4.2, the risk of ingestion of contaminated groundwater at the Site is low, however it could be argued that this aquifer represents a potential future source of drinking water and cannot be deemed non-potable based on current conditions. Therefore, this exposure pathway will remain complete until contamination is remediated or institutional controls are in place to prevent potable groundwater classification and use.

3.7.3 Vapor Pathway

The air-filled pore space between soil grains in the unsaturated zone is referred to as soil gas or soil vapor. Soil vapor can become contaminated from the volatilization of contaminants adsorbed to soil mineral surfaces and/or dissolved in groundwater and can pose a human exposure risk via inhalation.

The CVOC concentrations detected in shallow groundwater exceed the MTCA Method B Groundwater Screening Level (SL) for indoor air risks associated with potential vapor intrusion through typical offgassing, in addition to vapor transport within utility lines such as the adjacent sewer main. Therefore, this pathway will remain complete until soil and groundwater contamination no longer present a threat of volatilization or engineering controls are in place to prevent exposure.

Soil gas samples previously collected adjacent to the existing structure and within the sewer main are too far from the primary source area to be representative of conditions in that area, where future structures may be erected.

3.8 Terrestrial Ecological Evaluation

The Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7940 at locations where a release of a hazardous substance to soil has occurred. The regulation requires that one of the following actions be taken to assess potential risk to plants and animals that live entirely or primarily on affected land:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or,
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

The Site appears to qualify for a TEE exclusion given that there is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of the Site and none of the following chemicals are present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.

______ September 7, 2021

4.0 Feasibility Study

This section describes the development and evaluation of cleanup action alternatives to facilitate selection of a remedy for the Site using MTCA evaluation criteria.

4.1 Remedial Action Objectives

Remedial action objectives (RAOs) are statements of the goals that a remedial alternative should achieve in order to be retained for further consideration as part of this FS. The MTCA regulation, WAC 173-340-360(2)(a) provides that a cleanup action must include the following threshold remedial action objectives (RAOs):

- Protect human health and the environment;
- Comply with cleanup standards outlined in WAC 173-340-700 through 173-340-760;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring outlined in WAC 173-340-410.

MTCA (173-340-360(2)(b) also requires that the cleanup alternative:

- Use permanent solutions to the maximum extent practicable;
- Provide for a reasonable restoration time frame; and
- Consider public concerns on the proposed cleanup action alternative.

The overall RAO for the Site is to address impacted subsurface soil and groundwater that represent potentially complete contaminant exposure pathways identified in the CSM above and as shown on Figure 16. Due to planned residential uses, the Site is to be compliant with unrestricted land use requirements, therefore, the cleanup objectives for the Site will address the following potential exposure pathways for current and future site uses:

- Direct contact with contaminated soil in the saturated and unsaturated zones;
- Groundwater for drinking water use; and,
- Soil gas (from impacted groundwater and soil) and vapor intrusion to indoor air.

Specific RAOs are also discussed within the remedial alternative assessment for the CVOC release(s) in Section 4.8.

4.2 Applicable or Relevant and Appropriate Requirements

Applicable or Relevant and Appropriate Requirements (ARARs) were screened to assess their applicability to the Site. Only those that were deemed appropriate and applicable were retained, those include:

- State Environmental Policy Act (Chapter 43.21C of the Revised Code of Washington [RCW 43.21C])
- Washington State Shoreline Management Act (RCW 90.58; WAC 173-18, 173-22, and 173-27)
- The Clean Water Act (33 United States Code [USC] 1251 et seq.)
- CERCLA of 1980 (42 USC 9601 et seq. and Part 300 of Title 40 of the Code of Federal Regulations [40 CFR 300])
- The Fish and Wildlife Coordination Act
- Endangered Species Act (16 USC 1531 et seq.; 50 CFR 17, 225, and 402)
- Native American Graves Protection and Repatriation Act (25 USC 3001 through 3013; 43 CFR 10) and Washington's Indian Graves and Records Law (RCW27.44)
- Archaeological Resources Protection Act (16 USC 470aa et seq.; 43 CFR 7)
- Washington Dangerous Waste Regulations (WAC 173-303)
- Solid Waste Management Act (RCW 70.95; WAC 173-304 and 173-351)
- Air Quality Regulations (Puget Sound Clean Air Agency, Regulation I, II and III)
- Water Quality Standards for Surface Waters of the State of Washington (RCW 90.48 and 90.54;
 WAC 173-201A)
- Department of Transportation Hazardous Materials Regulations (40 CFR Parts 100 through 185)
- General Occupational Health Standards (Chapter 296-62 WAC)
- Washington State Water Well Construction Act (RCW 18.104; WAC 173-160)
- City of Seattle and King County regulations, codes, and standards

4.3 Proposed Cleanup Levels

4.3.1 Soil Cleanup Levels

Cleanup levels for soil are based on MTCA Method A levels for Unrestricted Land Use or the most conservative Method B calculated values. Two potential cleanup levels were compared, one for the direct contact pathway and one for protection of groundwater for drinking water beneficial use (soil leaching). The more restrictive of the two criteria was chosen, and is proposed as the Site cleanup level. Cleanup levels calculated for protection of groundwater as drinking water are also assumed to be

protective of the vapor pathway. Proposed cleanup levels for COCs in soil at the Site are presented in the table below, and also shown on attached Tables 1 and 4 with the cumulative soil sample data.

Contaminant of Concern	MTCA Method A or B Cleanup Level (mg/kg)	Sources
PCE	0.05	
TCE	0.03	MTCA Method A Soil
cis-1,2-DCE	160	Cleanup Levels for Unrestricted Land Use;
trans-1,2-DCE	1,600	WAC 173-340-740(2)(b)(i);
1,1-DCE	4000	Table 740-1; and Method
VC	0.67	B – CLARC (2021)
PAHs	0.1*	

^{*}Total concentrations that all carcinogenic PAHs (cPAHs) must meet using the toxicity equivalency methodology.

4.3.2 Groundwater Cleanup Levels

Cleanup levels for groundwater are based on MTCA Method A Cleanup Levels (if established) or MTCA Method B Cleanup Levels (for drinking water use). Proposed cleanup levels for COCs in groundwater at the Site are presented in the table below, and are also shown on attached Tables 5, 6, and 9 with the cumulative Site groundwater data.

Contaminant of Concern	MTCA Method A or B Cleanup Level (ug/L)	Sources
PCE	5.0	AATSA AAsiba da Gasarda da sa
TCE	5.0	MTCA Method A Groundwater Cleanup Levels for Unrestricted
cis-1,2-DCE	16.0	Land Use;
trans-1,2-DCE	160.0	WAC 173-340-740(2)(b)(i);
1,1-DCE	400.0	Table 720-1; and Method B –
VC	0.2	CLARC (2021)
PAHs	0.1*	

^{*}Total concentrations that all cPAHs must meet using the toxicity equivalency methodology.

4.3.3 Soil Vapor Screening Levels

Soil vapor screening levels are based on MTCA Method B calculated values considered protective of indoor air. These values are presented on Table 8 and vary based on the depth at which the vapor sample is collected.

4.4 Points of Compliance

The point of compliance is the location where the cleanup level shall be attained.

4.4.1 Point of Compliance for Soil

The standard point of compliance (POC) for direct contact is throughout the Site, from ground surface to 15 feet bgs. This is the soil depth at which one would reasonably assume workers could encounter contaminated soil during construction or development activities. In situations where achieving the standard POC is not practicable, a conditional POC may be established and institutional controls implemented to prevent direct contact and protect human health and the environment.

UEP proposes a standard POC for CVOC contamination in soil in the southern portion of the Site and a conditional POC for the PAH contaminated soil adjacent to the treated wood piles beneath the existing retail structure on the north end of the Property. The conditional POC for the PAHs was deemed necessary based on the focused feasibility analysis discussed in Section 4.5 below.

4.4.2 Point of Compliance for Groundwater

The standard point of compliance (POC) for groundwater is throughout the Site from the uppermost saturated zone extending vertically to the lowest depth which could potentially be affected by the release at the Site. In situations where achieving the standard POC is not practicable, a conditional point of compliance (CPOC) may be established and institutional controls implemented to prevent direct contact and protect human health and the environment. No CPOCs are proposed for groundwater at the Site. UEP proposes a standard POC for groundwater at the Site.

4.4.3 Point of Compliance for Soil Vapor

The point of compliance for soil vapor in throughout the Site and will be achieved when concentrations of COCs in soil gas and groundwater are below the vapor intrusion screening levels considered protective of indoor air, or when engineering controls are in place to prevent exposure.

4.5 Discussion on Creosote Treated Piles – Focused Feasibility Analysis

This focused feasibility analysis explores and compares three remedial alternatives (P1, P2 and P3) for addressing the soil contamination related to the presence of treated wood piles at the Site. The piling plan presented on Figure 10 shows the foundation system for the original construction of the Safeway building. This plan shows 3 sets of 3 piles, 20 sets of 2 piles, and 125 individual piles for a total of 148 pile systems, and a total of 174 individual piles beneath the original building.

Alternative P1 involves the full removal of all 174 existing piles and associated contaminated soil. Alternative P2 involves the removal of the top 4 feet from all 174 existing piles and associated

contaminated soil; this removal would also facilitate utility infrastructure installation for the proposed new building. Alternative P3 involves a strategy to repurpose the serviceable, existing wooden piles into the structural system for the slab-on-grade concrete floor of the planned new building on the north portion of the Property. For all 3 remedial alternatives, the existing building and floor slab would require demolition and removal to expose existing pile caps. Existing pile caps would be removed from the top of each pile, and the general area around the pile cap field would be scraped to remove surface dirt and impacted soil to expose the pile caps for inspection, and to allow survey (1 feet bgs). Based on inspection observations and as needed, additional soil may be removed to allow access to prepare deteriorated piles for removal or repair.

As described in Section 2.5.13, the development team and their structural and geotechnical engineers assessed the structural conditions of the existing pile system in representative areas within the vacant Safeway building. The assessment concluded that the piles were in a satisfactory structural condition, and the piles could be repurposed to support the new building floor slab by having the top of each existing pile system cast directly into the new concrete slab. As a result, this approach is presented as Alternative P3 for consideration.

4.5.1 Alternative P1 - Complete Removal of Piles and Surrounding Soil

This alternative serves as baseline and includes removal of the full pile sections and surrounding impacted soil within 6-inches of each pile or pile system.

As described above, this would require the demolition of the existing slab and pile caps, as well as removal of approximately 1 feet of soil throughout the pile field (approximately 2,000 tons).

After this site preparation, each pile would be extracted using a vibration hammer clamped to the pile, which will be vibrated out of the ground to full removal. Next a large diameter caisson pipe would be vibrated down around the pile extraction hole. As shown on the Figure 23 insets, a large diameter augur would advance through the caisson to remove the halo of impacted soil to a stockpile and then off-site to proper disposal (approximately 260 tons). The soil removal process by auger is facilitated by the caisson. After soil removal, the caisson would be slowly extracted by the vibration hammer as controlled density fill (CDF) is placed in the augured opening. The caisson controls sidewall caving in the saturated zone, and keeps the drilled pile hole open for complete filling to depth.

4.5.2 Alternative P2 - Removal of Piles to 4 Feet Below Grade Surface

This alternative includes removal of pile sections and contaminated soil within 6-inches of each pile or pile system to a depth of 4 feet bgs, to facilitate construction of sub-grade utilities below the planned new building floor slab.

This alternative would require similar site preparation described above.

After site preparation, the soil surrounding each pile would be excavated using conventional earthwork methods. The soil generation total for this work is estimated at 1,200 tons.

The piles would then be cut at 4-feet bgs and removed from the site.

Clean backfill material would be imported to the site and restored to original grade.

Since portions of the piles and associated contaminated soil would be left in place, engineering controls (mainly the installation of a concrete slab on grade) and institutional controls (environmental covenant) would be applied to prevent ecological receptors from direct contact and exposure from subsurface soil contamination.

4.5.3 Alternative P3 – Repurpose for Re-Use the Existing Pile for Structural Foundation of New Building Slab.

This alternative includes repurposing the existing pile structural support system for re-use as the foundation for a new slab-on-grade floor of the proposed development building on the north part of the Property.

The structural slab would be demolished and removed, and where deemed needed, the existing pile caps would also be removed. The exposed tops of the wood piles would be re-conditioned as needed, and the subgrade around each pile or pile system would be prepared in accordance with the geotechnical engineer's recommendations. The new slab-on-grade concrete floor would be reinforced with rebar to span between existing piles. In areas where existing piles are not present, or spread too far apart for the design load, then the pile system would be augmented with installation of new steel or concrete piles. When the structural system layout is fully prepared, then the new concrete slab would be poured in accordance with conventional means.

The piling plan in UEP Figure 13 from the project structural engineer shows the present pile layout and the planned integration methodology to support the new slab-on-grade floor. Additional analysis and details for construction methods are provided in the PanGeo Report (Appendix G) on the conditions and re-use of the existing piles.

Where piles and associated contaminated soil would be left in place, engineering controls (mainly the installation of a concrete slab on grade) and institutional controls (environmental covenant) would be applied to prevent ecological receptors from direct contact and exposure from subsurface soil contamination.

Any piles that would not serve a structural purpose would be fully removed along with the halo of contaminated soil. These areas would not be subject to engineering or institutional controls.

The development construction work on the Property is expected to proceed with 2 separately permitted and phased developments; the first one planned for the south portion of the Property, and followed by development of the north portion. There is an approved plan to separate the Property into 2 new, legal parcels with a Lot Boundary Adjustment (LBA) as shown on Figure 21A. This planned LBA division will create a Parcel A as a 43,754 square feet (SF) "North Parcel" as shown on Figure 21A. The remaining area of the Property will become a 67,589 SF Parcel B, as the South Parcel. The planned redevelopment uses of Parcel A (North Parcel) and Parcel B (South Parcel) are depicted on Figure 21B. Note on Figure 21B the location of the shared "drive aisle" between Parcel A and Parcel B that is intended to support access to parking for both the planned north and south developments.

The drive aisle is planned to be located on Parcel B as shown, and it contains 16 treated piles in locations shown on Figure 22. Given that these piles would not serve any structural purpose associated with the building on Parcel A, the 16 piles in the drive aisle will be removed, along with the halo of contaminated soil around each pile. Section 4.5.1 discussed the full pile removal methodology, which is also presented graphically on Figure 23.

After the former Safeway building and floor slab are demolished, but prior to pile extraction, the extent of PAH impacts in soil around the piles in the drive aisle will be confirmed by representative sampling using geoprobe borings as shown on Figures 22 and 23. At each proposed location for Borings UB43, UB44, and UB45 on the figures, a 2-inch soil core will be collected at a vertical distance of 5-feet bgs, and at a horizontal distance 6 inches away from the outer edge of the pile as illustrated on Figure 23. For example, if the pile is 2 feet (24") in diameter as illustrated, then the soil core will be collected at a distance of 18-inches to 20-inches from the center of the pile, placing the sample adjacent to the outside diameter of a 3-foot diameter caisson, and 6-inches away from the outer edge of the pile. The soil samples collected in this manner at UB43-45 will provide soil confirmation data for the removal of treated piles and impacted soil in the drive aisle area of the parcel.

4.5.4 Evaluation and Selection of Remedial Alternatives for Treated Piles and Associated Contaminated Soil

The feasibility level cost estimates for Alternatives P1, P2, and P3 are presented in Tables 11, 12, and 13, respectively. These remedial costs were obtained from the general contractor consulting with the developer, and from estimated (feasibility level) costs from their excavation subcontractors. Based on the primary MTCA feasibility selection criteria, the effectiveness and merit of each alternative, and the benefit to costs analysis is presented in the evaluation results for each of the 3 alternatives in Table 14.

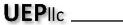
Alternative P1 received the highest comparative benefit score due to the aggressiveness of the remedy; it is the most permanent, protective, and likely to achieve cleanup objectives without subjecting the Site

to any required controls. However, this alternative is by far the costliest due to the nature of the pile removal methodology, which is reflected in the alternative's benefit score per dollar spent.

Alternatives P2 and P3 received lower scores for permanence and consideration of public concerns since they involve leaving some or all of the treated piles and associated PAH-impacted soil in place, and will require an environmental covenant. These institutional controls are implemented to protect incidental human direct contact with cPAH contaminated soil, as well as ecological receptors.

The protectiveness scores for P2 and P3 were slightly lower than alternative P1, but not drastically so. Groundwater monitoring results indicate that there is no PAH contamination or impacts to groundwater. Therefore, the only complete exposure pathway associated with the treated piles is through human direct contact with PAH-impacted soil, which can be effectively mitigated.

Alternatives P1 and P2 require significant site work including drilling, excavation, handling, truck transport and/or disposal of contaminated soil with potential exposure scenarios for construction and landfill workers, consequently, these alternatives get slightly lower scores for manageability of short-term risk.


Alternative P3 is the most easily implemented choice, while Alternatives P2 and P3 are logistically challenging.

As shown on Tables 11, 12 and 14, the costs for an excavation remedy to remove all or portions of the piles and associated contaminated dirt range between \$900,000 (Alternative P2-Removal to 4 feet bgs) and \$3,400,000 (Alternative P1-Full Removal).

As shown on Table 13, the estimated cost for Alternative P3 is \$800,000. This includes a significant amount allocated to the full removal of the 16 drive-isle piles that would not serve a structural purpose for the new building.

As shown in Table 14, the Comparative Benefit Scores (CBS) from the evaluation of the alternatives show a relatively close range between 6.7 and 8.7. However, there is a significant difference in the estimated costs for the alternatives, which is reflected in the Benefit per Dollar Spent ratio. With a benefit rate of 8.38 for Alternative P3, it is shown that re-use of the piles for structural purposes has the highest benefit per dollar score to the project while still providing an approach that is protective of human health and the environment.

The disproportionate costs comparison is presented graphically on the bottom portion of Table 14 to support the selection of Alternative 3 to address PAH contamination for the north portion of the Property.

An important footnote and detail to the benefits of Alternative P3 that are not accounted for in this FS analysis is that by repurposing the existing treated piles, the future development realizes a significant cost savings in the foundation work. If included, this extra benefit would have enhanced the feasibility evaluation outcome in Table 14 even more for the preferred Alternative P3 remedy.

The preferred treated pile Alternative P3 will be carried over for the FS analysis of the CVOC plume. Each of the 5 CVOC remediation alternatives assumes that treated pile Alternative P3 will be included. Consequently, the remedial costs for the pile re-use have not been calculated into the cleanup feasibility costs analysis for addressing the CVOC impacts at the southern portion of the Site.

4.6 Potential Remedial Technologies and Applicability for the CVOC Plume

There are a number of potentially applicable remedial technologies for addressing the remaining COCs in soil and groundwater at the South Parcel of the Site, including:

- Monitored Natural Attenuation;
- Soil Vapor Extraction;
- · Air Sparging;
- Groundwater Pump and Treat;
- Dual-Phase (groundwater and soil gas) Extraction (DPE);
- In-Situ Permeable Reactive Barriers;
- In-Situ Thermal Treatment by Electrical Resistance Heating (ERH); and
- Soil Excavation and Off-site Disposal.

These technologies have been applied at sites with similar subsurface conditions and chemical occurrences. Detailed descriptions of these remedial technologies are presented below:

- Monitored Natural Attenuation (MNA). Natural attenuation is "the demonstration that intrinsic degradation will reduce the concentrations of the contaminants before they pose unacceptable levels of risk to human health or the environment or exceed groundwater criteria at established points of compliance. Demonstration must be made using site data for CVOCs rate of degradation and migration across the Site. For the Site, groundwater monitoring data provides evidence that natural attenuation is occurring by reducing conditions (relatively low DO and ORP) and presence of degradation products (TCE, DCE and VC), but likely at a relatively slow rate. In order for MNA to be effective, the source area must be removed or eliminated.
- Soil Vapor Extraction. Soil vapor extraction (SVE) systems reduce concentrations of volatile constituents through direct extraction and through aerobic bio-stimulation of the saturated and

vadose zones. SVE systems are generally considered more effective for extraction of compounds with vapor pressures greater than 0.5 to 1 millimeters of mercury (mmHg) at 20 degrees Celsius, Henry's Law coefficient greater than 0.01, or boiling points below 250 to 300 degrees Celsius (Suthersan, 1999; EPA, 2004).

The primary remedial process of SVE at the Site is to recover soil gas from vadose zone soil that has been stripped from groundwater using air sparging or volatized through subsurface heating and extraction of the CVOCs from the vadose zone. Case studies have shown that SVE is an effective treatment technology for former dry cleaner sites contaminated with a number of CVOCs.

- Air Sparging. Air sparging is the process of injecting air directly into the Site's CVOC contaminated groundwater. Air sparging removes volatile organic compounds from groundwater by injected air stripping the contaminants as they travel vertically into the vadose zone. Air sparging technology effectiveness for dry cleaning solvents has a long history of demonstrated success, however the effectiveness of air sparging is dependent on soil lithology. In this case, the subsurface soil consists of heterogenous silt and sandy strata that will introduce challenges to effective treatment throughout the impacted groundwater zone.
- Groundwater Pump and Treat. Groundwater pump and treat (GW-P/T), a conventional technology that has been applied extensively to CVOC sites, uses groundwater extraction systems (horizontal and vertical wells) to remove large volumes of water with relatively low contaminant concentrations. In instances of complex soil lithology and slow rates of contaminant desorption and dissolution, GW-P/T requires the removal of many pore volumes of groundwater to flush out contaminants. Once the groundwater is delivered above ground, a water treatment technology (air stripping, activated carbon) is applied to the extracted groundwater before the treated water is usually discharge to the local sanitary sewer. Conventional P/T systems are inherently inefficient for removing contaminants from the subsurface. Today, GW-P/T technologies are usually selected for extracting total fluids (free-phase product and groundwater) as a source removal effort.
- Dual-Phase (Groundwater and Soil Gas) Extraction and Treatment. Dual-phase extraction (DPE) is a remediation technique designed to extract both groundwater and vapor from the subsurface formation. DPE can be accomplished through the use of pumps or high vacuum to lower the water table/dewater the saturated zone while simultaneously applying vacuum to recover vapor from the pore space of the formation. As the water column is evacuated, the unsaturated zone is expanded which allows removal of contaminants through the vapor phase under vacuum extraction. A DPE system typically is constructed with a series of extraction wells

installed in the contaminant source areas and also in the area of a groundwater plume. DPE is a technology that is better suited to higher permeability soils and groundwater bearing zones such as sands and gravels. Operation of a successfully-designed DPE system could reduce concentrations of CVOCs in soil vapor, soil, and groundwater to their respective cleanup levels. DPE would require treatment and disposal of extracted vapors and groundwater.

- In-Situ Permeable Reactive Barriers. In-situ permeable reactive barriers (PRBs) can be installed to treat groundwater contamination and prevent further migration, particularly dissolved phase contaminant plumes that are moving beyond parcel boundaries. These barriers can be constructed of zero-valent iron to treat CVOCs or using absorbent materials such as granular activated carbon (GAC) to remove petroleum hydrocarbons. Permeable barriers can achieve cleanup levels in groundwater at the location they are installed. However, they do not treat contamination in the vadose zone or in areas located hydraulically upgradient from their installed location. Rather, they are typically implemented when removal of the source is not practicable.
- In-Situ Thermal Treatment (Electric Resistant Heating or ERH). In-Situ Thermal Treatment using electric resistive heating (ERH) is an aggressive and robust in-situ technology that is demonstrated to be effective for CVOCs in low permeability soils. The ERH technology applies high electricity voltages to a network of subsurface electrodes, and the resistance to electrical conductance heats soil and groundwater in the treatment area between electrodes to close to the boiling point of water (100°C) when enough energy is applied. Soil vapors containing the volatilized contaminants are then collected by SVE and treated.

ERH is an in-situ thermal treatment for soil and groundwater remediation that can reduce the time to clean up VOCs and CVOCs from years to months. The technology is now mature enough to provide site owners with both performance and financial certainty in their site-closure process. The ability of the technology to remediate soil and groundwater impacted by chlorinated solvents regardless of lithology types proves to be beneficial over conventional insitu technologies that are dependent on advective flow (e.g., soil vapor extraction, pump and treat). The ERH technology is very tolerant of subsurface heterogeneities, and actually performs as well in low-permeability silts and clay as in higher-permeability sands and gravels. ERH may also be combined with other, less costly treatment technologies to optimize and enhance their performance and perform a full Site cleanup.

• **Soil Excavation**. Soil excavation and off-site disposal is capable of meeting remedial objectives and doing so in a reasonable timeframe. At this Site, some areas of soil have PCE contamination at concentrations that would be considered a listed hazardous waste, which could result in very

high soil disposal costs. However, in our experience at similar sites, Ecology can issue a "contained-in" determination for soil in which PCE concentrations are below the direct contact value of 14 mg/kg PCE. The majority of the Site contaminated soil is below this level, and thus will likely be disposed of as a non-hazardous waste (as Contained In Designation) at a permitted RCRA Subtitle D facility. The main limitation for soil excavation is that contaminated soils can exist below the water table, or in locations underlying structures or street ROWs, and may not be easily accessible.

 In-situ chemical oxidation (ISCO) and in-situ chemical reduction (ISCR) with enhanced reductive dichlorination (ERD) are also potentially applicable technologies for CVOC sites. These technologies require a detailed evaluation through field pilot tests to see if they are and will be effective for Site specific conditions. These pilot tests were completed for this Site, and results are discussed below:

4.6.1 In-Situ Chemical Oxidation Pilot Test (ISCO)

ISCO is effective for treating Site CVOCs in groundwater where Site conditions are conducive to remedial injection of aqueous based chemicals. Contaminant oxidation using permanganate treatment solutions are widely used for chemical oxidation, and several companies offer design level injection plans (formulas) for effective groundwater treatment. Permanganate has proven to be an effective chemical oxidant for the treatment of chlorinated solvents (PCE, TCE, cis-1,2-DCE, and VC) in soil and groundwater.

To evaluate this technology, two pilot injection tests were performed on April 18, 2020, using an aqueous solution of sodium permanganate (NaMnO₄). The purposes of the tests were to empirically evaluate and demonstrate the radius of influence for use of injection at the Site, and to evaluate the performance of field injection technology and methodology.

Two fifty-five gallon drums of NaMnO₄ were delivered on site for the pilot tests. Typically NaMnO₄ is mixed with potable water at a ratio of 6% to 8%. For the pilot tests, the NaMnO₄ was mixed with twice as much water, reducing the ratio to 3% to 4%, but providing a greater volume for the pilot tests. The NaMnO₄ and water were mixed in four 275-gallon plastic totes, with potable water supplied from a water truck. After the 2 totes containing permanganate were pumped into the injection well, the totes were refilled with water, and the injection point was flushed with two more tote volumes (550 gallons) to move the initial NaMnO₄ mixture outward from the injection point to extend the area of influence.

The first ISCO test was performed in injection well MW26 followed by injection well MW25. The NaMnO₄ mixture was injected into the subsurface through the injection point by using an air-compressor driven diaphragm pump. Injection pressures at the diaphragm pump were set to approximately 20 pounds per square inch (psi) for the test at injection well MW26 and 35 to 45 psi at

injection well MW25. Once the permanganate mixture reached the well point, the pressure dropped as the permeability of soil was sufficiently high to not cause significant resistance to flow. The observed well pressure at injection well MW26 was approximately 6 psi and the pressure at injection well MW25 ranged from approximately 12 psi initially to 18 psi at the end of injection. Flow rates of injection were monitored using the marks on the totes (25-gallon intervals) and manually timing the change between marks. The typical flow rate ranged approximately 7 to 11 gallons per minute (gpm).

During injection at MW26, the groundwater table levels were observed at monitoring wells MW09 and MW10 using a pressure transducer and datalogger set to record at 1-minute intervals. During injection at MW25, the groundwater levels were observed at monitoring wells MW16 and MW18 using the same methodology.

The radius of influence was evaluated during injection by visually observing the breakthrough of NaMnO₄ at the adjacent existing monitoring wells (MW09, MW10, MW16, and MW18). NaMnO₄ has a distinct purple color that can readily be seen in treated groundwater at low concentrations. During injection at MW26, the presence of NaMnO₄ was monitored by low-flow pumping and periodic bailer sampling at monitoring wells MW09 and MW10. During injection at MW25, monitoring occurred at MW16 and MW18. Given the relatively high permeability of the sand in the target soil zone and low pumping rates with the peristaltic pump, it is our opinion that use of the peristaltic pump for observations did not have a measurable influence on the spreading of the NaMnO₄ in the sand channel.

For the ISCO test at injection well MW26, breakthrough was observed at monitoring well MW10 after approximately 550 gallons of the NaMnO $_4$ mixture was injected, with the water changing color from relatively clear to pink and then to purple, indicating that the NaMnO $_4$ mixture had reached monitoring well MW10 at a distance of approximately 22 feet from the injection point. The same color breakthrough was then observed at monitoring well MW09 after approximately 1,100 gallons of the NaMnO $_4$ mixture was injected, with the water changing color from relatively clear to pink, and then purple.

For the test at MW25, breakthrough was not observed at either monitoring well MW16 or MW18. This observation is not surprising given that the soil conditions at UB16 and UB18 around the injection well MW25 location consists mostly of silt and clay, with the relative hydraulic conductivity there being significantly lower than in the sand channel at monitoring well MW26. The soil conditions at the screen intervals for monitoring wells MW16 and MW18 are shown on Cross-Section Figure A-A' (Figure 13), and Cross Section Figure B-B' (Figure 15), respectively.

During injection at MW26, groundwater levels in monitoring wells MW09 and MW10 showed a relatively good correlation with the injection (Graph 1). At both wells, groundwater levels rose approximately 12 to 14 feet in response to the injection, and showed drops of 3 to 4 feet while totes

were switched. This response is consistent with the relatively high hydraulic conductivity observed during slug testing at MW09 and MW26 (Section 2.6.3).

In contrast, during injection at MW25, the magnitude of changes in groundwater levels was much smaller in monitoring wells MW16 and MW18, which is consistent with relatively low hydraulic conductivity of the silts and clays at these locations (Graph 1). The groundwater level at these locations was elevated from baseline, but this a result of the soil being pressurized during injection at MW26, and slow recovery prior to injection at MW25.

These pilot test results indicate that the sand channel is conducive to the use of injection methods to remediate the dissolved chlorinated solvents in groundwater and to treat residual PCE in saturated soil. The radius of influence during injection likely ranges from approximately 15 to 25 feet, assuming injection pressures and volumes similar to those used in the pilot tests. Depending on the relative density and viscosity of the selected product used during injection, the radius of influence may vary. If the selected groundwater remedial treatment injectate selection is different than the aqueous sodium permanganate solution used during this pilot test, a second pilot should be performed to confirm the radius of influence and suitable injection pressures.

Monitoring well MW09 was also resampled after the pilot test on May 15, 2020 to evaluate the effect of the NaMnO₄ injection on contaminant concentrations in the downgradient location over time. The results presented in the table below indicate a likely rebound of contaminant concentrations assuming a non-detect baseline at the time of treatment. Red values indicate an exceedance of the MTCA Method A Cleanup Level for groundwater.

Boring/Well ID	Date Sampled	Analytical Results - Micrograms per Liter (μg/L)					
		PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	1,1-DCE	VC
MW09	4/14/2020	350	460	370	2.8	<0.5	5
	5/15/2020	99	87	48	<1	<0.5	0.47

To further assess oxidizer as a viable injectate, a permanganate natural oxygen demand (PNOD) test was performed by Carus Corporation, which showed a moderate consumption of oxidizer and raised the issue of injection volume needed and commensurate cost.

The conclusion of the pilot test was that in-situ injection was confirmed as a viable technology for treating the dissolved phase CVOC plume in groundwater. However, a solution geared towards reductive dechlorination, as opposed to oxidation, would likely be a more successful treatment option because it enhances the naturally occurring bacterial degradation of CVOCs in the dissolved phase plume, which is

apparent at the Site. As discussed in Section 3.6.1, an anaerobic environment already exists in the dissolved phase CVOC plume downgradient from the source area.

4.6.2 In-Situ Chemical Reduction (ISCR) Pilot Test

As discussed above, ISCR is an effective technology for CVOC sites when an anaerobic condition exists in groundwater, and the presence of PCE degradation products (TCE, DCE, and VC) and low dissolved oxygen levels indicate that a natural biological degradation condition has been established in the dissolved-phase groundwater plume area.

A series of pilot injection tests were performed on October 28 and 29, 2020, to evaluate the use of both in-situ chemical reduction (ISCR) and enhanced reductive dechlorination (ERD) to remediate chlorinated solvents in groundwater. The purposes of the tests were to empirically evaluate and demonstrate the radius of influence (ROI) for use of injection at the Site, and to evaluate the performance of field injection technology and methodology.

The evaluated ISCR approach used Zero Valent Iron (ZVI) while the ERD analysis used a proprietary liquid compound called 3-D Microemulsion (3DME) developed by Regenesis Remediation Services (RRS) to increase the anaerobic biodegradation of chlorinated solvents. The ZVI was provided as a proprietary liquid compound called Sulfidated-MicroZVI (SMZVI) also developed by RRS, which consists of colloidal, sulfidated zero-valent iron particles suspended in glycerol. The 3DME consists of a mixture of fatty acid esters, lactate oligomers, and sodium lactate. Additionally, the RRS proprietary mixture of anaerobic microbes, called BDI PLUS (BDI) was used with the 3DME to increase the population of subsurface bacterial species that work to dechlorinate the chlorinated solvents.

The tests were performed by RRS with UEP staff observing the tests, monitoring changes in groundwater parameters at adjacent monitoring wells, and providing guidance on test locations based on our understanding of soil and groundwater conditions at the Site, as well as our experience with the previous pilot injection test. Additional information on the pilot testing, including tables of groundwater and testing parameters is provided in Appendix E.

RRS mixed a 4 percent solution of SMZVI and 3DME/BDI, with potable water in two 350-gallon plastic totes located within their remediation trailer. A total of 400 pounds of SZVI and 400 pounds of 3DME/BDI were applied during the pilot testing. The mixture was introduced to the subsurface using a positive displacement electrically powered pump. The BDI was added to the influent mixture during injection by a slip-stream method using pressurized nitrogen gas.

Three boring were drilled for the injection points using a truck-mounted direct-push drilling rig. The direct-push rig uses vibratory action to advance steel casing. A 2-foot retractable screen was used to introduce the injection fluid to the subsurface. Each injection point was initially advanced to a depth of

35 feet, initiating injection, then raising the screen at 2-foot intervals depending on the observed injection pressure and flow rate.

Additionally, 4 soil probes were drilled to observed soil conditions. Three of the probes (UB39, UB40, and UB41) were drilled prior to injection to observe the depth interval of the sand channel, and the fourth soil probe, UB42, was drilled following injection to observed the distribution of the injectate in the subsurface. The locations of the 4 probes, UB39, UB40, UB41, and UB42, are shown on Figure 3. Logs of soil observed soil conditions are provided in Appendix B.

The first injection point, DVT-1, was located approximately 10 feet northwest of monitoring well MW26. The injection was initiated at 12:20 on October 28, 2020, with an initial injection interval of 33 to 35 feet below ground surface (bgs). The injection pressure was between 45 and 55 pounds per square inch (psi) measured at the wellhead, and the flow rate ranged from approximately 3.5 to 4 gallons per minute (gpm). After 75 gallons was injected, the screen was then raised 2 feet and injection continued at a depth interval of 31 to 33 feet bgs. The screen was periodically raised at 2-foot intervals, with the final depth interval of 25 to 27 feet bgs. Injection pressures ranged from approximately 40 to 70 psi with flow rates ranging from approximately 3.5 to 5 gpm. A total of 470 gallons was injected at DVT-1.

During injection at DVT-1, groundwater parameters at monitoring well MW26 were monitored by pumping from the well using a peristaltic pump and a YSI water quality meter. The primary groundwater parameters measured to evaluate the effectiveness of the injection were DO and ORP. The DO dropped from approximately 1.2 milligrams per liter (mg/l) at the start of the test to approximately 0.04 mg/l at the end of the test while the ORP dropped from approximately 26 millivolts (mV) to approximately -141 mV at the end of the test. The drop in DO and ORP indicate that the injectate has reached the monitoring well. During testing, the color of the water was also observed and changed from clear to light gray after approximately 315 gallons had been injected.

The second injection point, DVT-2, was located approximately 10 feet northwest of monitoring well MW09. The injection was initiated at 9:30 on October 29, 2020, with an initial injection interval of 33 to 35 feet below ground surface (bgs). The injection pressure was approximately 100 psi measured at the wellhead, and the flow rate ranged from approximately 1.1 gpm. Because of the higher pressure and low flow rate, the screen was raised after 15 gallons was injected, and injection continued at a depth interval of 31 to 33 feet bgs. The screen was periodically raised at 2-foot intervals, with the final depth interval of 25 to 27 feet bgs. Injection pressures ranged from approximately 100 to 125 psi with flow rates ranging from approximately 2.2 to 4.2 gpm. A total of 470 gallons was injected at DVT-2.

During injection at DVT-2, groundwater parameters at monitoring well MW09 were monitored by pumping from the well using a peristaltic pump and a YSI water quality meter. During injection, the DO dropped from approximately 1.7 mg/l at the start of the test to approximately 0.46 mg/l at the end of

the test while the ORP dropped from approximately 69 mV to approximately 29 mV at the end of the test. The drop in DO and ORP indicate that the diluted injectate reached the monitoring well. During testing, the color of the water was also observed but no obvious color change was observed.

The third injection point, DVT-3, was located approximately 10 feet south of monitoring well MW30. The injection was initiated at 11:50 on October 29, 2020, with an initial injection interval of 33 to 35 feet bgs. The injection pressure was approximately 150 psi measured at the wellhead, with basically no flow into the soil. Because of the higher pressure and zero flow rate, the screen was raised and injection continued at a depth interval of 31 to 33 feet bgs. There was still very little flow into the soil so the screen was raised to a depth interval of 29 to 31 feet bgs. Flow started at this depth interval with an injection pressure of approximately 40 psi and flow rate of approximately 3.3 gpm. The screen was periodically raised at 2-foot intervals, with the final depth interval of 25 to 27 feet bgs. Injection pressures ranged from approximately 30 to 40 psi with flow rates ranging from approximately 2.3 to 3.5 gpm. A total of 470 gallons was injected at DVT-2.

During injection at DVT-3, groundwater parameters at monitoring well MW30 were monitored by pumping from the well using a peristaltic pump and a YSI water quality meter. During injection, the DO dropped from approximately 0.88 mg/l at the start of the test to 0 mg/l at the end of the test while the ORP dropped from approximately 38 mV to approximately -260 mV at the end of the test. The drop in DO and ORP indicate that the injectate has reached the monitoring well. During testing, the color of the water was also observed and changed from clear to gray after approximately 130 gallons had been injected.

During each of the injection tests, water levels were periodically measured in the adjacent monitoring well using an electric water level meter. During the first injection test at DVT-1, the water level in monitoring well MW26 rose from approximately 15.4 feet bgs to 11.5 bgs feet at the end of the test. During the second injection test at DVT-2, the water level in monitoring well MW09 rose from approximately 14.9 feet bgs to 12.7 feet bgs at the end of the test. During the third injection test at DVT-3, the water level in monitoring well MW30 rose from approximately 11.9 feet bgs to 1.2 feet bgs at the end of the test. During testing the water level rose to almost the top of casing and the injection pressure was reduced.

As noted above, probe UB42 was drilled following injection to observe injectate distribution. The color of the soil core was observed and a magnet was used to test for the presence of SMZVI. Because the soil in the screened intervals is naturally gray, it was difficult to visually confirm the presence of the injectate. The magnet test did indicate the presence of iron (SMZVI) in the depth interval 25 to 29 feet bgs.

A groundwater sample was also collected from monitoring well MW09 on December 7, 2020, approximately 5 weeks after the injections. The comparative CVOC concentrations between the pre- and post-injection sampling events are shown in the table below.

Boring/Well ID	Date	Analytical Results - Micrograms per Liter (μg/L)					
	Sampled	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	1,1-DCE	VC
MW09	8/26/2020	530	300	590	<10	<10	9.9
	12/07/2020	110	140	990	<10	<10	39

These results show a dramatic decrease in PCE and TCE, with a corresponding increase in degradation compounds cis-1,2-DCE and VC, confirming the effectiveness of the injectate.

The pilot test results also confirm that the sand channel at the Property is conducive to the use of the tested injection methods. The radius of influence during the potential ISCR injection will likely range from approximately 10 to 20 feet, assuming injection pressures and volumes are designed to be similar to those used in the pilot tests. Depending on the relative density and viscosity of the selected product used during injection, the radius of influence may vary. If the selected groundwater remedial treatment injectate selection is different than the solution used during this pilot test or during the previous injection test that used NaMnO₄, an additional test pilot should be performed to confirm the radius of influence and suitable injection pressures.

The conclusion of the pilot test was that in-situ injection for ISCR and ERD was confirmed as a viable technology for treating the dissolved phase CVOC plume in groundwater. The evaluated ISCR solution would likely be more effective and efficient than the use of oxidative solutions because ZVI is not depleted upon injection, has an immediate effect of destruction of dissolved phase CVOCs, and the ERD effect enhances the naturally occurring bacterial degradation of CVOCs in the dissolved phase plume.

4.7 Preliminary Remedial Screening

Because each potentially applicable technology for addressing chlorinated solvents has limitations, the remedial alternatives discussed in Section 4.6 above were initially screened for the highest likely success at the Site in accordance with guidance in WAC 173-340-350(8)(b), with an emphasis on the important criteria of protectiveness, permanence, and the ability to be integrated with a post cleanup development use of the Property:

 MNA was retained as a viable alternative, but only for use in combination with another technology (excavation), which will eliminate the source area.

- SVE was retained for use in combination with other technologies (DPE and ERH) and is intended
 to be an ancillary part of the treatment system to address volatized organics.
- Air sparging has been shown to be effective in treating contaminated groundwater, and so has been retained for use in combination with other technologies. Air sparging can be applied as the primary treatment method to address the dissolved phase organics in groundwater.
- Traditional groundwater pump and treat has been rejected because it would be operationally
 difficult to integrate into the residential development, creating equipment access issues,
 odors/vapors, and disruption of normal residential activities.
- The DPE technology has been retained for consideration in use with a combination of similar technologies that are effective at addressing high concentration contaminants in groundwater.
- In-situ reactive barriers were rejected as they generally serve as a boundary treatment technology to prevent further migration of a contaminant plume.
- In-situ thermal treatment has been retained because it provides permanent, expeditious and reliable treatment of CVOCs, regardless of concentration or environmental media.
- Excavation and off-Site disposal has been retained because it is permanently effective and also reasonable expeditious, depending on the accessibility of the impacted media.
- ISCO and ISCR both appear to be viable alternatives; however, based on the pilot test results discussed above, only ISCR was retained due to the anaerobic environment that already exists at the Site.

4.8 Remedial Alternative Assessment – CVOCs

As presented in Section 4.5.3, the current development plans for the Property include 2 separate proposed buildings as shown on Figure 21B. The North Parcel development will contain a new slab-ongrade building with a footprint of approximately 35,000 square feet (SF) to be built over most of the area with the treated wood piles. Remedial alternatives for treated piles and PAH contaminated soil, and selection of Alternative P3 for the North Parcel has been presented above in Section 4.5.4.

The proposed building on the South Parcel will be about 68,000 SF, and contain underground parking. As shown on Figures 21A and 21B, the planned South Parcel will contain the drive aisle amenity with the 16 piles that will require removal as previously discussed in Section 4.5.3.

The development of remedial action alternatives for chlorinated solvents on the South Parcel considered and eventually included are only those remedial components that effectively treat the CVOCs in the affected media of concern and were appropriate to the future Property redevelopment

plan. A suitable alternative may include one technology or combine multiples of the retained technologies discussed above to achieve remedial objectives.

In this evaluation of remedial alternatives focus is for analysis and selection of the preferred alternative for the South Parcel CVOCs from the dry cleaner operations. The 2 buildings in total will include construction of approximately 500 units of mixed market rate and affordable housing. Figure 21B shows the planned amenities for each legal land parcel that will result from the LBA as discussed. With these development plans in mind, the following specific cleanup objectives were developed: Achieve the MTCA Method A cleanup levels for impacted soil and in a reasonable timeframe to allow the return of the Property to a constructive use;

- Select and apply a site remedy for COCs at the Site, that is consistent with redevelopment for mixed residential and commercial use, and that protects future occupants (individuals and families with children and pets) living in the building;
- Select a remedy that does not require long-term, on-going operations, like groundwater pump and treat or soil vapor extraction in-situ methods for treatment of subsurface media after occupation of the building which involve operation of an above-ground treatment unit;
- Avoid institutional controls if possible; and,
- Implement active cleanup to meet remedial goals and allow restoration and completion of development of the Property by 2022. Compliance monitoring may extend beyond this date.

Considering these objectives, in combination with those discussed in Section 4.1, five remedial alternatives were developed for further evaluation.

Each of the five remedial alternatives also include the excavation of CVOC impacted soil in the vicinity of UB15. Source removal was deemed to be the most practical and cost-effective approach in this area during preliminary remedial alternative screening and did not appear to warrant a feasibility level assessment. As such, the remedial alternatives evaluated in this FS are focused on the CVOC release from the southern dry-cleaning operation(s) only.

Below is a detailed description of each alternative along with, when appropriate, a qualitative statement of the effectiveness of the selected technologies.

4.8.1 Alternative 1: Excavation and Disposal of Soil with In-Situ Chemical Reduction (ISCR) using SZVI

Alternative 1 was developed as the baseline for comparison with other alternatives, as it is considered the most practicable permanent solution for the Site. Its objective is to permanently remove through excavation the Site's source of CVOCs in a very short timeframe, before site development begins.

Following source removal by excavation, residual groundwater impacts are treated at a relatively short time period through in-situ chemical reduction using SZVI. Remedial technologies presented for Alternative 1 are shown on Figure 24.

Excavation and Off-Site Disposal of Source Soil

A source soil excavation plan requires the removal of a total of approximately 15,000 cubic yards of soil, to depths ranging between 20- to 35 bgs, as shown on Figure 24. A breakdown of the total soil excavation and handling mass consists of: 2,800 tons of F-listed waste, requiring Subtitle C disposal; 11,600 tons of problem waste (nonhaz or Contained In), requiring Subtitle D disposal; 3,000 tons of problem waste soil (nonhaz), that is eligible for disposal as a Class 2 waste; and 3,000 tons of overburden soil that would be re-used as backfill in the excavation area. To achieve depths of up to 35 feet bgs, approximately 200 linear feet of sheet pile will be installed along the west and southern sides of the excavation. The remaining excavation will be removed using a 3:1 sloped cut. For conceptual design purposes, excavation depths beyond 15 feet bgs will required limited dewatering. Recovered groundwater and other collected water during remedial excavation will be treated on site using activated carbon and discharged to the nearest sanitary sewer under a King County wastewater discharge permit.

In-Situ Chemical Treatment for Impacted Groundwater Downgradient of the Source Area

The dissolved phase PCE groundwater plume migrating southeast from the source area, and a very small, low level PCE impact area recently showing at monitoring well MW06 (west of the source area) defines the area requiring in-situ chemical treatment of groundwater. In-situ chemical reduction or ISCR treatment will follow the completion of the source area excavation. ISCR will take advantage of the existing anaerobic condition in groundwater, as indicated by the presence of PCE degradation products (TCE, DCE, and VC) and low DO and ORP levels in Site wells within the groundwater plume area. ISCR is considered a highly effective technology for treating dissolved phase CVOCs in groundwater over a relatively short time period.

The injection delivery network includes an estimated 20 point array of ZVI injection points installed outside of and following the source area excavations. Relying on the results of the pilot test conducted by UEP summarized in Section 4.6.2, the injection well system for distribution of ISCR chemicals and the bio-degradation enhancers will be designed to deliver injectates between 20- to 35-feet bgs, and spaced at 15-feet on center, in an area approximately 6,000 square feet in the areas as shown on Figure 24. Accordingly, a mass/quantity of injectate will be designed to ensure that contact with the contaminant is achieved where COCs exceed the cleanup levels in groundwater. In this case approximately 6,000 pounds of SMZVI and 6,000 pounds of 3DME will be injected throughout the ISCR treatment area. Calculations for estimating the SMZVI-3DME injection volume are provided in Appendix E. The injection

of ISCR/ERD chemicals is anticipated to occur over 1 injection period taking approximately 2 weeks. After about 2 months of contact time for the ISCR injectates, performance monitoring would be completed on select monitoring wells to evaluate whether a second injection event should be considered in any identified recalcitrant areas that would show contaminant rebound.

Other FS design assumptions for this alternative include the following:

- Permits required to discharge groundwater captured within the remedial excavation; and,
- The site would be registered with Ecology's Underground Injection Control (UIC) program prior to initiating ISCR/ERD injections.

The scope and cost for this alternative is not dependent on development plans, since this work will be performed before development begins. Compliance groundwater monitoring may continue during or after development of the Property. The estimated cost of this alternative is \$6.7 million. Details of the remediation cost estimate are provided on Table 15.

4.8.2 Alternative 2: Excavation and Disposal of Soil with Monitored Natural Attenuation of Groundwater

Alternative 2 objective is to permanently remove the Site's source of CVOCs in a very short timeframe, before site development begins. Following source removal by excavation, residual groundwater impacts are managed by monitored natural attenuation in accordance with Ecology guidance. Remedial technologies presented for Alternative 2 are shown on Figure 25.

Excavation and Off-Site Disposal of Source Soil

Similar to Alternative 1 above, a source soil excavation plan requires the removal of a total of approximately 15,000 cubic yards of soil, to depths ranging between 20- to 35-feet bgs, as shown on Figure 17. A breakdown of the total soil excavation and handling mass consists of: 2,800 tons of F-listed waste, requiring Subtitle C disposal; 11,600 tons of problem waste (nonhaz or Contained In), requiring Subtitle D disposal; 3,000 tons of problem waste soil (nonhaz), that is eligible for disposal as a Class 2 waste; and 3,000 tons of overburden soil that would be re-used as backfill in the excavation area. To achieve depths of up to 35 feet bgs, approximately 200 linear feet of sheet pile will be installed along the west and southern sides of the excavation. The remaining excavation will be removed using a 3:1 sloped cut. For conceptual design purposes, excavation depths beyond 15 feet bgs will required limited dewatering. Recovered groundwater and other collected water during remedial excavation will be treated on site using activated carbon and discharged to the nearest sanitary sewer under a King County wastewater discharge permit. The conceptual excavation plan and limits of excavation shown on Figure 25 are based on most of the soil containing CVOC concentrations that are approximately 100 times the

site cleanup levels. This remedial plan will require segregation of the hazardous waste concentration soil during excavation.

Monitored Natural Attenuation

Based on experience at similar sites, the estimated remediation timeframe after source removal for the groundwater to reach cleanup levels under monitored natural attenuation (MNA) conditions is 10 to 15 years. The relatively rapid timeframe is expected to be enhanced by the removal of the source area and improved subsurface soil conditions provided by the source area excavation and backfill.

This remedial alternative will also include the following elements:

- Installation of soil vapor controls in the future building, which includes vapor barrier, subslab passive venting, and a subslab gas collection layer for active gas venting, if necessary;
- Periodic indoor air monitoring of the new building; and
- Institutional Controls, such as deed restrictions may be required due to the prolonged restoration timeframe.

The scope and cost for this alternative is not dependent on development plans, since this work will be performed either before development (excavation) or completion after construction of the building (MNA process). The vapor mitigation features will be integrated into the architectural designs for the building. The estimated cost of this alternative is approximately \$6.9 million. Details of the remediation cost estimate are provided on Table 16.

4.8.3 Alternative 3: Dual Phase Extraction (DPE) with Air Sparging (AS)

Alternative 3 applies a dual-phase extraction (DPE) technology to remediate soil and groundwater. DPE uses off-the-shelf equipment and controls capable of inducing a vacuum to simultaneously extract VOC-laden soil vapor and contaminated groundwater from the subsurface. The contaminated soil and groundwater within the area treated by the system become progressively cleaner as contaminants are removed. DPE systems are utilized to remove contaminants from shallow, low permeability or heterogeneous formations. The components of this alternative include the following:

The DPE system would consist of a network of approximately 75 groundwater recovery wells that are connected to a centralized recovery and treatment system to facilitate contaminant extraction as shown on Figure 26. A high vacuum blower, capable of inducing a vacuum of at least 15-inches of mercury, would be required to achieve a sufficient radius of influence and contaminant mass removal rate. Due to the limitation on vacuum lift of groundwater of approximately 30-feet bgs, submersible extraction

pumps may be used in deeper wells to recover groundwater and allow for vapor recovery using a high vacuum pump. The recovery wells would include a screened section in the zone of contaminated soil and groundwater. The DPE system would operate through application of the vacuum to the recovery wells via a drop pipe and/or a dedicated submersible groundwater recovery. At this "equilibrium level", both soil vapor and recharging fluids are simultaneously removed by the drop pipe. By extracting liquids, the DPE system lowers the water table around the well, exposing more of the formation to vapor extraction. Once conveyed above ground, the extracted vapors and groundwater are separated, collected and treated, and clean effluents are discharged either to the atmosphere or to the sanitary sewer.

Because the recovery of CVOCs by groundwater pumping alone is generally not cost-effective, this technology is often applied in conjunction with air sparging to provide additional groundwater treatment.

This alternative does not include a Monitored Natural Attention task, as the alternative assumes that DPE will continue until soil and groundwater have achieved their Cleanup Levels. Due to access issues, active DPE is not planned for impacted groundwater at the southern ROW at Genesee, however performing cleanup of the upgradient source area will enhance the attenuation in this area within the operation timeframe.

DPE is a relatively mature technology, and the use of Alternative 3 translates to a permanent removal and treatment system that provides hydraulic control of chemical migration as well as on-Site treatment. However, the rate of treatment is slow and is likely to lead to a long restoration timeframe. Once the DPE equipment is in place, development in the treatment zone cannot begin until cleanup goals are met.

This remedial alternative will also include the following elements:

- Installation of soil vapor controls in the future building, which includes vapor barrier, subslab passive venting, and a subslab gas collection layer for active gas venting, if necessary;
- Periodic indoor air monitoring of the new building; and
- Institutional Controls, such as deed restrictions may be required due to the prolonged restoration timeframe.

Alternative 3 installation and operation costs are \$4.4 million and assumes 10 years of operation. This cost does include vapor mitigation measures in the new building but does not include the work scope to perform MNA, if needed. Details of the remediation cost estimate are provided on Table 17.

4.8.4 Alternative 4: Electrical Resistive Heating (ERH) with Soil Vapor Extraction (SVE)

Cleanup Action Alternative 4 utilizes only ERH/SVE to treat all of the Site CVOC contaminated soil and groundwater that exceeds cleanup levels in the full on-Property impacted areas.

The ERH/SVE system for this alternative consists approximately 91 electrodes and 9 temperature monitoring points (TMPs) that are installed with spacing approximately 15 feet between each electrode, as shown on Figure 27. The 12-inch diameter electrodes are constructed with ZVI/iron shot, and graphite in vertical borings advanced within the Site parcel to depths between 30 to 35 feet bgs into the saturated zone using standard drilling techniques. The estimated six electrodes located along the southern property boundary will be installed using angle-drilled borings. The ERH electrodes are comprised of a conductive and permeable backfill material with copper electrodes placed at intervals in the un-cased backfill material. A schematic of the electrode construction is provided in Appendix C. The backfill material in each electrode consists of ZVI filings and granular iron shot mixed with graphite as filler. The electrodes serve to heat the impacted soil and groundwater area for the ERH/SVE treatment. The ZVI component of each electrode also functions to promote the electrochemical abiotic reduction of chlorinated contaminants to benign, non-toxic end products (ethene and chlorine ions), as shown in the following chemical equations:

$$Fe^{\circ} \rightarrow Fe^{2+} + 2e(-)$$
 and $PCE + 8e(-) + 4H(+) \rightarrow Ethene + 4Cl(-)$

The ZVI electrochemical treatment of dissolved phase chlorinated solvents is on-going after ERH energy is turned off, and the electrode system in the treatment area serves as a long-term groundwater polishing stage to address potential solvent rebound or other potential anomalous irregularities of the ERH treatment process.

In the ERH/SVE stage of treatment, soil and groundwater is heated to an average temperature of approximately 100 degrees Celsius to convert the CVOCs to vapor phase for subsequent recovery by soil vapor extraction at the top of each electrode. During heating, the subsurface temperature is constantly monitored at temperature monitoring points (TMPs) located within the treatment area. As shown in the electrode diagram, steel pipes under vacuum are installed at the top of each electrode for the collection of generated soil vapor. These vacuum extraction pipes capture and convey soil vapor and steam from the subsurface treatment area to an on-site, above-ground and secure treatment building. The treatment building consists of a power control unit, steam condenser, two SVE blowers and carbon units to treat the recovered condensate and soil vapor generated by the vacuum system.

The ERH/SVE system is scheduled to operate for a period of about 6 months, with daily/weekly/monthly operations, monitoring, maintenance, and air and water discharge compliance sampling.

This alternative does not include a Monitored Natural Attention task, as the alternative assumes that ERH/SVE will continue until soil and groundwater have achieved their cleanup levels in the source area. Due to access issues, active ERH/SVE is not planned for impacted groundwater at the southern ROW at Genesee, however performing cleanup of the upgradient source area will enhance the attenuation in this area within the operation timeframe.

Following the shutdown of the ERH/SVE equipment, soil and groundwater samples will be collected in accordance with an approved Compliance Monitoring Plan.

The scope and cost for this alternative is not dependent on development plans, since this ERH is planned to be completed prior to groundbreaking for development. The implementation of this remedial alternative assumes that post cleanup site conditions will not require vapor mitigation features for the development. The estimated cost of this alternative is \$5.0 million. Details of the remediation cost estimate are provided on Table 18.

4.8.5 Alternative 5: Electrical Resistive Heating (ERH)/SVE with In-Situ Chemical Treatment by Reduction/ISCR and Enhanced Reductive Dechlorination (ERD)

Remedial Alternative 5 incorporates ERH/SVE technology at the primary source area and in-situ chemical treatment by injection of electron donor reducing injectates into the dissolved phase groundwater plume outside the primary source area to augment the enhanced biological reductive dechlorination (ERD) and degradation of the CVOCs. ISCR/ERD would be performed using the injection of electron donor chemicals into the trailing plume (e.g., downgradient of the source area) of the CVOC impacted groundwater, as shown on Figure 28; the assumed radius of influence is 20 feet. ISCR/ERD would be performed using an aqueous solution of ZVI called sulfidated micro ZVI (SMZVI) combined with a biodegradation enhancer compound called 3D micro-emulsion (3DME) with BDI, which is a proprietary and patented blend of oleic acids and lactates/polylactates, which are injected as aqueous emulsions. The goal of ERH combined with ISCR/ERD is to restore the Site source soil and impacted groundwater to concentrations that are below the Site cleanup levels within a reasonable timeframe (before development construction) and not require long term monitoring (e.g., MNA) or other engineered controls (e.g., vapor barrier or subslab venting).

The ERH/SVE with ISCR system is anticipated to occur over a total 8 to 12 month period, which includes two rounds of ISCR injection events.

Electrical Resistance Heating in the Primary Source Area

The ERH treatment system for this alternative has been designed to treat the CVOC contaminant distribution (vertical and horizontal extent and concentration gradient) in the Source Area only. The planned uniform spacing for electrodes is consist at approximately 15-feet in the full treatment area, but

the electrode depths vary by treatment interval, from 10 to 35 feet bgs in the center of the primary source area – Area A (green) on Figure 28, from 10 to 30 feet bgs in Area B (red), and from 10 to 20 feet bgs in Area C (brown) to the north.

The descriptions for ERH provided in Alternative 4 above for a full-scale ERH system are similar for this alternative, including installation, startup, operation, monitoring, and maintenance of the system. However, the footprint and number of electrodes and TMPs for this Alternative 5 are less than those needed for Alternative 4. In general, this ERH design for Alternative 5 requires about half the equipment and electrical power as Alternative 4, and includes approximately 54 electrodes, 8 TMPs, and a similar but smaller treatment unit consisting of electricity controllers, extraction blowers, steam condenser, and carbon cannisters to scrub or treat the recovered vapors.

The ERH/SVE system is scheduled to operate for a period of about 6 months, with daily, weekly and monthly operations, monitoring, maintenance, and air and water discharge compliance sampling. After the ERH shutdown, the soil and groundwater media of the Site area will be sampled for compliance monitoring.

Electrochemical Reduction by the ZVI Electrode System

As described above for Alternative 4, the estimated 54 point array of permeable ZVI electrodes installed for the ERH/SVE system will serve as a continual groundwater polishing system through the abiotic reduction process wherein ZVI reduces chlorinated solvents to ethene.

In Situ Chemical Treatment for Impacted Groundwater Downgradient of the Source Area

The dissolved phase PCE groundwater plume migrating southeast from the source area, and a very small, low level PCE impact area recently showing at monitoring well MW06 (west of the source area) defines the area of the ISCR/ERD treatment. ISCR/ERD treatment will follow the completion of the ERH/SVE treatment in the source area and will take advantage of the enhanced natural biological degradation when the reducing bacteria that are already present will be stimulated by the increased water temperature at the Property from the ERH treatment.

Relying on the results of the pilot test conducted by UEP, the injection well system for distribution of ISCR chemicals and the bio-degradation enhancers will be designed to deliver injectates between 20- to 35-feet bgs, and spaced at 20-feet on center, in an area approximately 6,000 square feet in the areas as shown on Figure 28. Accordingly, a mass/quantity of injectate will be designed to ensure that contact with the contaminant is achieved where COCs exceed the cleanup levels in groundwater. In this case approximately 6,000 pounds of SMZVI and 6,000 pounds of 3DME/BDI will be injected throughout the ISCR/ERD treatment area. Calculations for estimating the SMZVI-3DME/BDI injection volume are provided in Appendix E. The injection of ISCR/ERD chemicals is anticipated to occur over 1 injection

period taking approximately 2 weeks. After about 2 months of contact time for the ISCR injectates, performance monitoring will be completed on select monitoring wells to evaluate whether a second injection event should be considered in any identified recalcitrant areas that would show contaminant rebound, depending on the results of the groundwater performance sampling in the ISCR area.

Other FS design assumptions for this alternative include the following:

- Permits required to operate the ERH/SVE system would include a utility permit for a power transformer installation and service upgrade, wastewater discharge permit for the discharge of treated condensate water to the sanitary sewer, and an air discharge permit (from PSCAA) to discharge scrubbed vapors to the atmosphere following treatment by GAC.
- Reinjection of ISCR injectates will be monitored and scheduled in accordance with an approved Compliance Monitoring Plan. However, this alternative assumes one additional injection event incorporating approximately half of the injection points.
- The site would be registered with Ecology's Underground Injection Control (UIC) program prior to initiating ISCR/ERD injections; and,
- The alternative will not require any significant dewatering or treatment efforts.

The scope and cost for this alternative is not dependent on development plans, since this work will be completed before development begins. Compliance groundwater monitoring may continue during or after development of the Property. The estimated cost of this alternative is \$3.2 million. Details of the remediation cost estimate are provided on Table 19.

4.9 Evaluation and Selection of Remedial Alternative

For this feasibility evaluation, five alternatives were developed, evaluated and compared to each other based on Ecology's criteria in WAC 173-340-350(8) and WAC 173-340-360[3][f] to address Site CVOC contamination in consideration of a future, at-grade, multistory, multifamily housing site with no significant subgrade parking within the contaminant plume area. The alternatives are intended to eliminate or control on-Property potential exposure routes (direct contact, leaching to groundwater, and vapor generation) in a relatively short period of performance (i.e., completed prior to the planned development construction in 2022). The cleanup action alternative evaluation is based on Ecology guidance and provides a semi-quantitative assessment of seven MTCA criteria, from protectiveness to public concerns, including costs (WAC 173-340-360[3][f]). A numeric score ranging from 0 to 10 is assigned for each of the criteria within each alternative based on best professional judgment and as routinely used in evaluating remedial alternatives. A higher score represents a more favorable or effective application of the criterion for that alternative.

The criteria scores are weighted according to Ecology's Sediment Cleanup User's Manual II, and a MTCA Comparative Benefit Score (CBS) is calculated for each cleanup action alternative by summing the mathematical product of the criterion score times the weighting factor (same for each criterion), which represents a semi-quantitative measure of environmental benefit that the alternative offers. Based on Site conditions, the weighting factors for the each criteria are: Protectiveness – 30%, Permanence – 20%, Long-Term Effectiveness – 20%, Short-Term Risks – 10%, Implementability – 10%, and Public Concerns – 10% For example, the scores for each criterion for an alternative are determined to be: 10, 8, 8, 2, 2 and 3, then the resulting MTCA Comparative Benefit Score is calculated as (10)(0.3) + (8)(0.2) + (8)(0.2) + (2)(0.1) + (3)(0.1) = 6.1. A score of 6.1 represents a moderate CBS and environmental benefit on a scale of 0 (lowest environmental benefit) to 10 (highest environmental benefit).

Feasibility level costs criterion for each alternative are not given a score but are used to perform a disproportionate cost analysis (DCA).

A brief description of seven MTCA FS evaluation criteria is provided below along with each alternative qualitatively compared to each other with the highest to lowest ranking listed below. The resulting scores of each MTCA criteria for each alternative is presented in Table 15.

Protectiveness. The two types of exposure risk associated with the presence of CVOCs at the Site are terrestrial ecological risk and human health risk. The Site qualifies for a TEE exclusion, therefore mitigating the potential human health risk associated with exposure to the CVOCs in indoor air, soil, and groundwater are the primary objective of any cleanup action implemented. The timeframe to reduce risk and attain cleanup standards is considered.

Alternatives 1, 4 and 5 provide the highest level of protectiveness and shortest timeframe to reach compliance. The high ranking considers the level of protectiveness achieved by the alternatives and the relatively short time frame (one year or less) compared to other technologies that will take several years.

Alternatives 2 and 3 each provide some level of protectiveness, which improves over time, however the timeframe to reach compliance is estimated to be 5 years or more. More likely, Alternative 2 – Excavation and MNA timeframe is more than 10 years. Alternatives 1, 4 and 5 will provide a predictably, much shorter restoration time frame. In addition, Alternatives 2 and 3 will likely require some mitigation features to control vapor intrusion in a future building.

Permanence. Alternatives are evaluated based on their ability to permanently reduces or eliminate the toxicity, mobility or volume of hazardous substances on the Site, including the adequacy of the alternative in destroying the contaminants.

Alternatives 1, 4 and 5 both provide the highest level of permanence, as these technologies permanently remove or destroy CVOCs compounds in both soil and groundwater. And these technologies as applied in both alternatives target the entire impacted areas.

Alternative 2 provides the next highest level of permanence by excavating and permanently removing contaminated soil from the site. However, a large portion of impacted groundwater outside the excavation source area will rely on MNA resulting in a relatively moderate ranking. Similarly, Alternative 3 is designed to effectively remove (and eventually treat) CVOC compounds from the Site, however a degree of untreated zones is dependent on the hydrology and stratigraphy of the subsurface conditions. These alternatives provide a only a moderate ranking for permanence.

Effectiveness over the Long Term. Long-term effectiveness defines the degree of certainty that the alternative will effectively perform as intended and the magnitude and time frame that the remedy relies on Site controls (e.g., vapor barriers and monitoring).

Alternatives 1, 4 and 5 provide the highest level of long-term effectiveness, as all three remedies will implement a confirmation sampling program in both soil and groundwater to demonstrate attainment of cleanup levels. Compliance with cleanup levels is expected to be maintained indefinitely at these technologies permanently destroy its target contaminants.

Alternatives 2 and 3 rely on technologies that have some degree of uncertainty related to the subsurface geotechnical and chemical conditions of the soil and groundwater, including radius of influence, oxidation and degradation potential. These alternatives provide a low to moderate level of long-term effectiveness.

Management of Short-Term Risks. The risk to human health and the environment associated with the implementation and construction of the alternative.

Each of the alternatives presents moderate to significant short-term risks because each includes highrisk activities associated with implementation, including shoring and excavation, drilling and probe installation, injection of permanganate, and operation of pressurized lines for sparing and extraction. ERH presents a high level of risk due to the use of electrical control and distribution equipment and high voltage circuits.

Technical and Administrative Implementability. The ability for an alternative to be implemented – technically feasible, availability of infrastructure and services, and complexity and size of the project, to name a few criteria.

Alternative 2, followed by Alternative 1, score the highest for this criterion as soil excavation, handling and off-site disposal is regularly selected as a soil remedy. The groundwater area intended for MNA or ISCR is relatively small and accessible.

Alternatives 3, 4 and 5 have a moderate level of Implementability, as these alternatives require a large number of both below- and above-ground equipment and delivery of media (soil gas and groundwater extraction, injection of oxidants, etc.). However, all of the selected technologies have a high number of instances of successful and dependable Implementability throughout the country.

Public Concerns. This criteria weighs the relative familiarity, concerns, or support for an alternative. For this Site, the public is defined as the neighborhood community, leaders, and organizations. The project is a future low-income housing project supported by LUP Affiliates.

At this stage, there has been little to no input by the public on the project, however as soon as the Prospective Purchaser Consent Decree is initiated, a full public disclosure and comment period will be completed for the proposed remedial solution. Rainier and Genesee LLC and LUP Affiliates are in design development for their plans for constructing affordable housing at the Site, and the remedial system in the final CAP will be integrated with their plans that anticipate the future use of the Property for multifamily housing, which dictates an unrestricted land use, and protection of indoor occupants and habitants.

Cost. The relevant project cost to consider for evaluation includes the cost of design, construction, operation and maintenance and long-term monitoring. Cost estimates for treatment technologies shall describe pretreatment, analytical, labor, and waste management costs. The design life of the cleanup action shall be estimated, and the cost of replacement or repair of major elements shall be included in the cost estimate. Cost estimates generated for this assessment are feasibility-level (-30/+50%) and based on Net Present Value calculations for future costs incurred after the first year

The total estimated life-cycle costs (e.g., design, implementation, O&M and closure) for Alternatives 1 through 5 are as follows:

- Cleanup Action Alternative 1— Excavation and Disposal of Soil with Treatment of Residual Groundwater using ISCR: \$6.7 million (Table 15). This alternative represents the highest cleanup cost.
- Cleanup Action Alternative 2— Excavation and Disposal of Soil with Monitored Natural
 Attenuation of Groundwater: \$6.9 million (Table 16). This alternative represents the second
 highest cleanup cost, although this cost is essentially equal to Alternative 1.

- Cleanup Action Alternative 3 Air Sparge/Soil Vapor Extraction (AS/SVE) and Groundwater Extraction (Dual Phase Extraction): \$4.4 million (Table 17). This alternative represents a relatively moderate cleanup cost.
- Cleanup Action Alternative 4— Electrical Resistive Heating (ERH): \$5.0 million (Table 18). This alternative represents a relatively moderate to high cleanup cost.
- Cleanup Action Alternative 5— Electrical Resistive Heating (ERH) with In-Situ Chemical
 Treatment: \$3.2 million (Table 19). This alternative represents the most moderate cleanup cost.
 The cost is significantly less than Alternative 4 due to the focusing of the ERH treatment within
 the primary source area and implementing a more cost effective but successful technology
 (ISCR) within the dissolved phase plume.

Alternative 1 Summary

Excavation of source area soil combined with treating residual groundwater impacts using ISCR is comprised of two widely different treatment technologies and approaches but with a similarly high degree of protectiveness and permanence ratings. For example, excavation provides the highest degree of protectiveness, as the excavated soil is immediately and permanently removed from the Site (disregarding any gaps in confirmation sampling). And residual groundwater impacts are treated using ISCR, a tested and proven technology with several documented test cases. Moreover, the use and presence of SZVI provides an ongoing groundwater polishing function for possible rebound in the treatment area.

Alternative 2 Summary

Excavation and Monitored Natural Attenuation is comprised to two widely different treatment technologies and approaches with varying degrees of protectiveness and permanence ratings. For example, excavation provides the highest degree of protectiveness, as the excavated soil is immediately and permanently removed from the Site (disregarding any gaps in confirmation sampling); however, MNA relies on natural rates of degradation (generally takes tens of years) and is often limited by the ability to control or influence subsurface chemical conditions.

Alternative 3 Summary

Dual Phase Extraction or DPE (soil vapor and groundwater extraction) relies on well tested, conventional remediation technologies to cleanup subsurface soil and groundwater contaminated with chlorinated solvents. If the DPE can be effectively applied throughout the contaminated zone, this technology is generally effective in capturing and removing the majority of the on-site, target chemicals. However, the certainty and predictability of complete and permanent contaminant removal will likely be hindered by

the variability and channeling of sand layer occurrences, and the restoration time frame for DPE is difficult to predict and much longer than Alternatives 1, 4 and 5.

Alternative 4 Summary

Electrical Resistance Heating/Soil Vapor Extraction (ERH/SVE) is considered a confirmed and robust technology with highly reliable results in treating both soil and groundwater with CVOCs. The "steam stripping" technique is effective in all types of soil, including the dense silt and clays present at the Property. ERH is considered to have one of the highest degrees of protectiveness and permanence, including the shortest timeframe for completion to compliance (not including excavation). However, implementability is a concern for treating the full Site area due to the presence of contamination in the public ROWs.

Alternative 5 Summary

This alternative combines ERH/SVE within the source area and ISCR/ERD treatment within the leading edge of the dissolved phase plume southeast from the source area. Within the environmental consulting and regulatory communities, both treatment technologies are considered tested and very reliable for insitu treatment of dry-cleaning solvents and their breakdown products. The relative protectiveness of ISCR compared to ERH would be considered fairly equal, because for this Site the PCE GW plume can be described as anaerobic, stable, and easily accessible within a relatively isolated sand channel. Based on field measurements of DO and ORP values within the plume area, the groundwater is already exhibiting conditions representing biological reductive dichlorination activity. Moreover, the presence of the ZVI components in the electrode system provides an ongoing groundwater polishing function for possible rebound in the treatment area, augmenting the SMZVI function of ISCR at the injection points. The predicted timeframe to compliance for this dual treatment system is very short, considered equal to that of Alternative 4.

4.10 Disproportionate Cost Analysis and Selected Remedial Alternative

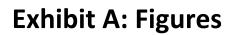
The disproportionate cost analysis or DCA was conducted in general accordance with methodology provided by Ecology WAC 173-340-360(3)(e). Relying on the results of the MTCA evaluation of remedial alternatives (Table 20), a benefit-to-cost ratio was developed for each alternative by dividing the numeric comparative benefit score (CBS) total by the estimation of cost (in millions). The greater value equals a greater benefit per dollar spent. Table 21 provides a graphic representation of this relationship. The results of the DCA indicate that Alternative 5 – ERH/SVE with ISCR/ERD is the preferred remedial alternative for the site due to a higher CBS based on the weighting of the performance evaluation criteria, and the greater benefit per cost analysis as shown in Tables 20 and 21.

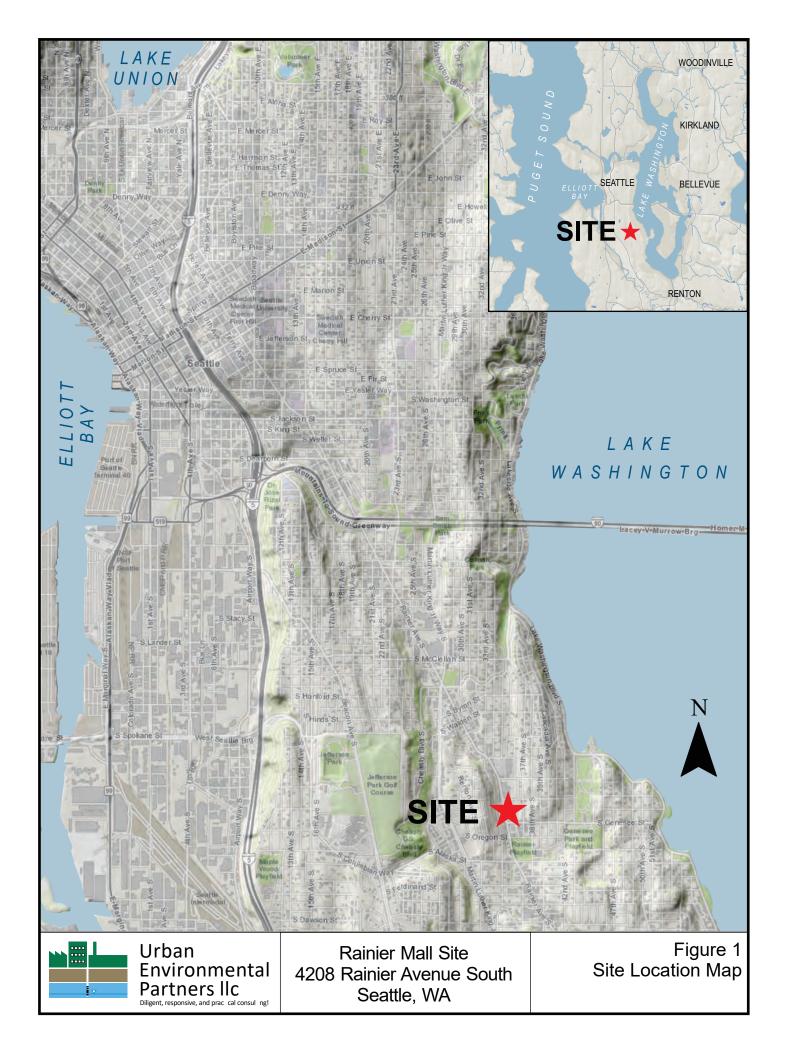
5.0 Preferred Remedial Alternative

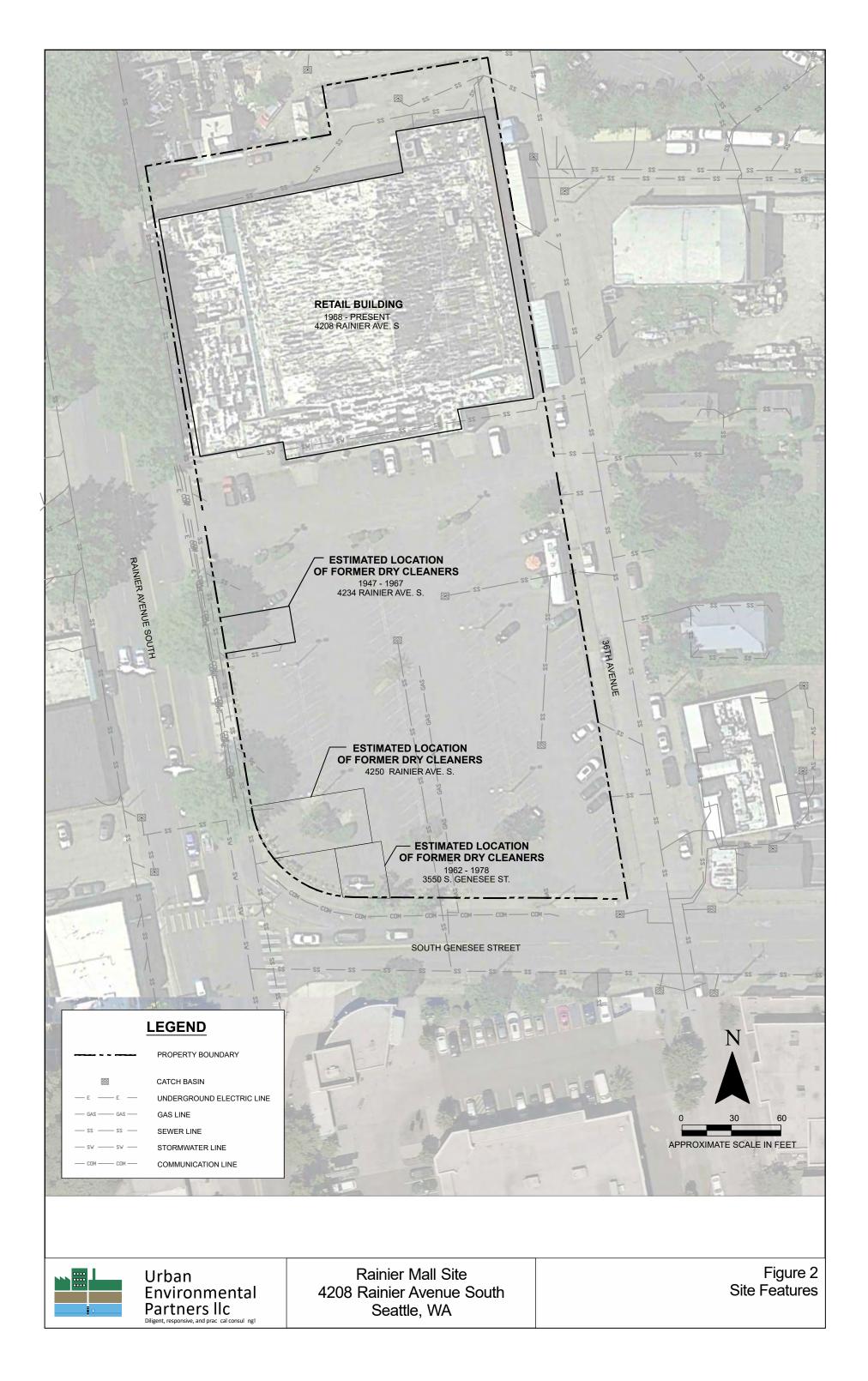
For the southern area of the Site with CVOC contamination in soil and groundwater, the preferred and selected remedial technology is Alternative 5 – ERH/SVE with ISCR, which is a combination of two applicable technologies. The application of electrical resistive heating with soil vapor extraction (ERH/SVE) to the primary source area of highest soil and groundwater contamination is the use of a vigorous, robust and proven technology that will be thorough, permanent, and relatively quick with reliable results. The results of the ISCO and ISCR pilot tests also confirmed the use of injection technology as strongly applicable to the dissolved phase contaminants in the sand aquifer at a desirable radius of influence. ISCR was determined to be more appropriate than ISCO given the moderate PNOD score for the sand aquifer at 11.4 mg/kg, the observed rebound of PCE in MW10 after the ISCO pilot test, and observed effectiveness of the ISCR injection in contaminants present MW09.

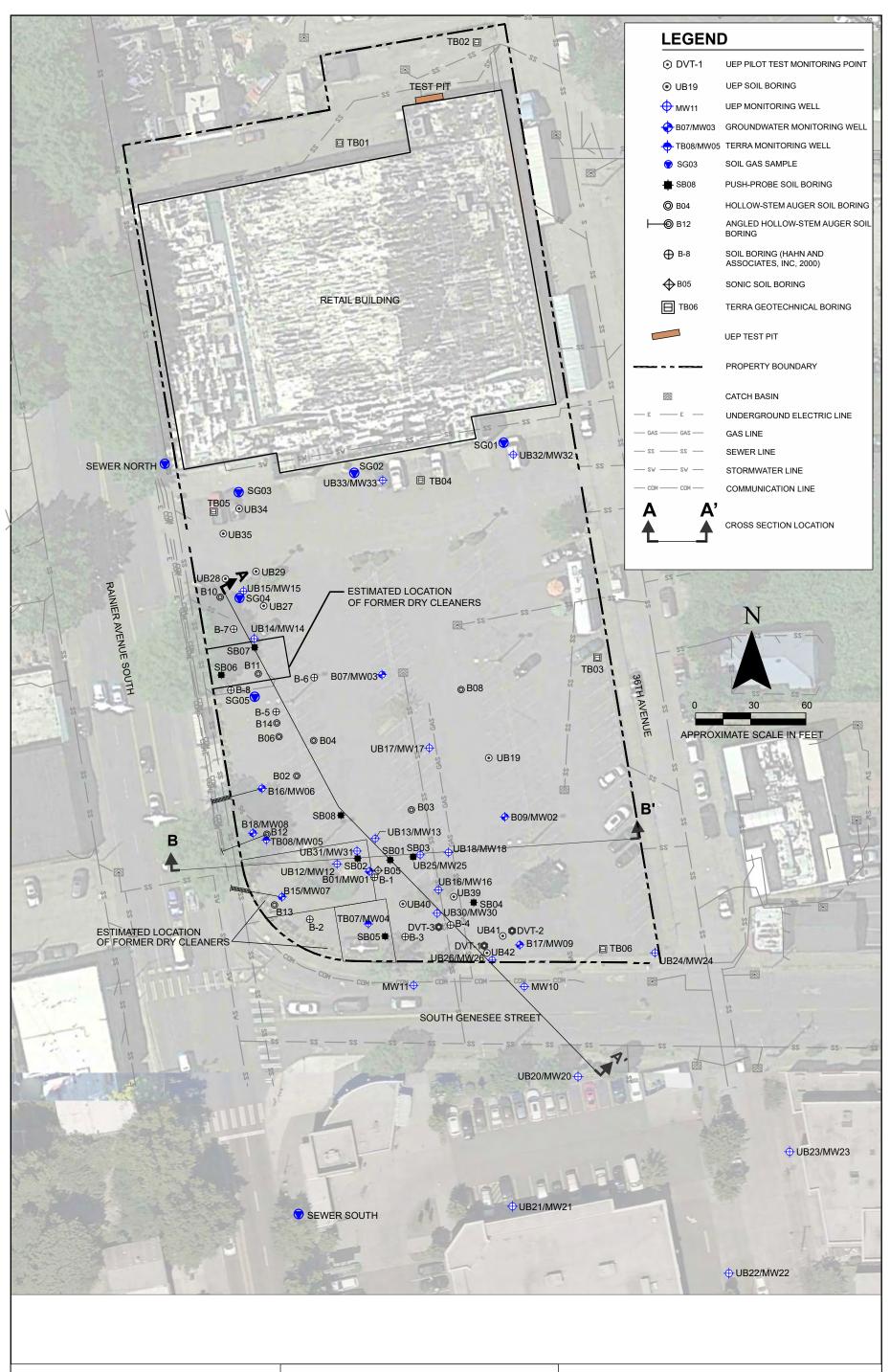
The Aestus ERI results indicated the presence of high biological activity in the dissolved phase contaminant plume and monitoring well data shows the presence of transformation of PCE degradation products in the monitoring wells downgradient from the primary source area. Moreover, the average DO and ORP content in the dissolved phase plume area shows anaerobic conditions that could readily be enhanced. Based on these factors, an in-situ injection technology involving zero valent iron (sulfidated micro-ZVI) to support and continue the ZVI process from the ERH electrodes, coupled with injection of 3DME/BDI micro-emulsion to enhance the biological degradation activity already present at the Site was selected for the ISCR injectates.

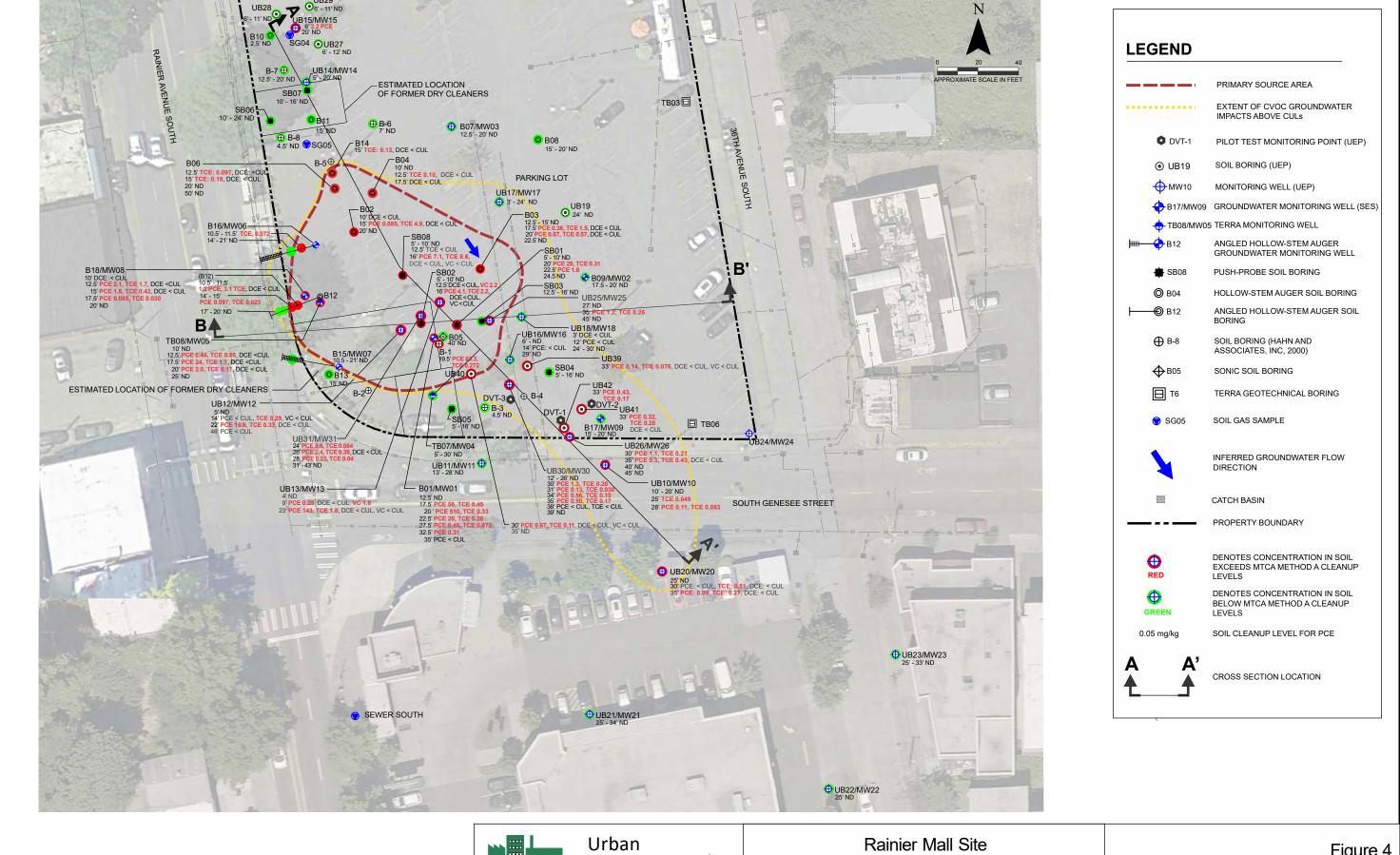
For the treated pile-related PAH issue in the northern portion of the Site, the selected remedy is Alternative P3 – Repurposing of the Existing Piles for reuse as the foundation support for the slab-ongrade floor of the planned building. The selection of this remedial alternative will require a covenant on that portion of the development site.

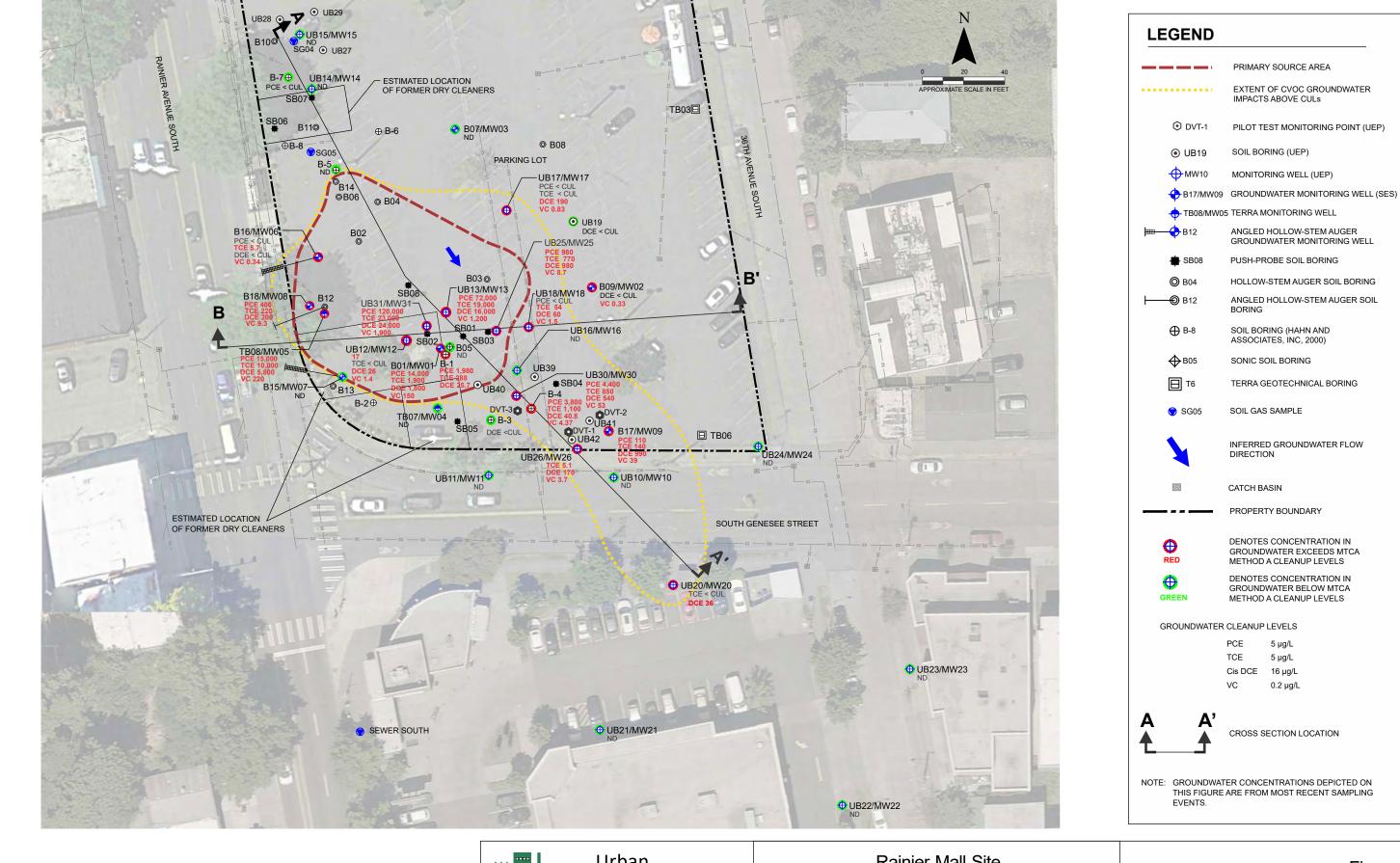

Any piles that do not serve a structural purpose will be fully removed; this includes 16 piles that are known to be located in a shared drive isle located between the planned north and south parcels. This area will not include any engineering or institutional controls.

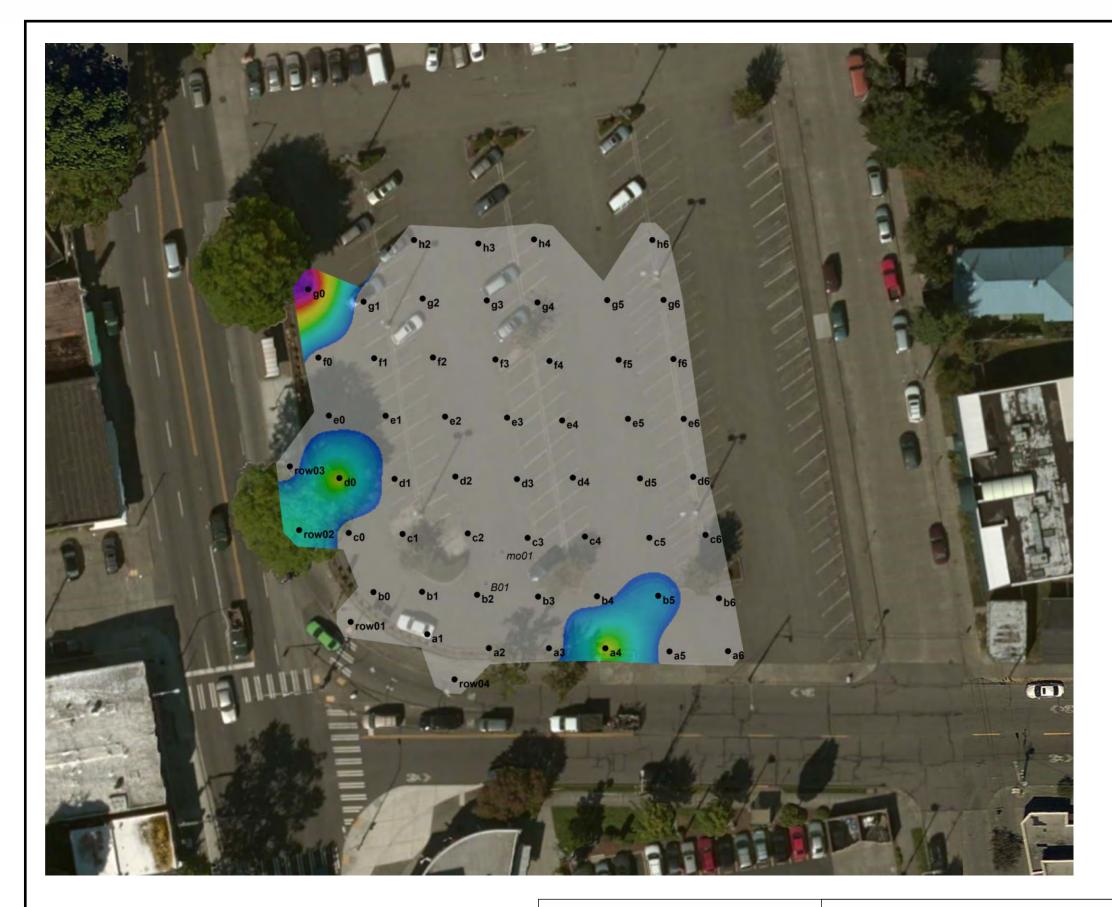

Engineering design information and additional details of the selected cleanup alternatives for each of the remediation areas will be presented supporting documents in a Cleanup Action Plan for the Site.

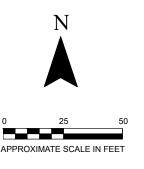



6.0 References

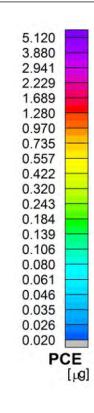

- Aestus. 2020. GeoTrax CSM+ Interim Report. January 30.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aguifers with completely or partially penetrating wells: Water Resources Research, v. 12, p. 423-428.
- Bouwer, H., 1989, The Bouwer and Rice slug test, an update: Ground Water v. 12, no. 3, p. 304-309.
- Ecology. 2020. Washington State Department of Ecology Washington State Well Report Viewer.:
 https://appswr.ecology.wa.gov/wellconstruction/map/WCLSWebMap/default.asp
- Hahn and Associates, Inc. 2000. A Phase I Environmental Site Assessment: Rainier Mall. May 23.
- Hahn and Associates, Inc. 2000. Phase II Environmental Site Assessment: Rainier Mall. August 1.
- King County iMAP. 2020: https://gismaps.kingcounty.gov/iMap/
- SoundEarth Strategies, Inc. 2017. Subsurface Investigation Summary Letter: Rainier Mall Property. March 31.
- SoundEarth Strategies, Inc. 2018. *Draft Subsurface Investigation Summary Report: Rainier Mall North Property*. March 20.
- SoundEarth Strategies, Inc. 2018. *Draft Subsurface Investigation Summary Report: Rainier Mall South Property*. March 22.
- SoundEarth Strategies, Inc. 2018. *Draft Supplemental Subsurface Investigation Summary Letter:* Rainier Mall Property. October 29.
- Suthan S. Suthersan, 1999. Remediation Engineering Design Concepts. CRC Lewis Publishers.
- Troost, K.G., Booth, D.B., Wisher, A.P., and Shimel, S.A., 2005, *The Geologic Map of Seattle a Progress Report*, U.S. Geological Survey Open-File Report 2005-1252.
- U.S. Geological Survery, 1955, Washington Seattle Quadrangle 1908 Topographic Map, Washington D.C., U.S. Department of Interior, 1955.
- U.S. Geological Survey, 2006, Scientific Investigations Report 2006-5030.

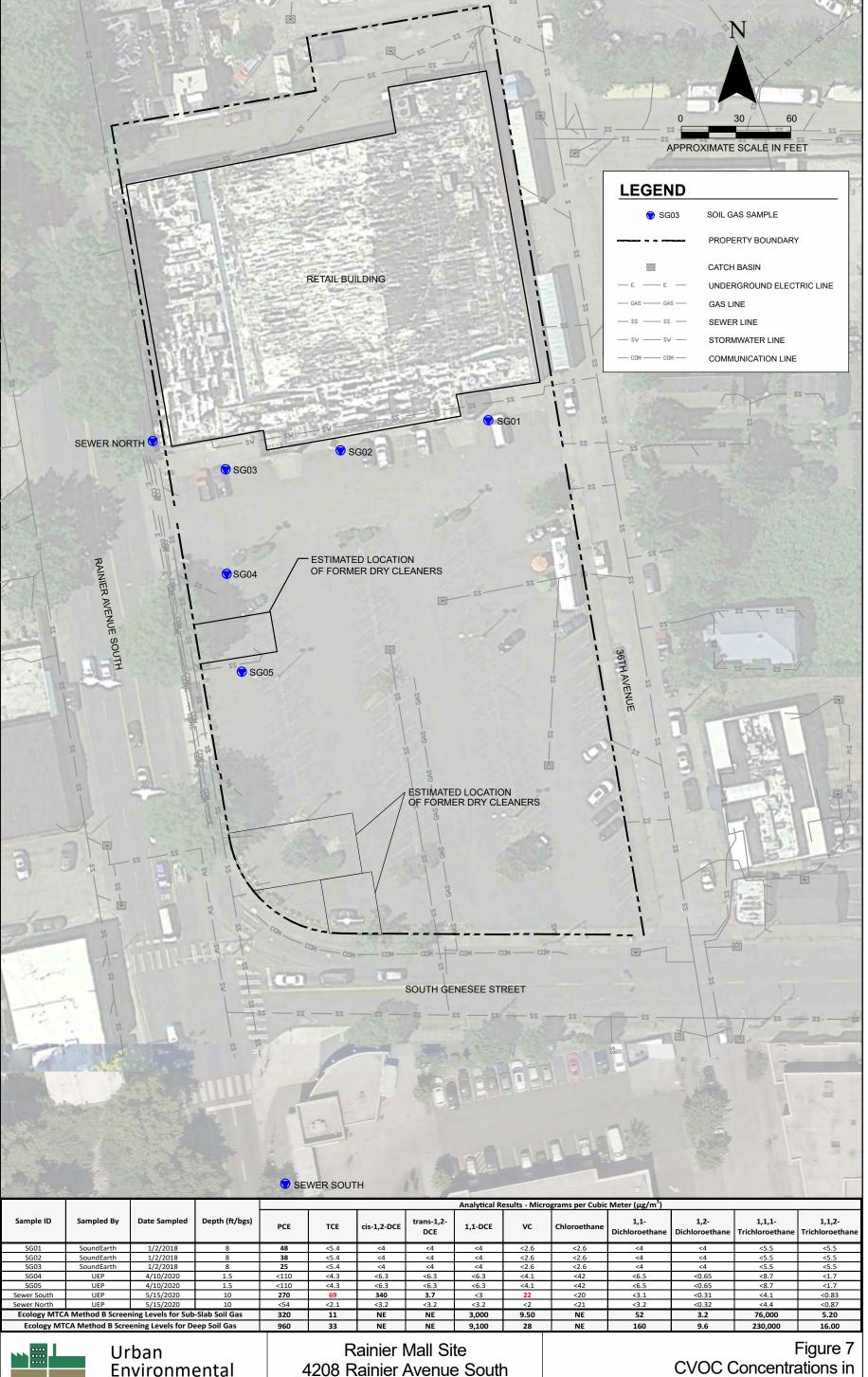




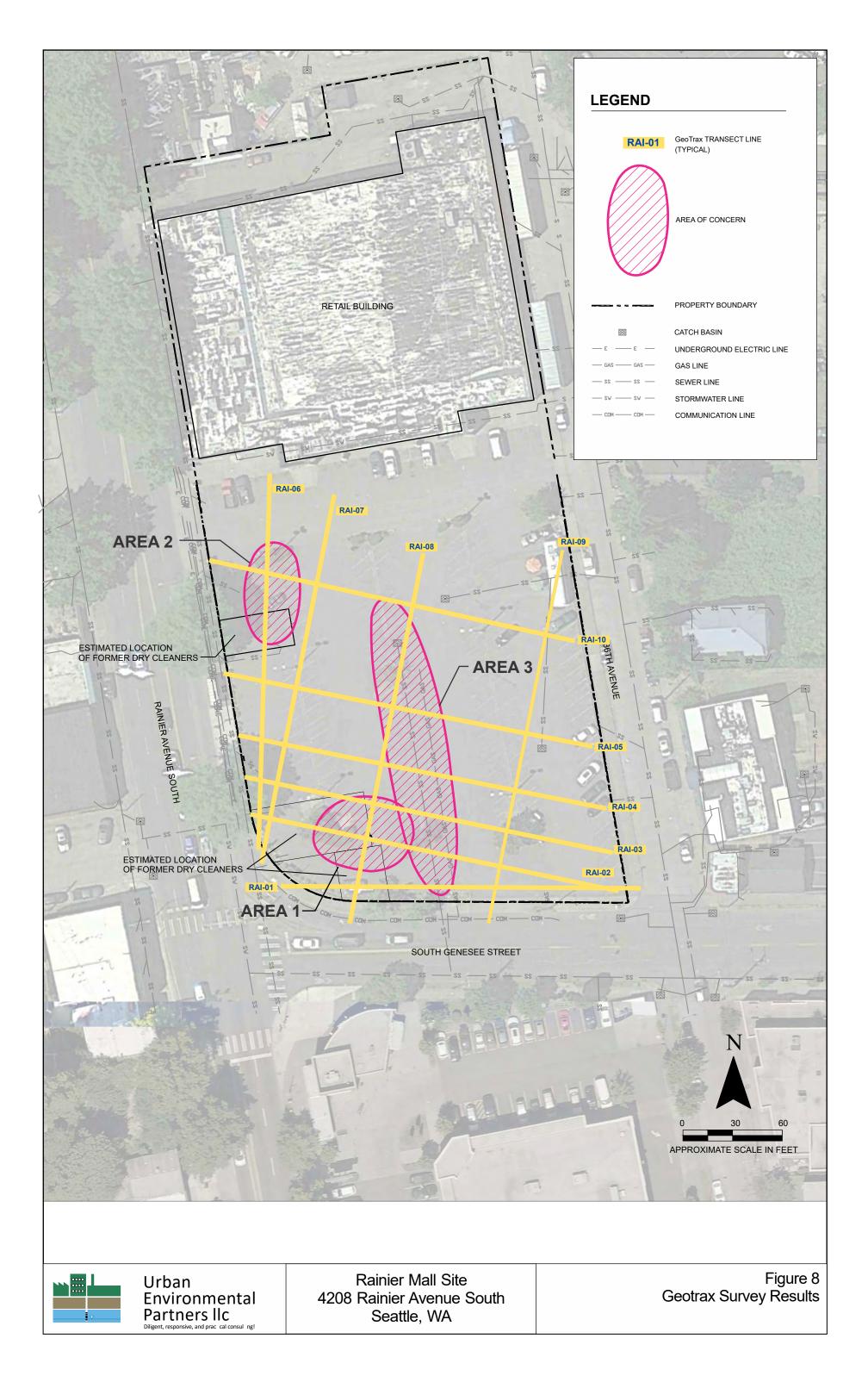


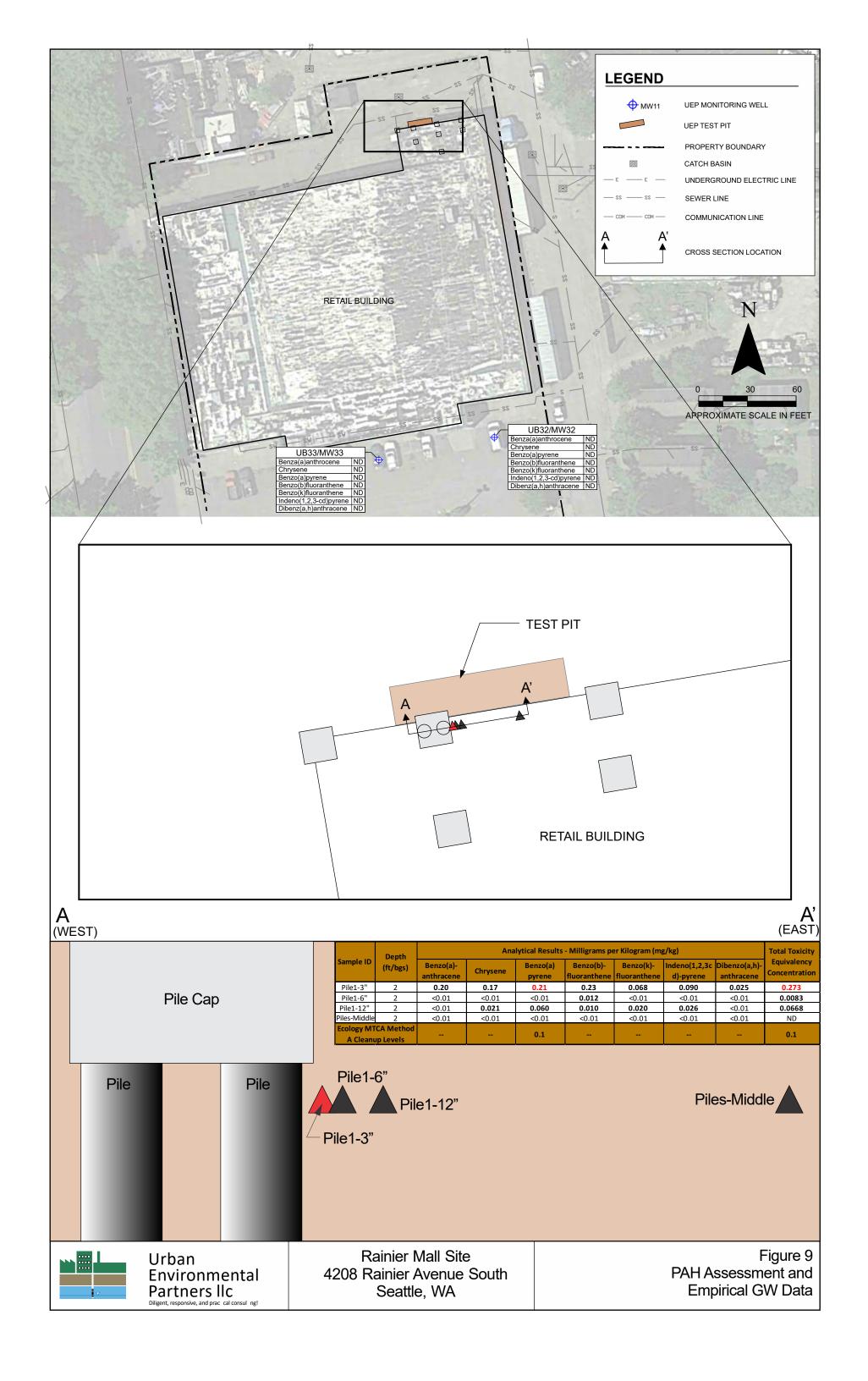
Urban
Environmental
Partners IIc
Diligent, responsive, and prac cal consul ng!

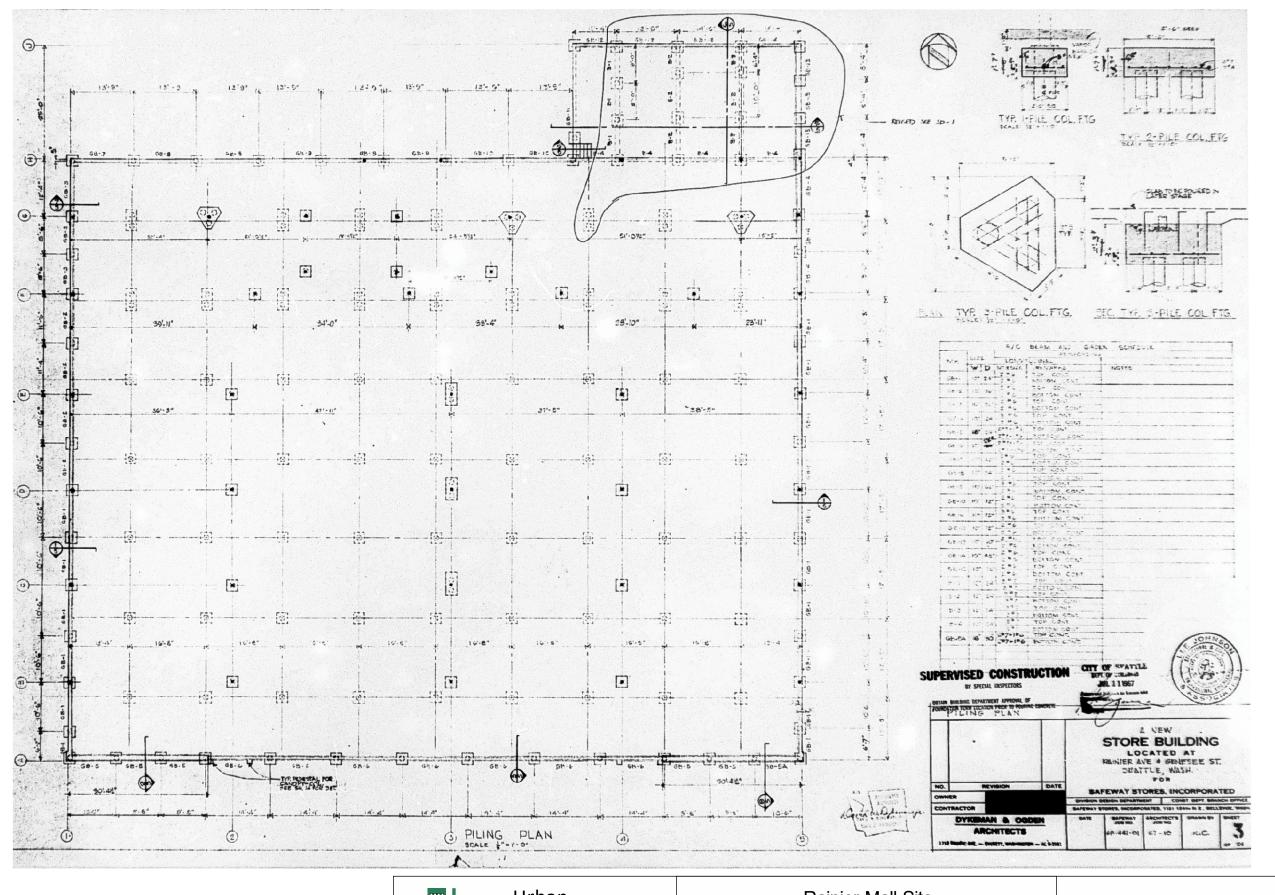

Rainier Mall Site 4208 Rainier Avenue South Seattle, WA


Figure 5 CVOC Concentrations in Groundwater

LEGEND

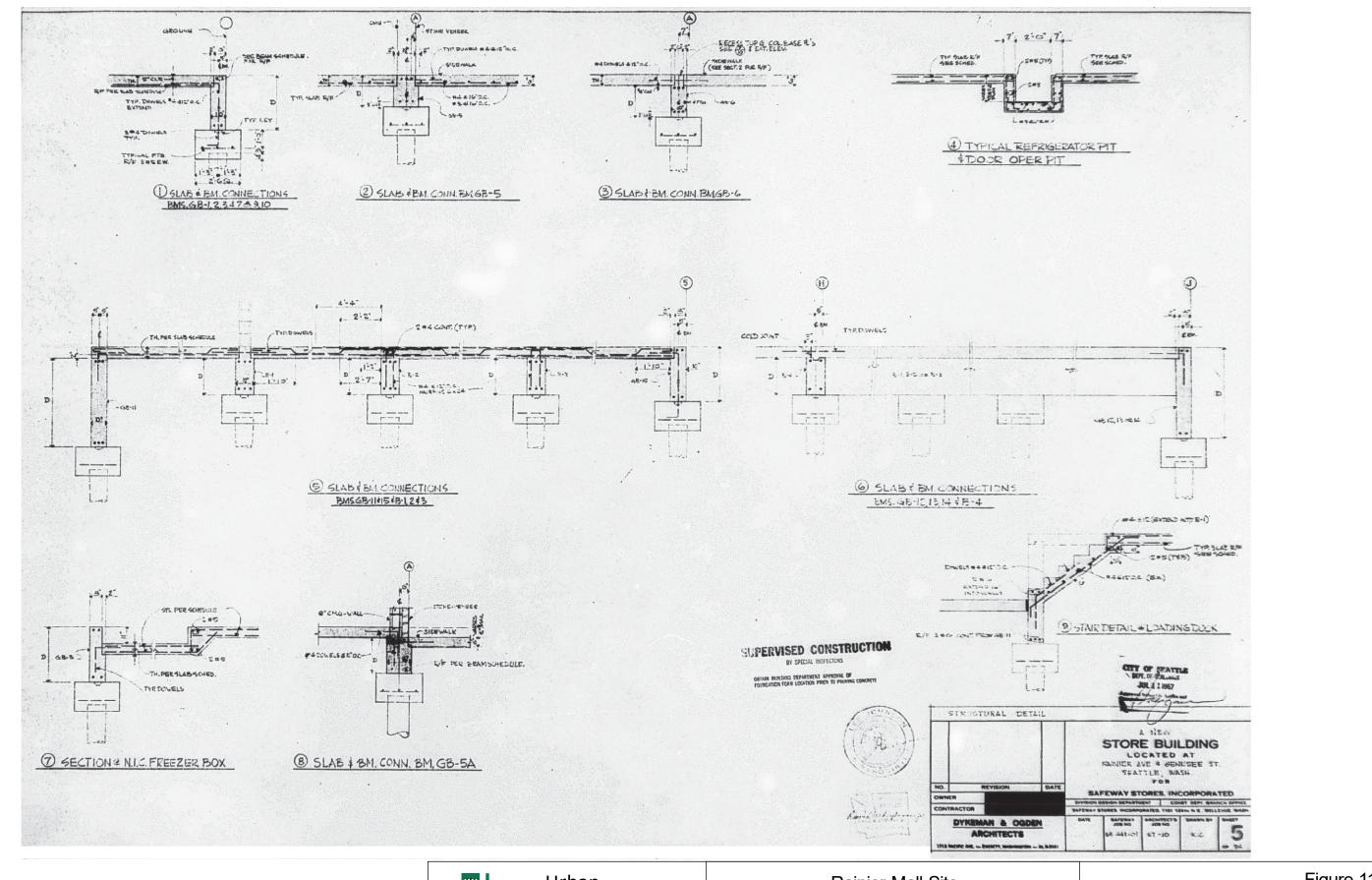


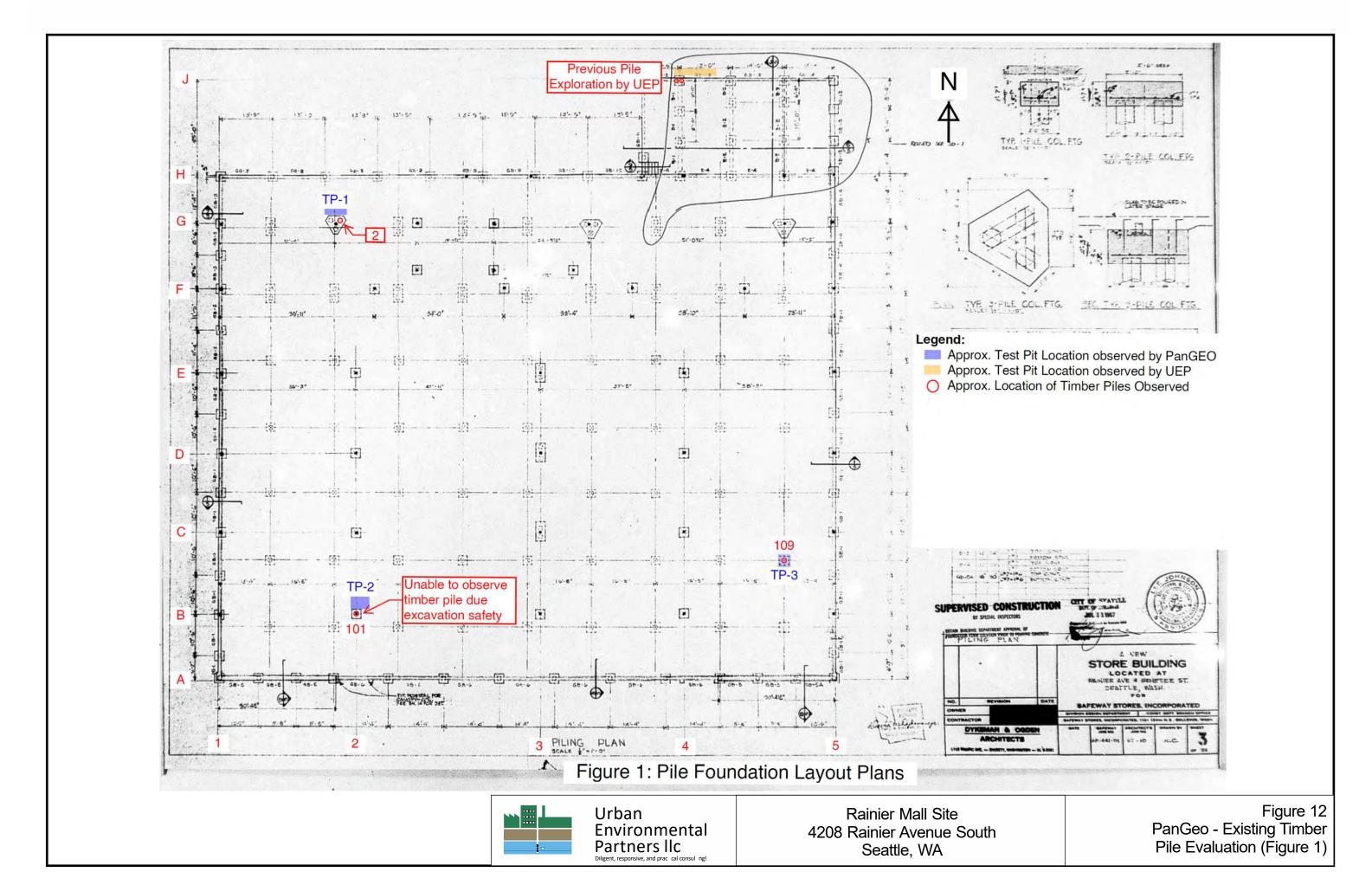


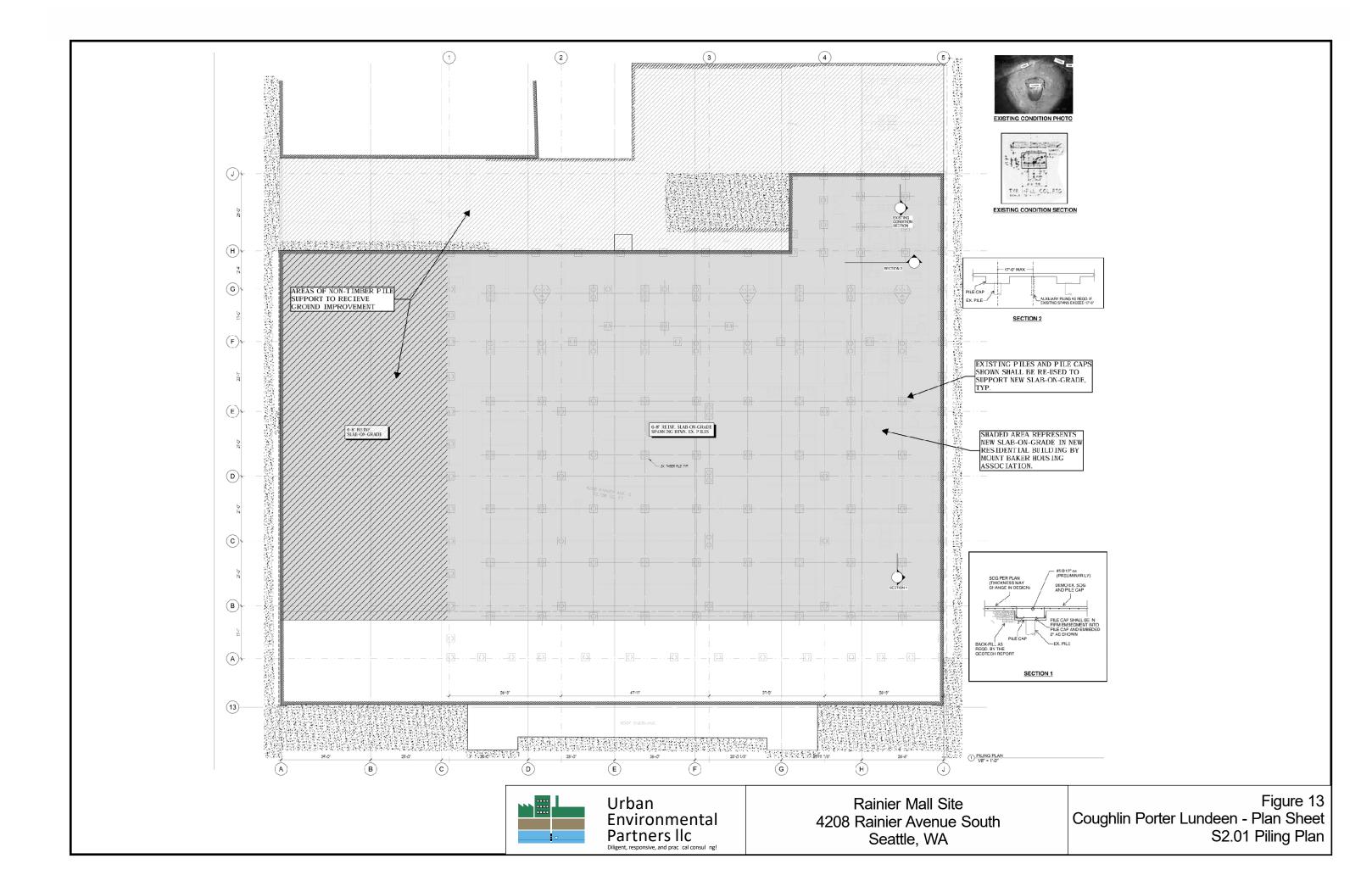

Environmental Partners IIc

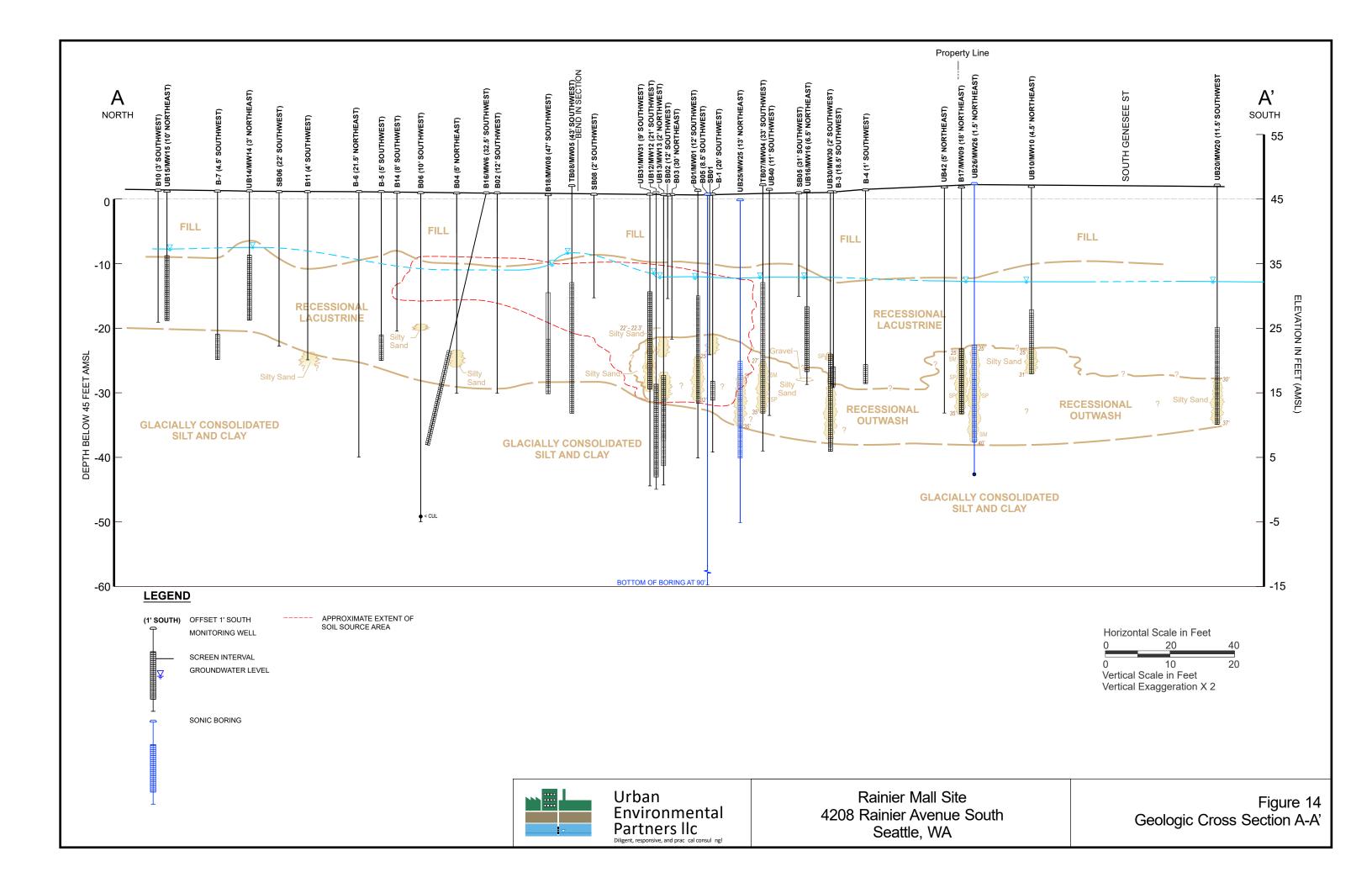
4208 Rainier Avenue South Seattle, WA

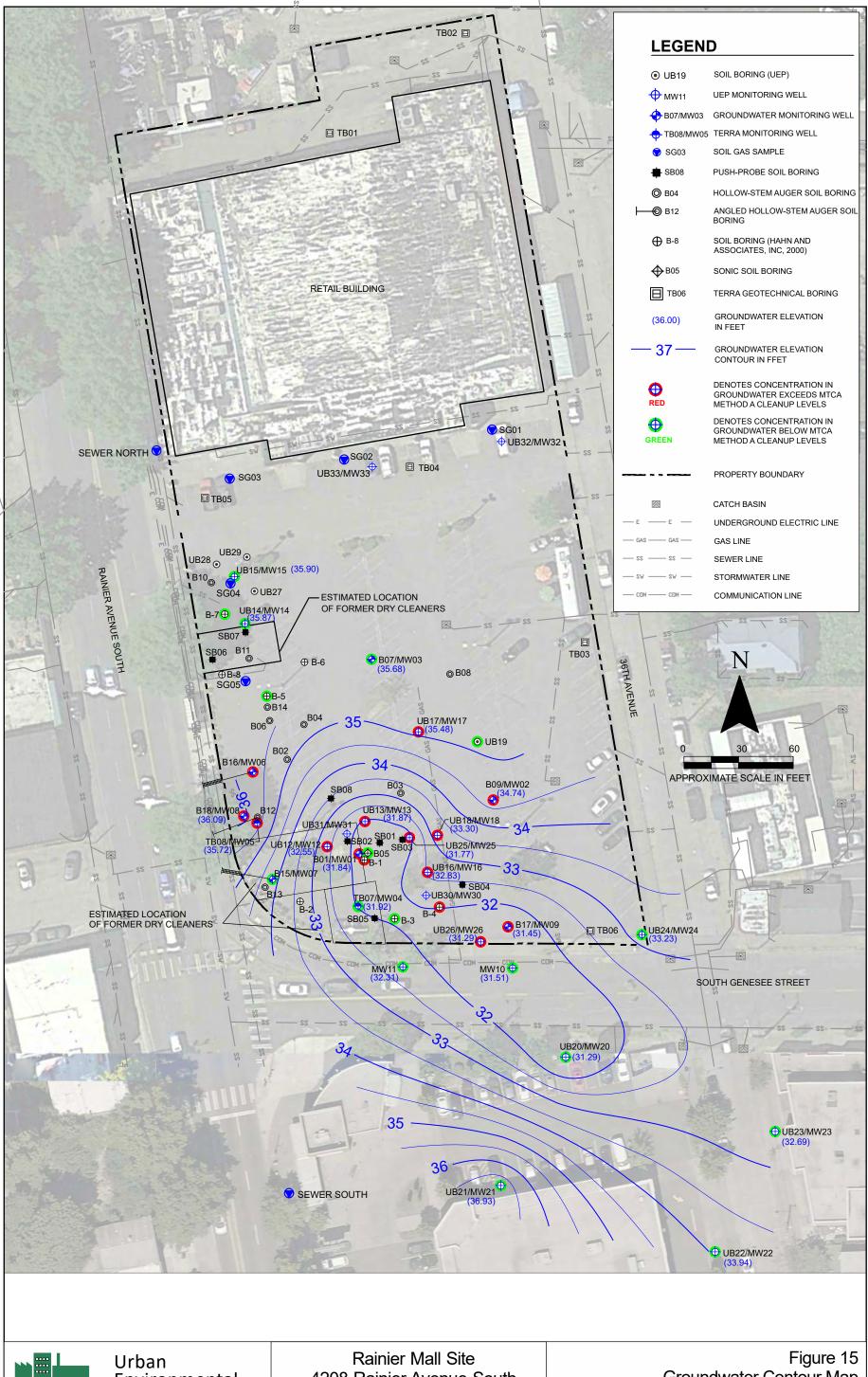
CVOC Concentrations in Soil Gas and Sewer Gas



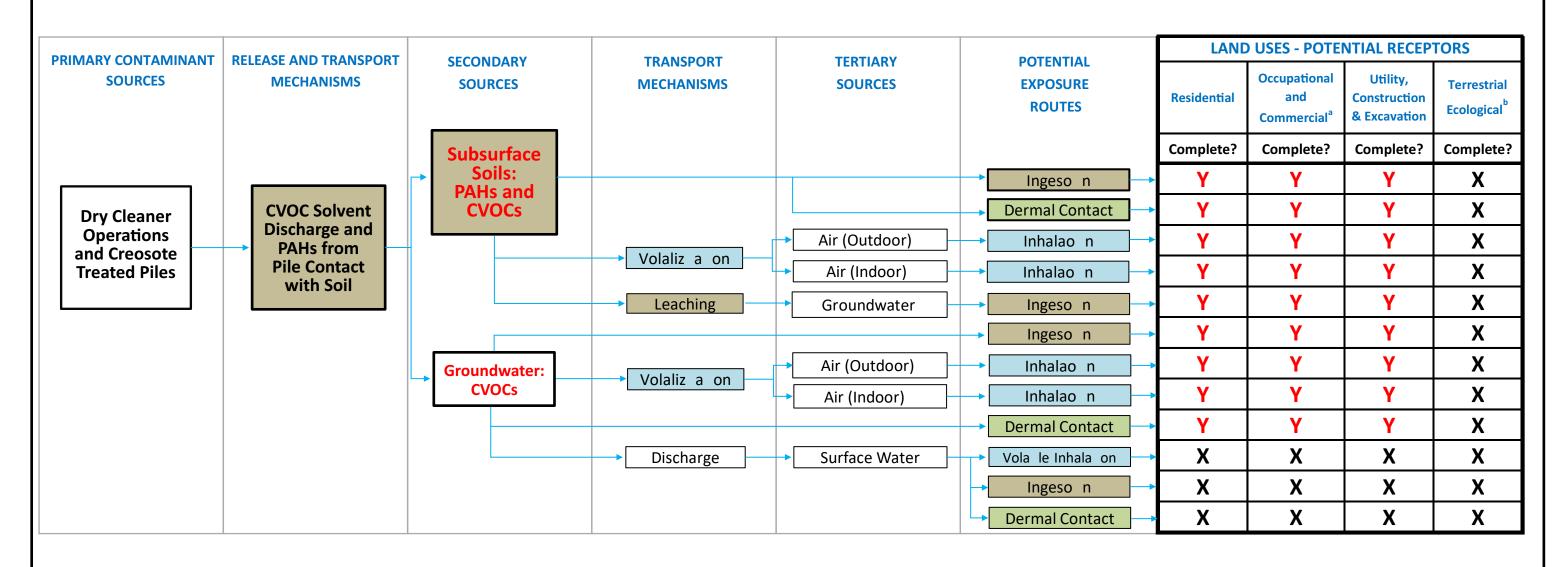


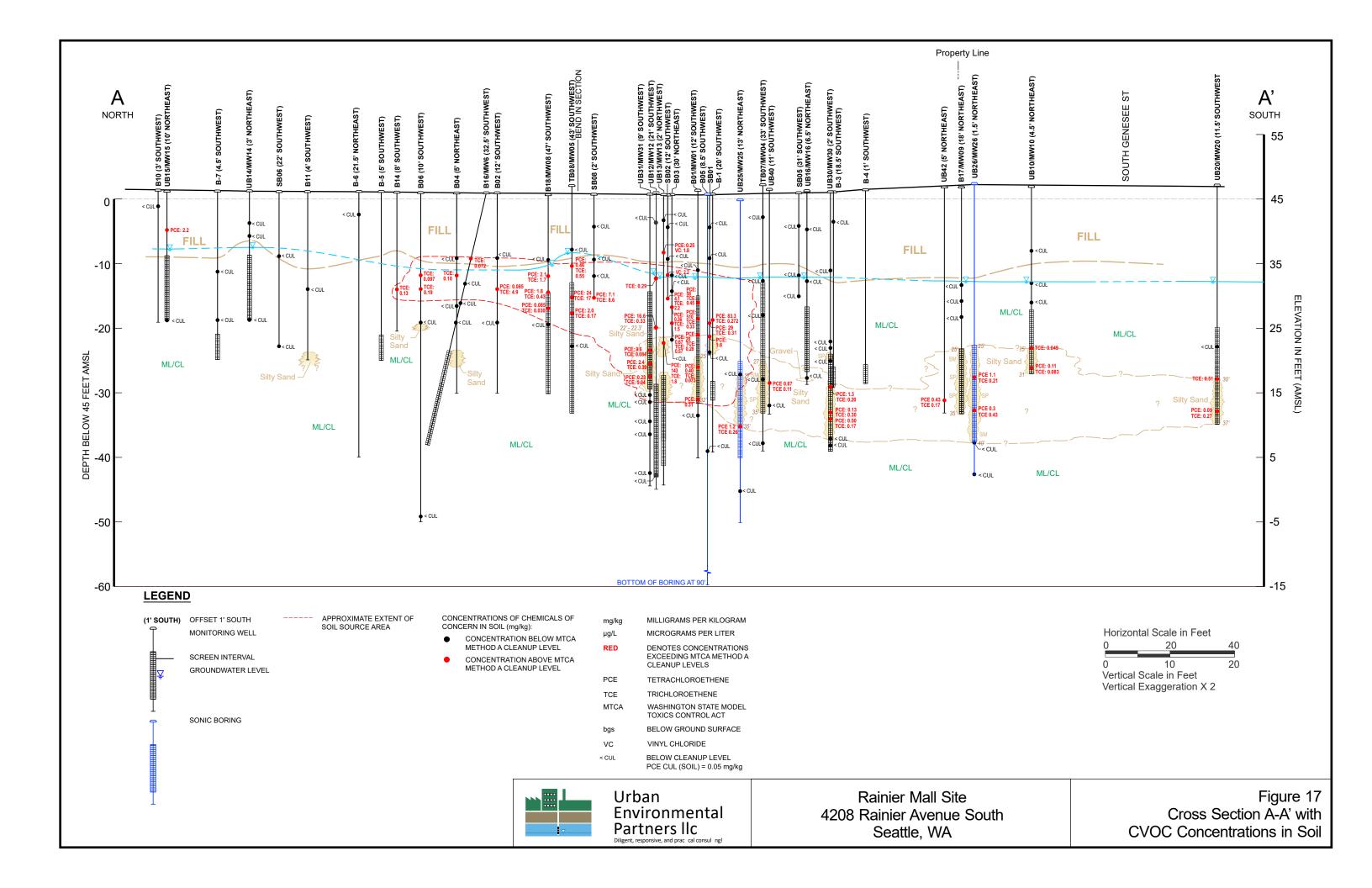

Rainier Mall Site 4208 Rainier Avenue South Seattle, WA Figure 10 Pile Layout Plan for Safeway Building - 1967

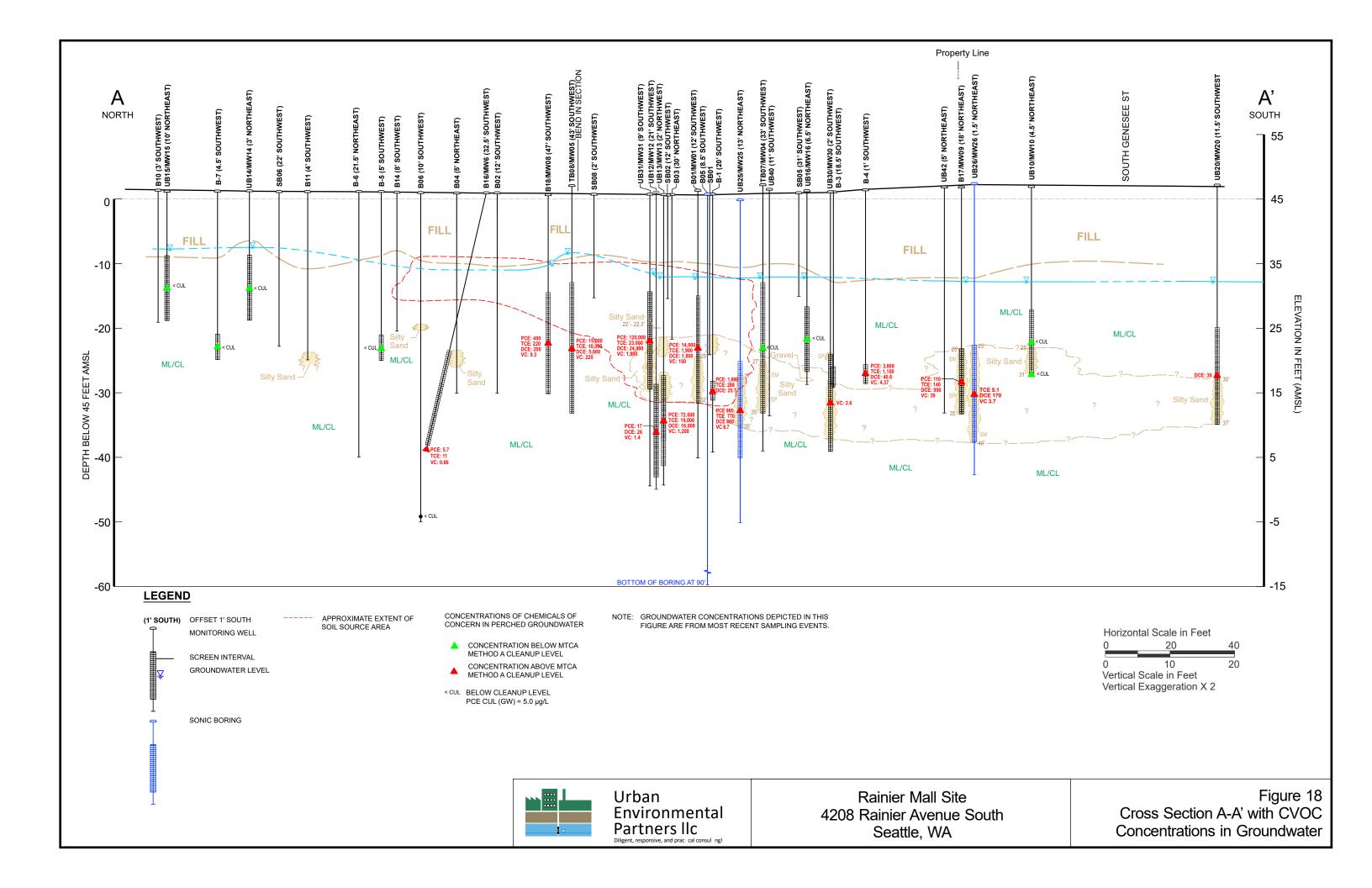


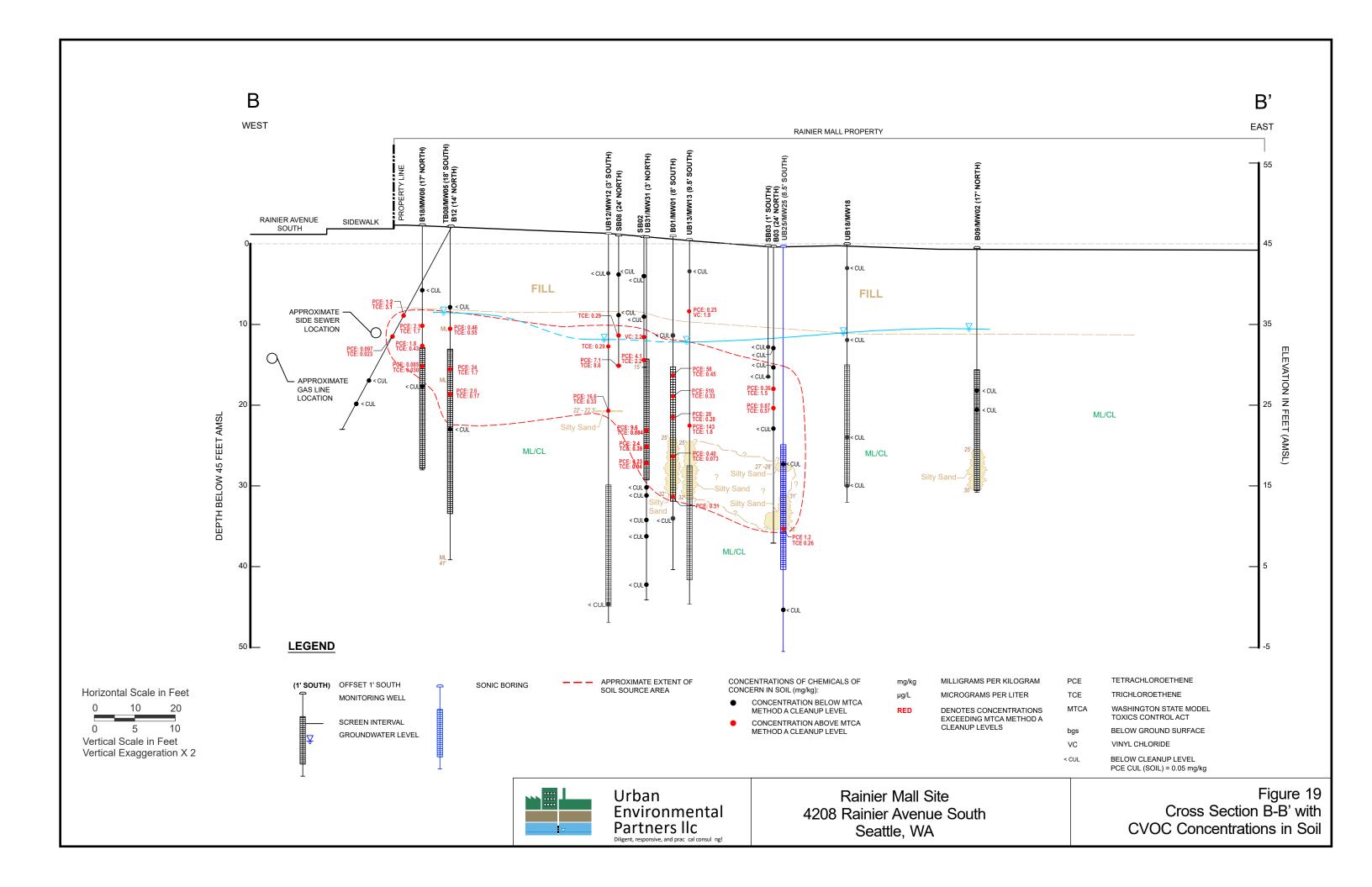


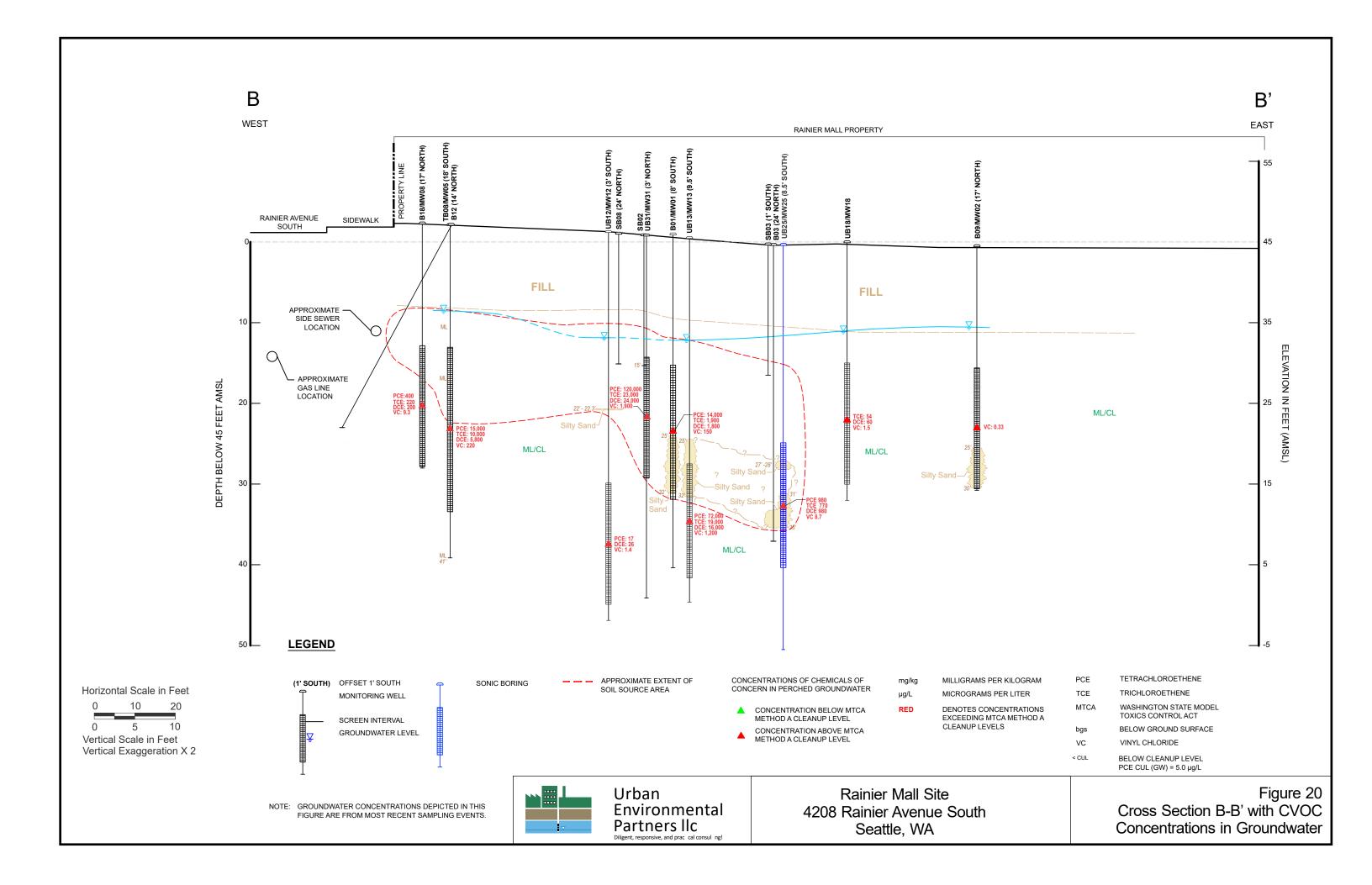
Rainier Mall Site 4208 Rainier Avenue South Seattle, WA Figure 11
Safeway Foundation and Pile
Construction Details

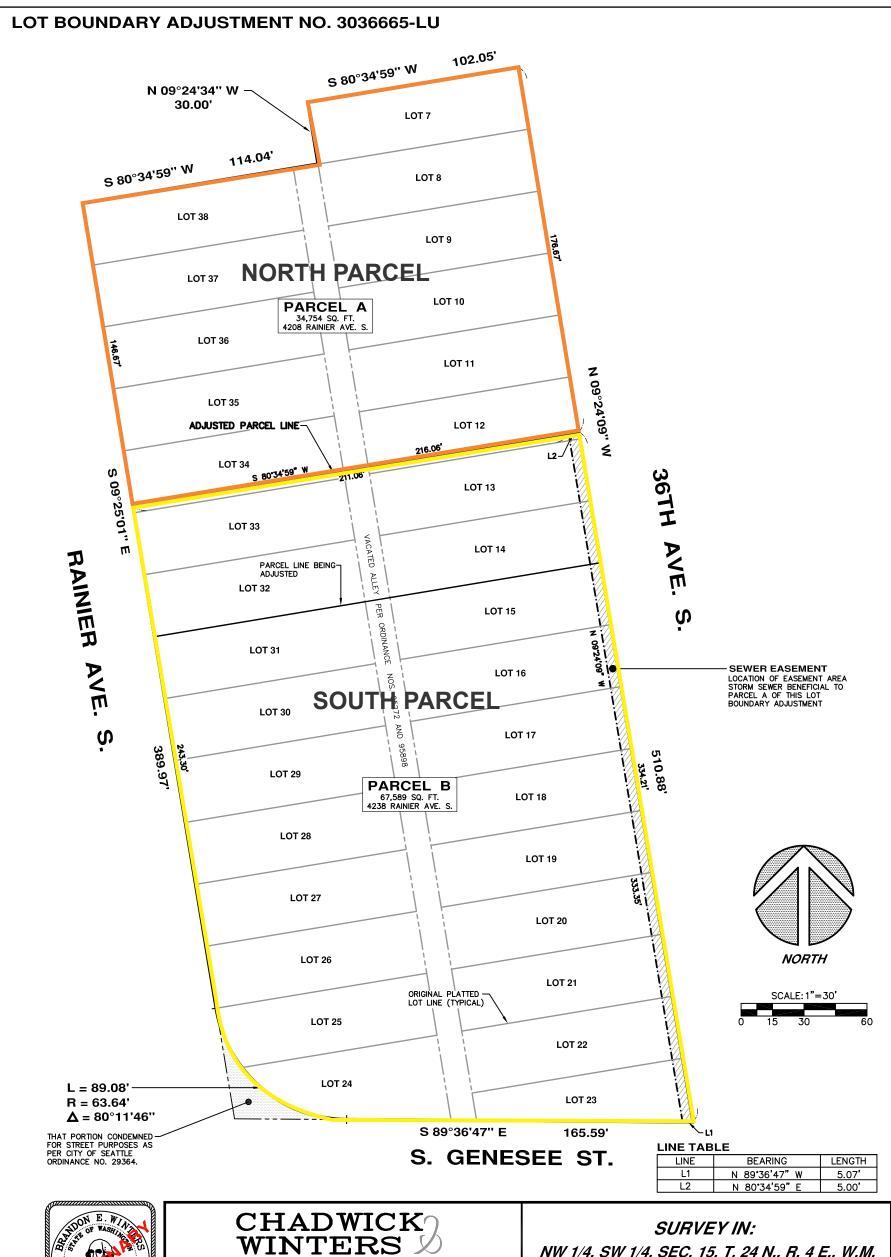


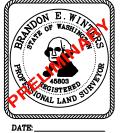





Notes:


- Y This exposure pathway is considered complete.
- **X** This exposure pathway is deemed incomplete (no exposure).
- **a** The occupao nal receptors include site visitors and site workers.
- **b** Ecological receptors are incomplete because the site qualifies for an exclusion under the Terrestrial Ecological Evalua on as specified in the criteria in the Washington Administra ve Code 173-340-7491.

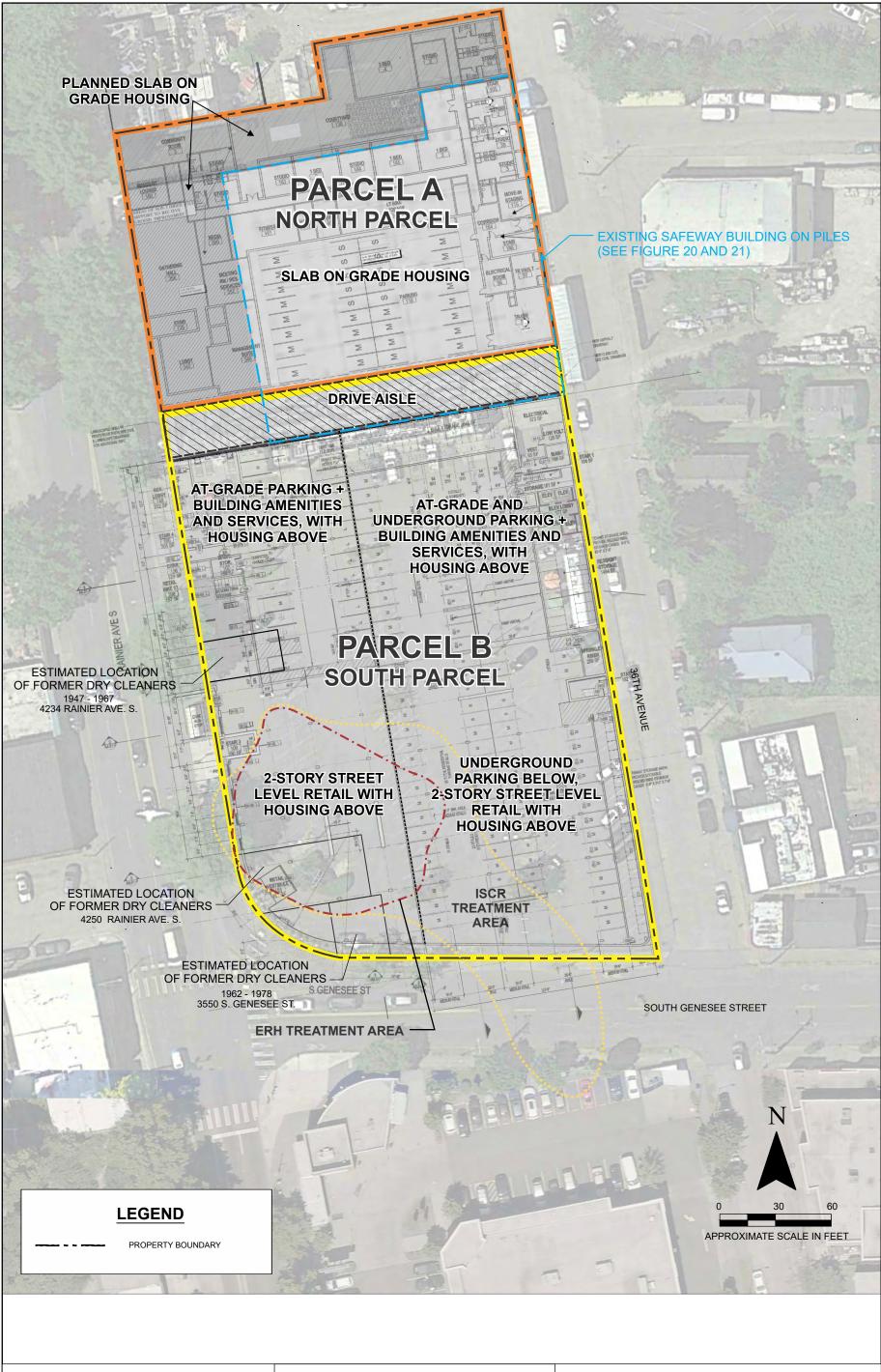




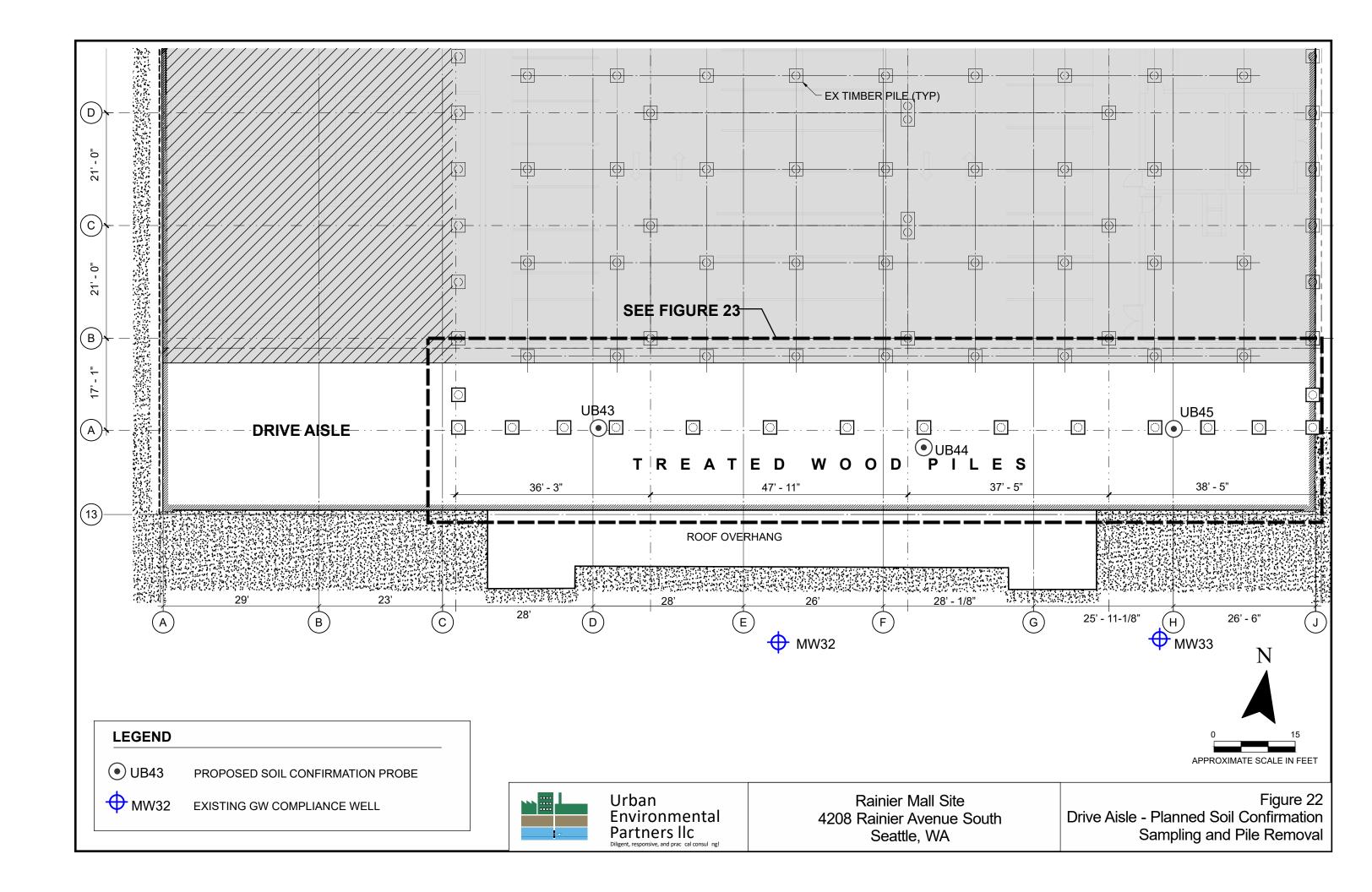
LAND SURVEYING AND MAPPING
1422 N.W. 85TH ST., SEATTLE, WA 98117
PHONE: 206.297.0996

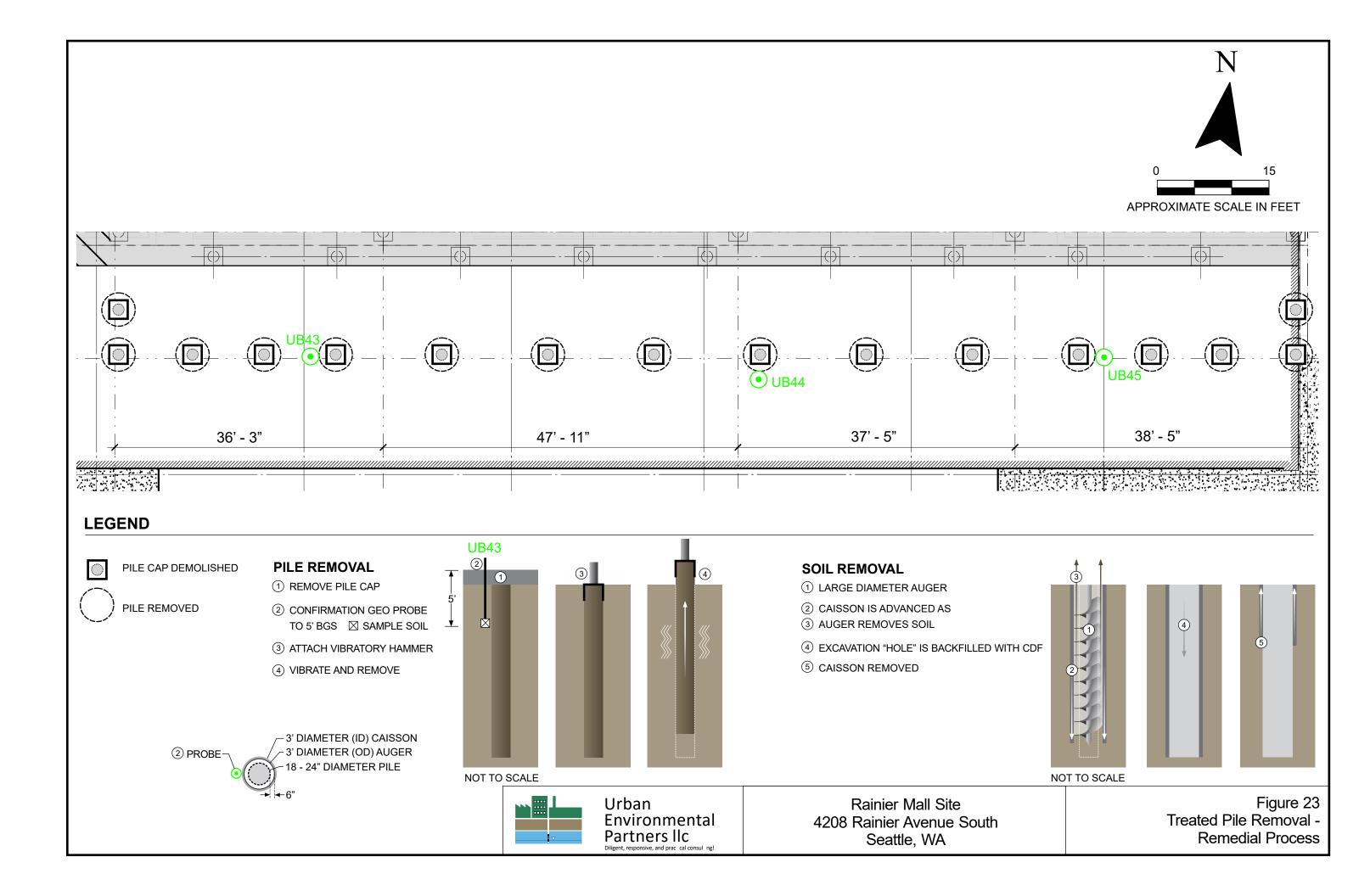
FAX: 206.297.0997
WEB: WWW.CHADWICKWINTERS.COM

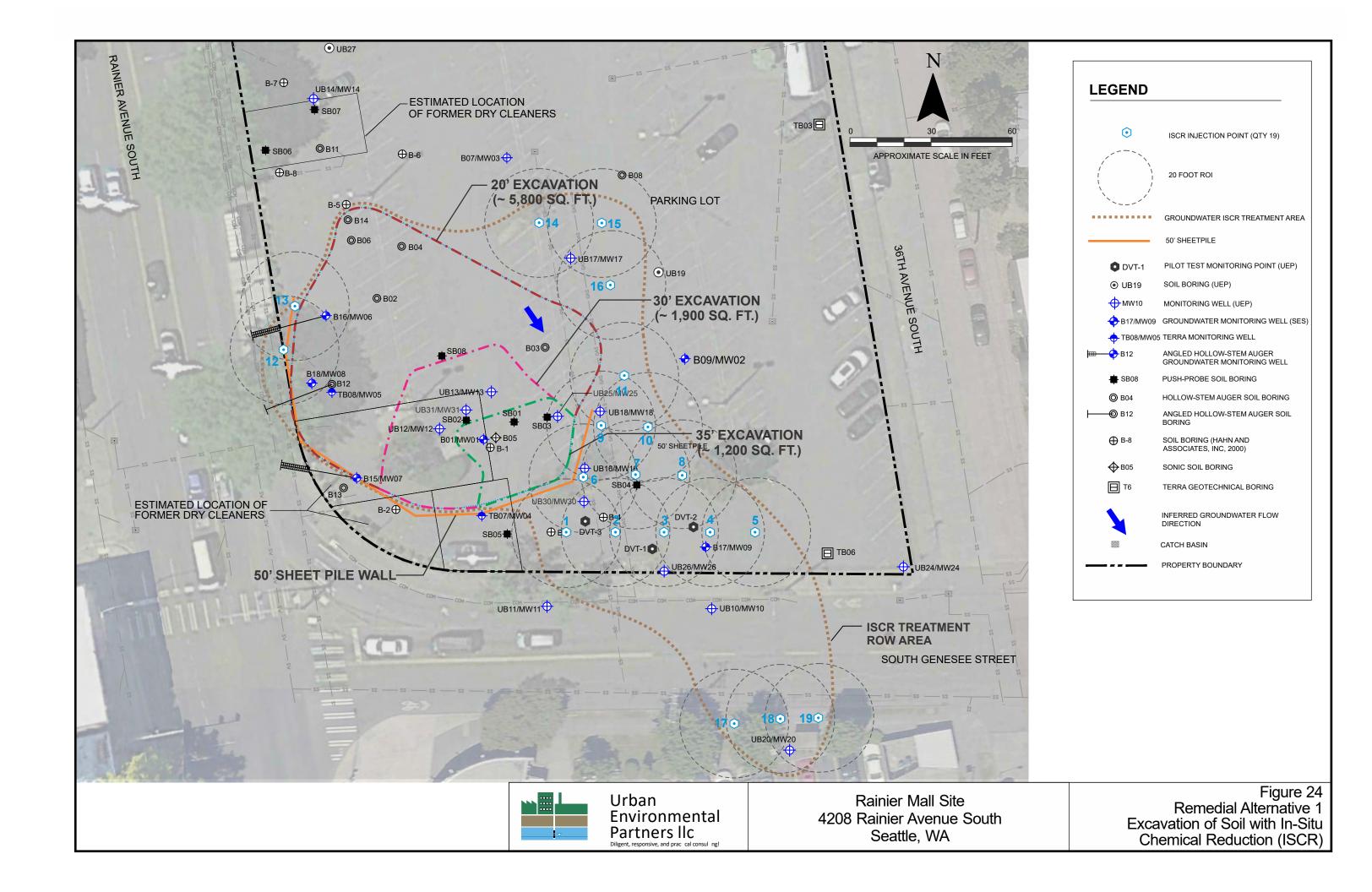
NW 1/4, SW 1/4, SEC. 15, T. 24 N., R. 4 E., W.M. KING COUNTY, WASHINGTON

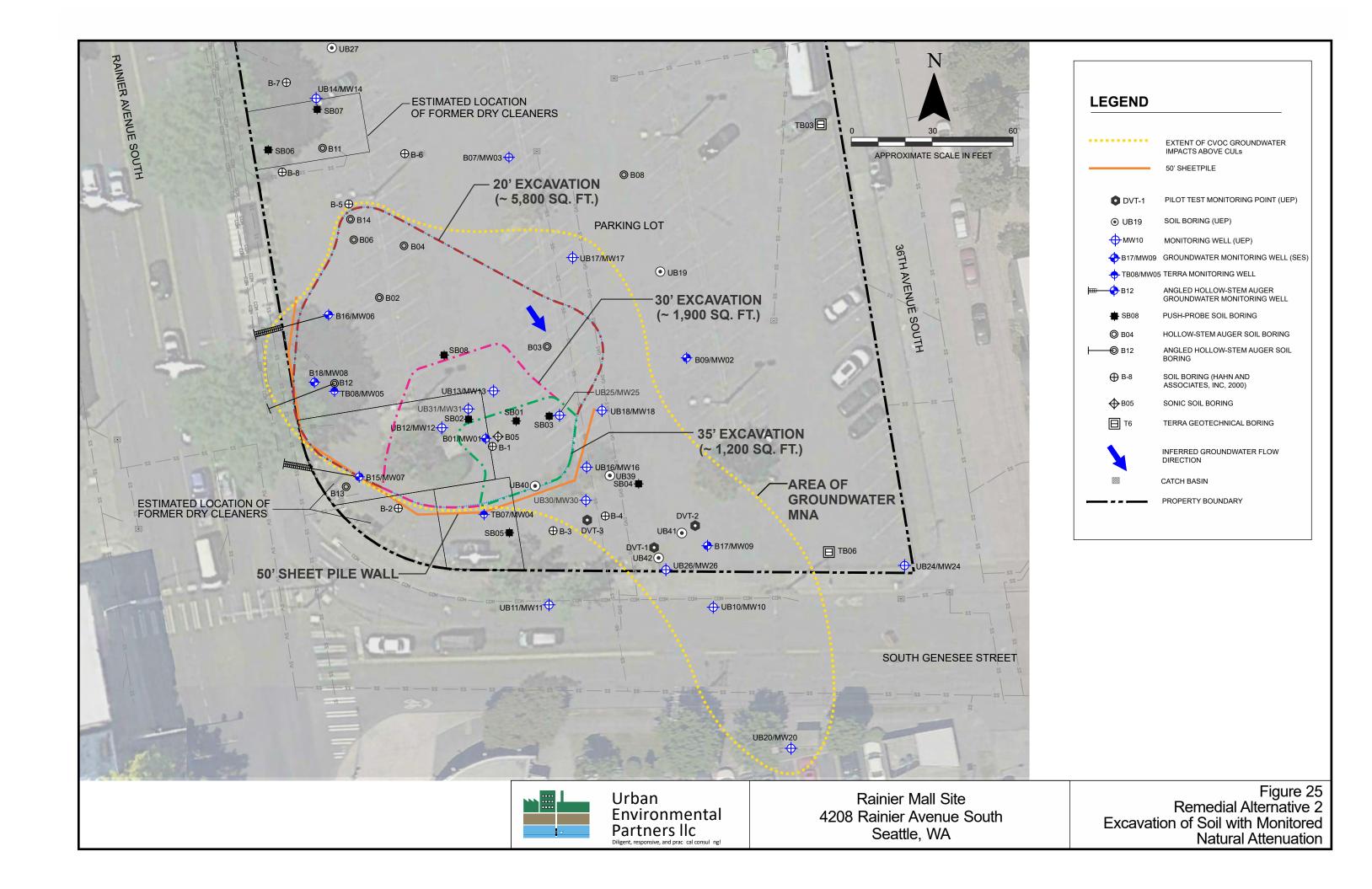

17-6015LBA-Y.DWG

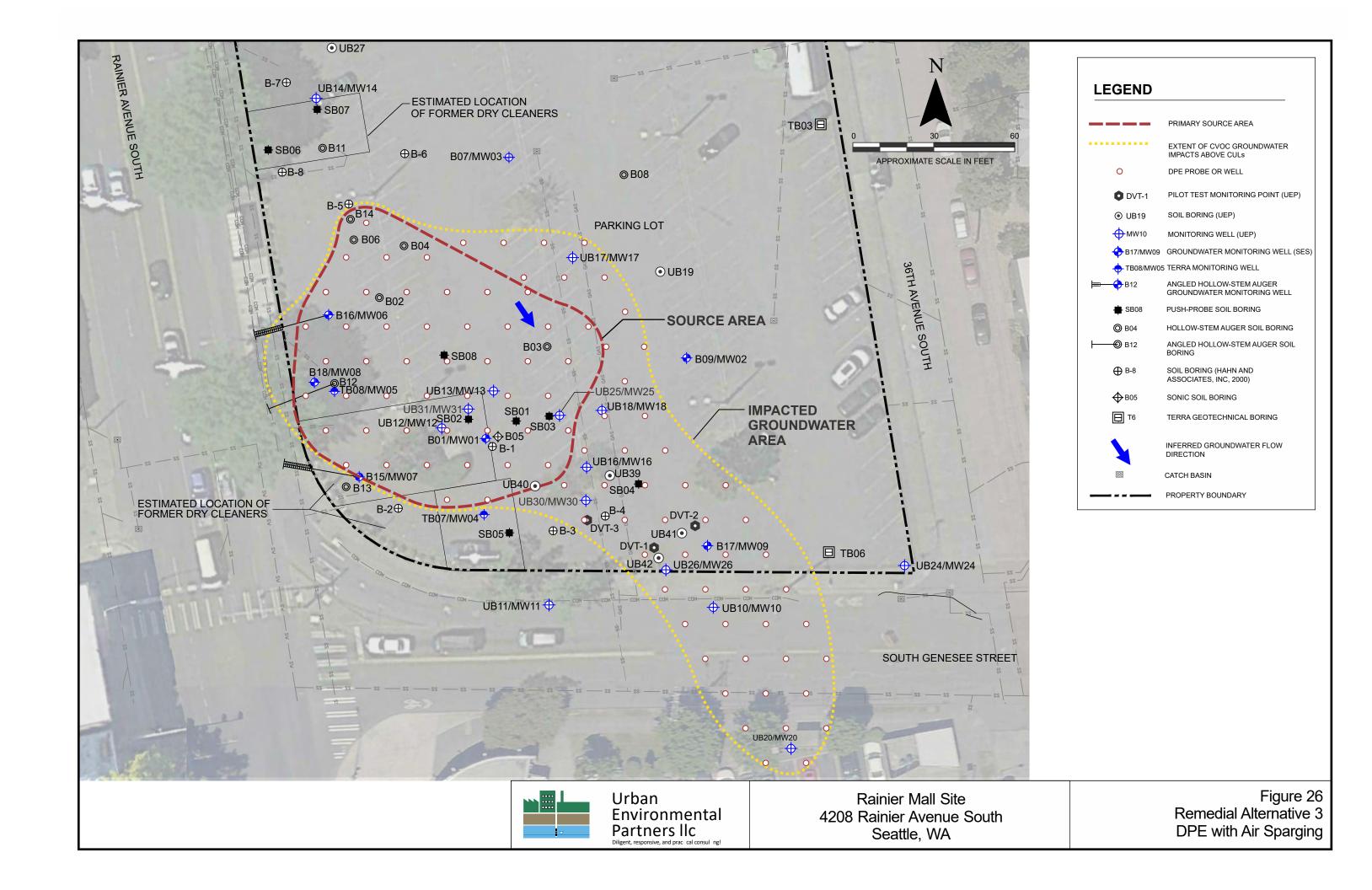
DRAWN BY: SAL	DATE: 07-10-2020	PROJECT #: 17-6015
CHK. BY: RHW	SCALE: 1" = 30'	SHEET: 4 OF 5

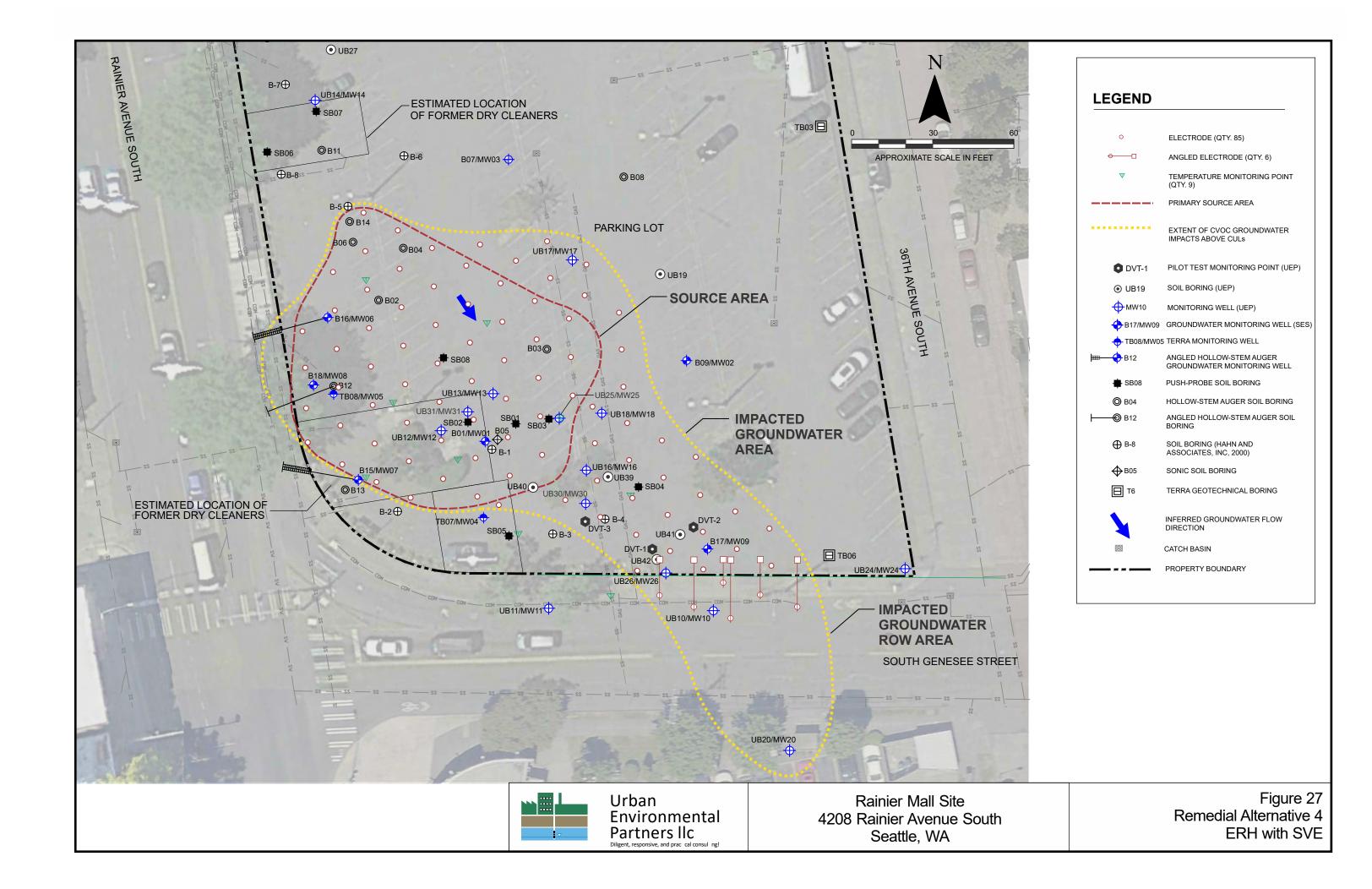



Rainier Mall Site 4208 Rainier Avenue South Seattle, WA


Figure 21A Adjusted Parcel & Easement Detail







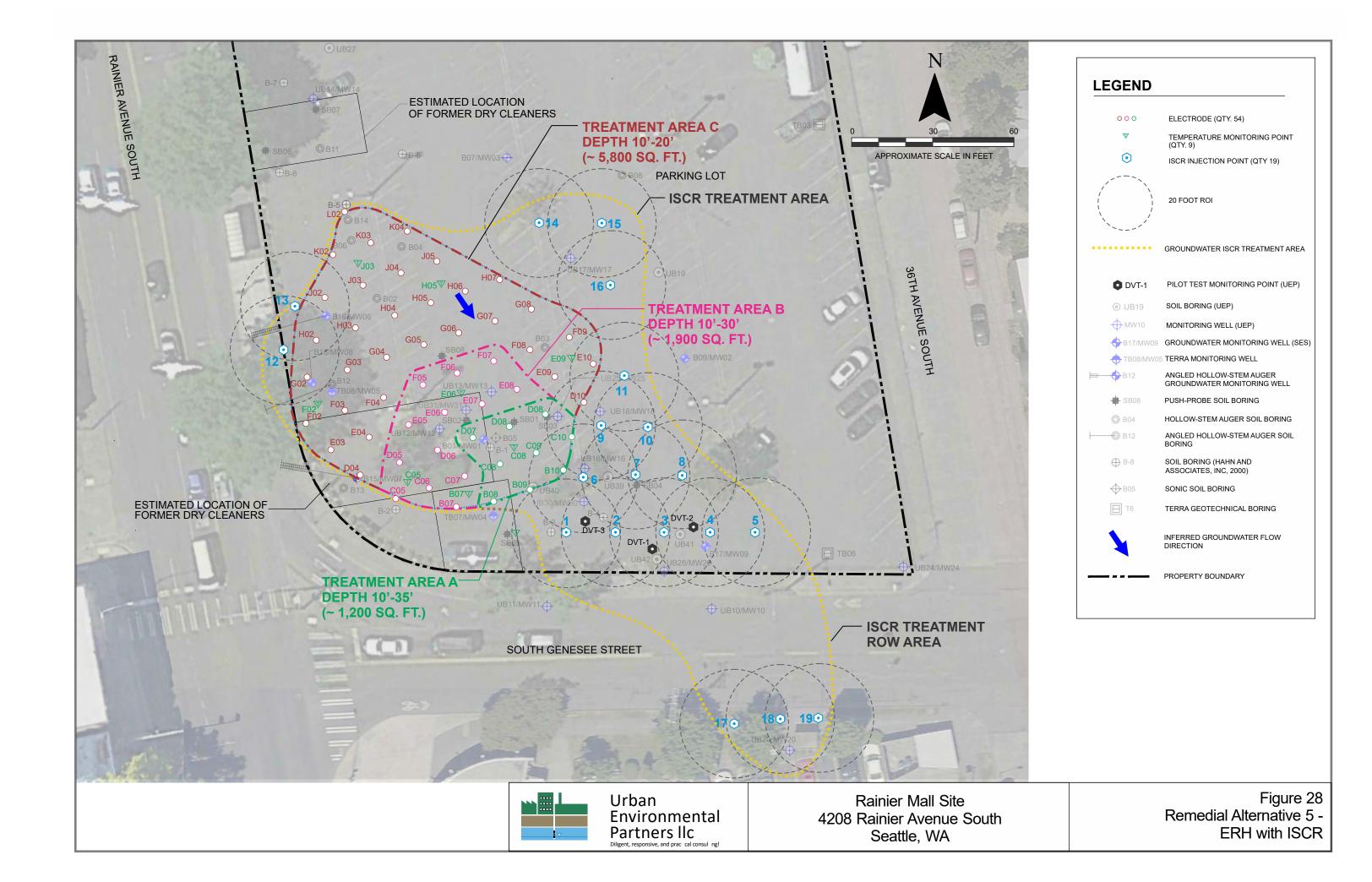


Exhibit B: Tables

		Sampled		Donth		Analytical Re	esults ¹ - Milligi	rams per Kilo	gram (mg/kg)
Boring ID	Sample ID	Sampled By	Date Sampled	Depth (ft/bgs)	PCE	TCE	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	VC
B-1	5015-000628-005	Hahn	6/28/2000	19.5	83.3	0.272	<0.005		<0.005	<0.01
B-3	5015-000628-018	Hahn	6/28/2000	4.5	<0.005	<0.005	<0.005		<0.005	<0.01
B-6	5015-000628-018	Hahn	6/28/2000	7	<0.005	<0.005	<0.005		<0.005	<0.01
B-8	5015-000629-039	Hahn	6/28/2000	4.5	<0.005	<0.005	<0.005		<0.005	<0.01
	SB01-5.0			5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB01-10.0			10	<0.025	<0.02	<0.05	<0.05		<0.05
SB01	SB01-20.0	SoundEarth	1/18/2017	20	2 9	0.31	<0.05	<0.05		<0.05
	SB01-22.5			22.5	1.8	<0.02	<0.05	<0.05		<0.05
	SB01-24.5			24.5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB02-5.0			5	<0.025	<0.02	<0.05	<0.05		<0.05
SB02	SB02-10.0	SoundEarth	1/18/2017	10	<0.025	<0.02	<0.05	<0.05		<0.05
	SB02-12.5		_,,	12.5	<0.025	<0.02	6.7	0.052		2.2
	SB02-16			16	4.1	2.2	1.1	<0.05		0.052
SB03	SB03-12.5	SoundEarth	1/18/2017	12.5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB03-16.0			16	<0.025	<0.02	<0.05	<0.05		<0.05
	SB04-5.0			5	<0.025	<0.02	<0.05	<0.05		<0.05
SB04	SB04-12.5	SoundEarth	1/18/2017	12.5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB04-16.0			16	<0.025	<0.02	<0.05	<0.05		<0.05
	SB05-5.0			5	<0.025	<0.02	<0.05	<0.05		<0.05
SB05	SB05-12.5	SoundEarth	1/18/2017	12.5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB05-16.0			16	<0.025	<0.02	<0.05	<0.05		<0.05
SB06	SB06-10.0	SoundEarth	1/18/2017	10	<0.025	<0.02	<0.05	<0.05		<0.05
	SB06-24.0		, -, -	24	<0.025	<0.02	<0.05	<0.05		<0.05
SB07	SB07-10.0	SoundEarth	1/18/2017	10	<0.025	<0.02	<0.05	<0.05		<0.05
	SB07-16.0			16	<0.025	<0.02	<0.05	<0.05		<0.05
SB08	SB08-5.0	SoundEarth	1/18/2017	5	<0.025	<0.02	<0.05	<0.05		<0.05
	SB08-10			10	<0.025	<0.02	<0.05	<0.05		<0.05
	SB08-12.5			12.5	<0.025	0.029	1.3	0.086		<0.05
	SB08-16.0 B01-12.5			16 12.5	7.1 <0.025	8.6 < 0.02	10 <0.05	0.056 <0.05		0.24 <0.05
	B01-12.5 B01-17.5			17.5	<0.025 58	0.45	<0.05	<0.05		<0.05
	B01-17.5	SoundEarth		20	510	0.43	<0.05	<0.05		<0.05
B01/MW01	B01-20		2/9/2017	22.5	20	0.33	<0.05	<0.05		<0.05
DOI/WWOI	B01-27.5	Journalartii	2/3/2017	27.5	0.40ht	0.23 0.073ht	<0.05 <0.05ht	<0.05		<0.05
	B01-32.5	-		32.5	0.31ht	<0.02ht	<0.05ht	<0.05ht		<0.05ht
	B01-35			35	0.049 ht	<0.02ht	<0.05ht	<0.05ht		<0.05ht
	B02-10			10.0	<0.025	<0.02	0.13	<0.05		<0.05
B02	B02-15	SoundEarth	2/9/2017	15.0	0.085	4.9	6.7	0.25		0.097
	B02-20			20.0	<0.025	<0.02	<0.05	<0.05		<0.05
	B03-12.5			12.5	<0.025	<0.02	<0.05	<0.05		<0.05
	B03-15			15.0	<0.025	<0.02	0.082	<0.05		<0.05
B03	B03-17.5	SoundEarth	2/9/2017	17.5	0.36	1.5	1.1	<0.05		<0.05
	B03-20			20.0	0.67	0.57	0.41	<0.05		<0.05
	B03-22.5			22.5	<0.025	<0.02	<0.05	<0.05		<0.05
	B04-10			10.0	<0.025	<0.02	<0.05	<0.05		<0.05
B04	B04-12.5	SoundEarth	2/9/2017	12.5	<0.025	0.10	0.79	0.12		<0.05
	B04-17.5			17.5	<0.025	<0.02	0.32	<0.05		<0.05
B05	B05-40	SoundEarth	3/22/2017	40.0	<0.025	<0.02	<0.05	<0.05		<0.05
TB01	TB01-15	SoundEarth	1/24/2018	15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
TB02	TB02-15	SoundEarth	1/24/2018	15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
TB05	TB05-05	SoundEarth	1/25/2018	5	<0.025	<0.02			<0.05	<0.05
	TB07-05			5	<0.025	<0.02	<0.05		<0.05	<0.05
TD07	TB07-15	Carrie 11	1/20/2003	15.0	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
TB07	TB07-20	SoundEarth	1/26/2018	20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	TB07-30			30	<0.025	<0.02	<0.05		<0.05	<0.05
	TB08-10			10.0	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	TB02-12.5			12.5	0.46	0.55	0.21		<0.05	<0.05
TB08	TB08-17.5	SoundEarth	1/26/2018	17.5	24	1.7	0.45		<0.05	<0.05
1608	TB08-20			20.0	2.0	0.17	0.06		<0.05	<0.05
		1	,			-			_	

		Sampled By	Date Sampled	Depth	Analytical Results ¹ - Milligrams per Kilogram (mg/kg)						
Boring ID	Sample ID			(ft/bgs)	PCE	TCE	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	VC	
	B06-12.5			12.5	<0.025	0.097	0.15		<0.05	<0.05	
ВО6	B06-15	County de County	1 /26 /2019	15	<0.025	0.19	0.47	<0.05	<0.05	<0.05	
	B06-20	SoundEarth	1/26/2018	20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B06-50	<u></u>		50	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
507	B07-12.5		1 /25 /2010	12.5	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
B07	B07-20	SoundEarth	1/25/2018	20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
DOO	B08-15	 	4 /25 /2040	15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
B08	B08-20	SoundEarth	1/25/2018	20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B09-17.5		. /0= /00.0	17.5	<0.025	<0.02	<0.05		<0.05	<0.05	
B09	B09-20	SoundEarth	1/25/2018	20	<0.025	<0.02	<0.05		<0.05	<0.05	
B10	B10-2.5	SoundEarth	1/26/2018	2.5	<0.025	<0.02			<0.05	<0.05	
B11	B11-15	SoundEarth	1/26/2018	15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B12-10.5			10.5–11.5	1.2	3.1	0.88	<0.05	<0.05	<0.05	
•	B12-14	1		14–15	0.097	0.023	<0.05	<0.05	<0.05	<0.05	
B12	B12-17	SoundEarth	2/7/2018	17–18	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B12-20			20–21	<0.025	<0.02	<0.05		<0.05	<0.05	
B13	B13-15	SoundEarth	2/7/2018	15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
B14	B14-15	SoundEarth	2/7/2018	15	<0.025	0.13	0.40	<0.05	<0.05	<0.05	
DIT	B15-11	SoundEarth	2,7,2010	10.5–11.5	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B15-11 B15-14	=		14–15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
B15	B15-14 B15-17	SoundEarth	10/1/2018	17–18		<0.02	<0.05	<0.05	<0.05	<0.05	
	B15-17	-		20–21	<0.025		<0.05	<0.05	<0.05	<0.05	
					<0.025	<0.02			-		
	B16-11	=		10.5–11.5	<0.025	0.072	<0.05	<0.05	<0.05	<0.05	
B16	B16-14	SoundEarth	10/1/2018	14–15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B16-17			17–18	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B16-20	SoundEarth		20–21	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B17-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
B17	B17-17.5		10/2/2018	17.5	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B17-20			20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	B18-10	_		10	<0.025	<0.02	0.51	<0.05	<0.05	<0.05	
	B18-12.5	SoundEarth		12.5	2.1	1.7	0.93	<0.05	<0.05	<0.05	
B18	B18-15		10/2/2018	15	1.8	0.43	0.38	<0.05	<0.05	<0.05	
	B18-17.5			17.5	0.085	0.030	<0.05	<0.05	<0.05	<0.05	
	B18-20			20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB10-10	_		10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB10-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB10	UB10-18	UEP	4/20/2019	18	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
0010	UB10-20			20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB10-25			25	<0.025	0.049	<0.05	<0.05	<0.05	<0.05	
	UB10-28			28	0.11	0.083	<0.05	<0.05	<0.05	<0.05	
	UB11-13			13	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB11-15]		15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB11	UB11-20	UEP	4/20/2019	20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB11-25			25	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB11-28	<u>L</u>		28	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB12-5			5	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB12-14			14	<0.02	0.29	2.06	<0.02	<0.05	0.34	
UB12 (CD02A)	UB12-22	UEP	3/4/2020	22	16.6	0.33	0.17	<0.02	<0.05	<0.02	
(CDUZA)	UB12-37	1		37	0.16	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB12-46	1		46	0.028	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB13-4			4	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB13-9	1		9	0.25	<0.02	33	0.21	<0.05	1.8	
UB13 (CD08)	UB13-23	UEP	3/5/2020	23	143	1.8	0.16	<0.02	<0.05	0.033	
ŀ	UB13-43	1		43	0.39	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB14-5			5	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
UB14 (CD06)	UB14-5	UEP	3/5/2020	7	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
2514 (CD00)		-	3, 3, 2020	20		<0.02					
	UB14-20	<u></u>		20	<0.02	₹0.02	<0.02	<0.02	<0.05	<0.02	

	Sample ID	Sampled	Date Sampled	Depth	Analytical Results ¹ - Milligrams per Kilogram (mg/kg)						
Boring ID		Ву		(ft/bgs)	PCE	TCE	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	VC	
UB15	UB15-6		2/5/2020	6	2.2	<0.02	<0.02	<0.02	<0.05	<0.02	
(CD10A)	UB15-20	UEP	3/5/2020	20	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB16-6			6	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
UB16	UB16-14	UEP	3/4/2020	14	0.028	<0.02	<0.02	<0.02	<0.05	<0.02	
(CD02B)	UB16-29			29	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB17-3			3	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
UB17	UB17-11	UEP	3/5/2020	11	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
(CD05B)	UB17-24	1		24	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB18-3			3	<0.02	<0.02	0.022	<0.02	<0.05	<0.02	
	UB18-12	1		12	0.027	<0.02	<0.02	<0.02	<0.05	<0.02	
UB18 (CD03)	UB18-24	UEP	3/5/2020	24	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB18-30			30	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
UB19	UB19-24	UEP	3/5/2020	24	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
	UB20-25		5,5,2525	25	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	
UB20	UB20-30	UEP	3/12/2020	30	0.047	0.51	0.36	<0.02	<0.05	<0.02	
	UB20-35	1		35	0.09	0.27	0.083	<0.02	<0.05	<0.02	
	UB21-25			25	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB21	UB21-30	UEP	4/7/2020	30	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
0022	UB21-34	-	., , , , = = = =	34	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB22	UB22-25	UEP	4/7/2020	25	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
OBZZ	UB23-25	OLI	4,7,2020	25	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB23	UB23-30	UEP	4/7/2020	30	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
0523	UB23-33	- UEP		33	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB25-27	UEP - UEP	4/10/2020	27	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB25	UB25-35			35			<0.05	<0.05	<0.05		
	UB25-45			45	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05 <0.05	
	UB26-30			30	1.1	0.21	<0.05	<0.05	<0.05	<0.05	
	UB26-35			35	0.31	0.43	0.14	<0.05	<0.05	<0.05	
UB26	UB26-40		4/10/2020	40	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
				-							
	UB26-45	UEP		45	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB27	UB27-6		4/10/2020	6	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB27-12			12	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB28	UB28-6	UEP	4/10/2020	6	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB28-11			11	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB29	UB29-6	UEP	4/10/2020	6	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB29-11			11	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB30-12	_		12	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB30-23	4		23	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB30-24	-		24	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB30-26	-		26	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
UB30	UB30-30	UEP	5/15/2020	30	1.3	0.20	<0.05	<0.05	<0.05	<0.05	
	UB30-31	-		31	0.13	0.030	<0.05	<0.05	<0.05	<0.05	
	UB30-34	4		34	0.56	0.10	<0.05	<0.05	<0.05	<0.05	
	UB30-35			35	0.50	0.17	<0.05	<0.05	<0.05	<0.05	
	UB30-38			38	0.035	0.024	<0.05	<0.05	<0.05	<0.05	
	UB30-39			39	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB31-24			24	9.6	0.084	<0.05	<0.05	<0.05	<0.05	
	UB31-26			26	2.4	0.39	0.073	<0.05	<0.05	<0.05	
	UB31-28			28	0.23	0.04	<0.05	<0.05	<0.05	<0.05	
UB31	UB31-31	UEP	5/15/2020	31	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB31-32	1	. ,	32	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB31-35	4		35	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB31-37	_		37	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	
	UB31-43			43	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	

		ID Sampled By	Date Sampled	Depth (ft/bgs)	Analytical Results ¹ - Milligrams per Kilogram (mg/kg)					
Boring ID	Sample ID				PCE	TCE	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	VC
UB39	UB39-33	UEP	10/28/2020	33	0.14	0.076	<0.05	<0.05	<0.05	<0.05
UB40	UB40-30	UEP	10/28/2020	30	0.67	0.11	<0.05	<0.05	<0.05	<0.05
0640	UB40-33.5	UEP	10/28/2020	33.5	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
UB41	UB41-33	UEP	10/29/2020	33	0.32	0.28	0.085	<0.05	<0.05	<0.05
UB42	UB42-33	UEP	10/29/2020	33	0.43	0.17	<0.05	<0.05	<0.05	<0.05
Ecology MTCA Method A Cleanup Levels ² Unless Otherwise Specified				0.05	0.03	160 ³	1,600 ³	4,000 ³	0.67 ⁴	

Notes:

Red denotes concentration exceeding MTCA cleanup level.

0.39 = Sample results was determined to be anomalous due to potential laboratory column bleed; see section 2.5.14.

< = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).(1) Analyzed by EPA Method 8260C or 8260D.

(2) MTCA Cleanup Regulation, Chapter 173-340 of WAC, Table 740-1 Method A Cleanup Levels for Soil, revised 2013.

(3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC Soil, Method B Noncancer, Direct Contact, CLARC Website: https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
(4) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC Soil, Method B Cancer, Direct Contact, CLARC Website: https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

-- = not analyzed/not applicable

bgs = below grade surface
UEP = Urban Environmental

Partners Ilc WAC = Washington Administrative Code

EPA = U.S. Environmental Protection Agency cVOCs: Chlorinated Volatile

Organic Compounds

PCE = tetrachloroethylene
TCE = trichloroethylene
DCE = dichloroethylene
VC = Vinyl Chloride MTCA = Washington Model

Toxics Control Act.

Table 2 Soil Analytical Results for Petroleum Hydrocarbons and Select VOCs 4208 Rainier Ave South, Seattle

		Sampled		Depth		Analy	tical Result	s - Milligran	ns per Kilog	gram (mg/kg)	
Boring ID	Sample ID	Ву	Date Sampled	(ft/bgs)	GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Total Xylenes
TB01	TB01-15	SoundEarth	1/24/2018	15	15	110 x	<250				
TB02	TB02-15	SoundEarth	1/24/2018	15	<5	<50	<250				
TB05	TB05-05	SoundEarth	1/24/2018	5	<5	190 x	5,100				
	UB12-5			5	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB12-14	1		14	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB12 (CD02A)	UB12-22	UEP	3/4/2020	22	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB12-37			37	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB12-46	1		46	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB13-4			4	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB13-9		0 /5 /0000	9	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB13 (CD08)	UB13-23	UEP	3/5/2020	23	160*	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB13-43	1		43	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB14-5			5	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB14 (CD06)	UB14-7	UEP	3/5/2020	7	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB14-20			20	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB15-6		- /- /	6	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB15 (CD10A)	UB15-20	UEP	3/5/2020	20	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB16-6			6	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB16 (CD02B)	UB16-14	UEP	3/4/2020	14	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB16-29			29	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB17-3			3	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB17 (CD05B)	UB17-11	UEP	3/5/2020	11	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB17-24	1		24	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB18-3			3	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB18-12	i	- 4- 4	12	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
UB18 (CD03)	UB18-24	UEP	3/5/2020	24	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB18-30			30	<10	<50	<250	<0.02	<0.10	<0.03	<0.15
	UB43-3			3		<50	<250				
UB34	UB34-7	UEP	6/3/2020	7		<50	<250				
	UB34-13	1		13		<50	<250				
	UB35-4			4		<50	<250				
UB35	UB35-10	UEP	6/3/2020	10		<50	<250				
	UB35-14	1		14		<50	<250				
Ecology MT(CA Method A	A Cleanup Le Specified	vels ¹ Unless Oth	erwise	100/30 ^{2,3}	2,000 ⁴	2,000 ⁴	0.03 ⁵	7 ⁵	6 ⁵	9 ⁵

Notes:

Red denotes concentration exceeding MTCA cleanup level.

- < = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).
 (1) MTCA Cleanup Regulation, Chapter 173-340 of WAC, Table 740-1
- Method A Cleanup Levels for Soil, revised 2013.
- (2) Analyzed by Method NWTPH-Gx or NWTPH-HCID.
- (3) The GRPH CUL is 30 mg/kg when benzene is present, or 100 mg/kg without benzene
- (4) Analyzed by Method NWTPH-Dx or NWTPH-HCID (5) Analyzed by EPA Method 8021B, 8260C, or 8260D.

<u>Laboratory Notes:</u>

- x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- * = The gasoline range value consists of a chlorinated compound with elevated concentrations.

--= not analyzed/not applicable
bgs = below grade surface
NWTPH = Northwest Total
Petroleum Hydrocarbon
WAC = Washington Administrative
Code
EPA = U.S. Environmental
Protection Agency
GRPH = Gasoline-Range Petroleum
Hydrocarbons
DRPH = Diesel-Range Petroleum

ORPH = Oil-Range Petroleum

Hydrocarbons

Table 3 Soil Analytical Results for Total Metals 4208 Rainier Ave South, Seattle

				Depth		Anal	lytical Resul	ts ¹ - Milligrar	ms per Ki	logram (mg	g/kg)	
Boring ID	Sample ID	Sampled By	Date Sampled	(ft/bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
TB01	TB01-05	SoundEarth	1/24/2018	5	2.54		<1	18.8	4.82	<1		
TB03	TB03-05	SoundEarth	1/24/2018	5	2.39		<1	28.2	4.26	<1	1	
TB04	TB04-05	SoundEarth	1/24/2018	5	1.79		<1	12.1	8.10	<1		
B06	B06-05	SoundEarth	1/24/2018	5	6.73		<1	18.0	8.81	<1	-	
B09	B09-05	SoundEarth	1/24/2018	5	3.17		<1	26.8	4.06	<1	-	
Ecology N	ITCA Method	l A Cleanup Le Specified	evels ² Unless Oth	ierwise	20	16,000 ³	2	2,000	250	2	400 ³	400 ³

Notes:

Red denotes concentration exceeding MTCA cleanup level.

- < = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).</p>
- (1) Samples analyzed by EPA Method 6020A.
- (2) MTCA Cleanup Regulation, Chapter 173-340 of WAC, Table 740-1 Method A Cleanup Levels for Soil, revised 2013.
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Noncancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

-- = not analyzed/not applicable bgs = below grade surface WAC = Washington Administrative Code EPA = U.S. Environmental Protection Agency MTCA = Washington Model Toxics Control Act. SoundEarth = SoundEarth Strategies, Inc.

Table 4 Soil Analytical Results for PAHs 4208 Rainier Ave South, Seattle

		Sampled	Date	Depth			Analytical Resu	lts ¹ - Milligrams	per Kilogram (ı	mg/kg)		Total Toxicity
Boring ID	Sample ID	Ву	Sampled	(ft/bgs)	Benzo(a)- anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Indeno(1,2,3cd)- pyrene	Dibenzo(a,h)- anthracene	Equivalency Concentration ²
TB01	TB01-05	SoundEarth	1/24/2018	5	<0.02	<0.02	<0.1	<0.2	<0.2	<0.2	<0.2	ND
TB03	TB03-05	SoundEarth	1/24/2018	5	<0.02	<0.02	<0.1	<0.2	<0.2	<0.2	<0.2	ND
В09	B09-05	SoundEarth	1/24/2018	5	0.015	0.028	0.022	0.031	0.012	<0.010	<0.010	0.029
NA	Pile1-3"	UEP	4/27/2020	2	0.20	0.17	0.21	0.23	0.068	0.090	0.025	0.273
NA	Pile1-6"	UEP	4/27/2020	2	<0.01	<0.01	<0.01	0.012	<0.01	<0.01	<0.01	0.0083
NA	Pile1-12"	UEP	4/27/2020	2	<0.01	0.021	0.060	0.010	0.020	0.026	<0.01	0.0668
NA	Piles-Middle	UEP	4/27/2020	2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	ND
UB32	UB32-13	UEP	6/3/2020	13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	ND
UB33	UB32-12	UEP	3/3/2020	12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	ND
Ecology M	TCA Method A	A Cleanup Le Specified	vels ³ Unless O	therwise			0.1					0.1

Notes:

Red denotes concentration exceeding MTCA cleanup level.
< or ND = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).

- (1) Samples analyzed by GC/MS-SIM or EPA Method 8270D.
- (2) Calculated Using Toxicity Equivalency Methodology in WAC 173-340-708(e)
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, Table 740-1 Method A Cleanup Levels for Soil, revised 2013.

--= not analyzed/not applicable bgs = below grade surface WAC = Washington Administrative Code EPA = U.S. Environmental Protection Agency MTCA = Washington Model Toxics Control Act. SoundEarth = SoundEarth Strategies, Inc. UEP = Urban Environmental Partners

Table 5 Groundwater Analytical Results for cVOCs 4208 Rainier Ave South, Seattle

					Analy	tical Results	- Micrograms pe	er Liter (µg	/L)
Boring/Well ID	Sample ID	Sampled By	Date Sampled	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	VC
B-1	B-1 (29-32)	Hahn	6/28/2000	1,980	288	25.7		<1.0	<1.2
B-3	B-3 (27-30)	Hahn	6/28/2000	<1.0	<1.0	1.8		<1.0	<1.2
B-4	B-4 (27-30)	Hahn	6/28/2000	3,800	1,100	40.8		2.94	4.37
B-5	B-5 (23-36)	Hahn	6/29/2000	<1.0	<1.0	<1.0		<1.0	<1.2
B-7	B-7 (23-26)	Hahn	6/29/2000	1.25	<1.0	<1.0		<1.0	<1.2
	MW01-20180102	SoundEarth	1/2/2018	8,700	<500	<500	<500	<500	<100
MW01	MW1-20200313	UEP	3/13/2020	16,400	3,820	3,460	37	2.4	499
	MW01-20200827	UEP	8/27/2020	14,000	1,900	1,800	28	2.0	150
	MW02-20180129	SoundEarth	1/29/2018	<1	<1	7.1	<1	<1	0.33
	MW2-20200312	UEP	3/12/2020	<1	0.94	11	<1	<0.5	<0.2
MW02	MW02-20200826	UEP	8/26/2020	<1	<1	9.8	<1	<1	0.33
	MW02-PDB20200826	UEP	8/26/2020	<1	<1	8.9	<1	<1	0.47
	MW03-20180129	SoundEarth	1/29/2018	<1	<1	<1	<1	<1	<0.2
	MW3-20200312	UEP	3/12/2020	<1	<0.4	<1	<1	<0.5	<0.2
MW03	MW03-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
ļ	MW03-PDB20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
	MW04-20180129	SoundEarth	1/29/2018	<1	<1	<1	<1	<1	<0.2
	MW4-20200312	UEP	3/12/2020	<1	<0.4	<1	<1	<0.5	<0.2
MW04	MW04-20200827	UEP	8/27/2020	<1	<1	<1	<1	<1	<0.2
	MW04-PDB20200827	UEP	8/27/2020	<1	<1	<1	<1	<1	<0.2
	MW05-20180129	SoundEarth	1/29/2018	35,000	6,600	2,600	27	2.9	240
MW05	MW5-20200312	UEP	3/12/2020	38,900	19,800	12,200	122	8.0	138
	MW05-20200828	UEP	8/28/2020	15,000	10,000	5,800	140	<100	220
	MW06-20181005	SoundEarth	10/5/2018	<1	2.4	3.5	<1	<1	<0.2
MW06	MW6-20200312	UEP	3/12/2020	5.7	11	13	<1	<0.5	0.66
	MW06-20200827	UEP	8/27/2020	3.5	5.7	8.9	<1	<1	0.34
	MW07-20181005	SoundEarth	10/5/2018	<1	<1	<1	<1	<1	<0.2
MW07	MW7-20200312	UEP	3/12/2020	<1	<0.4	<1	<1	<0.5	<0.2
	MW07-20200827	UEP	8/27/2020	<1	<1	<1	<1	<1	<0.2
	MW08-20181005	SoundEarth	10/5/2018	560	320	390	2.0	<1	16
MW08	MW8-20200312	UEP	3/12/2020	1,200	510	420	3.1	<0.5	13
	MW08-20200828	UEP	8/28/2020	400	220	200	<5	<5	9.3
	MW09-20181005	SoundEarth	10/5/2018	20	59	36	<1	<1	1.7
	MW9	UEP	4/21/2019	38	110	93	1.2	<1	7.4
ł	MW9-20200312	UEP	3/12/2020	300	740	1,030	11	<0.5	12
MW09	MW9-04142020	UEP	4/14/2020	350	460	370	2.8	<0.5	5
	MW09-20200515	UEP	5/15/2020	99	87	48	<1	<0.5	0.47
ŀ	MW09-20200826	UEP	8/26/2020	530	300	590	<10	<10	9.9
	MW09-20201207	UEP	12/7/2020	110	140	990	<10	<10	39
	MW10	UEP	4/21/2019	41	54	22	<1	<1	0.24
ŀ	MW10-20200312	UEP	3/12/2020	<1	<0.4	<1	<1	<0.5	<0.2
ŀ	MW10-04142020	UEP	4/14/2020	<1	<1	<1	<1	<0.5	<0.2
MW10	MW10-04142020b	UEP	4/14/2020	<1	<1	<1	<1	<0.5	<0.2
ŀ	MW10-041420205	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
ŀ	MW10-DB-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
	MW11	UEP	4/21/2019	<1	<1	<1	<1	<1	<0.2
ŀ	MW11-04142020	UEP	4/21/2019	<1	<1	<1	<1	<1	<0.2
MW11	MW11-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
ŀ	MW11-DB-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
LID43 /CD334 \ /	MW12-20200826	UEP	3/13/2020		45		<1	<0.5	4.1
UB12 (CD02A) / MW12				1,030		13			
,	MW12-20200827	UEP	8/27/2020	17 25 200	2.190	26	<1	<1	1.4
UB13 (CD08) /	UB13W-23	UEP	3/5/2020	25,300	3,180	1,353	<1	<0.5	<0.2
MW13	MW13-20200313	UEP	3/13/2020	2,190	5,580	1,160	3.3	22	76

Table 5 Groundwater Analytical Results for cVOCs 4208 Rainier Ave South, Seattle

					Analy	tical Results	- Micrograms pe	er Liter (μg/	/L)
Boring/Well ID	Sample ID	Sampled By	Date Sampled	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	vc
UB14 (CD06) /	MW14-20200305	UEP	3/5/2020	<1	<0.4	<1	<1	<0.5	<0.2
MW14	MW14-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
UB15 (CD10A) /	MW15-20200312	UEP	3/12/2020	<1	<0.4	<1	<1	<0.5	<0.2
MW15	MW15-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
LID46 (6D02D) /	MW16-20200304	UEP	3/4/2020	4,590	744	536	<1	<0.5	58.6
UB16 (CD02B) / MW16	MW16-20200312	UEP	3/12/2020	12	2.2	1.0	<1	<0.5	<0.2
20	MW16-20200827	UEP	8/27/2020	<1	<1	<1	<1	<1	<0.2
	MW17-20200305	UEP	3/5/2020	<1	<0.4	166	<1	<0.5	<0.2
UB17 (CD05B) / MW17	MW17-20200312	UEP	3/12/2020	1.4	0.47	95	<1	<0.5	1.0
10100 17	MW17-20200826	UEP	8/26/2020	<1	<1	190	<1	<1	0.83
	UB18W-24	UEP	3/5/2020	11.2	17.2	33.4	<1	<0.5	<0.2
UB18 (CD03) / MW18	MW18-20200312	UEP	3/12/2020	2.8	68	97	3.5	1.3	2.8
IVIVVIO	MW18-20200826	UEP	8/26/2020	1.8	54	60	2.1	<1	1.5
UB19	UB19W-25	UEP	3/5/2020	<1	<0.4	3.0	<1	<0.5	<0.2
	MW20-20200312*	UEP	3/13/2020	2.0	38	55	<1	<0.5	0.20
	MW20-04102020	UEP	4/10/2020	<1	<1	3.8	<1	<1	<0.2
UB20/MW20	MW20-20200828	UEP	8/28/2020	<1	2.7	36	<1	<1	<0.2
	MW20-DB-20200828	UEP	8/28/2020	<1	<1	<1	<1	<1	<0.2
	MW21-04102020	UEP	4/10/2020	<1	<1	<1	<1	<1	<0.2
UB21/MW21	MW21-20200828	UEP	8/28/2020	<1	<1	<1	<1	<1	<0.2
	MW22-04102020	UEP	4/10/2020	<1	<1	<1	<1	<1	<0.2
UB22/MW22	MW22-20200828	UEP	8/28/2020	<1	<1	<1	<1	<1	<0.2
	MW23-04102020	UEP	4/10/2020	<1	<1	<1	<1	<1	<0.2
UB23/MW23	MW23-20200828	UEP	8/28/2020	<1	<1	<1	<1	<1	<0.2
	MW24-04102020	UEP	4/10/2020	<1	<1	<1	<1	<1	<0.2
UB24/MW24	MW24-20200826	UEP	8/26/2020	<1	<1	<1	<1	<1	<0.2
	MW25-04142020	UEP	4/14/2020	5,200	1,900	1,500	17	2.7	140
	MW25-20200827	UEP	8/27/2020	980	770	980	3.5	<1	8.7
UB25/MW25	MW25-PDB20200827	UEP	8/27/2020	830	750	810	2.6	1.2	1.7
	MW25-PDB2-20200827	UEP	8/27/2020	680	670	1,100	<10	<10	2.2
	MW26-04142020	UEP	4/14/2020	52	68	8.1	<1	<1	0.27
UB26/MW26	MW26-20200826	UEP	8/26/2020	720	490	130	1.1	<1	7.80
•	MW26-20201207	UEP	12/7/2020	<1	5.1	170	<1	<1	3.7
	MW-30	UEP	5/23/2020	1,500	410	250	<100	<100	30
	MW30-20200827	UEP	8/27/2020	4,400	850	540	<10	<10	53
UB30/MW30	MW30-PDB20200827	UEP	8/27/2020	6,400	1,200	740	10	1.1	69
	MW30-20201207	UEP	12/7/2020	1.1	<1	4.8	<1	<1	3.6
	MW-31	UEP	5/23/2020	120,000	22,000	15,000	120	11	1,300
UB31/MW31	MW31-20200827	UEP	8/27/2020	120,000	23,000	24,000	<1,000	<1,000	1,900
	MW31-PDB20200827	UEP	8/27/2020	120,000	25,000	20,000	190ve	12	1,900
Eco	ology MTCA Method A C Unless Otherwise Sp	L		5	5	16 ³	160 ³	400 ³	0.2

Notes:

Red denotes concentration exceeding MTCA cleanup level.

< = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).</p>

-- = not analyzed/not applicable bgs = below grade surface UEP = Urban Environmental Partners Ilc WAC = Washington DCE = dichloroethylene
VC = Vinyl Chloride
MTCA = Washington Model Toxics
Control Act.
Hahn = Hahn and Associates, Inc.
SoundEarth = SoundEarth
Strategies, Inc.
* Labeling Error - This sample was

⁽¹⁾ Analyzed by EPA Method 8260C or 8260D.

⁽²⁾ MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

⁽³⁾ MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B, Non cancer, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Table 6 **Groundwater Analytical Results for Petroleum Hydrocarbons and Select VOCs** 4208 Rainier Ave South, Seattle

						Analytical R	esults - Microgr	ams per Liter (μ	ıg/L)	
Boring/Well ID	Sample ID	Sampled By	Date Sampled	GRPH ¹	DRPH ²	ORPH ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
B-1	B-1 (29-32)	Hahn	6/28/2000				<1	<1	<1	<3
B-3	B-3 (27-30)	Hahn	6/28/2000				<1	<1	<1	<3
B-4	B-4 (27-30)	Hahn	6/28/2000				<1	<1	<1	<3
B-5	B-5 (23-36)	Hahn	6/29/2000				<1	<1	<1	<3
B-7	B-7 (23-26)	Hahn	6/29/2000				<1	<1	<1	<3
UB12 (CD02A) / MW12	MW12-20200313	UEP	3/13/2020	720*	<200	<400	<1	<1	<1	<2
LID12 (CD00) / MAA/12	UB13W-23	UEP	3/5/2020	25,200*	<200	<400	<10	<10	<10	<20
UB13 (CD08) / MW13	MW13-20200313	UEP	3/13/2020	8,200*	<200	<400	<1	<1	<1	<2
UB14 (CD06) / MW14	MW14-20200305	UEP	3/5/2020	<100	<200	<400	<1	<1	<1	<2
UB15 (CD10A) / MW15	MW15-20200312	UEP	3/12/2020	<100	<200	<400	<1	<1	<1	<2
LID4.C. (CD02D). / NAVA4.C.	MW16-20200304	UEP	3/4/2020	3,800*	<200	<400	<10	<10	<10	<20
UB16 (CD02B) / MW16	MW16-20200312	UEP	3/4/2020	<100	<200	<400	<1	<1	<1	<2
LID47 (CDOED) / MANA/47	MW17-20200305	UEP	3/5/2020	<100	<200	<400	<1	<1	<1	<2
UB17 (CD05B) / MW17	MW17-20200312	UEP	3/12/2020	<100	<200	<400	<1	<1	<1	<2
LID19 (CD03) / MAA/19	UB18W-24	UEP	3/5/2020	<100	<200	<400	<1	<1	<1	<2
UB18 (CD03) / MW18	MW18-20200312	UEP	3/12/2020	115*	<200	<400	<1	<1	<1	<2
UB34	UB34-W	UEP	6/3/2020		160x	<250				
UB35	UB35-W	UEP	6/3/2020		<65	<320				
Ecol	ogy MTCA Method A C Unless Otherwise Sp			1,000/800 ⁵	500	500	5	1,000	700	1,000

Notes:

Red denotes concentration exceeding MTCA cleanup level.

- < = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL).
- (1) Analyzed by Northwest Method NWTPH-Gx or NEPTH-HCID
- (2) Analyzed by Northwest Method NWTPH-Dx or NEPTH-HCID
- (3) Analyzed by EPA Method 8260C or 8260D.
- (4) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.
- (5) For gasoline mixtures without benzene the cleanup level is 1,000 ug/l, for gasoline mixtures with benzene the cleanup level is 800 ug/l.
- * = The gasoline range value consist of chlorinated compound(s) with elevated concentrations.

-- = not analyzed/not applicable bgs = below grade surface UEP = Urban Environmental Partners WAC = Washington Administrative Code

EPA = U.S. Environmental Protection Agency GRPH = Gasoline-Range Petroleum

Hydrocarbons

DRPH = Diesel-Range Petroleum Hydrocarbons ORPH = Oil-Range Petroleum Hydrocarbons MTCA = Washington Model Toxics Control Act. Hahn = Hahn and Associates, Inc.

Table 7 Monitoring Well Constuction Details 4208 Rainier Ave South, Seattle

Boring ID	Well ID	Screened Interval (Feet bgs)	Well Diameter
B01	MW01	18-33	2-inch
B09	MW02	15-30	2-inch
B07	MW03	15-30	2-inch
TB07	MW04	15-35	2-inch
TB08	MW05	15-35	2-inch
B16	MW08	15-30	2-inch
B15	MW09	25-35	2-inch
UB10	MW10	9.5-29.5	2-inch
UB11	MW11	15-35	2-inch
UB12	MW12	31-46	2-inch
UB13	MW13	28-42	2-inch
UB14	MW14	10-20	1-inch
UB15	MW15	10-20	1-inch
UB16	MW16	18-28	2-inch
UB17	MW17	15-25	2-inch
UB18	MW18	15-30	2-inch
UB20	MW20	22-37	2-inch
UB21	MW21	15-30	1-inch
UB22	MW22	15-30	1-inch
UB23	MW23	15-30	1-inch
UB24	MW24	14-29	1-inch
UB25	MW25	25-40	2-inch
UB26	MW26	25-40	2-inch
UB30	MW30	25-40	2-inch
UB31	MW31	15-30	2-inch
UB32	MW32	5-20	1-inch
UB33	MW33	5-20	1-inch

Table 8 Soil Gas and Sewer Gas Results for cVOCs 4208 Rainier Ave South, Seattle

									Analyti	cal Results ¹ - Mi	crograms per Cubic Mo	eter (µg/m³)		
Sample ID	Sampled By	Date Sampled	Depth (ft/bgs)	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	vc	Chloroethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1,1-Trichloroethane	1,1,2-Trichloroethane
SG01	SoundEarth	1/2/2018	8	48	<5.4	<4	<4	<4	<2.6	<2.6	<4	<4	<5.5	<5.5
SG02	SoundEarth	1/2/2018	8	38	<5.4	<4	<4	<4	<2.6	<2.6	<4	<4	<5.5	<5.5
SG03	SoundEarth	1/2/2018	8	25	<5.4	<4	<4	<4	<2.6	<2.6	<4	<4	<5.5	<5.5
SG04	UEP	4/10/2020	1.5	<110	<4.3	<6.3	<6.3	<6.3	<4.1	<42	<6.5	<0.65	<8.7	<1.7
SG05	UEP	4/10/2020	1.5	<110	<4.3	<6.3	<6.3	<6.3	<4.1	<42	<6.5	<0.65	<8.7	<1.7
Sewer South	UEP	5/15/2020	10	270	69	340	3.7	<3	22	<20	<3.1	<0.31	<4.1	<0.83
Sewer North	UEP	5/15/2020	10	<54	<2.1	<3.2	<3.2	<3.2	<2	<21	<3.2	<0.32	<4.4	<0.87
Ecology MTCA	A Method B Screen	_	b-Slab Soil	320	11	NE	NE	3,000	9.50	NE	52	3.2	76,000	5.20
Ecology MTCA	Method B Screeni	ng Levels for Dee	p Soil Gas ³	960	33	NE	NE	9,100	28	NE	160	9.6	230,000	16.00

Notes:

- Red denotes concentration exceeding MTCA screening level.
- < or ND = Not Detected at a concentration exceeding the specified laboratory reporting limit (RL)</p>
- (1) Samples analyzed by U.S. EPA Method TO-15
- (2) Most Conservative MTCA Method B Sub-Slab Soil Gas Screening Level, CLARC Master Spreadsheet January 2020.
- (3) Most Conservative MTCA Method B Deep Soil Gas Screening Level, CLARC Master CLARC Master Spreadsheet January 2020.

-- = not analyzed/not applicable

NE = Not Established

bgs = below grade surface

cVOCs: Chlorinated Volatile Organic

Compounds

PCE = tetrachloroethylene

TCE = trichloroethylene

DCE = dichloroethylene

VC = Vinyl Chloride

WAC = Washington Administrative

Code

EPA = U.S. Environmental Protection

Agenc

MTCA = Washington Model Toxics

Table 9 **Groundwater Analytical Results for PAHs** 4208 Rainier Ave South, Seattle

Boring/Well						Analytical Res	ults ¹ - Micrograms	per Liter (μg/L)			Total Toxicity
ID	Sample ID	Sampled By	Date Sampled	Benzo(a)- anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Indeno(1,2,3cd)- pyrene	Dibenzo(a,h)- anthracene	Equivalency Concentration ²
	MW32-20200608	UEP	6/8/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
UB32/MW32	MW32-20200826	UEP	8/26/2020	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	ND
UB32/WW32	MW32-20201207	UEP	12/7/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
	MW32-20210311	UEP	3/11/2021	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
	MW33-20200608	UEP	6/8/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
11022/848422	MW33-20200826	UEP	8/26/2020	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	ND
UB33/MW33	MW33-20201207	UEP	12/7/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
	MW33-20200311	UEP	3/11/2021	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ND
Ecology MT	CA Method A Clea Spec	•	nless Otherwise			0.1				-	0.1

Notes:

Red denotes concentration exceeding MTCA cleanup level.

< or ND = Not Detected at a concentration exceeding the specified laboratory reporting

- (1) Samples analyzed by EPA Method 8270E SIM.
- (2) Calculated Using Toxicity Equivalency Methodology in WAC 173-340-708(e)
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised 2013.

-- = not analyzed/not applicable

bgs = below grade surface

WAC = Washington Administrative Code

EPA = U.S. Environmental Protection Agency MTCA = Washington Model Toxics Control Act.

UEP = Urban Environmental Partners

Table 10 Field Parameters for Source Area Monitoring Wells (8/20) 4208 Rainier Ave South, Seattle

						Grou	ndwater Samplin	g Field Parameter	s				
Well ID	Date Sampled	Total Manganese	Dissolved Manganese	Alkalinity	Nitrate	Total Iron	Ferrous Iron	Dissolved Iron	Temp	Dissolved Oxygen	ORP	рН	Specific Conductivity
					μg/L				°C	mg/L	mV		μS/cm
MW01	8/27/2020	<1	3.45	83,400	3,460	71.1	<50	74.0	17.0	0.37	29.60	6.64	1.465
MW04	8/27/2020								17.0	0.67	54.9	6.69	1.035
MW05	8/28/2020				-				16.8	1.53	43.4	6.38	1.767
MW06	8/27/2020								15.9	0.46	33.9	7.11	1.107
MW07	8/27/2020	<1	<1	81,500	3,200	88.6	<50	67.5	17.0	0.40	7.3	7.04	1.096
MW08	8/28/2020	1	<1	66,000	3,140	73.7	<50	57.3	15.4	0.70	45.5	6.44	1.063
MW09	8/26/2020				-				17.2	0.74	12.3	6.08	1.155
MW10	8/26/2020								17.0	0.22	20.9	6.37	1.073
MW12	8/27/2020				-				15.9	0.35	-17.8	7.85	0.425
MW13	8/27/2020	<1	<1	81,500	3,200	88.6	<50	67.5	16.9	0.61	-58.0	6.71	1.868
MW16	8/27/2020				-				16.1	0.51	14.4	6.73	1.252
MW17	8/26/2020								18.1	0.70	-15.0	6.57	1.497
MW18	8/26/2020	206	198	56,300	233	2,570	227	<50	18.2	0.46	22.1	6.59	1.312
MW20	8/28/2020	153	57.4	69,800	914	5,630	<50	57.8	15.7	0.77	-1.5	6.61	1.005
MW25	8/27/2020								18.6	0.45	-122.1	7.37	1.834
MW26	8/26/2020								17.4	0.55	23.4	682	1.204
MW30	8/27/2020	206	198	56,300	233	2,570	227	<50	16.5	0.52	-86.9	6.86	1.302
MW31	8/27/2020								16.3	0.36	35.5	6.57	2.070
MW32	8/26/2020	206	198	56,300	233	2,570	227	<50	19.6	0.55	-105.0	6.60	0.997
MW33	8/26/2020	153	57.4	69,800	914	5,630	<50	57.8	20.8	0.47	-101.4	6.55	0.691
A	verage	103	79.3	68,989	1,725	2,144	92	50.8	17.2	0.57	-8.2	6.7	1.3

Notes

μg/L = micrograms per liter mg/L = miligrams per liter °C = Degrees Celsius mV= milivolt mV= milivolts

 $\mu \text{S/cm}$ = microsiemens per centimeter

CAPITAL COST ITEM	QTY	UNIT	ι	JNIT PRICE	COST		TOTALS
Development Excavation							
Mob/demob and Site Work	1	lump sum	\$	25,000	\$ 25,000		
Survey and inspection	1	lump sum	\$	10,000	\$ 10,000		
Excavation and handling	2,000	tons	\$	35	\$ 70,000		
Pile and Soil Removal via Overdrilling	174	piles	\$	12,500	\$ 2,175,000		
Soil - Subtitle C (haz) disposal (0%)	-	tons	\$	235	\$ -		
Soil - Subtitle D (CI) disposal (80%)	1,760	tons	\$	45	\$ 79,200		
Soil - Class 2 overburden disposal	500	tons	\$	15	\$ 7,500		
Import soil backfill for low areas	2,260	tons	\$	25	\$ 56,500		
Subtotal:					\$ 2,423,200		
Engineering Controls							
Vapor Barrier and Passive Controls	-	square feet	\$	35	\$ -		
Subtotal:					\$ -		
CAPITAL CLEANUP COSTS SUBTOTAL						\$	2,423,200
Labor and Administration (% of construction subtota	al <u>)</u>						
Permit and Planning	_	%	\$	2,420,000	\$0		
Engineering Design and Bid	5	%	\$	2,420,000	\$121,000		
Cleanup Oversight and Sampling	10	%	\$	2,420,000	\$242,000		
Compliance Monitoring Plan program	1	years	\$	6,000	\$ 6,000		
Subtotal:					\$ 369,000	ds	
CLEANUP ACTION SUBTOTAL						\$	2,792,200
Contingency for Cleanup	20	%	\$	2,790,000	\$558,000		
CLEANUP ACTION TOTAL CAPITAL COST (ROUNDED)						\$	3,400,000

- Prelim costs provided by HOS Bros. Construction and others
- Cost estimate are feasibility-study level (+50/-30)

Excavation to Expose Piles and Full Pile Removal

- Site prepared by excavating 1 foot deep around pilefield (30K SF) to expose pile caps = 1,500 Tons PCS/500 Tons clean
- Soil Tonnage Estimage for Halo Around Piles = 260 Tons
- Creosote piles are removed by crane suspended vibratory hammer
- Contaminated soil segregated and disposed of separately

CAPITAL COST ITEM	QTY	UNIT	U	NIT PRICE	COST	TOTALS
Development Excavation						
Mob/demob and Site Work	1	lump sum	\$	25,000	\$ 25,000	
Survey and inspection	1	lump sum	\$	10,000	\$ 10,000	
Excavation and handling	3,200	tons	\$	35	\$ 112,000	
Cut top 4' of Pile and Disposal	174	piles	\$	1,600	\$ 278,400	
Soil - Subtitle C (haz) disposal (0%)	-	tons	\$	235	\$ -	
Soil - Subtitle D (CI) disposal (80%)	2,700	tons	\$	45	\$ 121,500	
Soil - Class 2 overburden disposal	500	tons	\$	15	\$ 7,500	
Import soil backfill for low areas	3,200	tons	\$	25	\$ 80,000	
Subtotal:					\$ 634,400	
Engineering Controls						
Vapor Barrier and Passive Controls	-	square feet	\$	35	\$ -	
Deed Restriction recorded with KC	1	lump sum	\$	10,000	\$ 10,000	
Subtotal:					\$ 10,000	
CAPITAL CLEANUP COSTS SUBTOTAL						\$ 644,400
Labor and Administration (% of construction subtot	al)					
Permit and Planning	-	%	\$	640,000	\$0	
Engineering Design and Bid	5	%	\$	640,000	\$32,000	
Cleanup Oversight and Sampling	10	%	\$	640,000	\$64,000	
Compliance Monitoring Plan program	1	years	\$	6,000	\$ 6,000	
Subtotal:					\$ 102,000	
CLEANUP ACTION SUBTOTAL						\$ 746,400
Contingency for Cleanup	20	%	\$	750,000	\$150,000	
CLEANUP ACTION TOTAL CAPITAL COST (ROUNDED)						\$ 900,000

- Prelim costs provided by HOS Bros. Construction and others
- Cost estimate are feasibility-study level (+50/-30)

Excavation to Expose Piles and Removal to 4 Feet bgs

- Site prepared by excavating 1 feet deep around pilefield (30K SF) to expose pile caps = 1,500 Tons PCS/500 Tons clean
- Creosote piles partial removal by cutting at 4 feet below top of pile
- Additional excavation and soil disposal to 4 feet bgs around each pile system = 1,200 tons
- Contaminated soil segregated and disposed of separately

CAPITAL COST ITEM	QTY	UNIT	U	NIT PRICE		COST		TOTALS
Development Activities - Existing Piles Preparation								
Mob/demob and Site Work	1	lump sum	\$	25,000	\$	25,000		
Survey and inspection	1	lump sum	\$	10,000	\$	10,000		
Excavation and handling	2,000	tons	\$	35	\$	70,000		
Construction of new pile caps	174	ea	\$	750	\$	130,500		
Soil - Subtitle C (haz) disposal (0%)	-	tons	\$	235	\$	-		
Soil - Subtitle D (CI) disposal (80%)	1,524	tons	\$	45	\$	68,580		
Soil - Class 2 overburden disposal (20%)	500	tons	\$	15	\$	7,500		
Import soil backfill for low areas	2,024	tons	\$	25	\$	50,600		
Drive Aise Pile Removal (16)	16	piles	\$	12,500	\$	200,000		
Subtotal:					\$	562,180		
Engineering Controls			,	25	۸.			
Vapor Barrier and Passive Controls Deed Restriction recorded with KC	1	square feet lump sum	\$ \$	35 10,000	\$ \$	10,000		
Subtotal:	-	idilip saili	7	10,000	\$			
CAPITAL CLEANUP COSTS SUBTOTAL					٠,	10,000	Ś	572,180
Labor and Administration (% of construction subtota	al)						•	,
Permit and Planning	-	%	\$	570,000		\$0		
Engineering Design and Bid	5	%	\$	570,000		\$28,500		
Cleanup Oversight and Sampling	10	%	\$	570,000		\$57,000		
Compliance Monitoring Plan program	1	years	\$	6,000	\$	6,000		
Subtotal:					\$	91,500		
CLEANUP ACTION SUBTOTAL							\$	663,680
Contingency for Cleanup	20	%	\$	660,000		\$132,000		
CLEANUP ACTION TOTAL CAPITAL COST (ROUNDED)							\$	800,000

- Prelim costs provided by HOS Bros. Construction and others
- Cost estimate are feasibility-study level (+50/-30)

Excavation to Expose Existing Piles for Attachment

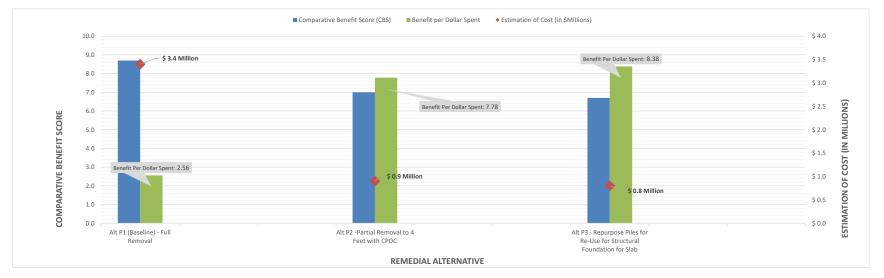

- Site prepared by excavating 1 feet deep around pilefield (30K SF) to expose pile caps = 1,500 Tons PCS/500 Tons clean
- Break existing pile caps and replace with new concrete cap
- Contaminated soil segregated and disposed of separately
- The 16 treated piles in the drive-aisle of the planned southern portion of the development will be removed, as they do not serve a structural purpose.
- Soil Tonnage Estimate for Halo Around 16 Piles = 24 Tons

Table 14
Focused Feasibility Evaluation for Treated Piles
Summary of Evaluation Criteria and Costs
4208 Rainier Ave South, Seattle

Alternative Name/Description	ative Name/Description Alt P1 (Baseline) - Full Removal Alt P2 -Partial Removal to 4 Feet with CPOC			et with CPOC	Alt P3 - Repurpose Piles for Re-Use for Structural Foundation for Slab				
MTCA Evaluation Criteria									
	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score
Protectiveness	10	0.3	3.0	8	0.3	2.4	7	0.3	2.1
Permanence	10	0.2	2.0	6	0.2	1.2	4	0.2	0.8
Long Term Effectiveness	9	0.2	1.8	7	0.2	1.4	7	0.2	1.4
Manageability of Short Term Risk	5	0.1	0.5	7	0.1	0.7	9	0.1	0.9
Implementability	6	0.1	0.6	7	0.1	0.7	9	0.1	0.9
Consideration of Public Concerns	8	0.1	0.8	6	0.1	0.6	6	0.1	0.6
Comparative Benefit Score (CBS)		8.7			7.0			6.7	
Estimation of Cost (in \$Millions)		\$ 3.4			\$ 0.9			\$ 0.8	
Benefit per Dollar Spent		2.56			7.78			8.38	

Benefit to Cost Ratio equals the Comparative Benefit Score Divided by Cost: Higher Value Equals Greater Benefit Per Dollar Spent

CAPITAL COST ITEM	QTY	UNIT	Į	JNIT PRICE		COST	TOTALS
Excavation and Site Restoration							
Mobilization / demob	1	lump sum	\$	25,000	\$	25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$	50,000	
Sheet Piling (200' x 50' deep)	12,300	cubic feet	\$	45	\$	553,500	
Excavation and handling	15,000	cubic yard	\$	25	\$	375,000	
Soil - Subtitle C (haz) disposal	2,800	tons	\$	320	\$	896,000	
Soil - Subtitle D (nonhaz/CI) disposal	11,600	tons	\$	128	\$	1,484,800	
Soil - Class 2 overburden disposal	3,000	tons	\$	25	\$	75,000	
Soil - site soil used as backfill	3,000	tons	\$	8	\$	24,000	
Import soil backfill to original grade	11,200	tons	\$	25	\$	280,000	
Water management, SW BMPs	1	lump sum	\$	125,000	\$	125,000	
Subtotal:					\$	3,888,300	
In-Situ Chemical Reduction (ISCR)							
Mobilization / demob	1	lump sum	\$	25,000	\$	25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$	50,000	
Injection Probe well installation	20	probes	\$	3,000	\$	60,000	
ZVI/3DME Injectate Purchase	1,000	gallons	\$	40	\$	40,000	
Aqueous injection and handling	20,000	gallons	\$	5	\$	100,000	
Soil cuttings disposal (CI)	250	tons	\$	168	\$	42,000	
Subtotal:					\$	317,000	
Engineering/Institutional Controls							
Vapor Barrier and Passive Controls	_	square feet	\$	_	\$	_	
Deed Restriction recorded with KC	_	lump sum	\$	-	\$ \$	-	
Subtotal:		•			\$		
CAPITAL CLEANUP COSTS SUBTOTAL							\$ 4,205,300
Labor and Administration (% of construction	subtotal)						
Permit and Planning	2	%	\$	4,210,000		\$84,200	
Engineering Design and Bid	10	%	\$	4,210,000		\$421,000	
Construction Oversight and Sampling	10	%	\$	4,210,000		\$421,000	
Compliance Monitoring	5	%	\$	4,210,000		\$210,500	
Long term reporting and agency comms	5	%	\$	4,210,000		\$210,500	
Subtotal:					\$	1,347,200	
CLEANUP ACTION SUBTOTAL							\$ 5,552,500
Contingency for Cleanup	20	%	\$	5,550,000		\$1,110,000	
CLEANUP ACTION TOTAL CAPITAL COST (ROU	NDED)						\$ 6,700,000

- Hazardous soil disposal required for material removed from 35' Excavation (1,200 SF)
- Subtitle D (nonhaz) soil disposal required for all other excavated material (1,900 + 5,800 SF)
- Assume all of soil excavated from 0' to 10' bgs is reused as onsite backfill, incl slope cuts.
- CI Contained In designation for F-Listed waste suitable for Subtitle D landfill.
- Excavation construction water treated onsite prior to discharge to sanitary sewer.
- Cost estimate are feasibility-study level (+50/-30)

Excavation and Site Restoration Mobilization / demob Site preparation, security, demo Sheet Piling (200' x 50' deep) Excavation and handling Soil - Subtitle C (haz) disposal Soil - Subtitle D (nonhaz/CI) disposal	1 12,300 15,000 2,800 11,600 3,000	lump sum lump sum cubic feet cubic yard tons tons	\$ \$ \$ \$ \$	25,000 50,000 45 25 320	\$ \$ \$	25,000 50,000 553,500 375,000		
Site preparation, security, demo Sheet Piling (200' x 50' deep) Excavation and handling Soil - Subtitle C (haz) disposal	1 12,300 15,000 2,800 11,600 3,000	lump sum cubic feet cubic yard tons tons	\$ \$ \$	50,000 45 25	\$ \$ \$	50,000 553,500		
Sheet Piling (200' x 50' deep) Excavation and handling Soil - Subtitle C (haz) disposal	12,300 15,000 2,800 11,600 3,000	cubic feet cubic yard tons tons	\$ \$ \$	45 25	\$ \$	553,500		
Excavation and handling Soil - Subtitle C (haz) disposal	15,000 2,800 11,600 3,000	cubic yard tons tons	\$	25	\$	•		
Soil - Subtitle C (haz) disposal	2,800 11,600 3,000	tons tons	\$			375.000		
	11,600 3,000	tons		320		2.3,000		
Soil - Subtitle D (nonbaz/CI) disposal	3,000		4		\$	896,000		
John - Jubilitie D (Horritaz/Ci) disposar			\$	128	\$	1,484,800		
Soil - Class 2 overburden disposal	2 000	tons	\$	25	\$	75,000		
Soil - site soil used as backfill	3,000	tons	\$	8	\$	24,000		
Import soil backfill to original grade	11,200	tons	\$	25	\$	280,000		
Water management, SW BMPs	1	lump sum	\$	125,000	\$	125,000		
Subtotal:					\$	3,888,300		
Monitored Natural Attenuation								
Well network installation	12	wells	\$	3,500	\$	42,000		
Quarterly monitoring (5 years)	20	events	\$	5,000	\$	100,000		
Semiannual monitoring (2 years)	4	events	\$	5,000	\$	20,000		
Annual monitoring (8 years)	8	events	\$	5,000	\$	40,000		
Data interpretation and reporting	15	years	\$	10,000	\$	150,000		
Subtotal:					\$	352,000		
Engineering/Institutional Controls					•	,		
Vapor Barrier and Passive Controls	20,000	square feet	\$	15	\$	300,000		
Deed Restriction recorded with KC	20,000	lump sum	\$	10,000	\$	10,000		
Subtotal:	_		*		, \$	310,000		
CAPITAL CLEANUP COSTS SUBTOTAL					٠,	310,000	Ś	4,550,300
Labor and Administration (% of construction s	subtotal)						<u> </u>	1,000,000
Permit and Planning	2	%	\$	4,550,000		\$91,000		
Engineering Design and Bid	10	%	\$	4,550,000		\$455,000		
Cleanup Oversight and Sampling	10	%	\$	4,550,000		\$455,000		
Long term reporting and agency comms	5	%	\$	4,550,000		\$227,500		
Subtotal:	3	- -		, = = = , = = 0	\$			
Subtotal:					Þ	1,228,500		
CLEANUP ACTION SUBTOTAL							\$	5,778,800
Contingency for Cleanup	20	%	\$	5,780,000		\$1,156,000		
CLEANUP ACTION TOTAL CAPITAL COST (ROUI	NDED)						\$	6,900,000

- Hazardous soil disposal required for material removed from 35' Excavation (1,200 SF)
- Subtitle D (nonhaz) soil disposal required for all other excavated material (1,900 + 5,800 SF)
- Assume all of soil excavated from 0' to 10' bgs is reused as onsite backfill, incl slope cuts.
- Monitored Natural Attenuation will require 15 years of active monitoring.
- CI Contained In designation for F-Listed waste suitable for Subtitle D landfill.
- Excavation construction water treated onsite prior to discharge to sanitary sewer.
- Cost estimate are feasibility-study level (+50/-30)

Table 17 Feasibility Level Cost Estimate Alternative 3 - Dual Phase Extraction (DPE) with Air Sparging Rainier Mall

CAPITAL COST ITEM	QTY	UNIT	ι	JNIT PRICE		COST	TOTALS
DPE Installation							
Mobilization / demob	1	lump sum	\$	25,000	\$	25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$	50,000	
DPE and AS wells installation	75	wells	\$	2,500	\$	187,500	
Piping, connectors and controls	1	lump sum	\$	150,000	\$	150,000	
GW and vapor treatment equipment	1	lump sum	\$	250,000	\$	250,000	
Soil cuttings disposal	400	tons	\$	240	\$	96,000	
Groundwater treatment and disposal	1	lump sum	\$	150,000	\$	150,000	
Site restoration and security	1	lump sum	\$	75,000	\$	75,000	
Subtotal:					\$	983,500	
DPE Operation and Maintenance							
DPE and treatment system O&M	10	years	\$	100,000	\$	1,000,000	
DPE and treatment system repairs	10	years	\$	10,000	\$	100,000	
Vapor treatment oxidizer (electric)	10	years	\$	25,000	\$	250,000	
GW monitoring, data eval and report	10	years	\$	25,000	\$	250,000	
Ecology reporting and comms	10	years	\$	-	\$	-	
Subtotal:					\$	1,600,000	
Engineering/Institutional Controls					•	,,	
Vapor Barrier and Passive Controls	20,000	square feet	\$	15	\$	300,000	
Deed Restriction recorded with KC	1	lump sum	\$	10,000	\$	10,000	
Subtotal:		•	•	,	<u>\$</u>	310,000	
CAPITAL CLEANUP COSTS SUBTOTAL					7	0_0/000	\$ 2,893,500
Labor and Administration (% of construction s	subtotal)						
Permit and Planning	2	%	\$	2,890,000		57,800	
Engineering Design and Bid	15	%	\$	2,890,000		433,500	
Construction Oversight and Sampling	5	%	\$	2,890,000		144,500	
Long term reporting and agency comms	5	%	\$	2,890,000		144,500	
Subtotal:						780,300	
						200,000	
CLEANUP ACTION SUBTOTAL							\$ 3,673,800
Contingency for Cleanup	20	%	\$	3,670,000		734,000	
CLEANUP ACTION TOTAL CAPITAL COST (ROUI	NDED)						\$4,400,000

- Extracted groundwater treated above ground and discharged to sanitary sewer.
- Extracted soil vapors treated above ground and discharge to atmosphere.
- Assumes 10 years of O&M, groundwater monitoring and reporting.
- DPE will achieve site CULs, no MNA as a follow up.
- Cost estimate are feasibility-study level (+50/-30)

Table 18

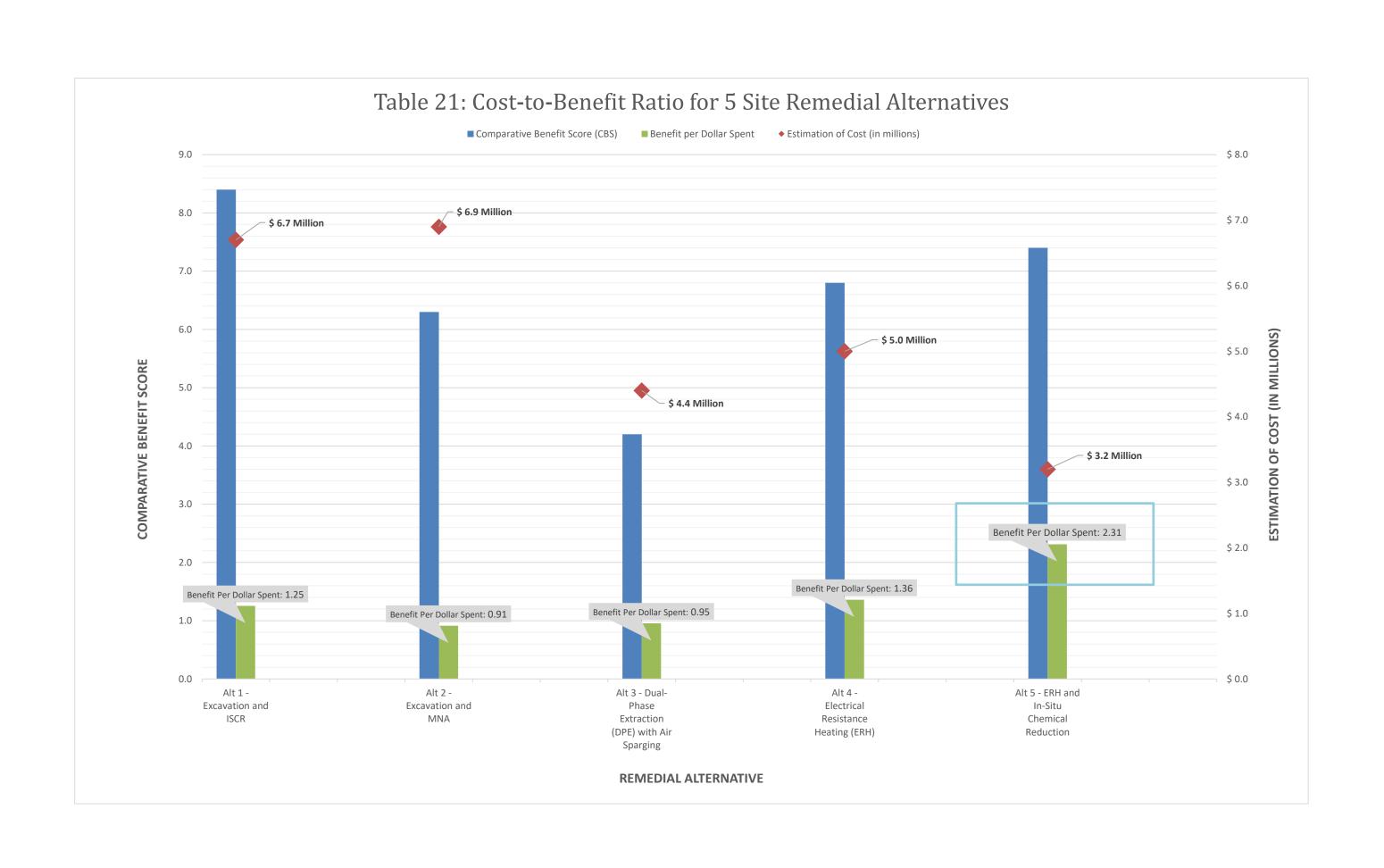
CAPITAL COST ITEM	QTY	UNIT	ι	JNIT PRICE	COST	TOTALS
ERH and SVE Installation						
Mobilization / demob	1	lump sum	\$	25,000	\$ 25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$ 50,000	
ERH, SVE and TMP (electrode) installation	100	electrodes	\$	3,000	\$ 300,000	
Electrodes, piping, connectors and controls	1	lump sum	\$	600,000	\$ 600,000	
Treatment system, including GAC	1	lump sum	\$	400,000	\$ 400,000	
Treatment system installation by others	1	lump sum	\$	800,000	\$ 800,000	
Soil cuttings disposal	100	tons	\$	320	\$ 32,000	
Well and Electrode decommissioning	100	electrodes	\$	2,000	\$ 200,000	
Site restoration and security	1	lump sum	\$	80,000	\$ 80,000	
Subtotal:					\$ 2,487,000	
ERH Operation and Maintenance						
ERH and SVE operations and maintenance	6	months	\$	120,000	\$ 720,000	
ERH and treatment system repairs	1	lump sum	\$	100,000	\$ 100,000	
Vapor treatment carbon replacement	1	lump sum	\$	20,000	\$ 20,000	
Electrical power use	6	months	\$	60,000	\$ 360,000	
Consulting and Project Management	12	months	\$	8,000	\$ 96,000	
Subtotal:					\$ 1,296,000	
Engineering/Institutional Controls						
Vapor Barrier and Passive Controls	-	square feet	\$	-	\$ -	
Deed Restriction recorded with KC	-	lump sum	\$	-	\$ 	
Subtotal:					\$ -	
CAPITAL CLEANUP COSTS SUBTOTAL						\$ 3,783,000
Labor and Administration (% of construction subto	otal <u>)</u>					
Permit and Planning	5	%	\$	3,780,000	189,000	
Engineering Design and Bid	5	%	\$	3,780,000	189,000	
Construction Oversight and Sampling	5	%	\$	3,780,000	189,000	
Compliance Monitoring	5	%	\$	3,780,000	189,000	
Long term reporting and agency comms	5	%	\$	3,780,000	189,000	
Subtotal:					945,000	
CLEANUP ACTION SUBTOTAL						\$ 4,728,000
Contingency for Cleanup	5	%	\$	4,730,000	236,500	
CLEANUP ACTION TOTAL CAPITAL COST (ROUNDED)				•	\$5,000,000

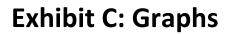
- ERH design by others.
- Vapor mitigation measures not required after treatment.
- Cost estimate are feasibility-study level (+50/-30%)

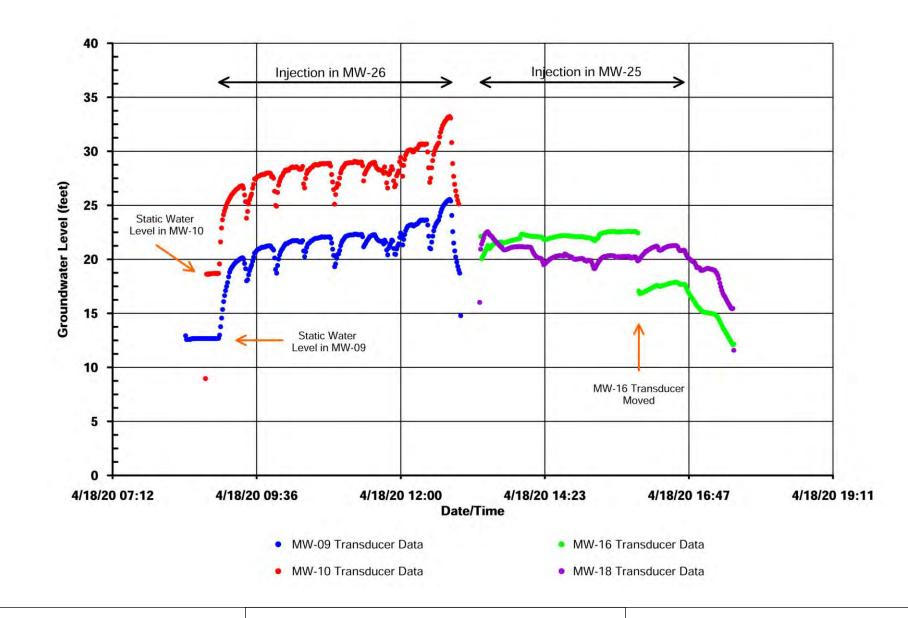
Table 19 Feasibility Level Cost Estimate Alternative 5 - Electric Resistance Heating with ISCR Rainier Mall

CAPITAL COST ITEM	QTY	UNIT	Į	JNIT PRICE		COST	TOTALS
ERH and SVE Installation							
Mobilization / demob	1	lump sum	\$	25,000	\$	25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$	50,000	
ERH, SVE and TMP (electrode) installation	62	electrode	\$	3,000	\$	186,000	
Electrodes, piping, connectors and controls	1	lump sum	\$	250,000	\$	250,000	
Treatment system, including GAC	1	lump sum	\$	200,000	\$	200,000	
Treatment system installation by others	1	lump sum	\$	400,000	\$	400,000	
Soil cuttings disposal	50	tons	\$	320	\$	16,000	
Well and electrode decommissioning	62	electrode	\$	2,000	\$	124,000	
Site restoration and security	1	lump sum	\$	50,000	\$	50,000	
Subtotal:					\$	1,301,000	
ERH Operation and Maintenance					,	_,,	
ERH and SVE operations and maintenance	6	months	\$	60,000	\$	360,000	
ERH and treatment system repairs	1	lump sum	\$	50,000	\$	50,000	
Vapor treatment carbon replacement	1	lump sum	\$	10,000	\$	10,000	
Electrical power use	6	months	\$	30,000	\$	180,000	
Consulting and Project Management	12	months	\$	8,000	\$	96,000	
Subtotal:			•	-,	<u>,</u> \$	696,000	
In-Situ Chemical Reduction (ISCR)					Ą	090,000	
Mobilization / demob	1	lump sum	\$	25,000	\$	25,000	
Site preparation, security, demo	1	lump sum	\$	50,000	\$	50,000	
Injection Probe well installation	30	probes	\$	3,000	\$	90,000	
ZVI/3DME Injectate Purchase	1,000	gallons	\$	40	\$	40,000	
Aqueous injection and handling	20,000	gallons	\$	5	\$	100,000	
Soil cuttings disposal (CI)	250	tons	\$	168	\$	42,000	
Subtotal:					<u>\$</u>	347,000	
Engineering/Institutional Controls					•	,	
Vapor Barrier and Passive Controls	_	square feet	\$	_	\$	_	
Deed Restriction recorded with KC	-	lump sum	\$	-	\$	_	
Subtotal:		•			\$		
CAPITAL CLEANUP COSTS SUBTOTAL					7		\$ 2,344,000
Labor and Administration (% of construction sub	total)						-
Permit and Planning	5	%	\$	2,340,000		117,000	
Engineering Design and Bid	5	%	\$	2,340,000		117,000	
Construction Oversight and Sampling	5	%	\$	2,340,000		117,000	
Compliance Monitoring	5	%	\$	2,340,000		117,000	
Long term reporting and agency comms	5	%	\$	2,340,000		117,000	
Subtotal:						585,000	
CLEANUP ACTION SUBTOTAL							\$ 2,929,000
Contingency for Cleanup	10	%	\$	2,930,000		293,000	
CLEANUP ACTION TOTAL CAPITAL COST (ROUNDS				, -,			\$ 3,200,000

- ERH design by others.
- ISCR injection includes one additional event at half the injection points.
- Vapor mitigation measures not required after treatment.
- Cost estimate are feasibility-study level (+50/-30%)

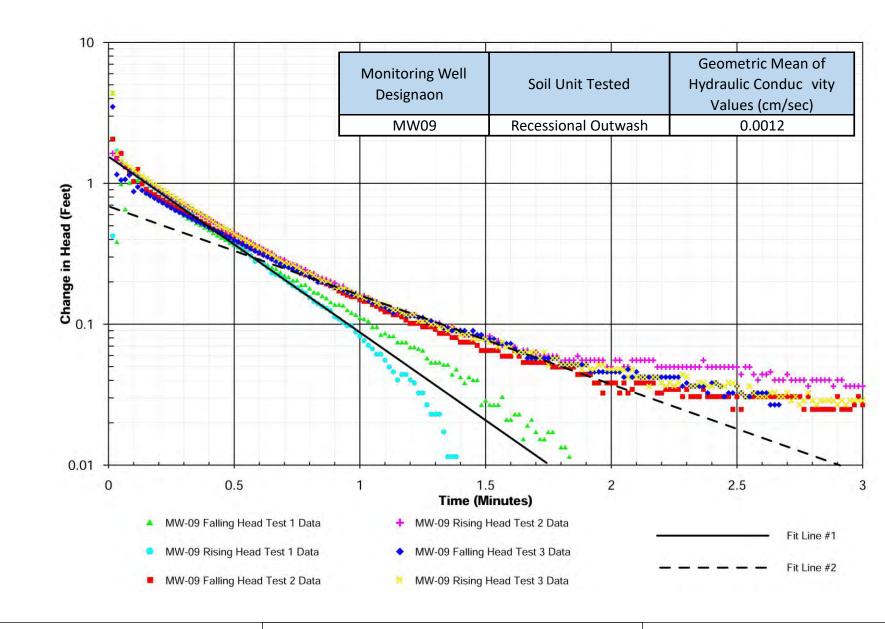


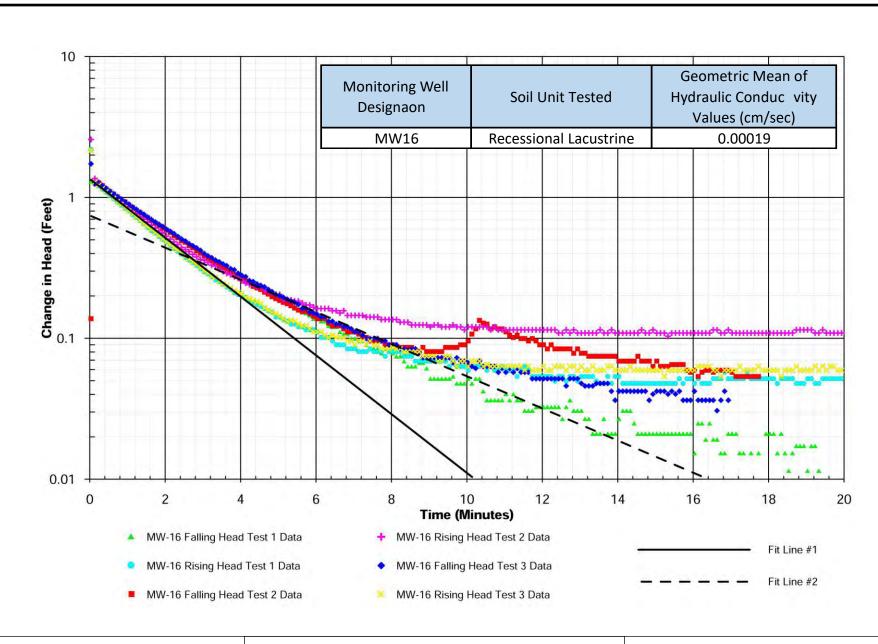

Table 20 Summary of Evaluation Criteria and Costs 4208 Rainier Ave South, Seattle


Alternative Name/Description	Alt 1 - E	xcavation	and ISCR	Alt 2 - E	xcavation a	and MNA		ıal-Phase E with Air Sp			lectrical Re			- ERH and I nical Redu	
MTCA Evaluation Criteria															
	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score	Score	Weighting Factor	Weighted Score
Protectiveness	9	0.3	2.7	6	0.3	1.8	3	0.3	0.9	8	0.3	2.4	9	0.3	2.7
Permanence	10	0.2	2.0	6	0.2	1.2	5	0.2	1.0	8	0.2	1.6	9	0.2	1.8
Long Term Effectiveness	9	0.2	1.8	6	0.2	1.2	4	0.2	0.8	8	0.2	1.6	8	0.2	1.6
Manageability of Short Term Risk	7	0.1	0.7	7	0.1	0.7	5	0.1	0.5	3	0.1	0.3	2	0.1	0.2
Implementability	7	0.1	0.7	9	0.1	0.9	5	0.1	0.5	4	0.1	0.4	6	0.1	0.6
Consideration of Public Concerns	5	0.1	0.5	5	0.1	0.5	5	0.1	0.5	5	0.1	0.5	5	0.1	0.5
Comparative Benefit Score (CBS)		8.4			6.3			4.2			6.8			7.4	
Estimation of Cost (in millions)		\$ 6.7			\$ 6.9			\$ 4.4			\$ 5.0			\$ 3.2	
Benefit per Dollar Spent		1.25			0.91			0.95			1.36			2.31	

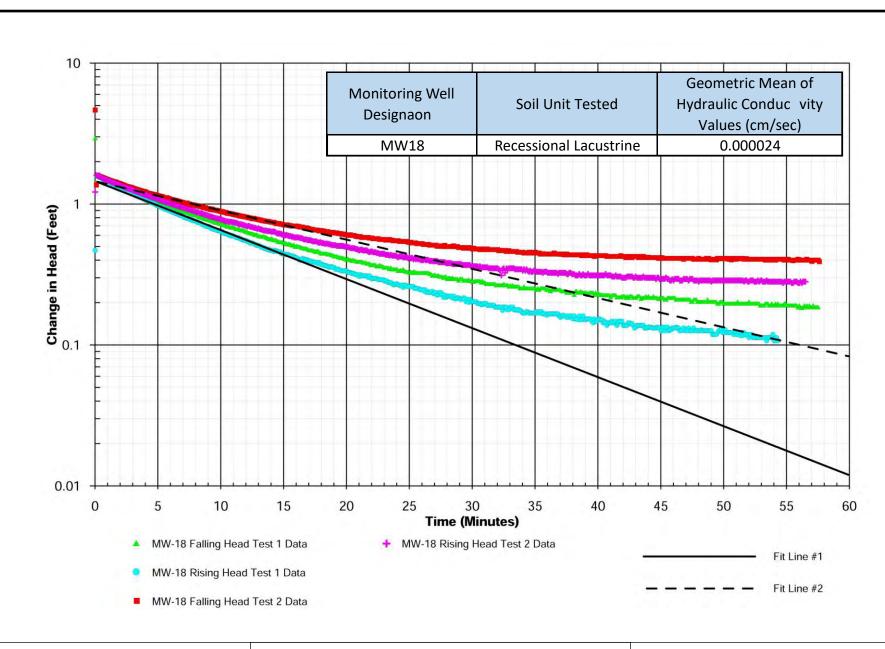
Notes:

Benefit to Cost Ratio equals the Comparative Benefit Score Divided by Cost: Higher Value Equals Greater Benefit Per Dollar Spent Alternative 2 has a relatively moderate score for protective and permanence as it relies on MNA to manage residuals

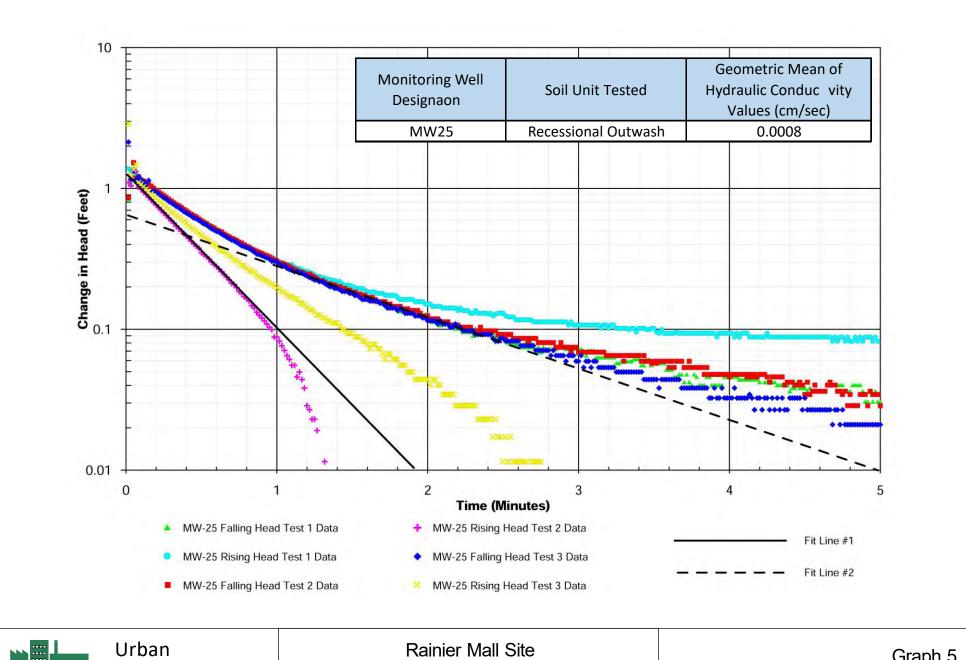




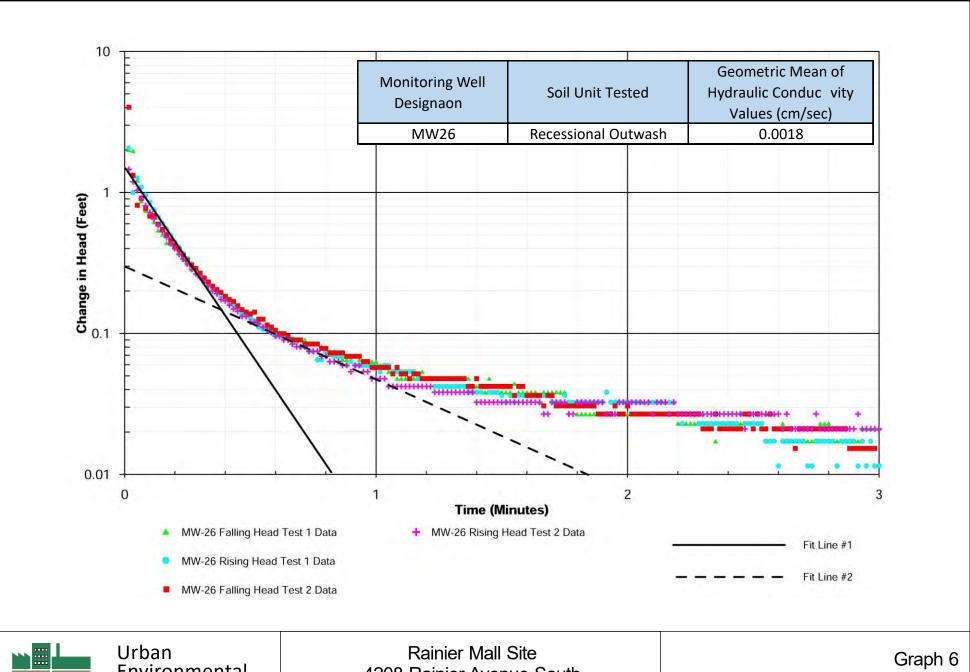
Graph 1
Pilot Injection Test
Groundwater Level Data



Graph 2 Monitoring Well MW09 Slug Tests



Graph 3 Monitoring Well MW16 Slug Tests


Graph 4 Monitoring Well MW18 Slug Tests

Urban Environmental Partners IIc Diligent, responsive, and prac cal consul ng!

Rainier Mall Site 4208 Rainier Avenue South Seattle, WA

Graph 5 Monitoring Well MW25 Slug Tests

Urban
Environmental
Partners Ilc
Diligent, responsive, and prac cal consul ng!

Rainier Mall Site 4208 Rainier Avenue South Seattle, WA

Graph 6
Monitoring Well MW26 Slug Tests

Appendix A: Laboratory Analytical Reports

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 670-8520

July 13, 2000

Mr. Guy Tanz Hahn & Associates 434 N.W. 6th Avenue Suite 203 Portland, OR 97209 TEL: (503)796-0717 FAX (503) 227-2209

RE: 5015/PacTrust Seattle

Dear Mr. Guy Tanz,

Order No.: 0007003

Environmental Services Laboratory received 63 samples on 6/30/00 for the analyses presented in the following report.

The Samples were analyzed for the following tests: Volatiles by GC/MS (EPA 8260B)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval from the Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Niehsle Karl

Nichole Karl Project Manager Technical Review

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

5015/PacTrust Seattle

Project: Lab ID:

0007003-05A

Client Sample ID: 5015-000628-005

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,1-Trìchloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/11/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/11/00
1,2,3-Trichlorobenzene	ND	5.00	μg/K g	1	7/11/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,2,4-Trimethylbenzene	123	5.00	μg/K g	1	7/11/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/11/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,3,5-Trimethylbenzene	32.2	5.00	μg/Kg	1	7/11/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	. 1	7/11/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
2-Butanone	ND	100	μg/Kg	1 .	7/11/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/11/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/11/00
2-Hexanone	ND	100	μg/Kg	1	7/11/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/11/00
4-isopropyltoluene	ND	5.00	μg/Kg	1	7/11/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/11/00
Acetone	ND	100	μg/Kg	1	7/11/00
Benzene	ND	5.00	μg/Kg	1	7/11/00
Bromobenzene	ND	5.00	μg/Kg	1 -	7/11/00
Bromochloromethane	ND	5.00	µg/Kg	1	7/11/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/11/00
Bromoform	ND	5.00	μg/Kg	1	7/11/00
Bromomethane	ND	10.0	μg/Kg	1	7/11/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/11/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/11/00
Chlorobenzene	ND	5.00	μg/Kg	1	7/11/00
Chloroethane	ND	10.0	μg/Kg	1	7/11/00
Chloroform	ND	5.00	μg/Kg	1	7/11/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-05A

Client Sample ID: 5015-000628-005

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	μg/Kg	1	7/11/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/11/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/11/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/11/00
Dibromomethane	ND	5.00	μg/Kg	1	7/11/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/11/00
Ethylbenzene	ND	5.00	μ g /Kg	1	7/11/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/11/00
lodomethane	ND	5.00	μg/Kg	1	7/11/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/11/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/11/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/11/00
Methylene chloride	ND	100	μg/Kg	1	7/11/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
n-Propylbenzene	16.8	5.00	μg/Kg	1	7/11/00
Naphthalene	ND	25.0	μg/Kg	1	7/11/00
o-Xylene	ND	5.00	μ g/K g	1	7/11/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
Styrene	ND	5.00	μg/Kg	1	7/11/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
Tetrachloroethene	83,300	500	μg/Kg	1	7/11/00
Toluene	ND	5.00	μg/Kg	1	7/11/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/11/00
trans-1,3-Dichloropropene	ND	5,00	μg/Kg	1	7/11/00
Trichloroethene	272	5.00	μg/Kg	1	7/11/00
Trichlorofluoromethane	ND	10.0	μ g/Kg	. 1	7/11/00
Vinyl acetate	ND	5.00	μ g/K g	1	7/11/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/11/00
Surr: 4-Bromofluorobenzene	98.4	74-121	%REC	1	7/11/00
Surr: Dibromofluoromethane	97.4	80-120	%REC	1	7/11/00
Surr: Toluene-d8	101.0	81-117	%REC	1	7/11/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

5015/PacTrust Seattle

Project: Lab ID:

0007003-18A

Client Sample ID: 5015-000628-018

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μ g/K g	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/ Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
2-Hexanone	ND	100	μg/Kg	1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	7/10/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/Kg	1	7/10/00
Acrylonitrile	ND	250	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1 -	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1	7/10/00
Bromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromoform	ND	5.00	µg/Kg	1	7/10/00
Bromomethane	ND	10.0	μg/Kg	1	7/10/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/10/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/10/00
Chlorobenzene	ND	5.00	μg/Kg	1	7/10/00
Chloroethane	ND	10.0	μg/Kg μg/Kg	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-18A

Client Sample ID: 5015-000628-018

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	7/10/00
Chloromethane	ND	10.0	μg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/ K g	1	7/10/00
Dichlorodifluoromethane	ND ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	μg/Kg	1	7/10/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/10/00
Iodomethane	ND	5.00	μg/Kg	1	7/10/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μg/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μg/Kg	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachloroethene	ND	5.00	µg/Kg	1	7/10/00
Toluene	ND	5.00	µg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	. 1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofluorobenzene	99.6	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	100.6	80-120	%REC	1	7/10/00
Surr: Toluene-d8	101.2	81-117	%REC	1.	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-39A

Client Sample ID: 5015-000629-039

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
OLATILES BY GC/MS	E	PA 8260B			Analyst: tm/
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichiorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
2-Hexanone	ND	100	μg/Kg	1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-isopropyltoluene	ND	5.00	μg/Kg	1	7/10/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1.	7/10/00
Bromochioromethane	ND	5.00	μg/Kg μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg μg/Kg	1	7/10/00
Bromoform	ND	5.00	μg/Kg	1	7/10/00
Bromomethane	ND ND	10.0	μg/Kg μg/Kg	1	7/10/00
Carbon disulfide	ND ND	5.00	µg/Kg µg/Kg	1	7/10/00
Carbon tetrachloride	ND ND	5.00	рд/Кд µд/Кд	1	7/10/00
Chlorobenzene	ND ND	5.00	µg/Kg µg/Kg	1	7/10/00
Chloroethane	ND	10.0			7/10/00
Chloroform	ND ND	5.00	μg/Kg μg/Kg	1 1 ·	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-39A

Client Sample ID: 5015-000629-039

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	μg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/Kg	1	7/10/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	μg/ Kg	1	7/10/00
Hexachlorobutadiene	ND	5,00	μg/Kg	1	7/10/00
lodomethane	ND	5.00	μg/Kg	1	7/10/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μg/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μg/Kg	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachloroethene	ND	5.00	μg/Kg	1	7/10/00
Toluene	ND	5.00	μg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/K g	1	7/10/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	. 1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofluorobenzene	101.4	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	103.4	80-120	%REC	1	7/10/00
Surr: Toluene-d8	104.6	81-117	%REC	1	7/10/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-55A

Client Sample ID: 5015-000629-055

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
2-Hexanone	ND	100	μg/Kg	1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	7/10/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1.	7/10/00
Bromochioromethane	ND	5.00	μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromoform	ND	5.00	μg/Kg	1	7/10/00
Bromomethane	ND	10.0	μg/Kg	1	7/10/00
Carbon disulfide	ND	5.00	µg/Kg	1	7/10/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/10/00
Chlorobenzene	ND	5.00	μg/Kg	1 ,	7/10/00
Chloroethane	ND	10.0	μg/Kg	1	7/10/00
Chloroform	ND	5.00	μg/Kg	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-55A

Client Sample ID: 5015-000629-055

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	μg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/Kg	1	7/10/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	μg/Kg	1	7/10/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/10/00
lodomethane	ND	5.00	μg/Kg	1	7/10/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μg/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μg/Kg	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachioroethene	ND	5.00	μg/Kg	1	7/10/00
Toluene	ND	5.00	μg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	. 1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofiuorobenzene	102.6	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	102.6	80-120	%REC	1	7/10/00
Surr: Toluene-d8	106.2	81-117	%REC	1	7/10/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Environmental Services Laboratory

CLIENT: Hahn & Associates

Work Order: 0007003

Project: 5015/PacTrust Seattle

QC SUMMARY REPORT

Date: 13-Jul-00

Method Blank

Sample ID: MBLANK	Batch ID: 05 8260 S-7/1 Test Code:	Test Code:	EPA 8260B	Units: µg/Kg		Analysis	Analysis Date 7/10/00	00	Prep Date:	te:	
Client ID:	0007003	Run ID:	ANGSTROM_000710A	000710A		SeqNo:	46169		-		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	Q	5									
1,1,1-Trichloroethane	QN	5									
1,1,2,2-Tetrachloroethane	QN	2									
1,1,2-Trichloroethane	QV	ß									
1,1-Dichloroethane	QN	22									
1,1-Dichloroethene	Q	5									
1,1-Dichloropropene	QN	5									
1,2,3-Trichlorobenzene	QN	'n									
1,2,3-Trichloropropane	QN	ς.									
1,2,4-Trichlorobenzene	Q	ĸ									
1,2,4-Trimethylbenzene	QN	'n									
1,2-Dibromo-3-chloropropane	QN	10									
1,2-Dibromoethane	Q	ĸ									
1,2-Dichlorobenzene	Q	ĸ									
1,2-Dichloroethane	Q	ιC									
1,2-Dichloropropane	QN	ß									
1,3,5-Trimethylbenzene	Q	S									
1,3-Dichlorobenzene	Q	ŗ									
1,3-Dichloropropane	QN .	5									
1,4-Dichlorobenzene	Q	5									
2,2-Dichloropropane	Q	5									
2-Butanone	Q	100									
2-Chloroethyl vinyl ether	ON	20									
2-Chlorotoluene	Q	5									
2-Hexanone	QN	100									
4-Chlorotoluene	Q	5									
4-Isopropyltoluene	QN	ις									

**	7
_	
7	•
٠,	٠
_	
•	J

CLIENT:	Hahn & Associates			Hacana ya Mana Do
Work Order:	0007003			QC SUMMARY KEPORT
Project:	5015/PacTrust Seattle			Method Blank
4-Methyl-2-pentanone	one ND	5		
Acetone	QN	100		
Benzene	QN	ß		
Bromobenzene	QN	ĸ		
Bromochloromethane	ND ND	S		
Bromodichloromethane	hane	Ŋ		
Вготобот	QN	ß		
Bromomethane	QN	10		
Carbon disulfide	QN	Ŋ		
Carbon tetrachloride		rD		
Chlorobenzene	QN	ß		
Chloroethane	QN	10		
Chloroform	QN	ហ		
Chloromethane	QN	10		
cis-1,2-Dichloroethene	one ND	ĸ		
cis-1,3-Dichloropropene	ON ND	ιΩ		
Dibromochloromethane		Ŋ		
Dibromomethane	QN	S		
Dichlorodifluoromethane	thane ND	10		
Ethylbenzene	QN	ιΩ		
Hexachlorobutadiene	ne ND	ß		
odomethane	QN	Ŋ		
Isopropylbenzene	ON	Ŋ		
m,p-Xylene	QN	10		
Methyl tert-butyl ether	her ND	10		
Methylene chloride	QN	100		
n-Butylbenzene	QN	ហ		
n-Propylbenzene	QN	IJ		
Naphthalene	QN	25		
o-Xylene	QN			
sec-Butylbenzene	QN	ĸ		
Styrene	QN	S		
tert-Butylbenzene	Q	ις		
Qualifiers:	ND - Not Detected at the Reporting Limit		S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank

politimatos demandos

(ALLER OF ARREST AND A STATE OF A

TANK MANAGEMENT AND ASSESSMENT ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSESSMENT AND ASSESSMENT ASSESSMENT

4	7	`	
١,			
	7	$\overline{}$	
	`	_	
c	٠	٠.	

CLIENT:	Hahn & Associates			
Work Order:	0007003			QC SUMMAKY KEPUKI
Project:	5015/PacTrust Seattle			Method Blank
Tetrachloroethene	man, and a second secon	S.	2	
Toluene		N ON	5	
trans-1,2-Dichloroethene	thene	Q	5	
trans-1,3-Dichloropropene	ropene	NO	5	
Trichloroethene		ND	5	
Trichlorofluoromethane	ane	QN	10	
Vinyl acetate		Q	5	
Vinyl chloride		Q	10	

its
<u>.</u>
ē.
Ã
5
ted
р
acce
ide
uts
ý
ver
ည္မ
2
훒
S
Ś

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Environmental Services Laboratory

Project:

Continuing Calibration Verification Standard OC SUMMARY REPORT 5015/PacTrust Seattle Hahn & Associates 0007003 Work Order: CLIENT:

Date: 13-Jul-00

Qual %RPD RPDLimit Prep Date: 000000 HighLimit RPD Ref Val Analysis Date 7/10/00 46168 120 120 120 120 120 120 145 118 SeqNo: LowLimit 86 86 86 86 88 99.6% 100.8% 102.0% 99.0% 102.8% 102.6% 94.4% 99.2% 109.0% %REC Units: µg/Kg 0000000 SPK value SPK Ref Val ANGSTROM_000710A 50 50 50 50 50 50 50 Test Code: EPA 8260B М 5 5 5 10 0 Run ID: Batch ID: 05 8260 S-7/1 Result 54.5 50.4 49.5 51.4 51.3 47.2 49.6 49.8 5 0007000 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloropropane 1,1-Dichloroethene Sample ID: CCV Ethylbenzene Vinyl chloride Chloroform Toluene-d8 Client ID: Analyte Toluene

ND - Not Detected at the Reporting Limit	S - Spike R
J - Analyte detected below quantitation limits	R - RPD on

Qualifiers:

APPENDIX C

 ${\bf Laboratory\, Analytical\, Reports\, and\, Chain-of-Custody\, Documentation-Groundwater\, Samples}$

	HAHN	AND AS	SOCIA	TES, INC.	-		La	bor	atory		ap					CH	AIN O	F C	USTODY
		ironment													_				~
4		h Avenue, Su i) 796-0717 •		Portland OR 97209 227-2209			Lab	Pro	ject No.						_	Chair	of Custoo	ly No	
Project :	Manager	_ QU	171	WZ.		Lic	uid	wit	h Sedim	ent Sa	mple				Sampl	es Receive	ed at 4C (Y	or N	
Project :		50	15	160711	-				Filtrate		Test Se	diment		Test Bot			tainers Us		
Project l Collecte		Jay Greifer	1125	1. 7097778	-	Mu			e Sampi One (which		Test Se	parately		Shake			lesults (Y e ıary Fax Re		
Comme					+	Matr			1				es to be	Perform	<u> </u>			-	1
		ber Prefix	: 50K	-00639-														٦.	
				000628					Ì										
							:		0										
								ner3	9										
								Number of Containers	28										
								er of (5									=	
_					Soil	Water	Other	Num	1 1/2									RUSH	
Lab ID	Sample #		Time	Sample Description	1				\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>)	1	1	-	1	1			_	Remarks
01	101	6 2500	1010	81	\perp	14		_	4			1		<u> </u>	1	<u> </u>	1	1	3/04/12 3/04/12
02	108		1444	1811	-	ト	_	4	1		<u> </u>	İ	<u> </u>		1				3/1-11
03	105	-	1704	139	╁	 }	7	9	7	<u> </u>			<u> </u>	<u> </u>		<u>. </u>		-	JVOH JIL
	<u> </u>		1		\dagger	-				<u> </u>	1		1	<u>'</u>			1		
				1	\vdash		\dashv				<u> </u>	İ	i –	i	 	i	i i		
					T		'						İ						
	!			ļ -		1	,				1 :			İ					
		į				ا ا					Ţ		<u> </u>		<u> </u>		<u> </u>		
			;	<u> </u>			\perp	_			ļ	<u> </u>				1	 		
	1	<u> </u>	1				\perp	_						<u> </u>			<u> </u> 	$\left - \right $	
		1		<u> </u>		+	+	\dashv	<u> </u>	·	1	<u> </u>	1	<u> </u>		<u> </u>		$\left \cdot \right $	
		<u> </u>	İ			$\frac{1}{1}$	+	\dashv	<u>_</u>		1		<u>!</u>	1		 			
	<u> </u>	İ		.								 		<u> </u>		1			
							1		ĺ										
						1	1	_											
		<u> </u>					-	_				ļ		-			1		. <u>.</u>
	•					+	+	\dashv				<u> </u>				1			
						-	+	\dashv			-							\dashv	
				*AT****	$\mid - \mid$		+	+			-							+	
		-				+	+	十										\dashv	
	<u>-</u>						+	十											
		, ,																	
elingwsh	ed by	1		Company HAHN & ASSC)C	D	ate		1	lime		Received	by				Company		
elinguish	ed by			Company		D	ate			lime		Received	by .				Сотралу	•	
m -	_//	····				_1_											1		· · · · · · · · · · · · · · · · · · ·
	•					-						% .					•		
												-					منز	- C-	
																٠.			

Name of the last o

	HAHN	AND AS	SOCIA	TES, I	NC.		1	Lab	ora	tory		il				_	CHA	IN OF	CI	USTODY
		ironmenta														-				1
	434 NW Sixth (503)	i Avenue, Sui) 796-0717 •]			R 97209		I	ab F	roje	ect No.						-	Chain o	of Custody	y No.	<u> </u>
Project	Manager	AU	1741	/ - Z			Liqu	id w	vith	Sedim	ent San	ple				Samples	Received	at 4C (Y	or N)	
Project	No.	_50	15_			_				iltrate		Test Sed	iment		_ Test Both			uners Use		or N)
Project		PACTI	104T	•		-	Mult			Sampl					-			sults (You		
Collecte	ed by	Jay Greifer				_		Te	est O	ne (which		Test Sep			Sbake	L	Prelimina	ry Fax Res	MIC	
Comm						M	atriz	4	-		1	1	Analys	s to be F	erforme	d	1	T	4	
San	nple Numi	er Prefix	5 <u>015</u>	-0018	<u> </u>				inera	9										
Lab ID	Sample #	Date	Time	Sample	Description		Water	Orner	Number of Containers	EPA 82									RUSH	Remarks
04	1134	6/29/4	1330	\mathcal{B}	5		+	(71	+			1							310412
05	105	1	1342	B	7		4	ı	7	$\overline{}$										BroA/IL
		İ	1				Ť	Τ												
	<u> </u>	 		<u> </u>			i	T	7				Ì		_		1			
-	†					H	+		7			i	<u> </u>	 	_					
			<u>!</u> 	<u> </u>		H	- 	╁				!	1	!						
	<u> </u>	<u> </u>				H	+	-	+			1	<u> </u>	-				<u> </u>		
	1	[1			<u> </u>	+				i i	1		! <u> </u>	<u>-</u>	!			
ļ	<u> </u>	<u> </u>	1	<u> </u>			<u> </u>	+	+			1					<u> </u>			Av
<u> </u>			<u> </u>					+	+			<u> </u>	<u> </u>	i I				l 		
	1	-	ļ - <u>-</u> -					+	+			•	<u> </u>						\vdash	
								 	- -			1								
		<u></u>					_	ļ	_ -								<u> </u>			
							_	_	4			<u> </u>								
	<u> </u>						_	_	_											
																			_	
									\perp										_	
												<u> </u>								
										.										
									T						-					
			-						1	İ									T	•
		-				+			十								-			
•					-	+	\top	T	†									***		
						\dashv	+	\vdash	+		· · · · · · · · · · · · · · · · · · ·			-					\dashv	
						\dashv	-	-	- -			-	•					-	+	
	<u> </u>					+	<u> </u>	-	╁										\dashv	
						_	-	-	+		·								\dashv	<u></u>
Reimquis	hed by	<u> </u>		Company	HAHN & ASSO	ic	Da	te i	<u>Ļ</u>	<u> </u>	Гime		Received	Бу	- , !		<u> </u>	Company	1	
		1						21	<u> </u>	00	\\\\43 <u>i</u>	>	\mathcal{L}	سدن	te	_كىر_	ı	1~	<u> </u>	-
Relinquis	hed by	//		Company			Da	te	1	1	lime		Received	by .				Company		

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 670-8520

July 10, 2000

Mr. Guy Tanz Hahn & Associates 434 N.W. 6th Avenue Suite 203 Portland, OR 97209

TEL: (503)796-0717 FAX (503) 227-2209

RE: 5015/PacTrust Seattle

Order No.: 0007004

Dear Mr. Guy Tanz,

Environmental Services Laboratory received 5 samples on 6/30/00 for the analyses presented in the following report.

The Samples were analyzed for the following tests:

Volatiles by GC/MS (EPA 8260B)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval from the Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Nichole Karl

Project Manager

Nichole Karl

Technical Review

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-01A

Client Sample ID: 5015-000628-101

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Unit	ts DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	1.00	μg/L	1	7/7/00
1,1,1-Trichloroethane	ND	1.00	μg/L	1	7/7/00
1,1,2,2-Tetrachloroethane	ND	1.00	μg/L	1	7/7/00
1,1,2-Trichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethene	ND	1.00	μg/L	1	7/7/00
1,1-Dichloropropene	ND	1.00	μg/L	1	7/7/00
1,2,3-Trichlorobenzene	ND	1.80	μg/L	1	7/7/00
1,2,3-Trichloropropane	ND	1.00	μg/L	1	7/7/00
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2,4-Trimethylbenzene	ND	1.00	μg/L	1	7/7/00
1,2-Dibromo-3-chloropropane	ND	1.80	μg/L	1	7/7/00
1,2-Dibromoethane	ND	1.00	μg/L	1	7/7/00
1,2-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2-Dichloroethane	ND	1.00	μg/L	1	7/7/00
1,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichloropropane	ND	1.00	μg/L	1	7/7/00
1,4-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
2,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
2-Butanone	ND	20.0	μg/L	1	7/7/00
2-Chloroethyl vinyl ether	ND	5.00	μg/L	1	7/7/00
2-Chiorotoluene	ND	1.00	μg/L	1	7/7/00
2-Hexanone	ND	20.0	μg/L	1	7/7/00
4-Chlorotoluene	ND	1.00	μg/L	1	7/7/00
4-isopropyltoluene	ND	1.00	μg/L	1	7/7/00
4-Methyl-2-pentanone	ND	1.00	μg/L	1	7/7/00
Acetone	ND	20.0	μg/L	1	7/7/00
Benzene	ND	1.00	μg/L	1	7/7/00
Bromobenzene	ND	1.00	μg/L	1	7/7/00
Bromochloromethane	ND	1.00	μg/L	1	7/7/00
Bromodichloromethane	ND	1.00	μg/L	1	7/7/00
Bromoform	ND	1.00	μg/L	1	7/7/00
Bromomethane	ND	5.00	μg/L	1	7/7/00
Carbon disulfide	ND	1.00	μg/L	1	7/7/00
Carbon tetrachloride	ND	1.00	μg/L	1	7/7/00
Chlorobenzene	ND	1.00	μg/L	1	7/7/00
Chloroethane	ND	1.80	μg/L	1	7/7/00
Chloroform	ND	1.00	μg/L	1	7/7/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-01A

Client Sample ID: 5015-000628-101

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Chloromethane	Analyses	Result	Limit	Qual Units	DF	Date Analyzed
cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/7/00 Dibromochloromethane ND 1.00 µg/L 1 7/7/00 Dibromomethane ND 1.00 µg/L 1 7/7/00 Ethylbenzene ND 2.00 µg/L 1 7/7/00 Ethylbenzene ND 1.00 µg/L 1 7/7/00 Hexachlorobutadiene ND 1.00 µg/L 1 7/7/00 Idodomethane ND 1.00 µg/L 1 7/7/00 Idodomethane ND 1.00 µg/L 1 7/7/00 Idodomethane ND 1.00 µg/L 1 7/7/00 Isopropylbenzene ND 1.00 µg/L 1 7/7/00 Methylenzene ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 1.00 µg/L 1 7/7/00 Napthalene ND 1.00 µg/L 1 7/	Chloromethane	ND	2,00	 μg/L	1 、	7/7/00
Dibromochloromethane ND 1.00 µg/L 1 7/7/00 Dibromomethane ND 1.00 µg/L 1 7/7/00 Dichlorodifiluoromethane ND 2.00 µg/L 1 7/7/00 Ethylbenzene ND 1.00 µg/L 1 7/7/00 Hexachlorobutadiene ND 1.00 µg/L 1 7/7/00 Idodrnethane ND 1.00 µg/L 1 7/7/00 Isopropylbenzene ND 1.00 µg/L 1 7/7/00 Isopropylbenzene ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 1.00 µg/L 1 7/7/00 n-Butylbenzene ND 1.00 µg/L 1 7/7/00 n-Propylbenzene ND 1.00 µg/L 1 7/7/00 n-Propylbenzene ND 1.00 µg/L	cis-1,2-Dichloroethene	25.7	1.80	μg/L	1	7/7/00
Dibromomethane ND 1.00 µg/L 1 777/00 Dichlorodifluoromethane ND 2.00 µg/L 1 777/00 Ethylbenzene ND 1.00 µg/L 1 777/00 Hexachlorobutadiene ND 2.00 µg/L 1 777/00 Hexachlorobutadiene ND 1.00 µg/L 1 777/00 Isopropylbenzene ND 1.00 µg/L 1 777/00 Isopropylbenzene ND 1.00 µg/L 1 777/00 Isopropylbenzene ND 2.00 µg/L 1 777/00 Methyl terl-butyl ether ND 2.00 µg/L 1 777/00 Methylene chloride ND 10.0 µg/L 1 777/00 Methylene chloride ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 Naphthalene ND 2.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 Styrene ND 1.00 µg/L 1 777/00 Styrene ND 1.00 µg/L 1 777/00 Tetrachloroethene 1,980 20.0 µg/L 1 777/00 Tetrachloroethene ND 1.00 µg/L 1 777/00 Toluene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 2.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND 1.00 µg/L 1 777/00 Trichloropthene ND	cis-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Dichlorodifluoromethane	Dibromochloromethane	ND	1.00	μg/L	1	7/7/00
Ethylbenzene ND 1.00 µg/L 1 777/00 Hexachlorobutadiene ND 2.00 µg/L 1 777/00 Isogropylbenzene ND 1.00 µg/L 1 777/00 Isogropylbenzene ND 1.00 µg/L 1 777/00 Isogropylbenzene ND 1.00 µg/L 1 777/00 Isogropylbenzene ND 1.00 µg/L 1 777/00 Methylene chloride ND 10.0 µg/L 1 777/00 Methylene chloride ND 10.0 µg/L 1 777/00 Methylenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 In-Propylbenzene ND 1.00 µg/L 1 777/00 Isogropylbenzene ND 1.00 µg/L 1 777/00 Isogrop	Dibromomethane	ND	1.00	μg/L	1	7/7/00
Hexachlorobutadiene ND 2.00 µg/L 1 7/7/00 Idodrnethane ND 1.00 µg/L 1 7/7/00 Isopropylbenzene ND 1.00 µg/L 1 7/7/00 Isopropylbenzene ND 1.00 µg/L 1 7/7/00 Methyl terl-butyl ether ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 10.0 µg/L 1 7/7/00 Methylene chloride ND 1.00 µg/L 1 7/7/00 N-Butylbenzene ND 1.00 µg/L 1 7/7/00 N-Propylbenzene ND 1.00 µg/L 1 7/7/00 Naphthalene ND 2.00 µg/L 1 7/7/00 Naphthalene ND 1.00 µg/L 1 7/7/00 Naphthalene ND 1.00 µg/L 1 7/7/00 Sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 Setyrene ND 1.00 µg/L 1 7/7/00 Styrene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 µg/L 1 7/7/00 Toluene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 2.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichloroethene ND 1.00 µg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 µg/L 1 7/7/00 Trichlorofluoromethane ND 1.00 µg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00	Dichlorodifluoromethane	ND	2.00	μg/L	1	7/7/00
Iodomethane ND 1.00 µg/L 1 777/00 Isopropylbenzene ND 1.00 µg/L 1 777/00 m.pXylene ND 2.00 µg/L 1 777/00 Methyl tert-butyl ether ND 2.00 µg/L 1 777/00 Methylene chloride ND 10.0 µg/L 1 777/00 Methylene chloride ND 1.00 µg/L 1 777/00 n-Butylbenzene ND 1.00 µg/L 1 777/00 n-Propylbenzene ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 sec-Butylbenzene ND 1.00 µg/L 1 777/00 sec-Butylbenzene ND 1.00 µg/L 1 777/00 styrene ND 1.00 µg/L 1 777/00<	Ethylbenzene	ND	1.00	μg/L	1	7/7/00
Sopropy Benzene ND 1.00 µg/L 1 7/7/00 m.p-Xylene ND 2.00 µg/L 1 7/7/00 m.p-Xylene ND 2.00 µg/L 1 7/7/00 Methyl tert-butyl ether ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 10.0 µg/L 1 7/7/00 m.Butylbenzene ND 1.00 µg/L 1 7/7/00 m.Propy Benzene ND 1.00 µg/L 1 7/7	Hexachlorobutadiene	ND	2.00	μg/L	1	7/7/00
m.p-Xylene ND 2.00 µg/L 1 777/00 Methyl tert-butyl ether ND 2.00 µg/L 1 777/00 Methylene chloride ND 10.0 µg/L 1 777/00 n-Butylbenzene ND 1.00 µg/L 1 777/00 n-Propylbenzene ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 Naphthalene ND 1.00 µg/L 1 777/00 o-Xylene ND 1.00 µg/L 1 777/00 sec-Butylbenzene ND 1.00 µg/L 1 777/00 Styrene ND 1.00 µg/L 1 777/00 tert-Butylbenzene ND 1.00 µg/L 1 777/00 Tetrachloroethene 1,980 20.0 µg/L 1 777/00 Toluene ND 1.00 µg/L 1 777/00 <	Iodomethane	ND	1.00	μg/L	1	7/7/00
Methyl tert-butyl ether ND 2.00 µg/L 1 7/7/00 Methylene chloride ND 10.0 µg/L 1 7/7/00 n-Butylbenzene ND 1.00 µg/L 1 7/7/00 n-Propylbenzene ND 1.00 µg/L 1 7/7/00 Naphthalene ND 1.00 µg/L 1 7/7/00 o-Xylene ND 1.00 µg/L 1 7/7/00 sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 Styrene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 µg/L 1 7/7/00 Toluene ND 1.00 µg/L 1 7/7/0	Isopropylbenzene	ND	1.00	μg/L	1	7/7/00
Methylene chloride ND 10.0 µg/L 1 7/7/00 n-Butylbenzene ND 1.00 µg/L 1 7/7/00 n-Propylbenzene ND 1.00 µg/L 1 7/7/00 Naphthalene ND 2.00 µg/L 1 7/7/00 o-Xylene ND 1.00 µg/L 1 7/7/00 sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 Styrene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene ND 1.00 µg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 µg/L 1 <	m,p-Xylene	ND	2.00	μg/L	1	7/7/00
Methylene chloride ND 10.0 μg/L 1 7/7/00 n-Butylbenzene ND 1.00 μg/L 1 7/7/00 n-Propylbenzene ND 1.00 μg/L 1 7/7/00 Naphthalene ND 2.00 μg/L 1 7/7/00 o-Xylene ND 1.00 μg/L 1 7/7/00 sec-Butylbenzene ND 1.00 μg/L 1 7/7/00 sec-Butylbenzene ND 1.00 μg/L 1 7/7/00 Styrene ND 1.00 μg/L 1 7/7/00 tert-Butylbenzene ND 1.00 μg/L 1 7/7/00 tert-Butylbenzene ND 1.00 μg/L 1 7/7/00 tert-Butylbenzene ND 1.00 μg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 μg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 μg/L 1	Methyl tert-butyl ether	ND	2.00	μg/L	1	7/7/00
n-Propylbenzene ND 1.00 µg/L 1 7/7/00 Naphthalene ND 2.00 µg/L 1 7/7/00 o-Xylene ND 1.00 µg/L 1 7/7/00 sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 Styrene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 µg/L 1 7/7/00 Toluene ND 1.00 µg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 µg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/7/00 Trichloroethene 288 20.0 µg/L 1 7/7/00 Trichloroethene ND 2.00 µg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 µg/L 1 7/7/00 Vinyl acetate ND 1.00 µg/L 1 7/7/00 Vinyl acetate ND 1.20 µg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Methylene chloride	ND	10.0		1	7/7/00
Naphthalene ND 2.00 μg/L 1 7/7/00 o-Xylene ND 1.00 μg/L 1 7/7/00 sec-Butylbenzene ND 1.00 μg/L 1 7/7/00 Styrene ND 1.00 μg/L 1 7/7/00 tert-Butylbenzene ND 1.00 μg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 μg/L 1 7/7/00 Toluene ND 1.00 μg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 μg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Trichlorofluoromethane ND 1.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1	n-Butylbenzene	ND	1.00	μg/L	1	7/7/00
o-Xylene	n-Propylbenzene	ND	1.00	μg/L	1	7/7/00
sec-Butylbenzene ND 1.00 µg/L 1 7/7/00 Styrene ND 1.00 µg/L 1 7/7/00 tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 µg/L 1 7/7/00 Toluene ND 1.00 µg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 µg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/7/00 Trichloroethene 288 20.0 µg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 µg/L 1 7/7/00 Vinyl acetate ND 1.00 µg/L 1 7/7/00 Vinyl chloride ND 1.20 µg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118	Naphthalene	ND	2.00	μg/L	1	7/7/00
Styrene ND 1.00 μg/L 1 7/7/00 tert-Butylbenzene ND 1.00 μg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 μg/L 1 7/7/00 Toluene ND 1.00 μg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 μg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	o-Xylene	ND	1.00	μg/L	1	7/7/00
tert-Butylbenzene ND 1.00 µg/L 1 7/7/00 Tetrachloroethene 1,980 20.0 µg/L 1 7/7/00 Toluene ND 1.00 µg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 µg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/7/00 Trichloroethene 288 20.0 µg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 µg/L 1 7/7/00 Vinyl acetate ND 1.00 µg/L 1 7/7/00 Vinyl acetate ND 1.00 µg/L 1 7/7/00 Vinyl chloride ND 1.20 µg/L 1 7/7/00 Surr: 4-Bromofluoromethane 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	sec-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Tetrachloroethene 1,980 20.0 μg/L 1 7/7/00 Toluene ND 1,00 μg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 μg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Styrene	ND	1.00	μg/L	1	7/7/00
Toluene ND 1.00 μg/L 1 7/7/00 trans-1,2-Dichloroethene ND 1.00 μg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichloroethene ND 2.00 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	tert-Butylbenzene	ND	1.00	μg/L	1	7/7/00
trans-1,2-Dichloroethene ND 1.00 μg/L 1 7/7/00 trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Tetrachloroethene	1,980	20.0	μg/L	1	7/7/00
trans-1,3-Dichloropropene ND 1.00 μg/L 1 7/7/00 Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Toluene	ND	1.00	μg/L	1	7/7/00
Trichloroethene 288 20.0 μg/L 1 7/7/00 Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	trans-1,2-Dichloroethene	ND	1.00	μg/L	1	7/7/00
Trichlorofluoromethane ND 2.00 μg/L 1 7/7/00 Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	trans-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Trichloroethene	288	20.0	μg/L	1	7/7/00
Vinyl acetate ND 1.00 μg/L 1 7/7/00 Vinyl chloride ND 1.20 μg/L 1 7/7/00 Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Trichlorofluoromethane	ND	2.00	μg/L	1	7/7/00
Surr: 4-Bromofluorobenzene 98.8 86-115 %REC 1 7/7/00 Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Vinyl acetate	ND	1.00		· 1	7/7/00
Surr: Dibromofluoromethane 100.6 86-118 %REC 1 7/7/00	Vinyl chloride	ND	1.20	μg/L	1	7/7/00
74.120	Surr: 4-Bromofluorobenzene	98.8	86-115	%REC	1	7/7/00
Surr: Toluene-d8 102.2 88-110 %REC 1 7/7/00	Surr: Dibromofluoromethane	100.6	86-118	%REC	1	7/7/00
	Surr: Toluene-d8	102.2	88-110	%REC	1	7/7/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-02A

Client Sample ID: 5015-000628-102

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual U	nits	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B				Analyst: tml
1,1,1,2-Tetrachioroethane	ND	1.00	μд	ı/L	1	7/7/00
1,1,1-Trichloroethane	ND	1.00	μg		1	7/7/00
1,1,2,2-Tetrachloroethane	ND	1.00	μд	_J /L	1	7/7/00
1,1,2-Trichloroethane	ND	1.00	μд	ı/L	1	7/7/00
1,1-Dichloroethane	ND	1.00	μд		1	7/7/00
1,1-Dichloroethene	ND	1.00	μg	ı/L	1	7/7/00
1,1-Dichloropropene	ND	1.00	μg	ı/L	1	7/7/00
1,2,3-Trichlorobenzene	ND	1.80	μg	ı/L	1	7/7/00
1,2,3-Trichloropropane	ND	1.00	μg		1	7/7/00
1,2,4-Trichlorobenzene	ND	1.00	μд	/L	1	7/7/00
1,2,4-Trimethylbenzene	ND	1.00	þд	/L	1	7/7/00
1,2-Dibromo-3-chloropropane	ND	1.80	μg		1	7/7/00
1,2-Dibromoethane	ND	1.00	μg		1	7/7/00
1,2-Dichlorobenzene	ND	1.00	μg	/L	1	7/7/00
1,2-Dichloroethane	ND	1.00	µg	/L	1	7/7/00
1,2-Dichloropropane	ND	1.00	μд	/L	1	7/7/00
1,3,5-Trimethylbenzene	ND	1.00	þд	/L	1	7/7/00
1,3-Dichlorobenzene	ND	1.00	µд	/L	1	7/7/00
1,3-Dichloropropane	ND	1.00	μд	/L	1	7/7/00
1,4-Dichlorobenzene	ND	1.00	µд	/L	1	7/7/00
2,2-Dichloropropane	ND	1.00	μg	/L	1	7/7/00
2-Butanone	ND	20.0	μд	/L	1	7/7/00
2-Chloroethyl vinyl ether	ND	5.00	μд	/L	1	7/7/00
2-Chlorotoluene	ND	1.00	μg	/L	1	7/7/00
2-Hexanone	ND	20.0	μg	/L	1	7/7/00
4-Chlorotoluene	ND	1.00	µġ	/L	· 1	7/7/00
4-Isopropyltoluene	ND	1.00	μg.	/L	1	7/7/00
4-Methyl-2-pentanone	ND	1.00	μg	/L	1	7/7/00
Acetone	ND	20.0	μg	/L	1	7/7/00
Benzene	ND	1.00	μg	/L	1	7/7/00
Bromobenzene	ND	1.00	μg	/L	1 .	7/7/00
Bromochloromethane	ND	1.00	μg,	/L	1 -	7/7/00
Bromodichloromethane	ND	1.00	μg	/L	1	7/7/00
Bromoform	ND	1.00	μg		1	7/7/00
Bromomethane	ND	5.00	μg		1	7/7/00
Carbon disulfide	ND	1.00	μg,	/L	1	7/7/00
Carbon tetrachloride	ND	1.00	μg,	/L	1	7/7/00
Chlorobenzene	ND	1.00	μд		1	7/7/00
Chloroethane	ND	1.80	μg	/L	1	7/7/00
Chloroform	ND	1.00	μg	/L	1	7/7/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

0007004

Lab Order: Project:

5015/PacTrust Seattle

Lab ID:

0007004-02A

Client Sample ID: 5015-000628-102

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	2.00	μg/L	1	7/7/00
cis-1,2-Dichloroethene	ND	1.80	µg/L	1	7/7/00
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	7/7/00
Dibromochloromethane	ND	1.00	μ g /L	1	7/7/00
Dibromomethane	ND	1.00	μg/L	1	7/7/00
Dichlorodifluoromethane	ND	2.00	μg/L	1	7/7/00
Ethylbenzene	ND	1.00	µg/L	1	7/7/00
Hexachtorobutadiene	ND	2.00	μg/L	1	7/7/00
Iodomethane	ND	1.00	μg/L	1	7/7/00
Isopropylbenzene	ND	1.00	μg/L	1	7/7/00
m,p-Xylene	ND	2.00	μg/L	1	7/7/00
Methyl tert-butyl ether	ND	2.00	μg/L	1	7/7/00
Methylene chloride	ND	10.0	μg/L	1	7/7/00
n-Butylbenzene	ND	1.00	μg/ L	1	7/7/00
n-Propylbenzene	ND	1.00	μg/L	1	7/7/00
Naphthalene	ND	2.00	μg/L	1	7/7/00
o-Xylene	ND	1.00	μg/L	1	7/7/00
sec-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Styrene	ND	1.00	μg/L	1	7/7/00
tert-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Tetrachloroethene	ND	1.00	μg/L	1	7/7/00
Toluene	ND	1.00	μg/L	1	7/7/00
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	7/7/00
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Trichloroethene	ND	1.00	μg/L	1	7/7/00
Trichlorofluoromethane	ND	2.00	μg/L	1	7/7/00
Vinyl acetate	ND	1.00	μg/L	1	7/7/00
Vinyl chloride	ND	1.20	μg/L	1	7/7/00
Surr: 4-Bromofluorobenzene	99.6	86-115	%REC	1	7/7/00
Surr: Dibromofluoromethane	102.6	86-118	%REC	1	7/7/00
Surr: Toluene-d8	102.4	88-110	%REC	1	7/7/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-03A

Client Sample ID: 5015-000628-103

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	1.00	μg/L	1	7/7/00
1,1,1-Trichloroethane	ND	1.00	μg/L	1	7/7/00
1,1,2,2-Tetrachloroethane	ND	1.00	μg/L	1	7/7/00
1,1,2-Trichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethene	2.94	1.00	μg/Ľ	1	7/7/00
1,1-Dichloropropene	ND	1.00	μg/L	1	7/7/00
1,2,3-Trichlorobenzene	ND	1.80	μg/L	1	7/7/00
1,2,3-Trichloropropane	ND	1.00	μg/L	1	7/7/00
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2,4-Trimethylbenzene	ND	1.00	μg/Ľ	1	7/7/00
1,2-Dibromo-3-chloropropane	ND	1.80	μg/L	1	7/7/00
1,2-Dibromoethane	ND	1.00	μg/L	1	7/7/00
1,2-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2-Dichloroethane	ND	1.00	μg/Ľ	1	7/7/00
1,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichloropropane	ND	1.00	µg/Ľ	1	7/7/00
1,4-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
2,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
2-Butanone	ND	20.0	μg/L	1	7/7/00
2-Chloroethyl vinyl ether	ND	5.00	μg/L	1	7/7/00
2-Chlorotoluene	ND	1.00	μg/L	1	7/7/00
2-Hexanone	ND	20.0	μg/L	1	7/7/00
4-Chlorotoluene	ND	1.00	μg/L	· 1	7/7/00
4-Isopropyltoluene	ND	1.00	μg/L	1	7/7/00
4-Methyl-2-pentanone	ND	1.00	μg/L	1	7/7/00
Acetone	ND	20.0	μg/L	1	7/7/00
Benzene	ND	1.00	μg/L	1	7/7/00
Bromobenzene	ND	1.00	μg/L	1 '	7/7/00
Bromochloromethane	ND	1.00	μg/ L	1 -	7/7/00
Bromodichloromethane	ND	1.00	μg/L	1	7/7/00
Bromoform	ND	1.00	μg/L	1	7/7/00
Bromomethane	ND	5.00	μg/L	1	7/7/00
Carbon disulfide	ND	1.00	μg/L	1	7/7/00
Carbon tetrachloride	ND	1.00	μg/L	1	7/7/00
Chlorobenzene	ND	1.00	μg/L	1	7/7/00
Chloroethane	ND	1.80	μg/L	1	7/7/00
Chloroform	ND	1.00	μg/L	1	7/7/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-03A

Client Sample ID: 5015-000628-103

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	2.00	μg/L	1	7/7/00
cis-1,2-Dichloroethene	40.8	1.80	μg/L	1	7/7/00 ,
cis-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Dibromochloromethane	ND	1.00	μg/L	1	7/7/00
Dibromomethane	ND	1.00	μg/L	1	7/7/00
Dichlorodifluoromethane	ND	2.00	μg/L	1	7/7/00
Ethylbenzene	ND	1.00	μg/L	1	7/7/00
Hexachlorobutadiene	ND	2.00	μg/L	1	7/7/00
Iodomethane	ND	1.00	μg/L	1	7/7/00
Isopropylbenzene	ND	1.00	μg/L	1	7/7/00
m,p-Xylene	ND	2.00	µg/L	1	7/7/00
Methyl tert-butyl ether	ND	2.00	μg/L	1	7/7/00
Methylene chloride	ND	10.0	µg/L	1	7/7/00
n-Butylbenzene	ND	1.00	μg/L	1	7/7/00
n-Propylbenzene	ND	1.00	μg/L	1	7/7/00
Naphthalene	ND	2.00	μg/L	1	7/7/00
o-Xylene	ND	1.00	μg/L	1	7/7/00
sec-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Styrene	ND	1.00	µg/L	1	7/7/00
tert-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Tetrachloroethene	3,800	50.0	μg/L	1	7/7/00
Toluene	ND	1.00	μg/L	1	7/7/00
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	7/7/00
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Trichloroethene	1,100	20.0	μg/L	1	7/7/00
Trichlorofluoromethane	ND	2.00	μg/L	1	7/7/00
Vinyl acetate	ND	1.00	µg/L	· 1	7/7/00
Vinyl chloride	4.37	1.20	μg/L	1	7/7/00
Surr: 4-Bromofluorobenzene	100.2	86-115	%REC	1	7/7/00
Surr: Dibromofluoromethane	99.2	86-118	%REC	1	7/7/00
Surr: Toluene-d8	101.2	88-110	%REC	1	7/7/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT: Lab Order: Hahn & Associates

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-04A

Client Sample ID: 5015-000628-104

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	1.00	μg/L	1	7/7/00
1,1,1-Trichloroethane	ND	1.00	μ g/L	1	7/7/00
1,1,2,2-Tetrachloroethane	ND	1.00	μg/ L	1	7/7/00
1,1,2-Trichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethane	ND	1.00	μg/L	1	7/7/00
1,1-Dichloroethene	ND	1.00	μg/L	1	7/7/00
1,1-Dichloropropene	ND	1.00	μg/L	1	7/7/00
1,2,3-Trichlorobenzene	ND	1.80	μg/L	1	7/7/00
1,2,3-Trichloropropane	ND	1.00	μg/L	1	7/7/00
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2,4-Trimethylbenzene	ND	1.00	μg/L	1	7/7/00
1,2-Dibromo-3-chloropropane	ND	1.80	μg/ L	1	7/7/00
1,2-Dibromoethane	ND	1.00	μg/L	1	7/7/00
1,2-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,2-Dichloroethane	ND	1.00	μg/L	1	7/7/00
1,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
1,3-Dichloropropane	ND	1.00	μg/L	1	7/7/00
1,4-Dichlorobenzene	ND	1.00	μg/L	1	7/7/00
2,2-Dichloropropane	ND	1.00	μg/L	1	7/7/00
2-Butanone	ND	20.0	μg/L	1	7/7/00
2-Chloroethyl vinyl ether	ND	5.00	μg/L	1	7/7/00
2-Chlorotoluene	ND	1.00	μ g/L	1	7/7/00
2-Hexanone	ND	20.0	μg/L	1	7/7/00
4-Chlorotoluene	ND	1.00	μg/L	. 1	7/7/00
4-Isopropyltoluene	ND	1.00	μg/L	1	7/7/00
4-Methyl-2-pentanone	ND	1.00	μg/L	1	7/7/00
Acetone	ND	20.0	µg/L	1	7/7/00
Benzene	ND	1.00	μg/L	1	7/7/00
Bromobenzene	ND	1.00	μg/L	1	7/7/00
Bromochloromethane	· ND	1.00	μg/L	1	7/7/00
Bromodichloromethane	ND	1.00	μg/L	1	7/7/00
Bromoform	ND	1.00	μg/L	1	7/7/00
Bromomethane	ND	5.00	μg/L	1	7/7/00
Carbon disulfide	ND	1.00	μg/L	1	7/7/00
Carbon tetrachloride	ND	1.00	μg/L	1	7/7/00
Chlorobenzene	ND	1.00	μg/L	1	7/7/00
Chloroethane	ND	1.80	μg/L	1	7/7/00
Chloroform	ND	1.00	μg/L	1	7/7/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-04A

Client Sample ID: 5015-000628-104

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	2.00	μg/L	1	7/7/00
cis-1,2-Dichloroethene	ND	1.80	μg/L	1	7/7/00
cis-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Dibromochloromethane	ND	1.00	μ g/L	1	7/7/00
Dibromomethane	ND	1.00	μg/L	1	7/7/00
Dichlorodifluoromethane	ND	2.00	μg/L	1	7/7/00
Ethylbenzene	ND	1.00	μg/L	1	7/7/00
Hexachlorobutadiene	ND	2.00	μg/L	1	7/7/00
lodomethane	ND	1.00	μg/L	1	7/7/00
isopropylbenzene	ND	1.00	μg/L	1	7/7/00
m,p-Xylene	ND	2.00	μg/L	1	7/7/00
Methyl tert-butyl ether	ND	2.00	μg/L	1	7/7/00
Methylene chloride	ND	10.0	μg/L	1	7/7/00
n-Butylbenzene	ND	1.00	μg/L	1	7/7/00
n-Propylbenzene	ND	1.00	μg/L	1	7/7/00
Naphthalene	ND	2.00	μg/L	1	7/7/00
o-Xylene	ND	1.00	μg/L	1	7/7/00
sec-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Styrene	ND	1.00	μg/L	1	7/7/00
tert-Butylbenzene	ND	1.00	μg/L	1	7/7/00
Tetrachloroethene	ND	1.00	μg/L	1	7/7/00
Toluene	ND	1.00	μg/L	1	7/7/00
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	7/7/00
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	7/7/00
Trichloroethene	ND	1.00	μg/L	1	7/7/00
Trichlorofluoromethane	ND	2,00	μg/L	1	7/7/00
Vinyl acetate	ND	1.00	μg/L	. 1	7/7/00
Vinyl chloride	ND	1.20	μg/L	1	7/7/00
Surr: 4-Bromofluorobenzene	101.0	86-115	%REC	1	7/7/00
Surr: Dibromofluoromethane	102.8	86-118	%REC	1	7/7/00
Surr: Toluene-d8	100.8	88-110	%REC	1	7/7/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Jul-00

CLIENT:

Hahn & Associates

(

0007004

Lab Order: Project:

5015/PacTrust Seattle

Lab ID:

0007004-05A

Client Sample ID: 5015-000628-105

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	1.00	μg/L	1	7/6/00
1,1,1-Trichloroethane	ND	1.00	μg/L	1	7/6/00
1,1,2,2-Tetrachloroethane	ND .	1.00	μg/L	1	7/6/00
1,1,2-Trichloroethane	ND	1.00	μg/L	1	7/6/00
1,1-Dichloroethane	ND	1.00	μg/L	1	7/6/00
1,1-Dichloroethene	ND	1.00	μg/L	1	7/6/00
1,1-Dichloropropene	ND	1.00	μg/L	1	7/6/00
1,2,3-Trichtorobenzene	ND	1.80	μg/L	1	7/6/00
1,2,3-Trichloropropane	ND	1.00	μg/L	1	7/6/00
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	7/6/00
1,2,4-Trimethylbenzene	ND	1.00	μg/L	1	7/6/00
1,2-Dibromo-3-chloropropane	ND	1.80	μg/L	1	7/6/00
1,2-Dibromoethane	ND	1.00	μg/L	1	7/6/00
1,2-Dichlorobenzene	ND	1.00	μg/L	1	7/6/00
1,2-Dichloroethane	ND	1.00	μg/L	1	7/6/00
1,2-Dichloropropane	ND	1.00	μg/L	1	7/6/00
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	7/6/00
1,3-Dichlorobenzene	ND	1.00	μg/L	1	7/6/00
1,3-Dichloropropane	ND	1.00	μg/L	1	7/6/00
1,4-Dichlorobenzene	ND	1.00	μg/L	1	7/6/00
2,2-Dichloropropane	ND	1.00	μg/L	1	7/6/00
2-Butanone	ND	20.0	μg/L	1	7/6/00
2-Chloroethyl vinyl ether	ND	5.00	μg/L	1	7/6/00
2-Chlorotoluene	ND	1.00	μg/L	1	7/6/00
2-Hexanone	ND	20.0	μg/L	1	7/6/00
4-Chlorotoluene	ND	1.00	μg/L	· 1	7/6/00
4-isopropyitoluene	ND	1.00	μg/L	1	7/6/00
4-Methyl-2-pentanone	ND	1.00	μg/L	1	7/6/00
Acetone	ND	20.0	μg/L	1	7/6/00
Benzene	ND	1.00	μg/L	1	7/6/00
Bromobenzene	ND	1.00	μg/L	1	7/6/00
Bromochloromethane	ND	1.00	μg/Ľ	1	7/6/00
Bromodichloromethane	ND	1.00	μg/L	1	7/6/00
Bromoform	ND	1.00	μg/L	1	7/6/00
Bromomethane	ND	5.00	μg/L	1	7/6/00
Carbon disulfide	ND	1.00	μg/L	1	7/6/00
Carbon tetrachloride	ND	1.00	μg/L	1	7/6/00
Chlorobenzene	ND	1.00	μg/L	1	7/6/00
Chloroethane	ND	1.80	μg/L	1	7/6/00
Chloroform	ND	1.00	μg/Ľ	1	7/6/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 10-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007004

Project:

5015/PacTrust Seattle

Lab ID:

0007004-05A

Client Sample ID: 5015-000628-105

Tag Number:

Collection Date: 6/28/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	2.00	μg/L	1	7/6/00
cis-1,2-Dichloroethene	ND	1.80	μg/L	1	7/6/00
cis-1,3-Dichloropropene	ND	1.00	μg/L	1	7/6/00
Dibromochloromethane	ND	1.00	μg/L	1	7/6/00
Dibromomethane	ND	1,00	μg/L	1	7/6/00
Dichlorodifluoromethane	ND	2.00	μg/L	1	7/6/00
Ethylbenzene	ND	1.00	μg/L	1	7/6/00
Hexachlorobutadiene	ND	2.00	μg/L	1	7/6/00
Iodomethane	ND	1.00	μg/L	1	7/6/00
Isopropylbenzene	ND	1.00	μg/L	1	7/6/00
m,p-Xylene	ND	2.00	μg/L	1	7/6/00
Methyl tert-butyl ether	ND	2.00	μg/L	1	7/6/00
Methylene chloride	, ND	10.0	μg/L	1	7/6/00
n-Butylbenzene	ND	1.00	μg/L	, 1	7/6/00
n-Propylbenzene	ND	1.00	μg/L	1	7/6/00
Naphthalene	ND	2.00	μg/L	1	7/6/00
o-Xylene	ND	1.00	μg/L	1	7/6/00
sec-Butylbenzene	ND	1.00	μg/L	1	7/6/00
Styrene	ND	1.00	μg/L	1	7/6/00
tert-Butylbenzene	ND	1.00	μg/L	1	7/6/00
Tetrachloroethene	1.25	1.00	μg/L	1	7/6/00
Toluene	ND	1.00	μg/L	1	7/6/00
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	7/6/00
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	7/6/00
Trichloroethene	ND	1.00	μg/L	1	7/6/00
Trichlorofluoromethane	ND	2.00	μg/L	1	7/6/00
Vinyl acetate	ND	1.00	μg/L	1	7/6/00
Vinyl chloride	ND	1.20	μg/L	1	7/6/00
Surr: 4-Bromofluorobenzene	101.8	86-115	%REC	1	7/6/00
Surr: Dibromofluoromethane	104.4	86-118	%REC	· 1	7/6/00
Surr: Toluene-d8	102.4	88-110	%REC	1	7/6/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Environmental Services Laboratory

CLIENT:	Hahn & Associates
Work Order:	0007004 QC SUMIMAKY KEFOK
Project:	5015/PacTrust Seattle Method Bla

Date: 10-Jul-00

Sample 10: WBI ANK	Datch ID: 05 0360 A 777	T. 0.0.10.	00000	10 - 12 - 1							
Sample ID. HIDCAIN	Datcii ID. 03 8700 A-111	est code.	lest code: EPA 6260B	Units: µg/L		Analysis	Analysis Date 7/6/00	Q	Prep Date:	te:	
Client ID:	0001004	Run ID:	ANGSTROM_000706A	_000706A		SeqNo:	45882	2			
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	-									
1,1,1-Trichloroethane	Q	-									
1,1,2,2-Tetrachloroethane	Q	-									
1,1,2-Trichloroethane	Q	-									
1,1-Dichloroethane	Q	-									
1,1-Dichloroethene	QV	_									
1,1-Dichloropropene	Q	-									
1,2,3-Trichlorobenzene	Q	1.8									
1,2,3-Trichloropropane	QN	-									
1,2,4-Trichlorobenzene	Q	-									
1,2,4-Trimethylbenzene	QN	-									
1,2-Dibromo-3-chloropropane	QN	1.8							÷		
1,2-Dibromoethane	QN	•									
1,2-Dichlorobenzene	QN	•									
1,2-Dichloroethane	QN	-									
1,2-Dichloropropane	QN	-									
1,3,5-Trimethylbenzene	QN	Ψ-									
1,3-Dichlorobenzene	QN	-									
1,3-Dichloropropane	Q	-									
1,4-Dichlorobenzene	Q.	_									
2,2-Dichloropropane	Q	_									
2-Butanone	2	20									
2-Chloroethyl vinyl ether	QN	3									
2-Chlorotoluene	QN	_									
2-Hexanone	2	20									
4-Chlorotoluene	QN	-									
4-isopropyltoluene	₽ N	_									

CLIENT:	Hahn & Associates				
Work Order:	0007004				QC SUMMAKY REPORT
Project:	5015/PacTrust Seattle				Method Blank
4-Methyl-2-pentanone	one	QN	-		
Acetone		2	70		
Benzene		Q	-		
Bromobenzene		Q	*		
Bromochloromethane	ıne	ND			
Bromodichloromethane	hane	Q	 -		
Bromoform		9	•		
Bromomethane		S	£,		
Carbon disulfide		Q	-		
Carbon tetrachloride	te	Q	•		
Chlorobenzene		2	•		
Chloroethane		Q	1.8		
Chloroform		NO	-		
Chloromethane		Q	2		
cis-1,2-Dichloroethene	ene	QN	1.8		
cis-1,3-Dichloropropene	pene	QN Q	-		
Dibromochloromethane	hane	QN	-		
Dibromomethane		QN	-		
Dichlorodifluoromethane	thane	NO	2		
Ethylbenzene		QN	_		
Hexachlorobutadiene	ne	NO	2		
lodomethane		NO	-		
Isopropylbenzene		QN	-		
m,p-Xylene		Q.	7		
Methyl tert-butyl ether	her	Q	7		
Methylene chloride		Q	9		
n-Butylbenzene		NO	_		
n-Propylbenzene '		QN QN	-		
Naphthalene		QN	2		
o-Xylene		QN	~		
sec-Butylbenzene		ND			
Styrene		Q	-		
tert-Butylbenzene		Q	-		
Qualifiers:	ND - Not Detected at the Reporting Limit	ne Limit		C - Snike Décruery autoide accessed executi-its	
,		me sum		s - spine necovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank
	J - Analyte detected below quantitation limits	itation limits		R - RPD outside accepted recovery limits	2 of 3
					.

~	5
	٠
7	٠
٠,	٥
_	

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit I - Analyte detected below quantitation limits

Qualifiers:

Method Blank QC SUMMARY REPORT 2 2 2 2 2 2 2 2 5015/PacTrust Seattle Hahn & Associates 0007004 trans-1,3-Dichloropropene trans-1,2-Dichloroethene Trichlorofluoromethane Tetrachloroethene Trichloroethene Work Order: Vinyl chloride Vinyl acetate CLIENT: Project: Toluene

Environmental Services Laboratory

Date: 10-Jul-00

CLIENT: Hahn & A Work Order: 0007004 Project: 5015/Pac	Hahn & Associates 0007004 5015/PacTrust Seattle							QC SUMMARY REPORT Sample Matrix Spike	TMAR' Sample	MARY REPORT Sample Matrix Spike	RT pike
Sample ID: 0007001-01A MS Client ID:	Batch ID: 05 8260 A-7/7 Test Code: EPA 8260B 0007004 Run ID: ANGSTROM	Test Code: Run ID:	EPA 8260B Units: JANGSTROM_000706A	Units: µg/L _000706A		Analysis SeqNo:	Analysis Date <i>716/</i> 00 SeqNo: 45884	0 -	Prep Date:	jej.	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	52.8	-	50	0	105.6%	0	234	0			
Benzene	51.8	_	50	0	103.6%	37	151	0			
Chlorobenzene	47.8	_	50	0	95.6%	37	160	0			
Toluene	52.9	_	50	0	105.8%	47	150	0			
Trichloroethene	52.9	_	50	0	105.8%	71	157	0			
Sample ID: 0007001-01A MSD	Batch ID: 05 8260 A-7/7 Test Code: EPA 8260B	Test Code:	EPA 8260B	Units: µg/L		Analysis	Analysis Date 7/6/00	0	Prep Date:	te:	
Client ID:	0007004	Run ID:	ANGSTROM_000706A	000706A		SeqNo:	45885	10			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	53.7	-	50	0	107.4%	0	234	52.8	1.7%	20	
Benzene	47.4	_	50	0	94.8%	37	151	51.8	8.9%	20	
Chlorobenzene	49	_	90	0	98.0%	37	160	47.8	2.5%	20	
Toluene	49.9	~	90	0	99.8%	47	150	52.9	5.8%	20	
Trichloroethene	50.4	-	20	0	100.8%	74	157	52.9	4.8%	20	

Qualifiers:

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	
Work Order:	0007004 QC SUMMARY REPORT
Project:	5015/PacTrust Seattle Calibration Verification Standard

Date: 10-Jul-00

Client ID: Analyte Analyte SeqNo. 45881 RPD Limit RPD Limit PPD Limit Quality 4.1-Dichloroethene 52.7 1 56.7 0 105.4% 80 120 0 120 0 120 0 0 120 0 0 120 0 <th>Sample ID: CCV</th> <th>Batch ID: 05 8260 A-7/7 Test Code: EPA 8260B Units: µg/L</th> <th>Test Code:</th> <th>EPA 8260B</th> <th>Units: µg/L</th> <th></th> <th>Analysis</th> <th>Analysis Date 7/6/00</th> <th>0</th> <th>Prep Date:</th> <th>ate:</th> <th></th>	Sample ID: CCV	Batch ID: 05 8260 A-7/7 Test Code: EPA 8260B Units: µg/L	Test Code:	EPA 8260B	Units: µg/L		Analysis	Analysis Date 7/6/00	0	Prep Date:	ate:	
ethene propane 52.7 1 50 105.4% of the propane RREC LowLimit HighLimit RPD Ref Val RPD Limit etheree propane 51.3 1 50 0 102.6% of the propane 80 120 0 PD Limit propane 51.1 1 50 0 102.6% of the propane 80 120 0 PD Limit ie 52.1 1 50 0 102.6% of the propane 80 120 0 PD Limit ie 52.5 1 50 0 102.0% of the propane 80 120 0 PD Ref Val PD Ref Val PD Ref Val PD Limit ie 52.5 1 50 0 105.0% of the propane 80 120 0 PD Ref Val	Client ID:	0007004	Run ID:	ANGSTROM	000706A		SeqNo:	4588	_	_		
ethene 52.7 1 50 0 105.4% 80 propane 51.3 1 50 0 102.6% 80 se 51.1 1 50 0 102.2% 80 se 52 1 50 0 104.0% 80 le 43.9 1.2 50 0 87.8% 80 rrobenzene 47.9 0 50 0 95.8% 86 rromethane 49.1 0 50 0 99.6% 88	Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	
propane 51.3 1 50 102.6% 80 1e 51.1 1 50 0 102.2% 80 1e 52.5 1 50 0 104.0% 80 1e 43.9 1.2 50 0 87.8% 80 Incompetition 47.9 0 50 0 95.8% 86 Incomethane 49.1 0 50 0 99.6% 88	1,1-Dichloroethene	52.7	-	50	0	105.4%	80	120	0			
51.1 1 50 102.2% 80 19 52 1 50 0 104.0% 80 10 52.5 1 50 0 105.0% 80 10 43.9 1.2 50 0 87.8% 80 10 50 0 95.8% 86 10 50 0 98.2% 86 10 50 0 99.6% 88	1,2-Dichloropropane	51.3	•	20	0	102.6%	80	120	C			
ene 52 1 50 104.0% 80 52.5 1 50 0 105.0% 80 ride 43.9 1.2 50 0 87.8% 80 uorobenzene 47.9 0 50 0 95.8% 86 uoromethane 49.1 0 50 0 98.2% 86 B 49.8 0 50 0 99.6% 88	Chloroform	51.1	-	20	0	102.2%	80	120	0			
fide 43.9 1.2 50 0 105.0% 80 uorobenzene 47.9 0 50 0 95.8% 86 uoromethane 49.1 0 50 0 98.2% 86 IB 49.8 0 50 0 99.6% 88	Ethylbenzene	52	-	50	0	104.0%	80	120	0			
43.9 1.2 50 0 87.8% 80 47.9 0 50 0 95.8% 86 49.1 0 50 0 98.2% 86 49.8 0 50 0 99.6% 88	Toluene	52.5	_	50	0	105.0%	8	120	0			
47.9 0 50 0 95.8% 86 49.1 0 50 0 98.2% 86 49.8 0 50 0 99.6% 88	Vinyl chloride	43.9	1.2	50	0	87.8%		120	0			
49.1 0 50 0 98.2% 86 49.8 0 50 0 99.6% 88	4-Bromofluorobenzene	47.9	0	50	0	95.8%		115	C			
49.8 0 50 0 99.6% 88	Dibromofluoromethane	49.1	0	50	0	98.2%		118	0			
	Toluene-d8	49.8	0	20	0	%9.66	88	110	0			

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CONTAINED-IN ASSESSMENT

Rainier Mall 4208 Rainier Avenue South Seattle, Washington

October 4, 2000

Prepared for:

PacTrust Portland, Oregon

Prepared by:

Hahn and Associates, Inc. Portland, Oregon

HAI Project No. 5015

HAHN AND ASSOCIATES, INC.

ENVIRONMENTAL CONSULTANTS

October 4, 2000

Mr. Dean Yasuda Washington Department of Ecology – NWRO 3190 160th Avenue S.E. Bellevue, Washington 98006-5452

HAI Project No. 5015

Subject: Request for Contained-In Determination, Rainier Mall Site, 4208 Rainier Avenue South, Seattle Washington

Dear Mr. Yasuda:

1.0 Introduction

At the request of PacTrust, Hahn and Associates, Inc. (HAI) has conducted a "contained-in" assessment regarding investigative-derived soil media at the above-referenced site (Figure 1). PacTrust understands, that at Washington Department of Ecology (WDOE) discretion, the agency will evaluate soil media on a case-by-case basis for a "contained-in" determination. The "contained-in" determination may identify media that does not need to be managed as a Resource Conservation and Recovery Act (RCRA) hazardous waste, but instead, could potentially be disposed at a permitted RCRA Subtitle D landfill. Please consider this letter a request for the WDOE to conduct a contained-in determination of 16 55-gallon drums of investigative-derived soil media currently stored at the subject property.

2.0 Site Assessment Activities

In August 2000, HAI conducted Phase II Environmental Site Assessment¹ (ESA) activities to assess the quality of subsurface soils and groundwater relating to two former dry cleaning operations at the subject property. The Phase II ESA report was submitted to WDOE by PacTrust under separate cover on October 2, 2000, fulfilling their obligation to report a release at the site under Washington Administrative Code (WAC) 173-340-300. As part of the Phase II ESA, 4 worst-case soil samples from 8 soil borings (Figure 2) were selected for laboratory analysis of volatile organic compounds (VOCs) by U. S. Environmental Protection Agency (EPA) Method 8260. The results indicated that halogenated VOCs, specifically tetrachloroethene (PCE) and trichloroethene (TCE) were detected in two of four worst-case samples (Table 1). Various volatile aromatic compounds including toluene, xylenes, n-propylbenzene, and trimethylbenzenes were also detected. The laboratory analytical reports and chain-of-custody documentation for the Phase II ESA soil sampling are included in Appendix A. In total 16 55-gallon drums of investigative-derived soil media were generated during the Phase II ESA investigation activities.

¹ Hahn and Associates, Inc. (2000) Phase II Environmental Site Assessment, Rainier Mall, 4208 Rainier Avenue South, Seattle, Washington August 1, 2000

Request for Contained-In Determination Rainier Mall Site 4208 Rainier Avenue South Seattle, Washington

3.0 Drum Characterization Activities

Based on the Phase II ESA analytical results, additional soil samples were collected from the drummed soil media to: 1) better characterize soil cuttings from boring B-1; and 2) to characterize soils cuttings from borings where laboratory analyses were not conducted. Accordingly, one discrete soil sample was collected from soil cuttings in drums #1, #2, #3, #4, #7, #8, #9, #10, #12, and #13. Soil samples from each pair of drums representing each specific soil boring were composited at the analytical laboratory and analyzed for VOCs by EPA Method 8260. Based on the detected total concentrations of VOCs, analytical testing for leachable VOCs by the toxicity characteristic leaching procedure (TCLP) was not deemed necessary.

The results of the drum characterization activities are included on Table 1 and the laboratory analytical reports and chain-of-custody documentation are included in Appendix B. A summary of what is considered to be the final representative VOC concentrations contained in the investigative-derived soil media is included as Table 2.

Analytical testing detected only two halogenated VOCs (PCE and TCE) in the investigative-derived soil media. PCE and TCE were detected at concentrations up to 863 parts per billion (ppb) and 7.07 ppb respectively (Table 2).

4.0 Waste Determination

According to RCRA, the soil media at the site is considered a solid waste. In addition, the waste determination indicates that any environmental media generated at the site located within the area of contamination could be interpreted to contain a RCRA listed waste (F002). Based on communications with the W DOE Hazardous Waste program and EPA RCRA Hotline, both agencies agreed with this interpretation. Accordingly, the soil media appears to warrant management as if it contains a RCRA hazardous waste.

The concentrations of PCE and TCE detected at the site indicate that the soil media is not corrosive or ignitable as defined in 40 Code of Federal Regulations (CFR) Part 261.2. In addition, PCE or TCE are not reactive as defined in 40 CFR Part 261.2. Furthermore, a comparison of worst-case total concentrations of PCE and TCE, divided by a factor of 20, indicates that the resulting concentrations do not exceed the TCLP limit for toxicity. Accordingly, the soil media is not considered to be a RCRA characteristic hazardous waste.

Request for Contained-In Determination Rainier Mall Site 4208 Rainier Avenue South Seattle, Washington

5.0 Contained-In Assessment

A "contained-in" assessment of the soil media was conducted based on criteria given to HAI in a September 15, 2000, telephone communication with the WDOE (Guy Tanz to Dave Misko). The assessment indicates that the concentrations of PCE and TCE detected in the worst-case soil media (Table 3) are below the required reference levels:

- 1) The Toxicity Characteristic as defined in 40 CFR Part 261.2
- 2) Land Disposal Restrictions (LDRs) as defined in 40 CFR Part 268.40
- 3) Health-based levels according to WDOE Model Toxics Control Act (MTCA) Method B standards for residential soils (CLARC II Table, February 1996)

Based on this evaluation, PacTrust requests that the WDOE conduct a "contained-in" determination on the stored soil media. In the event that the WDOE agrees with the findings of this assessment, PacTrust desires to dispose of the soil at the Waste Management RCRA Subtitle D landfill located in Seattle, Washington.

Upon your review, please contact the undersigned with your comments or questions.

Sincerely,

Guy H. Tanz

Associate

c: Mr. Richard Buono, PacTrust

TABLE 1 - Summary of Analytical Results for Soil Samples Volatile Organic Compounds (VOCs) by EPA Method 8260

Contained-In Assessment

Rainier Mall

4208 Rainier Avenue South

Seattle, Washington

Project No. 5015

	Total HVOCs	And Substitution	83,572.	GN CN	E G	Q.		870.	80.8	N GN	N GN	ND
	Other VOCs	a esztenet neg arketűtt alatósánála ajanjatosa	1,2,4-TMB = 123 1,3,5-TMB = 32.2 n-propylbenzene = 16.8		ND	ND		toluene = 15.5 m,p-xylene = 12.4 o-xylene = 5.14	toluene = 5.68	ND	1,3,5-TMB = 5.89	ND
l Results (ppb)	Vinyl Chloride		ND>10.0	ND>10.0	ND>10.0	ND>10.0		7.07 ND>10.0	ND>10.0	ND>10.0	ND>10.0	ND>10.0
Analytical Results	TOB	制的的外部设备	272.	ND>5.0	ND>5.0	ND>5.0		7.07	ND>5.0	ND>5.0	ND>5.0	ND>5.0
	PCE	ndebly designations	83,300.	ND>5.0	ND>5.0	ND>5.0		863.	80.8	ND>5.0	ND>5.0	ND>5.0
	cis-1,2-DCE	A MANAGE STATE	ND>5.0	ND>5.0	ND>5.0	ND>5.0		ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>5.0
	1,1-DCE	SANGER STATES		ND>5.0	ND>5.0	ND>5.0	· 1000年100日	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>5.0
Sample Type	4.2	\$250 E850	Boring ND>5.0	Boring	Boring	Boring	- Following Company	Drum	Drum	Drum	Drum	Drum
Top of Sample Depth	(feet bgs)		19.5	4.5	7.0	4.5	elentespekkologia	•	1			,
Sample Data			28-Jun-00	28-Jun-00	29-Jun-00	29-Jun-00		4-Aug-00	4-Aug-00	4-Aug-00	4-Aug-00	4-Aug-00
Sample.Number		e znnn)	5015-000628-005	5015-000628-018	5015-000629-039	5015-000629-055	Soll Drum Characterization (August 2000)	Composite of 001&002	Composite of 003&004	Composite of 007&008	Composite of 009&010	Composite of 012&013
Boring		Site Assessment (June 2000)	B-1	B-3	B-6	B-8	Characteri	B-1	B-1 & B-2	B-4	B-5	B-7
Drum Number		olte Assesi	•	ŀ	,	ı	Soul Drum	1&2	3 & 4	7 & 8	9 & 10	12 & 13

Note:

bgs = below ground surface DCE = dichloroethene

EPA = U.S. Environmental Protection Agency ND = not detected above detection limit indicated

ppb = parts per billion TCE = trichloroethene TMB = trimethylbenzene PCE = tetrachloroethene

ug/kg = micrograms/kilogram VOCs = volatile organic compounds

TABLE 2 - Summary of Analytical Results for Soil Samples · Final VOC Concentrations For Media Characterization and Assessment Purposes Volatile Organic Compounds (VOCs) by EPA Method 8260

Contained-In Assessment

4208 Rainier Avenue South Rainier Mall

Seattle, Washington

Project No. 5015

Drum Number	Boring Number	Sample Number	Sample Date	Top of Sample Depth	Sample Type			Analy	Analytical Results ug/kg (ppb)	5	
				(feet bgs)		1,1-DCE	cis-1,2-DCE	PCE	LOE	Vinyle	sDOV reuto
1&2	B-1	Composite of 001&002	4-Aug-00	1	Drum	ND>5.0	ND>5.0	863.	7.07	7.07 ND>10.0	toluene = 15.5 m,p-xylene = 12.4 o-xylene = 5.14
3&4	B-1 & B-2	B-1 & B-2 Composite of 003&004	4-Aug-00	•	Drum	ND>5.0	ND>5.0	80.8	ND>5.0	ND>10.0	toluene = 5.68
9 % 5	B-3	5015-000628-018	28-Jun-00	4.5	Boring	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	ND
7 & 8	B-4	Composite of 007&008	4-Aug-00	•	Drum	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	ND
9 & 10	B-5	Composite of 009&010	4-Aug-00	•	Drum	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	1,3,5-TMB = 5.89
10, 11 & 12	2 B-6	5015-000629-039	29-Jun-00	7.0	Boring	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	ND
12 & 13	B-7	Composite of 012&013	4-Aug-00	•	Drum	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	ND
14, 15 & 16	6 B-8	5015-000629-055	29-Jun-00	4.5	Boring	ND>5.0	ND>5.0	ND>5.0	ND>5.0	ND>10.0	ND

Note:

bgs = below ground surface
DCE = dichloroethene
EPA = U.S. Environmental Protection Agency
ND = not detected above detection limit indicated

PCE = tetrachloroethene ppb = parts per billion TCE = trichloroethene TMB = trimethylbenzene

ug/kg = micrograms/kilogram VOCs = volatile organic compounds

TABLE 3 · Comparison of Worst-Case VOCs to Reference Levels: Investigative-Derived Soil Media

4208 Rainier Avenue South Seattle, Washington Contained-In Assessment Rainier Mall

Project No. 5015

Case TCLP tion ¹ m)	Reference Levels	Toxicity 4	0.7	0.5
Calculated Worst-Case TCLP Concentration mg/l(ppm)	Analytical Results	Soil Drum Sample No. 5015-000804-001&002	0.0432	0.0004
ion	Reference Levels	LDR	5.6	5.6
Maximum Total Concentration mg/kg (ppm)	Referen	MTCA Method B 2	19.6	90.9
Maximu	Analytical Results	Soil Drum Sample No. 5015-000804-001&002	0.863	0.00707
Constituent			Tetrachloroethene (PCE) ==>	Trichloroethene (TCE) ==>

Note:

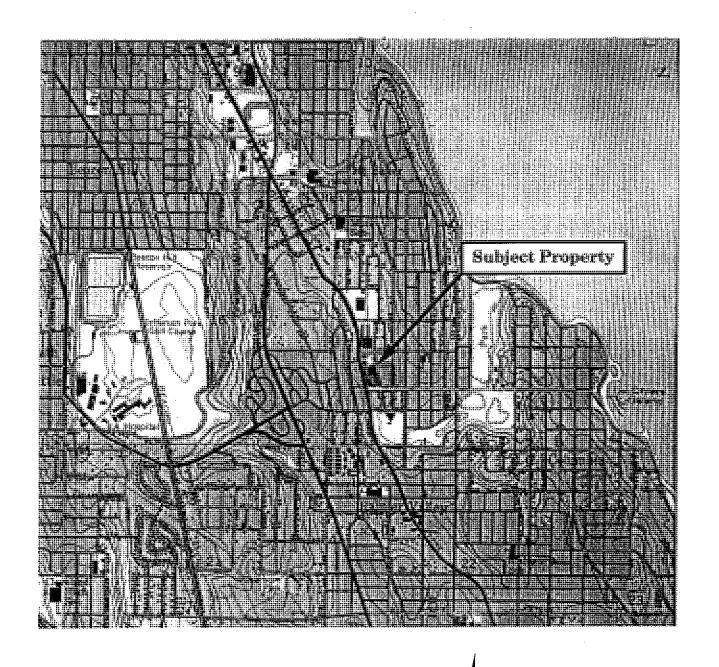
EPA = U.S. Environmental Protection Agency

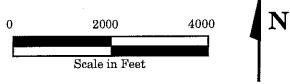
LDR = Land Disposal Restriction (see note 3)

mg/kg = milligrams/kilogram mg/l = milligrams/liter

MTCA = Model Toxics Control Act

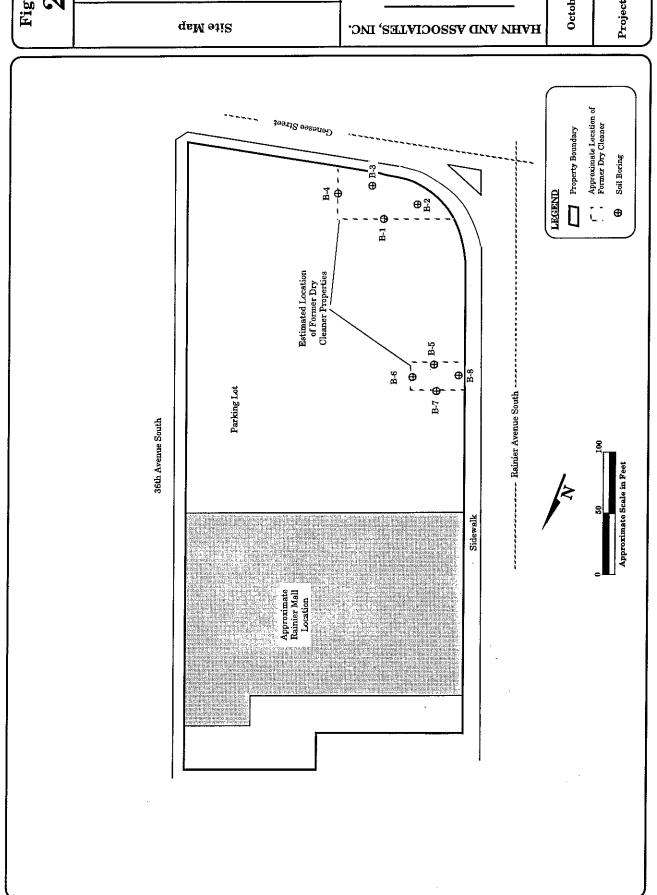
ND = not detected above detection limit indicated ppm = parts per million


TCLP = toxicity characteristic leaching procedure


VOCs = volatile organic compounds

1 = Worst-case TCLP is calculated by dividing the maximum total constituent concentration by a factor of 20 2 = Reference Level based on MTCA Method B Level for Residential Soil (CLARC II Table, February 1996)

3 = Reference Level based on EPA Land Disposal Restrictions as defined in 40 CFR Part 268.40.


4 = Reference Level based on EPA Toxicity Characteristic as defined in 40 CFR Part 261.2.

Note: Base Map from the Seattle South, Washington (1973) USGS 7.5 Minute Quadrangle Contour Interval: 25 Feet

HAI Project	HAHN AND ASSOCIATES	Location Map	FIGURE
No. 5015	INCORPORATED	Contained-In Assessment	
October 2000	ENVIRONMENTAL MANAGEMENT 434 NW SIXTH AVENUE, SUITE 203 PORTLAND, OREGON 97209 503/796-0717	Rainier Mall 4208 Rainier Avenue South Seattle, Washington	$\lfloor 1 \rfloor$

 $^{^{\prime}igure}$

Contained-In Assessment Rainier Mall 4208 Rainier Avenue South Seattle, Washington

ENAIKONMENTAL MANAGEMENT 434 NW SIXTH AVENUE, SUITE 203 6203) 796-0717

October 2000

Project No. 5015

APPENDIX A

Laboratory Analytical Reports and Chain-of-Custody Documentation -June 2000 Phase II Environmental Site Assessment Soil Samples

HAHN AND ASSOCIATES, INC.		Lab	ornt	огу	910	·				CHAIN (F C	USTODY
Environmental Management									_			7
434 NW Sixth Avenue, Suite 203 • Portland OR 97209 (503) 796-0717 • Fax (503) 227-2209		Lab i	Projec	t No	003	2005	<u>-</u>		-	Chain of Cust	ody No	
611/7/17	l I	Liquid v	with S	Sediment S	Sample				Samples R	eceived at 4C	(Y or N)
Project Manager Project No. 5035		-	est File			ediment		Test Both	Appropriat	te Containers (Jsed (Y	or N)
Project Name PacTrust Seattle		Multi-P	hase l	Sample					1	erbal Results (
Collected by Jay Greifer	<u> </u>	—т	est On	e (which)	Test S	eparately		_Shake 	Provide Pr	eliminary Fax	Results	
Comments	_ F	trix		i		Analys	es to be I	Performe	<u>d</u>		_	
Sample Number Prefix: 5015-000628-	<u>-</u> -											
			Ę 🕽	3								
			ıntair 7)								
	ļļ		<u> </u>	9								
		water Other	Number of Containers	ح				!			RUSII	
		≆ ວັ	ž \ 	ũ							=	Remarks
Lab ID Sample # Date Time Sample Descript		<u> </u>	, -	1	<u>-</u>	<u> </u>	1	1	, ,	i	!	
04 004 628 4 330 B) E/B	- 1				<u> </u>		1		!	i	\top	
05 005 844 0 20	- 			*	 	· 	1			:		
06 006 353 25	- } :	1 1	+	<u>;</u>	<u>i</u> !	<u> </u>	<u> </u>	<u>:</u>	- :		+	
07 07 909 830	+	1 -		:	<u>-</u>	:	1	! <u>'</u>		:		-
08 008 933 635		1 1		:	: !		!	<u>!</u>		1	+	
09 009 1953 1 6 40	1 h-i	!	1	!	<u> </u>	1	i	1			+	
10 010 1116 87 @ 5	_}	1	/			:	i	· .	<u> </u>	· · ·	_	
11 011 1136 71	2 4		4	<u> </u>	<u> </u>	- :	!	<u>!</u>	<u></u>	<u> </u>		-
12 012 1133 10		1 1	<u>' </u>			!	1		- !	<u> </u>	_	<u> </u>
13 013 1148 15	171	1	! -		-		<u> </u>	! !	· !	1	-	
14 0/4 /159 20	グト!		<u> </u>		İ	<u> </u>	1	<i>i</i>			<u> </u>	-
15015 1215 23	<u>الم</u> ا)	<u> </u>	<u> </u>	!	i	!					
16:016: 1234 - 30	XI	1)				<u> </u>				. !	\perp	
17 017 1327 83021	3 /	/	\perp	,		<u>i</u>		i			_	
18 018 337 5.	$ \mathcal{X} $	1/	1 2	*						-		
[9 99 1341 715	4	+	4			<u> </u>				<u>i</u>		
20 020 1347 10	7		/									
21 021 140 15	7	Ī	1	-				<u> </u>				
22 022 1411 20	~											
22 022 V411 20 23 023 Y424 - 25	স								İ			
24 024 1555 1348 311	7 2	11			-			Ī				
25 025 1604 5		11,	1		i	<u> </u>						<u>~~</u>
24 026 1616 71/2	7	1/	_			 	-	<u> </u>				
	X	++-	+					- 				
27 027 16B 10 28 028 1627 15	7		-		1				1		+	
	17	1 1	+		+	.		<u> </u>		-		
25 029 - 1632 + 28 Relinquished by Company HAHN & A		1 1	1_	Time		Received	by I	- 1 '	<u> </u>	Compa	<u> </u>	
		Date	311	0 14	30	/ Jt	w	r	<u></u>	Compar		
Relinquished by Company		Date		Time		Received	рy			Сотра	ıy	
		1										

Nopportunition (

- -

, Company of the Comp

· Sometiment

L. sussimmenton

HAHN AND ASSOCIATES, INC.			L	abor	atory	EL					-	CH	AIN O	FC	USTODY
Environmental Management 434 NW Sixth Avenue, Suite 203 • Portland OR 97209 (503) 795-0717 • Fax (503) 227-2209			La	b Pro	oject No	CO	סקמ	303			-	Chain	of Custod	ly No	4_
Project Manager Juy Jave		Li	qui		h Sediment						1		dat 4C (Y		***************************************
Project No.	┨	·····		_	Fil trate se Sample	1'es	Sedimen			_ Test Both	1		tainers Use kesults (Y d		or N)
Project Name Fac 1745 Fac 1745	1	171	.		One (which)	Test	Separate	ity		Shake	1		ary Fax Re		
	- N	To t	rix	- T					to be	Performe	1		-	ī	
Sample Number Prefix: 5015-00628-	14.		1					'	LO DE ,		<u> </u>	1		1	
	Soil	Water	Other	Number of Containers	34 8260									RUSH	
Lab ID Sample # Date Time Sample Description		_	<u> </u>	1	7	<u> </u>	!	- 1		1		<u>i</u>	!		Remarks
30 030 62601644B4825	$ \mathcal{X} $			/							<u> </u>	<u> </u>	1	-	
					ļ!					1		1	ļ		
							<u> </u>							<u> </u>	
	1	ļ						i				}			
	1	ļ											i		
		ĺ					1					1	;		
	!	!	•			i		ļ				j			
	T	-	1		:		i	!		;		: :			
	1	- !	- 1	<u> </u>		<u> </u>				· 			4		
	+	- ;	\dashv		1	-	<u>.</u>			<u> </u>		I	1		
	1	1	+		<u> </u>	<u> </u>	<u> </u>	<u> </u>		1			•		
			+		1	1		<u> </u>			<u>.</u>		1		
		1	\dashv		<u> </u>	<u> </u>	1	1	1	!	i		1		·····
	<u> </u>	.	\downarrow			1	!	i_	[- !	,				
		1	_										;		
		<u> </u>	4					!			!			_	
						-							<u> </u>		
	1	1	\perp												
				ļ					ı						
				- 1	1										
		T													
	Ť	Ť	1	7					1	Ī	ĺ				
	Ť	t	\dagger	\dashv				1						\top	
	+	\dagger	\dagger	\dashv	-		-	+	+	<u> </u>				+	
	+	+	+	+			+				1			+	
	+	$\frac{1}{1}$	- -	+			 -	<u> </u>		 		<u>. ' </u>		_	
	+	+	-	4			-							_	<u></u> .
unquished by Company HAHN & ASSOC	<u> </u>	10	ate /	4	1 Time		Rose	Ved by	1	1	<u> </u>		Company		
	•	٦		nl.	k4 63 11	430	wecen	1),	لىند	lu	_		Company)(_
Company Company		a	ate	سلال	Time	+	Recei	ved by			·		Company		
												ļ			

1

.

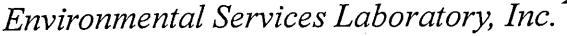
. ,

1

J

ار

. .


.....

CHAIN OF CUSTODY HAHN AND ASSOCIATES, INC. Laboratory Environmental Management Chain of Custody No. cc27*0*23 434 NW Sixth Avenue, Suite 203 • Portland OR 97209 Lab Project No. (503) 796-0717 • Fax (503) 227-2209 Samples Received at 4C (Y or N) Liquid with Sediment Sample Project Manager Test Both Appropriate Containers Used (Y or N) Test Filtrate Test Sediment Project No. PACTIVIT GETTILE Provide Verbal Results (Y or N) Multi-Phase Sample Project Name Provide Preliminary Fax Results Test One (which) Shake Collected by Jay Greifer Matrix Analyses to be Performed Comments Sample Number Prefix: 5015-110629 Number of Containers RUSH Remarks Time | Sample Description Date Lab ID | Sample # 6.29 as 701 821/Z *j*-1 ĺ 40 040) 41 041 947 42043 43043 30 1023 40 1231 Reinquished by Company

5

foil

1	AND ASSOCI		I	abor	atory	<i>1351</i>			_ CH	AIN OF (CUSTODY
434 NW Sixth	ronmental Man Avenue, Suite 203 •	Portland OR 97209	I.	ab Pro	oject No.	000	$\infty 3^{-}$		- Chai	n of Custody N	·
(503) Project Manager Project No. Project Name Collected by	796-0717 • Fax (503 AVT TAV AUT TAV AUT TAV Jay Greifer	1) 227-2209 T is + Gast/e]	Test i-Phn:	h Sediment Filtrate se Sample One (which)	Test So	ediment	Shake	Samples Receiv Appropriate Co Provide Verbal Provide Prelimi	ntainers Used (Results (Y or N	Y or N)
Comments			Matrix	-	<u> </u>		Analyses to	be Performe	d I		
Sample Numbe		Sample Description	Soil Water Other	Number of Containers	PA 8260.					Brigh	Remarks
57 057	6-29-14-59	080 10	14	1				1	1	İ	
58 058	1 (5/)	1 15	4	1		-			1	į	
54 059	1515	7 20	7-1	1						į	
60000	1530	1 25	}	1				İ			
101 801	1544	30	71	1							
102:063	1 1600	35	4-1)					!	1	
1,3063	+ 1618	1 - (10	7-1	1					i		
	1	1		<u> </u>			<u> </u>	!	÷	;	
1 1	;				1		l			1	
								i i			
								i		i	
	i							-		i	
			İ			i		1 1		1	
			iii						j		
T T						İ	İ				
			111					İ			
										i	
	-										
									İ		
									i		
				1							
			111	1						<u> </u>	
				+						-	
				\dashv							. <u>.</u> .
				\dashv							
				_							
elinquished by		Company HAHN & ASSOC	Date	<u></u> e(3)	Time CK	(7 <u>6</u> T)	Received by	, tu	· · · · · · · · · · · · · · · · · · ·	Company	gt
elinquished by		Company	Date		Time		Received by			Company	

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 670-8520

July 13, 2000

Mr. Guy Tanz
Hahn & Associates
434 N.W. 6th Avenue
Suite 203
Portland, OR 97209
TEL: (503)796-0717
FAX (503) 227-2209

RE: 5015/PacTrust Seattle

Dear Mr. Guy Tanz,

Order No.: 0007003

Environmental Services Laboratory received 63 samples on 6/30/00 for the analyses presented in the following report.

The Samples were analyzed for the following tests: Volatiles by GC/MS (EPA 8260B)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval from the Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Niehole Karl

Nichole Karl Project Manager Technical Review

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

5015/PacTrust Seattle

Project: Lab ID:

0007003-05A

Client Sample ID: 5015-000628-005

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1,2-Trichloroethane	ND	5.00	µg/Kg	1	7/11/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,1-Dichloroethene	ND	5,00	μg/Kg	1	7/11/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/11/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,2,4-Trimethylbenzene	123	5.00	μg/Kg	1	7/11/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/11/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/11/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,3,5-Trimethylbenzene	32.2	5.00	μg/Kg	1	7/11/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/11/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/11/00
2-Butanone	ND	100	μg/Kg	1	7/11/00
2-Chioroethyl vinyl ether	ND	50.0	μg/Kg	1	7/11/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/11/00
2-Hexanone	ND	100	μg/Kg	1	7/11/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/11/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	7/11/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/11/00
Acetone	ND	100	μg/Kg	1	7/11/00
Benzene	ND	5.00	μg/Kg	1	7/11/00
Bromobenzene	ND	5.00	μg/Kg	1	7/11/00
Bromochloromethane	ND	5.00	μg/Kg	1	7/11/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/11/00
Bromoform	ND	5.00	μg/Kg	1	7/11/00
Bromomethane	ND	10.0	μg/Kg	1	7/11/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/11/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/11/00
Chlorobenzene	ND	5.00	μg/Kg	1	7/11/00
Chloroethane	ND	10.0	μg/Kg	1	7/11/00
Chloroform	ND	5.00	μg/Kg	1	7/11/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

5015/PacTrust Seattle

Project: Lab ID:

0007003-05A

Client Sample ID: 5015-000628-005

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	μg/Kg	1	7/11/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/11/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/11/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/11/00
Dibromomethane	ND	5.00	μg/K g	1	7/11/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/11/00
Ethylbenzene	ND	5.00	μg/Kg	1	7/11/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/11/00
Iodomethane	ND	5.00	μg/Kg	1	7/11/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/11/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/11/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/11/00
Methylene chloride	ND	100	μg/Kg	1	7/11/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
n-Propylbenzene	16.8	5.00	μg/Kg	1	7/11/00
Naphthalene	ND	25.0	μg/Kg	1	7/11/00
o-Xylene	ND	5.00	μg/Kg	1	7/11/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
Styrene	ND	5.00	μg/Kg	1	7/11/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/11/00
Tetrachloroethene	83,300	500	μg/Kg	1	7/11/00
Toluene	ND	5.00	μg/Kg	1	7/11/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/11/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/11/00
Trichloroethene	272	5.00	µg/Kg	1	7/11/00
Trichlorofluoromethane	ND	10.0	µg/Kg	· 1	7/11/00
Vinyl acetate	ND	5.00	µg/Kg	1	7/11/00
Vinyl chloride	ND	10.0	µg/Kg	1	7/11/00
Surr: 4-Bromofluorobenzene	98.4	74-121	%REC	1	7/11/00
Surr: Dibromofluoromethane	97.4	80-120	%REC	1	7/11/00
Surr: Toluene-d8	101.0	81-117	%REC	1	7/11/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

5015/PacTrust Seattle

Project: Lab ID:

0007003-18A

Client Sample ID: 5015-000628-018

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES BY GC/MS	Ε	PA 8260B	······································		Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μ g /Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
2-Hexanone	ND	100	μg/Kg	· 1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1 1	7/10/00
4-Methyl-2-pentanone	ND	5,00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/K g	1	7/10/00
Acrylonitrile	ND	250	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1	7/10/00
Bromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromoform	ND	5.00	μg/Kg	1	7/10/00
Bromomethane	ND	10.0	μg/Kg	1	7/10/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/10/00
Carbon tetrachloride	ND	5.00	μg/Kg μg/Kg	1	7/10/00
Chiorobenzene	ND	5.00	μg/Kg μg/Kg	1	7/10/00
Chloroethane	ND	10.0	μg/Kg μg/Kg	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-18A

Client Sample ID: 5015-000628-018

Tag Number:

Collection Date: 6/28/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	7/10/00
Chloromethane	ND	10.0	μg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μ g /Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/Kg	1	7/10/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	μg/Kg	1	7/10/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/10/00
Iodomethane	ND	5,00	μg/Kg	1	7/10/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μg/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μˈg/Kg	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachloroethene	ND	5.00	μg/Kg	1	7/10/00
Toluene	ND	5.00	μg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
trans-1,3-Dichloropropeле	ND	5.00	μ g/ Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	. 1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofluorobenzene	99.6	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	100.6	80-120	%REC	1	7/10/00
Surr: Toluene-d8	101.2	81-117	%REC	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-39A

Client Sample ID: 5015-000629-039

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	µg/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	µg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichforobenzene	ND	5.00	µg/Kg	1 .	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
2-Hexanone	ND	100	μg/Kg	. 1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-isopropyltoluene	ND	5.00	μg/Kg	1	7/10/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1	7/10/00
Bromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromoform	ND	5.00	μg/Kg	1	7/10/00
Bromomethane	ND	10.0	μg/Kg	1	7/10/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/10/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/10/00
Chlorobenzene	ND	5.00	μg/Kg	1	7/10/00
Chioroethane	ND	10.0	μg/Kg	1	7/10/00
Chloroform	ND	5.00	μg/Kg	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-39A

Client Sample ID: 5015-000629-039

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	μg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5,00	μ g /Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/K g	1	7/10/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	μg/Kg	1	7/10/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/10/00
Iodomethane	ND	5.00	μg/Kg	1	7/10/00
Isopropylbenzene	ND	5.00	µg/K g	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μ g/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μg/K g	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachloroethene	ND	5.00	μg/Kg	1	7/10/00
Toluene	ND	5.00	μg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
trans-1,3-Dichioropropene	ND	5.00	μg/Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofluorobenzene	101.4	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	103.4	80-120	%REC	1	7/10/00
Surr: Toluene-d8	104.6	81-117	%REC	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

Lab Order:

0007003

Project:

5015/PacTrust Seattle

Lab ID:

0007003-55A

Client Sample ID: 5015-000629-055

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
OLATILES BY GC/MS	<u> </u>	PA 8260B	,	•	Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1,2,2-Tetrachloroethane	ND	5.00	μ g/Kg	1	7/10/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloroethane	ND	5.00	μ g/Kg	1	7/10/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	7/10/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	7/10/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichlorobenzene	ND	5.00	μ g/Kg	1	7/10/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	7/10/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,3,5-Trimethylbenzene	ND	5.00	μ g/ Kg	1	7/10/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	7/10/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	7/10/00
2-Butanone	ND	100	μg/Kg	1	7/10/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	7/10/00
2-Chlorotoluene	ND	5.00	μg/Kg	· 1	7/10/00
2-Hexanone	ND	100	µg/Kg	. 1	7/10/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	7/10/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	7/10/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	7/10/00
Acetone	ND	100	μg/Kg	1	7/10/00
Benzene	ND	5.00	μg/Kg	1	7/10/00
Bromobenzene	ND	5.00	μg/Kg	1.	7/10/00
Bromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromodichloromethane	ND	5.00	μg/Kg	1	7/10/00
Bromoform	ND	5.00	μg/Kg	1	7/10/00
Bromomethane	ND	10.0	μg/Kg	1	7/10/00
Carbon disulfide	ND	5.00	μg/Kg	1	7/10/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	7/10/00
Chlorobenzene	ND	5.00	μg/Kg	1	7/10/00
Chloroethane	ND	10.0	μg/Kg	1	7/10/00
Chloroform	ND	5.00	μg/Kg	1	7/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Jul-00

CLIENT:

Hahn & Associates

0007003

Lab Order: Project:

5015/PacTrust Seattle

Lab ID:

0007003-55A

Client Sample ID: 5015-000629-055

Tag Number:

Collection Date: 6/29/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloromethane	ND	10.0	µg/Kg	1	7/10/00
cis-1,2-Dichloroethene	ND	5.00	μ g/Kg	1	7/10/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Dibromochloromethane	ND	5.00	μg/Kg	1	7/10/00
Dibromomethane	ND	5.00	μg/Kg	1	7/10/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	7/10/00
Ethylbenzene	ND	5.00	µg/Kg	1	7/10/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	7/10/00
Iodomethane	ND	5.00	μ g /Kg	1	7/10/00
Isopropylbenzene	ND	5.00	μg/Kg	1	7/10/00
m,p-Xylene	ND	10.0	μg/Kg	1	7/10/00
Methyl tert-butyl ether	ND	10.0	μ g /Kg	1 .	7/10/00
Methylene chloride	ND	100	μg/Kg	1	7/10/00
n-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
n-Propylbenzene	ND	5.00	μg/Kg	1	7/10/00
Naphthalene	ND	25.0	μg/Kg	1	7/10/00
o-Xylene	ND	5.00	μg/Kg	1	7/10/00
sec-Butylbenzene	ND	5.00	μg/K g	1	7/10/00
Styrene	ND	5.00	μg/Kg	1	7/10/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	7/10/00
Tetrachloroethene	ND	5.00	μg/Kg	1	7/10/00
Toluene	ND	5.00	μg/Kg	1	7/10/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	7/10/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	7/10/00
Trichloroethene	ND	5.00	μg/Kg	1	7/10/00
Trichlorofluoromethane	ND	10.0	μg/Kg	- 1	7/10/00
Vinyl acetate	ND	5.00	μg/Kg	1	7/10/00
Vinyl chloride	ND	10.0	μg/Kg	1	7/10/00
Surr: 4-Bromofluorobenzene	102.6	74-121	%REC	1	7/10/00
Surr: Dibromofluoromethane	102.6	80-120	%REC	1	7/10/00
Surr: Toluene-d8	106.2	81-117	%REC	1	7/10/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Hahn & Associates

0007003

Work Order: CLIENT:

QC SUMMARY REPORT

Project: 5015/Pac	5015/PacTrust Seattle							ı		Method Blank	Slank
Sample ID: MBLANK	Batch ID: 05 8260 S-7/1 Test Code: EPA 8260B	Test Code:	EPA 8260B	Units: µg/Kg		Analysis	Analysis Date 7/10/00	00	Prep Date:	·a	
Client ID:	0007003	Run ID:	ANGSTROM_000710A	000710A		SeqNo:	46169			į	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1,1,1,2-Tetrachloroethane	QN	5									
1,1,1-Trichloroethane	QN	5									
1,1,2,2-Tetrachloroethane	Q	ιΩ									
1,1,2-Trichloroethane	Q	5									
1,1-Dichloroethane	Q	ß									
1,1-Dichloroethene	Q	5									
1,1-Dichloropropene	Q	5									
1,2,3-Trichlorobenzene	Q	5								-	
1,2,3-Trichloropropane	QN	5									
1,2,4-Trichlorobenzene	QN	5									
1,2,4-Trimethylbenzene	Q	5									
1,2-Dibromo-3-chloropropane	Q	10									
1,2-Dibromoethane	Q	S									
1,2-Dichlorobenzene	Q	5				i					
1,2-Dichloroethane	QN	5									
1,2-Dichloropropane	Q	S.									
1,3,5-Trimethylbenzene	Q	ß									
1,3-Dichlorobenzene	Q	5									
1,3-Dichloropropane	QN .	5									
1,4-Dichlorobenzene	Q.	5									
2,2-Dichloropropane	Q	5									
2-Butanone	Q	100									
2-Chloroethyl vinyl ether	Q	90									
2-Chlorotoluene	Q	5									
2-Hexanone	Q	100									
4-Chlorotoluene	QN	5									
4-isopropyltoluene	QN	5									

Qualifiers:

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Ο,	of 3	,
2	2	

T ON THE WAY	riann & Associates				TOCATA NA DA DO
Work Order: 0007003					QC SUMMAKI KEFUKI
Project: 5015/Pac	5015/PacTrust Seattle				Method Blank
4-Methyl-2-pentanone	QN		5		
Acetone	QN		100		
Benzene	QN	•	5		
Bromobenzene	QN	_	c)		
Bromochloromethane	Q	•	S		
Bromodichloromethane	QN	_	5		
Bromoform	QN	_	c)		
Bromomethane	QN		10		
Carbon disulfide	QN		5		
Carbon tetrachloride	Q	•	5		
Chlorobenzene	QN	_	5		
Chloroethane	QN		10		
Chloroform	QV		5		
Chloromethane	QN		10		
cis-1,2-Dichloroethene	Q.	_	. 2		
cis-1,3-Dichloropropene	9	0	5		
Dibromochloromethane	QN	_	5		
Dibromomethane	Q	_	5		
Dichlorodifluoromethane	Q		10		
Ethylbenzene	QV	0	5		
Hexachlorobutadiene	QV	0	r.		
lodomethane	QN	0	5		
Isopropylbenzene	QN.	0	5		
m,p-Xylene	QN		10		
Methyl tert-butyl ether	ON .		10		
Methylene chloride	Q		100		
n-Butylbenzene	QV	0	5		
n-Propylbenzene	Q		5		
Naphthalene	Q		25		
o-Xylene	QN	0	5		
sec-Butylbenzene	Q	0	5		
Styrene	9	0	5		
tert-Butylbenzene	QN	0	5		
Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit	imit	S - Spik	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Rlank
		;	-		VIEW POINTER PROPERTY OF THE P

Companyon .

Sandalvereneway.

Auguri . Companyanis . Company

1	į	Š		
	•	7	١	

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

QC SUMMARY REPORT	Method Blank									
		5	5	5	5	z,	10	5	10	
		ND	Q.	QN	QN	Q.	QN	QN	Q	
Hahn & Associates 0007003	5015/PacTrust Seattle			hene	opene		ane			
CLIENT: Work Order:	Project:	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyl chloride	

B - Analyte detected in the associated Method Blank

Environmental Services Laboratory

Date: 13-Jul-00

CLIENT: Work Order: Project:	Hahn & Associates 0007003 5015/PacTrust Seattle						Continu	QC SUMMARY REPORT Continuing Calibration Verification Standard	QC SUMMARY REPORT Calibration Verification Standard	Standa	T rd
Sample ID: CCV Client ID:	Batch ID: 05 8260 S-7/1 Test Code: EPA 8260B Units: µg/Kg 0007003 Run ID: ANGSTROM_000710A	Test Code: Run ID:	EPA 8260B Units: p ANGSTROM_000710A	Units: µg/Kg 000710A		Analysis SeqNo:	Analysis Date 7/10/00 SeqNo: 46168	00.	Prep Date:		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit		Qual
1,1-Dichloroethene	54.5	r.	50	0	109.0%	8	120	0			
1,2-Dichloropropane	e 50.4	5	90	0	100.8%	80	120	0			
Chloroform	51	S.	50	0	102.0%	80	120	0			
Ethylbenzene	49.5	ιΩ	50	0	99.0%	80	120	0			
Toluene	51.4	5	90	0	102.8%	80	120	0			
Vinyl chloride	51.3	9	90	0	102.6%	80	120	0			
4-Bromofluorobenzene	ene 47.2	0	50	0	94.4%	98	115	0			
Dibromofluoromethane	ane 49.6	0	90	0	99.2%	98	118	0			
Toluene-d8	49.8	0	50	0	%9 :66	88	110	0			

Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

APPENDIX B

Laboratory Analytical Reports and Chain-of-Custody Documentation -August 2000 Investigative-Derived Soil Media Drum Characterization Samples

nue N.E., Suite 101, Bouled, WA v8011-9508 ntgomery, Suite B, Scokane, WA 9 206-4776 Nimbus Avenue, Beaverton, OR 977 08-7132 n. Avenue, S. te F-1, Bend, OR 9770, 5711 Penue N.E., Suite 101, Boy omgomery, Suite B, S 9405 S.V. N 20332 Empir 18939 120th Av

X 420-9210 24 X 924-9290 34 Y 906-9210 34 X 382-758 (425) 429 9200 (509) 24-9200 (53) 906-9200 (541) 383-9310

CHAIN OF CUSTODY REPORT

	CHAI	IN OF CU	CHAIN OF CUSTODY REPORT	Work Order#))	7
	۰,		INVOICE TO: \$50 to				Γ
	REPORT TO: Comy Praz		ESC QUOTE # KG	J	I UKNAKOUND REQ Organic & Im	I UKNAKUUND REQUEST in Business Days* Organic & Ingranic Appliess	
•	ADDRESS: 434 NW. 6Th Suite 203		MAZ# 5015	_	10 7 5 4	3 2 1 < 1	
	1627/21/2 67 6/1201	שאנו גננ	BAINTER MALL			j [
	PROJECT NAME: P. M. R. K. C.	1 4-6-6-1	P.O. NUMBER:		5 4 3	4 3 2 1 <1	
	PROJECT NUMBER.	X	REQUESTED ANALYSES			Please Specify	
	SAMPLED BY: TS FF 1/A/ TE 25	E S	8	34.44	OTHER	NORMALTAI	7
	Щ.	<u>کر</u>	<i>O</i> 9		*Turnaround Requests less than	*Turnaround Requests less than standard may incur Rush Charges.	
		7 /	72:			NCA WO	<u>,</u>
ί,	0/8.2		3		(W, S, O) CONT.	COMMENTS ID	
71	07 0180,110	= *	*				
`	D 8 (C) 4/1 4C)				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
. <i>V</i>	4-680400 ACI OFFCHED	77	*				
	7376/10	ار			5		
Mr.	(33/108)	6	*		-		
•	90	→			5		1
, A	7. 9-090400 07	7* 14	. 3		1 2		1
۲	8.1c=086400 08		4		1		
X	017-080400 04 05/03/CD	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					- -
<i>></i>	10. K3-6404CO 10 PERVIEW CF15-	*					Ť
							ī
	12.						\neg_{T}
	13.						
	14.						
							i
	RELINQUISHED BY:						
	Jert Walters	FIRM: 5-20: (6:5	TANIE 13.36 PRINT NAME	× × × × × × × × × × × × × × × × × × ×	FIRM: HAT	DATE:7/4/CO	
	PRINT NAME: GOST I TANK HINE HIME H	AT	DATE: RECEIVED BY: / PRINT NAMIK	leun Ou		8 2 (्र उ
	CDC REV 399					TEMP:	

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 670-8520

August 17, 2000

Mr. Guy Tanz
Hahn & Associates
434 N.W. 6th Avenue
Suite 203
Portland, OR 97209
TEL: (503)796-0717
FAX (503) 227-2209

RE: 5015/Ranier Market

Order No.: 0008060

Dear Mr. Guy Tanz,

Environmental Services Laboratory received 15 samples on 8/9/00 for the analyses presented in the following report.

The Samples were analyzed for the following tests: Volatiles by GC/MS (EPA 8260B)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval from the Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Nichole Karl

Project Manager

Nichelle Kurl

Technical Review

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

5015/Ranier Market

Project: Lab ID:

0008060-11A

Client Sample ID: comp 001&002

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethane	ND	5.00	µg/Kg	1	8/16/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloropropene	ND	5.00	µg/Kg	1	8/16/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trichlorobenzene	ND	5,00	μg/Kg	1	8/16/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	8/16/00
1,2-Dibromoethane	ND	5.00	µg/Kg	1	8/16/00
1,2-Dichlorobenzeле	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,4-Dichlorobenzene	ND	5.00	µg/Kg	1	8/16/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
2-Butanone	ND	100	μg/Kg	1	8/16/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	8/16/00
2-Chlorotoluene	ND	5.00	µg/Kg	1	8/16/00
2-Hexanone	ND	100	μg/Kg	. 1	8/16/00
4-Chiorotoluene	ND	5.00	μg/Kg	1	8/16/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	8/16/00
4-Methyl-2-pentanone	ND	5.00	µg/Kg	1	8/16/00
Acetone	ND	100	μg/Kg	1	8/16/00
Acrylonitrile	ND	250	μg/Kg	1	8/16/00
Benzene	ND	5.00	μg/Kg	1 '	8/16/00
Bromobenzene	ND	5.00	μg/Kg	1	8/16/00
Bromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromodichloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromoform	ND	5.00	μg/Kg	1	8/16/00
Bromomethane	ND	10.0	μg/Kg	1	8/16/00
Carbon disulfide	ND	5.00	μg/Kg	1	8/16/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	8/16/00
Chlorobenzene	ND	5.00	μg/Kg	1	8/16/00
Chloroethane	ND	10.0	μg/Kg	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Client Sample ID: comp 001&002
Tag Number:

Project:

5015/Ranier Market

Collection Date: 8/4/00

Lab ID:

0008060-11A

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	8/16/00
Chloromethane	ND	10.0	μg/Kg	1	8/16/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Dibromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Dibromomethane	ND	5.00	μg/Kg	1	8/16/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	8/16/00
Ethylbenzene	ND	5.00	μ g/Kg	1	8/16/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	8/16/00
lodomethane	ND	5.00	μg/Kg	1	8/16/00
Isopropylbenzene	ND	5.00	μ g /Kg	1	8/16/00
m,p-Xylene	12.4	10.0	μg/Kg	1	8/16/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	8/16/00
Methylene chloride	ND	100	μg/Kg	1	8/16/00
n-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
n-Propylbenzene	ND	5.00	μg/Kg	1	8/16/00
Naphthalene	ND	25.0	µg/Kg	1	8/16/00
o-Xylene	5.14	5.00	μg/Kg	1	8/16/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Styrene	ND	5.00	μg/Kg	1	8/16/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Tetrachloroethene	863	20.0	μg/Kg	1	8/16/00
Toluene	15.5	5.00	μg/Kg	1	8/16/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Trichloroethene	7.07	5.00	μg/Kg	1	8/16/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	8/16/00
Vinyl acetate	ND	5.00	μg/Kg	1	8/16/00
Vinyl chloride	ND	10.0	μg/Kg	1	8/16/00
Surr: 4-Bromofluorobenzene	102.4	74-121	%REC	1	8/16/00
Surr: Dibromofluoromethane	103.2	80-120	%REC	1	8/16/00
Surr: Toluene-d8	98.6	81-117	%REC	1 .	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Client Sample ID: comp 003&004

Tag Number:

Project:

5015/Ranier Market

Collection Date: 8/4/00

Lab ID:

0008060-12A

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	Ε	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	µg/Kg	1	8/16/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2,2-Tetrachloroethane	ND	5.00	μ g/Kg	1	8/16/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	8/16/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloroethane	ND	5.00	μ g /Kg	1	8/16/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichlorobenzene	ND	5.00	μ g/Kg	1	8/16/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
2-Butanone	ND	100	μg/Kg	1	8/16/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	8/16/00
2-Chiorotoluene	ND	5.00	μg/Kg	1	8/16/00
2-Hexanone	ND	100	μg/Kg	1	8/16/00
4-Chiorotoluene	ND	5.00	μg/Kg	1	8/16/00
4-isopropyltoluene	ND	5.00	μg/Kg	1	8/16/00
4-Methyl-2-репtanone	ND	5.00	μg/Kg	1	8/16/00
Acetone	ND	100	μ g/Kg	1	8/16/00
Acrylonitrile	ND	250	μg/Kg	1	8/16/00
Benzene	ND	5.00	μg/Kg	1	8/16/00
Bromobenzene	ND	5.00	μg/Kg	1	8/16/00
Bromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromodichloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromofor m	ND	5.00	μg/Kg	1	8/16/00
Bromomethane	ND	10.0	μg/Kg	1	8/16/00
Carbon disulfide	ND	5.00	μg/Kg	1	8/16/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	8/16/00
Chlorobenzene	ND	5.00	μg/Kg μg/Kg	1	8/16/00
Chloroethane	ND	10.0	μg/Kg μg/Kg	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

5015/Ranier Market

Project: Lab ID:

0008060-12A

Client Sample ID: comp 003&004

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	8/16/00
Chloromethane	ND	10.0	μ g/Kg	1	8/16/00
cis-1,2-Dichloroethene	ND	5.00	μ g/Kg	1	8/16/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Dibromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Dibromomethane	ND	5.00	μ g/K g	1	8/16/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	8/16/00
Ethylbenzene	ND	5.00	μg/Kg	1	8/16/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	8/16/00
lodomethane	ND	5.00	μg/Kg	1	8/16/00
Isopropylbenzene	ND	5.00	μg/Kg	1	8/16/00
m,p-Xylene	ND	10.0	μg/Kg	1	8/16/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	8/16/00
Methylene chloride	ND	100	μg/Kg	1	8/16/00
n-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
n-Propylbenzene	ND	5.00	μg/Kg	1	8/16/00
Naphthalene	ND	25.0	μg/Kg	1	8/16/00
o-Xylene	ND	5.00	μg/Kg	1	8/16/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Styrene	ND	5.00	μg/Kg	1	8/16/00
tert-Butylbenzene	ND	5.00	μ g/Kg	1	8/16/00
Tetrachloroethene	80.8	5.00	μg/Kg	1	8/16/00
Toluene	5.68	5.00	μg/Kg	1	8/16/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Trichloroethene	ND	5.00	μg/Kg	1	8/16/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	8/16/00
Vinyl acetate	ND	5.00	μg/Kg	1	8/16/00
Vinyl chloride	ND	10.0	μg/Kg	1	8/16/00
Surr: 4-Bromofluorobenzene	109.6	74-121	%REC	1	8/16/00
Surr: Dibromofluoromethane	98.4	80-120	%REC	1	8/16/00
Surr: Toluene-d8	102.0	81-117	%REC	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Project:

5015/Ranier Market

Lab ID:

0008060-13A

Client Sample ID: comp 007&008

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS		PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2,2-Tetrachloroethane	ND	5.00	μ g/K g	1	8/16/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichlorobenzene	ND	5.00	µg/Kg	1	8/16/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	8/16/00
1,2-Dibromoethane	ND	5.00	μ g/K g	1	8/16/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichloropropane	ND	5.00	μ g/Kg	1	8/16/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
2-Butanone	ND	100	μ g/Kg	1	8/16/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	8/16/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	8/16/00
2-Hexanone	ND	100	µg/Kg	1	8/16/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	8/16/00
4-Isopropyltoluene	ND .	5.00	µg/Kg	1	8/16/00
4-Methyl-2-pentanone	ND	5.00	µg/Kg	1	8/16/00
Acetone	ND	100	μg/Kg	1	8/16/00
Acrylonitrile	ND	250	μg/Kg	1	8/16/00
Benzene	ND	5.00	µg/Kg	1 ·	8/16/00
Bromobenzene	ND	5.00	μg/Kg	1	8/16/00
Bromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromodichloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromoform	ND	5.00	µg/Kg	1	8/16/00
Bromomethane	ND	10.0	μ g/Kg	1	8/16/00
Carbon disulfide	ND	5.00	µg/Kg	1	8/16/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	8/16/00
Chlorobenzene	ND	5.00	µg/Kg	1	8/16/00
Chloroethane	ND	10.0	μ g /Kg	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Project:

5015/Ranier Market

Lab ID:

0008060-13A

Client Sample ID: comp 007&008

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	8/16/00
Chloromethane	ND	10.0	μg/Kg	1	8/16/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Dibromochloromethane	ND	5.00	μ g/ Kg	1	8/16/00
Dibromomethane	ND	5.00	μg/Kg	1	8/16/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	8/16/00
Ethylbenzene	ND	5.00	μg/Kg	1	8/16/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	8/16/00
Iodomethane	ND	5.00	μg/Kg	1	8/16/00
Isopropylbenzene	ND	5.00	μg/Kg	1	8/16/00
m,p-Xylene	ND	10.0	μg/Kg	1	8/16/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	8/16/00
Methylene chloride	ND	100	μg/Kg	1	8/16/00
n-Butylbenzeπe	ND	5.00	μ g/K g	1	8/16/00
n-Propylbenzene	ND	5.00	μg/Kg	1	8/16/00
Naphthalene	ND	25.0	μg/Kg	1	8/16/00
o-Xylene	ND	5.00	μg/Kg	1	8/16/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Styrene	ND	5.00	μg/Kg	1	8/16/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Tetrachloroethene	ND	5.00	μg/Kg	1	8/16/00
Toluene	ND	5.00	μg/Kg	1	8/16/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Trichloroethene	ND	5.00	μg/Kg	1	8/16/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	8/16/00
Vinyl acetate	ND	5.00	μg/Kg	1	8/16/00
Vinyl chloride	ND	10.0	μg/Kg	1	8/16/00
Surr: 4-Bromofluorobenzene	112.0	74-121	%REC	1	8/16/00
Surr: Dibromofluoromethane	99.8	80-120	%REC	1	8/16/00
Surr: Toluene-d8	104.6	81-117	%REC	1 -	8/16/00

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

5015/Ranier Market

Project: Lab ID:

0008060-14A

Client Sample ID: comp 009&010

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tmh
1,1,1,2-Tetrachioroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,1-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	8/16/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,3,5-Trimethylbenzene	5.89	5.00	μg/Kg	1	8/16/00
1,3-Dichlorobenzene	ND	5.00	µg/Kg	1	8/16/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
2-Butanone	ND	100	μg/Kg	1	8/16/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	8/16/00
2-Chlorotoluene	ND	5.00	μg/Kg	1	8/16/00
2-Hexanone	ND	100	μg/Kg	· 1	8/16/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	8/16/00
4-Isopropyltoluene	ND	5.00	μg/Kg	1	8/16/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	8/16/00
Acetone	ND	100	μg/Kg	1	8/16/00
Acrylonitrile	ND	250	μg/Kg	1	8/16/00
Benzene	ND	5.00	μg/Kg	1.	8/16/00
Bromobenzene	ND	5.00	μg/Kg	1	8/16/00
Bromochloromethane	ND	5.00	µg/Кg	1	8/16/00
Bromodichloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromoform	ND	5.00	μg/Kg	1	8/16/00
Bromomethane	ND	10.0	μg/Kg	1	8/16/00
Carbon disulfide	ND	5.00	μg/Kg	1	8/16/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	8/16/00
Chlorobenzene	ND	5.00	μg/Kg	1	8/16/00
Chloroethane	ND	10.0	μg/Kg	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

• - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

000

5015/Ranier Market

Project: Lab ID:

0008060-14A

Client Sample ID: comp 009&010

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	8/16/00
Chloromethane	ND	10.0	μg/Kg	1	8/16/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Dibromochioromethane	ND	5,00	μg/Kg	1	8/16/00
Dibromomethane	ND	5.00	μg/Kg	1	8/16/00
Dichlorodifluoromethane	b ND	10.0	μg/Kg	1	8/16/00
Ethylbenzene	ND	5.00	µg/Kg	1	8/16/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	8/16/00
lodomethane	ND	5.00	µg/Kg	1	8/16/00
Isopropylbenzene	ND	5.00	μg/Kg	1	8/16/00
m,p-Xylene	ND	10.0	μg/Kg	1	8/16/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	8/16/00
Methylene chloride	ND	100	μg/Kg	1	8/16/00
n-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
n-Propylbenzene	ND	5.00	μg/Kg	1	8/16/00
Naphthalene	ND	25.0	μg/Kg	1	8/16/00
o-Xylene	ND	5.00	μg/Kg	1	8/16/00
sec-Butylbenzene	ND	5.00	µg/Kg	1	8/16/00
Styrene	ND	5.00	μg/Kg	1	8/16/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Tetrachloroethene	ND	5.00	μg/Kg	1	8/16/00
Toluene	ND	5.00	μg/Kg	1	8/16/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
trans-1,3-Dichloropropene	ND	5.00	µg/Kg	1	8/16/00
Trichloroethene	ND	5.00	μg/Kg	1	8/16/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	8/16/00
Vinyl acetate	ND	5.00	µg/Kg	1	8/16/00
Vinyl chloride	ND	10.0	μg/Kg	1	8/16/00
Surr: 4-Bromofluorobenzene	107.0	74-121	%REC	1	8/16/00
Surr: Dibromofluoromethane	100.4	80-120	%REC	1	8/16/00
Surr: Toluene-d8	102.0	81-117	%REC	1 -	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Client Sample ID: comp 012&013 Tag Number:

Collection Date: 8/4/00

Project: Lab ID: 5015/Ranier Market 0008060-15A

Matrix: SOIL

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	E	PA 8260B			Analyst: tml
1,1,1,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,1-Trichloroethane	ND	5.00	µg/Kg	1	8/16/00
1,1,2,2-Tetrachloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1,2-Trichloroethane	ND	5.00	μg/Kg	1 ·	8/16/00
1,1-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
1,1-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,3-Trichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2,4-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dibromo-3-chloropropane	ND	10.0	μg/Kg	1	8/16/00
1,2-Dibromoethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloroethane	ND	5.00	μg/Kg	1	8/16/00
1,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,3,5-Trimethylbenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
1,3-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
1,4-Dichlorobenzene	ND	5.00	μg/Kg	1	8/16/00
2,2-Dichloropropane	ND	5.00	μg/Kg	1	8/16/00
2-Butanone	ND	100	μg/Kg	1	8/16/00
2-Chloroethyl vinyl ether	ND	50.0	μg/Kg	1	8/16/00
2-Chiorotoluene	ND	5.00	μg/Kg	1	8/16/00
2-Hexanone	ND	100	μg/Kg	· 1	8/16/00
4-Chlorotoluene	ND	5.00	μg/Kg	1	8/16/00
4-isopropyltoluene	ND	5.00	μg/Kg	1	8/16/00
4-Methyl-2-pentanone	ND	5.00	μg/Kg	1	8/16/00
Acetone	ND	100	μg/Kg	1	8/16/00
Acrylonitrile	ND	250	μg/Kg	1	8/16/00
Benzene	ND	5.00	μg/Kg	1.	8/16/00
Bromobenzene	ND	5.00	μg/Kg	1	8/16/00
Bromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromodichloromethane	ND	5.00	μg/Kg	1	8/16/00
Bromoform	ND	5.00	μg/Kg	1	8/16/00
Bromomethane	ND	10.0	μg/Kg	1	8/16/00
Carbon disulfide	ND	5.00	μg/Kg	1	8/16/00
Carbon tetrachloride	ND	5.00	μg/Kg	1	8/16/00
Chiorobenzene	ND	5.00	μg/Kg	1	8/16/00
Chloroethane	ND	10.0	μg/Kg	1	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 17-Aug-00

CLIENT:

Hahn & Associates

Lab Order:

0008060

Project:

5015/Ranier Market

Lab ID:

0008060-15A

Client Sample ID: comp 012&013

Tag Number:

Collection Date: 8/4/00

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
Chloroform	ND	5.00	μg/Kg	1	8/16/00
Chloromethane	ND	10.0	μg/Kg	1	8/16/00
cis-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
cis-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Dibromochloromethane	ND	5.00	μg/Kg	1	8/16/00
Dibromomethane	ДN	5.00	μg/Kg	1	8/16/00
Dichlorodifluoromethane	ND	10.0	μg/Kg	1	8/16/00
Ethylbenzene	ND	5.00	μg/K g	1	8/16/00
Hexachlorobutadiene	ND	5.00	μg/Kg	1	8/16/00
lodomethane	ND	5.00	μg/Kg	1	8/16/00
Isopropylbenzene	ND	5.00	μg/K g	1	8/16/00
m,p-Xylene	ND	10.0	μg/Kg	1	8/16/00
Methyl tert-butyl ether	ND	10.0	μg/Kg	1	8/16/00
Methylene chloride	ND	100	μg/Kg	1	8/16/00
n-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
n-Propylbenzene	ND	5.00	μg/Kg	1	8/16/00
Naphthalene	ND	25.0	μg/Kg	1	8/16/00
o-Xylene	ND	5.00	μg/Kg	1	8/16/00
sec-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Styrene	ND	5.00	μg/Kg	1	8/16/00
tert-Butylbenzene	ND	5.00	μg/Kg	1	8/16/00
Tetrachloroethene	ND	5.00	μg/Kg	1	8/16/00
Toluene	ND	5.00	μ g /Kg	1	8/16/00
trans-1,2-Dichloroethene	ND	5.00	μg/Kg	1	8/16/00
trans-1,3-Dichloropropene	ND	5.00	μg/Kg	1	8/16/00
Trichloroethene	ND	5.00	μg/Kg	1	8/16/00
Trichlorofluoromethane	ND	10.0	μg/Kg	1	8/16/00
Vinyl acetate	ND	5.00	μg/Kg	1	8/16/00
Vinyl chloride	ND	10.0	μg/Kg	1	8/16/00
Surr: 4-Bromofluorobenzene	109.8	74-121	%REC	1	8/16/00
Surr: Dibromofluoromethane	102.8	80-120	%REC	1	8/16/00
Surr: Toluene-d8	102.2	81-117	%REC	1 ·	8/16/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Environmental Services Laboratory

Date: 17-Aug-00

CLIENT: Hahn &	Hahn & Associates			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Work Order: 0008060	0					OC SU	QC SUMMARY REPORT
Project: 5015/R2	5015/Ranier Market						Method Blank
Sample ID: MBLANK	Batch ID: 05 8260 S-8/1 Test Code: EPA 8260B	Test Code:	EPA 8260B	Units: µg/Kg		Analysis Date 8/16/00	Prep Date:
Client ID:	0008000	Run ID:	ANGSTROM_000816A	000816A		SeqNo: 49711	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC 1	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	Q	5					
1,1,1-Trichloroethane	QN	S					
1,1,2,2-Tetrachloroethane	QN	5					
1,1,2-Trichloroethane	QN	5					
1,1-Dichloroethane	QN	5					
1,1-Dichloroethene	QN	9					
1,1-Dichloropropene	QN	5					
1,2,3-Trichlorobenzene	QN	5					
1,2,3-Trichloropropane	QN	5					
1,2,4-Trichlorobenzene	Q	5					
1,2,4-Trimethylbenzene	QN	5					
1,2-Dibromo-3-chloropropane	QN	10					
1,2-Dibromoethane	2	2					
1,2-Dichlorobenzene	Q	ιΩ					
1,2-Dichloroethane	Ð	5					
1,2-Dichloropropane	QN	ιΩ					1
1,3,5-Trimethylbenzene	9	5					
1,3-Dichlorobenzene	QN	ιΩ					
1,3-Dichloropropane	QN .	ιΩ					
1,4-Dichlorobenzene	Q	3					
2,2-Dichloropropane	QN	5					
2-Butanone	Q	100					
2-Chloroethyl vinyl ether	QN	20	,				
2-Chlorotoluene	QN	5					
2-Hexanone	QN	100					
4-Chlorotoluene	QN	ιΩ					
4-Isopropyltoluene	QN	5					

of 3	
0	

	Hahn & Associates			
Work Order: 0008	0908000			QC SUMMARY REPORT
Project: 501.	5015/Ranier Market			Method Blank
4-Methyl-2-pentanone	QN	5		
Acetone	QN	100		
Acrylonitrile	QN	250		
Benzene	QN	5		
Bromobenzene	Q	S		
Bromochloromethane	QN	, ,		
Bromodichloromethane	Q.	· K		
Bromoform	QN	2		
Bromomethane	QN	10		
Carbon disulfide	Q.	ĸ		
Carbon tetrachloride	QN	ĸ		
Chlorobenzene	QN	5		
Chloroethane	QN	5		
Chloroform	QN	Ŋ		
Chioromethane	QN	10		
cis-1,2-Dichloroethene	QN	5		
cis-1,3-Dichloropropene	QN	5		
Dibromochloromethane	QN	c		
Dibromomethane	QN	2		
Dichlorodifluoromethane	QN	10		
Ethylbenzene	QN	ß		
Hexachlorobutadiene	QN	ď		
lodomethane	QN	ĸ		
Isopropylbenzene	ON	r.		
m,p-Xylene	QN	10		
Methy! tert-buty! ether	QN	10		
Methylene chloride	QN	100		
n-Butylbenzene	QN	ß		
n-Propylbenzene	QN	c		
Naphthalene	QN	25		
o-Xylene	QN	5		
sec-Butylbenzene	QN	S		
Styrene	QN	S		
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit	,	S - Snike Recovery outside accented recovery limits	D Amelia de de de de de de de de de de de de de
	6 J		o a principal source accepted recovery lifting	M - Angiote detected in the accordated Mathod Dionly

and a second control of the second control o

٢	4			
`		:	٠	
	`	,		

	C. Child December of the Control of		ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated Method Blank
	C. Chike Decouert, outside executed account.	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
Similar account of the control of th	Similar account of the control of th		
s shirke Mecovery outside accepted fecovery limits	s shirke Mecovery outside accepted fecovery limits	Committee Commit	
5 - Spike Recovery outside accepted recovery limits	3 - Spirke Recovery outside accepted recovery limits	CHILL COST POSSOS SPICES COST STORY	Shim (lateral particular formation)
S - Spike Recovery outside accented recovery limits	STATE ACCOUNTS ACCOUNTS OF THE PROPERTY OF THE	S Spring transport of the second of the seco	S spine to the factor of the second second in the second second in the second s
C - Childs Decouper, autride accounted account.	THE RESIDENCE OF STREET PARTY OF THE PARTY O	5 - Spike Recovery outside accepted recovery limits	s - spike Recovery outside accepted recovery limits
	C - Caile Decovery outside accounted to the	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C - Caile Decovery outside accounted to the	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C - Childs Decouper, autride accounted account.	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C - Child Decouper, controls account 11-11-	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C - Childe Decouper, cuttisfied accounted the state of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
The same of the sa	C - Cnike Decovery autride accounts	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Chike Becough, autrida accounted in the	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Chike Benevata mutida accadad 11-11-	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grile December merida accorded	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Griles December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grile December of the second secon	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grille December mutride accorded 15.1.	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifte Bengraty mitida anamada 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifte December mirida accompany	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Childe December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Chike December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Child December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Caile December outside constant	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Chike December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Cuite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Chika Damara mirida abanda	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Cuite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts Description of the Control	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Crite December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts Description of the Control	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifts Description of the Control	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con al	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grite December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. Grifto Danger anticida con esta de la Contraction de la Contr	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December of the Control of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	C. Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caite December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Grifto Danierica e La Contracta de Cariera	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Daniello control	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caite December of the Line o	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. Grifto December of the Control	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con al	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	Anito December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caite December 1	S - Spike Recovery outside accepted recovery limits	. Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. Grifto Danger anticida con esta de la contracta con esta de la contracta con esta de la contracta con esta de la contracta del la contracta de la contracta de la contracta del la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contracta de la contra	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Ailto Danierica of State of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Ailto Danierica of State of	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. Griffe December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Ailto Daniello a Cailto D.	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	Anito December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Grifto Danierica e de la Contraction de la Con	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	Andrew Carlet Description of the Property of t	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifts Described and the little of the lit	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Grifte December 1 of Francisco	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Grifte December 19 19 19 19 19 19 19 19 19 19 19 19 19	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Grifte December 1 of Francisco	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con al	S - Spike Recovery outside accepted recovery limits	Spike Recovery outside accepted recovery limits
	. Caile December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con al	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. C. Crite December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	. C. C. Crite December 1	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con the control of the con	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits
	A Grifto Danger anticida con the control of the con	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Environmental Services Laboratory

QC SUMMARY REPORT 5015/Ranier Market Hahn & Associates 0908000 Work Order: CLIENT: Project:

Date: 17-Aug-00

Project: 5015/Ran	5015/Ranier Market								Sample	Sample Matrix Spike	pike
Sample ID: 0008060-11A MS Client ID: comp 001&002	Batch ID: 05 8260 S-8/1 Test Code: EPA 8260B 0008060 Run ID: ANGSTROM	Test Code: Run ID:	EPA 8260B Units: I ANGSTROM_000816A	Units: µg/Kg 000816A	:	Analysis SeqNo:	Analysis Date 8/16/00 SeqNo: 49713	0.0	Prep Date:	.e.	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	253	5	250	0	101.2%	0	234	0			
Benzene	242	5	250	0	96.8%	37	151	0			
Chlorobenzene	258.5	5	250	0	103.4%	37	160				
Toluene	254.5	S	250	15.5	95.6%	47	150	0			
Trichloroethene	258	Ŋ	250	7.07	100.4%	71	157	. 0			
Sample ID: 0008060-11A MSD Batch ID: 05 8260 S-8/1 Test Code: EPA 8260B	Batch ID: 05 8260 S-8/1	Test Code:	EPA 8260B	Units: µg/Kg		Analysis	Analysis Date 8/16/00	00	Prep Date:	te:	
Client ID: comp 001&002	0908000	Run ID:	ANGSTROM_000816A	000816A		SeqNo:	49714				
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Quai
1,1-Dichloroethene	264.5	5	250	0	105.8%	0	234	253	4.4%	20	
Benzene	254	5	250	0	101.6%	37	151	242	4.8%	2 2	
Chlorobenzene	273	5	250	0	109.2%	37	160	258.5	5.5%	30 E	
Toluene	568	3	250	15.5	101.0%	47	150	254.5	5.2%	i 8	
Trichloroethene	272	co.	250	7.07	106.0%	71	157	258	5.3%	28	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Environmental Services Laboratory

Continuing Calibration Verification Standard QC SUMMARY REPORT 5015/Ranier Market Hahn & Associates 0908000 Work Order: CLIENT: Project:

Date: 17-Aug-00

	0908000	5	EPA 8260B	Batch ID: 05 8260 S-8/1 Test Code: EPA 8260B Units: ua/Ka		Analysis	Analysis Date 8/16/00	90	Gron Date:		
nalyte 1-Dichloroethene		Run ID:	ANGSTROM_000816A	000816A		SeqNo:	49710	3 _	<u> </u>		
,1-Dichloroethene	Result	Pal	SPK value	SPK value SPK Ref Val	%REC		HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
	51.1	5	50	0	102.2%	80	120	0			
1,2-Dichloropropane	48.8	5	50	0	%9'.26	80	120	0			
Chloroform	49.1	5	50	0	98.2%	80	120	0			
Ethylbenzene	48.6	5	50	0	97.2%	80	120	0			
Toluene	48.9	5	50	0	97.8%	80	120	0			
Vinyl chloride	50.4	10	50	0	100.8%	80	120	0			
4-Bromofluorobenzene	49.7	0	50	0	99.4%	86	115	0			
Dibromofluoromethane	6.03	0	50	0	101.8%	88	118	0			
Toluene-d8	49.7	0	50	0	99.4%	88	110	0			

ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

mits B - Analyte detected in the associated Method Blank

	Draft - Issued for Client Reviews
Friedman & Bruya, Inc. #80100	2
SoundEarth Strategies, Inc.	

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 9, 2018

Suzy Stumpf, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Stumpf:

Included are the results from the testing of material submitted on January 2, 2018 from the $SOU_0611-017_20180102$, F&BI 801002 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Grayson Fish SOU0109R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 2, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180102, F&BI 801002 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801002 -01	SG01-20180102
801002 -02	SG02-20180102
801002 -03	SG03-20180102

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG01-20180102	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 01/02/18 Project: SOU_0611-017_ 20180102, F&BI 801002

Lab ID: 801002-01 1/10 Date Collected: 01/02/18 Date Analyzed: 01/04/18 Data File: 010413.D Matrix: Air Instrument: GCMS7 Units: MP ug/m3 Operator:

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	104	70	130

Compounds:	Concernpounds: ug/m3	
Vinyl chloride	< 2.6	<1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	<4	<1
trans-1,2-Dichloroethene	<4	<1
1,1-Dichloroethane	<4	<1
cis-1,2-Dichloroethene	<4	<1
1,2-Dichloroethane (EDC)	<4	<1
1,1,1-Trichloroethane	< 5.5	<1
Trichloroethene	< 5.4	<1
1,1,2-Trichloroethane	< 5.5	<1
Tetrachloroethene	48	7.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SO	G02-20180102	Client:	SoundEarth Strategies
----------------------	--------------	---------	-----------------------

Date Received: 01/02/18 Project: SOU_0611-017_ 20180102, F&BI 801002

Lab ID: Date Collected: 801002-02 1/10 01/02/18 Date Analyzed: 01/04/18 Data File: 010414.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MP

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	96	70	130

Compounds:	Concentr ug/m3	
Vinyl chloride	< 2.6	<1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	<4	<1
trans-1,2-Dichloroethene	<4	<1
1,1-Dichloroethane	<4	<1
cis-1,2-Dichloroethene	<4	<1
1,2-Dichloroethane (EDC)	<4	<1
1,1,1-Trichloroethane	< 5.5	<1
Trichloroethene	< 5.4	<1
1,1,2-Trichloroethane	< 5.5	<1
Tetrachloroethene	38	5.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG03-20180102	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 01/02/18 Project: SOU_0611-017_ 20180102, F&BI 801002

Lab ID: Date Collected: 801002-03 1/10 01/02/18 Date Analyzed: 01/04/18 Data File: 010415.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MP

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

Compounds:	ds: Concent ug/m3	
Vinyl chloride	< 2.6	<1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	<4	<1
trans-1,2-Dichloroethene	<4	<1
1,1-Dichloroethane	<4	<1
cis-1,2-Dichloroethene	<4	<1
1,2-Dichloroethane (EDC)	<4	<1
1,1,1-Trichloroethane	< 5.5	<1
Trichloroethene	< 5.4	<1
1,1,2-Trichloroethane	< 5.5	<1
Tetrachloroethene	25	3.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: SoundEarth Strategies

Date Received: Not Applicable Project: SOU_0611-017_ 20180102, F&BI 801002

Date Collected:Not ApplicableLab ID:08-0043 mbDate Analyzed:01/04/18Data File:010407.DMatrix:AirInstrument:GCMS7Units:ug/m3Operator:MP

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 0.26	< 0.1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	< 0.4	< 0.1
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	< 0.54	< 0.1
1,1,2-Trichloroethane	< 0.55	< 0.1
Tetrachloroethene	< 0.68	< 0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/18 Date Received: 01/02/18

Project: $SOU_0611-017_20180102$, F&BI 801002

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Vinyl chloride	ppbv	10	114	70-130		
Chloroethane	ppbv	10	95	70-130		
1,1-Dichloroethene	ppbv	10	104	70-130		
trans-1,2-Dichloroethene	ppbv	10	109	70-130		
1,1-Dichloroethane	ppbv	10	119	70-130		
cis-1,2-Dichloroethene	ppbv	10	114	70-130		
1,2-Dichloroethane (EDC)	ppbv	10	115	70-130		
1,1,1-Trichloroethane	ppbv	10	109	70-130		
Trichloroethene	ppbv	10	112	70-130		
1,1,2-Trichloroethane	ppbv	10	116	70-130		
Tetrachloroethene	ppbv	10	101	70-130		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

801002			!	SAMPL	E CH	AIN O	P) CUS	STOD	Y	NF	-	ni l	02/1	10		
	e" 12	·		SAMP	ZERS (i Ingtur	2) 2)		•	110	(999)	911	02/1	Pa	ige#	
Report To 5027 5, Logn Company Scrutterta Address	5,6	integre	스	PROJ	ECT NÃ 26((-	ME.				POT-90-000-00-00-00-00-00-00-00-00-00-00-00	PO	#		zStand □ RUSI		
City, State, ZIP Phone Ema				REMA	RKS	·				IN	VOIC	E TO] [∃ Dìspo ∃ Arch:	SAMPLE DISE ose after 30 da ive Samples	
r nonebma_	Ц			_					ΔΝΔ	r vsi	SRE	OTTES	TED	Othe	<u>r</u>	
								T l				&O.E.	31110			
	Lab	Canister	Flow Contr.	Date	Field Initial Press.	Initial	1	Field Final	TO-15 Full Scan	TO-15 BTEXN	TO-15 cVOCs			•		
Sample Name	ID	ID	ID	Sampled	1	Time	(Hg)	Time					Proci	.(Notes	
5601-20180102	-o·l	3677	දි9	1/2/18	23.8	0837	5.0	Q543			X					
5002-20180102	-02	3255	169	ĺ	23.6	<i>6</i> 91333	5.0	0937			X		0-4IG			
5603-20180102	-03	3261	108	0	30.0	1025	5.0	1034			×		PDD=1.	1		
															er.	
		1/2												24.		,
		167	18													
													Samı	oles re	ceived at _2	<u>೭೭_</u> ℃
	t		1		· · · · · · · · · · · · · · · · · · ·	•	Bet.								<i>f</i>	
Friedman & Bruya, Inc.	1		TURE			PF	INT NA	AME				СО	MPANY		DATE	TIME
3012 16th Avenue West R	elinquisl	hed by	112		La)cen =	Selven	calm		SES			5 8		1/2/18	1635
Seattle, WA 98119-2029	sceived	Zie		1	M	victual	ESCL	1	,	$\neg \dagger$		TO			1	4.
Ph. (206) 285-8282	elinquisl	hed by:			—									~~~~~~		<u> </u>

FORMS\COC\COCTO-15.DOC

Fax (206) 283-5044

Received by:

	Draft - Issued for Client Reviews
Friedman & Bruya, Inc. #801334 and ad	lditional
SoundEarth Strategies, Inc.	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 2, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 24, 2018 from the SOU_0611-017_ 20180124, F&BI 801334 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Jonathan Loeffler SOU0202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 24, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180124, F&BI 801334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801334 -01	TB01-05
801334 -02	TB01-10
801334 -03	TB01-15
801334 -04	TB01-20
801334 -05	TB02-05
801334 -06	TB02-10
801334 -07	TB02-15
801334 -08	TB02-20
801334 -09	TB03-05
801334 -10	TB03-10

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/18 Date Received: 01/24/18

Project: SOU_0611-017_ 20180124, F&BI 801334

Date Extracted: 01/31/18 Date Analyzed: 01/31/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
TB01-15 801334-03	15	110
TB02-15 801334-07	<5	102
Method Blank 08-226 MB	<5	110

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/18 Date Received: 01/24/18

Project: SOU_0611-017_ 20180124, F&BI 801334

Date Extracted: 01/31/18 Date Analyzed: 01/31/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 56-165)
TB01-15 801334-03	110 x	<250	103
TB02-15 801334-07	<50	<250	94
Method Blank	< 50	<250	96

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB01-15 Client: SoundEarth Strategies
Date Received: 01/24/18 Project: SOU_0611-017_ 20180124
Date Extracted: 01/30/18 Lab ID: 801334-03

Date Extracted: 01/30/18 Lab ID: 801334-03
Date Analyzed: 01/30/18 Data File: 013025.D

Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	99	65	139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB02-15 Client: SoundEarth Strategies
Date Received: 01/24/18 Project: SOU_0611-017_ 20180124
Date Extracted: 01/30/18 Lab ID: 801334-07

Date Extracted: 01/30/18 Lab ID: 801334-07
Date Analyzed: 01/30/18 Data File: 013026.D
Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	100	65	139

< 0.025

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

139

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180124

01/30/18 Lab ID: Date Extracted: 08-0210 mb Date Analyzed: 01/30/18 Data File: 013007.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 101 55 145

4-Bromofluorobenzene 99 65 Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/18 Date Received: 01/24/18

Project: SOU_0611-017_ 20180124, F&BI 801334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 801334-03 (Duplicate)

•	-	Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	5.4	14	89 a

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	95	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/18 Date Received: 01/24/18

Project: SOU_0611-017_ 20180124, F&BI 801334

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 801421-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	106	106	63-146	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	106	79-144

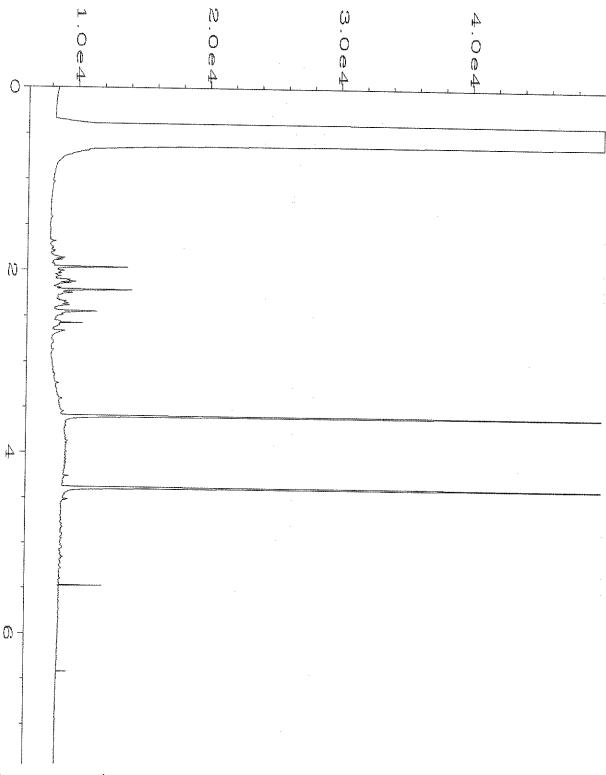
ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/18 Date Received: 01/24/18

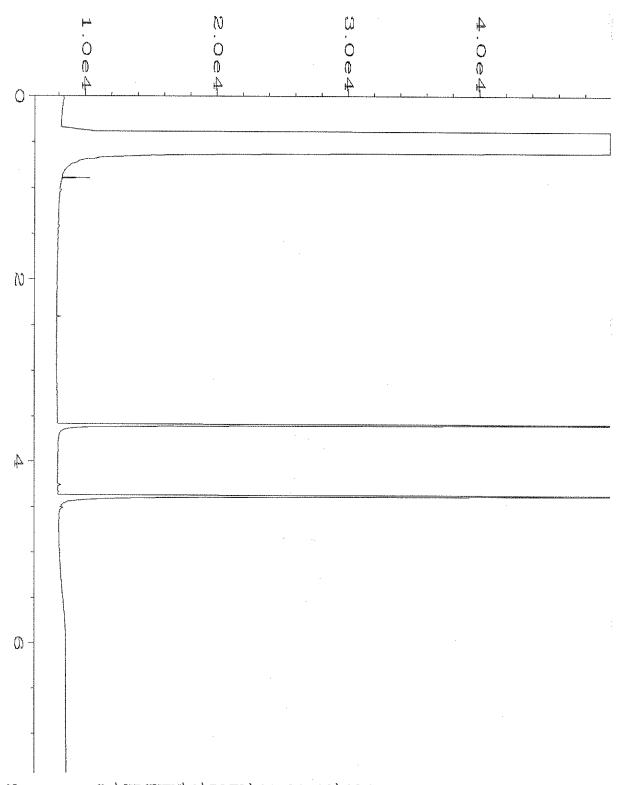
Project: SOU_0611-017_ 20180124, F&BI 801334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

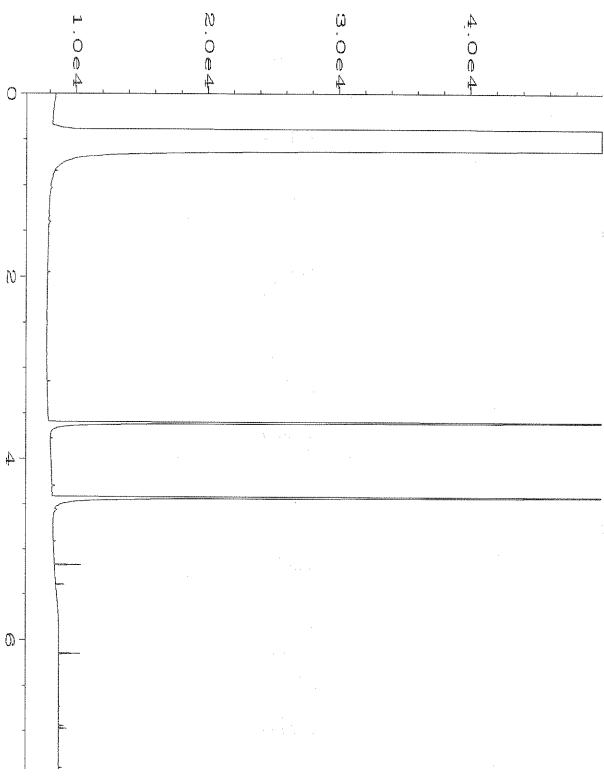
Laboratory Code: 801325-09 (Matrix Spike)

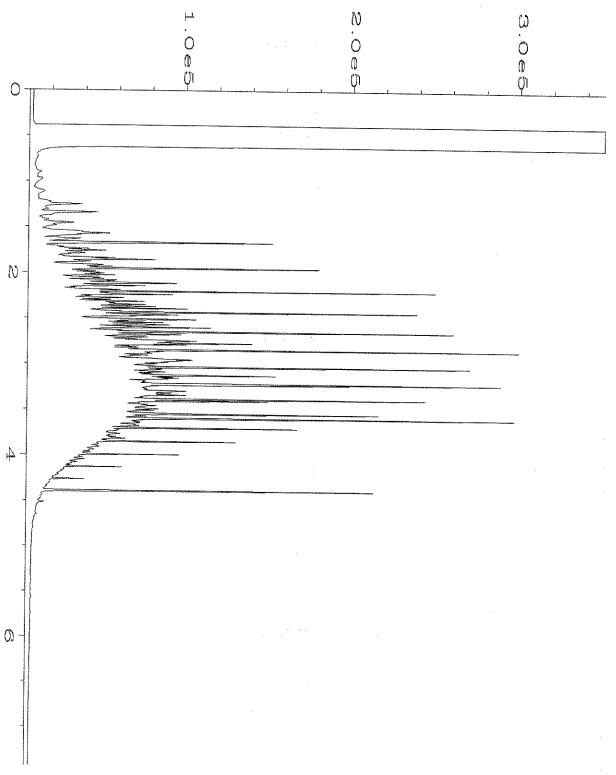

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	46	46	10-138	0
Chloroethane	mg/kg (ppm)	2.5	< 0.5	61	57	10-176	7
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	67	70	10-160	4
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	74	74	10-156	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	75	14-137	0
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	79	77	19-140	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	82	82	25-135	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	81	80	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	78	77	10-156	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	83	81	21-139	2
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	79	80	20-133	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	73	22-139
Chloroethane	mg/kg (ppm)	2.5	78	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	94	47-128
Methylene chloride	mg/kg (ppm)	2.5	101	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	98	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	100	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	98	62-131
Trichloroethene	mg/kg (ppm)	2.5	99	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	97	72-114


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- \boldsymbol{d} The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\1\DATA\01-31-18\035F0301.D
Data File Name
Operator
                : mwdl
                                               Page Number
Instrument
                 : GC1
                                               Vial Number
                                                                : 35
Sample Name
                : 801334-03
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on
            : 31 Jan 18
                             02:23 PM
                                               Instrument Method: DX.MTH
Report Created on: 01 Feb 18
                            07:34 AM
                                              Analysis Method : DX.MTH
```


Data File Name	:	C:\HPCHEM\1\DATA\01-31-18\03	6F0301.D		
Operator	:	mwdl	Page Number	:	1
Instrument	:	GC1	Vial Number	:	36
Sample Name		801334-07	Injection Number	:	1
Run Time Bar Code	:		Sequence Line	:	3
Acquired on	;	31 Jan 18 02:35 PM	Instrument Method	: f	DX,MTH
Report Created on	:	01 Feb 18 07:34 AM	Analysis Method	:	DX.MTH


```
Data File Name
                    : C:\HPCHEM\1\DATA\01-31-18\013F0301.D
                                                         Page Number
Operator
                    : mwdl
Instrument
                    : GC1
                                                         Vial Number
                                                                             : 13
                                                         Injection Number: 1
Sequence Line: 3
Sample Name
                    : 08-263 mb
Run Time Bar Code:
Acquired on : 31 Jan 18 10:18 AM Report Created on: 01 Feb 18 07:34 AM
                                                         Instrument Method: DX.MTH
                                                         Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\01-31-18\005F0401.D
Operator
                : mwdl
                                              Page Number
Instrument
                : GC1
                                              Vial Number
Sample Name
                : 1000 Dx 52-185B
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 4
Acquired on
                : 31 Jan 18 02:57 PM
                                              Instrument Method: DX.MTH
Report Created on: 01 Feb 18
                             07:34 AM
                                              Analysis Method : DX.MTH
```

	WPLE CHA OF CUSTODY	ME 01- 24-1	8 402)/1/1
Send Report to Graven Fish, Joh Louis	SAMPLERS (signature)		Page #ofTURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	RUSH (2 Weeks)
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall / 0611-017		Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS @2 DAY TURN Run per EBF		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907	KUN PER 60	Ministration of the Control of the C	Return samples Will call with instructions

,		T		T		<u> </u>	T	· ·	<u> </u>	<u></u>	·	····	·Al	NALYSI	S REQU	JESTED	į	
Sample.ID	Sample Location	Sample Depth	Lab ID		rte pled	Time Sampled	Mat	rix	#of Jars	NWTPH.Dx.	NWTPH-Gx	BTEK by 8021B	CVOCs by 8260	SVOCs by 8270			- 47	Notes
										, A	<i>2-i</i>	m	ð	ΔS	•		19	
TB01-05	TBOI	5'	OIAP	1/0	1/18	0938	Sol	L.	5								X	
TB01-10	TBOI	1 'n'	021			0945			5						, ,		水	, , ,
TB01-15	TBOI	15	03			0950			5			. ((X)				火	,
TB01-20	TBOI	1	64		•	0955		-	5			4.*			,		火	· · · · · · · · · · · · · · · · · · ·
TB02-05	TB02		243			1035			4		,						×	-
TB02-10	TB02		OF A.			1045			5	•					3		X	
TB02-15	T802	3	67			1055			5	*			8				\star	
TB02-20	TB02		É			1105			5			,					丈	
T803-05	TB03	- /	09			1300			5		***************************************				1		又	
TB03-10	TB03	10'	10	J		1305		_	5			, ,			-		文	***************************************

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SA(224

(16. (200) 200 0202

Fax (206) 283-5044 FORMS\COC\COCDOC

SIGNATURE	PRINT NAME		7	T
Relinquished by	*****	COMPANY	DATE	TIME
Received by:	JONATHAN LOEFFIER	SOUNDEARTH	1/24/18	1600
LUVIALA	VINH	FA)	1/24/16	11 00
Relinquished by:		-		-
Received by:		- Samples	received at	
		•	•	l ,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 13, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 24, 2018 from the SOU_0611-017_ 20180124, F&BI 801334 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Jonathan Loeffler SOU0213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 24, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180124, F&BI 801334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801334 -01	TB01-05
801334 -02	TB01-10
801334 -03	TB01-15
801334 -04	TB01-20
801334 -05	TB02-05
801334 -06	TB02-10
801334 -07	TB02-15
801334 -08	TB02-20
801334 -09	TB03-05
801334 -10	TB03-10

An 8270D internal standard failed the acceptance criteria for sample TB03-05 due to matrix interferences. The data were flagged accordingly.

The benzo(a) pyrene reporting limit was lowered below the standard reporting limit. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	TB01-05	Client:	SoundEarth Strategies
Date Received:	01/24/18	Project:	SOU_0611-017_ 20180124
Data Extracted	09/00/19	Lab ID:	90122401

 Date Extracted:
 02/09/18
 Lab ID:
 801334-01

 Date Analyzed:
 02/09/18
 Data File:
 801334-01.067

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.54
Cadmium <1
Chromium 18.8
Lead 4.82
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	TB03-05	Client:	SoundEarth Strategies
Date Received:	01/24/18	Project:	SOU_0611-017_ 20180124
Date Extracted:	02/09/18	Lab ID:	801334-09

 Date Extracted:
 02/09/18
 Lab ID:
 801334-09

 Date Analyzed:
 02/09/18
 Data File:
 801334-09.068

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.39

Cadmium <1 Chromium 28.2 Lead 4.26 Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180124

Date Extracted: 02/09/18 Lab ID: I8-095 mb
Date Analyzed: 02/09/18 Data File: I8-095 mb.050
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	TB01-05	Client:	SoundEarth Strategies
Date Received:	01/24/18	Project:	SOU_0611-017_ 20180124
Date Extracted:	02/07/18	Lab ID:	801334-01 1/100

 Date Extracted:
 02/07/18
 Lab ID:
 801334-01 1/100

 Date Analyzed:
 02/08/18
 Data File:
 020809.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	137 d	31	163
Benzo(a)anthracene-d12	121 d	24	168

Benzo(a)anthracene-d12	121 d	24
Compounds:	Concentration mg/kg (ppm)	
Naphthalene	< 0.2	
Acenaphthylene	< 0.2	
Acenaphthene	< 0.2	
Fluorene	< 0.2	
Phenanthrene	< 0.2	
Anthracene	< 0.2	
Fluoranthene	< 0.2	
Pyrene	< 0.2	
Benz(a)anthracene	< 0.2	
Chrysene	< 0.2	
Benzo(a)pyrene	<0.1 j	
Benzo(b)fluoranthene	< 0.2	
Benzo(k)fluoranthene	< 0.2	
Indeno(1,2,3-cd)pyrene	< 0.2	
Dibenz(a,h)anthracene	< 0.2	
Benzo(g,h,i)perylene	< 0.2	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	TB03-05	Client:	SoundEarth Strategies
Date Received:	01/24/18	Project:	SOU_0611-017_ 20180124
Date Extracted:	02/07/18	Lab ID:	801334-09 1/100

 Date Extracted:
 02/07/18
 Lab ID:
 801334-09 1/100

 Date Analyzed:
 02/08/18
 Data File:
 020810.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	97 d	31	163
Benzo(a)anthracene-d12	138 d	24	168

Benzo(a)anthracene-d12	138 d	24	
	Concentration		
Compounds:	mg/kg (ppm)		
Naphthalene	< 0.2		
Acenaphthylene	< 0.2		
Acenaphthene	< 0.2		
Fluorene	< 0.2		
Phenanthrene	< 0.2		
Anthracene	< 0.2		
Fluoranthene	< 0.2		
Pyrene	< 0.2		
Benz(a)anthracene	< 0.2		
Chrysene	< 0.2		
Benzo(a)pyrene	<0.1 j J		
Benzo(b)fluoranthene	<0.2 J		
Benzo(k)fluoranthene	<0.2 J		
Indeno(1,2,3-cd)pyrene	<0.2 J		
Dibenz(a,h)anthracene	<0.2 J		
Benzo(g,h,i)perylene	<0.2 J		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180124

 Date Extracted:
 02/07/18
 Lab ID:
 08-290 mb2 1/5

 Date Analyzed:
 02/07/18
 Data File:
 020713.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 105 31 163 Benzo(a)anthracene-d12 108 24 168

Concentration mg/kg (ppm)

Naphthalene <0.01

Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/24/18

Project: SOU_0611-017_20180124, F&BI 801334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 802102-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.30	88	87	75-125	1
Cadmium	mg/kg (ppm)	10	<1	88	84	75-125	5
Chromium	mg/kg (ppm)	50	8.24	81	80	75-125	1
Lead	mg/kg (ppm)	50	2.92	82	78	75-125	5
Mercury	mg/kg (ppm	5	<1	79	81	75-125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	100	80-120
Cadmium	mg/kg (ppm)	10	106	80-120
Chromium	mg/kg (ppm)	50	105	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	100	80-120

ENVIRONMENTAL CHEMISTS

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 802035-01 1/5 (Matrix Spike)

Laboratory Code. 602000	OI 1/5 (Matrix L	pike)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	87	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	86	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	86	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	87	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	89	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	91	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	94	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	91	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	85	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	87	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	86	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	83	37-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	91	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	85	88	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	87	91	54-123	4
Fluorene	mg/kg (ppm)	0.17	86	89	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	87	90	55-122	3
Anthracene	mg/kg (ppm)	0.17	84	86	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	86	92	54-129	7
Pyrene	mg/kg (ppm)	0.17	84	91	53-127	8
Benz(a)anthracene	mg/kg (ppm)	0.17	90	95	51-115	5
Chrysene	mg/kg (ppm)	0.17	93	97	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	94	100	56-123	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	94	100	54-131	6
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	84	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	86	86	49-148	0
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	87	89	50-141	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	84	84	52-131	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		HE 01- 04-	18 402)/16
Send Report to Sense Course Graveon Fish, Joh Louis	SAMPLERS (signature)		Page #of
Company SoundEarth Strategies, Inc.	TROSECT NAMENO.	PO#	KStandard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mali / 0611-017	•	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS (32 DAY TURN Run per ESF		SAMPLE DISPOSAL Dispose after 80 days
Phone # 208-306-1900 Fax # 208-306-1907		Ministra	Return samples Will call with instructions

,				T	<u> </u>						Υ	1	·A	HALYS		DESTRI	•			1
Sample ID	Sample ID Sample Sample Lab Date Location Depth ID Sampled					Time Matrix # of Jara		TPH.Dx	A) Hall	Chr agails	s fy 8260	Ce by 8270	S METHY.	ts Sazod	4	Note	6			
					**				.*	· N	ž		Š	840	W-12-W	\$	19	*		
TBO1-05	TBOI	5'	OI AC	1/2	1/18	0938	Sol	IL.	5						8	8	末	PUN 5-	ÓMY	
TB01-10	TEOI	- 70	02	·		0945		************	5			-					求			w.l.
TB01-15	TEOI	1	62			0950			5			((3)		†	1	末	, ,		
TB01-20	TBOI		64		•	0955	•	•	5			,		4	-		文	<u> </u>		
T802-05	TBOZ	5'	45 AS			1035			4		,			,		,	文	<u>.</u>		
TB02-10	TB02	10'	OF A.		******	1045			5	*			***************************************				文		•	
TB02-15	T802	1 1	67			1055			5	*	•		8				×		*********	
TB02-20	TBOZ		8			1105	П		5	,							灾	4,		
TB03-05	TBO3	<i>-1</i>	04			1300			5	•		-			8	Ø:	文	RUN 5-1	M-Y	
T803-10	TB03	/	10			1305	江		5		4	Ţ			- Same		丈	, , ,		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 **OBMS-COC-COCDOC

ı	SIGNATURE	PRINT NAME	COMPANY	DATE TIME
	Reliaguished by	JONATHAN LOEFFIER	SOUNDEARTH	1/24/18 1600
)	Received by:	V111 H	FAy .	1/24/16/1600
	Relinquished by:			
	Received by:		Samples	eceived al

	Draft - Issued for Client Reviews
Friedman & Bruya, Inc. #80136	: 3
SoundEarth Strategies, Inc.	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 13, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801363 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish SOU0213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801363 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801363 -01	TB04-05
801363 -02	TB04-10
801363 -03	TB04-15
801363 -04	TB05-05
801363 -05	TB05-10
801363 -06	TB05-15
801363 -07	TB06-05
801363 -08	TB06-10
801363 -09	TB06-15

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for hexachlorobutadiene. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

Date Extracted: 02/05/18 Date Analyzed: 02/05/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
TB05-05 801363-04	<5	98
Method Blank 08-231 MB	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

Date Extracted: 02/02/18 Date Analyzed: 02/02/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
TB05-05 801363-04	190 x	5,100	122
Method Blank 08-271 MB	< 50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	TB04-05	Client:	SoundEarth Strategies		
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126		
Data Estuada d	00/00/10	T - L TD.	001000.01		

 Date Extracted:
 02/09/18
 Lab ID:
 801363-01

 Date Analyzed:
 02/09/18
 Data File:
 801363-01.070

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 1.79

 Cadmium
 <1</td>

 Chromium
 12.1

 Lead
 8.10

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: NA Project: SOU_0611-017_ 20180126

Date Extracted: 02/09/18 Lab ID: I8-095 mb
Date Analyzed: 02/09/18 Data File: I8-095 mb.050
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	TB04-05	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
	00/07/40	T 1 TD	004000044/#

Date Extracted: 02/07/18 Lab ID: 801363-01 1/5 Date Analyzed: 02/07/18 Data File: 020717.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 103 31 163 Benzo(a)anthracene-d12 106 24 168

0.028

0.022

0.031

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene 0.046 Anthracene < 0.01 Fluoranthene 0.058 Pyrene 0.073 Benz(a)anthracene 0.015

Chrysene

Benzo(a)pyrene

Benzo(b)fluoranthene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

Date Extracted: 02/07/18 Lab ID: 08-290 mb2 1/5
Date Analyzed: 02/07/18 Data File: 020713.D
Matrix: Soil Instrument: GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 105 31 163 Benzo(a)anthracene-d12 108 24 168

Concentration
Compounds: mg/kg (ppm)
Naphthalene <0.01

Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB05-05 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 02/05/18 Lab ID: 801363-04

Date Extracted: Lab ID: 801363-04 02/05/18 Date Analyzed: 02/05/18 Data File: 020511.D Matrix: Instrument: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

< 0.025

Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

02/05/18 Lab ID: Date Extracted: 08-218 mb2 Date Analyzed: 02/05/18 Data File: 020508.D Instrument: Matrix: Soil GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410089113Toluene-d810264137

 1,2-Dichloroethane-d4
 100
 89
 113

 Toluene-d8
 102
 64
 137

 4-Bromofluorobenzene
 98
 81
 119

 Concentration

 $\begin{array}{lll} \mbox{Compounds:} & \mbox{mg/kg (ppm)} \\ \mbox{Vinyl chloride} & <0.05 \\ \mbox{1,1-Dichloroethene} & <0.05 \\ \mbox{Trichloroethene} & <0.02 \\ \mbox{Tetrachloroethene} & <0.025 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 802022-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 802032-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	88	102	73-135	15

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	86	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 802102-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.30	88	87	75-125	1
Cadmium	mg/kg (ppm)	10	<1	88	84	75-125	5
Chromium	mg/kg (ppm)	50	8.24	81	80	75-125	1
Lead	mg/kg (ppm)	50	2.92	82	78	75-125	5
Mercury	mg/kg (ppm	5	<1	79	81	75-125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	100	80-120
Cadmium	mg/kg (ppm)	10	106	80-120
Chromium	mg/kg (ppm)	50	105	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 802035-01 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	87	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	86	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	86	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	87	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	89	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	91	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	94	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	91	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	85	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	87	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	86	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	83	37-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	91	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	85	88	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	87	91	54-123	4
Fluorene	mg/kg (ppm)	0.17	86	89	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	87	90	55-122	3
Anthracene	mg/kg (ppm)	0.17	84	86	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	86	92	54-129	7
Pyrene	mg/kg (ppm)	0.17	84	91	53-127	8
Benz(a)anthracene	mg/kg (ppm)	0.17	90	95	51-115	5
Chrysene	mg/kg (ppm)	0.17	93	97	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	94	100	56-123	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	94	100	54-131	6
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	84	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	86	86	49-148	0
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	87	89	50-141	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	84	84	52-131	0

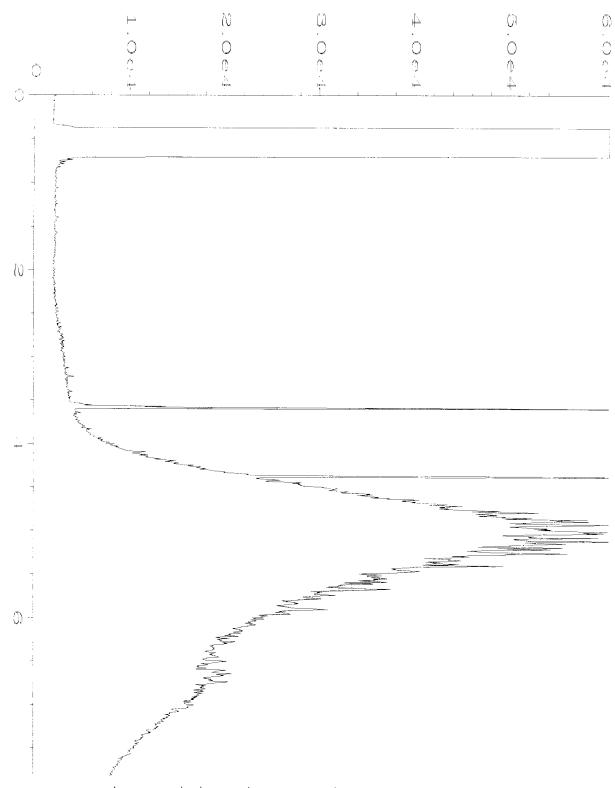
ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

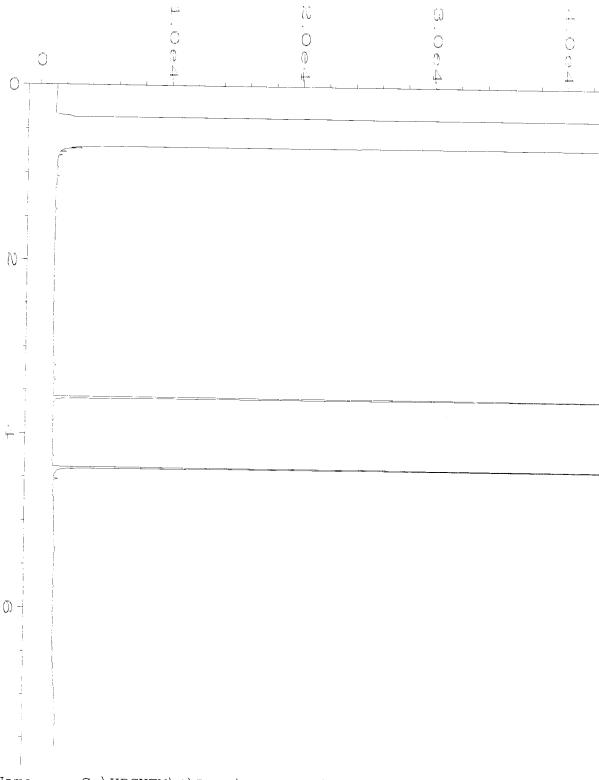
Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

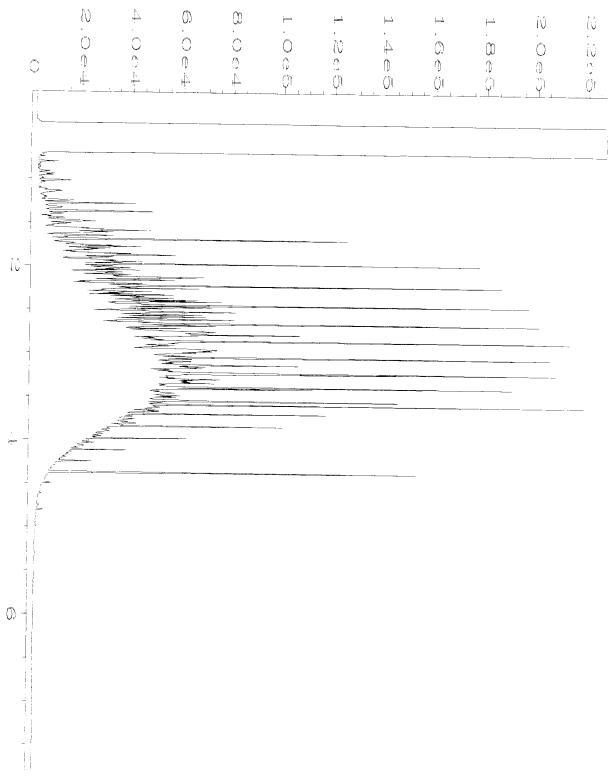
Laboratory Code: 801364-01 (Matrix Spike)


-	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	81	69	10-138	16
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	79	10-160	18
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	103	86	21-139	18
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	111	95	20-133	16

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128
Trichloroethene	mg/kg (ppm)	2.5	91	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                : C:\HPCHEM\4\DATA\02-02-18\018F0301.D
Operator
                 : mwdl
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                                : 18
Sample Name
                : 801363-04
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 02 Feb 18
                             02:36 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Feb 18 07:54 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\02-02-18\006F0301.D
Operator
                 : mwdl
                                                Page Number
Vial Number
                                                                  : 1
Instrument
                 : GC#4
                                                                  : 6
Sample Name
                 : 08-271 mb
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 3
Acquired on : 02 Feb 18 12:06 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Feb 18 07:54 AM
                                                Analysis Method : DX.MTH
```


	1363 57863, L	rga S ivson F	ehum Pish	s wh		PERS (signaty	9/	STOD	N N	·	01/0			Page#_	of_	1/1	1
Company Source	dEarth Stra	tegies.	Inc.	We will see the second section of the section of the se	PROJ	ECT N	MEN).	٧			PO#	_	Star	idard (2	ROUND TI 2 Weeks)	ME	
Address 2811 F	airview Ave	nue E.	Suite	2000			er Mall	/0611	-017	•			THE STATE OF THE S	,		authorized	by:	
City, State, ZIP Seattle, Washington 98102						ARKS	alda	 		ITAT				Disn	SAMPI	E DISPOS. er 30 days	AL	-
Phone # 206-306-190)0Fax#	200	<u>6-306</u> -	1907						6,76 <u>6,</u> 1,20c2				Retu	In sam		ons	
					,						A	VALYS	S REQ	UESTED				ا .
Sample ID		Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	WTPH-Dx	TPH-Gx	by 8021B	by 8280	by 8270	5 METH		-			
			-1		y	•		E	LWW.	3TEX	VOCs	- SO - AO	1	Ž	•	Note	18	ļ

					,						A	NALYS	es rec	UESTE	D		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	NWTPH-Dx	NWTPH-Gx	JA 8021B	by 8280	by 8270	S METHL				
				1	,				I MA	BTEX by	C VOCs by	SVOCe	1.	 	<u> </u>	Notes	
			<u> </u>		•					<u> </u>	5	in.	Z L	#.			••
TBUY- OS	TRUC	5	O/A	1/12/18	0805	Sol	5		<u> </u>	***************************************		•	8	0		PER-85-217	
TBUY-10		to	01	i	0810.	,	1							18		KW 5-DAY 70	RN
TBUK-15	07	(5	03		083	,							<u> </u>	<u> </u>	 		
TBOS-CS	TBOS	S	Oy		0944								ļ	1	ļ		_
TB05-10:		10	05		0950									 	 	PorLS	
7B0675			06	T-l	0955	·						*	ļ		ļ	2/2/18	
1B06-05	TBUS		07		11(0					*.		* ************************************				MS	
TB06-10				 	1(15												
TB06-15			08				·								ļ		
	1 07		09 1		1120	L L	W									•	
	I i de	S 1/2	s (ca										amp	es rec	eived	nt 4 set	7

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Faz (206) 283-5044

FORMS\COC\COC.DOC

Re	SIGNATURE linguished by:	PRINT NAME	COMPANY	DATE	TIME
	Stradby Stradby	Logn Schmuh	Saultoh	1/26/18	1020
	inquished by:	VINH	L KBI	1/26/18	10:20
L	eived by:				
<u></u>			Ì		•

	Draft - Issued for Client Reviews
Friedman & Bruya, Inc. #80136	5
SoundEarth Strategies, Inc.	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle. WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801365 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Logan Schumacher SOU0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801365 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801365 -01	B10-2.5
801365 -02	B10-05
801365 -03	B10-10
801365 -04	B10-15
801365 -05	B10-20

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B10-2.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 02/07/18 Lab ID: 801365-01 Date Analyzed: 02/07/18 Data File: 020719.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	142
Toluene-d8	94	55	145
4-Bromofluorobenzene	97	65	139

< 0.025

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

Date Extracted: 02/07/18 Lab ID: 08-0283 mb
Date Analyzed: 02/07/18 Data File: 020710.D
Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	142
Toluene-d8	95	55	145
4-Bromofluorobenzene	98	65	139

Concentration Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801365

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801364-01 (Matrix Spike)

-	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	81	69	10-138	16
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	79	10-160	18
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	103	86	21-139	18
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	111	95	20-133	16

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128
Trichloroethene	mg/kg (ppm)	2.5	91	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Address 20	SoundEarth S 311 Fairview / Seattle, Washi	trategies. Ivenue E ington 98	Inc.	and the last last last last last last last last	PROJ		ME/NO er Mall	/ 0611	-017	d for		PO#		Star RUS Rush Disg Reti	FURNA adard (SH charges SAMP: yose afi	AROUND TIME 2 Weeks) s authorized by LE DISPOSAL er 30 days aples ith instructions	***************************************
							i i		T	7	•			UESTEI)		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	7/0Cs by 8260c	SVOCs by 8270	4 5 MEMAS	-		Notes	
							·	<i>A</i>	4	H	8	SV	M 72.4		,		
B10-025	BIO	2.5	0/2	1/26/18	0825	Sell	5		,	 	100			 	 	PER ES	
B10-05		05	22	ì	0831		,						 	 		STANDAR	
B10-10		10	03		0835								1	1	,		
B10-15	`.	14	al		0840						1		<u> </u>	1		· · · · · · · · · · · · · · · · · · ·	
B10-20	-la	20	051		0845	J.	J		1	,							· ·
			•						>	,	<u> </u>						
							S	EP.	110	<i></i>	<u> </u>	Sı	mple	s rece	ived a	4.40	
•						-				6/13		•				-	A COLUMN TO A COLU
•							ĺ	,				-				-	1

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 * Ph. (206) 285-8282 Fax (206) 283-5044

PORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE.	TIME
Relinquished by:	GRENGE FRA	Sand Earth :	V2610	1020
Received by: Altur	VINH	FB1	1/24/19	1620
Relinquished by:				-
Received by:				,
				^

	Draft - Issued for Client Reviews
Friedman & Bruya, Inc. #801370 and a	dditional
oundEarth Strategies, Inc.	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801370 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish SOU0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801370 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801370 -01	B06-05
801370 -02	B06-10
801370 -03	B06-12.5
801370 -04	B06-15
801370 -05	B06-17.5
801370 -06	B06-20
801370 -07	B06-25
801370 -08	B06-30
801370 -09	B06-35
801370 -10	B06-40
801370 -11	B06-45
801370 -12	B06-50
801370 -13	B11-10
801370 -14	B11-15
801370 -15	B11-20
801370 -16	B11-25
801370 -17	B06-B11-Comp

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-15 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 01/29/18 Lab ID: 801370-04

Date Extracted:01/29/18Lab ID:801370-04Date Analyzed:01/29/18Data File:012924.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 100 65 139

< 0.025

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene 0.47
Trichloroethene 0.19

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-20 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_20180126

Date Extracted: 01/20/18 Leb ID: 201370.06

Lab ID: Date Extracted: 01/29/18 801370-06 Date Analyzed: 01/29/18 Data File: 012914.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 101 65 139

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride<0.05</th>1,1-Dichloroethene<0.05</td>cis-1,2-Dichloroethene<0.05</td>Trichloroethene<0.02</td>Tetrachloroethene<0.025</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

01/29/18 Lab ID: 08-0209 mb Date Extracted: Date Analyzed: 01/29/18 Data File: 012908.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 100 55 145

 1,2-Dichloroethane-d4
 102
 62
 142

 Toluene-d8
 100
 55
 145

 4-Bromofluorobenzene
 98
 65
 139

 Concentration

 $\begin{array}{lll} \mbox{Compounds:} & \mbox{mg/kg (ppm)} \\ \mbox{Vinyl chloride} & <0.05 \\ \mbox{1,1-Dichloroethene} & <0.05 \\ \mbox{cis-1,2-Dichloroethene} & <0.05 \\ \mbox{Trichloroethene} & <0.02 \\ \mbox{Tetrachloroethene} & <0.025 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801370

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	67	61	10-138	9
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	84	10-160	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	99	98	25-135	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	99	99	21-139	0
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	97	98	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	93	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	72-113
Trichloroethene	mg/kg (ppm)	2.5	95	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	94	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

La	Forters, Lo	sen 5	· ·		SAMP	LERS (s	ignatur	e)	5	_1		2			Page#	of 2
Send Report to Suz	y Stampf. Gr	ayson Fi	ish	<u></u>	PROJE	CT NA	ME/NO		#	2		?O#	\neg	Stan	dard (2	ROUND TIME Weeks)
CompanyS	oundEarth Str	<u>ategies. I</u>	nc.		- ,	Rainie	r Mall	0611-	017					.	harges	authorized by:
Address281	1 Fairview Av	enue E.	Suite :	2000	REMA	RKS' A		_/~					_			E DISPOSAL
City, State, ZIP_S	eattle. Washir	gton 981	02		VC)	RKS 🚒	حالات	ş≖(ra	æ, tl	E, 4,6	-DCE,	Cradit	ME.	Disp	ose afte	r 80 days
Phone # 206-306	;_1900 Fax	:# <u>20</u> /	<u>6-306-</u>	1907					-			· · · · · · · · · · · · · · · · · · ·			rn sam call wit	h instructions
PROTECT		r I				<u> </u>					A	NALYSE	s req	UESTED) .	
	endad-stemmers reserved		*		•		,	Dx	ğ	8021B	8280 *	0.58	·			* 0.4
Sample ID	Sample Location	Sample Depth	Lab ID	Data Sampled	Time Sampled	Matrix	# of Jars	W.TPH.D	WTPH-G	EX by 8	OCs by 8	OCs by				Notes
			<u>T.</u>	1			************			8	て	8	·····)
		1	1	1					!		v] 1		1 1	1 1	* *

	Sample ID	Loc	ation	Depth	שו	Sampaso	Sampeu	١.		NWT	I E	TEX 5	ల్గ	ő		,	'	Notes
	;									,		T AS	U	166	<u> </u>	<u> </u>		
-	el ac	B) 6	5	OI AR	1/20/18	caus	501	5		·			٠.				
1	366-06		1	10	DJ I		6950		11									
L	06-12.6			12.5	13		0955						(3)			1		EBF 1/3.1
	00-12-3		<u> </u>	15	M		1005				<u> </u>		×					
E	06-15			17.5	15	1 .	1010											
H	306-1113			20	76		(015						X	ů	,			
P	06-15 306-17.5 506-20 306-25			25	of		1036		1	and the second of the second of the second								. ^ .
H	506-23	·		30	Œ		1090			:	: :		•	Sa	mnles	Tarai	e hav	2 100
L	566-30			35	M		1050.										. "	
	366-30 306-35 306-40	+-	4	40	10	110	1105	V	9		,						-	***************************************

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 385-8282 06) 283-5044 C\000EDOG

4	••		* * * * * * * * * * * * * * * * * * * *			
_	SIGNATURE	وندر سيسه در مهاد داخ ۱۱ د د د د و د د د	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by		Loga Schuruck	Sandted.	1/26/18	1428
,	Received by:	-	MMH	FBI	1/25/18	1425
1	Ralinquished by:					44.
f	Received by:	,				•
Ł.,				· ·		

Send Report to San	1370 Todas,	ravson	5 <u>Fish</u>	· · · · · · · · · · · · · · · · · · ·		PLEKS	(signat	ure)	gg Kray	Bref			<u> </u>			of 2 ID TIME	
	oundEarth St				– PROJ	PROJECT NAME/NO. Rainier Mall / 0611-017					PO# Standard (2)			(2 Weel	(a) ,		
Address					REM	REMARKS See Regard for *							D R	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions			
						T.	T				A	NALYSES	REQUEST	ED		***************************************	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jace	WIPH.D.	WIPEG	BTEX by 8021B	Cs by 8260	SVOCe by 8270				Notes	
		,			,			24	Z	BT	3	SV					
306-45	B06	45	nħ€	426/18	1115	501	5		<u> </u>	ļ			·				
306-50	4		21		1120		1.1				B			_	RW	Per Eist 1131	
311-10	Bit	10	13		1250				,			,			-	(15)	
34-15		15	F		1255					1						· · · · · · · · · · · · · · · · · · ·	
11-20		20	5		1305	1				<u> </u>			*******			***************************************	
BN-25	خا ا	2.5	64	. ناب	1310	+	1.										
06-BII-COMP	806-8A	-	17	1/26/18	1330	L	1					•					
									· ·	,	27 - 617						
						4	SUF	1/26	118		-						
				***************************************								<u> </u>					
riedman & Bruya, Is	ec l	SIG	MATE	TRR.	· · · · · · · · · · · · · · · · · · ·	***************************************	T G G	NT NAI	· ·			AA KA	ARTY		-		
12 16th Avenue Wes			12	· · · · · · · · · · · · · · · · · · ·	, ,	Logo		down	alli		+ =	COMP Line			ate 26/18	TIME.	
attle, WA 98119-202	Received.	W. 1/	WA	. , ,		V	IN		** ** ***			B1	15	11/2	- Pa	1425	
h. (206) 285-8282	Relinquis	hed by:									†				6/12	100	

Received by:

VCX (206) 283-5044

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801370 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Logan Schumacher sou0207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801370 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
801370 -01	B06-05
801370 -02	B06-10
801370 -03	B06-12.5
801370 -04	B06-15
801370 -05	B06-17.5
801370 -06	B06-20
801370 -07	B06-25
801370 -08	B06-30
801370 -09	B06-35
801370 -10	B06-40
801370 -11	B06-45
801370 -12	B06-50
801370 -13	B11-10
801370 -14	B11-15
801370 -15	B11-20
801370 -16	B11-25
801370 -17	B06-B11-Comp

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-12.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 02/01/18 Lab ID: 801370-03 Date Analyzed: 02/02/18 Data File: 020221.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
101	57	121
101	63	127
97	60	133
	101 101	101 57 101 63

 $\begin{array}{cccc} & & & & & & & & \\ Concentration & & & & & \\ Mode & & & & & \\ Winyl \ chloride & & & & & \\ 1,1-Dichloroethene & & & & \\ Concentration & & & \\ mg/kg \ (ppm) & & & \\ & & & & & \\ 1,1-Dichloroethene & & & & \\ Concentration & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-50 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 02/01/18 Lab ID: 801370-12

Date Extracted:02/01/18Lab ID:801370-12Date Analyzed:02/02/18Data File:020222.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 57 121

1,2-Dichloroethane-d4 101 57 121
Toluene-d8 102 63 127
4-Bromofluorobenzene 97 60 133

Concentration

Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B11-15 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18

Lab ID: 801370-14 Date Extracted: 02/02/18 Date Analyzed: 02/02/18 Data File: 020218.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	98	65	139

Concentration

Compounds: mg/kg (ppm) Dry Weight

Vinyl chloride < 0.05 1,1-Dichloroethene < 0.05 cis-1,2-Dichloroethene < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Upper

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	02/02/18	Lab ID:	08-0215 mb2
Date Analyzed:	02/02/18 10:35	Data File:	020205.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410262142Toluene-d8102551454-Bromofluorobenzene9765139

Concentration

Compounds: mg/kg (ppm) Dry Weight

 $\begin{array}{lll} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & <0.05 \\ Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies

Date Received: Not Applicable Project: SOU_0611-017_20180126

Date Extracted:02/01/18Lab ID:08-0215 mbDate Analyzed:02/01/18Data File:020121.DMatrix:SoilInstrument:GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	Upper
% Recovery:	Limit:	Limit:
102	62	142
100	55	145
96	65	139
	102 100	% Recovery: Limit: 102 62 100 55

< 0.05

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05

Trichloroethene <0.02
Tetrachloroethene <0.025

cis-1,2-Dichloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801370

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-12 (Matrix Spike)

	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	40	39	10-138	3
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	58	56	10-160	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	71	25-135	4
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	73	70	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	0.024	71	67	20-133	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
Trichloroethene	mg/kg (ppm)	2.5	98	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	LIZE	370 orlean, Lo	men 5) Earlin		SAMP)	ERS (ignatu	(e)	$\mathcal{D}_{\mathbf{z}}$	nA.			**		Page#_	of 2
	MILE COLUMN	odEarth Str	ntegies. I	nc.	•	PROJE	CT NA Rainie	ME/NO	De la	017			PO#	<u></u>	Stau	ndàrd (2 Weeks) 2 May 2 May 3 authorized by:
(Address 2811 City, State, ZIP Sea Phone # 206-306-1		gton 981		-	REMA VC)	rks 🕦	کس د	ş = (P∂	E,TO	E, 1,1			.	Disg Reta Will	pose aft um san l call wi	LE DISPOSAL er 30 days aples ith instructions
	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	CCs by 8260	70Cs by 8270	ES REQ	UESTEI 		Notes
-											À	V	62				
	B66-06	B06	5	MAE	1/20/18	1 .	Sol	5.	**	,	٠.					<u></u>	
	B06-10	4 .	10	12		6950	<u> </u>	. 1			<u>, , , , , , , , , , , , , , , , , , , </u>			*		<u></u>	
	806-12.5		125	10		0955	-	<u> </u>				0		ļ			FUN PER EBF 1/31
	B06-15		15	04		1005	<u> </u>					X	Ţ				
	B06-17.5	· (17.5	165.		1010	<u> </u>	 			***************************************	\	-				
	B06-20		20	06		(015					•	A					
٠	B06-25		25	07		1030	<u> </u>	<u> </u>				*	- <u>i</u>				
	B66-30		30	00	<u> </u>	1040		<u> </u>	;	:		·	_Sa	mples	recei	ved a	2 00
	B06-35		35	09		1050.	Ц	14					• • •				
	B04-40	1.4	40	10	ll q	itos	V	9	,								. `

Friedman & Bruya, Inc. 3012 16th Avenue West Scattle, WA 98119-2029

Ph	(206) 285-8282
	b6) 283-5044
	C COCDOC
• •	- 不成権

SIGNATURE	PRINT NAME	COMPANY	DATE TIME
Relinquished by	Loga Schwarch	Sandted.	1/26/18 1428
Received by:	THM#	FB1	1/26/18 1425
Relinquished by:			, and
Received by:			
25.4.4		**	

	Send Report to Surv	370 Forbas,	Luga	S Fish	S	AMPLI		(signat		STOL	Sh d	ME	1/26	18				(2 A	14/ Vvc
	Company Sou	ındEarth St Fairview A	rategies	Inc.	2000		Rain	AME/N ier Mal	1/0611	1-017			PO#		Sta	odard (2 Weel	ND TIME (se) . (rized by:	
	City, State, ZIP <u>Ses</u> Phone # <u>206-306-1</u>	,	ngton 98 x #20		-1907	- REM	REMARKS See Page 1 for *					SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions							
	· ·						****			<u> </u>	ì	1	NALYS	es rec	UESTEL	}	i		7
; • •	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time . Sampled	Matrix	# of Jare	WEED.	NWTPH-Gr	X by 8021B	Cs by 8280	OCs by 8270		A C	A. A. A. A. A. A. A. A. A. A. A. A. A. A		Notes	
				,					Ž	2	B	Š	8						,
	B06-45	B06	45	1te	426/18	1115	Son	5						***************************************	·	·		**************************************	
	B06-Sp	4	50	12		1120						(3)		·			RIN	Per GBF.	
	BU-10	Bit	10	13		1250			,								***************************************		
	BU-15		. (5	β¥		1255						8		_	_			*	
	A1-20		20	15		1305		1	-										
_	BN-25	_ ط	25	161		1310	Ł	1											
	BOG-BIL-COMP	B06-81		lt_	1/2618	1330	نــــــــــــــــــــــــــــــــــــــ	1					1						
-								Set	1/2/	1.0		C-2000						•	
			,		-	1.	,		100.	118 .		-							
F	riedman & Bruya, Inc		នាខ	PAN	TOTE			7000							1			· · · · · · · · · · · · · · · · · · ·	ŗ
	012 16th Avenue West		hed by	San San			Longe		NT NA		**************************************	+-=		PAN	W-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		TE \	TIME.	F
S	eattle, WA 98119-2029	Received	× 1/	WA		•	V	IN		-U.F. 18.	·	1	B)	1-18		1.7	6/18	1425	
	h. (206) 285-8282	Relinquiel	aed by:		* *		_		<u> </u>		······································	†	.101			114	115	(10)	
	cax (206) 283-5044 Ms\coc\cocpoc	Received l	yy:			,			*								,		*

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 27, 2017

Courtney Schaumberg, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Schaumberg:

Included are the results from the testing of material submitted on January 19, 2017 from the SOU_1276-001_ 20170119, F&BI 701209 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU0127R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 19, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20170119, F&BI 701209 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
701209 -01	SB01-2.5
701209 -02	SB01-5.0
701209 -03	SB01-7.5
701209 -04	SB01-10.0
701209 -05	SB01-12.5
701209 -06	SB01-15.0
701209 -07	SB01-17.5
701209 -08	SB01-20.0
701209 -09	SB01-22.5
701209 -10	SB01-24.5
701209 -11	SB02-2.5
701209 -12	SB02-5.0
701209 -13	SB02-7.5
701209 -14	SB02-10.0
701209 -15	SB02-12.5
701209 -16	SB02-16.0
701209 -17	SB03-2.5
701209 -18	SB03-5.0
701209 -19	SB03-7.5
701209 -20	SB03-10.0
701209 -21	SB03-12.5
701209 -22	SB03-16.0
701209 -23	SB04-2.5
701209 -24	SB05-5.0
701209 -25	SB04-7.5
701209 -26	SB04-10.0
701209 -27	SB04-12.5
701209 -28	SB04-16.0
701209 -29	SB05-2.5
701209 -30	SB05-5.0
701209 -31	SB05-7.5
701209 -32	SB05-10.0
701209 -33	SB05-12.5
701209 -34	SB05-16.0
701209 -35	SB06-2.5
701209 -36	SB06-5.0

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (CONTINUED)

<u>Laboratory ID</u>	SoundEarth Strategies
701209 -37	SB06-7.5
701209 -38	SB06-10.0
701209 -39	SB06-12.5
701209 -40	SB06-15.0
701209 -41	SB06-17.5
701209 -42	SB06-20.0
701209 -43	SB06-22.5
701209 -44	SB06-24.0
701209 -45	SB07-2.5
701209 -46	SB07-5.0
701209 -47	SB07-7.5
701209 -48	SB07-10.0
701209 -49	SB07-12.5
701209 -50	SB07-16.0
701209 -51	SB08-2.5
701209 -52	SB08-5.0
701209 -53	SB08-7.5
701209 -54	SB08-10.0
701209 -55	SB08-12.5
701209 -56	SB08-16.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB01-5.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-02 Date Analyzed: 01/20/17 Data File: 012007.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 102 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 65 139 101

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB01-20.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_20170119
Date Fettre et al.: 01/20/17

Lab ID: Date Extracted: 01/20/17 701209-08 Date Analyzed: 01/20/17 Data File: 012036.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	104	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethen e	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.31
Tetrachloroethene	29

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB01-22.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119
Date Extracted: 01/23/17 Lab ID: 701209-09

Date Extracted: 01/23/17 Lab ID: 701209-09
Date Analyzed: 01/23/17 Data File: 012308.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	1.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB01-24.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-10 Date Analyzed: 01/20/17 Data File: 012038.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 102 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 65 104 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB02-5.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Date Extracted: 01/20/17 Lab ID: 701209-12 Date Analyzed: 01/20/17 Data File: 012039.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB02-12.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119
Date Extracted: 01/20/17 Lab ID: 701209-15

Date Extracted:01/20/17Lab ID:701209-15Date Analyzed:01/20/17Data File:012040.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	2.2
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	0.052
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	6.7
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachlorœthene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB02-16.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119
Date Extracted: 01/20/17 Lab ID: 701209-16

Date Extracted:01/20/17Lab ID:701209-16Date Analyzed:01/21/17Data File:012041.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	104	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	0.052
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	1.1
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	2.2
Tetrachloroethene	4.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB03-12.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-21 Date Analyzed: 01/21/17 Data File: 012042.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	102	65	139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB03-16.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-22 Date Analyzed: 01/21/17 Data File: 012043.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 100 62 142 Toluene-d8 104 55 145 4-Bromofluorobenzene 65 101 139

< 0.02

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

139

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB05-5.0 Client: SoundEarth Strategies Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-24 Date Analyzed: 01/21/17 Data File: 012044.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 101 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 65

< 0.025

100 Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB04-12.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-27 Date Analyzed: 01/21/17 Data File: 012045.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 100 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 65 103 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB04-16.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-28 Date Analyzed: 01/21/17 Data File: 012046.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 101 62 142 Toluene-d8 104 55 145 4-Bromofluorobenzene 65 101 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB05-5.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-30 Date Analyzed: 01/21/17 Data File: 012047.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 102 65 139

4-Bromofluorobenzene 65 102 Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB05-12.5 Client: SoundEarth Strategies

Date Received: 01/19/17 Project: SOU_1276-001_20170119

Date Fittmental: 01/20/17 Leb ID: 701200.22

Lab ID: Date Extracted: 01/20/17 701209-33 Date Analyzed: 01/21/17 Data File: 012048.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	101	65	139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB05-16.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-34 Date Analyzed: 01/21/17 Data File: 012049.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 99 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 65 102 139

< 0.02

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

SB06-10.0 Client Sample ID: Client: SoundEarth Strategies Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-38 Date Analyzed: 01/21/17 Data File: 012050.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	103	55	145
4-Bromofluorobenzene	102	65	139

< 0.02

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB06-24.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-44 Date Analyzed: 01/21/17 Data File: 012051.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 103 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 100 65 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB07-10.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Date Extracted: 01/20/17 Lab ID: 701209-48
Date Analyzed: 01/21/17 Data File: 012052.D
Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	101	65	139

< 0.02

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB07-16.0 Client: SoundEarth Strategies Date Received: 01/19/17 Project: SOU_1276-001_ 20170119

Lab ID: Date Extracted: 01/20/17 701209-50 Date Analyzed: 01/21/17 Data File: 012053.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 100 62 142

Toluene-d8 102 55 145 4-Bromofluorobenzene 65 100 139 Concentration

Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB08-12.5 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_20170119
Date Fettre et al.: 01/20/17

Lab ID: Date Extracted: 01/20/17 701209-55 Date Analyzed: 01/21/17 Data File: 012054.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	100	65	139

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene 0.086 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene 1.3 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene 0.29

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB08-16.0 Client: SoundEarth Strategies

Date Received: 01/19/17 Project: SOU_1276-001_20170119

Date Extracted: 01/20/17 Lab ID: 701209-56

Date Analyzed: 01/21/17 Data File: 012055.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 101 65 139

4-Bromofluorobenzene 65 101 Concentration Compounds: mg/kg (ppm) Vinyl chloride 0.24 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene 0.056 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene 10 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene 8.6 Tetrachloroethene 7.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies Date Received: Project: Not Applicable SOU_1276-001_ 20170119

01/20/17 Lab ID: 07-082 mb Date Extracted: Date Analyzed: 01/20/17 Data File: 012015.D Instrument: Matrix: Soil GCMS4 Units: JS

mg/kg (ppm) Dry Weight Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	102	55	145
4-Bromofluorobenzene	99	65	139

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170119

01/20/17 Lab ID: Date Extracted: 07-081 mb2 Date Analyzed: 01/20/17 Data File: 012005.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 100 62 142 Toluene-d8 101 55 145 4-Bromofluorobenzene 65 139 101

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/17 Date Received: 01/19/17

Project: SOU_1276-001_20170119, F&BI 701209

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 701209-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	60	59	10-138	2
Chloroethane	mg/kg (ppm)	2.5	< 0.5	69	68	10-176	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	80	79	10-160	1
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	100	100	10-156	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	90	91	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	92	93	19-140	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	93	95	25-135	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	100	99	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	98	99	10-156	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	95	95	21-139	0
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	94	95	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
Chloroethane	mg/kg (ppm)	2.5	87	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	98	47-128
Methylene chloride	mg/kg (ppm)	2.5	123	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	104	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	104	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	105	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	112	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	112	62-131
Trichloroethene	mg/kg (ppm)	2.5	106	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	106	72-114

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/17 Date Received: 01/19/17

Project: SOU_1276-001_20170119, F&BI 701209

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 701209-50 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	43	43	10-138	0
Chloroethane	mg/kg (ppm)	2.5	< 0.5	56	55	10-176	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	61	64	10-160	5
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	85	86	10-156	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	76	77	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	80	82	19-140	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	85	25-135	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	88	90	12-160	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	86	88	10-156	2
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	84	87	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	84	86	20-133	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
Chloroethane	mg/kg (ppm)	2.5	85	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	47-128
Methylene chloride	mg/kg (ppm)	2.5	122	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	110	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	110	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	110	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	116	56-135
1,1,1-Trichlorœthane	mg/kg (ppm)	2.5	118	62-131
Trichloroethene	mg/kg (ppm)	2.5	114	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	110	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

70	12	00	Ĺ

ME 01-19-17

W54/	
of	A05

Send Report to <u>Courtney Schaumberg</u>	SAMPLERS (signature) Clau	al	Page # of TURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall Property	1276-001	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS for will deforme analyses		SAMPLE DISPOSAL Dispose after 30 days Return samples
Phone # 206-306-1900 Fax # 206-306-1907			Will call with instructions

										· · · · · · · · · · · · · · · · · · ·	A	NALYSE	S REQ	JESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	1907	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Notes × fer CMS mL 1/19/17
5801-2.5	5801	2.5	Ol E	1/18/17	0830	1:02	5				·		Ì		-, -	
5801-5.0		5	තු -		0835	1								×		
5801-7.5		ا سر جسما	S S		0856											
5801-10.0		10	64		U840											
5801-12.5		12.5	051		0850											
5301-1510		15	010		0855											
5801-17.5		17.5	62		0900											
5801-20,0		ا ما	08		0905									×		
5301-22.5		225			0915								-3	*		
5801-24.5	<i></i>	24.5	10 V	\	0920	J	1						4	×		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COC.DOC

.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by: Sal	Clare Tochilin	Suntath	1/19/17	1036
,	Received by: Man aw	Whan Phan	FLBI	1/19/17	1030
	Relinquished by:				
	Received by:		Samples received	1 at _3_	0

701	209
	-

ME 01-19-17

_	1254/	A05
\neg	' (_

Send Report to <u>Courtney Schaumberg</u>	SAMPLERS (signature)	6	Page #
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall Property	1276-001	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS PM with determine analyse	·S	SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907			Return samples Will call with instructions

											Al	NALYSE	S REQ	JESTED	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HOTO -	c vocr 6> 8260C	Notes
5802-2.5 5802-510	5802	2.5	IIE	1/18/17	0940	Stil	5								
		5	12	1	0945	(-							×	
5802-7.5		7.5	13		0950										
5802-10,0		10	14		0975										· · · · · · · · · · · · · · · · · · ·
502-12.5		125	15		1000									×	
5802-1610	1	16	16		1005						-			*	
5803-2.5	5803	2.5	13		1025										
5803-5.0		5	18		1030										
5803-7.5		7.5	19		1040										
5803-1010	工	10	70 V	V	1045	1	1								

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COCDOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Countain	Clar Tochilin	Suntath	1/19/17	1030
Received by: Mly aw	Whan Phan	FEBT	1/19/17	1030
Relinquished by:				
Received by:		Samples receiv	ed at 3	

701209

Phone#

SAMPLE CHAIN OF CUSTODY

ME_01-19-17

	USY/ AOS
3	76763

Send Report to _	Courtney Schaumberg
Company	SoundEarth Strategies, Inc.
Address	2811 Fairview Avenue E, Suite 2000
City State ZIP	Seattle Washington 08109

Fax #

206-306-1907

SAMPLERS (signature) / PROJECT NAME/NO. PO# Rainier Mall Property 1276-001 REMARKS

Page# TURNAROUND TIME Standard (2 Weeks) RUSH_ Rush charges authorized by: SAMPLE DISPOSAL

206-306-1900

PM will determine analyses

Dispose after 30 days Return samples Will call with instructions

											A]	NALYSE	S REQ	UESTED	
Sample ID	Sample Location		Lab ID NO	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	-gtox	crocs by B260	Notes
5B03-12.5	5803	12.5	න	1/18/11	1050	Soil	5							×	
5803-16.0		16	222 237 247 247 247		1055	1								×	
5804-2.5	5864	2.5	333		1100										
2884-210	ſ	5	324		1105									×	
5804 - 7.5		7.5	(25)		1115										
5804-10.0		10	526		1120										
5804-12-5		12.5	X27		1122									×	
5804-16.0		16	428		1125									×	
5805-25	5865	2.5	139		1146			,							
5865 - 5.0		5	30 V	1.	1145		1						4	×	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: law facts	Close Tochlin	SandEath	1/19/17	1070
Received by:	Nhan Phan	Febl	1/19/17	1030
Relinquished by:				
Received by:		Samples rece	eived at 3	

FORMS\COC\COCDOC

701	2	00	7
	_		_

Company_

Address

Phone #

Send Report to Courtney Schaumberg

City, State, ZIP Seattle, Washington 98102

206-306-1900 Fax #

SoundEarth Strategies, Inc.

2811 Fairview Avenue E, Suite 2000

206-306-1907

SAMPLE CHAIN OF CUSTODY

IPLE CHAIN OF CUSTOD1	ME 01-	19-17 15 60	4/
SAMPLERS (signature mu /	11	Page #of	A OS
		TURNAROUND TIME	
PROJECT NAME/NO.	PO#	Standard (2 Weeks)	
		RUSH	
Rainier Mall Property	1276-001	Rush charges authorized by:	•

Rainier Mall Prop

REMARKS

PM to determine analyses

SAMPLE DISPOSAL Dispose after 30 days Return samples

Will call with instructions

											Al	NALYSE	S REQ	UESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOĈs by 8260	SVOCs by 8270	19704	0928 4 27017		Notes
SB05-7.5	5805	7.5	319=	1/18/17	1150	Soil	5								_	
5805-10.0		10.	32		1152	(
5805-125		125	33		1155									×		
5805-16.0	1	16	34		1200									×		
5806-25	5806		35		1215						-			1		
5306-500		5	36		1220											
5806-7.5		7.5	37		1405											
5806-16:0			38		1416									×		
5806-125		12.5	34		1415											
5806-15.0	1	15	401	1	1417		I						1			

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tochilm	SoundEath	1/19/17	1036
Received by: m lb low	Nhhu Phan	FEB_T	1/19/17	1030
Relinquished by:				
Received by:		mples rec	eived at	_°C

70	12	09

Company_

Address

Phone #___

Send Report to Courtney Schaumberg

City, State, ZIP Seattle, Washington 98102

SoundEarth Strategies, Inc.

206-306-1900 Fax # 206-306-1907

2811 Fairview Avenue E, Suite 2000

SAMPLE CHAIN OF CUSTODY ME 01-19-17

SAMPLERS (signature) flam Ta	21	Page # of
PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks)
Rainier Mall Property	1276-001	RUSHRush charges authorized by:
REMARKS PM Lill determe a	nalyses	SAMPLE DISPOSAL Dispose after 30 days Return samples

Will call with instructions

											Al	VALYSE	S REQ	UESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	1010H	crocs by		Notes
5806-17.5	5806	17.5	41E	1/18/17	1420	1,02	5						1			
5806-20,0		20	42	1	1425	(1									
5B06-225		22.5			1430											· .w
5306-24.0		1 _	44		1435									×		
5807-2.5	5307	25	45		1450											
5307-5.0		5	46		1453											4
5807-7.5		100	47		1455											
5807-10.0			48		1500									>		
5807-125		12.5	49		1505											
5607-16,0	1		so V	1	1510		1							. ×		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Clau Jul	Clare Tachilk	Sout at	1/9/17	1030
Received by:	Whan Phan	FeB_T	1/19/17	[030
Relinquished by:				
Received by:		Samples receiv	ed at	°C

FORMS\COC\COC.DOC

70	12	09

Company_

Address

Send Report to __Courtney Schaumberg

City, State, ZIP Seattle, Washington 98102

Phone # 206-306-1900 Fax # 206-306-1907

SAMPLE CHAIN OF CUSTODY

ME 01-19-17

Page # TURNAROUND TIME)# Standard (2 Weeks) RUSH

> SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

Rush charges authorized by:

Courtney Schaumberg	SAMPLERS (signature) (law for	S
SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#
2811 Fairview Avenue E, Suite 2000	Rainier Mall Property	1276-001
	REMARKS MA LUI DETERMILE	onaluses

		T	1	1		1	1	T			Δ1	TAT VCE	ES PEOI	UESTED	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	270	HOTOH	c 2001 s by	Notes
5808-2.5	SBOS	25	SIE	1/18/17	1520	Tros	5								 ····
5808-5.0	[52		1525	l	1								
5808-7.5		7.5.	53		1527										
SB08-10.0		10	34		1530										
5808-125		125	55		1535								IV	×	
586846,0	حل	16	57 V	工	1540	—	L						4	×	
					<u>\$</u>	7	1181	1)2							
															· · · · · · · · · · · · · · · · · · ·
										}					

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: law lock	Clare Tochila	Sandean	1/19/1	1030
Received by: Man aw	Whan Phan	FEBI	1/19/17	1030
Relinquished by:				
Received by:		Samples recei	ved at 3	°C

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 2, 2017

Courtney Schaumberg, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Schaumberg:

Included are the additional results from the testing of material submitted on January 19, 2017 from the $SOU_1276-001_20170119$, F&BI 701209 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU0202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 19, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20170119, F&BI 701209 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
701209 -01	SB01-2.5
701209 -01	SB01-2.3 SB01-5.0
701209 -02	SB01-3.0 SB01-7.5
701209 -03	SB01-7.5 SB01-10.0
701209 -04	SB01-10.0 SB01-12.5
701209 -05 701209 -06	SB01-12.5 SB01-15.0
701209 -00	SB01-15.0 SB01-17.5
701209 -07 701209 -08	SB01-17.5 SB01-20.0
	SB01-20.0 SB01-22.5
701209 -09	
701209 -10	SB01-24.5
701209 -11	SB02-2.5
701209 -12	SB02-5.0
701209 -13	SB02-7.5
701209 -14	SB02-10.0
701209 -15	SB02-12.5
701209 -16	SB02-16.0
701209 -17	SB03-2.5
701209 -18	SB03-5.0
701209 -19	SB03-7.5
701209 -20	SB03-10.0
701209 -21	SB03-12.5
701209 -22	SB03-16.0
701209 -23	SB04-2.5
701209 -24	SB04-5.0
701209 -25	SB04-7.5
701209 -26	SB04-10.0
701209 -27	SB04-12.5
701209 -28	SB04-16.0
701209 -29	SB05-2.5
701209 -30	SB05-5.0
701209 -31	SB05-7.5
701209 -32	SB05-10.0
701209 -33	SB05-12.5
701209 -34	SB05-16.0
701209 -35	SB06-2.5

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (CONTINUED)

Laboratory ID	SoundEarth Strategies
701209 -36	SB06-5.0
701209 -37	SB06-7.5
701209 -38	SB06-10.0
701209 -39	SB06-12.5
701209 -40	SB06-15.0
701209 -40	SB06-17.5
701209 -41	SB06-20.0
701209 -43	SB06-22.5
701209 -44	SB06-24.0
701209 -45	SB07-2.5
701209 -46	SB07-5.0
701209 -47	SB07-7.5
701209 -48	SB07-10.0
701209 -49	SB07-12.5
701209 -50	SB07-16.0
701209 -51	SB08-2.5
701209 -52	SB08-5.0
701209 -53	SB08-7.5
701209 -54	SB08-10.0
701209 -55	SB08-12.5
701209 -56	SB08-16.0

The 8260C calibration standard for chloroethane did not pass the acceptance criteria for several samples. The data were flagged accordingly.

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB01-10.0 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170119 01/19/17 Lab ID: Date Extracted: 01/31/17 701209-04 Date Analyzed: 01/31/17 Data File: 013108.D

Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	96	64	137
4-Bromofluorobenzene	99	81	119

Concentration mg/kg (ppm)
< 0.05
< 0.5
< 0.05
< 0.5
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.02
< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB02-10.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119
Date Extracted: 01/31/17 Lab ID: 701209-14

Date Extracted: 01/31/17 Lab ID: 701209-14
Date Analyzed: 01/31/17 Data File: 013125.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 99 89 113 Toluene-d8 93 64 137 4-Bromofluorobenzene 97 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane <0.5 ca 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB08-5.0 Client: SoundEarth Strategies
Date Received: 01/19/17 Project: SOU_1276-001_ 20170119
Date Extracted: 01/31/17 Lab ID: 701209-52

Date Extracted. 61/31/17 Lab ID: 701209-32

Date Analyzed: 01/31/17 Data File: 013110.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	100	89	113
Toluene-d8	95	64	137
4-Bromofluorobenzene	99	81	119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SB08-10.0 Client: SoundEarth Strategies Date Received: 01/19/17 Project: SOU_1276-001_ 20170119 Lab ID: Date Extracted: 01/31/17 701209-54 013126.D

Date Analyzed: 01/31/17 Data File: Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
98	89	113
94	64	137
98	81	119
	98 94	% Recovery: Limit: 98 89 94 64

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane <0.5 ca 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170119

01/31/17 Lab ID: Date Extracted: 07-0185 mb Date Analyzed: 01/31/17 Data File: 013105.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 99 89 113 Toluene-d8 93 64 137 4-Bromofluorobenzene 99 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/02/17 Date Received: 01/19/17

Project: SOU_1276-001_ 20170119, F&BI 701209

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 701359-07 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	16	12	10-91	29 vo
Chloroethane	mg/kg (ppm)	2.5	< 0.5	22	18	10-101	20
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	23	18	11-103	24 vo
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	42	35	14-128	18
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	36	30	13-112	18
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	42	35	23-115	18
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	46	40	25-120	14
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	45	41	22-124	9
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	35	28	27-112	22 vo
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	39	31	30-112	23 vo
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	36	27	25-114	29 vo

Laboratory Code: Laboratory Control Sample

1			
		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
mg/kg (ppm)	2.5	67	42-107
mg/kg (ppm)	2.5	67	47-115
mg/kg (ppm)	2.5	81	65-110
mg/kg (ppm)	2.5	76	50-127
mg/kg (ppm)	2.5	90	71-113
mg/kg (ppm)	2.5	89	74-109
mg/kg (ppm)	2.5	91	73-110
mg/kg (ppm)	2.5	83	73-111
mg/kg (ppm)	2.5	84	72-116
mg/kg (ppm)	2.5	89	72-107
mg/kg (ppm)	2.5	102	73-111
	Units mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Units Spike Level LCS mg/kg (ppm) 2.5 67 mg/kg (ppm) 2.5 67 mg/kg (ppm) 2.5 81 mg/kg (ppm) 2.5 76 mg/kg (ppm) 2.5 90 mg/kg (ppm) 2.5 89 mg/kg (ppm) 2.5 83 mg/kg (ppm) 2.5 84 mg/kg (ppm) 2.5 89

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

701200

ME 01-19-17

	VS4	/ A	,
	· '/		A05

Send Report to Courtney Schaumberg	SAMPLERS (signature) (law /	il.	Page # of O
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mall Property	1276-001	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	Pro will detorine analyses		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907	V analyze per CMS 1/30/17		Return samples Will call with instructions

			Γ				Γ				A	NALY8	es req	UESTEI	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	140	20013 by	Nates × fer CMS the 1/1947
5801-2.5	5801	2.5	Ol E	1 NEN7	0830	Soil	5.						1		
5801-5.0		5	9		0835	1								×	
5801-7.5			03		0856								Ħ		
5801-100		10	64		U840				7					1	
5801-12.8		12.5			0850										
5801-1510		15	M		0855									1.	
5801-17.5		17.5	63.		0900										
5801-20,0			18		0905		1							×	
5801-22.5		225			0915								1	×	
5801-24.5		24.5	_	*	0920	1	*						U	×	

Friedman & Bruya, Inc. 3018 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

PORMEY/COCYCOCIDOC

	Received by:		Samples received	at 3	0
	Relinquished by:		1	1723	
' [Received by:	What Phan	FLBI	1/19/17	1030
ļ	Relinquished Will Sall	Clare Foch.lin	Suntath	1/19/17	1036
٠	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME

701	209
-----	-----

154/ Am

Send Report to Courtney Schaumberg	SAMPLERS (signature)	ME 01-19-	Page # 2 of 6 TURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	(Standard (2 Weeks)
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mall Property	1276-001	Rush charges authorised by:
City, State, ZIP Seattle. Washington 98102	PM with determine analys	SAMPLE DISPOSAL Dispose after 30 days	
Phone # 206-306-1900 Fax # 206-306-1907	Voun per CMS Y3017		Return samples Will call with instructions

	. •					Т			Τ						A	NALYS	es req	UESTED)	
	Sample ID	S	sample ocation	Sample Depth	Lei ID	Se	Date umpled	Time Sampled	м	letrix	# of Jazs	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCa by 6260	SVOCe by 8270	4010	30928 54 Jan 2		Notes
	5802-2.5 5802-510	58	302	25	11	11/	18/17	0940	5	1.1	5		<u> </u>			<u> </u>		╁		-
					R		1	0945					-					×		
L	5802-7.5			7.5	13	1		0950	Ħ				_			<u> </u>		+		
	5802-10,0			7	14	11		0975							ļ			1		
L	502-12.5			125		Π		1000	\prod									×		
	5802-1610	I			16			1005	1									7		
\pm	7803-5.5	58	03		n	\Box		lozs	Ħ									 		
	5803-5.0				18	11		1030	Ħ				.							
	5803- 7.5				14	11		1040	H				-							
	5803-1010	1	~			, 6		1045		•	1	•								

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 POMPANY COC\COCDOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Claw Tab	Clar Tochilin	Soutenth	1/19/17	1130
Received by: May aw	When Phan	FEBI	1/19/17	تتوور
Relinquished by:				
Received by:		Samples receive	e et 3	·

Ŧ	7	9	12	0	9	
	_				_	-

ME 01-19-17 - 184/1 AOS

Send Report to Courtney Schaumberg	SAMPLERS (signature) (law Jac	6	Page #
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mall Property	1276-001	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS PM will determe a	naly ses	SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907	V run per cms 1/3917		Return samples Will call with instructions
			

										· · · · · · · · · · · · · · · · · · ·	A	NALYSI	es req	UESTED		<u>.</u>
Sample ID	Sample Location		ND)	Date Sampled	Time Sampled	Matrix	# of Java	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC. by 8260	SVOCs by 8270	-grow	crocs by 8260		Notes
5B03-12.5	5803	12.5	2	1/18/11	1050	Soil	3					-	H	×		•
5803-16.0		[6]	621		1055							<u> </u>	 	×		
5804-2.5	5864	25	27		1100		1							-		
2884-21P	1	5	公		1105								H^-	×		
5804 - 7.5		7.5	12		1115				-				H			
5804-100		10	524		1120								H		·	
5804-12-5	1-1	125			1122								=	×		
5804-16.0	1	16	17		1125								H	×		
5805-25	5365	2.5	79		1146											
5865-5.0		5	20/	上	1145	1								×		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 288-5044 PORMENCOC\COCDOC

SIGNATURE Religionished by	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Car Forts	Close Tochlin	Souteate	1/19/17	1070
Received by: Manhan	Whan Phan	Febl	1/19/17	1030
Relinquished by:				
Received by:		Samples receiv	ed at _2	<u>*c</u>

SAMPLE CHAIN OF CUSTODY ME 01-19-17 SAMPLERS (signature Send Report to __Courtney Schaumberg TURNAROUND TIME Standard (2 Weeks) PROJECT NAME/NO. PO# SoundEarth Strategies, Inc. Company_ RUSH Rush charges authorized by: Rainier Mall Property 1276-001 Address 2811 Fairview Avenue E. Suite 2000 Am to determine analyses REMARKS SAMPLE DISPOSAL City, State, ZIP Seattle, Washington 98102 Dispose after 30 days Return samples Phone # 206-306-1900 __Fax #____206-306-1907 run per cms 1/30/17 Will call with instructions

										· · · · ·	A	NALYS	S RE	QUESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	. Time Sampled	Matrix	# of Jaxa	NWTPH-Dz	NWTPH-Ox	BTEX by 8021B	VOĆa by 8260	SVOCe by 8270	4010	4 57007		Notes
5805-7.5	5805	7.5	3/E	1/18/17	1150	Soil	5							1		
5805-10.0	1	10	20		1152	1										
5805-125		119 /	33		1155									×		
5805-16.0	+	16	34		1200									×		
5806-25	5806	1 4 1	25		1215						· ·					
5B06 -510			36		1220								\sqcap		·	
5806-7.5		- Marie - Mari	33		1405		F						H			
5306-16,0			38		1416									×		
			34		1415											
5806-125	1	15	YOY	1	1417	1							I			

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

POWENCOCNODC.DOG

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tachilm	Santoth	1/19/17	1036
Received by: molly and.	Nhan Phan	FeB_T	1/19/17	1030
Relinquished by:				
Received by:		nales rec	erved at	_*c

701209

Phone # 206-306-1900

Company

Address

Send Report to Courtney Schaumberg

City, State, ZIP Seattle. Washington 98102

SoundEarth Strategies, Inc.

2811 Fairview Avenue E. Suite 2000

Fax # 206-306-1907

SAMPLE CHAIN OF CUSTODY ME 01-19-17

SAMPLERS (signature) Claim Toll

PROJECT NAME/NO.

Rainier Mall Property

1276-001

REMARKS

Mall determine analyses

SAMPLE DISPOSAL

Dispose after 30 days

Return samples

Will call with instructions

									-							
											Al	VALYED	S REQ	UESTEI		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	NWTPH-Dx	NWTPH-Gz	BTEX by 8021B	VOCa by 8860	SVOCa by 8270	0704	Evect by	•	Notes
5806-17.5	5806	17.5	4/E	1/18/17	1420	1,02	5							-		
5806-2010		20	12		1425		-						1			
5806-225		22.5	43		1430											
5306-24.0	1	24			1435									×		
5887-2.5	5307		45		1450										ļ	
5307-5.0		5	46		1453									1		
5807-7.5		100	47		1455									 		
5817-10.0			48	•	1500									×		
5807-125		125			1505									1		
5807-16.0			SO V	+	1510		1							. ×		

(Un per CHS 430/17

Friedman & Bruya, Inc. 3013 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 288-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: law Joch	Clare Tahilky	Sankagh	119/17	1036
Received by: / Marus Relinquished by:	Whan Phan	FLBI	1/19/17	[030
Received by:		vices receiv	44 3	•

	MPLE CHAIN OF CUSTODY	ME 01-1	
Send Report to <u>Courtney Schaumberg</u>	SAMPLERS (signature) Com for	6	Pege # U of 6 /Aos-
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mall Property	1276-001	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS MM WIN determe	onalyses	SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907	V run per cms 1/30/17		Return samples Will call with instructions

						_					A	NALYS	es rec	UESTED	
Sample ID	Sample Location	Sample Depth		Date Sampled		Matrix	# of Jams	. NWTPH-Dx	NWTPH-0x	BTEX by 8021B	VOO. by 8280	SVOCs by 8270	HOTO	cuocis by 8260	Notes
5808-2.5	SBOS	25	SIE	1/18/17	1520	Soil.	5					ļ —	Π	1	
\$08-5.0		5	\$2.	1	1525	1	1				•		\sqcap	1	
5808-7.5		7.5	53 1		1527										
5BOB-10.0		10	34		1530										
5808-125		125	13		K35								17	×	
5808460	<u></u>	1	57 V		1540	1	1						1	×	
					G	Ē.	118	112		- -	 		-		
															-

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Ph. (206) 285-8282
Fax (206) 283-5044
roms.coc.oc.doc

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Claw loca	Clar Tochila	Sandean	1/19/17	1030
Received by: Mulaw	Whan Phan	FEBI	1/19/17	1030
Relinquished by:				
Received by:		Samples recei	red at 3	_ • C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 28, 2017

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle. WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on February 10, 2017 from the SOU_1276-001_ 20170210, F&BI 702165 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU0228R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 10, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20170210, F&BI 702165 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
702165 -01	B01-02.5
702165 -02	B01-05
702165 -03	B01-07.5
702165 -04	B01-10
702165 -05	B01-12.5
702165 -06	B01-17.5
702165 -07	B01-20
702165 -08	B01-22.5
702165 -09	B01-25
702165 -10	B01-27.5
702165 -11	B01-30
702165 -12	B01-32.5
702165 -13	B01-35
702165 -14	B01-37.5
702165 -15	B01-40
702165 -16	B02-02.5
702165 -17	B02-05
702165 -18	B02-07.5
702165 -19	B02-10
702165 -20	B02-12.5
702165 -21	B02-15
702165 -22	B02-17.5
702165 -23	B02-20
702165 -24	B02-22.5
702165 -25	B02-25
702165 -26	B02-27.5
702165 -27	B02-30

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-12.5 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_20170210
Date Extracted: 02/15/17 Lab ID: 702165-05

Date Extracted. 02/15/17 Lab ID: 702163-03
Date Analyzed: 02/15/17 Data File: 021508.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 89 113 Toluene-d8 102 64 137 4-Bromofluorobenzene 99 81 119

4-Bromofluorobenzene 99 81 Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-17.5 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_20170210
Date Extracted: 02/15/17 Lab ID: 702165-06

Date Extracted: 02/15/17 Lab ID: 702165-06

Date Analyzed: 02/15/17 Data File: 021509.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 101 89 113 Toluene-d8 102 64 137 4-Bromofluorobenzene 81 95 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene 0.45 Tetrachloroethene 59 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

 Client Sample ID:
 B01-17.5

 Date Received:
 02/10/17

 Date Extracted:
 02/15/17

 Date Analyzed:
 02/16/17

 Matrix:
 Soil

Units: mg/kg (ppm) Dry Weight

Client: SoundEarth Strategies
Project: SOU_1276-001_ 20170210

 Lab ID:
 702165-06 1/10

 Data File:
 021611.D

 Instrument:
 GCMS9

 Operator:
 JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	95	81	119

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.5
Chloroethane	<5
1,1-Dichloroethene	< 0.5
Methylene chloride	<5
trans-1,2-Dichloroethene	< 0.5
1,1-Dichloroethane	< 0.5
cis-1,2-Dichloroethene	< 0.5
1,2-Dichloroethane (EDC)	< 0.5
1,1,1-Trichloroethane	< 0.5
Trichloroethene	0.42
Tetrachloroethene	58

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-20 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_20170210
Date Extracted: 02/21/17 Lab ID: 702165-07

Lab ID: Date Extracted: 02/21/17 702165-07 Date Analyzed: 02/21/17 Data File: 022123.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 98 89 113 Toluene-d8 103 64 137 4-Bromofluorobenzene 94 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene 0.33 Tetrachloroethene 280 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-20 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170210 02/10/17 Lab ID: Date Extracted: 02/21/17 702165-07 1/50 Date Analyzed: 02/23/17 Data File: 022241.D Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	99	81	119

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 2.5
Chloroethane	<25
1,1-Dichloroethene	< 2.5
Methylene chloride	<25
trans-1,2-Dichloroethene	< 2.5
1,1-Dichloroethane	< 2.5
cis-1,2-Dichloroethene	< 2.5
1,2-Dichloroethane (EDC)	< 2.5
1,1,1-Trichloroethane	< 2.5
Trichloroethene	<1
Tetrachloroethene	510

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-22.5 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170210 02/10/17 Lab ID: Date Extracted: 02/21/17 702165-08 Date Analyzed: 02/21/17 Data File: 022137.D

Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	100	64	137
4-Bromofluorobenzene	95	81	119

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.28
Tetrachloroethene	20

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B02-10 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210
Date Extracted: 02/15/17 Lab ID: 702165-19

Date Extracted:02/15/17Lab ID:702165-19Date Analyzed:02/16/17Data File:021612.DMatrix:SoilInstrument:GCMS9Units:mg/kg (ppm) Dry WeightOperator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	95	81	119

4-Bromofluorobenzene	95	81	
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
Chloroethane	< 0.5		
1,1-Dichloroethene	< 0.05		
Methylene chloride	< 0.5		
trans-1,2-Dichloroethene	< 0.05		
1,1-Dichloroethane	< 0.05		
cis-1,2-Dichloroethene	0.13		
1,2-Dichloroethane (EDC)	< 0.05		
1,1,1-Trichloroethane	< 0.05		
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

 Client Sample ID:
 B02-15
 Client:
 SoundEarth Strategies

 Date Received:
 02/10/17
 Project:
 SOU_1276-001_20170210

 Date Extracted:
 02/15/17
 Lab ID:
 702165-21

 Date Applying disconnection
 03/16/17
 Date Files
 03/16/12 D

Date Analyzed: 02/16/17 Data File: 021613.D Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
102	89	113
101	64	137
94	81	119
	102 101	% Recovery: Limit: 102 89 101 64

Concentration Compounds: mg/kg (ppm) Vinyl chloride 0.097 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene 0.25 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene 6.7 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene 4.9 Tetrachloroethene 0.085

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B02-20 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_20170210
Date Extracted: 02/15/17 Lab ID: 702165-23

Lab ID: Date Extracted: 02/15/17 702165-23 Date Analyzed: 02/15/17 Data File: 021512.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 99 89 113 Toluene-d8 102 64 137 4-Bromofluorobenzene 96 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

81

119

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170210

02/21/17 Lab ID: Date Extracted: 07-0343 mb Date Analyzed: 02/21/17 Data File: 022105.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 89 113 Toluene-d8 104 64 137

97

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

4-Bromofluorobenzene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170210

02/15/17 Lab ID: Date Extracted: 07-0267 mb2 021505.D Date Analyzed: 02/15/17 Data File: Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 100 89 113 Toluene-d8 101 64 137 4-Bromofluorobenzene 98 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/28/17 Date Received: 02/10/17

Project: SOU_1276-001_ 20170210, F&BI 702165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 702201-01 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	31	10-91
Chloroethane	mg/kg (ppm)	2.5	< 0.5	39	10-101
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	50	11-103
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	71	14-128
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	62	13-112
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	67	23-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	25-120
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	66	22-124
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	62	27-112
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	61	30-112
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	46	25-114

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
mg/kg (ppm)	2.5	65	64	42-107	2
mg/kg (ppm)	2.5	66	69	47-115	4
mg/kg (ppm)	2.5	86	87	65-110	1
mg/kg (ppm)	2.5	98	99	50-127	1
mg/kg (ppm)	2.5	98	100	71-113	2
mg/kg (ppm)	2.5	95	98	74-109	3
mg/kg (ppm)	2.5	100	102	73-110	2
mg/kg (ppm)	2.5	89	92	73-111	3
mg/kg (ppm)	2.5	100	101	72-116	1
mg/kg (ppm)	2.5	97	100	72-107	3
mg/kg (ppm)	2.5	104	102	73-111	2
	Mits mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Spike Level Recovery LCS mg/kg (ppm) 2.5 65 mg/kg (ppm) 2.5 66 mg/kg (ppm) 2.5 86 mg/kg (ppm) 2.5 98 mg/kg (ppm) 2.5 98 mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 100 mg/kg (ppm) 2.5 100 mg/kg (ppm) 2.5 97	Reporting Units Spike Level Recovery LCS Recovery LCSD mg/kg (ppm) 2.5 65 64 mg/kg (ppm) 2.5 66 69 mg/kg (ppm) 2.5 86 87 mg/kg (ppm) 2.5 98 99 mg/kg (ppm) 2.5 98 100 mg/kg (ppm) 2.5 95 98 mg/kg (ppm) 2.5 100 102 mg/kg (ppm) 2.5 89 92 mg/kg (ppm) 2.5 100 101 mg/kg (ppm) 2.5 97 100	Reporting Units Spike Level Recovery LCSD Acceptance Criteria mg/kg (ppm) 2.5 65 64 42-107 mg/kg (ppm) 2.5 66 69 47-115 mg/kg (ppm) 2.5 86 87 65-110 mg/kg (ppm) 2.5 98 99 50-127 mg/kg (ppm) 2.5 98 100 71-113 mg/kg (ppm) 2.5 95 98 74-109 mg/kg (ppm) 2.5 100 102 73-110 mg/kg (ppm) 2.5 89 92 73-111 mg/kg (ppm) 2.5 100 101 72-116 mg/kg (ppm) 2.5 97 100 72-107

ENVIRONMENTAL CHEMISTS

Date of Report: 02/28/17 Date Received: 02/10/17

Project: SOU_1276-001_ 20170210, F&BI 702165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 702280-02 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	47	10-91
Chloroethane	mg/kg (ppm)	2.5	< 0.5	51	10-101
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	11-103
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	88	14-128
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	13-112
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	81	23-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	87	25-120
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	82	22-124
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	94	27-112
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	86	30-112
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	96	25-114

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
mg/kg (ppm)	2.5	66	67	42-107	2
mg/kg (ppm)	2.5	68	70	47-115	3
mg/kg (ppm)	2.5	91	93	65-110	2
mg/kg (ppm)	2.5	97	99	50-127	2
mg/kg (ppm)	2.5	99	100	71-113	1
mg/kg (ppm)	2.5	95	95	74-109	0
mg/kg (ppm)	2.5	99	101	73-110	2
mg/kg (ppm)	2.5	93	94	73-111	1
mg/kg (ppm)	2.5	112	112	72-116	0
mg/kg (ppm)	2.5	98	99	72-107	1
mg/kg (ppm)	2.5	109	110	73-111	1
	Minits mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Units Spike Level LCS mg/kg (ppm) 2.5 66 mg/kg (ppm) 2.5 68 mg/kg (ppm) 2.5 91 mg/kg (ppm) 2.5 97 mg/kg (ppm) 2.5 99 mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 93 mg/kg (ppm) 2.5 112 mg/kg (ppm) 2.5 98	Reporting Units Spike Level LCS Recovery LCSD mg/kg (ppm) 2.5 66 67 mg/kg (ppm) 2.5 68 70 mg/kg (ppm) 2.5 91 93 mg/kg (ppm) 2.5 97 99 mg/kg (ppm) 2.5 99 100 mg/kg (ppm) 2.5 95 95 mg/kg (ppm) 2.5 93 94 mg/kg (ppm) 2.5 112 112 mg/kg (ppm) 2.5 98 99	Reporting Units Spike Level Recovery LCSD Acceptance Criteria mg/kg (ppm) 2.5 66 67 42-107 mg/kg (ppm) 2.5 68 70 47-115 mg/kg (ppm) 2.5 91 93 65-110 mg/kg (ppm) 2.5 97 99 50-127 mg/kg (ppm) 2.5 99 100 71-113 mg/kg (ppm) 2.5 95 95 74-109 mg/kg (ppm) 2.5 93 94 73-111 mg/kg (ppm) 2.5 112 112 72-116 mg/kg (ppm) 2.5 98 99 72-107

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIL OF CUSTODY ME 02/10/17 700165 SAMPLERS (MAGE) Sand Report to Courtney Schaumberr HOJECT NAMENO. TURNAROUND TIME Company Sound Karth Strategies, Inc. Standard (2 Waste)
RUSH (Marke) PO# Address 2811 Fairview Avenue R. Suite 2000 1276-001 Rush charges authorized by: BEMARKS Hotel PM will defenue unlyers City, State, ZIP Seattle, Washington 95102 SAMPLE DESPOSAL V run perchs 2/2VI7 Dispose after 20 days Phone # 205-205-1900 Fax # 205-205-1907 Return comples Will cell with in-1000 pr cms 2/14/17

			т—	7												instructions
			1		1				7	7	A	NALTE	13 120	III S. s.		
Sample ID	Securion Location	Seasple Depth	Iab ID	Dute Sampled	Time Sampled	Matrix	# of Jana	NWTPB.Dr	NWIPEGE	BTEX by somB	VOCa by \$200	IVOCA In same	OVOCA by 6880C			Notan
Bol-02.5	Boi	2,5	012	2/4/12	0830	Sort	5						-			
B01-05	1		0		0835	1	13									
bo1-07.5				_	0840	 										
Bo1-16 .	11	1.0	3		0845	₩.										
BO1-126	 	125	ay			╟╁╌┑										
B01-17.5		17.5	05 N		0860								8			
B01-20	1	20			6460	-	-						Ø,			
Bo1-22.5		22.5			0120								<u> </u>			
Bo1-25		25			0925								\leq]	
BOI -27.5		27.5			0135		1				 			-	-	3

Friedman & Bruya, Inc. 8012 10th Avenue West Scattle, WA 98119-2020 Ph. (206) 285-8282 Fax (206) 288-8044 Foxes-coccosca

SIGNATURE	PRINT NAME			
The Slerm		COMPANY	DATE	TIME
	Logar Schumasher	SES	2/10/17	
Relinguished by:	Whan Phan	FULL	2/10/7	
Boostred by:				

US2/ SAMPLE CHAIN FCUSTODY ME 02/10/12 702165 SAMPLERS (signification) Send Report to Courtney Schaumberg TURNAROUND TIME PROJECT NAMENO. Company__ SoundEarth Stratogies, Inc. PO# Standard (2 Weeks) 1276-001 Address 2811 Fairview Avenue E. Suite 2000 REMARKS | City, State, ZIP Seattle, Washington 96102 SAMPLE DESPOSAL Dispose after 30 days Phone # 206-806-1900 Fax # 206-906-1907 lotura atapios VIII cell with instructi 60 run our ons 2/14/17

		7		,					7-4					. WM	CELL AND	th instructions
			1	1	l							NALTE	S REC	J. T.		
Sample ID	Sample Locating	Semple Dopth	I de la la la la la la la la la la la la la	Date Sampled	Time Sampled	Matrix	# of Jane	NWTPHDE	NWTPH-GE	BTEX by south	VOCs by 1380	AVOCa by earn	OPOCs by sees			Motos
Bo1-30	Bol	30	11/2	2/4/17	040	Soil	5									
801-325	1	325		7	0965	<u> </u>	1									
Bo1-35			13	-	1410	H-										
Bo1-31.5		37.5	<i>y</i>		LUZA		┝╌┼╌┤									
Bo1-40	1	40	7		1035	├-├		-								
B02-02.5	B02	2.5		- 	1340											
802-05	1		17		1345	-										
BOZ-07.5	 	7.5	_		1350			-								
B02-10	11	7	24	-+-	1365											
B02-12.5		12.5		+		1			\dashv				8	4-		fat_3 %

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 36119-3629 Ph. (306) 265-8282 Fax (206) 388-6044

SIGNATURE	PRINT NAME	COMPANY	DATE	
half of the state	Login Schumacher	SES	2/cofir	OTSA
Bellivel by: Millord Ant. Bellinguished by:	Nhan Phan	FLAT	2/10/17	
Received by:			74:	

(7.02165 SAI	MPLE CHAIN CUSTODY	he uslio	/17 (VS2/
Send Report to Courtney Scheumberg	SAMPLERS (cignoting)		Page 3 a 3 / Bûs
Company Sound Earth Strutogies, Inc.	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard G. Marke RUSH
Address 2811 Fairview Avenue E. Suite 2000	1276-001		Rush charges authorized by:
City, State, ZIP Seattle, Washington \$8103	REMARKS idd		SAMPLE DISPOSAL, Dispose after 30 days
Phone # 206-806-1900 Fax # 206-806-1907	Brun per as 2/14/17		Return annuales Will call with instructions
		ANALYSES E	QUESTED

										·····	_ A	NALYS	SERQ	TREFT EL			
Sample II)	Semple Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jacs	NWIFEDE	NWTPH-Oz	BTRK to some	VOCs by 6860	SVOCs by 8270	OVOCe by 88800		٠	Notes	
BUZ-15	Boz.	15	2/ 2	2/9/17	1410	Soil	5						8				_
BOZ-17.5	1	17.5	32 1		1415		7						8				
B02-20		20	52		1420	-	+						8				
B02-22.5		22.5		 	1425			-					80				
B02-25		25	ST	 	1430												
B02-27,5	11	27.5			1446												\dashv
B02-30	1	30			1455	V	1										_
					, 5												4
		2	M														
		2/9	17												-	R 3 16	_

Friedman & Bruya, Inc. 3013 16th Avenue West Seattle, WA 98119-9029 Ph. (206) 285-8282 Fax (206) 282-5644 Fame-2000-000000

SIGNATURE	PRINT	NAME	COMPANY	DATE	TIME
Mind by:	Logan Sch	macket	S€S	4/10/17	C760
Ballingulated by:	Nhan	Phan	Fieb I	2/10/17	
Boutved by:					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 9, 2017

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the additional results from the testing of material submitted on February 10, 2017 from the SOU_1276-001_ 20170210, F&BI 702165 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU0309R.DOC

ENVIRONMENTAL CHEMISTS

<u>CASE NARRATIVE</u>
This case narrative encompasses samples received on February 10, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_20170210, F&BI 702165 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
702165 -01	B01-02.5
702165 -02	B01-05
702165 -03	B01-07.5
702165 -04	B01-10
702165 -05	B01-12.5
702165 -06	B01-17.5
702165 -07	B01-20
702165 -08	B01-22.5
702165 -09	B01-25
702165 -10	B01-27.5
702165 -11	B01-30
702165 -12	B01-32.5
702165 -13	B01-35
702165 -14	B01-37.5
702165 -15	B01-40
702165 -16	B02-02.5
702165 -17	B02-05
702165 -18	B02-07.5
702165 -19	B02-10
702165 -20	B02-12.5
702165 -21	B02-15
702165 -22	B02-17.5
702165 -23	B02-20
702165 -24	B02-22.5
702165 -25	B02-25
702165 -26	B02-27.5
702165 -27	B02-30

Samples B01-27.5, B01-32.5 and B01-35 were requested outside of holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-27.5 ht Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210

Lab ID: Date Extracted: 03/03/17 702165-10 Date Analyzed: 03/03/17 Data File: 030324.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: **Surrogates:** 1.2-Dichloroethane-d4 99 62 142 Toluene-d8 104 55 145 4-Bromofluorobenzene 103 65 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene 0.073 Tetrachloroethene 0.40

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-32.5 ht Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210

Lab ID: 702165-12 Date Extracted: 03/03/17 Date Analyzed: 03/03/17 Data File: 030325.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	104	55	145
4-Bromofluorobenzene	103	65	139

4-Bromofluorobenzene	103	65
Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	< 0.02	
Tetrachlorœthene	0.31	
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane Trichloroethene	<0.05 <0.05 <0.02	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B01-35 ht Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210

Date Extracted: 03/03/17 Lab ID: 702165-13
Date Analyzed: 03/03/17 Data File: 030326.D
Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
100	62	142
104	55	145
100	65	139
	100 104	% Recovery: Limit: 100 62 104 55

< 0.02

0.049

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170210

03/03/17 Lab ID: Date Extracted: 07-440 mb Date Analyzed: 03/03/17 Data File: 030323.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 99 62 142 Toluene-d8 104 55 145 4-Bromofluorobenzene 65 139 101

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 03/09/17 Date Received: 02/10/17

Project: SOU_1276-001_ 20170210, F&BI 702165

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 702165-10 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	43	42	10-138	2
Chloroethane	mg/kg (ppm)	2.5	< 0.5	57	57	10-176	0
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	64	62	10-160	3
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	74	75	10-156	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	68	14-137	0
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	70	71	19-140	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	77	78	25-135	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	74	74	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	73	74	10-156	1
Trichloroethene	mg/kg (ppm)	2.5	0.062	71	70	21-139	1
Tetrachloroethene	mg/kg (ppm)	2.5	0.34	68	69	20-133	1

Laboratory Code: Laboratory Control Sample

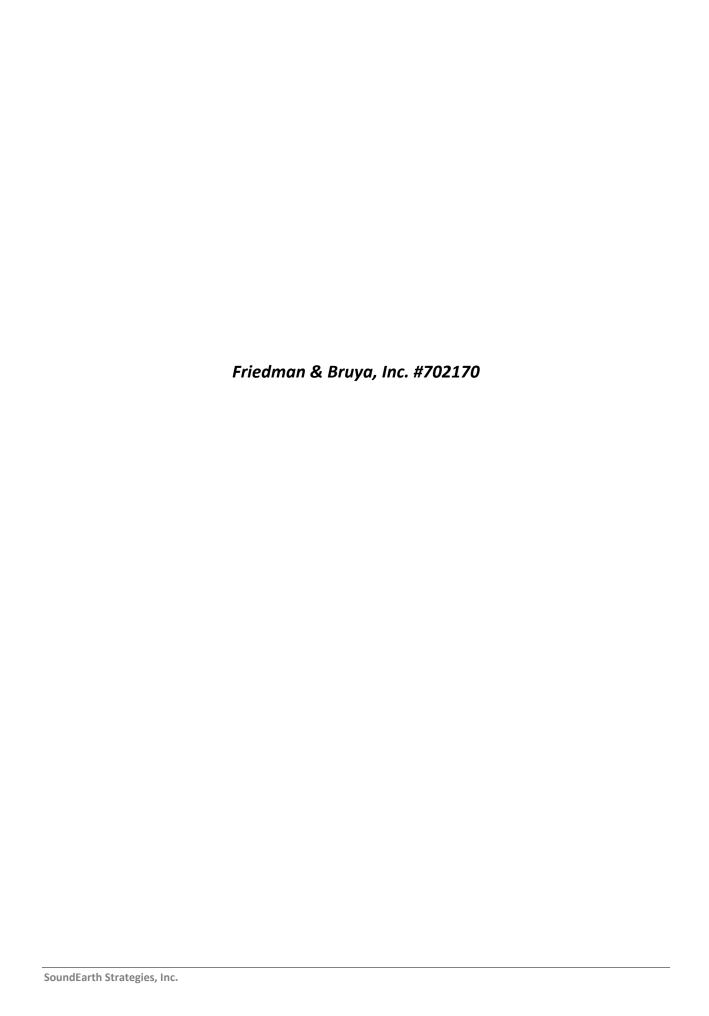
J	<i>J</i>			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	75	22-139
Chloroethane	mg/kg (ppm)	2.5	93	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	96	47-128
Methylene chloride	mg/kg (ppm)	2.5	92	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	92	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	93	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	95	62-131
Trichloroethene	mg/kg (ppm)	2.5	90	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	91	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

														÷				
(-7.	1916 5	~ €		:	SAMPL	E CHA	лд")я	P Cu	-	~. ¢ D Y	ME	N:	2 /10	112	,	(K	805
Sand Report to _Co	ertney Schoo	reherr			BAJA	PLEES!	(4)66 ₇ -5	<i>A</i>		1			=	// 7	Personal	1 .	.3/	BOC
	ound Earth S		- Y		一	JECT N		0.			T	PO#			TUEKA	CUMD!		7
					-1'		1276					100			AN (*	
	Welcyles.			e.300	- PEW	Atomol .					<u> </u>			Basi	(مورسات		_	
City, State, 227_5 Plants 6265_555				i-1807	- reg	NEED!	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.2/	101 10 -CMS 151/15	- Z/Z	w 44.	hyce	•	l Re	BAMPY SPORT OFFI	: 20 طورو معط		1
Print to a mine a mine			T		T	T	T	F	7		, ,	g/Vivi						_1 ¬
Semiglio XX	Sangle Limiting	Bangla Dagath	Les 10	Data Sampled	The Braybe	Binteix	e d fee	MATTER	Material Co.		700 to 1888	FTOCA IN SETTO	WOCh by Street			56.	Post	X-pe
30(-02.5	Boi	2,5	WZ	zkke	0830	Sant	5	-		-			5	<u> </u>			···	M
301-05	1	5	lo l	1	0835	1	-						-	<u> </u>			-	
07.5		7.5			08%	1	-					<u> </u>	<u> </u>	}]
301-10		10			0845	11-								<u> </u>		***************************************]
301-128 ·		125			0860	╁╂╌╌┪							_	 	 			
101-17.5		17.5	a		0805	H					-		88		ļ.,			
01-20		1	20	<u> </u>	orto		-						8	ļ	igspace			
60(-2z.5		22,5			Oteo	╫╌╢	1-1						-	<u> </u>		•		
301-25			34		0425	+++	1-1						>					
301-27.5	V	27.5			0135	1	til			\dashv				- Capi	-		3	ri
istaca & Brego, in 13 IOA August West			NAT.				PEN	T NAS		1		003	PAN		LDAT		THE	,
WA SELIPSE		_ //				Logo	_	_	uje(ļ	SE_			2/10/		50	
And the same		<u> </u>	Me.	<u> </u>		<u>Ulan</u>	Ph	44			1	~ B	7	-	Dho A	20	3(77	


Fes (340) 268-6644 FOREF-COO-6002004

i.	THE STATE OF THE S	PEDY NAME	COMPANY	DATE	TIME
	Byland is:	Logan Schurenber	5€5	2/10/17	
,	Bellequided by	When Phan	FL BT	2/0/17	
					~,,,,,,
	Bountoned by:			 	
					·

(70216	5			S	Ampli	CHA	DY :	CO	STOL	I¥	MĒ	0:	1/0	//7		· (*	150/
Send Report to _C	contrar School	makery _				BANG		regular.	弘		·			7		Page 6_	<u> </u>	BUS
Самрану	Countier to	iter in gior	Inc			PROT	ECTN	MEAN	D.		<u></u>		PO#	\dashv	, Alex	AZMUT Si hambur	NOUND THE	
Address	all Fairview	Azenne I	Sole	e 30 0	0_			1276							I KU	BEE		-
Chip, State, 222						PANA	DERES	Time		····		<u> </u>			-		DEPOLAL.	_
Phone 8 . 209-8				6-19 0	<u> </u>	1	NO PO			414	<u>/17</u>				1 34	Pieri ali., Pieri alia	r 20 days	
							· -	T .	F	-			YAL T					
Sample II)	Stanple Leastler	Ganagle Depth	I.d.		otie Splind	Tipes Skrapical	164-1-	e Jus	MATERIAL SA	MPETER GA	RIME IN COME	VDCs. for stops	MOCh by Em	OPDO: 14 exect			Makes	
B01-30	Bol	30	1/3	12/4	Įei l	0 140	Sod	5			-			Ľ	ļ			
801-325	1	325		ŤΊ		0865	***************************************							L,				_
Bol-35		35	13	П		(0)0								\Rightarrow	ļ			_
Bo1-51.5		37,5	W		f	LUZA									╂			_
301-40	4		4	П		1035									-			4
B01-015	802	2.5	K	П		1340		-1-1								 	*	1
B01-05	1		4			345	11	-1-1										4
302-01.5		7.5			-	350	11	71	-									4
B02-10			4			365	71	71						Ø			·	4
B02-12.5	L V	125		1		400	む	11									<u> </u>	4

Priodmem & Bruya, Inc. 2012 16th Assume West Sectile, WA 20119-2020 Ph. (200) 265-2525 Pax (200) 265-2544 Pomer-con-course

		*		
SIGNATURE	PRINT NAME	COMPANY		
Mary Mary Com		- V-Frant	DATE	7065
Ballicord by:	Loga Schumickes	<u> </u>	2 feafer	0764
- Marie Marie	Non Phan	FROT	2/10/12	0750
			-1:-1:-	-700
Sensional by:				L

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 24, 2017

Courtney Schaumberg, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Schaumberg:

Included are the results from the testing of material submitted on February 10, 2017 from the SOU_1276-001_ 20170210, F&BI 702170 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0224R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 10, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20170210, F&BI 702170 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
702170 -01	B03-02.5
702170 -02	B03-05
702170 -03	B03-07.5
702170 -04	B03-10
702170 -05	B03-12.5
702170 -06	B03-15
702170 -07	B03-17.5
702170 -08	B03-20
702170 -09	B03-22.5
702170 -10	B03-25
702170 -11	B03-27.5
702170 -12	B03-30
702170 -13	B03-32.5
702170 -14	B03-35
702170 -15	B04-02.5
702170 -16	B04-05
702170 -17	B04-07.5
702170 -18	B04-10
702170 -19	B04-12.5
702170 -20	B04-15
702170 -21	B04-17.5
702170 -22	B04-20
702170 -23	B04-22.5
702170 -24	B04-25
702170 -25	B04-27.5
702170 -26	B04-30

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B03-12.5 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170210 02/10/17 02/15/17 Lab ID: Date Extracted: 702170-05 Date Analyzed: 02/15/17 Data File: 021513.D

Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	100	64	137
4-Bromofluorobenzene	97	81	119

4-Bromofluorobenzene	97	81	
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
Chloroethane	< 0.5		
1,1-Dichloroethene	< 0.05		
Methylene chloride	< 0.5		
trans-1,2-Dichloroethene	< 0.05		
1,1-Dichloroethane	< 0.05		
cis-1,2-Dichloroethene	< 0.05		
1,2-Dichloroethane (EDC)	< 0.05		
1,1,1-Trichloroethane	< 0.05		
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B03-15 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210
Date Extracted: 02/15/17 Lab ID: 702170-06

Lab ID: Date Extracted: 02/15/17 702170-06 Date Analyzed: 02/15/17 Data File: 021514.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 89 113 Toluene-d8 100 64 137 4-Bromofluorobenzene 95 81 119

4-Bromofluorobenzene 81 95 Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene 0.082 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B03-17.5 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170210 02/10/17 Lab ID: Date Extracted: 02/15/17 702170-07 Date Analyzed: 02/15/17 Data File: 021515.D

Matrix: Soil Instrument: GCMS9 JS

Units: mg/kg (ppm) Dry Weight Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	94	81	119

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	1.1	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	1.5	
Tetrachloroethene	0.36	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B03-20 Client: SoundEarth Strategies

Date Received: 02/10/17 Project: SOU_1276-001_ 20170210

Date Extracted: 02/21/17 Lab ID: 702170-08

Lab ID: Date Extracted: 02/21/17 702170-08 Date Analyzed: 02/21/17 Data File: 022138.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 100 89 113 Toluene-d8 99 64 137 4-Bromofluorobenzene 96 81 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene 0.41 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene 0.57 Tetrachloroethene 0.67

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

 Client Sample ID:
 B03-22.5
 Client:
 SoundEarth Strategies

 Date Received:
 02/10/17
 Project:
 SOU_1276-001_20170210

 Date Extracted:
 02/21/17
 Lab ID:
 702170-09

 Date Extracted:
 02/21/17
 Date File:
 02/21/20 December 1/20

Date Analyzed: 02/21/17 Data File: 022139.D Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	89	113
Toluene-d8	100	64	137
4-Bromofluorobenzene	96	81	119

< 0.025

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B04-10 Client: SoundEarth Strategies
Date Received: 02/10/17 Project: SOU_1276-001_ 20170210
Date Extracted: 02/15/17 Lab ID: 702170-18

Date Extracted:02/15/17Lab ID:702170-18Date Analyzed:02/15/17Data File:021516.DMatrix:SoilInstrument:GCMS9Units:mg/kg (ppm) Dry WeightOperator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	95	81	119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

 Client Sample ID:
 B04-12.5
 Client:
 SoundEarth Strategies

 Date Received:
 02/10/17
 Project:
 SOU_1276-001_20170210

 Date Extracted:
 02/15/17
 Lab ID:
 702170-19

 Date Applies Ap

Date Analyzed:02/15/17Data File:021517.DMatrix:SoilInstrument:GCMS9Units:mg/kg (ppm) Dry WeightOperator:JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	100	64	137
4-Bromofluorobenzene	95	81	119

4-Bromofluorobenzene	95	81	1
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
Chloroethane	< 0.5		
1,1-Dichloroethene	< 0.05		
Methylene chloride	< 0.5		
trans-1,2-Dichloroethene	0.12		
1,1-Dichloroethane	< 0.05		
cis-1,2-Dichloroethene	0.79		
1,2-Dichloroethane (EDC)	< 0.05		
1,1,1-Trichloroethane	< 0.05		
Trichloroethene	0.10		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Instrument:

GCMS9

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B04-17.5 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20170210 02/10/17 Lab ID: Date Extracted: 02/15/17 702170-21 Date Analyzed: 02/15/17 Data File: 021518.D

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	101	64	137
4-Bromofluorobenzene	97	81	119

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	0.32
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

Soil

Matrix:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170210

02/21/17 Lab ID: Date Extracted: 07-0343 mb Date Analyzed: 02/21/17 Data File: 022105.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 101 89 113

 1,2-Dichloroethane-d4
 101
 89
 113

 Toluene-d8
 104
 64
 137

 4-Bromofluorobenzene
 97
 81
 119

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170210

Date Extracted:02/15/17Lab ID:07-0267 mb2Date Analyzed:02/15/17Data File:021505.DMatrix:SoilInstrument:GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
100	89	113
101	64	137
98	81	119
	100 101	% Recovery: Limit: 100 89 101 64

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/17 Date Received: 02/10/17

Project: SOU_1276-001_ 20170210, F&BI 702170

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 702201-01 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	31	10-91
Chloroethane	mg/kg (ppm)	2.5	< 0.5	39	10-101
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	50	11-103
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	71	14-128
trans-1,2-Dichloroethen e	mg/kg (ppm)	2.5	< 0.05	62	13-112
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	67	23-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	25-120
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	66	22-124
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	62	27-112
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	61	30-112
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	46	25-114

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	65	64	42-107	2
Chloroethane	mg/kg (ppm)	2.5	66	69	47-115	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	86	87	65-110	1
Methylene chloride	mg/kg (ppm)	2.5	98	99	50-127	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	100	71-113	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	95	98	74-109	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	102	73-110	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	89	92	73-111	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	100	101	72-116	1
Trichloroethene	mg/kg (ppm)	2.5	97	100	72-107	3
Tetrachloroethene	mg/kg (ppm)	2.5	104	102	73-111	2

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/17 Date Received: 02/10/17

Project: SOU_1276-001_ 20170210, F&BI 702170

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 702280-02 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	47	10-91
Chloroethane	mg/kg (ppm)	2.5	< 0.5	51	10-101
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	11-103
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	88	14-128
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	13-112
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	81	23-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	87	25-120
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	82	22-124
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	94	27-112
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	86	30-112
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	96	25-114

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
mg/kg (ppm)	2.5	66	67	42-107	2
mg/kg (ppm)	2.5	68	70	47-115	3
mg/kg (ppm)	2.5	91	93	65-110	2
mg/kg (ppm)	2.5	97	99	50-127	2
mg/kg (ppm)	2.5	99	100	71-113	1
mg/kg (ppm)	2.5	95	95	74-109	0
mg/kg (ppm)	2.5	99	101	73-110	2
mg/kg (ppm)	2.5	93	94	73-111	1
mg/kg (ppm)	2.5	112	112	72-116	0
mg/kg (ppm)	2.5	98	99	72-107	1
mg/kg (ppm)	2.5	109	110	73-111	1
	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Units Spike Level LCS mg/kg (ppm) 2.5 66 mg/kg (ppm) 2.5 68 mg/kg (ppm) 2.5 91 mg/kg (ppm) 2.5 97 mg/kg (ppm) 2.5 99 mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 93 mg/kg (ppm) 2.5 112 mg/kg (ppm) 2.5 98	Reporting Units Spike Level Recovery LCS Recovery LCSD mg/kg (ppm) 2.5 66 67 mg/kg (ppm) 2.5 68 70 mg/kg (ppm) 2.5 91 93 mg/kg (ppm) 2.5 97 99 mg/kg (ppm) 2.5 95 95 mg/kg (ppm) 2.5 99 101 mg/kg (ppm) 2.5 93 94 mg/kg (ppm) 2.5 112 112 mg/kg (ppm) 2.5 98 99	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria mg/kg (ppm) 2.5 66 67 42-107 mg/kg (ppm) 2.5 68 70 47-115 mg/kg (ppm) 2.5 91 93 65-110 mg/kg (ppm) 2.5 97 99 50-127 mg/kg (ppm) 2.5 99 100 71-113 mg/kg (ppm) 2.5 95 95 74-109 mg/kg (ppm) 2.5 99 101 73-110 mg/kg (ppm) 2.5 93 94 73-111 mg/kg (ppm) 2.5 112 112 72-116 mg/kg (ppm) 2.5 98 99 72-107

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

(702170 SA	MPLE CHAIN Y CUSTODY	ME 02/10	1/17 (Vsy/
Send Report to Courtney Schaumberg	SAMPLERS (signature)		Page # 3 BOY
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue R. Suite 2000	1276-001		Bush charges authorized by:
City, State, ZIP Snattle, Washington 98102	VION PUROUS	7/21/17	SAMPLE DESPOSAL Dispose after 30 days
Phone # 206-806-1900 Fax # 208-806-1907	8000 per cons 2/14/17	-/ -// 3	Return samples Will call with instructions

1						T	T				A	NATA Y	BRIG	Terres	
Sample II)	Sample Location	Semple Depth			Time Sampled		# of Jaro	NWIFEDE	NWTPH-Ca	BTEK by stats	VDCs by some	STOCA by same	CYDCs by seed		. Motas
803-22.5	307	2.5	of A	2/1917	<u> </u>	co.1	5								
B03-65		5	42		iza	1	1								
B03-01.5	.]	7.5	03		೧೮೮ಽ										
Bc3-10			09		CE 3'										
B 3 12.5 .].]	125	05		25.55								8		
B13-15		12	06	,	ごさせて								8		
Be3-17.5		17.5	07		C245								8		
BU3-20		20	88		ىۆسى										
Bi3-22.5		:25	01		14855								Ž		
Px3-25	V	25	101	*	نام	4	4								

Priedman & Bruya, Inc. 2012 16th Avenue West Seattle, WA 98119-3029 Ph. (206) 285-8382 Fax (206) 288-5644 Faminacoucous

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Milliand lay:	Coursey Schambas	SoundFacto		
Residual by:	Da vo		7-10-13	
				=14-12
Received by:		Samples re	coived at	¥ °C

(702170 SA	MPLE CHAIN ('CUSTO	DY ME 02/10	
Send Report to Courtney Schaumbers	SAMPLERS (signature)	V	TURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000	1276-001		Rock charges authorised by:
City, State, ZIP Scottle, Washington 98102	REMARKS (LC.D.		SAMPLE DISPOSAL Dispose after 80 days
Phone # 206-306-1900 Fax # 206-306-1907	@ run ar CMS 7/14	117	Return annuales Will call with instructions

	Г				T		 	T	Т					A	(ALY)	A RECT	Jet Te	
Sample ID	Se Lo	ample cation	Semple Depth	Iab ID	Sea	uto uplod	Time Sampled	Matrix	# 34	oť ED	NWTPH-Dx	NWTPB-Cz	BTEX by soniB	VOCs by sean	SVOCa by 8870	CYOCs by essec		Notes
B-3-27.5	B	े उ	27.5	11 2	2/	1417	0105	50.1	5	-								
Be3~3c			30	2			c)20	1										
3:3-325			32.5				0125											
B03-35			35	14			ت ۱۹۶۷											
BO4-02.5	B	84	1	15			1045											
B04-05			.5	16		Ι.	1050											
B04-07.5			7.5	B			icss											
1304-10			10	18			1100									8		
B04-12.5			12,5	19			1105			\prod						8		
B04-15	1	V	15	201		/	1110	V		•								

Friedman & Bruya, Inc. 8612 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

Received by:

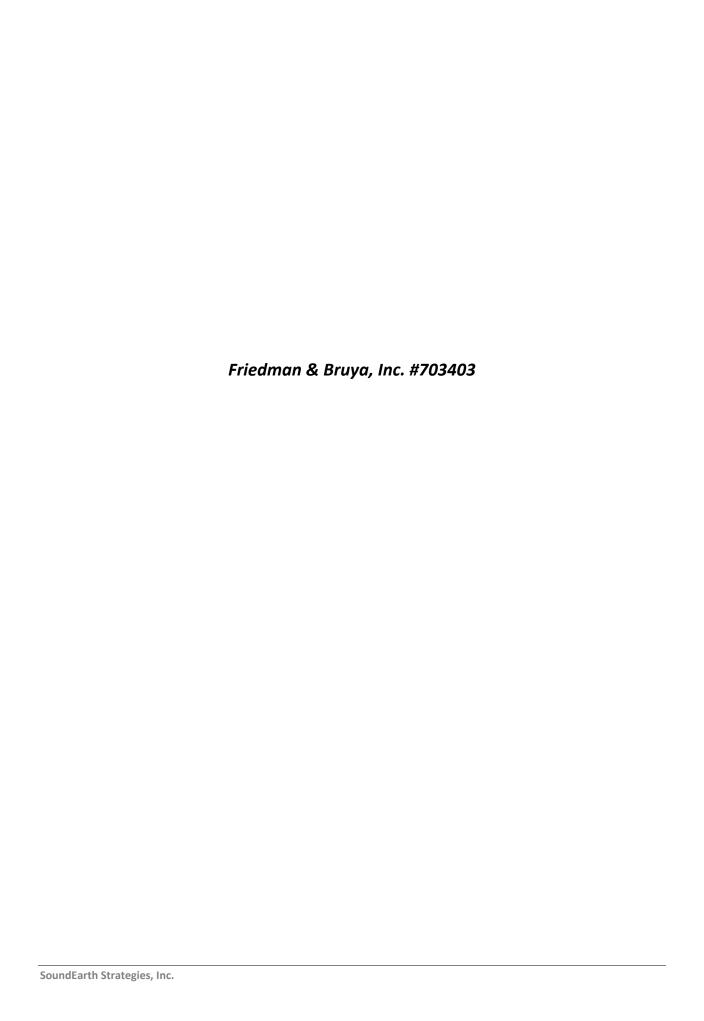
Received by:

Received by:

Received by:

Received by:

Re


POMMENCOON.COC.DOC

(702170 SA	MPLE CHAIR F CUSTODY M	E paliplia	- Carlo	./
Send Report to Courtney Schaumberg	SAMPLERS (signature)	33713717	Page # 3 et 3 /	Bou
Company SoundFarth Stratogies, Inc.	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Wooks)	<i>-</i>
Address 2811 Fairview Avenue E. Suite 2000	1276-001		RUSH Rush charges authorized by:	
City, State, ZIP Seattle, Washington 98102	REMARKS COLD		SAMPLE DISPOSAL	
Phone # 206-806-1900 Pax # 206-806-1907	Brun proms 2/14/17		Dispose after 30 days Return samples Will call with instructions	
			Marie of Airi Desiractions	

			T		7			,									COLD TO	th matractions
	1			1	1	•	1			<u> </u>		7	A	NALTE	45 234	United	D	
Sample II)	Se: Lec	mple stien	Sample Depth							NWTPH.Da	NWTEH-GE	BTEX by 0041B	VDCs by case	SYDOS by 8870	CYDCs by assoc			Notes
Bo4-17.5	3:	:4	17.5	別各	4 K	γ'n	11:5		5			1-	-		8			
Boy-20			20	22/			11Zi	70.1	<u> </u>					-	8	<u> </u>	-	
B04-22.5			22.5	_			1125											
Bc4 - 25				24			1130											
Bc4- 27.5			27.5	_					-									
BO4-30			32	6)	 		1135		_									
130-1-521			مح	261			1145	<u></u>	V									
	-																	
						[- 4	110	7		-			
						\dashv												
		,		ł		-	Ì	- 1								 F		

Priedman & Bruya, Inc. 3013 16th Avenue West Seattle, WA 38119-3029 Ph. (206) 285-8282 Fax (206) 288-8844 Function-country

SIGNATURE					•
Belinquished by:	PRINT NAME	COMPANY	DATE	173/2	7
Bookral by:	Courty Staunbers	Sanci Enth	7/14/	12:45	t
Relievabel by:	DO 10	FERZ	2-11-17	17	1.5
Received by:					73
		Samples receiv	of at 4	C	ĺ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina. M.S. Michael Erdahl. B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 30, 2017

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East. Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on March 23, 2017 from the SOU 1276-001 20170323, F&BI 703403 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl **Project Manager**

Enclosures

c: Suzy Stumpf, Chris Cass

SOU0330R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20170323, F&BI 703403 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
703403 -01	B05-24
703403 -02	B05-28
703403 -03	B05-31
703403 -04	B05-35
703403 -05	B05-40
703403 -06	B05-90

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B05-40 Client: SoundEarth Strategies
Date Received: 03/23/17 Project: SOU_1276-001_20170323

Lab ID: 703403-05 Date Extracted: 03/27/17 Date Analyzed: 03/27/17 Data File: 032709.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	101	65	139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20170323

03/27/17 Lab ID: Date Extracted: 07-551 mb Date Analyzed: 03/27/17 Data File: 032708.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 98 62 142 Toluene-d8 99 55 145 4-Bromofluorobenzene 102 65 139

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 03/30/17 Date Received: 03/23/17

Project: SOU_ 1276-001_ 20170323, F&BI 703403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 703403-05 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	34	34	10-138	0
Chloroethane	mg/kg (ppm)	2.5	< 0.5	46	45	10-176	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	52	50	10-160	4
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	67	65	10-156	3
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	63	61	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	67	66	19-140	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	67	25-135	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	71	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	65	64	10-156	2
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	67	66	21-139	2
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	68	67	20-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/30/17 Date Received: 03/23/17

Project: SOU_ 1276-001_ 20170323, F&BI 703403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	83	22-139
Chloroethane	mg/kg (ppm)	2.5	87	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	47-128
Methylene chloride	mg/kg (ppm)	2.5	105	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	104	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	104	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	103	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	103	62-131
Trichloroethene	mg/kg (ppm)	2.5	101	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	il Fairview / eattle, Washi	vrategies Avenue E ington 98	. Inc. . Suite 102	2000	SAMPL. SAM PRO	PLERS JECT N. Kaini	AME/N 1276	0. a in A	/ope	少少		PO#	/23/ s	Sta RU Rush Dis	ndard (2 SH_ charges SAMPL pose afte urn sam	authorized by: E-DISPOSAL r 30 days	VSS
Sample ID	Sample Location	Sample Depth	Ш	Date Sampled	Time Sampled	Matrix	#of Jars	NWTPH-Dx	NWTPH-Gg	BTEX by 8021B	Chlerring Hod	SVOCa by 8270	CVOCs by 8280C	UESTEI		Notes	
76-209 :	MWOZ	ጎለ	01\$	03/23/17	1100	507	4									8)-perCT 246-TAT	_

4

4

1125

1140

1340

1555

3/

35

40

UY

05

06/

66

Friedman & Bruya, Inc 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 POEKE/COC/COCDOC

ıc.	SIGNATURE	PRINT NAME			
	Relinquished by:		COMPANY	DATE	TIME
19	Received by:	(435)	Samuel Gertag	03/24/7	1250
	Relinquished by:	HONE NETWORK	FB2	7,2	<u></u>
	Received by:				, , , , , , , , , , , , , , , , , , ,
•				1	
	*		1.		

(X)

Semples ecelulat

3/24/17 MS

°C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 11, 2018

Logan Schumacher, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Schumacher:

Included are the results from the testing of material submitted on October 2, 2018 from the SOU_1276-001_ 20181002, F&BI 810054 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU1011R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 2, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20181002, F&BI 810054 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
810054 -01	B16-07
810054 -02	B16-11
810054 -03	B16-14
810054 -04	B16-17
810054 -05	B16-20
810054 -06	B16-25
810054 -07	B16-28
810054 -08	B15-07
810054 -09	B15-11
810054 -10	B15-14
810054 -11	B15-17
810054 -12	B15-20
810054 -13	B15-25
810054 -14	B15-28
810054 -15	B18-05
810054 -16	B18-10
810054 -17	B18-12.5
810054 -18	B18-15
810054 -19	B18-17.5
810054 -20	B18-20
810054 -21	B18-25
810054 -22	B18-30
810054 -23	B17-05
810054 -24	B17-10
810054 -25	B17-12.5
810054 -26	B17-15
810054 -27	B17-17.5
810054 -28	B17-20
810054 -29	B17-25
810054 -30	B17-30
810054 -31	B17-35

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B16-11 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Date Extracted: 10/08/18 Lab ID: 810054-02 Date Analyzed: 10/08/18 Data File: 100823.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS Operator:

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds:

Concentration mg/kg (ppm)

Vinyl chloride
1,1-Dichloroethene
1,1-Dichloroethene
1,2-Dichloroethene
20.05
cis-1,2-Dichloroethene
20.05
Trichloroethene
20.05
Trichloroethene
20.072
Tetrachloroethene
20.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B16-14 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_20181002
Date Fettre et al. 10/08/18 Leb ID: 810054-02

810054-03 Date Extracted: 10/08/18 Lab ID: Date Analyzed: 10/08/18 Data File: 100824.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B16-17 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_20181002
Date Extracted: 10/08/18 Lab ID: 810054.04

Date Extracted: 10/08/18 Lab ID: 810054-04 Date Analyzed: 10/08/18 Data File: 100825.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	96	65	139

 $\begin{array}{cccc} Concentration \\ mg/kg \ (ppm) \end{array}$ $\begin{array}{ccccc} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ trans-1,2\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & <0.05 \\ Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B16-20 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_20181002
Date Extracted: 10/08/18 Lab ID: 810054.05

810054-05 Date Extracted: 10/08/18 Lab ID: Date Analyzed: 10/08/18 Data File: 100826.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B15-11 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Lab ID: Date Extracted: 10/08/18 810054-09 Date Analyzed: 10/08/18 Data File: 100827.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 100 55 145 4-Bromofluorobenzene 96 65 139

 $\begin{array}{cccc} Compounds: & Concentration \\ mg/kg \ (ppm) \end{array}$ $\begin{array}{cccc} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ trans-1,2\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & <0.05 \\ Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B15-14 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_20181002
Date Extracted: 10/08/18 Leb ID: 210054.10

Lab ID: Date Extracted: 10/08/18 810054-10 Date Analyzed: 10/08/18 Data File: 100828.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B15-17 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002
Date Extracted: 10/08/18 Lab ID: 810054-11

Date Extracted:10/08/18Lab ID:810054-11Date Analyzed:10/08/18Data File:100829.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	96	65	139

Compounds: Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
trans-1,2-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B15-20 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Date Extracted: 10/08/18 Lab ID: 810054-12 Date Analyzed: 10/08/18 Data File: 100830.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

 $\begin{array}{cccc} Concentration \\ mg/kg \ (ppm) \end{array}$ Vinyl chloride < 0.05 1,1-Dichloroethene < 0.05 trans-1,2-Dichloroethene < 0.05 cis-1,2-Dichloroethene < 0.05 Trichloroethene < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B18-10 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_20181002
Date Extracted: 10/08/18 Leb ID: 210054.16

Date Extracted: 10/08/18 Lab ID: 810054-16 Date Analyzed: 10/08/18 Data File: 100831.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	0.51
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B18-12.5 Client: SoundEarth Strategies Date Received: Project: SOU_1276-001_ 20181002 10/02/18 810054-17 Date Extracted: 10/08/18 Lab ID: Date Analyzed: 10/08/18 Data File: 100832.D

Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	0.93
Trichloroethene	1.7
Tetrachloroethene	2.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B18-15 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002
Date Extracted: 10/08/18 Lab ID: 810054-18

Date Extracted. 10/08/16 Lab ID: 810034-16

Date Analyzed: 10/08/18 Data File: 100833.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	0.38
Trichloroethene	0.43
Tetrachloroethene	1.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

 Client Sample ID:
 B18-17.5
 Client:
 SoundEarth Strategies

 Date Received:
 10/02/18
 Project:
 SOU_1276-001_20181002

 Date Extracted:
 10/08/18
 Lab ID:
 810054-19

 Date Apalyzed:
 10/08/18
 Data File:
 100834 D

Date Extracted: 10/08/18 Lab ID: 810034-19
Date Analyzed: 10/08/18 Data File: 100834.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	97	65	139

Compounds:

Compounds:

Concentration mg/kg (ppm)

Vinyl chloride
1,1-Dichloroethene
1,1-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-Dichloroethene
1,2-

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B18-20 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Date Extracted: 10/08/18 Lab ID: 810054-20 Date Analyzed: 10/08/18 Data File: 100835.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS Operator:

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds: Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
trans-1,2-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B17-15 Client: SoundEarth Strategies

Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Date Extracted: 10/08/18 Lab ID: 810054-26

Lab ID: 810054-26 Date Extracted: 10/08/18 Date Analyzed: 10/08/18 Data File: 100836.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B17-17.5 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002
Date Extracted: 10/08/18 Lab ID: 810054-27

Date Extracted:10/08/18Lab ID:810054-27Date Analyzed:10/08/18Data File:100837.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	97	65	139

 $\begin{array}{cccc} Concentration \\ mg/kg \ (ppm) \end{array}$ $\begin{array}{ccccc} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ trans-1,2\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & <0.05 \\ Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B17-20 Client: SoundEarth Strategies
Date Received: 10/02/18 Project: SOU_1276-001_ 20181002

Date Extracted: 10/08/18 Lab ID: 810054-28 Date Analyzed: 10/09/18 Data File: 100838.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS Operator:

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds: Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
trans-1,2-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_1276-001_ 20181002

10/08/18 Lab ID: Date Extracted: 08-2226 mb Date Analyzed: 10/08/18 Data File: 100807.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	99	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 10/11/18 Date Received: 10/02/18

Project: SOU_1276-001_ 20181002, F&BI 810054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 810054-28 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	44	43	10-138	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	65	65	10-160	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	72	71	14-137	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	81	82	25-135	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	79	80	21-139	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	80	80	20-133	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	80	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	97	47-128
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	95	67-127
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	72-113
Trichloroethene	mg/kg (ppm)	2.5	95	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	(~)	Calo	~ ~ /		S	AMPLE	CH.	y OF	' CIIS	· (TOT)	V 12	بر بيغا		- Company of the Land		7.	**************************************	
	Send Report to Loga		05 C	† ≫			LERS (siryulu	re)		* 14	E (0	-02	-18	DO4 Page	1	4	LS
		ındEarth St		Inc.		PROJ	ECT_207	MENO	· ·	······	***************************************	***************************************	PO#		Standar	dX2 Wee	ND TIME	
	Address 2811	Fairview A	venue <u>E</u>	Suite	2000		<u> </u>	1276-	001						RUSH_ Rush chan			
	City, State, ZIP_Sea	attle, Washir	ngton 98	102		REMA	, F	Ba A	W, I	ZM I	o de	bree.	arry)	\$4	SAN	IPLE DI	SPOSAL	=
www.	Phone # 206-306-	900 Fax	: # <u>2(</u>) <mark>6-306</mark>	-1907	14	4		4						Dispose Return s Will call	amples	days tructions	,
										1		A	NALYSI	S REQ	<u> </u>			
	Sample ID	Sample	Sample	Lab	Date	Time		#nf	Ď×	ğ	021B	0963	8270	2600		AN Prompts CHARLES AND AND AND AND AND AND AND AND AND AND		The state of the s

	·			- The state of the								A	VALYSE	S REQU	ested		
	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	NWTPH-Dx	NWŢPH-Gx	BTEX by 8021B	VOCa by 8260	SVOCe by 8270	CVOCs by 8260C		•	Notes
	B16-07	B16	7	OILE	10/1/18	Offices	Soll	5				***************************************			*		X-perLS
ø	B16-11			02 T.	1. 2 1. 2	6815				***************************************	***************************************			-			10/3/18
ا ده	B16-14		1	63		0930				***************************************				X			ME
0	B16-17			оч	***************************************	0940				1				싥	•		
0	B16-20			05	***************************************	0150		-						$\overset{\sim}{\leftarrow}$	······································		
	B16-25		*****	06		1010								X	إسنينسا		
	B16-28	J		07		1015											
	B15-07	B15		08		(335											
	B15-11	1	. 1	09		1340		1-1	<u> </u>								-
	-	V		10	7	1400	4	1					***************************************	X		Antimotoria de la constanta de	

Fox (206) 283-5044 FORMS\COC\COCDOC

SIGNATURE		Samples i	°c	
Religitished by:	PRINT NAME	COMPANY	DATE	TIME
Received by:	Jan Welter	SEC	redsties.	
	1, 41	7-17	-1991/X	$+u_2+$
Relinquished by:	Moll Lungston	FRAC	10/4/18	165T
Received by:	· · · · · · · · · · · · · · · · · · ·			

) 810054 S	AMPLE CH. OF CUSTODY	ME 10-02-1	8 004) 155
Send Report to Logan Schumacher	SAMPLERS (signature)		Page # 2 of 4 TURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT MAMEINO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	1276-001		Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS HAN AM		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907			Return samples Will call with instructions

												(A	VALYSE	s requi	ESTED		
	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gz	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CVOCs by 8260C	- Charles and the second control of the seco		Notes
0	B15-17 B15-20	815	17	IINE	10/1/18	1410	501	5						\forall			· · · · · · · · · · · · · · · · · · ·
٥	B15-20	1	20	12.	1	1420	7	1			***************************************		***	文	······································		**************************************
	B16-26		25	3		1435					***************************************	-	***************************************	······		•	***************************************
	B16-28	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	28	14	W	1445	マ	V		***************************************		**************************************					
	B(8-05	B(8	5	15	10/2/18	0840	Sol	5		***************************************							
٥	B18-10		lb	16		0845	1	1		1 12 12	1827.022.04			\mathbf{x}^{\dagger}	**********		
	B(8-12,5		12.5	17		රසිණ								文十	- American A		***************************************
0	B18-15		(5	18		3090								\mathbf{x}^{\dagger}			
.0	B18-17.5		170	19		OTOZ						1		apople	es rec	eived	at 4°C
- 1	B(8-20		20	20	J	CROS	V	V						'			Mary market and a second and a second asset and a second asset as a second asset as a second asset as a second as

Fax (206) 283-5044 VORMS\GOG\GOG\DOG

SIGNATURE	PRINT NAME,	COMPANY	DATE	TIME
Relinguished by Wella	Sacall holler	SES	vila/k	1/.47
Received by:	Matt Canstry	ころわ	13516	1657
Relinquished by:			10/2/10	1.05.7
Received by:		and the state of t		

810054	SAMPLE CH. OF CUSTODY	ME 10-02.	
Send Report to Logan Schumacher	SAMP LERS (signaldye)		Page# 5 of 7
Company SoundEarth Strategies, Inc.	ROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks)
Address 2811 Fairview Avenue E. Suite 2000	1276-001		Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS How All	and the second s	SAMPLE DISPOSAL
Phone # 206-306-1900 Fax # 206-306-1907			Dispose after 30 days Return samples Will call with instructions

		***	-						ANALYSES REQUESTED								
***************************************	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jars	NWTPH-Dz	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SYOCs by 8270	CVOCs by 8260C			Notes
	B(8-25	පු)න	25	7.1KE	10/2/18	0912	Sall	Ś			***************************************						
	B18-30	.	36	22 ī	1 1	0120	J	J				······		 			
	B17-05	B17	U5	23	le/2/18	1030	5.:1	5			***************************************						
un de constant de	317-10	1	10	20		1033									·····		***************************************
de servicio de la composição de la compo	B/7-125		12.5	25		1037				 -	1		-				:
0	B17-15		15	26		1042					1	acconemy)		abla		<u> </u>	
O	B17-175		17.5	27		1048			The state of the s					∳			
0	B17-20		90	28		1053								玄	*		
ļ	317-25		25	29		1058						1		1 56	mple	recei	ved at 1/ °C
Ĺ	B7-30	<u> </u>	30	30		1107		T T	,		**********						de la constanta de la constan

Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE Relinquisted by	PRINT NAME,	COMPANY	DATE	TIME
Received by:	Sarah malter,	SES	Walle	1/57
Relinquished by:	Matt Longston	FBILL	10/2/10	1657
Received by:				
and the same of th				

810074	SAMPLE CH OF CUSTODY	ME 10-02-1	8 DO4) VS
Send Report to Logan Schumacher	SAMA LERS (signature)		Page#ofTURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E. Suite 2000		*	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS HJU AVI		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907			Return samples Will call with instructions

	†							<u> </u>	1	AND ACCUSES A COMPANY AS A COMP	Āl	NALYSI	8 REQ	J est et		
Sample II)	Sample Location	Sample Depth	Lab D	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gz	BTEX by 8021B	VOCs by 8280	SVOCs by 8270	CVOCs by 8260C	Aperican market delatement and extra construction and extra construc		Notes
BD-35	B17	35	O, K.F	10/2/18	1135	S	5			ļ			***************************************	-		
							n (a a f de des des la grapa para para para para para para pa		1		***************************************	***************************************	······································			Mindre was a series of the ser
							***************************************		_	***				ļ		, mainimina de la companya de la com
							***************************************				-	***************************************				
							O Committee of the second of t		<u> </u>							
												San Sana	edak mengensa <u>ngan</u> - 14 da wasan wasan			
										***************************************	***************************************	***************************************				
						-	· · · · · · · · · · · · · · · · · · ·	***************************************				Marian	***************************************	************		
				***	·							•	\$	ample	S rec	ived at 4 o
*										•			***************************************			

Fox (206) 283-5044 FORMS\COO\COOLDOC

SIGNATURE Relinquisted by Va	PRINT NAME	COMPANY	DATE	TIME
Raceived by:	Sarah Welfy	SES	walship	1657
	Mutt Longston	Fisture	1 / Jake	1/2 5-3
Relinquished by:			1107 710	102/
Received by:				<u> </u>
Name of the second seco			L	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 12, 2018

Logan Schumacher, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Schumacher:

Included are the results from the testing of material submitted on October 5, 2018 from the SOU_1276-001_20181005, F&BI 810141 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU1012R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 5, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1276-001_ 20181005, F&BI 810141 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
810141 -01	MW09-20181005
810141 -02	MW07-20181005
810141 -03	MW06-20181005

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW09-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810141-01
Date Analyzed:	10/08/18	Data File:	100809.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.7
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	36
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	59
Tetrachloroethene	20

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW07-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810141-02
Date Analyzed:	10/08/18	Data File:	100810.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW06-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810141-03
Date Analyzed:	10/08/18	Data File:	100811.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	95	50	150

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3.5
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	2.4
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_1276-001_ 20181005
Date Extracted:	10/18/18	Lab ID:	08-2224 mb
Date Analyzed:	10/08/18	Data File:	100806.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/12/18 Date Received: 10/05/18

Project: SOU_1276-001_ 20181005, F&BI 810141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 810158-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.34	95	61-139
Chloroethane	ug/L (ppb)	50	<1	98	55-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	96	71-123
Methylene chloride	ug/L (ppb)	50	<5	96	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	98	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	103	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	98	75-121
Trichloroethene	ug/L (ppb)	50	<1	96	73-122
Tetrachloroethene	ug/L (ppb)	50	<1	96	72-113

Laboratory Code: Laboratory Control Sample

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Vinyl chloride	ug/L (ppb)	50	95	95	70-128	0	
Chloroethane	ug/L (ppb)	50	97	97	66-149	0	
1,1-Dichloroethene	ug/L (ppb)	50	100	99	75-119	1	
Methylene chloride	ug/L (ppb)	50	100	100	63-132	0	
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	95	76-118	0	
1,1-Dichloroethane	ug/L (ppb)	50	98	97	77-119	1	
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	96	76-119	0	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	101	100	78-114	1	
1,1,1-Trichloroethane	ug/L (ppb)	50	99	98	80-116	1	
Trichloroethene	ug/L (ppb)	50	96	95	72-119	1	
Tetrachloroethene	ug/L (ppb)	50	94	93	78-109	1	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

(81014) s	AMPLE CH OF CUSTODY	ME 10	05-18 . (PO
Send Report to Logan Schumacher	SAMPLERS (signature)	<	Page # of
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks)
Address 2811 Fairview Avenue E, Suite 2000	1276-001		RUSH Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907			Return samples Will call with instructions
		ANALYSES REC	QUESTED

	T - , -	1	T	T:		·		· · · · · · · · · · · · · · · · · · ·					L			m matruchons
1	***************************************								1	I	Al	VALYSE	S REQU	JESTEL)	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	#of Jars		NWTPH-Gx	BTEX by 8021B	CVOCs by 8260	SVOCs by 8270	CVOCs by 8260C			Notes
MU09-20181005	MUDA		BI,	10/5/18	0835	Heo	4				X					
MW27-20151005	MUDT		07		0907		į				$\overline{\mathbf{x}}$					-
MW06-20181005	MUCO		03		0944	ユ	1							****		
															-	
and the second s		The state of the s			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	(🚚			·							
					With the second	过	10%	(18				`				
							-	15								
	· *							0		1						· · · · · ·
	**											S	amp	es rec	eived	atoC

Friedman & Bruya, Inc.
3012 16th Avenue West
Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clar Tourin	Surdeath	1015/18	TIME 1445
Received by: Relinquished by:	Liz Welber-6	F?B1	10/5/18	1445
Received by:			1,43/10	1973
Accepted by.				:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 15, 2018

Logan Schumacher, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Schumacher:

Included are the results from the testing of material submitted on October 5, 2018 from the SOU_1276-001_20181005, F&BI 810142 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU1015R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 5, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies 1276-001 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
810142 -01	MW08-20181005
810142 -02	MW99-20181005

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW08-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_ 1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810142-01
Date Analyzed:	10/08/18	Data File:	100817.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	95	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	16
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	2.0
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	390 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	330 ve
Tetrachloroethene	600 ve

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW08-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_ 1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810142-01 1/10
Date Analyzed:	10/10/18	Data File:	101029.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	16
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	390
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	320
Tetrachloroethene	560

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW99-20181005 Client: SoundEarth Strategies Date Received: Project: SOU_ 1276-001_ 20181005 10/05/18 Lab ID: Date Extracted: 10/08/18 810142-02 Date Analyzed: 10/08/18 Data File: 100818.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	16
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	1.9
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	380 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	330 ve
Tetrachloroethene	590 ve

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW99-20181005	Client:	SoundEarth Strategies
Date Received:	10/05/18	Project:	SOU_ 1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	810142-02 1/10
Date Analyzed:	10/10/18	Data File:	101030.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	16
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	380
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	320
Tetrachloroethene	560

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_ 1276-001_ 20181005
Date Extracted:	10/08/18	Lab ID:	08-2224 mb
Date Analyzed:	10/08/18	Data File:	100806.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/15/18 Date Received: 10/05/18

Project: SOU_1276-001_20181005, F&BI 810142

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 810158-04 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.34	95	61-139
Chloroethane	ug/L (ppb)	50	<1	98	55-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	96	71-123
Methylene chloride	ug/L (ppb)	50	<5	96	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	98	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	103	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	98	75-121
Trichloroethene	ug/L (ppb)	50	<1	96	73-122
Tetrachloroethene	ug/L (ppb)	50	<1	96	72-113

Laboratory Code: Laboratory Control Sample

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Vinyl chloride	ug/L (ppb)	50	95	95	70-128	0	
Chloroethane	ug/L (ppb)	50	97	97	66-149	0	
1,1-Dichloroethene	ug/L (ppb)	50	100	99	75-119	1	
Methylene chloride	ug/L (ppb)	50	100	100	63-132	0	
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	95	76-118	0	
1,1-Dichloroethane	ug/L (ppb)	50	98	97	77-119	1	
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	96	76-119	0	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	101	100	78-114	1	
1,1,1-Trichloroethane	ug/L (ppb)	50	99	98	80-116	1	
Trichloroethene	ug/L (ppb)	50	96	95	72-119	1	
Tetrachloroethene	ug/L (ppb)	50	94	93	78-109	1	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

RO142-	SAMPLE CHN OF CUSTODY	ME 10	-05-18 / -) /W//
Send Report to Logan Schumacher	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks)
Company SoundEarth Strategies, Inc.	1276-001		RUSH
Address 2811 Fairview Avenue E, Suite 2000	REMARKS		SAMPLE DISPOSAL
City, State, ZIP Seattle, Washington 98102 Phone # 206-306-1900 Fax # 206-306-1907		·	Dispose after 30 days Return samples Will call with instructions
Phone # 206-306-1900 Fax # 206-306-1907			

	-					-		ANALYSES REQUESTED								
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	CVOCs by 8260	SVOCs by 8270	CVOCs by 8260C			Notes
MW08-Zarious	MUUR		OIAS	1015118	1023	Hzo	4				X					
MU99-2014005	MW99)	02/	1	1053	J	4				X					
									. *							
					(A)	,							-			
			-			10	5218	-								
									/							
7.																
			1		lava na	musikan.	^		ampl	es re	eived	at _	06			,
													-			

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

ſ	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
1	Relinquished by:	You boun	Sivetortu	10/5/18	1445
ľ	Received by:	Liz Webburb	FIB 1	10/5/18	1445
ľ	Relinquished by:				
Ì	Received by:				

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 10, 2018

Suzy Stumpf, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Stumpf:

Included are the results from the testing of material submitted on January 2, 2018 from the SOU_0611-017_ 20180102, F&BI 801003 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures c: Grayson Fish SOU0110R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 2, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180102, F&BI 801003 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>SoundEarth Strategies</u>

801003 -01 MW01-20180102

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW01-20180102	Client:	SoundEarth Strategies
Date Received:	01/02/18	Project:	SOU_0611-017_ 20180102
Date Extracted:	01/05/18	Lab ID:	801003-01 1/500
Date Analyzed:	01/05/18	Data File:	010517.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	98	91	108
4-Bromofluorobenzene	101	76	126

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<100
Chloroethane	< 500
1,1-Dichloroethene	< 500
Methylene chloride	<2,500
trans-1,2-Dichloroethene	< 500
1,1-Dichloroethane	< 500
cis-1,2-Dichloroethene	< 500
1,2-Dichloroethane (EDC)	< 500
1,1,1-Trichloroethane	< 500
Trichloroethene	< 500
Tetrachloroethene	8,700

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0611-017_ 20180102
Date Extracted:	01/05/18	Lab ID:	08-045 mb
Date Analyzed:	01/05/18	Data File:	010516.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	98	91	108
4-Bromofluorobenzene	101	76	126

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 01/10/18 Date Received: 01/02/18

Project: SOU_0611-017_ 20180102, F&BI 801003

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801053-02 (Matrix Spike)

			Percent					
	Reporting	Spike	Sample	Recovery	Acceptance			
Analyte	Units	Level	Result	MS	Criteria			
Vinyl chloride	ug/L (ppb)	50	< 0.2	89	61-139			
Chloroethane	ug/L (ppb)	50	<1	86	55-149			
1,1-Dichloroethene	ug/L (ppb)	50	<1	86	71-123			
Methylene chloride	ug/L (ppb)	50	<5	92	61-126			
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	90	72-122			
1,1-Dichloroethane	ug/L (ppb)	50	<1	93	79-113			
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	91	63-126			
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	92	70-119			
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	91	75-121			
Trichloroethene	ug/L (ppb)	50	<1	92	73-122			
Tetrachloroethene	ug/L (ppb)	50	<1	94	72-113			

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	92	91	70-128	1
Chloroethane	ug/L (ppb)	50	89	89	66-149	0
1,1-Dichloroethene	ug/L (ppb)	50	88	88	75-119	0
Methylene chloride	ug/L (ppb)	50	97	97	63-132	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	92	93	76-118	1
1,1-Dichloroethane	ug/L (ppb)	50	93	94	77-119	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	92	92	76-119	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	92	93	78-114	1
1,1,1-Trichloroethane	ug/L (ppb)	50	91	93	80-116	2
Trichloroethene	ug/L (ppb)	50	91	93	72-119	2
Tetrachloroethene	ug/L (ppb)	50	91	93	78-109	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ME 01/02/18 SAMPLE CHAI SAMPLERS (signature) Page# Send Report to Suzy Stumpf, Grayson Fish TURNAROUND TIME ROJECT NAME/NO. PO# Standard (2 Weeks) Company SoundEarth Strategies, Inc. Rainier Mall / 0611-017 Rush charges authorized by: Address_ 2811 Fairview Avenue E, Suite 2000 REMARKS SAMPLE DISPOSAL City, State, ZIP Seattle, Washington 98102 Dispose after 30 days Return samples Phone # 206-306-1900 Fax# 206-306-1907 Will call with instructions

								ANALYSES REQUESTED									
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260C	SVOCs by 8270	÷ control of the con	Name of the state		and the state of t	Notes
Musi-20180102	MWO1.		OIA-G	1/2/18	rrs	H20	7				X						
							,		·			,					
												<u> </u>					
																	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
							:										
				4		-	·										
			4	2/18	***************************************												
							***************************************		West of the second				·		. :		<u>u</u>
													Sa	mples	receiv	ed at	e

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
11 2/11	Loga Schmachr	SES	1/2/18	1535
Received to	Midnel Edah	Fabru	4	1
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 5, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 30, 2018 from the SOU_0611-017_ 20180130, F&BI 801404 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Jonathan Loeffler SOU0205R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 30, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180130, F&BI 801404 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
801404 -01	MW02-20180129
801404 -02	MW03-20180129
801404 -03	MW04-20180129
801404 -04	MW05-20180129

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW02-20180129	Client:	SoundEarth Strategies
Date Received:	01/30/18	Project:	SOU_0611-017_ 20180130
Date Extracted:	01/31/18	Lab ID:	801404-01
Date Analyzed:	01/31/18	Data File:	013112.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.33
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	7.1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW03-20180129	Client:	SoundEarth Strategies
Date Received:	01/30/18	Project:	SOU_0611-017_ 20180130
Date Extracted:	01/31/18	Lab ID:	801404-02
Date Analyzed:	01/31/18	Data File:	013113.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW04-20180129	Client:	SoundEarth Strategies
Date Received:	01/30/18	Project:	SOU_0611-017_ 20180130
Date Extracted:	01/31/18	Lab ID:	801404-03
Date Analyzed:	01/31/18	Data File:	013114.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	103	63	127
4-Bromofluor obenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW05-20180129	Client:	SoundEarth Strategies
Date Received:	01/30/18	Project:	SOU_0611-017_ 20180130
Date Extracted:	01/31/18	Lab ID:	801404-04
Date Analyzed:	01/31/18	Data File:	013115.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	92	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	200 ve
Chloroethane	<1
1,1-Dichloroethene	2.9
Methylene chloride	<5
trans-1,2-Dichloroethene	27
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	1,700 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichlor oethane	<1
Trichloroethene	2,500 ve
Tetrachloroethene	7,500 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW05-20180129	Client:	SoundEarth Strategies		
Date Received:	01/30/18	Project:	SOU_0611-017_ 20180130		
Date Extracted:	01/31/18	Lab ID:	801404-04 1/1000		
T) (A 1 1	00/01/10	D . E.1	000110 D		

Date Analyzed:02/01/18Data File:020112.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	240
Chloroethane	<1,000
1,1-Dichloroethene	<1,000
Methylene chloride	<5,000
trans-1,2-Dichloroethene	<1,000
1,1-Dichloroethane	<1,000
cis-1,2-Dichloroethene	2,600
1,2-Dichloroethane (EDC)	<1,000
1,1,1-Trichloroethane	<1,000
Trichloroethene	6,600
Tetrachloroethene	35,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0611-017_ 20180130
Date Extracted:	01/31/18	Lab ID:	08-0213 mb
Date Analyzed:	01/31/18	Data File:	013108.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/18 Date Received: 01/30/18

Project: SOU_0611-017_ 20180130, F&BI 801404

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801398-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	36-166
Chloroethane	ug/L (ppb)	50	<1	117	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	103	60-136
Methylene chloride	ug/L (ppb)	50	<5	101	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	100	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	98	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	99	60-146
Trichloroethene	ug/L (ppb)	50	<1	98	66-135
Tetrachloroethene	ug/L (ppb)	50	<1	99	10-226

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	106	110	50-154	4
ug/L (ppb)	50	113	118	58-146	4
ug/L (ppb)	50	112	112	67-136	0
ug/L (ppb)	50	105	106	39-148	1
ug/L (ppb)	50	106	107	68-128	1
ug/L (ppb)	50	103	105	79-121	2
ug/L (ppb)	50	105	107	80-123	2
ug/L (ppb)	50	102	104	73-132	2
ug/L (ppb)	50	106	107	83-130	1
ug/L (ppb)	50	104	105	80-120	1
ug/L (ppb)	50	101	101	76-121	0
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50	Reporting Spike Recovery Units Level LCS ug/L (ppb) 50 106 ug/L (ppb) 50 113 ug/L (ppb) 50 105 ug/L (ppb) 50 106 ug/L (ppb) 50 103 ug/L (ppb) 50 105 ug/L (ppb) 50 102 ug/L (ppb) 50 106 ug/L (ppb) 50 106 ug/L (ppb) 50 106 ug/L (ppb) 50 104	Reporting Spike Recovery Recovery Units Level LCS LCSD ug/L (ppb) 50 106 110 ug/L (ppb) 50 113 118 ug/L (ppb) 50 112 112 ug/L (ppb) 50 105 106 ug/L (ppb) 50 103 105 ug/L (ppb) 50 105 107 ug/L (ppb) 50 102 104 ug/L (ppb) 50 106 107 ug/L (ppb) 50 106 107 ug/L (ppb) 50 106 107 ug/L (ppb) 50 106 107 ug/L (ppb) 50 106 107 ug/L (ppb) 50 106 107 ug/L (ppb) 50 104 105	Reporting Spike Units Recovery LCSD Recovery Criteria Acceptance Criteria ug/L (ppb) 50 106 110 50-154 ug/L (ppb) 50 113 118 58-146 ug/L (ppb) 50 112 112 67-136 ug/L (ppb) 50 105 106 39-148 ug/L (ppb) 50 106 107 68-128 ug/L (ppb) 50 103 105 79-121 ug/L (ppb) 50 105 107 80-123 ug/L (ppb) 50 102 104 73-132 ug/L (ppb) 50 106 107 83-130 ug/L (ppb) 50 104 105 80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

80	404
617	FORES

Fax#

206-306-1900

SAMPLE CHA! OF CUSTODY

ME 01/30/18

1	UW.
	V 40

Send Report to Suzy Stampf, Grayson Fish, Jon	SAIVII DESILO (SIGNATURE)	
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall / 0611-017	
City, State, ZIP Seattle, Washington 98102	REMARKS CVOCs: PCE, TCE, I, I-DCE, CIS-1, 2	-DCE, V

206-306-1907

TURNAROUND TIME
Standard (2 Weeks)

RUSH 3 day TAT
Rush charges authorized by:
Liz Forbes

Page#

SAMPLE DISPOSAL
Dispose after 30 days
Return samples
Will call with instructions

			T						·		Al	VALYSE	S REQU	JESTEL)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOC s by 8260	SVOCs by 8270			A THE PROPERTY OF THE PROPERTY	Notes
MW02-20180129	MWO2		OIC	1/29/18	1400	WATER	3				X					
MWC3 -20180129	MWO3		02.	1/29/18	1453	WATER	3	, in the second			X					
MW04-2018019	MW04		03	1/29/18	1601	WATER	3		-		×					
MW05-20180129	MW05		04/	1/29/18	1700	WATER	. 3				X			,		
	4.1															TATOLINA III
							,					Sa	mples	rece	ved a	t 4 oc
			, , , , , , , , , , , , , , , , , , ,					-11		,		•				
							0	11/		1/29	/18				:	
•		•							,							
									•							

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COC.DOC

Phone#

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	JONATHAN LOEFFUER	SOUNDEARTH	1/30/18	1040
Received by:	PAULD WICACED	FEDEX	1/30/18	1050
Relinquished by:		-	1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
Received by: MM MM	Whan Phan	FeB?	1/30/18	1236

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 13, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle. WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801363 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish SOU0213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801363 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801363 -01	TB04-05
801363 -02	TB04-10
801363 -03	TB04-15
801363 -04	TB05-05
801363 -05	TB05-10
801363 -06	TB05-15
801363 -07	TB06-05
801363 -08	TB06-10
801363 -09	TB06-15

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for hexachlorobutadiene. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

Date Extracted: 02/05/18 Date Analyzed: 02/05/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
TB05-05 801363-04	<5	98
Method Blank 08-231 MB	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

Date Extracted: 02/02/18 Date Analyzed: 02/02/18

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
TB05-05 801363-04	190 x	5,100	122
Method Blank 08-271 MB	< 50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	TB04-05	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
Data Estuada d	00/00/10	T - L TD.	001000.01

 Date Extracted:
 02/09/18
 Lab ID:
 801363-01

 Date Analyzed:
 02/09/18
 Data File:
 801363-01.070

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 1.79

 Cadmium
 <1</td>

 Chromium
 12.1

 Lead
 8.10

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: NA Project: SOU_0611-017_ 20180126

Date Extracted: 02/09/18 Lab ID: I8-095 mb
Date Analyzed: 02/09/18 Data File: I8-095 mb.050
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	TB04-05	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
	00/07/40	T 1 TD	004000044/#

Date Extracted: 02/07/18 Lab ID: 801363-01 1/5 Date Analyzed: 02/07/18 Data File: 020717.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 103 31 163 Benzo(a)anthracene-d12 106 24 168

0.028

0.022

0.031

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene 0.046 Anthracene < 0.01 Fluoranthene 0.058 Pyrene 0.073 Benz(a)anthracene 0.015

Chrysene

Benzo(a)pyrene

Benzo(b)fluoranthene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

Date Extracted: 02/07/18 Lab ID: 08-290 mb2 1/5
Date Analyzed: 02/07/18 Data File: 020713.D
Matrix: Soil Instrument: GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 105 31 163 Benzo(a)anthracene-d12 108 24 168

Concentration
Compounds: mg/kg (ppm)
Naphthalene <0.01

Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB05-05 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 02/05/18 Lab ID: 801363-04

Date Extracted: Lab ID: 801363-04 02/05/18 Date Analyzed: 02/05/18 Data File: 020511.D Matrix: Instrument: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

< 0.025

Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

02/05/18 Lab ID: Date Extracted: 08-218 mb2 Date Analyzed: 02/05/18 Data File: 020508.D Instrument: Matrix: Soil GCMS9 Units: mg/kg (ppm) Dry Weight Operator: JS

Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410089113Toluene-d810264137

 1,2-Dichloroethane-d4
 100
 89
 113

 Toluene-d8
 102
 64
 137

 4-Bromofluorobenzene
 98
 81
 119

 Concentration

 $\begin{array}{lll} \mbox{Compounds:} & \mbox{mg/kg (ppm)} \\ \mbox{Vinyl chloride} & <0.05 \\ \mbox{1,1-Dichloroethene} & <0.05 \\ \mbox{Trichloroethene} & <0.02 \\ \mbox{Tetrachloroethene} & <0.025 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 802022-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 802032-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	88	102	73-135	15

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	86	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 802102-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.30	88	87	75-125	1
Cadmium	mg/kg (ppm)	10	<1	88	84	75-125	5
Chromium	mg/kg (ppm)	50	8.24	81	80	75-125	1
Lead	mg/kg (ppm)	50	2.92	82	78	75-125	5
Mercury	mg/kg (ppm	5	<1	79	81	75-125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	100	80-120
Cadmium	mg/kg (ppm)	10	106	80-120
Chromium	mg/kg (ppm)	50	105	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 802035-01 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	87	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	86	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	86	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	87	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	89	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	91	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	94	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	91	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	85	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	87	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	86	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	83	37-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	91	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	85	88	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	87	91	54-123	4
Fluorene	mg/kg (ppm)	0.17	86	89	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	87	90	55-122	3
Anthracene	mg/kg (ppm)	0.17	84	86	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	86	92	54-129	7
Pyrene	mg/kg (ppm)	0.17	84	91	53-127	8
Benz(a)anthracene	mg/kg (ppm)	0.17	90	95	51-115	5
Chrysene	mg/kg (ppm)	0.17	93	97	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	94	100	56-123	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	94	100	54-131	6
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	84	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	86	86	49-148	0
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	87	89	50-141	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	84	84	52-131	0

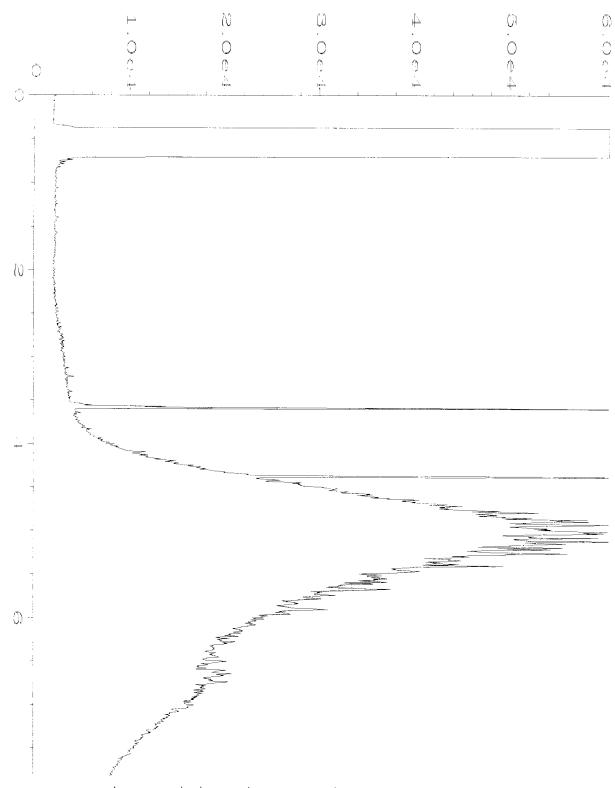
ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

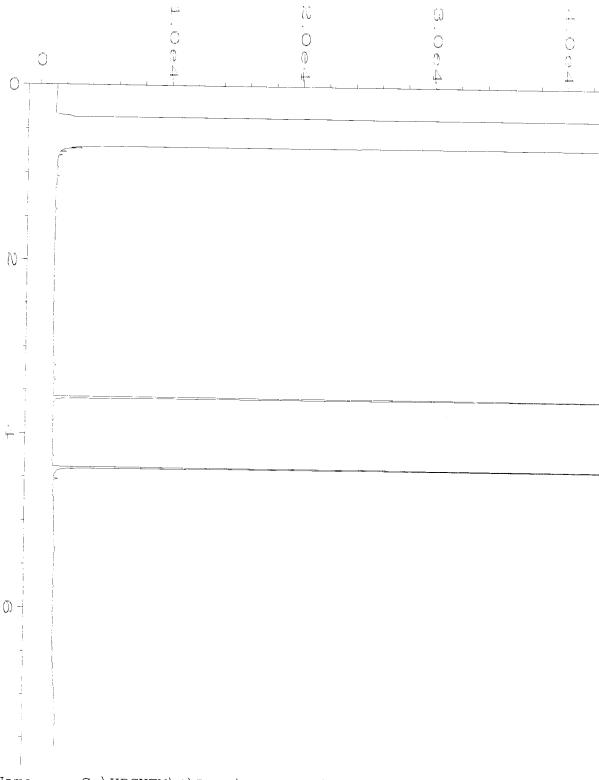
Project: SOU_0611-017_ 20180126, F&BI 801363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

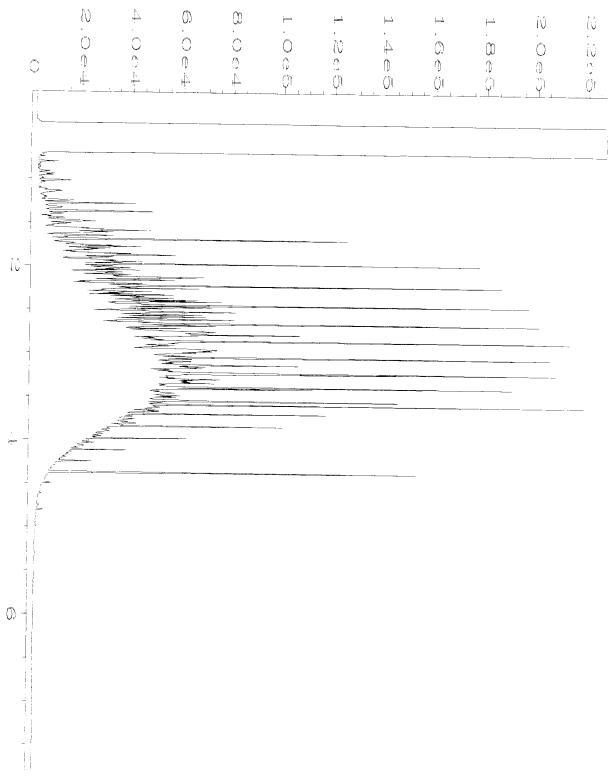
Laboratory Code: 801364-01 (Matrix Spike)


-	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	81	69	10-138	16
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	79	10-160	18
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	103	86	21-139	18
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	111	95	20-133	16

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128
Trichloroethene	mg/kg (ppm)	2.5	91	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                : C:\HPCHEM\4\DATA\02-02-18\018F0301.D
Operator
                 : mwdl
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                                : 18
Sample Name
                : 801363-04
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 02 Feb 18
                             02:36 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Feb 18 07:54 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\02-02-18\006F0301.D
Operator
                 : mwdl
                                                Page Number
Vial Number
                                                                  : 1
Instrument
                 : GC#4
                                                                  : 6
Sample Name
                 : 08-271 mb
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 3
Acquired on : 02 Feb 18 12:06 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Feb 18 07:54 AM
                                                Analysis Method : DX.MTH
```


	1363 57863, L	rga S ivson F	ehum Pish	s wh		PERS (signaty	9/	STOD	N N	·	01/0			Page#_	of_	1/1	1
Company Source	dEarth Stra	tegies.	Inc.	We will see the second section of the section of the se	PROJ	ECT N	MEN).	٧			PO#	_	Star	idard (2	ROUND TI 2 Weeks)	ME	
Address 2811 F	airview Ave	nue E.	Suite	2000			er Mall	/0611	-017	•			THE STATE OF THE S	,		authorized	by:	
City, State, ZIP Seatt	<u>le. Washing</u>	ton 981	02		REM/	ARKS	alda	 		ITAT				Disn	SAMPI	E DISPOS. er 30 days	AL	-
Phone # 206-306-190)0Fax#	200	<u>6-306</u> -	1907				~~~~		6,76 <u>6,</u> 1,20c2				Retu	In sam		ons	
					,						A	VALYS	S REQ	UESTED				٦. ا
Sample ID		Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	WTPH-Dx	TPH-Gx	by 8021B	by 8280	by 8270	5 METH		-			
			-1		y	•		E	LWW.	3TEX	VOCs	- SO - AO	1	Ž	•	Note	18	ļ

					,						A	NALYS	es rec	UESTE	D		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jara	NWTPH-Dx	NWTPH-Gx	JA 8021B	by 8280	by 8270	S METHL				
				1	,				I MA	BTEX by	C VOCs by	SVOCe	1.	 	<u> </u>	Notes	
			<u> </u>		•					<u> </u>	5	in.	Z L	#.			••
TBUY- OS	TRUC	5	O/A	1/12/18	0805	Sol	5		<u> </u>	***************************************		•	8	0		PER-85-217	
TBUY-10		to	01	i	0810.	,	1							18		KW 5-DAY 70	RN
TBUK-15	07	(5	03		083	,							<u> </u>	<u> </u>	 		
TBOS-CS	TBOS	S	Oy		0944								ļ	1	ļ		_
TB05-10:		10	05		0950									 	 	ParLS	
7B0675			06	 	0955	·						*	ļ		ļ	2/2/18	
1B06-05	TBUS		07		11(0					*.		* ************************************				MS	
TB06-10				 	1(15												
TB06-15			08				·								ļ		
	1 07		09 1		1120	L	W									•	
	I i de	S 1/2	s fra										amp	es rec	eived	nt 4 set	7

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Faz (206) 283-5044

FORMS\COC\COC.DOC

Re	SIGNATURE linguished by:	PRINT NAME	COMPANY	DATE	TIME
	Stradby Stradby	Loga Schmah	Saultoh	1/26/18	1020
	inquished by:	VINH	L KBI	1/26/18	10:20
L	eived by:				
<u></u>			Ì		•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_20180126, F&BI 801364 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_20180126, F&BI 801364 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801364 -01	TB07-05
801364 -02	TB07-10
801364 -03	TB07-12.5
801364 -04	TB07-15
801364 -05	TB07-17.5
801364 -06	TB07-20
801364 -07	TB07-25
801364 -08	TB07-30
801364 -09	TB07-35
801364 -10	TB07-40

Tetrachloroethene was detected in method blank associated with the samples due to carryover from a previous sample. The data were flagged accordingly. No tetrachloroethene was detected in the samples, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

65

139

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB07-15 Client: SoundEarth Strategies Date Received: 01/26/18 Project: SOU_ 0611-017_ 20180126 Lab ID: Date Extracted: 02/02/18 801364-04 Date Analyzed: 02/02/18 Data File: 020216.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 103 55 145

98

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

4-Bromofluorobenzene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB07-20 Client: SoundEarth Strategies Date Received: Project: SOU_ 0611-017_ 20180126 01/26/18 Lab ID: Date Extracted: 02/02/18 801364-06 Date Analyzed: 02/02/18 Data File: 020217.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies Date Received: Not Applicable Project: SOU_ 0611-017_ 20180126 02/02/18 Lab ID: Date Extracted: 08-0215 mb2

Date Analyzed: 02/02/18 Data File: 020205.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper % Recovery: Limit: Limit: Surrogates: 1.2-Dichloroethane-d4 102 62 142

Toluene-d8 102 55 145 4-Bromofluorobenzene 65 139 97

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 Chloroethane < 0.5 1.1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1.1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1.1.1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene 0.061 c

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/18 Date Received: 01/26/18

Project: SOU_0611-017_20180126, F&BI 801364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-12 (Matrix Spike)

•	-		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	40	39	10-138	3
Chloroethane	mg/kg (ppm)	2.5	< 0.5	50	52	10-176	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	58	56	10-160	4
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	70	69	10-156	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	64	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	70	67	19-140	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	71	25-135	4
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	74	72	12-160	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	69	67	10-156	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	73	70	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	0.024	71	67	20-133	6

<i>J</i>	<i>J</i>			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139
Chloroethane	mg/kg (ppm)	2.5	84	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	47-128
Methylene chloride	mg/kg (ppm)	2.5	99	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	98	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	98	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	97	62-131
Trichloroethene	mg/kg (ppm)	2.5	98	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	364	ogn	42. .	S	AMPLE			JF 25	STOD	Y	ME	01	26/1	18		.)	۷۵.۵
Send Report to Send Company Send Send Report to Sen		PROJECT NAME/NO.						Page #					Weeks) Sam 7/5	5/18			
City, State, ZIP Se	Address 2811 Fairview Avenue E, Suite 2000 City, State, ZIP Seattle, Washington 98102 Phone # 206-306-1900 Fax # 206-306-1907 REMARKS Hatt All * Cuoca = (Ref., Tef., 1/1-Defe, ers. 1/2-Defe, Ver.) * Cuoca = (Ref., Tef., 1/1-Defe, ers. 1/2-Defe, Ver.) * Cuoca = (Ref., Tef., 1/1-Defe, ers. 1/2-Defe, Ver.)										Disp Retu	SAMPI ose afte	authorized by E DISPOSAL or 30 days ples h instruction				
Sample ID	Semple Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jara	WTPH.Dx	WTPH-Gx	EX by 8021B	·			UESTED		Notes	

Sample ID	S	emple ocation	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jara	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	€ VOCs by 8260	SVOCs by 8270				Notes
TB07-05	11	307	5	OIAE	1/26/18	080	SIN	S									F.
TB07-10		1	10	02]	1	() 8.5.	,		,	***						·	• pels
TB07-12,5			12,5	03		0820	† <i>† † †</i>									-	2/2/18
TB07-15			T	04		೦೮೭೬								·	†		<u> </u>
TBU7-17.5			47.5			0836						6		-	-		
TB07-20				16		0835						•		····			
TB07-25				All		0840								······································			
TB07-30				50 / 1 50 / 1		0845										-	-
TB07-35		-		<u>3</u> 4/1		0830	· -		*								3
TB07-40	V	7]		0		0350	t							58	mples	roceiv	3d at c

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE PRINT NAME COMPANY DATE TIME
Relinquished by:

Received by:

Received by:

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the $SOU_0611-017_20180126$, F&BI 801364 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Logan Schumacher

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_20180126, F&BI 801364 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801364 -01	TB07-05
801364 -02	TB07-10
801364 -03	TB07-12.5
801364 -04	TB07-15
801364 -05	TB07-17.5
801364 -06	TB07-20
801364 -07	TB07-25
801364 -08	TB07-30
801364 -09	TB07-35
801364 -10	TB07-40

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	TB07-05	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
Date Extracted:	02/07/18	Lab ID:	801364-01
Date Analyzed:	02/07/18	Data File:	020712.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	95	55	145
4-Bromofluorobenzene	99	65	139

Totuette-uo	93	33	
4-Bromofluorobenzene	99	65	
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
1,1-Dichloroethene	< 0.05		
cis-1,2-Dichloroethene	< 0.05		
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	TB07-30	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
Date Extracted:	02/07/18	Lab ID:	801364-08
Date Analyzed:	02/07/18	Data File:	020718.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	95	55	145
4-Bromofluorobenzene	99	65	139

roiuene-a8	95	55	
4-Bromofluorobenzene	99	65	
	Concentration		
Compounds:	mg/kg (ppm)		
1	8 8 41 7		
Vinyl chloride	< 0.05		
•			
1,1-Dichloroethene	< 0.05		
cis-1,2-Dichloroethene	< 0.05		
•			
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		
1 cer demoi de circire	10.020		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126
Date Extracted: 02/07/18 Lab ID: 08-0283 mb

Date Analyzed: 02/07/18 Data File: 020710.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 97 62 142 Toluene-d8 95 55 145

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801364-01 (Matrix Spike)

-	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	81	69	10-138	16
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	79	10-160	18
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	102	85	25-135	18
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	103	86	21-139	18
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	111	95	20-133	16

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	72-113
Trichloroethene	mg/kg (ppm)	2.5	91	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	SoundEarth S	trategies	Inc.	2000	PPE		er Mal	O.	•	·		PO#		Sta RU	odard SH B	AROUND TIME (2 Weeks) Sam 2/5/18 s suthorized by:
City, State, ZIP Phone # 206-80			***	-1907	*C	ARKS VOCI = Emily	はは	AM TUE, B	1,1-D	CE, Co Mon				Disj Reta Will	call w	LE DISPOSAL ter 30 days nyles ith instructions
Sample ID	Sample Location	Sample Depth	Lab D	Date Sampled	Time Sampled	Matrix	# of	NWTPH.Dx	NWTPHAR	STEX by 8021B	₩ 8358 ₩ 500/	SVOCs by 8870 S	SIRRO			Notes Oper ext
TB07-05	T1807	5	orA=	Vro/18	೦೮೦	SAR	S			-	V	1/2		f	***************************************	2/7
TB07-10	ì	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12 1	4	O8.5.			,			8	-	[· •			· pels
(B07-12,5		12,5			0820	-1-1		,		·		*				2/2/18
1367-15		ış	04		0825				***************************************		a .	~			(anayyyaina	<u> </u>
BU7-17.5	1 .	47.5	ne l		0536	~			i		a .		·			

0835

OBYO

0845

0830

Grow

20

25

30

40

100

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

1B07-20

1B07-25

TBUT-30

TD07-35

TB07-40

Fax (206) 283-5044

PORMENCOC/COC.DOC

	1	4			
G.	SIGNATURE Rejinguished by:	PRINT NAME	COMPANY	DATE	TIME
	By Maived by A A	Logar Schipmiles	Sundicide	thehe	(050
9	e leun	VINH-	CRI	1/20/60	
	Relinquished by:	A STATE OF THE STA	F-121	1/20/1	10:20
ĺ	Received by:	***			
1.		2			

(3)

Samples received at

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801365 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Logan Schumacher SOU0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801365 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801365 -01	B10-2.5
801365 -02	B10-05
801365 -03	B10-10
801365 -04	B10-15
801365 -05	B10-20

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B10-2.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 02/07/18 Lab ID: 801365-01 Date Analyzed: 02/07/18 Data File: 020719.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	142
Toluene-d8	94	55	145
4-Bromofluorobenzene	97	65	139

< 0.025

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

Date Extracted: 02/07/18 Lab ID: 08-0283 mb
Date Analyzed: 02/07/18 Data File: 020710.D
Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	142
Toluene-d8	95	55	145
4-Bromofluorobenzene	98	65	139

Concentration Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801365

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801364-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	81	69	10-138	16
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	79	10-160	18
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	103	86	21-139	18
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	111	95	20-133	16

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	89	47-128
Trichloroethene	mg/kg (ppm)	2.5	91	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	101	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	SoundEarth S 311 Fairview / Seattle, Washi	trategies. Ivenue E ington 98	. Inc. . Suite	and the last last last last last last last last	PROJ		ME/NC er Mall	/ 0611	-017	d for		PO#		Star RUS Rush Disg Reti	FURNA adard () SH charges SAMP) pose afi	AROUND TIME 2 Weeks) s authorized by LE DISPOSAL er 30 days aples th instructions	
							1			7	•			UESTEI)		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gr	BTEX by 8021B	7/0Cs by 8260c	SVOCs by 8270	4 5 MEMAS	-		Notes	-
							•	<i>A</i>	24	H	8	SV	M 72.4				`*
B10-025	BIO	2.5	01/2	1/26/18	0825	Sell	5		,	<u> </u>	100			 		YOUN PER ES	
B10-05		05	22	ì	0831		,						 	 		STANDARD	
B10-10		10	03		0835								1	1		***************************************	
B10-15	`.	14	al		0840	, ·			· · · · · · · · · · · · · · · · · · ·		1		<u> </u>	1		, , , , , , , , , , , , , , , , , , ,	
B10-20	40	20	051		0845	J.	J		1	,							
			,						>	,	<u></u>						
14444							G	EP.	110	,,	<u> </u>	S	mple	s rece	ived a	4000	
•		ļ								6/18		•					50.0
•								,				-				-	1

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 * Ph. (206) 285-8282 Fax (206) 283-5044

PORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE.	TIME
Relinquished by:	GRENGE FRA	Sand Earth :	V2610	1020
Received by: Altur	VINH	FR1	1/24/19	1620
Relinquished by:				-
Received by:				,
				^

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle. WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801366 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Logan Schumacher SOU0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801366 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801366 -01	B09-05
801366 -02	B09-10
801366 -03	B09-12.5
801366 -04	B09-15
801366 -05	B09-17.5
801366 -06	B09-20
801366 -07	B09-25
801366 -08	B09-30
801366 -09	B07-05
801366 -10	B07-10
801366 -11	B07-12.5
801366 -12	B07-15
801366 -13	B07-17.5
801366 -14	B07-20
801366 -15	B07-25
801366 -16	B07-30
801366 -17	B08-05
801366 -18	B08-10
801366 -19	B08-12.5
801366 -20	B08-15
801366 -21	B08-17.5
801366 -22	B08-20
801366 -23	B08-25
801366 -24	B08-30
801366 -25	B08-35
801366 -26	B08-45
801366 -27	B08-50

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B09-17.5 Client: SoundEarth Strategies
Date Received: 01/26/18 Project: SOU_0611-017_20180126
Date Extracted: 01/29/18 Lab ID: 801366-05

Date Analyzed: 01/29/18 Data File: 012918.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 142 Toluene-d8 100 55 145 4-Bromofluorobenzene 98 65 139

Concentration
mg/kg (ppm)

Vinyl chloride
1,1-Dichloroethene
cis-1,2-Dichloroethene
Trichloroethene
Tetrachloroethene

<0.05

<0.05

<0.05

<0.05

<0.02

<0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B09-20 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_20180126

Date Extracted: 01/29/18 Lab ID: 801366-06

Lab ID: 801366-06 Date Extracted: 01/29/18 Date Analyzed: 01/29/18 Data File: 012919.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 100 65 139

< 0.05

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05

Trichloroethene <0.02 Tetrachloroethene <0.025

cis-1,2-Dichloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B07-12.5 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 01/29/18 Lab ID: 801366-11

Date Analyzed: 01/20/18

Date Analyzed: 01/29/18 Data File: 012920.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 101 55 145

Toluene-d8 101 55 145
4-Bromofluorobenzene 99 65 139

Concentration
mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B07-20 Client: SoundEarth Strategies
Date Received: 01/26/18 Project: SOU_0611-017_20180126
Date Extracted: 01/20/18 Leb ID: 201366.14

Lab ID: Date Extracted: 01/29/18 801366-14 Date Analyzed: 01/29/18 Data File: 012921.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 101 55 145 4-Bromofluorobenzene 98 65 139

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05

 $\begin{array}{ll} Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B08-15 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_20180126

Date Extracted: 01/29/18 Lab ID: 801366-20

Lab ID: Date Extracted: 01/29/18 801366-20 Date Analyzed: 01/29/18 Data File: 012922.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 100 55 145 4-Bromofluorobenzene 98 65 139

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05

 $\begin{array}{ll} Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B08-20 Client: SoundEarth Strategies Date Received: Project: 01/26/18 SOU_0611-017_ 20180126

Lab ID: Date Extracted: 01/29/18 801366-22 Date Analyzed: 01/29/18 Data File: 012923.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 100 65 139

< 0.02

< 0.025

Concentration Compounds: mg/kg (ppm) Vinyl chloride < 0.05 1,1-Dichloroethene < 0.05 cis-1,2-Dichloroethene < 0.05 Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

01/29/18 Lab ID: Date Extracted: 08-0209 mb Date Analyzed: 01/29/18 Data File: 012908.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower % Recovery: Limit: Limit: Surrogates: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 100 55 145 4-Bromofluorobenzene 98 65 139

< 0.02

< 0.025

Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801366

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	67	61	10-138	9
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	84	10-160	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	99	98	25-135	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	99	99	21-139	0
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	97	98	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	93	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	72-113
Trichloroethene	mg/kg (ppm)	2.5	95	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	94	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

801366	SAMPLE CHA OF CUSTODY	ME 01/26/18) VS57
Send Report to Suzy Stumpf, Grayson Fish	SAMPLERS (signature)		Page #of
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	TURNAROUND TIME Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall / 0611-017		RUSH And Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS		SAMPLE DISPOSAL
Phone # 206-306-1900 Fax # 206-306-1907	CVOCS = PCE,TCE, UI-DCE, CB-1,2-DCE, C	nd ve	Dispose after 30 days Return samples Will call with instructions
		ANALYSES REQU	JESTED

						T	1	T	·		A.	NT 4 F 370				on matructions
							1		T	T		NALYS	ES REQ	JESTEI)	Υ
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	<"VOCs by 8260€	SVOCs by 8270				Notes
BUA-05	1309	5	OIAZ	1/25/19	0820	Soil	5						 			:
809-10			Q I		0825.	2			·							
309-125			03		0835							·				
909-15			W		0840											
8/4-175				 											l	
			(t5		0815	Self-Superior Self-	hardenbage > up				∇					$^{\bullet, \bullet} (i) = (1 + i) + $
904-20		20	00		0850						X				***************************************	
3,44-25		25	if		2855							·				,
204 - 30	,	30	W		0480		+		and the second of the second o			Tanka Tibanahan yang Sanda	~~~			
0705	B07	5		- i - l	1073											
927-10	1			······································	1333	- 1						S	mpiek	receiv	ed at	2 %

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME			
Relinquished by:		COMPANY	DATE	TIME
Received by:	Land San San San San	Districtly.	1/26/.4	A ALVAS
Relinquished by:	JW 44	rance and a second	1/3 / /10	/4 . 7 .
COMMUNICATION AND AND AND AND AND AND AND AND AND AN		and the second second second second second second second second second second second second second second second		10-10
Received by:			Management of the second secon	
The second secon				

Send Report to Suzy Stumpf, Grayson Fish
Send Report to Suzy Stumpf, Grayson Fish
Company SoundEarth Strategies, Inc.
Address 2811 Fairview Avenue E, Suite 2000
City, State, ZIP Seattle, Washington 98102

Fax #_

206-306-1907

Phone # 206-306-1900

SA	MPLE CHA DF CUSTODY	ME 01/06/18
. ,	SAMPLERS (signature)	
	PROJECT NAME/NO.	PO#
	Rainier Mall / 0611-017	
***************************************	REMARKS LVOCS = PLE, TLE, 1, 1 - DLE, LIS-1	2-0/8 and VC

		T 2	70-000		- <u>L</u>	T	<u> </u>			~~~				Will		nples ith instructions
								<u> </u>	T	Ţ		NALYSE	S REQ	UESTEI)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270		The second secon	The second secon	Notes
B07=12,5	BUT	12.5	ļļ	1/29/18	1035	50:1	5				X					
BUT-18 BUT-175		15	12		1100 .		9		***************************************	······································			·····			
907-175	and the same of th	17.5	13		1105		1-		,						<u></u>	
B07-28 B07-25		1	ų l		1110											
Bn7-25											X		***************************************			
B07-30	***	 	5		1115		_	What manager is to be a second as the second								
	- 1 A 2020	 	V		1120				Į.							A STATE OF THE STA
B08-05	008	5	7	7:11	1335									W- Comment of the Control of the Con		`
804-10		10	% [1345						ME I THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TO THE PERSON			Monament professionary (ground para	and a second of the second of the	
BU8-12.5		123	1		1355	+	1									
6/2-15	· · · · · · · · · · · · · · · · · · ·	15	0								<u> </u>					
Agendonius A Common Com					ITUUL						X					A Company of Management (Community) Community and all all sections

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COC.DOC

,	•	And the state of t	Action of the second second second second	
SIGNATURE	PRINT NAME	COMPANY		
Relinquished by:	A STATE OF THE PARTY OF THE PAR	COMPANY	DATE	TIME
Received by: 10 -1		Long Enth	125/.5	100.0
Lull	NNH	Secretary Production Control C	1/2 / //	170.57
Relinquished by:	A STATE OF THE PROPERTY OF THE	According to the accord	112-6/16	10.4-0
Received by:			-	A CONTRACT OF THE PROPERTY OF
		The state of the s	Sentitud (Articulus 1940) (Sentitud (Articulus (Articul	OCINIANA PERSONALA PROBLEMA O ATRICO DE MARCO DE PORTO DE PORTO DE PORTO DE PORTO DE PORTO DE PORTO DE PORTO DE
	AND MARKET OF THE PROPERTY OF			

1		(801366
	Lan 2 22	Fortura	

SAMPLE CHAT OF CUSTODY

mE 01/26/18

PO#

		manufacture of the second seco
Send Report to Suzy Stumpf, Grayson Fish	SAMPLERS (signature)	
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO
Address 2811 Fairview Avenue E, Suite 2000	Rainier Mall / 0611-017	
City, State, ZIP Seattle, Washington 98102	REMARKS VOC, : PLE, TLE, 17 1 DCE, 63-1,2-DC	6 /11
Phone # 206-306-1900 Fax # 206-306-1907	7 - 17 - 50	in MAR VC

TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

			T	T	T	Т	·							L		in maiructions
									Ţ	7	A A	NALYSI	S REQ	UESTEL)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 82602	SVOCs by 8270				Notes
808-17.5	E08	1.2.5	2)	1/25/18	1905	Soll	5				***					
B09-20 B08-25	1	-	22	1	1410	3	3	***************************************			* /		-			
B08-25		 	23	_						<u></u>	X					
808-30		 	24		1420											
808-25					1425											
		35	25		1430											
B08-45		45	26	i i	1505											
B08-50	make.	50	27		1530						**************************************					
					*				and the second s		***		***************************************			
	(4) English of Schools (1971) and A (1974	Maria vila de la companio de la companio de la companio de la companio de la companio de la companio de la comp								72		,				
			3-2-2- VIII-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				***************************************	N. C. STRONG CO.	Alemany and indicates proceedings of the A	-	18 m	AFW(A)				And the state of t
		annual season de la constanta										- day	-		Approved Continues and Continues of States	Commence of the Commence of th

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC_DOC

SIGNATURE	DDINE NAME			
Relinquished by	1 202 / LOUNT INAINE	COMPANY	DATE	TIME
Received by:	The Att Har Construction	Fam (G. 16.	1/23/24	2.2.2.2
Relinquished by:	VIN CY	F.BI	1/26/18	10:20
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 13, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the $SOU_0611-017_20180126$, F&BI 801366 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Grayson Fish, Logan Schumacher

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801366 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801366 -01	B09-05
801366 -02	B09-10
801366 -03	B09-12.5
801366 -04	B09-15
801366 -05	B09-17.5
801366 -06	B09-20
801366 -07	B09-25
801366 -08	B09-30
801366 -09	B07-05
801366 -10	B07-10
801366 -11	B07-12.5
801366 -12	B07-15
801366 -13	B07-17.5
801366 -14	B07-20
801366 -15	B07-25
801366 -16	B07-30
801366 -17	B08-05
801366 -18	B08-10
801366 -19	B08-12.5
801366 -20	B08-15
801366 -21	B08-17.5
801366 -22	B08-20
801366 -23	B08-25
801366 -24	B08-30
801366 -25	B08-35
801366 -26	B08-45
801366 -27	B08-50

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	B09-05	Client:	SoundEarth Strategies
Date Received:	01/26/18	Project:	SOU_0611-017_ 20180126
Data Eutrastadi	09/00/19	I ak ID.	001000 01

 Date Extracted:
 02/09/18
 Lab ID:
 801366-01

 Date Analyzed:
 02/09/18
 Data File:
 801366-01.071

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.17
Cadmium <1
Chromium 26.8
Lead 4.06
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0611-017_ 20180126

Date Extracted: 02/09/18 Lab ID: I8-095 mb
Date Analyzed: 02/09/18 Data File: I8-095 mb.050
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: B09-05 Client: SoundEarth Strategies Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Lab ID: Date Extracted: 02/07/18 801366-01 1/5 020716.D Date Analyzed: 02/07/18 Data File: Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: Surrogates: % Recovery: Limit: Anthracene-d10 31 163 Benzo(a)anthracene-d12 105 24 168

Concentration Compounds: mg/kg (ppm)

Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies Date Received: Not Applicable Project: SOU_0611-017_ 20180126

02/07/18 Lab ID: Date Extracted: 08-290 mb2 1/5 Date Analyzed: 02/07/18 Data File: 020713.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: **Surrogates:** % Recovery: Limit: Anthracene-d10 105 31 163 Benzo(a)anthracene-d12 108 24 168

Concentration Compounds: mg/kg (ppm) < 0.01

Naphthalene Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801366

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 802102-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.30	88	87	75-125	1
Cadmium	mg/kg (ppm)	10	<1	88	84	75-125	5
Chromium	mg/kg (ppm)	50	8.24	81	80	75-125	1
Lead	mg/kg (ppm)	50	2.92	82	78	75-125	5
Mercury	mg/kg (ppm	5	<1	79	81	75-125	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	100	80-120
Cadmium	mg/kg (ppm)	10	106	80-120
Chromium	mg/kg (ppm)	50	105	80-120
Lead	mg/kg (ppm)	50	101	80-120
Mercury	mg/kg (ppm)	5	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/13/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801366

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 802035-01 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	86	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	87	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	86	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	86	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	87	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	89	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	91	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	94	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	91	23-176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	85	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	87	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	86	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	83	37-133

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	91	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	85	88	54-121	3
Acen aphthene	mg/kg (ppm)	0.17	87	91	54-123	4
Fluorene	mg/kg (ppm)	0.17	86	89	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	87	90	55-122	3
Anthracene	mg/kg (ppm)	0.17	84	86	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	86	92	54-129	7
Pyrene	mg/kg (ppm)	0.17	84	91	53-127	8
Benz(a)anthracene	mg/kg (ppm)	0.17	90	95	51-115	5
Chrysene	mg/kg (ppm)	0.17	93	97	55-129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	94	100	56-123	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	94	100	54-131	6
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	84	51-118	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	86	86	49-148	0
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	87	89	50-141	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	84	84	52-131	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

) <u>801366</u> - SA	MPLE CHA OF CUSTODY ME 01/2	4/18 ") VS5/
Send Report to Suzy Stumpf Grayson Fish	SAMPLERS (signature)	Page# of 3 AN
,	PROJECT NAME/NO: PO#	TURNAROUND TIME
Address 2811 Fairview Avenue E. Suite 2000	Rainier Mall/0611-017	Standard (2 Weeks) RUSH Rush charges authorized by:
City, State, ZIP Sesttle, Washington 98102	REMARKS	
Phone # 206-306-1900 Fax # 206-306-1907	CVOC = PURTUE, U-DIE, US-1,2-DCE, advC	SAMPLE DISPOSAL Dispose after 30 days Return samples
		Will call with instructions

		7	<u> </u>		<u> </u>			·			 			Wil	l call w	ith ins	tructions	
								<u></u>	T		A	NALYS	ES REG	UESTEI	D C			
Sample 1D	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jars	NWTPH-Dx	NWTPH-Cx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	5 METHY	#AHB .			Notes	***************************************
BOA -05	B09	5	nl A	1/25/19						m	\S	5	N TCA	Ag				
609-10					<u> </u>	Soil	5		,				8	(9)	-	RIN	ग्टाट हा	XF.
BA-12.5	<u> </u>		0	1	0825.					-						<u> </u>	NT YAG	en
909-15		12.3	03		0835				-			***************************************					*	أنب
		15	W		0840			- ,		v====							•	•
309-175		17.5	ß		0845		\dashv									,		7
304-20		20 0									\times						·	-
09-25		P			850				-		X							_
	*:	25 0	7		2855													
04-30		30 0	OIT		1900	11	11										*	
77-05	B07	5	······································			++	+++				<u> </u>	,			Ť		-	7
07-09	L	- 1			025		<u> </u>					Sa	mples	receive	od at	3	o <u>C</u> .	1
		(0)		<u> </u>		<u> </u>								·		-		-

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC.DOC

7C.	SIGNATURE Relinquished by:	PRINT NAME			
æ	La contraction of the second		COMPANY	DATE	TIME
29	Lecoived by:	Mistle	Form Earthy.	1125/. \$	(42.5
	Relinquished by:	+ V/N +	FB/	1/26/10	10:20
	Received by:				10-20
1					

Send Report to Suzy Stumpf: Grayson Fish	SAMPLE CHA OF CUSTODY ME 01 26	18) VS5/ 1 Page# 2 of 3/A00
Company SoundEarth Strategies, Inc. Address 2811 Fairview Avenue E, Suite 2000	PROJECT NAME/NO. PO# Rainier Mall / 0611-017	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102 Phone # 206-306-1900 Fax # 206-306-1907	REMARKS LVOCS = PLE, TCE, 1,1-DCE, Cis-1, 2-OCE and VC	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

1			T	T	T	7		T								ith instructions
										7	A	NALYSI	S REQU	JESTEI)	· · · · · · · · · · · · · · · · · · ·
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH.Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	by 8270				
								Ř	MAN	TEX	VOCs	SVOCs			-	Notes
B07-12,5 B07-18 B07-175	BUT	12.5	<u> </u>	1/19/18		/ 1						മ				
BUT-18		1.	2	1/1/1/0	1035	50:1	5				X					
307-175	 	 	13		1108.	1										
607-20			4		··········		-									
B07-25			··		1110		_			****	×					
B07-30			5	_	1115	_	1									
808-05	808		<u> </u>		1120									,		
608-10	***			1	1335											
BU 8-12.5					1345						.	-				
608-15		. 1			353	4										
9 3 5		/5 <u>2</u>	0		[400]	الم	>				又十					*

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNA'FURE	-	171-11111111111111111111111111111111111		
Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
Received by: Luty	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spent Easth	1/23/.3	1320
Relinquished by:	I WIN H	<u> </u>	1/26/18	10:20
Received by:				Annual Property and American Street, S

ME 01/26/18 SAMPLE CHA' Liz Forbis DF CUSTODY SAMPLERS (signature) Send Report to Suzy Stumpf, Grayson Fish Page # PROJECT NAME/NO. Company SoundEarth Strategies, Inc. PO# RUSH Rainier Mall / 0611-017 Address 2811 Fairview Avenue E, Suite 2000 REMARKS PLE, TLE, 17 1 DLE, C3-1,2-DLE ndVL City, State, ZIP Seattle, Washington 98102 Phone #___ 206-306-1900 Fax# 206-306-1907

1				<u> </u>	1							***************************************		L		enomon accions
									<u> </u>	T		NALYS	ES REQ	UESTI	D	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jars	NW/TPH.Dx	NWTPH-Gx	BTEX by 8021B	ZVOCs by 82602	SVOCs by 8270		,		Notes
808-17.5	509	1.2.5	21	1/2/18	1905	Soil	5			<u> </u>	7	50				
609-20	1	20	22		1410	1					\					
B08-25		25	23		1420					<u> </u>	X					
B08-30		30	24		1425										ļ	
808-35			ļ 25		1430							~				
B08-45			26		1505									···-		
808-50			<u> </u>	1	1530		1				Statement of the statem	***************************************			ļ	,
Particular the said of the sai	Acres (Agree)										******					
-		Charles of Charles on the Charles							<i>E</i>	1/2	72		-			
													*	To the same of the	***************************************	
	,											. [1 Andrewson of the	Production of the state of the	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COCDOC

SIGNATURE	DDINE MANGE		***************************************	,
Relinquished by	PRINT NAME	COMPANY	DATE	TIME
Received by:	- Charles of the Contraction	Fand Falls	1/25/35	1000
Relinquished by:	MIN (7	E.B.	1/26/18	1/2:20
Received by:			1	
1			***************************************	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801370 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish SOU0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801370 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
801370 -01	B06-05
801370 -02	B06-10
801370 -03	B06-12.5
801370 -04	B06-15
801370 -05	B06-17.5
801370 -06	B06-20
801370 -07	B06-25
801370 -08	B06-30
801370 -09	B06-35
801370 -10	B06-40
801370 -11	B06-45
801370 -12	B06-50
801370 -13	B11-10
801370 -14	B11-15
801370 -15	B11-20
801370 -16	B11-25
801370 -17	B06-B11-Comp

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-15 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 01/29/18 Lab ID: 801370-04

Date Extracted: 01/29/18 Lab ID: 801370-04
Date Analyzed: 01/29/18 Data File: 012924.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 100 65 139

< 0.025

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene 0.47
Trichloroethene 0.19

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-20 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_20180126

Date Extracted: 01/20/18 Leb ID: 201370.06

Lab ID: Date Extracted: 01/29/18 801370-06 Date Analyzed: 01/29/18 Data File: 012914.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 142 Toluene-d8 103 55 145 4-Bromofluorobenzene 101 65 139

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride<0.05</th>1,1-Dichloroethene<0.05</td>cis-1,2-Dichloroethene<0.05</td>Trichloroethene<0.02</td>Tetrachloroethene<0.025</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

01/29/18 Lab ID: 08-0209 mb Date Extracted: Date Analyzed: 01/29/18 Data File: 012908.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 100 55 145

 1,2-Dichloroethane-d4
 102
 62
 142

 Toluene-d8
 100
 55
 145

 4-Bromofluorobenzene
 98
 65
 139

 Concentration

 $\begin{array}{lll} \mbox{Compounds:} & \mbox{mg/kg (ppm)} \\ \mbox{Vinyl chloride} & <0.05 \\ \mbox{1,1-Dichloroethene} & <0.05 \\ \mbox{cis-1,2-Dichloroethene} & <0.05 \\ \mbox{Trichloroethene} & <0.02 \\ \mbox{Tetrachloroethene} & <0.025 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801370

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	67	61	10-138	9
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	84	10-160	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	99	98	25-135	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	99	99	21-139	0
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	97	98	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	93	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	72-113
Trichloroethene	mg/kg (ppm)	2.5	95	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	94	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

La	Forters, Lo	sen 5	,		SAMP	LERS (s	ignatur	e)	5	_1		2			Page#	of 2
Send Report to Suz	y Stampf. Gr	ayson Fi	ish	<u></u>	PROJE	CT NA	ME/NO		#	2		?O#	\neg	Stan	dard (2	ROUND TIME Weeks)
CompanyS	oundEarth Str	<u>ategies. I</u>	nc.		- ,	Rainie	r Mall	0611-	017					.	harges	authorized by:
Address281	1 Fairview Av	enue E.	Suite :	2000	REMA	RKS' A		_/~					_			E DISPOSAL
City, State, ZIP_S	eattle. Washir	gton 981	02		VC)	RKS 🚒	حالات	ş≖(ra	æ, tl	E, 4,6	-DCE,	Cradit	ME.	Disp	ose afte	r 80 days
Phone # 206-306	-1900 Fax	:# <u>20</u> /	<u>6-306-</u>	1907					-			· · · · · · · · · · · · · · · · · · ·			rn sam call wit	h instructions
PROTECT		r I				<u> </u>					A	NALYSE	s req	UESTED) .	
	endal-stimmers reserved		*		•		,	Dx	ğ	8021B	8280 *	0.58	·			* 0.4
Sample ID	Sample Location	Sample Depth	Lab ID	Data Sampled	Time Sampled	Matrix	# of Jars	W.TPH.D	WTPH-G	EX by 8	OCs by 8	OCs by				Notes
			<u>T.</u>	1			************			8	て	8	·····)
		1	1	1					!		v] 1		1 1	1 1	* *

	Sample ID	Loc	ation	Depth	שו	Sampaso	Sampeu	١.		NWT	I E	TEX 5	ల్గ	ő		,	'	Notes
	;									,		T AS	U	1 6	<u> </u>	<u> </u>		
-	el ac	B) 6	5	OI AR	1/20/18	caus	501	5		·			٠.				
1	366-06		1	10	DJ I		6950		11									
L	06-12.6			12.5	13		0955						(3)			1		EBF 1/3.1
	00-12-3		<u> </u>	15	M		1005				<u> </u>		×					
E	06-15			17.5	15	1 .	1010											
H	306-1113			20	16		(015						X	ů	,			
P	06-15 306-17.5 506-20 306-25			25	of		1036		1	and the second of the second of the second								. ^ .
H	506-23	·		30	Œ		1090			:	: :		•	Sa	mnles	Tarai	e hav	2 00
L	566-30			35	M		1050.										. "	
	366-30 306-35 306-40	+-	4	40	10	110	1105	V	9		,						-	***************************************

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 385-8282 06) 283-5044 C\000EDOG

9	••		* * * * * * * * * * * * * * * * * * * *			
_	SIGNATURE	وندر سيسه در مهاد داخ ۱۱ د د د د و د د د	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by		Loga Schuruck	Sandted.	1/26/18	1428
,	Received by:	-	MMH	FBI	1/25/18	1425
1	Ralinquished by:					44.
f	Received by:	,				•
Ł.,				· · · · · · · · · · · · · · · · · · ·		

Send Report to San	1370 Todas,	ravson	5 <u>Fish</u>	· :		PLEKS	(signat	ure)	gg Kray	Bref			<u> </u>			of 2 ID TIME
	oundEarth St				– PROJ	ECT N. Rain	AME/N ier Mal	4	.017			PO#		undard USI	(2 Weel	ca)
City, State, ZIP_S	11 Fairview A eattle. Washi -1900 Fa	ngton 98			REM	ARKS ,		1.9		;			D R	SAMI ispose a sturn sa	PLE DIS fter 30 d mplés	SPOSAL
						T.	T				A	NALYSES	REQUEST	ED		***************************************
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#of Jace	WIPH.D.	WIPEG	BTEX by 8021B	Cs by 8260	SVOCe by 8270				Notes
		,			,			24	Z	BT	3	SV				
306-45	B06	45	nħ€	426/18	1115	501	5		<u> </u>	ļ			·			
306-50	4		21		1120		1-1				B			_	RW	Per Eist 1131
311-10	Bit	10	13		1250				,			,			-	(15)
34-15		15	F		1255					1						· · · · · · · · · · · · · · · · · · ·
11-20		20	5		1305	1				<u> </u>			*******			***************************************
BN-25	خا ا	2.5	64	. ناب	1310	+	1.									
06-BII-COMP	806-8A	-	17	1/26/18	1330	L	1					•				
									· ·	,	27 - 617					
						4	SUF	1/26	118		-					
				***************************************								<u> </u>				
riedman & Bruya, Is	ec l	SIG	MATE	TRR.	· · · · · · · · · · · · · · · · · · ·	**************************************	T G G	NT NAI				AA KA	ARTY		-	
12 16th Avenue Wes			12	· · · · · · · · · · · · · · · · · · ·	, ,	Logo		down	alli		+ =	COMP Line			ate 26/18	TIME.
attle, WA 98119-202	Received.	W. 1/	WA	. , ,		V	IN		** ** ***			B1	15	11/2	- Pa	1425
h. (206) 285-8282	Relinquis	hed by:									†			-175	6/12	100

Received by:

VCX (206) 283-5044

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801370 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher

SOU0207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801370 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
801370 -01	B06-05
801370 -02	B06-10
801370 -03	B06-12.5
801370 -04	B06-15
801370 -05	B06-17.5
801370 -06	B06-20
801370 -07	B06-25
801370 -08	B06-30
801370 -09	B06-35
801370 -10	B06-40
801370 -11	B06-45
801370 -12	B06-50
801370 -13	B11-10
801370 -14	B11-15
801370 -15	B11-20
801370 -16	B11-25
801370 -17	B06-B11-Comp

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-12.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 02/01/18 Lab ID: 801370-03 Date Analyzed: 02/02/18 Data File: 020221.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
101	57	121
101	63	127
97	60	133
	101 101	101 57 101 63

 $\begin{array}{cccc} & & & & & & & & \\ Concentration & & & & & \\ Mode & & & & & \\ Winyl \ chloride & & & & & \\ 1,1-Dichloroethene & & & & \\ Concentration & & & \\ mg/kg \ (ppm) & & & \\ & & & & & \\ 1,1-Dichloroethene & & & & \\ Concentration & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B06-50 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 02/01/18 Lab ID: 801370-12

Date Extracted:02/01/18Lab ID:801370-12Date Analyzed:02/02/18Data File:020222.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 57 121

1,2-Dichloroethane-d4 101 57 121
Toluene-d8 102 63 127
4-Bromofluorobenzene 97 60 133

Concentration

Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05
Trichloroethene <0.02
Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B11-15 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18

Lab ID: 801370-14 Date Extracted: 02/02/18 Date Analyzed: 02/02/18 Data File: 020218.D Matrix: Instrument: Soil GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	101	55	145
4-Bromofluorobenzene	98	65	139

Concentration

Compounds: mg/kg (ppm) Dry Weight

Vinyl chloride < 0.05 1,1-Dichloroethene < 0.05 cis-1,2-Dichloroethene < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Upper

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	02/02/18	Lab ID:	08-0215 mb2
Date Analyzed:	02/02/18 10:35	Data File:	020205.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

Surrogates:% Recovery:Limit:Limit:1,2-Dichloroethane-d410262142Toluene-d8102551454-Bromofluorobenzene9765139

Concentration

Compounds: mg/kg (ppm) Dry Weight

 $\begin{array}{lll} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & <0.05 \\ Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies

Date Received: Not Applicable Project: SOU_0611-017_20180126

Date Extracted:02/01/18Lab ID:08-0215 mbDate Analyzed:02/01/18Data File:020121.DMatrix:SoilInstrument:GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	Upper
% Recovery:	Limit:	Limit:
102	62	142
100	55	145
96	65	139
	102 100	% Recovery: Limit: 102 62 100 55

< 0.05

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05

Trichloroethene <0.02
Tetrachloroethene <0.025

cis-1,2-Dichloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801370

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-12 (Matrix Spike)

	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	40	39	10-138	3
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	58	56	10-160	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	71	25-135	4
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	73	70	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	0.024	71	67	20-133	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
Trichloroethene	mg/kg (ppm)	2.5	98	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	LIZE	370 orlean, Lo	men 5) Earlin		SAMP)	ERS (ignatu	(e)	$\mathcal{D}_{\mathbf{z}}$	nA.			**		Page#_	of 2
	MILE COLUMN	odEarth Str	ntegies. I	nc.	•	PROJE	CT NA Rainie	ME/NO	De la	017			PO#	<u></u>	Stau	ndàrd (2 Weeks) 2 May 2 May 3 authorized by:
(Address 2811 City, State, ZIP Sea Phone # 206-306-1		gton 981		-	REMA VC)	rks 🕦	کس د	ş = (P∂	E,TO	E, 1,1			.	Disg Reta Will	pose aft um san l call wi	LE DISPOSAL er 30 days aples ith instructions
	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	CCs by 8260	70Cs by 8270	ES REQ	UESTEI 		Notes
-											À	V	62				
	B66-06	B06	5	MAE	1/20/18	1 .	Sol	5.	**	,	٠.					<u></u>	
	B06-10	4 .	10	12		6950	<u> </u>	. 1			<u>, , , , , , , , , , , , , , , , , , , </u>			*			
	806-12.5		125	10		0955	-	<u> </u>				0		ļ			FUN PER EBF 1/31
	B06-15		15	04		1005	<u> </u>					X	Ţ				
	B06-17.5	· (17.5	165.		1010	<u> </u>	 			***************************************	\	-				
	B06-20		20	06		(015					•	A					
٠	B06-25		25	07		1030	<u> - </u>	<u> </u>				*	- <u>i</u>				
	B66-30		30	00	<u> </u>	1040		<u> </u>	;	:		·	_Sa	mples	recei	ved a	2 00
	B06-35		35	09		1050.	Ц	14					• • •				
	B04-40	1.4	40	10	ll q	itos	V	9	,								. `

Friedman & Bruya, Inc. 3012 16th Avenue West Scattle, WA 98119-2029

Ph	(206) 285-8282
	b6) 283-5044
	C COCDOC
• •	- 不成権

SIGNATURE	PRINT NAME	COMPANY	LDATE TIME
Relinfuished by	Logar Schwarch	Sandted.	1/26/18 1428
Heceived by: Oluli	HMH	FB1	1/26/18 1425
Relinquished by:			, as
Received by:			
****		**	

	Send Report to San	Torbes,	Logi	S Fish	S	AMPLI SAM		(signati		STOI	Y .	MO	26	18				(ot2A	14/ 1/4/	
	Company So Address 281	undEarth Si I Fairview A	th Strategies, Inc.				PROJECT NAME/NO. PO# Rainier Mall/0611-017 REMARKS See Parl for **								TURNAROUND T Standard (2 Weeks) RUSH THEY Rush charges authorize			ks) . Orized by:	zed by:	
•	City, State, ZIP Se Phone # 206-306-	7 t	ngton 98 x # <u>2</u> 0		3-1907 T	-	,	Sec. 16		** **			*		Disg Reta Will	ose afi urn san call w	ter 30 o oplés	SPOSAL lays tructions		
; , ,	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jare	WEB.	NWTPH-Gz	X by 8021B	Ca by 8280	CCs by 8270	ES REG	UESTEI	A	A THE STATE OF THE	Notes	- The state of the	
	B06-45	B06	45	n#=	Veren			5	Ž			Č	S. O.							
	B06-S0	1000	50	121	426/18	1115	Son	1				8			1		RUN	PER EST		
	BU-10	Bil		13		1250		 	,						 			(181)		
	BU-15		ک):	β¥		1255				<u> </u>		8								
	91-20		20	15		1305		1												
	BN-25	خف		164		1310	<u> </u>	<u> </u>											***************************************	
	BOG-BIL-COMP	<u>B06-811</u>		17	1/2618	1330	ئىل.	1						***************************************					:	
								SIF	1/26	10			,			alii Sinti		•		
			,		-													*	·	
1	riedman & Bruya, In		SIG	NATI)re		······································	PRIN	NT NA	 Mæ			COV	(PAN	v	Tni	TE	TIME.		
	012 16th Avenue West	16th Avenue West Religioushed by lan Loga Salamachi				=	ستنور (- 40,4	· · · · · · · · · · · · · · · · · · ·		5/1 8	1425								
	eattle, WA 98119-202		₩ //	WI			シ	IN				1	BI			1.7	112	1425		
_	h. (206) 285-8282	Relinquie Received			- ×	· ·		:	***************************************			Ť			· ·	·			v	
V	ax (206) 283-5044 Ms\coc\cocnoc	veceived)	.y:		·		dida		*			-					·	*		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the results from the testing of material submitted on January 26, 2018 from the SOU_0611-017_ 20180126, F&BI 801371 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish SOU0201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801371 project. Samples were logged in under the laboratory ID's listed below.

SoundEarth Strate	<u>gies</u>
TB08-05	
TB08-10	
TB08-12.5	
TB08-15	
TB08-17.5	
TB08-20	
TB08-25	
TB08-30	
TB08-35	
TB08-40	
TB08-15 TB08-17.5 TB08-20 TB08-25 TB08-30 TB08-35	

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB08-12.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 01/29/18 Lab ID: 801371-03 Date Analyzed: 01/29/18 Data File: 012915.D Matrix: Instrument: Soil GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
98	89	113
101	64	137
99	81	119
	98 101	% Recovery: Limit: 98 89 101 64

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene 0.21
Trichloroethene 0.55
Tetrachloroethene 0.46

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB08-17.5 Client: SoundEarth Strategies Date Received: Project: SOU_0611-017_ 20180126 01/26/18 Date Extracted: 01/29/18 Lab ID: 801371-05 Date Analyzed: 01/29/18 Data File: 012917.D Matrix: Instrument: Soil GCMS9

Units: mg/kg (ppm) Dry Weight Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
101	89	113
101	64	137
100	81	119
	101 101	% Recovery: Limit: 101 89 101 64

Concentration mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene 0.45
Trichloroethene 1.7
Tetrachloroethene 24

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB08-25 Client: SoundEarth Strategies
Date Received: 01/26/18 Project: SOU_0611-017_ 20180126
Date Extracted: 01/29/18 Lab ID: 801371-07

Date Extracted: 01/29/18 Lab ID: 801371-07
Date Analyzed: 01/29/18 Data File: 012916.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 89 113 Toluene-d8 100 64 137 4-Bromofluorobenzene 99 81 119

Concentration
mg/kg (ppm)

Vinyl chloride
1,1-Dichloroethene
cis-1,2-Dichloroethene
Trichloroethene
Tetrachloroethene

<0.05

<0.05

<0.05

<0.02

<0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

01/29/18 Lab ID: 08-0209 mb Date Extracted: Date Analyzed: 01/29/18 Data File: 012908.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 62 142 Toluene-d8 100 55 145 4-Bromofluorobenzene 98 65 139

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05
cis-1,2-Dichloroethene <0.05

Trichloroethene <0.02 Tetrachloroethene <0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801371

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	67	61	10-138	9
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	84	10-160	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	99	98	25-135	1
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	99	99	21-139	0
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	97	98	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	93	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	72-113
Trichloroethene	mg/kg (ppm)	2.5	95	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	94	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

cena keport to Si		rayson	Fish.		1		S (şiend NAME)	1 1				',				AROUND TIME
	SoundEarth S	* .			- 7							PO#		Sta	ndard (* SH2	2 Weeks)
Address 28	311 Fairview A	venue E	. Suite	2000			inier M	ş						Rosh	Charges	s authorized by:
City, State, ZIP	Seattle, Washi	ngton 98	102		- KEM	arks \	*	عد د (۱	PCE, TO	CE 17	やに	بالتعمل	-ME	Die	SAMP	LE DISPOSAL ter 30 days
Phone # 206-30	6-1900 Fa	x# <u>2</u> (<u>06-306</u>	-1907		<i>(C)</i>	*CU	my	u er	F 2				Ret	urn san	er ou days oples ith instructions
					<u> </u>				<u> </u>		A	NALYS	es rec	QUESTE	D	
Sample ID	Sample Location	Sample Depth	Lab	Date Sampled	Time Sampled	Mat	rix # o Jar		NWTPH-Gx	BTEX by 8021B	VOCe by 8260	SVOCs by 8270	To grant Angle A. A. Landa and Commonwealth of the Commonwealth of	The state of the s		Notes
TB62-US	TBOS	5	0/4	V/ZGRE	(100	Sof	t 5	_	+	<u> </u>	V	<u> </u>			<u> </u>	
B08-10		(0	02 1		1105			_	+		Ŕ			-	<u> </u>	
B08-12 S		125	03		illo		1:1-			 	2				_	
B08-15		15	04.		llis				-	 -	 ^-	<u> </u>		1	,	
B08-17.5		17.5	05		1120	 		1			X			<u> </u>		
308-20		20	06		1125		11	1								-
B0875		25	O7		1130				54 .		(<u>)</u>		. , ,			
							2 1	•						r 3		1

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

TB08-35

PORMS\COC\COCDOC

35

40

10

1145

ilss

SIGNAPORE Religioushed by:	PRINT NAME	COMPANY	DATE	1 2523
Received by	Loga Schunder	SandFach		11ME / 423
Relinquished by:	VINH	F-81	1/26/18	14-25
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2018

Liz Forbes, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Forbes:

Included are the additional results from the testing of material submitted on January 26, 2018 from the $SOU_0611-017_20180126$, F&BI 801371 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Logan Schumacher, Grayson Fish

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 26, 2018 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0611-017_ 20180126, F&BI 801371 project. Samples were logged in under the laboratory ID's listed below.

SoundEarth Strategies
TB08-05
TB08-10
TB08-12.5
TB08-15
TB08-17.5
TB08-20
TB08-25
TB08-30
TB08-35
TB08-40

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Extracted: 02/01/18 Lab ID: 801371-02
Date Analyzed: 02/02/18 Data File: 020223.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 57 121 Toluene-d8 102 63 127 4-Bromofluorobenzene 97 60 133

< 0.05

Concentration
Compounds: mg/kg (ppm)

Vinyl chloride <0.05
1,1-Dichloroethene <0.05

 $\begin{array}{ll} Trichloroethene & <0.02 \\ Tetrachloroethene & <0.025 \end{array}$

cis-1.2-Dichloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TB08-20 Client: SoundEarth Strategies

Date Received: 01/26/18 Project: SOU_0611-017_ 20180126

Date Extracted: 02/01/18 Lab ID: 801371-06

Date Applyized: 02/01/18 Date File: 02/0127 D

Date Analyzed: 02/01/18 Data File: 020127.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 142 Toluene-d8 102 55 145 4-Bromofluorobenzene 98 65 139

Concentration mg/kg (ppm)

 $\begin{array}{lll} Vinyl \ chloride & <0.05 \\ 1,1\text{-Dichloroethene} & <0.05 \\ cis-1,2\text{-Dichloroethene} & 0.064 \\ Trichloroethene & 0.17 \\ Tetrachloroethene & 2.0 \\ \end{array}$

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0611-017_ 20180126

02/01/18 Lab ID: Date Extracted: 08-0215 mb Date Analyzed: 02/01/18 Data File: 020121.D Instrument: Matrix: Soil GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

Toluene-d8 100 55
4-Bromofluorobenzene 96 65

Concentration
Compounds: mg/kg (ppm)

 $\begin{array}{lll} \mbox{Vinyl chloride} & <0.05 \\ 1,1\mbox{-Dichloroethene} & <0.05 \\ \mbox{cis-1,2-Dichloroethene} & <0.05 \\ \mbox{Trichloroethene} & <0.02 \\ \mbox{Tetrachloroethene} & <0.025 \\ \end{array}$

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/18 Date Received: 01/26/18

Project: SOU_0611-017_ 20180126, F&BI 801371

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 801370-12 (Matrix Spike)

	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	40	39	10-138	3
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	58	56	10-160	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	74	71	25-135	4
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	73	70	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	0.024	71	67	20-133	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	47-128
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72-113
Trichloroethene	mg/kg (ppm)	2.5	98	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ${\it ca}$ The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

cena Keport to S		rayson	Fish.				(şienát VAMBA	1 1				,				AROUND TIME
`	SoundEarth S	•			- 7							PO#		Sta	ndard (2 Weeks)
Address 28	311 Fairview A	lvenue E	. Suite	2000			nier Mal	,						Rosh	Charges	authorized by:
City, State, ZIP	Seattle, Washi	ington 98	102		- KEM	AKKS.	* Livo	CS (P	ζΕ ,τα	ارا علا	-D&E	, K12-1,3	-NE	Dries	SAMP	LE DISPOSAL er 30 days
Phone # 206-30	6-1900 Fa	x# <u>2</u>	06 <u>-306</u>	-1907	+ \	(2)	*cio	n pe	v 83	F 2	Language of the Control of the Contr		,	Ret	orn san	er ou days uples th instructions
	YAANAMAHAA					T		<u> </u>			A	NALYS	es rec	UESTEI)	
Sample ID	Sample Location	Sample Depth	Lab	Date Sampled	Time Sampled	, Matri	x # of Jare	NWTPH-Dx	NWTPH-Gr	BTEX by 8021B	VOCe by 8260	SVOCs by 8270	And the state of t	- A - A - A - A - A - A - A - A - A - A		Notes
TB62-US	TBOS	5	0/4	i/zefe	1100	Soft	5	-	 		V			·	<u> </u>	
B08-10		(0	02 1		llos.	1		 	 		Ö		***************************************	<u> </u>		
B08-12 S		125	03		1110		+		-		×			<u> </u>		
B08-15	*	15	04		tlis							,			,	
B08-17.5		17.5	05		1120	-					X					
308-20		20	06		1125		 						··			
B08-25		25	O7		1130				54 £		$\langle \mathbf{x} \rangle$, ,,		44	
		**************************************					3 E	€ 1		1		•		r	· i	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

TB08-35

PORMS\COC\COCDOC

35

40

10

1145

ilss

SIGNAPORE Religioushed by:	PRINT NAME	COMPANY	DATE	1 2523
Received by	Loga Schunder	Sand Face		11ME / 423
Relinquished by:	VINH	F-81	1/26/18	14-25
Received by:				

3322 South Bay Road NE • Olympia, WA 98506-2957

March 9, 2020

John Funderbuck Urban Environmental Partners, LLC 2324 First Avenue, Suite 203 Seattle, WA 98121

Dear Mr. Funderbuck:

Please find enclosed the analytical data report for the Rainier Mall Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

3322 South Bay Road NE Conder Ph: 360-352-2110 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154 Olympia, WA 98506 John The Buffax: 360-352-4154	f
Briandino	
Olympia, WA 98506 John The Signal Standison Date: 3/9/20 Page: Of Project Manager: Brian Diton John Funder	ourk
Address: 2324 First Avenue Juite 203 Project Name: Project Name: Mail	***************************************
City: Seattle State: WA Zip: 98121 Location: 4208 Rainler Ale S City, State: Seattle	WA
Phone: 206 - 229 - 6804 Fax: Collector: Brian Ditton Date of Collection: 3/4	/20
Client Project # Email: johnf@ uepconsulting.com	
Sample Number Depth Time Type Container Type Type Type Type Type Type Type Type	es
1 UBIZ-5 5 920 S XX XX XX XX XX XX XX	
2 UBIZ-14 14 935 S XX X	
3 UBIZ-ZZ 2Z 1000 S XXX X	
4 USI2-37 37 1045 S XX X	
5 VB12-46 46 1140 S XX X	
6 UB16-6 6 1325 S XX X X LAS	
7 UB16-14 14 1340 S XX X	
8 UB16-29 29 1410 5 XX X Priorit	4
9 UB 16-29.5 29.5 1415 S XX X HOL	21
10 MW16-20200304 ~28' 340 W XX X	
11	
12	
13	
14	
15	
16	
17	
Relinquished by: Date / Time Received by: Date / Time Sample Receipt Remarks:	
Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Cooler Temp. Sample Temp. Cooler Temp.	
Relinquished by: Date / Time Received by: Date / Time Total Number of	HR 5-DAY

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method Blank	UB12-5	UB12-14	UB12-22	UB12-37	UB12-46
Date Sampled	Reporting	N/A	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020
Date Analyzed	Limits	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020
•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	0.34	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	2.1	0.17	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	0.29	0.33	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	17 E	0.16	0.038
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB12-5	UB12-14	UB12-22	UB12-37	UB12-46
		Blank					
Date Sampled	Reporting	N/A	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020
Date Analyzed	Limits	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020	3/4/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.03	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.10	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		77	87	88	86	83	83
1,2-Dichloroethane-d4		93	106	109	108	103	100
Toluene-d8		118	87	86	84	85	84
4-Bromofluorobenzene		68	84	96	96	94	95

[&]quot;E" Indicates reported result is an estimate because it exceeded the calibration range.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;nd" Indicates not detected at listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB12-46	UB16-6	UB16-14	UB16-29	
1		Dup				
Date Sampled	Reporting	N/A	3/4/2020	3/4/2020	3/4/2020	
Date Analyzed	Limits	3/4/2020	3/4/2020	3/4/2020	3/4/2020	
•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	
Chloromethane	0.06	nd	nd	nd	nd	
Vinyl chloride	0.02	nd	nd	nd	nd	
Bromomethane	0.09	nd	nd	nd	nd	
Chloroethane	0.06	nd	nd	nd	nd	
Trichlorofluoromethane	0.05	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	
Methylene chloride	0.02	nd	nd	nd	nd	
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	
1,1-Dichloroethane	0.03	nd	nd	nd	nd	
2,2-Dichloropropane	0.05	nd	nd	nd	nd	
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	
Chloroform	0.02	nd	nd	nd	nd	
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	
Carbon tetrachloride	0.03	nd	nd	nd	nd	
1,1-Dichloropropene	0.02	nd	nd	nd	nd	
Benzene	0.02	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	
1,2-Dichloropropane	0.02	nd	nd	nd	nd	
Dibromomethane	0.04	nd	nd	nd	nd	
Bromodichloromethane	0.02	nd	nd	nd	nd	
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	
Toluene	0.10	nd	nd	nd	nd	
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	
Tetrachloroethene (PCE)	0.02	0.098	nd	0.028	nd	
1,3-Dichloropropane	0.05	nd	nd	nd	nd	
Dibromochloromethane	0.03	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	
Chlorobenzene	0.02	nd	nd	nd	nd	
Ethylbenzene	0.03	nd	nd	nd	nd	
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	
Total Xylenes	0.15	nd	nd	nd	nd	
Styrene	0.02	nd	nd	nd	nd	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB12-46	UB16-6	UB16-14	UB16-29	
•		Dup				
Date Sampled	Reporting	N/A	3/4/2020	3/4/2020	3/4/2020	
Date Analyzed	Limits	3/4/2020	3/4/2020	3/4/2020	3/4/2020	
,	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	nd	nd	
Isopropylbenzene	0.05	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	
Bromobenzene	0.03	nd	nd	nd	nd	
n-Propylbenzene	0.03	nd	nd	nd	nd	
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	
2-Chlorotoluene	0.03	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	0.03	nd	nd	nd	nd	
4-Chlorotoluene	0.03	nd	nd	nd	nd	
tert-Butylbenzene	0.03	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	0.03	nd	nd	nd	nd	
sec-Butylbenzene	0.03	nd	nd	nd	nd	
p-Isopropyltoluene	0.03	nd	nd	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	
n-Butylbenzene	0.03	nd	nd	nd	nd	
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	
Naphthalenes	0.10	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		87	82	82	85	
1,2-Dichloroethane-d4		104	107	102	107	
Toluene-d8		85	85	86	82	
4-Bromofluorobenzene		92	89	115	93	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	oike Sample Id	lentification:	UB16-6				
	Spiked Conc. (mg/kg)	MS Response (mg/kg)	MSD Response (mg/kg)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Dichlorodifluoromethane	0.25	0.20	0.30	80	120	40.0	65-135	R
Chloromethane	0.25	0.24	0.21	96	84	13.3	65-135	
Vinyl chloride	0.25	0.19	0.22	76	88	14.6	65-135	
Bromomethane	0.25	0.21	0.24	84	96	13.3	65-135	
Chloroethane	0.25	0.18	0.21	72	84	15.4	65-135	
Trichlorofluoromethane	0.25	0.27	0.21	108	84	25.0	65-135	
1,1-Dichloroethene	0.25	0.17	0.22	68	88	25.6	65-135	
Methylene chloride	0.25	0.17	0.17	68	68	0.0	65-135	
Methyl tert- Butyl Ether (MTBE)	0.25	0.26	0.26	104	104	0.0	65-135	
trans -1,2-Dichloroethene	0.25	0.24	0.24	96	96	0.0	65-135	
1,1-Dichloroethane	0.25	0.26	0.26	104	104	0.0	65-135	
2,2-Dichloropropane	0.25	0.19	0.19	76	76	0.0	65-135	
cis -1,2-Dichloroethene	0.25	0.28	0.26	112	104	7.4	65-135	
Chloroform	0.25	0.25	0.27	100	108	7.7	65-135	
1,1,1-Trichloroethane (TCA)	0.25	0.24	0.22	96	88	8.7	65-135	
Carbon tetrachloride	0.25	0.17	0.18	68	72	5.7	65-135	
1,1-Dichloropropene	0.25	0.26	0.27	104	108	3.8	65-135	
Benzene	0.25	0.28	0.28	112	112	0.0	65-135	
1,2-Dichloroethane (EDC)	0.25	0.29	0.29	116	116	0.0	65-135	
Trichloroethene (TCE)	0.25	0.28	0.28	112	112	0.0	65-135	
1,2-Dichloropropane	0.25	0.22	0.24	88	96	8.7	65-135	
Dibromomethane	0.25	0.24	0.26	96	104	8.0	65-135	
Bromodichloromethane	0.25	0.17	0.17	68	68	0.0	65-135	
cis-1,3-Dichloropropene	0.25	0.19	0.17	76	68	11.1	65-135	
Toluene	0.25	0.20	0.22	80	88	9.5	65-135	
Trans-1,3-Dichloropropene	0.25	0.18	0.18	72	72	0.0	65-135	
1,1,2-Trichloroethane	0.25	0.31	0.32	124	128	3.2	65-135	
Tetrachloroethene (PCE)	0.25	0.29	0.32	116	128	9.8	65-135	
1,3-Dichloropropane	0.25	0.30	0.29	120	116	3.4	65-135	
Dibromochloromethane	0.25	0.17	0.17	68	68	0.0	65-135	
1,2-Dibromoethane (EDB)	0.25	0.300	0.29	120	116	3.4	65-135	
Chlorobenzene	0.25	0.26	0.28	104	112	7.4	65-135	
Ethylbenzene	0.25	0.26	0.28	104	112	7.4	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.18	0.15	72	60	18.2	65-135	
Total Xylenes	0.75	0.82	0.83	109	111	1.2	65-135	
Styrene	0.25	0.29	0.27	116	108	7.1	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	ike Sample Id	lentification:	UB16-6				
	Spiked Conc. (mg/kg)	MS Response (mg/kg)	MSD Response (mg/kg)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Bromoform	0.25	0.23	0.22	92	88	4.4	65-135	
Isopropylbenzene	0.25	0.25	0.25	100	100	0.0	65-135	
1,1,2,2-Tetrachloroethane	0.25	0.19	0.15	76	60	23.5	65-135	
Bromobenzene	0.25	0.17	0.14	68	56	19.4	65-135	S
n-Propylbenzene	0.25	0.19	0.14	76	56	30.3	65-135	S
1,2,3-Trichloropropane	0.25	0.19	0.17	76	68	11.1	65-135	
2-Chlorotoluene	0.25	0.24	0.18	96	72	28.6	65-135	
1,3,5-Trimethylbenzene	0.25	0.17	0.22	68	88	25.6	65-135	
4-Chlorotoluene	0.25	0.21	0.22	84	88	4.7	65-135	
tert-Butylbenzene	0.25	0.26	0.23	104	92	12.2	65-135	
1,2,4-Trimethylbenzene	0.25	0.28	0.24	112	96	15.4	65-135	
sec-Butylbenzene	0.25	0.30	0.26	120	104	14.3	65-135	
Isopropyltoluene	0.25	0.33	0.27	132	108	20.0	65-135	
1,3-Dichlorobenzene	0.25	0.30	0.26	120	104	14.3	65-135	
1,4-Dichlorobenzene	0.25	0.32	0.27	128	108	16.9	65-135	
n-Butylbenzene	0.25	0.28	0.25	112	100	11.3	65-135	
1,2-Dichlorobenzene	0.25	0.33	0.28	132	112	16.4	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.27	0.18	108	72	40.0	65-135	R
1,2,4-Trichlorolbenzene	0.25	0.33	0.29	132	116	12.9	65-135	
Hexachloro-1,3-butadiene	0.25	0.29	0.26	116	104	10.9	65-135	
Naphthalene	0.25	0.33	0.30	132	120	9.5	65-135	
1,2,3-Trichlorobenzene	0.25	0.28	0.31	112	124	10.2	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				93	90		65-135	
1,2-Dichloroethane-d4				108	107		65-135	
Toluene-d8				89	83		65-135	
4-Bromofluorobenzene				98	93		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	0 1 1	I CC	I CC	I CC	D. /
	Spiked Conc.	LCS	LCS	LCS	Data
	(mg/kg)	Response (mg/kg)	Recovery (%)	Recovery Limits (%)	Flag
Dichlorodifluoromethane	0.25	0.26	104	80-120	
Chloromethane	0.25	0.21	84	80-120	
Vinyl chloride	0.25	0.28	112	80-120	
Bromomethane	0.25	0.25	100	80-120	
Chloroethane	0.25	0.20	80	80-120	
Trichlorofluoromethane	0.25	0.29	116	80-120	
1,1-Dichloroethene	0.25	0.25	100	80-120	
Methylene chloride	0.25	0.24	96	80-120	
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.25	0.28	112	80-120	
trans -1,2-Dichloroethene	0.25	0.23	92	80-120	
1,1-Dichloroethane	0.25	0.25	100	80-120	
2,2-Dichloropropane	0.25	0.22	88	80-120	
cis -1,2-Dichloroethene	0.25	0.29	116	80-120	
Chloroform	0.25	0.26	104	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.27	108	80-120	
Carbon tetrachloride	0.25	0.27	108	80-120	
1,1-Dichloropropene	0.25	0.27	108	80-120	
Benzene	0.25	0.27	108	80-120	
1,2-Dichloroethane (EDC)	0.25	0.28	112	80-120	
Trichloroethene (TCE)	0.25	0.30	120	80-120	
1,2-Dichloropropane	0.25	0.24	96	80-120	
Dibromomethane	0.25	0.27	108	80-120	
Bromodichloromethane	0.25	0.22	88	80-120	
cis-1,3-Dichloropropene	0.25	0.22	88	80-120	
Toluene	0.25	0.23	92	80-120	
Trans-1,3-Dichloropropene	0.25	0.23	92	80-120	
1,1,2-Trichloroethane	0.25	0.22	88	80-120	
Tetrachloroethene (PCE)	0.25	0.29	116	80-120	
1,3-Dichloropropane	0.25	0.30	120	80-120	
Dibromochloromethane	0.25	0.21	84	80-120	
1,2-Dibromoethane (EDB)	0.25	0.29	116	80-120	
Chlorobenzene	0.25	0.26	104	80-120	
Ethylbenzene	0.25	0.25	100	80-120	
1,1,1,2-Tetrachloroethane	0.25	0.23	92	80-120	
Total Xylenes	0.75	0.54	72	80-120	
Styrene	0.25	0.26	104	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Recovery Limits (%) Recovery	
Bromoform	0.25	0.22	88	80-120	
Isopropylbenzene	0.25	0.24	94	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.28	112	80-120	
Bromobenzene	0.25	0.20	80	80-120	
n-Propylbenzene	0.25	0.21	84	80-120	
1,2,3-Trichloropropane	0.25	0.29	116	80-120	
2-Chlorotoluene	0.25	0.22	88	80-120	
1,3,5-Trimethylbenzene	0.25	0.22	88	80-120	
4-Chlorotoluene	0.25	0.21	84	80-120	
tert-Butylbenzene	0.25	0.21	84	80-120	
1,2,4-Trimethylbenzene	0.25	0.22	88	80-120	
sec-Butylbenzene	0.25	0.24	96	80-120	
Isopropyltoluene	0.25	0.23	92	80-120	
1,3-Dichlorobenzene	0.25	0.24	96	80-120	
1,4-Dichlorobenzene	0.25	0.29	116	80-120	
n-Butylbenzene	0.25	0.29	116	80-120	
1,2-Dichlorobenzene	0.25	0.29	116	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.26	104	80-120	
1,2,4-Trichlorolbenzene	0.25	0.24	96	80-120	
Hexachloro-1,3-butadiene	0.25	0.25	100	80-120	
Naphthalene	0.25	0.22	88	80-120	
1,2,3-Trichlorobenzene	0.25	0.28	112	80-120	
Surrogate Recovery					
Dibromofluoromethane			101	65-135	
1,2-Dichloroethane-d4			111	65-135	
Toluene-d8			89	65-135	
4-Bromofluorobenzene			92	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	3/4/2020	118	nd
UB12-5	3/4/2020	87	nd
UB12-14	3/4/2020	86	nd
UB12-22	3/4/2020	84	nd
UB12-37	3/4/2020	85	nd
UB12-46	3/4/2020	84	nd
UB12-46 Dup	3/4/2020	85	nd
UB16-6	3/4/2020	85	nd
UB16-14	3/4/2020	86	nd
UB16-29	3/4/2020	82	nd
Practical Quantitation Limit			10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/4/2020	97	nd	nd
UB12-5	3/4/2020	101	nd	nd
UB12-14	3/4/2020	101	nd	nd
UB12-14 Dup	3/4/2020	108	nd	nd
UB12-22	3/4/2020	104	nd	nd
UB12-37	3/4/2020	102	nd	nd
UB12-46	3/4/2020	94	nd	nd
UB16-6	3/4/2020	118	nd	nd
UB16-14	3/4/2020	100	nd	nd
UB16-29	3/4/2020	106	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW16-
bumple Description		Blank	20200304
Date Sampled	Reporting	N/A	3/4/2020
Date Analyzed	Limits	3/4/2020	3/4/2020
Date Milaryzea	Limits (μg/L)	$(\mu g/L)$	(μg/L)
Dichlorodifluoromethane	2.0	nd	<20
Chloromethane	2.0	nd	<20
Vinyl chloride	0.2	nd	59
Bromomethane	2.0	nd	<20
Chloroethane	2.0	nd	<20
Trichlorofluoromethane	2.0	nd	<20
1,1-Dichloroethene	0.5	nd	<5
	1.0	nd	<10
Methylene chloride			
Methyl tert- Butyl Ether (MTBE)	5.0	nd nd	<50 <10
trans -1,2-Dichloroethene	1.0	nd 1	<10
1,1-Dichloroethane	1.0	nd	<10
2,2-Dichloropropane	2.0	nd	<20
cis -1,2-Dichloroethene	1.0	nd	536
Chloroform	1.0	nd	<10
1,1,1-Trichloroethane (TCA)	1.0	nd	<10
Carbon tetrachloride	1.0	nd	<10
1,1-Dichloropropene	1.0	nd	<10
Benzene	1.0	nd	<10
1,2-Dichloroethane (EDC)	1.0	nd	<10
Trichloroethene (TCE)	0.4	nd	744
1,2-Dichloropropane	1.0	nd	<10
Dibromomethane	1.0	nd	<10
Bromodichloromethane	1.0	nd	<10
cis-1,3-Dichloropropene	1.0	nd	<10
Toluene	1.0	nd	<10
Trans-1,3-Dichloropropene	1.0	nd	<10
1,1,2-Trichloroethane	1.0	nd	<10
Tetrachloroethene (PCE)	1.0	nd	4590
1,3-Dichloropropane	1.0	nd	<10
Dibromochloromethane	1.0	nd	<10
1,2-Dibromoethane (EDB) *	0.01	nd	< 0.1
Chlorobenzene	1.0	nd	<10
Ethylbenzene	1.0	nd	<10
1,1,1,2-Tetrachloroethane	1.0	nd	<10
Total Xylenes	2.0	nd	< 20
Styrene	1.0	nd	<10

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW16-	
•		Blank	20200304	
Date Sampled	Reporting	N/A	3/4/2020	
Date Analyzed	Limits	3/4/2020	3/4/2020	
•	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	
Bromoform	1.0	nd	<10	
Isopropylbenzene	4.0	nd	<40	
1,1,2,2-Tetrachloroethane	1.0	nd	<10	
Bromobenzene	1.0	nd	<10	
n-Propylbenzene	1.0	nd	<10	
1,2,3-Trichloropropane	1.0	nd	<10	
2-Chlorotoluene	1.0	nd	<10	
1,3,5-Trimethylbenzene	1.0	nd	<10	
4-Chlorotoluene	1.0	nd	<10	
tert-Butylbenzene	1.0	nd	<10	
1,2,4-Trimethylbenzene	1.0	nd	<10	
sec-Butylbenzene	1.0	nd	<10	
p-Isopropyltoluene	1.0	nd	<10	
1,3-Dichlorobenzene	1.0	nd	<10	
1,4-Dichlorobenzene	1.0	nd	<10	
n-Butylbenzene	1.0	nd	<10	
1,2-Dichlorobenzene	1.0	nd	<10	
1,2-Dibromo-3-Chloropropane	1.0	nd	<10	
1,2,4-Trichlorolbenzene	2.0	nd	< 20	
Hexachloro-1,3-butadiene	5.0	nd	< 50	
Naphthalenes	5.0	nd	< 50	
1,2,3-Trichlorobenzene	5.0	nd	< 50	
Surrogate Recovery				
Dibromofluoromethane		77	95	
1,2-Dichloroethane-d4		93	110	
Toluene-d8		118	81	
4-Bromofluorobenzene		68	126	
	(1' (1 1 ()'	00	120	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	IVIALIA S	oike Sample Id	chilication.	141 44 10-2020	0304				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data	
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag	
	$(\mu g/L)$	(μg/L)	(μg/L)	(%)	(%)	(%)	(%)	J	
Dichlorodifluoromethane	5.0	4.0	5.8	80	116	36.7	65-135	R	
Chloromethane	5.0	4.3	6.3	86	126	37.7	65-135	R	
Vinyl chloride	5.0	4.7	5.9	94	118	22.6	65-135		
Bromomethane	5.0	4.1	5.1	82	102	21.7	65-135		
Chloroethane	5.0	4.8	5.5	96	110	13.6	65-135		
Trichlorofluoromethane	5.0	5.1	5.7	102	114	11.1	65-135		
1,1-Dichloroethene	5.0	5.0	4.6	100	92	8.3	65-135		
Methylene chloride	5.0	3.6	5.4	72	108	40.0	65-135	R	
Methyl tert- Butyl Ether (MTBE)	5.0	3.7	4.3	74	86	15.0	65-135		
trans -1,2-Dichloroethene	5.0	5.1	5.5	102	110	7.5	65-135		
1,1-Dichloroethane	5.0	5.2	5.5	104	110	5.6	65-135		
2,2-Dichloropropane	5.0	4.7	4.1	94	82	13.6	65-135		
cis-1,2-Dichloroethene	5.0	5.2	4.9	104	98	5.9	65-135		
Chloroform	5.0	4.7	4.6	94	92	2.2	65-135		
1,1,1-Trichloroethane (TCA)	5.0	4.8	4.7	96	94	2.1	65-135		
Carbon tetrachloride	5.0	3.8	3.5	76	70	8.2	65-135		
1,1-Dichloropropene	5.0	5.5	4.5	110	90	20.0	65-135		
Benzene	5.0	5.3	4.9	106	98	7.8	65-135		
1,2-Dichloroethane (EDC)	5.0	5.6	5.3	112	106	5.5	65-135		
Trichloroethene (TCE)	5.0	5.3	4.3	106	86	20.8	65-135		
1,2-Dichloropropane	5.0	5.2	4.6	104	92	12.2	65-135		
Dibromomethane	5.0	5.3	4.4	106	88	18.6	65-135		
Bromodichloromethane	5.0	3.6	3.9	72	78	8.0	65-135		
cis-1,3-Dichloropropene	5.0	3.6	3.9	72	78	8.0	65-135		
Toluene	5.0	4.8	3.8	96	76	23.3	65-135		
Trans-1,3-Dichloropropene	5.0	3.5	3.4	70	68	2.9	65-135		
1,1,2-Trichloroethane	5.0	6.3	4.6	126	92	31.2	65-135		
Tetrachloroethene (PCE)	5.0	2.4	3.5	48	70	37.3	65-135	S, R	
1,3-Dichloropropane	5.0	6.2	5.1	124	102	19.5	65-135		
Dibromochloromethane			3.3	98	66	39.0	65-135	R	
1,2-Dibromoethane (EDB)	5.0	6.4	5.2	128	104	20.7	65-135		
Chlorobenzene	5.0	5.6	5.2	112	104	7.4	65-135		
Ethylbenzene	5.0	5.4	4.7	108	94	13.9	65-135		
1,1,1,2-Tetrachloroethane	5.0	3.5	3.3	70	66	5.9	65-135		
Total Xylenes	15.0	16.7	14.5	111	97	14.1	65-135		
Styrene	5.0	5.3	4.6	106	92	14.1	65-135		

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix S ₁	oike Sample Id	lentification:	MW16-2020	0304			
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	(%)	(%)	
Bromoform	5.0	4.7	4.9	94	98	4.2	65-135	
Isopropylbenzene	5.0	5.5	4.9	110	98	11.5	65-135	
1,1,2,2-Tetrachloroethane	5.0	4.3	4.5	86	90	4.5	65-135	
Bromobenzene	5.0	3.6	3.8	72	76	5.4	65-135	
n-Propylbenzene	5.0	3.3	3.9	66	78	16.7	65-135	
1,2,3-Trichloropropane	5.0	6.1	6.0	122	120	1.7	65-135	
2-Chlorotoluene	5.0	3.5	4.2	70	84	18.2	65-135	
1,3,5-Trimethylbenzene	5.0	3.6	4.3	72	86	17.7	65-135	
1-Chlorotoluene	5.0	3.7	4.4	74	88	17.3	65-135	
ert-Butylbenzene	5.0	4.1	4.7	82	94	13.6	65-135	
1,2,4-Trimethylbenzene	5.0	4.5	4.8	90	96	6.5	65-135	
sec-Butylbenzene	5.0	4.7	4.9	94	98	4.2	65-135	
Isopropyltoluene	5.0	5.0	5.2	100	104	3.9	65-135	
1,3-Dichlorobenzene	5.0	4.9	5.0	98	100	2.0	65-135	
1,4-Dichlorobenzene	5.0	5.1	5.3	102	106	3.8	65-135	
n-Butylbenzene	5.0	4.7	4.8	94	96	2.1	65-135	
1,2-Dichlorobenzene	5.0	4.8	5.5	96	110	13.6	65-135	
1,2-Dibromo-3-Chloropropane	5.0	4.5	3.5	90	70	25.0	65-135	
1,2,4-Trichlorolbenzene	5.0	5.6	5.8	112	116	3.5	65-135	
Hexachloro-1,3-butadiene	5.0	5.0	5.7	100	114	13.1	65-135	
Naphthalene	5.0	6.4	5.9	128	118	8.1	65-135	
1,2,3-Trichlorobenzene	5.0	6.4	6.6	128	132	3.1	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				92	80		65-135	
1,2-Dichloroethane-d4				115	98		65-135	
Γoluene-d8				93	79		65-135	
4-Bromofluorobenzene				128	126		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	conc. (μg/L)	(µg/L)	(%)	Limits (%)	Tag
Dichlorodifluoromethane	5.0	5.3	106	80-120	
Chloromethane	5.0	4.2	84	80-120	
Vinyl chloride	5.0	6.0	119	80-120	
Bromomethane	5.0	5.0	100	80-120	
Chloroethane	5.0	4.0	80	80-120	
Trichlorofluoromethane	5.0	5.8	116	80-120	
1,1-Dichloroethene	5.0	5.1	102	80-120	
Methylene chloride	5.0	4.8	96	80-120	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	5.5	110	80-120	
trans -1,2-Dichloroethene	5.0	4.6	92	80-120	
1,1-Dichloroethane	5.0	5.1	102	80-120	
2,2-Dichloropropane	5.0	4.4	88	80-120	
cis -1,2-Dichloroethene	5.0	5.8	116	80-120	
Chloroform	5.0	5.1	102	80-120	
1,1,1-Trichloroethane (TCA)	5.0	5.3	106	80-120	
Carbon tetrachloride	5.0	5.5	110	80-120	
1,1-Dichloropropene	5.0	5.4	108	80-120	
Benzene	5.0	5.4	108	80-120	
1,2-Dichloroethane (EDC)	5.0	5.6	112	80-120	
Trichloroethene (TCE)	5.0	6.0	120	80-120	
1,2-Dichloropropane	5.0	5.1	102	80-120	
Dibromomethane	5.0	5.3	106	80-120	
Bromodichloromethane	5.0	4.4	88	80-120	
cis-1,3-Dichloropropene	5.0	4.3	86	80-120	
Toluene	5.0	4.6	92	80-120	
Trans-1,3-Dichloropropene	5.0	4.7	94	80-120	
1,1,2-Trichloroethane	5.0	4.4	88	80-120	
Tetrachloroethene (PCE)	5.0	5.8	116	80-120	
1,3-Dichloropropane	5.0	6.0	120	80-120	
Dibromochloromethane	5.0	4.2	84	80-120	
1,2-Dibromoethane (EDB)	5.0	5.8	116	80-120	
Chlorobenzene	5.0	5.2	104	80-120	
Ethylbenzene	5.0	5.0	100	80-120	
1,1,1,2-Tetrachloroethane	5.0	4.6	92	80-120	
Total Xylenes	15.0	10.7	71	80-120	
Styrene	5.0	5.5	110	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Bromoform	5.0	4.4	88	80-120	
Isopropylbenzene	5.0	5.2	104	80-120	
1,1,2,2-Tetrachloroethane	5.0	5.5	110	80-120	
Bromobenzene	5.0	4.0	80	80-120	
n-Propylbenzene	5.0	4.2	84	80-120	
1,2,3-Trichloropropane	5.0	5.8	116	80-120	
2-Chlorotoluene	5.0	4.4	88	80-120	
1,3,5-Trimethylbenzene	5.0	4.4	88	80-120	
4-Chlorotoluene	5.0	4.3	86	80-120	
tert-Butylbenzene	5.0	4.3	86	80-120	
1,2,4-Trimethylbenzene	5.0	4.4	88	80-120	
sec-Butylbenzene	5.0	4.7	94	80-120	
Isopropyltoluene	5.0	4.5	90	80-120	
1,3-Dichlorobenzene	5.0	4.7	94	80-120	
1,4-Dichlorobenzene	5.0	5.9	118	80-120	
n-Butylbenzene	5.0	5.9	118	80-120	
1,2-Dichlorobenzene	5.0	5.8	116	80-120	
1,2-Dibromo-3-Chloropropane	5.0	5.3	106	80-120	
1,2,4-Trichlorolbenzene	5.0	4.7	94	80-120	
Hexachloro-1,3-butadiene	5.0	4.9	98	80-120	
Naphthalene	5.0	4.4	88	80-120	
1,2,3-Trichlorobenzene	5.0	5.6	112	80-120	
Surrogate Recovery					
Dibromofluoromethane			101	65-135	
1,2-Dichloroethane-d4			111	65-135	
Toluene-d8			89	65-135	
4-Bromofluorobenzene			92	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/L)$
Method Blank	3/4/2020	118	nd
MW16-20200304	3/4/2020	81	3800 *
Practical Quantitation Limit			100

[&]quot;*" The gasoline range value consist of two chlorinated compounds with elevated concentrations.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200304-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	$(\mu g/L)$
Method Blank	3/4/2020	97	nd	nd
MW16-20200304	3/4/2020	96	nd	nd
MW16-20200304 Dup	3/4/2020	100	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

3322 South Bay Road NE • Olympia, WA 98506-2957

March 9, 2020

John Funderbuck Urban Environmental Partners, LLC 2324 First Avenue, Suite 203 Seattle, WA 98121

Dear Mr. Funderbuck:

Please find enclosed the analytical data report for the Rainier Mall Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

	Libby Environm	Seattle State: WA 206 - 229 - 6804 Fax: Project # Sam			Chain of Custody Record										www.LibbyEnvironmental.com							
	3322 South Bay Road NE Olympia, WA 98506							Date	3: 3	15/2	0					1	Page	e:	1	1	of	
		on ment	2/ [Dixon (ENV.				-	anager:		100	D	ike	α .	A			1			
						3				me: F				. 1		7	Joh	n	Fu	inden	nuck	
					: 98121		•	Loca	ation:	420	3 F	Sai-	ier	A	10	5				Seat		GA
					10,-7		•		ector:		-									tion:		
	Client Project #				AAAA BAAAA AAAA AAAA AAAA AAAA AAAA AA		-	Ema		COMP	hnf		,	epo	cons							
	TA ON WELLY	Denth	Time	Sample Type	Container Type	/30	S 826		7	7	77	7	//		7	7			77		d Note:	
	1 UB17-24	24	900	5	Турс	ľχ	X	Ť		X				$\overline{}$		T				23	2	
	2 UB 13W- Z3	23	900	W		X	X				+			\neg	\neg	\neg				13	*	
D	3 MW17-Z0200305	18	950	W		X	1			TX					\neg	\neg				3	(0)	
	4 UB13-43	43	940	5		X	1			X	1				\neg							
115		7	1010	5		1	X			$\overrightarrow{}$										4	14	
v	6 UB14-20	20	1015			X	X			ĺχ					\neg					5	+ A(
	7 UB18-24	24	1145	S		X	X			X										61	2	Hot)
	8 UB18W-24	24	1700	W		1	X			X									\Box	7+	= 7	Hot)
M5	9 MW14-20200305	18	1210	W		又	X													84	4	
	10 UBIS-20	20	1/20	S		X	X			>										at		
	11																					
	12																					
	13																					
	14																					
	15																					
	16																					
	17							1														
	Relinquished by:	Date 3-5-	/ Time ZO 3	15	Received by:	Pull	k -	3/5	bo		Time			Sam Condi	-			N	Rem	Remarks: Field-Mobile Lub		
,	Relinquished by	Date	/ Time	//	Received by:		- Trans		100		/ Time)		r Tem				°C	'	1010		
	Relinquished by:	Date	/ Time		Received by:					Date	e / Time		_	le Ten Numb				°C		γ		
														ntaine					TAT			
	LEGAL ACTION CLAUSE: In the event of default of pay	ment and/or failure	e to pay. Client agre	es to pay the costs of	or collection including court c	costs and n	easonable	e attomey	rees to be de	termined by a	cout of law.							Dis	dribution	: White - Lal	. Yellow - F	ile. Pink - Originat

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method Blank	UB17-24	UB13-43	UB14-7	UB14-7 Dup	UB14-20
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	0.39	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB17-24	UB13-43	UB14-7	UB14-7	UB14-20
		Blank				Dup	
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.03	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.10	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		93	92	91	101	95	88
1,2-Dichloroethane-d4		120	117	116	127	117	121
Toluene-d8		85	83	86	87	86	85
4-Bromofluorobenzene		104	97	142	96	197	213

[&]quot;E" Indicates reported result is an estimate because it exceeded the calibration range.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;nd" Indicates not detected at listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB18-24	UB15-20
Sample Description		OD10 2 r	0113 20
Date Sampled	Reporting	3/5/2020	3/5/2020
Date Analyzed	Limits	3/5/2020	3/5/2020
•	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride	0.02	nd	nd
Bromomethane	0.09	nd	nd
Chloroethane	0.06	nd	nd
Trichlorofluoromethane	0.05	nd	nd
1,1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.02	nd	nd
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.05	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd
1,1-Dichloroethane	0.03	nd	nd
2,2-Dichloropropane	0.05	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd
Chloroform	0.02	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd
Carbon tetrachloride	0.03	nd	nd
1,1-Dichloropropene	0.02	nd	nd
Benzene	0.02	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd
Trichloroethene (TCE)	0.02	nd	nd
1,2-Dichloropropane	0.02	nd	nd
Dibromomethane	0.04	nd	nd
Bromodichloromethane	0.02	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd
Toluene	0.10	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.02	nd	nd
Ethylbenzene	0.03	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd
Total Xylenes	0.15	nd	nd
Styrene	0.02	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB18-24	UB15-20	
Date Sampled	Reporting	3/5/2020	3/5/2020	
Date Analyzed	Limits	3/5/2020	3/5/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	
Bromoform	0.03	nd	nd	
Isopropylbenzene	0.05	nd	nd	
1,1,2,2-Tetrachloroethane	0.05	nd	nd	
Bromobenzene	0.03	nd	nd	
n-Propylbenzene	0.03	nd	nd	
1,2,3-Trichloropropane	0.04	nd	nd	
2-Chlorotoluene	0.03	nd	nd	
1,3,5-Trimethylbenzene	0.03	nd	nd	
4-Chlorotoluene	0.03	nd	nd	
tert-Butylbenzene	0.03	nd	nd	
1,2,4-Trimethylbenzene	0.03	nd	nd	
sec-Butylbenzene	0.03	nd	nd	
p-Isopropyltoluene	0.03	nd	nd	
1,3-Dichlorobenzene	0.03	nd	nd	
1,4-Dichlorobenzene	0.03	nd	nd	
n-Butylbenzene	0.03	nd	nd	
1,2-Dichlorobenzene	0.05	nd	nd	
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	
1,2,4-Trichlorolbenzene	0.05	nd	nd	
Hexachloro-1,3-butadiene	0.10	nd	nd	
Naphthalenes	0.10	nd	nd	
1,2,3-Trichlorobenzene	0.10	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		94	91	
1,2-Dichloroethane-d4		122	124	
Toluene-d8		84	86	
4-Bromofluorobenzene		95	90	
Diditionalization		,,,	70	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	ike Sample Id	lentification:	UB14-/				
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	8
Dichlorodifluoromethane	0.25	0.25	0.24	100	96	4.1	65-135	
Chloromethane	0.25	0.20	0.21	80	84	4.9	65-135	
Vinyl chloride	0.25	0.19	0.25	76	100	27.3	65-135	
Bromomethane	0.25	0.17	0.20	68	80	16.2	65-135	
Chloroethane	0.25	0.17	0.21	68	84	21.1	65-135	
Trichlorofluoromethane	0.25	0.32	0.27	128	108	16.9	65-135	
1,1-Dichloroethene	0.25	0.20	0.18	80	72	10.5	65-135	
Methylene chloride	0.25	0.24	0.20	96	80	18.2	65-135	
Methyl tert- Butyl Ether (MTBE)	0.25	0.29	0.26	116	104	10.9	65-135	
trans -1,2-Dichloroethene	0.25	0.20	0.22	80	88	9.5	65-135	
1,1-Dichloroethane	0.25	0.25	0.27	100	108	7.7	65-135	
2,2-Dichloropropane	0.25	0.23	0.23	92	92	0.0	65-135	
cis-1,2-Dichloroethene	0.25	0.26	0.15	104	60	53.7	65-135	S, R
Chloroform	0.25	0.27	0.25	108	100	7.7	65-135	
1,1,1-Trichloroethane (TCA)	0.25	0.21	0.26	84	104	21.3	65-135	
Carbon tetrachloride	0.25	0.18	0.21	72	84	15.4	65-135	
1,1-Dichloropropene	0.25	0.30	0.29	120	116	3.4	65-135	
Benzene	0.25	0.24	0.26	96	104	8.0	65-135	
1,2-Dichloroethane (EDC)	0.25	0.29	0.22	116	88	27.5	65-135	
Trichloroethene (TCE)	0.25	0.25	0.21	100	84	17.4	65-135	
1,2-Dichloropropane	0.25	0.25	0.27	100	108	7.7	65-135	
Dibromomethane	0.25	0.23	0.28	92	112	19.6	65-135	
Bromodichloromethane	0.25	0.17	0.18	68	72	5.7	65-135	
cis-1,3-Dichloropropene	0.25	0.17	0.17	68	68	0.0	65-135	
Toluene	0.25	0.18	0.21	72	84	15.4	65-135	
Trans-1,3-Dichloropropene	0.25	0.22	0.20	88	80	9.5	65-135	
1,1,2-Trichloroethane	0.25	0.28	0.29	112	116	3.5	65-135	
Tetrachloroethene (PCE)	0.25	0.26	0.29	104	116	10.9	65-135	
1,3-Dichloropropane	0.25	0.33	0.28	132	112	16.4	65-135	
Dibromochloromethane	0.25	0.21	0.19	84	76	10.0	65-135	
1,2-Dibromoethane (EDB)	0.25	0.257	0.31	103	124	18.7	65-135	
Chlorobenzene	0.25	0.27	0.23	108	92	16.0	65-135	
Ethylbenzene	0.25	0.23	0.24	92	96	4.3	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.18	0.19	72	76	5.4	65-135	
Total Xylenes	0.75	0.70	0.83	93	111	17.0	65-135	
Styrene	0.25	0.24	0.25	96	100	4.1	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

Matrix Spike Sample Identification: UB14-7								
_	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Bromoform	0.25	0.18	0.18	72	72	0.0	65-135	
Isopropylbenzene	0.25	0.22	0.25	88	100	12.8	65-135	
1,1,2,2-Tetrachloroethane	0.25	0.19	0.21	76	84	10.0	65-135	
Bromobenzene	0.25	0.17	0.19	68	76	11.1	65-135	
n-Propylbenzene	0.25	0.24	0.19	96	76	23.3	65-135	
1,2,3-Trichloropropane	0.25	0.27	0.19	108	76	34.8	65-135	
2-Chlorotoluene	0.25	0.18	0.20	72	80	10.5	65-135	
1,3,5-Trimethylbenzene	0.25	0.17	0.18	68	72	5.7	65-135	
4-Chlorotoluene	0.25	0.16	0.18	64	72	11.8	65-135	
tert-Butylbenzene	0.25	0.18	0.22	72	88	20.0	65-135	
1,2,4-Trimethylbenzene	0.25	0.17	0.20	68	80	16.2	65-135	
sec-Butylbenzene	0.25	0.18	0.23	72	92	24.4	65-135	
Isopropyltoluene	0.25	0.24	0.26	96	104	8.0	65-135	
1,3-Dichlorobenzene	0.25	0.26	0.24	104	96	8.0	65-135	
1,4-Dichlorobenzene	0.25	0.28	0.28	112	112	0.0	65-135	
n-Butylbenzene	0.25	0.24	0.26	96	104	8.0	65-135	
1,2-Dichlorobenzene	0.25	0.27	0.32	108	128	16.9	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.31	0.30	124	120	3.3	65-135	
1,2,4-Trichlorolbenzene	0.25	0.31	0.30	124	120	3.3	65-135	
Hexachloro-1,3-butadiene	0.25	0.29	0.26	116	104	10.9	65-135	
Naphthalene	0.25	0.25	0.28	100	112	11.3	65-135	
1,2,3-Trichlorobenzene	0.25	0.29	0.30	116	120	3.4	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				103	92		65-135	
1,2-Dichloroethane-d4				134	130		65-135	
Toluene-d8				85	82		65-135	
4-Bromofluorobenzene				93	91		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Dichlorodifluoromethane	0.25	0.26	104	80-120	
Chloromethane	0.25	0.29	116	80-120	
Vinyl chloride	0.25	0.27	108	80-120	
Bromomethane	0.25	0.26	104	80-120	
Chloroethane	0.25	0.23	92	80-120	
Trichlorofluoromethane	0.25	0.25	100	80-120	
1,1-Dichloroethene	0.25	0.27	108	80-120	
Methylene chloride	0.25	0.27	108	80-120	
Methyl tert- Butyl Ether (MTBE)	0.25	0.24	96	80-120	
trans -1,2-Dichloroethene	0.25	0.22	88	80-120	
1,1-Dichloroethane	0.25	0.27	108	80-120	
2,2-Dichloropropane	0.25	0.26	104	80-120	
cis-1,2-Dichloroethene	0.25	0.25	100	80-120	
Chloroform	0.25	0.27	108	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.25	100	80-120	
Carbon tetrachloride	0.25	0.24	96	80-120	
1,1-Dichloropropene	0.25	0.26	104	80-120	
Benzene	0.25	0.25	100	80-120	
1,2-Dichloroethane (EDC)	0.25	0.26	104	80-120	
Trichloroethene (TCE)	0.25	0.22	88	80-120	
1,2-Dichloropropane	0.25	0.25	100	80-120	
Dibromomethane	0.25	0.25	100	80-120	
Bromodichloromethane	0.25	0.24	96	80-120	
cis-1,3-Dichloropropene	0.25	0.26	104	80-120	
Toluene	0.25	0.22	88	80-120	
Trans-1,3-Dichloropropene	0.25	0.27	108	80-120	
1,1,2-Trichloroethane	0.25	0.23	92	80-120	
Tetrachloroethene (PCE)	0.25	0.22	88	80-120	
1,3-Dichloropropane	0.25	0.26	104	80-120	
Dibromochloromethane	0.25	0.23	92	80-120	
1,2-Dibromoethane (EDB)	0.25	0.27	108	80-120	
Chlorobenzene	0.25	0.25	100	80-120	
Ethylbenzene	0.25	0.25	100	80-120	
1,1,2-Tetrachloroethane	0.25	0.22	88	80-120	
Total Xylenes	0.75	0.75	100	80-120	
Styrene	0.25	0.24	96	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.25	0.21	84	80-120	
Isopropylbenzene	0.25	0.22	88	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.29	116	80-120	
Bromobenzene	0.25	0.25	100	80-120	
n-Propylbenzene	0.25	0.26	104	80-120	
1,2,3-Trichloropropane	0.25	0.29	116	80-120	
2-Chlorotoluene	0.25	0.24	96	80-120	
1,3,5-Trimethylbenzene	0.25	0.26	104	80-120	
4-Chlorotoluene	0.25	0.25	100	80-120	
tert-Butylbenzene	0.25	0.25	100	80-120	
1,2,4-Trimethylbenzene	0.25	0.26	104	80-120	
sec-Butylbenzene	0.25	0.26	104	80-120	
Isopropyltoluene	0.25	0.26	104	80-120	
1,3-Dichlorobenzene	0.25	0.26	104	80-120	
1,4-Dichlorobenzene	0.25	0.27	108	80-120	
n-Butylbenzene	0.25	0.23	92	80-120	
1,2-Dichlorobenzene	0.25	0.26	104	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.21	84	80-120	
1,2,4-Trichlorolbenzene	0.25	0.25	100	80-120	
Hexachloro-1,3-butadiene	0.25	0.24	96	80-120	
Naphthalene	0.25	0.28	112	80-120	
1,2,3-Trichlorobenzene	0.25	0.26	104	80-120	
Surrogate Recovery					
Dibromofluoromethane			105	65-135	
1,2-Dichloroethane-d4			119	65-135	
Toluene-d8			121	65-135	
4-Bromofluorobenzene			90	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	3/5/2020	85	nd
UB17-24	3/5/2020	83	nd
UB13-43	3/5/2020	86	nd
UB14-7	3/5/2020	87	nd
UB14-7 Dup	3/5/2020	86	nd
UB14-20	3/5/2020	85	nd
UB18-24	3/5/2020	84	nd
UB15-20	3/5/2020	86	nd
Practical Quantitation Limit			10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/5/2020	99	nd	nd
UB17-24	3/5/2020	107	nd	nd
UB13-43	3/5/2020	96	nd	nd
UB14-7	3/5/2020	96	nd	nd
UB14-20	3/5/2020	109	nd	nd
UB18-24	3/5/2020	87	nd	nd
UB15-20	3/5/2020	102	nd	nd
UB15-20 Dup	3/5/2020	100	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	UB13W-23	MW17-	MW17-	UB18W-24	MW14-
		Blank		20200305	20200305		20200305
					Dup		
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)
Dichlorodifluoromethane	2.0	nd	<20	nd	nd	nd	nd
Chloromethane	2.0	nd	<20	nd	nd	nd	nd
Vinyl chloride	0.2	nd	<2	nd	nd	nd	nd
Bromomethane	2.0	nd	<20	nd	nd	nd	nd
Chloroethane	2.0	nd	< 20	nd	nd	nd	nd
Trichlorofluoromethane	2.0	nd	< 20	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	<5	nd	nd	nd	nd
Methylene chloride	1.0	nd	<10	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	5.0	nd	< 50	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	<10	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	<10	nd	nd	nd	nd
2,2-Dichloropropane	2.0	nd	< 20	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	1353	166	173	33	nd
Chloroform	1.0	nd	<10	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	<10	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	<10	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	<10	nd	nd	nd	nd
Benzene	1.0	nd	<10	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	<10	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	3180 E	nd	nd	17	nd
1,2-Dichloropropane	1.0	nd	<10	nd	nd	nd	nd
Dibromomethane	1.0	nd	<10	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	<10	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	<10	nd	nd	nd	nd
Toluene	1.0	nd	<10	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	<10	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	<10	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	25300 E	nd	nd	11	nd
1,3-Dichloropropane	1.0	nd	<10	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	<10	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	< 0.1	nd	nd	nd	nd
Chlorobenzene	1.0	nd	<10	nd	nd	nd	nd
Ethylbenzene	1.0	nd	<10	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	<10	nd	nd	nd	nd
Total Xylenes	2.0	nd	< 20	nd	nd	nd	nd
Styrene	1.0	nd	<10	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	UB13W-23	MW17-	MW17-	UB18W-24	MW14-
		Blank		20200305	20200305		20200305
					Dup		
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Bromoform	1.0	nd	<10	nd	nd	nd	nd
Isopropylbenzene	4.0	nd	< 40	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	<10	nd	nd	nd	nd
Bromobenzene	1.0	nd	<10	nd	nd	nd	nd
n-Propylbenzene	1.0	nd	<10	nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd	<10	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	<10	nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	<10	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	<10	nd	nd	nd	nd
tert-Butylbenzene	1.0	nd	<10	nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	<10	nd	nd	nd	nd
sec-Butylbenzene	1.0	nd	<10	nd	nd	nd	nd
p-Isopropyltoluene	1.0	nd	<10	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	<10	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	<10	nd	nd	nd	nd
n-Butylbenzene	1.0	nd	<10	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	<10	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	<10	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	2.0	nd	< 20	nd	nd	nd	nd
Hexachloro-1,3-butadiene	5.0	nd	< 50	nd	nd	nd	nd
Naphthalenes	5.0	nd	< 50	nd	nd	nd	nd
1,2,3-Trichlorobenzene	5.0	nd	< 50	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		93	92	100	97	113	90
1,2-Dichloroethane-d4		120	121	112	119	65	119
Toluene-d8		85	85	87	91	96	84
4-Bromofluorobenzene		104	106	129	121	95	105

[&]quot;nd" Indicates not detected at listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

[&]quot;E" Reported result is an estimate because it exceeds the calibration range. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Id	lentification:	MW14-2020	0305			
	Spiked Conc. (µg/L)	MS Response (μg/L)	MSD Response (μg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Dichlorodifluoromethane	5.0	5.5	4.8	110	96	13.6	65-135	
Chloromethane	5.0	4.9	5.0	98	100	2.0	65-135	
Vinyl chloride	5.0	4.3	4.6	86	92	6.7	65-135	
Bromomethane	5.0	6.3	5.5	126	110	13.6	65-135	
Chloroethane	5.0	5.0	4.6	100	92	8.3	65-135	
Trichlorofluoromethane	5.0	5.3	6.6	106	132	21.8	65-135	
1,1-Dichloroethene	5.0	4.4	4.7	88	94	6.6	65-135	
Methylene chloride	5.0	4.8	5.3	96	106	9.9	65-135	
Methyl tert- Butyl Ether (MTBE)	5.0	6.6	5.4	132	108	20.0	65-135	
trans -1,2-Dichloroethene	5.0	3.6	4.3	72	86	17.7	65-135	
1,1-Dichloroethane	5.0	5.1	5.4	102	108	5.7	65-135	
2,2-Dichloropropane	5.0	4.9	5.4	98	108	9.7	65-135	
cis-1,2-Dichloroethene	5.0	3.9	5.2	78	104	28.6	65-135	
Chloroform	5.0	5.6	6.3	112	126	11.8	65-135	
1,1,1-Trichloroethane (TCA)	5.0	5.0	5.9	100	118	16.5	65-135	
Carbon tetrachloride	5.0	5.3	4.6	106	92	14.1	65-135	
1,1-Dichloropropene	5.0	5.4	4.9	108	98	9.7	65-135	
Benzene	5.0	5.0	5.1	100	102	2.0	65-135	
1,2-Dichloroethane (EDC)	5.0	6.5	6.6	130	132	1.5	65-135	
Trichloroethene (TCE)	5.0	5.1	5.8	102	116	12.8	65-135	
1,2-Dichloropropane	5.0	5.5	5.5	110	110	0.0	65-135	
Dibromomethane	5.0	4.8	4.3	96	86	11.0	65-135	
Bromodichloromethane	5.0	4.0	4.4	80	88	9.5	65-135	
cis-1,3-Dichloropropene	5.0	3.5	3.3	70	66	5.9	65-135	
Toluene	5.0	4.1	4.5	82	90	9.3	65-135	
Trans-1,3-Dichloropropene	5.0	3.2	3.9	64	78	19.7	65-135	
1,1,2-Trichloroethane	5.0	5.3	5.1	106	102	3.8	65-135	
Tetrachloroethene (PCE)	5.0	4.2	5.8	84	116	32.0	65-135	
1,3-Dichloropropane	5.0	5.1	5.7	102	114	11.1	65-135	
Dibromochloromethane	5.0	3.8	5.9	76	118	43.3	65-135	R
1,2-Dibromoethane (EDB)	5.0	4.9	5.3	98	106	7.8	65-135	
Chlorobenzene	5.0	4.4	4.9	88	98	10.8	65-135	
Ethylbenzene	5.0	4.3	5.0	86	100	15.1	65-135	
1,1,1,2-Tetrachloroethane	5.0	3.3	4.2	66	84	24.0	65-135	
Total Xylenes	15.0	13.2	16.7	88	111	23.4	65-135	
Styrene	5.0	4.4	5.0	88	100	12.8	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrıx Sı	oike Sample Id	lentification:	MW14-2020	0305			
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	$(\mu g/L)$	(μg/L)	(μg/L)	(%)	(%)	(%)	(%)	
Bromoform	5.0	3.5	3.8	70	76	8.2	65-135	
Isopropylbenzene	5.0	4.2	5.2	84	104	21.3	65-135	
1,1,2,2-Tetrachloroethane	5.0	6.0	4.9	120	98	20.2	65-135	
Bromobenzene	5.0	3.8	3.8	76	76	0.0	65-135	
n-Propylbenzene	5.0	4.8	5.2	96	104	8.0	65-135	
1,2,3-Trichloropropane	5.0	3.5	3.5	70	70	0.0	65-135	
2-Chlorotoluene	5.0	3.9	3.4	78	68	13.7	65-135	
1,3,5-Trimethylbenzene	5.0	3.7	4.3	74	86	15.0	65-135	
1-Chlorotoluene	5.0	3.7	4.1	74	82	10.3	65-135	
ert-Butylbenzene	5.0	3.6	3.6	72	72	0.0	65-135	
1,2,4-Trimethylbenzene	5.0	3.9	4.1	78	82	5.0	65-135	
sec-Butylbenzene	5.0	4.4	4.6	88	92	4.4	65-135	
Isopropyltoluene	5.0	4.6	5.0	92	100	8.3	65-135	
1,3-Dichlorobenzene	5.0	4.8	4.8	96	96	0.0	65-135	
1,4-Dichlorobenzene	5.0	4.9	5.4	98	108	9.7	65-135	
n-Butylbenzene	5.0	5.0	5.4	100	108	7.7	65-135	
1,2-Dichlorobenzene	5.0	5.5	5.8	110	116	5.3	65-135	
1,2-Dibromo-3-Chloropropane	5.0	4.2	5.0	84	100	17.4	65-135	
1,2,4-Trichlorolbenzene	5.0	6.9	5.4	138	108	24.4	65-135	S
Hexachloro-1,3-butadiene	5.0	6.5	5.0	130	100	26.1	65-135	
Naphthalene	5.0	6.3	5.8	126	116	8.3	65-135	
1,2,3-Trichlorobenzene	5.0	5.1	7.5	102	150	38.1	65-135	S, R
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				99	98		65-135	
1,2-Dichloroethane-d4				134	124		65-135	
Γoluene-d8				95	89		65-135	
4-Bromofluorobenzene				89	98		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	(µg/L)	(%)	Limits (%)	
Dichlorodifluoromethane	5.0	5.3	106	80-120	
Chloromethane	5.0	5.7	114	80-120	
Vinyl chloride	5.0	5.4	108	80-120	
Bromomethane	5.0	5.1	102	80-120	
Chloroethane	5.0	4.6	92	80-120	
Trichlorofluoromethane	5.0	5.0	100	80-120	
1,1-Dichloroethene	5.0	5.3	106	80-120	
Methylene chloride	5.0	5.4	108	80-120	
Methyl tert- Butyl Ether (MTBE)	5.0	4.4	88	80-120	
trans -1,2-Dichloroethene	5.0	4.4	88	80-120	
1,1-Dichloroethane	5.0	5.3	106	80-120	
2,2-Dichloropropane	5.0	5.2	104	80-120	
cis-1,2-Dichloroethene	5.0	5.0	100	80-120	
Chloroform	5.0	5.4	108	80-120	
1,1,1-Trichloroethane (TCA)	5.0	5.0	100	80-120	
Carbon tetrachloride	5.0	4.8	96	80-120	
1,1-Dichloropropene	5.0	5.3	106	80-120	
Benzene	5.0	5.1	102	80-120	
1,2-Dichloroethane (EDC)	5.0	5.3	106	80-120	
Trichloroethene (TCE)	5.0	4.5	90	80-120	
1,2-Dichloropropane	5.0	4.9	98	80-120	
Dibromomethane	5.0	4.9	98	80-120	
Bromodichloromethane	5.0	4.7	94	80-120	
cis-1,3-Dichloropropene	5.0	5.3	106	80-120	
Toluene	5.0	4.5	90	80-120	
Trans-1,3-Dichloropropene	5.0	5.4	108	80-120	
1,1,2-Trichloroethane	5.0	4.6	92	80-120	
Tetrachloroethene (PCE)	5.0	4.4	88	80-120	
1,3-Dichloropropane	5.0	5.3	106	80-120	
Dibromochloromethane	5.0	4.5	90	80-120	
1,2-Dibromoethane (EDB)	5.0	5.4	108	80-120	
Chlorobenzene	5.0	5.1	102	80-120	
Ethylbenzene	5.0	5.0	100	80-120	
1,1,1,2-Tetrachloroethane	5.0	4.4	88	80-120	
Total Xylenes	15.0	15.0	100	80-120	
Styrene	5.0	4.7	94	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Bromoform	5.0	4.2	84	80-120	
Isopropylbenzene	5.0	4.5	90	80-120	
1,1,2,2-Tetrachloroethane	5.0	5.9	118	80-120	
Bromobenzene	5.0	5.0	100	80-120	
n-Propylbenzene	5.0	5.1	102	80-120	
1,2,3-Trichloropropane	5.0	5.7	114	80-120	
2-Chlorotoluene	5.0	4.7	94	80-120	
1,3,5-Trimethylbenzene	5.0	5.1	102	80-120	
4-Chlorotoluene	5.0	5.0	100	80-120	
tert-Butylbenzene	5.0	5.0	100	80-120	
1,2,4-Trimethylbenzene	5.0	5.2	104	80-120	
sec-Butylbenzene	5.0	5.2	104	80-120	
Isopropyltoluene	5.0	5.2	104	80-120	
1,3-Dichlorobenzene	5.0	5.2	104	80-120	
1,4-Dichlorobenzene	5.0	5.4	108	80-120	
n-Butylbenzene	5.0	4.6	92	80-120	
1,2-Dichlorobenzene	5.0	5.2	104	80-120	
1,2-Dibromo-3-Chloropropane	5.0	4.2	84	80-120	
1,2,4-Trichlorolbenzene	5.0	4.9	98	80-120	
Hexachloro-1,3-butadiene	5.0	4.8	96	80-120	
Naphthalene	5.0	5.6	112	80-120	
1,2,3-Trichlorobenzene	5.0	5.2	104	80-120	
Surrogate Recovery					
Dibromofluoromethane			105	65-135	
1,2-Dichloroethane-d4			119	65-135	
Toluene-d8			121	65-135	
4-Bromofluorobenzene			90	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/L)$
Method Blank	3/5/2020	85	nd
UB13W-23	3/5/2020	85	25200 E*
MW17-20200305	3/5/2020	87	nd
MW17-20200305 Dup	3/5/2020	91	nd
UB18W-24	3/5/2020	96	nd
MW14-20200305	3/5/2020	84	nd
Practical Quantitation Limit			100

[&]quot;*" The gasoline range value consist of two chlorinated compounds with elevated concentrations.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;E" Reported value is above the calibration range and is an estimate.

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	(µg/L)
Method Blank	3/5/2020	99	nd	nd
UB13W-23	3/5/2020	100	nd	nd
MW17-20200305	3/5/2020	101	nd	nd
MW17-20200305 Dup	3/5/2020	107	nd	nd
UB18W-24	3/5/2020	102	nd	nd
MW14-20200305	3/5/2020	101	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

3322 South Bay Road NE • Olympia, WA 98506-2957

March 16, 2020

John Funderbuck Urban Environmental Partners, LLC 2324 First Avenue, Suite 203 Seattle, WA 98121

Dear Mr. Funderbuck:

Please find enclosed the analytical data report for the UB20 Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Olympia, WA 98506 Fax 380-3524-154 Client: Urban Entirormental Partners Address: 2324 First Arane State: WA Zip: 98121 Client Project # Client: Project Manager: John Funderburk Project Manager: John Funderburk Project Manager: John Funderburk Project Manager: John Funderburk Client: Matter 203 Clip: State: Set file DA	Libby Environme	ental,	Inc.		Ch	nair	of	Cu	ıst	od	y R	ec	orc	k							ww	w.Libb	/Envir	onment	al.com
Address: 2324 First Arene Suite 203 City: Stattle: WA Zip: 98121 Location: Date of Collection: 3-13-20-0 City State: WA Zip: 98121 Collector: Date of Collection: 3-13-20-0 City State: WA Zip: 98121 Collector: Date of Collection: 3-13-20-0 Email: join to Depth June Type Type Sample Number Type Ty	3322 South Bay Road NE Olympia, WA 98506	Fax:	360-352-4	154													6	Pag	e:		1		of	1	
Address: 2324 First Arene Suite 203 City: State: WA Zip: 98 121 Location: Date of Collection: 3-13-20-0 City: State: WA Zip: 98 121 Collector: Date of Collection: 3-13-20-0 City: State: WA Zip: 98 121 Collector: Date of Collection: 3-13-20-0 Email: join fe very consultring set of a fine Divores.com Sample Number Object Type T	Client: Urban Enviro	ment	w Par	mers	411	U ^p	一個	Proje	ct M	anaç	ger:	John	1 F	bo	erby	nk						1 1/2	_		
City State: WA Zip: 98 121 Phone: 206- 221- 18894 Fax: Client Project # Email: john fe verconsulting on c: Brime Divortes.com Sample Number Depth Time Type Type Type Type Type Type Type Typ						for-						+	XE		=	Pai	ALR	P	M	211		U	<u>13</u>	20	2
Collector:				As .		3	1	Locat	ion:													ec HI	e 1	JA	
Depth Time Type	Phone: 206- 229-6	804	Fax:															Date	e of (Colle	ction	n: 3	-13-	2020	>
Sample Number Depth Jime Type	Client Project #	1	,					Email	l: jol	info	2 0	epce	215	alt;	19.	OC	Sai	cc .	B	ria	ne	Dix	ME	5.00	M
10 10 10 10 10 10 10 10	THO NINE HY					150	0 800 NW	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1802	TRIX A		*/ C. C. C. C. C. C. C. C. C. C. C. C. C.	PH 82	10/10	2 10	\$ 8087 N	CA SW	25 Q	Moldis		1000 1000 1000 1000 1000 1000 1000 100	CONTRACTOR OF THE PARTY OF THE		s	ed)-
3 U529-25 25 265	1 1820-15	15		S														X		desting.	* 1	Hou	<u>. D</u>		
4 UB20 -30 30 19(5	2 0820-20	20	1900	8													1					HO	D		
10 10 11 12 13 14 15 16 16 17 17 18 18 19 19 19 19 19 19	3 USZQ-25	The state of the s	1005													Man. Y	900	X	AM		*	RUSI	1 -	246	
Color Colo	4 UB20-30		1915															X	1	de in				241	hr
7 8 9 9 9 9 9 9 9 9 9	15 UB20 -35	35	1030	4													4	X		4	1	101	D	. 1	h
10	6 UB20 COUP		(000	V														1	X				KI	3-13-	20
9	7								1							(7	9.		Ĺ		try	•		-
10 11 12 13 14 15 16 17 Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY																						-			
11	9																								
12 13 14 15 16 17 Relinquished by: Date / Time Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	10																								
13 14 15 16 17 Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	11																								
14 15 16 17 Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	12																								
15 16 17 Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Date / Time Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	13																								
Relinquished by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	14																								
Relinquished by: Date / Time Part / Time Date / Time Date / Time Date / Time Date / Time Received by: Date / Time Date / Time Date / Time Received by: Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Date / Time Total Number of Containers TAT: (24HR) 48HR 5-DAY	15																								
Relinquished by: Date / Time 7-13-20 Date / Time Received by: Date / Time Received by: Date / Time Received by: Date / Time Cooler Temp. Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample Receipt Sample UB20 Comp Teturied to Client Total Number of Containers TAT: (24HR) 48HR 5-DAY	16	Î																							
7-13-20 1327 Sample UB20 Comp Relinquished by: Date / Time Received by: Date / Time Total Number of Containers Containers TAT: (24HR) 48HR 5-DAY	17			-											1										
TAT: 24HR 48HR 5-DAY	Relinguished by		112	327	Received by:	<i>></i>								Good		-	Rec	eipt		Rei	mark	s: le	UBZ	0-6r	16
TAT: 24HR 48HR 5-DAY	Relinquished by:				Received by:													-		1 %	etur	ned.	to (dient	
TAT: 24HR 48HR 5-DAY			4 999)									-		-	STREET, SQUARE	-] W	ith	out	testi	٠.5٠	
		Date	/ IIme		received by:						Date /	ııme										24HR	481		

UB20 PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-8 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB20-25	UB20-30	UB20-30	
		Blank			Dup	
Date Sampled		N/A	3/12/2020	3/12/2020	3/12/2020	
Date Analyzed	PQL	3/15/2020	3/15/2020	3/15/2020	3/15/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	0.36	0.36	
Trichloroethene (TCE)	0.02	nd	nd	0.51	0.56	
Tetrachloroethene (PCE)	0.02	nd	nd	0.047	0.043	
Surrogate Recovery						
Dibromofluoromethane		100	86	93	92	
1,2-Dichloroethane-d4		95	73	82	81	
Toluene-d8		93	98	96	96	
4-Bromofluorobenzene		85	94	91	90	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

UB20 PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-8 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

M	latrix Spike	Sample Ide	ntification:	UB20-30				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.19	0.17	75	67	11.8	65-135	
1,1-Dichloroethene	0.25	0.20	0.18	79	70	11.8	65-135	
trans-1,2-Dichloroethene	0.25	0.23	0.20	90	80	11.3	65-135	
cis-1,2-Dichloroethene	0.25	0.34	0.27	135	108	22.2	65-135	
Trichloroethene (TCE)	0.25	0.33	0.22	132	88	40.0	65-135	R
Tetrachloroethene (PCE)	0.25	0.21	0.22	82	90	8.9	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				119	100		65-135	
1,2-Dichloroethane-d4				104	89		65-135	
Toluene-d8				121	96		65-135	
4-Bromofluorobenzene				96	94		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

UB20 PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-8 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.21	83	80-120	
1,1-Dichloroethene	0.25	0.24	94	80-120	
trans-1,2-Dichloroethene	0.25	0.23	93	80-120	
cis-1,2-Dichloroethene	0.25	0.29	115	80-120	
Trichloroethene (TCE)	0.25	0.26	103	80-120	
Tetrachloroethene (PCE)	0.25	0.20	80	80-120	
Surrogate Recovery					
Dibromofluoromethane			125	65-135	
1,2-Dichloroethane-d4			115	65-135	
Toluene-d8			122	65-135	
4-Bromofluorobenzene			95	65-135	

UB20 PROJECT
Urban Environmental Partners, LLC
Libby Project # L200313-8
Date Received 3/13/2020

Time Received 1:27 PM

Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

3322 South Bay Road NE

Received By KD

Sample Receipt Checklist

Chain of Custod	<u>Y</u>				
1. Is the Chain of Custo	ody is complete?	✓ Yes	☐ No		
2. How was the sample	e delivered?	☐ Hand Delivered	✓ Picked Up) Ship	oped
Log In					
3. Cooler or Shipping 0	Container is present.	✓ Yes	☐ No	□ N/A	ı
4. Cooler or Shipping (Container is in good condition.	✓ Yes	☐ No	□ N/A	ı
5. Cooler or Shipping (Container has Custody Seals present.	Yes	✓ No	□ N/A	i.
6. Was an attempt mad	de to cool the samples?	✓ Yes	☐ No	□ N/A	i.
7. Temperature of cool	er (0°C to 8°C recommended)	0.	3 °C		
8. Temperature of sam	ple(s) (0°C to 8°C recommended)	6.	2 °C		
9. Did all containers ar	rive in good condition (unbroken)?	✓ Yes	☐ No		
10. Is it clear what ana	lyses were requested?	✓ Yes	☐ No		
11. Did container label	s match Chain of Custody?	✓ Yes	☐ No		
12. Are matrices correct	ctly identified on Chain of Custody?	✓ Yes	☐ No		
13. Are correct contain	ers used for the analysis indicated?	✓ Yes	☐ No		
14. Is there sufficient s	ample volume for indicated analysis?	✓ Yes	☐ No		
15. Were all containers	s properly preserved per each analysis?	✓ Yes	☐ No		
16. Were VOA vials co	llected correctly (no headspace)?	Yes	☐ No	✓ N/A	ı
17. Were all holding tin	nes able to be met?	✓ Yes	☐ No		
Discrepancies/ No	otes				
18. Was client notified	of all discrepancies?	✓ Yes	☐ No	□ N/A	
Person Notified:	Brian Dixon			Date:	3/13/2020
By Whom:	Kory Dixon			Via: In Pers	son
Regarding:	Return sample to client				
19. Comments.	Returned sample UB20-Comp to client.	. Unable to perforr	m requested a	ınalysis.	
	Completed a new COC to relinquish sa	mple.			
	3				

3322 South Bay Road NE • Olympia, WA 98506-2957

March 14, 2020

John Funderbuck Urban Environmental Partners, LLC 2324 First Avenue, Suite 203 Seattle, WA 98121

Dear Mr. Funderbuck:

Please find enclosed the analytical data report for the Rainier Mall Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	air	1 0	f Cus	tody	y Re	CO	rd		/					www.LibbyEnvironme	ental.com
3322 South Bay Road NE	Ph:	360-352-2	110				Date:	3/	-/-					_			/	1	
	Fax:	. 1	/	- (Date:	1	5/00	,	_	PL			age		-	of /	
Client: Urban Envi					7)01	nn	tu	inc	derbuck	
Address: 2324 Fire							Project											. 111	
city: Seuttle			JH Zip	: 98121			Location	n: 4	2008	Ra	nie	s A	Ve	50	City,	State	9:	Seattle wo	4
Phone: 206-229-	4804	Fax:					Collecto	or: E). D	XXC	1				ate	of Co	ollec	tion: 3-5-76)
Client Project #	•						Email:	Joh	info	o 4-	e pc	ins	nla	Sny	-0	m	1		
Sample Number	Depth	Time	Sample Type	Container Type	150	C 876	//		//		//		//					Field Notes	·
1 UB17-3	3	430	5		X	X			X										
2 UB13-4	4	510	5		X	X			\times										
3 UB17-11	11	835	5		X	X	1		X										
4 UB13-23	23	455	5		X	X			X.										
5 UB13-9	9	825	5		X	X			X										
6 UB14-5	5	1000	5		X	7			X										
7 UBI8-3	3	1113	5		X	X			X										
8 UB18-12	12	1130	5		X	X			X										
9 08 18-30	30	125	5		X	X			X									Rush	
10 UB15-6	6	1105	5		X	\times			X										
11 UB19-20	70	1300	5		X	X		T = T	X									HOLD	
12 UB19-24	24	1310	5	ONE	EX.	×			8	oto	eede	las	per	Ema	:1			HOLD RU	5h_
13 UB19-30	30	1330	5	- 1	X	X	-		X									HOLD	
14 UBI9W-25	25	1410	W	(PC	X													HOLD RU	5h
15					only	!													•
16																			
17				2	7		1												
Relinquished by		/ Time	4.	Received by:	1	/		/ /	Date / T			San	nple	Rece	ipt			arks:	
	3-5-		15	Max 1	21	de	3/3			3:15	Goo	d Cond	dition?	`		N		standard	Trn
Relinquished by.	Date	/ Time		Received by:					Date / T	ime		ler Ten			_	°C			
Relinquished by:	Date	/ Time	V	Received by:					Date / T	ime	_	ple Te	_			°C			
realinquistieu by.	Date	/ Illie		neceived by.					Date / I	iiie		ontain				ŀ	TAT	: 24HR 48HR	5-DAY
LEGAL ACTION CLAUSE: In the event of default of pay	ment and/or failure	to pay, Client agre-	es to pay the costs or	collection including court co	sts and re	asonable	e attorney fees to	be determine	ed by a cout of	of law.						Dist	tribution	: White - Lab, Yellow - File, Pi	nk - Originator

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method Blank	UB17-3	UB13-4	UB17-11	UB13-23	UB13-9
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/10/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	0.033	1.8
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	0.21
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	0.16	33
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	1.8	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	143	0.25
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	0.010
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB17-3	UB13-4	UB17-11	UB13-23	UB13-9
		Blank					
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/10/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.03	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	0.031	nd	nd	nd	nd
n-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.10	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		106	91	91	101	93	91
1,2-Dichloroethane-d4		109	91	91	97	96	92
Toluene-d8		94	90	89	101	88	95
4-Bromofluorobenzene		75	83	75	80	80	83

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB14-5	UB18-3	UB18-3	UB18-12	UB18-30	UB18-30
				Dup			Dup
Date Sampled	Reporting	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/6/2020	3/6/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd	nd	nd	nd	nd
Chloromethane	0.06	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.09	nd	nd	nd	nd	nd	nd
Chloroethane	0.06	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.02	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.03	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
cis -1,2-Dichloroethene	0.02	nd	0.022	nd	nd	nd	nd
Chloroform	0.02	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.03	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.02	nd	nd	nd	nd	nd	nd
Dibromomethane	0.04	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.02	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	0.027	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.03	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.02	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.02	nd	nd	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		UB14-5	UB18-3	UB18-3	UB18-12	UB18-30	UB18-30
				Dup			Dup
Date Sampled	Reporting	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020
Date Analyzed	Limits	3/10/2020	3/10/2020	3/10/2020	3/10/2020	3/6/2020	3/6/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Propylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.03	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.03	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.03	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd	nd	nd	nd	nd
Naphthalenes	0.10	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		92	90	94	88	107	112
1,2-Dichloroethane-d4		90	87	94	81	103	124
Toluene-d8		96	87	87	89	95	93
4-Bromofluorobenzene		73	70	71	65	81	90

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB15-6
Sample Description		Blank	013-0
Date Sampled	Reporting	N/A	3/5/2020
Date Analyzed	Limits	3/6/2020	3/10/2020
Date I mary Lea	(mg/kg)	(mg/kg)	(mg/kg)
Dichlorodifluoromethane	$\frac{(\text{mg/kg})}{0.06}$	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride	0.02	nd	nd
Bromomethane	0.02	nd	nd
Chloroethane	0.06	nd	nd
Trichlorofluoromethane	0.05	nd	nd
	0.05		
1,1-Dichloroethene	0.03	nd nd	nd
Methylene chloride		nd 1	nd
Methyl tert- Butyl Ether (MTBE)	0.05	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd
1,1-Dichloroethane	0.03	nd	nd
2,2-Dichloropropane	0.05	nd	nd
cis -1,2-Dichloroethene	0.02	nd	nd
Chloroform	0.02	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd
Carbon tetrachloride	0.03	nd	nd
1,1-Dichloropropene	0.02	nd	nd
Benzene	0.02	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd
Trichloroethene (TCE)	0.02	nd	nd
1,2-Dichloropropane	0.02	nd	nd
Dibromomethane	0.04	nd	nd
Bromodichloromethane	0.02	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd
Toluene	0.10	nd	nd
Trans-1,3-Dichloropropene	0.03	nd	nd
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.02	nd	2.2
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.003	nd	nd
Ethylbenzene	0.02	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd
Total Xylenes	0.03	nd	nd
*	0.13		
Styrene	0.02	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB15-6
		Blank	
Date Sampled	Reporting	N/A	3/5/2020
Date Analyzed	Limits	3/6/2020	3/10/2020
•	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd
Isopropylbenzene	0.05	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd
Bromobenzene	0.03	nd	nd
n-Propylbenzene	0.03	nd	nd
1,2,3-Trichloropropane	0.04	nd	nd
2-Chlorotoluene	0.03	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd
4-Chlorotoluene	0.03	nd	nd
tert-Butylbenzene	0.03	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd
sec-Butylbenzene	0.03	nd	nd
p-Isopropyltoluene	0.03	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd
n-Butylbenzene	0.03	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd
Naphthalenes	0.10	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd
Surrogate Recovery		110	100
Dibromofluoromethane		110	103
1,2-Dichloroethane-d4		120	109
Toluene-d8		100	97 5 0
4-Bromofluorobenzene		86	79

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Soil

Sample Description		Method	UB19-24	
		Blank		
Date Sampled	Reporting	N/A	3/5/2020	
Date Analyzed	Limits	3/6/2020	3/6/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl chloride	0.02	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	
trans -1,2-Dichloroethene	0.02	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	
Tetrachloroethene (PCE)	0.02	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		110	68	
1,2-Dichloroethane-d4		120	90	
Toluene-d8		100	92	
4-Bromofluorobenzene		86	79	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	ike Sample Id	ientification:	L200304-40				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Dichlorodifluoromethane	0.25	0.13	0.13	51	50	0.8	65-135	S
Chloromethane	0.25	0.21	0.22	84	90	6.9	65-135	
Vinyl chloride	0.25	0.22	0.24	89	96	8.2	65-135	
Bromomethane	0.25	0.17	0.18	70	72	3.4	65-135	
Chloroethane	0.25	0.10	0.10	38	40	6.1	65-135	S
Trichlorofluoromethane	0.25	0.032	0.056	13	22	54.0	65-135	R, S
1,1-Dichloroethene	0.25	0.19	0.21	77	83	7.0	65-135	
Methylene chloride	0.25	0.23	0.26	90	104	13.6	65-135	
Methyl tert- Butyl Ether (MTBE)	0.25	0.15	0.16	60	63	3.9	65-135	S
trans -1,2-Dichloroethene	0.25	0.21	0.22	84	89	5.6	65-135	
1,1-Dichloroethane	0.25	0.23	0.24	93	98	4.6	65-135	
2,2-Dichloropropane	0.25	0.21	0.21	82	84	1.4	65-135	
cis-1,2-Dichloroethene	0.25	0.26	0.27	102	107	4.6	65-135	
Chloroform	0.25	0.23	0.23	90	94	3.9	65-135	
1,1,1-Trichloroethane (TCA)	0.25	0.19	0.20	78	80	2.5	65-135	
Carbon tetrachloride	0.25	0.18	0.18	72	72	1.1	65-135	
1,1-Dichloropropene	0.25	0.19	0.20	76	80	4.6	65-135	
Benzene	0.25	0.24	0.24	95	98	2.9	65-135	
1,2-Dichloroethane (EDC)	0.25	0.25	0.25	100	99	0.4	65-135	
Trichloroethene (TCE)	0.25	0.21	0.22	85	88	3.7	65-135	
1,2-Dichloropropane	0.25	0.27	0.28	110	112	2.5	65-135	
Dibromomethane	0.25	0.26	0.25	103	101	2.4	65-135	
Bromodichloromethane	0.25	0.24	0.25	97	100	2.8	65-135	
cis-1,3-Dichloropropene	0.25	0.17	0.17	67	69	2.9	65-135	
Toluene	0.25	0.24	0.25	96	98	2.5	65-135	
Trans-1,3-Dichloropropene	0.25	0.20	0.22	81	89	9.4	65-135	
1,1,2-Trichloroethane	0.25	0.31	0.34	125	137	9.1	65-135	S
Tetrachloroethene (PCE)	0.25	0.22	0.23	88	91	3.6	65-135	
1,3-Dichloropropane	0.25	0.22	0.24	89	96	7.8	65-135	
Dibromochloromethane	0.25	0.22	0.24	90	95	5.6	65-135	
1,2-Dibromoethane (EDB)	0.25	0.251	0.27	100	107	6.6	65-135	
Chlorobenzene	0.25	0.25	0.27	101	107	5.4	65-135	
Ethylbenzene	0.25	0.23	0.24	90	94	4.3	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.27	0.29	109	116	6.4	65-135	
Total Xylenes	0.75	0.62	0.67	83	89	7.8	65-135	
Styrene	0.25	0.25	0.28	98	112	13.3	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	oike Sample Id	lentification:	L200304-40				
	Spiked Conc. (mg/kg)	MS Response (mg/kg)	MSD Response (mg/kg)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Bromoform	0.25	0.27	0.28	108	112	3.6	65-135	
Isopropylbenzene	0.25	0.19	0.20	77	81	4.6	65-135	
1,1,2,2-Tetrachloroethane	0.25	0.33	0.37	131	147	11.2	65-135	S
Bromobenzene	0.25	0.21	0.24	84	96	14.2	65-135	
n-Propylbenzene	0.25	0.23	0.24	93	95	1.7	65-135	
1,2,3-Trichloropropane	0.25	0.27	0.29	107	118	9.3	65-135	
2-Chlorotoluene	0.25	0.23	0.25	92	98	6.7	65-135	
1,3,5-Trimethylbenzene	0.25	0.22	0.23	86	91	5.9	65-135	
4-Chlorotoluene	0.25	0.22	0.23	88	92	4.0	65-135	
tert-Butylbenzene	0.25	0.18	0.18	70	73	3.9	65-135	
1,2,4-Trimethylbenzene	0.25	0.21	0.23	86	90	5.0	65-135	
sec-Butylbenzene	0.25	0.23	0.25	93	99	5.8	65-135	
Isopropyltoluene	0.25	0.21	0.21	83	82	1.0	65-135	
1,3-Dichlorobenzene	0.25	0.25	0.28	100	112	11.7	65-135	
1,4-Dichlorobenzene	0.25	0.25	0.28	99	112	12.2	65-135	
n-Butylbenzene	0.25	0.23	0.22	90	90	0.4	65-135	
1,2-Dichlorobenzene	0.25	0.22	0.26	88	103	16.4	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.27	0.32	110	128	15.5	65-135	
1,2,4-Trichlorolbenzene	0.25	0.22	0.28	88	113	25.1	65-135	
Hexachloro-1,3-butadiene	0.25	0.29	0.30	118	120	1.7	65-135	
Naphthalene	0.25	0.13	0.20	51	81	45.3	65-135	R, S
1,2,3-Trichlorobenzene	0.25	0.22	0.33	88	131	39.4	65-135	R
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				93	93		65-135	
1,2-Dichloroethane-d4				94	104		65-135	
Toluene-d8				101	99		65-135	
4-Bromofluorobenzene				103	105		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Melissa Harrington

[&]quot;S" Spike compound recovery is outside acceptance limits.

[&]quot;R" High relative percent difference observed.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Spiked Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	Tag
Dichlorodifluoromethane	0.25	0.21	84	80-120	
Chloromethane	0.25	0.26	104	80-120	
Vinyl chloride	0.25	0.26	104	80-120	
Bromomethane	0.25	0.25	100	80-120	
Chloroethane	0.25	0.30	120	80-120	
Trichlorofluoromethane	0.25	0.22	88	80-120	
1,1-Dichloroethene	0.25	0.23	92	80-120	
Methylene chloride	0.25	0.30	120	80-120	
Methyl tert- Butyl Ether (MTBE)	0.25	0.21	84	80-120	
trans -1,2-Dichloroethene	0.25	0.24	96	80-120	
1,1-Dichloroethane	0.25	0.27	108	80-120	
2,2-Dichloropropane	0.25	0.25	100	80-120	
cis -1,2-Dichloroethene	0.25	0.27	108	80-120	
Chloroform	0.25	0.28	112	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.24	96	80-120	
Carbon tetrachloride	0.25	0.23	92	80-120	
1,1-Dichloropropene	0.25	0.23	92	80-120	
Benzene	0.25	0.28	112	80-120	
1,2-Dichloroethane (EDC)	0.25	0.27	108	80-120	
Trichloroethene (TCE)	0.25	0.25	100	80-120	
1,2-Dichloropropane	0.25	0.28	112	80-120	
Dibromomethane	0.25	0.29	116	80-120	
Bromodichloromethane	0.25	0.29	116	80-120	
cis-1,3-Dichloropropene	0.25	0.23	92	80-120	
Toluene	0.25	0.25	100	80-120	
Trans-1,3-Dichloropropene	0.25	0.23	92	80-120	
1,1,2-Trichloroethane	0.25	0.26	104	80-120	
Tetrachloroethene (PCE)	0.25	0.21	84	80-120	
1,3-Dichloropropane	0.25	0.28	112	80-120	
Dibromochloromethane	0.25	0.29	116	80-120	
1,2-Dibromoethane (EDB)	0.25	0.263	105	80-120	
Chlorobenzene	0.25	0.27	108	80-120	
Ethylbenzene	0.25	0.23	92	80-120	
1,1,2-Tetrachloroethane	0.25	0.29	116	80-120	
Total Xylenes	0.75	0.71	95	80-120	
Styrene	0.25	0.21	84	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.25	0.29	116	80-120	
Isopropylbenzene	0.25	0.20	80	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.22	88	80-120	
Bromobenzene	0.25	0.26	104	80-120	
n-Propylbenzene	0.25	0.24	96	80-120	
1,2,3-Trichloropropane	0.25	0.30	120	80-120	
2-Chlorotoluene	0.25	0.22	88	80-120	
1,3,5-Trimethylbenzene	0.25	0.21	84	80-120	
4-Chlorotoluene	0.25	0.23	92	80-120	
tert-Butylbenzene	0.25	0.21	84	80-120	
1,2,4-Trimethylbenzene	0.25	0.21	84	80-120	
sec-Butylbenzene	0.25	0.22	88	80-120	
Isopropyltoluene	0.25	0.25	100	80-120	
1,3-Dichlorobenzene	0.25	0.30	120	80-120	
1,4-Dichlorobenzene	0.25	0.30	120	80-120	
n-Butylbenzene	0.25	0.23	92	80-120	
1,2-Dichlorobenzene	0.25	0.26	104	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.23	92	80-120	
1,2,4-Trichlorolbenzene	0.25	0.21	84	80-120	
Hexachloro-1,3-butadiene	0.25	0.24	96	80-120	
Naphthalene	0.25	0.23	92	80-120	
1,2,3-Trichlorobenzene	0.25	0.23	92	80-120	
Surrogate Recovery					
Dibromofluoromethane			112	65-135	
1,2-Dichloroethane-d4			107	65-135	
Toluene-d8			95	65-135	
4-Bromofluorobenzene			100	65-135	

ANALYSES PERFORMED BY: Melissa Harrington

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	ike Sample Id	lentification:	UB18-30				
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	riag
Dichlorodifluoromethane	0.25	0.17	0.18	70	72	3.4	65-135	
Chloromethane	0.25	0.26	0.28	104	110	5.6	65-135	
Vinyl chloride	0.25	0.28	0.29	111	115	3.5	65-135	
Bromomethane	0.25	0.23	0.23	91	94	3.0	65-135	
Chloroethane	0.25	0.13	0.13	50	53	4.7	65-135	
Trichlorofluoromethane	0.25	0.17	0.18	66	71	7.0	65-135	
1,1-Dichloroethene	0.25	0.24	0.24	96	96	0.0	65-135	
Methylene chloride	0.25	0.30	0.32	119	127	6.5	65-135	
Methyl <i>tert</i> - Butyl Ether (MTBE)	0.25	0.19	0.19	77	76	1.6	65-135	
trans -1,2-Dichloroethene	0.25	0.24	0.25	96	100	3.7	65-135	
1,1-Dichloroethane	0.25	0.28	0.30	113	120	6.5	65-135	
2,2-Dichloropropane	0.25	0.24	0.25	95	100	4.5	65-135	
cis -1,2-Dichloroethene	0.25	0.27	0.28	107	113	5.5	65-135	
Chloroform	0.25	0.27	0.33	106	134	22.7	65-135	
1,1,1-Trichloroethane (TCA)	0.25	0.22	0.23	89	92	3.5	65-135	
Carbon tetrachloride	0.25	0.20	0.20	78	80	2.5	65-135	
1,1-Dichloropropene	0.25	0.23	0.24	94	96	2.1	65-135	
Benzene	0.25	0.30	0.30	120	119	0.3	65-135	
1,2-Dichloroethane (EDC)	0.25	0.25	0.27	101	106	5.4	65-135	
Trichloroethene (TCE)	0.25	0.23	0.24	90	94	4.8	65-135	
1,2-Dichloropropane	0.25	0.31	0.32	123	128	4.1	65-135	
Dibromomethane	0.25	0.29	0.30	117	119	1.4	65-135	
Bromodichloromethane	0.25	0.26	0.30	104	119	13.2	65-135	
cis-1,3-Dichloropropene	0.25	0.19	0.20	76	78	3.6	65-135	
Toluene	0.25	0.28	0.28	111	113	2.1	65-135	
Trans-1,3-Dichloropropene	0.25	0.25	0.25	101	101	0.4	65-135	
1,1,2-Trichloroethane	0.25	0.31	0.32	124	128	2.9	65-135	
Tetrachloroethene (PCE)	0.25	0.23	0.24	90	94	4.3	65-135	
1,3-Dichloropropane	0.25	0.27	0.28	108	113	4.3	65-135	
Dibromochloromethane	0.25	0.26	0.28	103	112	8.6	65-135	
1,2-Dibromoethane (EDB)	0.25	0.29	0.31	116	122	5.0	65-135	
Chlorobenzene	0.25	0.27	0.28	106	112	5.5	65-135	
Ethylbenzene	0.25	0.27	0.24	108	97	11.3	65-135	
1,1,1,2-Tetrachloroethane	0.25	0.29	0.32	116	126	8.6	65-135	
Total Xylenes	0.75	0.89	0.67	118	90	27.2	65-135	
Styrene	0.25	0.23	0.20	92	80	13.9	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Sp	ike Sample Id	lentification:	UB18-30				
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Bromoform	0.25	0.29	0.31	116	124	6.7	65-135	
Isopropylbenzene	0.25	0.18	0.17	73	69	6.2	65-135	
1,1,2,2-Tetrachloroethane	0.25	0.30	0.26	120	104	14.0	65-135	
Bromobenzene	0.25	0.23	0.26	92	104	12.2	65-135	
n-Propylbenzene	0.25	0.24	0.24	94	98	3.8	65-135	
1,2,3-Trichloropropane	0.25	0.33	0.28	130	112	14.8	65-135	
2-Chlorotoluene	0.25	0.22	0.22	89	90	0.9	65-135	
1,3,5-Trimethylbenzene	0.25	0.23	0.22	91	88	3.6	65-135	
4-Chlorotoluene	0.25	0.22	0.23	88	91	3.1	65-135	
tert-Butylbenzene	0.25	0.18	0.18	72	70	2.2	65-135	
1,2,4-Trimethylbenzene	0.25	0.30	0.21	120	86	33.1	65-135	
sec-Butylbenzene	0.25	0.28	0.22	112	90	21.9	65-135	
Isopropyltoluene	0.25	0.18	0.18	72	70	3.4	65-135	
1,3-Dichlorobenzene	0.25	0.27	0.30	107	119	10.3	65-135	
1,4-Dichlorobenzene	0.25	0.27	0.29	108	117	8.2	65-135	
n-Butylbenzene	0.25	0.21	0.19	84	75	10.6	65-135	
1,2-Dichlorobenzene	0.25	0.24	0.27	97	109	11.3	65-135	
1,2-Dibromo-3-Chloropropane	0.25	0.26	0.15	104	60	54.0	65-135	
1,2,4-Trichlorolbenzene	0.25	0.20	0.17	80	66	19.1	65-135	
Hexachloro-1,3-butadiene	0.25	0.26	0.16	104	64	47.4	65-135	R, S
Naphthalene	0.25	0.17	0.22	68	86	23.4	65-135	
1,2,3-Trichlorobenzene	0.25	0.20	0.17	81	68	17.8	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				99	102		65-135	
1,2-Dichloroethane-d4				102	101		65-135	
Toluene-d8				98	98		65-135	
4-Bromofluorobenzene				98	98		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;S" Spike compound recovery is outside acceptance limits.

[&]quot;R" High relative percent difference observed.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Dichlorodifluoromethane	0.25	0.26	104	80-120	
Chloromethane	0.25	0.29	116	80-120	
Vinyl chloride	0.25	0.24	95	80-120	
Bromomethane	0.25	0.23	92	80-120	
Chloroethane	0.25	0.30	119	80-120	
Trichlorofluoromethane	0.25	0.20	82	80-120	
1,1-Dichloroethene	0.25	0.24	95	80-120	
Methylene chloride	0.25	0.28	112	80-120	
Methyl tert- Butyl Ether (MTBE)	0.25	0.24	95	80-120	
trans -1,2-Dichloroethene	0.25	0.23	94	80-120	
1,1-Dichloroethane	0.25	0.27	106	80-120	
2,2-Dichloropropane	0.25	0.23	94	80-120	
cis-1,2-Dichloroethene	0.25	0.24	98	80-120	
Chloroform	0.25	0.25	100	80-120	
1,1,1-Trichloroethane (TCA)	0.25	0.22	86	80-120	
Carbon tetrachloride	0.25	0.21	82	80-120	
1,1-Dichloropropene	0.25	0.22	89	80-120	
Benzene	0.25	0.26	104	80-120	
1,2-Dichloroethane (EDC)	0.25	0.28	112	80-120	
Trichloroethene (TCE)	0.25	0.22	88	80-120	
1,2-Dichloropropane	0.25	0.30	119	80-120	
Dibromomethane	0.25	0.30	118	80-120	
Bromodichloromethane	0.25	0.29	115	80-120	
cis-1,3-Dichloropropene	0.25	0.21	84	80-120	
Toluene	0.25	0.24	96	80-120	
Trans-1,3-Dichloropropene	0.25	0.27	106	80-120	
1,1,2-Trichloroethane	0.25	0.29	114	80-120	
Tetrachloroethene (PCE)	0.25	0.20	82	80-120	
1,3-Dichloropropane	0.25	0.29	117	80-120	
Dibromochloromethane	0.25	0.30	119	80-120	
1,2-Dibromoethane (EDB)	0.25	0.29	115	80-120	
Chlorobenzene	0.25	0.26	105	80-120	
Ethylbenzene	0.25	0.22	87	80-120	
1,1,1,2-Tetrachloroethane	0.25	0.30	119	80-120	
Total Xylenes	0.75	0.75	99	80-120	
Styrene	0.25	0.22	88	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Bromoform	0.25	0.27	109	80-120	
Isopropylbenzene	0.25	0.21	84	80-120	
1,1,2,2-Tetrachloroethane	0.25	0.28	112	80-120	
Bromobenzene	0.25	0.25	100	80-120	
n-Propylbenzene	0.25	0.21	86	80-120	
1,2,3-Trichloropropane	0.25	0.28	112	80-120	
2-Chlorotoluene	0.25	0.21	84	80-120	
1,3,5-Trimethylbenzene	0.25	0.22	88	80-120	
4-Chlorotoluene	0.25	0.25	98	80-120	
tert-Butylbenzene	0.25	0.22	86	80-120	
1,2,4-Trimethylbenzene	0.25	0.20	80	80-120	
sec-Butylbenzene	0.25	0.22	86	80-120	
Isopropyltoluene	0.25	0.20	80	80-120	
1,3-Dichlorobenzene	0.25	0.30	120	80-120	
1,4-Dichlorobenzene	0.25	0.28	114	80-120	
n-Butylbenzene	0.25	0.21	83	80-120	
1,2-Dichlorobenzene	0.25	0.28	112	80-120	
1,2-Dibromo-3-Chloropropane	0.25	0.24	97	80-120	
1,2,4-Trichlorolbenzene	0.25	0.28	113	80-120	
Hexachloro-1,3-butadiene	0.25	0.26	104	80-120	
Naphthalene	0.25	0.21	85	80-120	
1,2,3-Trichlorobenzene	0.25	0.29	118	80-120	
Surrogate Recovery					
Dibromofluoromethane			100	65-135	
1,2-Dichloroethane-d4			105	65-135	
Toluene-d8			95	65-135	
4-Bromofluorobenzene			100	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Soil

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	3/10/2020	94	nd
UB17-3	3/10/2020	90	nd
UB13-4	3/10/2020	89	nd
UB17-11	3/10/2020	101	nd
UB13-23	3/10/2020	88	160 *
UB13-9	3/10/2020	95	nd
UB14-5	3/10/2020	96	nd
UB18-3	3/10/2020	87	nd
UB18-3 Dup	3/10/2020	87	nd
UB18-12	3/10/2020	89	nd
UB18-30	3/6/2020	95	nd
UB18-30 Dup	3/6/2020	93	nd
UB15-6	3/10/2020	97	nd
Practical Quantitation Limit			10

[&]quot;*" The gasoline range value consist of a chlorinated compound with elevated concentrations.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Melissa Harrington & Sherry Chilcutt

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/9/2020	92	nd	nd
UB17-3	3/9/2020	98	nd	nd
UB13-4	3/9/2020	71	nd	nd
UB17-11	3/9/2020	101	nd	nd
UB13-23	3/9/2020	72	nd	nd
UB13-9	3/9/2020	98	nd	nd
UB14-5	3/9/2020	73	nd	nd
UB18-3	3/9/2020	109	nd	nd
UB18-12	3/9/2020	99	nd	nd
UB18-30	3/6/2020	74	nd	nd
UB15-6	3/9/2020	115	nd	nd
Practical Quantitation Limit			50	250

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jenny Anderson

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	UB19W-25	UB19W-25	
		Blank		Dup	
Date Sampled	Reporting	N/A	3/5/2020	3/5/2020	
Date Analyzed	Limits	3/6/2020	3/6/2020	3/6/2020	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Vinyl chloride	0.2	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	
trans -1,2-Dichloroethene	1.0	nd	nd	nd	
cis -1,2-Dichloroethene	1.0	nd	2.9	3.0	
Trichloroethene (TCE)	0.4	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	
Surrogate Recovery					
Dibromofluoromethane		110	93	103	
1,2-Dichloroethane-d4		120	87	101	
Toluene-d8		100	88	91	
4-Bromofluorobenzene		86	77	75	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200305-6 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Id	lentification:	MW14-2020	0305			
	Spiked Conc. (µg/L)	MS Response (µg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Vinyl chloride	5.0	6.1	6.0	122	120	1.7	65-135	
1,1-Dichloroethene	5.0	5.5	5.5	110	110	0.0	65-135	
trans -1,2-Dichloroethene	5.0	5.6	5.5	112	110	1.8	65-135	
cis-1,2-Dichloroethene	5.0	5.5	5.6	110	112	1.8	65-135	
Trichloroethene (TCE)	5.0	5.2	5.4	104	108	3.8	65-135	
Tetrachloroethene (PCE)	5.0	5.3	5.2	106	104	1.9	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				94	95		65-135	
1,2-Dichloroethane-d4				93	86		65-135	
Toluene-d8				100	96		65-135	
4-Bromofluorobenzene				100	99		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)	
Vinyl chloride	5.0	5.7	114	80-120	
1,1-Dichloroethene	5.0	4.8	96	80-120	
trans -1,2-Dichloroethene	5.0	4.7	94	80-120	
cis-1,2-Dichloroethene	5.0	4.9	98	80-120	
Trichloroethene (TCE)	5.0	4.4	88	80-120	
Tetrachloroethene (PCE)	5.0	4.1	82	80-120	
Surrogate Recovery					
Dibromofluoromethane			100	65-135	
1,2-Dichloroethane-d4			105	65-135	
Toluene-d8			95	65-135	
4-Bromofluorobenzene			100	65-135	

3322 South Bay Road NE • Olympia, WA 98506-2957

April 1, 2020

John Funderbuck Urban Environmental Partners, LLC 2324 First Avenue, Suite 203 Seattle, WA 98121

Dear Mr. Funderbuck:

Please find enclosed the analytical data report for the Rainier Mall Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Libby Environme	ental,	Inc.		Cł	nair	of	C	ust	od	y R	ec	ord								www.l	LibbyE	nvironn	nental.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4					Date	:	3/1	3/	20	>					Page	9:	1		of	昼	J
Client: Urban Envir	MM	entel	artne	er s			Proje	ect N	lanaç	ger:	Ja	ha	Fi	nde	er 6	wk		cc	: Ę	3rie	1 D	ixor	7
Address: 2324 Firs									lame				er										
City: Seattle		State: W		: 98121			-							-	and the same of th	5.	City,	State	e: <	eat	He	WA	
Phone: 206-229-6										>/				•								- 3/	
Client Project #							Ema	il: j	ohn	Fe	UED	Cor	154	14:2	4 · C	on		cc:	Br	are	Di	York	S.com
Sample Number	Depth	Time	Sample Type	Container Type	/5	2 N N S S S S S S S S S S S S S S S S S	KRY.	*/**	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	30	7-0	200	/		STATE OF THE PARTY	الرقم		dur.		200	Field N		
1MW1-20200313		1040	W														X						
2 MW2-20200312		1140															X						
3 MW3-20200312		100															X						
4 MW 4-20200312		1405															X						
5 MW5-20200312		1440															X						
6 MW6-30200312		1234															X						
7 MW7-20200312		1305															X						
8 MW8-20200312	-	1350															X						
9 MW9-20200312		1230								14							X						
10 MW/0-20200312		915													5		X						
11 MW 12-20200313		1045			X	X	X	X	溪	·X	X	X	X	X	X	X		X					
12 MW 13-202003 13		955			X	X	X	X	X	X	X	X	X	X	X	X		X					
13MW15-20200312		1125			X	X	X	X	X	X	X	X	X	X	X	X		X					
14 MW16-2020312		1320			\times	X	X	X	X	X	X	X	X	X	X	X		X					
15 MW17 +20200312		1015			X	X	X	X	X	X	X	X	X	X	X	X		X					
16 MW18-20200312		1130			X	X	X	7	X	X	X	X	X	X	X	X		X					
17 MW20-20200312	- ,	955	4														X			24	-hr	Ru	SH
Relined Dy:	#3/13	955 Time 1327		Received by: 3-13-20		15	17	1	57	Date	Time		Good	VIII A SALES	_	Rec	eipt Y	N	Rem	arks:			
Relinquished by:	Date	/ Time		Received by:				1	1	Date	/ Time		Coole					°C					
3,												_	Samp	Control of the last of				°C					
Relinquished by:	Date	/ Time		Received by:						Date	/ Time			Numb	- 1				TAT	2/	4HR	48HR	(5-DÀY
LEGAL ACTION CLAUSE: In the event of default of pay	mont and/or failure	e to pay Client sore	es to nev the mets	of collection including court of	nete and re	asonable	attomey t	lees to be	determin	ed by a co	ut of law		- 00	- itali ie	,,,,			Diet		AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON	- Lab. Yel		Pin Originatur

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW1-	MW2-	MW3-	MW4-	MW5-
		Blank	20200313	20200312	20200312	20200312	20200312
Date Sampled		N/A	3/13/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020
Date Analyzed	PQL	3/15/2020	3/17/2020	3/16/2020	3/15/2020	3/15/2020	3/17/2020
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Vinyl Chloride (VC)	0.2	nd	499	nd	nd	nd	138
1,1-Dichloroethene	0.5	nd	2.4	nd	nd	nd	8.0
trans-1,2-Dichloroethene	1.0	nd	37	nd	nd	nd	122
cis -1,2-Dichloroethene	1.0	nd	3460	11	nd	nd	12200
Trichloroethene (TCE)	0.4	nd	3820	0.94	nd	nd	19800
Tetrachloroethene (PCE)	1.0	nd	16400	nd	nd	nd	38900
Surrogate Recovery							
Dibromofluoromethane		105	107	104	103	106	103
1,2-Dichloroethane-d4		103	97	95	91	102	107
Toluene-d8		97	91	91	96	96	68
4-Bromofluorobenzene		91	70	75	81	88	69

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		MW6-	MW7-	MW8-	MW9-	MW10-	Method
		20200312	20200312	20200312	20200312	20200312	Blank
Date Sampled		3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	N/A
Date Analyzed	PQL	3/15/2020	3/16/2020	3/16/2020	3/17/2020	3/16/2020	3/16/2020
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)
Vinyl Chloride (VC)	0.2	0.66	nd	13	12	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	3.1	11	nd	nd
cis-1,2-Dichloroethene	1.0	13	nd	420	1030	nd	nd
Trichloroethene (TCE)	0.4	11	nd	510	740	nd	nd
Tetrachloroethene (PCE)	1.0	5.7	nd	1200	300	nd	nd
Surrogate Recovery							_
Dibromofluoromethane		105	107	103	112	107	117
1,2-Dichloroethane-d4		93	94	93	105	101	118
Toluene-d8		94	96	92	88	100	94
4-Bromofluorobenzene		81	80	76	77	86	84

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Id	lentification:	L200313-4				
	Spiked Conc. (µg/L)	MS Response (μg/L)	MSD Response (μg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Vinyl Chloride (VC)	5.0	3.9	3.6	78	72	8.0	65-135	
1,1-Dichloroethene	5.0	4.2	4.0	84	80	4.9	65-135	
trans-1,2-Dichloroethene	5.0	4.1	4.1	82	82	0.0	65-135	
cis-1,2-Dichloroethene	5.0	6.2	4.9	124	98	23.4	65-135	
Trichloroethene (TCE)	5.0	4.3	4.7	86	94	8.9	65-135	
Tetrachloroethene (PCE)	5.0	3.8	3.8	76	76	0.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				131	113		65-135	
1,2-Dichloroethane-d4				124	107		65-135	
Toluene-d8				92	98		65-135	
4-Bromofluorobenzene				122	89		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.4	88	80-120	
1,1-Dichloroethene	5.0	4.6	91	80-120	
trans-1,2-Dichloroethene	5.0	4.4	87	80-120	
cis-1,2-Dichloroethene	5.0	6.0	119	80-120	
Trichloroethene (TCE)	5.0	4.8	97	80-120	
Tetrachloroethene (PCE)	5.0	4.5	90	80-120	
Surrogate Recovery					
Dibromofluoromethane			110	65-135	
1,2-Dichloroethane-d4			119	65-135	
Toluene-d8			108	65-135	
4-Bromofluorobenzene			125	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW12-	MW13-	MW15-	MW16-	MW17-
		Blank	20200313	20200313	20200312	20200312	20200312
Date Sampled	Reporting	N/A	3/13/2020	3/13/2020	3/12/2020	3/12/2020	3/12/2020
Date Analyzed	Limits	3/17/2020	3/17/2020	3/17/2020	3/17/2020	3/17/2020	3/17/2020
	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Chloromethane	2.0	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.2	nd	4.1	76	nd	nd	1.0
Bromomethane	2.0	nd	nd	nd	nd	nd	nd
Chloroethane	2.0	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	2.0	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	22	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd	nd	nd
Methyl tert- Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd	3.3	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	2.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	13	1160	nd	1.0	95
Chloroform	1.0	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	45	5580	nd	2.2	0.47
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromomethane	1.0	nd	nd	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	1030	2190	nd	12	1.4
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Styrene	1.0	nd	nd	nd	nd	nd	nd

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW12-	MW13-	MW15-	MW16-	MW17-
		Blank	20200313	20200313	20200312	20200312	20200312
Date Sampled	Reporting	N/A	3/13/2020	3/13/2020	3/12/2020	3/12/2020	3/12/2020
Date Analyzed	Limits	3/17/2020	3/17/2020	3/17/2020	3/17/2020	3/17/2020	3/17/2020
·	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Bromoform	1.0	nd	nd	nd	nd	nd	nd
Isopropylbenzene	4.0	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd
Bromobenzene	1.0	nd	nd	nd	nd	nd	nd
n-Propylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	1.0	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
n-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	5.0	nd	nd	nd	nd	nd	nd
Naphthalenes	5.0	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		99	93	102	100	109	103
1,2-Dichloroethane-d4		95	75	88	87	93	85
Toluene-d8		90	88	96	90	92	90
4-Bromofluorobenzene		76	66	74	77	66	68

[&]quot;nd" Indicates not detected at listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

[&]quot;E" Reported result is an estimate because it exceeds the calibration range. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		MW18-	
Sample Description		20200312	
Date Sampled	Reporting	3/12/2020	
Date Analyzed	Limits	3/17/2020	
	(μg/L)	(μg/L)	
Chloromethane	2.0	nd	
Vinyl chloride	0.2	2.8	
Bromomethane	2.0	nd	
Chloroethane	2.0	nd	
Trichlorofluoromethane	2.0	nd	
1,1-Dichloroethene	0.5	1.3	
Methylene chloride	1.0	nd	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	nd	
trans -1,2-Dichloroethene	1.0	3.5	
1,1-Dichloroethane	1.0	nd	
2,2-Dichloropropane	2.0	nd	
cis -1,2-Dichloroethene	1.0	97	
Chloroform	1.0	nd	
1,1,1-Trichloroethane (TCA)	1.0	nd	
Carbon tetrachloride	1.0	nd	
1,1-Dichloropropene	1.0	nd	
Benzene	1.0	nd	
1,2-Dichloroethane (EDC)	1.0	nd	
Trichloroethene (TCE)	0.4	68	
1,2-Dichloropropane	1.0	nd	
Dibromomethane	1.0	nd	
Bromodichloromethane	1.0	nd	
cis-1,3-Dichloropropene	1.0	nd	
Toluene	1.0	nd	
Trans-1,3-Dichloropropene	1.0	nd	
1,1,2-Trichloroethane	1.0	nd	
Tetrachloroethene (PCE)	1.0	2.8	
1,3-Dichloropropane	1.0	nd	
Dibromochloromethane	1.0	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	
Chlorobenzene	1.0	nd	
Ethylbenzene	1.0	nd	
1,1,1,2-Tetrachloroethane	1.0	nd	
Total Xylenes	2.0	nd	
Styrene	1.0	nd	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		MW18-
		20200312
Date Sampled	Reporting	3/12/2020
Date Analyzed	Limits	3/17/2020
•	$(\mu g/L)$	$(\mu g/L)$
Bromoform	1.0	nd
Isopropylbenzene	4.0	nd
1,1,2,2-Tetrachloroethane	1.0	nd
Bromobenzene	1.0	nd
n-Propylbenzene	1.0	nd
1,2,3-Trichloropropane	1.0	nd
2-Chlorotoluene	1.0	nd
1,3,5-Trimethylbenzene	1.0	nd
4-Chlorotoluene	1.0	nd
tert-Butylbenzene	1.0	nd
1,2,4-Trimethylbenzene	1.0	nd
sec-Butylbenzene	1.0	nd
p-Isopropyltoluene	1.0	nd
1,3-Dichlorobenzene	1.0	nd
1,4-Dichlorobenzene	1.0	nd
n-Butylbenzene	1.0	nd
1,2-Dichlorobenzene	1.0	nd
1,2-Dibromo-3-Chloropropane	1.0	nd
1,2,4-Trichlorolbenzene	2.0	nd
Hexachloro-1,3-butadiene	5.0	nd
Naphthalenes	5.0	nd
1,2,3-Trichlorobenzene	5.0	nd
Surrogate Recovery		
Dibromofluoromethane		104
1,2-Dichloroethane-d4		93
Toluene-d8		91
4-Bromofluorobenzene		71
"nd" Indicates not detected at	t listed detection	on limit

[&]quot;nd" Indicates not detected at listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

^{*} ANALYZED BY SIM

[&]quot;E" Reported result is an estimate because it exceeds the calibration range. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Id	lentification:	MW17-2020	0312			
	Spiked Conc. (µg/L)	MS Response (μg/L)	MSD Response (μg/L)	MS Recovery (%)	MSD Recovery (%)	RPD	Limits Recovery	Data Flag
Chloromethane	5.0	5.0	5.3	100	106	5.8	65-135	
Vinyl chloride	5.0	5.1	5.1	102	102	0.0	65-135	
Bromomethane	5.0	6.0	5.8	120	116	3.4	65-135	
Chloroethane	5.0	6.6	6.5	132	129	2.0	65-135	
Trichlorofluoromethane	5.0	5.8	5.4	116	108	7.5	65-135	
1,1-Dichloroethene	5.0	5.5	6.3	110	126	13.7	65-135	
Methylene chloride	5.0	6.0	6.0	119	119	0.3	65-135	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	3.1	2.6	62	52	17.7	65-135	S
trans -1,2-Dichloroethene	5.0	6.7	6.4	134	128	4.4	65-135	5
1,1-Dichloroethane	5.0	6.8	6.8	136	135	0.4	65-135	S
2,2-Dichloropropane	5.0	4.8	4.7	96	94	2.5	65-135	
cis -1,2-Dichloroethene	5.0	0.0	0.0	0	0	0.0	65-135	S
Chloroform	5.0	6.1	5.2	121	105	14.5	65-135	
1,1,1-Trichloroethane (TCA)	5.0	5.1	5.0	102	99	2.4	65-135	
Carbon tetrachloride	5.0	5.7	5.5	114	109	4.7	65-135	
1,1-Dichloropropene	5.0	4.7	4.8	94	96	1.9	65-135	
Benzene	5.0	6.3	6.0	126	121	4.2	65-135	
1,2-Dichloroethane (EDC)	5.0	4.8	3.9	96	78	20.7	65-135	
Trichloroethene (TCE)	5.0	6.0	5.4	120	108	10.5	65-135	
1,2-Dichloropropane	5.0	5.9	5.8	117	117	0.3	65-135	
Dibromomethane	5.0	5.2	4.2	103	84	20.6	65-135	
Bromodichloromethane	5.0	5.2	4.3	104	86	19.6	65-135	
cis-1,3-Dichloropropene	5.0	3.9	3.4	78	68	14.3	65-135	
Toluene	5.0	5.9	5.6	118	112	5.7	65-135	
Trans-1,3-Dichloropropene	5.0	6.7	5.9	135	118	13.1	65-135	
1,1,2-Trichloroethane	5.0	7.2	5.9	144	117	20.1	65-135	
Tetrachloroethene (PCE)	5.0	6.1	6.0	122	120	1.7	65-135	
1,3-Dichloropropane	5.0	6.2	5.2	123	104	16.7	65-135	
Dibromochloromethane	5.0	6.3	5.5	126	109	14.5	65-135	
1,2-Dibromoethane (EDB)	5.0	6.3	5.2	126	103	19.9	65-135	
Chlorobenzene	5.0	6.8	6.2	135	124	8.8	65-135	
Ethylbenzene	5.0	6.9	6.6	137	132	3.9	65-135	S
1,1,1,2-Tetrachloroethane	5.0	6.5	6.1	130	122	6.3	65-135	
Total Xylenes	15.0	19.3	17.0	129	113	12.9	65-135	
Styrene	5.0	6.0	5.5	120	109	9.4	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Id	lentification:	MW17-2020	0312			
	Spiked Conc.	MS Response	MSD Response	MS Recovery	MSD Recovery	RPD	Limits Recovery	Data Flag
	$(\mu g/L)$	(μg/L)	(μg/L)	(%)	(%)	(%)	(%)	
Bromoform	5.0	5.0	5.1	100	102	2.0	65-135	
Isopropylbenzene	5.0	5.6	6.0	111	120	7.1	65-135	
1,1,2,2-Tetrachloroethane	5.0	6.5	5.9	130	117	10.4	65-135	
Bromobenzene	5.0	6.0	5.9	120	118	1.9	65-135	
n-Propylbenzene	5.0	6.7	7.5	133	151	12.5	65-135	S
1,2,3-Trichloropropane	5.0	6.1	5.5	122	110	10.3	65-135	
2-Chlorotoluene	5.0	6.2	6.3	123	127	2.9	65-135	
1,3,5-Trimethylbenzene	5.0	6.5	6.6	130	133	1.7	65-135	
4-Chlorotoluene	5.0	6.0	6.2	120	123	2.8	65-135	
tert-Butylbenzene	5.0	5.7	6.5	115	130	12.6	65-135	
1,2,4-Trimethylbenzene	5.0	6.4	6.5	128	130	2.0	65-135	
sec-Butylbenzene	5.0	6.6	6.7	132	134	1.8	65-135	
Isopropyltoluene	5.0	6.0	6.7	120	135	11.5	65-135	
1,3-Dichlorobenzene	5.0	6.7	6.6	133	132	1.2	65-135	
1,4-Dichlorobenzene	5.0	6.3	6.5	127	130	2.8	65-135	
n-Butylbenzene	5.0	6.4	6.6	127	132	3.5	65-135	
1,2-Dichlorobenzene	5.0	5.4	5.6	109	112	3.4	65-135	
1,2-Dibromo-3-Chloropropane	5.0	3.3	4.1	66	82	20.8	65-135	
1,2,4-Trichlorolbenzene	5.0	3.3	4.2	66	84	23.2	65-135	
Hexachloro-1,3-butadiene	5.0	6.3	6.3	126	126	0.2	65-135	
Naphthalene	5.0	1.8	3.6	37	72	64.2	65-135	R, S
1,2,3-Trichlorobenzene	5.0	3.4	3.8	68	75	10.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				89	85		65-135	
1,2-Dichloroethane-d4				76	70		65-135	
Toluene-d8				84	90		65-135	
4-Bromofluorobenzene				82	87		65-135	

ACCEPTABLE RPD IS 35%

[&]quot;R" High relative percent difference observed.

[&]quot;S" Spike recovery outside accepted recovery limits.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	(μg/L)	(%)	Limits (%)	C
Chloromethane	5.0	4.1	82	80-120	
Vinyl chloride	5.0	4.2	83	80-120	
Bromomethane	5.0	4.5	90	80-120	
Chloroethane	5.0	4.9	98	80-120	
Trichlorofluoromethane	5.0	4.0	80	80-120	
1,1-Dichloroethene	5.0	4.6	91	80-120	
Methylene chloride	5.0	5.8	116	80-120	
Methyl tert- Butyl Ether (MTBE)	5.0	5.5	110	80-120	
trans -1,2-Dichloroethene	5.0	4.6	91	80-120	
1,1-Dichloroethane	5.0	5.9	118	80-120	
2,2-Dichloropropane	5.0	5.0	99	80-120	
cis -1,2-Dichloroethene	5.0	5.9	118	80-120	
Chloroform	5.0	5.6	113	80-120	
1,1,1-Trichloroethane (TCA)	5.0	5.0	99	80-120	
Carbon tetrachloride	5.0	4.7	95	80-120	
1,1-Dichloropropene	5.0	4.2	84	80-120	
Benzene	5.0	5.2	104	80-120	
1,2-Dichloroethane (EDC)	5.0	6.0	119	80-120	
Trichloroethene (TCE)	5.0	5.0	99	80-120	
1,2-Dichloropropane	5.0	4.7	93	80-120	
Dibromomethane	5.0	5.2	104	80-120	
Bromodichloromethane	5.0	6.0	120	80-120	
cis-1,3-Dichloropropene	5.0	5.4	108	80-120	
Toluene	5.0	5.3	106	80-120	
Trans-1,3-Dichloropropene	5.0	5.8	116	80-120	
1,1,2-Trichloroethane	5.0	5.7	114	80-120	
Tetrachloroethene (PCE)	5.0	4.4	87	80-120	
1,3-Dichloropropane	5.0	5.7	113	80-120	
Dibromochloromethane	5.0	5.4	108	80-120	
1,2-Dibromoethane (EDB)	5.0	5.9	118	80-120	
Chlorobenzene	5.0	5.6	112	80-120	
Ethylbenzene	5.0	4.7	93	80-120	
1,1,1,2-Tetrachloroethane	5.0	5.8	115	80-120	
Total Xylenes	15.0	14.0	93	80-120	
Styrene	5.0	5.1	102	80-120	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	$(\mu g/L)$	(µg/L)	(%)	Limits (%)	
Bromoform	5.0	5.9	117	80-120	
Isopropylbenzene	5.0	4.2	83	80-120	
1,1,2,2-Tetrachloroethane	5.0	5.1	102	80-120	
Bromobenzene	5.0	5.8	115	80-120	
n-Propylbenzene	5.0	5.1	101	80-120	
1,2,3-Trichloropropane	5.0	5.7	114	80-120	
2-Chlorotoluene	5.0	4.8	96	80-120	
1,3,5-Trimethylbenzene	5.0	4.9	97	80-120	
4-Chlorotoluene	5.0	4.7	94	80-120	
tert-Butylbenzene	5.0	4.3	86	80-120	
1,2,4-Trimethylbenzene	5.0	5.0	100	80-120	
sec-Butylbenzene	5.0	5.4	107	80-120	
Isopropyltoluene	5.0	4.6	91	80-120	
1,3-Dichlorobenzene	5.0	5.9	118	80-120	
1,4-Dichlorobenzene	5.0	5.8	116	80-120	
n-Butylbenzene	5.0	4.6	92	80-120	
1,2-Dichlorobenzene	5.0	6.0	119	80-120	
1,2-Dibromo-3-Chloropropane	5.0	4.1	81	80-120	
1,2,4-Trichlorolbenzene	5.0	5.6	112	80-120	
Hexachloro-1,3-butadiene	5.0	5.6	113	80-120	
Naphthalene	5.0	6.0	120	80-120	
1,2,3-Trichlorobenzene	5.0	4.8	97	80-120	
Surrogate Recovery					
Dibromofluoromethane			127	65-135	
1,2-Dichloroethane-d4			119	65-135	
Toluene-d8			114	65-135	
4-Bromofluorobenzene			92	65-135	

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	$(\mu g/L)$
Method Blank	3/17/2020	90	nd
MW12-20200313	3/17/2020	88	720 *
MW13-20200313	3/17/2020	96	8200 E *
MW15-20200312	3/17/2020	90	nd
MW16-20200312	3/17/2020	92	nd
MW17-20200312	3/17/2020	90	nd
MW18-20200312	3/17/2020	91	115 *
Practical Quantitation Limit			100

[&]quot; * " The gasoline range value consist of two chlorinated compounds with elevated concentrations.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

[&]quot;E" Reported value is above the calibration range and is an estimate.

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	(µg/L)
Method Blank	3/18/2020	95	nd	nd
MW12-20200313	3/18/2020	93	nd	nd
MW13-20200313	3/18/2020	87	nd	nd
MW15-20200312	3/18/2020	79	nd	nd
MW16-20200312	3/18/2020	76	nd	nd
MW17-20200312	3/18/2020	82	nd	nd
MW18-20200312	3/18/2020	80	nd	nd
Practical Quantitation Limit			200	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW20-	
		Blank	20200312	
Date Sampled		N/A	3/12/2020	
Date Analyzed	PQL	3/15/2020	3/15/2020	
	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	
Vinyl Chloride (VC)	0.2	nd	0.20	
1,1-Dichloroethene	0.5	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	55	
Trichloroethene (TCE)	0.4	nd	38	
Tetrachloroethene (PCE)	1.0	nd	2.0	
Surrogate Recovery				
Dibromofluoromethane		105	95	
1,2-Dichloroethane-d4		103	79	
Toluene-d8		97	94	
4-Bromofluorobenzene		91	69	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Seattle, Washington Libby Project # L200313-7 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Spike Sample Identification: MW20-02200312							
	Spiked Conc. (µg/L)	MS Response (μg/L)	MSD Response (μg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Vinyl Chloride (VC)	5.0	3.2	3.2	63	64	0.6	65-135	S
1,1-Dichloroethene	5.0	4.1	3.9	82	78	5.0	65-135	
trans-1,2-Dichloroethene	5.0	5.5	5.0	110	100	9.5	65-135	
cis-1,2-Dichloroethene	5.0	24.6	21.8	492	436	12.1	65-135	S
Trichloroethene (TCE)	5.0	14.6	9.5	292	190	42.3	65-135	R,S
Tetrachloroethene (PCE)	5.0	4.2	4.0	84	80	4.9	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				118	115		65-135	
1,2-Dichloroethane-d4				106	108		65-135	
Toluene-d8				111	110		65-135	
4-Bromofluorobenzene				91	94		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc. (µg/L)	Response (µg/L)	Recovery (%)	Recovery Limits (%)	Flag
Vinyl Chloride (VC)	5.0	4.2	84	80-120	
1,1-Dichloroethene	5.0	4.1	82	80-120	
trans-1,2-Dichloroethene	5.0	4.3	86	80-120	
cis-1,2-Dichloroethene	5.0	6.0	120	80-120	
Trichloroethene (TCE)	5.0	4.9	98	80-120	
Tetrachloroethene (PCE)	5.0	4.2	84	80-120	
Surrogate Recovery					
Dibromofluoromethane			126	65-135	
1,2-Dichloroethane-d4			126	65-135	
Toluene-d8			126	65-135	
4-Bromofluorobenzene			116	65-135	

[&]quot;S" Spike compound recovery is outside acceptance limits.

[&]quot;R" High relative percent difference observed.

RAINIER MALL PROJECT Urban Environmental Partners, LLC Libby Project # L200313-7 Date Received 3/13/2020 Time Received 1:27 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	V	Yes	☐ No		
2. How was the sample delivered?		Hand Delivered	✓ Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	✓	Yes	☐ No		□ N/A
4. Cooler or Shipping Container is in good condition.	✓	Yes	☐ No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	√	Yes	□ No		□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.3	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		5.5	°C		
9. Did all containers arrive in good condition (unbroken)?	V	Yes	☐ No		
10. Is it clear what analyses were requested?	V	Yes	☐ No		
11. Did container labels match Chain of Custody?	√	Yes	□ No		
12. Are matrices correctly identified on Chain of Custody?	√	Yes	□ No		
13. Are correct containers used for the analysis indicated?	√	Yes	□ No		
14. Is there sufficient sample volume for indicated analysis?	✓	Yes	☐ No		
15. Were all containers properly preserved per each analysis?	V	Yes	☐ No		
16. Were VOA vials collected correctly (no headspace)?	V	Yes	□ No		□ N/A
17. Were all holding times able to be met?	V	Yes	□ No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	☐ No		✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project:

Rainier Mall

Client ID:

MW-15 20200313

Date Collected:

03/13/2020

Date Received:

03/13/2020

Spectra Project:

2020030454

Spectra Number: 1

PARAMETER	RESULTS	UNITS	METHOD	PQL	ANALYST	ANALYSIS DATE
Calcium	70500	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	6790	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	59700	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	1870	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	32200	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	0.04	mg/L-N	Easy	0.00000	ММО	03/17/2020
Alkalinity	487	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	16.9	mg/L	$SM 4500-CL^-$	1	DCW	03/27/2020
Sulfate	33.6	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project:

Rainier Mall

Client ID:

MW-12 20200313

Date Collected:

Date Received:

03/13/2020 03/13/2020

Spectra Project:

2020030454

Spectra Number:

202003

PARAMETER	RESULTS	UNITS	METHOD	PQL	ANALYST	ANALYSIS DATE
Calcium	38700	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	46	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	15700	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	15700	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	57800	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	0.34	mg/L-N	Easy	0.00000	MMO	03/17/2020
Alkalinity	252	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	35.5	mg/L	SM 4500-CL	1	DCW	03/27/2020
Sulfate	22.0	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project:

Rainier Mall

Client ID:

MW-13 20200313

Date Collected: Date Received:

03/13/2020

03/13/2020

Spectra Project:

2020030454

Spectra Number: 3

PARAMETER	RESULTS	UNITS	METHOD	PQL	ANALYST	ANALYSIS DATE
Calcium	115000	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	347	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	63800	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	16800	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	78200	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	0.07	mg/L-N	Easy	0.00000	ММО	03/17/2020
Alkalinity	488	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	254	mg/L	SM 4500-CL	1	DCW	03/27/2020
Sulfate	27.1	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project:

Rainier Mall

Client ID:

MW-16 20200313

Date Collected:

03/13/2020

Date Received:

03/13/2020

Spectra Project:

2020030454

Spectra Number: 4

PARAMETER	RESULTS	UNITS	метнор	PQL	ANALYST	ANALYSIS DATE
Calcium	60100	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	454	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	69000	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	1510	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	80400	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	<0.01	mg/L-N	Easy	0.00000	ММО	03/17/2020
Alkalinity	594	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	23.7	mg/L	SM 4500-CL	1	DCW	03/27/2020
Sulfate	36.4	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project: Rainier Mall

Client ID: MW-17 20200313

Date Collected: 03/13/2020 Date Received: 03/13/2020 Spectra Project: 2020030454

Spectra Number: 5

PARAMETER	RESULTS	UNITS	метнор	PQL	ANALYST	ANALYSIS DATE
Calcium	83800	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	16400	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	79200	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	1400	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	46700	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	<0.01	mg/L-N	Easy	0.00000	ММО	03/17/2020
Alkalinity	566	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	31.0	mg/L	SM 4500-CL	1	DCW	03/27/2020
Sulfate	41.1	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

03/27/2020

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Project: Rainier Mall

Client ID: MW-18 20200313

 Date Collected:
 03/13/2020

 Date Received:
 03/13/2020

 Spectra Project:
 2020030454

Spectra Number: 6

PARAMETER	RESULTS	UNITS	METHOD	PQL	ANALYST	ANALYSIS DATE
Calcium	71300	ug/L	EPA 200.7	0.0076	SCJ	03/27/2020
Iron	51	ug/L	EPA 200.7	5.0	SCJ	03/27/2020
Magnesium	70900	ug/L	EPA 200.7	0.15	SCJ	03/27/2020
Potassium	2790	ug/L	EPA 200.7	0.5	SCJ	03/27/2020
Sodium	53500	ug/L	EPA 200.7	50	SCJ	03/27/2020
Nitrate	0.06	mg/L-N	Easy	0.00000	MMO	03/17/2020
Alkalinity	547	mg/L as	SM 2320 B	0.00000	HDE	03/18/2020
Chloride	52.4	mg/L	SM 4500-CL	1	DCW	03/27/2020
Sulfate	20.5	mg/L	SM 4500-SO4	0.00000	HDE	03/20/2020

SPECTRA LABORATORIES

3/27/2020

Libby Environmental, Inc. 3322 S. Bay Rd NE Olympia, WA 98506 Units:

mg/L

Spectra Project:

2020030454

Applies to Spectra #'s

1-6

Analyst:

SCJ

QUALITY CONTROL RESULTS

ICP Metals - EPA Method 200.7 - Water/Liquid

Laboratory Reagent Blank (LRB)

Date Digested:

3/27/2020

Date Analyzed:

3/27/2020

Element	Result
Calcium	< 0.025
Magnesium	< 0.015
Potassium	< 0.05
Sodium	< 0.025

Laboratory Fortified Blank (LFB)

Date Digested:

3/27/2020

Date Analyzed:

3/27/2020

	Spike	LCS	LCS
Element	Added	Conc.	%Rec
Calcium	1.0	1.141	114.1
Magnesium	1.0	1.071	107.1
Potassium	1.0	1.055	105.5
Sodium	1.0	0.874	87.4

LCS Recovery limits 85-115%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested:

3/27/2020

Date Analyzed:

3/27/2020

Sample Spiked:

2020030786-1

MS MS MSD MSD Sample Spike RPD %Rec Element Conc. Conc. Conc. %Rec Conc 26.5 1.0 20.436 88.6 20.229 67.9 Calcium 19.550 0.7 2.076 103.8 2.083 104.5 1.038 1.0 Magnesium 2.935 116.5 2.857 108.7 6.9 Potassium 1.770 1.0 4.241 1.0 5.281 104.0 5.219 97.8 6.1 Sodium

Comment: Calcium exceeds 4 X the spiking level, therefore results are acceptable

Recovery Limits 70-130%

RPD Limit 20

Spectra Laboratories

March 30, 2020

Libby Environmental, Inc. 3322 South Bay Rd NE Olympia, WA 98506

Sample Matrix: Spectra Project # Water

2020030454

Applies to Sample #

1-6

STORMWATER QUALITY CONTROL RESULTS CONVENTIONALS

				Method	ICV		Batch	
				Blank	%	Control	Duplicate	Control
Analyte	Method	Date	Analyst	Result	Rec.	<u>Limits</u>	<u>RPD</u>	Limits
Sulfate	SM 4500 SO4	3/20/20	HDE	<2	112	+0.2 pH	14.90	-
Nitrate/Nitrite	Systea Easy-1	3/17/20	MO	< 0.01	95.8	77-112	0.17	≤20
Alkalinity	SM 2320B	3/18/20	HDE	-	89.7	-	5.91	-

SPECTRA LABORATORIES

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

03/27/20

Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Method:

SM4500-Cl-C

Sample Matrix:

Water

Units:

mg/L 2020030454

Spectra Project:
Applies to Spectra #'s:

1-6

CHLORIDE QUALITY CONTROL RESULTS

METHOD BLANK

Date Analyzed: 03/27/2020

Units: mg/L

Chloride

, 2...

< 1.0

BLANK SPIKE RESULT (LCS)

Date Analyzed: 03/27/2020

Units: mg/L

Known Value

Measured Value

% Recovered

Chloride

1000.000

944

94.4

Libby Environme				,0454Ch	nain	of C	ust	ody	Red	cor	d						•	www.Lib	byEnviron	mental.com
3322 South Bay Road NE Olympia, WA 98506		360-352-2 360-352-4				Date	e: 3-	13-2	0						Page	e:		1	of (
Client: Libby Environ									r. 51	Lest	10	11/	uH							
Address: See ale						Proj	ect Na	ame:	Row	ritt	usal	1								
City:		State:	Zip):			ation:								City,	Stat	e: U	A		
Phone:		Fax:				Coll	ector:	BD/	MG										13-20	
Client Project#								- 51	nve	am	ail:	cei	~							
Sample Number	Depth	Time	Sample Type	Container Type	Jos	WALLY C	St 802	Tok-HO	SHOT PROPERTY	Skil S	10 TO 10	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		12 / S		Fie	ld Notes	
1 MW-15 20200313	-	1125	Hio	Poly						1	X	X	X	X	X	X	X			
2 MW/2 20200363	_	1045	1	1							X	X	X	X	X	X	X			
3 MMB 202003/3	~	955									X	X	X	X	X	义	X			
4 MW16 20200313	_	1320									V	X	X	X	X	X	×			
5 111117 20200813		1015									义	X	X	X	X	X	×			
6 MW 18 2020 0313		1136	1								X	X	X	X	X	×	X			
7 ww 20																				
8-MWB																				
9 Jourson										1										
10 444410			1									11								
11 WWIL 10 31-10																				
12 mm/3																				
13 MANU 15																				
14 paral 6																				
15 VWW																				
16																				
17										-										
Relinguished by:	Date 3-13-2	/Time O ነሢ	io	Received by:		13	13/	20	Pate / Tir	_		San			eipt Y	N	Rem	arks: S	tanda	rd
Relinquished by:		/ Time		Received by:		02/	101	C	ate / Ti		_	er Tem			•	°C	1		TAT	
												ole Te	•			°C				
Relinquished by:	Date	/ Time		Received by:				C	Date / Tir	me	Total	Numi	er of				TA-	0.41	D 4011	B
LEGAL ACTION CLAUSE: in the event of default of pay	ment and/or failur	e to pay. Client ag	ees to pay the costs	of collection including court of	osts and rea	sonable attorne)	r fees to be	determined	by a coul of	law.	Co	ontain	318			Di			R 48H b, Yellow - File	R 5-DAY e, Pink - Originato

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Libby EnvironmentalSherry Chilcutt
3322 South Bay Road NE
Olympia, WA 98506

RE: Rainier Mall

Work Order Number: 2003253

March 23, 2020

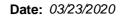
Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 6 sample(s) on 3/15/2020 for the analyses presented in the following report.

Dissolved Gases by RSK-175

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Libby Environmental Work Order Sample Summary

Project: Rainier Mall Work Order: 2003253

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2003253-001	MW12-20200313	03/13/2020 10:45 AM	03/15/2020 11:14 AM
2003253-002	MW13-20200313	03/13/2020 9:55 AM	03/15/2020 11:14 AM
2003253-003	MW15-20200312	03/12/2020 11:25 AM	03/15/2020 11:14 AM
2003253-004	MW16-2020312	03/12/2020 1:20 PM	03/15/2020 11:14 AM
2003253-005	MW17-2020312	03/12/2020 10:15 AM	03/15/2020 11:14 AM
2003253-006	MW18-2020312	03/12/2020 11:30 AM	03/15/2020 11:14 AM

Case Narrative

WO#: **2003253**Date: **3/23/2020**

CLIENT: Libby Environmental

Project: Rainier Mall

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2003253**

Date Reported: 3/23/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD. <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2003253**

Date Reported: 3/23/2020

CLIENT: Libby Environmental

Project: Rainier Mall

Lab ID: 2003253-001 Collection Date: 3/13/2020 10:45:00 AM

Client Sample ID: MW12-20200313 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Dissolved Gases by RSK-175 Batch ID: R58174 Analyst: WC

Methane 0.0116 0.00863 mg/L 1 3/20/2020 2:34:00 PM

Lab ID: 2003253-002 **Collection Date:** 3/13/2020 9:55:00 AM

Client Sample ID: MW13-20200313 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

<u>Dissolved Gases by RSK-175</u>

Batch ID: R58174

Analyst: WC

Methane 0.140 0.00863 mg/L 1 3/20/2020 2:37:00 PM

Lab ID: 2003253-003 Collection Date: 3/12/2020 11:25:00 AM

Client Sample ID: MW15-20200312 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Dissolved Gases by RSK-175 Batch ID: R58174 Analyst: WC

Methane 0.0420 0.00863 mg/L 1 3/20/2020 2:42:00 PM

Lab ID: 2003253-004 **Collection Date:** 3/12/2020 1:20:00 PM

Client Sample ID: MW16-2020312 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

<u>Dissolved Gases by RSK-175</u>

Batch ID: R58174

Analyst: WC

Methane 0.103 0.00863 mg/L 1 3/20/2020 2:51:00 PM

Original

Analytical Report

Work Order:

Date Reported: 3/23/2020

2003253

CLIENT: Libby Environmental

Project: Rainier Mall

Lab ID: 2003253-005 **Collection Date:** 3/12/2020 10:15:00 AM

Client Sample ID: MW17-2020312 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Dissolved Gases by RSK-175 Batch ID: R58174 Analyst: WC

Methane 2.33 0.0863 D mg/L 10 3/20/2020 3:06:00 PM

Lab ID: 2003253-006 **Collection Date:** 3/12/2020 11:30:00 AM

Client Sample ID: MW18-2020312 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

<u>Dissolved Gases by RSK-175</u>

Batch ID: R58174

Analyst: WC

Methane 0.0598 0.00863 mg/L 1 3/20/2020 3:00:00 PM

Original

Date: 3/23/2020

Rainier Mall

Work Order: 2003253

Project:

QC SUMMARY REPORT

CLIENT: Libby Environmental

Dissolved Gases by RSK-175

Sample ID: MB-R58174 SampType: MBLK Units: mg/L Prep Date: 3/20/2020 RunNo: 58174

Client ID: **MBLKW** Batch ID: **R58174** Analysis Date: **3/20/2020** SeqNo: **1162119**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Methane ND 0.00863

 Sample ID: LCS-R58174
 SampType: LCS
 Units: mg/L
 Prep Date: 3/20/2020
 3/20/2020
 RunNo: 58174

 Client ID: LCSW
 Batch ID: R58174
 Analysis Date: 3/20/2020
 SeqNo: 1162118

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Methane 933 0.00863 1,000 0 93.3 70 130

Sample ID: 2003253-001AREP SampType: REP Units: mg/L Prep Date: 3/20/2020 RunNo: 58174

Client ID: MW12-20200313 Batch ID: R58174 Analysis Date: 3/20/2020 SeqNo: 1162108

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Methane 0.0113 0.00863 0.01160 2.22 30

Original Page 7 of 10

Date: 3/23/2020

Work Order: 2003253

CLIENT: Libby Environmental

Project: Rainier Mall

QC SUMMARY REPORT

Dissolved Gases by RSK-175

Original Page 8 of 10

Sample Log-In Check List

С	lient Name:	LIBBY		Work O	der Num	ber: 2003253	
Lo	ogged by:	Wendy Chang		Date Re	ceived:	3/15/2020	11:14:00 AM
<u>Cha</u>	in of Custo	<u>ody</u>					
1.	Is Chain of C	ustody complete?		Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?		Clien	<u>t</u>		
<u>Log</u>	ı İn						
_	Coolers are p	resent?		Yes	~	No 🗌	NA 🗆
٥.	occioro aro p	NOOSIN.		100			
4.	Shipping con	tainer/cooler in good condition?		Yes	✓	No 🗌	
5.		s present on shipping container/coo ments for Custody Seals not intact		Yes	✓	No 🗌	Not Required
6.	Was an atten	npt made to cool the samples?		Yes	✓	No 🗌	NA \square
7.	Were all item	s received at a temperature of >2°	C to 6°C *	Yes	•	No 🗆	NA \square
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?		Yes	✓	No \square	
10.	Are samples	properly preserved?		Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗸
13.	Did all sample	es containers arrive in good condition	on(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Cus	stody?	Yes	✓	No 🗌	
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌	
17.	Were all hold	ing times able to be met?		Yes	✓	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)					
18.	Was client no	otified of all discrepancies with this	order?	Yes		No 🗆	NA 🗸
	Person	Notified:	Date:				
	By Who	m:	Via:	eMa	il 🗌 Ph	none 🗌 Fax [In Person
	Regardi	ng:					
	Client In	structions:					
19.	Additional rer	marks:					
item	<u>Information</u>						
		Item # Tem	np °C				

4.2

1.1

Cooler

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environm	ental,	Inc.		CI	nain	of C	ust	od	y R	ecc	ore	d							www.L	ibbyEn	vironme	ntal.com
3322 South Bay Road NE Olympia, WA 98506	Fax	360-352-2 360-352-4	154	l ta	1	Da				-13-				01		Pag	e:			of	1	0
Client: L:Vb	+ EN	11101	AMen-	tal, IA	_		oject N			12	nai	eor	y or	CL	11	1.1						10 of
City:		State:	Zip		_		cation			4		10.1				City	Sto	to:	S.,	141	1.11	g
Phone:			Zip		_						_					Dot.	, Sta	Collec	Jea	3/1	1 7 3	-/3
Client Project #		Fax:			_		llector	1	1	bye	Δ	0	- U.	0./	1/4	Date	9 01 0	Jolled	cuon:	2/12	- 1)	Bage 1
					_	LII	iali.	7	10	bye	70)	(a)	111	1	1	7	7	7	,	-	7	
Sample Number	Depth	Time	Sample Type	Container Type	10	36 / N. C.	5 8 8 A	A A A	Sel Sel Sel	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 0 0 0 N	10 10 10 AN SE	100	808 L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 0 N	Meldis	har	Fi	ield No	tes	
1MW12-20200313		1045	W	2 VOA												X						
2 mw13-20206313		955	W	1												X						
3 MW15-20206312		1125	W													X						
4 MW16-2020312		1320	W	1												X						
5 MW 17-2020312		1015	W	IVOA												X						
6 MW18-2020312		1130	W)	2V01												X						
7																						
8											3											
9																						
10																						
11																						
12																						
13																						
14																						
15																						
16																						
17 a					5																	
Relinquished by:	Date	/Time	874	Received by	/	_	3	151	Date	/ Time				ition?			N	Rem	arks:			
Relinquished by:	Date	/Time	V	Received by:			Date / Time							°C	PTO							
													le Ter		1		°C			-	11)
Relinquished by:	Date	/ Time		Received by:					Date	/ Time			Numb					TAT	F. 041	UD 1	OLID	E DAY
LEGAL ACTION CLAUSE: In the event of default of pays	ment and/or failure	to pay. Client agre	es to pay the costs of	collection including court of	osts and rea	sonable attorne	ey fees to be	determin	ed by a co	out of law.		0	ntaine	15			Di	TA		HK 4	8HR	5-DAY

Carus Remediation Technologies

Remediation Report

March 26, 2020

Customer: Dixon Environmental Services

CC: D. Kemmerer 4010 N 7th Street D. Hartsough

Tacoma, WA 98406

Attention: Brian A. Dixon

From: T. Colgan

TECH# TECH #20-046

RemOx® S ISCO Reagent Permanganate Natural Oxidant Demand Subject:

Summary

The overall average RemOx® S ISCO reagent permanganate natural oxidant demand (PNOD) at 48 hours for the soil samples was determined to be 11.4 g/kg. The average demands ranged from 11.0 g/kg to 12.1 g/kg. These values are calculated on a weight as potassium permanganate (KMnO₄) per dry weight of soil.

Background

Soil sample was received from Dixon Environmental Services from the Urban Environmental Partners in Seattle, WA. The soil sample designations was UB20-Composite. The sample was analyzed for permanganate natural oxidant demand. The measurement of the permanganate natural oxidant demand is used to estimate the concentration of permanganate that will be consumed by the natural reducing agents during a given time period of 48 hours.

Experimental

The samples were analyzed for permanganate natural oxidant demand following ASTM D7262-10 Test Method A. A brief summary is as follows:

To determine the PNOD, the soil was baked at 105°C for 24 hours then allowed to cool to room temperature. The soil was then blended and passed through a U.S. 10 sieve (2 mm). Reactors were loaded with 50 grams of soil and 100 mL of 20 g/L KMnO₄ for an initial dose of 40 g/kg KMnO₄ on a dry soil weight basis at a 1:2 soil to aqueous reagent ratio. Each soil dose was performed in triplicate. The reaction vessels were inverted once to mix the reagents. Residual permanganate (MnO₄-) was determined at 48 hours. The demands were calculated on a dry weight basis.

Results

The permanganate demand is the amount of permanganate consumed in a given amount of time. It should be noted that in a soil or groundwater sample, the oxidation of any compound by permanganate is dependent on the initial dose of permanganate and the reaction time available. As the permanganate dose is increased, the reaction rate and oxidant consumption may also increase. Some compounds that are not typically oxidized by permanganate under low doses can become reactive with permanganate at higher concentrations. The 48-hour PNOD results can be seen in Table 1 (on a dry soil basis).

Table 1: 48-Hour PNOD *

Soil Sample Identification	Average and Standard Deviation (g/kg)	Replicate 1 (g/kg)	Replicate 2 (g/kg)	Replicate 3 (g/kg)
Composite 1 (3-4)	11.4 ± 0.62	12.1	11.0	11.1
Overall Average	11.4			

^{*}Demands were calculated on a weight KMnO₄/dry soil weight basis from an initial dose of 40.0 g/kg KMnO₄ initial dose at a 1:2 soil to aqueous solution ratio.

Conclusions

For this application the amount of permanganate needed will be dependent on the reaction time allowed. On average, the soil sample had a 48-hour permanganate demand value of 11.4 g/kg. The average demands ranged from 11.0 g/kg to 12.1 g/kg. Generally, remediation sites with a soil demand of less than 20.0 g/kg at the time of interest are favorable for *in situ* chemical oxidation with permanganate (see Table 2 for additional information).

Table 2: Correlation of Permanganate Natural Oxidant Demand Results*

PNOD (g/kg)	Rank	Comment
<10	Low	ISCO with MnO ₄ is recommended. Soil
		contribution to MnO ₄ demand is low.
		ISCO with MnO ₄ is recommended. Soil
10-20	Moderate	contribution to MnO ₄ demand is moderate.
		Economics should be considered.
> 20	TT: -1.	ISCO with MnO ₄ is technically feasible. Other
>20	High	technologies may provide lower cost alternatives.

^{*}Dry Weight Basis

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 8, 2020 from the Rainier Mall, F&BI 004074 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Brian Dixon, Dixon Environmental UEP0414R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 8, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 004074 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
004074 -01	MW23-25(UB23-25)
004074 -02	MW23-30(UB23-30)
004074 -03	MW23-33(UB23-33)
004074 -04	UB22-25
004074 -05	UB21-25
004074 -06	UB21-30
004074 -07	UB21-34

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW23-25(UB23-25) Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

Date Extracted: 04/09/20 Lab ID: 004074-01 Date Analyzed: 04/09/20 Data File: 040912.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	62	145
Toluene-d8	105	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW23-30(UB23-30) Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

Lab ID: 004074-02 Date Extracted: 04/09/20 Date Analyzed: 04/09/20 Data File: 040913.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	105	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW23-33(UB23-33) Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

Lab ID: 004074-03 Date Extracted: 04/09/20 Date Analyzed: 04/09/20 Data File: 040914.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	106	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB22-25 Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

04/09/20 Lab ID: 004074-04 Date Extracted: Date Analyzed: 04/09/20 Data File: 040916.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	106	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB21-25 Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

04/09/20 Lab ID: 004074-05 Date Extracted: Date Analyzed: 04/09/20 Data File: 040915.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	62	145
Toluene-d8	108	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB21-30 Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

04/09/20 Lab ID: 004074-06 Date Extracted: Date Analyzed: 04/09/20 Data File: 040917.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	62	145
Toluene-d8	107	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB21-34 Client: Urban Environmental Partners Date Received: 04/08/20 Project: Rainier Mall, F&BI 004074

04/09/20 Lab ID: 004074-07 Date Extracted: Date Analyzed: 04/09/20 Data File: 040918.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	104	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners
Date Received: Not Applicable Project: Rainier Mall, F&BI 004074

04/09/20 Lab ID: Date Extracted: 00-809 mbDate Analyzed: 04/09/20 Data File: 040909.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	106	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
1,1-Dichloroethene	< 0.05
trans-1,2-Dichloroethene	< 0.05
cis-1,2-Dichloroethene	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/08/20

Project: Rainier Mall, F&BI 004074

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004074-07 (Matrix Spike)

	- '		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	52	53	10-138	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	73	10-160	3
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	78	80	14-137	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	86	88	25 - 135	2
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	89	93	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	76	77	20-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/20 Date Received: 04/08/20

Project: Rainier Mall, F&BI 004074

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	87	22-139
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	47-128
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	67 - 129
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	106	72 - 127
Trichloroethene	mg/kg (ppm)	2.5	105	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	92	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone Phone Email johnte vepconulting of Project specific RLs? - Yes / No Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. mw23-33(v323-35)/03 mW25-30 (0623-30) 103 MW25-25 (VEZZ 25) OI A-E Address 2324 1st Ave, Suite 253 City, State, ZIP Seattle, WA 98121 Company Urber Environmental 1821-30 Report To # John Funderbut a Brian 15-158 ないりと 1321-34 1822-25 Sample ID Relinquished by: Relinquished by: Received by: B 8 50 Lab ID SIGNATURE رب. م Sampled 1510 0930 Time Sampled 5460 SAMPLE CHAIN OF CUSTODY この 1225 000 250 REMARKS SAMPLERS (signature) PROJECT NAME BAMER Sample 28 L'ACC 50% PRINT NAME # of Jars 2 ccine NWTPH-Dx INVOICE TO VOCs EPA 8260 PAHs EPA 8270 P0# ME 4/8/20 BIZ/USZ D.XO Seg PCBs EPA 8082 PCE 1 descadation

Rush charges authorized by: □ RUSH turnaround TURNAROUND TIME

☐ Archive samples SAMPLE DISPOSAL

Default: Dispose after 30 days

Notes

Ph. (206) 285-8282 Received by: Brian D, COMPANY Samples received at 4.720 02-8-4 DATE TIME (250 Cio

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 24, 2019

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 22, 2019 from the LUP-RM, F&BI 904400 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures UEP0424R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 22, 2019 by Friedman & Bruya, Inc. from the Urban Environmental Partners LUP-RM, F&BI 904400 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
904400 -01	MW10
904400 -02	MW11
904400 -03	MW9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW10 Client: **Urban Environmental Partners** Date Received: 04/22/19 Project: LUP-RM, F&BI 904400 Lab ID: Date Extracted: 04/22/19 904400-01 Date Analyzed: 04/22/19 Data File: 042244.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.24
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	22
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	54
Tetrachloroethene	41

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11 Client: **Urban Environmental Partners** Date Received: 04/22/19 Project: LUP-RM, F&BI 904400 Lab ID: Date Extracted: 04/22/19 904400-02 Date Analyzed: 04/22/19 Data File: 042245.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW9 Client: **Urban Environmental Partners** Date Received: 04/22/19 Project: LUP-RM, F&BI 904400 Lab ID: Date Extracted: 04/22/19 904400-03 Date Analyzed: 04/22/19 Data File: 042246.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	7.4
Chloroethane	<1
1,1-Dichloroethene	1.0
Methylene chloride	<5
trans-1,2-Dichloroethene	1.2
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	93
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	110
Tetrachloroethene	38

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: **Urban Environmental Partners** Date Received: Not Applicable Project: LUP-RM. F&BI 904400

04/22/19 Lab ID: 09-770 mb Date Extracted: Date Analyzed: 04/22/19 Data File: 042210.D Matrix: Water **Instrument:** GCMS9 Units: ug/L (ppb) Operator: IJL

<1

<1

<1

<1

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	98	50	150

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC)

1,1,1-Trichloroethane

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/19 Date Received: 04/22/19

Project: LUP-RM, F&BI 904400

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 904400-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	0.24	89	61-139
Chloroethane	ug/L (ppb)	50	<1	85	55-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	94	71-123
Methylene chloride	ug/L (ppb)	50	<5	94	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	97	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	89	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	22	98 b	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	83	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	92	75-121
Trichloroethene	ug/L (ppb)	50	54	95 b	73-122
Tetrachloroethene	ug/L (ppb)	50	41	94 b	72-113

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	94	92	70-128	2
Chloroethane	ug/L (ppb)	50	88	86	66-149	2
1,1-Dichloroethene	ug/L (ppb)	50	98	96	75-119	2
Methylene chloride	ug/L (ppb)	50	99	97	63-132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	100	97	76-118	3
1,1-Dichloroethane	ug/L (ppb)	50	93	91	77-119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	99	97	76-119	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	84	85	78-114	1
1,1,1-Trichloroethane	ug/L (ppb)	50	95	93	80-116	2
Trichloroethene	ug/L (ppb)	50	93	93	72-119	0
Tetrachloroethene	ug/L (ppb)	50	92	91	78-109	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- $\mbox{\bf d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Address 2324 Companyarbon Environmental Portners Report To John Funder burk City, State, ZIP ₹5 10 3 7 7 アとり Sample ID 004400 , ST Ave Email Received by: Relinquished by: 03 ç, OIA-E Lab ID SIGNATURE 4-21-19 4-21-19 **5272**4 Sampled Date 5:3 ーナシ 88.4 SAMPLE CHAIN OF CUSTODY Time Sampled SAMPLERS (signature) PROJECT NAME REMARKS Chloring tod Shotlist Water-Sample Туре John R Funder burk - Four ---W) Jars PRINT NAME Υ TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B ANALYSES REQUESTED **C**VOCs by 8260C INVOICE TO Urban Ensi Part SVOCs by 8270D PO# 777 PAHs 8270D SIM COMPANY 04-22-19 . ? □ Other_ Dispose after 30 days

Archive Samples D Standard Turnaround Rush charges authorized by: te beviece received at TURNAROUND TIME SAMPLE DISPOSAL 7/22/14 4-27 DATE Notes h580 EMIL VW2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2019

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 22, 2019 from the LUP Rainier Mall 19-037, F&BI 904401 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures UEP0506R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 22, 2019 by Friedman & Bruya, Inc. from the Urban Environmental Partners LUP Rainier Mall 19-037, F&BI 904401 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
904401 -01	UB10 10
904401 -02	UB10 13
904401 -03	UB10 15
904401 -04	UB10 18
904401 -05	UB10 20
904401 -06	UB10-23
904401 -07	UB10-25
904401 -08	UB10-28
904401 -09	UB11-13
904401 -10	UB11-15
904401 -11	UB11-18
904401 -12	UB11-20
904401 -13	UB11-23
904401 -14	UB11-25
904401 -15	UB11-28

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10 10 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Date Extracted: 04/22/19 Lab ID: 904401-01 Date Analyzed: 04/22/19Data File: $042227.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	96	50	150

4-Bromofluorobenzene	96	50	150
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
Chloroethane	< 0.5		
1,1-Dichloroethene	< 0.05		
Methylene chloride	< 0.5		
trans-1,2-Dichloroethene	< 0.05		
1,1-Dichloroethane	< 0.05		
cis-1,2-Dichloroethene	< 0.05		
1,2-Dichloroethane (EDC)	< 0.05		
1,1,1-Trichloroethane	< 0.05		
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10 15 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Lab ID: 904401-03 Date Extracted: 04/22/19 Date Analyzed: 04/22/19 Data File: 042228.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	95	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10 18 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Date Extracted: 04/22/19 Lab ID: 904401-04 Date Analyzed: 04/22/19 Data File: 042229.DGCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

4-Bromofluorobenzene 96 50 150 Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10 20 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Date Received:04/22/19Project:LUP RainiDate Extracted:04/22/19Lab ID:904401-05Date Analyzed:04/22/19Data File:042230.DMatrix:SoilInstrument:GCMS9

Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	< 0.02	
Tetrachloroethene	< 0.025	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10-25 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Date Received:04/22/19Project:LUP RainiDate Extracted:04/22/19Lab ID:904401-07Date Analyzed:04/22/19Data File:042231.DMatrix:SoilInstrument:GCMS9

Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	0.049	
Tetrachloroethene	< 0.025	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB10-28 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

 Date Extracted:
 04/29/19
 Lab ID:
 904401-08

 Date Analyzed:
 04/29/19
 Data File:
 042925.D

 Matrix:
 Soil
 Instrument:
 GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.083
Tetrachloroethene	0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB11-13 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Lab ID: Date Extracted: 04/22/19 904401-09 Date Analyzed: 04/22/19 Data File: 042233.DMatrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: IJL

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 98 50 150 Toluene-d8 99 50 150 4-Bromofluorobenzene 95 50 150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB11-15 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Lab ID: Date Extracted: 04/22/19 904401-10 Date Analyzed: 04/22/19 Data File: 042234.DMatrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: IJL

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 50 150 Toluene-d8 99 50 150 4-Bromofluorobenzene 98 50 150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB11-20 Client: Urban Environmental Partners Date Received: 04/22/19Project: LUP Rainier Mall 19-037

04/22/19 Lab ID: 904401-12 Date Extracted: Date Analyzed: 04/22/19 Data File: 042235.DGCMS9Matrix: Soil Instrument:

Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	96	50	150

1 Diomondorobenzene	00	90	
Compounds:	Concentration mg/kg (ppm)		
Vinyl chloride	< 0.05		
Chloroethane	< 0.5		
1,1-Dichloroethene	< 0.05		
Methylene chloride	< 0.5		
trans-1,2-Dichloroethene	< 0.05		
1,1-Dichloroethane	< 0.05		
cis-1,2-Dichloroethene	< 0.05		
1,2-Dichloroethane (EDC)	< 0.05		
1,1,1-Trichloroethane	< 0.05		
Trichloroethene	< 0.02		
Tetrachloroethene	< 0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB11-25 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

Date Extracted: 04/22/19 Lab ID: 904401-14 Date Analyzed: 04/22/19 Data File: 042236.DGCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Lower Limit: Surrogates: % Recovery: Limit: 1.2-Dichloroethane-d4 100 50 150 Toluene-d8 96 50 150 4-Bromofluorobenzene 96 50 150

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: UB11-28 Client: Urban Environmental Partners
Date Received: 04/22/19 Project: LUP Rainier Mall 19-037

04/22/19 Lab ID: 904401-15 Date Extracted: Date Analyzed: 04/22/19 Data File: 042237.DGCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: LUP Rainier Mall 19-037

04/22/19 Lab ID: Date Extracted: 09-769 mbDate Analyzed: 04/22/19 Data File: 042211.DMatrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Urban Environmental Partners
Date Received: Not Applicable Project: LUP Rainier Mall 19-037

Lab ID: Date Extracted: 04/29/19 09-922 mbDate Analyzed: 04/29/19 Data File: $042908.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 98 55 145 4-Bromofluorobenzene 100 65 139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/19 Date Received: 04/22/19

Project: LUP Rainier Mall 19-037, F&BI 904401

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 904350-35 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	46	38	10-91	19
Chloroethane	mg/kg (ppm)	2.5	< 0.5	57	49	10-101	15
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	67	57	22-107	16
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	81	74	14-128	9
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	79	70	13-112	12
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	79	70	23 - 115	12
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	86	79	25-120	8
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	75	68	22-124	10
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	79	69	27 - 112	14
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	83	73	30-112	13
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	83	73	25 - 114	13

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	78	42-107
Chloroethane	mg/kg (ppm)	2.5	82	47-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	95	65-110
Methylene chloride	mg/kg (ppm)	2.5	94	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	93	74-109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	81	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	72 - 116
Trichloroethene	mg/kg (ppm)	2.5	90	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	90	73 - 111

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/19 Date Received: 04/22/19

Project: LUP Rainier Mall 19-037, F&BI 904401

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 904539-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	82	72	10-138	13
Chloroethane	mg/kg (ppm)	2.5	< 0.5	84	76	10-176	10
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	114	105	10-160	8
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	118	106	10-156	11
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	117	107	14 - 137	9
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	112	105	19-140	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	105	98	25 - 135	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	94	101	12-160	7
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	108	101	10-156	7
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	95	100	21-139	5
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	92	97	20-133	5

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	91	22-139
Chloroethane	mg/kg (ppm)	2.5	91	10-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	94	47-128
Methylene chloride	mg/kg (ppm)	2.5	100	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	99	67 - 127
1,1-Dichloroethane	mg/kg (ppm)	2.5	98	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	72 - 113
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	96	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	98	62-131
Trichloroethene	mg/kg (ppm)	2.5	98	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	93	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC Fax (206) 283-5044 Seattle, WA 98119-2029 Send Report To John Funderburk Ph. (206) 285-8282 3012 16th Avenue West Friedman & Bruya, Inc. Company Urban Environmental Padays
Address 2324 15 Ave Ste 203 Phone #(425) 922 - 9927 # City, State, ZIP Scall C, Wa. 98124 DB 10 UB10-28 0810-23 US10, 25 V UB16 201 1810 UB 10 UBD Sample ID ら く J ス Relinquished by 7 Relinquished by Received by: 70 20 8 00 000 05 HZ ŝ O A S Lab ID SIGNATURE 14/20/19 <u>५/७/</u>19 0290 bi/dh 100/19 18/13 100/19 Date 20/19 55.50 1025 510 7030 2001 1000 ळळ Time PROJECT NAME/NO. LUP Rainier Mall 19-037 Chloricated Solver SQ. 301) <u>\$.</u> Sample Type SO. Soi. <u>S</u>. 501 S. Michal Eachl John R Funde containers 7 ۲ دں H # of PRINT NAME TPH-Diesel Ho 7 TPH-Gasoline bur 2 BTEX by 8021B 叉 × 又 $>\!\!<$ imes \succ **(**NOCs by 8260 ANALYSES REQUESTED SVOCs by 8270 Urban Environ Partner HFS P0# COMPANY © Return samples

Will call with instructions ADispose after 30 days Standard (2 Weeks) (| | Keck Rush charges authorized by: TURNAROUND TIME Page # SAMPLE DISPOSAL 8-77-19 71/2dh DATE Notes 08:5H めどろ EWIL

Samples received at 3 °C

ABIS & Braya gornol CHAIN OF CUSTODY

Company Environ Partners when R Tunderbourt RELINQUISHED BY: Normal Turn Around Time (TAT) = 10 Business Days Site Location: Sampled by: Mathew Grand UB11 - 23 9332 S.W. Gardon Place, Tigurd, OR 97223-Ph; 503-718-2323 Fax: 503-718-0333 -)B 11 ~ 20 1811-15)B11-18 1311-15 TAT Requested (circle) Other: Ichan Environmental Portret Project Mgr SAMPLE ID OR 15 Ave Ste. SAMPLES ARE HELD FOR 30 DAYS WA 4 DAY ! Day K 13 55AM/20/19 LAB ID# ره 203 DATE RECEIVED BY: 5 DAY 134 #05 Sp. 1345 81 1355 COI! 350 Sol TIME YES Sø. MATRIX 3 Day S + C 4 # OF CONTAINERS 1 Edel Time: 654 <u>N</u> NWTPH-HCID 98121 Fo 7 NWTPH-Dx NWTPH-Gx 8260 VOCs Full List 8260 RBDM VOCs Printed Name: RELINQUISHED BY: SPECIAL INSTRUCTIONS: × × imes \times X 8260 HVOCs *C*/ 8260 BTEX VOCs Project Name: Short List 8270 SVOC 8270 SIM PAHs 8082 PCBs しや ANALYSIS REQUEST 600 TTO Rainies 1 RCRA Metals (8) Time: 500V TCLP Metals (8) Al, Sb, As, Ba, Be, Cd, 1 Wook Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Printed Name: RECEIVED BY: Se, Ag, Na, Tl, V, Zn TOTAL DISS TCLP 1200- COLS Johnte UEPCON Sulfing - com 1200-Z Project # 19-031 Ime

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 29, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 10, 2020 from the Rainier Mall, F&BI 004116 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0429R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 10, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 004116 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
004116 -01	UB25-25
004116 -02	UB25-27
004116 -03	UB25-35
004116 -04	UB25-45
004116 -05	UB26-25
004116 -06	UB26-30
004116 -07	UB26-35
004116 -08	UB26-40
004116 -09	UB26-45
004116 -10	UB27-6
004116 -11	UB27-12
004116 -12	UB27-17
004116 -13	UB28-6
004116 -14	UB28-11
004116 -15	UB28-15
004116 -16	UB29-6
004116 -17	UB29-11
004116 -18	UB29-15

Sample UB25-27 was sent to Fremont Analytical for TOC analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB25-27 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-02 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041317.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB25-35 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-03 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041318.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.26
Tetrachloroethene	1.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB25-45 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-04 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041319.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	103	55	145
4-Bromofluorobenzene	99	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB26-30 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-06 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: $041320.\mathrm{D}$ Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	103	55	145
4-Bromofluorobenzene	103	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.21
Tetrachloroethene	1.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB26-35 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-07 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041321.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	104	55	145
4-Bromofluorobenzene	102	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	0.14
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.43
Tetrachloroethene	0.34

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB26-40 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-08 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041322a.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS/IJL Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB26-45 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-09 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041323.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS/IJL Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB27-6 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-10 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: 041324.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS/IJL Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	105	55	145
4-Bromofluorobenzene	101	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB27-12 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-11 Date Extracted: 04/13/20 Date Analyzed: 04/13/20 Data File: $041325.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MS/IJL Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	105	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB28-6 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-13 Date Extracted: 04/13/20 Date Analyzed: 04/17/20 Data File: $041706.\mathrm{D}$ GCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	92	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB28-11 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-14 Date Extracted: 04/13/20 Date Analyzed: 04/17/20 Data File: $041727.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	104	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB29-6 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-16 Date Extracted: 04/13/20 Date Analyzed: 04/17/20 Data File: $041708.\mathrm{D}$ GCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	91	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB29-11 Client: Urban Environmental Partners Date Received: 04/10/20 Project: Rainier Mall, F&BI 004116

Lab ID: 004116-17 Date Extracted: 04/13/20 Date Analyzed: 04/17/20 Data File: 041709.DGCMS9Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	< 0.02	
Tetrachloroethene	< 0.025	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: Rainier Mall, F&BI 004116

04/13/20 Lab ID: Date Extracted: 00-816 mbDate Analyzed: 04/13/20 Data File: 041312.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	103	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/20 Date Received: 04/10/20

Project: Rainier Mall, F&BI 004116

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004116-06 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	55	49	10-138	12
Chloroethane	mg/kg (ppm)	2.5	< 0.5	67	59	10-176	13
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	66	10-160	13
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	91	79	10-156	14
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	82	73	14-137	12
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	87	78	19-140	11
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	80	25 - 135	11
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	84	79	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	89	79	10-156	12
Trichloroethene	mg/kg (ppm)	2.5	0.18	78	72	21-139	8
Tetrachloroethene	mg/kg (ppm)	2.5	0.98	$57 \mathrm{\ b}$	38 b	20-133	40 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	74	22-139
Chloroethane	mg/kg (ppm)	2.5	85	9-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	90	47-128
Methylene chloride	mg/kg (ppm)	2.5	99	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	90	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	93	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	93	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	90	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	62-131
Trichloroethene	mg/kg (ppm)	2.5	94	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	94	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 004116

Work Order Number: 2004210

April 27, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/17/2020 for the analyses presented in the following report.

Total Organic Carbon by EPA 9060

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 04/27/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 004116 **Work Order:** 2004210

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2004210-001 UB25-27 04/10/2020 8:30 AM 04/17/2020 3:57 PM

Case Narrative

WO#: **2004210**Date: **4/27/2020**

CLIENT: Friedman & Bruya

Project: 004116

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2004210**

Date Reported: 4/27/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2004210**Date Reported: **4/27/2020**

Client: Friedman & Bruya Collection Date: 4/10/2020 8:30:00 AM

Project: 004116

Lab ID: 2004210-001 **Matrix:** Soil

Client Sample ID: UB25-27

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Total Organic Carbon by EPA 9060
 Batch ID: 28169
 Analyst: SS

 Total Organic Carbon
 0.141
 0.0750
 %-dry
 1
 4/27/2020 4:11:00 PM

Date: 4/27/2020

Work Order: 2004210

Friedman & Bruya

Project: 004116

CLIENT:

QC SUMMARY REPORT

Total Organic Carbon by EPA 9060

Project: 004116											
Sample ID: MB-28169	SampType: MBLK			Units: %-dry		Prep Date:	4/27/202	0	RunNo: 588	813	
Client ID: MBLKS	Batch ID: 28169					Analysis Date:	4/27/202	0	SeqNo: 117	74595	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	ND	0.0750									
Sample ID: LCS-28169	SampType: LCS			Units: %-dry		Prep Date:	4/27/202	0	RunNo: 588	813	
Client ID: LCSS	Batch ID: 28169					Analysis Date:	4/27/202	0	SeqNo: 117	74597	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.06	0.0750	1.000	0	106	80	120				
Sample ID: 2004210-001ADUP	SampType: DUP			Units: %-dry		Prep Date:	4/27/202	0	RunNo: 588	813	
Client ID: UB25-27	Batch ID: 28169					Analysis Date:	4/27/202	0	SeqNo: 117	74599	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	0.166	0.0750						0.1410	16.3	20	
Sample ID: 2004210-001AMS	SampType: MS			Units: %-dry		Prep Date:	4/27/202	0	RunNo: 588	813	
Client ID: UB25-27	Batch ID: 28169					Analysis Date:	4/27/202	0	SeqNo: 117	74600	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.25	0.0750	1.000	0.1410	111	75	125				
Sample ID: 2004210-001AMSD	SampType: MSD			Units: %-dry		Prep Date:	4/27/202	0	RunNo: 588	813	
Client ID: UB25-27	Batch ID: 28169					Analysis Date:	4/27/202	0	SeqNo: 117	74601	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon	1.24	0.0750	1.000	0.1410	110	75	125	1.250	1.05	20	

Original Page 6 of 8

Sample Log-In Check List

Client Name: FB	Work Order Numb	per: 2004210	
Logged by: Carissa True	Date Received:	4/17/2020	3:57:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No \square	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
3. Coolers are present?	Yes 🗸	No \square	NA \square
4. Shipping container/cooler in good condition?	Yes 🗸	No 🗌	
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6. Was an attempt made to cool the samples?	Yes 🗸	No 🗌	NA \square
7. Were all items received at a temperature of >2°C to 6°C *	Yes 🗹	No 🗆	na 🗆
8. Sample(s) in proper container(s)?	Yes 🗸	No 🗆	
9. Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗆	
10. Are samples properly preserved?	Yes 🗸	No \square	
11. Was preservative added to bottles?	Yes	No 🗸	NA 🗌
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🔽	No 🗌	
14. Does paperwork match bottle labels?	Yes 🗸	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16. Is it clear what analyses were requested?	Yes 🗹	No 🗌	
17. Were all holding times able to be met?	Yes 🗸	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗹
Person Notified: Date	:		
By Whom: Via:	eMail Ph	one Fax	☐ In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			

Item Information

Item #	Temp °C
Cooler 1	4.3
Sample 1	4.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY SUBCONTRACTER

PROJECT NAME/NO.

PO#

Send Report To Michael Erdahl

City, State, ZIP Seattle, WA 98119

Address

3012 16th Ave W

REMARKS

☐ Dispose after 30 days

SAMPLE DISPOSAL

911400

Company_

Friedman and Bruya, Inc.

									1	Relinquished by:		Ph. (206) 285-8282
4/17/20 1557	٠.	FAI	Son	John		7	Cour	1	1997	Received by:		Seattle, WA 98119-2029
8/12/20 05:30PM		Friedman & Bruya			lahl	Michael Erdahl	Mich	H	T	Relimquished by		3012 16th Avenue West
DATE TIME	COMPANY	COM		PRINT NAME	RINT	P		0	SIGNATURE			Friedman & Bruya, Inc.
				Н								
					3 1							
				Ц								
2			ŀ									
			×				-	Soil	0630	4/19/20		UB25-27
Notes			TOC-440°	VPH	ЕРН	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
	Œ	NALYSES REQUESTED	NALYSE	A								

2004210

011400

Address_ Company Urka Environmenta Report To John Funderburk

City, State, ZIP Settle

_Email

SAMPLE CHAIN OF CUSTORY

SAMPLERS (signature) PROJECT NAME Reinier Mall PO#

Ğ

Project specific RLs? - Yes / No REMARKS INVOICE TO

☐ Archive samples Rush charges authorized by: Standard turnaround TURNAROUND TIME SAMPLE DISPOSAL

Page #_

Default: Dispose after 30 days

Social IVA again Mest	Friedman & Bruya, Ir.		1 827-6	1326 YS	0626-40	U82C-35	UB2C-30	UB26-25	4325-45	<i>1825-35</i>	UB25-27	1825-25	Sample ID	
Received by:	ن -	<u>S</u>	10 A.D	09	00	07	06	25	100	23	202	OIA-E	Lab ID	
O) Yum	6	GNATURK)	<									4.10.20	Date Sampled	
6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1200	1320	1225	1210	1200	1140	0925	0870	0830	0820	Time Sampled	
Malh	Bries		4									SUIL	Sample Type	
	3	PRIN	2	N	n	a	N	2	SI	2	7	12	# of Jars	
	V	PRINT NAME											NWTPH-Dx	
6/11-We/	200	ME		,									NWTPH-Gx	
- <u> </u>													BTEX EPA 8021 NWTPH-HCID	
	10							,					VOCs EPA 8260	ANA
													PAHs EPA 8270	ANALYSES REQU
UEPIL	D'AS												PCBs EPA 8082	ES R
1	3	COMPANY	\searrow	\times	X	X	\times		\times	X	X		P(Es degradate	EQUI
	S C	ANI									•	•	TOC	ESTED
				Sar										D
				nple									7	
4.70.20	01-h	DATE		Samples received at						:4/r	# -per 80	<i>j</i>	Notes	
4.1.	4.	TIME		dat 3						The oct	5		tes	
	_	-	_)°			-							

Ph. (206) 285-8282 Seattle, WA 98119-2029

BREAL ADDRICE

4-10-20

17:03

Company Us boy Environmental (Proposition)
Address City, State, ZIP Southe (ショナロの SAMPLE CHAIN OF CUSTOD REMARKS PROJECT NAME SAMPLERS (signature) Runier Mall INVOICE TO PO#

Phone_ _Email_ Project specific RLs? - Yes / No ANALYSES REQUESTED

Default: Dispose after 30 days SAMPLE DISPOSAL Archive samples Rush charges authorized by: || Other_ Standard turnaround TURNAROUND TIME

Ph. (206) 285-8282	2029		ن:				UB29-15	11-5280	0829-6	UB25-15	UB25-11	0528-6	\$60B27-17	UB27-12	Sample ID	
Received by:	Relinquished by:	Received by.	Relinquished by:	OIS			18 +- 6	7	(C + 2)	15 A.C	14	8363	93/2	05-0-1-10-20	Lab ID	
1			2	NATION)		0							4-10-20	Date Sampled	
		a d	(1350	1245	1340	1315	1310	1300	1235	1225	Time Sampled	
仗	Walley	Mall	Brias				4							5	Sample Type	
BURK	18/21	Fe .	5	PRIN		,	~	عـ	2	\sim	تد	عــ	عـ	ع	# of Jars	
	4)6	(L)	2, X62	PRINT NAME										·	NWTPH-Dx	-
TA'S	6,0,00	G-1). L.	2	ME											NWTPH-Gx BTEX EPA 802	1
₹ ZSSE	3	, c()	₹												NWTPH-HCIE	
/1/			- 3 - 3 - 3							*					VOCs EPA 826 PAHs EPA 827	
1)Kp	()GP/	D,												PCBs EPA 808	\neg
0) 	77	Dixon	COMPANY				X	X		X	X		X	PCE 4 Dayrada	Fè
			5	ANY		<u> </u>								ě		
	t.					Samples									· · · · · · · · · · · · · · · · · · ·	\dashv
	4.10-20	4-10-20	4-10	DATE		s received at			,						No No	
	20	_	C	Н		red at									Notes	
	17:03	SI:1,	51.1	TIME		1									SO	
				Ш	<u></u>	Ĉ			•							

		029	est	Inc.	
	Received by	Relinquished by:	Received by U. D. Jane	Relinquished by:	SIGNATURE
	RISEAT TADESSE	Wallhew 4) Grunua &	Mathe is a Governol	Brias Dixos	PRINT NAME
	781	VEP 1/c	()EP //c	DixonES	COMPANY
_	<u> </u>	4-10-20 17:03	51:12 p2:01-h	4-10	DATE
		17:03	4:15	51.16	TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 21, 2020

John Funderburk, Project Manager **Urban Environmental Partners** 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on May 15, 2020 from the Rainier Mall, F&BI 005197 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Brian Dixon, Matthew Grunwald

UEP0521R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 15, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 005197 project. Samples were logged in under the laboratory ID's listed below.

<u>Urban Environmental Partners</u>
UB30-12
UB30-23
UB30-24
UB30-26
UB30-30
UB30-31
UB30-34
UB30-35
UB30-38
UB30-39

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-12 Client: Urban Environmental Partners
Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-01 Date Extracted: Date Analyzed: 05/18/20 Data File: $051812.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-23 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-02Date Extracted: Date Analyzed: 05/18/20 Data File: $051813.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-24 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-03 Date Extracted: Date Analyzed: 05/18/20 Data File: 051814.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	99	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-26 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197 - 04Date Extracted: Date Analyzed: 05/18/20 Data File: $051815.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-30 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-05Date Extracted: Date Analyzed: 05/18/20 Data File: $051816.\mathrm{D}$ Soil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.20
Tetrachloroethene	1.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-31 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-06 Date Extracted: Date Analyzed: 05/18/20 Data File: $051817.\mathrm{D}$ Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.030
Tetrachloroethene	0.13

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-34 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-07 Date Extracted: Date Analyzed: 05/18/20 Data File: $051818.\mathrm{D}$ Soil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	99	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.10
Tetrachloroethene	0.56

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-35 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: 005197-08 Date Extracted: Date Analyzed: 05/18/20 Data File: $051819.\mathrm{D}$ Soil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.17
Tetrachloroethene	0.50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-38 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

Lab ID: Date Extracted: 05/18/20 005197-09 Date Analyzed: 05/18/20 Data File: $051820.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 145 Toluene-d8 100 55 145 4-Bromofluorobenzene 97 65 139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.024
Tetrachloroethene	0.035

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB30-39 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005197

Lab ID: 005197-10 Date Extracted: 05/18/20 Date Analyzed: 05/18/20 Data File: $051821.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: Rainier Mall, F&BI 005197

05/18/20 Lab ID: Date Extracted: 00-1064 mb Date Analyzed: 05/18/20 Data File: 051811.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 05/21/20 Date Received: 05/15/20

Project: Rainier Mall, F&BI 005197

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 005197-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	66	66	10-138	0
Chloroethane	mg/kg (ppm)	2.5	< 0.5	79	80	10-176	1
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	90	89	10-160	1
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	98	99	10-156	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	94	95	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	100	102	19-140	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	101	103	25 - 135	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	92	96	12-160	4
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	103	106	10-156	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	100	106	21 - 139	6
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	89	90	20-133	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	99	22-139
Chloroethane	mg/kg (ppm)	2.5	106	9-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	114	47-128
Methylene chloride	mg/kg (ppm)	2.5	114	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	112	67 - 129
1,1-Dichloroethane	mg/kg (ppm)	2.5	112	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	113	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	88	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	117	62-131
Trichloroethene	mg/kg (ppm)	2.5	92	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	93	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

11. (200) 200-0202	Ph (906)-985-8989	Seattle, WA 98119-2029	2019 16th America W. 186	Friedman & D	UB30-39	0630-38	US3/35	UB30-37	UB 30/31	UB 30-30	0830-26	1830-24	UB3V-23	12-1280	Sample ID		Phone 425-427-9927	City State ZIP Sedtle	Address 2324	Company	Report To JOHN	401200
Trongtron of		2029 Relinquished by:		Baltaniah J L	101	09/	OX	60	06	05	ou	03	02	014.6	D Lab ID		Email	extle JA 98121	125 Ave, suite 203	Go	FUND	8:20
		laflans		SIGNANURA										5.6.20	Date Sampled		stime Dixones. dr	12	703	- Communication of the Communi	STE TO	CC: Brien, Dixon SAMPLE CHAIN OF CUSTODY
					0£.	1225	1220	215	12/0	120	<i>115</i> 7	11SO	1146	1240	Time Sampled		<u> </u>	REMARKS	RAG	PROJEC	SAMPL	SAMPLI
		Man	Bias		<u> </u>							~		200	Sample Type		Project specific RLs? -	KS	RAMERIA	PROJECT NAME	SAMPLERS (signature)	CHAIN
			7	PRINT NAME	*									5	# of Jars		1		S.A.C.		ture)	OF (
		Phan	רסאול	TNA									*.		NWTPH-Dx		Yes / No		2			CUS'
				EM							т.		-		NWTPH-Gx BTEX EPA 8021		0				$\sqrt{ }$	ГОД
						-									NWTPH-HCID			_				Y
	_		<u>, , , , , , , , , , , , , , , , , , , </u>		X	X	X	区	X	X.	区	X	X	\times	VOCs EPA 8260	ANA	(\mathcal{L})	INVOLUETO		P		
င္လာ		#1							***************************************						PAHs EPA 8270	ASK	V 70	E		P0#	771	\$
Samples received at		FEBT	ひるう	8				·							PCBs EPA 8082	ANALYSES REQUESTED		7 3			1	Π
es re			1	COMPANY										٠,		SHO			,		1	ン 7
eceiv			53	NY												STED	De		R _L	<u> </u>		1
ed a	i.		-														□ Archiv □ Other Default	S.	sh ch	□ Standa RUSH	I S	\ 2
4		包	Ŋ									1					Archive samples Other efault: Dispose	MPI	arges	Mary Pare	TURNAI	2
å		157	5-15-20	DATE													nples	SAMPLE DISPOSAL	Rush charges authorized by:	□ Standard turnaround	TURNAROUND TIME	
	_			\vdash											Notes		fter 3	POSA	rized l	i md		V52
		1332	332	TIME								3000 Sales					 □ Archive samples □ Other □ Default: Dispose after 30 days 	L	уу:			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 21, 2020

John Funderburk, Project Manager **Urban Environmental Partners** 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on May 15, 2020 from the Rainier Mall, F&BI 005196 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Brian Dixon, Matthew Grunwald

UEP0521R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 15, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 005196 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Urban Environmental Partners</u>

005196 -01 MW09-20200515

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW09-20200515	Client:	Urban Environmental Partners
Date Received:	05/15/20	Project:	Rainier Mall, F&BI 005196
Date Extracted:	05/15/20	Lab ID:	005196-01
Date Analyzed:	05/19/20	Data File:	051919.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	96	60	133

1 DI OINOITHOI ON OILLOITO	0.0
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.47
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	48
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	87
Tetrachloroethene	99

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 005196
Date Extracted:	05/15/20	Lab ID:	00-1058 mb
Date Analyzed:	05/15/20	Data File:	051511.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/21/20 Date Received: 05/15/20

Project: Rainier Mall, F&BI 005196

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	119	116	70-128	3
Chloroethane	ug/L (ppb)	50	93	89	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	110	103	72 - 121	7
Methylene chloride	ug/L (ppb)	50	119	117	63-132	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	115	115	76-118	0
1,1-Dichloroethane	ug/L (ppb)	50	114	114	77-119	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	115	114	76-119	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	104	75-116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	115	113	80-116	2
Trichloroethene	ug/L (ppb)	50	111	113	72 - 119	2
Tetrachloroethene	ug/L (ppb)	50	103	102	78-109	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on May 15, 2020 from the Rainier Mall, F&BI 005192 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Brian Dixon, Matthew Grunwald

UEP0519R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 15, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 005192 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
005192 -01	UB31-24
005192 -02	UB31-26
005192 -03	UB31-28
005192 -04	UB31-31
005192 -05	UB31-32
005192 -06	UB31-35
005192 -07	UB31-37
005192 -08	UB31-43

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-24 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-01 Date Extracted: Date Analyzed: 05/15/20 Data File: $051520.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.084
Tetrachloroethene	9.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-26 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-02Date Extracted: Date Analyzed: 05/15/20 Data File: $051521.\mathrm{D}$ Soil Matrix: Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	0.073	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	0.39	
Tetrachloroethene	2.4	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-28 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-03 Date Extracted: Date Analyzed: 05/15/20 Data File: 051522 A.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.040
Tetrachloroethene	0.23

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-31 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-04Date Extracted: Date Analyzed: 05/15/20 Data File: $051515.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-32 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-05Date Extracted: Date Analyzed: 05/15/20 Data File: $051516.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	< 0.02	
Tetrachloroethene	< 0.025	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-35 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-06 Date Extracted: Date Analyzed: 05/15/20 Data File: $051517.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-37 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: 005192-07 Date Extracted: Date Analyzed: 05/15/20 Data File: $051518.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB31-43 Client: Urban Environmental Partners Date Received: 05/15/20 Project: Rainier Mall, F&BI 005192

Lab ID: Date Extracted: 05/15/20 005192 - 08Date Analyzed: 05/15/20 Data File: $051519.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 50 150 Toluene-d8 105 50 150 4-Bromofluorobenzene 97 50 150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: Rainier Mall, F&BI 005192

05/15/20 Lab ID: Date Extracted: 00-1056 mb Date Analyzed: 05/15/20 Data File: $051512.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/20 Date Received: 05/15/20

Project: Rainier Mall, F&BI 005192

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 005133-02 (Matrix Spike)

	- '		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	52	58	10-91	11
Chloroethane	mg/kg (ppm)	2.5	< 0.5	59	61	10-101	3
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	62	66	22 - 107	6
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	90	102	14-128	12
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	78	87	13-112	11
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	86	96	23 - 115	11
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	88	98	25-120	11
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	83	92	22 - 124	10
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	79	88	27 - 112	11
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	81	88	30-112	8
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	58	67	25 - 114	14

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	92	42-107
Chloroethane	mg/kg (ppm)	2.5	99	47-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	101	65-110
Methylene chloride	mg/kg (ppm)	2.5	114	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	108	71 - 113
1,1-Dichloroethane	mg/kg (ppm)	2.5	109	74 - 109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	108	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	107	72 - 116
Trichloroethene	mg/kg (ppm)	2.5	105	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	96	73 - 111

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

005192

Report To JOHN FUNDERSURIE CER

Address 2324 Company___ Spalle

City, State, ZIP 425-922-9 Phone 792 Email

> SAMPLE CHAIN OF CUSTODY $M \in OS$ SAMPLERS (signature)

REMARKS PROJECT NAME RAINER MAIN INVOICE TO P0#

S RUSH 24/1014/2 Rush charges authorized by: TURNAROUND TIME

☐ Archive samples

SAMPLE DISPOSAL

Project specific RLs? - Yes / No

Default Dispose after 30 days

		*	k	<u>k</u> -	* _	*			•		
		UB31-43	UR31-37	UB31-35	l v	Ι,	UB31-28	VB31-26	UB31-24	Sample ID	
		08 /	67	06	05	200	S	02	01 A.E	Lab ID'	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							· · · · · · · · · · · · · · · · · · ·	01 A.E G. 15.20 OBUD	Date Sampled	*
	*	300	<i>0135</i>	010	0905	ON O	2200	<i>PSO</i>		Time Sampled	
******									SOIL	Sample Type	
					. 1				0	# of Jars	
							-			NWTPH-Dx	
		ı.		`						NWTPH-Gx	
	*******			<u> </u>	ļ	<u> </u>				BTEX EPA 8021	
		 	\	\vdash		<u> </u>	<u> </u>	<u> </u>		NWTPH-HCID	A
				<u> </u>	1		\perp^{\sim}		X	VOCs EPA 8260	NAI
						_				PAHs EPA 8270	YSE
	SS					<u> </u>	ļ		ļ	PCBs EPA 8082	SRE
	Samples received		ļ								ANALYSES REQUESTED
	es 1		,								STE
2.	ecei										מ
	ved										
	at H °C				15/15		Samples	en *	ASAP	Notes	

	SIGNATURE	PRINT NAME	COMPANY	DALE	١.
Friedman & Bruya, Inc.	Relinquished by:	John R. Fundorbu		5/13/20	
3012 16th Avenue West	·	Nhan Anan	Frest	5/15/20	I
Seattle, WA 98119-2029				•	i
Ph. (206) 285-8282	Received by:				

200 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on May 15, 2020 from the Rainier Mall, F&BI 005198 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Brian Dixon, Matthew Grunwald

UEP0519R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 15, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 005198 project. Samples were logged in under the laboratory ID's listed below.

005198 -01 Sewer South 005198 -02 Sewer North

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Sewer South	Client:	Urban Environmental Partners
Date Received:	05/15/20	Project:	Rainier Mall, F&BI 005198
Date Collected:	05/15/20	Lab ID:	005198-01 1/7.6

Date Collected: 05/15/20 Lab ID: 005/198-01
Date Analyzed: 05/16/20 Data File: 05/1523.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: bat/MS

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	22	8.6
Chloroethane	<20	<7.6
1,1-Dichloroethene	<3	< 0.76
trans-1,2-Dichloroethene	3.7	0.94
1,1-Dichloroethane	<3.1	< 0.76
cis-1,2-Dichloroethene	340	87
1,2-Dichloroethane (EDC)	< 0.31	< 0.076
1,1,1-Trichloroethane	<4.1	< 0.76
Trichloroethene	69	13
1,1,2-Trichloroethane	< 0.83	< 0.15
Tetrachloroethene	270	39

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Sewer North	Client:	Urban Environmental Partners
Date Received:	05/15/20	Project:	Rainier Mall, F&BI 005198
Date Collected:	05/15/20	Lab ID:	005198-02 1/8.0
To	0 = 14 0 10 0	D . T11	ON THOSE D

Date Analyzed: 05/16/20 Data File: 051522.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat/MS

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	<2	< 0.8
Chloroethane	<21	<8
1,1-Dichloroethene	< 3.2	< 0.8
trans-1,2-Dichloroethene	< 3.2	< 0.8
1,1-Dichloroethane	< 3.2	< 0.8
cis-1,2-Dichloroethene	< 3.2	< 0.8
1,2-Dichloroethane (EDC)	< 0.32	< 0.08
1,1,1-Trichloroethane	<4.4	< 0.8
Trichloroethene	< 2.1	< 0.4
1,1,2-Trichloroethane	< 0.87	< 0.16
Tetrachloroethene	< 54	<8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 005198

Date Collected: Not Applicable Lab ID: 00-1060 mb Date Analyzed: 05/15/20 Data File: $051515.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat/MS

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	107	70	130
	Concent		

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	< 0.27	< 0.05
1,1,2-Trichloroethane	< 0.11	< 0.02
Tetrachloroethene	<6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/20 Date Received: 05/15/20

Project: Rainier Mall, F&BI 005198

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 005193-01 1/8.1 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 2.1	< 2.1	nm
Chloroethane	ug/m3	<21	<21	nm
1,1-Dichloroethene	ug/m3	< 3.2	< 3.2	nm
trans-1,2-Dichloroethene	ug/m3	< 3.2	< 3.2	nm
1,1-Dichloroethane	ug/m3	<3.3	<3.3	nm
cis-1,2-Dichloroethene	ug/m3	< 3.2	< 3.2	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.33	< 0.33	nm
1,1,1-Trichloroethane	ug/m3	<4.4	<4.4	nm
Trichloroethene	ug/m3	< 2.2	< 2.2	nm
1,1,2-Trichloroethane	ug/m3	< 0.88	< 0.88	nm
Tetrachloroethene	ug/m3	< 55	< 55	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	95	70-130
Chloroethane	ug/m3	36	95	70-130
1,1-Dichloroethene	ug/m3	54	104	70-130
trans-1,2-Dichloroethene	ug/m3	54	98	70-130
1,1-Dichloroethane	ug/m3	55	94	70-130
cis-1,2-Dichloroethene	ug/m3	54	99	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	100	70-130
1,1,1-Trichloroethane	ug/m3	74	98	70-130
Trichloroethene	ug/m3	73	85	70-130
1,1,2-Trichloroethane	ug/m3	74	87	70-130
Tetrachloroethene	ug/m3	92	85	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

8 b1500

John F. e urbanén, cc: Report To Brian Dixon e Dixon Env.

Address 2324 1st Ave Swite 203 City, State, ZIP Seathe WA 98121

Phone 425 92 972 Email Briane Dixones.com

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature

PROJECT NAME & ADDRESS

Revaier Mal

15/20

Page #

11 m

INVOICE TO PO# TURNAROUND TIME

Standard S.da. SAMPLE DISPOSAL

Default: Clean after 3 days Rush charges authorized by:

☐ Archive (Fee may apply)

				1	F	1	T		r
· ·						Sewer North	Sower \$ South	Sample Name	SAMPLE INFORMATION
						20	0	QP qe _T	
				-		2436	3257	Canister ID	
					,	02	105	Flow Cont. ID	,
IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA /(SG)	IA (SG)	Reporting Level: LA=Indoor Air SG=Soil Gas (Circle One)	
						5-15-20 30 950 5		Initial Date Vac. Sampled ("Hg)	
			n sa ansatani ya	antes comments		30	40	Initial Vac. ("Hg)	
					4	18	925	Field Final Initial Vac. Time ("Hg)	
	-			4		Ŋ	ᅩ	Final Vac. ("Hg)	
						8	1	, Field Final Timé	
	:	,						TO15 Full Scan	ANALYSIS REQUESTED
	Sar					$\overline{}$	$\overline{}$	TO15 BTEXN	YSIS
	nples	-						TO15 cVOCs	REK
	s rece							APH Helium	SHO
	ned ric							нениш	CELLY
	Samples received at 32°C							Notes	

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.
	Received by:	Relinquished by:	Received by:	Relinquished by	SIGNATURE
	•		Mhan Phan	Bran Dixon	PRINT NAME
				Dixon ES	COMPANY
			5/15/20 1332	15-15-20 1332	DATE
			1332	1332	TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 4, 2020

John Funderburk, Project Manager **Urban Environmental Partners** 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 27, 2020 from the Rainier Mall, F&BI 004301 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Brian Dixon, Matthew Grunwald

UEP0504R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 27, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 004301 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
004301 -01	PILE1-3"
004301 -02	PILE1-6"
004301 -03	PILE1-12"
004301 -04	PILES-MIDDLE

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: PILE1-3" Client: Urban Environmental Partners Date Received: 04/27/20 Project: Rainier Mall, F&BI 004301

Date Extracted: 04/28/20 Lab ID: 004301-01 1/5 Date Analyzed: 04/28/20 Data File: 042815.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 85 31 163

Benzo(a)anthracene-d12 105 $\overline{24}$ 168 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene 0.011 Fluoranthene 0.12Pyrene 0.084 Benz(a)anthracene 0.20Chrysene 0.17 Benzo(a)pyrene 0.21 Benzo(b)fluoranthene 0.23Benzo(k)fluoranthene 0.068 Indeno(1,2,3-cd)pyrene 0.090 Dibenz(a,h)anthracene 0.025Benzo(g,h,i)perylene 0.088

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: PILE1-6" Client: Urban Environmental Partners Date Received: 04/27/20 Project: Rainier Mall, F&BI 004301

Date Extracted: 04/28/20 Lab ID: 004301-02 1/5 Date Analyzed: 04/28/20 Data File: 042816.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 86 31 163

Benzo(a)anthracene-d12 110 $\overline{24}$ 168 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene 0.012 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01

< 0.01

< 0.01

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: PILE1-12" Client: Urban Environmental Partners

Date Received: 04/27/20 Project: Rainier Mall, F&BI 004301

Date Feature at al. 104/28/20 Lee ID: 004/201 02 1/5

Date Extracted: 04/28/20 Lab ID: 004301-03 1/5 Date Analyzed: 04/28/20 Data File: 042817.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: Lower Upper Limit: Limit: Limit:

 Surrogates:
 % Recovery:
 Limit:
 Limit:

 Anthracene-d10
 86
 31
 163

 Benzo(a)anthracene-d12
 111
 24
 168

0.021

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene 0.021 Benzo(a)pyrene 0.060 Benzo(b)fluoranthene 0.10 Benzo(k)fluoranthene 0.020 Indeno(1,2,3-cd)pyrene 0.026Dibenz(a,h)anthracene < 0.01

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	PILES-MIDDLE	Client:	Urban Environmental Partners
Date Received:	04/27/20	Project:	Rainier Mall, F&BI 004301

Date Extracted: 04/28/20 Lab ID: 004301-04 1/5 Date Analyzed: 04/28/20 Data File: 042818.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 89 31 163

Benzo(a)anthracene-d12 107 $\overline{24}$ 168 Concentration Compounds: mg/kg (ppm) < 0.01 Naphthalene Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 < 0.01 Chrysene Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Method Blank Client: Urban Environmental Partners
Date Received: Not Applicable Project: Rainier Mall, F&BI 004301

Date Extracted: 04/28/20 Lab ID: 00-965 mb 1/5 Date Analyzed: 04/28/20 Data File: 042812.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 05/04/20 Date Received: 04/27/20

Project: Rainier Mall, F&BI 004301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 004301-01 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	75	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	74	52 - 121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	74	51 - 123
Fluorene	mg/kg (ppm)	0.17	< 0.01	77	37 - 137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	83	34-141
Anthracene	mg/kg (ppm)	0.17	0.0083	82	32-124
Fluoranthene	mg/kg (ppm)	0.17	0.094	51 b	16-160
Pyrene	mg/kg (ppm)	0.17	0.064	56 b	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	0.15	23 b	23-144
Chrysene	mg/kg (ppm)	0.17	0.13	37 b	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.18	26 b	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	0.052	65 b	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.17	24 b	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.069	72 b	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	0.020	81	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	0.068	68 b	37-133

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	81	80	58-121	1
Acenaphthylene	mg/kg (ppm)	0.17	83	81	54 - 121	2
Acenaphthene	mg/kg (ppm)	0.17	79	78	54-123	1
Fluorene	mg/kg (ppm)	0.17	86	84	56-127	2
Phenanthrene	mg/kg (ppm)	0.17	85	86	55-122	1
Anthracene	mg/kg (ppm)	0.17	87	87	50-120	0
Fluoranthene	mg/kg (ppm)	0.17	95	94	54 - 129	1
Pyrene	mg/kg (ppm)	0.17	91	91	53 - 127	0
Benz(a)anthracene	mg/kg (ppm)	0.17	95	96	51-115	1
Chrysene	mg/kg (ppm)	0.17	90	90	55-129	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	86	85	56 - 123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	84	86	54 - 131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	83	51-118	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	97	95	49-148	2
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	95	94	50-141	1
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	90	91	52 - 131	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY ME ONLY 130 Company Debut Leader bock 6: Stance RAMPLESS (signatura) 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
Yes / No Page # Of Page # Of TORNAROUND TIM Poge / No INVOICE TO INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES RE	···-		<u>۔</u> ن							PILES-MIDDLE		PILE1-6"	PILE1-3"	Sample ID		Phone 125-972-9922 Emai	City, State, ZIP Sec	232Y 1st	Company Urban Env.	Report To John Funder 6	004301
Yes / No Page # Of Page # Of TORNAROUND TIM Poge / No INVOICE TO INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES RE	eceived by:	elinquished by:	elinquispen by							ho	03	02	0/	Lab ID] john for w	He		Patriets		
Yes / No Page # Of Page # Of TORNAROUND TIM Poge / No INVOICE TO INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES RE	- Andrewson - Andr	Man	TO TO							U			4-27-70	Date Sampled		promulting		i			, ,
Yes / No Page # Of Page # Of TORNAROUND TIM Poge / No INVOICE TO INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES RE	CONTRACTOR OF THE PROPERTY OF									975	420	412	910	Time Sampled		Project sp	REMARK	Keys	PR(<u>,3</u>	SAMPLE
Yes / No Page # Of Page # Of TORNAROUND TIM Poge / No INVOICE TO INVOICE TO INVOICE TO ANALYSES REQUESTED ANALYSES RE	A PARTIE NAME OF THE PARTIE NAME	ZMM	Bria							F -			\ <u>\</u>			ecific RLs?	6 3	icr Ma	NAME	KS (signati	CHAIN (
ME OHA 7 A C Page # 1 of Page # 1 of TURNAROUND TIM PO # Standard turnaround RUSH Rush charges authorized b SAMPLE DISPOSA Archive samples Other Default: Dispose after 3 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 X PCBs EPA 80082 Notes X PCBs EPA 80082 PAH 8 EPA 8270 PATE Notes PAGE # 1 of TURNAROUND TIM Samples received at 4 oc		7	>	PRIN						4-		<u> </u>	-	# of Jars		- Yes				(re) X	OF C
ME OHA 7 A C Page # 1 of Page # 1 of TURNAROUND TIM PO # Standard turnaround RUSH Rush charges authorized b SAMPLE DISPOSA Archive samples Other Default: Dispose after 3 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 X PCBs EPA 80082 Notes X PCBs EPA 80082 PAH 8 EPA 8270 PATE Notes PAGE # 1 of TURNAROUND TIM Samples received at 4 oc			3 0	IN A																	UST
ME OHA 7 A C Page # 1 of Page # 1 of TURNAROUND TIM PO # Standard turnaround RUSH Rush charges authorized b SAMPLE DISPOSA Archive samples Other Default: Dispose after 3 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 NOTE PAH 8270 PAH 8 EPA 8270 PAH 8 EPA 8270 X PCBs EPA 80082 Notes X PCBs EPA 80082 PAH 8 EPA 8270 PATE Notes PAGE # 1 of TURNAROUND TIM Samples received at 4 oc		<u>\$</u>	, 0 X	ME				-) D
E TO Company Date																ہ	• =	1		X	, K
E TO Company Date														VOCs EPA 8260	NAI	0			<u>`</u>		
TURNAROUND TIM TURNAROUND TIM Standard turnaround Standard turnaround Rush charges authorized b Samples Dispose after 3 Default: Dispose after 3 REQUESTED COMPANY DATE COMPANY DATE COMPANY DATE 4.7.2.6 Page # 1 of TURNAROUND TIM Notes	70	1	1 5							X	·	$\langle \rangle$	¥≃	PAHs EPA 8270	XSE				#		46
Page #	jami	0	\$ 5	် ဥ		<u> </u>			_		-			PCBs EPA 8082	BEG		Ċ	5			204
Page #	les 1		1.)MIP	-										SHO						12
ROUND TIM ROUND TIM urnaround authorized b sauthorized b E DISPOSA mples Notes Notes Notes	ecei		V	, K	 	-			 			-				Defa		Tenat	P. R.C.		No.
ROUND TIM ROUND TIM aurnaround s authorized b E DISPOSA mples Notes Notes DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE	ved :			WHAT I THE THE					<u> </u>							i i., i	chive her		ISH_	TUR	Page :
UND TIME thorized by: thorized by: DISPOSAL les RATE TIME 77.2 10/0 27/2 10/0 27/2 10/0	1	· ********	5 3	F	 		-								1	Dispo	sampi	101 E	d turn	NARO	#
TIME TIME ad by: ear 30 days otes TIME Oloo		1	2/	ATE 772										Ž.		se aftı	les		+horiz	ÚND	
76 ME			}	_										otes		er 30	; 2 3)SAT.	ed hv.	TIME	*
			3/2	TIME						The state of the s						days			,		10

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 27, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on April 10, 2020 from the Rainier Mall, F&BI 004118 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0427R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 10, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 004118 project. Samples were logged in under the laboratory ID's listed below.

004118 -01 SG04 004118 -02 SG05

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG04	Client:	Urban Environmental Partners
Date Received:	04/10/20	Project:	Rainier Mall, F&BI 004118
Date Collected:	04/10/20	Lab ID:	004118-01 1/16
Date Analyzed:	04/21/20	Data File:	042017.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	MS

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	<4.1	<1.6
Chloroethane	<42	<16
1,1-Dichloroethene	< 6.3	<1.6
trans-1,2-Dichloroethene	< 6.3	<1.6
1,1-Dichloroethane	< 6.5	<1.6
cis-1,2-Dichloroethene	< 6.3	<1.6
1,2-Dichloroethane (EDC)	< 0.65	< 0.16
1,1,1-Trichloroethane	<8.7	<1.6
Trichloroethene	<4.3	< 0.8
1,1,2-Trichloroethane	<1.7	< 0.32
Tetrachloroethene	<110	<16

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG05	Client:	Urban Environmental Partners
Date Received:	04/10/20	Project:	Rainier Mall, F&BI 004118
Date Collected:	04/10/20	Lab ID:	004118-02 1/16
Date Analyzed:	04/21/20	Data File:	042018.D
Matrix:	Air	Instrument:	GCMS7

Operator:

MS

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	105	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	<4.1	<1.6
Chloroethane	<42	<16
1,1-Dichloroethene	< 6.3	<1.6
trans-1,2-Dichloroethene	< 6.3	<1.6
1,1-Dichloroethane	< 6.5	<1.6
cis-1,2-Dichloroethene	< 6.3	<1.6
1,2-Dichloroethane (EDC)	< 0.65	< 0.16
1,1,1-Trichloroethane	<8.7	<1.6
Trichloroethene	<4.3	< 0.8
1,1,2-Trichloroethane	<1.7	< 0.32
Tetrachloroethene	<110	<16

ug/m3

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 004118
D . C 11 . 1	37 . 4 11 11	T 1 TT	0.0.0000 1

Date Collected: $Not\ Applicable$ Lab ID: 00-0822 mb 04/16/20 Date Analyzed: Data File: 041611.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	< 0.27	< 0.05
1,1,2-Trichloroethane	< 0.11	< 0.02
Tetrachloroethene	<6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/27/20 Date Received: 04/10/20

Project: Rainier Mall, F&BI 004118

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 004108-02 1/2.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.72	< 0.72	nm
Chloroethane	ug/m3	<7.4	<7.4	nm
1,1-Dichloroethene	ug/m3	<1.1	<1.1	nm
trans-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
1,1-Dichloroethane	ug/m3	<1.1	<1.1	nm
cis-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.11	< 0.11	nm
1,1,1-Trichloroethane	ug/m3	<1.5	<1.5	nm
Trichloroethene	ug/m3	< 0.75	< 0.75	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
Tetrachloroethene	ug/m3	<19	<19	nm

Laboratory Code: Laboratory Control Sample

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Vinyl chloride	ug/m3	35	86	70-130	
Chloroethane	ug/m3	36	91	70-130	
1,1-Dichloroethene	ug/m3	54	101	70-130	
trans-1,2-Dichloroethene	ug/m3	54	95	70-130	
1,1-Dichloroethane	ug/m3	55	94	70-130	
cis-1,2-Dichloroethene	ug/m3	54	100	70-130	
1,2-Dichloroethane (EDC)	ug/m3	55	102	70-130	
1,1,1-Trichloroethane	ug/m3	74	100	70-130	
Trichloroethene	ug/m3	73	85	70-130	
1,1,2-Trichloroethane	ug/m3	74	85	70-130	
Tetrachloroethene	ug/m3	92	87	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

811400

SAMPLE CHAIN OF CUSTORY)

ME OH/IO/20

City, State, ZIP Spatte Company Urban Environmented Report To John Funderbuck Address <u>Email</u> D'you PROJECT NAME & ADDRESS SAMPLERS (signature) NOTES: Rivier Nell

INVOICE TO PO# 5 Standard Default: Clean after 3 days Rush charges authorized by: D RUSH TURNAROUND TIME SAMPLE DISPOSAL

☐ Archive (Fee may apply)

						5905	· 5604	Sample Name		SAMPLE INFORMATION	
						20	0)	Lab ID			
						187 87 14 SP	7540 W3	Canister ID			
						759	出る	Flow Cont. ID			
IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA /SG	IA /(SG)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)			
						4-10-Z	4-10-20 25.74 1470 3	Date Vac. Sampled ("Hg)			*
w *						24	28.76	Initial Vac. ("Hg)			
						7881	St. Fi	Field Initial Time	£		
						7.5	W	Final Vac. ("Hg)			
				*		215	36hl	Field Final Time			
					,			TO15 Full	Scan	ANA	1 4 7 7 7
						+	+	TO15 BT		ANALYSIS KEQUESTED	47070
-	1					+~	ᢡ	TO15 eV			300
-					-		1	Heliu			1100
								,			3
					A CONTRACTOR OF THE CONTRACTOR			Notes			
							····				

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029

Received by:

BURN

F)5555

Relinquished by

3012 16th Avenue West Friedman & Bruya, Inc.

Relinquished by:

PRINT NAME

くいてしついく

つくしかい

D. XQ

D.Xon

S T

P2.01:4 9.01-b DATE

51.17

4:15 TIME

1270

17:03

COMPANY

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 1, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on May 26, 2020 from the Lake Union Partners - Rainier Mall, F&BI 005319 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures UEP0601R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 26, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Lake Union Partners - Rainier Mall, F&BI 005319 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
005319 -01	MW-30
005319 -02	MW-31

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-30 Client: Urban Environmental Partners Date Received: 05/26/20 Project: Lake Union Partners - Rainier Mall 05/27/20 Lab ID: Date Extracted: 005319-01Date Analyzed: 05/27/20 Data File: $052709.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	23
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	2.4
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	230 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	$420 \mathrm{\ ve}$
Tetrachloroethene	1,400 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-30	Client:	Urban Environmental Partners
Date Received:	05/26/20	Project:	Lake Union Partners - Rainier Mall
Date Extracted:	05/27/20	Lab ID:	005319-01 1/100
Date Analyzed:	05/28/20	Data File:	052832.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	30
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	250
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Trichloroethene	410
Tetrachloroethene	1,500

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-31 Client: Urban Environmental Partners Date Received: 05/26/20 Project: Lake Union Partners - Rainier Mall 05/27/20 Lab ID: Date Extracted: 005319-02Date Analyzed: 05/27/20 Data File: $052710.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	93	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1,500 ve
Chloroethane	<1
1,1-Dichloroethene	11
Methylene chloride	<5
trans-1,2-Dichloroethene	120
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	4,900 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	6,200 ve
Tetrachloroethene	18,000 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-31 Client: Urban Environmental Partners

Date Received: 05/26/20 Project: Lake Union Partners - Rainier Mall

Date Extracted: 05/27/20 Lab ID: 005319-02 1/1000

22,000

120,000

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	103	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride 1,300 Chloroethane <1,000 1,1-Dichloroethene <1,000 <5,000 Methylene chloride trans-1,2-Dichloroethene <1,000 <1,000 1,1-Dichloroethane cis-1,2-Dichloroethene 15,000 1,2-Dichloroethane (EDC) <1,000 <1,000 1,1,1-Trichloroethane

Trichloroethene Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Lake Union Partners - Rainier Mall
Date Extracted:	05/27/20	Lab ID:	00-1156 mb2
Date Analyzed:	05/27/20	Data File:	052705.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/01/20 Date Received: 05/26/20

Project: Lake Union Partners - Rainier Mall, F&BI 005319

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 005264-02 (Matrix Spike)

Laboratory Couc. 000204 02 (1	viaura opino,				
				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	97	36-166
Chloroethane	ug/L (ppb)	50	<1	101	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	97	60-136
Methylene chloride	ug/L (ppb)	50	<5	103	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	98	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	102	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	95	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	105	60-146
Trichloroethene	ug/L (ppb)	50	<1	96	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	97	10-226

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	99	99	50 - 154	0
Chloroethane	ug/L (ppb)	50	101	103	58-146	2
1,1-Dichloroethene	ug/L (ppb)	50	96	99	67-136	3
Methylene chloride	ug/L (ppb)	50	102	105	39-148	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	96	99	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	101	105	74 - 135	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	97	100	74 - 136	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	97	99	66-129	2
1,1,1-Trichloroethane	ug/L (ppb)	50	105	107	74 - 142	2
Trichloroethene	ug/L (ppb)	50	98	100	67-133	2
Tetrachloroethene	ug/L (ppb)	50	99	99	76-121	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West Friedman & Bruya, Inc. City, State, ZIP Report To John Funder burl Phone (425) 92 922 Address_ Company Orban Environmental Ruthers MW-30 Sample ID Relinquished by: Relinquished by Received by: 82:21 DI-21-CD-12:28 014-6 Lab ID SIGNATURE 15-23-20 N:24 Sampled Date SAMPLE CHAIN OF CUSTODY $M \subset$ Sampled REMARKS PROJECT NAME SAMPLERS (signature) Project specific RLs? - Yes / No Lake union Pardness-Kanier rall Sample € Type { Ray Kurson Beismin Kuroine # of Jars PRINT NAME W W NWTPH-Dx 4 BTEX EPA 8021 UEP IC NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 प्रमु E S PCBs EPA 8082 COMPANY Samples received at Standard turnaround Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: 120 Page# TURNAROUND TIME SAMPLE DISPOSAL 5/22/2 Chi, Solvents DATE 123/24 124 5 20 No. Notes

025

Total

D/26/20

16:20 620 TIME င်္ဂ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 10, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on June 3, 2020 from the Rainier Mall, F&BI 006053 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0610R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 3, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 006053 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
006053 -01	UB32-2
006053 -02	UB32-7
006053 -03	UB32-13
006053 -04	UB32-18
006053 -05	UB33-2
006053 -06	UB33-5
006053 -07	UB33-12
006053 -08	UB33-17.5
006053 -09	UB34-3
006053 -10	UB34-7
006053 -11	UB34-13
006053 -12	UB35-4
006053 -13	UB35-10
006053 -14	UB35-14
006053 -15	UB34-W
006053 -16	UB35-W

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/20 Date Received: 06/03/20

Project: Rainier Mall, F&BI 006053

Date Extracted: 06/04/20 Date Analyzed: 06/04/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 48-168)
UB34-3 006053-09	<50	<250	98
UB34-7 006053-10	<50	<250	96
UB34-13 006053-11	<50	<250	97
UB35-4 006053-12	<50	<250	89
UB35-10 006053-13	<50	<250	99
UB35-14 006053-14	<50	<250	95
Method Blank	<50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/20 Date Received: 06/03/20

Project: Rainier Mall, F&BI 006053

Date Extracted: 06/04/20 Date Analyzed: 06/04/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
UB34-W 006053-15	160 x	<250	ip
UB35-W 006053-16 1/1.3	<65	<320	ip
Method Blank 00-1220 MB2	<50	<250	77

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: UB32-13 Client: Urban Environmental Partners
Date Received: 06/03/20 Project: Rainier Mall, F&BI 006053

Date Extracted: 06/04/20 Lab ID: 006053-03 1/5 Date Analyzed: 06/04/20 Data File: 060417.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Concentration Compounds: mg/kg (ppm) < 0.01 Benz(a)anthracene Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: UB33-12 Client: Urban Environmental Partners

Date Received: 06/03/20 Project: Rainier Mall, F&BI 006053

Date Februaria & 06/04/99

Date Extracted: 06/04/20 Lab ID: 006053-07 1/5 Date Analyzed: 06/04/20 Data File: 060418.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Benzo(a)anthracene-d12 75 $\overline{24}$ Concentration Compounds: mg/kg (ppm) < 0.01 Benz(a)anthracene Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Method Blank Client: Urban Environmental Partners
Date Received: Not Applicable Project: Rainier Mall, F&BI 006053

 Date Extracted:
 06/04/20
 Lab ID:
 00-1223 mb2 1/5

 Date Analyzed:
 06/04/20
 Data File:
 060416.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

< 0.01

Concentration
Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/20 Date Received: 06/03/20

Project: Rainier Mall, F&BI 006053

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 006053-09 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	84	88	73-135	5

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	86	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/20 Date Received: 06/03/20

Project: Rainier Mall, F&BI 006053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	84	88	63-142	5

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/20 Date Received: 06/03/20

Project: Rainier Mall, F&BI 006053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 006039-01 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	82	82	23-144	0
Chrysene	mg/kg (ppm)	0.17	< 0.01	81	80	32-149	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	78	77	23-176	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	77	76	42-139	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	75	74	21-163	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	81	78	23-170	4
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	83	80	31-146	4

Laboratory Code: Laboratory Control Sample 1/5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	94	51-115
Chrysene	mg/kg (ppm)	0.17	95	55-129
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	83	56-123
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	86	54 - 131
Benzo(a)pyrene	mg/kg (ppm)	0.17	82	51-118
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	49-148
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	95	50-141

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Company Ucben Env. Partners
Address 2324 1st Ave Suite 203 Report Top CC: Brian D. @ DirenES City, State, ZIP Seattle wx 98121 Phone Email Briane Diverts. Eder Project specific RLs? - Yes / No 3012 16th Avenue West Friedman & Bruya, Inc. Seattle, WA 98119-2029 Ph. (206) 285-8282 UB 32-2 VB32-7 UB33-2 UB32-18 0832-13 UB33-005 UB34-3 UB33-12 7.7. KB BU - 天公の In F. C. L. 006053 Sample ID Received by: Received by: Relinquished by: Relinquished by: Lab ID 9 0 \vec{o} 0 0 o W 80 9 06 0.5 129 Sampled 8 SAMPLE CHAIN OF CHECODY Sampled 825 SAMPLERS (signaluse) 830 **%**4℃ PROJECT NAME 376 125 15. F.S Time REMARKS 0000 226 930 Jogn R Rovaier Mall Sample Туре 5 4 Dries. 12 NODEN-BUYA # of Jars A PRINT NAME BTEX EPA 8021 INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 Dixon PCBs EPA 8082 77.70 COMPANY 06-03-20 Samples received at S V O RUSH Standard turnaround Rush charges authorized by: Default: Dispose after 30 days ☐ Archive samples TURNAROUND TIME ₩age# SAMPLE DISPOSAL 6, 3,20 43/20 DATE HOLD TOHON HOLD あって オピロ d 70th あいる of $\geq \omega_3$ Notes TIME 922 のなれ

Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by:		Friedman & Bruya, Inc. Relinquished	SIGN	,		UB35-W 16	15 NB34-W	10635-14	VB35-10 13	UB 25 -4 12	11 21-14690		Sample ID Lab ID		PhoneEmail	City, State, ZIP	Address	Company SER PROF	Report To	AST TO THE STATE OF THE STATE O
		Mr.D. W. K	N	THURSE			0 1130	5 601	110		1053	6-3-20 1015		Date Time Sampled Sampled		Project	Action	REMARKS		PROJE	SAMPI
	- Luxury	Liz Wes	Brian	PRIN'			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2				1-9/259		Sample # of Type Jars		Project specific KLs? - Yes		RKS	Runier Ması	PROJECT NAME	SAMPLERS (Signalure)
	- Constant - Constant - A Const	Webber-Bruya	Dixon	PRINT NAME					\ - - -	< <u>></u>			BT:	WTPH-Dx WTPH-Gx EX EPA 8021 WTPH-HCID Cs EPA 8260		/ NO	_	OANI		P	X
AND THE PROPERTY OF THE PROPER		F?B	Praxi E	COMPANY										Hs EPA 8270 Bs EPA 8082	7		V	INVOICE TO		PO#	
		6/3/20 1220	0221 02-8-9 53	DATE			(マクロ)	70701	イシュロワーフ					Notes			Other Office of Other Other Office of Other Other Office of Other Other Other Office of Other Othe	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	X Standard turnaround	TURNAROUND TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 11, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on June 8, 2020 from the Rainier Mall, F&BI 006113 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0611R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 006113 project. Samples were logged in under the laboratory ID's listed below.

006113 -01 MW32-20200608 006113 -02 MW33-20200608

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW32-20200608	Client:	Urban Environmental Partners
Date Received:	06/08/20	Project:	Rainier Mall, F&BI 006113
Date Extracted:	06/09/20	Lab ID:	006113-01
Date Analyzed:	06/09/20	Data File:	060908.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	80	31	160
Benzo(a)anthracene-d12	94	25	165

Benzo(a)anthracene-d12	94	25	165
Compounds:	Concentration ug/L (ppb)		
Benz(a)anthracene	< 0.02		
Chrysene	< 0.02		
Benzo(a)pyrene	< 0.02		
Benzo(b)fluoranthene	< 0.02		
Benzo(k)fluoranthene	< 0.02		
Indeno(1,2,3-cd)pyrene	< 0.02		
Dibenz(a,h)anthracene	< 0.02		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW33-20200608	Client:	Urban Environmental Partners
Date Received:	06/08/20	Project:	Rainier Mall, F&BI 006113
Date Extracted:	06/09/20	Lab ID:	006113-02
Date Analyzed:	06/09/20	Data File:	060907.D
Matrix:	Water	Instrument:	GCMS6
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	69	31	160
Benzo(a)anthracene-d12	82	25	165

Benzo(a)anthracene-d12	2 82	25	165
Compounds:	Concentration ug/L (ppb)		
Benz(a)anthracene	< 0.02		
Chrysene	< 0.02		
Benzo(a)pyrene	< 0.02		
Benzo(b)fluoranthene	< 0.02		
Benzo(k)fluoranthene	< 0.02		
Indeno(1,2,3-cd)pyrene	< 0.02		
Dibenz(a,h)anthracene	< 0.02		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 006113
Date Extracted:	06/09/20	Lab ID:	00-1258 mb
Date Analyzed:	06/09/20	Data File:	060905.D

Date Analyzed: 06/09/20 Data File: 060905.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	78	31	160
Benzo(a)anthracene-d12	101	25	165

Benzo(a)anthracene-d12	101	25	165
Compounds:	Concentration ug/L (ppb)		
Benz(a)anthracene	< 0.02		
Chrysene	< 0.02		
Benzo(a)pyrene	< 0.02		
Benzo(b)fluoranthene	< 0.02		
Benzo(k)fluoranthene	< 0.02		
Indeno(1,2,3-cd)pyrene	< 0.02		
Dibenz(a,h)anthracene	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/20 Date Received: 06/08/20

Project: Rainier Mall, F&BI 006113

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	ug/L (ppb)	1	96	98	60-118	2
Chrysene	ug/L (ppb)	1	96	98	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	86	86	55-135	0
Benzo(k)fluoranthene	ug/L (ppb)	1	87	87	62 - 125	0
Benzo(a)pyrene	ug/L (ppb)	1	88	89	58 - 127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	99	99	36 - 142	0
Dibenz(a,h)anthracene	ug/L (ppb)	1	100	103	37 - 133	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Address_ City, State, ZIP Settle Report To ac: Brien D. Phone 425-927-9972 Email Brime DirenES, can P. Company Urber Enviro. MW33-2020608 MW32-2020608 John F. @ VEP Sample ID Relinquished by: Received by: Relinquished by: Received by: Lab ID 20 9 Dixon ES 006113 Lastreers SIGNATURE 6-8-20 6-8-6 Sampled Sin Date SAMPLE CHAIN OF CUSTODY ME 06/08/ Time Sampled 205 050 Project specific RLs? - Yes / No SAMPLERS (signature) PROJECT NAME REMARKS Ranies 1 Sample Туре ٤ \mathcal{E} Dhan Brias # of Jars PRINT NAME Phan NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 TRAI Dixon ES Samples received at PCBs EPA 8082 COMPANY SAMPLE DISPOSAL

Archive samples Rush charges authorized by: Standard turnaround Default: Dispose after 30 days Page# TURNAROUND TIME 06/8/0 6-8-20 DATE Q. . ငိ Notes TIME <u>0</u>8

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 9, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on August 27, 2020 from the Rainier Mall, F&BI 008432 project. There are 49 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0909R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 27, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 008432 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
008432 -01	MW01-20200827
008432 -02	MW02-20200826
008432 -03	MW02-PDB20200826
008432 -04	MW03-20200826
008432 -05	MW03-PDB20200826
008432 -06	MW04-20200827
008432 -07	MW04-PDB20200827
008432 -08	MW09-20200826
008432 -09	MW10-20200826
008432 -10	MW10-DB-20200826
008432 -11	MW11-20200826
008432 -12	MW11-DB-20200826
008432 -13	MW12-20200827
008432 -14	MW13-20200827
008432 -15	MW14-20200826
008432 -16	MW15-20200826
008432 -17	MW16-20200827
008432 -18	MW17-20200826
008432 -19	MW18-20200826
008432 -20	MW24-20200826
008432 -21	MW25-20200827
008432 -22	MW25-PDB20200827
008432 -23	MW25-PDB2-20200827
008432 -24	MW26-20200826
008432 -25	MW30-20200827
008432 -26	MW31-20200827
008432 -27	MW32-20200826
008432 -28	MW33-20200826
008432 -29	MW30-PDB20200827
008432 -30	MW31-PDB20200827
008432 -31	MW06-20200827
008432 -32	MW07-20200827

The 8260D calibration standard failed the acceptance criteria for methylene chloride in several samples. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW01-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-01
Date Analyzed:	08/28/20	Data File:	082826.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	150
Chloroethane	<1
1,1-Dichloroethene	2.0
Methylene chloride	<5
trans-1,2-Dichloroethene	28
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	1,300 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1,300 ve
Tetrachloroethene	4,600 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW01-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432

 Date Extracted:
 08/28/20
 Lab ID:
 008432-01 1/1000

 Date Analyzed:
 09/02/20
 Data File:
 090217.D

Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

1,900 14,000

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

1 Diomondologenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<200
Chloroethane	<1,000
1,1-Dichloroethene	<1,000
Methylene chloride	<5,000
trans-1,2-Dichloroethene	<1,000
1,1-Dichloroethane	<1,000
cis-1,2-Dichloroethene	1,800
1,2-Dichloroethane (EDC)	<1,000
1,1,1-Trichloroethane	<1,000

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

008432

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.33
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	9.8
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW02-PDB20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-03
Date Analyzed:	09/02/20	Data File:	090236.D
Matrix:	Water	Instrument:	GCMS4

Operator:

AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

1 Diomonition of outpoint	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.47
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	8.9
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

ug/L (ppb)

Units:

Client Sample ID:	MW03-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-04
Date Analyzed:	09/02/20	Data File:	090237.D
Matrix:	Water	Instrument:	GCMS4

Operator:

AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

101	60
Concentration ug/L (ppb)	
< 0.2	
<1	
<1	
<5	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
	Concentration ug/L (ppb) <0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW03-PDB20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-05
Date Analyzed:	09/03/20	Data File:	090238.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW04-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-06
Date Analyzed:	09/03/20	Data File:	090239.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW04-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-07
Date Analyzed:	09/03/20	Data File:	090240.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	\circ
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW09-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-08 1/10
Date Analyzed:	08/29/20	Data File:	082846.D
7. T	XX7 4	T 1	COMOLO

Date Analyzed: 08/29/20 Data File: 082846.D Matrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	9.9
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	590
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	300
Tetrachloroethene	530

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW10-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-09
T) / A 1 1	00/09/00	D-4- E1-	0000F1 D

Date Extracted: 08/28/20 Lab ID: 008432-08
Date Analyzed: 09/03/20 Data File: 090251.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	102	60	133

1 Diomonidation	
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW10-DB-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-10
Date Analyzed:	09/03/20	Data File:	090241.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW11-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-11
Date Analyzed:	09/03/20	Data File:	090242.D

Date Analyzed: 09/03/20 Data File: 090242.I Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

1 Diomoniono obombono	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW11-DB-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-12
Date Analyzed:	09/03/20	Data File	090243 D

Date Extracted: 08/28/20 Lab ID: 008432-12
Date Analyzed: 09/03/20 Data File: 090243.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW12-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-13
Date Analyzed:	09/03/20	Data File:	090244.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.4
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	26
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1.7
Tetrachloroethene	17

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW13-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-14
Date Analyzed:	08/28/20	Data File:	082838.D

Date Analyzed: 08/28/20 Data File: 082838.D Matrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	94	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1,200 ve
Chloroethane	<1
1,1-Dichloroethene	12
Methylene chloride	<5
trans-1,2-Dichloroethene	140
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3,600 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	3,600 ve
Tetrachloroethene	9,500 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW13-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
· · · · · · · · · · · · · · · · ·		T 1 TT	

Operator:

AEN

 Date Extracted:
 08/28/20
 Lab ID:
 008432-14 1/1000

 Date Analyzed:
 09/02/20
 Data File:
 090219.D

 Matrix:
 Water
 Instrument:
 GCMS4

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

4-bromonuorobenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1,200
Chloroethane	<1,000
1,1-Dichloroethene	<1,000
Methylene chloride	<5,000
trans-1,2-Dichloroethene	<1,000
1,1-Dichloroethane	<1,000
cis-1,2-Dichloroethene	16,000
1,2-Dichloroethane (EDC)	<1,000
1,1,1-Trichloroethane	<1,000
Trichloroethene	19,000
Tetrachloroethene	72,000

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW14-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-15
Date Analyzed:	09/03/20	Data File:	090245.D

Date Analyzed: 09/03/20 Data File: 090245.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

<1

<1

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

Concentration Compounds: ug/L (ppb) < 0.2 Vinyl chloride Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 ca trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW15-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-16
Date Analyzed:	09/03/20	Data File:	090246.D

Date Analyzed:09/03/20Data File:090246.IMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	101	60	133

	-
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW16-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-17
Date Analyzed:	09/03/20	Data File:	090247.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

1 Diomondiorosombono	
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW17-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-18
Date Analyzed:	09/03/20	Data File:	090248.D

Date Analyzed: 09/03/20 Data File: 090248.1

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

4-Dromonuorobenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.83
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	170 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW17-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-18 1/10
Date Analyzed:	09/03/20	Data File:	090339.D
Matrix:	Water	Instrument:	GCMS13

Operator:

AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	99	50	150

Concentration ug/L (ppb)
<2
<10
<10
<50 ca
<10
<10
190
<10
<10
<10
<10

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW18-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-19
Date Analyzed:	09/03/20	Data File:	090249.D

Date Analyzed: 09/03/20 Data File: 090249.1

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

4-Diomondorobenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.5
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	2.1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	60
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	54
Tetrachloroethene	1.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW24-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-20
		T . T.1	

Date Extracted: 08/28/20 Lab ID: 008432-20
Date Analyzed: 09/03/20 Data File: 090250.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

4-Diomondologenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW25-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-21
Date Analyzed:	08/28/20	Data File:	082830.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)	
Vinyl chloride	8.7	
Chloroethane	<1	
1,1-Dichloroethene	<1	
Methylene chloride	<5	
trans-1,2-Dichloroethene	3.5	
1,1-Dichloroethane	<1	
cis-1,2-Dichloroethene	1,100 ve	
1,2-Dichloroethane (EDC)	<1	
1,1,1-Trichloroethane	<1	
Trichloroethene	1,100 ve	
Tetrachloroethene	1,100 ve	

ENVIRONMENTAL CHEMISTS

MW25-20200827	Client:	Urban Environmental Partners
08/27/20	Project:	Rainier Mall, F&BI 008432
08/28/20	Lab ID:	008432-21 1/20
09/02/20	Data File:	090213.D
Water	Instrument:	GCMS4
ug/L (ppb)	Operator:	AEN
	08/28/20 09/02/20 Water	08/27/20 Project: 08/28/20 Lab ID: 09/02/20 Data File: Water Instrument:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	102	60	133

Concentration ug/L (ppb)
11
<20
<20
<100
<20
<20
980
<20
<20
770
980

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW25-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-22
Date Analyzed:	08/28/20	Data File:	082831.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	99	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1.7
Chloroethane	<1
1,1-Dichloroethene	1.2
Methylene chloride	<5
trans-1,2-Dichloroethene	2.6
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	830 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	1,100 ve
Tetrachloroethene	960 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW25-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-22 1/20
Date Analyzed:	09/02/20	Data File:	090214.D
3.5	TTT .	-	O OT FO

Date Analyzed: 09/02/20 Data File: 090214.I Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

4-Diomondonenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<4
Chloroethane	<20
1,1-Dichloroethene	<20
Methylene chloride	<100
trans-1,2-Dichloroethene	<20
1,1-Dichloroethane	<20
cis-1,2-Dichloroethene	810
1,2-Dichloroethane (EDC)	<20
1,1,1-Trichloroethane	<20
Trichloroethene	750
Tetrachloroethene	830

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW25-PDB2-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-23 1/10
Date Analyzed:	09/04/20	Data File:	090413.D
Make:	Water	Inatarana	CCMC19

Date Analyzed: 09/04/20 Data File: 090413.D Matrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

4-Diomondorobenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	2.2
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	<50 ca
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	1,100
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	670
Tetrachloroethene	680

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW26-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-24
Date Analyzed:	08/28/20	Data File:	082832.D
Matrice	Water	T4	COMCA

Date Analyzed: 08/28/20 Data File: 082832.1

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	7.8
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	1.1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	130
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	600 ve
Tetrachloroethene	820 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

· ·	1 0		
Client Sample ID:	MW26-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-24 1/20
Date Analyzed:	09/02/20	Data File:	090215.D

Date Analyzed: 09/02/20 Data File: 090215.I Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

4-Diomondorobenzene	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	9.1
Chloroethane	<20
1,1-Dichloroethene	<20
Methylene chloride	<100
trans-1,2-Dichloroethene	<20
1,1-Dichloroethane	<20
cis-1,2-Dichloroethene	130
1,2-Dichloroethane (EDC)	<20
1,1,1-Trichloroethane	<20
Trichloroethene	490
Tetrachloroethene	720

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW30-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-25 1/10
Date Analyzed:	08/29/20	Data File:	082845.D
Motrix	Water	Instrument	CCMC12

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	92	50	150
Toluene-d8	91	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	55
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	580
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	730
Tetrachloroethene	4,700 ve

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW30-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-25 1/100
Date Analyzed:	09/02/20	Data File:	090220.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	53
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	540
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Trichloroethene	850
Tetrachloroethene	4,400

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW31-20200827 Client: Urban Environmental Partners
Date Received: 08/27/20 Project: Rainier Mall, F&BI 008432
Date Extracted: 08/28/20 Lab ID: 008432-26 1/1000

Date Analyzed: 08/29/20 01:17 Lab 1D: 008432-26 1/1000 Date Analyzed: 08/29/20 01:17 Data File: 082848.D

Date Analyzed: 08/29/20 01:17 Data File: 082848.D Matrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: AEN

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	94	50	150
4-Bromofluorobenzene	100	50	150

Concentration Compounds: ug/L (ppb) Vinyl chloride 1,900 <1,000 Chloroethane 1,1-Dichloroethene <1,000 Methylene chloride <5,000 <1,000 trans-1,2-Dichloroethene 1,1-Dichloroethane <1,000 24,000 cis-1,2-Dichloroethene

cis-1,2-Dichloroethene24,0001,2-Dichloroethane (EDC)<1,000</td>1,1,1-Trichloroethane<1,000</td>Trichloroethene23,000Tetrachloroethene120,000

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW30-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-29
Date Analyzed:	08/28/20	Data File:	082833.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	66
Chloroethane	<1
1,1-Dichloroethene	1.1
Methylene chloride	<5
trans-1,2-Dichloroethene	10
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	680 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	900 ve
Tetrachloroethene	3,400 ve

ENVIRONMENTAL CHEMISTS

MW30-PDB20200827	Client:	Urban Environmental Partners
08/27/20	Project:	Rainier Mall, F&BI 008432
08/28/20	Lab ID:	008432-29 1/250
09/02/20	Data File:	090218.D
Water	Instrument:	GCMS4
ug/L (ppb)	Operator:	AEN
	08/28/20 09/02/20 Water	08/27/20 Project: 08/28/20 Lab ID: 09/02/20 Data File: Water Instrument:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	69
Chloroethane	<250
1,1-Dichloroethene	<250
Methylene chloride	<1,200
trans-1,2-Dichloroethene	<250
1,1-Dichloroethane	<250
cis-1,2-Dichloroethene	740
1,2-Dichloroethane (EDC)	<250
1,1,1-Trichloroethane	<250
Trichloroethene	1,200
Tetrachloroethene	6,400

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW31-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-30

 Date Extracted:
 08/28/20
 Lab ID:
 008432-30

 Date Analyzed:
 08/28/20
 Data File:
 082833.D

 Matrix:
 Water
 Instrument:
 GCMS4

 Units:
 ug/L (ppb)
 Operator:
 AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	97	60	133

1 Diomondoroschizene	01
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	1,500 ve
Chloroethane	<1
1,1-Dichloroethene	12
Methylene chloride	<5
trans-1,2-Dichloroethene	190 ve
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3,800 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	7,300 ve
Tetrachloroethene	21,000 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW31-PDB20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
D . D 1	0.010.010.0	T 1 TD	0001000017000

Operator:

AEN

 Date Extracted:
 08/28/20
 Lab ID:
 008432-30 1/5000

 Date Analyzed:
 09/02/20
 Data File:
 090216.D

 Matrix:
 Water
 Instrument:
 GCMS4

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 57 121 Toluene-d8 99 63 127

1,2-Dichloroethane-d4 99 57 121 Toluene-d8 99 63 127 4-Bromofluorobenzene 103 60 133 Concentration Compounds: ug/L (ppb)

Vinyl chloride 1,900 Chloroethane <5,000 <5,000 1,1-Dichloroethene Methylene chloride <25,000 trans-1,2-Dichloroethene <5,000 <5,000 1,1-Dichloroethane cis-1,2-Dichloroethene 20,000 <5,000 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane <5,000 25,000 Trichloroethene Tetrachloroethene 120,000

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW06-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-31
Date Analyzed:	09/03/20	Data File:	090337.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	0.34
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	8.9
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.7
Tetrachloroethene	3.5

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW07-20200827	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	008432-32
Date Analyzed:	09/03/20	Data File:	090338.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	90	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5 ca
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	00-1929 mb
Date Analyzed:	08/28/20	Data File:	082825.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/28/20	Lab ID:	00-1931 mb
Date Analyzed:	08/28/20	Data File:	082812.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW32-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/31/20	Lab ID:	008432-27 1/2
Date Analyzed:	09/01/20	Data File:	083135.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	ya

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	37	15	99
Phenol-d6	29	11	65
Nitrobenzene-d5	81	10	145
2-Fluorobiphenyl	87	16	138
2,4,6-Tribromophenol	85	12	132
Terphenyl-d14	89	35	138

89
Concentration ug/L (ppb)
< 0.4
< 0.4
< 0.4
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.04
< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW33-20200826	Client:	Urban Environmental Partners
Date Received:	08/27/20	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/31/20	Lab ID:	008432-28 1/2
Date Analyzed:	09/01/20	Data File:	083136.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	va

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	38	15	99
Phenol-d6	27	11	65
Nitrobenzene-d5	85	10	145
2-Fluorobiphenyl	87	16	138
2,4,6-Tribromophenol	85	12	132
Terphenyl-d14	89	35	138

rerphenyr-ur4	09
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	<0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 008432
Date Extracted:	08/31/20	Lab ID:	00-1970 mb
Date Analyzed:	09/01/20	Data File:	083128.D
Matrix:	Water	Instrument:	GCMS8
Units:	ug/L (ppb)	Operator:	ya

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	20	15	99
Phenol-d6	15	11	65
Nitrobenzene-d5	87	10	145
2-Fluorobiphenyl	91	16	138
2,4,6-Tribromophenol	74	12	132
Terphenyl-d14	94	35	138

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 Phenanthrene < 0.02 Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/20 Date Received: 08/27/20

Project: Rainier Mall, F&BI 008432

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008432-02 (Matrix Spike)

		Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Vinyl chloride	ug/L (ppb)	50	0.33	89	36-166	
Chloroethane	ug/L (ppb)	50	<1	98	46-160	
1,1-Dichloroethene	ug/L (ppb)	50	<1	100	60-136	
Methylene chloride	ug/L (ppb)	50	<5	93	67 - 132	
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	72 - 129	
1,1-Dichloroethane	ug/L (ppb)	50	<1	96	70 - 128	
cis-1,2-Dichloroethene	ug/L (ppb)	50	9.8	99	71 - 127	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	100	48-149	
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	95	60-146	
Trichloroethene	ug/L (ppb)	50	<1	97	66-135	
Tetrachloroethene	ug/L (ppb)	50	<1	137	10-226	

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	91	90	50-154	1
Chloroethane	ug/L (ppb)	50	100	100	58-146	0
1,1-Dichloroethene	ug/L (ppb)	50	99	98	67-136	1
Methylene chloride	ug/L (ppb)	50	98	97	39-148	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	97	99	68-128	2
1,1-Dichloroethane	ug/L (ppb)	50	98	99	74 - 135	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	101	74 - 136	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	100	102	66-129	2
1,1,1-Trichloroethane	ug/L (ppb)	50	100	100	74 - 142	0
Trichloroethene	ug/L (ppb)	50	91	92	67-133	1
Tetrachloroethene	ug/L (ppb)	50	97	98	76-121	1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/20 Date Received: 08/27/20

Project: Rainier Mall, F&BI 008432

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008432-29 (Matrix Spike)

		Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Vinyl chloride	ug/L (ppb)	10	66	5 b	50-150	
Chloroethane	ug/L (ppb)	10	<1	108	50 - 150	
1,1-Dichloroethene	ug/L (ppb)	10	1.1	96	50 - 150	
Methylene chloride	ug/L (ppb)	10	<5	75	50 - 150	
trans-1,2-Dichloroethene	ug/L (ppb)	10	10	81 b	50 - 150	
1,1-Dichloroethane	ug/L (ppb)	10	<1	91	50 - 150	
cis-1,2-Dichloroethene	ug/L (ppb)	10	680	0 b	50-150	
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	92	50-150	
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	97	50 - 150	
Trichloroethene	ug/L (ppb)	10	900	0 b	50-150	
Tetrachloroethene	ug/L (ppb)	10	3,400	0 b	50-150	

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	131 vo	144 vo	70-130	9
Chloroethane	ug/L (ppb)	10	108	113	70-130	5
1,1-Dichloroethene	ug/L (ppb)	10	107	107	70-130	0
Methylene chloride	ug/L (ppb)	10	120	114	29-192	5
trans-1,2-Dichloroethene	ug/L (ppb)	10	97	108	70-130	11
1,1-Dichloroethane	ug/L (ppb)	10	101	104	70-130	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	100	102	70-130	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	108	112	70-130	4
1,1,1-Trichloroethane	ug/L (ppb)	10	103	105	70-130	2
Trichloroethene	ug/L (ppb)	10	96	93	70-130	3
Tetrachloroethene	ug/L (ppb)	10	126	123	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/20 Date Received: 08/27/20

Project: Rainier Mall, F&BI 008432

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	82	84	56-100	2
2-Methylnaphthalene	ug/L (ppb)	5	82	85	60-104	4
1-Methylnaphthalene	ug/L (ppb)	5	83	86	60-104	4
Acenaphthylene	ug/L (ppb)	5	93	93	70-130	0
Acenaphthene	ug/L (ppb)	5	87	87	65-122	0
Fluorene	ug/L (ppb)	5	91	93	70-130	2
Phenanthrene	ug/L (ppb)	5	89	90	70-130	1
Anthracene	ug/L (ppb)	5	93	93	70-130	0
Fluoranthene	ug/L (ppb)	5	96	98	70-130	2
Pyrene	ug/L (ppb)	5	97	95	70-130	2
Benz(a)anthracene	ug/L (ppb)	5	92	94	70-130	2
Chrysene	ug/L (ppb)	5	94	94	70-130	0
Benzo(a)pyrene	ug/L (ppb)	5	103	104	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	5	101	102	70-130	1
Benzo(k)fluoranthene	ug/L (ppb)	5	100	101	70-130	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	107	108	57-141	1
Dibenz(a,h)anthracene	ug/L (ppb)	5	113	111	57-137	2
Benzo(g,h,i)perylene	ug/L (ppb)	5	107	105	50-143	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Company Urban Env. Address 2324 1st Ave, Suite 203 City, State, ZIP Southe, WA 98121 MUOZ-PDB 20200826 Mw02-2020826 Mwo1-20200827 Phone 425-922-9922 Email joinfeure possulting com Report To Seattle, WA 98119-2029 Mw03-20200826 Ph. (206) 285-8282 3012 16th Avenue West MW10-20200826 Mw09-20200826 MW03-1082020826 Friedman & Bruya, Inc. MU10-BB20200826 MW04-10820200827 Muoy - 20200827 John Funderbunk cc. Sample ID Partners Relinquished by: Relinquishe Received by: B S 8 à 5/ A.C Š 8 80 \aleph Brian Dixon Lab ID 1/ DIXON ES 35-8 3-26 8-26 4-27 Sampled 4-26 35-8 5-27 4-27 3-2 3-26 Date SAMPLE CHAIN OF CUSTODY ME 08/27/20 Sampled 1436 アゴ 1123 SAMPLERS (signatione) 5 hb 05h) 44 C Time Project specific RLs? - Yes / No REMARKS PROJECT NAME 1430 1042 より Rainier Mall Sample E Type 4 Jars # of PRINT NAME W Ŧ NWTPH-Dx NWTPH-Gx INVOICE TO ANALYSES REQUESTED PO# PAHs EPA 8270 DIXOGE Samples received at PCBs EPA 8082 COMPANY K Standard turnaround Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: O RUSH TURNAROUND TIME SAMPLE DISPOSAL 2H2B 8-27-8 meson DATE なるな Notes 228 Marin's TIME 15.58

Company Urban Env.

Address See P. 1

City, State, ZIP

Email

180 S. Or 1961	REMARKS INVOICE TO	SAMPLE CHAIN OF CUSPOR SAMPLERS (signature) PROJECT NAME	PO#
Rainer Majl	Ma)	SAMPLERS (signature)	I
Rainer Mall	ver Mal	PROJECT NAME	
		Rainer Mall	

Project specific RLs? - Yes / No

SAMPLE DISPOSAL

Rush charges authorized by:

KStandard turnaround

TURNAROUND TIME

Default: Dispose after 30 days

	7580000-12WM	MU18-20200826	MW17-20200826	MW16-20200827	Mw 15-20200826	MW14-20200826	MW13-2020827	MW12-20200827	Mull-08-20200826	Mw11-20200826	Sample ID	
	ar	2	a	17	7	3	19	a	/2	111AC	Lab ID	
	8-26	4-26	3-26	8-27	\$-26	9-26	\$-27	9-27	8-26	272-8	Date Sampled	
	1205	1605	1535	210	1322	1352	1517	シモ	1545	1555	Time Sampled	
	1									3	Sample Type	
k	1									W	# of Jars	
										,	NWTPH-Dx	
L								, .			NWTPH-Gx	
									.5 60		BTEX EPA 8021	
											NWTPH-HCID	A
<	7		· · · · · · · · · · · · · · · · · · ·							\leq	VOCs EPA 8260	NAI
-									-		PAHs EPA 8270	YSE
		**************************************									PCBs EPA 8082	ANALYSES REQUESTED
						The state of the s						ED
						a de opposition communication and an advantage of the second communication and the second communication			3 ditto leat In		Notes	WHO HIS DOOR AND A SHARE AND A

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029
Ph. (206) 285-8282

	5 4 3	Samples received at 4 °C		Keceived by:	2828
			THE PROPERTY OF THE PROPERTY O	TOTAL PROPERTY AND THE	
		***	7	8119-2029 Relinquished by:	8119-2029
○ ∨ ∘─	00 01 00 1/20/20	tess	(71c/b-	5	, ,
1	1, 19	+		Received:	nue West
8551	8551 01/12/9	ころ この こ	Drian Dixon		
	1 /	,	R / フ /	Relinquished by:	Bruya, Inc.
TIME	DATE	COMPANY	PRINT NAME	SIGNATOR	

Address_ City, State, ZIP Company_ 008432 Ur bas Env. * 中多 口 SAMPLERS (signatur PROJECT NAME REMARKS Residen

Phone_

Email SAMPLE CHAIN OF CUSTODY Project specific RLs? - Yes / No INVOICE TO **PO**# SAMPLE DISPOSAL Standard turnaround Rush charges authorized by: Default: Dispose after 30 days TURNAROUND TIME

The second secon		MW33-20200826	MW32-20200826	MW31-20200827	MW30-20200827	MW26-20200826	MW25-1762-2020927 23	MW25-80820200827	MW25-20200827	Sample ID	
2		38	37	26	25	74	73	23	21 A-C	Lab ID	
CICNATER		3-26	95-6	8-27	8-27	32.8	8-27	8-27	8-27	Date Sampled	
		1240	1200	1347	0935	430	1215	(2/b	1745	Time Sampled	
		W	\mathcal{E}	€			PARTITION OF THE PARTIT		ϵ	Sample Type	THE PARTY OF THE P
אוממ	`								N	# of Jars	
משואות אוא שואומם							,		1	NWTPH-Dx	
4							,			NWTPH-Gx BTEX EPA 8021	
						. 4			,	NWTPH-HCID	
				<u>a</u>				-	X,	VOCs EPA 8260	ANA
		\times	\times				1	, f	-	PAHs EPA 8270	LYS
										PCBs EPA 8082	ANALYSES REQUESTED
											EST
					-	, which is the state of the sta				Notes	The state of the s
										ës	-

Annual An	Ph. (206) 285-8282 Received by:		Seattle, WA 98119-2029 Relinquished by:	2	3012 16th Avenue West Received W:	The state of the s	Friedman & Bruna Inc Relinquished bu
A CONTRACTOR OF THE PARTY OF TH				10000000000000000000000000000000000000		trac Dixon	J ,
TO A TOWN TO THE TANK OF THE PARTY OF THE PA	Samples received at # of	-		1		Dixos As	
+	٦ ٢			NO NO NO NO NO NO NO NO NO NO NO NO NO	101/00	8/27/20 1558	
				250	}	8551	£ 3.3.7.2.3

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Company_ MW31 - PDB 2020 p827 Phone____ M 606 - 2010 0827 City, State, ZIP MW07-20200877 Address Report To MW30-PDB2020057 29A. Sample ID 008 432 Urban Email Received by: Relinquished by: Received by Relinquished by: 2 23 ω Lab ID 100 SIGNATURE 8/27 8/27 Sampled 8/27 8/27 Date SAMPLE CHAIN OF CUSTODY 308 1145 Sampled 1327 Time Project specific RLs? - Yes REMARKS worded SAMPLERS (signature) PROJECT NAME となり Sample James Туре # of Jars PRINT NAME 13104 NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID Choriaded VOCs EPA 8260 INVOICE TO ANALYSES × × × × 1 had 0-1-1-80 341 PO# PAHs EPA 8270 Samples received at 4 °C 7 PCBs EPA 8082 B REQUESTED COMPANY Default: Dispose after 30 days □ Other ☐ Archive samples □ Standard turnaround □ RUSH Rush charges authorized by: Page# TURNAROUND TIME SAMPLE DISPOSAL 8/28 DATE X - CYOCL DE BD 8/28/20ME Notes W 020 TIME 8/24

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 9, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on August 28, 2020 from the Rainier Mall, F&BI 008452 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures UEP0909R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 28, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 008452 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Urban Environmental Partners
008452 -01	MW21-20200828
008452 -02	MW20-20200828
008452 -03	MW20-DB-20200828
008452 -04	MW22-20200828
008452 -05	MW23-20200828
008452 -06	MW05-20200828
008452 -07	MW08-20200828

Chloroethane in the 8260D laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The analyte was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW21-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	Lab ID:	008452-01
Data Analyzadi	00/09/90	Doto File	000991 D

Date Extracted: 08/31/20 Lab ID: 008432-01
Date Analyzed: 09/02/20 Data File: 090231.D
Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW20-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	I ah ID·	008452-02

Date Extracted:08/31/20Lab ID:008452-02Date Analyzed:09/02/20Data File:090232.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	100	60	133

2.7

<1

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene 36 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW20-DB-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	Lab ID:	008452-03

Date Extracted:08/31/20Lab ID:008452-03Date Analyzed:09/02/20Data File:090233.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:AEN

<1

<1

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	102	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW22-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	Lab ID:	008452-04
		1	

Date Analyzed: 09/02/20 Data File: 090234.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: **AEN**

<1

<1

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW23-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
D . D 1	00/04/00	T L TD	000450 05

Date Extracted: 08/31/20 Lab ID: 008452 - 05Date Analyzed: 09/02/20 Data File: 090235.D Matrix: Water Instrument: GCMS4 ug/L (ppb) Units: Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW05-20200828 Client: Urban Environmental Partners
Date Received: 08/28/20 Project: Rainier Mall, F&BI 008452
Date Extracted: 08/31/20 Lab ID: 008452-06 1/100

 Date Extracted:
 08/31/20
 Lab ID:
 008452-06 1/100

 Date Analyzed:
 09/01/20
 Data File:
 090124.D

 Matrix:
 Water
 Instrument:
 GCMS4

 Units:
 ug/L (ppb)
 Operator:
 AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	99	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	250
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
trans-1,2-Dichloroethene	140
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	6,100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Trichloroethene	11,000
Tetrachloroethene	16,000 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW05-20200828 Client: Urban Environmental Partners
Date Received: 08/28/20 Project: Rainier Mall, F&BI 008452
Date Extracted: 08/31/20 Lab ID: 008452-06 1/200

Date Extracted:08/31/20Lab ID:008452-06 1/200Date Analyzed:09/02/20Data File:090223.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

Concentration Compounds: ug/L (ppb) 220 Vinyl chloride Chloroethane <200 1,1-Dichloroethene <200 Methylene chloride <1,000 trans-1,2-Dichloroethene <200 <200 1,1-Dichloroethane cis-1,2-Dichloroethene 5,800 1,2-Dichloroethane (EDC) <200 1,1,1-Trichloroethane <200 Trichloroethene 10,000 Tetrachloroethene 15,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW08-20200828	Client:	Urban Environmental Partners
Date Received:	08/28/20	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	Lab ID:	008452-07 1/5
Date Analyzed:	09/02/20	Data File:	090224.D
		_	~ ~

Date Analyzed:09/02/20Data File:090224.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	102	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	9.3
Chloroethane	<5
1,1-Dichloroethene	<5
Methylene chloride	<25
trans-1,2-Dichloroethene	<5
1,1-Dichloroethane	<5
cis-1,2-Dichloroethene	200
1,2-Dichloroethane (EDC)	<5
1,1,1-Trichloroethane	<5
Trichloroethene	220
Tetrachloroethene	400

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 008452
Date Extracted:	08/31/20	Lab ID:	00-1939 mb
Date Analyzed:	08/31/20	Data File:	083121.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	100	50	150

Concentration ug/L (ppb)
< 0.2
<1
<1
<5
<1
<1
<1
<1
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/09/20 Date Received: 08/28/20

Project: Rainier Mall, F&BI 008452

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008479-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.2	113	50-150
Chloroethane	ug/L (ppb)	10	<1	128	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	110	50-150
Methylene chloride	ug/L (ppb)	10	<5	75	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	107	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	104	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	104	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	99	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	104	50-150
Trichloroethene	ug/L (ppb)	10	<1	80	50-150
Tetrachloroethene	ug/L (ppb)	10	1.0	100	50-150

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	10	118	113	70-130	4
ug/L (ppb)	10	139 vo	133 vo	70-130	4
ug/L (ppb)	10	120	114	70-130	5
ug/L (ppb)	10	126	118	29-192	7
ug/L (ppb)	10	112	103	70-130	8
ug/L (ppb)	10	107	101	70-130	6
ug/L (ppb)	10	107	102	70-130	5
ug/L (ppb)	10	96	96	70-130	0
ug/L (ppb)	10	113	109	70-130	4
ug/L (ppb)	10	79	84	70-130	6
ug/L (ppb)	10	101	98	70-130	3
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10 ug/L (ppb) 10	Reporting Units Spike Level Recovery LCS ug/L (ppb) 10 118 ug/L (ppb) 10 139 vo ug/L (ppb) 10 120 ug/L (ppb) 10 126 ug/L (ppb) 10 112 ug/L (ppb) 10 107 ug/L (ppb) 10 107 ug/L (ppb) 10 96 ug/L (ppb) 10 113 ug/L (ppb) 10 79	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 10 118 113 ug/L (ppb) 10 139 vo 133 vo ug/L (ppb) 10 120 114 ug/L (ppb) 10 126 118 ug/L (ppb) 10 112 103 ug/L (ppb) 10 107 101 ug/L (ppb) 10 107 102 ug/L (ppb) 10 96 96 ug/L (ppb) 10 113 109 ug/L (ppb) 10 79 84	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 10 118 113 70-130 ug/L (ppb) 10 139 vo 133 vo 70-130 ug/L (ppb) 10 120 114 70-130 ug/L (ppb) 10 126 118 29-192 ug/L (ppb) 10 112 103 70-130 ug/L (ppb) 10 107 101 70-130 ug/L (ppb) 10 107 102 70-130 ug/L (ppb) 10 96 96 70-130 ug/L (ppb) 10 113 109 70-130 ug/L (ppb) 10 79 84 70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by:	SIGNA SIGNA	MM 10 10200020	MUDO 5-20200828 06	MW23-20200828 05	MW22-20200924 04	MW20-013-20200828 03	MW20-20200828 02	12/8 JTH 10 8C80020C-15MM	Sample ID Lab ID Sampled	Phone (435) 927-992 [Smail	City, State, ZIP Scalle W. Stale)	2324 First Ave	Company	Report To john Curchaster
	•	TURE Meny de/		11:20	1025	54.50	OSIS	0910	5880 m	Time ed Sampled	Project	REMARKS	No.	PROJE	SAMPLI SAMPI
	Khai Hoang	Mather W. Ganus							H ₂ O 3	Type # # of NWTPH-Dx NWTPH-Gx BTEX EPA 8021	Project specific RLs? - Yes / No	XXS	Rainier Mall	PROJECT NAME	SAMPLE CHAIN OF CUSTODY
Samples received at	FBI	L) COMPANY			*	X	×	~	X	NWTPH-HCID ANALYS EVA		INVOICE TO		PO#	ME 08/38/20
ed at 4 °C	8/28/20 1205	DATE TIME 8/28/20 1265		Solf.	(c) 1-voa labi MWX	whoe			2680000 -01 MM	Notes	Default: Dispose after 30 days	SAMPLE DISPOSAL ☐ Archive samples	Rush charges authorized by:	Standard turnaround	Page # of TURNAROUND TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 5, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on October 28, 2020 from the Rainier Mall, F&BI 010505 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP1105R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 28, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 010505 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u> Urban Environmental Partners</u>
010505 -01	UB39-33
010505 -02	UB40-30
010505 -03	UB40-33.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB39-33 Client: Urban Environmental Partners Date Received: 10/28/20 Project: Rainier Mall, F&BI 010505

10/30/20 Lab ID: 010505-01 Date Extracted: Date Analyzed: 11/02/20 Data File: 110211.DSoil Matrix: Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.076
Tetrachloroethene	0.14

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB40-30 Client: Urban Environmental Partners
Date Received: 10/28/20 Project: Rainier Mall, F&BI 010505

10/30/20 Lab ID: 010505-02Date Extracted: Date Analyzed: 11/02/20 Data File: 110212.DSoil Matrix: Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	0.11
Tetrachloroethene	0.67

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB40-33.5 Client: Urban Environmental Partners Date Received: 10/28/20 Project: Rainier Mall, F&BI 010505

10/30/20 Lab ID: 010505-03 Date Extracted: Date Analyzed: 11/02/20 Data File: 110213.DMatrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: Rainier Mall, F&BI 010505

10/30/20 Lab ID: Date Extracted: 00-2644 mbDate Analyzed: 10/30/20 Data File: 103009.D Soil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 11/05/20 Date Received: 10/28/20

Project: Rainier Mall, F&BI 010505

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 010579-11 (Matrix Spike)

J	(~ -	_	_		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1	< 0.05	85	80	10-138	6
Chloroethane	mg/kg (ppm)	1	< 0.5	92	87	10-176	6
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	104	104	10-160	0
Methylene chloride	mg/kg (ppm)	1	< 0.5	117	112	10-156	4
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	106	105	14 - 137	1
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	105	105	19-140	0
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	109	109	25 - 135	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	102	102	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	100	106	10-156	6
Trichloroethene	mg/kg (ppm)	1	< 0.02	108	107	21-139	1
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	109	109	20-133	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1	83	22-139
Chloroethane	mg/kg (ppm)	1	86	9-163
1,1-Dichloroethene	mg/kg (ppm)	1	103	47 - 128
Methylene chloride	mg/kg (ppm)	1	111	42 - 132
trans-1,2-Dichloroethene	mg/kg (ppm)	1	97	67 - 129
1,1-Dichloroethane	mg/kg (ppm)	1	98	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	1	100	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	95	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	1	94	62-131
Trichloroethene	mg/kg (ppm)	1	99	64 - 117
Tetrachloroethene	mg/kg (ppm)	1	92	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Address_ Phone 425-922-9922 Email John few pronsulting con City, State, ZIP Company Urban Environmental Patiers Report To 10 John Funderburk UB39-33 UB 40-30 UB40-53.5 Sample ID 010505 Relinquished by: Relinquished by: Received by: Received by: 03 60 OI A.D Lab ID SIGNATURE 82-01 22-a) Sampled 10-28 Date ? SAMPLE CHAIN OF SUSTODY Time Sampled 1030 510 54b Project specific RLs? - Yes / No REMARKS PROJECT NAME SAMPLERS (SISTEMAN) Sample Type V 2/4/2 Trac PRINT NAME Jars # of 7 Pras NWTPH-Dx 2 D D X X NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 P0# Samples received at ME 10/28 PAHs EPA 8270 ナスカー PCBs EPA 8082 COMPANY Dixon ES B Other_ Default: Dispose after 30 days ☐ Archive samples ÆStandard turnaround □ RUSH____ Rush charges authorized by: TURNAROUND TIME Page# SAMPLE DISPOSAL ht/8 </0/ 82-0 DATE Notes 1367 TIME 1307

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 6, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on October 29, 2020 from the Rainier Mall, F&BI 010543 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures UEP1106R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 29, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 010543 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID Urban Environmental Partne
--

010543 -01 UB41-33 010543 -02 UB42-33

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB41-33 Client: Urban Environmental Partners Date Received: 10/29/20 Project: Rainier Mall, F&BI 010543

Lab ID: Date Extracted: 10/30/20 010543-01 Date Analyzed: 11/02/20 Data File: 110214.D Matrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight JCM Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	114	50	150
Toluene-d8	107	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	0.085	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	0.28	
Tetrachloroethene	0.32	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: UB42-33 Client: Urban Environmental Partners Date Received: 10/29/20 Project: Rainier Mall, F&BI 010543

Lab ID: Date Extracted: 10/30/20 010543-02 Date Analyzed: 11/02/20 Data File: 110215.D Matrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight JCM Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	94	50	150

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	0.17	
Tetrachloroethene	0.43	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Urban Environmental Partners Date Received: Not Applicable Project: Rainier Mall, F&BI 010543

10/30/20 Lab ID: Date Extracted: 00-2644 mb Date Analyzed: 10/30/20 Data File: 103009.D Soil Instrument: GCMS4 Matrix: Units: mg/kg (ppm) Dry Weight Operator: **JCM**

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)	
Vinyl chloride	< 0.05	
Chloroethane	< 0.5	
1,1-Dichloroethene	< 0.05	
Methylene chloride	< 0.5	
trans-1,2-Dichloroethene	< 0.05	
1,1-Dichloroethane	< 0.05	
cis-1,2-Dichloroethene	< 0.05	
1,2-Dichloroethane (EDC)	< 0.05	
1,1,1-Trichloroethane	< 0.05	
Trichloroethene	< 0.02	
Tetrachloroethene	< 0.025	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/20 Date Received: 10/29/20

Project: Rainier Mall, F&BI 010543

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 010579-11 (Matrix Spike)

Call Basis								
			Sample	Percent	Percent			
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)	
Vinyl chloride	mg/kg (ppm)	1	< 0.05	85	80	10-138	6	
Chloroethane	mg/kg (ppm)	1	< 0.5	92	87	10-176	6	
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	104	104	10-160	0	
Methylene chloride	mg/kg (ppm)	1	< 0.5	117	112	10-156	4	
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	106	105	14-137	1	
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	105	105	19-140	0	
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	109	109	25-135	0	
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	102	102	12-160	0	
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	100	106	10-156	6	
Trichloroethene	mg/kg (ppm)	1	< 0.02	108	107	21-139	1	
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	109	109	20-133	0	

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Vinyl chloride	mg/kg (ppm)	1	83	22-139		
Chloroethane	mg/kg (ppm)	1	86	9-163		
1,1-Dichloroethene	mg/kg (ppm)	1	103	47-128		
Methylene chloride	mg/kg (ppm)	1	111	42-132		
trans-1,2-Dichloroethene	mg/kg (ppm)	1	97	67-129		
1,1-Dichloroethane	mg/kg (ppm)	1	98	68-115		
cis-1,2-Dichloroethene	mg/kg (ppm)	1	100	72-127		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	95	56-135		
1,1,1-Trichloroethane	mg/kg (ppm)	1	94	62-131		
Trichloroethene	mg/kg (ppm)	1	99	64-117		
Tetrachloroethene	mg/kg (ppm)	1	92	72-114		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.										UB42-33	UB41-33	Sample ID		Phone 425-922-9922 En	City, State, ZIPSea		CompanyUrban E	Report ToJohn Fu	010543
Received MM	Relinquished by:	Received by:	Refinquished by:	SI	-								00,	01 9-0	Lab I ^D		Email: johnf@uepconsulting.com	Seattle, WA 98121_	2324 1st Ave, Suite 208	Urban Environmental Partners Ilc	John Funderburk	<i>(C.</i>
My			7	SIGNATURE									10-29-20	Q-12-01	Date Sampled		nsulting.com	OCCUPANTE NOT RELIGIOUS AND AND AND AND AND AND AND AND AND AND	The state of the s	tners llc	wy Diven es	SAMPLE CHAIN OF CUSTORS
			[1325	926	Time Sampled		<u></u>	REMARKS	~~	PROJEC	S SAMPLI	SAMPLE
AMUNICONA ON			Loha										S	8	Sample Type		Project Specific RLs -	SS	Rainer Mall	PROJECT NAME	SAMPLERS (signature)	CHAIN
We			70	PRI									2	2	# of Jars				172	>	times	OF
W			16250 Married	PRINT NAME											NWTPH-Dx		Yes / No			•	V	CUS
1/2			ande.	AME			-			<u> </u>		<u> </u>			NWTPH-Gx		0				Ň	/ d
20					-		-		<u> </u>	 	1		\sim	 	BTEX EPA 8021						V	17
F			1				1					<u> </u>		┟╱	VOCs EPA 8260 PAHs EPA 8270	AN				t	1	1/3
<u> </u>			٦	\blacksquare					╁┈					 	PCBs EPA 8082	ANALYSES REQUESTED	5	INVOICE TO		h	,	
1			TO PO									1				ES R	-	Sign		P0#		70
is M				CO]				<u> </u>	1							∩®Œ		ď				17
Bounday			27.5	COMPANY						1						EST.	ļ		I		<u> </u>	0-29-20
\$			Victoria.				1		1		†	1				Ü	Other	Dis	Rush	R C		₩
						1	1		1		1	1	1			1	her	SAN pose	char	ndar SH	TURN/	D D
			2	Ţ	-				—					T		1	Other Samples	(PLE after	ges au	1 Tur	NAR	+
1200			10/2	DATE													les	SAMPLE DISPO Dispose after 30 days	thori	Standard Turnaround	UND	
1447			1441	TIME											Notes		**************************************	SAMPLE DISPOSAL nose after 30 days	Rush charges authorized by:	nd 	TURNAROUND TIME	一 长

Samples received at M °C

DRAFT

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW30-20201207 Client: Urban Environmental Partners
Date Received: 12/07/20 Project: Rainier Mall, F&BI 012109
Date Extracted: 12/08/20 Lab ID: 012109-03

Date Analyzed: 12/08/20 Data File: 120813.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	3.6
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	4.8
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	1.1

Client Sample ID: MW26-20201207 Client: Urban Environmental Partners Date Received: 12/07/20 Project: Rainier Mall, F&BI 012109

Date Extracted:12/08/20Lab ID:012109-04Date Analyzed:12/08/20Data File:120814.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:JCM

	Lower	Upper
% Recovery:	Limit:	Limit:
99	57	121
104	63	127
101	60	133
	99 104	% Recovery: Limit: 99 57 104 63

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	3.7
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	180 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.1
Tetrachloroethene	<1

Client Sample ID: MW26-20201207 Client: Urban Environmental Partners Date Received: 12/07/20 Project: Rainier Mall, F&BI 012109

Date Extracted: 12/07/20 Lab ID: 012109-04 1/20 Date Analyzed: 12/07/20 Data File: 120719.D Water Instrument: GCMS13 Matrix: Units: ug/L (ppb) Operator: jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	105	50	150

<20

<20

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<4
Chloroethane	<20
1,1-Dichloroethene	<20
Methylene chloride	<100
trans-1,2-Dichloroethene	<20
1,1-Dichloroethane	<20
cis-1,2-Dichloroethene	170
1,2-Dichloroethane (EDC)	<20
1,1,1-Trichloroethane	<20

Trichloroethene

Tetrachloroethene

Client Sample ID: MW09-20201207 Client: Urban Environmental Partners Date Received: 12/07/20 Project: Rainier Mall, F&BI 012109

Date Extracted: 12/07/20 Lab ID: 012109-05 1/10 Date Analyzed: 12/07/20 Data File: 120720.D Water Instrument: GCMS13 Matrix: Units: ug/L (ppb) Operator: jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	102	50	150

110

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	39
Chloroethane	<10
1,1-Dichloroethene	<10
Methylene chloride	< 50
trans-1,2-Dichloroethene	<10
1,1-Dichloroethane	<10
cis-1,2-Dichloroethene	990
1,2-Dichloroethane (EDC)	<10
1,1,1-Trichloroethane	<10
Trichloroethene	140

Tetrachloroethene

Client Sample ID: Method Blank Client: Urban Environmental Partners
Date Received: Not Applicable Project: Rainier Mall, F&BI 012109
Date Extracted: 12/07/20 Lab ID: 00-2762 mb

Date Extracted: 12/07/20 Lab ID: 00-2762 mb

Date Analyzed: 12/07/20 Data File: 120707.D

Matrix: Water Instrument: GCMS13

Units: ug/L (ppb) Operator: jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	106	50	150

<1

<1

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1

Trichloroethene

Tetrachloroethene

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone 45 922-9922 Email Brion @ Dixon Exem Project specific RLs? - Yes / No City, State, ZIP Seattle MWG-6701207 MWZ6-2520 (207 1021020-50W Mw32-6001207 Mw33-20201207 Sample ID Received by: Relinquished by Received by: Relinquished by posteriopconfulting con 054 \$ 63A7 2 0 12186 YM Lab ID 12-7-20 12-7-20 12-7-20 Sampled 12-7-20 (2-7-20) Date Sampled 288 575 105 140 ふニ Sample Туре 3 E Ç 3 3 Miss Brias # of Jars W PRINT NAME W NWTPH-Dx となっ NWTPH-Gx BTEX EPA 8021 NWTPH-HCID ANALYSES REQUESTED UeP PAHs EPA 8270 F\$B PCBs EPA 8082 Dixon COMPANY Samples received at 4 pc ろう Default: Dispose after 30 days 127 DATE ROK KAG Notes ハイノ 12/0 TIME SUN 1313

SAMPLE CHAIN OF CUSTODY ME 12/7/20 SAMPLERS (signature) VW3/ 1,503

□ Standard turnaround Rush charges authorized by: TURNAROUND TIME

PO#

SAMPLE DISPOSAL

Address 2324 1st Ave

203

REMARKS

INVOICE TO

PROJECT NAME

Rainjer Mas

Company Urban Env. Partners

0[2/09 Report 18 School P.

□ Archive samples

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2020

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on December 7, 2020 from the Rainier Mall, F&BI 012109 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP1214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 7, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 012109 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
012109 -01	MW32-20201207
012109 -02	MW33-20201207
012109 -03	MW30-20201207
012109 -04	MW26-20201207
012109 -05	MW09-20201207

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW32-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	012109-01
Date Analyzed:	12/08/20	Data File:	120808.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	22	15	61
Phenol-d6	13	10	46
Nitrobenzene-d5	71	17	143
2-Fluorobiphenyl	73	50	150
2,4,6-Tribromophenol	88	50	150
Terphenyl-d14	82	50	150

Terphenyl-d14	82	50
Compounds:	Concentration ug/L (ppb)	
Naphthalene	< 0.2	
2-Methylnaphthalene	< 0.2	
1-Methylnaphthalene	< 0.2	
Acenaphthylene	< 0.02	
Acenaphthene	< 0.02	
Fluorene	< 0.02	
Phenanthrene	< 0.02	
Anthracene	< 0.02	
Fluoranthene	< 0.02	
Pyrene	< 0.02	
Benz(a)anthracene	< 0.02	
Chrysene	< 0.02	
Benzo(a)pyrene	< 0.02	
Benzo(b)fluoranthene	< 0.02	
Benzo(k)fluoranthene	< 0.02	
Indeno(1,2,3-cd)pyrene	< 0.02	
Dibenz(a,h)anthracene	< 0.02	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW33-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	012109-02
Date Analyzed:	12/08/20	Data File:	120809.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	19	15	61
Phenol-d6	14	10	46
Nitrobenzene-d5	69	17	143
2-Fluorobiphenyl	74	50	150
2,4,6-Tribromophenol	91	50	150
Terphenyl-d14	85	50	150

Terphenyr-ur4	00
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	00-2793 mb
Date Analyzed:	12/07/20	Data File:	120727.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	20	15	61
Phenol-d6	16	10	46
Nitrobenzene-d5	82	17	143
2-Fluorobiphenyl	84	50	150
2,4,6-Tribromophenol	59	50	150
Terphenyl-d14	90	50	150

1 3	
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW30-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/08/20	Lab ID:	012109-03
Date Analyzed:	12/08/20	Data File:	120813.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	101	60	133

Concentration ug/L (ppb)
3.6
<1
<1
<5
<1
<1
4.8
<1
<1
<1
1.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW26-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/08/20	Lab ID:	012109-04
Date Analyzed:	12/08/20	Data File:	120814.D
Matrix:	Water	Instrument:	GCMS4

Operator:

JCM

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	101	60	133

1 Diomonikorosombono	101
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	3.7
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	180 ve
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	5.1
Tetrachloroethene	<1

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW26-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	012109-04 1/20
Data Analyzadi	19/07/90	Data File	120710 D

Date Extracted. 12/07/20 Eat ID. 012109-04 IV.

Date Analyzed: 12/07/20 Data File: 120719.D

Matrix: Water Instrument: GCMS13

Units: ug/L (ppb) Operator: jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	105	50	150

4-Diomondologenzene	100
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<4
Chloroethane	<20
1,1-Dichloroethene	<20
Methylene chloride	<100
trans-1,2-Dichloroethene	<20
1,1-Dichloroethane	<20
cis-1,2-Dichloroethene	170
1,2-Dichloroethane (EDC)	<20
1,1,1-Trichloroethane	<20
Trichloroethene	<20
Tetrachloroethene	<20

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW09-20201207	Client:	Urban Environmental Partners
Date Received:	12/07/20	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	012109-05 1/10
Date Analyzed:	12/07/20	Data File:	120720.D
Matrix:	Water	Instrument:	GCMS13

Units: ug/L (ppb) Operator: jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	102	50	150

4-Bromofluorobenzene	102	50	
Compounds:	Concentration ug/L (ppb)		
Vinyl chloride	39		
Chloroethane	<10		
1,1-Dichloroethene	<10		
Methylene chloride	< 50		
trans-1,2-Dichloroethene	<10		
1,1-Dichloroethane	<10		
cis-1,2-Dichloroethene	990		
1,2-Dichloroethane (EDC)	<10		
1,1,1-Trichloroethane	<10		
Trichloroethene	140		
Tetrachloroethene	110		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 012109
Date Extracted:	12/07/20	Lab ID:	00-2762 mb
Date Analyzed:	12/07/20	Data File:	120707.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	jcm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	106	50	150

Concentration ug/L (ppb)
< 0.2
<1
<1
<5
<1
<1
<1
<1
<1
<1
<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/20 Date Received: 12/07/20

Project: Rainier Mall, F&BI 012109

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	84	72	70-130	15
2-Methylnaphthalene	ug/L (ppb)	5	88	74	70-130	17
1-Methylnaphthalene	ug/L (ppb)	5	83	70	70-130	17
Acenaphthylene	ug/L (ppb)	5	97	88	70-130	10
Acenaphthene	ug/L (ppb)	5	93	84	70-130	10
Fluorene	ug/L (ppb)	5	95	87	70-130	9
Phenanthrene	ug/L (ppb)	5	97	92	70-130	5
Anthracene	ug/L (ppb)	5	102	92	70-130	10
Fluoranthene	ug/L (ppb)	5	102	97	70-130	5
Pyrene	ug/L (ppb)	5	99	94	70-130	5
Benz(a)anthracene	ug/L (ppb)	5	98	97	70-130	1
Chrysene	ug/L (ppb)	5	96	94	70-130	2
Benzo(a)pyrene	ug/L (ppb)	5	101	102	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	5	107	107	62-130	0
Benzo(k)fluoranthene	ug/L (ppb)	5	98	98	70-130	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	105	111	70-130	6
Dibenz(a,h)anthracene	ug/L (ppb)	5	102	109	70-130	7
Benzo(g,h,i)perylene	ug/L (ppb)	5	100	107	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/20 Date Received: 12/07/20

Project: Rainier Mall, F&BI 012109

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 012111-01 (Matrix Spike)

Laboratory Code. 012111-01 (Matrix Spike)							
		Percent					
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Vinyl chloride	ug/L (ppb)	10	< 0.2	114	50-150		
Chloroethane	ug/L (ppb)	10	<1	124	50-150		
1,1-Dichloroethene	ug/L (ppb)	10	<1	109	50-150		
Methylene chloride	ug/L (ppb)	10	<5	116	50-150		
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	110	50-150		
1,1-Dichloroethane	ug/L (ppb)	10	<1	110	50-150		
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	111	50-150		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	112	50-150		
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	109	50-150		
Trichloroethene	ug/L (ppb)	10	<1	105	50-150		
Tetrachloroethene	ug/L (ppb)	10	<1	100	50-150		

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	99	109	70-130	10
Chloroethane	ug/L (ppb)	10	118	119	70-130	1
1,1-Dichloroethene	ug/L (ppb)	10	95	103	70-130	8
Methylene chloride	ug/L (ppb)	10	109	111	29-192	2
trans-1,2-Dichloroethene	ug/L (ppb)	10	95	106	70-130	11
1,1-Dichloroethane	ug/L (ppb)	10	95	106	70-130	11
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	105	70-130	10
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	98	110	70-130	12
1,1,1-Trichloroethane	ug/L (ppb)	10	96	106	70-130	10
Trichloroethene	ug/L (ppb)	10	92	102	70-130	10
Tetrachloroethene	ug/L (ppb)	10	100	100	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone 45 922-9922 Email Brion @ Dixon Exem Project specific RLs? - Yes / No City, State, ZIP Seattle MWG-6701207 MWZ6-2520 (207 1021020-50W Mw32-6001207 Mw33-20201207 Sample ID Received by: Relinquished by Received by: Relinquished by posteriopconfulting con 054 \$ 63A7 2 0 12186 YM Lab ID 12-7-20 12-7-20 12-7-20 Sampled 12-7-20 (2-7-20) Date Sampled 288 575 105 140 ふニ Sample Туре 3 E Ç 3 3 Miss Brias # of Jars W PRINT NAME W NWTPH-Dx となっ NWTPH-Gx BTEX EPA 8021 NWTPH-HCID ANALYSES REQUESTED UeP PAHs EPA 8270 F\$B PCBs EPA 8082 Dixon COMPANY Samples received at 4 pc ろう Default: Dispose after 30 days 127 DATE ROK KAG Notes ハイノ 12/0 TIME SUN 1313

SAMPLE CHAIN OF CUSTODY ME 12/7/20 SAMPLERS (signature) VW3/ 1,503

□ Standard turnaround Rush charges authorized by: TURNAROUND TIME

PO#

SAMPLE DISPOSAL

Address 2324 1st Ave

203

REMARKS

INVOICE TO

PROJECT NAME

Rainjer Mas

Company Urban Env. Partners

0[2/09 Report 18 School P.

□ Archive samples

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 8, 2021

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on December 31, 2020 from the LUP-Rainier Mall-PAHs, F&BI 012472 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures UEP0108R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 31, 2020 by Friedman & Bruya, Inc. from the Urban Environmental Partners LUP-Rainier Mall-PAHs, F&BI 012472 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Urban Environmental Partners</u>
012472 -01	Pile109-2"
012472 -02	Pile109-4"
012472 -03	Pile109-6"
012472 -04	Pile2-2"
012472 -05	Pile2-4"
012472 -06	Pile2-6"

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile109-2" Client: Urban Environmental Partners

Date Received: 12/31/20 Project: LUP-Rainier Mall-PAHs, F&BI 012472

Date Extracted: 01/05/21 Lab ID: 012472-01 1/25

Date Analyzed: 01/05/21 Data File: 010513.D

Date Analyzed:01/05/21Data File:010513.DMatrix:SoilInstrument:GCMS8Units:mg/kg (ppm) Dry WeightOperator:VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	71 d	36	114
Phenol-d6	90 d	47	116
Nitrobenzene-d5	84 d	38	117
2-Fluorobiphenyl	88 d	50	150
2,4,6-Tribromophenol	95 d	25	187
Terphenyl-d14	94 d	50	150

Concentration Compounds: mg/kg (ppm) < 0.05 Naphthalene 2-Methylnaphthalene < 0.05 1-Methylnaphthalene < 0.05 Acenaphthylene < 0.05 Acenaphthene < 0.05 Fluorene < 0.05 Phenanthrene < 0.05 Anthracene < 0.05 Fluoranthene < 0.05 Pyrene < 0.05 Benz(a)anthracene < 0.05 Chrysene < 0.05 Benzo(a)pyrene 0.065Benzo(b)fluoranthene 0.11 Benzo(k)fluoranthene < 0.05 Indeno(1,2,3-cd)pyrene < 0.05 Dibenz(a,h)anthracene < 0.05 Benzo(g,h,i)perylene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile109-4" Client: Urban Environmental Partners
Date Received: 12/31/20 Project: LUP-Rainier Mall-PAHs, F&BI 012472

50

150

Date Extracted: 01/05/21 Lab ID: 012472-02 1/25 Date Analyzed: 01/05/21 Data File: 010512.DMatrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: 114 2-Fluorophenol 83 d 36 Phenol-d6 95 d 47 116 Nitrobenzene-d5 96 d 38 117 2-Fluorobiphenyl 93 d 50 150 2,4,6-Tribromophenol 187 91 d 25

0.68

1.3

Terphenyl-d14 97 d Concentration Compounds: mg/kg (ppm) Naphthalene < 0.05 2-Methylnaphthalene < 0.05 1-Methylnaphthalene < 0.05 Acenaphthylene < 0.05 Acenaphthene 0.055Fluorene 0.053Phenanthrene 0.18 Anthracene < 0.05 Fluoranthene 0.21 Pyrene 0.22 Benz(a)anthracene 0.22 Chrysene 0.39

Benzo(k)fluoranthene 0.32 Indeno(1,2,3-cd)pyrene 0.36 Dibenz(a,h)anthracene 0.12 Benzo(g,h,i)perylene 0.32

Benzo(a)pyrene

Benzo(b)fluoranthene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile109-6" Client: Urban Environmental Partners
Date Received: 12/31/20 Project: LUP-Rainier Mall-PAHs, F&BI 012472

01/05/21 Lab ID: Date Extracted: 012472-03 1/5 Date Analyzed: 01/05/21 Data File: 010511.DMatrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower	Upper
Surrogates: % Recovery: Limit:	Limit:
2-Fluorophenol 80 36	114
Phenol-d6 90 47	116
Nitrobenzene-d5 84 38	117
2-Fluorobiphenyl 83 50	150
2,4,6-Tribromophenol 89 25	187
Terphenyl-d14 89 50	150

0.017

0.018

< 0.01

Terpnenyi-a14	89
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	0.014
Pyrene	0.015
Benz(a)anthracene	0.010
Chrysene	0.02
Benzo(a)pyrene	0.028
Benzo(b)fluoranthene	0.048
Benzo(k)fluoranthene	0.012

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile2-2" Client: Urban Environmental Partners

Date Received: 12/31/20 Project: LUP-Rainier Mall-PAHs, F&BI 012472

Date Extracted: 01/05/21 Lab ID: 012472-04 1/5

Date Extracted: 01/05/21 Lab ID: 012472-04 1/5
Date Analyzed: 01/05/21 Data File: 010510.D
Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

	Lower	Upper
% Recovery:	Limit:	Limit:
81	36	114
90	47	116
86	38	117
90	50	150
85	25	187
92	50	150
	81 90 86 90 85	% Recovery: Limit: 81 36 90 47 86 38 90 50 85 25

Terphenyl-d14	92
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	0.024
Anthracene	< 0.01
Fluoranthene	0.025
Pyrene	0.019
Benz(a)anthracene	0.016
Chrysene	0.027
Benzo(a)pyrene	0.036
Benzo(b)fluoranthene	0.063
Benzo(k)fluoranthene	0.016
Indeno(1,2,3-cd)pyrene	0.017
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	0.014

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile2-4" Client: Urban Environmental Partners Date Received: 12/31/20 Project: LUP-Rainier Mall-PAHs, F&BI 012472 01/05/21 Lab ID: 012472-05 1/5 Date Extracted: Date Analyzed: 01/05/21 Data File: $010509.\mathrm{D}$ GCMS8Matrix: Soil Instrument:

VM

Units: mg/kg (ppm) Dry Weight Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	77	36	114
Phenol-d6	86	47	116
Nitrobenzene-d5	83	38	117
2-Fluorobiphenyl	86	50	150
2,4,6-Tribromophenol	79	25	187
Terphenyl-d14	92	50	150

Terphenyr ar r	02
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.011
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	0.022
Fluorene	0.036
Phenanthrene	0.15
Anthracene	0.025
Fluoranthene	0.11
Pyrene	0.072
Benz(a)anthracene	0.035
Chrysene	0.044
Benzo(a)pyrene	0.035
Benzo(b)fluoranthene	0.062
Benzo(k)fluoranthene	0.018
Indeno(1,2,3-cd)pyrene	0.012
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	0.010

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Pile2-6" Client: **Urban Environmental Partners** Date Received: 12/31/20 LUP-Rainier Mall-PAHs, F&BI 012472

Project: Date Extracted: 01/05/21 Lab ID: 012472-06 1/5 Date Analyzed: 01/05/21 Data File: 010508.DMatrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: 114 36 90 47

2-Fluorophenol Phenol-d6 116 Nitrobenzene-d5 88 38 117 90 2-Fluorobiphenyl 50 150 2,4,6-Tribromophenol 82 187 25Terphenyl-d14 101 50 150

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01

Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 < 0.01

Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Method Blank Client: Urban Environmental Partners

Date Received: Not Applicable Project: LUP-Rainier Mall-PAHs, F&BI 012472

Date Extracted: 01/05/21 Lab ID: 01-62 mb 1/5 Date Analyzed: 01/05/21 Data File: 010513.DGCMS9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: 100 2-Fluorophenol 32 Phenol-d6 97 46 107 Nitrobenzene-d5 110 24 127 2-Fluorobiphenyl 107 46 108 2,4,6-Tribromophenol 127 102 25 Terphenyl-d14 102 50 150

Concentration
Compounds: mg/kg (ppm)

Naphthalene <0.01

Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/21 Date Received: 12/31/20

Project: LUP-Rainier Mall-PAHs, F&BI 012472

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
Analyte	$\begin{array}{c} \text{Reporting} \\ \text{Units} \end{array}$	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene						2
	mg/kg (ppm)	0.83	89	91	58-108	2
2-Methylnaphthalene	mg/kg (ppm)	0.83	93	94	70-130	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	93	94	70-130	1
Acenaphthylene	mg/kg (ppm)	0.83	97	99	70-130	2
Acenaphthene	mg/kg (ppm)	0.83	92	94	70-130	2
Fluorene	mg/kg (ppm)	0.83	96	99	70-130	3
Phenanthrene	mg/kg (ppm)	0.83	97	101	70-130	4
Anthracene	mg/kg (ppm)	0.83	96	99	70-130	3
Fluoranthene	mg/kg (ppm)	0.83	103	106	70-130	3
Pyrene	mg/kg (ppm)	0.83	89	91	70-130	2
Benz(a)anthracene	mg/kg (ppm)	0.83	99	101	70-130	2
Chrysene	mg/kg (ppm)	0.83	100	103	70-130	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	99	103	70-130	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	93	96	70-130	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	95	102	70-130	7
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	115	119	70-130	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	112	122	70-130	9
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	109	121	70-130	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To John Funderburk

Company Wiber Environ Partners 1/c

Address 2324 15t Ave

Address 2324 15t Ave

City, State, ZIP Sea Hlo, WA 98121

Phone

 			1		$\tilde{\mathbf{x}}$
Project specific RLs? - Yes (No)	REMARKS	- PAHS	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	INVOICE TO		PO#		DY ME 12/31/20
De	<u> </u>	Ru			0

Rush charges authorized by:

RUSH turnaround

TURNAROUND TIME

Page #

Defaut: Dispose after 30 days

☐ Archive samples

SAMPLE DISPOSAL

Ph. (206) 285-8282	Seattle, WA 98119-2029 Relir	3012 16th Avenue West Regular	Friedman & Bruya, Inc. Reli			-			P.162-6"	Pile2-4"	Pile2-2"	Pile 109-6"	Pile 109 -4K	Pile109-2"	Sample ID								
Received by:	iquished by:	Regulary (Many)	Relinquished by: 7	SIC				TOTAL CONTRACTOR OF THE CONTRA	06	Ø5	py	03	02	01	Lab ID								
		7 V		SIGNATURE				Printer and Administration Performance Contracting Con	12/31	12/31	14/31	12/31	12/31	12/31	Date Sampled								
	i de emperation de la company		A THE RESIDENCE OF THE PARTY OF						9:0	5.70	9:10	8.38	8:38	8:3F	Time Sampled								
		Nhan	John	######################################				Construction of the Constr			50:			So:)	Sample Type								
Annual M		Nhan Phan	RI	PRINT NAME			Section and the second		_				_		# of Jars								
			John R Fundar Su	TN	N T	ŽĮ.																NWTPH-Dx	
				AMI											NWTPH-Gx								
				رخي	ارخا	ردي											BTEX EPA 8021						
			<u> </u>										·		NWTPH-HCID								
								<u> </u>	/	メ	X	_	1	_	VOCs EPA 8260	NAL							
מז	ļ	7	2						\prec	1		4		*	PAHs EPA 8270	ESE?							
amj	AMERICAN AND AND AND AND AND AND AND AND AND A	1821	UFF	2											PCBs EPA 8082	3 RE							
ples		14	110)MP		al land							ļ			AUB:							
Samples received at			h	COMPANY				ļ				<u> </u>				ANALYSES REQUESTED							
eive																							
d at																							
10°C	And the state of t	12/31/20	18/31	DATE											Notes								
		pho	1×1.6	TIME											ŏ								

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 16, 2021

John Funderburk, Project Manager Urban Environmental Partners 2324 1st Ave, Suite 203 Seattle, WA 98121

Dear Mr Funderburk:

Included are the results from the testing of material submitted on March 11, 2021 from the Rainier Mall, F&BI 103207 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Brian Dixon UEP0316R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 11, 2021 by Friedman & Bruya, Inc. from the Urban Environmental Partners Rainier Mall, F&BI 103207 project. Samples were logged in under the laboratory ID's listed below.

103207 -01 MW32-20210311 103207 -02 MW33-20210311

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW32-20210311	Client:	Urban Environmental Partners
Date Received:	03/11/21	Project:	Rainier Mall, F&BI 103207
Date Extracted:	03/11/21	Lab ID:	103207-01 1/2
Date Analyzed:	03/11/21	Data File:	031105.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	15	61
Phenol-d6	25	10	46
Nitrobenzene-d5	84	17	143
2-Fluorobiphenyl	85	50	150
2,4,6-Tribromophenol	90	50	150
Terphenyl-d14	91	50	150

Terpnenyi-a14	91		
Compounds:	Concentration ug/L (ppb)		
Naphthalene	< 0.4		
2-Methylnaphthalene	< 0.4		
1-Methylnaphthalene	< 0.4		
Acenaphthylene	< 0.04		
Acenaphthene	< 0.04		
Fluorene	< 0.04		
Phenanthrene	< 0.04		
Anthracene	< 0.04		
Fluoranthene	< 0.04		
Pyrene	< 0.04		
Benz(a)anthracene	< 0.04		
Chrysene	< 0.04		
Benzo(a)pyrene	< 0.04		
Benzo(b)fluoranthene	< 0.04		
Benzo(k)fluoranthene	< 0.04		
Indeno(1,2,3-cd)pyrene	< 0.04		
Dibenz(a,h)anthracene	< 0.04		
Benzo(g,h,i)perylene	< 0.08		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW33-20210311	Client:	Urban Environmental Partners
Date Received:	03/11/21	Project:	Rainier Mall, F&BI 103207
Date Extracted:	03/11/21	Lab ID:	103207-02 1/2
Date Analyzed:	03/11/21	Data File:	031106.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	27	15	61
Phenol-d6	21	10	46
Nitrobenzene-d5	54	17	143
2-Fluorobiphenyl	65	50	150
2,4,6-Tribromophenol	81	50	150
Terphenyl-d14	79	50	150

rerpnenyi-a14	19
Compounds:	Concentration ug/L (ppb)
	8 = (FF =)
Naphthalene	< 0.4
2-Methylnaphthalene	< 0.4
1-Methylnaphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.08
(C) //I U	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Urban Environmental Partners
Date Received:	Not Applicable	Project:	Rainier Mall, F&BI 103207
Date Extracted:	03/11/21	Lab ID:	01-549 mb2
Date Analyzed:	03/11/21	Data File:	031104.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	19	15	61
Phenol-d6	13	10	46
Nitrobenzene-d5	88	17	143
2-Fluorobiphenyl	89	50	150
2,4,6-Tribromophenol	65	50	150
Terphenyl-d14	93	50	150

< 0.02

< 0.04

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 Phenanthrene < 0.02 Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Date of Report: 03/16/21 Date Received: 03/11/21

Project: Rainier Mall, F&BI 103207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	86	83	70-130	4
2-Methylnaphthalene	ug/L (ppb)	5	88	84	70-130	5
1-Methylnaphthalene	ug/L (ppb)	5	88	85	70-130	3
Acenaphthylene	ug/L (ppb)	5	100	100	70-130	0
Acenaphthene	ug/L (ppb)	5	95	95	70-130	0
Fluorene	ug/L (ppb)	5	96	93	70-130	3
Phenanthrene	ug/L (ppb)	5	94	93	70-130	1
Anthracene	ug/L (ppb)	5	94	93	70-130	1
Fluoranthene	ug/L (ppb)	5	98	96	70-130	2
Pyrene	ug/L (ppb)	5	92	94	70-130	2
Benz(a)anthracene	ug/L (ppb)	5	98	95	70-130	3
Chrysene	ug/L (ppb)	5	97	95	70-130	2
Benzo(a)pyrene	ug/L (ppb)	5	91	89	70-130	2
Benzo(b)fluoranthene	ug/L (ppb)	5	100	94	62-130	6
Benzo(k)fluoranthene	ug/L (ppb)	5	95	95	70-130	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	104	103	70-130	1
Dibenz(a,h)anthracene	ug/L (ppb)	5	104	101	70-130	3
Benzo(g,h,i)perylene	ug/L (ppb)	5	105	104	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

MW33-20Z10311 MW32-20210311 Report To John Funderburk Phone 425-727-9922 Company Urban Env. Seattle, WA 98119-2029 3012 16th Avenue West Address Ph. (206) 285-8282 Friedman & Bruya, Inc. City, State, ZIP Sample ID Email john fe vepconsulting com
Brian e Dirent & s.com Received by: Relinquished by: Relinquished by Received by: Partner > Lab ID 02 0 CC: Brian y pixon Sampled 3-11 5 Date SAMPLE CHAIN OF CUSTODY Time Sampled のナク SAMPLERS (SIGNATE 2 2 Project specific RLs? - Yes / No PROJECT NAME REMARKS Raviner Madi Sample Type 3 3 رُهِمْ الْكِلُ Nhan Jars # of PRINT NAME Dixon Soxid NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID UEP INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 PCBs EPA 8082 Dixon ES to BI COMPANY 03-11-21 Samples received at □ RUSH_ Archive samples 汉Standard turnaround Default: Dispose after 30 days Rush charges authorized by: TURNAROUND TIME Page #__ SAMPLE DISPOSAL 7-7-DATE Notes 10×8 850 TIME

Appendix B: Boring Logs

Project: Rainier Mall Project Number: 1276-001 Logged by: LP4

Date Started: 2/4/17 Surface Conditions: Asphalt

Well Location N/S:
Well Location E/W:

Reviewed by:

Date Completed: 2/9/

BORING 1301

Site Address: 4208 Rainier Avenue S Seattle, WA

Water Depth At Time of Drilling: ~2-8 Water Depth After Completion:

feet bgs feet bgs

•	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	- - -	X	800	50		Boi-02.5 Co330	5m		morst, gm, solty SANS sen yand, no coer 30-50	-re)
	-5	X	350	70	0.6	Box-05 20935			Domp, gry, SMy SAID Some gran, no cot (30-55-1. Some bruke fry s	5)
			320	80		Boi-07,5 E O Sito			Some as premes, some broadle forgottes, thus ungress	
	10	X,	5 Sde	60	0 / 0	B01-10 C6245			burst gry SIG SAN, Som good, no ode, some enems + brek (30-55-15)	
	-	Z	13 5	ĺÞ		801-17.5 COBO		•	gonly SAND, Sure SAH no odes (2045-35)	
	Drilling Sample Hamme	Equer Typer	oe:	ph: Au 33		Well: Screet S Filter et bgs Surfa et bgs Annu	en Slot Siz	Interval: e: d: w Censol Bests	Nec	Page:

Monument Type: Flush mant

Project: Rainier Mall Project Number: 1276-001

Logged by: LDS

Date Started: 2 / 9/17 Surface Conditions: Aspiralt Well Location N/S:

Well Location E/W:

Date Completed:

Reviewed by:

BORING | 601 LOG

Site Address:

4208 Rainier Avenue S

Seattle, WA

Vater Depth At Time of Drilling:	feet bgs
Vater Depth After Completion:	feet bgs
	Molt

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PlD (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15 -	X	646	O		BOITE			No recoun	
	1	X	0	(00)	40.8	Boi-17.5 Bogo s			Morst, Irgint gry, SIVT, Sem Ars SAND, No our (75-25-0)	
	20-	X	N 00	100	82.3	B01-20 60910			Som is prever	
		X	NNO	(vo)	15,4	B01-125 Corru			moret, down gry, sony SMA, No odo (60-40-0)	
	25	X	5 6 15	90	1,9	301-25 C0925			Morst, dun goy, silty SAID, No oxt (45-55-0)	
		<u> </u>	13	70	6,3	Bor-27,5 C0935			wet, done Speciedor gry, SANS, some SM, true grad, no odo (20-80-0)	
E	_	The state of the s	Driller:	_		Well/	Auger Dia		inches Notes/Comments:	heuse

Drilling	Co./Driller:
Drilling	Equipment:

Sampler Type:

Hammer Type/Weight: **Total Boring Depth:**

Total Well Depth: State Well ID No.:

Well/Auger Diameter: Well Screened Interval:

Screen Slot Size: Filter Pack Used:

Surface Seal: Annular Seal: **Monument Type:**

feet bgs

feet bgs

feet bgs

inches

Page: Zof

Hammer Type/Weight:

Total Boring Depth:

Total Well Depth:

State Well ID No.:

Project: Rainier Mail Property

Project Number: 1276-001

Logged by: LOS Date Started: 2/4/17 **Surface Conditions:**

Well Location N/S: Well Location E/W:

Reviewed by: Date Completed: BORING | Boil LOG

Water Depth At Time of Drilling:

feet bgs

Page:

Site Address: 4208 Rainier Avenue S

Seattle, Washington

See page

		DKA	1	Da	te Completed:			Water Depth After Completion:	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30	X	6015	70	0.9	B01-30 C0440			ivet, done gay somy stilt to 61thy SAND, no our (50-50-0).	
	又	7 6 3	80	Б.6	801-32.5 & 0955		- un <u>-</u>	Sury SMT, no cer (68 95-0).
35			350					to the short of	
_	\bigvee	34 50/c	,90	6,0	B01-35 @1010			SILT, no ons (65-35-0)	
_	X	16 37	96	0.0	B01-37,5 E(020			such state dere gry, Some sill-	5).
40	Į	i B 36 60/6'	86	0.0	B01-40 61035			unt to murst, done any saley Sport Sour Still no our (75-25-0)	
								EUB Q41,5' bags, brite fill to 33' M Smul + marther hall Much w/ 15' Szpan.	u.
45									<u></u>
	g Equ	./Driller uipmen /pe:	t	Supe	Well/ Well Scre	Auger Dia Screened en Slot Siz	Interval:	inches feet bgs inches	

Filter Pack Used:

Monument Type:

Surface Seal:

Annular Seal:

feet bgs

feet bgs

Project: Rainier Mali Project Number: 1276-001

Logged by: US

Date Started: 2/9/17
Surface Conditions: Aspends
Well Location N/S:
Well Location E/W:

Reviewed by:

Date Completed: 2/4

BORING | BOZ

Site Address: 4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Depth	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	0	X	117 12	70	0.3	Boz-oz,5 @1346	5M		moret, gray Solly SAS w/ grand, no ador (30-60-10) true organs	
	5	X	756	80		B02-05 @1345		i	morst, any, sitty 3AD sm gand, no odr, time organs (30-55-15).	
		X	18 24 14	30	i i	B02-01S C 1350			Mural any SMy SAD, Sin goul, no one, gives faquet (30-50-20)	
10	-/	V	7 14 8	40		302-10 C 1355			most, yn 584 500, 500 grul, no ons (40-45-15)	
15		<u> </u>	767	60	lzis	302-126 C140 0		i	moust, gry born, SILT Son SAB, we col (80-20-	0)
Dril Dril San Han Tota	SINTE WELL III NO '									Page:

Total Well Depth:

State Well ID No.:

feet bgs

Annular Seal:

Monument Type:

Project: Rainier Mall Project Number: 1276-001

Logged by: Up-5 Date Started: 2/4/17 Surface Conditions:

Well Location N/S: Well Location E/W: Reviewed by:

BORING | BOZ LOG

Site Address:

4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling:

feet bgs

Page:

20+3

Į						eviewed by: ate Completed	:		Water Depth At Time of Drilling: Water Depth After Completion:	feet bgs feet bgs
	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15 -	X	1546	80	72.4	1302-15 19410			Som as preves	
	7 - 7	X	833	90	133	B02-17,5 E1415			morst, Insht gm bon 3fit, som slows, No als (85-15-0)	
	- 20 - -	X	212	80	6.0	Boz-20 C/420			must, down gry Still sne Sors, no sel (85-15-4)
		X	E 14 23	70	6.0	B02-225		ļ	sou to w som , no out Sou to w som , no out SC-15-0 (90-10-0)	
	25	X	90 ee ee	00	6,0	Bon-25 e 1430			Domps to merst, gray Sitt, Some Spul, no con (80-20-0))_
			19 1947 24 32	, (00	6.6	Boa-27,6 C1440			morst, gry 5/tt, a; 5ms, no aus (85-15-0).	
5 F	30 Drilling Drilling Sample Iamme Total B	Equ er Typ er Typ	ipment be: be/Wei	t: See	Page l	Well Scree Filter	Auger Dian Screened I en Slot Size Pack Used ice Seal:	nterval: e:	inches feet bgs inches	

Project: Rainier Mall Property Project Number: 1276-001

Logged by: UDS Date Started: 2/9/17 BORING | Bor LOG

Site Address: 4208 Rainier Avenue S Seattle, Washington

Surface Conditions: Well Location N/S:

Well Location E/W: Reviewed by:

Water Depth At Time of Drilling:

See Peye

1 1		RAE			eviewed by: ate Completed	:		Water Depth A	Time of Drilling:	feet bg:
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Des	cription	Well Construct
1		18 24 28	(60		B02-30 @ 1465			no our (85-15	-O)	
								Bong termber @ Soil construct produce world not produce	31,5 bys	
35	-							world not prade	ebw.	
-								TV		
10										
					1					
lifing Co./[Illing Equi _l mpler Type mmer Type al Boring I al Well De	pme e: e/We Dept	nt: eight: th:	See	lbs feet bg		ened Inter ot Size: < Used: eal:	er: val:	inches feet bgs inches	/Comments:	
ite Well ID	No.:			feet bg	S Annular Se Monument				Pa	ge:

Total Boring Depth:

Total Well Depth:

State Well ID No.:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Project: Rainier Mall

Project Number: 1276-001 Logged by: CMS Date Started: 2/19 17

Surface Conditions: Asyma It
Well Location N/S:

Well Location N/S: Well Location E/W; Reviewed by:

Date Completed: 7/15/17

BORING LOG B03

Site Address:

4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion: feet bgs feet bas

Page:

Recovery		Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail Marsh, medium wast, see ely SILT all gravel, mixeu in count gray, with order ((pc, 3c, 10))
30		BC3 US	SH.		gravel, mixec bount gray, notic
30		BC3 US	SM.		gravel, mixec bount gray, notic
50	0.0	•			
1 1					MOSI, local, saxly CLAY/SILT, w/ someway or said saves non k brown to black (70, 30, 10). IFILLY
60	00	BLT-015 COERS			Must, look saving (LAY/SIL) W/g kiss theray brookins, act g ray + brook (90, 20,0).
75				\	Schuratec, I Citize, sommy CLAY, chark of censhioray, no vicini, (45,5,0)
501	0.0	B03-12.5 2083(Souturnited, 10054, Extraly CLAY, over Kagreenish - stray, No 110 onen (95,5,0) 1051 6" Gotturnited, 10052 shray CLAY, mostad competency, no 110 Octor (25,15,0)
	Holace Holace FT	Holache/RJ to C.C Holache/RJ to Limital HSA	HOW COLOR BOB-12.5 E HOW COLOR R J Welly Well Well Filter ght: lbs Filter	# Hole and R.J. Hole and R.J. Hole and R.J. Well/Auger Dia Well Screened Screen Slot Siz	## BOB-12.5 ## COLO BOB-12.5 ## Well/Auger Diameter: ## Well/Auger D

Project: Rainier Mall Project Number: 1276-001

Logged by: Date Started:

Surface Conditions:
Well Location N/S:
Well Location E/W:

Reviewed by: Date Completed: BORING | LOG |

Site Address:

4208 Rainier Avenue S Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
	15	X	33 6	160	0.0	803-15 CEE90			Scitumea, 10054, Song (LA), mother sneyt muse (90,100)
		$\sum_{i=1}^{n}$	000	100	6.3	BOS-17:5 C 08:45			Schomen, losse, Sangy CLAY W/ very small leases of SAND, neather estary detrong (90 10,0) was = (25,75,0
- 20	0 -	X	000	[C,	A N	B03 - 20			Schreden, Soft, Sondy CLAY Clear boreansh gray wisone onensy morning (85.15.0)
		X	211	િછ	0.0	BUS 22.5 COBSS			Saturated, soft, sondy CLATINI, do kgray, no Heado, (80, 20, 0)
25	1/	X	000	100	A	303-25 0 6900			aray, no He adon (90,100)
30		7	000	100		303-275 20905		V	my to soft, Sorchy CLAY, der koray, no 112 octor (90,10,0) (" Wet, 400st, Sordy SILT wildey, gray, no the octor (60,400)
Drill Drill Sam Ham Tota	ing inplement Imer I Bo I We	Equi Typ Typ ring ell De	e/Weig Depth	: jht: • 📧		Well S Screer Filter F et bgs Surfac Annula	uger Diam creened In a Slot Size Pack Used e Seal: ar Seal: nent Type:	nterval: :	inches feet bgs inches

Project: Rainier Mall Property Project Number: 1276-001

Logged by: Date Started: Surface Conditions: Well Location N/S:

Site Address: 4208 Rainier Avenue S

Seattle, Washington

Well Location E/W: Reviewed by: Date Completed:

	DR	AF	T		Reviewed by: Date Complete	d:		Water Depth At Time of Drilling:	feet bg
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppi	Somela	T	Graphic	Water Depth After Completion: Lithologic Description	Well Construc
30	$\Lambda \Box$	1 (6) 2	j (C	0.0	13:3-36 EC922			Moist, series SILT/CLAS Stray no HC char (90,00,0) 3" Moist, schary SILT, gray no IIC cher (60, 40, 8)	Detai
-	1 29		100	0 6	B03-325			Moish, medium ders is. Ity medium's AND, Gray, no He onu: (10,90,0)	
35	7 18 24		60	0.0	B03-35 C0950			Mo. 51, medium acusa, salty medium SAND, gray, no the ener (10,90,00) 6" Mo. 51, rivings, Screen SILTE	i) ~1
1								Bonney terminateri (36.5 bys Backfill W/ butonte	ĝes
40									-
				,	E;				
5 rilling Co rilling Equ rmpler Ty rmmer Ty tal Boring	uipmen 'pe: 'pe/Wei	t: ght:		lbs	Well Sci Screen :	ger Diamet reened Inte Slot Size: ck Used:	ier: erval:	inches feet bgs inches	

Total Boring Depth: Total Well Depth: State Well ID No.:

feet bgs feet bgs

Filter Pack Used: Surface Seal: Annular Seal: Monument Type:

Page:

Project: Rainier Mall Project Number: 1276-001

Logged by: CMS
Date Started: 7//C/17
Surface Conditions: ASPWIT
Well Location N/S:

Well Location E/W:

Reviewed by:

Date Completed: 7/10/17

BORING LOG

Site Address: 4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Depth	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample	USCS	Graphic	Lithologic Description	Well Construction
	-		w						ÿ,	Detail
	9011	X X	X X	50	<i>φ.</i> υ ''	Boy-025 4045			Moisi, sindy SILTUIST brown and char k gray (60,3)	onel,
5		L 1 1	ر ر د	75	0.0	Be4-65 @1650			Moisin's ily Similar one mottled group and orange no He odd (40, 55, 5)	nel,
	X	142	5	40		B04-075 6105			Moist, sindy sittly grander to derk gray, no Heador 160	u, ,35,5)
10-	<u>X</u>	1335		50		B04-10 C1106			Moist lovise, sondy SILT/O metted gray and orange, no i o der (80, 20,0)	CLAY
	X	736	- 1	100	0.0	B04-17.5 C1105			Moisi, scroby SILT/CL me that Grey, and grass He odor (90,10,2)	,74
Drilli Samı Hamı Total	ng Eq pler T mer T Borit Well	quipn ype: ype/ ng Do Dept	nent: S Weig epth: th:	PT ht:		Well S Scree s Filter et bgs Surfac et bgs Annul	Auger Diar Screened I In Slot Size Pack User ce Seal: lar Seal: ment Type	Interval: e: d:	inches feet bgs inches	Page:

Project: Rainier Mall Project Number: 1278-001

Logged by:

Date Started:
Surface Conditions:
Well Location N/S:
Well Location E/W:

Reviewed by: Date Completed: BORING LOG

B04

Site Address:

4208 Rainier Avenue S Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Ę	eet bgs)	i i	Very	÷	Sample	USCS	į	Water Depth After Completion: feet bgs
Depth		Blow Count	% Recovery	PID (ppm)	ID	Class	Graphic	Lithologic Description Construction Detail
15		335	100		B04-15 @1110			Moist, ELAYWISAND, notitua, cransist gray in wiodor (95,5,0)
		003	601		B04-17	5	7	Most, soft & LTW/ sord by own we some group of commany the section CPS, S, or)
20-		021	100		BOSTZ			Must, soft, CLAY wisond, dec warray no ste oday (15,5,0)
	7	000	100		3 04-7 2.5 CH2S	DC .		Maist, soft, some SILTICLAY, oney will wrong & SMIC
25 -	V	15 20 20	100	Í	304-25 21130			gray, note oder (16,94,0).
20	X	7522			30'1-27.5 2113'S			1" vet, SA.A Mo.st, duse, sondy SILT, dark Gray, no the odor (80, 20,0)
Drillin Samp Hamm	g Equ ler Ty ner Ty Boring Well D	pe/Wei J Depti epth:	t: ght:		Well S Scree Filter et bgs Surfacet bgs Annul	Auger Dian icreened II n Slot Size Pack Used te Seal: ar Seal: ment Type	nterval: :: !:	inches feet bgs inches Page:

Project: Rainier Mall Property

Project Number: 1276-001

Logged by: Date Started: Surface Conditions: Well Location N/S: Well Location E/W: Reviewed by:

BORING BOY

Site Address: 4208 Rainier Avenue S

Seattle, Washington

DRAFT

Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

\vdash	1	$\overline{}$						water Deput After Completion:	reet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class		Lithologic Description	Well Construction Detail
30		1877	601		B04-30 C 1145			Moist, Wydusz, SILTul sord, der kgray, no He color (85, 15,0)	
-								Boring terminated C3 1.51 logs Buckefill W/ buttonile	
-									
35 -			-						
-									
-	:	ļ							
40 -									
-									
							i i i		
Drilling Co./Driller: Drilling Equipment: Sampler Type:						I/Auger Di I Screened een Slot S	i Interval: ize:	inches feet bgs inches	
Hammer Type/Weight: Ibs Total Boring Depth: feet bgs Total Well Depth: feet bgs State Well ID No.:						or Pack Us face Seal: Jular Seal: Jument Tvi			Page:

Monument Type:

Project: Rainier Mall Property Project Number: 1276 201

Logged by: Date Started: A A A Surface Conditions: OS Well Location N/S: 145

Well Location E/W: 22

Seattle, Washington

BORING |* LOG

Site Address: 4208 Rainier Ave S

feet bgs feet bgs

Reviewed by:

Water Depth At Time of Drilling: Date Completed: 1 /18/17 Water Depth After Completion:

			Da	re combieten		, ,	water Depth After Completion:	reet bgs
Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
5	:	80	0.01	25/1120	58/ GP		0-2- as moth 2"-2.51-> M. dorse, dy, SAND, Same gravel, Same sit; Horan no oder (30,40,3) 2.5-4-> Milliandy Silly SAND,)
	9		0.0/	43	5m	, , , , , , , , , , , , , , , , , , , ,	no ody (40,55,5)	:
5-10		50		580175	2h	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0-14 m. desce, morst, Silly SAND UPL gravel, Gray) Hobern, No oder (35)5 1-25 m. desse, morst, SILT LA	_
	835		0,0/	S881-10.0	Wr	6	The state of the s	
10		75	0.0/0.2		mt /		of bown, and upone odly	(70,30,0)
ling C	o /Drille	ar Halle	0.0/03	5801-1510 (0 F55)	ML/	Diameter:	gray bown, no order (40,70,	b)
	50 IN	5 NO 18	50 50 TS	Interval Now Count Now C			50 0.0/ 5801-25 5M 0.0/ 5801-2	Sample USCS See Diblom Sample USCS See Lithologic Description Sample USCS See Diblom Sample USCS See Use

Drilling Equipment: Geoprole

Sampler Type: 5 eeve

State Well ID No.:

Hammer Type/Weight: Total Boring Depth: 2 Total Well Depth:

lbs feet bgs feet bgs

Well Screened interval: Screen Slot Size:

Filter Pack Used: Surface Seal: 49h Annular Seal:

Monument Type:

feet bgs inches

Page:

Project: Project Number:.

Logged by:

Date Started: 1 **Surface Conditions:** Well Location N/S:

Well Location E/W: Reviewed by:

BORING LOG

Site Address:

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

# 10 0.0 Sample USCS Gass Gas		DRA	١FT		viewed by: ite Completed	:		Water Depth At Time of Drilling: feet I Water Depth After Completion: feet I	_
100 0.2 SBOI-175 (M) 0.0/ 0.2 SBOI-175 (M) 100 0.2 SBOI-175 (M) 100 0.2 SBOI-175 (M) 100 0.2 SBOI-175 (M) 100 0.2 SBOI-175 (M) 100 0.2 SBOI-175 (M) 100 0.0 / M 100 0.	=	$\overline{}$		PID (ppm)			Graphic	Lithologic Description Constr	uctio
1.9 /1.5 5801-225 million of the color (90,10,0) 1.9 /1.5 5801-225 million of (90,10,0) 5.0/0.1 5.0/0.1 5.00-29.5) 5.0/0.1 5.00-29.5) 5.0/0.1 5.00-29.5) 5.0/0.1 5.00-29.5)	15		100	0.0/	SBN-175 (O900)	CL/		0-54 VI Stiff CLAY +3/4, =	
1-4 moist, v, stiff silt, little clay, trace fire sord, gray, no odor (90,10,0) 50,0/0.1 50,0/	-			0.0/	50)-200 (0905)	CL			
	24.5			5.0/0.1	(0d12)	hor		1-4' moist, V. stiff, SILT, little day, frace presond, gray, moder (90,10,0)	*
30		-							

Sampler Type:

Hammer Type/Weight:

Total Boring Depth:

Total Well Depth: State Well ID No.:

lbs feet bgs feet bgs Well Screened Interval:

Screen Slot Size:

Filter Pack Used:

Surface Seal:

Annular Seal: Monument Type:

feet bgs inches

Page:

Hammer Type/Weight:

Total Well Depth:

State Well ID No.: >

Total Boring Depth: ს

Project: Rainier Mall Property Project Number: 1276-001

Logged by: CIT

Date Started: 1/17/7 Surface Conditions: Grant Well Location N/S: 2 Well Location E/W: 44 E

Reviewed by:

Date Completed: 1/18/1)

BORING SBUZ

Site Address: 4208 Rainier Ave S

Seattle, Washington

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Page:

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
	0	5.5		50	0.07	812-2.5	SP		1-2.5 4 M. Staff, Chy, Fire Shung Hothersone Sit, Gray, No oder (35760,5)
3.0	, , , , , , , , , , , , , , , , , , ,	· ·			0.0/0.0	580Z-5.0 (0945)	5r		5111, 4104, Va 6 267 (35) (60,3)
2		いいの		luo	6.0/0,0	5802-7:5 (0958)	. Sr	*	0-2.5 4 5,A.A. fin 2.5-5:0 -> Morst, Stiff SAND with 51th, the grace, 5 ray, no oder (45,55,0)
		F	40 *		0,070	(0957)	15t-1		
7	10	jυ_ 15	a.	10	35:1/32.Q	SM2-165 (1014)	M		0-1'> MUTST, M. dense, sitt of free sand, dk Sown, some argores, no oder, (50,50,0) 1-5' mutt, V. Stiff STLS, little clay, gray/H bown, no ober (90,10,0)
		/5 16-		100	7,9/3.9	580z-16.0	MIC		1-1', s.A.A.; A foralm, Borry temerated at 16 ks
	Drilli	ng E	o /Drille quipme Type:	nt: Gea (phase/MAC	We	ell/Auger D ell Screene reen Slot S	d Interva	·

Filter Pack Used:

Surface Seal: -

Annular Seal: -

Monument Type:

lbs

feet bgs

feet bgs

Project: Rainier Mall Property. Project Number: 1276-001

Logged by: (2)

Date Completed: 1

Date Started: 1/18/17
Surface Conditions: a fact

Well Location N/S: 171 SE of 5 Pap fort Reviewed by:

BORING

Site Address: 4208 Rainier Ave S Seattle, Washington

Water Depth At Time of Drilling: feet bgs Water Depth After Completion: feet bgs

Blow Count Interval % Recovery Graphic **USCS** Well Sample PID (ppm) "Lithologic Description ID Class Construction Detail Sitt + gravel Itbour) stry time wood, no oder (25,50,25) 25-4'4 n. otnee, dry, SAND little sitt, trace gravel, bount gray, Nidw (00/00 0-115 y J.A.A., Small leyers of argane-rich material 0.0/0.0 0.0/0.0 5803-10.0 (1045) 14. V. stiff, dy SILT, little clay, It bown, ro 10. 5 0.0/04 5243-16.4 100 11053 Well/Auger Diameter: inches

Drilling Co./Driller:	Holocer Anton
	- Oil e

Drilling Equipment: gcpase Sampler Type: | 100

Hammer Type/Weight:

Total Boring Depth: Total Well Depth: State Well ID No .:

Well Screened interval: Screen Slot Size:

Monument Type:

feet bgs

feet bgs

Filter Pack Used: **Surface Seal:** Annular Seal:

feet bgs inches

Page:

State Well ID No.:

Project: Rainier Mall Property Project Number: 1276-001

Logged by: CIT Date Started: \ \8/17

Surface Conditions: a chalt
Well Location N/S: 26' 5 of 5E lamps ast
Well Location E/W: 74' D
Reviewed by:

Date Completed: \/\\$/17

BORING SB04

Site Address: 4208 Rainier Ave S

Seattle, Washington

Water Depth At Time of Drilling: _____ feet bgs Water Depth After Completion: feet bgs

					to complete	1/13/	<u> </u>	Water Department Completion, 1661 Dgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
0	51	Ħ	75	6.6/010	580 Y-2.5'	SP		514, some gravel, gray & Some gravel, gray & Some, no over (20,50,30)
-5-	3	4		0.0/6.0	5204-5.0 (1105)	2h		1.5.4 4 m. dence, sitty stand little Stary, gray & it brum, howder (35,50,15)
		»"	lw	0.0/	584-7.5 (NIS)	5M		50m sAt, tree grand, At boun, no odor (35,60,5)
	10			0,0/	5804-10.0 (1120)	SW/		2-514 M. SHAP, SILT W FIRE SAN, H WAM, NO oder (60, 40,0)
- 10 -	6-15		10			ML		0-1'- S.A.s. 1-5'- V. 5tH, dy, SILT, trace clay, H-srun + gray, no odus (100, 0,0)
15	15-16	18 ⁶ -	(P)	one Mita	884-16.0 (1175)			0-1' > s.A.A. Emmeted at 16' 635.
Drilling Drilling Sampl Hamm Total E	g Equ ler Ty ler Ty Soring	fipmen pe: (p pe/Wei g Dept	t: Geopa w. ight:	- II	Well Scrobs Filte	l'Auger Dia I Scraenece en Slot Si er Pack Us face Seal: aular Seal:	l Interval ize: ed:	inches feet bgs inches inches

Monument Type: <

Project: Rainier Mall Property Project Number: 1276-001

Logged by: 🕼

Date Started: 148717

Surface Conditions 75 Well Location N/S: 50 S

BORING

Site Address: 4208 Rainier Ave S

Seattle, Washington

DRAFT

Hammer Type/Weight:

Total Boring Depth: | 6

State Well ID No.:

Total Well Depth:

Reviewed by: Date Completed: 1 2/ 1/17

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs

Page:

	Date Complete				te Completed:	1/18/17	1	Water Depth After Completion:	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0	ر د		75	0.0 10.0	(1140)	sf		0-2"- apphatt 2"-1.5"- lose, dry, sang little silt, little savel, dk brum, no	
-	3	20		0.0/0.0	5785-560 (1145)	5M		1.5-4'- in done, 51ty 5AND, little grow, gray, no oder (40,50,10)	E
_	50		75		S865-7.5 (1150)	by Sm)	6	0-0,5' - T.A.A. 0.5-1.5' - LOUR, MOST, SILTY JAND With organs, dk brun, organs old, (40,55,5)	
10					S205-100 (1152)	2in		1.5.4 - M. denec, sith SAND, little graves, Horam/gray, ruider (40, 50,10)	
	5-15	·	JOD		(115 <u>1)</u> (115 <u>1)</u>	Wr Ziv		0-1-) S.A.A. 1-5-> V. Silff, dy Silt, little fine sand, Horan/gray, nooder	(90,10,0)
15	g Co.	/Driller	100 Hower		\$05(16.10 (124)	/Auger Dia		0-1 - V. Stiff SILT, gray, no oder (100,0,0) -12 inches Notes/Comments:	
Drilling Sample	Equ er Ty	ılpmen	t: Serrel		Well	Screened en Slot Siz	interval:	• •	

Filter Pack Used:

Monument Type:

Surface Seal:

Annular Seal:

lbs

feet bgs

feet bgs

Sound Strategies Project: 1276 Project Number: Painter Mail Property

Logged by: Cott
Date Started: 1/6/17
Surface Conditions: A Shelt
Well Location N/S: 24 N of 252 N lempost
Well Location E/W: 72.5 N

Reviewed by:

Water Depth At Time of Drilling: Water Depth After Completion:

Site Address: 4203

BORING

LOG

		DRA	\FT_		eviewed by: ate Completed	1/18/	7	Water Depth At Time of Drilling: Water Depth After Completion:	feet bgs feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	03		岁	0.07	S806-25 (1215)	SP		0-2"-s asphatt 2"-2.5" 4 louse, dry, sand, Some sat + gravel, It brown, no odor (30,40,30)	
5				0.010,0	SBOWS.0 (1220)	5R	¥		¥]
	- 10		00	0/0	586-7.5 (1405)	51		1-5'4 lase, dry, savo in/silt, little gravel, locum, gray, & orage, be odor (40)	50,10)
-10			,	0/0	Seob-10,0 (1410)	2 in		(a) (b)	r ₀
	10/5-		100		5806-12is (1415)	™_		11-5 is V. Strff SILT, dry, little fine sand, Hisan, Sray mitted, no oder	(35, 6, 0)
15			. (. (.)		5806-15.0 (1417)	ML			in the second
Sample Hamme Total B Total W	Equer Typer	ipment pe: // pe/Weig Depth Pepth:	ti gespel nar ghti 11 2	He Is	Well Well Scre bs Filter eet bgs Annu	/Auger Dia Screened en Slot Si r Pack Use ace Seal:	Interval: ze: ed:	feet bgs inches	Page:
State V	veil (I	NO.:		<u> </u>	Mon	ument Typ	oe:		J

Project: Project Number:

Logged by: Date Started:

Reviewed by:

Surface Conditions: Well Location N/S: Well Location E/W: see 85

BORING Section

Site Address:

Water Depth At Time of Drilling: Water Depth After Completion: feet bgs

	DRAFT			Da	ite Completed	:	Water Depth After Completion: feet bgs			
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail		
15	K		(0)	0/0	SAN 175 (1420)	ML	L.C.	0-4 > S.A.A., this leaves of F-C sand		
_			(V	0/0	SAL-2010 (1425)	ML/ CL		4-5'-> He Stiff, moist CMY+ SIET, gray, no oder (100,0,0)		
_20 -	20-		100	0/0		MLR		0-31-5A.A		
	-7			0/0	Sent 12410. (1435)	ML		3-4 - Disse, most SILT, little clay, free Sand Homm,		
25-								period 24' legs. No		
-										
30 Drilling Drilling						/Auger Dia		inches Notes/Comments:		

Sampler Type:

Hammer Type/Weight:

Total Boring Depth:

Total Well Depth: State Well ID No.: lbs feet bgs feet bgs Well/Auger Diameter: Well Screened Interval:

Screen Slot Size:

Monument Type:

Filter Pack Used: Surface Seal: Annular Seal:

inches feet bgs inches

Page:

Total Well Depth:

State Well ID No.: ____

feet bgs

Annular Seal: ~

Monument Type:

Project: Camer Man Pafity Project Number: 276 - 001

Logged by:

Date Started: \//8/17
Surface Conditions: Cosphalt
Well Location N/S: 32.5 N of 20 N post
Well Location E/W: 15.5 N
Reviewed by:

BORING LOG

Site Address: 4208 Raint MS Scettle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Page:

	DRAFT Date Completed: 1/18/17							Water Depth At Time of Drilling: feet bgs Water Depth After Completion: feet bgs				
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Well Lithologic Description Construction Detail				
-	0.5		50	0/0	5887-2.5 (1450)	S1/ G1		0-2.5 -> lower, dry 5AM = GRAVEL, little 511t, law /gray, no odor (15, 45, 40)				
-				6/0	5807-5:0 (1453)							
3	5/10		50	0/0	ડક્ષાન-૧.૬ (1453)	Sp		0-1'45.A.A. 1-2.5'4 M. denn Silty SAND, 1Ale gravel, dk brown / Gray, No odor (40, 50, 10)				
-10				0/0	58e7-10,0 (1<00)							
_	lan 15	178	100		5807-12.5 (505)	ML		10-54 V. Stiff SILT, little Flue Sand, dry, brain, No eler (90,10,0)				
1 <mark>6</mark> Drillin	g Co	./Drille	lyo t: Holo	ione/March		MU/Auger Dia		Born tempted at 16 bs. Inches feet bgs Notes/Comments:				
Sampl Hamm	ler Ty ier Ty		ight:		Screen Screen	en Slot Si er Pack Us ace Seal:	ize:	inches				

Project: Rank Man Property Project Number: 1276-001 Logged by: (1)

Date Started: 1/18/17

Surface Conditions: approximate Well Location N/S: 14 Not 5 lawyost Well Location E/W: 14 E

BORING LOG 5808

Site Address:

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs

		DRA	\FT		eviewed by: ate Completed	: 1/18/	117	Water Depth At Time of Drilling: feet bgs Water Depth After Completion: feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
- -	5		100	0 /0	(1250) (1250)	SP		0-2.5 -> lover, dry JAND, Some SIH & gravel, Itboarn, no odor (30,40,30)
-				0/0	5808,5,0 (1525)	Zin		2.5-5" - M. dense, dry, silty SANN, gray Jok brun, no odar (40,55,5)
0	5-10		100	010	\$308-17.5 (1527)	2M	45	1-3'- Dence, stay SAND, trace servel, grey, no over (40,58,5)
10					58 bg. 10,0	2m/		3-5'-> V. STIFF, SILT + SAND)
ź.	5		las	0/0	5308-145 (1535)	Wr		0-3'y V. Stiffs ILT, little Fire sand dry norders gray (85, 15,0)
150	K			6, 4,9/4,6	5308-16. (1540)	ML		3-5' v. Staff SILT, dry, It bown, no oder (100,0,0) Burry temnet of at 16' bac.
Drillin Drillin Sampi Hamm Total I	g Equier Ty er Ty er Ty Borin Well I	./Driller uipmen rpe: (\) rpe/We g Dept Depth: D No.:	ight:	1	Wel Screen Screen Screen Bos Surfeet bgs Ann	l/Auger Di I Screened een Slot S er Pack Us face Seal: aular Seal:	d Interval ize: ed:	- /Z inches Notes/Comments:

No well installed

SoundEarth Strategies

Mir DRAFT

(1875)

Mir DRAFT

(1875)

Mir DRAFT

(1875)

Mir DRAFT

(1875)

Mir DRAFT

(1875)

Project: Rainier Mall Project Number: 1276-001

Logged by: Date Started: 03/7.2/17

Surface Conditions: Asshull
Well Location N/S? 18 61
Well Location E/W: 29 61

Reviewed by: **Date Completed:** BORING MWO2

7 of SW-Mart Light pole

Site Address: 4208 Rainier Avenue S

feet bgs

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

			Da	te Completed:			water Deptit Arter Completion.	reet bys
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Constructio Detail
0 -		[00]	0,0	_	F.Y SM		Dens knost merdener sib Re SAND of grand, gog (600, Rall organiz colar (30-55-15) Contains were pray Gellow comma chop in upper of hos (FI)	
_			0.0					2000
-	1	100	0.0	~	SA		101.15 to 7.5685	Y
			020	-	FII (ML)	8	Damp, dense Sanly STLT with Subsequents contains bits of ver boxes, word paces, (monthal broken glass, Brum (gras, No Hysamatores (45-35-20)	
10		(0)	0.0	~ J255	Fil (MC)	~115 ~10.55 ~10.55	being sither with cly @ less smill (75-15-19 Fill?	V
15			0,0		ML	Wass	How soud Mattel vrange-brush (90-10-0).	
Drilling C Drilling E			ude/Zane	Well Well	I/Auger Di I Screene		inches Notes/Comments:	na .

Drilling Equipment: Track Murale Sonic Sampler Type: (or barrel

Hammer Type/Weight: Total Boring Depth: 90.0

Total Well Depth: State Well ID No.: ->

lbs

feet bgs feet bgs Well Screened Interval: Screen Slot Size:

Filter Pack Used: Surface Seal: Annular Seal: Monument Type: feet bgs inches

8" Coulante Couling

Bentonik Scal placed @-30-35-65_1 Sect Set for Min Page:

Project: Rainier Mall Project Number: 1276-001

Logged by: Date Started:

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by: Date Completed: BORING

MWOD

Site Address:

4208 Rainier Avenue S Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

				Da	te Completed:			Water Depth After Completion:	feet bgs
(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
5	1			0.0				Son as a home	
					-	M		4	
			100	0.0		ME	175 -	enet, derx sens SFLT, metricl hours 89 mg, M Hellolut ode (60-40.0)	
				0,0	•		10	Most hard, clayer SPLT with by fine sand, faint subject alon (2.19 620 has Mittled to overland	
0			5	5.6	1000-	ML		(85-15-0).	
				adil 1	The state of the s			solunt oler brumegres (100-0-0)	
		,	21	##6		4.1/		(100-0-0)	
	Λ	(100%			Me	77"		
1			Cost.	(34,7)		SM	5301	That solve & slow (30-10-5)	
1			COH!	82.8	11 July 3-14	Tel.	194	No Helbin Later (100-0-0)	
5-	()		(2)4°5	(3/0/2)	X4			1 content 2 3 that lease of	
-	V			0.4		¢t.	2/5-	Sith Sant (30-70-0)	-
-			105%			SM-SA	765-	SAMO w/ Sort 89 rans,	
					Muo) -28	\		Most, had, sandy Stythandle, 3/24, No sound od (30-000)	
			(C)	64 205	@1175 ×4	~	285	Most, had, sandy SIX Thomacky	
0				013		ML		3129, No Salut och (30-5000)	
rillin	-	./Drille				I/Auger Di I Screene		inches Notes/Comments:	
amm		/pe/We			bs Filte	en Slot S er Pack Us	sed:	inches	
otal \	Vell [g Dep Depth: ID No.:			feet bgs Ann	face Seal: ular Seal: ument Ty	sech		Page:

Project: Rainier Mall Property Project Number: 1276-001

Logged by: Date Started: **Surface Conditions:** Well Location N/S: Well Location E/W: Reviewed by:

BORING | LOG |

Site Address: 4208 Rainier Avenue S Seattle, Washington

		RAF			Reviewed by: late Completed	l:			et bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description V	Vell tructetai
-		/	(00	0,0	MWO)-31 MWO)-31 D1140 X4	ML		Dono toly hard Sandy STLT With classification to Solver oder (80-20 Dorthe (80-15-5)	
35		:.		0,0	MW02-35 CH45	MC			
			100	00	-	ML		Sau 43 abore exect Moist exect hus gan 1863520d (20-10-10)	
38					1340 h	n C	38 9	Most board Sady StLT with Sand, come claye for Subs. gravel, gravel, gravel, (85-10-5) (-5+5	
		ſ	CC	1 :					
5	48	(0)			- MC	-	Da	wo b unof dense, SILI coly with his Pery five said, gray, NO Helsolvent oder (95-5-0)	
rilling Co illing Equ Impler Typ Immer Typ tal Boring tal Well Do Inter Well ID	ipme be: be/We Dep epth:	nt: eight: th:		lbs feet by	Well Scre Screen SI Filter Pac Surface S	k Used: leal:	val:	inches feet bgs inches	1

Project: Rainier Mall Property

Project Number: 1276-001-01 Logged by:

Date Started:

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by: Date Completed: BORING MWO

Site Address: 4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
45 -		from 45	100			ME		Same as above (95-50)	
489		4	120	0,0		ML	1	Jens clarce SLU with cly class Chris Rey Ton Sady 5 5 50, NOH Ysolvet ale (9550)	
50	1	7		0.0	-			(ds 5.0)	
-			100	0.0		MC			
-55-				0.0	~	ML	\	San a aber	
			100	0.0		MC).	
60	N N			010	J	ML		I sur as abe	
Drilling Sampl Hamm	er Ty er Ty er Ty Borin	/pe/We g Dept	it: ight:	f	Well Screets SFilte Filte	l/Auger Dia I Screened een Slot Sizer Pack Use ace Seal: ular Seal:	Interval: ze:	inches feet bgs inches	Page:

State Well ID No.:

Project: Rainier Mall Property **Project Number:** 1276-001-01

Logged by: Date Started:

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by: Date Completed: BORING LOG

MWOZ

Site Address: 4208 Rainier Avenue S

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
60			00	0.0		MC		Same as about the CI to 63 bss Most	
				6.0	_	MC			
-65		1	100	0,0)	MC		Same as & bare Purps to by SILTUIN. My Fre Sand (95-5=0)	
70		1		0-0	7	MC	\C4	Dup & report, dense, sandy SILT 99 pag, no Hystral (75-25-0)	
			joo	U-0	-	M		(75-25-0)	
				OnQ.	_	MC			
Drillin Samp Hamn Total	g Eq ler Ty ner Ty Borir	o./Drille uipme ype: ype/We ng Dep Depth:	nt: eight: th:		We Scool Box Fill feet bgs Su	ell/Auger Di ell Screene reen Slot S ter Pack Us rface Seal: nular Seal:	d Interval: lize: sed:	inches feet bgs inches	Page:

Monument Type:

Total Well Depth:

State Well ID No.:

Project: Rainier Mall

Project Number: 1276-001

Logged by: Date Started:

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by: **Date Completed:**

feet bgs

Annular Seal:

Monument Type:

BORING LOG

Site Address: 4208 Rainier Avenue S Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Page:

Coff

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
75			100	040		MC		Same as above. (Dump to mosty dense, Sunds SILT, gray, No HC/Solvent sda, (78-25-0).
4			0.	0.0	7	MC		
80				0+0	_	NK		
-				0.0	_	MC		Same as above (75-25-6)
85				0,0		MC	.8¢	Acures, Daugto dez,
90		75.11		0.0	MW0270 @1555	мс		Borns tomal @ of bss
Drillin Samp Hamm	g Equ ler Ty ner Ty	./Drille uipmei /pe: /pe/We ig Dep	nt: eight:		Wel Screen	II/Auger Di II Screene een Slot S er Pack Us face Seal:	d Interval ize: sed:	inches feet bgs inches But five all banking for the first and for the first all and for the first a

Project: Rainier Mail
Project Number: 0811-017
Logged by: JSL
Date Started: 1/24/18
Surface Conditions: Asphalt

Well Location N/S: Well Location E/W: Reviewed by:

Date Completed: 124/18

BORING TBOI

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: ~13
Water Depth After Completion:

feet bgs feet bgs

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample iD	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	0								3" of asphalt	
	1									
	5	· //							med.dense	
	-	\bigvee_{X}	812	40	0.3	TBOI-05 @ 0938	GM		5'-6.5': Moist, silty GRAVEL W/ some sand, dark brown, occasional brick fragments, no HC odor. (25-10-65)	
	_	= 30	s 8	- 4		` `		` `		, _ ,
	- -10	- 7				Carl 10			medium stiff	
	_	$\sqrt{}$	346	80		TBOI - 10 @ 0945	ML		10'-11.5': Moist clayey SILT w/ fine sandy layers, gray to brown, no HC odor. (40-10-0)	
۸	-								1	
	15	a Cc	/Driller	· Union	لائد دول م	Wall	/Augos Dis	motor	/ p ir	
	Drilling Co./Driller: Holocere / Roudy Drilling Equipment: HSA track rig Sampler Type: SPT Hammer Type/Weight: AUTO/ 140 lbs Total Boring Depth: 31.5 feet bgs Total Well Depth: feet bgs State Well ID No.:						/Auger Dia Screened en Slot Si: r Pack Use ace Seal: ular Seal: ument Typ	Interval: ze: ed: Concre Bendeni	inches	Page:

Project: Rainier Mall Project Number: 0611-017

BORING

Sound Earth Strategies				ies sw	Project Number: 0611-017 Logged by: Date Started: Surface Conditions: Well Location N/S: Well Location E/W: Reviewed by:			Site Address: 4208 Rainier Ave South, Seattle, WA Water Depth At Time of Drilling: ~13 feet bgs
Depth (feet bgs)	Interval	Blow Count	TAA Recovery		Sample	USCS Class		Water Depth After Completion: feet bgs Well Lithologic Description Construction
15	X	1 2	100	23.3	TB01-15 @ 0950	ML		wet, clayer SILT w/ some sand, faint solvent? edus, gray to brewn, (90-10-0)
20	X		100	2.0	TBOI-20 @ 0955	CL		wet, sitty CLAY, grzy, no HChador, or schent
25	X	3516	100	0.2		CL		Wet, soft Veryn stiff silty CLAY, gray, no HC/solvent odor, (100-0-0)
Drillin Sampi Hamm Total I Total I	g Equiler Tyner Ty Borin Well I	./Drilie ulpmen /pe: ype/We ng Dept Depth: ID No.:	it: lght: h:	\ 1	Well Scre bs Filte feet bgs Surfa feet bgs Annu	Auger Di Screened en Slot S r Pack Us ace Seal: ular Seal: ument Ty	d Interval: ize: ed:	inches

Project: Rainler Mall Project Number: 0611-017

Logged by: Date Started:

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by:

Date Completed:

oge

BORING TBOI

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: ~ 13 Water Depth After Completion:

0	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	30	X	346	100	0.7		CL		Wet, stiff, silty CLAY, gray, no itelsolvent odor, (100-0-0)	
	-								EOB @ 31.5' bgs. Boring abandoned, backfilled w/ bentonite and sealed w/ concrete flush with surface.	
	-								we bentonite and sealed we concrete firsh with surface.	
	- 35 - -									
1	3 -							:		
	ا ن									
-	-40									
	_								13	
	_									
	45									
1	Drillin Sampl Hamm	g Equ ler Ty ler Ty	pe/Wei	:: ght:	page 11	Well Scre	Auger Dia Screened en Slot Siz Pack Use	Interval: :e:	inches feet bgs inches	2 4
ı	Total \	Vell [g Depth Septh: D No.:) of fe	eet bgs Surfa eet bgs Anni	ace Seal: ılar Seal: ument Typ	all		Page: 3/3

Project: Rainler Mall
Project Number: 0811-017
Logged by: JSL
Date Started: 1/24/19

Surface Conditions: Asphal+

Well Location N/S:
Well Location E/W:

Reviewed by:
Date Completed: 1/24/18

BORING TB02

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: ~15, 40 feet bgs Water Depth After Completion: feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Well Lithologic Description Construction Detail
-								3" of asphelt
-								
-								med. dense
-	\bigvee	465	20	0.0	TB02-05 @1035 (4 vols)	SM.		Moist, silty SAND, drace of gravely brown, occasional organics, no Helsolvent odor. (FILL?) (30-65-5)
-	T.)	£	V V	.			(FILL?) (30-65-5)
-							in the	, stiff
-10	\bigvee	336	60		TB0Z-10 @1045	CL		Moist, silty CLAY, gray no Helselunt odor. (100-0-0)
15								
Drillin Drillin Samp Hamn	ig Eq ler Ty ner Ty	uipmer ype: 5 ype/We	it: HSA PT ight: <i>AU</i> 1	ENE / Rew truck rig	Wel Scre bs Filte	l Screened een Slot S er Pack Us	l interval: lze: ed:	inches Notes/Comments:
Total	Borin Well	ig Dept Depth:	h: 41.5		feet bgs Ann	face Seal: wiar Seal: nument Ty	Benton	

Project: Rainier Mall Project Number: 0811-017

Logged by:

well Location N/S:
Well Location E/W:
Reviewed by:
Date Completed.

BORING

Site Address: 4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: \sim 15, 40 feet bgs Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15	\bigvee	357	80	2.4	TB02 - 15 @1055	CL		Wet, silty CLAY, gray, no HC/ solvent odor. (160-0-0)	
-					*			=	
-								soft	
-	\bigvee	III I	100	0.1	TB02-20 @1105	CL		Wet, silty CLAY, gray to brown, ne HC/solvent odor. (100-0-0)	
-				r					
_						:			
25	\bigvee	1	100	0.0		CL		no Helsolvent odor. (100-0-0)	
_									
30					6	,		II.	
Drillin Drillin Samp	ıg Eq ler T	./Drille ulpmer /pe: ype/We	nt:	Doge	Wel Scr	I/Auger Di I Screened een Slot S er Pack Us	d interval: ize: sed:	inches	
Total Total	Borir Well	ng Dept Depth: ID No.:	th: Lee		feet bgs Sur feet bgs Anr	face Seal: Iular Seal: Iument Ty	50e		Page: 2/3

Project: Rainier Mall
Project Number: 0611-01

Project Number: 0611-017 Logged by:

Date Started:
Surface Conditions:
Well Location N/S:

Well Location E/W: Reviewed by: 5 Date Completed: BORING TBOZ

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: ~ 15 , 40 feet bgs Water Depth After Completion: feet bgs

Depth (feet bas)	Interval	Blow Coun	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
35	X	334	100	0.1		CL		Weist, med. stiff, silty CLAY, gray, no Helsowent odor. (100-0-0)	
		_							
305								med, to coarse	
	X	33 36 49	100	0.1		SM		Moist, very dense silty SAND w/ some gravel, gray, no HC/66brent odor. (25-60-15).	
					o.				
155	X	7 15 20	100	0.0		sp		Wet, dense, medium to coarse SAND, trace of silt, gray, no HL/solvent odor. (5-90-0)	
-				₹		1		EOB @ 41.5 bgs abandoned and Boring backfilled w/ bentonite and sealed with concrete to flush with surface,	
년5 Drilli	ng Co	./Driller			Wel	I/Auger Dia		inches Notes/Comments:	_
Drillin Samp Hamn Total Total	ng Equal pler Ty mer Ty Borin Well I	uipmen	t: ight: h:	h. 0 4	bs Flite eet bgs Ann	I Screened een Slot Si er Pack Use face Seal: ular Seal: uument Tyj	l Interval: ize: ed: こし	feet bgs inches	Page: 3/3

Project: Rathler Mail
Project Number: 0611-017
Logged by: JSL
Date Started: 1/24/18

Surface Conditions: Asphalt

Well Location N/S: Well Location E/W: Reviewed by:

Date Completed: 1/24/18

BORING TB03

Site Address: 4208 Rainier Ave

South, Seattle, WA

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Con	Well struction Detail
0								3" of asphalt	
_								10052	
5	X	2 2 4	20	1. 4	TB03-05 @1300	GM		5-5.5': Moist, silty GRAVEL, with some sand, durk brown, occasional organics, faint HC?/solvent-like? odor.	
-	<i>x</i> :		,					HC?/solvent-like? odor. (25-10-65) (FILL?)	
_								medium stiff	
10	\bigvee	3 3 2	90	0.0	Твоз-10 С1305	ML		10-11.5': Moist, fine sandy SILT, dark brown to gray	
-									
_								Topic State	,
Drillir Samp	ng Eq pler T	ulpmei ype: 56	nt: HSA	ene / Rowdy truck rig	We Scr	II Screene	d Interval iize: ——	inches feet bgs inches	
Total Total	Borlı Well	ng Dept Depth:	th: 46,	5	feet bgs Sur feet bgs Ani	face Seal: nular Seal: nument Ty	Concr	pnite	ge: 3

Project: Rainier Mali Project Number: 0611-017

Logged by: Date Started:

Surface Conditions: Well Location N/S:

Well Location E/W: Reviewed by: // Date Completed: BORING | TB03

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: ~18
Water Depth After Completion:

L	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15 -	\bigvee	334	100	0.0		CL		Moist, sitty CLAY, light brown, no HC/60vent odor. (100-0-0)	
7	· <u>-</u>	,								
	1,			 . .						
	20 -	\bigvee	\$ 1 \$ 1 \$ 2	100	0.0		CL.		Wet, medium stiff, silty CLAY, gray, no HC/60/vent	
	_	\triangle	• L		ı			•	CLAY, gray, no HC/60/vent odor. (100-0-0)	
-2	25	\bigvee	2 2	la O				·	Wet, medium stiff, silty CLAY,	
	-	Δ	3	100	0.0		CL		gray, no HC/solvent odor, (100-0-0)	
	-									
-	o	a Co	/Driller	,	2.	186.11	(Auges Dis			
Di Sa Ha	rilling ampi amm	Equer Tyer	ıipmen	t: ght:	V II	Well Scre Filte	/Auger Dia Screened en Slot Siz r Pack Use	Interval: :e:	inches feet bgs inches	
To	otal V	Vell [g Depti Depth: D No.:	see	-	et bgs Annu	ace Seal: ılar Seal: ument Typ	5ee		Page:

Project: Rainler Mall Project Number: 0611-017

Logged by: **Date Started:**

Surface Conditions: Well Location N/S: Well Location E/W:

Reviewed by: **Date Completed:**

feet bgs

Total Well Depth: State Well ID No.:

Annular Seal: Monument Type: BORING TB03

scaled with concrete Page:

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: ~ 18 Water Depth After Completion:

		T #					<u> </u>	Trace Depth Arter Completion.	eet bgs
Depth (feet bas)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Co.	Well nstruction Detail
30	-	122	100	0.0		CL		Wet, soft, silty CCAY, gray, no HC/solvent odor. (100-0-0)	
	_								
35-	X	234	100	0.0		CL		Wet, medium stiff silty GLAY, gay, no HC/solvent odo-, (100-0-0)	
3	1								
-								soft	
40-	∇	4				CL		40 - 40,5 " Wet, silty CLAY, gay,	
41-	<u>X</u>	15	100	0.0		SM		40.5-41.5's Wet SAND w/some silt, dense SAND w/some silt, gray, no HC/solvent odor. (15-65-0)	
44 - 45 -	X	11 38 46	80	0.1		5 A		very dense 45'-46.5': Wed, SAND, trace of silt, gray, no Helsolvent eder. (5-95-6)	
45								EOB at 46.5' bgs.	
		./Driller ulpmen				Auger Dia		inches Notes/Comments:	-
Samp			t.	at		Screened len Slot Siz		Or Bosina abradou ed	ect
		/pe/Wei		<i>l</i> . <i>a</i>	bs Filter	Pack Use	-	op inches 46.5' bas, backfill	led w/
Total	Borin	g Depti	h: _0	fe	eet bgs Surfa	ace Seal:	0	bentonite and	

Project: Rainier Mall Project Number: 0611-017 Logged by: 👭

Date Started: (/25/19
Surface Conditions: Asput

Well Location N/S: Well Location E/W: Reviewed by:

BORING LOG	
LOG	T1304

Site Address: 4208 Rainier Ave

South, Seattle, WA

	1.		AFT		Reviewed Date Com		She		th At Time of Drilling: ~~~~ th After Completion:	feet bgs feet bgs
Depth		Blow Count	Recovery	PID (ppr			GCS sass	Lithologic [Description	Well Construction Detail
0) -								(3)	
		0			2					
-							E ¹			
5-		(3)	55	03	TB04	-05 905 Sx		merst, gry-bo	n, saly san	
1	1/	13	122			303 00		merst, gry-bo	5 (35-55-10)	
- 10 -									-	
	X	235	100	. 0.1	COE	40 M		to Story, SMA		
							-			
-	-									
Drillir Samp	ng Eq oler T	juipme ype:	nt: tin	erne er HEA		Screen Slo	ned Interval	:	Notes/Comments:	
Total Total	Borir Well	ng Dep Depth: ID No.:	th: Կહ —	S	feet bgs feet bgs	Filter Pack Surface Se Annular Se Monument	eal: Aspal	inte	6	Page:

Project: Rainier Mall Project Number: 0611-017 Logged by: Liss

Date Started: 1/25/1/3 Surface Conditions: Well Location N/S:

Well Location E/W: Reviewed by:

BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

See par 1

	DRAFT					Reviewed by: Date Completed:				Water Depth At Time of Drilling: feet bgs Water Depth After Completion: feet bgs			
	Depth (feet bas)	Interval	Blow Count	% Recovery	PID (pp	m) Sa	ample ID	USCS Class		Lithologic Description	Well Construction Detail		
	15	X	7 45	100	0.1		445 815	ML		BAND, no de (85-15-0)			
			1	(00).	6.1			mile	i	(40-10-0)	Cleny		
2	25												
			127	(00	0,1	_		mel	æ	wet, light gry, 80t/cing w/to fre SANS, as cuts (95-5-3)			
30	-				*				1				
Dri Sa Ha To	illing mple mme tal B tal W	Equi r Typ r Typ oring ell D	Driller ipment pe: pe/Wei pepth epth: No.:	t:	ou py	lbs feet bgs feet bgs	Well S Screer Filter F Surfac Annula		Interval: e: d:	inches	Page:		

State Well ID No.:

Project: Rainier Mall
Project Number: 0611-017

Logged by: US Date Started: 1/25/13

Surface Conditions: Well Location N/S:

Well Location E/W: Reviewed by: BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

DRAFT Re

Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

Surge!

feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30	V	9 20 21	(60)	6.7	L	ML SM		web-set gry, sty SAM SAM we ale (30-70-0) W/ 8" prems curlyng	
-				×					
35	X	245	(60	0.3	d.	mk	<u>L</u>	no eur (100-0-0)	
			3						
40	1	20	(00	0.3	-	Sn		Set, gry, Stry SAID u/ gran, no aler (35-85-10)	
45	1.00	/Drillo-			No. 10	VA			
Drilling Sample Hamme Total B	Equer Ty er Ty er Ty oring	iipmen pe: pe/Wei g Deptl	t: ght:	fe	Screet bgs Surf	//Auger Dia Screened een Slot Si r Pack Use ace Seal: ular Seal:	Interval: ze:	inches feet bgs inches	Page:

Monument Type:

Project: Rainier Mall
Project Number: 0611-017

Logged by: USS

Date Started: 1/15/1996 Surface Conditions:

Well Location N/S: Well Location E/W: BORING LOG

tBou

Site Address:

4208 Rainier Ave

South, Seattle, WA

DRAFT

Reviewed by: Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
45	X	12 32 50/3	(00)	0.3	<u></u>	5M		t god, no dr (20-65-15) EOB @ 46.4 bgs,	1
				ų.				EOB @ 46.4 bgs,	
-50-			,			ř	×2		
-		2					# B		
- 55		-			=		e.,		
-									
Drilling Drilling Sample Hamme Total B Total W State W	Equ er Tyl er Tyl oring /ell D	ipment pe: pe/Weig pepth epth:	Su jht:		Well s Scree Filter et bgs Surfa et bgs Annu	Auger Dial Screened en Slot Siz Pack Use ce Seal: lar Seal: ment Type	Interval: e: d:	inches feet bgs inches	Page:

Project: Rainier Mall

Project Number: 0611-017
Logged by:

Date Started: (/25/18

Surface Conditions: Asput

Date Completed: 1/25/14

Well Location N/S: Well Location E/W: Reviewed by: BORING LOG TBOS

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: VS
Water Depth After Completion:

:	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	0								<i>y</i> -	
	5	X	7 6 6	90		1305-03 C 0945	SP-SM		8" der ben most slos -/ 954 + gred, find HC an (15-65-70) on 4" light bm, Come sun N/ SML Sn gm, ho at (20-80-10)	
	10	X	334	102	0,6	130510 209 50	ma		murst, gry-len, sat chy w/ SMS, no cela (90-10-0)	
S H T	rilling ample amme otal B otal W	Equ er Typer Typer oring	oe: 🥩 oe/Weig Depth	: trock	HSA.	Well Screet DS Filter Deet bgs Surfa Deet bgs Annu	/Auger Dia Screened en Slot Siz r Pack Use ace Seal: ular Seal: ument Typ	Interval: ze: — ed: — Asspri	inches feet bgs inches	Page:

Total Boring Depth:

Total Well Depth:

State Well ID No.:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Project: Rainier Mall Project Number: 0611-017

Logged by: (A) Date Started: (/25/8

Surface Conditions:

Well Location N/S:

Date Completed:

BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

See page 1 Well Location E/W: Reviewed by:

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Page:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15	X	2 3 5	los	0.5	1305-15 20485	mefer		Merst, logut kn SNA/Cly W Snd, no che (40-10-0)	
-						10			
20-									
_	1	G i	lov ·	0.4	_	Clfm		Most ruly gry, ely-set,	
-				×					
- - 25									7
	X	4 4 3	100	6.4	e	cilm		w/ SAND, no cur (90-10-0)	
								5.	
30	200	/Deille						Dithe Markes good @ 25/ 000	,
Drilling Sample Hamm	g Equ er Ty er Ty	/Driller: lipment pe: pe/Weig	ght:	See page	Well Scree	Auger Dia Screened en Slot Siz Pack Use	Interval: :e:	inches feet bgs inches	

Total Boring Depth:

Total Well Depth:

State Well ID No.:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Project: Rainier Mail

Project Number: 0611-017 Logged by:

Date Started: (15/19)
Surface Conditions:

Well Location N/S: Well Location E/W:

Reviewed by:
Date Completed:

BORING LOG

1305

Site Address:

4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

Sur Age 1

feet bgs feet bgs

Page:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30	X	14 10 15	100	0,5	-	ш		no alofor-o-d)	
_		=						8	
35 -	X	50/2	0			_		No recong	
* -									
- 40 -		Soli"	5	0.5					
		sofi	5	0.0	3	ct		EOB @ 40' 1" bys Gw dosm at 25' ATD.	,
45 Drillin	- 6-	(Daill-							
Drilling Sampl Hamm	g Equ ler Ty ler Ty	/Driller Jipmen pe: pe/Wei	t: ght:	ree fige	Well Scre	/Auger Dia Screened en Slot Si r Pack Use	l Interval: ze:	inches feet bgs inches	" E

Project: Rainier Mall

Project Number: 0611-017

Logged by: (A)

Date Started: 1/25/18
Surface Conditions:

Date Completed: 1/25/18

Well Location N/S: Well Location E/W: Reviewed by: BORING LOG TBO

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

u	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class		Lithologic [Description	Well Construction Detail
	0										٠
	-										
	5		a 2			TB06-05			(/ 03 /		
	_	X .	495	(0)	3,6	e1110	51		4" gry solt wot, solty sansw/	grand, fant per	1 XX
		X	CAL	চিত	315				redone to spread	recomp Sor	
	10		2			TB06-10					
	-	X	2 2	40		anne	SM		Most & wet, sally sally sally sally sally sally sally sally for	0-60-(0)	
				Tr _a			-	8	2" onlys SM		
_	15 Drilling	Co./	Driller:	Holes	1 112	Well	Auron Die	·		-	
S	ample lamme	r Typ r Typ	pment: e:	int: Auto	/	Well Screen	Auger Dia Screened en Slot Siz Pack Use ce Seal:	Interval: :e: :d: —	inches feet bgs inches	Notes/Comments:	
Т	otal W	ell De	epth:			et bgs Annu	lar Seal:	Bertz	Pla.	18	Page:

Project: Rainier Mall Project Number: 0611-017 Logged by: US

Date Started: 1/25/18
Surface Conditions:

Well Location N/S:

Well Location E/W: Reviewed by: Date Completed: BORING | TBOS

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

Ser pyc 1

feet bgs

	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	-		3 5 6	100	0.4	TB06-15 @11-20	mfa		Most, try 15/4, W/5/015 No Me (40-10-3)	
	2	, 2					¥i		* *	
-2	20-									
	_	\bigvee_{ℓ}	112	100	3.7	•	ci/mi	n *	No HC/Solv edu (100-00)	4,
	_				ä					
-2	5-								W.	
		X	235	(00	63	-	alm		HC/SAU als (100-0-0)	
30										
Dr Sa Ha	illing mple mme	Equ er Ty _l er Ty _l	/Driller ipmen pe: pe/Wei p Deptl	t: ght:	Surger 1	Well Screen	Auger Dia Screened en Slot Siz Pack Use ce Seal:	Interval: e:	inches feet bgs inches	
To	tal W	ell D	epth:			et bgs Annu	lar Seal: Iment Type	e:		Page:

Project: Rainier Mall
Project Number: 0611-017

Logged by: LBS

Date Started: 1/25/38
Surface Conditions:

Well Location N/S: Well Location E/W: Su post

BORING | TBOE

Site Address: 4208 Rainier Ave

South, Seattle, WA

DRAFT

Hammer Type/Weight:

Total Boring Depth:

Total Well Depth:

State Well ID No.:

lbs

feet bgs

feet bgs

Filter Pack Used:

Monument Type:

Surface Seal:

Annular Seal:

Reviewed by: Date Completed: Water Depth At Time of Drilling: Water Depth After Completion: feet bgs feet bgs

Page:

3 1.4

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30	X	31	100	02		nega	0	armed, no HC/Solv cur (20-70-10)	
								Delles Adde 120 to pont	
35	X	20 50/2"	85	0.0	-	48-4M		sut, gry, bolly . SAND of from No He/sul, car (15-80-5)	y d
-			ž.				×	DiMo Adds mounder	
40	X	lo Soft	, 70	6.1		4-50		som is primes, no HC/silv	
45	1								ž:
Drillin	g Eq	./Driller uipmen /pe:		Supp	Well Well Scre	/Auger Dia Screened en Slot Si	Interval:	inches feet bgs inches	< # H S

Total Boring Depth:

Total Well Depth:

State Well ID No.:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Project: Rainier Mall
Project Number: 0611-017
Logged by:

Date Started: 165/19
Surface Conditions:

Well Location N/S: Well Location E/W:

Reviewed by: Date Completed: BORING LOG

TB06

Page:

4060

Site Address:

See par!

4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: feet bgs
Water Depth After Completion: feet bgs

					Te Completed	1:		Water Depth After Completion:	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
45	X	30 50/4	80	0,0	<u> </u>	6M	5	Wet to set, 3My-5My 5ADD, no Hc/5du alv (85-65-0)	
				87		16			
) #2		=	- ·				
50	X.	10 36 50/5"	80	6.0		M-SM		Most, gom, Sowy set, no HU/Solver cur (70-30-0) ECB @ Slit' bys	
					•			EOB @ Slitt bys	
		0		-					
- 55 - -					2		1		
								:	
_								*,	
60								п	
Drilling					Well	Auger Dia	meter:	inches Notes/Comments:	
Drilling				Pge 1	Well	Screened	Interval:	feet bgs	
Sampler			h.a.	Page 1	1	en Slot Siz		inches	
Hammer	iyp	e/weig	nt:	lbs	S Filter	Pack Use	d:		-

Total Boring Depth: 41,5

State Well ID No.: BIEC GIA

Total Well Depth: 🤧

feet bgs

feet bgs

Surface Seal: Cema

Annular Seal: Bolde

Monument Type:

Project: Rainier Mall Project Number: 0611-017

Logged by: 6

Date Started: (/26/18
Surface Conditions:

Well Location N/S: Well Location E/W: Reviewed by:

BORING

Site Address: 4208 Rainier Ave

South, Seattle, WA

Page:

		D	RA	.FT		eviewed by: ate Completed:	1/26/	€	Water Depth At Time of Drilling: ~27 Water Depth After Completion: ~13	feet bgs 7 feet bgs
Depth		Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	()	Lithologic Description	Well Construction Detail
0	'								>	
					-	** *2	,	_	A.	
5-			3 5	70	0.2	TBO7-US COBIO	sn		Must, gm, SM, SAIS, tour gm, no ch (2870-5)	
						-				
10	X	2 50	ok?	SS		1307-10 2021S	911	ė	Must to unt, gry, solly SAD u/ gml, no HC/slu and 30-60-10)	la .
15	1	165		40	0.3	1807-12,5 2082	mc/a		muet, don gry Stitling, no HL/Solv cur (100-0-0)	
Drilli Drilli Samp	ng Ed oler 1	quip Type	: 4	+ rue	een these	Well S Scree	n Slot Siz	Interval: e: 💪 ो	Notes/Comments: 15.35 feet bgs inches 15.36 Fulk 13.36	

Project: Rainier Mall Project Number: 0611-017 Logged by: LAS Date Started: (/26/186)

Date Started: (/26/12)
Surface Conditions:

Well-Location N/S: Ssu (V)

BORING LOG TBOT

Site Address: 4208 Rainier Ave

South, Seattle, WA

DRAFT Reviewed by:
Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs

-						ate Completed	'•		Water Depth After Completion:	feet bgs
	(feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15	V.	237	75	0.5	TB67-15 COGris	M		must, to sett/cing, tra +0 W/ SANS, no des (90-10-0))
*		X	247	(00	67	TB07-17, C 0830	s Me/c		not, medu ban, satjery	
2	0	X	211	(00:	0.5	TBU7-20 C0835	mifa		met, logis ton sist/deg no itc/silv cels (102-02)	
			7		26					
- 25	7	X	313	160	6.5	175:17-75 20240	mfci	/	SAND, no He/Sold color (40-10-0) Sul stiger.	
30	-								Diller idules good & 29 bys	
Dril San Har	ling nple: nme:	Equi r Typ r Typ	e/Wei	: ght:	record!	Well Screen	Auger Dia Screened i en Slot Siz Pack Use	interval: e:	inches feet bgs inches inches	6
Tota	al We	eli D	Depthepth: No.:	:		eet bgs Surfa eet bgs Annu	ce Seal: lar Seal: ment Type			age:

Project: Rainier Mall
Project Number: 0611-017
Logged by:

Logged by: LOS
Date Started: 1/26/PL
Surface Conditions:

Well Location N/S: Well Location E/W: Reviewed by: BORING LOG

TBOT

Site Address:

4208 Rainier Ave South,

South, Seattle, WA

DRAFT

Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

See per

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Well Construction Detail
30	X	(4 13 16	70	6,6	51307-3 Coeus	m		Sut, gon 51H W/ SAR) NO HU/SA als (83-15-0)
35	4		v					
a	7	17 34 Sofi*	30	C.S	TB07-39 C0250			no HC/Solv edr (9000-0)
40								
-		11 20 24	(00	0.3	17507-40 E 0400	Melc		No Ac/Solv celo (102-0-e)
- -				æ		2		+ SA well Some 15-35
45							5	
Drillin Sampl Hamm	g Eq er Ty er Ty	./Driller uipmen /pe: /pe/We ig Dept	it:		Wel Screen	I/Auger Di I Screene een Slot S er Pack Us face Seal:	d Interval: ize: sed:	inches feet bgs inches
Total \	Vell i				eet bgs Ann	iace Seal: iular Seal: iument Ty		Page: 3 4 3

Total Well Depth: 35

State Well ID No .: Bice 520

feet bgs

Annular Seal: Book Mc

Monument Type:

Project: Rainier Mall

Project Number: 0611-017

Logged by: LAS

Date Started: 1/26/18

Surface Conditions: ASA W Well Location N/S:

Well Location E/W: Reviewed by:

Date Completed: 126/16

BORING

Site Address: 4208 Rainier Ave

South,

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion: ~27

feet bgs feet bgs

Page:

1063

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0									
-					z z		_/		
5	7	6 9	80	0.2	TBOE-US	Sn		morot, bu sty SAPS W/	
-	<u>(</u>	6	0					good, tome to story, no HC/SM alor (30-60-10)	,
_						3			
- -10-			0		3				
_	X	ててる	(60	0,4	1105-10 1105	pu/sm	•	iz" mest, gray-to solt in/ SAHS no He are (85-15-0) on B" most, does bon, organe our soly som	
-	<u> </u>	378	90	12.9	TB08-02.5 @1110	me/s		Merst, though sht/chy, the To stony, no alo. (100-0-0)	25
Drillin	g Equ	/Driller	: (tale		Well/ Well	Auger Dia	ımeter: Interval:	2/60D inches Notes/Comments:	6
Hamm	er Ty	pe: 5 pe/Wei g Depth	ght: Add		s Filter	en Slot Siz Pack Use ice Seal:	ed: Col	ento som en	

Project: Rainier Mall Project Number: 0611-017 Logged by: LAS

Date Started: 1/26/8
Surface Conditions:
Well Location N/S:

Well Location E/W: Reviewed by: Date Completed: BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

-	_				oompicted			viater Depth After Completion:	reet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15	X	448	(00)	48.2	Bog-15 Cills	m		Sm 25 press, No He/sdu als (100-0-0)	
	X	2 ス フ	100	72	1308-17.9 C 1126	m		Sm as pour	
	X	2 3 4	(60)	чъ	1808-26 C 1125	m	-	must, 12" press, 6" must, gry soft of so stom + pesson elected rech franks, no de/solv	
25	X)	7 12 17	(00)	03	TBOERS @ (130	mela		must, gry, stoldyne HC/SA cus (100-0-0)	
Drillin Sampl	g Equ er Ty	/Driller lipmen pe: pe/Wei	t:	Sugal	Well Scre	//Auger Dia Screened en Slot Si r Pack Use	l interval; ze:	inches Notes/Comments: feet bgs inches	
	Borin Vell E	g Depti Depth:	a	tines.	eet bgs Surf	r Pack Use ace Seal: ular Seal: ument Typ			Page:

State Well ID No.:

Project: Rainier Mall Project Number: 0611-017

Logged by: Log Date Started: 1/26/25 Surface Conditions:

Well Location N/S:

Well Location E/W: Reviewed by: **Date Completed:**

BORING LOG

Site Address:

4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

					•				
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description (Well Construction Detail
30 -		10 17 25	100	0.6	TB08-30 @ 1835	SM/m		sm es pars no HZ/Sav	19
-									
35	X	17 20 25	100	0.3	TB08-35 @ 1145	· Low /m	Č.	Sme es pones, no He/Solv coas (100-0-0)	
				æ					
40	X	12 22 29	دها	0.7	TBOBUS Cilss	sn/m		ods (100-0-0)	
-111			٠			12		EOB @ 41.5 Ect well - Server 15-35 by. NO Gw Dent et tre de May,	11
Drilling Sample Hamm Total E	g Eq er Ty er Ty Sorin Vell	/pe: /pe/We ig Dept	ight:	1	lbs Filte feet bgs Surf	I/Auger Di I Screened een Slot S er Pack Us ace Seal: ular Seal:	d Interval: ize: sed:	inches	Page:

Monument Type:

Project: Rainler Mall

Project Number: 0611-017

Logged by: GCF Date Started: 1/18//3 Surface Conditions:

Well Location N/S:

Well Location E/W: Reviewed by:

Date Completed:

BORING LOG BOS

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: ~20 Water Depth After Completion:

Depth	(reet ogs)	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
°	1		•						
	_								
					9		•		
	X	7 6 6	(00	0.2	908-05 0 1335	WAL		Mart 19414, 5: 1 w/clay, Gray, no HC/kdomst	
	_	.:	,					2	
			L*				! *		
-10	X	478	[20	0.7	1945	MEL		Mod giff, hit wolden Comples, notel	
		556	100	0.2	908-125 0 1355	cla	*	Med 9799 , Silwiday and trace Ancsand, Gray/ton, no Hedbolvid adar. (195-5-0)	
Drill	ling Eq	uipmen	# 5/1		Well	//Auger Di Screened	d Interval:	/	
Han Tota Tota	nmer T al Borii al Well	ype: Dype/Weing Depth; ID No.:	ight: 80 m h: 50 is '	1	bs Filte feet bgs Surf feet bgs Ann	en Slot S r Pack Us ace Seal: ular Seal: ument Ty	ed:	inches	Page:

Project: Rainier Malles Project Number: 0611-017

Logged by:

Date Started: 1/25/18

Surface Conditions: A splat Well Location N/S:

Well Location E/W:

Reviewed by: Date Completed: BORING BOS

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion: feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15	X	1344	100	04	1400 1400	ML		Mart, 4MF, Siltw/clupted Sand, Brown, noHC/solumbodor. (70-30-0)	
-	X	494	(00	0.3	B08-17.5 @ 1405	ML	0 0 0 0 0 0 0 0 0 0	Mo. of Stiff, Soltwisley, brown togray, no Helsolved ada (100-0-0)	
20	X	434	100	0.2	808-20 Q 1410	n L/LL		Moto modernight, 6 you/c by Grand Down, no He/soundador. (100-0-0)	
-25		6		0.2	an noti	meja	v	Mark Gliff allered	
-	X	644	la		BO 3-35 Q 1420	=		Mart, Griff, GATAN/ Clay, Gray, Gray, notte / soland ofor. (100-0-0)	
Drillin Sampl Hamm Total I	g Equ ler Ty ler Ty Sorin Well (/Driller ulpmen pe: pe/Wel g Dept Depth:	t: ight:	f	Screet bgs Surficeet bgs Annu	/Auger Dia Screened en Slot Si r Pack Use ace Seal: ular Seal: ument Typ	interval: ze: ed:	inches feet bgs inches	Page: 2/4

SEEM1.

Project: Rainier Mall

Project Number: 0611-017

Logged by: Date Started:

Surface Conditions: Well Location N/S:

Well Location E/W:

SEERCE

BORING BOS

Site Address:

4208 Rainier Ave South, Seattle, WA

DRAFT

Reviewed by: **Date Completed:**

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	30 - -	X	544	100	0.2	608-30 1925	mile		Marthount 51/1 Will by Gray Hoth lives of fine sailed 30'. No Mighs live took	
	- - - 35		13	100	0.7	Ang. 25	Su.		Muss SIL SAND W/2 ml.	
		X	21 23	5*	0.2	BOB-35 @ 1430	SM		Morty, S: 14 SANO w/grants Gray, madrium Ferday No HI/John Anda. (15-70-15)	
	40	7							Carolitari. Sample Roll of Story & 90'. No Sample collected.	
	-	X	50/6		€.	60,40			40'. No Sample collected.	
	45		·							_
1	Drillin Sampl Hamm Total I Total \	g Equ ler Ty ler Ty Sorin Vell I	/Driller ulpmen pe: pe/Wei g Depti Depth: D No.:	t: ght: <i>9</i>	/ f	bs Filt eet bgs Sureet bgs An	III/Auger Dia III Screened reen Slot Sk er Pack Use face Seal: nular Seal: nument Typ	Interval; ze: ed:	inches feet bgs inches	Page 3/1

Project: Rainier Mali Project Number: 0611-017

Logged by:

Date Started:

Surface Conditions: Well Location N/S:

55EP4.1 Well Location E/W: Reviewed by:

BORING LOG

Site Address: 4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs

	DRAFT			ate Completed	/		Water Depth At Time of Drilling: Water Depth After Completion:			
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	feet bgs Well Construction Detail	
45	X	80/g	70	6.2	B08-45 1985	MYCL		Mouthdry, vryshif, sutwidey, no HC/soluntodor, (100-00)		
				-				(★)		
50 -								=		
_	X	16"	30	0.2	B18-50	MY/L		Sum as above,		
-					1530			508 @ Fat blas, bo. It All borry		
- - - - - -										
								· ·		
-		-3	W.					540 E		
60 Drilling Drilling Sample Hamme Total B	Equi r Typ r Typ oring	pment: e: e/Weig Depth	: Jht: 4	/ fe	Well : Scree Filter et bgs Surface	Auger Diai Screened in Slot Siz Pack Used ce Seal:	interval: e:	finches feet bgs inches **EEIM1* **Notes/Comments:		
State W				Te	- 1	ar Seal: ment Type	e: /		Page:	

Project: Rainler Mail Project Number: 0811-017 Logged by: CACF

Date Started: 1/25/19 Surface Conditions:

Well Location N/S: -

Well Location E/W: 7'w of 06

BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

		DRA	\FT_		eviewed by: ate Completed:	1/25/18		Water Depth At Time of Drilling: ~ 20° Water Depth After Completion:	feet bgs feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0			- 						-
					= 5%				ı
5-	2	7			AO4.00			Moust (1) Comments	
- . .	Å	223	100	0.3	B09-01 @ 0 820	5M		Most, 51 by AND w/ magnal alongers. 67 47, notice situatedor. (45-50-5) (F.11)	
							n.		. 4
10-	**						10	-11 j. Samo 45 eb v.	
_	X	Consum.	(00)	0,2	Ω	MY	•	1-11.5: Moset, S.A. SILT widey Gray, Nobleogolom todor. (100-0-0)	
12	X	4 95	100	0,2	0835	1blei		March WAT SOLF was	Mary :
15				/ 4 22.4				Mort stiff, silt w/clay, lithtgay, no theorsolantado, tacogones, lou-	-ø)
Drilling Sample Hamm Total E Total V	g Equ er Ty er Ty Soring Vell D	ipment pe: D pe/Weig Depth	ght: 'dim' 1:3 15' 10	Muls/300 lb	Scree s Filter et bgs Surfacet bgs Annul	Screened I on Slot Size	Interval: e:0.010 d: 2/12 mad whole	four 15-30' Sent 13-315'	Page:

Project: Rainier Mall Project Number: 0611-017

Logged by: **Date Started:**

Surface Conditions:

Well Location N/S: Well Location E/W: Reviewed by:

Date Completed:

SEE Part

BORING LOG

Site Address: 4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15	X	4 4		02	0840	C'L ML		Mont, Stiff, Sitherday, lightgray Mother tan a He/solvedow, the Organis (1000-0)	
	-	X	434	100	02	B09-17.5 O\$45	CVML		Most, modern stiff, 4. Hy w/chyl, tan, two/-16m) finesordysilt vorus at a 13.5? No HC/Solvertock. (100-0-0)	
	20	X	4 83	100	0 3	B09-10 Q 0850	Clime		Wit, mediumstatt, saturdy and fine tomodern Sand, Group, becomes More softad not of 20.5'065. No He/solventodes.	
The state of the s					=				(80-20-0)	c ·
ţ	25	X	232	100	02	BO9-251 0 0855	43		25-25.5 Wet topport, SoltymodownSANO. gray, no Herson teclar, (40-60-0) Soft 25,5-265 Wet topport, Sitt vicing and there fine soul, Notel, solventoda, (95-5-0)	
	30°	g Co		100	6.2	904-30 0400 Wall	/Auger Dia	_	30-30.5. well homest S. H. JSAND, Gray frame 10 HC or Follow limed S. How the and forestand of the homest S. How the and forestand of the homest S. How the most forestand of the homest S. How the most forestand of the homest S. How Mc/Solven of the homest S. Notes/Comments?	gry da,
	Drillin Sampi Hamm Total I Total I	g Equ ler Ty ler Ty Borin Well I	ulpmen	t: ght: 🐬	fe	Well Screets SFilter Set bgs Surfa Set bgs Annu	Screened en Slot Siz Pack Use ace Seal: llar Seal: ument Typ	Interval: :e: d:		Page: 2 .

Project: Rainier Mail

Project Number: 0611-017

Logged by: 60

Date Started: 1/2/18
Surface Conditions: Alphat

Well Location N/S: — 60 Well Location E/W: 7 World House

Reviewed by: Date Completed: 1/25/

BORING LOG MW03

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling:

feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0								e" asphalt.	
-									
-						0.7			
7									
-							\$		
5-								lavir	
-	X	543	100	D.V	607-05 @ [025	SM		North, S. My SANDW/grown, modern group, polite / sound adors (25-65-10)	
1							ď	Till the state of	
7								**	
-									
10		54		0 0	807-40	ML		March 12 12 College Co	
-	X	9	100	0.2	1030	MY		no Hi o'shortedor. moderno feely	
4			D:					,	
		29	100	0.2	807-12,5	ml/		Moit, 4+188, Sithwelly, Montyton willing Varvis, sound verythin (Clem) findomechan smallings, No HU/solvent ala 1100-0-0	
	X	6		0.2	1035	166		9md 11165, No He/sount ale (100-0-0)	
_					(C) 3/				
Delillo		/Defiles	Charle 1	+ .	187-1	MAuger Di		2'/015 inches Meter/Commenter F	.a 1-21 (.

Drilling Co./Driller: Copulo / Junio Drilling Equipment: HA

Sampler Type: D m/M

Hammer Type/Weight: dww/w/1/300

Total Boring Depth: 31.5

Total Well Depth: 30'

State Well ID No.: β κ Γ 10*

feet bgs feet bgs

lbs

Well/Auger Diameter: 2 / 6.25 Well Screened Interval: 49-30'

Screen Slot Size: 0.0:5
Filter Pack Used: #2/12 5ml

Surface Seal: Columbia Annular Seal: Columbia Monument Type: Flyih mont inches feet bgs inches Notes/Comments: £08-1-7/11 51-40/1 M203 90000-15-30' 5000 13-315' Bonder -13

Page:

Project: Rainier Mall Project Number: 0611-017

Logged by: 625 Date Started: //15/14 Surface Conditions: 45 plant

Well Location N/S: Well Location E/W:

Reviewed by: **Date Completed:** SEEP61.

BORING LOG

807

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	15	X	344	100	6.1	1100	ML		Most SARF, SAH-Iday family mother gray ruther sissation. (100-0-0)	
	, I	X	322	נקו	02	807-1755 @ 105	melle		Months west, enclosed the Harity and fine Sand; no Hearts Isent ador	
-	20-		13	I m	0.2	807-20	MU/EL		20-21: Moithout, 5: It my dy and	
	-	X	لىن يى يى	00		(A)	(3M)?		fine pomodum such, No 412/50100 alor,	
	-	:				.			21-215. Mottont, Siltswillowed from tomedra sail, Noticeson to day, (80-20-07	
	25			GLF.						
	-25	$\overline{\lambda}$	34.3	3 100	0.2	1115	ML/CL		wottoment, modiumstiph, 5/1-/day antice firesent, gray, no Hebsohntale. (95-5-0)	
	_	100								8
	30		244	100	0.2	B07-30	mble		wit tomat medanstiff, 5. Huydayestacum. Yentigay, no Hersonatalo. 195-5-0	Ahay
		g E q	./Driller uipmen /pe:		55E 16:1	Well	/Auger Dia Screened	l Interval:	inches feet bgs inches	

Hammer Type/Weight: **Total Boring Depth: Total Well Depth:** State Well ID No.:

lbs

feet bgs feet bgs Filter Pack Used: Surface Seal:

Annular Seal: Monument Type: 3 E16,7

Page: 2/2

Project: Rainier Mail

Project Number: 0811-017

Logged by:

Date Started: 1/26/18 Surface Conditions: 45 ph/h

Well Location N/S: Well Location E/W: SER Fig.

Reviewed by:

Date Completed: 1/2 ///

BORING LOG BOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

Depth	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	i	Well Construction Detail
0	-									
Ą				2						
- 5]] 2 12	100	0,5	B06-05	SM		Most flow outlessen of the Solm o	enichberg de.	
	-		٤							æ
10	6/2/	6 6 7	100	0.1	806-10 D 0950	SM ML	FN/	Most foots soly AND org and a No Gent Colors No HI/ Stanton Most Sof, SILT mi Sad, bourn grap, No 111/ 6 Nort a Lord	1 bark 4, 105-8320	
	X	760		3,1 0,1 5,2 *	B06-1 2. 5 0 0955		ML	Mart, medium stiff SILT, multing adjage. No Helsohat ador. Then (CSCOM) Sudlates at 13 BGS.	180-20-07 Brown (180-0-0) 65 cal 14	
San Han Tota	ling Ed npier T nmer T al Bori al Well	julpme: ype: 🚨	olght: dyw th: 51	hul1300	Well Scribs Filter feet bgs Ann	Il/Auger D Il Screene een Slot S er Pack U face Seal: nular Seal: nument Ty	d Interval Size: sed: :	inches feet bgs inches	comments:	Page:

Total Boring Depth: 51

Total Well Depth:

State Well ID No.:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Project: Rainler Mall

Project Number: 0811-017

Logged by:

Date Started: 1/26/18
Surface Conditions: 45 phill
Well Location N/S:

Well Location E/W:

Reviewed by:

BORING LOG BOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

Page:

		DRA	4FT		eviewed by: ate Completed:	1/261	14	Water Depth At Time of Drilling: Water Depth After Completion:	feet bgs feet bgs
O (feet bgs) Interval Blow Count		% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail	
° -			•						
5	•	<u> </u>			0	P	**	Morsty-Plan on the property of the Care Charge	
_	X	12	100	0,5	B06-05 0995	SM		Morsty +444 no My Solmode. (25-64-15)	
-			8	-	**			•	
10	6/	6 67	10U	0.1	806-10 B 0950	SM ML	FILL	Most foots soly ANDung and Brish addition. No HI/ Slowbode, (25-9520) Most for, SILT of Sad, Brus with mother grape, No 111/ ENANT add (80-20-0)	
	X	76		3,1	B06-1 9. 5		ML	Mart, Modern SHEF, SELT, multide Brown adgray. No Helsolvant ador (80-20-0) Mart, Modern SHEF, SELT, multide Brown adgray. No Helsolvant ador. (100-0-0) Thin (claim) Sudlates at 13-5 and 14	
15	<u> </u>	6	echeal!	5.2	0955			Thin (clam) suddentes at 13,5 and 19	

Project: Rainier Mall Project Number: 0611-017

Logged by: **Date Started: Surface Conditions:**

Well Location N/S: Well Location E/W: Reviewed by:

BORING | BOS

Site Address: 4208 Rainier Ave South,

Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

		DR/	\FT		viewed by: ite Completed:			Water Depth After Completion:			
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail		
15	\searrow	7 68	(00	8.4	806-15 @ 1005	ML	v	Most, 5+14, 5EUT-15 Brd grayed our meisury no bill solven todor.			
	X	447	(00	1.0	806-175 a 100	ML	ķ.	Mort, Staff, SEET my flashed, brownto gray, nothersowed alore (90-10-0)			
- 20 - - -	X	20210	100	0.4	8-807 1301-20 0 1015	ML 5P MU	- Chye	20.5 MORT, STEPF, STET WHERE FINSHOR, Juy, NO HILISINGHOW (95-5-0) 20.5-21: MORT, LOSG, SAND WHERESH, MOSING, Juy, NO odd (MUSSNA) (5-95-0) 21-21.5: Bestillo STET.			
- 25 -	V	20	100		A06-25			moils, Hard, SILT, gray, no ado 1100-0-0			
	V.	20		0.3	1030	ML		The state of the s			
30 Drillin	200	o./Drille				WAan Di		inches Nata (Campanta)	4		
Driilin Samp Hamn Total	ig Eq ler T ner T Borii	juipmer ype: ype/We ng Dep	nt: eight: th:	555 PG.1	We Scr Ibs Filt	II/Auger Di II Screened reen Slot Si er Pack Us rface Seal:	i Interval ize: ed:	inches feet bgs inches	7		
		Depth: ID No.:		le la		nular Seal: nument Ty			Page:		

SEE PG.1

Project: Rainier Mail
Project Number: 0611-017

Logged by: Date Started:

Reviewed by:

Date Completed:

Surface Conditions: Well Location N/S: Well Location E/W:

SEEPG.1

BORING LOG

BOL

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30		18	(00	0.3	1040	ML/u		Orytomout, Hard, SILT in Melay, gray, No All/Golvant adar. (100-000)	
35									
	X	23 25 27	100	0.5	806-35	ML		Ory tomes, Hord, STLT willy, gay, No HU Sohmit oder. C 100-0-0)	
								*	
-40	X	25 26 24	(00)	0.3	1105	MERL		Ory to most, herd, SILT w/chy, gray, no Ke/said	
-									
Drillia Drillia Samp Hamr Total	ig Eq ler T ner T Borii	o./Drille juipme: ype: ype/We ng Dept Depth;	nt: Sight: th:	\$ 8G.1	We Scilbs Filt feet bgs Sui	MAuger Di M Screene reen Siot S ter Pack Us rface Seal: nular Seal:	d Interval lize: sed:	inches feet bgs inches	Page:

Project: Rainier Mall

Project Number: 0611-017

Logged by: Date Started:

Surface Conditions: Well Location N/S:

Date Completed:

SEE &G. Well Location E/W: Reviewed by:

BORING LOG

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: Water Depth After Completion:

ļ ,				ate Completed	i; <u>'</u>		water Depth After Completion:	feet bgs	
_ <i>=</i> _[Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
45	\bigvee	37 50/61	150 (41)	0.3	806-95 8115	MI		Dry tomoth, Had, Set willy, gray with Varis, No He/solvent odor, (100-0-0)	
								Sureaschove	
-						3			
- 50	V	33 501. ~	150 150	0.4	806-50	mla		Game as above, po HC/solve Joses.	
70	學		ev_		1:20	ę szis		EORO SI'BAS.	
			i						
					7		١,		
55-									
						:		3)	
-									
		:							
60 Drilling	<u></u>	/Deitte			1,1,1				
Drilling Drilling Sampler Hammer	Equ r Ty	ipment pe:	t:	eetg.l	Well Scre	I/Auger Di I Screened een Slot Si or Pack Us	l Interval: ize:	inches feet bgs inches	
Total Bo Total We State We	ell C	epth:	h: /		feet bgs Surf feet bgs Ann	face Seal: Jular Seal: Jument Ty			Page:

Project: Rainier Mall Project Number: 0611-017 Logged by: 64F

Date Started: 1/24/18

Surface Conditions: Asphalt Well Location N/S: 255 Fig. Well Location E/W:

Reviewed by:

Date Completed: //26/18

BORING LOG BID

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: - 20 feet bgs Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0 -								c	
-	X	4 4 3	80	0.0	B10-01.5 0875	4M		Most, brown 5. 175 of with magrand, brite and ogene debits. No 110/501 untake. (30-65-5)	
5	7	£			B10-05			Most home silvanteside	- "
-	X	567	[00	0.0	B10-05 @ 0830	4M		Most, brown, 5. 17 Sandufgrant, 5000 (pots No HC150 No. Follor (25-65-10)	1
-				œ	27				4
-10		6	-	6.0	B10-10	***		10-11: MOAD, GILLY SAND, Brus with gray	
	X •	787	100	Ö.0	0935	ML	z.	10-11: Most, Filty SAND, Sand with gay Sith layers (column). Noftl/ placed color, (30-200) 11-115: Most, sandy SILT, Sourands empt Hedgay, no 40/solvent odor. (65-35-0)	
15				12.00					
Drillin Samp Hamm Total I	g Equ ler Ty ner Ty Borin Well I	uipmen /pe: 0 /pe/Wei	od M· lght: Dovi h: 4€,5	n hole/300 f	Well Screets Filte eet bgs Surfieet bgs Anni	/Auger Di Screened en Slot Si r Pack Us ace Seal: ular Seal: ument Ty	i interval: ize: ed:	Notes/Comments:	Page:

Project: Rainler Mail

Project Number: 0611-017

Logged by: 44

Date Started: 1/26/18
Surface Conditions: ASPANT
Well Location N/S: SEEF3.

Reviewed by:

Date Completed: 1/26/18

BORING LOG

BII

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling:

Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
Ô				G					
-	,		340					FILL debis of COBMS OBSERVED	
								On Sports.	
<u> </u>			, .						
.5						,	4		
_		i.							5
-								2 (<u>a</u>) = 1	
-			16						
-			₹'						38.5
10	77	9		0.0	B11-10	MML		ENI about the transfer	1923
4	X	67	50		(250			FN1, glass fabris. lange cabbles, SN ty SMQ no 116/50 Notades.	
-		7	776		15				
-		14 15 15	100)	Ø.	BII- 12 5 1255			Moint SAFF, SILT w/dayadfinesad, brown with simpy are mothing. [90-10-0] Then produm Said [15 fixed] & 16 ad 165	•;
_	^				1 165			7 mm prodium Sandless &c (m) + 16 ad 165	
15 Drillin	g Co	./Drille	Cosuda	James	Wei	II/Auger D	iameter:	inches Notes/Comments:	
Drilfin Sampi Hamm Totaf I	g Eq ler Ty ler Ty Borin	uipmen /pe: (t: 1751 ad M Ight: Jou	nhole/300	Well Scribs Filts	Il Screene een Slot S er Pack Us face Seal: nular Seal:	d Interval: ilze: sed:	Q .	Page:

Project: Rainier Mall Project Number: 0811-017

Logged by:

Date Started: **Surface Conditions:** Well Location N/S:

Well Location E/W: Reviewed by:

BORING LOG

Site Address: 4208 Rainier Ave

South, Seattle, WA

		DRA	ΛFT		eviewed by: ate Completed	l:		Water Depth At Time of Drilling: Water Depth After Completion:	feet bgs feet bgs
Depth (feet bgs)	_		% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15 -	X	, A		Seep61					
- -	-		Þ						
- 20 -					ž.			- " 2	
-	X	6511	90	0.2	681-20	ML		Mort, State Stituling Gray, Low plushing, No He/Solvet ade.	
				*					
- 25			LE Q	_				(GLP)	.g.
4	X	36	00	0.2	1310 1310	SP		Moit, very desse, sony modumes AND with subsocial General mets Nt, gray, No HE/ Folyet addi & the	
-		25%			ï			BOBE 26' Blos. Buch PIII borny with berbard Path so the courts Concrete. No GAN Procondustre burny.	*
30			i	8 _d*				No GON Prominates busing,	
Drillin Sampl Hamm	g Equ er Ty er Ty	/pe/Wei	t: 4 ght:		Well Scribs Filte	I/Auger Di I Screened een Slot S er Pack Us	i Interval ize:	inches feet bgs inches	
Total I	Veil [n: 		eet bgs Ann	face Seal: Iular Seal: Iument Ty	8	/ 141	Page: 2/2

Project: Rainier Mall BORING LOG BIZ Project Number: 0611-017 Logged by: 丁らし Site Address: 4208 Rainier Ave Date Started: 2/7/18 Strategies Surface Conditions: ASPHALT South. Well Location N/S: 13 5 of passive sample location DI Seattle, WA Well Location E/W: 13'W OR 3'N of MW05

Reviewed by:

Date Completed: 2/7/18 1'E

Water Depth After Completion: feet bgs **DRAFT** feet bgs Interval **Blow Count** % Recovery Graphic Sample **USCS** Well PID (ppm) Lithologic Description ID Class Construction Detail 4" of ASPHALT Driller oteasures auger angle w/ cell phone inclinameter: 48° 10'-11.5' (7'-8.5' bgs): Moist, loose, gravelly, silty SAND, brown, 3 B12-07 SM 3 50 @1020 1.1 no HC/ solvent odor (25-45-30) Drilling Co./Driller: CASCADE/Curtis Well/Auger Diameter: inches Notes/Comments: Drilling Equipment: HSA truck ria Well Screened Interval: feet bgs 450 ANGLED BORING Sampler Type: Dames Moche StT Stroom Screen Slot Size: inches Depth = linear feet of Hammer Type/Weight: AUTC/140 Filter Pack Used: Total Boring Depth: 36,5 (26.5*) Surface Seal: ASPHALT

Annular Seal: Bentonite

Monument Type:

Total Well Depth:

State Well ID No.:

i.e. B12-07 =) Sample depth. 7 bgs)

feet bas

Sample depths = Page:

Project: Rainier Mall Project Number: 0611-017

BORING LOG

	S	DU		rateg	ies s	Project Number: Logged by: Date Started: Surface Condition Vell Location Note Vell Location E/ Reviewed by:	; 0611-017 ons: 'S:	P°	ge 1		BORING LOG Site Address: 4208 Rain South, Seattle, W.	A
	_	1	DRA			ate Completed	フ゛	·	- ,		At time of Drilling:	
	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	(10	ithologic D		Well Construction Detail
	15	X	15 20 22	90	24:1	B12-10.5 @1035	ML		15'-16.5 sandy	': Mois SILT, b	t, dense, fine pown to gray, no so-20-0)	(1
	20	X	13 14 15	100	18.7	B12-14 @1050	ML		WET, fin	n sandy	hgs) Moist to de SILT with 2" wet ND, brown to tan, or (80-20-0)	450
	25	X	NR	90	1.6	B12-17 @1100	ML ML		SILT , trace NO HC/ So 15'-25.5'(1	of fine olvent oc 18'-18.5' , blue to	1 bgs) Moist, Sand, brown, loc. (45-5-0) bgs): Moist, gay, no HC/solver	i
	30	7	NF.	90	1,1	(8)1119	ML		28'-29,5' (2 with some HC/solvent	elay, blo odor. (;		
5 H T	Orilling Sample Jamme	Equ er Typ er Typ oring fell D	ipment pe: pe/Weig pepth epth:	ıht: 🎷	f	Well S Scree bs Filter eet bgs Surfa eet bgs Annu	Auger Diai Screened I En Slot Siz Pack User ce Seal: lar Seal: ment Type	interval: e: d:	Long.	inches feet bgs inches	Notes/Comments: Blowcom NR = Not report driller	Page: 2/3

Project: Rainier Mall

Project Number: 0611-017 Logged by:

Date Started: Surface Conditions: Well Location N/S:

Well Location E/W: Reviewed by: **Date Completed:**

w: See Pag

BORING B12 LOG

Site Address:

4208 Rainier Ave South, Seattle, WA

Water Depth At Time of Drilling: 🗻 l 5 feet bgs Water Depth After Completion: --feet bgs

<u> </u>					····			Trater Depth Atter Completion,	- reer bys
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
30	H								
35	X	NR	100	1.5	B12-25 @1130	ML		35'-36.5' (25'-26.5' bgs): Moist, Cluyey SILT, blue to gray, no HC/solvent odor. (100-0-0)	
- 40							·	EOB @ 36.5 bgs. Borehole abandoned, backfilled with bentonite and scaled will scaled will black-dyell flush to surface. black-dyell concrete ff	
45									
Drillin		./Driller		\		/Auger Dia		inches Notes/Comments:	

Drilling Equipment: Sampler Type:

Hammer Type/Weight: Total Boring Depth: Total Well Depth:
State Well ID No.: 5

feet bgs feet bgs Well Screened Interval: Screen Slot Size: Filter Pack Used: Surface Seal:

Monument Type:

Annular Seal:

feet bgs inches

NR = Blow counts not reported by driller.

Project: Rainler Mall Project Number: 0611-017

Logged by: ブラレ

Date Started: 2/7/18/

BORING LOG

Site Address: 4208 Rainier Ave

` South, Seattle, WA

Surface Conditions: AS FHALT
Well Location N/S: 3'S of passive sample location BO
Well Location E/W: 3'E

Water Denth At

Reviewed by:

		DR	AFT	R: D:	evlewed by: ate Completed:	2/4/18	3		th At Time of Drilling: ~// th After Completion: ———	feet bgs feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic E	Description	Well Construction Detail
0 -	-									
-										
									al deuse	
-5	X	5 5 5	40	0.9	B13-05 @1335	SM		5'-6.5': Moist with some g no HC/selvent occasional organic	silty SAND ravel, gray to brown odor. (30-60-10)	<i>/</i> /
								occasional organic	25	
-									ah aldam	
10	V	5	50		B13-10 @1345	SM		10'-11' Moist, silty gravel, brown, 1	SAND with some	
	\triangle	00 00				ML	1	wood, no HC/soli verysiff130-60 11-11.5 wet, elayer	vent odor;	
-								five gravel, b five gravel, b HC/solvent oder	silt, trace of flue to gray, no (45-0-5)	
15										
Drilling Sample Hamme	Equ er Ty er Ty	ipmen pe:	t: ¡₭A ۥ~~;-~~/- ight: AVT	DE/CUPTI Mode SPT 1140 H	Well S Scree Filter	Screened I on Slot Siz Pack Use	Interval: :e: :d:	inches	Notes/Comments:	
Total W	/ell D	epth:	h: 21.5	fe	et bgs Annu	ce Seal: / lar Seal: \(\) ment Type	BENTON		95	Page:

Project: Rainier Mall Project Number: 0011-017 Logged by: 354

Date Started: 2/7/18
Surface Conditions: ASPHALT
Well Location N/S:

Well Location N/S: Well Location E/W: Reviewed by:

Date Completed: ジオルる

BORING B13

Site Address: 4208 Rainier Ave

South, Seattle, WA

Water Depth At Time of Drilling: //
Water Depth After Completion:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15	X	567	100	1.7	B13-15 @1355	ML		15'-16.5': Moist, stiff, clayey SILT, ten to gray, no HC/sobent odor. (100-0-0)	
20	X	5 6 8	80.	2.3	B13-20 @1405	SM.		20-20.7': Moist, med. dense, silty SAND wiseme gravel, bizzon, no HC/solvent oder. (20-70-10) 20.7'-21.5': Moist, stiff, clayer SILT, gray, no HC/schunt oder. (100-0-0) EOB at 21.5' bgs. Borehole abandoned, backfilled wift bentonite, sealed with concrete flush to surface, black-dyd	
Drilling Sampi Hamm	g Equ er Ty _l er Ty	/Driller: lpment pe: pe/Weig g Depth	: yht: \		Well Screen	Auger Dia Screened en Slot Siz Pack Use	interval: :e:	inches feet bgs inches	

Project: Rainler Mail

Project Number: 0811-017 Logged by: JSL

Date Started: 2/7/18

Surface Conditions: ASPHALT
Well Location N/S: 0.5 N
Well Location E/W: 2' E of passive sample location F1

Site Address: 4208 Rainier Ave

LOG

BORING

South, Seattle, WA

DRAFT

Reviewed by: Date Completed: 2/1/18

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs

	_	UN <i>F</i>	<u> </u>	D	ate Completed	2/7/1	<u> </u>	Water Dep	th After Completion:	 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic [Description	Well Construction Detail
0							·			
<u>-</u>										
-										5 5 5
5 -	X	389	100	0.6	B14-05 @14 2 5	SM		5'-6.5': Moist track of graves gray, no HC/solu	t, silty SAND,	·
-	<u></u>							gray, no HC/solu	vent oder. 20-45-5)	
-									1 41:00	
-10 -	X	3 4	100		B14-10 @1430	ML		10-11.5°: Meist	med. Stiff , clayey SILT, no HC/solvent odos:	.
	_	•						(16	00-040)	
15								<u> </u>		
Drilling Sample Hamme	Equ or Ty or Ty	ilpmen pe: 4 8 pe/Wei	L HSA	SE/CURTI truck rig T split spe C/140 III	Well Screens Filter	Auger Dia Screened en Slot Siz Pack Use	Interval: ee:	inches	Notes/Comments:	
Total V	/ell D	epth:	-		eet bgs Annu	ice Seal: (dar Seal: (ument Typ	Bento	snite	8	Page: 1/2

Project: Rainier Mall Project Number: 0611-017

BORING LOG

Si		St	Eart rateg	ies sw	roject. I Tall III roject Number: ogged by: ate Started: urface Condition (ell Location E/ evilewed by:	0611-017 Ohs: S:	Site Address: 4208 Rainier Ave South, Seattle, WA				
		DRA	\FT_		ate Completed:	ケン		Water Depth At Time of Drilling:	_		
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description Very stiff Details	etion		
15	X	578	100	4.9	B14-15 @ 1440	ML		15'-16.5': Moist to wet clayer SILT, tan, no Ac/solvent ador, (100-0-0)			
20											
_	X	223	100	0.9	B14-20 @1450	CL		20'-21.5': Wettomeist, med. Stiff clay, no HC/scivent odor (100-0-0)			
- 25								EOB at 21.5 bgs. Borehole abandoned, backfilled with bentonite, sealed with concrete flush to surface.			
_											
	g Equ er Ty		t:	age!	Well Scree	Auger Dia Screened en Slot Siz Pack Use	Interval: :e:	inches feet bgs inches			

Hammer Type/Weight: **Total Boring Depth:**

Total Well Depth: State Well ID No.: lbs feet bgs

feet bgs

Arinular Seal:
Monument Type:

Page:

Project: Rainier Mail Project Number: 1276-001

Logged by: 405 Date Started: () 1 / 1 8
Surface Conditions: App

Well Location N/S:

Well Location E/W:

BORING LOG

Site Address: 4208 Rainier Avenue S

Seattle, WA

DRAFT

State Well ID No.: BKF 728

Reviewed by: Date Completed: 10/1/18 Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

20

(feet bgs) Interval	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0						o- ~10 lnur. Moist bru Sirty Still sports, upont fill.	
5						Diller heer	
10 19	îso	0.0	B15-07 C1335	sn	(a)	10-11.5' (7-8.5' bgs) Morst, V-clise, bren w gy, 5My SAID, the gnd, no HC/sdv. Occ (40-55-5)	
15 Drilling Co./Drill		acte (Sen		/Auger Dia		2/43 inches Notes/Comments: 25-40 feet bgs Inches 116 www.4	hau

Monument Type: Flushmat

Project: Rainier Mall Project Number: 1276-001

Logged by: LDS Date Started: 10/1/18
Surface Conditions: Well Location N/S:

BORING LOG

Site Address:

4208 Rainier Avenue S

Seattle, WA

Well Location E/W: Reviewed by: **DRAFT**

Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

		ite Completed:	-		Water Depth After Completion.	reet bys
Depth (feet bgs) Interval Blow Count "% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
15 16 22 100 19	0.0	Bis-11 @1340	Mycu		15-16.5 (10.5-12' bys) Must be onto, grap-box, Sttf day up som lessofglins, no obc/solv out (90-10-0) tom put luss.	
20 16 22 95 20 QZ	0.0	B15-14 C1400	M		20-21 5' (14-15' bys) Meat to sut, from w/ gm stras Stilt w/ V-he soul, no Hc/solv oder (95-10-0)	
25 /17 70 27 /39		B15-17 C1410	SM ML		24-25.5 (17-18' bgs) ~6" web to s.A., bom, 504 SAND W/ gmml(40-50-10) cm 6" web to most, the-gm fore SANM Stet, no the/Selv adda (84-20-6)	
30 Drilling Co./Driller: Drilling Equipment: Sampler Type:	er Pro Te	Well Well Scre os Filter eet bgs Surfa	/Auger Dia Screened en Slot Siz Pack Use ace Seal: ular Seal:	meter: Interval:	inches	1,-ble

Project: Rainier Mall Property Project Number: 1276-001-01

Logged by: LOS

Date Started: 10/1/18
Surface Conditions:

Well Location N/S: Well Location E/W:

Monument Type:

State Well ID No.:

BORING

Site Address: 4208 Rainier Avenue S

Seattle, WA

Reviewed by: Water Depth At Time of Drilling: DRAFT

feet bgs

			DK	461	Da	ate Completed	:		Water Depth After Completion:	feet bgs
	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
Ø	45									
	_									
	, =									
	_									
	3									
	50	,							((28 2 d) w) W	1
	1		18	80	00	B15-25 C1435	ML		35-36,5 (25-26 bys) More light gry-blue, SILT, no ite/solv. och (100-0-0)	7
	Ī		22			E1435			Inglit graphic, Delle, no	
ì									Hysow. 200 (100-000)	
									,	
l	S-									
	_									
1	55	7	500	110	6.0	B15-28	M		40-405 (28-28:5/298)	
l	-	1	20/6	110		B15-28 C1445			40-405 (28-28/s/298) Som us presus.	
	2	XI.				,				
	1									
l					,				÷	
									n s	
ŀ	60 Drilling	Co./	Driller:			Well	/Auger Dia	meter:	Inches Notes/Comments:	
	Drilling Sample	Equ	ipment	::	Λ.	Well	Screened en Slot Siz	Interval:		
	Hamme Total B	r Typ	oe/Wei	ght:	e pue	Filte	r Pack Use		or =:-	
	Total W	ell D	epth:		f	eet bgs Anni	ular Seal:			Page:

Project: Rainier Mall Project Number: 1276-001

Logged by: LDS

Date Started: 10/1/18
Surface Conditions: Ascult

Well Location N/S: Well Location E/W: Reviewed by:

BORING LOG

Site Address: 4208 Rainier Avenue S

Seattle, WA

DRAFT

Total Boring Depth: 40 lnew 29
Total Well Depth: 40 lnew 29

State Well ID No.:

feet bgs

feet bgs

Surface Seal: Comt

Annular Seal: Beatre Monument Type: Hushint

Date Completed: 65/1/18

Water Depth At Time of Drilling: ~(5 Water Depth After Completion:

feet bgs feet bgs

Page:

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS	Graphic	Lithologic Description	Well Construction Detail
0 -								y" AspirA	
-								Dille nisses ango angl W metmerler 46,5°.	
5						=		dly spels 8-10' Most selly SAND or Brok Franks [FM]	
-				•					
- 10 -	Δ	13 21 20 21	(00	6.0	B16-07 C090S	SM	(g.*)	Moder V-dise, SMy SAND, W/ grand, no HC color (35-55-10) or solv.	
15									
Drilling Sample	g Equ er Tyl	ipment pe: <i>C</i> ,	II HSA AL	le / Sanse sie / 300 11	Well	01-4-01	Interval:	2/4/5 inches 25-40 feet-bgs (now inches	L Boz

Project: Rainier Mall Project Number: 1276-001
Logged by:

Date Started: 10/1/18
Surface Conditions:
Well Location N/S:

Well Location E/W:

BORING BIG

Site Address: 4208 Rainier Avenue S

Seattle, WA

DRAFT

Reviewed by: Date Completed:

Water Depth At Time of Drilling: Water Depth After Completion:

Depth (feet bas)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	×	Well Construction Detail
15	X	3 19 17 30	(00	4,9	B16-10	18 11	SIL	once, for Soul Stut, born to gry, from part hours ell' Noth/Sold Color (80-20-0)	
20-	X	15 22 17 39	70	6,0	Bi6-14 C0930	M	1	20-21.5' (14-15.5's) Morst- to net, fre say Stat w/ sae sty the am smpr, born to to, no the/solv alr (80-20-0)	
25	X	28 21 36	100		Bi6-17 C0940	μ		24-25,3' (17-18.' bys) Must V-dise, SILT, the ch free SAM, blue to 37, no HC/Silv colo (100-0-0)	
30 Drillir	ng Co.	Solar Driller:		0.0	Bi6-20 C0950	ML /Auger Dia		28-29' (20-21' hgs) Most, V-duse Stit, blue b gy, the Sme lives no Hefselv ods (95-5-0)	5
Drillir Samp Hamn Total Total	ng Equ pler Ty ner Ty Boring Well I	uipment	::	- 628	Well Screets Surfacet bgs Annu	Screened en Slot Si r Pack Use ace Seal: ular Seal: ument Tyr	Interval: ze: ed:	feet bgs inches	Page:

Project: Rainier Mall Property Project Number: 1276-001-01

Logged by: LAS Date Started: 40/1/(3

Surface Conditions:

Well Location N/S: Well Location E/W:

Reviewed by:

Water Depth At Time of Drilling:

Site Address: 4208 Rainier Avenue S

LOG BIG

BORING

feet bgs

Seattle, WA

DRAFT

Water Depth After Completion: feet bgs **Date Completed:** Interval % Recovery **3low Count** Graphic Depth (feet bgs) Well USCS Sample PID (ppm) Lithologic Description Construction ID Class Detail BS-36 bys (25-26 bys)
Marst, v-dise gry-blu
SM no HC/solv colv
(100-0-0) B16-28 @1010 ML ilo 40-41.5 (28-29 bys) B16-28 ML 0,0 Som is previs. 100 CIULS EOB @41.5 lmr Eut set well strend 25-40 1 hrm.

Drilling Co./Driller: Drilling Equipment: Sampler Type:

33

40

Hammer Type/Weight: **Total Boring Depth:**

Total Well Depth: State Well No .: Well/Auger Diameter:

Well Screened Interval: Screen Slot Size:

Filter Pack Used: Surface Seal: Annular Seal: **Monument Type:**

feet bgs

feet bgs

Notes/Comments:

feet bgs inches

thches

Page: 3 d 3

Project: Rainier Mall Project Number: 1276-001

Logged by: 6

Date Started: 10/2/18
Surface Conditions: ApphA
Well Location N/S:

Well Location E/W:

BORING LOG

Site Address: 4208 Rainier Avenue S

Seattle, WA

DRAFT

Total Well Depth: 35

State Well ID No.:

Reviewed by: Date Completed: 10/2/18 Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Page:

	Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
	0								~4" Asplot at Sorfue	
	-									
	_				,.				-	
	5-	V.	3 3 2	(00)	0.0	Bi7-05 @1030	SM		Morot, bon-gn, SMy SNVD W/ gnd, w Hc/soiv.cdr Proble SM (35-55-10)	
	-		6							
	7								-	
	10	X	3 6 4	(00)		B17-10 C1033	SM	= (9)	Most to days, bon-gry, SMy SAND of gran, no te/Sh car (\$5-5010)	
			3 4 7	(00)	0.0	B17-125 C1037	mefa		morst, blue gry of som melly, Stet/cum of fre SAND, no the celo, the ped hues (90-000)	
-	15 Drilling	g Co.	/Driller	Lesso	le/smis	Well		meter:	2/4/S inches Notes/Comments:	
	Drilling Sample Jamme	g Equ er Ty er Ty	iipmeni pe: /	t: 1-15A AL ght: m-h	ve/300 11	Well Scre bs Filte	en Slot Siz	e: O	new Stran SAMS	

Annular Seal: Bubbs Monument Type: Zlound

feet bgs

Project: Rainier Mall Project Number: 1276-001

Logged by: LOS

Date Started: 10/2/18
Surface Conditions:

Well Location N/S:

Well Location E/W:

BORING LOG

Site Address:

4208 Rainier Avenue S

Seattle, WA

DRAFT

Reviewed by: **Date Completed:**

Water Depth At Time of Drilling: Water Depth After Completion:

					ate Completed			water Deptil After	o impioso in	ieet bys
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Descri	ption	Well Construction Detail
15	X	6000(3)	100	0,0	Bi7-15 C 1042	MI/CL		Morst, Bry-Blu W, Sittfiling w/ Sinh no HC/Solv ce (95	-5-0)	,
	X	777	(00	6.0	B17-17.5 @ 1048	m/c	-	morst to wet, in sitt/clus w/ free no He/solv. Obles (- 176KUS)	
_20	X	6 6 6	(00	0.0	B17-20 @1053	Mefce		Morst is dup, true of forguts No HC/So	t branger organe party du color	,
25	X	20 50/5	100	1.7	B17-25 @1058	SM-S		Sisturles, gry, fre w/ Stbt, no ttc/solv	tonul. SAND relt (15-85-0	b)
30 Drilling Sample Hamme Total E Total V State V	g Equ er Ty er Ty Boring Vell C	pe: pe/Wei g Deptl)epth;	t:	- 6.8	Well Scre ps Filter eet bgs Surfa eet bgs Annu	Auger Dia Screened en Slot Siz Pack Use ace Seal: alar Seal: ument Typ	Interval: re: ed:	inches feet bgs inches	s/Comments:	Page:

Total Boring Depth:

Total Well Depth:

State Well ID No.:

Project: Rainier Mall Property Project Number: 1276-001-01

Date Started: 10/2/18
Surface Conditions:

BORING | BIT

Site Address: 4208 Rainier Avenue S

Seattle, WA

Well Location N/S:
Well Location E/W:

Reviewed by: Date Completed:

feet bgs

feet bgs

Surface Seal:

Annular Seal:

Monument Type:

Water Depth At Time of Drilling: Water Depth After Completion: feet bgs feet bgs

Page:

Depth (feet bgs)	Interval	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Constructio Detail
O 45	X 59	100	0.3	B17-30 @1107	SP		no HC/solv all (15-85-0)	
50	X 50/s	200	0,0	B17-35 C1135	SP Sm		8" Preus en unt to SiA, gry, STA7 SAND, no HC/Salv ONS (25-850)	
						-	ONS (25-850)	
55								
55				1				
	Co./Dril				Auger Dia		Inches Notes/Comments:	

State Well ID No.:

Project: Rainier Mail Project Number: 1276-001

Logged by: Lass

Date Started: 10/2/18
Surface Conditions: Application N/S:

Well Location E/W:

BORING LOG

BIS

Site Address: 4208 Rainier Avenue S Seattle, WA

DRAFT

Reviewed by: Date Completed: 10/2/18 Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0								ry" Asplut at surban	
								·	
5	X	8	[00]	012	B18-05 C0840	5M		Morsi, ingut gry-by, soly for SANS w/ grul, no old	
1		6			7			(35-55-10)	
					a			a a	
10									
-10	X	6 00 0	(60)	12.4	B18-10 C0845	m/c	L	Merst Inght blue-gy, Sty w/ true for som + organs/per (45-5-0) no the/solv celes.	Clay
-	4	1			2:00.6			(95-5-0) no HC/silv cler.	
	X	7 55	[00	145	518-1215 COESO	Myc	L	Some as previous	
15									
Drillin Samp Hamm	g Equ ler Ty ler Ty	iipment pe: (pe/Wei	t: HSA SAL ght: In-h	Je/300 11	Well Scre os Filte	Screened en Slot Si r Pack Use	l Interval: ze: 📀 ed: 🏳 🗷	2/4,5 inches 15-30 feet bgs inches	
lotali	3orin	g Depth epth:	1: 31	Te.		ace Seal: ular Seal:		1	Page:

Monument Type: Fleshmit

Project: Rainier Mall Project Number: 1276-001

Logged by: 65 Date Started: 10/2/3

See pyo ! Well Location N/S: Well Location E/W:

BORING LOG

Site Address: 4208 Rainier Avenue S

Seattle, WA

DRAFT

State Well ID No .:

Reviewed by: **Date Completed:**

Water Depth At Time of Drilling: Water Depth After Completion:

feet bgs feet bgs

2063

Depth (feet bas)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description C	Well onstruction Detail
15	1	998	(00)	40	B18-15 e0900	mela		Morst to dup, light bom, SMT chy w/ V-fu Soul, no Hc/sdv chr (90-10-0)	
	A	19 29 20 (44)	100	03	Bi8-17,5 @090 9 _	meja	-	Mesor, blue-yeg - V-close Cly (SAA, no the cols (100-0-0)	
- 20	X	14 21 17 338	100	Ø,i	Bte-20 CO90S	m/a		Sme as prins	
25	X	23 27 29	(00	6.0	Bi8-75 CO917	meja		Sme as prins	
Drillin Samp Hamn Total Total	ng Equ ler Ty ner Ty Borin	pe/Wei g Depth Depth:	t:	- PA	Well Scre ps Filter eet bgs Surfa eet bgs Anna	/Auger Dia Screened en Slot Sir Pack Use ace Seal: ular Seal:	Interval: ze: ed:	inches	ge:

Monument Type:

State WellID No.:

Project: Rainier Mall Property Project Number: 1276-001-01

Logged by: Loss Date Started: 60/2/18

Surface Conditions: Well Location N/S:

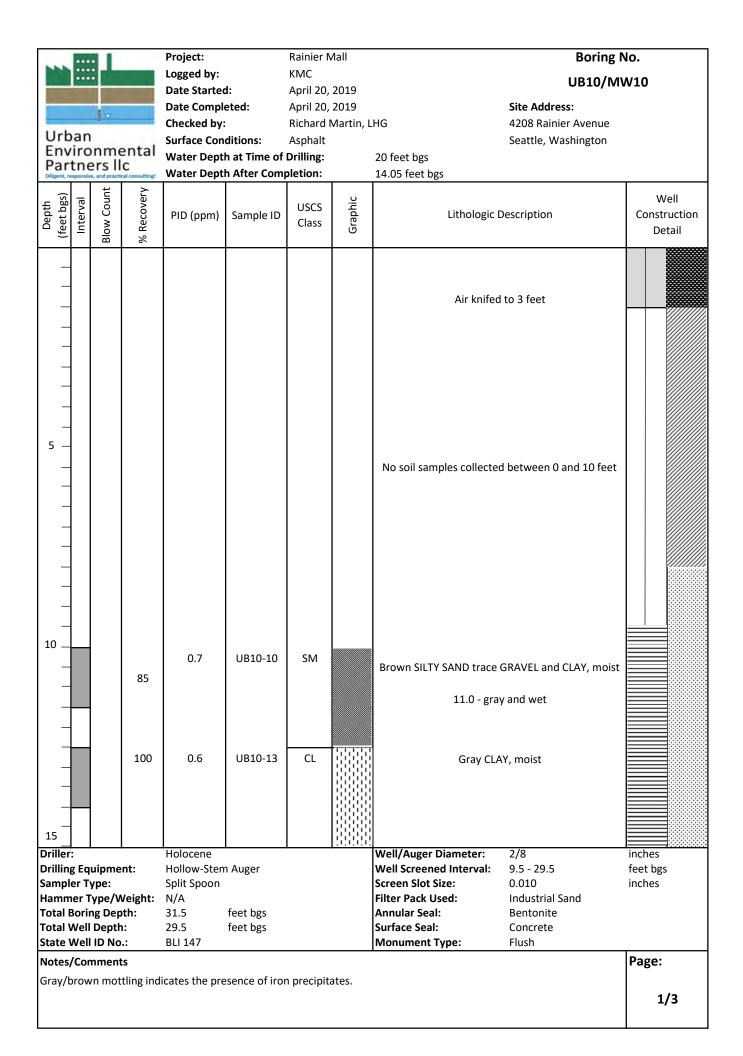
Well Location E/W: Reviewed by:

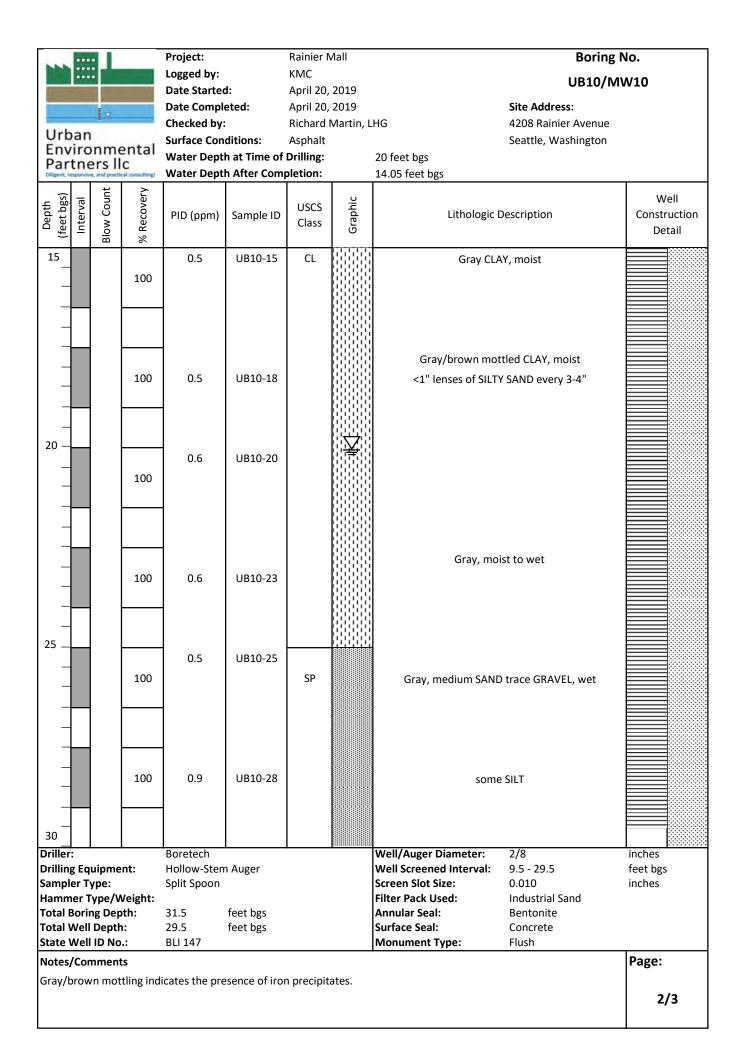
Water Depth At Time of Drilling:

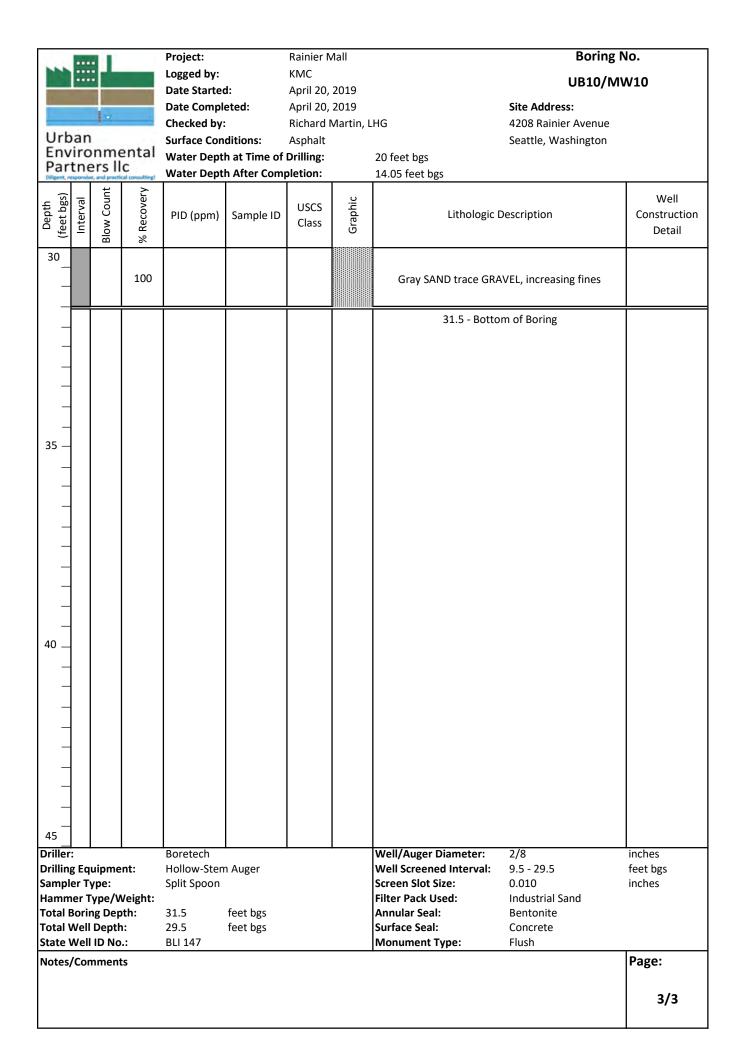
BORING

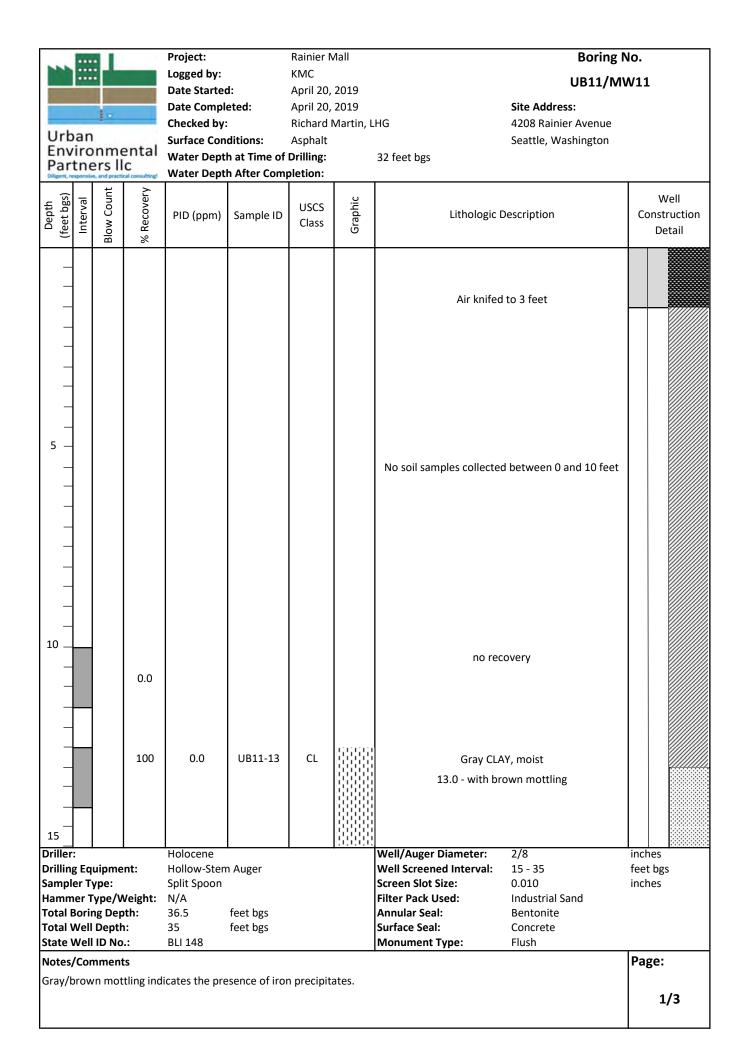
LOG BIB

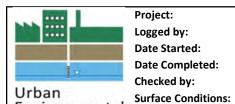
Site Address: 4208 Rainier Avenue S


Seattle, WA


feet bgs


323


DRAFT **Date Completed:** Water Depth After Completion: feet bgs Interval % Recovery Blow Count Graphic Well **USCS** Sample PID (ppm) Lithologic Description Construction ID Class Detail B18-30 0,0 mela 100 ecaro EOB e 31' bys, set Gov well scame 15-30. 35 40 inches **Drilling Co./Driller:** Well/Auger Diameter: Notes/Comments: **Drilling Equipment:** Well Screened Interval: feet bas inches Sampler Type: Screen Slot Size: Hammer Type/Weight: Filter Pack Used: **Total Boring Depth:** feet bgs Surface Seal: Page: **Total Well Depth:** feet bgs Annular Seal:


Monument Type:

Project: Rainier Mall

Logged by: KMC

Date Started: April 20, 2019 **Date Completed:** April 20, 2019 Checked by: Richard Martin, LHG

4208 Rainier Avenue Seattle, Washington

Site Address:

Boring No.

UB11/MW11

Environmental Partners IIc Water Depth at Tin

ce Conditions:	Asphalt	
r Depth at Time o	of Drilling:	32 feet bgs

Par	tne	ers II	C cal consulting!	-	h After Comp	_		32 feet bgs		
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic [Description	Well Construction Detail
15_					UB11-15	CL		Gray/brown mot	tled CLAY, moist	
_			100	0.8				<1" lenses of SILT	Y SAND every 3-4"	
_										
_										
_]						
_										
_			100	0.2	UB11-18			0.4-foot lens of brown/		
_								SAI	ND	
_										
20 —										
_					UB11-20					
_			100	0.4						
_				1						
_										
_										
_								W	et	
-			100	0.6	UB11-23					
-				-						
-										
25 _				-						
-				0.5	UB11-25					
-			80	0.5						
-				-						
-										
-				1			! 1! 1! 1! 1! 1 	Corre CH TV CAND	ith CDAVEL as sist	
-			75	0.9	UB11-28	SP		Gray, SILTY SAND w	vith GRAVEL, moist	
-			/5	0.9	UB11-28	38				
-				1						
30										
Driller	$\stackrel{\textstyle }{{}{}}$			Holocene				Well/Auger Diameter:	2/8	inches
Drilling		uipme	nt:	Hollow-Sten	n Auger			Well Screened Interval:	15 - 35	feet bgs
Sampl			-	Split Spoon	- 0			Screen Slot Size:	0.010	inches
			Veight:	N/A				Filter Pack Used:	Industrial Sand	
Total I				36.5	feet bgs			Annular Seal:	Bentonite	
Total				25.5	foot bas			Surface Scale	Concrete	

Surface Seal:

Monument Type:

Concrete

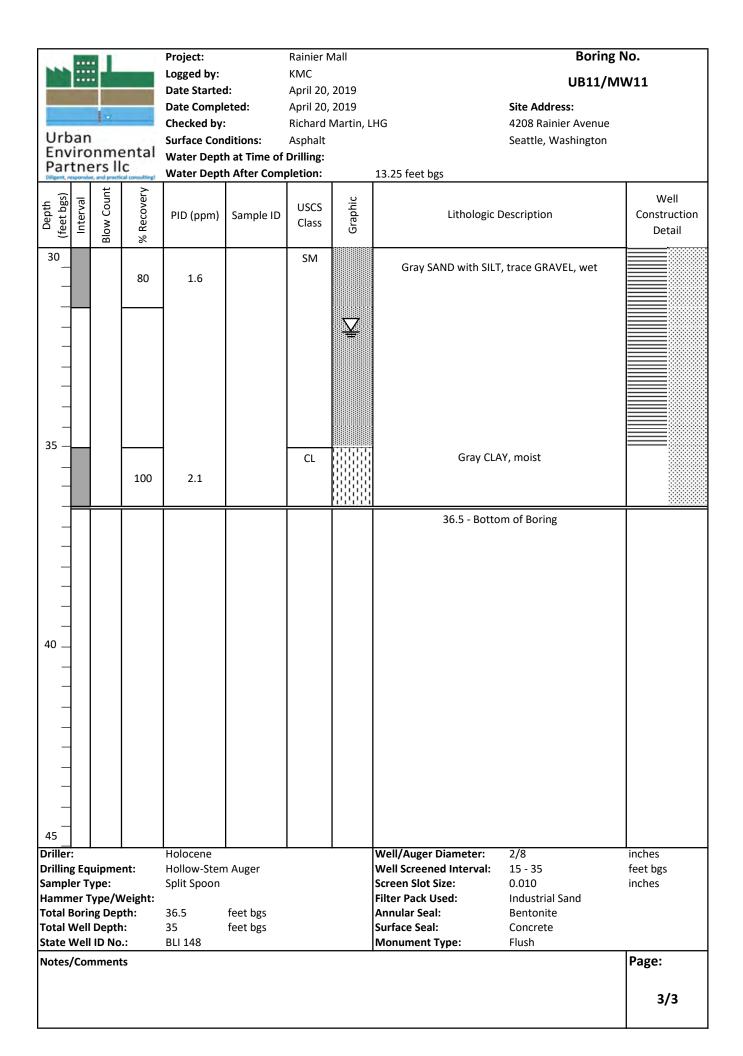
Flush

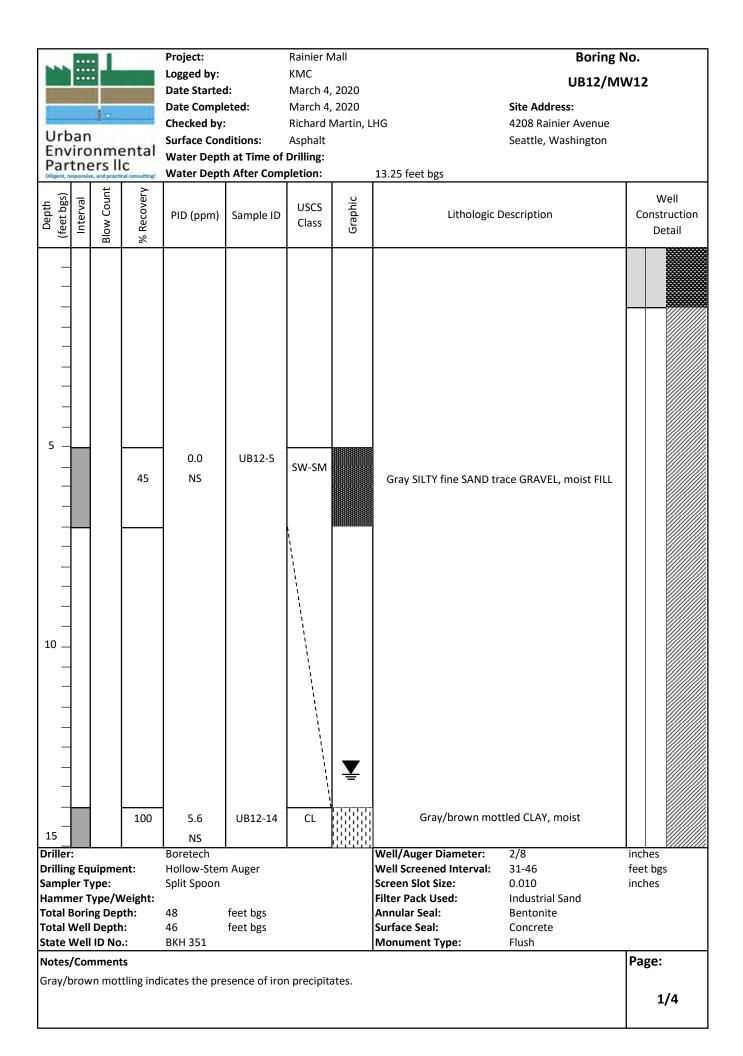
Notes/Comments

feet bgs

Gray/brown mottling indicates the presence of iron precipitates.

35


BLI 148


Total Well Depth:

State Well ID No.:

Page:

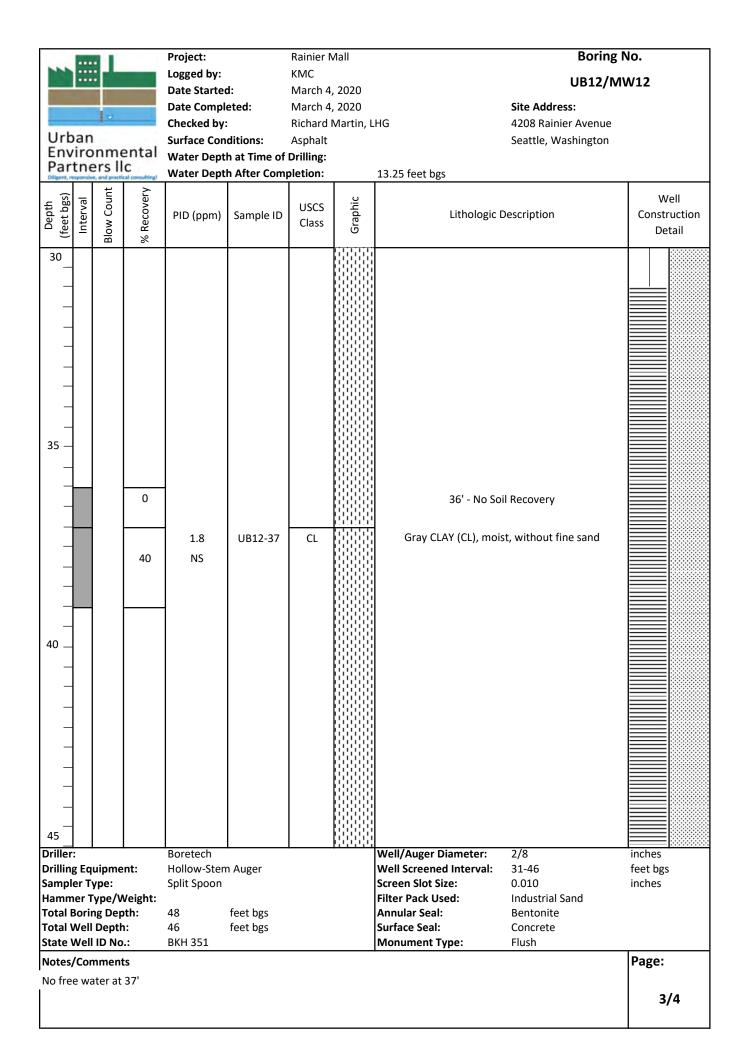
2/3

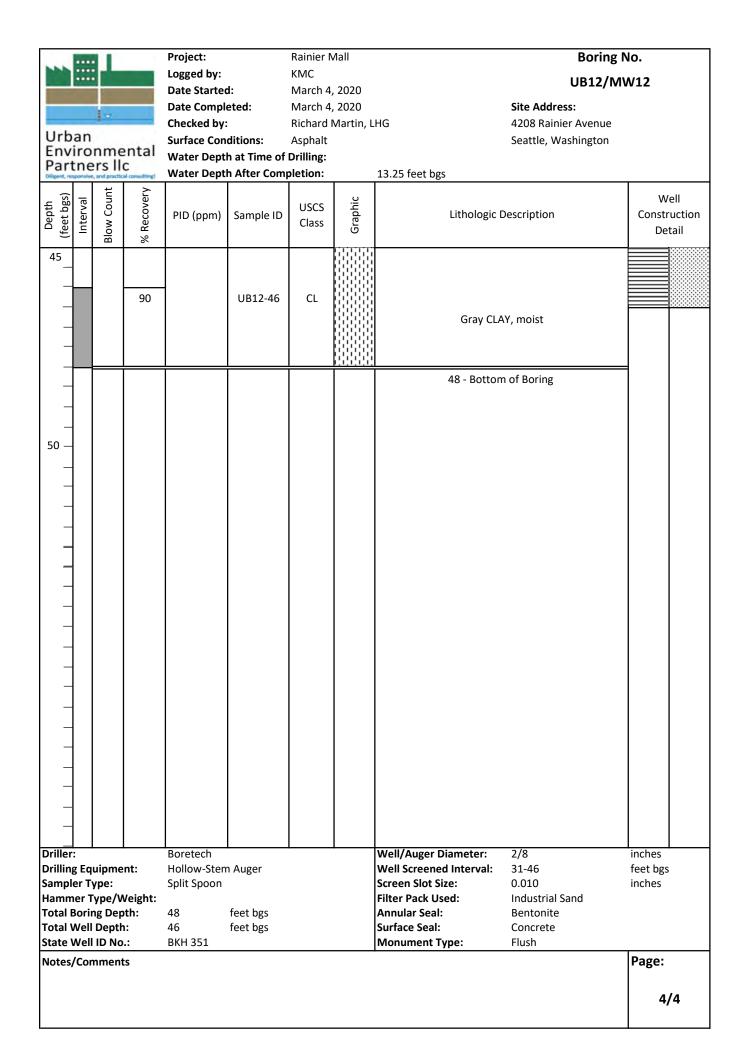
No free water at 22 feet bgs

Project: Rainier Mall

Logged by: KMC

Date Started: March 4, 2020 **Date Completed:** March 4, 2020 Checked by: Richard Martin, LHG **Surface Conditions:** Asphalt


Site Address: 4208 Rainier Avenue Seattle, Washington


Boring No.

UB12/MW12

2/4

Part	Invironmenta Partners IIc ligent, responsive, and practical consulting			Water Dept	h at Time of I h After Comp	_		13.25 feet bgs		
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic D	Description	Well Construction Detail
15			70	7.5 NS	UB12-22	SM CL		Gray/brown mot	y fine silty SAND, moist	
Driller: Drilling Sample Hamm Total B Total V State V	g Equ er Ty er T Borir Well	/pe: ype/W ig Dep Depth	Veight: hth:	Boretech Hollow-Sten Split Spoon 48 46 BKH 351	n Auger feet bgs feet bgs			Well/Auger Diameter: Well Screened Interval: Screen Slot Size: Filter Pack Used: Annular Seal: Surface Seal: Monument Type:	2/8 31-46 0.010 Industrial Sand Bentonite Concrete Flush	inches feet bgs inches
Notes/	/Con	nment	:s	icates the pre	esence of iror	n precipita	ates.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Page:

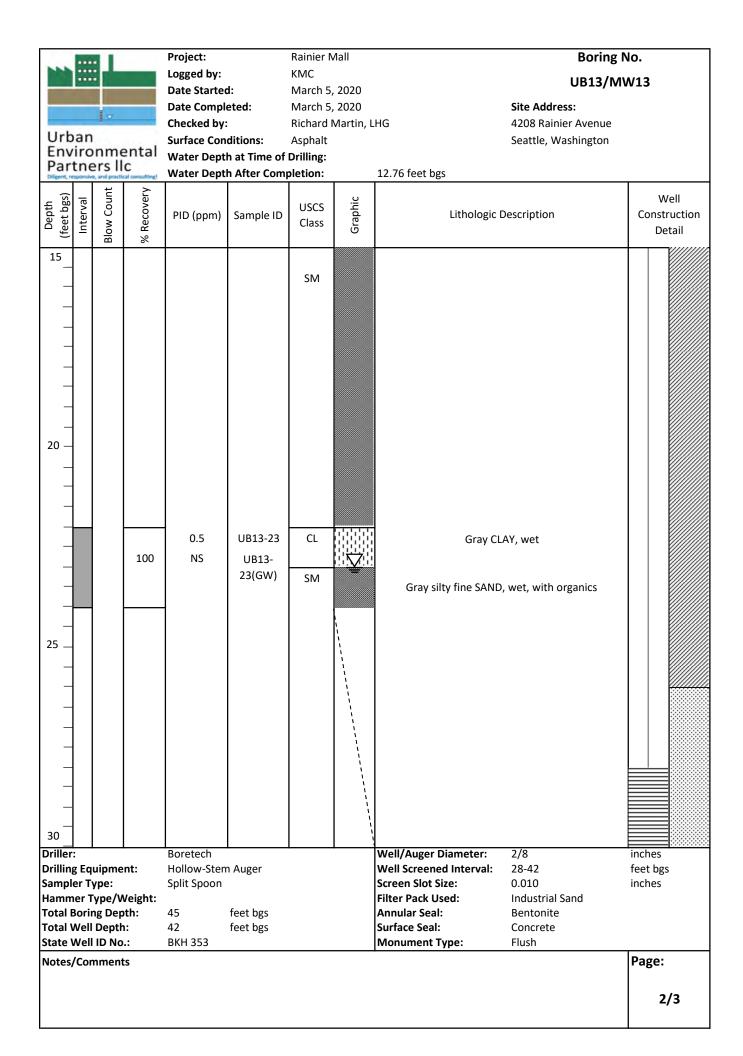
Urban Environmental

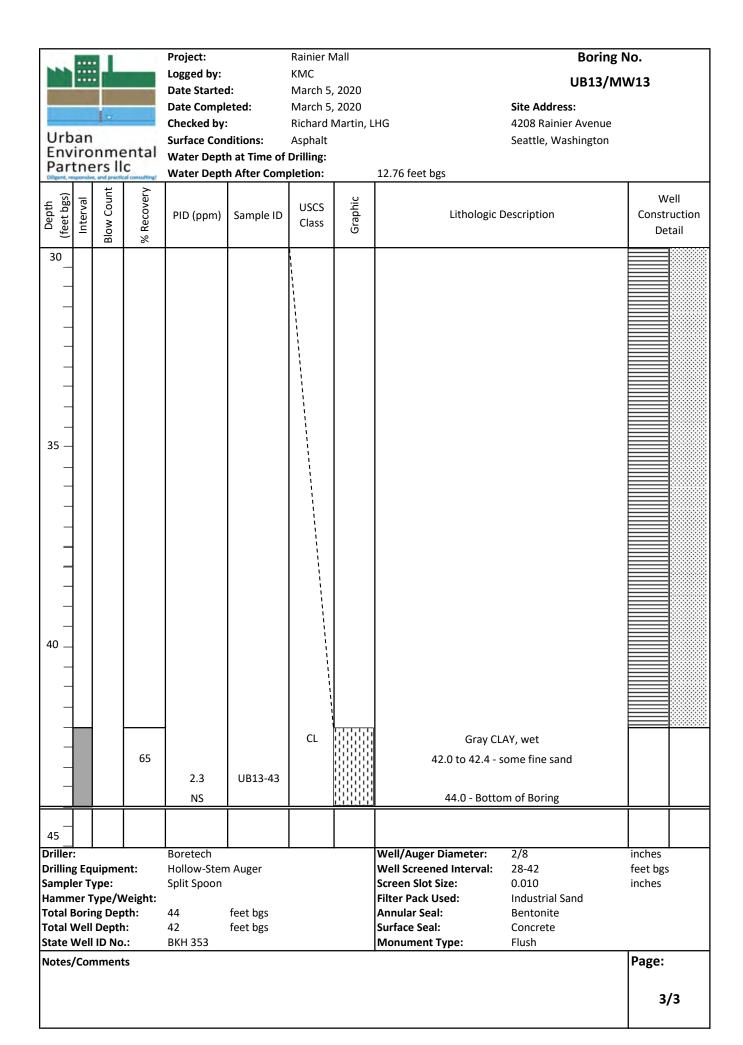
Project: Rainier Mall

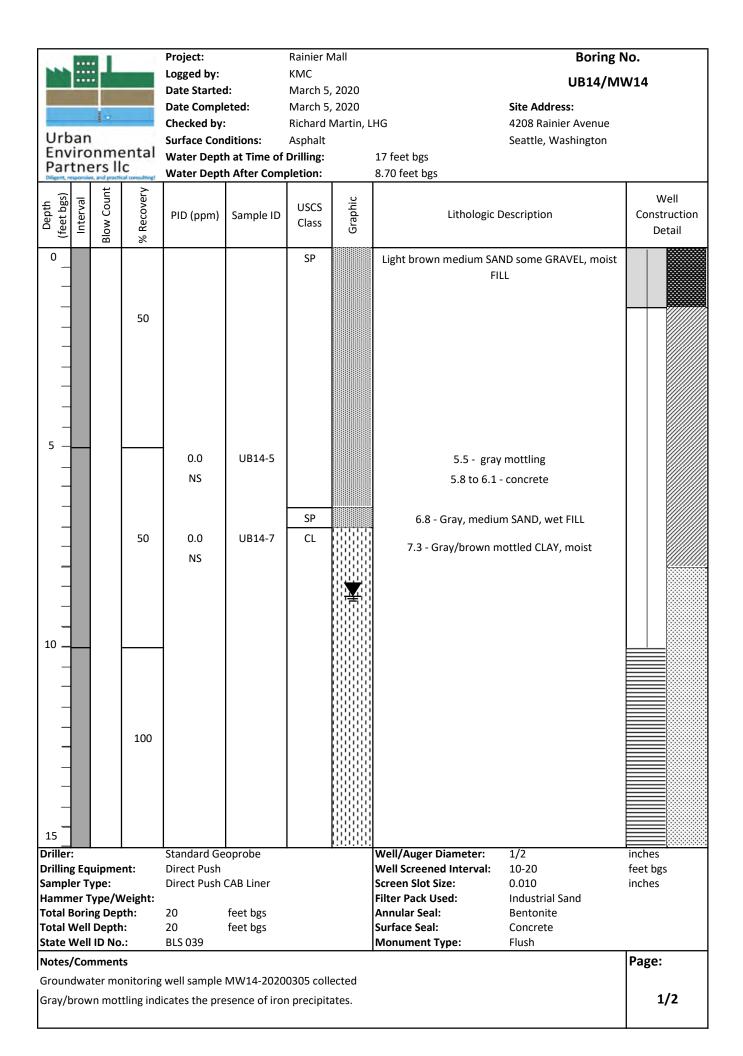
Logged by: KMC

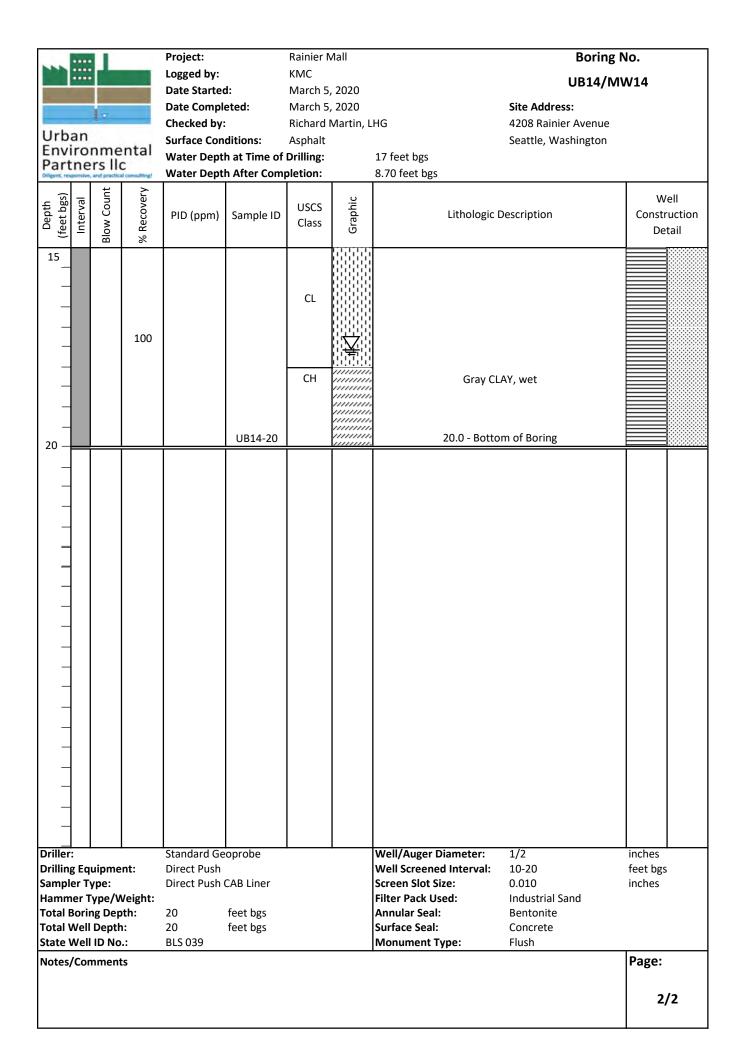
Date Started: March 5, 2020 **Date Completed:** March 5, 2020 Checked by: **Surface Conditions:**

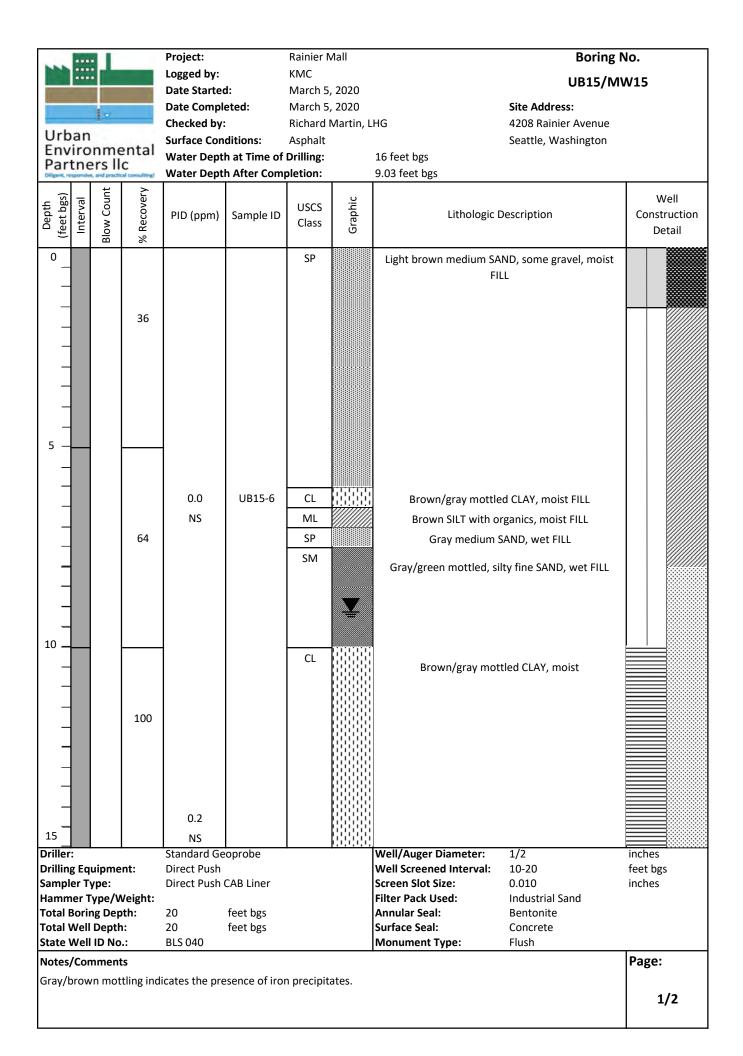
Richard Martin, LHG 4208 Rainier Avenue Seattle, Washington Asphalt

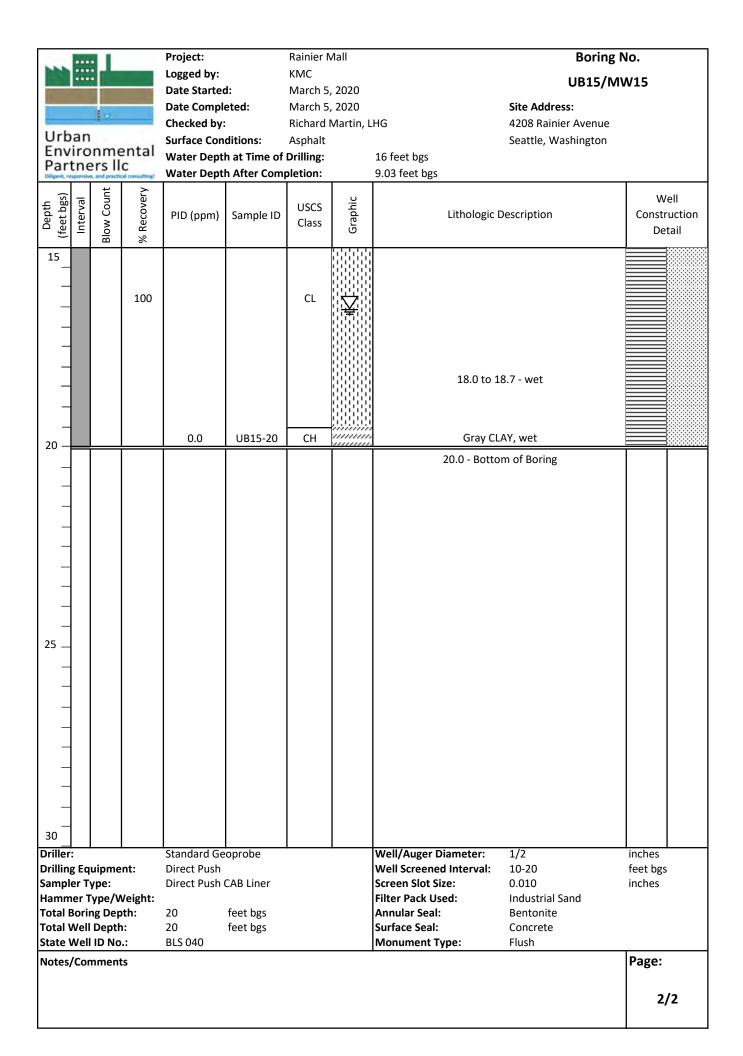

Boring No.

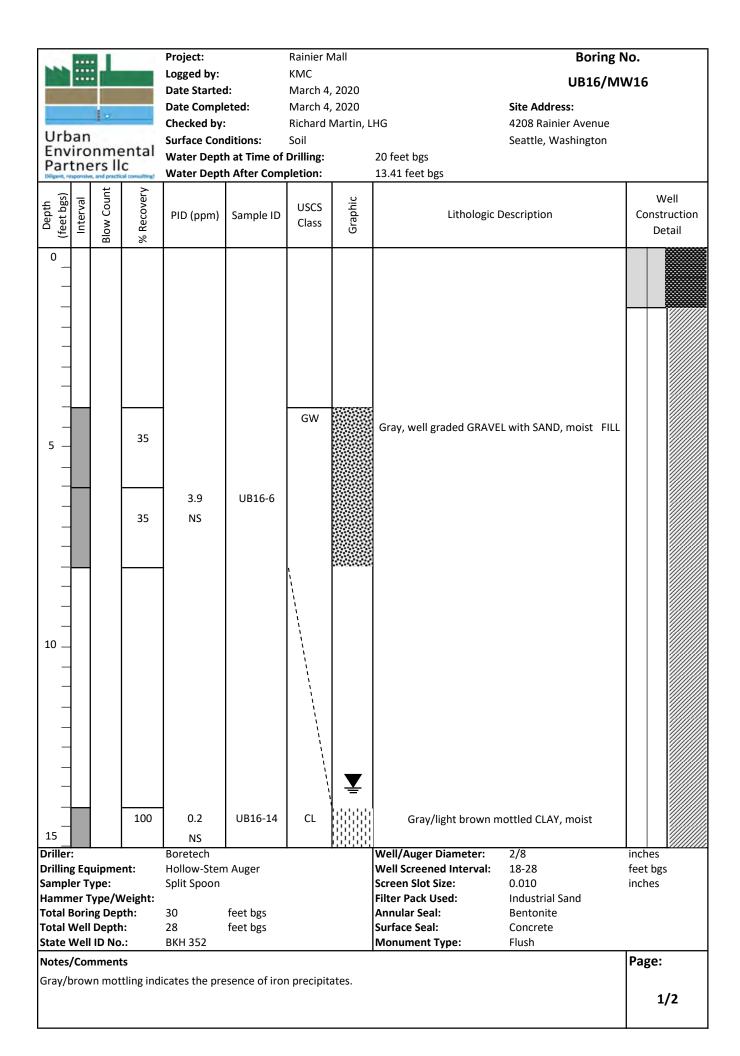

UB13/MW13

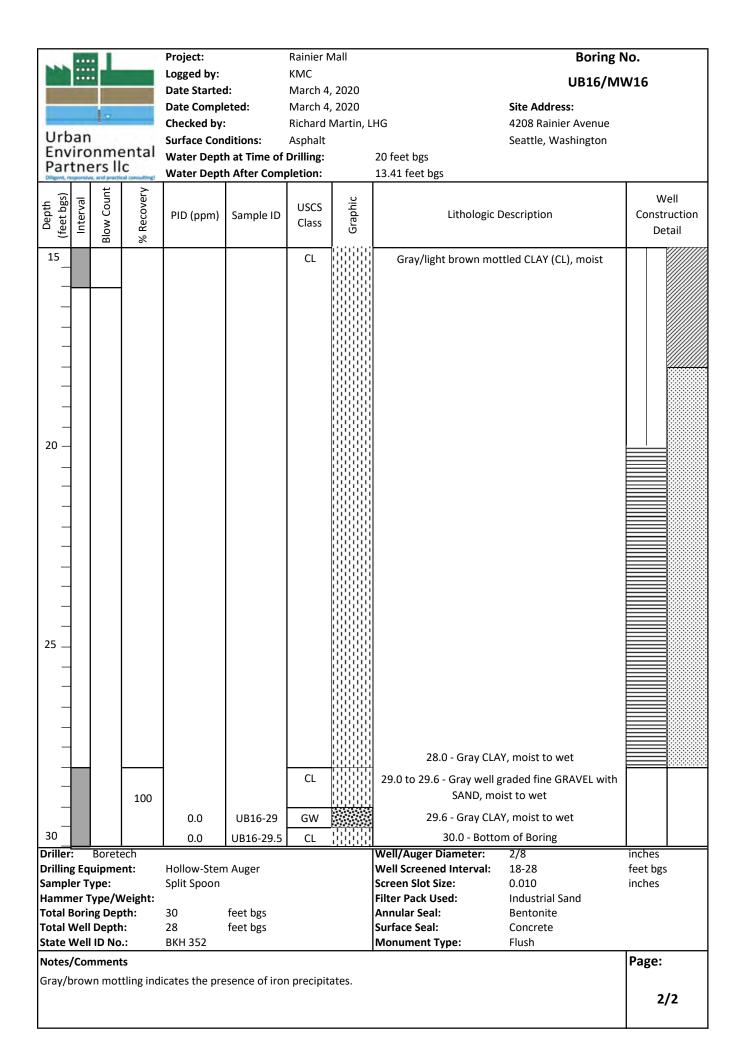

1/3

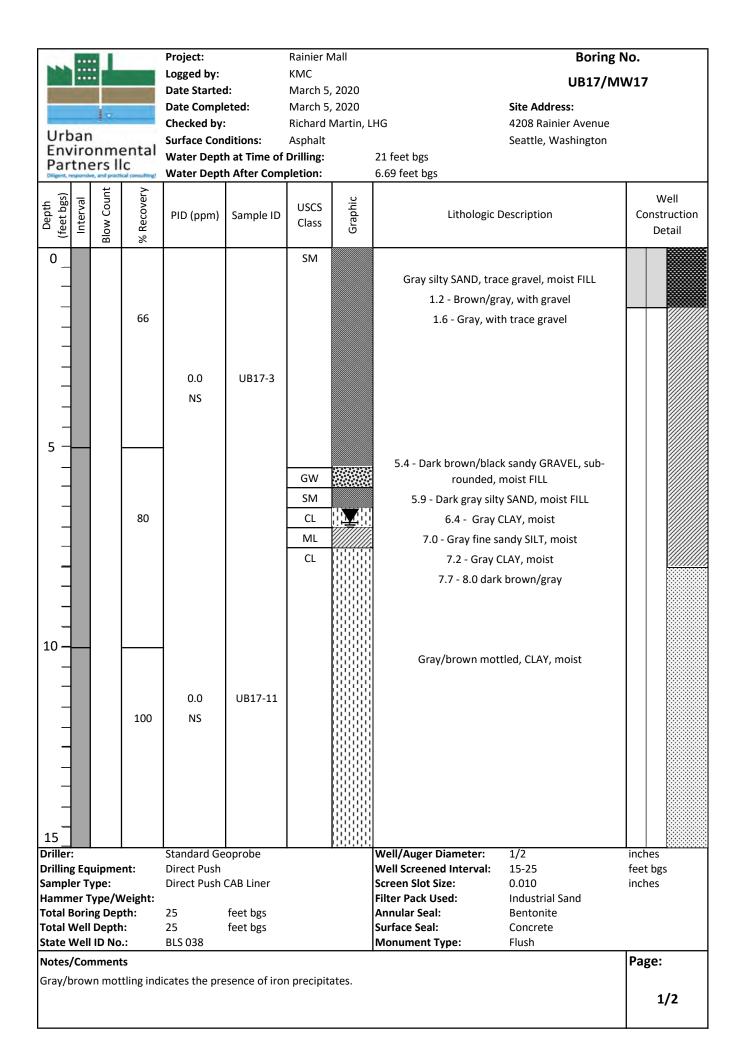

Site Address:

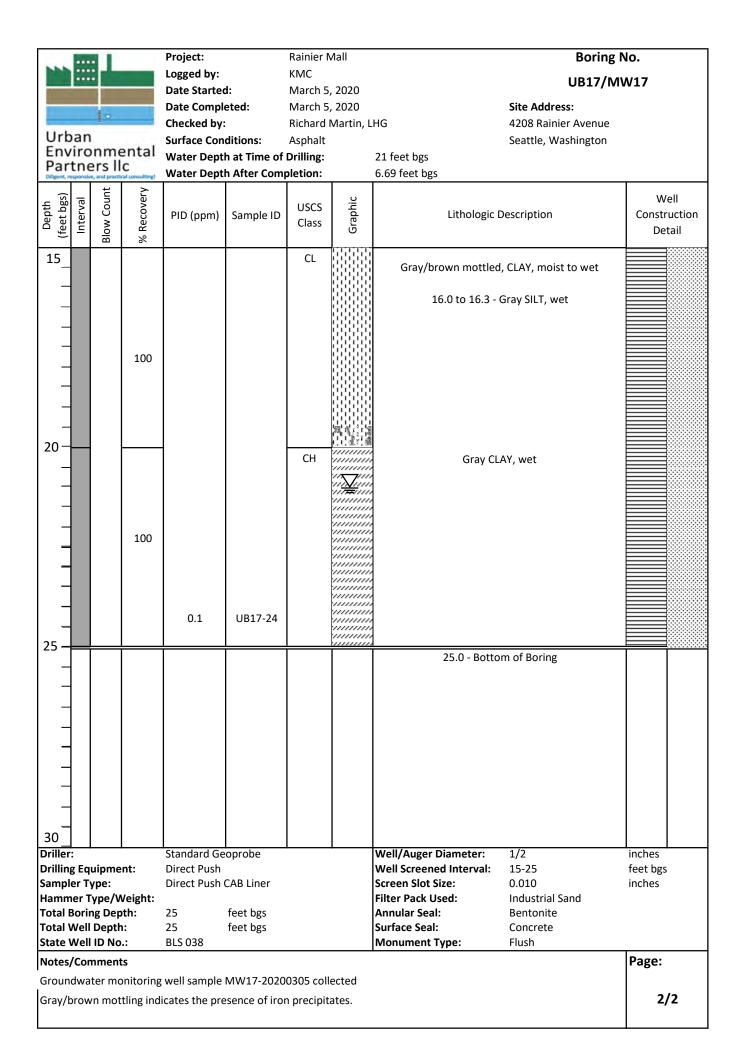

Envir Partr	ronme ners II	ental c	•	h at Time of h After Com _l	_		12.76 feet bgs	,	
Depth (feet bgs)	Interval Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic D	escription	Well Construction Detail
0	Equipme	35 50	0.4 Boretech Hollow-Sten	UB13-4 UB13-9	SM	₩	9.0 to 9.3 - Brown with GRAVEL 9.3 to 9.6 - v 9.6 - as above with 0	no GRAVEL gray silty SAND with , moist yood debris	inches feet bgs
Sampler Hammer	Type: r Type/V	Veight:	Split Spoon				Screen Slot Size: Filter Pack Used:	0.010 Industrial Sand	inches
Total Bo Total We State We	ell Depth	ո։	45 42 BKH 353	feet bgs feet bgs			Annular Seal: Surface Seal: Monument Type:	Bentonite Concrete Flush	
Notes/C									Page:

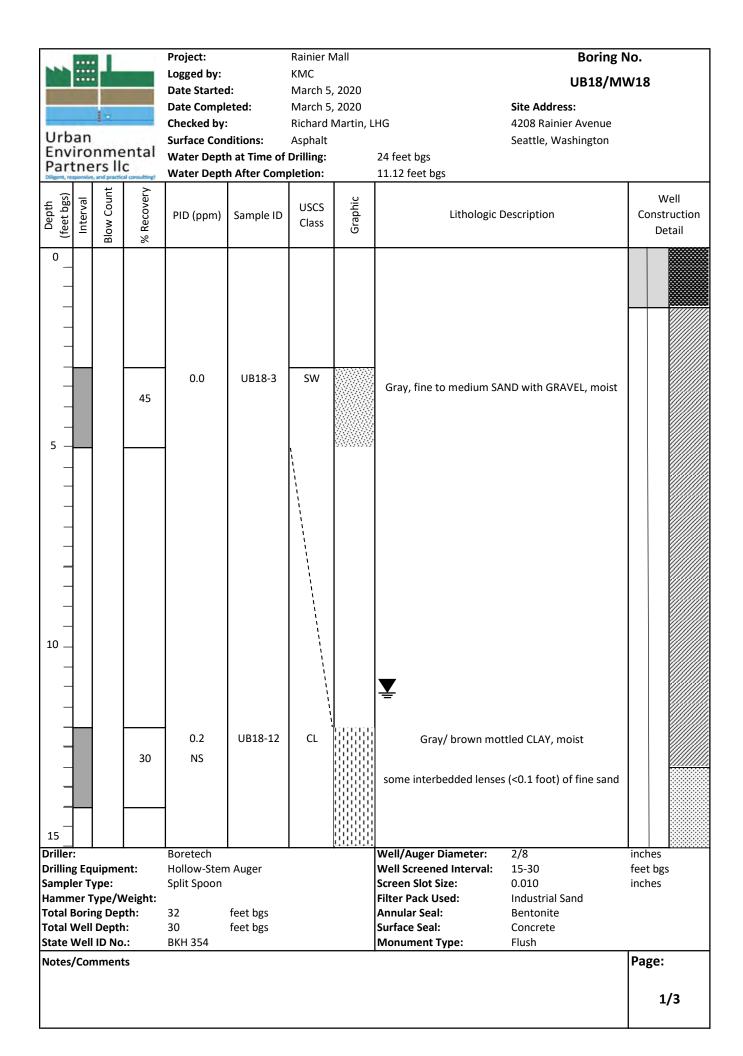


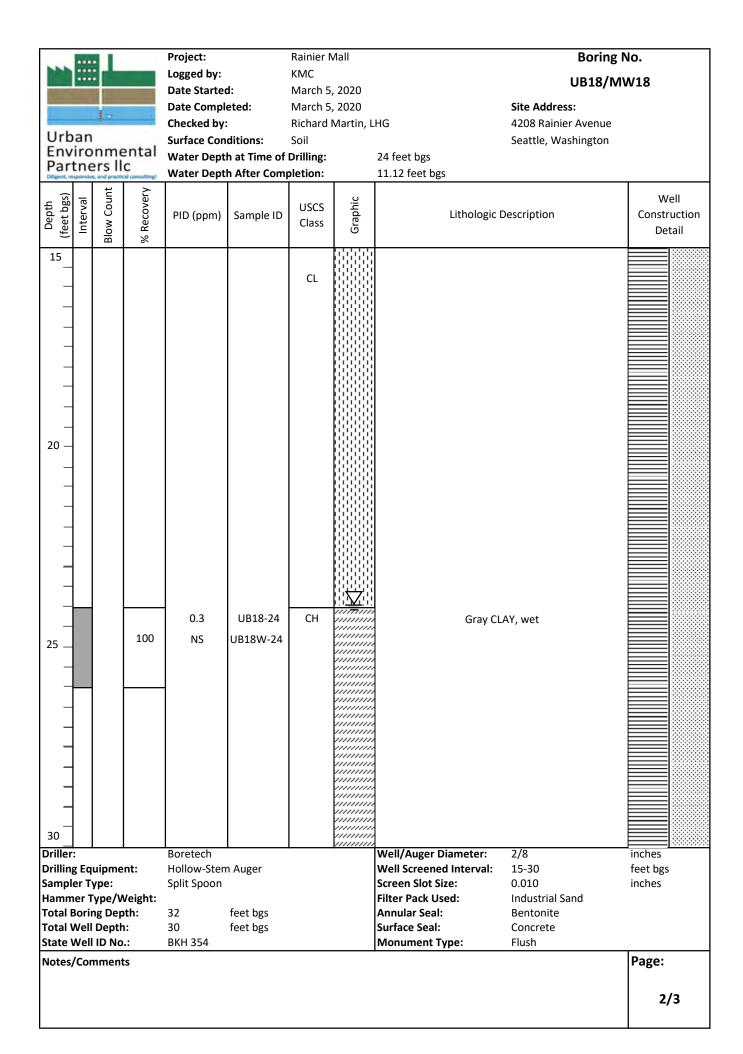


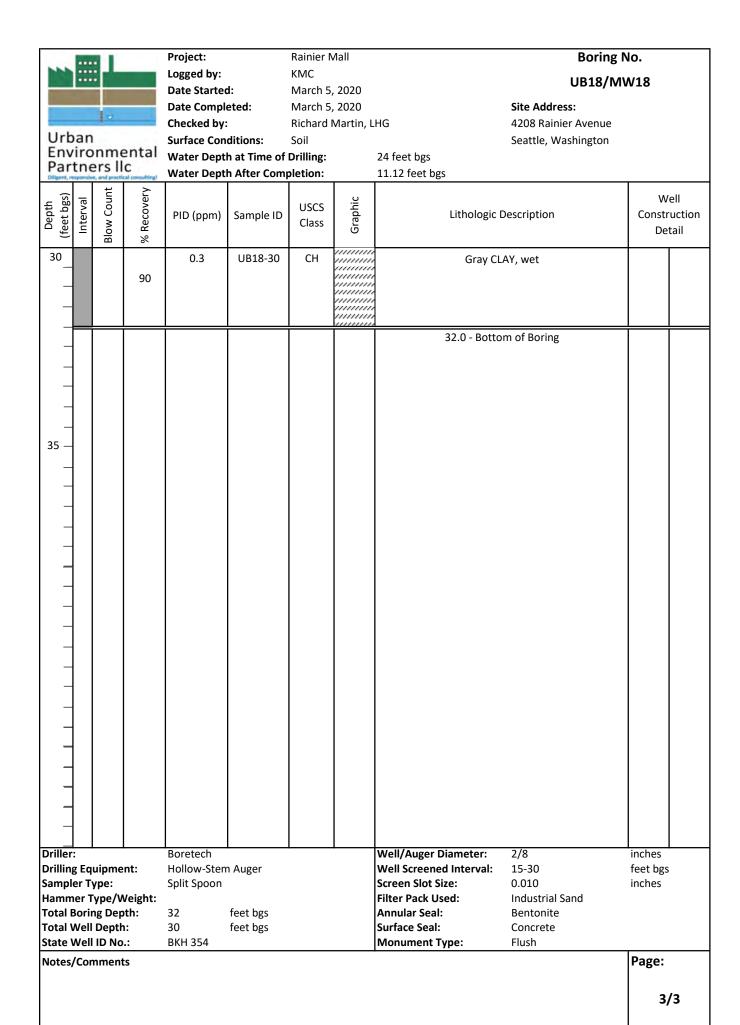












Urban Environmental Partners Ilc

Project: Rainier Mall

Logged by: KMC

Date Started:March 5, 2020Date Completed:March 5, 2020Checked by:Richard Martin, LHGSurface Conditions:Asphalt

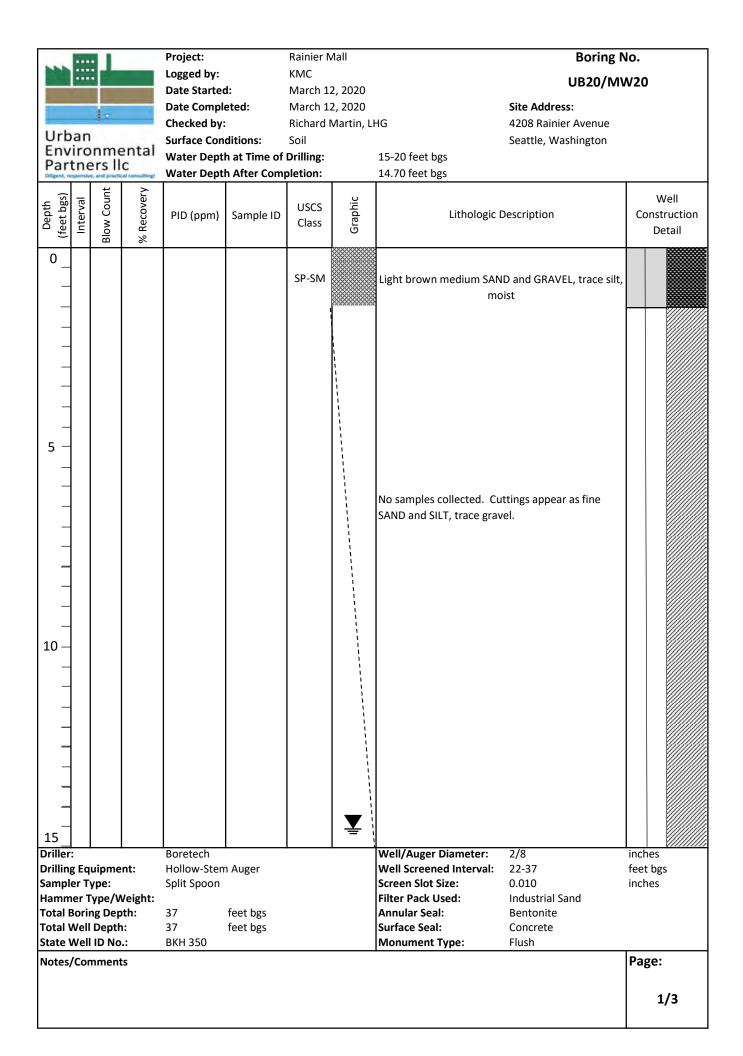
Water Depth at Time of Drilling:
Water Depth After Completion:

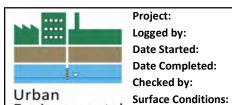
Gray/brown mottling indicates the presence of iron precipitates.

Boring No. UB19/MW19

1/2

Site Address:4208 Rainier Avenue
Seattle, Washington


PID (ppm) Sample ID 0.4 NS	USCS Class SP	Graphic	Lithologic Description Gray fine SAND and GRAVEL, moist FILL 2.3 - Green/gray CLAYEY SAND, trace GRAVEL, moist FILL	Well Construction Detail
			2.3 - Green/gray CLAYEY SAND, trace GRAVEL,	
	SC			
	ML		7.2 Dark brown SILT, moist FILL	
	CL		Gray/brown mottled CLAY, moist some lenses (<0.1') of fine SAND, approximately 1	
			per root	
Driller: Standard Geoprobe Drilling Equipment: Direct Push Sampler Type: Direct Push CAB Liner Hammer Type/Weight: Total Boring Depth: 30 feet bgs Total Well Depth: N/A feet bgs State Well ID No.: N/A			Well/Auger Diameter: N/A Well Screened Interval: N/A Screen Slot Size: N/A Filter Pack Used: N/A Annular Seal: N/A Surface Seal: N/A Monument Type: N/A	inches feet bgs inches
	Direct Push Direct Push CAB Liner 30 feet bgs	Standard Geoprobe Direct Push Direct Push CAB Liner 30 feet bgs N/A feet bgs	Standard Geoprobe Direct Push Direct Push CAB Liner 30 feet bgs N/A feet bgs	CL Gray/brown mottled CLAY, moist some lenses (<0.1') of fine SAND, approximately 1 per foot Well/Auger Diameter: N/A per foot Well/Auger Diameter: N/A Well Screened Interval: N/A Screen Slot Size: N/A Filter Pack Used: N/A Annular Seal: N/A Surface Seal: N/A Surface Seal: N/A


Project: Rainier Mall **Boring No.** Logged by: KMC **UB19/MW19 Date Started:** March 5, 2020 **Date Completed:** March 5, 2020 Site Address: Checked by: Richard Martin, LHG 4208 Rainier Avenue Urban **Surface Conditions:** Seattle, Washington Asphalt Environmental Water Depth at Time of Drilling: Partners IIc Water Depth After Completion: **Blow Count** Recovery (feet bgs) Well Interval Graphic USCS PID (ppm) Sample ID Lithologic Description Construction Class Detail 15 CL Gray/brown mottled CLAY, moist some lenses (<0.1') of fine SAND, approximately 1 per foot 100 17.2 - Brown SILT, moist MLCL Gray/brown mottled CLAY, moist some lenses (<0.1') of fine SAND, approximately 1 per foot 20 0.6 **UB19-20** NS 21.5 - gray, wet 100 MLGray SILT, wet UB19-24 СН Gray CLAY, moist to wet mm 100 29.0 - Gray fine SAND, moist to wet 0.1 SP 29.5 - Gray CLAY, moist to wet 30 112111111 UB19-30 30.0 - Botttom of Boring Driller:

Standard Geoprobe Well/Auger Diameter: N/A inches **Drilling Equipment: Direct Push** Well Screened Interval: N/A feet bgs Direct Push CAB Liner Sampler Type: Screen Slot Size: N/A inches Hammer Type/Weight: Filter Pack Used: N/A **Total Boring Depth:** 20 feet bgs **Annular Seal:** N/A **Total Well Depth:** N/A feet bgs Surface Seal: N/A State Well ID No.: N/A Monument Type: N/A

Notes/Comments
Gray/brown mottling indicates the presence of iron precipitates.

2/2

Project: Rainier Mall

Logged by: KMC

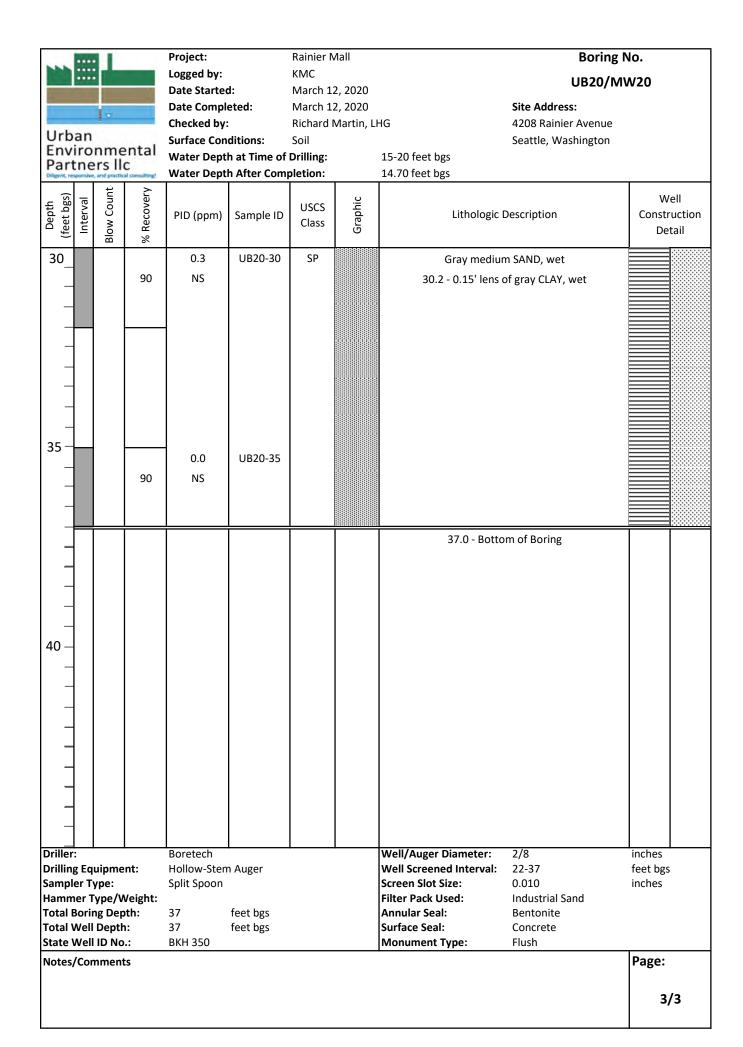
Gray/brown mottling indicates the presence of iron precipitates.

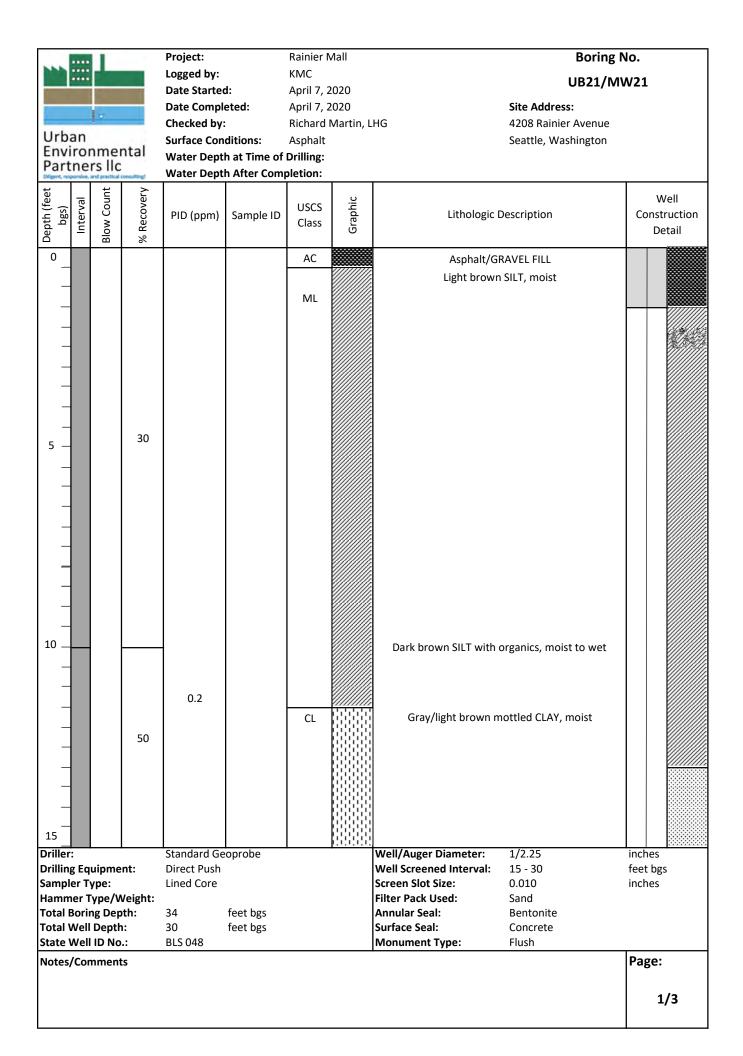
Date Started: March 12, 2020 **Date Completed:** March 12, 2020 Richard Martin, LHG Checked by:

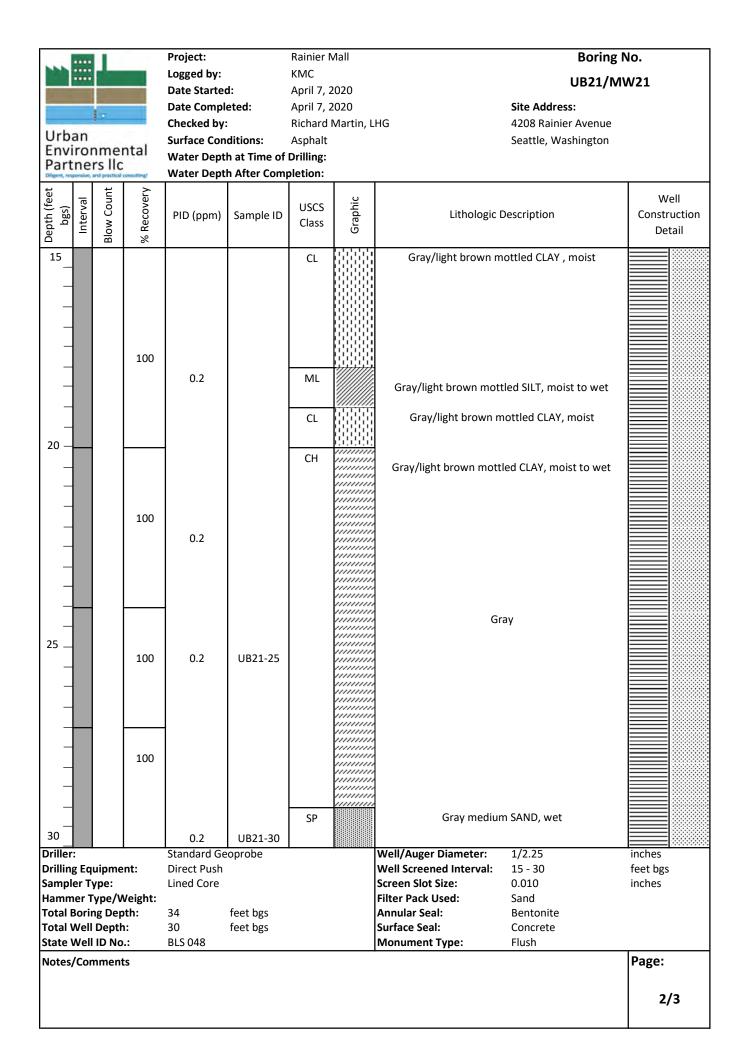
4208 Rainier Avenue Seattle, Washington

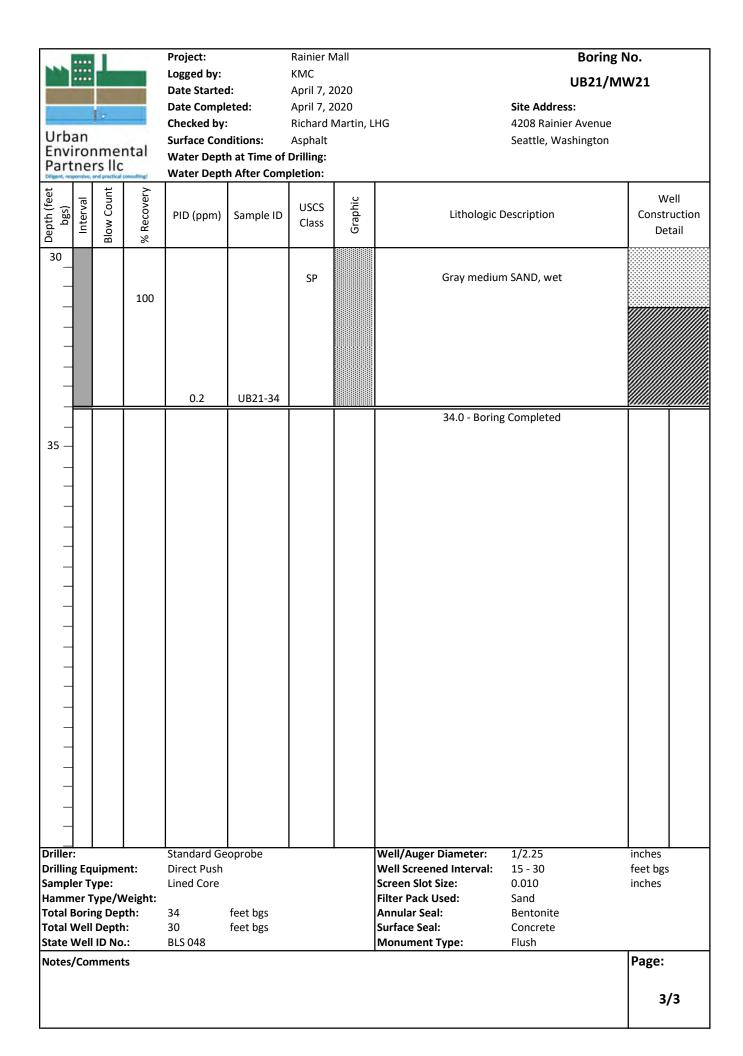
Site Address:

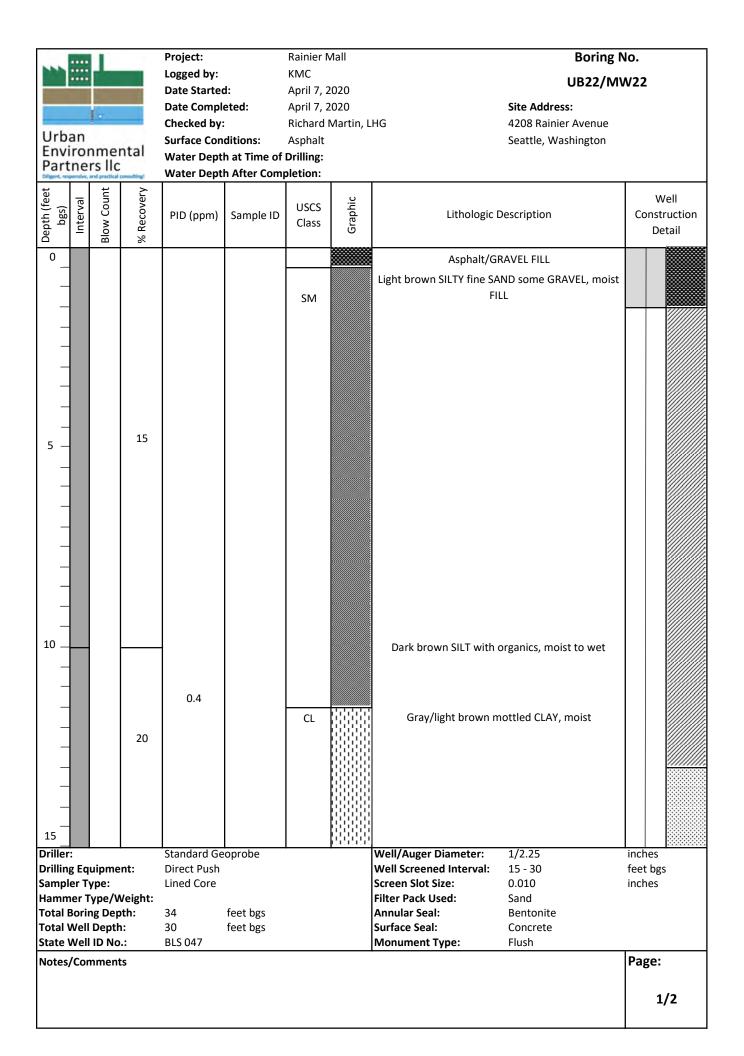
Boring No.

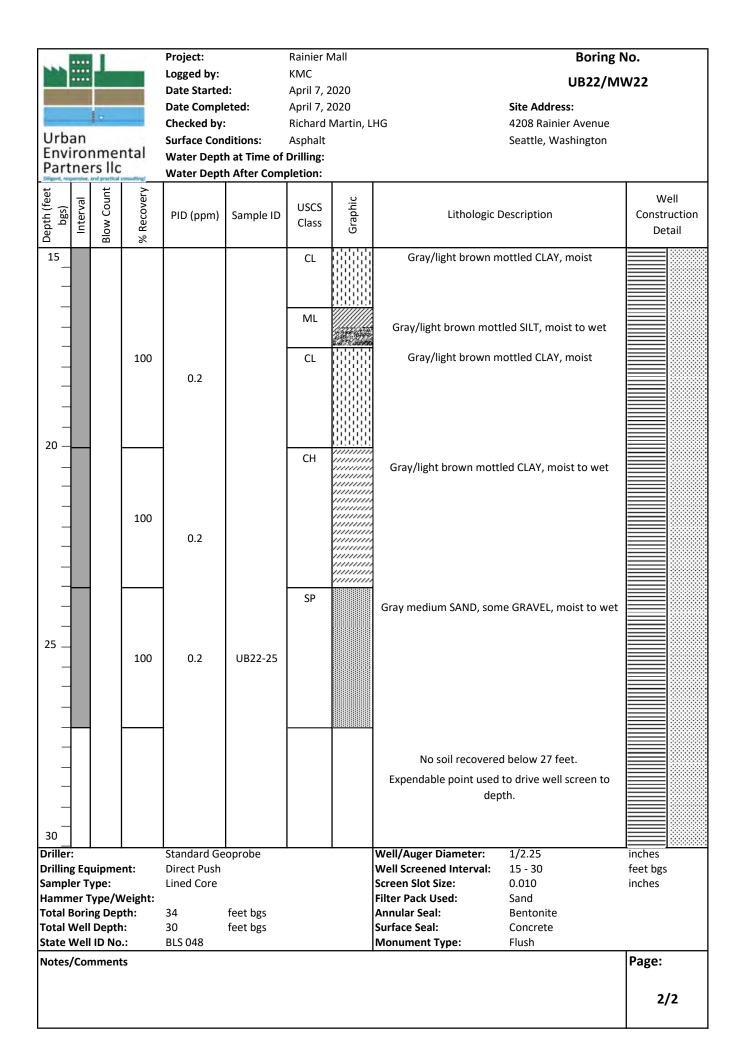

UB20/MW20


2/3

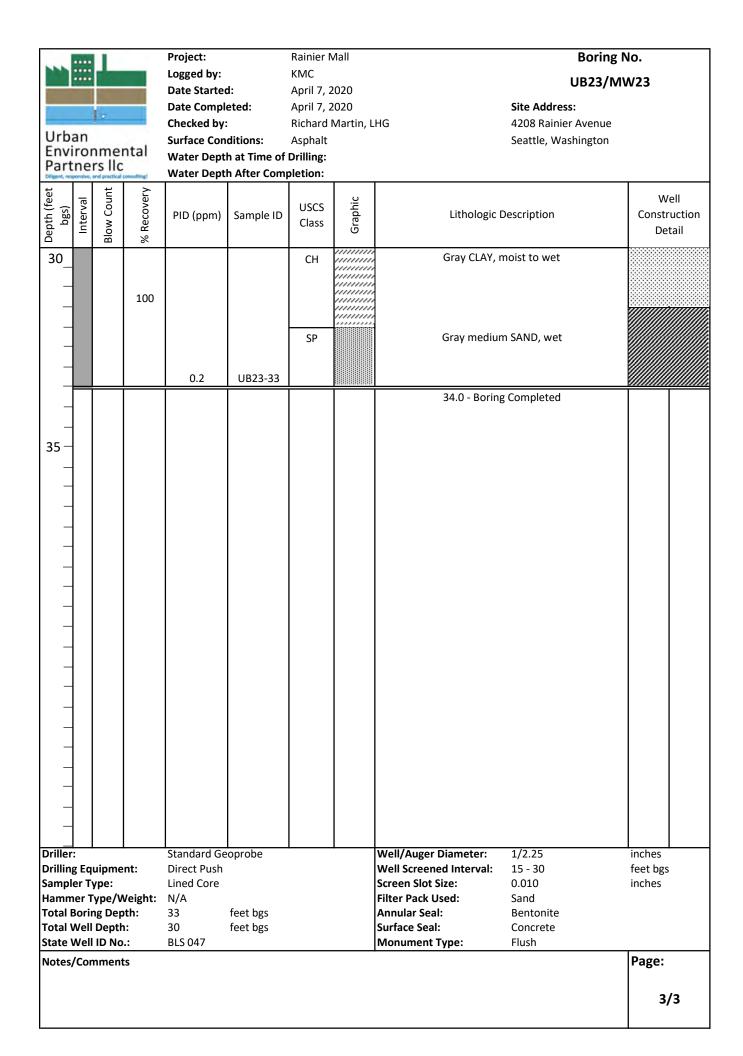

Urban Environmental

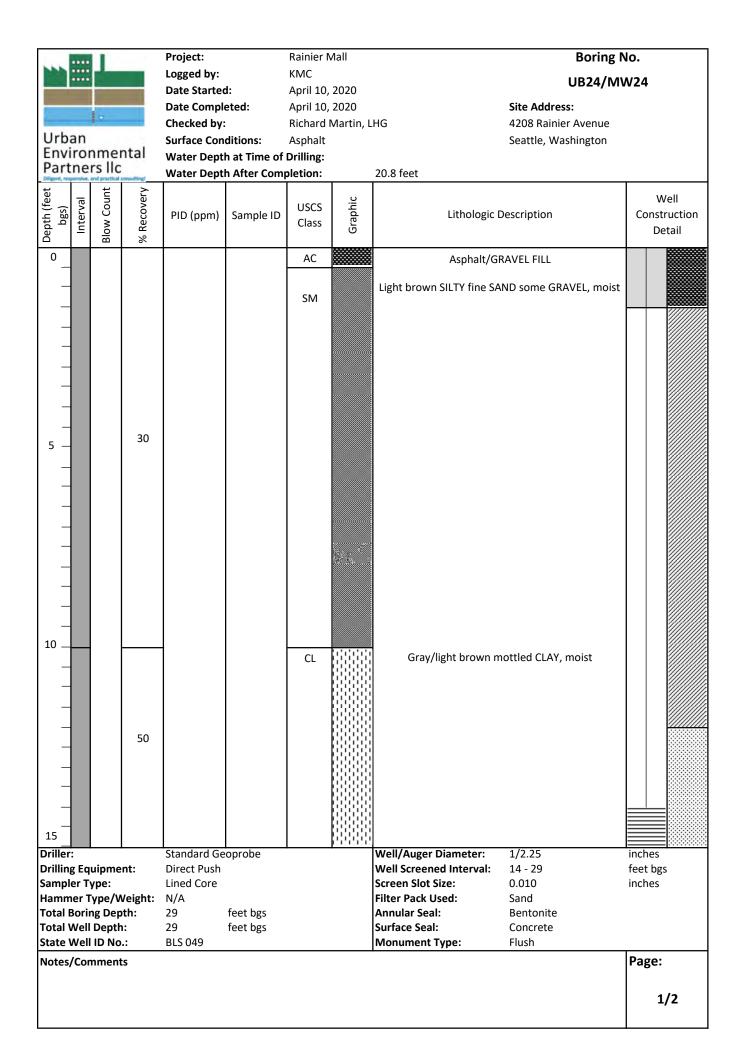

Water Depth at Time of Drilling: 15-20 feet bgs

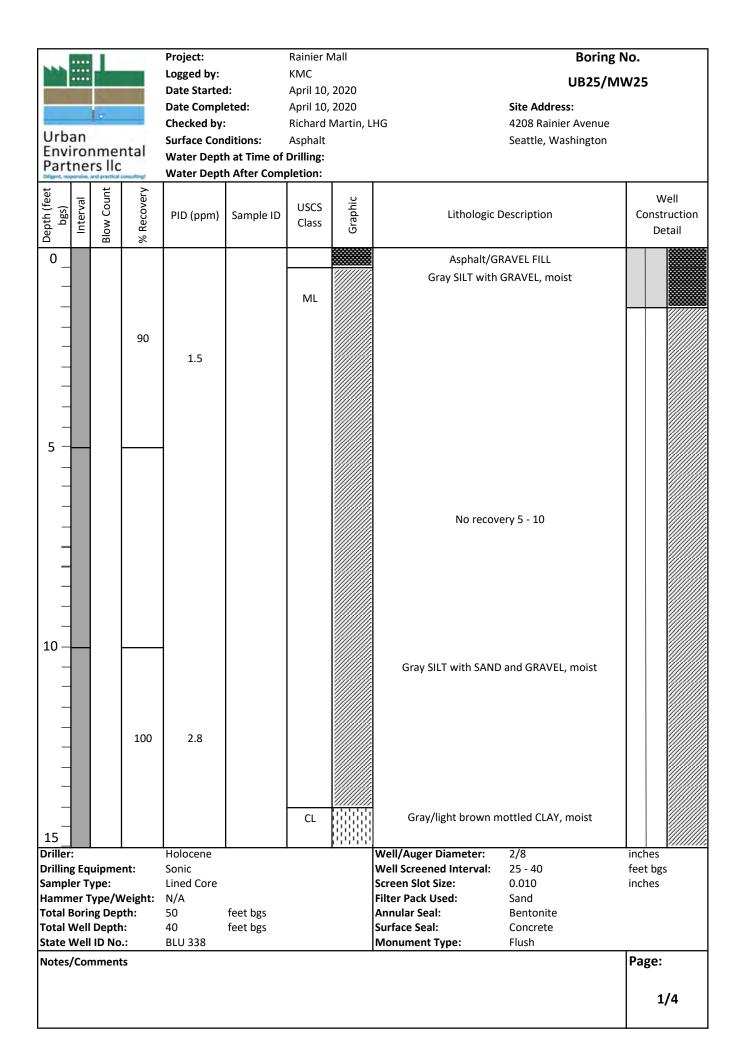

Par	Partners IIc Offgent, responsive, and practical consulting! Water Depth After Completion:					15-20 feet bgs					
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic C	Description	Con	Well struction Detail
15				0.0	UB20-15	CH		Brown/gray mot	tled CLAY, moist		
			100	NS							
- - - - 20-											
- -			100	0.0 NS	UB20-20			moist to wet; lens (<0.1) of gray medium SAND		
-		•						21.6 - Iens (<0.1') of 21.8 -			
25 —			100	0.0 NS	UB20-25		mmmi muuni muuni muuni muuni muuni muuni muuni muuni	25.3 - lens (<0.1') of 25.7 - lens (<0.1') of 26.5 - lens (<0.1') of	gray medium SAND		
- - - 30_							20000000000000000000000000000000000000	26.7 - lens (<0.1') of			
	Driller: Boretech				Well/Auger Diameter:	2/8	inche				
Drillin			nt:	Hollow-Stem	n Auger			Well Screened Interval:	22-37	feet b	
	Sampler Type: Split Spoon					Screen Slot Size:	0.010	inche	s		
Hammer Type/Weight:						Filter Pack Used:	Industrial Sand				
Total					feet bgs			Annular Seal:	Bentonite		
Total Well Depth:				37 feet bgs				Surface Seal:	Concrete		
State Well ID No.:				BKH 350				Monument Type:	Flush		
Notes	Notes/Comments Page:										

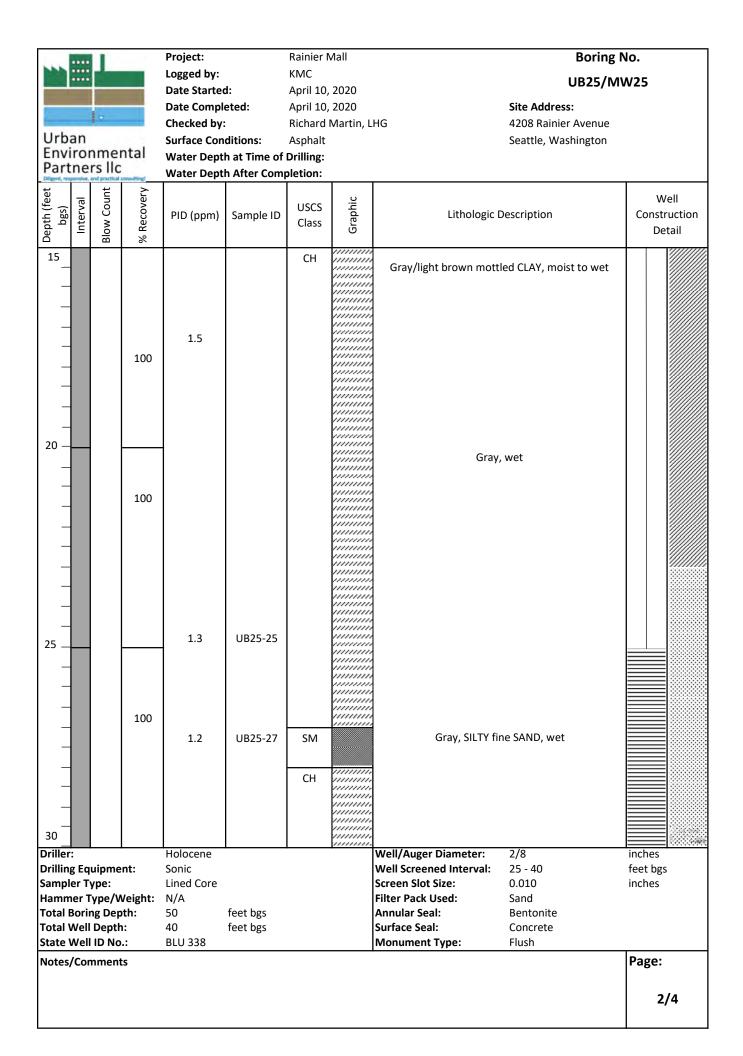


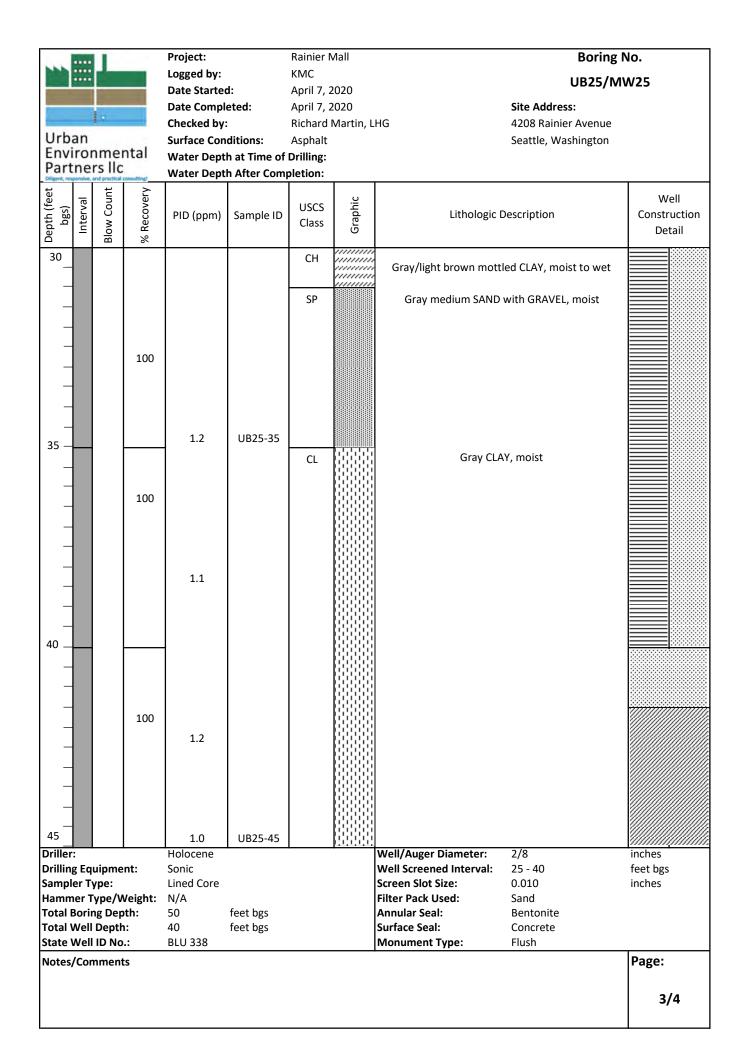


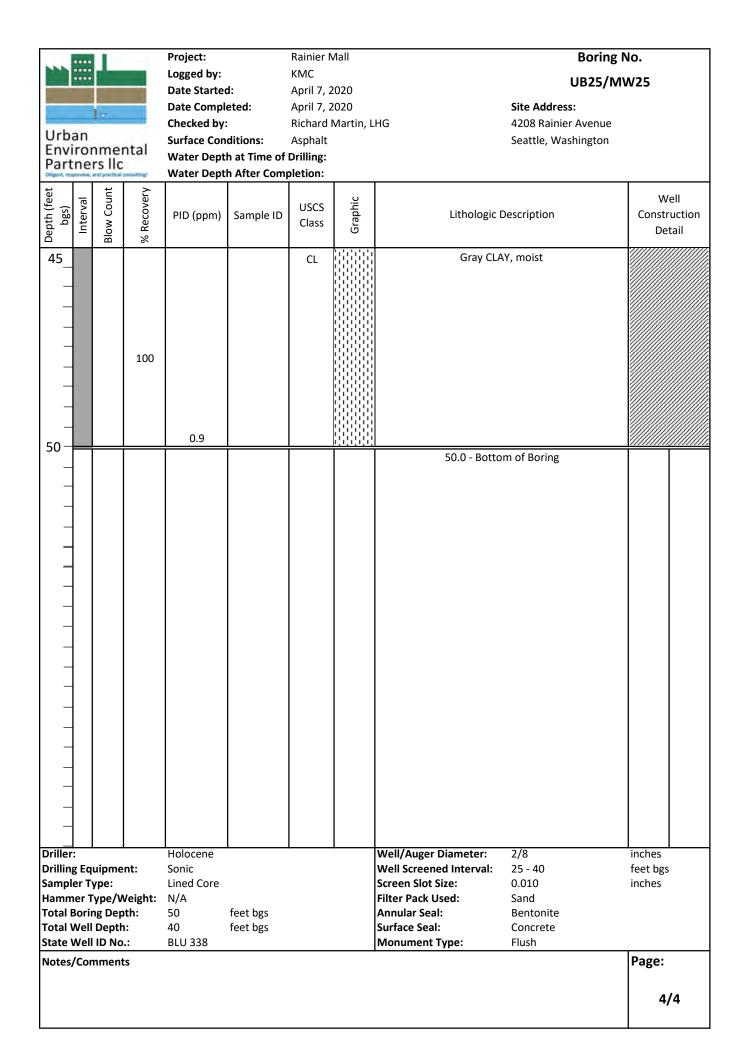


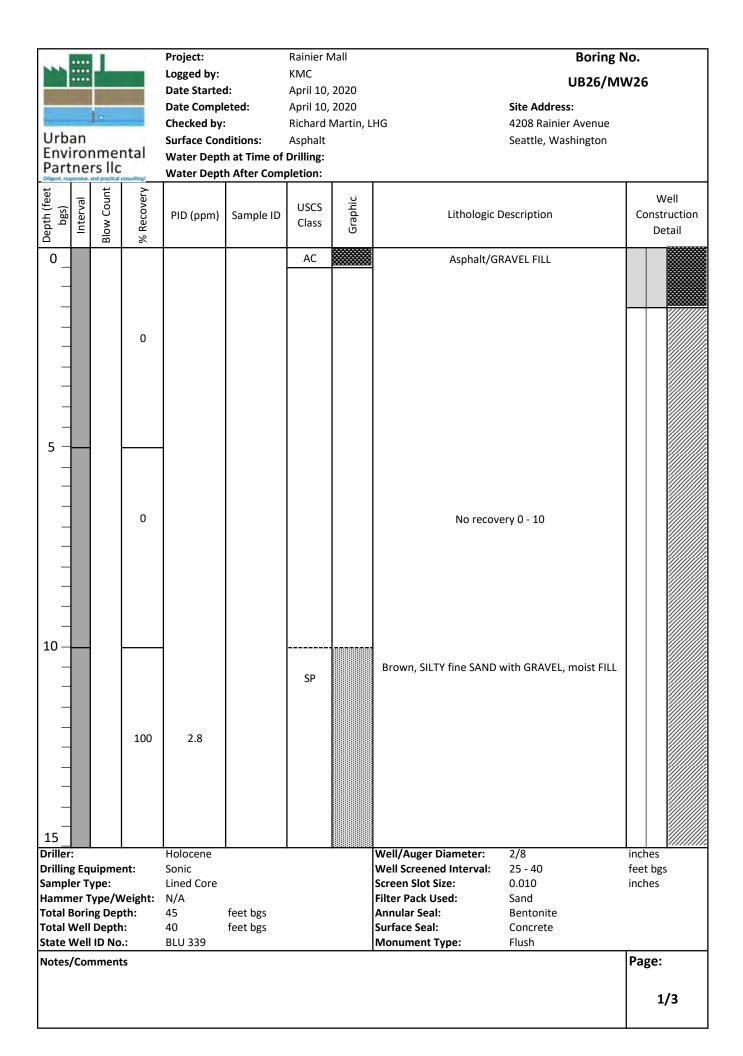


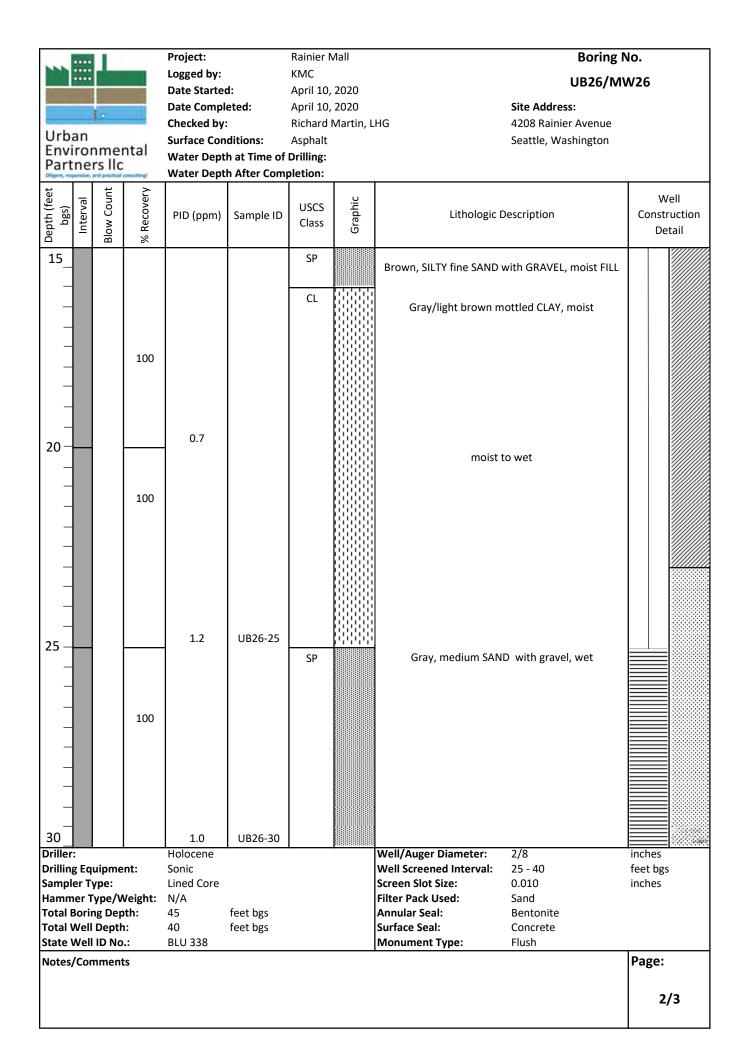


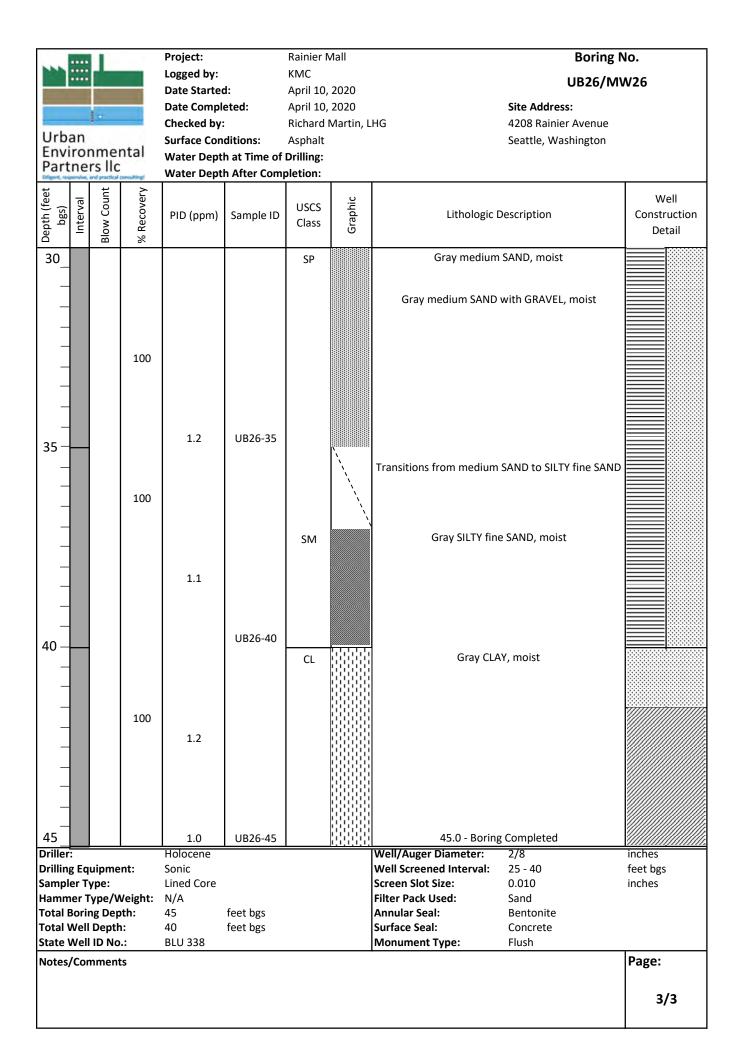

Project: Rainier Mall **Boring No.** Logged by: KMC **UB23/MW23** Date Started: April 7, 2020 **Site Address: Date Completed:** April 7, 2020 Checked by: Richard Martin, LHG 4208 Rainier Avenue Urban **Surface Conditions:** Asphalt Seattle, Washington Environmental Water Depth at Time of Drilling: Partners IIc Water Depth After Completion: **Blow Count** Depth (feet Recovery Well Interval Graphic USCS bgs) PID (ppm) Sample ID Lithologic Description Construction Class Detail % 15 CL Gray/light brown mottled CLAY, moist 0.4 100 MLGray/light brown mottled SILT, moist to wet Gray/light brown mottled CLAY, moist CL 20 Brown CLAY, moist to wet 100 0.4 Gray 25 100 0.2 UB23-25 Gray medium SAND, moist to wet SP CH 100 30 UB23-30 Driller: Well/Auger Diameter: Standard Geoprobe 1/2.25 inches **Drilling Equipment: Direct Push** Well Screened Interval: 15 - 30 feet bgs Sampler Type: **Lined Core** Screen Slot Size: 0.010 inches Hammer Type/Weight: Filter Pack Used: Sand **Total Boring Depth:** Annular Seal: 33 feet bgs Bentonite Total Well Depth: 30 feet bgs Surface Seal: Concrete State Well ID No.: BLS 047 Monument Type: Flush **Notes/Comments** Page: 2/3

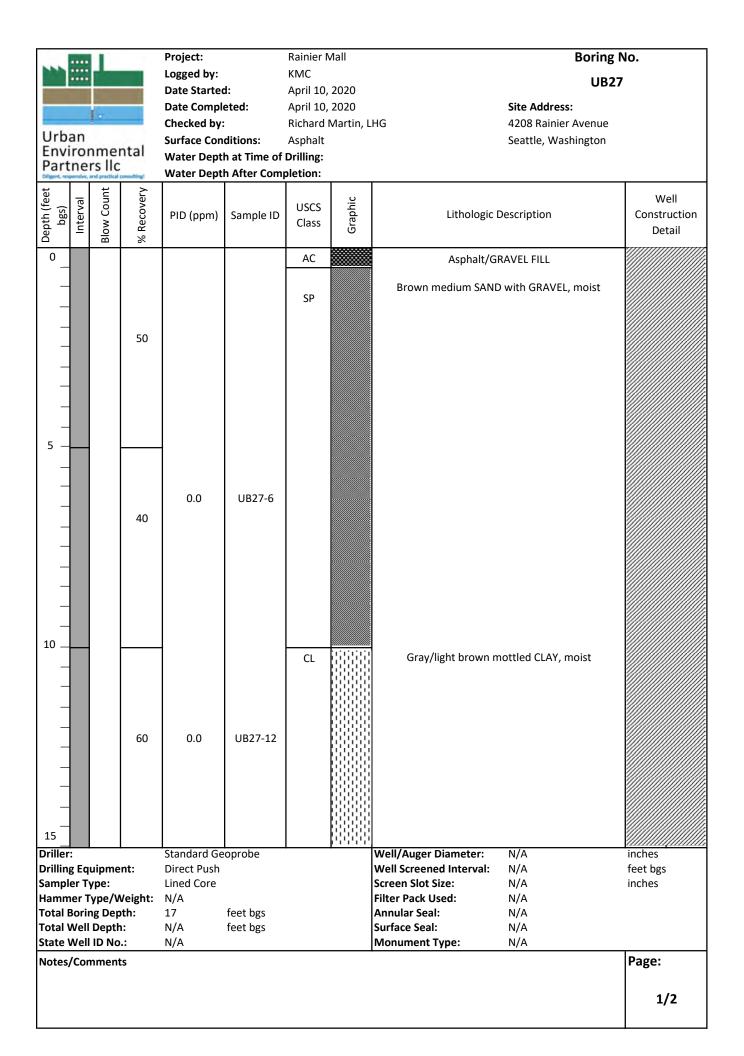


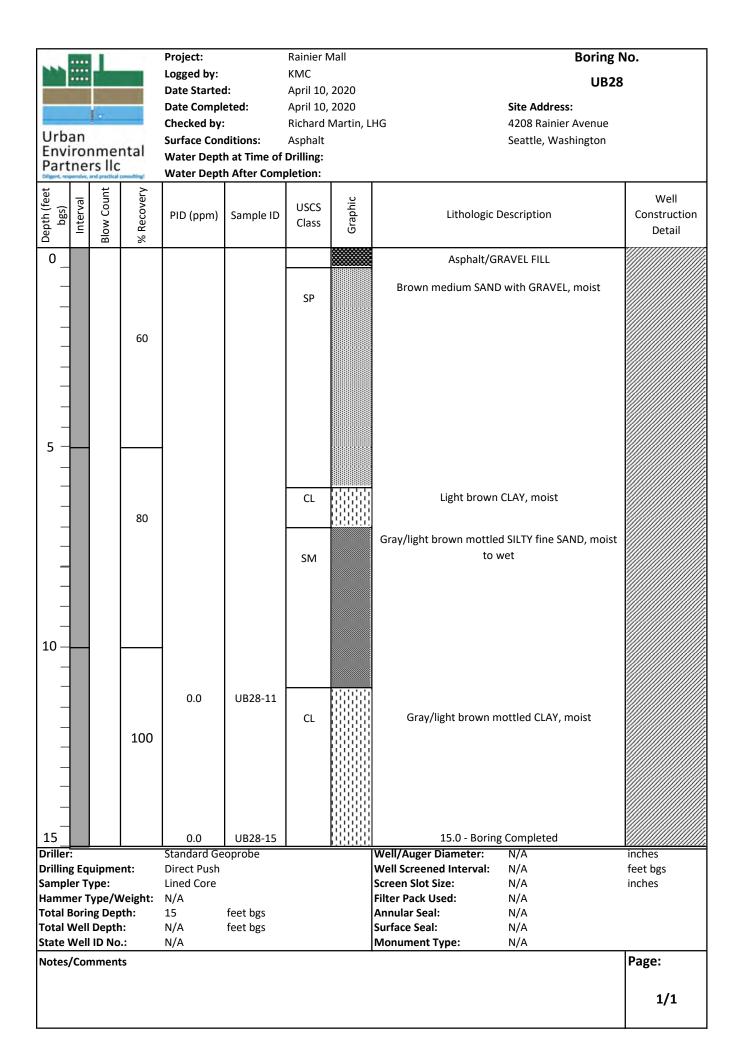


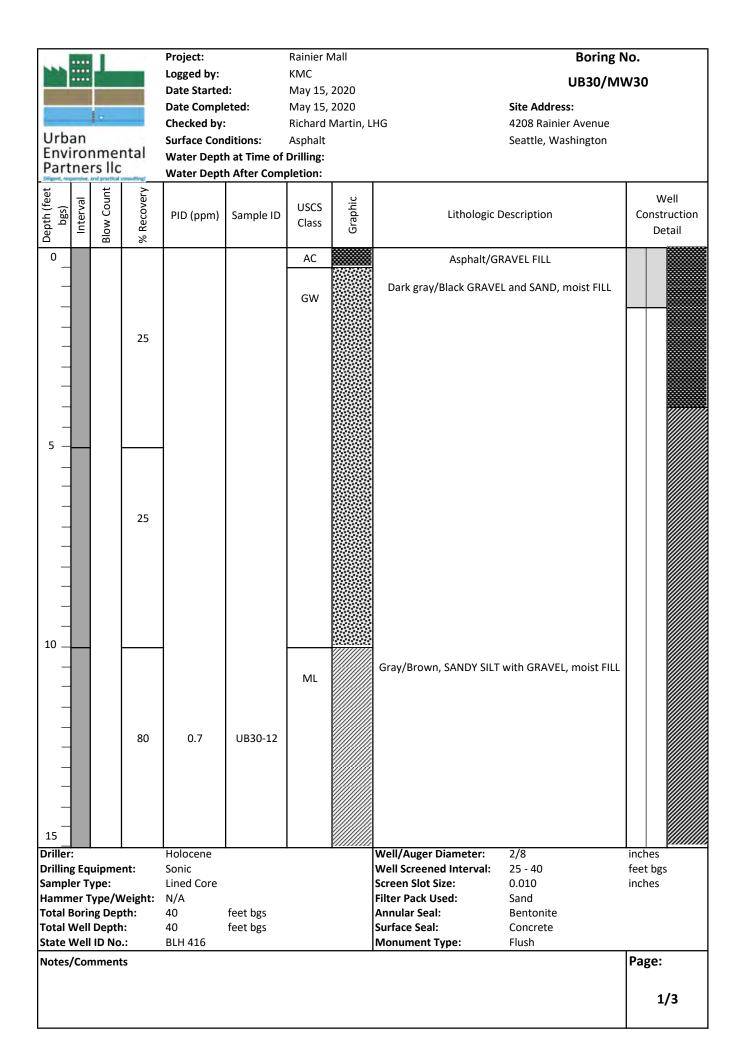

Project: Rainier Mall **Boring No.** Logged by: KMC **UB24/MW24 Date Started:** April 7, 2020 **Site Address: Date Completed:** April 7, 2020 Checked by: Richard Martin, LHG 4208 Rainier Avenue Urban **Surface Conditions:** Seattle, Washington Asphalt Environmental Water Depth at Time of Drilling: Partners IIc Water Depth After Completion: Depth (feet bgs) **Blow Count** Recovery Well Interval Graphic USCS PID (ppm) Sample ID Lithologic Description Construction Class Detail % 15 CL Gray/light brown mottled CLAY, moist 95 SM 20 СН Light brown/some grey mottles CLAY, moist minn 100 СН Gray SILTY CLAY, moist to wet 100 25 CH Gray CLAY, moist to wet ,,,,,,,, СН Gray CLAY with interbedded lenses of SILTY fine SAND, moist to wet ,,,,,,,, 100 29.0 - Boring Completed 30 Driller: Well/Auger Diameter: Standard Geoprobe 1/2.25 inches **Drilling Equipment: Direct Push** Well Screened Interval: 15 - 30 feet bgs Sampler Type: **Lined Core** Screen Slot Size: 0.010 inches Hammer Type/Weight: Filter Pack Used: Sand **Total Boring Depth:** Annular Seal: 34 feet bgs Bentonite Total Well Depth: 30 feet bgs Surface Seal: Concrete State Well ID No.: **BLS 048** Monument Type: Flush **Notes/Comments** Page: 2/2

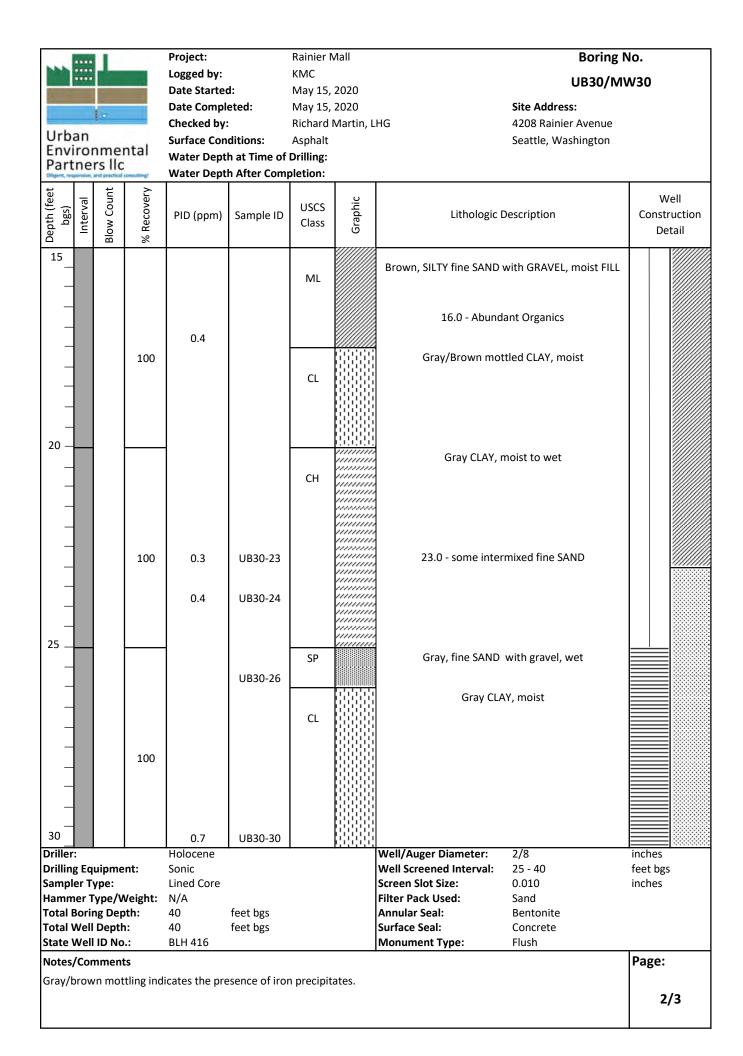


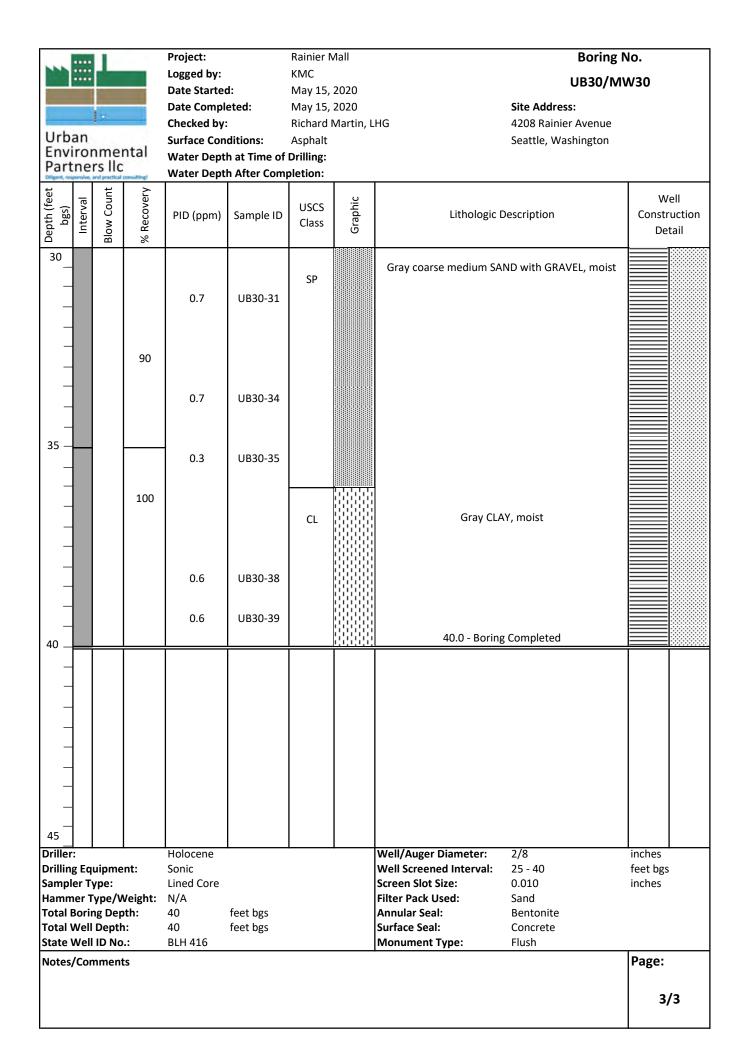


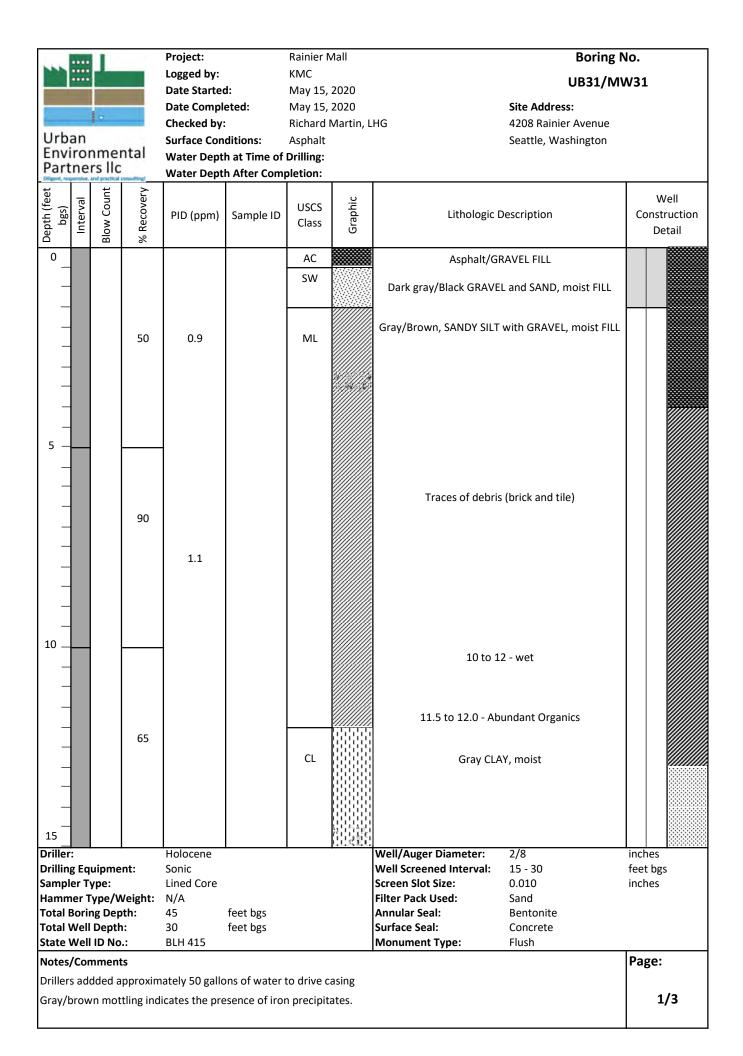


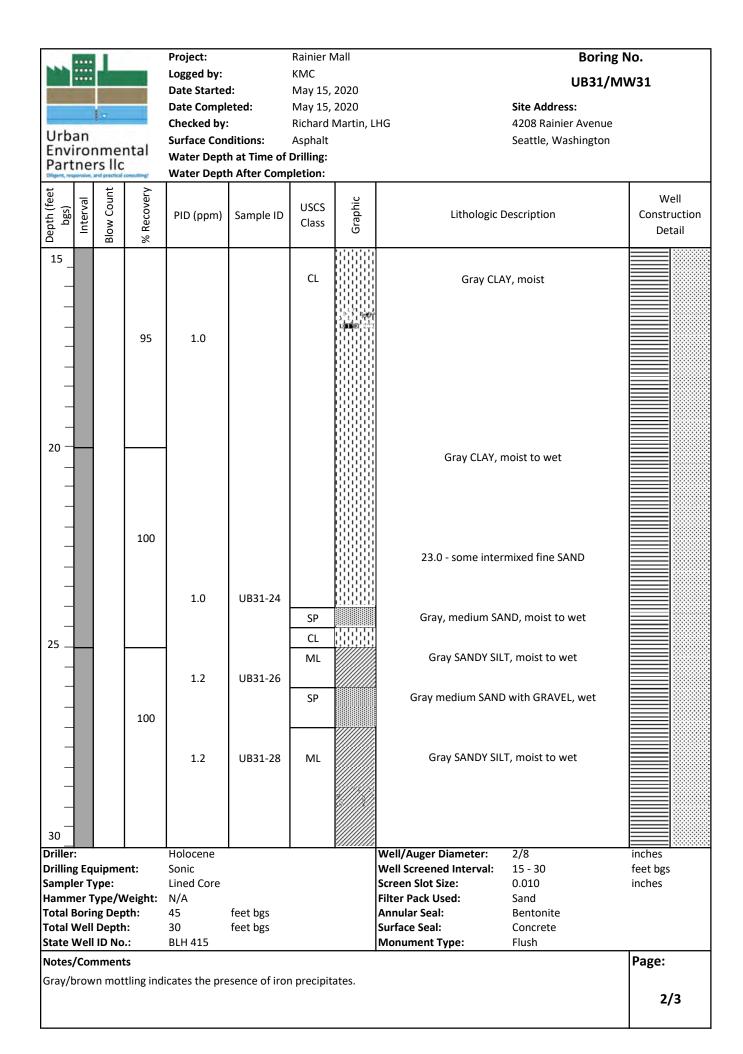







₩ ■ L				Project: Logged by:	Rainier Mall KMC			Boring No.		
Urban Environmental Partners Ilc				Date Started: Date Completed: Checked by: Surface Conditions: Water Depth at Time of Water Depth After Com		April 10, 2020 April 10, 2020 Richard Martin, LH Asphalt F Drilling:		HG N/A N/A	Site Address: 4208 Rainier Avenue Seattle, Washington	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic	Description	Well Construction Detail
15_ _			100		UB27-17	CL		Gray/light brown n	nottled CLAY, moist	
5 — — — — — — — — — — — — — — — — — — —				Standard Go	oprobo				g Completed	inchor
Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth: State Well ID No.:			Veight: th:	Standard Geoprobe Direct Push Lined Core N/A 17 feet bgs N/A feet bgs N/A				Well/Auger Diameter: Well Screened Interval: Screen Slot Size: Filter Pack Used: Annular Seal: Surface Seal: Monument Type:	N/A N/A N/A N/A N/A N/A	inches feet bgs inches
Notes	/Coi	mment								Page: 2/2




47.1		1		Project:		Rainier N	Mall	Boring	No.
				Logged by:	KMC		UB2		
				Date Starte		April 10,			
		0		Date Compl Checked by:		April 10,	2020 Martin, L	Site Address: HG 4208 Rainier Avenue	
Urba	an			Surface Con		Asphalt	iviai tiii, L	Seattle, Washington	
Envi	ror	nmer			h at Time of			N/A	
Part Diligent, resp	ne	rs IIc	onsultingl	Water Dept	h After Com	pletion:		N/A	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic Description	Well Construction Detail
0_						AC		Asphalt/GRAVEL FILL	
			75			SP		Brown medium SAND with GRAVEL, moist	
			80	0.0	UB29-6	CL		Gray/light brown mottled CLAY, moist Dark brown SILTY fine SAND, wet	
10 —			100	0.0	UB29-11	CL		Gray/light brown mottled CLAY, moist	
15 Driller Drilling	g Eq		nt:	0.0 Standard Ge Direct Push Lined Core	UB29-15 coprobe			15.0 - Boring Completed Well/Auger Diameter: N/A Well Screened Interval: N/A Screen Slot Size: N/A	inches feet bgs inches
Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth: State Well ID No.:		N/A 15 N/A N/A	feet bgs feet bgs			Filter Pack Used: Annular Seal: N/A Surface Seal: N/A Monument Type: N/A			
Notes	'Con	nment	S						Page: 1/1

Depth (feet Depth

Sampler Type:

Lined Core

Project: Rainier Mall Logged by: KMC

Date Started:May 15, 2020Date Completed:May 15, 2020Checked by:Richard Martin, LHGSurface Conditions:Asphalt

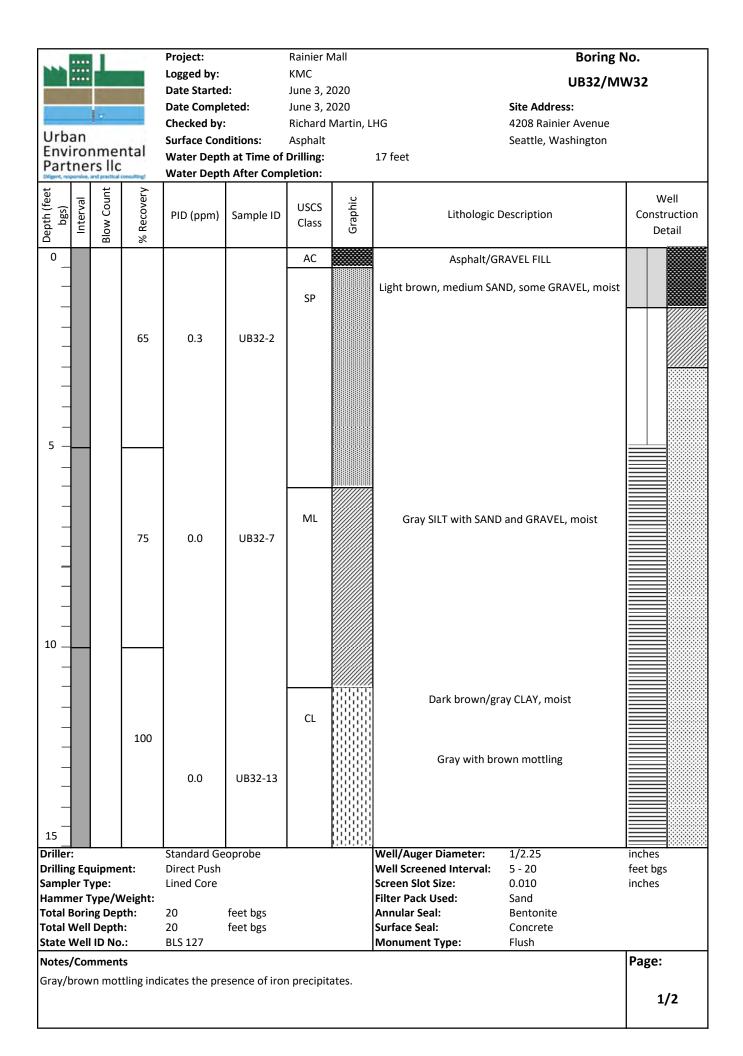
Water Depth at Time of Drilling: Water Depth After Completion:

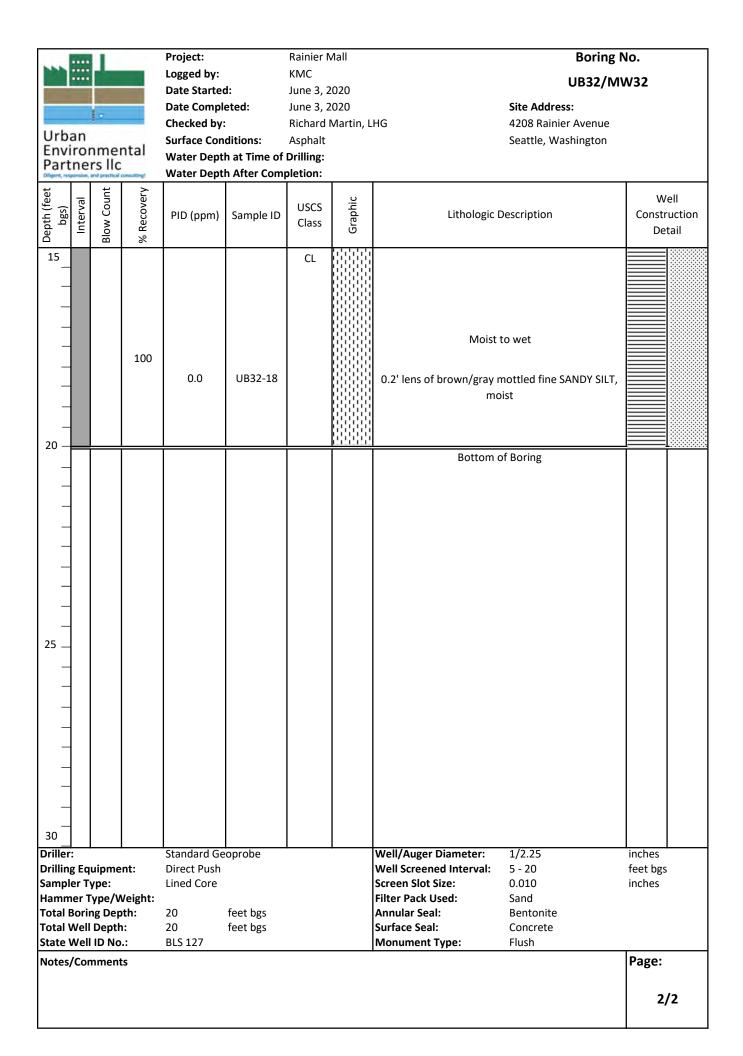
Boring No. UB31/MW31

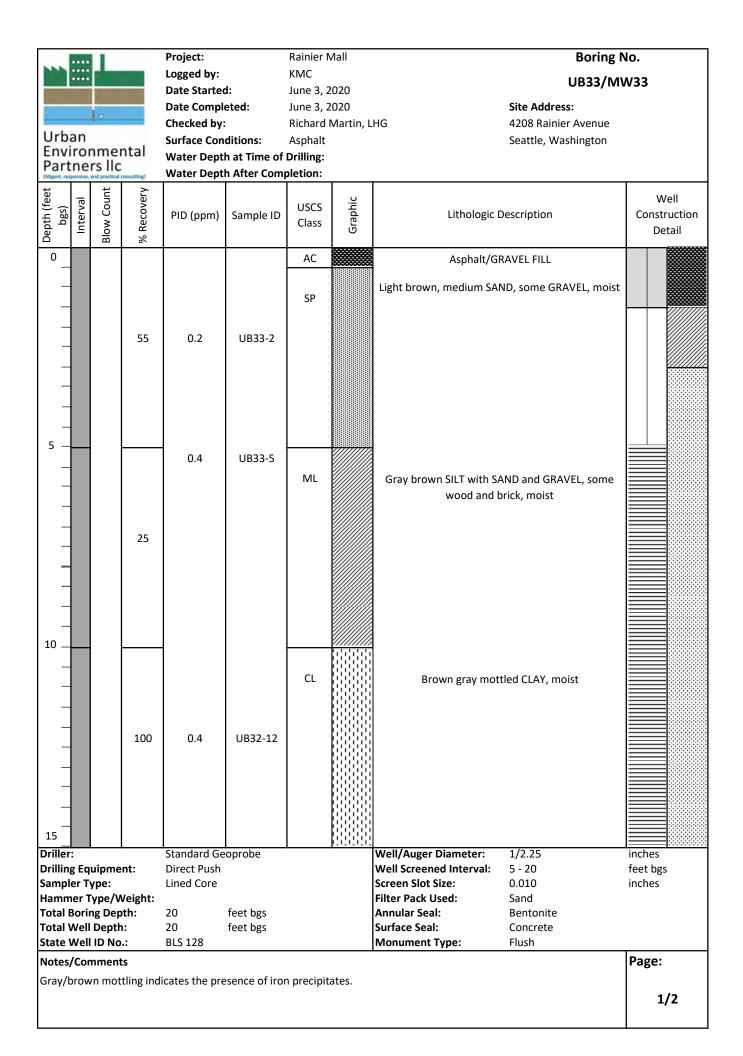
Site Address: 4208 Rainier Avenue Seattle, Washington

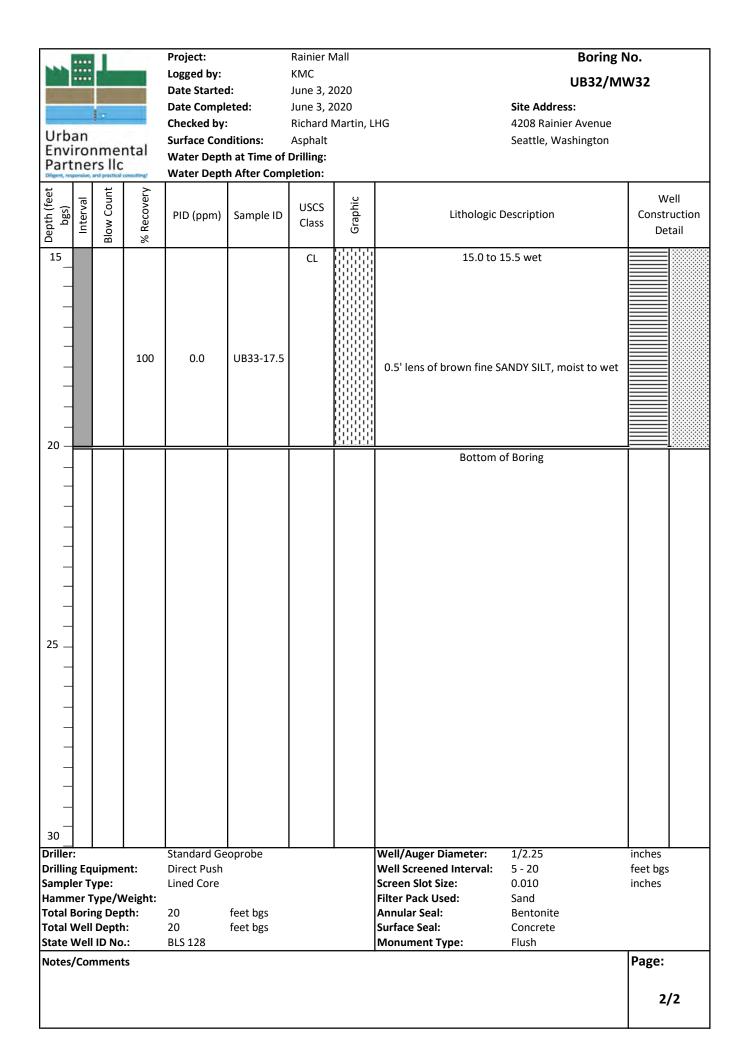
Diligent, res	ponsive,	and practical	consulting!	Water Dept	h After Comլ	oletion:				
Depth (feet bgs)	al	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic		Description	Well Construction Detail
30								Gray CLA	AY, moist	
						CL				
				1.2	UB31-31					
_										
				1.0	UB31-32					
_			90	1.0	0031-32					
_			90							
_										
_										
_										
35 —										
				0.3	UB31-35					
			100							
_										
_				٥٠	UB31-37					
_				0.5	UB31-37					
_										
_										
40 _										
40 _		1								
_										
_										
_										
_			80							
_										
_				0.8	UB31-43					
_										
45								45.0. Parine	g Completed	
Driller		<u> </u>	<u> </u>	Holocene	<u> </u>		jihihihihi	43.0 - BOTHS	2/8	inches
Drillin		uipme	ent:	Sonic				Well Screened Interval:	15 - 30	feet bgs
ا .	- "	•						ام منیما		

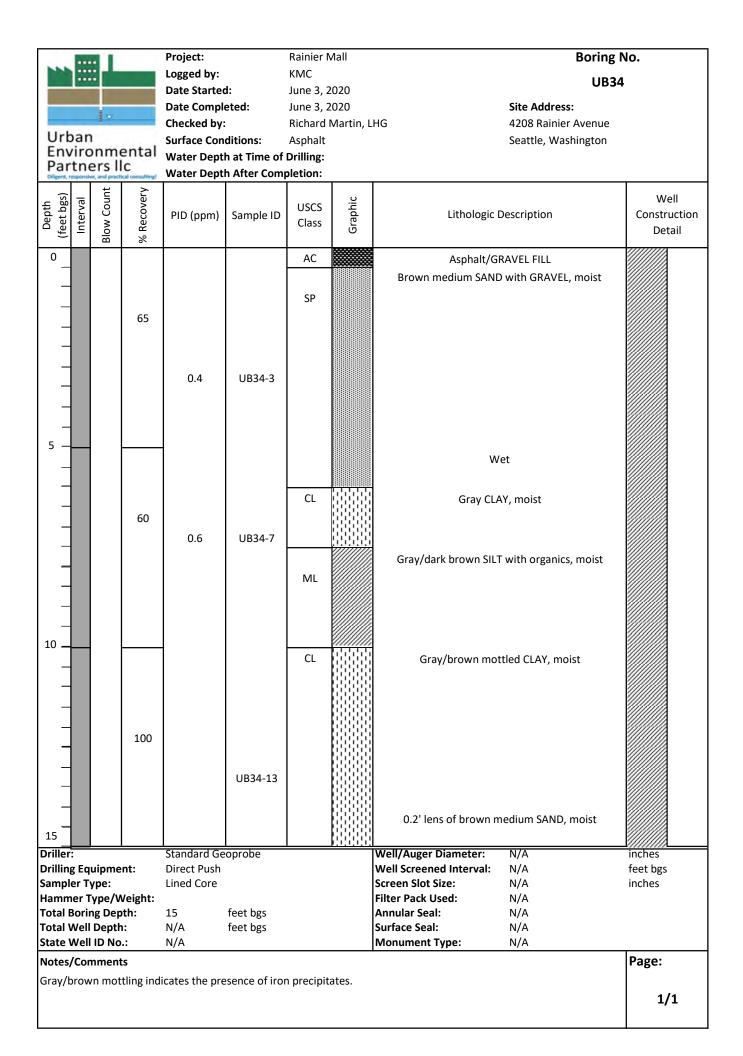
Hammer Type/Weight: N/A Filter Pack Used: Sand Total Boring Depth: 45 feet bgs Annular Seal: Bentonite Total Well Depth: 30 Surface Seal: Concrete feet bgs State Well ID No.: BLH 415 Monument Type: Flush

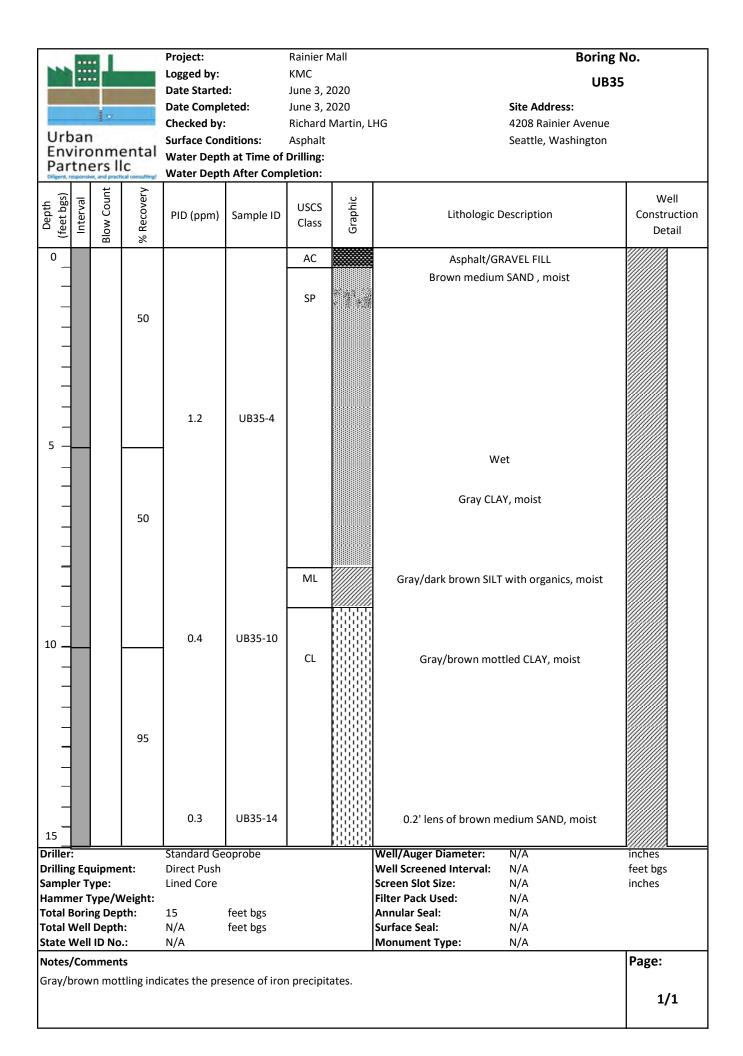

Notes/Comments Page:

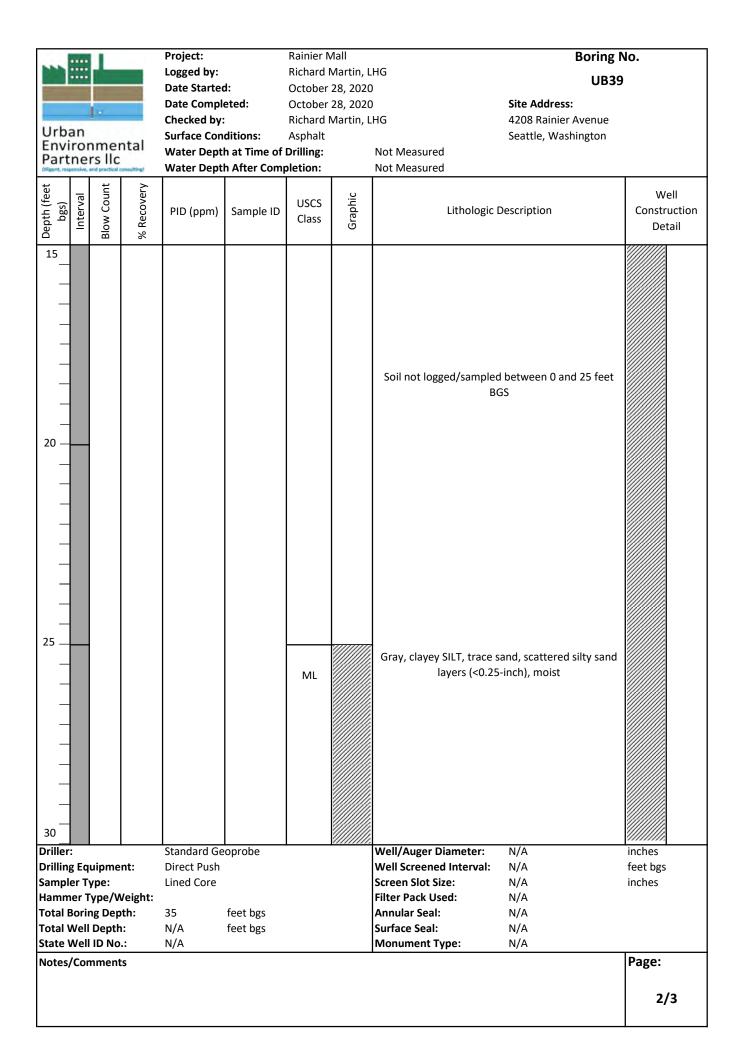

Screen Slot Size:

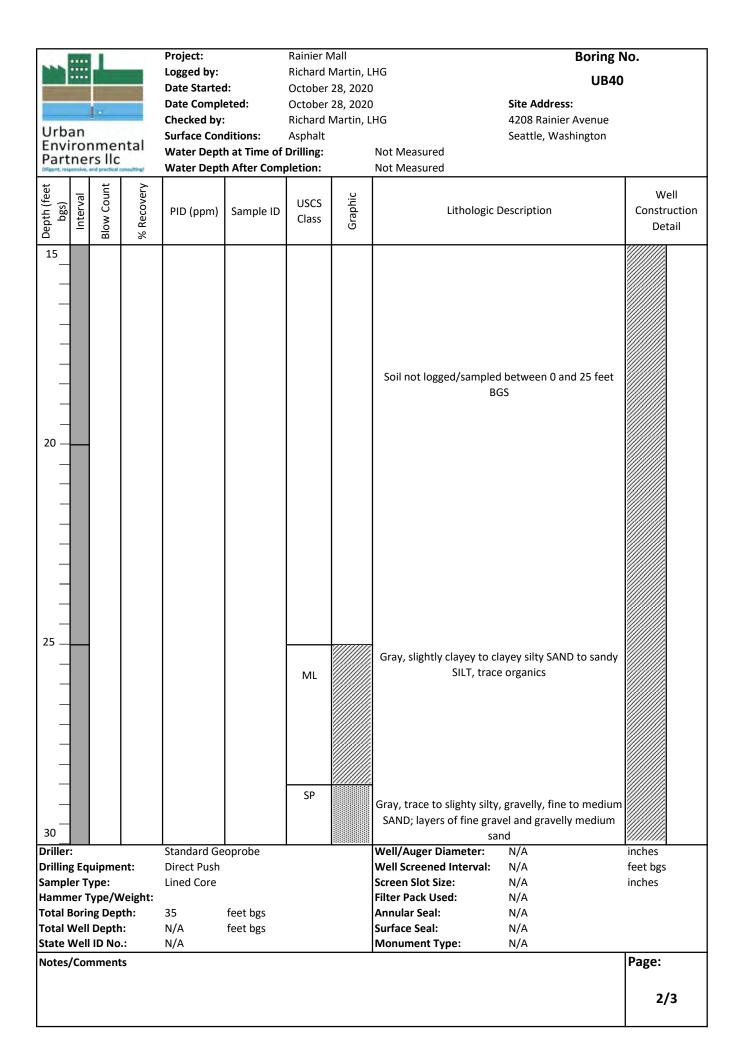

0.010

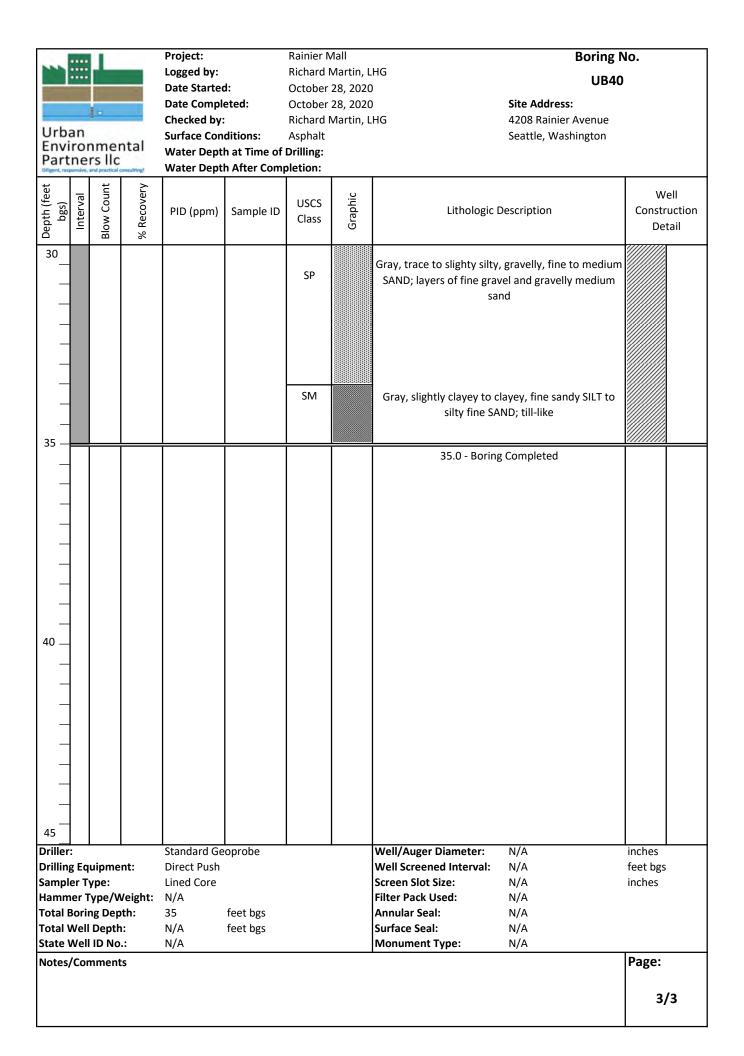

3/3

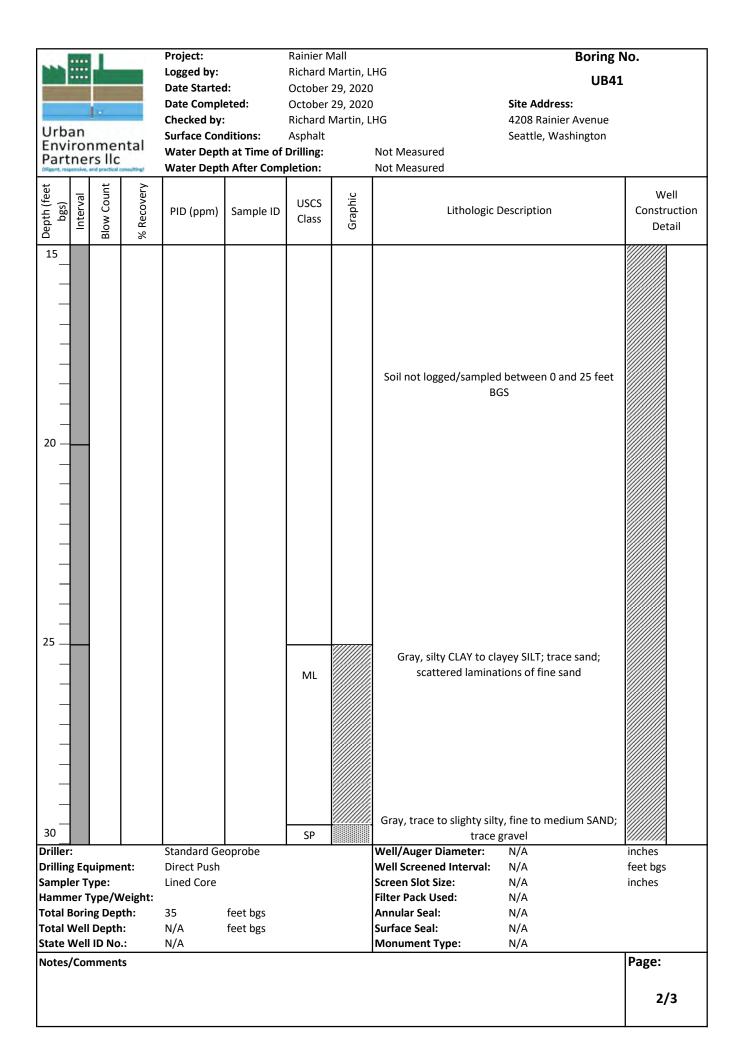

inches

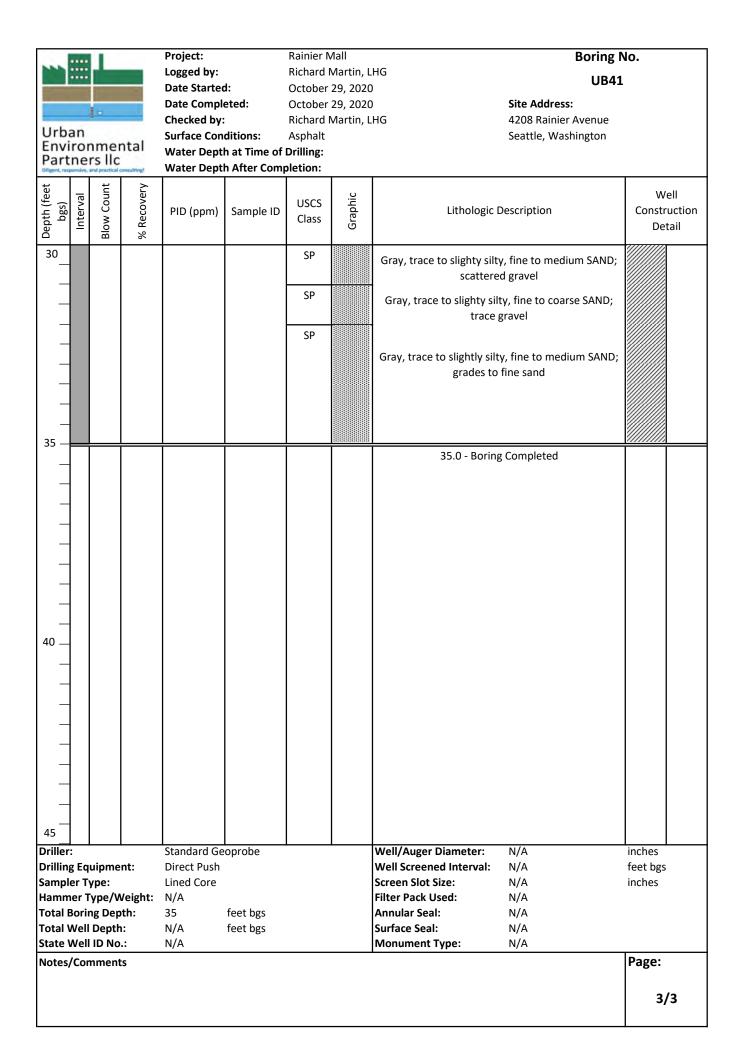


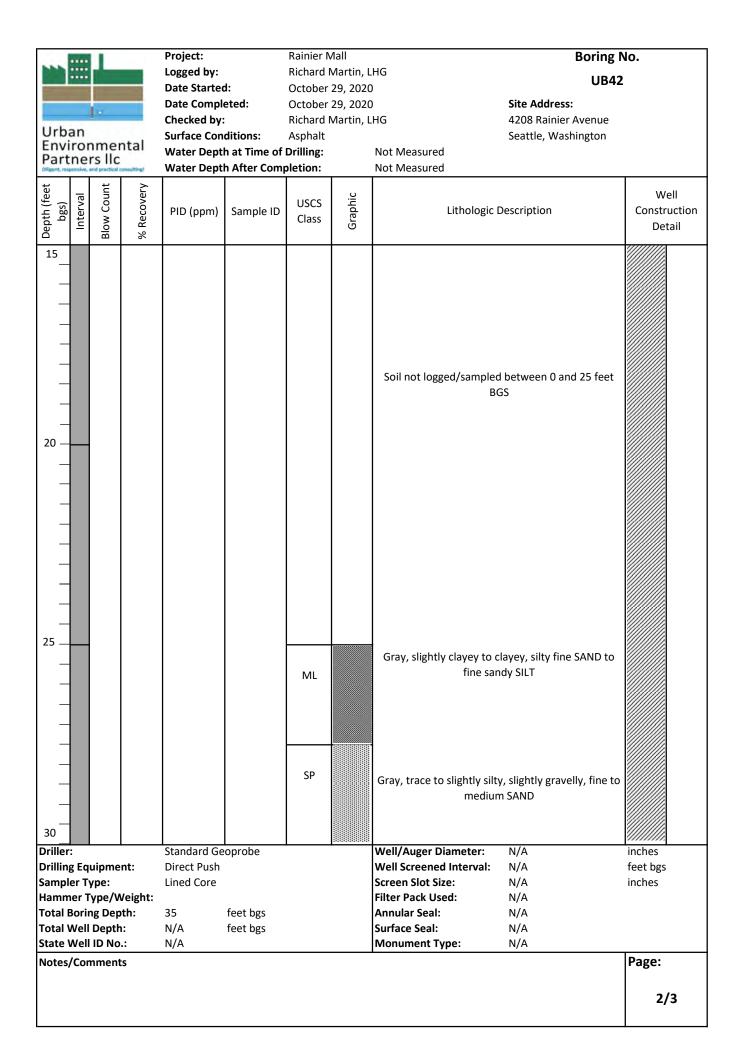


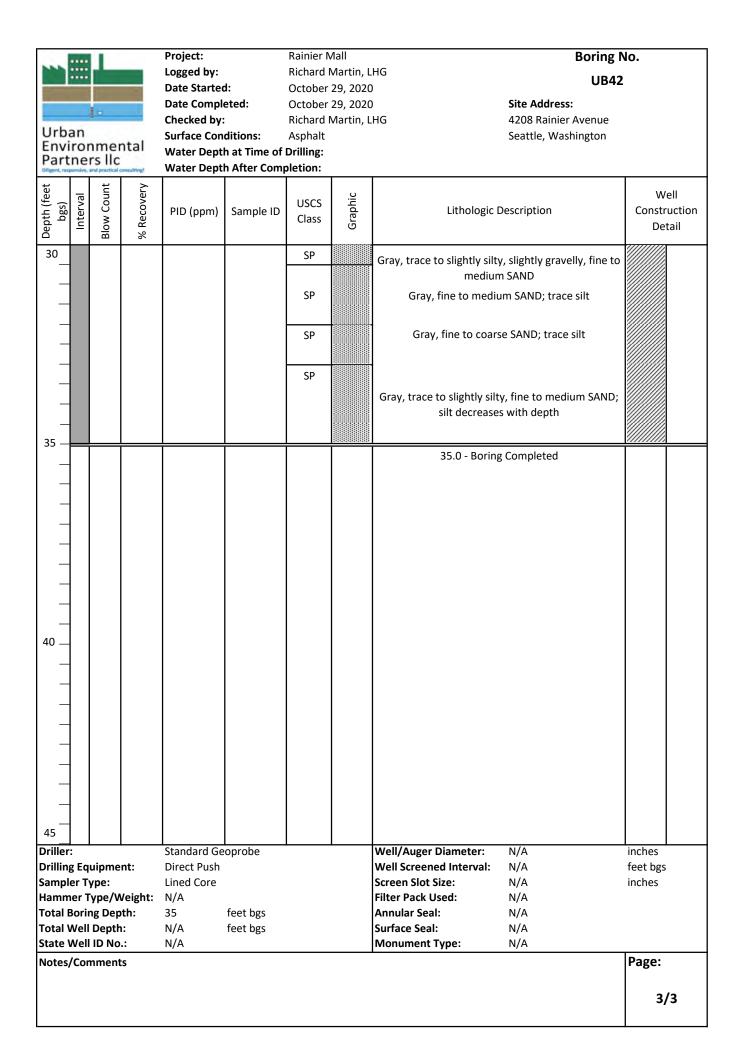



r										
	_		Project:		Rainier N		uc		Boring	No.
			Logged by: Date Started	۸.	Richard Martin, LHG October 28, 2020			UB39		
			Date Started			28, 2020			Site Address:	
			Checked by:			Martin, L			4208 Rainier Avenue	
Urbar	1		Surface Con		Asphalt	iviai ciii, L	.10		Seattle, Washington	
			Water Dept				Not Measured		Seattle, Washington	
Partn	ers Ilc		Water Dept				Not Measured			
# T	٦	>								T
Depth (feet bgs)	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic		Lithologic [Description	Well Construction
-	= S	%				U U				Detail
0					AC			BC	I between 0 and 25 feet	
Driller:			Standard Ge	oprobe			Well/Auger Di		N/A	inches
Drilling E		ent:	Direct Push				Well Screened		N/A	feet bgs
Sampler			Lined Core				Screen Slot Siz		N/A	inches
Hammer			25	£41			Filter Pack Use	ed:	N/A	
Total Bo			35	feet bgs			Annular Seal:		N/A	
Total We			N/A	feet bgs			Surface Seal:	mo:	N/A	
State We			N/A				Monument Ty	he:	N/A	Dege:
Notes/C	ommen	ts								Page:
										1/3


			Project:	Rainier N	Mall		Boring No.				
hada III	=		Logged by:			Martin, LI	HG	_			
-	_	-	Date Started	d:		28, 2020		UB39			
			Date Comple	eted:	October	28, 2020		Site Address:			
	- 8.7		Checked by:		Richard	Martin, LI	HG	4208 Rainier Avenue			
Urban			Surface Con	ditions:	Asphalt			Seattle, Washington			
Environmental Partners IIc			Water Depth at Time of Drilling:								
Diligent, respons	ers inc	consulting	Water Dept	Vater Depth After Completion:							
_ t	ır	je >				ا ،			Well		
Depth (feet bgs)	Slow Count	% Recovery	PID (ppm)	Sample ID	USCS	Graphic	Lithologic D	escrintion)	Construction		
ttd:	≝ <u>≥</u>	Rec	T TO (ppin)	Sample 15	Class	Gra	zitilologie z	resemption	Detail		
ا قا	_ _ ജ	%							Detail		
30							Gray, clayey SILT, trace sa	and, scattered silty sand			
					ML		layers (<0				
					'*'-		, ,	•			
1 -											
					SP		Gray, slighty silty to silty,	gravelly fine to medium			
]		SAN				
							5/11	1 D			
1. 1							35.0 - Boring	Completed			
35	_	<u> </u>	<u> </u>					,			
I											
40 —											
45											
Driller:			Standard Ge	oprobe			Well/Auger Diameter:	N/A	inches		
Drilling E		ent:	Direct Push				Well Screened Interval:	N/A	feet bgs		
Sampler			Lined Core				Screen Slot Size:	N/A	inches		
Hammei			N/A	f = = + =			Filter Pack Used:	N/A			
Total Bo			35 N/A	feet bgs			Annular Seal:	N/A			
Total We			N/A N/A	feet bgs			Surface Seal: Monument Type:	N/A N/A			
			11/17				monument rype:	IV/A	Dage:		
Notes/C	ommen	τS							Page:		
									3/3		
1									I		


-				Project:		Rainier N		uc	Boring	No.	
224				Logged by: Date Started	4.	Richard Martin, LHG October 28, 2020			UB40		
				Date Compl			28, 2020		Site Address:		
				Checked by:			Martin, L		4208 Rainier Avenue		
Urb	an			Surface Con		Asphalt	,		Seattle, Washington		
Environmental v			Water Dept				Not Measured				
Part	ne	rs IIc	consulting	Water Dept	h After Com	pletion:		Not Measured			
et	_	ınt	ery							Well	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS	Graphic		Lithologic Description	Construction	
ptk bg	Inte	ΛC	Rec	Fib (ppiii)	Janiple ID	Class	Gra		Elithologic Description	Detail	
ے ا		Ble	%							Detail .	
0						AC			Asphalt/GRAVEL FILL		
_											
_											
_											
_											
_											
_											
5 —											
								Soil not logg	ed/sampled between 0 and 25 feet		
									BGS		
_											
_											
-											
_											
_											
10 —											
_											
_											
_											
_											
_											
_											
_											
15										UUUU	
Driller				Standard Ge	oprobe			Well/Auger Di		inches	
Drilling			nt:	Direct Push				Well Screened		feet bgs	
Sampl				Lined Core				Screen Slot Siz	·	inches	
			/eight:					Filter Pack Use	•		
Total I				35	feet bgs			Annular Seal:	N/A		
Total \				N/A	feet bgs			Surface Seal:	N/A		
State \				N/A				Monument Ty	rpe: N/A		
Notes	/Cor	nment	S							Page:	
										1/3	
1											




				Project: Logged by:	Rainier N		110	Boring No.			
				Date Starte	۸.	Richard Martin, LHG October 29, 2020			UB41		
				Date Compl			29, 2020		Site Address:		
				Checked by:			Martin, L		4208 Rainier Avenue		
Urba	an			Surface Con		Asphalt	,		Seattle, Washington		
Environmental Wa			Water Dept				Not Measured				
Part Ollignot, resp	ne	rs IIc	onsultingl	Water Dept				Not Measured			
et		ınt	Ž							Well	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS	Graphic		Lithologic Description	Construction	
eptl b	Inte	ě	Rec	, 15 (pp)	Sumple 15	Class	Gra			Detail	
		B	%								
0_						AC			Asphalt/GRAVEL FILL		
_											
_											
_											
_											
1 _ 🗆											
5 —								Cailmatlana	and /annualled hinterior on O and 25 fact		
_								Soil not logg	ed/sampled between 0 and 25 feet BGS		
_									BG2		
-											
_											
_											
_											
_											
10											
-											
_											
_											
_											
15											
Driller				Standard Ge	l oprobe			Well/Auger Di	iameter: N/A	inches	
Drilling		uinme	nt:	Direct Push	.opi obc			Well Screened		feet bgs	
Sample				Lined Core				Screen Slot Siz		inches	
Hamm			/eight:	Linea core				Filter Pack Use	•	menes	
Total E				35	feet bgs			Annular Seal:	N/A		
Total \				N/A	feet bgs			Surface Seal:	N/A		
State \				N/A	- 0-			Monument Ty			
Notes								•	·	Page:	
"										-	
										1/3	
										-, -	

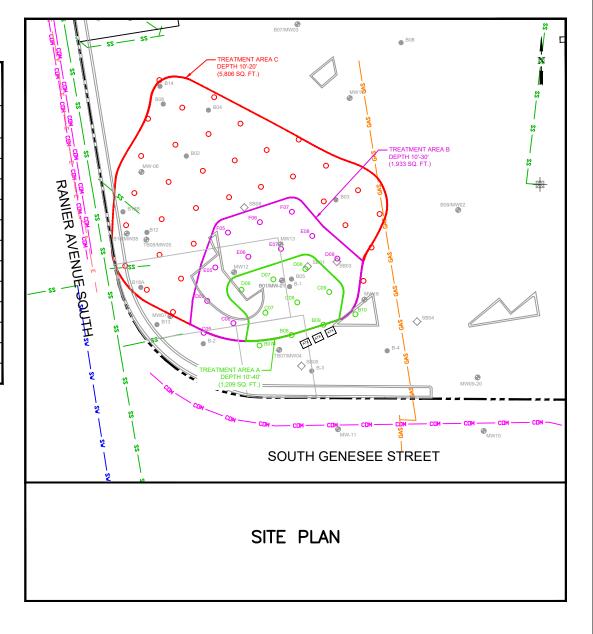
				Project:		Rainier N		uc		Boring	No.
		×		Logged by: Date Started	۸.		Martin, Ll 29, 2020		UB42		
				Date Started			29, 2020			Site Address:	
				Checked by:			Martin, L			4208 Rainier Avenue	
Urba	an			Surface Con		Asphalt	,			Seattle, Washington	
Environmental w			Water Dept				Not Measured				
Part Officeron, resp	nei	rs IIc	onsultinel	Water Dept				Not Measured			
et		ıt	Σ_								NA/-II
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS	Graphic		Lithologic [)escription	Well Construction
pth (1 bgs)	Inte	<u>></u>	Rec	(ppili)	Janiple ID	Class	Gra		Litilologic	resemption	Detail
۵		B	%								
0						AC			Asphalt/GF	RAVEL FILL	
-											
_											
5 —											
_								Soil not logg		between 0 and 25 feet	
									ВС	iS	
-											
-											
10											
-											
_											
-											
15											
Driller				Standard Ge	l onrobe	<u> </u>		Well/Auger Di	iameter:	N/A	inches
Drilling		uinme	nt:	Direct Push	.opiouc			Well Screened		N/A	feet bgs
Sample				Lined Core				Screen Slot Siz		N/A	inches
Hamm			/eight:					Filter Pack Use		N/A	
Total E				35	feet bgs			Annular Seal:		N/A	
Total V				N/A	feet bgs			Surface Seal:		N/A	
State \				N/A	0 -			Monument Ty	pe:	N/A	
Notes/								•			Page:
											1/3
											-,5

Appendix C: TRS Design Plans for ERH

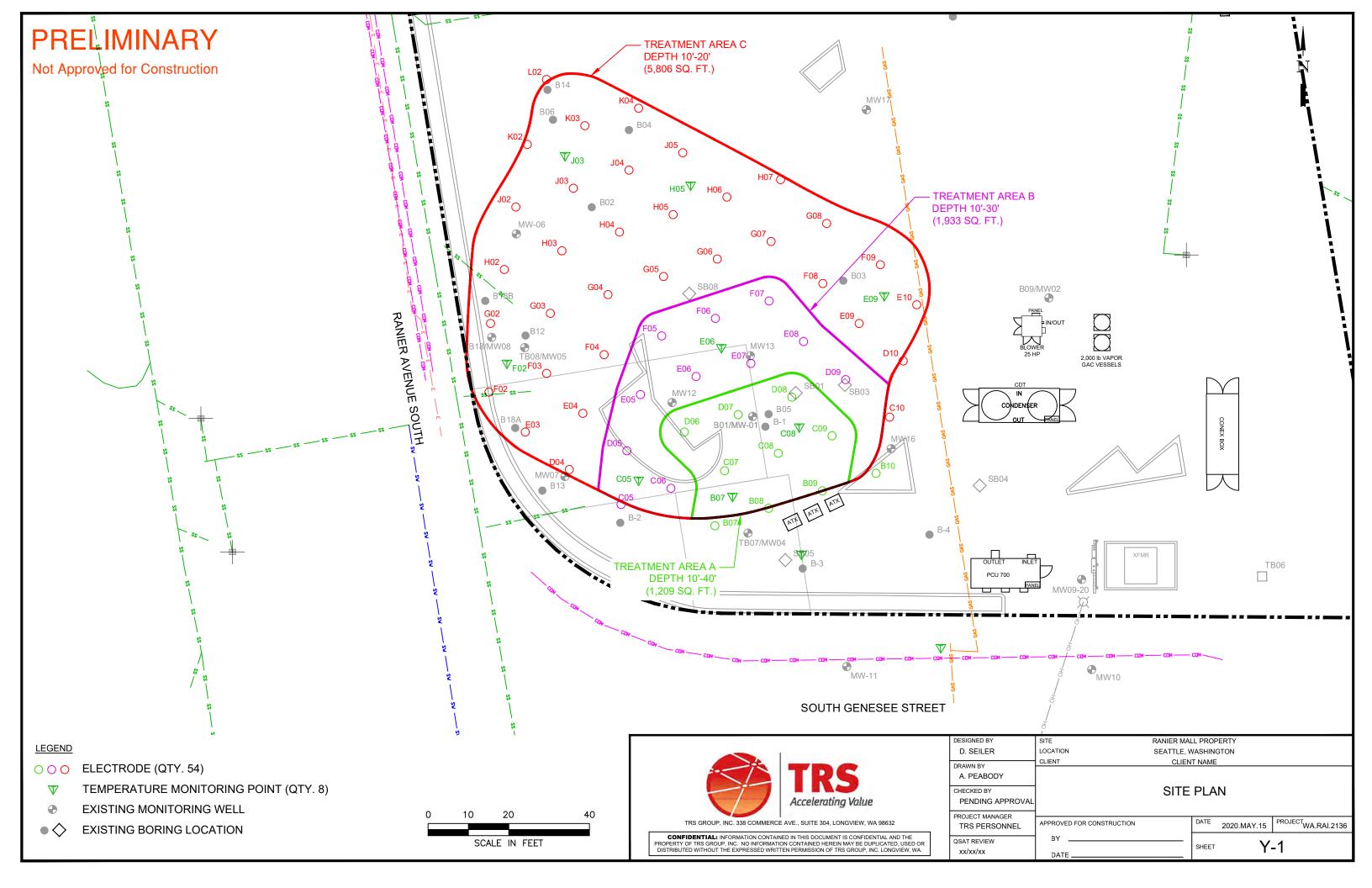
ELECTRICAL RESISTANCE HEATING DESIGN PACKAGE

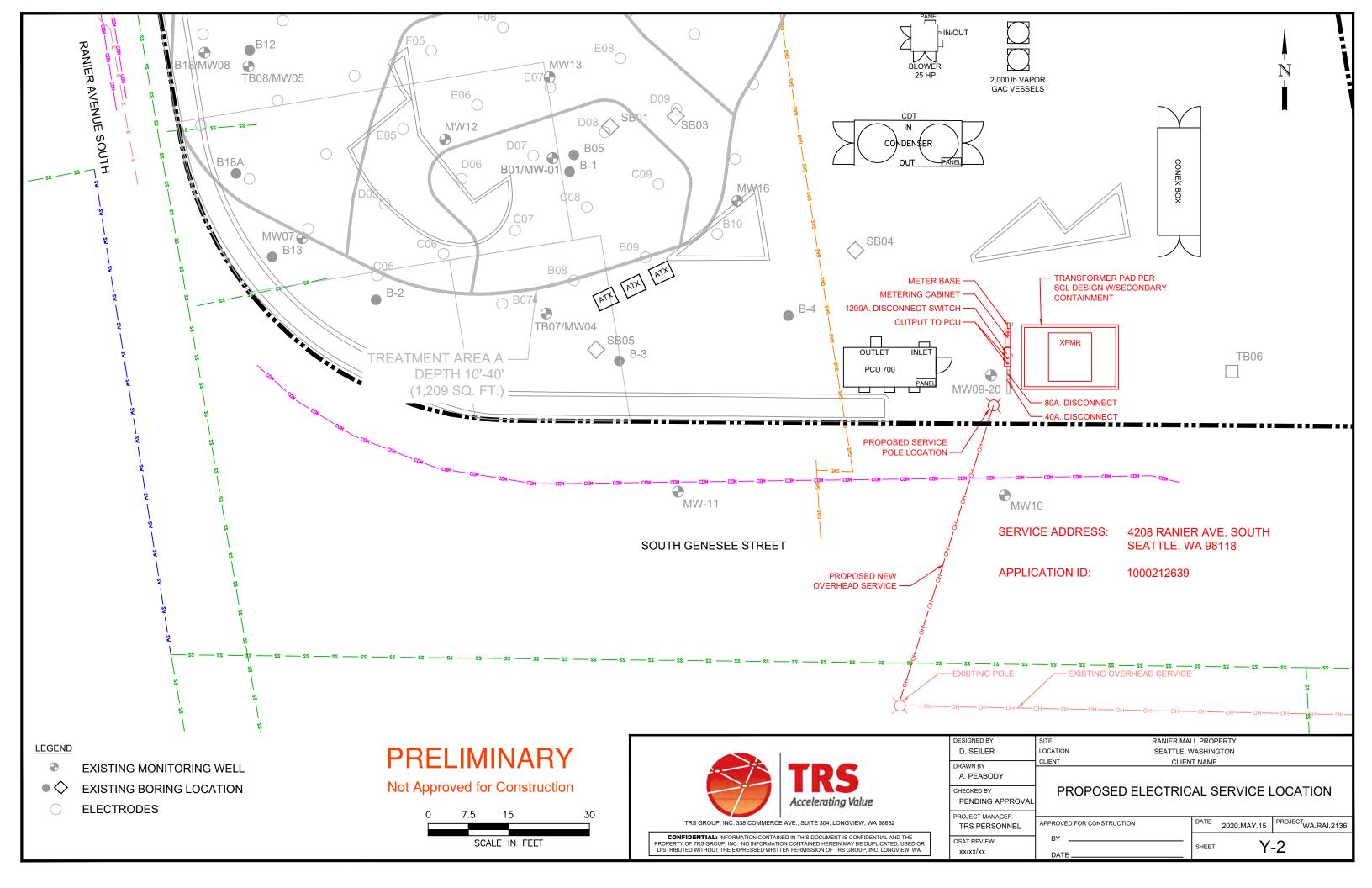
PRELIMINARY

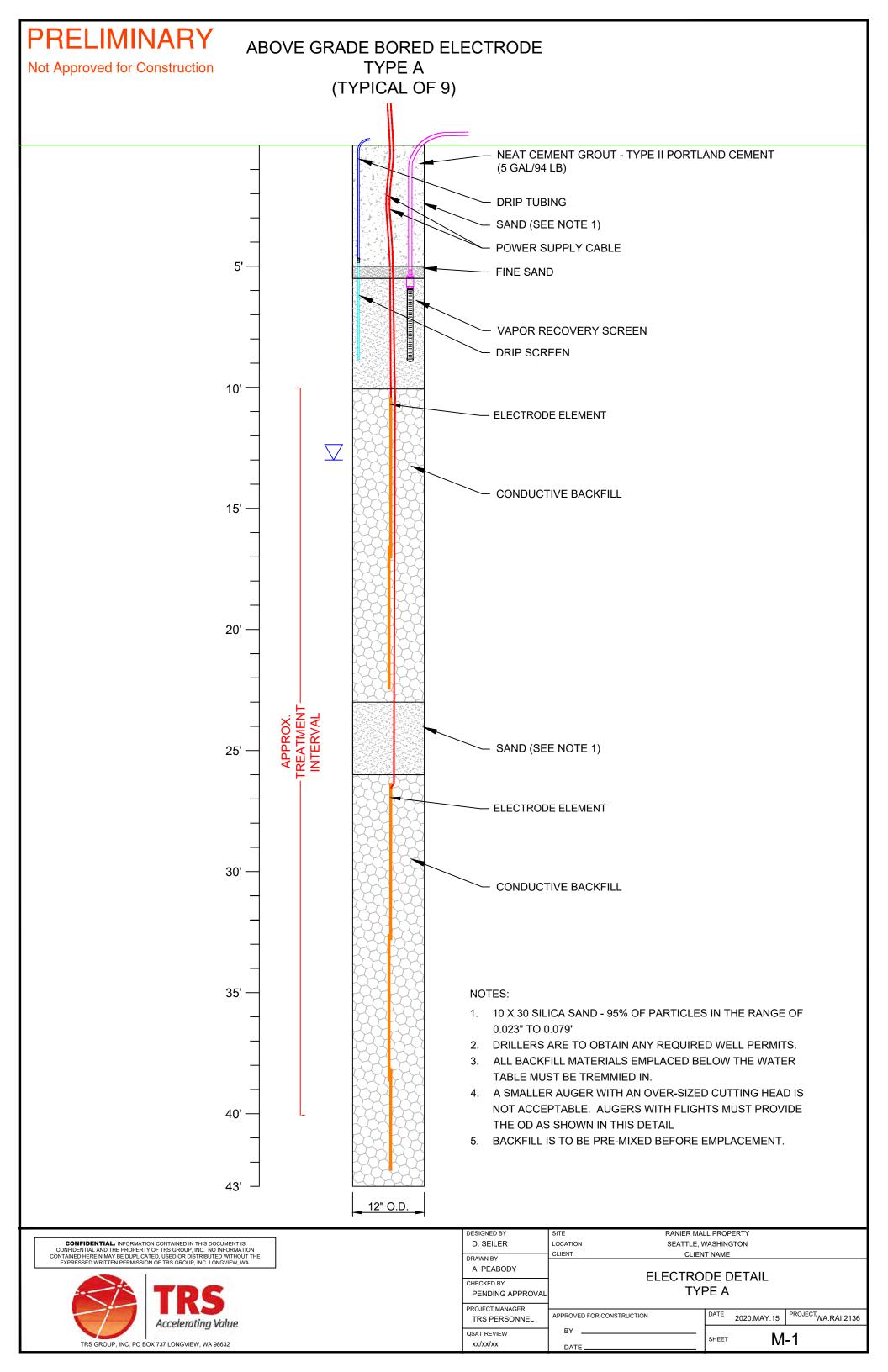
Not Approved for Construction


RAINER MALL PROPERTY 4208 RANIER AVE. SOUTH SEATTLE, WASHINGTON 98118

Prepared by:


MAY 2020


	SHEET INDEX									
DRAWING NUMBER	TITLE AND DESCRIPTION									
Y-1	SITE PLAN									
Y-2	PROPOSED ELECTRICAL SERVICE LOCATION									
M-1	ELECTRODE DETAIL TYPE A									
M-2	ELECTRODE DETAIL TYPE B									
M-3	ELECTRODE DETAIL TYPE C									
M-4	TEMPERATURE MONITORING POINT DETAIL TYPE A									
M-5	TEMPERATURE MONITORING POINT DETAIL TYPE B									
M-6	AREA 1 TEMPERATURE MONITORING POINT DETAIL TYPE C									
E-1	ELECTRICAL ONE-LINE DIAGRAM LEGEND									
E-2	ELECTRICAL ONE-LINE DIAGRAM REQUIREMENTS									
E-3	ELECTRICAL ONE-LINE DIAGRAM									
E-4	ELECTRICAL ONE-LINE DIAGRAM									



WASHINGTON

PRELIMINARY ABOVE GRADE BORED ELECTRODE TYPE B Not Approved for Construction (TYPICAL OF 13) NEAT CEMENT GROUT - TYPE II PORTLAND CEMENT (5 GAL/94 LB) **DRIP TUBING** SAND (SEE NOTE 1) POWER SUPPLY CABLE FINE SAND VAPOR RECOVERY SCREEN **DRIP SCREEN** 10' ELECTRODE ELEMENT \sum CONDUCTIVE BACKFILL 15' NOTES: 1. 10 X 30 SILICA SAND - 95% OF PARTICLES IN THE RANGE OF 0.023" TO 0.079" 2. DRILLERS ARE TO OBTAIN ANY REQUIRED WELL PERMITS. 3. ALL BACKFILL MATERIALS EMPLACED BELOW THE WATER REATMENT INTERVAL 20' TABLE MUST BE TREMMIED IN. 4. A SMALLER AUGER WITH AN OVER-SIZED CUTTING HEAD IS NOT ACCEPTABLE. AUGERS WITH FLIGHTS MUST PROVIDE THE OD AS SHOWN IN THIS DETAIL 5. BACKFILL IS TO BE PRE-MIXED BEFORE EMPLACEMENT. - SAND (SEE NOTE 1) 25' **ELECTRODE ELEMENT** 30' CONDUCTIVE BACKFILL 33' 12" O.D. RANIER MALL PROPERTY DESIGNED BY CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPLICATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA. D. SEILER LOCATION SEATTLE, WASHINGTON CLIENT NAME CLIENT DRAWN BY A. PEABODY **ELECTRODE DETAIL** CHECKED BY TYPE B PENDING APPROVAL PROJECT MANAGER PROJECTWA.RAI.2136 APPROVED FOR CONSTRUCTION 2020.MAY.15 TRS PERSONNEL Accelerating Value QSAT REVIEW M-2 SHEET

xx/xx/xx

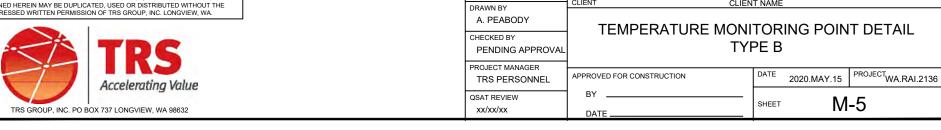
DATE

TRS GROUP, INC. PO BOX 737 LONGVIEW, WA 98632

PRELIMINARY ABOVE GRADE BORED ELECTRODE TYPE C **Not Approved for Construction** (TYPCAL OF 32) NEAT CEMENT GROUT - TYPE II PORTLAND CEMENT (5 GAL/94 LB) **DRIP TUBING** SAND (SEE NOTE 1) POWER SUPPLY CABLE FINE SAND VAPOR RECOVERY SCREEN 10' **DRIP SCREEN ELECTRODE ELEMENT** 15' CONDUCTIVE BACKFILL 20' 23' 12" O.D.

NOTES:

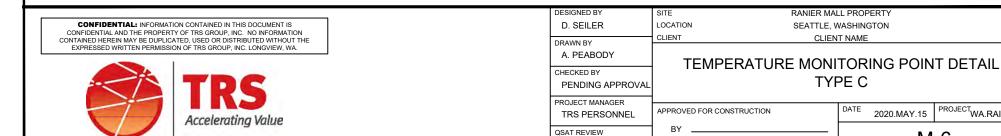
- 1. 10 X 30 SILICA SAND 95% OF PARTICLES IN THE RANGE OF 0.023" TO 0.079"
- 2. DRILLERS ARE TO OBTAIN ANY REQUIRED WELL PERMITS.
- 3. ALL BACKFILL MATERIALS EMPLACED BELOW THE WATER TABLE MUST BE TREMMIED IN.
- 4. A SMALLER AUGER WITH AN OVER-SIZED CUTTING HEAD IS NOT ACCEPTABLE. AUGERS WITH FLIGHTS MUST PROVIDE THE OD AS SHOWN IN THIS DETAIL
- BACKFILL IS TO BE PRE-MIXED BEFORE EMPLACEMENT.


xx/xx/xx

DATE

TRS GROUP, INC. PO BOX 737 LONGVIEW, WA 98632

PRELIMINARY ABOVE GRADE TEMPERATURE MONITORING POINT Not Approved for Construction TYPE A (TYPICAL OF 2) . <u>A</u>⊲ 1" CPVC PIPE 5'-10'-- 1" FNPT X 1" SLIP CPVC 1" BLACK IRON PIPE 15'-NEAT CEMENT GROUT - TYPE II PORTLAND CEMENT 20'-- 1" BLACK IRON WELDED COUPLING TREATMENT INTERVAL 25'-1" BLACK IRON PIPE RESISTANCE TEMPERATURE **DETECTOR (TYPICAL)** 30'-1" BLACK IRON PIPE 35'-1" BLACK IRON WELDED CAP NOTE: 4" O.D. MIN. USE A WATER PUMP TO EVACUATE WATER FROM THE TMP CASING, IF WATER IS OBSERVED. RANIER MALL PROPERTY CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPLICATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA. D. SEILER LOCATION SEATTLE, WASHINGTON CLIENT NAME CLIENT DRAWN BY A. PEABODY TEMPERATURE MONITORING POINT DETAIL CHECKED BY TYPE A PENDING APPROVAL PROJECT MANAGER APPROVED FOR CONSTRUCTION PROJECTWA.RAI.2136 2020.MAY.15 TRS PERSONNEL QSAT REVIEW M-4 SHEET TRS GROUP, INC. PO BOX 737 LONGVIEW, WA 98632 xx/xx/xx DATE


PRELIMINARY ABOVE GRADE TEMPERATURE MONITORING POINT Not Approved for Construction TYPE B (TYPICAL OF 2) 1" CPVC PIPE 5'-NEAT CEMENT GROUT - TYPE II PORTLAND CEMENT - 1" FNPT X 1" SLIP CPVC 10'-15'-1" BLACK IRON PIPE RESISTANCE TEMPERATURE **DETECTOR (TYPICAL)** 20'-1" BLACK IRON PIPE 25'-1" BLACK IRON WELDED CAP 30'-4" O.D. MIN. NOTE: USE A WATER PUMP TO EVACUATE WATER FROM THE TMP CASING, IF WATER IS OBSERVED. RANIER MALL PROPERTY CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPLICATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA. D. SEILER LOCATION SEATTLE, WASHINGTON CLIENT CLIENT NAME

PRELIMINARY ABOVE GRADE Not Approved for Construction TEMPERATURE MONITORING POINT TYPE C (TYPICAL OF 4) NEAT CEMENT GROUT - TYPE II PORTLAND CEMENT 1" CPVC PIPE 5'-- 1" FNPT X 1" SLIP CPVC 10'-TREATMENT INTERVAL RESISTANCE TEMPERATURE **DETECTOR (TYPICAL)** 15'-1" BLACK IRON PIPE 1" BLACK IRON WELDED CAP 20'-4" O.D. MIN.

NOTE: USE A WATER PUMP TO EVACUATE WATER FROM THE TMP CASING, IF WATER IS OBSERVED.

TRS GROUP, INC. PO BOX 737 LONGVIEW, WA 98632

xx/xx/xx

DATE

PROJECTWA.RAI.2136

M-6

SHEET

PRELIMINARY

Not Approved for Construction

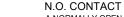
SYMBOLS

UTILITY METERING

MEDIUM VOLTAGE DRAW OUT CIRCUIT BREAKER

FUSE

DISCONNECT SWITCH



FUSED DISCONNECT

SWITCH

CIRCUIT BREAKER

A NORMALLY OPEN (N.O.) CONTACT IS OPEN WHEN IT, OR THE DEVICE OPERATING IT, IS IN A DE-ENERGIZED

Ж

N.C. CONTACT

A NORMALLY CLOSED (N.C.) CONTACT IS CLOSED WHEN IT, OR THE DEVICE OPERATING IT, IS IN A DE-ENERGIZED STATE OR RELAXED STATE.

THERMAL OVERLOAD

PUMP/MOTOR

TRANSFORMER

VARIABLE OUTPUT 3 PHASE TRANSFORMER

GENERATOR

AUTOMATIC TRANSFER SWITCH

ABBREVIATIONS

AMPERES

Α

ATS AUTOMATIC TRANSFER SWITCH

FLA FULL LOAD AMPS

HP HORSEPOWER

KILOWATT KW

KVA KILOVOLT-AMPERES

ΚV KILO-VOLTS

NORMALLY OPEN N.O.

OVERLOAD OL

POLE

PH, Ø PHASE

SRGAC STEAM REGENERATED GAS ACTIVATED CARBON

VAC **VOLTAGE ALTERNATING CURRENT**

VFD VARIABLE FREQUENCY DRIVE

V VOLT

W WATTS, WIRE

> NOTE: THIS IS AN ALL INCLUSIVE LEGEND SHEET. NOT ALL SYMBOLS/ABBREVIATIONS WILL APPEAR ON EACH SHEET.

CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPLICATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA.

DESIGNED BY	SITE RAN	IIER MALL PROPERTY								
D. SEILER	LOCATION SE.	ATTLE, WASHINGTON								
DRAWN BY	CLIENT	CLIENT NAME								
A. PEABODY										
CHECKED BY PENDING APPROVAL	ELECTRICAL ON	E-LINE DIAGR	AM LEGEND							
PROJECT MANAGER		DATE	PROJECT							
TRS PERSONNEL	APPROVED FOR CONSTRUCTION	2020.MA	AY.15 FROJEC WA.RAI.2136							
QSAT REVIEW	BY		Г 4							
xx/xx/xx	DATE	SHEET	E-1							

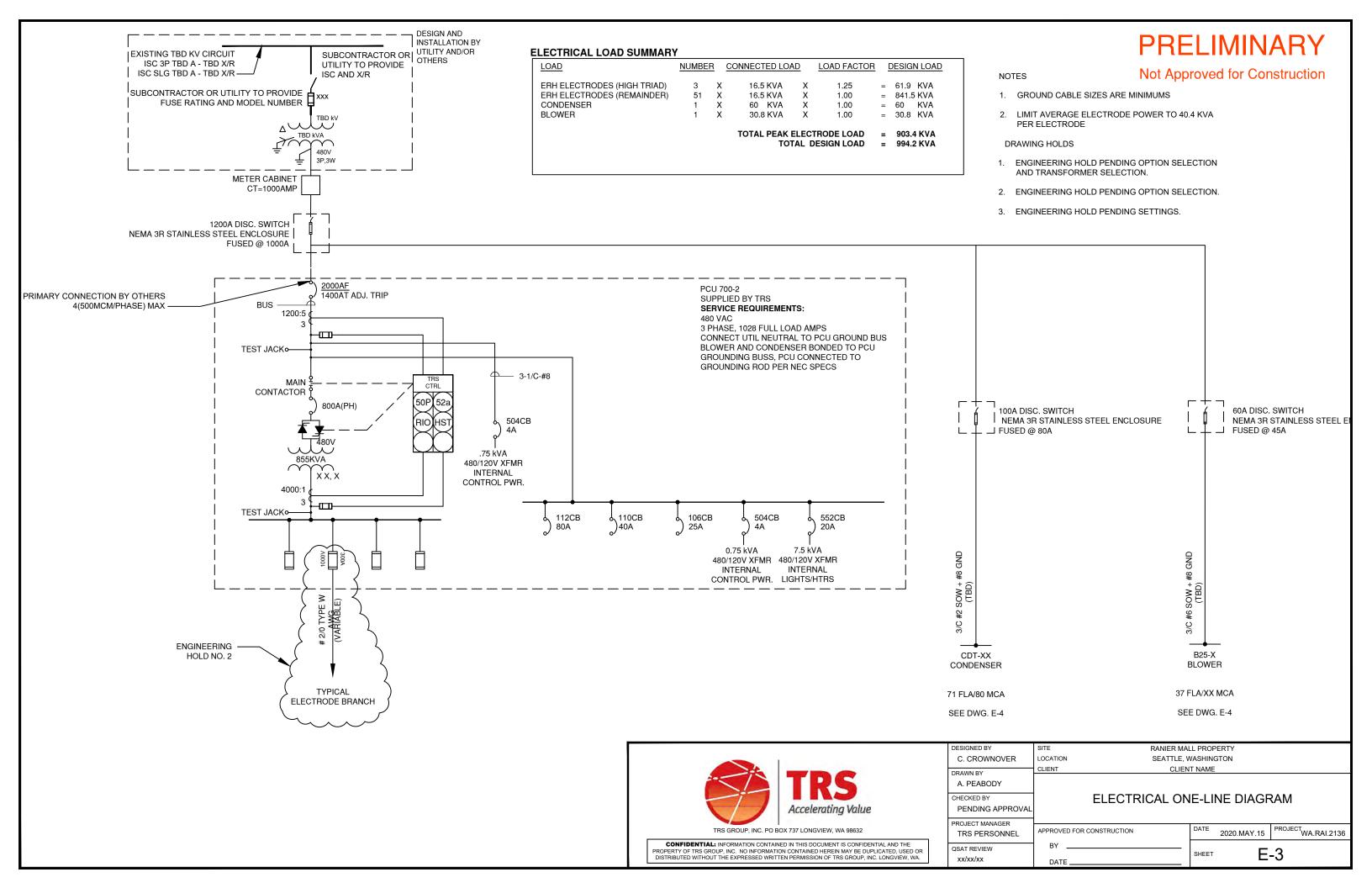
PRELIMINARY

Not Approved for Construction

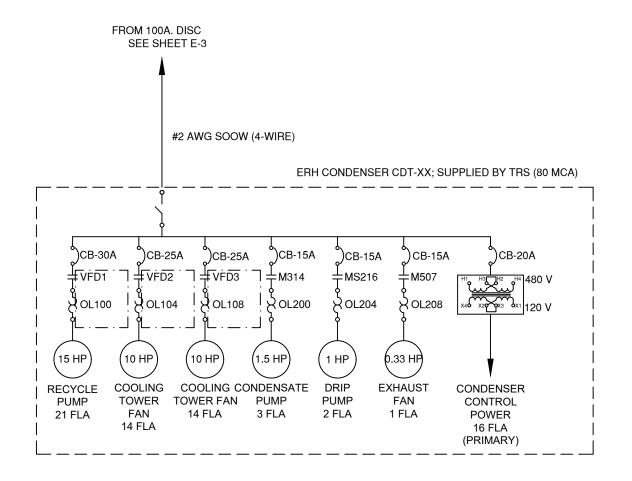
GENERAL NOTES

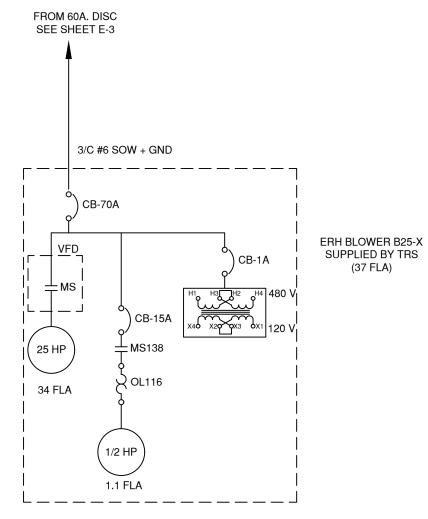
- PERFORM INSTALLATION IN ACCORDANCE WITH THE CURRENT EDITION OF THE NATIONAL ELECTRICAL CODE (NEC) AND THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA). EQUIPMENT SHALL BE LISTED BY A NATIONALLY RECOGNIZED TESTING LABORATORY (NRTL).
- 2. PROVIDE AND MAINTAIN A CLEAR WORKING SPACE ABOUT ELECTRIC EQUIPMENT IN ACCORDANCE WITH NEC ARTICLES 110.26 AND 110.34.
- 3. PROVIDE CIRCUIT BREAKERS WITH UL LISTED INTERRUPTING RATING (RMS SYMMETRICAL AMPERES) GREATER THAN THE AVAILABLE FAULT CURRENT SHOWN IN THE SHORT CIRCUIT REPORT.
- 4. PROVIDE PADLOCKING PROVISIONS FOR EACH TWO AND THREE POLE CIRCUIT BREAKERS.
- 5. USE #12AWG OR LARGER CONDUCTORS FOR POWER WIRING.
- 6. USE #14AWG OR LARGER CONDUCTORS FOR CONTROL WIRING UNLESS OTHERWISE SPECIFIED OR SHOWN ON THE DRAWINGS.
- 7. LIMIT USE OF ELECTRICAL METALLIC TUBING (EMT) AND SCHEDULE 40 PVC CONDUIT TO AREAS WHERE IT WILL NOT BE SUBJECT TO PHYSICAL DAMAGE.
- 8. USE LIQUID TIGHT FLEXIBLE METAL CONDUIT FOR FLEXIBLE CONNECTIONS TO EQUIPMENT OUTDOORS.
- 9. USE INTERMEDIATE METALLIC CONDUIT (IMT) OR RIGID GALVANIZED STEEL CONDUIT (RGS) OR SCHEDULE 80 PVC CONDUIT FOR WORK EMBEDDED IN CONCRETE OR EXPOSED TO PHYSICAL DAMAGE. THESE CONDUIT TYPES MAY BE USED IN ALL APPLICATIONS WHERE SCHEDULE 40 PVC OR EMT WOULD BE APPROPRIATE, AT THE DISCRETION OF THE DESIGN ENGINEER.

10. USE THE FOLLOWING CONDUCTOR COLOR CODES.


	240/120V	208Y/120V	480Y/277V	MED VOLTAGE	ELECTRODE CABLES
PHASE A	BLACK	BLACK	BROWN	RED	RED W/ELECTRODE MARKER
PHASE B	RED	RED	ORANGE	YELLOW	YELLOW W/ELECTRODE MARKER
PHASE C		BLUE	YELLOW	BLUE	BLUE W/ELECTRODE MARKER
NEUTRAL	WHITE	WHITE	GRAY		
EQUIP, GND	GREEN/BARE	GREEN/BARE	GREEN/BARE	GREEN/BARE	
ISOLATED GRO	OUND SHALL BE O	GREEN WITH YELL	OW TRACER.		

- 11. USE ONLY COPPER CONDUCTORS.
- 12. POWER CONDUCTORS 10AWG AND SMALLER SHALL BE SOLID. POWER CONDUCTORS 8AWG AND LARGER SHALL BE STRANDED
- 13. FOR NON-ELECTRODE CIRCUITS, PROVIDE TYPE THHN/THWN WIRE INSULATION. XHHW INSULATION MAY BE USED FOR 1AWG AND LARGER. TYPE W AND DLO CABLE MAY BE USED FOR CIRCUITS WHICH REQUIRE FLEXIBILITY. CONDUCTORS THAT REQUIRE FLEXIBILITY ARE PERMITTED TO BE STRANDED REGARDLESS OF CONDUCTOR SIZE. USE OF WIRE FERRULES ON UN-LUGGED FLEXIBLE CABLE IS REQUIRED. SOW CABLE IS PERMITTED FOR SKID POWER FEEDERS.
- 14 . ARRANGE CONNECTIONS FOR SINGLE PHASE CIRCUITS TO ACHIEVE THREE PHASE LOAD BALANCE WITHIN 10% OF THE AVERAGE PHASE LOAD CURRENT FOR SCR POWERED LOADS.
- 15. ARRANGE CONNECTIONS FOR SINGLE PHASE CIRCUITS TO ACHIEVE THREE PHASE LOAD BALANCE WITHIN 20% OF THE AVERAGE PHASE LOAD CURRENT FOR NON-SCR POWERED LOADS.
- 16. INSTALL OUTDOOR EQUIPMENT TO BE WEATHERPROOF AND TO EXCLUDE BIRDS AND RODENTS WITH A MAXIMUM ½" DIAMETER UNPROTECTED OPENINGS IN ENCLOSURES.
- 17. TEST CONDUCTORS FOR CONTINUITY AND FREEDOM FROM SHORTS AND UNINTENTIONAL GROUNDS.
- 18. ELECTRICAL MATERIALS AND CONSTRUCTION SHALL CONFORM TO TRS GROUP INC STANDARD CONSTRUCTION SPECIFICATIONS WHERE APPLICABLE.
- 19. IF A CONFLICT ARISES BETWEEN THE FIELD CONDITIONS AND THESE GENERAL ELECTRICAL REQUIREMENTS, STOP WORK AND CONTACT THE PROJECT ENGINEER.
- 20. TIE-INS TO EXISTING POWER SYSTEMS WILL BE PERFORMED BY OTHERS, WORKING UNDER THE DIRECTION OF A LOCALLY LICENSED ENGINEER OR UTILITY AUTHORITY. SEE TRS ELECTRICAL CONTRACTING SPECIFICATION FOR ADDITIONAL REQUIREMENTS IF PERFORMED BY TRS SUBCONTRACTOR.


CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPILCATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA.


DESIGNED BY	SITE RANIER MALL PROPERTY					
D. SEILER	LOCATION	SEATTLE, WASHINGTON				
DRAWN BY	CLIENT	CLIEN	IT NAME			
A. PEABODY						
CHECKED BY PENDING APPROVAL		ELECTRICAL ONE-LINE REQUIREMENTS				
PROJECT MANAGER TRS PERSONNEL	APPROVED FO	OR CONSTRUCTION	DATE	2020.MAY.15	PROJECT WA.RAI.2136	
QSAT REVIEW	BY		SHEET	E.	-2	

PRELIMINARY

Not Approved for Construction

TRS GROUP, INC. PO BOX 737 LONGVIEW, WA 98632

CONFIDENTIAL: INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND THE PROPERTY OF TRS GROUP, INC. NO INFORMATION CONTAINED HEREIN MAY BE DUPLICATED, USED OR DISTRIBUTED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF TRS GROUP, INC. LONGVIEW, WA.

DESIGNED BY	SITE	RA	NIER MAI	LL PROP	ERTY		
D. SEILER	LOCATION	SE	ATTLE, V	VASHING	STON		
DRAWN BY	CLIENT		CLIEN	T NAME			
A. PEABODY							
CHECKED BY	ELECTRICAL ONE-LINE DIAGRAM						
PENDING APPROVAL							
PROJECT MANAGER							
TRS PERSONNEL	APPROVED FO	R CONSTRUCTION		DATE	2020.MAY.15	PROJECT WA.RAI.2	136
QSAT REVIEW	BY				_	4	
xx/xx/xx	DATE			SHEET	E.	-4	

Appendix D: TRS Soil and Groundwater Sampling Protocols

STANDARD OPERATING PROCEDURE

PROCEDURE No: 3.1

Procedure Title: Hot Groundwater Sampling

Author: TRS Team Issue Date: 4/22/08

Revisions:

Date	Initials	Revision Description	Revision #
12/15/14	TP	Annual Review, MW access caution	6
12/4/17	GK	Annual review; procedure updates	7
12/02/19	GK	Annual Review, revised sample rate to 0.2 L/m, added steam reference	8

Reviewed and Approved by (initial and date):

SOP/ Revision #	Safety & Quality	/	Engineering		
Original	4/22/08		4/22/08		
REV 5	7/27/12		7/27/12		
REV 6	1/21/16		1/21/16		
REV 7	12/4/17		12/4/17		
REV 8		12/2/2019	En Whil	12/2/2019	

1.0 PURPOSE

This standard operating procedure (SOP) provides uniform procedures for the safe collection of representative groundwater samples during or after the application of electrical resistance heating (ERH), Thermal Conduction Heating (TCH), or other *in situ* thermal remediation (ISTR) applications. This procedure specifically addresses sampling of groundwater that has been heated during the thermal remediation process.

2.0 SCOPE

This SOP provides the relevant information and steps for the collection of groundwater samples during or after the application of ISTR using modified low-flow sampling procedures. This SOP draws information primarily from the United States Environmental Protection Agency's (USEPA's) groundwater issue paper, Low-Flow (minimal drawdown) Ground-Water Sampling Procedure (Puls and Barcelona, 1996). Modifications to the EPA methodology have been made to accommodate groundwater temperatures that have been elevated from the application of ISTR. Only personnel trained to the minimum requirements outlined in **Section 7.0** of this SOP are authorized to collect hot groundwater samples at TRS ISTR project sites.

The USEPA guidance document recommends continual monitoring of water levels during the purge and sample process to ensure that minimal drawdown is occurring (Puls and Barcelona, 1996). Due to the safety hazards associated with opening groundwater monitoring wells where heated groundwater is present at ISTR project sites, groundwater level measurements (depth to groundwater) will not be collected as part of hot groundwater sampling activities. If the TRS project site has been constructed with pressure transducers to monitor groundwater gradients, readings from the transducers will be monitored as feasible to minimize groundwater drawdown. If previous sampling records or hydrogeologic data is available, this information shall be used to develop target flow rates for the groundwater sampling effort.

These procedures assume that dedicated sample tubing and pumping systems for each monitoring well have been established prior to application of electrical energy to the subsurface.

Caution - Access to groundwater monitoring wells during a TRS ISTR application is prohibited without TRS management approval. If intrusive work is required to complete the sampling efforts, or minimally accessing (removing) a well cap, an additional activity hazard analysis (AHA) must be created specific to the site and activity and reviewed and approved by the TRS project manager (PM), TRS Safety & Quality Manager (SQM), and, the TRS authorized employee approving the Start-Up Checklist (SUCL).

Samples collected using this SOP are generally used for optimizing system performance. Samples collected using this procedure may also be used for regulatory compliance and/or site closure.

TRS Group, Inc. (TRS) personnel shall use this procedure in conjunction with site-specific Health and Safety Plans (HASP), sample analysis plans, and permit requirements. These are standard (i.e., typically applicable) operating procedures that may be varied or changed as required, dependent on-site conditions, equipment limitations, permit requirements, or limitations imposed by the procedure. The ultimate procedures, including any deviations from this SOP, shall be documented on the groundwater sampling form.

3.0 DEFINITIONS

Authorized employee

Any designated employee who locks out or tags out equipment in order to perform servicing or maintenance. This person must have completed the mandatory Lockout/Tagout (LOTO) training described in SOP 1.1 LOTO to be qualified as an authorized worker. Only an authorized worker installs and removes his or her own lock and tag as required by this program.

Competent Person

Any designated employee who has been trained in proper procedures for hot groundwater sampling at thermal remediation sites. This person must have completed the mandatory training outlined in **Section 7.0** to be qualified as a competent person.

ERH - Electrical Resistance Heating

ERH is a process whereby soils and groundwater are heated by passing an electrical current through the subsurface volume to be remediated.

TCH - Thermal Conduction Heating

TCH is a process whereby soils and groundwater are heated with electric heaters placed as an array into the subsurface volume to be remediated.

Bladder Pump

Submersible pump with external control unit used for pumping fluids at greater depths. The bladder pump consists of an internal flexible bladder that is positioned within a rigid pump body constructed of stainless steel. The inner bladder is equipped with one-way inlet and outlet valves and passively fills with water when the pump is at depth by virtue of hydrostatic pressure. Following the fill cycle, compressed air from a cylinder or compressor at the wellhead is delivered to the pump through tubing and is used to compress the bladder. The applied pressure then causes the flexible bladder to compress and closes the bottom check valve, forcing water from the bladder into the discharge tubing. During a vent cycle, the pressure is released from the drive tubing. The bladder returns to its initial state as water re-enters the pump, while the top check valve prevents water already in the discharge tubing from falling back into the bladder. The pumping sequence consists of repeated fill/compress cycles, using a pneumatic controller positioned at the wellhead.

LOTO

Lockout/Tagout. The practice of using a tag for visibility and awareness in conjunction with placement of a keyed device ("lock") on an energy isolating device, in accordance with TRS SOP 1.1, Lockout/Tagout to prevent the unwanted activation of mechanical or electrical equipment. Lockout ensures the equipment being controlled cannot be operated until the lock is removed.

Low-Flow Purging

A USEPA approved purge-and-sample method used to minimize stress on the formation (minimal drawdown) which results in less mixing of stagnant casing water with formation water. Additional advantages of using low-flow purging methods include the following:

- Samples are more representative of actual contaminant loading
- Disturbance at the sampling point is minimal which minimizes sampling artifacts
- Less operator variability occurs between sampling events
- Decreased amount of investigation-derived waste (IDW) is produced
- Need for filtration is reduced
- Sample consistency is increased
- Only small volumes are removed from the well, making flashing in the well less likely

Flow-rates during low-flow purging/sampling are site-specific, based on hydrology, but are generally in the order of 0.1 to 0.2 liters per minute (L/min). Proper screen location, screen length, well construction and well development techniques may impact the effectiveness of low-flow purging. (Puls and Barcelona, 1996). The total volume of water removed from the well should be minimized to the extent practicable to avoid flashing of groundwater in the well which will produce erroneous data. These factors must be considered when developing a consistent, site-specific groundwater sampling procedure.

Multi-probe and Flow-Through Cell

The flow through cell allows for in-line sampling of water quality parameters with the Multi-probe to determine stabilization for water sampling. At a minimum, groundwater quality parameters include pH, conductivity, temperature, dissolved oxygen (DO), and turbidity. Examples of multi-probes used for collecting water quality parameters include the Horiba U-22 and YSI 556 (shown below).

Peristaltic Pump

A positive displacement pump used for pumping fluids. Generally, flexible tubing is fitted inside a circular pump casing. A rotor with a number of "rollers", "shoes", or "wipers" attached to the external circumference compresses the flexible tube. As the rotor turns, the part of tube under compression closes thus forcing the fluid to move through the tube.

SHSO

Site Health and Safety Officer

Trip Blank

The purpose of trip blanks it to identify any potential contamination of samples during sample handling and shipment. These blanks are prepared in the laboratory by filling a volatile organic analysis (VOA) bottle with distilled/deionized water. Trip blanks shall accompany shipment of empty vials to the site and shipment of samples back to the laboratory.

VOA Vials

EPA recommended glass sample containers used to collect liquid samples for laboratory analysis. Volatile organic analysis (VOA) vials have a nominal volume of 40 milliliters (mL) and are manufactured of clear or amber borosilicate glass. Depending on type of analysis being conducted, the VOA vials may contain small amounts of preservative when shipped from the laboratory. When collecting samples in VOA vials, fill the vial completely full (ensure that a meniscus has formed at the top of the vial before securing the cap) and check that there are no air bubbles in the closed sample. If there is a preservative present, use caution to not overfill the vial.

4.0 EQUIPMENT LIST

The required equipment for groundwater sampling may differ from this SOP based on the requirements set by the local regulatory oversight agency. Typically, the required equipment will be as follows:

- 1) Groundwater Sampling Field Form and indelible pen.
- 2) Safety Glasses with side shields. Additional option: full face-shield (wear over safety glasses).
- 3) Cotton Gloves with nitrile over-gloves. Cotton gloves should be worn to protect against water having high temperatures (wear under outer nitrile gloves).
- 4) Site-specific personal protective equipment (PPE) requirements. Refer to site-specific HASP.
- 5) Pump and operating components:
 - a) Peristaltic pump utilized when the depth to water is 20 feet below ground surface (ft bgs) or less. Dedicated tubing shall be installed prior to ISTR application.
 - b) Dedicated bladder pump with compressed air for depth to groundwater greater than 20 feet. Dedicated pumps shall be installed prior to ISTR application.
- 6) Tubing (installed prior to ISTR application):
 - a) Stainless steel and Silicone tubing (Masterflex®) for use with the peristaltic pump. Silicone tubing should be used only above the ground surface at the pump head in order to minimize potential for degradation by contaminants. The silicone tubing is then connected to the previously installed stainless steel tubing.
 - b) Dedicated bladder pumps and tubing if using a bladder pump. Reminder: bladder pumps should have been installed prior to the start of ISTR operations.
 - c) Caution Once ISTR heating begins; wellhead access is prohibited without prior TRS
 management approval. See Section 2.0 for details regarding the administrative process for
 monitoring well wellhead removal.
- 7) Cooler with ice, (one to two 10-pound bags of ice).
- 8) 10-ft length of ¼-inch (outside diameter) stainless steel tubing.
- 9) One-ft length of four-inch diameter pipe.
- 10) Tray or container for ice bath.
- 11) Field water quality measuring equipment w/flow-through cell or similar device for monitoring groundwater parameters (pH, conductivity, ORP, temperature, DO, etc.) and calibration standards.
- 12) Turbidity meter.
- 13) Buckets for purge water.
- 14) Sample containers (with preservative as required by the laboratory analytical method), labels, and chain-of-custody forms (as required by the laboratory for the analysis). Pre-printed labels are generally available from the laboratory if requested in advance.
- 15) Scissors or tubing cutter (for cutting tubing lengths).
- 16) Packaging material and shipping labels.
- 17) LOTO equipment as described in TRS SOP 1.1.

5.0 HOT GROUNDWATER SAMPLING PROCEDURES

Groundwater purging is generally accepted as a required component of groundwater sampling in order to remove non-representative water from the well casing (Puls and Barcelona, 1996). Low-flow purging (or micro-purging) and sampling techniques will be used to minimize the impact on groundwater chemistry and collect representative samples. This technique also reduces the amount of investigation-derived waste (IDW) produced from a well.

Generally, low-flow purging is considered to have been accomplished once the water quality parameters monitored have stabilized to within a 10 percent margin of error. Water quality parameters should be recorded at a frequency of intervals between 3 and 5 minutes until parameter stabilization occurs. The key to successful micro-purging is to minimize draw-down in the monitoring well (less than 0.33 feet). Due to the need for sealed monitoring wells during the thermal remediation process, special care should be administered to purge flow rates. **Purge flow rates are preferred to be between 0.1 and 0.2 L/min whenever possible**.

5.1 Safety Considerations

There are certain hazards associated with ISTR during the remediation of soil and groundwater. These hazards include possible contact with hazardous voltage, steam, hot water, or hazardous chemicals. Exposure to these hazards can be mitigated through engineering controls and strict adherence to documented procedures and safety protocols, such as the following restrictions:

- For sample integrity, ground water sampling is performed while the ISTR power control unit (PCU) is off-line. The ISTR PCU output must be off and LOTO applied.
- Extreme temperatures, hot water, and steam may be encountered when collecting groundwater samples; the use of the proper personal protective equipment (PPE) is mandatory and caution is advised.
- Dedicated tubing and pumping systems shall be established prior to application of electrical energy to the subsurface.
- Refer to the site-specific Sampling and Analysis Plan (SAP) and HASP for site-specific requirements and restrictions.
- Personnel shall be trained on hazards and engineering controls associated with hot
 groundwater and potentially pressurized wells prior to sampling. Potential hazards
 include steam, hot groundwater, hot mud/soil, heated sampling equipment. Personnel
 should also be familiar with general site hazards identified in the site-specific HASP.

Refer to the site-specific Sampling and Analysis Plans (SAPs) and HASP for site-specific requirements and restrictions.

Caution: Exposure to hot groundwater and steam possible

The removal of water and from a groundwater monitoring well can change the temperature/pressure conditions existing in the well by reducing the hydrostatic head in the well allowing hot water and steam to flash within the monitoring well casing. Improper sealing of the monitoring well wellhead may produce steam or hot groundwater leaks at the connection point.



5.2 Ice Bath Construction

Groundwater heated through the thermal remediation process presents both a potential safety hazard and a potential concern for collecting representative samples. If a boiling or near-boiling liquid is collected in a volatile organic analysis (VOA) vial, the formation of air bubbles as the sample cools within the VOA vial renders the sample non-representative. Additionally, hot liquids collected in the VOA vial may result in failure of the VOA septum.

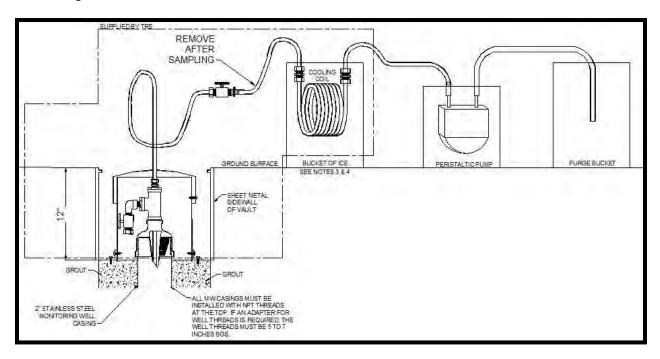
The ice bath is designed to cool the groundwater prior to sample collection while limiting the impact on groundwater chemistry and contaminant concentrations. Cooling the groundwater prior to sample collection allows for both the safe handling of highly elevated water temperatures and prevents the formation of volatile organic compound (VOC) bubbles in the VOA vial after sample collection.

Prior to initial sampling, a cooling coil shall be constructed by wrapping a 10-ft length of ¼-inch outside diameter stainless steel tubing 6 full turns around a 4-inch diameter pipe. The ends of the tubing shall be fashioned such that both ends of the tubing extend upward, as shown in the figure below.

5.3 Pumps

Peristaltic pumps are used for purging and sampling wells that have a depth to water of 20-ft bgs or less. During the construction of the ISTR system, a dedicated %-inch sample tube will be set within the well and a %-inch stainless steel sample valve will be installed in the surface well cap for sampling with a peristaltic pump. Prior to commencing any ISTR operations, the well caps will be inspected for proper construction and installation and the well cap should not be removed during ISTR operations and/or sampling. Installation of the sample valve is mandatory in order to prevent steam from escaping from the well during ISTR application.

Pneumatically operated bladder pumps will be used for purging and sampling wells that with depth to water greater than 20 feet. The well head completion will be modified to allow for two tubes to pass independently through the sealed well head assembly. One tube will be used to deliver compressed air to the pump and the other tube will be used for sample recovery.



Either dedicated bladder pumps with Teflon® tubing or dedicated stainless steel tubing for use with a peristaltic pump will be installed prior to initiating heating of the ISTR treatment volume. The use of preinstalled, dedicated sample equipment will reduce the risk of exposure to steam, hot water, or contaminants, since the well head will not have to be opened.

Refer to the site-specific work plan or client directives on specific placement/depth of the sample tubing intake or dedicated pump in monitoring wells.

5.4 Well Head Construction

The TRS wellhead construction contains mandatory features that support the safe and representative collection of groundwater samples on a heated ISTR site. The detailed features of the Groundwater Monitoring Well are shown below.

This monitoring well head design provides the ability to collect groundwater samples from a screened monitoring well without needing to open the well head increasing exposure to steam and hot water. Once heating has commenced, entry to the wellhead is **prohibited** without TRS senior management approval (see **Section 2.0**).

Please note the relief valve at the well head is for venting purposes and used **ONLY** when accessing the interior of the monitoring well becomes necessary. This valve should **NOT** be opened prior to sampling as this may change the hydrostatic head pressure within the monitoring well and cause flashing within the monitoring well, resulting in unrepresentative groundwater samples. Should the valve be opened prior to sampling, additional time may be required for the well to stabilize before the collection of groundwater samples. Dependent on groundwater recharge rates, this stabilization period could range from hours to days.

5.5 Sample Collection Approach

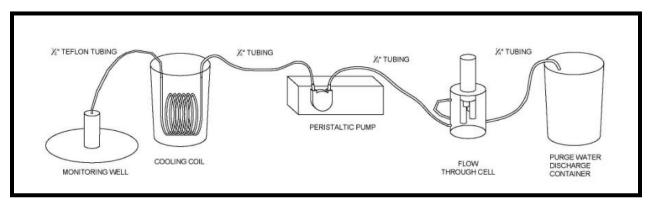
For GW sampling, TRS typically extend stainless steel or Teflon™ tubing into the water table connected to a stainless steel, specialty wellhead and collect the groundwater samples by peristaltic pump. The groundwater partially flashes within the sample tube during recovery but the cooling coil re-condenses it so there is no VOC loss since heated GW contains almost zero dissolved gases.

Do not sample steam and air

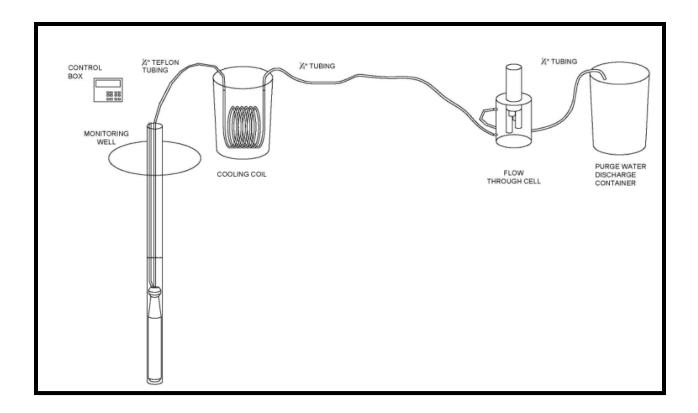
Sampling personnel must be careful to make sure the tube extends fully into the water table to avoid collecting steam and air from inside the well casing. If steam and air are recovered from above the water table, rather than collecting groundwater, it causes the contaminant concentrations in the samples to be much higher than what is actually in the groundwater (opposite of what you would instinctively think). This occurs because there is mostly steam and very little air in the well casing and VOCs volatilize at a higher proportion in the steam. When the steam is condensed, it shows much higher concentrations than are typically in the groundwater. For example, 1 part per million (ppm) trichloroethene (TCE) in groundwater will boil to create steam that contains about 0.6 milligrams (mg) of TCE per liter of steam, but that one liter of steam condenses to only 0.6 mL of water so when that steam is condensed it can make it appear like the groundwater contains 1,000 mg/L of TCE rather than 1 mg/L. When the stainless steel or Tefon™ tube is submersed in the groundwater, the data are very comparable to that of water collected by submersible pump. However, flashing can occur throughout the entire depth of a monitoring well, so unusually high VOC concentrations can still be obtained by sampling a well by pumping too quickly or reducing the head in the well too dramatically when the sample collection point is well below the groundwater elevation. Sampling at a slow rate with as small of a volume removal as practicable from the wells will help produce quality samples.

5.6 Groundwater Sampling

The TRS project team must coordinate, in advance, with all applicable parties to schedule an interruption to the ISTR application. The PM and SHSO shall determine a site-specific interruption period. Sampling shall be completed in order from the wells having the lowest anticipated concentrations of contaminants of concern (COC) to wells having the highest anticipated COC concentrations (usually from exterior wells to boundary control wells to wells located within the source area).


The groundwater sampling procedure is as follows:

- Calibrate probes used to monitor water quality parameters according to the manufacturer's
 instructions (as necessary). Calibration frequencies should adhere to the manufacturer's
 recommendations. Document all calibrations done to the probes used. Documentation should
 include: date, time, calibration solutions used, solution expiration dates, solution lot numbers,
 calibration results, outliers, and any illuminating comments.
- 2) Cease ISTR application to the treatment volume and perform LOTO procedures on the ISTR PCU as required by site-specific protocols. Note: LOTO application shall only be completed by personnel who have been trained and certified by TRS in accordance with SOP 1.1.
- 3) Connect ¼-inch sample tubing from the valve on the well to the cooling coil and place the coil in a bucket or cooler with ice to form the ice bath as described in **Section 5.2**.


- 4) Connect the pump to the cooling coil. For wells with a depth to water less than 25 feet, connect the cooling coil and peristaltic pump to the monitoring wellhead. For wells having a depth to water greater than 25 ft bgs, connect pump controls to the previously deployed bladder pump and connect the cooling coil and compressed air source. An in-line filter is only required for specific analyses (typically for dissolved metals analyses). Please confirm with laboratory for specific sample requirements.
- 5) Connect the cooling coil discharge tubing to a flow-through cell with the calibrated meter probes/sensors securely held in the flow-through cell.
- 6) Connect tubing from the discharge of the flow-through cell to the purge water collection bucket. For monitoring wells with low recharge rates, discharge purge water into a graduated cylinder (500 1,000 mL) for more accurate recording of purge rate and volume.

PUMPING SET-UP WITH PERISTALTIC PUMP

PUMPING SET-UP WITH SUBMERSIBLE PUMP

- 7) Begin purging the well at a low flow rate. Target pumping rates should generally be in the order of 0.1 to 0.2 L/min to ensure stabilization of parameters and reduce mixing of formation water with stagnant well casing water. (Puls and Barcelona, 1996). If the pump must be temporarily operated at a higher flow to prime the system or maintain flow, the adjustment to the pumping rate is best made within the first 15 minutes of purging. The flow rate should remain constant during parameter stabilization monitoring.
- 8) The pumping rate is recorded on purge data sheets every 3 to 5 minutes during purging. Any adjustments to the pumping rate are recorded. At the initiation of well purging and after recording pumping rates, water quality parameters are measured and recorded with a multiparameter water quality meter equipped with a flow-through cell. The measured water quality parameters are temperature, turbidity, specific conductance, pH, DO, and oxygen reduction potential (ORP or Redox). Pumping shall continue until the water quality parameters have stabilized (refer to **Section 5.6.1**). Hot water should generally contain a very low DO value and a negative ORP. If high DO or high ORP are observed, it could be an indicator that air is being introduced into the sample line.
- 9) After all water quality parameters have stabilized (refer to Section 5.6.1) sampling may begin. If all parameters have stabilized, but turbidity remains above 10 Nephelometric Turbidity Units (NTUs), decrease the pump rate and continue monitoring. If the pump rate cannot be reduced and turbidity remains above 10 NTUs, the information will be recorded and sampling initiated. For low yield wells, contact TRS Engineering group for evaluation and instructions for sampling.
- 10) Disconnect the tubing from the inlet side of the flow-through cell. The tubing from the pump outlet will be used to fill the groundwater sample vials. Samples for VOCs shall be collected first followed by semi-volatile organic compounds (SVOCs). All other parameters should be collected in order from most volatile to least.

- 11) Groundwater samples including quality control (QC) samples are labeled and preserved per the site-specific Sampling and Analysis Plan (SAP).
- 12) All pertinent information will be documented in the sample log book and on the chain-of-custody forms including: date, time of sample, sample identification, analysis being completed, and any other information deemed relevant to the sample results. The following additional information shall be documented in the sample logbook: time at beginning and end of monitoring well purging, flow rate and any changes during the monitoring well purge, equipment used for monitoring well purge, and water quality parameter readings used to determine sample time.
- 13) Package and ship samples with a laboratory supplied trip blank to the off-site laboratory for analysis.
- 14) Flow-through cells used for groundwater sampling effort shall be decontaminated according to manufacturer recommendations. Dispose of decontamination liquids and purge water in accordance with site-specific documents.
- 15) Following each sampling event, cooling coils should also be decontaminated using Alconox or a similar detergent with the peristaltic pump.

5.6.1 Water Quality Parameters

Readings are recorded on the purge data sheets every 3 to 5 minutes or at volume measurement intervals for monitoring wells with low recharge rates. Field parameters are monitored until stabilization occurs. Unless local regulatory requirements differ, readings are generally considered stable when three consecutive readings are within the following criteria:

- Specific conductance readings within 3 percent
- Redox potential within 10 millivolts (mV)
- pH within +/-0.1 standards units
- Turbidity and DO readings within 10 percent

5.6.2 Pump Assisted Grab Sample

To collect representative groundwater data, it is <u>critical that steam is not collected</u> during sampling. If steam is inadvertently sampled, the analytical results will be biased high. Geochemical parameter monitoring will provide indicators of whether steam is sampled. As the treatment volume reaches steaming conditions, DO concentrations in groundwater should be essentially zero. DO readings are therefore expected to reflect this but may be slightly higher as there can be sensor limitations. As the flow cell is nearly full, it should be tilted to remove any potential air bubbles. If elevated DO readings are observed, this is an indication that steam may have been sampled and the data may <u>not</u> be representative of groundwater. Significant swings in conductivity or a sudden drop in conductivity can also be an indication of steam influences that may impact the data quality.

If during the ISTR process, depth to groundwater levels have dropped and conditions do not allow for a representative sample to be collected (i.e., pumping activities draw down groundwater level below the sampling tube inlet), the following procedures will be used to sample the well and allow for recharge. Please note that this procedure cannot be followed if subsurface temperatures are indicative of steam generation occurring within the ISTR treatment volume. This method will recover steam if steam is present in the formation surrounding the monitoring well.

Pump Assisted Grab Sample Procedure:

- 1) A column of water is drawn in the cooling coil tubing with the pump.
- 2) The well sample valve and the peristaltic pump inlet valve are closed and the pump shut off.
- 3) The cooling coil is disconnected from the well sample valve.
- 4) The cooling coil is carefully removed from the ice bath.
- 5) The pump inlet valve is opened.
- 6) The sample is decanted into the sample vials from the pump end of the tubing via gravity flow.

The process is repeated until the sample volume is collected. Any other sample fractions (cations, anions) are sampled from the well end of the cooling coil tubing. It is important to note sampling with this procedure may not provide sample results representative of the formation. In addition, field notes/datasheets should explicitly detail all activities and actions when using this procedure.

6.0 RESPONSIBILTIES

	Develop and implement SOPs
	 Provide training and maintain training documentation.
TDC Cafata R. Qualita Managan	 Assist SHSO with modifying SOP to meet site-specific HASP and SAP requirements.
TRS Safety & Quality Manager	 Work with PM to develop AHA for any intrusive work required to complete groundwater sampling efforts.
	 Periodically review and update procedures based on project feedback.
	 Review procedures in conjunction with site-specific SAP requirements and scope of work (SOW). Coordinate changes to procedures as necessary.
Project Manager	 Schedule and coordinate sampling effort. Ensure adequate supplies are available.
	 Work with HSO to develop AHA for any intrusive work required to complete groundwater sampling efforts.
	Conduct orientations for subcontractors and employees.
	 Coordinate training needs with TRS SQM.
Site Health & Safety officer	 Review procedures in conjunction with site-specific HASP. Coordinate changes to procedures as necessary to maintain safe working procedures.
	 Complete training to the level of competent person prior to initiating sampling activities.
Sampling Personnel	 Follow procedures and document information related to groundwater sampling effort as identified in this SOP, including and deviations from the SOP.

7.0 TRAINING

Training in SOPs is provided upon initial assignment and annually thereafter. Practical training is provided on a project-specific basis. Additional retraining is provided if there is a change in procedures or if inadequacies are observed in the individual's application of procedures.

Competent persons in hot groundwater sampling are determined by the project PM and SHSO and must, at a minimum, complete the following requirements:

- Read this SOP (SOP 3.1) and understand the general process and the specific requirements of this SOP.
- Sign the training acknowledgement form.
- Obtain on-site instruction by a knowledgeable person on the task-specific hazards associated with hot groundwater sampling and the methods used to control these hazards.
- Obtain on-site instruction by a knowledgeable person on important technical components of the hot groundwater sampling program to ensure the collection of representative samples.

8.0 RECORD KEEPING

These are standard (i.e., typically applicable) procedures which may be varied or changed as required, dependent on-site conditions, equipment limitations, permit requirements or limitations imposed by the procedure. The ultimate procedures used during any sampling event, including any deviations from these procedures, shall be documented in the sample logbook. AHA's developed for any intrusive work conducted in conjunction with this SOP shall be maintained with the groundwater sample logbook.

Calibrations of water quality meters used to measure water quality readings shall be completed according to the manufacturer's recommendations. Calibration results shall be maintained in a written log kept at the site throughout the operational phase of the project.

At a minimum, the following information shall be maintained in the sample logbook related to well purging and groundwater sample collection:

- 1) Date
- 2) Sample/purge location identification
- 3) Type of pump used for well purge
- 4) Duration of well purge
- 5) Sample time
- 6) Flow rate (including changes throughout purge)
- 7) Meter(s) used for collection of water quality parameters and calibration documentation
- 8) Water quality parameter readings
- 9) Volume of purge water collected prior to sampling
- 10) Sample identifications and analysis to be performed
- 11) Chain-of-custody number
- 12) Shipping information
- 13) Procedures used for equipment decontamination
- 14) Deviations from this SOP

15) Any other information deemed relevant to the sample results

Copies of chain-of-custody forms and shipping documentation shall be maintained and kept with the sample log book.

9.0 REFERENCES

Puls, R.W. and M.J. Barcelona, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, EPA/540/S-95/504.

Yeskis, Douglas and Zavala, Bernard, 2002, Ground Water Sampling Guidelines for Superfund and RCRA Project Managers, EPA/542-S-02-001.

Vail, Jonathon, France, Danny, and Lewis, Bobby, 2013, SESD Operating Procedure Groundwater Sampling, EPA Region 4/SESDPROC-301-R3.

Environmental Protection Agency – Region 1, 2017, Low Stress (low flow) Purging and Sampling Procedure For The Collection Of Groundwater Samples From Monitoring Wells, EQASOP-GW4, Revision Number: 4.

Revision Record

SOP 3.1 Hot Groundwater Sampling Training Acknowledgment

All personnel that receive training on this procedure will review and sign the acknowledgement form contained in this section.

I have been trained by TRS Group, Inc. (TRS) to perform non-intrusive hot groundwater sampling at ISTR project sites. By signing this document, trainee acknowledges that SOP 3.1 Hot Groundwater Sampling has been read and the contents of the document are understood. Trainee has received hands-on training from a competent person who is authorized to use and instruct others on sampling procedures at TRS project sites.

Date	Trainee (print)	Trainee (Sign)	Trainer

Revision Record

Date	Initials	Revision Description	Revision #
04/14/09		Update format, include pictures	2
06/27/09	LS	Add Scope, responsibilities, training, definitions, Recordkeeping, and new procedures	3
06/25/10	LS	Update Drawings	4
07/27/12	LS	Review and update SOP; changes to pump usage	5
12/15/14	TP	Annual Review, MW access caution	6
12/4/17	GK	Annual review; procedure updates	7
12/02/19		Annual Review, changed sample rate to 0.2 L/m, added steam reference	8

SOP/ Revision #	Safety & Quality	Engineering
Original	4/22/08	4/22/08
REV 2	4/14/09	4/14/09
REV 3	6/27/09	6/27/09
REV 4	6/25/10	6/25/10
REV 5	7/27/12	7/27/12
REV 6	1/21/16	1/21/16
REV 7	12/4/17	12/4/17
REV 8	12/2/19	12/2/19

STANDARD OPERATING PROCEDURE

PROCEDURE No: 3.2

Procedure Title:

HOT SOIL SAMPLING

Revisions:

Date	Initials	Revision Description	Revision #
01-04-10	LS	Add Scope, responsibilities, training, definitions, recordkeeping	1
5-6-14	TP	Added caution concerning hot water, steam expulsion	2
2-22-16	TP	Review, revised power off requirement	3
12-4-17	GK	Removed Geoprobe® Dual-Tube Sampler reference and revised determination for use of Teflon liners.	4
12-02-19	GK	Added section on hot sampling with sonic drill rig	5

Reviewed and Approved by (initial and date):

SOP/ Revision #	Safety & Qua	Engineering		
Original	4/22/08	4/22/08		
REV 1	1/4/10		1/4	/10
REV 2	5/6/14	5/6/14		
REV 3	2/24/16	2/22	2/16	
REV 4	12/4/17		12/6	5/17
REV 5		12/2/2019	En Wel	12/2/2019

1.0 PURPOSE

The purpose of this Standard Operating Procedure (SOP) is to provide a procedure for the safe collection of representative soil samples during, or after, the application of *in situ* thermal remediation (ISTR) technologies.

2.0 SCOPE

This SOP serves as a guideline for the collection of soil samples during, or after, the application of ISTR. To minimize the risk due to electrical hazards, lockout/tagout (LOTO) procedures must be applied to the ISTR power control unit (PCU) throughout the duration of the soil sampling effort. Only authorized persons trained in procedures and requirements described in SOP 1.1 are permitted to conduct LOTO on TRS equipment. Samples collected using this SOP are generally used for evaluating treatment effectiveness, and/or confirming treatment goals have been met.

TRS Group, Inc. (TRS) personnel shall use this procedure in conjunction with site-specific sample analysis plans and permit requirements. These are standard (i.e., typically applicable) operating procedures, which may be varied or changed as required, dependent on site conditions, equipment limitations, permit requirements, or limitations imposed by the procedure. The ultimate procedures, including any deviations from this SOP, shall be documented in the soil sampling form.

3.0 **DEFINITIONS**

Authorized Employee

Any designated employee who locks out or tags out equipment to perform servicing or maintenance. This person must have completed the mandatory LOTO training described in SOP 1.1 LOTO to be qualified as an authorized worker. Only an authorized worker installs and removes his or her own lock and tag as required by this program.

Competent Person

Any designated employee who has been trained in proper procedures for the application of ISTR to the subsurface at remediation sites.

ISTR - In Situ Thermal Remediation

A process whereby soil and groundwater are heated to the desired temperature to volatilize the target contaminants. Some ISTR technologies are electrical resistance heating (ERH), thermal conduction heating (TCH), and steam enhanced extraction (SEE).

LOTO – Lockout/Tagout

The practice of using a tag for visibility and awareness in conjunction with placement of a keyed device ("lock") on an energy isolating device, in accordance with SOP 1.1, to prevent the unwanted activation of mechanical or electrical equipment. Lockout ensures the equipment being controlled cannot be operated until the lock is removed.

4.0 EQUIPMENT LIST

- 1) Soil Sampling Field Form and pen (recommend indelible).
- 2) Drill rig and related equipment. Soil sampling is best achieved using a direct push drill rig such as a Geoprobe®. Alternative types of drilling methods are hollow stem auger (HSA) or rotosonic (sonic).

3) Ice bath for soil samples. An example is a cooler filled with ice. The cooler (or container) must be equipped with an opening at the bottom to allow water from melting ice to drain.

- 4) Standard cooking thermometer. Calibrated to both zero (0) degrees Celsius (°C) and 100°C (an infrared thermometer can be substituted when sampling denser soils or bedrock. Keep in mind the sample tube will likely be a few degrees cooler than the internal temperature of the sample).
- 5) LOTO equipment as described in TRS SOP 1.1.
- 6) Sample containers, labels, and chain-of-custody forms (as required by the laboratory for the analysis).
- 7) Safety Glasses with side shields. Additional option: full face-shield (wear over safety glasses).
- 8) Hearing protection adequate for sampling equipment decibel level. Refer to site-specific Health and Safety Plan (HASP).
- 9) Latex or nitrile gloves. Additional option: cotton or leather outer gloves (wear over inner latex gloves).
- 10) Site-specific personal protective equipment (PPE) requirements. Refer to site-specific HASP.
- 11) Packaging material, chain-of-custody seals, and shipping labels.

5.0 HOT SOIL SAMPLING PROCEDURES

A soil-sampling event begins with the shutdown and application of LOTO to the PCU. This is done to prevent any electrical hazards between the steel drill string and sampling personnel. The vapor recovery system should continue to operate to maintain capture of steam in the subsurface, rather than allowing it to exit through the sample borehole. Interim and final soil sampling is best achieved using a direct push drill rig such as a Geoprobe®. As the probe casing is extracted from the subsurface, it should be considered to be very hot, and handled with proper precaution and personal protective equipment.

Choose a sample sleeve compatible with the conditions being encountered. For example, if the sample location temperature is elevated above 100°C, then a stainless steel sleeve will be a better choice than a Teflon sleeve as the Teflon sleeve will become soft and deform at elevated temperatures. Consult engineering for the appropriate sleeve. Teflon sleeves are only recommended for sampling when expected subsurface temperatures will be at or below 70°C.

Note: sample sleeves can be custom fabricated if supplier inventories are inadequate. Please contact equipment@thermalrs.com if additional resources are needed to procure sampling sleeves.

5.1 Safety Considerations

There are certain hazards associated with the application of ISTR to contaminated soil and groundwater. These hazards include possible contact with hazardous voltages, steam, hot water, hot soil, other hot surfaces, and/or hazardous chemicals. Exposure to these hazards can be mitigated through engineering controls and strict adherence to documented procedures and safety protocols such as the following restrictions:

- The ISTR PCU system must be turned off and LOTO applied during soil sampling activities. Only trained and authorized TRS personnel can perform LOTO of ISTR equipment.
- High temperatures, hot water, and steam may be encountered when collecting subsurface soil samples; the use of the proper PPE is mandatory and caution is advised.
- Contaminant vapors may be present at the borehole during sampling.
- Personnel shall be trained on hazards and engineering controls associated with drilling before beginning sampling operations. Potential hazards include rotating equipment, overhead loads, and slips trips and falls.

Refer to the site-specific Sampling and Analysis Plan (SAP) and HASP for site-specific requirements and restrictions.

Caution: Exposure to hot groundwater and steam possible

The removal of water and soil from the sample borehole can change the temperature/pressure equilibrium conditions existing within the borehole prior to drilling and sampling by reducing the hydrostatic head in the borehole, allowing hot water and steam to eject from the borehole. Review the site conditions prior to commencing drilling or boring. If sampling soil beneath the groundwater surface level elevation, always remove the boring equipment and samples slowly from the boring to allow the borehole conditions to safely re-equilibrate.

Stop and complete the attached <u>Site Sampling Evaluation Checklist</u> before proceeding with this procedure.

5.2 Hot Soil Sampling Procedures

Whenever possible, sampling shall be completed in order from sample locations having the lowest anticipated concentrations of contaminants of concern (COCs) to locations having the highest anticipated COC concentrations (i.e.; outside treatment area, treatment area boundary, locations within the source area). The steps outlined below must be followed for iterative, interim, and/or final hot soil sampling.

Contact the TRS Project Manager (PM) the day prior to sampling to coordinate a shutdown. A shutdown period of 4 hours is preferred prior to soil sampling.

- An authorized person shall apply LOTO to the ISTR PCU by site-specific instructions. Note: Only
 personnel who have been trained and certified by TRS in LOTO procedures can complete this
 procedure.
- 2) Position drill rig in the area to be sampled and perform a visual check for any safety concerns. Potential concerns include: high voltage lines, uneven terrain, underground utilities, and egress limitations with rig placement.

3) Hand auger or air knife the first five (5) feet of the boring to clear the location for potential buried utilities.

4) Advance the push sampler to the depth required and collect samples. If subsurface temperatures are expected to be greater than 70°C, the sample sleeves used must be made of brass or stainless steel. Sample sleeves made of acrylic or other materials can melt and bias sample results.

5) The sample sleeves must be capped immediately and placed into the ice bath to begin the cooldown process. Water from melting ice must be allowed to drain, as the sample sleeves should not be submerged at any time.

- 6) The sample sleeves should be cooled until the soil nears ambient temperature (approximately 20°C or 70 degrees Fahrenheit [°F]). A standard cooking thermometer can be inserted through the end cap for temperature monitoring. The sample sleeve may be opened and sampled once near-ambient temperatures have been reached. Soil samples, including quality control (QC) samples, are collected, labeled, preserved, and shipped per the site-specific SAP.
- 7) Plugging/sealing of the soil borehole will be in accordance with Federal, State, and/or Local regulatory and client requirements.
- 8) Soil cuttings not consumed in the sampling process will be disposed of according to Federal, State, and/or Local regulatory and client requirements.

6.0 Hot Soil Sampling Using Rotosonic Method

The procedures for hot soil sampling with a Sonic rig are similar to the steps outlined in **Section 5.2**, except for the following deviations:

- Sonic drilling methods produce large soil cores, 4 to 6 inches in diameter. Cool the cores in a large trough of ice, with drainage of melt water. Ice consumption may range from 500-1,000 pounds per day depending on soil temperature, ambient temperature, and soil core production rate.
- In ambient temperature soil conditions, Sonic drilling methods use a low-density polyethylene (LDPE) sleeve to recover soil cores from the Sonic rig sample apparatus. The LDPE bags used for

this method of sample retrieval are typically only rated for temperatures below 90°C, therefore liners must be used with additional precautions:

- Cool the exterior of the sonic barrel with a garden hose prior to contact with the LDPE liner and extraction of the soil core. It is recommended to double-bag hot soil cores in the LDPE liners. Have an ice bath ready for immediate cooling of the soil cores.
- Direct contact with ice below and above the bagged soil core cools the soil cores in approximately 1 hour. Additional plastic may be preferred to further eliminate risk of cross contamination but does slow the cooling rate.
- For sampling at ISTR sites where soil temperatures are greater than 90°C, lexan polycarbonate liners (or equivalent) are an alternative. Lexan polycarbonate is rated to approximately 130°C.
- Some subsurface conditions may make the lexan polycarbonate liners prohibitive.
- Verify with the drilling subcontractor that a second sample core barrel is available to maintain production while the first sample core barrel is cooling and during core extraction.
- Extreme caution will be exercised in cutting the lexan polycarbonate liners when the soil core is ready to be sampled.

7.0 RESPONSIBILITIES

Role	Responsibility		
	Develop and implement SOPs		
VP Operations	• Periodically review and update procedures based on project feedback		
	 Provide training and maintain training documentation 		
TRS Safety & Quality	 Assist VP Operations with providing training and maintaining training documentation. 		
Manager	 Assist Site Health and Safety Officer (SHSO) with modifying SOP to meet site-specific HASP requirements. 		
PM	 Review procedures in conjunction with site-specific sample requirements and scope of work (SOW). Coordinate changes to procedures as necessary. 		
	 Schedule and coordinate sampling effort. Ensure adequate supplies are available. 		
	Conduct orientations for subcontractors and employees		
	 Coordinate training needs with TRS SQM 		
SHSO	 Review procedures in conjunction with site-specific HASP. Coordinate changes to procedures as necessary to maintain safe working procedures. 		
Sampling Personnel	 Complete training to the level of competent person prior to initiating sampling activities. 		
Sampling reisonner	 Follow procedures and document information related to soil sampling effort as identified in this SOP, including and deviations from the SOP. 		

8.0 TRAINING

Training in SOPs is provided upon initial assignment and annually thereafter. Additional retraining is provided if there is a change in procedures or if inadequacies are observed in the individual's application of procedures. Subcontractors must train their own employees. LOTO training requirements for personnel are outlined in SOP 1.1.

9.0 RECORD KEEPING

These are standard (i.e., typically applicable) procedures, which may be varied or changed as required dependent on site conditions, equipment limitations, permit requirements, or limitations imposed by the procedure. The ultimate procedures used during any sampling event, including any deviations from these procedures, shall be documented in the sample logbook.

At a minimum, the following information shall be maintained in the sample logbook related to hot soil sampling at ISTR sites:

- Date
- Sample identification and corresponding location
- Sample time
- Sample identifications and analysis to be performed
- Chain-of-custody number
- Shipping information
- Deviations from this SOP
- Any other information deemed relevant to the sample results

Copies of chain-of-custody forms and shipping documentation shall be maintained and kept with the sample logbook.

10.0 REFERENCES

TRS Group, Inc., 2013. SOP 1.1, Lockout/Tagout (LOTO), Most Recent Version.

US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846,

Most Recent Version (Method 5035)

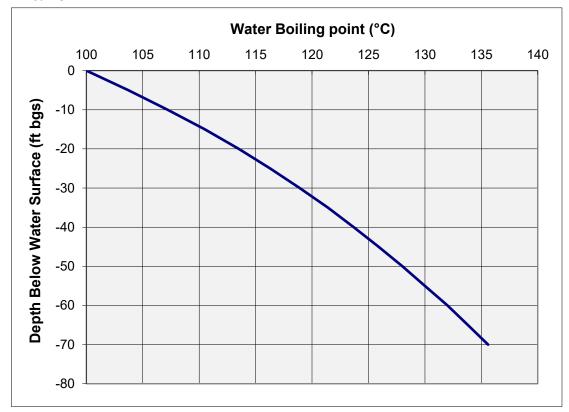
SOP 3.2 Hot Soil Sampling

Training Acknowledgment

All personnel that receive training on this procedure will review and sign the acknowledgement form contained in this section.

I have been trained by TRS Group, Inc. (TRS) to perform hot soil sampling at TRS ISTR project sites. By signing this document, trainee acknowledges that SOP 3.2 Hot Soil Sampling has been read and the contents of the document are understood. Trainee has received hands-on training from a competent person who is authorized to use and instruct others on sampling procedures at TRS project sites.

Date	Trainee (print)	Trainee (Sign)	Trainer



Site Sampling Evaluation Checklist

Project #:	
Date:	

Subsurface Conditions

- 1) Are soil samples being recovered from beneath the groundwater surface?
- 2) What is the depth to groundwater at the time of sampling?
- 3) How deep below the groundwater surface elevation are we sampling?
- 4) What are the current temperatures at or near each boring location?
- 5) Are there confining layers on site? Clay or silt over saturated zone sand for example.
- 6) Use the figure below to determine where the sites actual temperatures fit on the boiling point curve.

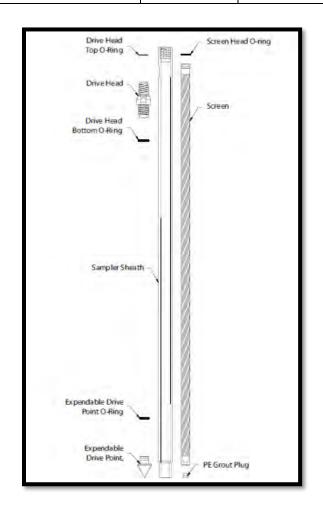
7) Actual temperature for each depth elevation that is higher in value than the temperatures represented by this curve suggest a temperature value greater than the hydrostatic boiling point of water.

STANDARD OPERATING PROCEDURE

PROCEDURE No: 3.11

Procedure Title:

Hot Groundwater Sampling-DPT


Author:	TRS Team	Issue Date:	8/4/16
---------	----------	-------------	--------

Revisions:

Date	Initials	Revision Description	Revision #

Reviewed and Approved by (initial and date):

SOP/ Revision #	Health & Safety		SOP/ Revision # Health & Safety		Operation	18
Original	Milw A. From	8/4/2016	Moman Powell	8/4/2016		

1.0 PURPOSE

This standard operating procedure (SOP) provides uniform procedures for the safe collection of representative groundwater samples during or after the application of Electrical Resistance Heating (ERH) using direct push technology (DPT) to advance the sample screen to the desired depth. This procedure specifically addresses sampling of groundwater that has been heated during the ERH process.

2.0 SCOPE

This SOP provides guidance for the collection of groundwater samples during the application of ERH using modified low-flow sampling procedures in conjunction with the DPT screen advancement method. This SOP draws information primarily from the United States Environmental Protection Agency's (USEPA's) groundwater issue paper, Low-Flow (minimal drawdown) Ground-Water Sampling Procedure (Puls and Barcelona, 1996). Modifications to the EPA methodology have been made to accommodate groundwater temperatures that have been elevated as a result of ERH application. Only personnel trained to the minimum requirements outlined in Section 7.0 of this SOP are authorized to collect hot groundwater samples using this SOP.

The USEPA guidance document recommends continual monitoring of water levels during the purge and sample process to ensure that minimal drawdown is occurring (Puls and Barcelona, 1996). Due to the safety hazards associated with driving DPT sampling apparatus into the subsurface where heated groundwater is present, groundwater level measurements (depth to groundwater) will not be collected as part of hot groundwater sampling activities.

These procedures assume that new tubing will be used for each sample location. Samples collected using this SOP are generally used for optimizing system performance or may also be used for regulatory compliance and/or Site closure.

TRS Group, Inc. (TRS) personnel shall use this procedure in conjunction with site-specific Health and Safety Plans and any applicable sample analysis plans and/or permit requirements. These are standard (i.e., typically applicable) operating procedures that may be varied or changed as required, dependent on site conditions, equipment limitations, permit requirements, or limitations imposed by the procedure. The ultimate procedures, including any deviations from this SOP, shall be documented on the groundwater sampling form.

Since the procedure to drive a DPT sampling screen into the subsurface is similar to soil sampling procedures, under no circumstances will intrusive activities occur while ERH electrical power is being applied to the treatment volume. Refer to TRS SOP 1.1 Lockout/Tagout (TRS 2009), TRS SOP 3.2 Hot Soil Sampling (TRS 2008), the site-specific HASP, and consult with the Project Manager (PM) and Site Health and Safety Officer (SHSO) for additional site-specific requirements, restrictions, and/or additional information.

3.0 DEFINITIONS

<u>Authorized employee</u> – Any designated employee who locks out or tags out equipment in order to perform servicing or maintenance. This person must have completed the mandatory LOTO training described in SOP 1.1 LOTO to be qualified as an authorized worker. Only an authorized worker installs and removes his or her own lock and tag as required by this program.

<u>Competent Person</u> – Any designated employee who has been trained in proper procedures for the application of energy to the subsurface at ERH sites. This person must have completed the mandatory training outlined in **Section 7.0** to be qualified as a competent person.

<u>ERH</u> – Electrical Resistance Heating. ERH is a process whereby soils and groundwater are heated by passing an electrical current through the subsurface volume to be remediated.

- <u>DPT</u> a stainless steel and Teflon® *in situ* sampling tool that allows for the collection of representative groundwater samples without the installation of a groundwater monitoring well. The sampling screen is driven to the desired depth using DPT. Once at the desired sampling depth, the sampling screen is exposed and water is extracted from the temporary sampling location via tubing and above grade pump.
- <u>LOTO</u> Lockout/Tagout. The practice of using a tag for visibility and awareness in conjunction with placement of a keyed device ("lock") on an energy isolating device, in accordance with TRS SOP 1.1, Lockout/Tagout to prevent the unwanted activation of mechanical or electrical equipment. Lockout ensures the equipment being controlled cannot be operated until the lock is removed.

<u>Low-Flow Purging</u> – A USEPA approved purge-and-sample method used to minimize stress on the formation (minimal drawdown) which results in less mixing of stagnant casing water with formation water. Additional advantages of using low-flow purging methods include the following:

- Samples are more representative of actual contaminant loading.
- Disturbance at the sampling point is minimal which minimizes sampling artifacts.
- Less operator variability occurs between sampling events.
- Decreased amount of investigation-derived waste (IDW) is produced.
- Need for filtration is reduced.
- Sample consistency is increased.

Flow-rates during low-flow purging/sampling are site-specific, based on hydrology, but are generally in the order of 0.1 to 0.5 liters per minute (L/min). Proper screen location and screen length may impact the effectiveness of low-flow purging. (Puls and Barcelona, 1996)

<u>Multi-probe and Flow-Through Cell</u> – The flow through cell allows for in-line sampling of water quality parameters with a multi-probe to determine stabilization for water sampling. At a minimum, groundwater quality parameters include pH, conductivity, temperature, dissolved oxygen (DO), and turbidity. Examples of multi-probes used for collecting water quality parameters include the Horiba U-22 and YSI 556 (shown below).

<u>Peristaltic Pump</u> – A positive displacement pump used for pumping fluids. Generally, flexible tubing is fitted inside a circular pump casing. A rotor with a number of "rollers", "shoes" or "wipers" attached to the external circumference compresses the flexible tube. As the rotor turns, the part of tube under compression closes thus forcing the fluid to move through the tube.

SHSO – Site Health and Safety Officer

<u>Trip Blank</u> – The purpose of trip blanks it to identify any potential contamination of samples during sample handling and shipment. These blanks are prepared in the laboratory by filling a volatile organic analysis (VOA) bottle with distilled/deionized water. Trip blanks shall accompany shipment of empty bottles to the site and shipment of samples back to the laboratory.

<u>VOA Vials</u> – EPA recommended glass sample containers used to collect liquid samples for laboratory analysis. VOA vials have a nominal volume of 40 milliliters (mL) and are manufactured of clear or amber borosilicate glass. Depending on type of analysis being conducted, the VOA vials may contain small amounts of preservative when shipped from the laboratory. When collecting samples in VOA vials, fill the vial completely full (ensure that a meniscus has formed at the top of the vial before securing the cap) and check that there are no air bubbles in the closed sample. If there is a preservative present, use caution to not overfill the vial.

4.0 EQUIPMENT LIST

The required equipment for groundwater sampling may differ from this SOP based on the requirements set by the local regulatory oversight agency. Typically, the required equipment will be as follows:

- 1) Groundwater Sampling Field Form and indelible pen.
- 2) Safety Glasses with side shields and full face-shield (wear over safety glasses).
- 3) Hot water/Steam protective outer clothing (PVC rain gear is recommended).
- 4) Cotton Gloves with Latex (or equivalent) over-gloves. Cotton gloves should be worn to protect against water having high temperatures (wear under outer latex gloves). Leather gloves should be worn over sampling gloves when handling hot sampling equipment (i.e., DPT tubes).
- 5) Site-specific personal protective equipment (PPE) requirements. Refer to site specific HASP.
- 6) Peristaltic Pump.
- 7) Direct Push Technology (DPT) drill rig and associated equipment.
- 8) Geoprobe® SP-16 Groundwater Sampler assembly (or similar) and associated tools and supplies (stainless steel screens for this procedure are mandatory. Polyvinyl chloride (PVC)-type screens are not temperature rated for this application and are not acceptable). Associated equipment includes, but is not limited to:
 - a) 1.5-inch probe rods,
 - b) Drive and pull caps,
 - c) Rod grip pull system,
 - d) Drive head,
 - e) Expendable drive points,
 - f) Extension rods, quick links or couplers, and extension rod handle, and
 - g) O-ring service kit.
- 9) Disposable TeflonTM and silicone tubing (MasterflexTM) for use with the peristaltic pump. Silicone tubing should be used only above the ground surface at the pump head in order to minimize potential for degradation by contaminants. The silicone tubing is then connected to the TeflonTM tubing, which is lowered to depth within the DPT drive casing to the sampling screen. Tubing shall be replaced at each sampling location.
- 10) Power supply (12-volt automotive battery or similar, or portable generator).
- 11) Cooler with ample supply of ice.
- 12) 10-ft length of ¼-inch stainless steel or copper tubing.
- 13) One-ft length of four-inch diameter pipe.
- 14) Tray, bucket, or cooler for ice bath.
- 15) Field water quality measuring equipment w/flow-through cell or similar device for monitoring groundwater parameters (pH, conductivity, ORP, temperature, DO, etc.) and calibration standards.
- 16) Turbidity meter.
- 17) Empty buckets for purge water.

- 18) Sample containers (with preservative as required by the laboratory analytical method), labels, and chain-of-custody forms (as required by the laboratory for the analysis). Pre-printed labels are generally available from the laboratory if requested in advance.
- 19) Scissors or tubing cutter (for cutting tubing lengths).
- 20) Decontamination water and a non-phosphate detergent for decontamination of DPT sampling apparatus and components after each sample.
- 21) Packaging material, shipping containers (coolers), chain of custody forms, and shipping labels.
- 22) LOTO equipment as described in TRS SOP 1-1.

5.0 HOT GROUNDWATER SAMPLING PROCEDURES

A groundwater sampling event with DPT begins with the shutdown and application of LOTO of the ERH PCU in accordance with TRS SOP 1.1. This is required to prevent any electrical hazards between the steel drill string and sampling personnel. DPT sampling is best achieved using a DPT rig such as a Geoprobe® or similar. As the probe casing makes contact with the heated subsurface or is extracted from the subsurface, it should be considered to be very hot, and handled with proper precaution and use of the prescribed personal protective equipment (PPE). In addition, there is the potential for hazardous steam and/or hot water to be expulsed from the borehole due to changes in hydrostatic head of the soil bore during the extraction of advancement casings. To minimize the risk of expulsion of steam/soil/groundwater from the borehole during casing extraction, casing should be extracted at a significantly slower rate than at a non-heated site.

Groundwater purging is generally accepted as a required component of groundwater sampling in order to remove non-representative water from the well casing (Puls and Barcelona, 1996). Low-flow purging and sampling techniques will be used to minimize the impact on groundwater chemistry and collect representative samples. This technique also reduces the amount of investigation-derived waste (IDW) produced from a well.

5.1 Safety Considerations

There are certain hazards associated with ERH during the remediation of soil and groundwater. These hazardous include possible contact with hazardous voltage, steam, hot water, or hazardous chemicals. Exposure to these hazards can be mitigated through engineering controls and strict adherence to documented procedures and safety protocols, such as the following restrictions:

- The ERH PCU system must be turned off and LOTO applied during soil and/or groundwater sampling activities. Only trained and authorized TRS personnel are allowed to perform LOTO of ERH equipment.
- Extreme temperatures and steam may be encountered when collecting groundwater samples; the use of the proper personal protective equipment (PPE) is mandatory and caution is advised.
- Personnel shall be trained on hazards and engineering controls associated with drilling before beginning sampling operations. Potential hazards include rotating equipment, overhead loads, and slips, trips, and falls. Drilling equipment is to be operated only by trained drilling personnel.

Personnel shall be trained on hazards and engineering controls associated with hot
groundwater sampling. Potential hazards include steam, hot groundwater, hot mud/soil, and
heated sampling equipment. Personnel should also be familiar with general site hazards
identified in TRS SOP 3.1 Hot Groundwater Sampling, and TRS SOP 3.2 Hot Soil Sampling.

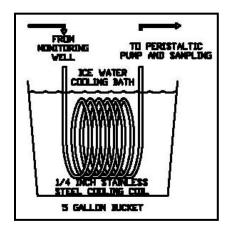
Refer to the site-specific Sampling and Analysis Plans (SAPs) and site-specific HASP for site-specific requirements and restrictions.

Caution: Exposure to hot groundwater and steam possible

The removal of water and steam from a DPT sampling screen can change the temperature/pressure equilibrium conditions existing in the subsurface prior to sampling by reducing the hydrostatic head in the borehole, allowing hot water and steam to flash within and along the outside of the sampling apparatus casing.

The stratigraphy of the Site can contribute to this issue. Sites with a semi-confined aquifer condition may present additional hazards because of the influence on hydrostatic head. Extreme caution should be used when driving the DPT sampling assembly into the water table and especially upon removal. The DPT assembly and drive casing should be removed at an extremely slow rate to minimize disturbance to the hydrostatic pressure within the borehole.

Stop and complete the attached <u>Site Sampling Evaluation Checklist</u> (attached) before proceeding with this procedure.


5.2 Ice Bath Construction

Groundwater heated through the ERH process presents both a potential safety hazard and a potential concern for collecting representative samples. If a boiling or near-boiling liquid is collected in a volatile organic analysis (VOA) vial, the formation of air bubbles as the sample cools within the VOA vial renders the sample non-representative. Additionally, hot liquids collected in the VOA vial may result in failure of the VOA septum.

The ice bath is designed to cool the groundwater prior to sample collection while limiting the impact on groundwater chemistry and contaminant concentrations. Cooling the groundwater prior to sample collection allows for both the safe handling of highly elevated water temperatures and prevents the formation of volatile organic compound (VOC) bubbles in the VOA vial after sample collection.

Prior to initial sampling, a cooling coil shall be constructed by wrapping a 10-ft length of ¼-inch stainless steel or copper tubing 6 full turns around a 4-inch diameter pipe. The ends of the tubing shall be fashioned such that both ends of the tubing extend upward, as shown in the figure below.

5.3 Peristaltic Pumps

Peristaltic pumps are used for purging and sampling wells that have a depth to water of approximately 20-ft bgs or less.

Each sample location will use a section of dedicated TeflonTM tubing for downhole use and a dedicated section of silicone tubing at the peristaltic pump.

The downhole end of the tubing shall be located in the middle or slightly above the middle of the screened interval. Placing the intake in the middle or near the middle of the screened interval, the amount of mixing between the overlaying stagnant casing water with the water within the screened interval is minimized. If the pump-intake is too close to the bottom of the well, increased entrainment of solids may occur. Pump-intake placement should only be used at the top of the water column in unconfined aquifers screened across the water table, where this is the required sampling point.

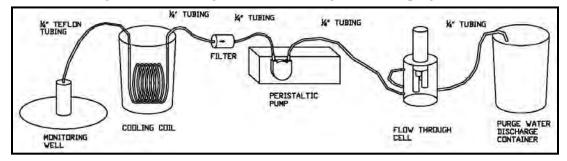
5.4 DPT Advan cement

The TRS project team should coordinate, in advance, with all applicable parties to schedule an ERH system shutdown. The PM and SHSO shall determine a site-specific shutdown period. When possible, sampling shall be completed in order from the sampling locations anticipated to have the lowest concentrations of contaminants of concern (COC) to wells having the highest anticipated COC concentrations (usually from exterior wells to boundary control wells to wells located within the source area).

The TRS project team shall also determine the optimum pathways of approach for situating the DPT rig at the designated sample locations. ERH cabling and vapor recovery piping may need to be disconnected and removed to navigate the DPT rig to the sample locations. Interruption to the vapor recovery system may be required if removal of a section(s) of vapor recovery piping is required.

The DPT advancement procedure is as follows:

- 1) Cease power application to the treatment volume and perform LOTO procedures on the ERH PCU as required by site-specific protocols. Note: LOTO application shall only be completed by personnel who have been trained and certified by TRS according to SOP 1-1.
- 2) The drilling subcontractor will navigate and situate the DPT rig into position via the predetermined pathway to the desired sample location.



- 3) Proper PPE should be donned (i.e., face shield, leather gloves, hot water/steam protective clothing) at this time.
- 4) The drilling subcontractor will advance the DPT sample assembly into the subsurface. Additional casings are added incrementally and advanced until the desired sampling depth is reached. Advance the sampler with caution upon reaching the estimated water table depth.
- 5) Using extension rods to keep the sample screen in place, the DPT assembly is retracted the distance of the screen length. Once the screen is exposed, remove the extension rods.
- 6) Proceed to Section 5.5, Groundwater sampling.

5.5 Groundwater Sampling

The groundwater sampling procedure is as follows:

- At the start of the work day, calibrate probes used to monitor water quality parameters according
 to the manufacturer's instructions (as necessary). Calibration frequencies should adhere to the
 manufacturer's recommendations. Document all calibrations done to the probes used.
 Documentation should include: date, time, calibration solutions used, solution expiration dates,
 solution lot numbers, calibration results, outliers, and any illuminating comments.
- 2) The dedicated TeflonTM sample tubing will be inserted into the DPT drive casing until the approximate mid-point of the DPT sampling assembly screen is reached. Ensure tubing has entered the screen interval, tubing can catch at the top of the screen head simulating the feeling that the bottom of the screen has been reached.
- 3) Connect the sample tubing from the DPT sample screen to the inlet of the cooling coil and place the coil in a bucket or cooler with ice to form the ice bath as described in **Section 4.2**.
- 4) Connect the peristaltic pump tubing to a section of tubing connected to the outlet of the cooling coil. A filter can be placed between the cooling coil and the peristaltic pump if sample methods dictate filtering of sample.
- 5) Connect the peristaltic pump discharge tubing to a flow-through cell with the calibrated meter probes/sensors securely held in the flow-through cell.
- 6) Connect tubing from the discharge of the flow-through cell to the purge water collection bucket.

7) Begin purging the well at a low-flow rate. Target pumping rates should generally be in the order of 0.1 to 0.5 L/min to ensure stabilization of parameters and reduce mixing of formation water with stagnant borehole groundwater. (Puls and Barcelona, 1996). Depending on site parameters and pumping method used, maintaining a steady low-flow rate may require pumping up to a rate of 1 L/min. Adjustments to the pumping rate are best made within the first 15 minutes of purging to minimize purging time.

- 8) The pumping rate is recorded on purge data sheets every 3 to 5 minutes during purging. Any adjustments to the pumping rate are recorded. At the initiation of well purging and after recording pumping rates, water quality parameters are measured and recorded with a multi-parameter water quality meter equipped with a flow-through cell. The measured water quality parameters are temperature, turbidity, specific conductance, pH, DO, and oxygen reduction potential (ORP or Redox). Pumping shall continue until the water quality parameters have stabilized (refer to Section 5.5.1) or the minimum purge volume has been removed (refer to Section 5.4.2). After all water quality parameters have stabilized (refer to Section 5.5.1) and/or the minimum purge volume is purged (refer to Section 5.5.2), sampling may begin. If all parameters have stabilized, but turbidity remains above 10 nephelometric turbidity units (NTUs), decrease the pump rate and continue monitoring. If the pump rate cannot be reduced and turbidity remains above 10 NTUs, the information will be recorded and sampling initiated. For low yield wells, sampling commences as soon as the well has recovered sufficiently to collect the appropriate volume for the anticipated samples. If well purging has caused the well to become dry, refer to Section 5.5.3 for sampling procedures.
- 9) Disconnect the tubing from the inlet side of the flow-through cell. The tubing from the pump outlet will be used to fill the groundwater sample bottles. Samples for VOCs shall be collected first followed by semi-volatile organic compounds (SVOCs). All other parameters should be collected in order from most volatile to least.
- 10) Groundwater samples including quality control (QC) samples are labeled and preserved per the site-specific Sampling and Analysis Plan (SAP).
- 11) All pertinent information will be documented in the sample log book and on the chain of custody forms including: date, time of sample, sample identification, analysis being completed, and any other information deemed relevant to the sample results. The following additional information shall be documented in the sample logbook: time at beginning and end of well purging, flow rate and any changes during the well purge, equipment used for well purge, and water quality parameter readings used to determine sample time.
- 12) Package and ship samples with a laboratory supplied trip blank to the offsite laboratory for analysis.
- 13) Meters, DPT sample apparatus, and drilling components used for groundwater sampling effort shall be decontaminated according to manufacturer recommendations. Dispose of decontamination liquids and purge water in accordance with site-specific documents.

5.5.1 Water Quality Parameters

Readings are recorded on the purge data sheets every 3 to 5 minutes. Field parameters are monitored until stabilization occurs. Unless local regulatory requirements differ, readings are generally considered stable when three consecutive readings are within the following criteria:

- Specific conductance readings within 3 percent;
- Redox potential within 10mV;
- pH within +/-0.1 standards units;
- Turbidity and DO readings within 10 percent.

5.5.2 Minimum Purge Volume

The purpose of low-flow purgin (or low stress approach) is to reduce the amount of water generated during this procedure. Generally, low-flow purging is considered to have been accomplished once the water quality parameters monitored have stabilized to within a 10 percent margin of error. The key to successful low-flow purging is minimize draw-down in the monitoring well (less than 0.33 feet). Purge flow rates are preferred to be between 0.1 and 0.5 L/min whenever possible, but rates up to 1.0 L/min are acceptable if hydrogeological conditions dictate. However, if the water quality parameters will not stabilize, a TRS established minimum purge volume will be used.

The minimum purge volume for the standard monitoring well purge approach is three times the static saturated well volume. To reduce investigative derived waste (IDW), the TRS minimum purge volume required when water quality parameters do not stabilize will be one well volume. The equation to calculate the minimum purge volume is:

$$V = 7.48 * \pi r^2 (td-dtw)$$

Where V = one purge volume in gallons; r= radius of well casing in feet; td = total depth of well in feet; dtw = typical depth to groundwater in feet.

5.5.3 Dry Borehole Sampling

If purging activities has caused the sampling borehole to become dry, the following procedures will be used to sample the well and allow for recharge:

- 1) A column of water is drawn in the cooling coil tubing with the pump.
- 2) The sample valve and the peristaltic pump inlet valve are closed and the pump shut off.
- 3) The cooling coil is disconnected from the sample valve.
- 4) The cooling coil is carefully removed from the ice bath.
- 5) The pump inlet valve is opened.
- 6) The sample is decanted into the sample vials from the pump end of the tubing via gravity flow.

The process is repeated until the sample volume is collected. Any other sample fractions (cations, anions) are sampled from the well end of the cooling coil tubing.

5.6 DPT Assembly Extraction and Grouting

The DPT sampling assembly can also be used to abandon the borehole during the casing extraction process. A removable plug allows for the deployment of grout through the drive casing into the subsurface, slowly filling the borehole with grout as the casing is removed from the borehole.

The DPT assembly extraction and grouting procedure is as follows:

- Prepare grout to meet quantity and quality requirements specified by the borehole size, and local, state, federal, and/or other regulatory requirements. Extreme caution should be exercised to minimize disturbance to the hydrostatic head within the borehole during the sealing process.
- 2) Extract sample tubing from casing. Dispose of tubing as per site-specific requirements.
- 3) All extraction rates should be significantly slower than extraction rates used at non-heated sites. Carefully and slowly, raise the casing string to allow for the release the grout plug.

- 4) Advance the plug push adapter and extension rods down the casing string until the plug is reached. Apply pressure to extension rods until plug is released. Remove extension rods and plug push adapter form the casing string.
- 5) Attach grout nozzle to grout tubing and lower tubing into casing string until the bottom of the screen is reached. Connect grout tubing to grout pump.
- 6) As grout is pumped into the borehole, the casing string is slowly extracted from the subsurface. Each section of drive casing is removed as it clears the ground surface and allows for access to the threaded connections. Grouting ceases while the exposed casing section is removed. Coordinate grout pumping rates so grout fills the void at the speed the casing string is being extracted. Slower than average pumping rates are anticipated.
- 7) The drilling subcontractor will continue repeating the previous step until the DPT sample apparatus is extracted from the borehole. Extreme caution should be exercised to minimize disturbance to the hydrostatic head within the borehole during extraction. Extracted casings and DPT sample apparatus will be hot to the touch upon removal from the borehole.
- 8) Promptly clean all casings and DPT assembly to remove grout before it sets.
- 9) DPT assembly, casing, and components used in the sampling effort shall be decontaminated according to manufacturer recommendations after each sample location. Dispose of decontamination liquids and purge water in accordance with site-specific requirements.

6.0 RESPONSIBILITIES

Role	Responsibility
TRS Technical Group Lead	Develop and implement SOPs Periodically review and update procedures based on project feedback
TRS HSO	 Provide training and maintain training documentation. Assist SHSO with modifying SOP to meet site-specific HASP and SAP requirements. Work with PM to develop AHA for any intrusive work required to complete groundwater sampling efforts.
PM	 Review procedures in conjunction with site-specific SAP requirements and scope of work (SOW). Coordinate changes to procedures as necessary. Schedule and coordinate sampling effort. Ensure adequate supplies are available. Work with HSO to develop AHA for any intrusive work required to complete groundwater sampling efforts.
SHSO	 Conduct orientations for subcontractors and employees Coordinate training needs with TRS HSO Review procedures in conjunction with site-specific HASP. Coordinate changes to procedures as necessary to maintain safe working procedures.
Sampling Personnel	 Complete training to the level of competent person prior to initiating sampling activities. Follow procedures and document information related to groundwater sampling effort as identified in this SOP, including and deviations from the SOP.

7.0 TRAINING

Training in SOPs is provided upon initial assignment and annually thereafter. Practical training is provided on a site-specific basis. Additional retraining is provided if there is a change in procedures or if inadequacies are observed in the individual's application of procedures.

Competent persons in hot groundwater sampling are determined by the ERH PM and SHSO and must, at a minimum, complete the following requirements:

- Read this SOP (SOP 3.11) and understand the general process and the specific requirements of this SOP.
- Sign the training acknowledgement form.
- Obtain onsite instruction by a knowledgeable person on the task-specific hazards associated with hot groundwater sampling and the methods used to control these hazards.
- Obtain onsite instruction by a knowledgeable person on important technical components of the hot groundwater sampling program to ensure the collection of representative samples.

8.0 RECORD KEEPING

These are standard (i.e., typically applicable) procedures which may be varied or changed as required, dependent on Site conditions, equipment limitations, permit requirements, or limitations imposed by the procedure. The ultimate procedures used during any sampling event, including any deviations from these procedures, shall be documented in the sample logbook. AHA's developed for any intrusive work conducted in conjunction with this SOP shall be maintained with the groundwater sample logbook.

Calibrations of water quality meters used to measure water quality readings shall be completed according to the manufacturer's recommendations. Calibration results shall be maintained in a written log kept at the site throughout the operational phase of the project.

At a minimum, the following information shall be maintained in the sample logbook related to well purging and groundwater sample collection:

- Date:
- Sample/purge location identification;
- Depth of DPT sample apparatus and screened interval;
- Type of pump used for well purge;
- Duration of well purge;
- Sample time;
- Flow rate (including changes throughout purge);
- Meter(s) used for collection of water quality parameters and calibration documentation;
- Water quality parameter readings;
- Volume of purge water collected prior to sampling;
- Sample identifications and analysis to be performed;
- Chain of custody number;
- Shipping information;
- Procedure and material used for borehole plugging/sealing;
- Procedures used for equipment decontamination;
- Deviations from this SOP, and;
- Any other information deemed relevant to the sample results.

Copies of chains of custody forms and shipping documentation shall be maintained and kept with the sample log book.

9.0 REFERENCES

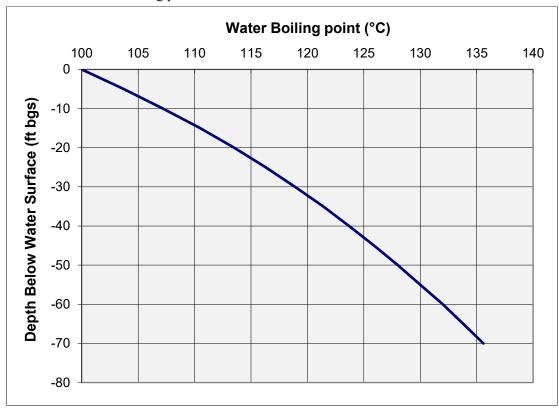
Puls, R.W. and M.J. Barcelona, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, EPA/540/S-95/504.

Yeskis, Douglas and Zavala, Bernard, 2002, Ground Water Sampling Guidelines for Superfund and RCRA Project Managers, EPA/542-S-02-001.

Vail, Jonathon, France, Danny, and Lewis, Bobby, 2013, SESD Operating Procedure Groundwater Sampling, EPA Region 4/SESDPROC-301-R3.

Geoprobe®, 2006, Geoprobe® Screen Point 16 Groundwater Sampler, Standard Operating Procedure, Technical Bulletin No. MK3142.

Edge, Russel W., and Cordry, Ken, 1989, The DPT: An *In Situ* Sampling Tool for Collecting Groundwater from Unconsolidated Sediments.



Site Sampling Evaluation Checklist

Project #:	 	 	
Date:			

Subsurface Conditions

- 1) What is the anticipated depth to groundwater at the time of sampling?
- 2) How deep below the groundwater surface elevation are the screens?
- 3) What are the current temperatures at or near each boring location?
- 4) Are there confining layers on site? Clay or silt over saturated zone sand for example.
- 5) Use the figure below to determine where the site's actual temperatures fit on the boiling point curve.

6) Actual temperature for each depth elevation that is higher in value than the temperatures represented by this curve suggest a temperature value greater than the hydrostatic boiling point of water.

SOP 3.11 Hot Groundwater Sampling-DPT Training Acknowledgment

All personnel that receive training on this procedure will review and sign the acknowledgement form contained in this section.

I have been trained by TRS Group, Inc. (TRS) to perform non-intrusive hot groundwater sampling at the SITE-SPECIFIC project site. By signing this document, trainee acknowledges that SOP 3.11 Hot Groundwater Sampling-DPT has been read and the contents of the document are understood. Trainee has received hands-on training from a competent person who is authorized to use and instruct others on sampling procedures at TRS project sites.

Date	Trainee (print)	Trainee (Sign)	Trainer

Appendix E: Pilot Test Results for ISCR and Regenesis Information on ISCR/ERD Injection Products

Fax: (949) 366-8090

1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000

12/30/20

REGENESIS Project No. APUNS7186

John Funderburk Urban Environmental Partners LLC 2324 1st Ave Suite 203 Seattle, WA 98121

SUBJECT: Design Verification Test for the Rainier Avenue Dry Cleaners Site

Dear Mr. John Funderburk,

REGENESIS Remediation Services (RRS) has recently completed a design verification test (DVT) for an insitu injection application of 3-D Microemulsion® (3DME), S-MicroZVI® (SMZVI), and Bio-Dechlor Inoculum® Plus (BDI) at the Rainier Avenue Dry Cleaners Site located at 4208 Rainier Avenue S, Seattle, WA 98118. The goal of the application was to remediate chlorinated solvents in the groundwater of the site and to collect data for a full-scale event. RRS employed in-situ enhanced anaerobic biodegredation, chemical reduction, and bioaugmentation technologies to meet remediation goals.

RRS mobilized a support pickup truck, injection trailer, and personnel to the site to begin work over two (2) days from October 28, 2020 – October 29, 2020. RRS staffed this project with experienced personnel who ensured a safe, successful injection application. On-site activities included mixing 3DME, SMZVI, and BDI; injecting product into three (3) injection points, collecting four (4) soil borings, and radius of influence (ROI) testing to verify distribution for a full-scale application.

Please review the attached application summary page, injection log, and photo log for more detail on the application.

RRS appreciates the opportunity to work at this site with UEP. RRS will be available to interpret the field data as it is collected or answer any questions. If you need additional information regarding the application process or attached field notes, please contact Andrea Maben at 949.429.3868, or Will Mohan at 224.754.2660.

Sincerely,

William Mohan
Project Supervisor
REGENESIS Remediation Services

Andrea Maben
West Region Project Manager
REGENESIS Remediation Services

cc: dforlini@regenesis.com; clee@regenesis.com; apunsoni@regenesis.com

1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

Application Summary Page

OVERVIEW

Client: Urban Environmental Partners LLC **Project Name:** Rainier Ave Dry Cleaners Site

Client PM: John Funderburk Site Address: 4208 Rainier Ave S. Seattle, WA 98121

RRS Project Manager: Andrea Maben Project Dates: 10/28/2020-10/29/2020

TREATMENT TECHNOLOGY

RRS Project Supervisors: Will Mohan

S-MicroZVI is used in soil and groundwater remediation as an in situ chemical reduction (ISCR) reagent. The ZVI acts as a reducing agent to provide electrons directly to the contaminant for degradation or to support processes that require electrons to degrade contaminants. Bio-Dechlor INOCULUM Plus (BDI Plus) is designed for use at sites where chlorinated contaminants are present and unable to be completely biodegraded via the existing microbial communities. BDI Plus is an enriched, natural microbial consortium containing species of *Dehalococcoides sp.* (DHC) which are capable of completely dechlorinating contaminants during *in situ* anaerobic bioremediation processes. This microbial consortium accelerates the extant rate of chlorinated contaminant degradation from parent compounds to intermediates (like dichloroethene (DCE) and vinyl chloride (VC)) and completely through to harmless end products such as ethene and ethane.

3-D Microemulsion is an injectable liquid material specifically designed for in situ remediation projects where the anaerobic biodegradation of chlorinated compounds through the enhanced reductive dechlorination (ERD) process is possible. ERD is the primary anaerobic biological process by which problematic chlorinated solvents such as tetrachloroethylene (PCE) and trichloroethene (TCE), dichloroethene (DCE) and vinyl chloride (VC) in groundwater are biologically transformed into less harmful end products such as ethene and ethane.

BDI Plus is designed for use at sites where chlorinated contaminants are present and unable to be completely biodegraded via the existing microbial communities. BDI Plus is an enriched, natural microbial consortium containing species of Dehalococcoides sp. (DHC) which are capable of completely dechlorinating contaminants during in situ anaerobic bioremediation processes. BDI Plus has been shown to stimulate the rapid dechlorination of chlorinated compounds such as tetrachloroethene (PCE), trichloroethene (TCE), dichloroethene (DCE), and vinyl chloride (VC). It also contains microbes capable of

1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

dehalogenating halomethanes (e.g. carbon tetrachloride and chloroform) and haloethanes (e.g. 1,1,1 TCA and 1,1, DCA) as well as mixtures of these halogenated contaminants.

RRS employed remediation design specifications as outlined in designs dated 9/16/2020.

DESIGN VERIFICATION TESTING

Four (4) soil borings were collected for grain size analysis across the site (UB39; UB40; UB41; UB42). Three (3) DVT injection locations were completed while observing nearby groundwater parameters (DVT-1; DVT-2; DVT-3).

UB39 was collected 12 ft. NE of MW30. UB40 was collected 12 ft. NW of MW30. UB41 was collected 12 ft. NW of MW09. UB42 was collected 5 ft. NW of MW26 and was a post DVT-1 injection ROI sample.

DVT-1 injection was placed 10 ft. NW of MW26. DVT-2 injection was placed 10 ft. NW of MW09. DVT-3 injection was placed 10 ft. S of MW30.

To test product ROI influence, water was continuously pumped to the surfacing and into a bucket utilizing a peristaltic pump provided by UEP. During the entire time of injection, groundwater level and parameters were collected (i.e. DO, pH, conductivity, ORP). These monitoring wells were utilized to determine the radius of influence (ROI) in the subsurface. The injection volume was recorded when the monitoring wells were impacted while pumping on adjacent points. There was visual color confirmation of product infiltration at MW26 and MW30, after completing ROI test injections.

APPLICATION

RRS applied the REGENESIS product 3DME and SMZVI by mixing them in the RRS injection trailer. The mixed solution was then injected through direct push borings drilled with 2-foot retractable screen. Product was distributed in two-foot increments to cover the entire treatment zone. Mixing water was provided by a nearby fire hydrant. Utilizing 1.5-inch fire hose, water was transferred into the trailer where RRS used a dual batch mixing system with two (2) 350-gallon tanks to mix the 3DME and SMZVI, injecting from one tank while mixing the other to ensure efficiency. Once mixed, these reagents were delivered into the subsurface using a positive displacement, electrically powered pump. BDI was injected via a slip-stream method using pressurized nitrogen gas.

Injection pressures were observed between 30 and 125 PSI. Injection flow rates were observed between 0 to 5 GPM.

Injections were completed by pumping on one (1) to two (2) injection points at a time using the RRS injection trailer manifold system. Although pressures were generally under 125 PSI, the RRS trailer is equipped with a pressure bypass valve that will re-route fluids back into the mix tanks if downhole

1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

pressures reach 125 PSI in order to keep pressures at safe levels for field personnel. For more information, please see attached Table 1.

TREATMENT AREA

A total of $\underline{1,410 \text{ gallons}}$ of 3DME and SMZVI was mixed and applied as a 4% solution. $\underline{400 \text{ pounds}}$ of 3DME and $\underline{400 \text{ pounds}}$ of SMZVI was applied during the DVT.

Application Method: Bottom-up direct push drilling with 2-foot retractable screens

Injection Depth: 35 to 25 feet below ground surface

Number of Injection Points: 3

Average Injection Flowrate: 4 GPM **Average Injection Pressure:** 70 PSI

General Observations: Injection pressures were high even though injecting into sandy zones.

Deviations from Proposal: None.

Please see attached Table 1 for details on injection flow rates and pressures observed.

1011 Calle Sombra San Clemente, CA 92673 Ph: (949) 366-8000 Fax: (949) 366-8090

Photo Log: Rainier Avenue Dry Cleaners Site

Photo 1: Water source storage tote and well extraction setup.

Photo 2: RRS trailer setup. Past product storage totes.

Photo 3: YSI data collection on downgradient monitoring wells.

Photo 4: ROI data collection setup on downgradient wells.

Urban Environmental Partners LLC - Rainer Mall Site Injection Field Log DVT / Pilot Test; October 2020 Table 1

			Injection Depth	Injection	Flow Rate	Volume of	f 3DME/S-MicroZ\	/I Injected	Gallons Per	3DME Per	S-MicroZVI Per	BDI Per Location		
Injection Point	Date	Time	(ft. bgs)	Pressure (psi)	(gpm)	Beginning Flow	Ending Flow	Gallons Per	Location	Location (lb.)	Location (lb.)	(L.)	Comments	Injection Tooling
			` - '	. ,	, ,	Meter (gal.)	Meter (gal.)	Interval		` ′	` '	` '		
	10/28/2020	12:20	35-33	40	3.0	0.0	10.0	10.0	1					
	10/28/2020	12:30	35-33	45	3.5	10.0	50.0	40.0						
	10/28/2020	12:40	35-33	55	3.8	50.0	75.0	25.0						
	10/28/2020	12:45	35-33	55	4.0	75.0	94.0	19.0						
	10/28/2020	12:50	33-31	55	4.0	94.0	115.0	21.0						
	10/28/2020	13:00	33-31	60	4.2	115.0	165.0	50.0	-					
	10/28/2020	13:10	33-31	60	4.2	165.0	190.0	25.0						
	10/28/2020	13:20	31-29	70	4.2	190.0	215.0	25.0						
DVT-1	10/28/2020	13:30	31-29	70	4.3	215.0	260.0	45.0	470	133	133	6		2-Foot Screen
	10/28/2020	13:45	29-27	55	4.4	260.0	315.0	55.0	-					
	10/28/2020	13:50	29-27	55	4.5	315.0	330.0	15.0	1				Light Grey visual in MW-26	
	10/28/2020	13:55	29-27	55	4.5	330.0	360.0	30.0						
	10/28/2020	14:00	27-25	40	4.4	360.0	385.0	25.0						
	10/28/2020	14:10	27-25	40	4.5	385.0	400.0	15.0						
	10/28/2020	14:15	27-25	45	5.0	400.0	430.0	30.0						
	10/28/2020	14:20	27-25	45	5.1	430.0	460.0	30.0						
	10/28/2020	14:25	27-25	30	3.4	460.0	470.0	10.0						
	10/29/2020	9:30	35-33	100	1.1	0.0	15.0	15.0	_				High PSI low flow - next interval.	2-Foot Screen
	10/29/2020	9:40	33-31	80	2.2	15.0	30.0	15.0				6		
	10/29/2020	9:45	33-31	100	2.7	30.0	40.0	10.0	-					
	10/29/2020	9:50	33-31	125	3.3	40.0	80.0	40.0						
	10/29/2020	10:05	33-31	125	3.9	80.0	170.0	90.0	-					
DVT-2	10/29/2020	10:25	33-31	120	4.1	170.0	190.0	20.0	470	133	133			
	10/29/2020	10:30	31-29	110	4.1	190.0	210.0	20.0						
	10/29/2020	10:40	31-29	110	4.2	210.0	250.0	40.0						
	10/29/2020	10:55	31-29	110	4.1	250.0	280.0	30.0						
	10/29/2020	11:05	29-27	115	4.2	280.0	330.0	50.0						
	10/29/2020 10/29/2020	11:25	29-27 27-25	115 40	4.2	330.0 375.0	375.0 470.0	45.0 95.0						
		11:35			4.1								III I DOL 6	
	10/29/2020	11:50	35-33	150	0.0	0.0	0.0	0.0	-				High PSI no flow - next interval.	
	10/29/2020 10/29/2020	12:10	33-31	150	0.0	0.0	0.0	0.0 100.0	-				High PSI no flow - next interval.	
DVT-3		12:30	31-29	40	3.3		100.0		470	133	133	6		2-Foot Screen
	10/29/2020 10/29/2020	13:00	31-29	40	3.5	100.0 280.0	280.0	180.0 95.0						
		13:30	29-27	30	2.3		375.0							
	10/29/2020	14:30	27-25	35	2.3	375.0	470.0	95.0						

Total Gallons	Total 3DME (lb.)	Total S-MicroZVI (lb.)	Total BDI (L.)
1410	400	400	18.00

UEP - Rainer Mall Site Groundwater Parameter Log MW-09 Table 2

2.0"				DTW		DO	ORP	pH	Conductivity	Temperature		
Well	Screen	Date	Time	(ft.)	Gallons	mg/L	mV	su	ms	Celcius	Color	Interval
Injection Water	er:					9.9	2.0					
SMZVI Mix w/ Water:						0.7	-248.0					
MW-09	25-35	10/29/2020	9:15		0.0	1.70		6.74	0.89	16.0	Clear	
MW-09	25-35	10/29/2020	9:20		0.0	1.70		6.67	0.91	16.0	Clear	
MW-09	25-35	10/29/2020	9:30		0.0	1.70	69.4	6.63	0.93	15.9	Clear	
MW-09	25-35	10/29/2020	9:50	14.63	80.0	1.51	58.9	6.66	0.97	15.8	Clear	33-31
MW-09	25-35	10/29/2020	10:05	14.22	170.0	1.57	52.0	6.71	1.00	15.8	Clear	33-31
MW-09	25-35	10/29/2020	10:20	13.95	190.0	1.64	48.4	6.73	1.01	15.9	Clear	33-31
MW-09	25-35	10/29/2020	10:35	14.13	225.0	0.65	42.8	6.71	1.02	15.9	Clear	31-29
MW-09	25-35	10/29/2020	10:50	13.94	275.0	0.44	36.3	6.71	1.03	15.9	Clear	31-29
MW-09	25-35	10/29/2020	11:05	13.99	330.0	0.41	34.2	6.70	1.03	15.9	Clear	29-27
MW-09	25-35	10/29/2020	11:20	14.01	360.0	0.41	32.4	6.70	1.03	15.9	Clear	29-27
MW-09	25-35	10/29/2020	11:35	12.67	470.0	0.43	32.3	6.70	1.04	15.9	Clear	27-25
MW-09	25-35	10/29/2020	11:50	13.89	470.0	0.46	28.8	6.70	1.03	16.1	Clear	27-25

UEP - Rainer Mall Site Groundwater Parameter Log MW-26 Table 3

Table 5												
2.0"				DTW		DO	ORP	pН	Conductivity	Temperature		
Well	Screen	Date	Time	(ft.)	Gallons	mg/L	mV	su	ms	Celcius	Color	Interval
Injection Wat	er:					9.9	2.0					
SMZVI Mix w	/ Water:					0.7	-248.0					
MW-26	25-40	10/28/2020	10:20		0.0	3.80	80.1	8.29	0.96	14.9	Clear	
MW-26	25-40	10/28/2020	10:30		0.0	2.29	81.6	7.10	1.00	15.4	Clear	
MW-26	25-40	10/28/2020	10:50		0.0	1.70	71.7	7.06	1.03	15.6	Clear	
MW-26	25-40	10/28/2020	11:15		0.0	1.39	68.0	7.03	1.05	15.5	Clear	
MW-26	25-40	10/28/2020	11:45		0.0	0.65	67.6	7.00	1.06	15.7	Clear	
MW-26	25-40	10/28/2020	12:00		0.0	1.20	26.0				Clear	35-33
MW-26	25-40	10/28/2020	12:20		10.0	1.10	38.0				Clear	35-33
MW-26	25-40	10/28/2020	12:30		50.0	1.04	40.0				Clear	35-33
MW-26	25-40	10/28/2020	12:40		75.0	1.00	43.0				Clear	35-33
MW-26	25-40	10/28/2020	12:45		95.0	1.02	46.0				Clear	35-33
MW-26	25-40	10/28/2020	12:50		115.0	0.98	45.8				Clear	33-31
MW-26	25-40	10/28/2020	13:00		165.0	0.81	44.8				Clear	33-31
MW-26	25-40	10/28/2020	13:10		190.0	0.68	44.0				Clear	33-31
MW-26	25-40	10/28/2020	13:20		215.0	0.61	46.0				Clear	31-29
MW-26	25-40	10/28/2020	13:30		260.0	0.54	48.8				Clear	31-29
MW-26	25-40	10/28/2020	13:35		280.0	0.47	30.4				Clear	31-29
MW-26	25-40	10/28/2020	13:45		315.0	0.47	12.0				Clear	29-27
MW-26	25-40	10/28/2020	13:50		330.0	0.36	-16.0				Light Grey	29-27
MW-26	25-40	10/28/2020	13:55		360.0	0.16	-15.0				Light Grey	29-27
MW-26	25-40	10/28/2020	14:00		385.0	0.18	-24.0				Light Grey	27-25
MW-26	25-40	10/28/2020	14:10		400.0	0.16	-91.0				Grey	27-25
MW-26	25-40	10/28/2020	14:15		430.0	0.05	-116.0				Grey	27-25
MW-26	25-40	10/28/2020	14:25		470.0	0.04	-141.0				Grey	27-25

UEP - Rainer Mall Site Groundwater Parameter Log MW-30 Table 4

	TUDIC T											
2.0"				DTW		DO	ORP	pН	Conductivity	Temperature		
Well	Screen	Date	Time	(ft.)	Gallons	mg/L	mV	su	ms	Celcius	Color	Interval
Injection Wat	er:					9.9	2.0					
SMZVI Mix w/ Water:						0.7	-248.0					
MW-30	25-40	10/29/2020	12:20		50.0	0.88	37.9	6.77	0.97	15.8	Clear	35-33
MW-30	25-40	10/29/2020	12:30	6.50	100.0	0.05	18.6	6.80	0.97	15.9	Clear	33-31
MW-30	25-40	10/29/2020	12:40	6.95	240.0	0.04	-149.1	6.98	1.29	16.1	Grey	31-29
MW-30	25-40	10/29/2020	12:50	6.65	260.0	0.01	-225.6	7.54	1.47	16.1	Grey	31-29
MW-30	25-40	10/29/2020	13:10	4.20	310.0	0.00	-227.0	7.68	1.46	16.2	Grey	29-27
MW-30	25-40	10/29/2020	13:30	1.62	375.0	0.00	-183.7	7.76	1.15	16.4	Grey	29-27
MW-30	25-40	10/29/2020	13:45	1.22	410.0	0.00	-259.4	7.81	1.33	16.5	Grey	27-25

Appendix F: Terrestrial Ecological Evaluation

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

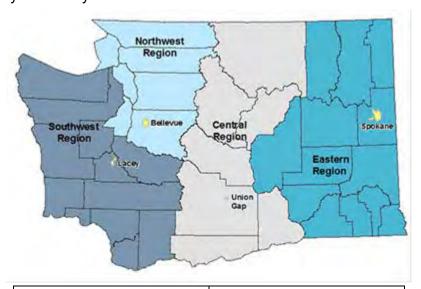
If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE SITE					
Please identify below the hazardous waste site for which you are documenting an evaluation.					
Facility/Site Name: Rainier Mall	Facility/Site Name: Rainier Mall				
Facility/Site Address: 4208 Rainier Avenue	Facility/Site Address: 4208 Rainier Avenue South, Seattle, WA 98118				
Facility/Site No: 88987973 VCP Project No.: NW3261					

Step 2: IDENTIFY EVALUATOR						
Please identify below the person who conducted the evaluation and their contact information.						
Name: Brian Dixon Title: President						
Organization: Dixon Environmental Services	Organization: Dixon Environmental Services					
Mailing address: 4010 N 7th Street						
City: Tacoma	State: WA	Zip code: 98406				
Phone: 253-380-4303 Fax:	E-mail: Bri	an@DixonES.com				

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? If you answered "YES," then answer Question 2. X Yes No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 X acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of

highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area


by wildlife.

В.	Simplified	evaluation.							
1.	. Does the Site qualify for a simplified evaluation?								
		es If you answered "YES," then answer Question 2 below.							
	☐ N Unkno	o or own If you answered " NO" or " UNKNOWN, " then skip to Step 3C of this form.							
2.	Did you co	nduct a simplified evaluation?							
		es If you answered "YES," then answer Question 3 below.							
	□ N	o If you answered "NO," then skip to Step 3C of this form.							
3.	Was furthe	r evaluation necessary?							
		es If you answered "YES," then answer Question 4 below.							
	□ N	o If you answered "NO," then answer Question 5 below.							
4.	If further e	valuation was necessary, what did you do?							
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.							
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.							
5.	5. If no further evaluation was necessary, what was the reason? Check all that apply. Then skip to Step 4 of this form.								
	Exposure Analysis: WAC 173-340-7492(2)(a)								
		Area of soil contamination at the Site is not more than 350 square feet.							
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.							
	Pathway A	nalysis: WAC 173-340-7492(2)(b)							
		No potential exposure pathways from soil contamination to ecological receptors.							
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.							

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c).								
1.	. Was there a problem? See WAC 173-340-7493(2).								
	☐ Yes	If you answ	wered "YES," then answer Question 2 below.						
	☐ No	If you answ below:	vered "NO," then identify the reason here and then skip to Question 5						
			No issues were identified during the problem formulation step.						
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.						
2.	What did you d	lo to resolv	e the problem? See WAC 173-340-7493(3).						
		ed the conce estion 5 be	entrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to low.</i>						
			ore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below.</i>						
3.	If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).								
	Lite	erature surve	eys.						
	Soi	l bioassays.							
	Wil	dlife exposu	re model.						
	Bio	markers.							
	Site	e-specific fie	ld studies.						
	☐ We	eight of evide	ence.						
	Oth	ner methods	approved by Ecology. If so, please specify:						
4.	What was the r	esult of the	ese evaluations?						
	Col	nfirmed ther	e was no problem.						
	Col	nfirmed ther	e was a problem and established site-specific cleanup levels.						
5.	Have you alrea problem resolu		d Ecology's approval of both your problem formulation and?						
	☐ Yes	If so, pleas	se identify the Ecology staff who approved those steps:						
	□ No								

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160th Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region:

Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295

Appendix G: PanGeo: Existing Timber Pile Evaluation, January 13, 2020

January 13, 2021 PanGEO Project No. 20-162

Ms. Norah Potter

Rainier & Genesee, LLC

401 North 36th Street, Suite 104

Seattle, Washington 98103

Subject: Existing Timber Pile Evaluation

Proposed Mixed-Use Development

4208 Rainier Avenue South, Seattle, Washington

Dear Ms. Potter:

This report summarizes our observations of the existing timber piles supporting the existing building at 4208 Rainier Avenue South in Seattle. We understand that the project team is considering using the existing piles to support the floor of the proposed building, which will occupy the approximately the same footprint as the existing building. This report includes our observations of the piles partially exhumed for this evaluation, and from a previous exploration completed by others. In summary, the timber piles observed were in adequate condition, and in our opinion suitable for supporting the new concrete slab.

SITE AND PROJECT DESCRIPTION

The subject site is located at 4208 Rainier Avenue South in the Columbia City neighborhood of Seattle, Washington. It is bordered to the north by a two-story mixed use complex, to the south by South Genesee Street, to the east by 36th Avenue South, and to the west by Rainier Avenue South. The approximate north half of the site is occupied by a one-story at-grade retail/warehouse building (former Safeway grocery store), and the south half of the site is an asphalt-paved parking lot. The site is relatively flat, with less than five feet of elevation change across the site.

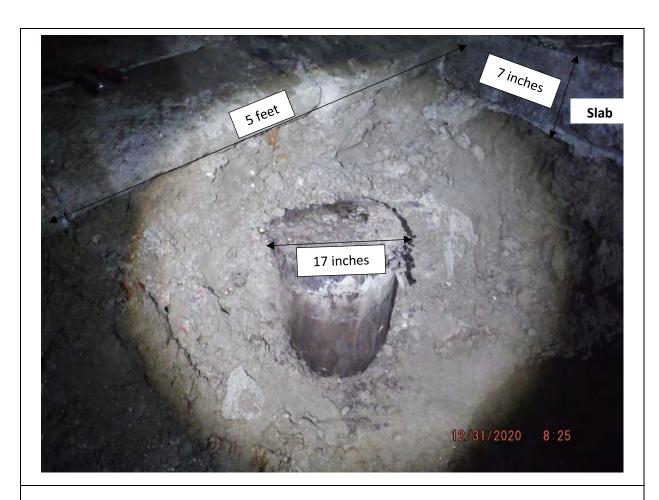
As currently planned, the existing building, which is supported on timber piles, will be demolished to construct an at-grade mid-rise mixed-use buildings. The proposed building will have a similar footprint as the existing building.

OBSERVATIONS EXISTING FOUNDATION

Based on our review of the foundation plans for the existing building, the existing building is supported on timber piles. We understand that the project team is considering re-using the existing timber piles to support the concrete floor in the proposed building, provided that the existing timber piles are in good structural conditions (i.e., no dry rot). To verify the conditions on the piles, select piles were partially exhumed to provide a direct visual inspection. Our field observations are summarized below.

EXISTING TIMBER PILE OBSERVATIONS

PanGEO was on site on 12/31/2020 to observe the timber piles. Three test pits (TP-1 to TP-3) were excavated prior to our arrival to expose the existing piles. The test pit locations are shown on the attached Figure 1. The test pits were excavated to between 2 to 4½ feet below the existing 7-inch thick concrete floor slab.


The soils observed in the test pits generally consisted of loose, brown to gray, silty sand with gravel, which we interpreted as fill. No voids were observed beneath the existing concrete slab at these test pit locations. Groundwater was not observed in the test pits at the time of our site visit.

PanGEO was able to observe the conditions of two existing timber piles (Pile 2 and Pile 109) during our site visit, and reviewed the photos of two additional timber piles from a previous exploration completed by Urban Environmental Planners along the north side of the building. The locations of the piles observed are indicated on the attached Figure 1.

We attempted to expose Pile 101, but the excavation became unsafe and the effort was aborted.

The top of the exposed existing timber piles observed were between 8 to 18 inches in diameter. The timber piles were probed with a screw driver for indication of decay. In summary, we did not observe any signs of decay, indicating the timber piles are in adequate condition.

Plates 1 and 2, below, shows the conditions exposed at Piles 2 and 109 during the current exploration. Plate 3 shows the conditions of the piles previously exposed by Urban Environmental Planners.

Plate 1. Excavation and pile condition at Pile 109. The existing concrete slab was poured directly on the existing timber pile. Top of timber pile is approximately 17 inches in diameter. Did not observe signs of decay on the existing timber pile. (12/31/2020)

Plate 2. Observed Pile 2 condition. Timber pile is approximately 8 inches in diameter. Did not observe signs of decay on the existing timber pile. (12/31/2020)

Plate 3. Piles observed in northwest corner of north loading dock by Urban Environmental Partners (UEP). Timber piles are approximately 18 inches in diameter. Photo provided by UEP. Do not observe signs of decay on the existing timber piles.

EXISTING GRADE BEAM

An existing concrete grade beam was observed at Test Pit TP-2 (Pile 101), below the existing 7-inch concrete slab. The grade beam extended approximately 2 feet below the existing concrete slab to the existing pile cap (see Plate 4, below).

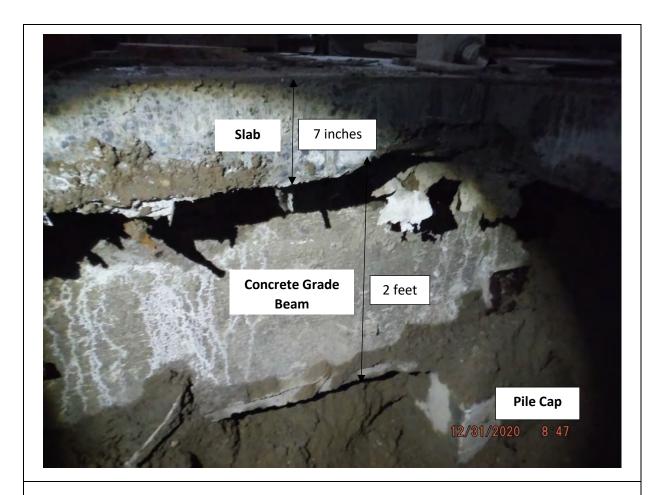


Plate 4. Slab and grade beam observed at Test Pit TP-2 (Pile 101)

CONCLUSIONS AND RECOMMENDATIONS

In summary, the existing piles were observed to be in satisfactory conditions, and in our opinion it is appropriate to re-purpose the existing piles to support the new floor slab in the proposed building. The top of the existing piles may be cast directly into the new concrete slab, similar to the construction of the existing slab (see Plate 1, page 3). If the floor in the proposed building will

be lower than the existing floor slab, the top of the existing timber piles should be cutoff accordingly such that the top of the piles will be embedded entirely within the new slab.

Based on the subsurface conditions at the site and the performance of the existing building foundation, it is our opinion that these piles were driven to the weathered Blakeley Formation underlying the site. As such, it is our opinion that the existing timber piles are capable of supporting an allowable axial load of 20 tons or more.

Form the geotechnical perspective, the existing fill adjacent to the piles may remain. If, during construction, the existing fill appears loose, the existing fill should be re-compacted with a jumping jack or equivalent prior to placing reinforcing steel for the floor slab.

In the event that the existing piles are not properly-spaced for the new building slab, driven small diameter (3 to 6 inches in diameter) steel pipe piles (pin piles) can be installed to supplement the existing timber piles. For design purposes, an allowable axial compression load of 6 tons maybe assumed for 3-inch piles, 10 tons for 4-inch piles, and 20 tons for 6-inch piles.

CLOSURE

We have prepared this report for Rainier & Genesee, LLC and the project design team. Recommendations contained in this report are based on reviewing existing onsite subsurface information and our understanding of the project. The study was performed using a mutually agreed-upon scope of services.

Variations in soil conditions may exist between the locations of the explorations and the actual conditions underlying the site. The nature and extent of soil variations may not be evident until construction occurs. If any soil conditions are encountered at the site that are different from those described in this report, we should be notified immediately to review the applicability of our recommendations. Additionally, we should also be notified to review the applicability of our recommendations if there are any changes in the project scope.

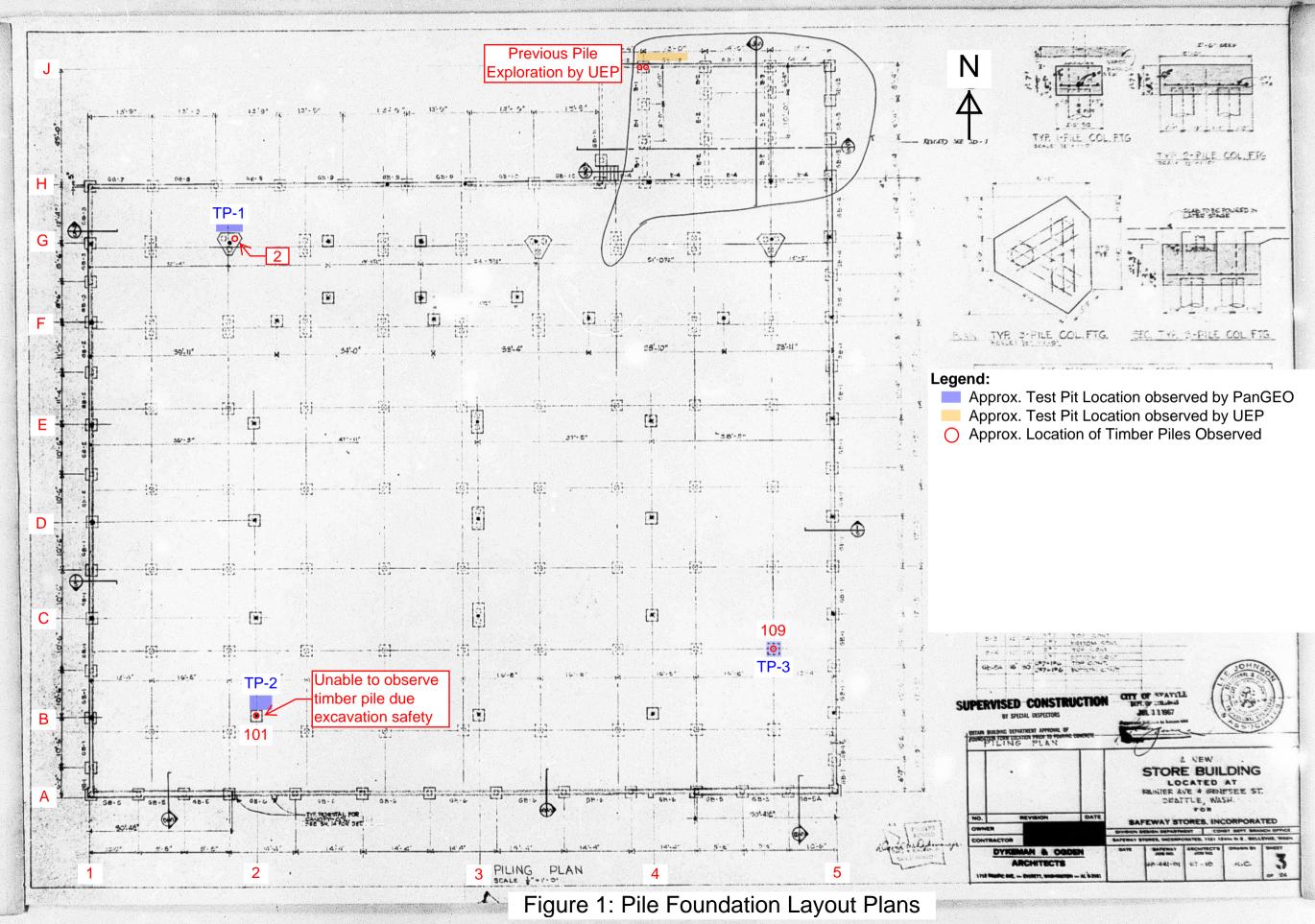
The scope of our work does not include services related to construction safety precautions. Our recommendations are not intended to direct the contractors' methods, techniques, sequences or procedures, except as specifically described in our report for consideration in design. Additionally, the scope of our services specifically excludes the assessment of environmental characteristics, particularly those involving hazardous substances. We are not mold consultants nor are our recommendations to be interpreted as being preventative of mold development. A mold specialist should be consulted for all mold-related issues.

This report has been prepared for planning and design purposes for specific application to the proposed project in accordance with the generally accepted standards of local practice at the time this report was written. No warranty, express or implied, is made.

This report may be used only by the client and for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both off and on-site), or other factors including advances in our understanding of applied science, may change over time and could materially affect our findings. Therefore, this report should not be relied upon after 24 months from its issuance. PanGEO should be notified if the project is delayed by more than 24 months from the date of this report so that we may review the applicability of our conclusions considering the time lapse.

It is the client's responsibility to see that all parties to this project, including the designer, contractor, subcontractors, etc., are made aware of this report in its entirety. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk. Any party other than the client who wishes to use this report shall notify PanGEO of such intended use and for permission to copy this report. Based on the intended use of the report, PanGEO may require that additional work be performed and that an updated report be reissued. Noncompliance with any of these requirements will release PanGEO from any liability resulting from the use this report.

We appreciate the opportunity to be of service.


Sincerely,

Siew L. Tan, P.E.

Principal Geotechnical Engineer

Enclosure:

Figure 1. Pile Foundation Layout Plans

