

TECHNICAL MEMORANDUM

Date:	March 10, 2022
To:	Washington State Department of Ecology
Copy to:	Randy Loveless, City of Everett Public Works
	Kate Snider, Floyd Snider
From:	Tyson Wright and Camryn Steiner, Herrera Environmental Consultants, Inc.
Subject:	City of Everett Landfill Gas Emission – 2021 Confirmational Sampling Results

INTRODUCTION

Herrera Environmental Consultants, Inc. (Herrera) was requested by City of Everett Public Works (the City) to conduct air sampling as part of their desired support in the operations and maintenance of the existing perimeter and newly constructed Riverfront Boulevard landfill gas system at the closed Everett Landfill. This technical memorandum summarizes air quality sampling data for the confirmational sampling event of landfill gas emission points conducted on September 30, 2021. The sampling meets requirements of the Compliance Monitoring and Contingency Plan (CMCP) prepared by The Floyd & Snider Team in March 2001 for the City of Everett. The CMCP is incorporated into the Cleanup Action Plan (CAP), which is incorporated into the Section Plan (CAP), which is incorporated into the Section Plan (CAP).

SITE BACKGROUND

The Everett landfill actively collected waste until 1974 after 50 years of operation. Beginning in 1977, the landfill was used by a commercial recycling operation to store and handle old rubber tires on portions of the landfill site. The City was requested by Ecology to perform an environmental characterization of the fire ash after two separate fires broke out in the tire piles in 1983 and 1984. Subsequently, the Landfill/ Tire Fire Site was listed under the Model Toxics Control Act due to the presence of toxic compounds in the tire ash.

The landfill property was designated for redevelopment through the City of Everett's Comprehensive Planning process and the process for Shoreline Master Program revisions. Environmental requirements for future development were evaluated in the Brownfield Feasibility Study (BFS) conducted by Floyd & Snider in 2000 to ensure that contaminated materials could not compromise environmental exposure pathways. The four environmental exposure pathways addressed in the BFS, as requested by Ecology, were gas, groundwater, direct contact and surface water.

> 2200 Sixth Avenue | Suite 1100 | Seattle, Washington | 98121 | p 206 441 9080 | f 206 441 9108 SEATTLE, WA | PORTLAND, OR | MISSOULA, MT | OLYMPIA, WA | BELLINGHAM, WA

The gas exposure pathway considered landfill gas produced by decomposing buried refuse. Air studies were completed for the site in 1996 and 1999 and included landfill gas sampling, ambient air sampling and related evaluation for a full suite of chemical analytes. The landfill gas evaluation, completed in 2000, concluded that emissions to ambient air did not exceed the proposed cleanup levels of PSCAA Regulation III Acceptable Source Impact Levels (ASILs). The evaluation in 2000 determined the landfill gas constituents of concern (COCs).

In 2001, the City entered into a Consent Decree (CD) with the Department of Ecology. The Cleanup Action Plan (CAP) incorporated into the CD defined cleanup requirements for all exposure pathways for both existing undeveloped, and future developed conditions. The CAP included the Compliance Monitoring and Contingency Plan (CMCP) defining monitoring requirements for all exposure pathways, including landfill gas and its COCs.

In the CAP, required cleanup actions for landfill gas for undeveloped conditions included control measures for existing onsite facilities, perimeter monitoring, and contingent installation of perimeter landfill gas migration controls. Required cleanup actions for future developed conditions included installation of active gas collection systems and low permeability barriers in developed areas.

There are two blower facilities (the North Blower Facility and South Blower Facility) that provide vacuum for the existing perimeter and 41st Street landfill gas (LFG) collection systems at the site and represent the points of LFG emissions from active landfill gas collection.

In 2021, the initial phase of the Riverfront Development project on the landfill was completed, including the Riverfront Boulevard and its active LFG collection system. The Riverfront Boulevard LFG collection system connects to the North Blower Facility. Dedication of Riverfront Boulevard occurred in July of 2021 at which time it became open for public use and the LFG collection system was officially active and under the control and monitoring of the City.

CONFIRMATIONAL SAMPLING AND EVALUATION PLAN

As stated in the CMCP, confirmation sampling is to occur at each landfill gas emission vent pipe one time after the active gas collection system has reached stable operating conditions. This is to occur no sooner than 30 days after system start-up and no later than 90 days after system start-up. This process is to take place each time a new portion of the active LFG collection system becomes operational. The sampling event described in this memo occurred 90 days after Riverfront Boulevard was opened for public use.

Confirmational sampling took place according to the approach described in Section 3.6 of the CMCP. A gas sample was collected at each of the two system emission locations (North and South Blower Stations). Sample ports located at each of the blower stations allowed a sample collection of landfill gas representative of what was in the stack prior to mixing with atmospheric air. The process of taking a sample directly from the stack is standard practice for meeting Puget Sound Clean Air Agency (PSCAA) Air Permit requirements. The flow rates through the vents were also measured at the time of sample collection.

After collection of the sample, the process for determining compliance was based on the following approach as described in Section 3.6 of the CMCP:

- 1. The samples were analyzed for the compounds defined in Table 1 of the CMCP, included as Attachment A. These were the compounds previously determined to be Everett Landfill's constituents of concern (COCs)
- 2. The laboratory reported analyte concentration results were compared to the Acceptable Source Impact Levels (ASILs), which are the screening concentration limits of toxic air pollutants (TAPs) in the air. If the analyte concentration was below the corresponding ASIL, the analyte met emission compliance.

If all reported analyte concentrations are less than the corresponding ASILs then the site meets compliance and Steps 3 and 4 below are not required to determine compliance.

3. For any analytes that had concentrations higher than the corresponding ASILs, the gas flow rate at the sample location was used to calculate analyte loading limits to compare to the regulated limits for Small Quantity Emission Rate (SQER) and *de minimis* rates. If the loading rates were lower than the corresponding SQERs, by definition, the analytes and total emissions met compliance and do not require further dispersion modeling to determine compliance.

If all reported analyte concentrations are either below the corresponding ASILs or analyte loadings are below the SQERs, then the site meets compliance and Step 4 below is not required to determine compliance.

4. For any analytes that had exceedances of the SQER criteria, the United States Environmental Protection Agency (EPA) screening-level air dispersion model (AERSCREEN) would be applied to show that diluted – ambient – concentration levels at any public receptor are below the Model Toxics Control Act (MTCA) cleanup levels and ASIL standards in Table 1 of the CMCP, included as Attachment A. These public receptor points are not at the blower vent stack but exist in the breathing zone of people that could be present within adjacent areas that are publicly accessible. If it is determined that MTCA cleanup levels and ASIL standards are not exceeded in publicly accessible ambient air, no further action will be required. If compliance is not met – i.e., if dispersion modeling determines a potential exceedance – then treatment or a revised stack design is required.

The steps outlined in this section will be referenced throughout the rest of the document.

SAMPLING FIELD METHODS

On September 30, 2021, a Herrera representative, with the assistance of a City representative, collected two representative air samples from the LFG system emission vents, one from the North Blower and one from the South Blower (see Figure 1 for location map):

- Sample location 1 South Blower
- Sample location 2 North Blower

Air samples were collected with 1-liter Summa Canisters placed at each of the sampling locations at sampling ports representative of the stack emissions under normal operating conditions. The stack emission flow rate was recorded at each location. At the South Blower a flow meter records the flow via SCADA. At the North Blower flow is measured using the differential pressure flow orifice and logged on a GEM 2000 gas analyzer. Note that both blower stations are equipped with diffuser valves. Flow measurements and air samples were taken downstream of the diffuser valves which were representative of stack emissions. At the time of sampling, both South Blower and North Blower diffuser valves were in the closed position as part of normal operations.

Summa Canisters were equipped with a flow regulator set to 85 milliliters per minute. The sample collection for the South Blower began at 7:52 a.m.; and the valve on each canister was fully opened sequentially. The initial vacuum was 30 inches of mercury in each canister and the canister valve was left opened until pressure reached approximately 5 inches of mercury. It took around 5 seconds for the canister to fill. Figures 2 and 3 show the sampling effort at the South Blower before and after the sample was grabbed, respectively. The sample collection for the North Blower began at 8:16 a.m. Figures 4 and 5 show the sampling effort at the North Blower before and after the sample was grabbed, respectively.

The final vacuum for each canister was recorded on the chain of custody form. The canisters were hand delivered to the laboratory for analysis.

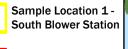


Figure 1. Vicinity Map of Everett Landfill Sampling Locations

Snohomish County, Aerial (2017) $\label{eq:constraint} \texttt{K}: \texttt{Project} \texttt{Y2017} \texttt{17-06595-000} \texttt{Project} \texttt{Report} \texttt{Fig1} \texttt{Vicinity} \texttt{Map_letter.mxd} \texttt{Map} \texttt{Inter.mxd} \texttt{Inter.mxd} \texttt{Map} \texttt{Inter.mxd} \texttt{Int$

Figure 2. Sampling at South Blower. Initial vacuum at 30 inches of mercury.

Figure 3. Pressure gauge after sample was grabbed at South Blower. Final vacuum at 4 inches of mercury.

Figure 4. Sampling at North Blower. Initial vacuum at 30 inches of mercury.

Figure 5. Pressure gauge after sample was grabbed at North Blower. Final vacuum at 4 inches of mercury.

SAMPLE ANALYSIS

The collected samples were submitted to Fremont Analytical of Seattle, Washington, on September 30, 2021, under chain of custody for analysis of:

- Sulfur Compounds by EPA Method TO-15
- Volatile Organic Compounds by EPA Method TO-15

The results of the sampling are shown in the laboratory report included in Attachment B.

CONCENTRATION AND LOADING ANALYSIS

The normal operating stack emission flow rate at each of the blower stations was recorded at the time of sampling and used to calculate the emission loading based on gas concentrations at each blower station respectively. The loading at each blower station was added for a combined total site loading.

The collected samples were analyzed for the COCs as defined in the CMCP. These constituents and their associated ASILs and MTCA thresholds identified at the time of the BFS are listed in Table 1 of the CMCP included as Attachment A. As per the compliance determination process outlined in the section that begins on page 2 above, the COC lab results will first be compared to the ASILs (Step 2). Where there are exceedances of ASILs, calculations will be done to compare to the SQERs (Step 3). If compliance is not confirmed after Steps 2 and 3, both ASIL criteria and MTCA Cleanup Levels (CULs) in Table 1 of the CMCP, included as Attachment A, will be used to determine compliance as per Step 4.

Significant regulatory updates that govern acceptable air emissions have been made since the CMCP was written. To evaluate emission loadings relative to current requirements, the current Washington Administrative Code (WAC) 173-460 Controls for New Sources of Toxic Air Pollutants (TAPs) was reviewed and the regulated ASIL limits and corresponding Small Quantity Emission Rate (SQER) and *De Minimis* Rates were updated to reflect the current emission thresholds. TAPs are pollutants that are known or suspected to cause cancer or other serious health effects, or adverse environmental effects. Not all TAPs listed as part of WAC 173-460 are defined as COCs of the landfill. Table 1 shows the TAPs that are included as COCs in the CMCP and also have current WAC standards for ASILs, SQER, and *de minimis* rates.

Table 1. TAPs with Current WAC Standards										
ТАР	CAS No.	M.W. (g/mol)	ASIL (ug/m3)	SQER (lb/averaging period)	<i>De Minimis</i> (lb/averaging period)					

		1	1	1	1
Chloromethane (Methyl Chloride)	74-87-3	50.49	90	6.7	0.33
Vinyl Chloride	75-01-4	62.5	0.11	18	0.92
Chloroethane (Ethyl Chloride)	75-00-3	64.51	30000	2200	110
1,1-Dichloroethene	75-35-4	96.94	200	15	0.74
Methylene Chloride (Dichloromethane)	75-09-2	84.94	60	9800	490
1,1-Dichloroethane	75-34-3	98.96	0.63	100	5.1
Chloroform	67-66-3	119.39	0.043	7.1	0.35
1,2-Dichloroethane	107-06-2	98.96	0.038	6.2	0.31
Benzene	71-43-2	78.11	0.13	21	1
Toluene	108-88-3	92.13	5000	370	19
Tetrachloroethene	127-18-4	165.83	0.16	27	1.3
Chlorobenzene	108-90-7	112.56	1000	74	3.7
Ethylbenzene	100-41-4	106.07	0.4	65	3.2
m,p-Xylene	179601-23- 1	106.16	220	16	0.82
Styrene	100-42-5	104.15	870	65	3.2
o-Xylene	95-47-6	106.16	220	16	0.82
1,1,2,2- Tetrachloroethane	79-34-5	167.85	0.017	2.8	0.14
1,3,5- Trimethylbenzene	108-67-8	120.19	60	4.4	0.22
1,2,4- Trimethylbenzene	95-63-6	120.19	60	4.4	0.22
1,4-Dichlorobenzene	106-46-7	147	0.091	15	0.74
Hexachlorobutadiene	87-68-3	260.76	0.045	7.4	0.37
Methyl Ethyl Ketone (2-Butanone)	78-93-3	72.11	5000	370	19

Hydrogen Sulfide	7783-06-4	34.08	2	0.15	0.0074
TAP = Toxic Air Pollutant					

CAS = Chemical Abstract Service

M.W. = Molecular Weight

ASIL = Acceptable Source Impact Level

SQER = Small Quantity Emission Rate

Where updated ASIL limits were not available, the ASIL thresholds identified at the time of the Brownfield Feasibility Study, and listed in the CMCP, were used. Gas constituents without current ASILs do not have a reported SQER or *de minimis* loading values because prior to 2009 TAP-specific SQERs and *de minimis* loading values were not reported. To demonstrate compliance for constituents without current ASIL's and corresponding SQER or *de minimis* loading values, the laboratory reported concentrations were compared to the ASIL included at the time of the Brownfield Feasibility Study in which the designated cleanup level concentration limits were developed. The landfill gas evaluation completed in 2000 concluded that emissions to ambient air did not exceed the proposed cleanup levels of PSCAA Regulation III ASILs.

Table 2 shows the TAPs that were originally included as COCs in the BFS and CMCP but do not have current WAC standards for ASILs, SQER, and *de minimis* rates.

Table 2. TAPs without Current WAC Standards											
ТАР	CAS No.	M.W. (g/mol)	ASIL (ug/m3)								
Dichlorodifluoromethane	75-71-8	120.91	16000								
1,2-Dichloro-1,1,2,2- tetrafluorethane(1,2- Dichlorotetrafluoroethane)	76-14-2	170.92	23000								
Trichlorofluoromethane	75-69-4	137.38	19000								
1,1,2-Trichloro-1,2,2- trifluoroethane(Trichlorotrifluoroethane CFC-113)	76-13-1	187.37	27000								
cis-1,2-Dichloroethene	156-59-2	96.94	2600								
1,2-Dichlorobenzene	95-50-1	147	1000								
1,2,4-Trichlorobenzene	120-82-1	181.45	120								

TAP = Toxic Air Pollutant

CAS = Chemical Abstract Service

M.W. = Molecular Weight

ASIL = Acceptable Source Impact Level

The analyte of 1,3-Dichlorobenzene did not have an updated ASIL limit available nor was an ASIL available at the time of the BFS. For this analyte, the assigned ASIL, SQER, and *de minimis* was that of 1,4-Dichlorobenzene as shown in Table 3.

Та	Table 3. TAP without Current or 2000 WAC Standard													
ТАР	CAS No.	M.W. (g/mol)	ASIL (ug/m3)	SQER (lb/averaging period)	<i>De Minimis</i> (lb/averaging period)									
1,3- Dichlorobenzene	541-73-1	147	0.091	15	0.74									

TAP = Toxic Air Pollutant

CAS = Chemical Abstract Service

M.W. = Molecular Weight

ASIL = Acceptable Source Impact Level

SQER = Small Quantity Emission Rate

COMPLIANCE RESULTS

To determine if the current conditions comply with the Washington Administrative Code (WAC) 173-460 Controls for New Sources of Toxic Air Pollutants, the laboratory reported analyte concentrations at each blower station were compared to the corresponding ASILs as per Step 2 of the compliance determination process. The WAC 173-460-150 Table of ASIL, SQER, and *de minimis* emission values was referenced for the current ASIL criteria. Analyte comparison to current ASILs are shown in Table 4 for the South Blower and Table 5 for the North Blower.

Not all analytes tested for were included in the current WAC Table of ASIL, SQER, and *de minimis* emission values. For the analytes without current emission values, the laboratory reported concentrations were compared to ASILs specified at the time of the BFS and included in the CMCP. The rows that included analytes for which the CMCP ASILs were used are highlighted in Tables 4 and 5 and are separated as Table 6. All the analytes for which the ASILs compared to were from the time of study had measured concentrations that were less than the ASIL.

The same twelve (12) analytes in both the north and south blower samples had reported concentrations that exceeded their corresponding ASILs. Exceedances of the ASILs are depicted by the yellow highlighted "NO" boxes listed under the "Standard Comparison Check". A "NO" highlighted box means that compliance could not be confirmed nor denied with comparison to ASIL, and the loading rate of the emitted analyte needed to be compared to the regulated limits for SQER and *de minimis* rates to determine compliance. The remaining nineteen (19) analytes complied with the ASILs as depicted by the green highlighted "YES" boxes. A "YES" highlighted box means the analyte meets emission compliance.

With twelve (12) ASIL exceedances in the samples, compliance for the analytes had to be checked by using the analyte loading rates and comparing to SQER and *de minimis* rates according to Step 3 of the compliance determination process. The air pollutant emission loading rates were calculated using the sampled pollutant concentrations at the current stack emission flow rate. This data is summarized in Tables 4 and 5. The column titled "Loading Rates (Ib/averaging period)" is a calculated loading rate by use of the laboratory reported pollutant concentration, averaging period of each analyte as determined by WAC, and measured emission flow rates identified in September 2021. The loading rates for each blower station were calculated individually in Tables 4 and 5 and then were combined in Table 7 to determine the loading of TAPs for the entire landfill site.

The calculated loading rates for the entire landfill were compared to SQERs and as a further check, *de minimis* rates set by the WAC in Table 7. SQER represent the threshold above which dispersion modeling is required to show compliance. *De minimis* represents the threshold below which emissions are insignificant and do not pose any threat to human health and the environment.

Results from comparing the actual stack emission loading rates to the SQERs showed no exceedance of any analyte for the combined loading from the landfill. The analytes of 1-4, dichlorobenzene and hydrogen sulfide exceeded their corresponding *de minimis* rates but had combined loadings below the SQERs and still met compliance.

Every analyte had a corresponding ASIL, either from the current WAC Table or from 2001 when the CMCP was finalized. The last column under "Standard Comparison Check" on Tables 4 through 7 indicates whether the analyte met emission compliance by having a concentration below the ASIL or by having a loading below SQER/*de minimis* rate. A green highlighted box under "Complies with" means the analyte met emission compliance. All boxes are green signifying that all COCs were emitted at low enough levels to meet compliance.

Because all the loading rates were lower than the corresponding SQERs, by definition, the analytes and total emissions met compliance and do not require further dispersion modeling and comparison to MTCA CULs to determine compliance – i.e. Step 4 of the compliance determination process is not required.

SUMMARY

The air quality sampling data analysis presented in this technical memorandum demonstrates that the Everett Landfill remains in compliance with emission requirements.

To determine compliance, analytical results for the COCs defined in the CMCP were first compared to ASILs per Step 2. ASILs are screening concentrations of TAPs in the outdoor atmosphere set by the WAC to evaluate the air quality impacts of a single source. If the analyte concentration was below the ASIL, the analyte met emission compliance and does not need to be regulated. Data analysis results showed that out of the thirty-one (31) analytes tested for,

twelve (12) analytes exceeded the corresponding ASILs. Exceedance of the ASIL does not automatically mean the emitted analyte is not compliant. Analyte concentrations above ASILs are regulated and need to be compared to loadings to confirm compliance.

To check compliance of the analytes that had ASIL exceedances, the stack emission loading rates of the analytes were calculated and compared to SQER and *de minimis* rates per Step 3. If the loading rates were lower than the corresponding SQERs, by definition, the analytes and total emissions met compliance and do not require further dispersion modeling to determine compliance. All twenty-four (24) analytes that had defined SQERs, including all twelve (12) analytes that exceeded their ASILs, had emission loading rates that were below the SQERs, confirming that the LFG emitted from both blower's met compliance for the COCs and additional dispersion modeling and analyte comparison to MTCA CULs per Step 4 was not required.

Of the thirty-one (31) total analytes that were tested for, seven (7) analytes did not have current ASILs, SQERs, or *de minimis* rates defined in the updated WAC 173-460-150 Table of ASIL, SQER, and *de minimis* emission values. The concentrations of these analytes were compared to the ASILs identified in the CMCP. The seven (7) analytes had concentrations lower than the CMCP ASILs demonstrating that these seven (7) analytes met emission compliance with the CMCP per Step 2.

With the compliance of all analytes from both blower stations individually and combined, the landfill gas is compliant with emission requirements, and no further air modeling or treatment is needed to demonstrate compliance. When future portions of the LFG collection system for property development become active, additional monitoring will be performed as required by the CMCP.

RECOMMENDATIONS

Herrera offers the following recommendations:

• No additional modeling or treatment is required based on the results of the loading analysis. The site is in compliance with emission requirements.

The Site will be developed in phases and air quality sampling will occur as future zones of development are connected to the existing LFG system. A technical memorandum will be prepared after each sampling event.

Analyte	CAS Number	Molecular Weight (g/mol)	Co C	Reported ncentration - October 1st, 021 Sample	Averaging Period	Flow Volume per Averaging Period	ASIL	Small Quantity Emission Rate (SQER)ª	De Minimis Rate ^b	Loading Rates		Standard Comparison Check		
				(µg/m³)		(scf)	(µg/m³)	(lbs/averaging period)	(lbs/averaging period)	(lbs/averaging period)	Concentration < ASIL?	Loading < SQER?	Loading < De Minimis?	Complies with
TAPs														
Dichlorodifluoromethane	75-71-8	120.91		15.1	year**	184380480	16000			0.1738081	YES			ASIL
Chloromethane (Methyl Chloride)	74-87-3	50.49	<	0.217	24-hr	505152	90	6.7	0.33	0.0000068	YES	YES	YES	ASIL/SQER/De Minim
1,2-Dichloro-1,1,2,2-tetrafluorethane(1,2-Dichlorotetrafluoroethane)	76-14-2	170.92		56.5	24-hr	505152	23000			0.0017818	YES			ASIL
Vinyl Chloride	75-01-4	62.5	<	3.96	year	184380480	0.11	18	0.92	0.0455815	NO	YES	YES	SQER/De Minimis
Chloroethane (Ethyl Chloride)	75-00-3	64.51	<	4.78	24-hr	505152	30000	2200	110	0.0001507	YES	YES	YES	ASIL/SQER/De Minim
Trichlorofluoromethane	75-69-4	137.38		5.24	year**	184380480	19000			0.0603149	YES			ASIL
1,1-Dichloroethene	75-35-4	96.94	<	0.434	24-hr	505152	200	15	0.74	0.0000137	YES	YES	YES	ASIL/SQER/De Minim
Methylene Chloride (Dichloromethane)	75-09-2	84.94	<	208	year	184380480	60	9800	490	2.3941783	NO	YES	YES	SQER/De Minimis
1,1,2-Trichloro-1,2,2-trifluoroethane(Trichlorotrifluoroethane CFC-113)	76-13-1	187.37	<	2.46	24-hr	505152	27000			0.0000776	YES			ASIL
1,1-Dichloroethane	75-34-3	98.96	<	0.486	year	184380480	0.63	100	5.1	0.0055941	YES	YES	YES	ASIL/SQER/De Minim
cis-1,2-Dichloroethene	156-59-2	96.94	<	1.94	year**	184380480	2600			0.0223303	YES			ASIL
Chloroform	67-66-3	119.39		2.12	year	184380480	0.043	7.1	0.35	0.0244022	NO	YES	YES	SQER/De Minimis
1,2-Dichloroethane	107-06-2	98.96	<	0.231	year	184380480	0.038	6.2	0.31	0.0026589	NO	YES	YES	SQER/De Minimis
Benzene	71-43-2	78.11		2.46	year	184380480	0.13	21	1	0.0283158	NO	YES	YES	SQER/De Minimis
Toluene	108-88-3	92.13	<	2.7	24-hr	505152	5000	370	19	0.0000851	YES	YES	YES	ASIL/SQER/De Minim
Tetrachloroethene	127-18-4	165.83	<	1.51	year	184380480	0.16	27	1.3	0.0173808	NO	YES	YES	SQER/De Minimis
Chlorobenzene	108-90-7	112.56		5.3	24-hr	505152	1000	74	3.7	0.0001671	YES	YES	YES	ASIL/SQER/De Minim
Ethylbenzene	100-41-4	106.07	<	9.01	year	184380480	0.4	65	3.2	0.1037094	NO	YES	YES	SQER/De Minimis
m,p-Xylene	179601-23-1	106.16	<	7.08	24-hr	505152	220	16	0.82	0.0002233	YES	YES	YES	ASIL/SQER/De Minim
Styrene	100-42-5	104.15	<	1.06	24-hr	505152	870	65	3.2	0.0000334	YES	YES	YES	ASIL/SQER/De Minim
o-Xylene	95-47-6	106.16	<	10.9	24-hr	505152	220	16	0.82	0.0003437	YES	YES	YES	ASIL/SQER/De Minim
1,1,2,2-Tetrachloroethane	79-34-5	167.85	<	3.14	year	184380480	0.017	2.8	0.14	0.0361429	NO	YES	YES	SQER/De Minimis
1,3,5-Trimethylbenzene	108-67-8	120.19	<	5.28	24-hr	505152	60	4.4	0.22	0.0001665	YES	YES	YES	ASIL/SQER/De Minim
1,2,4-Trimethylbenzene	95-63-6	120.19		30.8	24-hr	505152	60	4.4	0.22	0.0009713	YES	YES	YES	ASIL/SQER/De Minim
1,3-Dichlorobenzene	541-73-1	147	<	44.4	year	184380480	0.091	15	0.74	0.5110650	NO	YES	YES	SQER/De Minimis
1,4-Dichlorobenzene	106-46-7	147	<	57.9	year	184380480	0.091	15	0.74	0.6664564	NO	YES	YES	SQER/De Minimis
1,2-Dichlorobenzene	95-50-1	147	<	48.9	year**	184380480	1000			0.5628621	YES			ASIL
1,2,4-Trichlorobenzene	120-82-1	181.45	<	63.1	year	184380480	120			0.7263108	YES			ASIL
Hexachlorobutadiene	87-68-3	260.76	<	7.83	year	184380480	0.045	7.4	0.37	0.0901270	NO	YES	YES	SQER/De Minimis
Methyl Ethyl Ketone (2-Butanone)	78-93-3	72.11	<	16.9	24-hr	505152	5000	370	19	0.0005330	YES	YES	YES	ASIL/SQER/De Minim
Hydrogen Sulfide	7783-06-4	34.08	<	348 H	24-hr	505152	2	0.15	0.0074	0.0109744	NO	YES	NO	SQER

Notes:

Analytes included are those listed in Table 1 of the March 2001 Compliance Monitoring and Contingency Plan by Floyd&Snider.

Reported concentrations for TAPs are from TO-15 analysis. ASIL, SQER and *De minimis* rate are from WAC-173-173-460-150 Table for ASIL, SQER, and *de minimis* values.

H qualifier indicates holding time for preparation or analysis was exceeded.

** averaging period assumed to be 1 year.

Highlighting indicates analyte is not included on the current WAC-173-460-150 Table for ASIL, SQER and *de minimis* emission values. ASIL values were pulled from the March 2001 Compliance Monitoring and Contingency Plan. Analyte not included on the current or 2001 WAC List. ASIL, SQER, and *De Minimis* assumed to be the same as 1,4-Dichlorobenzene.

Where there are exceedances on the *De Minimis*, the EPA screening-level air dispersion model (AERSCREEN), must be ran to show diluted concentration levels at any public receptor are below the ASIL. If still above ASIL, treatment is required. *** Reported value from September Reads provided by David Draszt, City of Everett

^a The SQER is a level of emissions below which dispersion modeling is not required to demonstrate compliance.

^b The *de minimus* rate does not pose a threat to human health or the environment.

ASIL = Acceptable Source Impact Level SQER = Small Quantity Emission Rate

Та	ble 5: Eve	erett Lan	dfill	: Closed L	andfill D	ata Collec	tion A	nalysis - No	orth Blowe	r Station				
Analyte	CAS Number	Molecular Weight (g/mol)	Co	Reported oncentration - ober 1st, 2021 Sample	Averaging Period	Flow Volume per Averaging Period	ASIL	Small Quantity Emission Rate (SQER)ª	De Minimis Rate ^b	Loading Rates		Standard	l Comparisor	ı Check
				(µg/m3)		(scf)	(µg/m³)	(lbs/averaging period)	(lbs/averaging period)	(lbs/averaging period)	Concentration < ASIL?	Loading < SQER?	Loading < <i>D</i> e <i>Minimis</i> ?	Complies with
TAPs														
Dichlorodifluoromethane	75-71-8	120.91		146	year**	64859040	16000			0.5911553	YES			ASIL
Chloromethane (Methyl Chloride)	74-87-3	50.49		1.58	24-hr	177696	90	6.7	0.33	0.0000175	YES	YES	YES	ASIL/SQER/De Minimis
1,2-Dichloro-1,1,2,2-tetrafluorethane(1,2-Dichlorotetrafluoroethane)	76-14-2	170.92		85.1	24-hr	177696	23000			0.0009440	YES			ASIL
Vinyl Chloride	75-01-4	62.5		3.14	year	64859040	0.11	18	0.92	0.0127139	NO	YES	YES	SQER/De Minimis
Chloroethane (Ethyl Chloride)	75-00-3	64.51	<	2.39	24-hr	177696	30000	2200	110	0.0000265	YES	YES	YES	ASIL/SQER/De Minimis
Trichlorofluoromethane	75-69-4	137.38		34.4	year**	64859040	19000			0.1392859	YES			ASIL
1,1-Dichloroethene	75-35-4	96.94	۷	0.217	24-hr	177696	200	15	0.74	0.0000024	YES	YES	YES	ASIL/SQER/De Minimis
Methylene Chloride (Dichloromethane)	75-09-2	84.94	<	104	year	64859040	60	9800	490	0.4210969	NO	YES	YES	SQER/De Minimis
1,1,2-Trichloro-1,2,2-trifluoroethane(Trichlorotrifluoroethane CFC-113)	76-13-1	187.37	<	1.23	24-hr	177696	27000			0.0000136	YES			ASIL
1,1-Dichloroethane	75-34-3	98.96	<	0.243	year	64859040	0.63	100	5.1	0.0009839	YES	YES	YES	ASIL/SQER/De Minimis
cis-1,2-Dichloroethene	156-59-2	96.94	<	0.972	year**	64859040	2600			0.0039356	YES			ASIL
Chloroform	67-66-3	119.39		2.08	year	64859040	0.043	7.1	0.35	0.0084219	NO	YES	YES	SQER/De Minimis
1,2-Dichloroethane	107-06-2	98.96	<	0.116	year	64859040	0.038	6.2	0.31	0.0004697	NO	YES	YES	SQER/De Minimis
Benzene	71-43-2	78.11		2.42	year	64859040	0.13	21	1	0.0097986	NO	YES	YES	SQER/De Minimis
Toluene	108-88-3	92.13		3.85	24-hr	177696	5000	370	19	0.0000427	YES	YES	YES	ASIL/SQER/De Minimis
Tetrachloroethene	127-18-4	165.83		2.67	year	64859040	0.16	27	1.3	0.0108109	NO	YES	YES	SQER/De Minimis
Chlorobenzene	108-90-7	112.56	<	0.575	24-hr	177696	1000	74	3.7	0.0000064	YES	YES	YES	ASIL/SQER/De Minimis
Ethylbenzene	100-41-4	106.07	<	4.51	year	64859040	0.4	65	3.2	0.0182610	NO	YES	YES	SQER/De Minimis
m,p-Xylene	179601-23-1	106.16	<	3.54	24-hr	177696	220	16	0.82	0.0000393	YES	YES	YES	ASIL/SQER/De Minimis
Styrene	100-42-5	104.15	<	0.532	24-hr	177696	870	65	3.2	0.0000059	YES	YES	YES	ASIL/SQER/De Minimis
o-Xylene	95-47-6	106.16	<	5.43	24-hr	177696	220	16	0.82	0.0000602	YES	YES	YES	ASIL/SQER/De Minimis
1,1,2,2-Tetrachloroethane	79-34-5	167.85	<	1.57	year	64859040	0.017	2.8	0.14	0.0063569	NO	YES	YES	SQER/De Minimis
1,3,5-Trimethylbenzene	108-67-8	120.19		6.11	24-hr	177696	60	4.4	0.22	0.0000678	YES	YES	YES	ASIL/SQER/De Minimis
1,2,4-Trimethylbenzene	95-63-6	120.19		18.9	24-hr	177696	60	4.4	0.22	0.0002097	YES	YES	YES	ASIL/SQER/De Minimis
1,3-Dichlorobenzene	541-73-1	147	<	22.2	year	64859040	0.091	15	0.74	0.0898880	NO	YES	YES	SQER/De Minimis
1,4-Dichlorobenzene	106-46-7	147	<	29	year	64859040	0.091	15	0.74	0.1174213	NO	YES	YES	SQER/De Minimis
1,2-Dichlorobenzene	95-50-1	147	<	24.5	year**	64859040	1000			0.0992007	YES			ASIL
1,2,4-Trichlorobenzene	120-82-1	181.45	<	31.5	year	64859040	120			0.1275438	YES			ASIL
Hexachlorobutadiene	87-68-3	260.76	<	3.92	year	64859040	0.045	7.4	0.37	0.0158721	NO	YES	YES	SQER/De Minimis
Methyl Ethyl Ketone (2-Butanone)	78-93-3	72.11	<	8.45	24-hr	177696	5000	370	19	0.0000937	YES	YES	YES	ASIL/SQER/De Minimis
Hydrogen Sulfide	7783-06-4	34.08	<	348 H	24-hr	177696	2	0.15	0.0074	0.0038604	NO	YES	YES	SQER/De Minimis

Analytes included are those listed in Table 1 of the March 2001 Compliance Monitoring and Contingency Plan by Floyd&Snider.

Reported concentrations for TAPs are from TO-15 analysis. ASIL, SQER and *De minimis* rate are from WAC-173-173-460-150 Table for ASIL, SQER, and *de minimis* values.

H qualifier indicates holding time for preparation or analysis was exceeded.

** averaging period assumed to be 1 year.

Highlighting indicates analyte is not included on the current WAC-173-460-150 Table for ASIL, SQER and *de minimis* emission values. ASIL values were pulled from the March 2001 Compliance Monitoring and Contingency Plan. Analyte not included on the current or 2001 WAC List. ASIL, SQER, and *De Minimis* assumed to be the same as 1,4-Dichlorobenzene.

Where there are exceedances on the De Minimis, the EPA screening-level air dispersion model (AERSCREEN), must be ran to show diluted concentration levels at any public receptor are below the ASIL. If still above ASIL, treatment is required. *** Reported value from September Reads provided by David Draszt, City of Everett.

^a The SQER is a level of emissions below which dispersion modeling is not required to demonstrate compliance.

^b The *de minimus* rate does not pose a threat to human health or the environment.

ASIL = Acceptable Source Impact Level SQER = Small Quantity Emission Rate

Table 6:	Everett L	andfill: Closed	Land	fill Data Collection	Analysis – C	omparison to ASI	Ls			
South Blower										
Analyte	CAS Number	Molecular Weight (g/mol)		orted Concentration - ber 1st, 2021 Sample	Averaging Period	Flow Volume per Averaging Period	ASIL	Loading Rates	Standard Con Check	•
				(µg/m³)		(scf)	(µg/m³)	(lbs/averaging period)	Concentration < ASIL?	Complies with
TAPs										
Dichlorodifluoromethane	75-71-8	120.91		15.1	year**	184380480	16000	0.1738081	YES	ASIL
1,2-Dichloro-1,1,2,2-tetrafluorethane(1,2-Dichlorotetrafluoroethane)	76-14-2	170.92		56.5	24-hr	505152	23000	0.0017818	YES	ASIL
Trichlorofluoromethane	75-69-4	137.38		5.24	year**	184380480	19000	0.0603149	YES	ASIL
1,1,2-Trichloro-1,2,2-trifluoroethane(Trichlorotrifluoroethane CFC-113)	76-13-1	187.37	<	2.46	24-hr	505152	27000	0.0000776	YES	ASIL
cis-1,2-Dichloroethene	156-59-2	96.94	<	1.94	year**	184380480	2600	0.0223303	YES	ASIL
1,2-Dichlorobenzene	95-50-1	147	<	48.9	year**	184380480	1000	0.5628621	YES	ASIL
1,2,4-Trichlorobenzene	120-82-1	181.45	<	63.1	year	184380480	120	0.7263108	YES	ASIL
North Blower										
Analyte	CAS Number	Molecular Weight (g/mol)	-	orted Concentration - ber 1st, 2021 Sample	Averaging Period	Flow Volume per Averaging Period	ASIL	Loading Rates	Standard Con Check	
				(µg/m³)		(scf)	(µg/m³)	(lbs/averaging period)	Concentration < ASIL?	Complies with
TAPs										
Dichlorodifluoromethane	75-71-8	120.91		146	year**	64859040	16000	0.5911553	YES	ASIL
1,2-Dichloro-1,1,2,2-tetrafluorethane(1,2-Dichlorotetrafluoroethane)	76-14-2	170.92		85.1	24-hr	177696	23000	0.0009440	YES	ASIL
Trichlorofluoromethane	75-69-4	137.38		34.4	year**	64859040	19000	0.1392859	YES	ASIL
1,1,2-Trichloro-1,2,2-trifluoroethane(Trichlorotrifluoroethane CFC-113)	76-13-1	187.37	<	1.23	24-hr	177696	27000	0.0000136	YES	ASIL
cis-1,2-Dichloroethene	156-59-2	96.94	<	0.972	year**	64859040	2600	0.0039356	YES	ASIL
1,2-Dichlorobenzene	95-50-1	147	<	24.5	year**	64859040	1000	0.0992007	YES	ASIL
1,2,4-Trichlorobenzene	120-82-1	181.45	<	31.5	year	64859040	120	0.1275438	YES	ASIL

Notes: Analytes included are those listed in Table 1 of the March 2001 Compliance Monitoring and Contingency Plan by Floyd&Snider but not WAC-173-460-150 Table for ASIL, SQER, and *de minimus* values. Reported concentrations for TAPs are from TO-15 analysis. ** averaging period assumed to be 1 year. Highlighting indicates analyte is not included on the current WAC-173-460-150 Table for ASIL, SQER and *de minimis* emission values. ASIL values were pulled from Table 1 of the March 2001 Compliance Monitoring and Contingency Plan.

ASIL = Acceptable Source Impact Level

Analyte	North Blower Loading Rates	South Blower Loading Rates	Combined Loading Rates	Small Quantity Emission Rate (SQER)ª	De Minimis Rate ^b	Standard Comparison Check			
	(lbs/averaging period)	(lbs/averaging period)	(lbs/averaging period)	(lbs/averaging period)	(lbs/averaging period)	Loading < SQER?	Loading < De <i>Minimis</i> ?	Complies with	
TAPs									
Chloromethane (Methyl Chloride)	0.0000175	0.000068	0.0000244	6.7	0.33	YES	YES	SQER/De Minimis	
Vinyl Chloride	0.0127139	0.0455815	0.0582954	18	0.92	YES	YES	SQER/De Minimis	
Chloroethane (Ethyl Chloride)	0.0000265	0.0001507	0.0001773	2200	110	YES	YES	SQER/De Minimis	
1,1-Dichloroethene	0.000024	0.0000137	0.0000161	15	0.74	YES	YES	SQER/De Minimis	
Methylene Chloride (Dichloromethane)	0.4210969	2.3941783	2.8152753	9800	490	YES	YES	SQER/De Minimis	
1,1-Dichloroethane	0.0009839	0.0055941	0.0065780	100	5.1	YES	YES	SQER/De Minimis	
Chloroform	0.0084219	0.0244022	0.0328241	7.1	0.35	YES	YES	SQER/De Minimis	
1,2-Dichloroethane	0.0004697	0.0026589	0.0031286	6.2	0.31	YES	YES	SQER/De Minimis	
Benzene	0.0097986	0.0283158	0.0381144	21	1	YES	YES	SQER/De Minimis	
Toluene	0.0000427	0.0000851	0.0001279	370	19	YES	YES	SQER/De Minimis	
Tetrachloroethene	0.0108109	0.0173808	0.0281917	27	1.3	YES	YES	SQER/De Minimis	
Chlorobenzene	0.000064	0.0001671	0.0001735	74	3.7	YES	YES	SQER/De Minimis	
Ethylbenzene	0.0182610	0.1037094	0.1219704	65	3.2	YES	YES	SQER/De Minimis	
m,p-Xylene	0.0000393	0.0002233	0.0002625	16	0.82	YES	YES	SQER/De Minimis	
Styrene	0.000059	0.0000334	0.0000393	65	3.2	YES	YES	SQER/De Minimis	
o-Xylene	0.0000602	0.0003437	0.0004040	16	0.82	YES	YES	SQER/De Minimis	
1,1,2,2-Tetrachloroethane	0.0063569	0.0361429	0.0424998	2.8	0.14	YES	YES	SQER/De Minimis	
1,3,5-Trimethylbenzene	0.0000678	0.0001665	0.0002343	4.4	0.22	YES	YES	SQER/De Minimis	
1,2,4-Trimethylbenzene	0.0002097	0.0009713	0.0011810	4.4	0.22	YES	YES	SQER/De Minimis	
1,3-Dichlorobenzene	0.0898880	0.5110650	0.6009530	15	0.74	YES	YES	SQER/De Minimis	
1,4-Dichlorobenzene	0.1174213	0.6664564	0.7838776	15	0.74	YES	NO	SQER	
Hexachlorobutadiene	0.0158721	0.0901270	0.1059991	7.4	0.37	YES	YES	SQER/De Minimis	
Methyl Ethyl Ketone (2-Butanone)	0.0000937	0.0005330	0.0006267	370	19	YES	YES	SQER/De Minimis	
Hydrogen Sulfide	0.0038604	0.0109744	0.0148348	0.15	0.0074	YES	NO	SQER	

Notes:

Analytes included are those listed in Table 1 of the March 2001 Compliance Monitoring and Contingency Plan by Floyd&Snider and that are included in current WAC-173-460-150 Table for ASIL, SQER, and de minimus values. Reported concentrations for TAPs are from TO-15 analysis.

SQER and De minimis rates are from WAC-173-173-460-150 Table for ASIL, SQER, and de minimis values. Analyte not included on the current or 2001 WAC List. ASIL, SQER, and *De Minimis* assumed to be the same as 1,4-Dichlorobenzene.

Where there are exceedances on the De Minimis, the EPA screening-level air dispersion model (AERSCREEN), must be ran to show diluted concentration levels at any public receptor are below the ASIL. If still above ASIL, treatment is required.

^a The SQER is a level of emissions below which dispersion modeling is not required to demonstrate compliance.

^b The *de minimus* rate does not pose a threat to human health or the environment.

ASIL = Acceptable Source Impact Level SQER = Small Quantity Emission Rate

ATTACHMENT A

Table 1 of the Compliance Monitoring and
Contingency Plan

Table 1

Air Quality Modeling Results

									Undiluted S	ubsurface I	andfill Gas
				Ambient S	Standards &	Modeled Ambien	t Air Concentratio	ons		Averages ¹	
						Modeled	Modeled				
						Contribution	Contribution				
						for Developed	for Developed	Modeled			
					МТСА	Conditions ²	Conditions ³	Contribution			
					Cleanup	with H2S	without H2S	for Existing	Overall	FSI	B&V
				ASIL	Standard	Treatment	Treatment	Conditions ⁴		-	
			ASIL	-					Average	Average	Average
CAS	Compound	M.W.	Туре	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)
75-71-8	Dichlorodifluoromethane	121.0	В	16,000.0	80.0	0.017			402.6		402.6
74-87-3	Chloromethane	50.5	В	340.0	1.7	0.001			25.8		25.8
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	171.0	В	23,000.0	None	0.052			1,205.9		1,205.9
75-01-4	Vinyl chloride	62.5	A	0.012	1.0	0.001			189.5	219.4	159.7
75-00-3	Chloroethane	64.5	В	1,000.0	4,600.0	0.011			263.2	337.6	188.7
75-69-4	Trichlorofluoromethane	137.0	В	19,000.0	320.0	0.002		0.001	51.4	48.8	54.0
75-35-4	1,1-Dichloroethene	97.0	В	67.0	None	0.002		0.001	35.7		35.7
75-09-2	Methylene chloride	84.9	A	0.56	1.1	0.000		0.000	59.3		59.3
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	187.0	В	27,000.0	13,700.0	0.003		0.001	69.1		69.1
75-34-3	1,1-Dichloroethane	99.0	В	2,700.0	1.0	0.002		0.001	40.8	38.2	43.4
156-59-2	cis-1,2-Dichloroethene	96.0	В	2,600.0	1.0	0.002		0.001	39.4	37.6	41.1
67-66-3	Chloroform	119.0	A	0.043	1.0	0.000		0.000	44.1		44.1
107-06-2	1,2-Dichloroethane	99.0	A	0.038	1.0	0.000		0.000	37.3		37.3
71-43-2	Benzene	78.1	A	0.12	5.9	0.003		0.007	865.3	854.0	876.5
108-88-3	Toluene	92.1	В	400.0	183.0	0.020		0.008	456.6	230.0	683.1
127-18-4	Tetrachloroethene	166.0	A	1.1	5.4	0.000		0.000	61.4		61.4
108-90-7	Chlorobenzene	113.0	В	150.0	8.0	0.024			552.1	616.0	488.2
100-41-4	Ethylbenzene	106.0	В	1,000.0	457.0	0.042		0.016	982.5	731.0	1,234.0
1330-20-7	m,p-Xylene	106.0	В	1,500.0	320.0	0.093		0.036	2,160.7	1,156.0	3,165.4
100-42-5	Styrene	104.0	В	1,000.0	32.5	0.002		0.001	56.6		56.6
95-47-6	o-Xylene	106.0	В	1,500.0	320.0	0.008		0.003	184.2	150.0	218.4
79-34-5	1,1,2,2-Tetrachloroethane	167.9	В	23.0	None	0.003		0.001	72.8		72.8
108-67-8	1,3,5-Trimethylbenzene	120.0		None	None	0.016		0.006	362.6		362.6
95-63-6	1,2,4-Trimethylbenzene	120.0		None	None	0.053		0.021	1,244.4		1,244.4
541-73-1	1,3-Dichlorobenzene	147.0		None	None	0.003		0.001	73.1		73.1
106-46-7	1,4-Dichlorobenzene	147.0	Α	1.5	366.0	0.001	0.000	0.002	192.7	181.0	204.4
95-50-1	1,2-Dichlorobenzene	147.0	В	1,000.0	64.0	0.005			112.6		112.6
120-82-1	1,2,4-Trichlorobenzene	181.0	В	120.0	4.8	0.010		0.004	233.8		233.8
87-68-3	Hexachlorobutadiene	261.0	В	0.7	1.0	0.005		0.002	119.3		119.3
78-93-3	2-Butanone	72.1	В	1,000.0	460.0	0.002		0.001	42.0	84.0	0.0
78-93-3	Hydrogen sulfide	34.1	В	0.9	0.4	0.202	0.375	0.394	23,501.0		23,501.0

Notes:

1 See Appendix H for data sheets used to calculate averages.

2 Developed conditions: three emission release stacks 35 feet high.

3 Developed conditions: one emission release stack 30 feet high.

4 Existing conditions: emissions are assumed to emanate uniformly from a series of area sources covering the entire surface of the landfill.

ATTACHMENT B

Laboratory Report

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Herrera Environmental Tyson Wright 2200 Sixth Ave, Ste 1100 Seattle, WA 98121

RE: Everett Riverfront Work Order Number: 2109541

October 08, 2021

Attention Tyson Wright:

Fremont Analytical, Inc. received 2 sample(s) on 9/30/2021 for the analyses presented in the following report.

Sulfur Compounds by EPA Method TO-15 Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Herrera Environmental Everett Riverfront 2109541	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2109541-001	North Blower	09/30/2021 8:16 AM	09/30/2021 4:14 PM
2109541-002	South Blower	09/30/2021 7:52 AM	09/30/2021 4:14 PM

Case Narrative

WO#: **2109541** Date: **10/8/2021**

CLIENT:Herrera EnvironmentalProject:Everett Riverfront

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **2109541** Date Reported: **10/8/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

WorkOrder: 2109541	Environmental								
Project: Everett R	Riverfront								
Client Sample ID: N	lorth Blower					Date Sa	mpled: 9/30/	/2021	
Lab ID: 2	109541-001A					Date Re	ceived: 9/30/	/2021	
Sample Type: S	Summa Canister								
Analyte		Concent	tration	Reportir	ng Limit	Qual	Method	Date/Analy	/st
Sulfur Compounds by E	PA Method TO-1	<u>15</u>							
	(F	opbv)	(ug/m³)	(ppbv)	(ug/m³)				
Hydrogen Sulfide		<250	<348	250	348	Н	EPA-TO-15	10/02/2021	MS
Surr: 4-Bromofluorobenzen	e 114	4 %Rec		70-130		н	EPA-TO-15	10/02/2021	MS
Volatile Organic Compo	ounds by EPA Me	ethod TC	<u>)-15</u>						
	(r	opbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,2,2-Tetrachloroethane	<	:0.229	<1.57	0.229	1.57		EPA-TO-15	10/07/2021	MS
CFC-113	<	:0.160	<1.23	0.160	1.23		EPA-TO-15	10/07/2021	MS
1,1-Dichloroethane	<(0.0600	<0.243	0.0600	0.243		EPA-TO-15	10/07/2021	MS
1,1-Dichloroethene (DCE)	<(0.0547	<0.217	0.0547	0.217		EPA-TO-15	10/07/2021	MS
1,2,4-Trichlorobenzene	<	<4.25	<31.5	4.25	31.5		EPA-TO-15	10/07/2021	MS
1,2,4-Trimethylbenzene		3.84	18.9	2.08	10.2		EPA-TO-15	10/07/2021	MS
1,2-Dichlorobenzene	<	<4.07	<24.5	4.07	24.5		EPA-TO-15	10/07/2021	MS
1,2-Dichloroethane	<(0.0285	<0.116	0.0285	0.116		EPA-TO-15	10/07/2021	MS
1,3,5-Trimethylbenzene		1.24	6.11	0.537	2.64		EPA-TO-15	10/07/2021	MS
1,3-Dichlorobenzene	<	<3.69	<22.2	3.69	22.2		EPA-TO-15	10/07/2021	MS
1,4-Dichlorobenzene	<	<4.81	<29.0	4.81	29.0		EPA-TO-15	10/07/2021	MS
(MEK) 2-Butanone	<	<2.87	<8.45	2.87	8.45		EPA-TO-15	10/07/2021	MS
Benzene	(0.758	2.42	0.302	0.965		EPA-TO-15	10/07/2021	MS
Chlorobenzene	<	:0.125	<0.575	0.125	0.575		EPA-TO-15	10/07/2021	MS
Chloroethane	<	:0.906	<2.39	0.906	2.39		EPA-TO-15	10/07/2021	MS
Chloroform	C	0.427	2.08	0.0192	0.0937		EPA-TO-15	10/07/2021	MS
Chloromethane	C	0.768	1.58	0.0525	0.108		EPA-TO-15	10/07/2021	MS
cis-1,2-Dichloroethene	<	:0.245	<0.972	0.245	0.972		EPA-TO-15	10/07/2021	MS
Dichlorodifluoromethane (CFC	C-12)	29.5	146	0.125	0.618		EPA-TO-15	10/07/2021	MS
Dichlorotetrafluoroethane (CF	C-114)	12.2	85.1	0.115	0.805		EPA-TO-15	10/07/2021	MS
Ethylbenzene	<	<1.04	<4.51	1.04	4.51		EPA-TO-15	10/07/2021	MS
Hexachlorobutadiene	<	:0.367	<3.92	0.367	3.92		EPA-TO-15	10/07/2021	MS
m,p-Xylene	<	:0.815	<3.54	0.815	3.54		EPA-TO-15	10/07/2021	MS
Methylene chloride	~	<30.0	<104	30.0	104		EPA-TO-15	10/07/2021	MS
o-Xylene	<	<1.25	<5.43	1.25	5.43		EPA-TO-15	10/07/2021	MS
_									

<0.125

< 0.532

0.125

0.532

Styrene

10/07/2021

MS

EPA-TO-15

Surr: 4-Bromofluorobenzene

Herre	ra Environmen ⁻	tal							
: 21095	541								
Evere	tt Riverfront								
le ID:	North Blower					Date Sa	mpled: 9/30	/2021	
	2109541-001A					Date Re	ceived: 9/30	/2021	
: :	Summa Canist	ər							
		Concer	ntration	Reporti	ng Limit	Qual	Method	Date/Analy	/st
anic Cor	npounds by EPA	Method T	<u> 0-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
ne (PCE)		0.394	2.67	0.111	0.753		EPA-TO-15	10/07/2021	MS
		1.02	3.85	0.358	1.35		EPA-TO-15	10/07/2021	MS
nethane (C	CFC-11)	6.12	34.4	0.0919	0.517		EPA-TO-15	10/07/2021	MS
		1.23	3.14	0.774	1.98		EPA-TO-15	10/07/2021	MS
	21095 Evere le ID: anic Cor	2109541 Everett Riverfront le ID: North Blower 2109541-001A e: Summa Caniste anic Compounds by EPA	Everett Riverfront le ID: North Blower 2109541-001A e: Summa Canister Concer anic Compounds by EPA Method T (ppbv) ne (PCE) 0.394 1.02 hethane (CFC-11) 6.12	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A e: Summa Canister Concentration anic Compounds by EPA Method TO-15 (ppbv) (ug/m³) ne (PCE) 0.394 2.67 1.02 3.85 hethane (CFC-11) 6.12 34.4	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A e: Summa Canister Concentration Reporting anic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) ne (PCE) 0.394 2.67 0.111 1.02 3.85 0.358 nethane (CFC-11) 6.12 34.4 0.0919	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A e: Summa Canister Concentration Reporting Limit Anic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) (ug/m³) ne (PCE) 0.394 2.67 0.111 0.753 1.02 3.85 0.358 1.35 nethane (CFC-11) 6.12 34.4 0.0919 0.517	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A Date Sa 2109541-001A Date Re :: Summa Canister Concentration Reporting Limit Qual anic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) (ug/m³) ne (PCE) 0.394 2.67 0.111 0.753 1.02 3.85 0.358 1.35 nethane (CFC-11) 6.12 34.4 0.0919 0.517	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A Date Sampled: 9/30, 2109541-001A Date Received: 9/30, e: Summa Canister Concentration Reporting Limit Qual Method anic Compounds by EPA Method TO-15 ne (PCE) 0.394 2.67 0.111 0.753 EPA-TO-15 1.02 3.85 0.358 1.35 EPA-TO-15 hethane (CFC-11) 6.12 34.4 0.0919 0.517 EPA-TO-15	: 2109541 Everett Riverfront le ID: North Blower 2109541-001A b: Summa Canister Concentration Reporting Limit Qual Method Date/Analy anic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) (ug/m³) ne (PCE) 0.394 2.67 0.111 0.753 EPA-TO-15 10/07/2021 1.02 3.85 0.358 1.35 EPA-TO-15 10/07/2021 nethane (CFC-11) 6.12 34.4 0.0919 0.517 EPA-TO-15 10/07/2021

70-130

101 %Rec

EPA-TO-15 10/07/2021

MS

WorkOrder: 2109541	Environmental							
Project: Everett R								
Client Sample ID: S	South Blower				Date Sa	mpled: 9/30/	/2021	
Lab ID: 2	109541-002A				Date Re	ceived: 9/30	/2021	
Sample Type: S	Summa Canister							
Analyte	Conce	entration	Reporti	ng Limit	Qual	Method	Date/Analy	/st
Sulfur Compounds by E	EPA Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Hydrogen Sulfide	<250	<348	250	348	н	EPA-TO-15	10/02/2021	MS
Surr: 4-Bromofluorobenzen	93.2 %Rec		70-130		н	EPA-TO-15	10/02/2021	MS
Volatile Organic Compo	ounds by EPA Method	<u>TO-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,2,2-Tetrachloroethane	<0.458	<3.14	0.458	3.14		EPA-TO-15	10/07/2021	MS
CFC-113	<0.320	<2.46	0.320	2.46		EPA-TO-15	10/07/2021	MS
1,1-Dichloroethane	<0.120	<0.486	0.120	0.486		EPA-TO-15	10/07/2021	MS
1,1-Dichloroethene (DCE)	<0.109	<0.434	0.109	0.434		EPA-TO-15	10/07/2021	MS
1,2,4-Trichlorobenzene	<8.50	<63.1	8.50	63.1		EPA-TO-15	10/07/2021	MS
1,2,4-Trimethylbenzene	6.26	30.8	4.16	20.4		EPA-TO-15	10/07/2021	MS
1,2-Dichlorobenzene	<8.14	<48.9	8.14	48.9		EPA-TO-15	10/07/2021	MS
1,2-Dichloroethane	<0.0571	<0.231	0.0571	0.231		EPA-TO-15	10/07/2021	MS
1,3,5-Trimethylbenzene	<1.07	<5.28	1.07	5.28		EPA-TO-15	10/07/2021	MS
1,3-Dichlorobenzene	<7.38	<44.4	7.38	44.4		EPA-TO-15	10/07/2021	MS
1,4-Dichlorobenzene	<9.63	<57.9	9.63	57.9		EPA-TO-15	10/07/2021	MS
(MEK) 2-Butanone	<5.73	<16.9	5.73	16.9		EPA-TO-15	10/07/2021	MS
Benzene	0.771	2.46	0.604	1.93		EPA-TO-15	10/07/2021	MS
Chlorobenzene	1.15	5.30	0.250	1.15		EPA-TO-15	10/07/2021	MS
Chloroethane	<1.81	<4.78	1.81	4.78		EPA-TO-15	10/07/2021	MS
Chloroform	0.434	2.12	0.0384	0.187		EPA-TO-15	10/07/2021	MS
Chloromethane	<0.105	<0.217	0.105	0.217		EPA-TO-15	10/07/2021	MS
cis-1,2-Dichloroethene	<0.490	<1.94	0.490	1.94		EPA-TO-15	10/07/2021	MS
Dichlorodifluoromethane (CFC	C-12) 3.05	15.1	0.250	1.24		EPA-TO-15	10/07/2021	MS
Dichlorotetrafluoroethane (CF	C-114) 8.09	56.5	0.230	1.61		EPA-TO-15	10/07/2021	MS
Ethylbenzene	<2.08	<9.01	2.08	9.01		EPA-TO-15	10/07/2021	MS
Hexachlorobutadiene	<0.735	<7.83	0.735	7.83		EPA-TO-15	10/07/2021	MS
m,p-Xylene	<1.63	<7.08	1.63	7.08		EPA-TO-15	10/07/2021	MS
Methylene chloride	<60.0	<208	60.0	208		EPA-TO-15	10/07/2021	MS
o-Xylene	<2.50	<10.9	2.50	10.9		EPA-TO-15	10/07/2021	MS

<0.250

<1.06

0.250

1.06

Styrene

10/07/2021

MS

EPA-TO-15

WorkOrder: 210	r era Environmer 9541 rett Riverfront	ntal							
Client Sample ID:	South Blower					Date Sa	mpled: 9/30/	/2021	
Lab ID:	2109541-002A					Date Re	ceived: 9/30/	/2021	
Sample Type:	Summa Canis	ter							
Analyte		Concer	tration	Reporti	ng Limit	Qual	Method	Date/Analy	/st
Volatile Organic C	ompounds by EP/	A Method To	<u>D-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Tetrachloroethene (PCI	E)	<0.222	<1.51	0.222	1.51		EPA-TO-15	10/07/2021	MS
Toluene		<0.716	<2.70	0.716	2.70		EPA-TO-15	10/07/2021	MS
Trichlorofluoromethane	(CFC-11)	0.933	5.24	0.184	1.03		EPA-TO-15	10/07/2021	MS
Vinyl chloride		<1.55	<3.96	1.55	3.96		EPA-TO-15	10/07/2021	MS
Surr: 4-Bromofluorok	benzene	91.3 %Rec		70-130			EPA-TO-15	10/07/2021	MS

CLIENT: Her	9541 rrera Environmental erett Riverfront							Sulfu	QC S	SUMMAI		-
Sample ID: LCS-R70317 Client ID: LCSW	7 SampType Batch ID:	e: LCS R70317			Units: ppbv		Prep Dat Analysis Dat			RunNo: 703 SeqNo: 142		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide Surr: 4-Bromofluorobe	nzene	96.4 3.95	25.0	100.0 4.000	0	96.4 98.6	70 70	130 130				
Sample ID: MB-R70317 Client ID: MBLKW	SampType Batch ID:	e: MBLK R70317			Units: ppbv		Prep Dat Analysis Dat			RunNo: 703 SeqNo: 142		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide Surr: 4-Bromofluorobe	nzene	ND 3.33	25.0	4.000		83.3	70	130				
Sample ID: 2109541-002	2AREP SampType	e: REP			Units: ppbv		Prep Dat	e: 10/2/2 0	021	RunNo: 703	317	
Client ID: South Blow	er Batch ID:	R70317					Analysis Dat	e: 10/2/2 0	021	SeqNo: 142	27083	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide Surr: 4-Bromofluorobe	nzene	ND 37.4	250	40.00		93.6	70	130	0	0	25	H H

CLIENT: Herrera Environmental

QC SUMMARY REPORT

Project: Everett Riverfront

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R70432	SampType:	LCS			Units: ppbv		Prep Da	te: 10/7/20	21	RunNo: 70 4	132	
Client ID: LCSW	Batch ID:	R70432					Analysis Da	te: 10/7/20	21	SeqNo: 142	29077	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		1.70	0.0125	2.000	0	85.2	70	130				
Chloromethane		1.72	0.00525	2.000	0	85.8	70	130				
Dichlorotetrafluoroethane (CFC-114)		1.77	0.0115	2.000	0	88.5	70	130				
Vinyl chloride		1.60	0.0774	2.000	0	80.0	70	130				
Trichlorofluoromethane (CFC-11)		1.83	0.00919	2.000	0	91.5	70	130				
Chloroethane		1.74	0.0906	2.000	0	86.8	70	130				
1,1-Dichloroethene (DCE)		1.66	0.00547	2.000	0	83.1	70	130				
Methylene chloride		1.73	3.00	2.000	0	86.5	70	130				
1,1-Dichloroethane		1.80	0.00600	2.000	0	89.9	70	130				
cis-1,2-Dichloroethene		1.75	0.0245	2.000	0	87.4	70	130				
(MEK) 2-Butanone		1.88	0.287	2.000	0	93.9	70	130				
Chloroform		1.79	0.00192	2.000	0	89.6	70	130				
1,2-Dichloroethane		1.78	0.00285	2.000	0	89.1	70	130				
Benzene		1.81	0.0302	2.000	0	90.6	70	130				
Toluene		1.81	0.0358	2.000	0	90.5	70	130				
Tetrachloroethene (PCE)		1.86	0.0111	2.000	0	93.1	70	130				
Chlorobenzene		1.84	0.0125	2.000	0	91.9	70	130				
Ethylbenzene		1.84	0.104	2.000	0	92.0	70	130				
m,p-Xylene		3.95	0.0815	4.000	0	98.8	70	130				
o-Xylene		2.01	0.125	2.000	0	101	70	130				
Styrene		1.69	0.0125	2.000	0	84.3	70	130				
1,1,2,2-Tetrachloroethane		1.84	0.0229	2.000	0	91.8	70	130				
1,3,5-Trimethylbenzene		1.69	0.0537	2.000	0	84.5	70	130				
1,2,4-Trimethylbenzene		1.81	0.208	2.000	0	90.6	70	130				В
1,3-Dichlorobenzene		1.94	0.369	2.000	0	97.2	70	130				
1,4-Dichlorobenzene		2.05	0.481	2.000	0	103	70	130				
1,2-Dichlorobenzene		2.01	0.407	2.000	0	100	70	130				
1,2,4-Trichlorobenzene		2.25	0.425	2.000	0	113	70	130				
Hexachlorobutadiene		1.72	0.0367	2.000	0	86.1	70	130				
CFC-113		1.79	0.0160	2.000	0	89.6	70	130				

Work Order:2109541CLIENT:Herrera EnviroProject:Everett Riverf						Volatile	Organic	QC S Compoun	SUMMAI ds by EP#		-
Sample ID: LCS-R70432	SampType: LCS			Units: ppbv		Prep Dat	e: 10/7/20	21	RunNo: 704	132	
Client ID: LCSW	Batch ID: R70432					Analysis Dat	e: 10/7/20	21	SeqNo: 142	29077	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	4.18		4.000		105	70	130				
Sample ID: LCSD-70432	SampType: LCSD			Units: ppbv		Prep Dat	e: 10/7/20	21	RunNo: 70 4	132	
Client ID: LCSW02	Batch ID: R70432					Analysis Dat	e: 10/7/20	21	SeqNo: 142	29078	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.80	0.0125	2.000	0	89.8	70	130	1.705	5.21	25	
Chloromethane	1.79	0.00525	2.000	0	89.5	70	130	1.715	4.29	25	
Dichlorotetrafluoroethane (CFC-114)	1.81	0.0115	2.000	0	90.4	70	130	1.769	2.13	25	
Vinyl chloride	1.71	0.0774	2.000	0	85.6	70	130	1.600	6.77	25	
Trichlorofluoromethane (CFC-11)	1.83	0.00919	2.000	0	91.3	70	130	1.829	0.212	25	
Chloroethane	1.74	0.0906	2.000	0	86.9	70	130	1.735	0.116	25	
1,1-Dichloroethene (DCE)	1.73	0.00547	2.000	0	86.6	70	130	1.661	4.19	25	
Methylene chloride	1.80	3.00	2.000	0	90.2	70	130	0		25	
1,1-Dichloroethane	1.85	0.00600	2.000	0	92.7	70	130	1.799	3.03	25	
cis-1,2-Dichloroethene	1.82	0.0245	2.000	0	90.9	70	130	1.749	3.85	25	
(MEK) 2-Butanone	1.84	0.287	2.000	0	92.2	70	130	1.878	1.86	25	
Chloroform	1.81	0.00192	2.000	0	90.3	70	130	1.793	0.772	25	
1,2-Dichloroethane	1.81	0.00285	2.000	0	90.5	70	130	1.783	1.52	25	
Benzene	1.85	0.0302	2.000	0	92.5	70	130	1.812	2.08	25	
Toluene	1.77	0.0358	2.000	0	88.5	70	130	1.811	2.25	25	
Tetrachloroethene (PCE)	1.79	0.0111	2.000	0	89.4	70	130	1.862	4.06	25	
Chlorobenzene	1.82	0.0125	2.000	0	91.2	70	130	1.839	0.749	25	
Ethylbenzene	1.84	0.104	2.000	0	92.2	70	130	1.841	0.133	25	
m,p-Xylene	3.91	0.0815	4.000	0	97.9	70	130	3.953	0.997	25	
o-Xylene	1.98	0.125	2.000	0	98.9	70	130	2.014	1.80	25	
Styrene	1.65	0.0125	2.000	0	82.5	70	130	1.686	2.07	25	
1,1,2,2-Tetrachloroethane	1.79	0.0229	2.000	0	89.7	70	130	1.836	2.24	25	
1,3,5-Trimethylbenzene	1.70	0.0537	2.000	0	85.1	70	130	1.690	0.675	25	
1,2,4-Trimethylbenzene	1.69	0.208	2.000	0	84.5	70	130	1.812	6.95	25	В

Project:

CLIENT: Herrera Environmental

QC SUMMARY REPORT

Everett Riverfront

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCSD-70432 Client ID: LCSW02	SampType: LCSD Batch ID: R70432			Units: ppbv	bv Prep Date: 10/7/2021 Analysis Date: 10/7/2021				RunNo: 70432 SegNo: 1429078		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichlorobenzene	1.80	0.369	2.000	0	90.2	70	130	1.945	7.54	25	
1,4-Dichlorobenzene	1.96	0.481	2.000	0	97.8	70	130	2.053	4.87	25	
1,2-Dichlorobenzene	1.93	0.407	2.000	0	96.3	70	130	2.009	4.18	25	
1,2,4-Trichlorobenzene	1.92	0.425	2.000	0	96.2	70	130	2.255	15.9	25	
Hexachlorobutadiene	1.54	0.0367	2.000	0	77.1	70	130	1.723	11.1	25	
CFC-113	1.85	0.0160	2.000	0	92.5	70	130	1.791	3.27	25	
Surr: 4-Bromofluorobenzene	4.20		4.000		105	70	130		0		

Sample ID: MB-R70432	SampType	BLK			Units: ppbv		Prep Dat	te: 10/7/2	021	RunNo: 70 4	132	
Client ID: MBLKW	Batch ID:	R70432					Analysis Dat	te: 10/7/2	021	SeqNo: 142	29079	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		ND	0.0125									
Chloromethane		ND	0.00525									
Dichlorotetrafluoroethane (CFC-114)		ND	0.0115									
Vinyl chloride		ND	0.0774									
Trichlorofluoromethane (CFC-11)		ND	0.00919									
Chloroethane		ND	0.0906									
1,1-Dichloroethene (DCE)		ND	0.00547									
Methylene chloride		ND	3.00									
1,1-Dichloroethane		ND	0.00600									
cis-1,2-Dichloroethene		ND	0.0245									
(MEK) 2-Butanone		ND	0.287									
Chloroform		ND	0.00192									
1,2-Dichloroethane		ND	0.00285									
Benzene		ND	0.0302									
Toluene		ND	0.0358									
Tetrachloroethene (PCE)		ND	0.0111									
Chlorobenzene		ND	0.0125									
Ethylbenzene		ND	0.104									

Fremont
Analytical

Project:

Vinyl chloride

Chloroethane

Methylene chloride

1,1-Dichloroethane

(MEK) 2-Butanone

cis-1,2-Dichloroethene

Trichlorofluoromethane (CFC-11)

1,1-Dichloroethene (DCE)

CLIENT: Herrera Environmental

Everett Riverfront

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method TO-15

0

0

0

0

0

0

0

0.6226

7.69

7.97

1.096

Sample ID: MB-R70432	SampType	: MBLK			Units: ppbv		Prep Da	te: 10/7/20)21	RunNo: 70 4	32	
Client ID: MBLKW	Batch ID:	R70432					Analysis Da	te: 10/7/20)21	SeqNo: 142	29079	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene		ND	0.0815									
o-Xylene		ND	0.125									
Styrene		ND	0.0125									
1,1,2,2-Tetrachloroethane		ND	0.0229									
1,3,5-Trimethylbenzene		ND	0.0537									
1,2,4-Trimethylbenzene		0.308	0.208									
1,3-Dichlorobenzene		ND	0.369									
1,4-Dichlorobenzene		ND	0.481									
1,2-Dichlorobenzene		ND	0.407									
1,2,4-Trichlorobenzene		ND	0.425									
Hexachlorobutadiene		ND	0.0367									
CFC-113		ND	0.0160									
Surr: 4-Bromofluorobenzene		3.29		4.000		82.2	70	130				
Sample ID: 2109541-002AREP	SampType	: REP			Units: ppbv		Prep Da	te: 10/7/20)21	RunNo: 704	132	
Client ID: South Blower	Batch ID:	R70432					Analysis Da	te: 10/7/20)21	SeqNo: 142	29082	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		3.59	0.125						4.150	14.5	25	I
Chloromethane		ND	0.0525						0		25	I
Dichlorotetrafluoroethane (CFC-114)		10.7	0.115						10.67	0.400	25	I

ND

1.01

ND

ND

ND

ND

ND

ND

0.774

0.0919

0.906

0.0547

0.0600

0.245

2.87

0.0192

30.0

25

25

25

25

25

25

25

25

25

Project:

CLIENT: Herrera Environmental

QC SUMMARY REPORT

Everett Riverfront

Volatile Organic Compounds by EPA Method TO-15

Sample ID: 2109541-002AREP	SampType	REP			Units: ppbv		Prep Da	te: 10/7/2	021	RunNo: 70 4	432	
Client ID: South Blower	Batch ID:	R70432					Analysis Da	ite: 10/7/2	021	SeqNo: 142	29082	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane		ND	0.0285						0		25	I
Benzene		1.10	0.302						1.158	5.16	25	I
Toluene		0.667	0.358						0.7064	5.71	25	I
Tetrachloroethene (PCE)		ND	0.111						0		25	I
Chlorobenzene		1.90	0.125						1.797	5.70	25	I
Ethylbenzene		ND	1.04						0		25	I
m,p-Xylene		ND	0.815						0		25	I
o-Xylene		ND	1.25						0		25	I
Styrene		ND	0.125						0		25	I
1,1,2,2-Tetrachloroethane		ND	0.229						0		25	I
1,3,5-Trimethylbenzene		ND	0.537						0		25	I
1,2,4-Trimethylbenzene		3.23	2.08						3.200	0.893	25	I
1,3-Dichlorobenzene		ND	3.69						0		25	I
1,4-Dichlorobenzene		ND	4.81						0		25	I
1,2-Dichlorobenzene		ND	4.07						0		25	I
1,2,4-Trichlorobenzene		ND	4.25						0		25	I
Hexachlorobutadiene		ND	0.367						0		25	I.
CFC-113		ND	0.160						0		25	I.
Surr: 4-Bromofluorobenzene		38.3		40.00		95.7	70	130		0		I.
NOTES:												

R - High RPD observed.

I - Internal standards were outside of acceptance criteria. Re-analysis and/or matrix spike samples yielded the same result indicating a possible matrix effect.

Sample Log-In Check List

С	lient Name:	HERRE	Work Order Numb	ber: 2109541	
Lo	ogged by:	Gabrielle Coeuille	Date Received:	9/30/2021	4:14:54 PM
<u>Cha</u>	ain of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	<u>i In</u>				
-	Coolers are p	present?	Yes	No 🖌	NA 🗌
0.			Air samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present 🗹
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🔽
7.	Were all item	is received at a temperature of >2°C to 6°C *	Yes 🗌	No 🗌	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🔽	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserv	ative added to bottles?	Yes	No 🔽	NA 🗌
12.	Is there head	lspace in the VOA vials?	Yes	No 🗌	NA 🔽
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ling times able to be met?	Yes	No 🗹	
Spe	cial Handl	ing (if applicable)			
		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date:			
	By Who	via:	eMail Ph	one 🗌 Fax [In Person
	Regardi	ng:			
	Client Ir	nstructions:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

5	Date/Time	Print Náme					(nature)	Received (Signature)		Date/Time		o	Print Name			ture)	Relinquished (Signature) ×
8/3~1211614	our 9/3-	Murch Lo	C				(nature)	Received (Signature)	tion pr	1/30/21 4:00 pm		n Sherr	CANNY YN STRANGY		Brature Hoimor		elinquished (Signature)
specify	2 Day	represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the room and backlide of this Agreement.	h of the Id	t to eac	reemen	hent's ag	erified (e, that I have v	named above	of the Client 1	ical on behalf	mont Analy	ent with Free	to this Agreen	orized to enter in t.	am autho	l represent that I am author backside of this Agreement.
Same Day	3 Day	52 >	An-1450	Þ	fr	Travith	TYP	Tuble	SEE	comments	Other, specify in comments	X ot	PCE & Breakdown	PCE &	BTEXN & APH		*** Select one:
		BeB	TB = Tedlar Bag		t Tube	S = Sorbent Tube		der F = Filter	essure Cylini	CYL = High Pressure Cylinder	1L = 1L Canister		6L = 6L Canister	- 1	BV = 1 Liter Bottle Vac		** Container Codes:
Next Day	Turn-Around Time:			= Digester	D = D	dfill	L = Landfill	SVE = SVE		S = Subslab / Soil Gas		IA = Indoor Air	oor Air	OA = Outdoor Air	AA = Ambient Air		 Matrix Codes:
				-		2.110	tin Press	(m)	Organity of	Date				Eldw Man			
						ALC N	9 (1)	- 12	Press	The second				Elow Red			
				-			10			0.00				Curretu	1		
				-		100	1000	Ten	Elinada					Tilswikeg.		2	
														Canada	r		
	provided To eval							1:52Am	3	ate ate		2	Г	Capaba Vice Rhp.		ber	Blowler
-	SER TELL			-			E	9/26		9/20				11019			N
- 64 -	SEE Table (vided						-5	9/30 705005	05-	-5/20	g:16a	ž	~	4692		rthe Blower	-HJON
Final Pressure ("Hg)	Comments	Helium 3C Mod VOCs 8260 GX/BTEX 8260	Sulfur TO15 Major Gases 3C	APH T015 Siloxanes T015	Select VOCs TO15 ***	Full list VOCs TO15	Field Final Sample Pressure (" Hg)	Sample End Date & Time	Field Initial Sample Pressure (" Hg)	Sample Start Date & Time	Expected Fill Time / Flow Rate	Container Type **	Sample Type (Matrix) *	Canister / Flow Reg Sample Type Serial # (Matrix)*	Ç.	Sample Name	Sam
Internol		CSACINAL CHARTENE	Analysis	CSAG	-	Com	An frence	Email (PM): + WG, 94+ @ hur comint. Com	weight	email (PM):							Fax:
Hold (fees may apply)	OK to Dispose	otherwise requested.	oth			4	WVSJAT	N L	1 TYS	Reports to (PM): TYSON	-		00	441 - 90 80		206	Telephone:
itted to client unless	Air samples are disposed of one week after report is submitted to client unless	samples are disposed of o	Air			r	STEINER		Camryn	Collected by:	6		78121	E	ſ	Sint	City, State, Zip:
				1.000					Front	Location: F	4			Ave	Sixtu	8	Address: 72.00
							-	19-07136-001	19-07	Project No:	10					വ്	_{client:} Herrera
		Special Remarks:	S			T	RivefronT	1	Euro	Project Name:	Fax: 206-352-7178	Fax: 20	cal	Analytical	A	A	
e e	* 2wasa	Laboratory Project No (Internal)	1	of:		Page:	70	2021	8	Date: Scot	3600 Fremont Ave N. Seattle, WA 98103 Tel: 206-352-3790	3600 Fren Seattle, Tel: 20	2	DO	remo	-	J
reement	Laboratory Services Agreement	Laboratory	20	cor	Re	tody	Cust	Air Chain of Custody Record	Vir Ch.	Þ					1		VIEW MENTEN

COC Air 1.6 - 2.15.21