INTERIM ACTION REPORT

Snopac Property
Seattle, Washington
Ecology Facility Site ID#1523145
Ecology Cleanup Site ID#12463

Prepared for: 5055 Properties LLC

Project No. 150054 • September 16, 2021 • FINAL

INTERIM ACTION REPORT

Snopac Property Seattle, Washington Ecology Facility Site ID#1523145 Ecology Cleanup Site ID#12463

Prepared for: 5055 Properties LLC

Project No. 150054 • September 16, 2021 • FINAL

Aspect Consulting, LLC

Adam Griffin, PE
Associate Engineer
agriffin@aspectconsulting.com

Steve Germiat, LHGPrincipal Hydrogeologist
sgermiat@aspectconsulting.com

Breeyn Greer, PE
Project Engineer
bgreer@aspectconsulting.com

V:\150054 Snopac-Manson\Deliverables\2021 08_Interim Action Report\FINAL\Interim Action Report_ Final.docx

Contents

A	crony	/ms	iv
1	Int	roduction	1
	1.1	Site Description	1
	1.2	Interim Action Work Plan	2
	1.3	Implementation and Responsibilities	2
2	So	il Remediation Levels	4
	2.1	Adjustments to Soil Remediation Levels	4
	2	2.1.1 Empirical Demonstration for Carcinogenic Polycyclic Aromatic	
	0	Hydrocarbons and Naphthalene	
		2.1.2 Other Remediation Level Adjustments	
3	Inte	erim Action Activities Completed	8
	3.1	Site Preparation	
	3	B.1.1 Monitoring Well Decommissioning	8
	-	3.1.2 Building Demolition	
	-	3.1.3 Sheet Pile Shoring Wall Installation	
	_	3.1.4 Temporary Erosion and Sedimentation Controls	
	_	5	
	3.2		
	_	3.2.1 Field Oversight and Sampling Methods	
	3.3	Temporary Dewatering and Water Management	
	3.4	Offsite Disposal of Contaminated Soil	
	3.5	Excavation Backfill	
	3.6	Engineering Controls	
4	So	il Compliance	14
5	Gro	oundwater Confirmation Monitoring	15
	5.1	Initial Groundwater Monitoring Event Results	
6	Co	onclusions	17
Re	eferer	nces	19
Li	mitati	ions	20
		IVII3	2 U

List of Tables

- 1 Soil Remediation Levels
- 2A Analytical Results for In-Place Vadose Soil (Final Verification Samples)
- 2B Analytical Results for Over-Excavated Vadose Soil (Removed from Site)
- 3A Analytical Results for In-Place Saturated Soil (Final Verification Samples)
- 3B Analytical Results for Over-Excavated Saturated Soil (Removed from Site)
- 4 Statistical Compliance Summary for In-Place Soil
- 5 Monitoring Well Construction and Water Level Data
- 6 Analytical Results for Groundwater Compliance Monitoring
- 7 Select Groundwater Analytical Results Pre- and Post- IA

List of Figures

- 1 Vicinity Map
- 2 Completed Interim Action and Sample Locations
- 3 Cross Section A-A' Completed Interim Action and Sample Locations
- 4 Cross Sections B-B' to E-E' Completed Interim Action and Sample Locations
- 5 Monitoring Well Locations

List of Appendices

- A Reference Remedial Investigation Tables and Figures
- B King County Industrial Waste Program Issuance of Wastewater Discharge Authorization No. 1092-01
- C Seattle Department of Construction and Inspections Construction Permit 669742-CN
- D Seattle Department of Construction and Inspections Construction Permit 669742-CN Plans
- E Well Decommissioning Logs
- F Construction Photos
- G Data Validation Report and 2a Standard Operating Procedure
- H Laboratory Analytical Reports
- I Dewatering Discharge Self-Monitoring Reports

- J Republic Soil Disposal Tracking
- K Material Specifications and Import Clean Certification
- L ProUCL Outputs for Statistical Compliance Summary
- M Monitoring Well Installation Boring Logs

Acronyms

AASHTO American Association of State Highway and

Transportation Officials

AO Agreed Order

Aspect Consulting, LLC

City of Seattle

COC contaminant of concern

cPAH carcinogenic polycyclic aromatic hydrocarbon

Ecology Washington State Department of Ecology

FS feasibility study

gpm gallons per minute

GPS global positioning system

Grady Grady Excavating Inc.

IA interim action

IAWP Interim Action Work Plan

KCIW King County Industrial Waste

LDW Lower Duwamish Waterway

mg/kg milligrams/kilograms

μg/L micrograms per liter

MTCA Model Toxics Control Act

NAVD88 North American Vertical Datum 1988

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PCP pentachlorophenol

PCUL Preliminary Cleanup Level

PQL practical quantification limit

RAL remedial action levels

RI remedial investigation

Roosevelt Regional Municipal Solid Waste Landfill

ASPECT CONSULTING

ROD Record of Decision

SBG sand blast grit

TEF toxicity equivalency factors

TEQ toxic equivalent concentration

TESC temporary erosion and sedimentation control

TPH total petroleum hydrocarbons

UCL upper confidence limit

WAC Washington Administrative Code

WSDOT Washington State Department of Transportation

1 Introduction

Aspect Consulting, LLC (Aspect) has prepared this Final Interim Action Report (Report), on behalf of 5055 Properties LLC, to document and report completion of the uplands interim action (IA) conducted at the Snopac Site (Site). The Site is generally located at 5055 and 5053 East Marginal Way South in Seattle, Washington (Property), and borders the eastern portion of Slip 1 of the Lower Duwamish Waterway (LDW; Figure 1). The Site, as defined by Washington State's Model Toxics Control Act (MTCA), includes all upland and in-water areas impacted by historical releases of hazardous substances from the Property. The boundary between the upland and in-water areas of the Site is the mean higher high water (MHHW) level.

In 2019, 5055 Properties LLC entered Agreed Order No. DE16300 (AO) with the Washington State Department of Ecology (Ecology). The AO required 5055 Properties LLC to complete a Site Remedial Investigation (RI; Aspect, 2020b), separate feasibility study (FS) documents for the Site uplands and for in-water sediments, and a draft Cleanup Plan (dCAP) for the uplands. The AO also required the conduct of an IA that was approved by Ecology in the Final Interim Action Work Plan (IAWP; Aspect, 2020a).

The completed IA achieved the IAWP objectives for the Site uplands inland of the sheet pile wall: removal of all sand blast grit-containing (SBG) fill and achievement of soil remediation levels at the excavation limits. This Report completes the IAWP implementation and presents the IA soil compliance results. The final cleanup action for the Site uplands will be selected in the Uplands FS Report and Uplands dCAP.

This Report completes the AO requirements for the IA.

1.1 Site Description

The 1.33-acre Property has supported various industrial uses since the 1920s. Fill materials, composed of both soil and anthropogenic debris, including spent SBG, railroad ties, coal fragments, glass shards, concrete, and brick or masonry fragments, were placed landward of a former retaining wall to bring the area to current grade.

Site groundwater, groundwater seeps, soil, and Slip 1 sediments have been impacted by historical releases of hazardous substances from the Site. Public (Ecology 2014a and 2014b) and private Site investigation has been ongoing since 2004, which culminated in the AO finalized in 2019.

Ground surface elevation in the IA area is approximately elevation 16 feet NAVD88. The hydrostratigraphic units at the Site are:

-

¹ North American Vertical Datum of 1988. All elevations referenced in this Report hereafter are relative to that vertical datum.

- **Fill Unit** a heterogeneous mix of gravelly sand, silt, and silty sand (to approximate elevation 4 feet)
- Estuarine Unit a very soft/loose organic silt and clay, with shells, abundant organic (wood) debris, and a sulfur-like odor (to approximate elevation 0 feet)
- Alluvium Unit interbedded very loose to medium dense sand, sandy to very sandy silt, and very soft to stiff low-plasticity clay and silt (to approximate elevation -143 feet, significantly below the bottom of the IA work)

The Fill Unit is a water table (unconfined), water-bearing unit that is tidally influenced by the LDW. Based on tidal study work conducted in 2017 and 2018, the tidally influenced water level elevations in the Fill Unit range from about 3 to 9 feet (Aspect, 2020b). The Estuarine Unit functions as an aquitard, restricting groundwater flow between the Fill Unit and underlying Alluvium Unit.

A confined aquifer is present in the Alluvium Unit beneath the Estuarine Unit aquitard. The confined Alluvium Unit is also tidally influenced with water level elevations ranging from 4 to 7.5 feet based on the 2017 and 2018 tidal study work (Aspect, 2020b). For a more thorough review of site description and investigation summary, see the RI and IAWP (Aspect, 2020b and 2020a, respectively).

1.2 Interim Action Work Plan

The SBG-containing fill is the source of contaminants to upland groundwater discharging to the sediments and surface waters of the LDW. Therefore, the removal of the SBG-containing fill was planned as an IA in accordance with the purpose of an "Interim Action" defined in MTCA (Washington Administrative Code [WAC] 173-340-430 (1)). The IA permanently removes sources of contamination to groundwater and the LDW and will not conflict with reasonable alternatives for the final cleanup action as required by MTCA (WAC 173-340-430[3][b]). The construction of a sheet pile shoring wall (shoring wall) along the upland shoreline was required to complete the IA remedial excavation immediately inland of it. The plan for conduct of the IA was approved by Ecology in the Final IAWP (Aspect, 2020a).

The cleanup objectives identified in the Final IAWP were to remove SBG-containing fill and achieve the soil remediation levels at the excavation limits.

1.3 Implementation and Responsibilities

The IA was a component of construction permitted by the City of Seattle (City) Construction Permit 66942-CN (construction permit) issued on May 26, 2020 (included in Appendix C). The construction permit included building demolition, shoring (sheet pile) installation, contaminated soil excavation, temporary dewatering, and ground improvements (to be completed after IA). Construction permit plans relevant to IA completion are included in Appendix D. The construction sequence of IAWP implementation consisted of:

1. **Monitoring Well Decommissioning** was required to complete the IA. Decommissioning of wells within the planned IA construction footprint occurred on August 11, 2020.

- 2. **Shoring Wall Construction** was necessary to conduct the IA and stabilize the shoreface at the Property. The shoring wall was installed between August 31, 2020, and September 15, 2020.
- 3. **Building Demolition** was required to conduct the IA. Demolition of the Property's existing warehouse structure occurred November 9 through 13, 2020.
- 4. **Side Sewer Connection** was required for temporary dewatering discharges necessary to conduct the IA. Side sewer connection from the Property to the King County combined sewer system occurred on December 16 and 17, 2020.
- 5. **Excavation and off-Site Disposal** of all SBG-containing fill from the Site uplands inland (east) of the shoring wall. Excavation activities occurred from December 28, 2020, to January 22, 2021.
- 6. **Temporary Dewatering** and work conduct at low tides was required to remove SBG-containing fill below the water table (saturated zone). Temporary dewatering occurred only during saturated-zone excavation, January 11 through 14, 2021.
- 7. **Backfill** of final excavation extents to restore original grade. Backfill occurred between January 11 and 22, 2021.
- 8. **Engineering Controls** of interim fencing and signage to restrict human access and use of the shoreface and tidelands was implemented in August 2021.

Implementation of the Final IAWP consisted of the following parties and responsibilities:

- **City of Seattle.** The City issued their construction permit after receipt of the Ecology-approved Final IAWP.
- **King County Industrial Waste (KCIW).** KCIW issued the Wastewater Discharge Authorization No. 1092-01 (discharge authorization) permitting discharge of temporary dewatering to public treatment works (Appendix B).
- Environmental Engineer. Aspect prepared the Final IAWP (Aspect, 2020a) and oversaw the IAWP implementation as 5055 Properties LLC's representative.
- **Geotechnical Engineer.** GeoEngineers, Inc. was the geotechnical engineer of record for the City construction permit.
- Excavation Contractor. Grady Excavating Inc. (Grady) was the earthwork contractors responsible for temporary dewatering and excavation, transport, and handling of contaminated soils, and excavation backfill. Grady ensured conformance with conditions of the construction permit and discharge authorization. Grady was contracted by 5055 Properties LLC.
- **Demolition Contractor.** Rhine Demolition, LLC, was contracted by 5055 Properties LLC to complete building demolition.
- Temporary Dewatering Plan and Preparation. O'Neill Service Group, LLC, was contracted by 5055 Properties LLC to develop the temporary dewatering plan required by the City construction permit. KLB Construction Inc. was contracted

by 5055 Properties LLC to construct the permanent side sewer connection necessary for temporary dewatering.

• **Disposal Facility.** All contaminated soil removed during the IA was transported to Republic Services' 3rd and Lander facility for rail transport to and disposal at the Republic Services Roosevelt Regional Municipal Solid Waste Landfill (Roosevelt) in Roosevelt, Washington.

2 Soil Remediation Levels

The Final IAWP defined performance monitoring analytes for all areas of IA excavation as follows (Aspect, 2020a):

- Metals (arsenic, copper, lead, mercury, and zinc)
- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)

In addition, the following analytes for performance monitoring in selected areas of the IA excavation were:

- Total petroleum hydrocarbons (TPH) as gasoline-, diesel-, and oil-range organics in the area around MW-2
- Pentachlorophenol (PCP) in the area around MW-11 (Figure 5 shows the locations of the Site monitoring wells)

The soil remediation levels in the Final IAWP were selected as the most stringent Preliminary Cleanup Levels (PCULs) established in the 2019 LDW *Preliminary Cleanup Level Workbook and Supplemental Information* (Ecology, 2019) and the generic direct contact cleanup level for combined TPH (Ecology, 2017). The IAWP remediation levels are presented in Table 1.

2.1 Adjustments to Soil Remediation Levels

During the IA, Ecology agreed to adjust soil remediation levels for two performance monitoring analytes—carcinogenic polycyclic aromatic hydrocarbons (cPAHs)² and naphthalene—based on empirical demonstration of soil concentrations protective of groundwater in accordance with MTCA. In addition, remediation levels are updated based on recent updates to Ecology's PCUL workbook (Ecology, 2020) and laboratory practical quantification limits (PQLs). Adjusted remediation levels used for determining IA soil compliance are described in the following subsections and are presented in Table 1.

_

² Total toxic equivalent concentration (TEQ) of benzo(a)pyrene calculated in accordance with WAC 173-340-708(8)(e). Hereafter, all references to cPAH concentrations are total cPAH TEQ concentrations.

2.1.1 Empirical Demonstration for Carcinogenic Polycyclic Aromatic Hydrocarbons and Naphthalene

The IAWP soil remediation levels for cPAH and naphthalene are the LDW PCULs, based on predicted leaching to groundwater discharging to LDW sediment and surface water. The MTCA fixed-parameter three-phase partitioning model (WAC 173-340-747(4)) used to calculate those leaching-based soil screening levels is simplistic and highly conservative in terms of predicting contaminant leaching from soil to groundwater and intentionally ignores contaminant attenuation mechanisms in groundwater from the soil location to the marine receptors considered in the groundwater PCULs. Assuming a sufficiently robust data set of collocated soil and groundwater samples, the empirical upland groundwater data are a more reliable determination of whether contaminant leaching from soil is occurring at concentrations of concern, and thus whether the soil concentrations are protective of groundwater—measurements outweigh modeling.

The uplands soil and groundwater results presented in the RI (Aspect, 2020b) are the basis of the empirical demonstrations to update remediation levels for cPAH and naphthalene. The RI Report data excerpts used in the evaluation are included in Appendix A for reference.

Under MTCA, contaminant concentrations in soil can be demonstrated empirically to be protective of groundwater via leaching if there are reliable groundwater data demonstrating no exceedances of groundwater cleanup levels (WAC 173-340-747(9)). The MTCA requirements for making that empirical demonstration are that a sufficient length of time has elapsed for contaminant migration to have occurred, and that the current site characteristics are representative of future site conditions (WAC 173-340-747(9)(b)). As of 2004, high concentrations of contaminants (particularly arsenic) had migrated from the SBG-containing fill into upland groundwater and then to the intertidal Seep 76 (Figure 5), which is 13 to 15 years prior to collection of the Site groundwater monitoring data. Sufficient time has likely elapsed to observe contaminant migration into uplands groundwater based on the following considerations:

- Groundwater is shallow.
- The distance from contaminated soil to shoreline seeps is short.
- The data considered for evaluation of empirical demonstrations were obtained from collocated soil and groundwater samples or soil samples located close to and upgradient of groundwater samples.

The pre-IA Site conditions represented by the RI groundwater data represent worst-case conditions relative to future Site conditions, which include full removal of the SBG-containing fill from the uplands of the Site. Therefore, it is concluded that the MTCA requirements are met to allow using the existing groundwater data to empirically determine contaminant concentrations in soil that are protective of groundwater quality at the Site.

Post-IA confirmation groundwater monitoring will be used to verify the empirical evaluations of soil concentrations (thus soil cleanup levels) protective of groundwater. Additional remedial actions will be evaluated if groundwater concentrations do not meet

the groundwater cleanup levels for cPAH toxic equivalent concentration (TEQ) and naphthalene within 12 months after the conclusion of the IA.

2.1.1.1 Carcinogenic Polycyclic Aromatic Hydrocarbons

There is no known source of cPAHs at the Site outside the footprint of the SBG-containing fill removed during the IA. Low-level soil cPAH concentrations in upland Site soils are known to be ubiquitous in urban soils (e.g., vehicle emissions, combustion, etc.).

The cPAH remediation level in the Final IAWP was the most-stringent PCUL of 0.00031 milligrams per kilogram (mg/kg) in vadose soils and 0.000016 mg/kg in saturated soils. These PCULs are based on leaching to groundwater for LDW surface water protection and are one to two orders of magnitude less than the 0.003 mg/kg analytical PQL for cPAH.³

In a January 12, 2021, memorandum, Aspect proposed an adjusted soil remediation level for cPAHs based on Site soil and groundwater quality data (Aspect, 2021a). Based on Ecology's review of the data, they approved an adjusted cPAH soil remediation level of 0.074 mg/kg as protective of groundwater. The adjusted remediation level is less than the cPAH PCUL based on unrestricted child direct contact with soil of 0.19 mg/kg. Therefore, an adjusted soil remediation level for cPAH of 0.074 mg/kg is expected to be protective of all exposure pathways, and is used for evaluating vadose and saturated soil compliance for the IA.

2.1.1.2 Naphthalene

Naphthalene is identified as a sediment contaminant of concern (COC) for ecological benthic receptors in the LDW Record of Decision (ROD) based on 2 of 882 (0.23 percent of) samples of LDW sediment exceeding the state Sediment Management Standards sediment cleanup objective. No naphthalene exceedances of ROD remedial action levels (RAL) were detected in the Site sediment samples; therefore, naphthalene is not a COC for Site sediment (Aspect, 2020b).

The uplands RI groundwater results indicate naphthalene exceeded the most-stringent, $PCUL^4$ of 1.4 micrograms per liter (µg/L) in only 1 of 24 groundwater samples. There were no naphthalene exceedances detected in the six samples of seeps discharging to the LDW (Aspect, 2020b). The single groundwater exceedance occurred at MW-2 screened within the SBG-containing fill; the other MW-2 groundwater analytical result was less than the PCUL. The one groundwater exceedance at MW-2 exceeds the surface water aquatic-life PCUL, but is:

- Protective of LDW sediment (groundwater PCUL of 90 μg/L)
- Protective of human health for fish consumption⁵

_

³ The analytical reporting limits for individual cPAHs is 0.002 mg/kg; the PQL for total cPAH TEQ includes application of toxicity equivalency factors (TEFs) and summation of the individual cPAH reporting limits.

⁴ The most stringent PCUL based on groundwater discharge to surface water is a literature value based on protection of aquatic life. There is no promulgated standard for naphthalene based on aquatic life. ⁵ The only promulgated surface water standard for naphthalene is the MTCA surface water cleanup level of 1,370 μg/L based on humans eating fish.

The IAWP soil remediation levels for naphthalene in the Final IAWP—0.039 mg/kg in vadose soils and 0.0021 mg/kg in saturated soils—are predicted (modeled) values that the empirical groundwater data demonstrate to be conservative with respect to naphthalene migration to the LDW. The Site sediment naphthalene data in the RI Report empirically demonstrate that the Site uplands soils were protective of LDW sediment before the IA started. The naphthalene data from Site seeps indicate that groundwater discharge, and thus uplands groundwater and associated soils, are also protective of discharge to LDW surface water for all receptors.

In a January 21, 2021, memorandum, Aspect proposed an adjusted naphthalene soil remediation level for the IA that was protective of groundwater-to-surface water aquatic life pathway, and all other exposure pathways (Aspect, 2021b). Based on Ecology's review of the data, they approved an adjusted naphthalene soil remediation level of 0.056 mg/kg as protective of groundwater.

The adjusted remediation level for naphthalene is less than the 1,600 mg/kg PCUL based on unrestricted child direct contact with soil. Therefore, an adjusted soil remediation level for naphthalene of 0.056 mg/kg is protective of all exposure pathways, and is used for evaluating vadose and saturated soil compliance for the IA.

2.1.2 Other Remediation Level Adjustments

The most-stringent PCUL for 1-methylnaphthalene is 34 mg/kg based on the updated September 2020 LDW *Preliminary Cleanup Level Workbook and Supplemental Information* (Ecology, 2020). Therefore, the remediation level is adjusted to 34 mg/kg from the 29 mg/kg in the Final IAWP, which was based on an older preliminary cleanup level.

The most-stringent PCUL for arsenic in Ecology (2020) is 7.3 mg/kg. Therefore, the remediation level is adjusted to 7.3 mg/kg from the 7 mg/kg in the Final IAWP.

Soil samples were collected in the one location that PCP was detected in groundwater in accordance with IAWP. An analytical reporting limit of 0.05 mg/kg is achievable for PCP in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level for PCP is established at this PQL.

An analytical reporting limit of 0.002 mg/kg is achievable for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level for total PCBs is established at this PQL.

All remediation level adjustments are presented in Table 1; the adjusted remediation levels are applied as the remediation levels in the remainder of this Report and are used for evaluating IA soil compliance.

3 Interim Action Activities Completed

The IA was conducted in accordance with the Ecology-approved Final IAWP. Section 1.3 presents the IA implementation responsibilities and timeline. The implementation activities are detailed further in the following subsections.

3.1 Site Preparation

Site preparation consisted of monitoring well decommissioning, building demolition, shoring wall installation, and temporary erosion and sedimentation control (TESC) installation.

3.1.1 Monitoring Well Decommissioning

Prior to IA earthwork activities, nine groundwater monitoring wells at the Site were decommissioned in accordance with WAC 173-160-460. Holt Services Inc., a Washington State-licensed driller completed the decommissioning. Wells MW-1R, MW-2, MW-3R, MW-4R, MW-5, MW-6, MW-7, MW-10, and MW-11 (as shown on Plan Sheet 2, Appendix D) were decommissioned by filling the casing from bottom to land surface with bentonite. Holt Services, Inc., was responsible for filing the well decommissioning records with Ecology. Holt's well decommissioning logs are provided in Appendix E.

3.1.2 Building Demolition

The building at the Site was demolished by Rhine Demolition LLC under the City construction permit. Abatement of regulated building materials occurred prior to demolition. The building and its foundation elements were removed to the underlying fill soils. No evidence of contamination was apparent on the ground surface within the structure footprint following its demolition.

3.1.3 Sheet Pile Shoring Wall Installation

Fifty-one interlocking sheets were advanced to elevation -28 feet (depth of approximately 45 feet) to create the western boundary of the IA excavation. The sheet pile shoring wall extends approximately 285 linear feet from the northern to southern property line (see Figure 2). The sheets were installed with a track-mount M-80 crane with an APE 150 vibratory hammer. During installation, obstructions such as vertical wood pilings, were frequently encountered and removed via vibratory extraction as necessary to advance sheets.

3.1.4 Temporary Erosion and Sedimentation Controls

Prior to excavation, a temporary chain-link fence was installed as the construction permit boundary to control access into the construction site. The fence provided a physical barrier between the excavation and truck loading areas, and the adjacent railroad (Union Pacific) and public roads (East Marginal Way South).

TESC measures for the remedial excavation were implemented by Grady and per the plan sheet C200 included in Appendix D. TESC measures included storm drain inlet protection, spall-stabilized construction entrance, and maintaining internally draining conditions.

3.1.5 Grid Established for Soil Performance Monitoring

A grid system and corresponding grid-based naming convention was established across the IAWP-estimated excavation extents for tracking excavation and performance monitoring activities. The grid was used for identifying sample and Property feature locations, and for tracking and communicating excavation progress and limits. Figure 2 shows the grid system, consisting of roughly 20-foot grid squares—rows A through M in the north-south direction and columns 1 through 5 in the east-west direction. Spatial locations were identified based on the row and column (e.g., A-2, J-1, etc.).

A hand-held Trimble R1 submeter global positioning system (GPS) unit and cameras were used for documenting locations in the field along with Fulcrum, a cloud-based data collection app. This allowed excavation progress, the locations of collected soil samples, and other subsurface features to be accurately tracked and communicated to the project team (along with linked photographs) in real time.

3.2 Soil Removal and Sampling

Grady completed the IA excavation in phases that allowed excavation, dewatering, stockpiling, trucking, and backfill activities to proceed efficiently. The soil excavation and performance monitoring were conducted in three discrete phases:

- 1. Vadose Zone Soil Excavation to IAWP-Estimated Extents. Removal of SBG-contaminated fill to elevation 11.5 feet (above the water table) and to the IAWP-estimated lateral extents occurred the week of December 28, 2020. No dewatering was required during this first phase of excavation. Vadose soil sidewall samples ("SW-" in sample identification) were collected at these initial extents from elevations 11.5 to 14 feet.⁶
- 2. Saturated Zone Soil Excavation. Removal of SBG-contaminated fill below elevation 11.5 feet, including excavation dewatering, was conducted at night during low tides⁷ during the week of January 11, 2021. The excavation extended down to the underlying native soil (Estuarine Unit) to ensure removal of all SBG-contaminated fill. Saturated soil sidewall samples were collected at these extents from elevations of 5 to 9 feet. Saturated soil bottom samples ("B-" in sample identification) were collected from the excavation bottom at elevations ranging from elevations 4 to 6 feet.
- 3. Overexcavation⁸ to Final Extents. Overexcavation of vadose-zone fill with analytical results exceeding remediation levels was conducted along the north and south ends of the IAWP-estimated extents to achieve final lateral excavation extents meeting remediation levels. Following the additional soil removal, final SW samples were taken between elevations 12 and 14 feet during this final phase of excavation.

⁶ Preexcavation surface grade was at elevation approximately 16 feet NAVD88.

⁷ Excavation below elevation 7 feet only occurred at LDW tides less than 1 feet in accordance with the IAWP.

⁸ Overexcavation refers to excavation beyond IAWP-estimated extents based on performance monitoring results above remediation levels, or visual presence of SBG-containing fill.

The IAWP-estimated excavation extents and the completed IA excavation limits (Final Excavation Limits) are shown in plan view on Figure 2, and in cross section on Figures 3 and 4. A progression of IA photos are included in Appendix F.

3.2.1 Field Oversight and Sampling Methods

Aspect monitored excavation activities and was present for field screening and segregation of all excavated materials. Aspect directed Grady to excavate to the IAWP-estimated excavation extents and used field screening and analytical results to direct the overexcavation extents beyond that. Field screening relied on the visual presence of SBG, debris, and organic content and odor (indicated the top of the Estuarine Unit at the excavation bottom). Excavated material was segregated according to the following types:

- Contaminated Soil
- Contaminated Debris¹⁰

All excavated soil was directly loaded for export because the Contaminated Soil had been precharacterized and designated as nondangerous solid waste, as described in the IAWP. Contaminated Debris was segregated during excavation and exported separately as required by Republic Services. The IAWP had designated a third soil segregation category, 'Potentially Clean Soil,' which was unused as no excavated soil was field screened as potentially clean.

When field screening indicated that the Contaminated Soil had been removed, or, IAWP-estimated excavation extents reached, excavation sidewall and bottom verification soils samples were collected for laboratory analysis to confirm compliance with the soil remediation levels. The verification soil sampling was conducted in accordance with the IAWP "Sampling and Analysis Plan for Performance Monitoring" (Appendix A in Aspect, 2020a).

Soil samples were obtained from relatively undisturbed *in situ* soil and handled according to industry-standard, chain-of-custody protocols and couriered to Friedman & Bruya, Inc., in Seattle, Washington a Washington-State-accredited laboratory. Twenty-four-hour analytical turnaround time was required to efficiently guide the excavation efforts, especially for saturated soils excavated in the low-tide windows.

3.2.2 Excavation Extents and Verification Soil Sample Results

This section discusses field observations and verification soil sampling results for each of the three excavation phases. The IAWP-estimated excavation extents, final extents, grid cells, and sample locations can be seen in plan view on Figure 2 and in cross-section views on Figures 3 and 4).

The vadose soil analytical results are tabulated separately from the saturated soil analytical results because there are differences in remediation levels for vadose versus saturated soils for some chemicals. Data for the samples that were collected at the final

_

⁹ Debris, henceforth, refers to comingled fill and anthropogenic material fragments, including metal, glass, brick, concrete, cinder block, cloth, and miscellaneous trash.

¹⁰ Contaminated Debris refers to oversize materials segregated for disposal facility acceptance. This includes nonwood debris, whose largest dimension exceeds 1 foot, and woody debris, whose largest dimension exceeds 6 feet.

excavation limits, representing in-place soil used for soil compliance demonstration, are presented in Tables 2A and 3A. Sample results that exceeded remediation levels and were overexcavated are presented in Tables 2B and 3B—soils represented by those samples were removed from Site.

All data presented in this Report has gone through Aspect's independent data validation level 2a. All analytical data, as qualified during validation, are suitable for their intended purposes. The data validation report is included in Appendix G. Laboratory analytical reports for the verification soil sampling are included in Appendix H.

At the conclusion of the three excavation phases, the final verification analytical results indicate that all SBG-containing fill has been removed from the uplands Site east of the shoring wall, as required by the IAWP. Each phase of excavation is detailed below.

3.2.2.1 Vadose Zone Excavation (Phase 1)

The first phase of excavation was completed in the vadose zone and to elevation 11.5 feet (an average depth of 4 feet bgs) within the IAWP-estimated excavation extents. When the estimated excavation extents were achieved, samples were collected between elevations 11.5 and 14 feet to assess compliance with remediation levels. This first phase of excavation exported 2,568 tons of Contaminated Soil for disposal at the Roosevelt Subtitle D landfill.

At the IAWP-estimated extents, dark gray sand with no visual evidence of SBG was encountered where the former building existed. Verification soil samples that met remediation levels were collected from grid cells A-3, B-3¹¹, E-2¹², F-2, G-2, H-2, and I-3 at or within IAWP-estimated extents (Table 2A).

However, exceedances of remediation levels for one or more analyte(s) were detected in verification samples collected in cells A-1, A-2, C-3, D-3, J/K-2, and L-3 at the IAWP-estimated extents (Table 2B). Of these, SBG-containing fill was observed in cells A-1, J-2, and K-2. Overexcavation of this pure SBG and SBG-contaminated fill was conducted in the final phase of excavation, after saturated zone excavation.

3.2.2.2 Saturated Zone Excavation (Phase 2)

The deeper excavation into the saturated zone was completed in accordance with the IAWP. Temporary dewatering was required for this phase of excavation and is described in Section 3.3. The saturated zone excavation below elevation 7 feet occurred only during time periods when the predicted LDW tide was below elevation 1 foot¹³. Per the IAWP, it was required that only 40 lateral feet of excavation below elevation 7 feet be open at a time to mitigate potential liquefaction (heave) conditions at the excavation bottom. No heave conditions were observed when the Estuarine Unit (native soil) was encountered at the excavation bottom of the first 40-foot section, so the Environmental Engineer

¹¹ SW-B-3-12 met remediation levels for all performance monitoring analytes except for arsenic and was not overexcavated based on statistical compliance evaluation for arsenic.

¹² SW-E-2-12 met remediation levels for all performance monitoring analytes except for arsenic and was later overexcavated and re-sampled just for arsenic.

¹³ LDW tide predictions were based on the National Oceanic and Atmospheric Administration Station No. 9447130 in Seattle, Washington.

approved Grady to open more than 40 feet at a time, subject to excavation bottom stability being maintained. Even with the relaxed requirements, the area of open excavation below elevation 7 feet at any given time was generally limited to 60 feet by placing backfill to elevation 7 feet in completed cells as the excavation progressed.

The Estuarine Unit was identified at the bottom throughout the entire saturated-zone excavation extent. Verification bottom samples were collected from this unit from each 20-foot grid cell at elevations of 4 to 6 feet. The bottom soil sample analytical results confirmed compliance with remediation levels, except for cells J-1 and K-1, which exceeded for selected metals, selected PAHs, and total PCBs (Table 3B). Both cells were overexcavated by removing compacted backfill and an additional 0.5 feet of depth into the Estuarine Unit throughout the cell and resampled. Final bottom verification results from those cells, collected from elevation 4 to 4.5 feet, confirmed compliance with remediation levels (Table 3A).

Sidewall verification samples were taken from each 20-foot grid cell at elevations of 7 to 9 feet. The visual indicator of gray to brown sand without visible SBG was used to estimate the saturated excavation lateral extents for sidewall sample collection. Final verification sidewall samples confirmed compliance with remediation levels for all analytes, all observable SBG was excavated and removed from the Site, and no additional saturated soil overexcavation was required.

The saturated zone excavation produced approximately 2,255 tons of Contaminated Soil.

The IA excavation encountered a high density of treated-wood pilings extending through the native Estuarine Unit and into the underlying Alluvium Unit. These pilings were present throughout the saturated zone excavation and were removed to the approximate bottom of the saturated zone excavation. A significant density of pilings also exists in the shoreface west of the sheet pile wall.

3.2.2.3 Overexcavation to Final Extents (Phase 3)

Overexcavation of vadose zone soil exceeding remediation levels was the final phase of excavation. This entire phase of excavation was beyond the IAWP-estimated extents and was conducted to meet the IAWP objectives.

Overexcavation was conducted to elevation of 12 feet (remaining above the water table) in three distinct areas of the Site uplands: (1) the northern extent to the Property boundary, (2) the north side of the former building footprint, and (3) southeastern extent to the former building footprint and the southern Property boundary (Figure 2). As shown on Figure 2, the southeastern overexcavation was the largest expansion of the IAWP-estimated extents. This area contained historical railroad tracks with collocated mixed SBG and debris in the upper 4 feet. This comingled debris became absent from the sand matrix as the excavation reached the former building footprint and southern property boundary. This phase of excavation produced 1,160 tons of Contaminated Soil.

At the overexcavation extents, remediation levels were met in final verification samples obtained from cells AA-1, AA-2, C-5, D-3, J-3, K-3, L-4, N-5, and M-3. Cells M-2, M-5,

_

¹⁴ Backfill was placed to elevation approximately 7 feet following excavation each night to preserve stability of the excavation bottom during subsequent rising tides.

and N-4 were not sampled because field screening indicated equivalent subsurface conditions between sidewall and bottom material in those cells with their sampled neighboring cells (L-4, N-5, and M-3), which had no detected concentrations exceeding remediation levels. Field indicators of SBG-contaminated fill were absent from unsampled cells.

3.3 Temporary Dewatering and Water Management

Temporary dewatering was necessary to conduct the saturated zone excavation (Phase 2). The dewatering system included pretreatment and monitoring conditions defined in the discharge authorization.

Dewatering performance criteria were to maintain unsaturated excavation conditions to facilitate soil excavation/handling/loading for transport, verification soil sampling in the excavation, and excavation backfilling. Dewatering occurred, as needed, to meet the performance criteria.

Grady was responsible for dewatering system construction, operation, and compliance with the KCIW discharge authorization (Section 1.3). The dewatering system was started up and operated the week of January 11, 2021, and removed on January 15, 2021, following completion of the saturated zone excavation. Grady's daily reports indicate the flow rates were 60 to 70 gallons per minute (gpm) and daily discharge varied from 1,531 gallons on January 11, 2021, to 24,876 gallons on January 12, 2021. The temporary dewatering system was operated below the discharge authorization maximum of 100 gpm or 72,000 gallons per day.

In total, approximately 79,540 gallons of groundwater were extracted from the Site and discharged to the combined sewer by the dewatering system. Treatment in the form of settling occurred between extraction and discharge. The water discharged to sewer was sampled for chemical analysis in accordance with the discharge authorization self-monitoring requirements. The analytical data confirm the water met KCIW's discharge limitations. Grady's self-monitoring report for the discharge authorization, including analytical results and daily discharge volumes, is included in Appendix I.

3.4 Offsite Disposal of Contaminated Soil

Soil with any field-screening indicators of contamination was either temporarily stockpiled or directly loaded into trucks and hauled for Contaminated Soil disposal. All Contaminated Soil stockpiles were managed per IAWP requirements and placed in a lined, bermed containment area, were covered overnight, and did not remain on-Site for more than 48 hours prior to being exported for disposal. As described in the IAWP, all contaminated material was preprofiled as Nondangerous Solid Waste suitable for disposal at a Resource Conservation and Recovery Act Subtitle D landfill. Republic Services was contracted by 5055 Properties LLC to dispose of the Contaminated Soil at the Republic Services Roosevelt Landfill.

Appendix J provides information on daily loadouts, including tonnages from the Republic Services summary report, as well as a Certificate of Disposal for the landfill material. In

total, 5,983 tons of Contaminated Soil was permanently removed from the Site and disposed of properly.

3.5 Excavation Backfill

The excavations were backfilled to restore preconstruction grade with clean imported structural fill meeting Washington State Department of Transportation (WSDOT) classification 9.0314(1) for Gravel Borrow (COS Type 26) from Cadman's Black Diamond facility. The dewatering trenches were filled with material meeting WSDOT 9-03.12 classification for gravel drains (AASHTO #57) from Cadman's High Rock facility. Material specifications and clean certification provided to Ecology prior to construction are included in Appendix K.

All excavation backfill material was placed in lifts and compacted with the excavator bucket and/or an 8-ton double drum vibrating roller. The Geotechnical Engineer oversaw backfill and compaction operations.

3.6 Engineering Controls

Following completion of the IA excavation and backfilling, 5055 Properties LLC implemented interim fencing and signage (as required by the IAWP) to restrict human access and use of the shoreface and tidelands until completion of the subsequent shoreface and in-water cleanup actions west of shoring wall. Photos of the interim fencing and signage can be found in Appendix F.

4 Soil Compliance

The residual soils within the excavation sidewalls and bottom comply with the IA remediation levels when applying the MTCA three-fold soil compliance criteria (WAC 173-340-740(7)(d) and (e)).

Concentrations of arsenic, mercury, zinc, acenaphthene, naphthalene, and total PCBs exceeded remediation levels in one or more soil verification samples at the final excavation limits. However, the residual concentrations for each of these analytes in the collective soil at the final excavation limits (sample data combined) achieves the MTCA three-fold compliance criteria as follows:

- The 95 percent upper confidence limit (95 percent UCL) concentration is less than the remediation level.
- All residual soil concentrations are less than two times the remediation level.
- The frequency of soil sample exceedance is less than 10 percent.

These statistics are presented in Table 4. For this evaluation, the 95 percent UCL values were calculated using the Environmental Protection Agency's (EPA) ProUCL version 5.1

software. 15 The ProUCL calculation outputs for each constituent are included in Appendix L.

These results confirm that the residual soils in the excavation area comply with the remediation levels in accordance with MTCA.

5 Groundwater Confirmation Monitoring

As agreed to with Ecology during a May 2021 meeting, the goals of the post-IA groundwater confirmation monitoring are to:

- Assess Site groundwater quality following completion of the upland IA.
- Verify the empirical demonstration of soil compliance with remediation levels for cPAHs and naphthalene.

Groundwater well locations and the analyte schedule were approved by Ecology in the "Sampling and Analysis Plan for Groundwater Confirmation Monitoring" (SAP) (Aspect, 2021c). Details on field sampling procedures, analytes, practical quantification limits, quality assurance, and quality control can be found in the SAP.

Monitoring wells MW-13 through MW-17 were installed between June 21 and 23, 2021, by Cascade Drilling, LP, a Washington State-licensed resource protection well driller, in accordance with the SAP. The locations of the five new monitoring wells (MW-13 through MW-17) and the two existing monitoring wells (MW-8 and MW-12) are shown on Figure 5. Figure 5 also shows locations of former monitoring wells that were decommissioned prior to the IA, and it distinguishes wells screened in the Fill Unit versus the deeper Alluvium Unit. Table 5 presents well construction details and groundwater elevation data for the decommissioned and existing wells. Boring logs with well completion information are in Appendix M.

Wells MW-13, MW-15, and MW-16 are located near the sheet pile shoring wall to assess the quality of Fill Unit groundwater in the area as close as practicable to the LDW. The laterally extensive shoring wall greatly restricts flow of groundwater; therefore, wells MW-13 on the south and MW-16 on the north are positioned near the wall's ends, where the Site groundwater east of the wall is expected to discharge toward the LDW. MW-14 is also near the sheet pile wall and is screened in the deeper Alluvium Unit, as agreed to with Ecology. MW-17 is located east of the IA area to assess the quality of upgradient Fill Unit groundwater entering the Site.

5.1 Initial Groundwater Monitoring Event Results

The first groundwater monitoring event of all post-IA Site monitoring wells occurred on June 25, 2021. Samples were collected in accordance with procedures outlined in the SAP (Aspect, 2021c) and were maintained under chain-of-custody procedures until being

¹⁵ EPA's statistical software package for analysis of environmental data sets (https://www.epa.gov/land-research/proucl-software).

ASPECT CONSULTING

formally relinquished to the analytical laboratory, Friedman and Bruya, Inc. Monitoring wells MW-12, MW-15, and MW-17 had poor yield during purging and sample collection, and had to recharge prior to collecting sufficient sample volume for analysis. MW-12 in particular did not recharge sufficiently by the end of the field day, and was returned to on June 29, 2021, to complete sample collection.

The groundwater monitoring results were screened against the most stringent groundwater PCUL for nonpotable groundwater (GWs #2-5) established by the updated May 2021 LDW Preliminary Cleanup Level Workbook (Ecology, 2021). For cPAHs TEQ, total PCBs, and PCP, the analytical method reporting limit, which is the PQL for purposes of this monitoring program, is greater than the PCUL (Aspect, 2021c). In accordance with WAC 173-340-700(6)(d), the groundwater PCUL for those analytes is established at the respective PQL. Table 6 presents the groundwater analytical results from the first round of monitoring, with exceedances of PCULs highlighted in blue.

The first round of sampling indicates exceedances for selected constituents in some Fill Unit wells, and no exceedances for any constituent in the deeper Alluvium Unit wells.

More specifically for the Fill Unit wells, no exceedances were detected for the organic contaminants TPH, PCP, PCBs, and non-carcinogenic PAHs including naphthalene. Low-level exceedances of cPAHs were detected in new shoreline Fill Unit well MW-13 (0.009 μ g/L) and previously existing Fill Unit well MW-12 (0.020 μ g/L) located east (upgradient) of the IA excavation area (Table 6).

As discussed above, soil remediation levels for cPAH TEQ and naphthalene are dependent on an empirical demonstration of the protection of groundwater. There were no naphthalene PCUL exceedances in any of the monitoring wells, preliminarily indicating that the adjusted soil remediation level is protective of groundwater. cPAHs are highly hydrophobic and the part-per-trillion concentrations detected in the two samples can occur with minor particulate matter present in a groundwater sample. Additional monitoring is warranted to confirm the groundwater concentrations, and thus the empirical demonstration, for these PAHs.

The dissolved metals data from the first monitoring event indicate exceedances for arsenic, copper, nickel, and zinc in one or more Fill Unit wells, and the data exhibit some variability relative to prior Site data. Notably, concentrations of arsenic, the primary risk-driving contaminant associated with the SBG-containing fill removed in the IA, were below the PCUL in each of the shoreline wells except the northernmost one MW-16, where it was detected at approximately 24 μ g/L (verified in field duplicate sample). Arsenic was also detected at approximately 24 μ g/L in upgradient well MW-12 (Table 6).

In order to compare pre- and post- IA results, Table 7 presents groundwater data from new monitoring wells paired with the closest decommissioned monitoring well; pre- and post-IA data from upgradient wells MW-8 and MW-12 are also presented for comparison. Observations for the comparison are as follows:

• For shoreline Fill Unit well MW-15 (paired with former MW-3), the initial post-IA groundwater results indicate lower concentrations of arsenic, copper, and cPAH TEQ, and a similar concentration for nickel.

- For shoreline Fill Unit well MW-13 (paired with former MW-11), the initial post-IA groundwater results indicate a decrease in arsenic, copper, cPAH TEQ, and PCP concentrations, and anomalous increases for nickel and zinc.
- For shoreline Alluvial Unit well MW-14 (paired with former MW-1) the initial post-IA groundwater results indicate a decrease in arsenic, nickel, and zinc concentrations, with no exceedances of PCULs.
- Upgradient Fill Unit well MW-8 continues to show no exceedances for any constituent.
- Upgradient Fill Unit well MW-12 sample results indicate that concentrations of arsenic and nickel have increased since pre-IA, and lower reporting limits for cPAHs now indicate an exceedance for cPAH TEQ. As stated above, MW-12 went dry during sampling, and showed increases in turbidity with recharge, which may have contributed to the anomalous metals results.

Overall, the analytical results from the first monitoring event indicate variability relative to prior Site data, which warrants verification during subsequent groundwater monitoring. Initial groundwater results from newly installed monitoring wells may be biased by disturbance of the water-bearing formation next to the well screen created during the well drilling and installation process, and subsequent monitoring should indicate whether that affected the June 2021 monitoring results.

Continued groundwater sampling events are required for compliance monitoring. Per Section 2.1.1 above, 12 months is proposed as the timeline to complete the empirical demonstration of soil compliance for cPAHs and naphthalene.

6 Conclusions

The IA was completed by 5055 Properties, LLC at the Snopac Site landward (east) of the shoring wall in accordance with the Final IAWP. The IAWP goals for the IA were to remove SBG-containing fill east of the shoring wall and meet soil remediation levels at the excavation boundary. The soil remediation levels used in this Report were derived from the most stringent LDW PCULs for soil (Ecology, 2020) with Ecology-approved adjustments for cPAH and naphthalene based on the empirical demonstration described in Section 2.1.1.

The IA excavation footprint expanded substantially from that envisioned in the IAWP in order to fully remove SBG-containing fill encountered in the excavation effort. However, visual observations during excavation and the final excavation verification soil samples indicate that all the SBG-containing fill has been successfully removed from the Site uplands inland of the shoring wall. Consistent with that, the final verification soil sample results demonstrate the residual soils in the excavation area comply with remediation levels in accordance with MTCA, thus achieving the IAWP goals.

ASPECT CONSULTING

In total, the IA achieved permanent removal of 5,983 tons of contaminated material from the Site uplands immediately adjacent to the LDW. In addition, nearly 80,000 gallons of groundwater were extracted during excavation, providing additional removal of contamination (in dissolved phase) from within the source area. The IA has accomplished substantial contaminant source control along the LDW shoreline; thus, contributing to the long-term protection of the adjacent LDW.

Since completion of the IA, five new groundwater monitoring wells have been installed to commence confirmation groundwater monitoring. The new wells are primarily screened in the Fill Unit and located near the LDW. The groundwater PCULs used in this Report were derived from the most stringent LDW PCULs for nonpotable groundwater (GWs #2-5) (Ecology, 2021). The first round of confirmation groundwater monitoring results indicate scattered metals and cPAH exceedances in Fill Unit groundwater within the IA excavation footprint and in one upgradient well. The first round of groundwater results also indicate there are no remaining naphthalene and PCP exceedances. Continued sampling events are required to for compliance monitoring and to complete the empirical demonstration of soil compliance for cPAHs and naphthalene.

This Final Report completes the IAWP implementation and satisfies IA requirements of the AO.


References

- Aspect Consulting, LLC (Aspect), 2020a, Final Interim Action Work Plan, Snopac Property, Seattle, Washington, March 10, 2020.
- Aspect Consulting, LLC (Aspect), 2020b, (Public Review Draft) Remedial Investigation Report, Snopac Property, Seattle, Washington, July 7, 2020.
- Aspect Consulting, LLC (Aspect), 2021a, Draft Proposed Total cPAH TEQ Cleanup Level in Soil, Snopac Property Site, 5505 and 5053 East Marginal Way South, Seattle Washington, January 12, 2021.
- Aspect Consulting, LLC (Aspect), 2021b, Draft Proposal to Not Remove Naphthalene in Soil Above Remediation Levels, Snopac Property Site, 5505 and 5053 East Marginal Way South, Seattle Washington, January 21, 2021.
- Aspect Consulting, LLC (Aspect), 2021c, Sampling and Analysis Plan for Groundwater Confirmation Monitoring, Snopac Property Uplands, Seattle Washington, July 2, 2021.
- Grette Associates, 2019, Interim Riparian Planting Plan, 5055 East Marginal Way, Seattle Washington, December 23, 2019.
- Washington State Department of Ecology (Ecology), 2014a, Letter to Sir or Madam, Snopac Property, RE: Early Notice Letter: Facility Site # 1523145, Snopac Property. October 10, 2014.
- Washington State Department of Ecology (Ecology), 2014b, Letter to Sir or Madam, Snopac Property, RE: Site Hazard Assessment – Snopac Property, Ecology FS ID: 1523145 / CD ID: 12463. November 26, 2014.
- Washington State Department of Ecology (Ecology), 2017, Model Remedies for Sites with Petroleum Contaminated Soils, Revised December 2017.
- Washington State Department of Ecology (Ecology), 2019, Lower Duwamish Waterway Preliminary Cleanup Level Workbook including Supplemental Information, April 2019.
- Washington State Department of Ecology (Ecology), 2020, Lower Duwamish Waterway Preliminary Cleanup Level Workbook including Supplemental Information, September 14, 2020.
- Washington State Department of Ecology (Ecology), 2021, Lower Duwamish Waterway Preliminary Cleanup Level Workbook including Supplemental Information, May 2021.

Limitations

Work for this project was performed for the 5055 Properties LLC (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

		Remediation evels	Practical Quantitation	•	l Remediation (mg/kg)
Indicator Hazardous Substance	Vadose Saturated Zone Zone Soil Soil		Level (PQL)	Vadose Zone Soil	Saturated Zone Soil
Metals					
Arsenic	7	7	1	7.3	7.3
Copper	36	36	1	36	36
Lead	50	50	1	50	50
Mercury	0.07	0.07	0.01	0.07	0.07
Zinc	86	85	1	86	85
Polycyclic Aromatic Hydrocart			0.000	0.4	
1-Methylnaphthalene ¹	29	29	0.002	34	34
2-Methylnaphthalene	0.67	0.67	0.002	0.67	0.67
Acenaphthene	0.5	0.028	0.002	0.5	0.028
Acenaphthylene	1.3	1.3	0.002	1.3	1.3
Anthracene	0.96	0.051	0.002	0.96	0.051
Fluoranthene	1.7	0.09	0.002	1.7	0.09
Fluorene	0.54	0.029	0.002	0.54	0.029
Naphthalene ²	0.039	0.0021	0.002	0.056	0.056
Phenanthrene	1.5	1.5	0.002	1.5	1.5
Pyrene	2.6	0.14	0.002	2.6	0.14
Total HPAHs	12	12	0.002	12	12
Total LPAHs	5.2	5.2	0.002	5.2	5.2
Total cPAHs TEQ ^{2,3}	0.00031	0.000016	0.003	0.074	0.074
Semivolatile Organic Compour	nds ⁴				
Pentachlorophenol (PCP)	0.000032	0.0000018	0.05	0.05	0.05
Polychlorinated Biphenyls (PC	(B) ⁵				
Total PCB Aroclors	0.000043	0.0000022	0.002	0.002	0.002
Total Petroleum Hydrocarbons	s (TPH) ⁶				
Gasoline- Range Organics					
Diesel-Range Organics	1,500	1,500		1,500	1,500
Motor Oil-Range Organics					

Notes:

IAWP - Interim Action Work Plan (Aspect, 2020)

- 1. All concentrations are in milligrams per kilogram (mg/kg).
- 2. Remediation levels are based on the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020). A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).
- 1. Updated since IAWP based on Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020).
- 2. Remediation Level adjusted based on empirical demonstration of groundwater protectiveness.
- 3. TEQ: Total toxic equivalent concentration of benzo(a)pyrene, calculated in accordance with WAC 173-340-708(8)(e).
- 4. Soil samples collected in the one location that Pentachlorophenol was detected in groundwater in accordance with IAWP. An analytical reporting limit of 0.05 mg/kg is achievable for PCP in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 5. An analytical report limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 6. A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017). Performance samples were analyzed in the area of MW-2, the only location where soil concentrations exceeded the direct contact TPH cleanup level.

Table 2A. Analytical Results for In-Place Vadose Soil (Final Verification Samples)

Project No. 150054, Snopac, Seattle, Washington

	Location	B-A-2	B-B-2	B-C-2	B-F-2	SW-AA-1	SW-AA-2	SW-A-3	SW-B-3	SW-C-5	SW-D-3	SW-E-2.5	SW-F-2	SW-G-2	SW-H-2
	Date	01/04/2021	01/04/2021	01/04/2021	01/05/2021	01/21/2021	01/21/2021	12/31/2020	12/31/2020	01/15/2021	01/15/2021	01/15/2021	12/30/2020	12/30/2020	12/30/2020
	Sample	B-A-2-11.5	B-B-2-11.5	B-C-2-11.5	B-F-2-11.5	SW-AA-1-12.5	SW-AA-2-12.5	SW-A-3-12	SW-B-3-12	SW-C-5-12	SW-D-3-12	SW-E-2.5-12	SW-F-2-12	SW-G-2-12	SW-H-2-12
	Elevation (NAVD88)	11.5	11.5	11.5	11.5	12.5	12.5	12	12	12	12	12	12	12	12
	,														
	Vadose Soil						Footnote 4					Footnote 5			
Analyte	Remediation Level														
Metals															
Arsenic	7.3	1.34	< 1 U	1.63	3.49	1.08	1.14	1.6	8.55	1.86	2.02	4.88	1.8	1.32	3.33
Copper	36	6.79	5.98	5.92	9.67	5.88		4.1	11.2	7.81	6.96		7.16	5.77	7.04
Lead	50	1.45	<1U	1.26	3.29	< 1	-	1.02	10.1	5.41	2.14		1.7	1.02	2.56
Mercury	0.07	0.017	0.015	0.01	0.13	< 0.01		0.01	0.048	0.019	0.015		0.012	< 0.01 U	0.01
Zinc	86	16.8	12.6	13.5	87	12.2	-	11.4	34.8	20.2	16.8		33.3	12.8	18
Polycyclic Aromatic Hydroca	rbons (PAHs)														
1-Methylnaphthalene	34	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	0.0022	< 0.002 U	< 0.002 U		< 0.002 U	< 0.002 U	< 0.002 U
2-Methylnaphthalene	0.67	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	0.0039 J	< 0.002 U	< 0.002 U		< 0.002 U	< 0.002 U	< 0.002 U
Acenaphthene	0.5	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		0.003	< 0.002 U	< 0.002 U
Acenaphthylene	1.3	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		< 0.002 U	< 0.002 U	< 0.002 U
Anthracene	0.96	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		0.0068	0.0037	< 0.002 U
Fluoranthene	1.7	< 0.002 U	< 0.002 U	< 0.002 U	0.0034	< 0.002		0.003	0.0048	0.0063	0.0029		0.041	0.025	0.0054
Fluorene	0.54	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		0.0021	< 0.002 U	< 0.002 U
Naphthalene	0.056	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		< 0.002 U	0.0022	< 0.002 U	< 0.002 U		< 0.002 U	< 0.002 U	< 0.002 U
Phenanthrene	1.5	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002		0.0021	0.0041	0.0042	< 0.002 U		0.029	0.017	0.0032
Pyrene	2.6	< 0.002 U	< 0.002 U	< 0.002 U	0.0027	< 0.002		0.0029	0.0053	0.0056	0.0026		0.042	0.024	0.0049
Total HPAHs	12	< 0.002 U	< 0.002 U	< 0.002 U	0.0109	< 0.002 U		0.0105	0.0379 J	0.0384	0.0076		0.2248 J	0.1183 J	0.0335 J
Total LPAHs	5.2	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		0.0021	0.0063	0.0042	< 0.002 U		0.0409	0.0207	0.0032
Total cPAHs TEQ1	0.074	< 0.00302 U	< 0.00302 U	< 0.00302 U	0.0033	< 0.00302 U		0.0033	0.0061 J	0.0057	0.0030		0.035 J	0.017 J	0.0054 J
Semivolatile Organic Compo	unds (SVOCs)													•	
Pentachlorophenol ²	0.05														
Polychlorinated Biphenyls (P	PCBs)														
Total PCBs Aroclors ³	0.002	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		< 0.002 U	< 0.002 U	0.0023	< 0.002 U		< 0.002 U	< 0.002 U	< 0.002 U

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020) or established emperically and approved by Ecology. A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. Soil samples collected in the one location that Pentachlorophenol was detected in groundwater in accordance with IAWP. An analytical reporting limit of 0.05 mg/kg is achievable for PCP in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 3. An analytical reporting limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 4. Location SW-AA-2 was collected after overexcavation of Sample SW-A-2 to achieve compliance with arsenic remediation level (Figure 1). SW-A-2 results are in Table 2B.
- 5. Location SW-E-2.5 was collected after overexcavation of Sample SW-E-2 to achieve compliance with arsenic remediation level (Figure 1). SW-E-2 results are in Table 2B.

Table 2A. Analytical Results for In-Place Vadose Soil (Final Verification Samples)

Project No. 150054, Snopac, Seattle, Washington

	Location Date Sample	SW-I-3 12/31/2020 SW-I-3-12	SW-J-3 01/15/2021 SW-J-3-13	SW-K-2 12/31/2020 SW-K-2-12	SW-K-3 01/15/2021 SW-K-3-13	SW-L-2 12/31/2020 SW-L-2-12	SW-L-4 01/22/2021 SW-L-4-13	SW-M-1 12/31/2020 SW-M-1-12	SW-M-3 01/22/2021 SW-M-3-14	SW-N-5 01/22/2021 SW-N-5-13
	Elevation (NAVD88)	12	13	12	13	12	13	12	14	13
Analyte	Vadose Soil Remediation Level	•-	.,		.9		.0			.,
Metals										
Arsenic	7.3	2.02	2.45	3.14	3.02	2.48	1.6	4.12	1.29	1.69
Copper	36	6.07	8.16	23.3	7.06	20.7	6.36	14.5	7.13	6.51
Lead	50	1.26	1.64	13.4	2.46	12.5	1.16	21.8	1.98	1.63
Mercury	0.07	< 0.01 U	0.088	0.061	0.017	0.033	< 0.01 U	0.025	< 0.01 U	< 0.01 U
Zinc	86	14.7	17	57.2	27.9	37.9	65	31.9	14	15.7
Polycyclic Aromatic Hydroca	arbons (PAHs)									
1-Methylnaphthalene	34	< 0.002 U	< 0.002 U	0.056	0.0021	0.073	< 0.002 U	0.011	< 0.002 U	< 0.002 U
2-Methylnaphthalene	0.67	< 0.002 U	< 0.002 U	0.071 J	0.0024	0.095 J	< 0.002 U	0.015 J	< 0.002 U	< 0.002 U
Acenaphthene	0.5	< 0.002 U	< 0.002 U	< 0.01 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Acenaphthylene	1.3	< 0.002 U	< 0.002 U	< 0.01 U	< 0.002 U	0.0053	< 0.002 U	0.0027	< 0.002 U	< 0.002 U
Anthracene	0.96	< 0.002 U	< 0.002 U	0.015	< 0.002 U	0.0096	< 0.002 U	0.0066	< 0.002 U	< 0.002 U
Fluoranthene	1.7	< 0.002 U	0.0043	0.085	0.0029	0.041	< 0.002 U	0.036	< 0.002 U	< 0.002 U
Fluorene	0.54	< 0.002 U	< 0.002 U	< 0.01 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Naphthalene	0.056	< 0.002 U	< 0.002 U	0.093	< 0.002 U	0.076	< 0.002 U	0.013	< 0.002 U	< 0.002 U
Phenanthrene	1.5	< 0.002 U	0.0029	0.06	0.0037	0.045	< 0.002 U	0.02	< 0.002 U	< 0.002 U
Pyrene	2.6	< 0.002 U	0.0042	0.074	0.003	0.059	< 0.002 U	0.05	< 0.002 U	< 0.002 U
Total HPAHs	12	< 0.002 UJ	0.0194	0.607 J	0.0194	0.328 J	< 0.002 U	0.3877 J	< 0.002 U	< 0.002 U
Total LPAHs	5.2	< 0.002 U	0.0029	0.168	0.0037	0.1359	< 0.002 U	0.0423	< 0.002 U	< 0.002 U
Total cPAHs TEQ ¹	0.074	< 0.00302 U	0.0037	0.070 J	0.0041	0.046 J	< 0.00302 U	0.059 J	< 0.00302 U	< 0.00302 U
Semivolatile Organic Compo	unds (SVOCs)									
Pentachlorophenol ²	0.05					< 0.05 U		< 0.05 U		
Polychlorinated Biphenyls (F	PCBs)									
Total PCBs Aroclors ³	0.002	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0024	< 0.002 U	0.0025	< 0.002 U	< 0.002 U

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020) or established emperically and approved by Ecology. A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. Soil samples collected in the one location that Pentachlorophenol was detected in groundwater in accordance with IAWP. An analytical reporting limit of 0.05 mg/kg is achievable for PCP in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 3. An analytical reporting limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.
- 4. Location SW-AA-2 was collected after overexcavation of Sample SW-A-2 to achieve compliance with arsenic remediation level (Figure 1). SW-A-2 results are in Table 2B.
- 5. Location SW-E-2.5 was collected after overexcavation of Sample SW-E-2 to achieve compliance with arsenic remediation level (Figure 1). SW-E-2 results are in Table 2B.

Table 2A

Table 2B. Analytical Results for Overexcavated Vadose Soil (Removed from Site)

Project No. 150054, Snopac, Seattle, Washington

	Location Date	B-B-3 01/04/2021	B-D-2 01/05/2021	B-G-2 01/05/2021	B-I-2 01/05/2021	SW-A-1 12/30/2020	SW-A-2 12/31/2020	SW-C-3 12/31/2020	SW-D-2 12/30/2020	SW-D-3 12/31/2020	SW-E-2 12/30/2020	SW-JK-2 12/31/2020	SW-L-3 01/15/2021
	Sample	B-B-3-11.5	B-D-2-11.5	B-G-2-11.5	B-I-2-11.5	SW-A-1-12	SW-A-2-12.5	SW-C-3-12	SW-D-2-12	SW-D-3-12.5	SW-E-2-12	SW-JK-2-14	SW-L-3-14
	Elevation (NAVD88) Vadose Soil	11.5	11.5	11.5	11.5	12	12.5	12	12	12.5	12	14	14
Amalada	Remediation												
Analyte	Level												
Metals													
Arsenic	7.3	11	37.9	6.88	5.61	1190	9.4	508	12.5	31.9	18.9	5640	108
Copper	36	20.2	34.7	8.62	188	762	26.1	308	15.4	139	18.6	3350	108
Lead	50	17.8	63.2	165	32.3	1250	17.3	428	14.6	145	14	4120	73.3
Mercury	0.07	0.023	0.034	0.029	0.067	0.17	0.044	0.056	0.02	0.085	0.021	1	0.039
Zinc	86	52.2	162	60.6	72.6	3760	72.9	1550	54.5	674	67.4	17000	367
Polycyclic Aromatic Hydrocarb	ons (PAHs)												
1-Methylnaphthalene	34	< 0.002 U	0.017	< 0.002 U	0.012	0.1	0.055	0.017	0.0065	0.026	0.0077	< 0.05 U	0.0072
2-Methylnaphthalene	0.67	< 0.002 U	0.018	< 0.002 U	0.016	0.16 J	0.058 J	0.026 J	0.0074 J	0.033 J	0.0094 J	< 0.05 U	0.0091
Acenaphthene	0.5	< 0.002 U	0.032	< 0.002 U	< 0.01 U	0.066	0.002	0.0022	0.011	0.0035	0.012	0.058	0.0037
Acenaphthylene	1.3	< 0.002 U	< 0.01 U	< 0.002 U	< 0.01 U	< 0.05 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0037	< 0.002 U	< 0.05 U	< 0.002 U
Anthracene	0.96	< 0.002 U	0.06	< 0.002 U	< 0.01 U	0.14	0.0056	0.0054	0.026	0.0085	0.026	0.13	0.01
Fluoranthene	1.7	0.0072	0.24	0.0023	0.033	0.91	0.027	0.062	0.12	0.059	0.12	2	0.073
Fluorene	0.54	< 0.002 U	0.027	< 0.002 U	< 0.01 U	0.078	< 0.002 U	0.0024	0.011	0.0041	0.013	< 0.05 U	0.0036
Naphthalene	0.056	< 0.002 U	0.018	< 0.002 U	0.022	0.13	0.034	0.015	0.013	0.026	0.02	< 0.05 U	0.0083
Phenanthrene	1.5	0.0034	0.23	< 0.002 U	0.026	0.67	0.06	0.033	0.098	0.053	0.1	0.84	0.042
Pyrene	2.6	0.0072	0.22	0.0021	0.029	0.77	0.043	0.08	0.14	0.079	0.13	1.9	0.078
Total HPAHs	12	0.0497	1.119	0.0112	0.201	4.58 J	0.1689 J	0.4735 J	0.628 J	0.4259 J	0.6268 J	12.04 J	0.4373
Total LPAHs	5.2	0.0034	0.367	< 0.002 U	0.048	1.084	0.1016	0.058	0.159	0.0988	0.171	1.028	0.0676
Total cPAHs TEQ ¹	0.074	0.0081	0.16	0.0032	0.029	0.67 J	0.019 J	0.078 J	0.093 J	0.062 J	0.096 J	1.88 J	0.070
Polychlorinated Biphenyls (PCI	Bs)												
Total PCBs Aroclors ²	0.002	< 0.002 U	0.0141	< 0.002 U	0.0182	0.3	0.0033	0.105	0.0098	0.239	0.0027	0.33	0.038

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in milligrams per kilogram (mg/kg).

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020). A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. A report limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level will be established at this practical quantitation limit.

Table 2B

Table 3A. Analytical Results for In-Place Saturated Soil (Final Verification Samples)

Project No. 150054, Snopac, Seattle, Washington

	Location Date Sample Elevation (NAVD88)	B-A-1 01/13/2021 B-A-1-5 5	B-B-1 01/13/2021 B-B-1-5 5	B-C-1 01/13/2021 B-C-1-6 6	B-D-1 01/12/2021 B-D-1-6 6	B-E-1 01/12/2021 B-E-1-5.5 5.5	B-F-1 01/12/2021 B-F-1-5 5	B-G-1 01/12/2021 B-G-1-6 6	B-H-1 01/12/2021 B-H-1-6 6	B-I-1 01/11/2021 B-I-1-4.5 4.5	B-J-1 01/13/2021 B-J-1-4 4	B-K-1 01/15/2021 B-K-1-4.5 4.5	B-L-1 01/11/2021 B-L-1-4 4
Analyte	Saturated Soil Remediation Level												
Metals													
Arsenic	7.3	7.57	5	5.23	7.05	4.58	3.33	3.66	4.69	4.92 J	3.24	10.1	5.13 J
Copper	36	17.4	17.5	31.2	19.9	26.1	24.7	18.2	27	16.9	22.8	19.7	23.7
Lead	50	2.69	2.65	4.62	3.42	3.98	3.57	3.76	3.93	3.07	3.22	3.85	3.27
Mercury	0.07	0.032	0.026	0.042	0.035	0.046	0.035	0.029	0.04	0.028	0.033	0.036	0.036
Zinc	85	15.9	20.1	23.9	27.9	20.4	19.9	21.8	22.5	20.9	20.3	23.9	26.1
Polycyclic Aromatic Hydrocar	bons (PAHs)												
1-Methylnaphthalene	34	< 0.002 U	< 0.002 U	< 0.004 UJ	0.0038	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
2-Methylnaphthalene	0.67	< 0.002 U	< 0.002 U	< 0.004 UJ	0.004	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Acenaphthene	0.028	< 0.002 U	< 0.002 U	< 0.004 UJ	0.007	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Acenaphthylene	1.3	< 0.002 U	< 0.002 U	< 0.004 UJ	< 0.002 U	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Anthracene	0.051	< 0.002 U	< 0.002 U	< 0.004 UJ	0.0088	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Fluoranthene	0.09	< 0.002 U	< 0.002 U	< 0.004 UJ	0.056 J	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Fluorene	0.029	< 0.002 U	< 0.002 U	< 0.004 UJ	0.006	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Naphthalene	0.056	< 0.002 U	< 0.002 U	< 0.004 UJ	0.0057	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0021	0.0071
Phenanthrene	1.5	< 0.002 U	< 0.002 U	< 0.004 UJ	0.055	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0029
Pyrene	0.14	< 0.002 U	< 0.002 U	< 0.004 UJ	0.052	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Total HPAHs	12	< 0.002 U	< 0.002 U	< 0.004 UJ	0.2458	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
Total LPAHs	5.2	< 0.002 U	< 0.002 U	< 0.004 U	0.0825	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	0.0021	0.01
Total cPAHs TEQ ¹	0.074	< 0.00302 U	< 0.00302 U	< 0.00604 U	0.035	< 0.00604 U	< 0.00302 U	< 0.00302 U	< 0.00302 U	< 0.00302 U	< 0.00302 U	< 0.00302 U	< 0.00302 U
Polychlorinated Biphenyls (P	Polychlorinated Biphenyls (PCB)												
Total PCB Aroclors ³	0.002	< 0.002 U	< 0.002 U	< 0.004 UJ	< 0.002 U	< 0.004 UJ	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
	otal Petroleum Hydrocarbons (TPH) ²												
Gasoline-Range Organics										< 5 U			
Diesel-Range Organics	1,500									< 50 U			
Motor Oil-Range Organics				-						< 250 U			

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in milligrams per kilogram (mg/kg).

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020) or established emperically and approved by Ecology. A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. Soil samples collected in one location that exceeded generic direct contact cleanup level in accordance with IAWP performance monitoring plan.
- 3. An analytical reporting limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.

Aspect Consulting

Table 3A. Analytical Results for In-Place Saturated Soil (Final Verification Samples)

Project No. 150054, Snopac, Seattle, Washington

	Location Date Sample Elevation (NAVD88)	SW-A-1 01/13/2021 SW-A-1-8 8	SW-B-1 01/13/2021 SW-B-1-8 8	SW-C-1 01/13/2021 SW-C-1-9 9	SW-D-1 01/12/2021 SW-D-1-8 8	SW-E-1 01/12/2021 SW-E-1-8 8	SW-F-1 01/12/2021 SW-F-1-8 8	SW-G-1 01/12/2021 SW-G-1-7 7	SW-H-1 01/12/2021 SW-H-1-9 9	SW-I-1 01/11/2021 SW-I-1-8 8	SW-J-1 01/11/2021 SW-J-1-8 8	SW-K-1 01/11/2021 SW-K-1-5 8	SW-L-1 01/11/2021 SW-L-1-8 8
Analyte	Saturated Soil Remediation Level												
Metals								·			·		
Arsenic	7.3	1.11	1.45	1.4	1.29	2.33	2.23	1.14	1.17	1.05 J	1.12 J	1.16 J	5.59 J
Copper	36	6.45	7.26	5.17	6.07	7.45	20.7	6.39	6.77	6.54	6.78	6.29	18.1
Lead	50	< 1 U	< 1 U	1.73	1.11	1.12	1.95	1.38	2.42	< 1 U	< 1 U	< 1 U	3.45
Mercury	0.07	0.016	0.01	< 0.01 U	< 0.01 U	0.015	0.028	0.01	0.018	< 0.1 U	< 0.1 U	< 0.1 U	0.041
Zinc	85	48.3	29.3	21.3	14.6	17.1	73	44	19	20.6	21.8	25.3	50.4
Polycyclic Aromatic Hydroca	Polycyclic Aromatic Hydrocarbons (PAHs)												
1-Methylnaphthalene	34	< 0.002 U	0.011										
2-Methylnaphthalene	0.67	< 0.002 U	0.0075										
Acenaphthene	0.028	< 0.002 U	0.0032	< 0.002 U	0.036								
Acenaphthylene	1.3	< 0.002 U											
Anthracene	0.051	< 0.002 U	0.008	< 0.002 U									
Fluoranthene	0.09	< 0.002 U	< 0.002 U	0.0021 J	< 0.002 U	< 0.002 U	0.064 J	< 0.002 U	0.064				
Fluorene	0.029	< 0.002 U	0.0046	< 0.002 U	0.018								
Naphthalene	0.056	< 0.002 U	0.0023	< 0.002 U	0.01								
Phenanthrene	1.5	< 0.002 U	0.0088	< 0.002 U									
Pyrene	0.14	< 0.002 U	0.046	< 0.002 U	0.11								
Total HPAHs	12	< 0.002 U	< 0.002 U	0.021	< 0.002 U	< 0.002 U	0.3761	< 0.002 U	0.2198				
Total LPAHs	5.2	< 0.002 U	0.0269	< 0.002 U	0.064								
Total cPAHs TEQ ¹	0.074	< 0.00302 U	< 0.00302 U	0.005	< 0.00302 U	< 0.00302 U	0.052	< 0.00302 U	0.008				
Polychlorinated Biphenyls (P	Polychlorinated Biphenyls (PCB)												
Total PCB Aroclors ³	0.002	< 0.002 U											
Total Petroleum Hydrocarboi	ns (TPH) ²												
Gasoline-Range Organics										< 5 U			
Diesel-Range Organics	1,500									< 50 U			
Motor Oil-Range Organics										< 250 U			

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in milligrams per kilogram (mg/kg).

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020) or established emperically and approved by Ecology. A combined TPH remediation level is based on the generic direct contact cleanup level of 1,500 mg/kg. (Ecology, 2017).

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. Soil samples collected in one location that exceeded generic direct contact cleanup level in accordance with IAWP performance monitoring plan.
- 3. An analytical reporting limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.

Aspect Consulting

Table 3B. Analytical Results for Overexcavated Saturated Soil (Removed from Site)

Project No. 150054, Snopac, Seattle, Washington

Analyte	Location Date Sample Elevation (NAVD88) Saturated Soil Remediation Level	B-J-1 01/11/2021 B-J-1-4.5 4.5	B-K-1 01/11/2021 B-K-1-5 5
Metals			
Arsenic	7.3	19.5 J	10.3 J
Copper	36	51.9	24.3
Lead	50	26	7.35
Mercury	0.07	0.12	0.035
Zinc	85	81.7	34.3
Polycyclic Aromatic Hyd	rocarbons (PAHs)		
1-Methylnaphthalene	34	0.09	0.019
2-Methylnaphthalene	0.67	0.058	0.029
Acenaphthene	0.028	0.16	0.036
Acenaphthylene	1.3	0.0045	< 0.002 U
Anthracene	0.051	0.096	0.015
Fluoranthene	0.09	0.3	0.04
Fluorene	0.029	0.12	0.024
Naphthalene	0.056	0.18	0.11
Phenanthrene	1.5	0.43	0.071
Pyrene	0.14	0.26	0.034
Total HPAHs	12	1.216	0.1546
Total LPAHs	5.2	0.9905	0.256
Total cPAHs TEQ1	0.074	0.15	0.019
Polychlorinated Bipheny	Is (PCB)		
Total PCB Aroclors ²	0.002	0.08 J	0.0208

Notes:

Bold - detected

Blue Shaded - Detected result exceeded remediation level

IAWP - Interim Action Work Plan (Aspect, 2020)

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

HPAH = high-molecular weight PAH; LPAH = low-molecular weight PAH

All concentrations are in milligrams per kilogram (mg/kg).

Remediation levels are the most-stringent Preliminary Cleanup Levels (PCULs) from the Preliminary Cleanup Levels Workbook for the Lower Duwamish Waterway (Ecology, 2020) or established emperically and approved by Ecology.

- 1. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 2. A report limit of 0.002 mg/kg is achievable by the laboratory for PCB Aroclors in soil. In accordance with WAC 173-340-700(6)(d), the soil remediation level is established at this practical quantitation limit.

Aspect Consulting Table 3B

Table 4. Statistical Compliance Summary for In-Place Soil, Interim Action Excavation

Project No. 150054, Snopac, Seattle, Washington

	Remediation Lo	evels (mg/kg) ⁴			e Frequency e <10%)	Exceedance (must be		95	% Upper Confidence Limit (UCL) Concentration (mg/kg) (must be < remediation level)
Indicator Hazardous Substance	Vadose Zone Soil	Saturated Zone Soil	Number of Samples	Number of Samples Exceeding Remediation Level	Frequency of Exceedance	Maximum Residual Concentration (mg/kg)	Exceedance Factor for Maximum Concentration	95% Upper Confidence Limit (UCL) Concentration (mg/kg) ⁽¹⁾	Notes re: 95% UCL Distribution
Metals									
Arsenic	7.3	7.3	47	3	6%	10.1	1.4	4.408	Data do not follow any distribution; Maximum 95% UCL selected
Copper	36	36	45	0	0%				
Lead	50	50	45	0	0%				
Mercury	0.07	0.07	45	2	4%	0.13	1.9	0.039	Lognormal distribution
Zinc	86	85	45	1	2%	87.0	1.0	37.99	Data do not follow any distribution; Maximum 95% UCL selected
Polycyclic Aromatic Hydro	carbons (PAHs)								
1-Methylnaphthalene	34	34	45	0	0%				
2-Methylnaphthalene	0.67	0.67	45	0	0%				
Acenaphthene	0.5	0.028	45	1	2%	0.036	1.3	0.00187	Lognormal distribution
Acenaphthylene	1.3	1.3	45	0	0%		-		
Anthracene	0.96	0.051	45	0	0%		-		
Fluoranthene	1.7	0.09	45	0	0%		-		
Fluorene	0.54	0.029	45	0	0%		-		
Naphthalene	0.056	0.056	45	2	4%	0.093	1.7	0.00425	Lognormal distribution
Phenanthrene	1.5	1.5	45	0	0%		-		
Pyrene	2.6	0.14	45	0	0%		-		
Total HPAHs	12	12	45	0	0%		-		
Total LPAHs	5.2	5.2	45	0	0%		-		
Total cPAHs TEQ ³	0.074	0.074	45	0	0%		-		
Semivolatile Organic Comp	pounds								
Pentachlorophenol	0.05	0.05	2	0	0%		-		
Polychlorinated Biphenyls	(PCB)								
Total PCB Aroclors	0.002	0.002	45	3	7%	0.0025	1.3	0.00127	Normal distribution
Total Petroleum Hydrocarb	oons (TPH)								
Gasoline-Range Organics									
Diesel-Range Organics	1,500	1,500	2	0	0%				
Motor Oil-Range Organics									

Notes:

mg/kg - milligrams per kilogram

- 1. EPA software ProUCL v. 5.1 was used to calculate the 95% Upper Confidence Limit for analytes that exceed remediation levels
- 2. --: No exceedances so exceedance magnitue and 95% UCL not calculated.
- 3. Carcinogenic PAHs total toxic equivalent concentration of benzo(a)pyrene (total cPAH s TEQ) calculated in accordance with WAC 173-340-708(8)(e).
- 4. Remediation level adjusted with respect to Interim Action Work Plan remediation levels (see Table 1).
- J Result value estimated

Table 5. Monitoring Well Construction and Water Level Data

Project No. 150054, SnoPac, Seattle, Washington

			Ground	Top of			2/5/2	2017 ⁽¹⁾	1/28/	2018 ⁽²⁾	6/22/	2021 ⁽³⁾	6/24/2	2021 ⁽⁴⁾	6/25	/2021 ⁽⁵⁾
		Coordinates State Plane, ft)	Surface Elevation	Casing Elevation	Depths	d Interval (ft bgs)	Depth to Water Below	Groundwater Elevation (ft)								
Well ID	Northing	Easting	(ft)	(ft)	Тор	Bottom	TOC (ft)	Lievation (it)								
MW-1	206441.5	1268610.7	16.4	16.14	8.0	18.0	8.70	7.44	8.42	7.72						
MW-2	206497.9	1268577.1	15.7	15.51	5.0	15.0	8.88	6.63	8.68	6.83						
MW-3	206538.6	1268552.1	15.7	15.20	2.5	12.5	11.69	3.51	11.50	3.70						
MW-4	206607.8	1268514.5	15.7	15.28	4.0	14.0	8.86	6.42	8.91	6.37						
MW-5	206491.4	1268605.2	15.8	15.49	4.0	14.0	6.93	8.56	7.28	8.21						
MW-6	206541.3	1268591.0	16.2	15.74	4.0	14.0	7.01	8.73	8.68	7.06						
MW-7	206620.1	1268549.2	15.5	15.17	4.0	14.0	6.59	8.58	6.68	8.49						
MW-8	206684.0	1268659.2	16.8	16.42	15.0	25.0	11.13	5.29	11.37	5.05	11.93	4.49	9.32	7.10	12.04	4.38
MW-9	206457.2	1268657.8	16.4	16.05	4.0	14.0	7.07	8.98	7.86	8.19						
MW-10	206402.6	1268749.2	17.0	16.60	15.0	25.0	10.60	6.00	9.98	6.62						
MW-11	206438.3	1268607.7	16.6	16.21	4.0	14.0	8.89	7.32	8.71	7.50						
MW-12	206678.8	1268632.2	16.5	16.15	4.0	14.0	7.94	8.21	7.61	8.54	NM		NM		9.84	6.31
MW-13	206432.9	1268602.4	15.1	14.86	2.5	12.5					8.92	5.94	8.62	6.24	8.56	6.30
MW-14	206447.3	1268601.4	15.0	14.61	16.0	21.0					10.04	4.57	7.92	6.69	9.46	5.15
MW-15	206548.0	1268558.9	15.0	14.48	6.0	11.0					7.68	6.80	7.45	7.03	7.42	7.06
MW-16	206644.7	1268498.6	14.5	14.28	5.5	10.5					7.32	6.96	6.74	7.54	6.81	7.47
MW-17	206420.9	1268745.8	16.0	15.61	2.5	12.5					NM		9.02	6.59	8.99	6.62

Notes:

Horizontal Datum: NAD83/11. Vertical Datum: NAVD88.

- 1: Water levels measured between approximately 1-1.5 hour before lower low tide on 2/5/17.
- 2: Water levels measured between approximately 2.5-3 hours before lower low tide on 1/28/18.
- 3: Water levels measured between approximately 1-1.5 hours after lower low tide on 6/22/21
- 4:Water levels measured between approximately 1-1.5 hours after higher high tide on 6/24/21.
- 5: Water levels measured throughout the day on 6/25/21.

NM - Not measured. MW-12 was burried beneath quarry spalls until 6/25/21. MW-17 was not yet installed on 6/22/21.

bgs: Below ground surface.

Gray highlighted wells are decommissioned.

Table 5

Table 6. Analytical Results for Groundwater Compliance Monitoring

Project No. 150054, SnoPac, Seattle, Washington

			Location Date Sample	MW-8 06/25/2021 MW-8-062521	MW-12 06/25/2021-06/29/2021 MW-12-062521	MW-13 06/25/2021 MW-13-062521	MW-14 06/25/2021 MW-14-062521	MW-15 06/25/2021 MW-15-062521	MW-16 06/25/2021 MW-16-062521	MW-16-FD 06/25/2021 MW-160-062521	MW-17 06/25/2021 MW-17-062521
Analyte	Fraction	Unit	PCUL	11111-0-002021	10100-12-002021	14144-10-002021	11111-14-002021	10100-10-002021	10100-10-002021	11111-100-002021	11111-17-002021
Metals	1										
Arsenic	D	ug/L	8	1.17	23.7	2.97	1.03	5.55	24.1	23.6	< 1 U
Copper	D	ug/L	3.1	< 1 U	< 1 U	4.03	<1U	3.76	4.54	6.26	<1U
Lead	D	ug/L	5.6	<1U	< 1 U	<1U	<1U	<1U	<1U	< 1 U	<1U
Mercury	D	ug/L	0.025	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U
Nickel	D	ug/L	8.2	1.74	14.1	42.6	2.79	12.9	10	11	2.19
Zinc	D	ug/L	81	< 1 UJ	1.99 J	161 J	1.62 J	4.57 J	5.07 J	17.4 J	5.85 J
Organometallic											
Tributyltin	Т	ug/L		< 0.34 U	< 0.35 U	< 0.33 U	< 0.34 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U
Other SVOCs											
Pentachlorophenol ⁽¹⁾	T	ug/L	0.05			< 0.05 U					
PAHs											
1-Methylnaphthalene	Т	ug/L	800	< 0.05 U	< 0.05 U	0.072	0.12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
2-Methylnaphthalene	Т	ug/L	14	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Acenaphthene	T	ug/L	5.3	< 0.005 U	0.007	3.4	0.87	0.013	< 0.005 U	< 0.005 U	0.0067
Acenaphthylene	Т	ug/L		< 0.005 U	< 0.005 U	0.08	0.0055	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
Anthracene	Т	ug/L	2.1	< 0.005 U	< 0.005 U	0.095	0.039	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
Fluoranthene	Т	ug/L	1.8	< 0.005 U	0.029	0.86	0.11	0.012	0.0065	0.007	0.0065
Fluorene	Т	ug/L	3.7	< 0.005 U	< 0.005 U	1.1	0.1	0.005	< 0.005 U	< 0.005 U	< 0.005 U
Naphthalene	Т	ug/L	1.4	0.0068	0.016	0.005	0.62	0.011	< 0.005 U	< 0.005 U	0.015
Phenanthrene	Т	ug/L		0.0085	0.022	0.014	0.092	0.016	0.014	0.0075	0.012
Pyrene	Т	ug/L	2	< 0.005 U	0.031	0.56	0.11	0.012	0.008	0.0092	0.006
Total cPAHs TEQ (ND=1)(1,2)	Т	ug/L	0.008	< 0.00755 U	0.02018	0.00909	< 0.00755 U	< 0.00755 U	< 0.00755 U	< 0.00755 U	< 0.00755 U
Polychlorinated Biphenyls (PCB	s)										
Total PCBs (Sum of Aroclors) ^(1,3)	T	ug/L	0.005	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
TPHs											
Diesel Range Organics	Т	ug/L	500			230 X					
Motor Oil Range Organics	T	ug/L	500			< 250 U				-	
Extended Range Organics	T	ug/L	500			230 X					

Notes:

Bold - detected

Blue Shaded - Detected result or non-detected RL exceeded PCUL

U - Analyte not detected at or above Reporting Limit (RL) shown

X - Chromatographic pattern does not match fuel standard used for quantitation

FD - Field Duplicate QC sample

D - Dissolved Fraction (filtered) sample result

T - Total Fraction (unfiltered) sample result

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

"--" - indicates results not available

μg/L = microgram per liter

ND = 1 - calculated using the reporting limit value for non-detected components

PCUL = Proposed Cleanup Level

Most stringent screening levels are the most stringent preliminary cleanup levels (PCULs) for groundwater (GWs #2-5) established by the May 2021 LDW Preliminary Cleanup Level Workbook (Ecology, 2021).

- 1. The Laboratory Method Reporting Limit (MRL) is the Practical Quantitation Limit (PQL), as per WAC 173-340-700(6)(d), for purposes of this monitoring program. In accordance with WAC 173-340-700(6)(d), the groundwater PCULs are established at the PQL.
- 2. TEQ: Total toxic equivalent concentration of benzo(a)pyrene, calculated in accordance with WAC 173-340-708(8)(e). The total cPAH TEQ PCUL incorporates TEF values for each individual cPAH and is set at the PQL.
- 3. Total PCBs is the sum of detected Aroclor concentrations.

Aspect Consulting

Table 7. Select Groundwater Analytical Results Pre- and Post- IA

Project No. 150054. Snopac, Seattle, Washington

			Alluv	ium Wells MW-1 and	MW-14		Fil	I wells MW-3 and MW-	15	Fill Well	MW-8 (upgradient of	IA area)
	_	Location Date Sample	MW-1 02/07/2017 MW1-020717	MW-1 01/29/2018 MW01-20180129	MW-14 06/25/2021 MW-14-062521		MW-3 02/08/2017 MW3-020817	MW-3 01/30/2018 MW-03-20180130	MW-15 06/25/2021 MW-15-062521	MW-8 02/08/2017 MW8-020817	MW-8 01/29/2018 MW08-20180129	MW-8 06/25/2021 MW-8-062521
Analyte	Unit	PCUL										
Metals						_						
Arsenic, dissolved	ug/L	8	14.2 J	8.68 J	1.03		12.6 J	8.95 J	5.55	2.42	1.35	1.17
Copper, dissolved	ug/L	3.1	7.59 J	< 5 UJ	< 1 U		8.88 J	5.1 J	3.76	< 5 U	< 5 U	< 1 U
Lead, dissolved	ug/L	8.1	< 1 UJ	< 1 UJ	< 1 U		< 1 UJ	< 1 UJ	< 1 U	< 1 U	< 1 U	< 1 U
Mercury, dissolved	ug/L	0.025	< 1 UJ	< 1 UJ	< 0.01 U		< 1 UJ	< 1 UJ	< 0.01 U	< 1 U	< 1 U	< 0.01 U
Nickel, dissolved	ug/L	8.2	24.3 J	2.64 J	2.79		9.81 J	2.55 J	12.9	3.53	2.17	1.74
Zinc, dissolved	ug/L	81	12.3 J	12.4 J	1.62 J		15.3 J	7.49 J	4.57 J	< 5 U	< 5 U	< 1 UJ
Polycyclic Aromatic Hydroca	rbons (PA	NHs)				_						
1-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U	0.12		< 0.2 U	< 0.2 U	< 0.05 U	< 0.2 U	< 0.2 U	< 0.05 U
2-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U	< 0.05 U		< 0.2 U	< 0.2 U	< 0.05 U	< 0.2 U	< 0.2 U	< 0.05 U
Acenaphthene	ug/L	5.3	< 0.03 U	< 0.03 U	0.87		0.59	< 0.03 U	0.013	< 0.03 U	< 0.03 U	< 0.005 U
Acenaphthylene	ug/L		< 0.03 U	< 0.03 U	0.0055		< 0.03 U	< 0.03 U	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Anthracene	ug/L	2.1	< 0.03 U	< 0.03 U	0.039		0.052	< 0.03 U	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Benz(a)anthracene	ug/L		< 0.03 U	< 0.03 U	< 0.01 U		< 0.03 U	0.068	< 0.01 U	< 0.03 U	< 0.03 U	< 0.01 U
Benzo(a)pyrene	ug/L		< 0.03 U	< 0.03 U	0.11		< 0.03 U	0.14	0.012	< 0.03 U	< 0.03 U	< 0.005 U
Benzo(b)fluoranthene	ug/L		< 0.03 U	< 0.03 U	0.1		0.042	0.2	0.005	< 0.03 U	< 0.03 U	< 0.005 U
Benzo(g,h,i)perylene	ug/L		< 0.03 U	< 0.03 U	0.62		< 0.03 U	0.13	0.011	< 0.03 U	< 0.03 U	0.0068
Benzo(k)fluoranthene	ug/L		< 0.03 U	< 0.03 U	0.092		< 0.03 U	0.06	0.016	< 0.03 U	< 0.03 U	0.0085
Chrysene	ug/L		< 0.03 U	< 0.03 U	0.11		0.05	0.15	0.012	< 0.03 U	< 0.03 U	< 0.005 U
Dibenzo(a,h)anthracene	ug/L		< 0.03 U	< 0.03 U	< 0.005 U		< 0.03 U	< 0.03 U	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Fluoranthene	ug/L	1.8	< 0.03 U	< 0.03 U	< 0.005 U		0.27	0.08	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Fluorene	ug/L	3.7	< 0.03 U	< 0.03 U	< 0.005 U		0.27	0.08	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Indeno(1,2,3-cd)pyrene	ug/L		< 0.03 U	< 0.03 U	< 0.005 U		< 0.03 U	0.1	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Naphthalene	ug/L	1.4	< 0.03 U	< 0.03 U	< 0.005 U		< 0.03 U	< 0.03 U	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Phenanthrene	ug/L		< 0.03 U	< 0.03 U	< 0.005 U		< 0.03 U	< 0.03 U	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Pyrene	ug/L	2	< 0.03 U	< 0.03 U	< 0.005 U		0.062	0.14	< 0.005 U	< 0.03 U	< 0.03 U	< 0.005 U
Total cPAHs TEQ ^(1,2)	ug/L	0.000016	< 0.02265 U	< 0.02265 U	< 0.00755 U		0.0257	0.1858	< 0.00755 U	< 0.02265 U	< 0.02265 U	< 0.00755 U
Other Semi-Volatile Organic	Compoun	ds (SVOCs)										
Pentachlorophenol	ua/L	0.002	< 2 U	< 2 U			< 2 U	< 2 U		< 2 U	< 2 U	
Polychlorinated Biphenyls (P	CBs)											
Total PCBs (Sum of Aroclors) ⁽¹⁾	∃ ug/L	0.000007	< 0.1 U	< 0.1 U	< 0.005 U		< 0.1 U	< 0.1 U	< 0.005 U	< 0.1 U	< 0.1 U	< 0.005 U
Total Petroleum Hydrocarbor	ns (TPH)											
Diesel-Range Organics	ug/L	500	< 50 U	< 50 U			< 70 U	< 50 U		110 X	100 X	
Motor Oil-Range Organics	ug/L	500	< 250 U	< 250 U		1	< 350 U	< 250 U		< 250 U	< 250 U	
Diesel + Oil-Range Organics	ug/L	500	< 250 U	< 250 U]	< 350 U	< 250 U		110 X	100 X	

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent

U - Analyte not detected at or above Reporting Limit (RL) shown.

- UJ Analyte not detected and the Reporting Limit (RL) is an estimate.
- J Result value estimated
- X Chromatographic pattern does not match fuel standard used for quantitation.

Monitoring Well location names highlighted in gray were decommissioned prior to the interim action in 2020.

Metals are reported in the dissolved fraction (filtered) all of the analytes reported from the total fraction (unfiltered)

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Most stringent screening levels are the most stringent preliminary cleanup levels (PCULs) for groundwater (GWs #2-5) established by the May 2021 LDW Preliminary Cleanup Level Workbook (Ecology, 2021).

- 1. The Laboratory Method Reporting Limit (MRL) is the Practical Quantitation Limit (PQL), as per WAC 173-340-700(6)(d), for purposes of this monitoring program. In accordance with WAC 173-340-700(6)(d), the groundwater PCULs are established at the PQL.
- 2. TEQ: Total toxic equivalent concentration of benzo(a)pyrene, calculated in accordance with WAC 173-340-708(8)(e). The total cPAH TEQ PCUL incorporates TEF values for each individual cPAH and is set at the PQL.
- 3. Total PCBs is the sum of detected Aroclor concentrations.

Table 7. Select Groundwater Analytical Results Pre- and Post- IA

Project No. 150054. Snopac, Seattle, Washington

				Fill Wells MW-11	and MW-13		Fill Well	MW-12 (upgradient o	f IA are
		Location Date Sample	MW-11 02/08/2017 MW11-020817	MW-11 01/29/2018 MW11-20180129	MW-11 08/27/2019 MW-11-082719	MW-13 06/25/2021 MW-13-062521	MW-12 02/07/2017 MW12-020717	MW-12 01/28/2018 MW12-20180128	06 MW
Analyte	Unit	PCUL							
/letals									
Arsenic, dissolved	ug/L	8	12.8 J	7.84 J		2.97	1.1	2.19	
Copper, dissolved	ug/L	3.1	11.8 J	9.7 J		4.03	< 5 U	< 5 U	
ead, dissolved	ug/L	8.1	< 1 UJ	< 1 UJ		< 1 U	< 1 U	<1U	•
Mercury, dissolved	ug/L	0.025	< 1 UJ	< 1 UJ		< 0.01 U	< 1 U	<1U	< (
Nickel, dissolved	ug/L	8.2	5.34 J	3.12 J	-	42.6	5.08	3.27	1
Zinc, dissolved	ug/L	81	18.8 J	11.5 J	-	161 J	< 5 U	< 5 U	1
Polycyclic Aromatic Hydroca	rbons (PA	Hs)							
-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U		0.072	< 0.2 U	< 0.2 U	< (
2-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U		< 0.05 U	< 0.2 U	< 0.2 U	< (
Acenaphthene	ug/L	5.3	< 0.03 U	< 0.03 U		3.4	< 0.03 U	< 0.03 U	0
Acenaphthylene	ug/L		< 0.03 U	< 0.03 U		0.08	< 0.03 U	< 0.03 U	< 0
Anthracene	ug/L	2.1	< 0.03 U	< 0.03 U		0.095	< 0.03 U	< 0.03 U	< 0
Benz(a)anthracene	ug/L		0.046	< 0.03 U		< 0.01 U	< 0.03 U	< 0.03 U	< (
Benzo(a)pyrene	ug/L		0.072	< 0.03 U		0.86	< 0.03 U	< 0.03 U	0
Benzo(b)fluoranthene	ug/L		0.11	< 0.03 U		1.1	< 0.03 U	< 0.03 U	< 0
Benzo(g,h,i)perylene	ug/L		0.062	< 0.03 U		0.005	< 0.03 U	< 0.03 U	0
Benzo(k)fluoranthene	ug/L		0.035	< 0.03 U		0.014	< 0.03 U	< 0.03 U	0
Chrysene	ug/L		0.073	< 0.03 U		0.56	< 0.03 U	< 0.03 U	0
Dibenzo(a,h)anthracene	ug/L		< 0.03 U	< 0.03 U		0.019	< 0.03 U	< 0.03 U	0
Fluoranthene	ug/L	1.8	0.082	< 0.03 U		< 0.005 U	< 0.03 U	< 0.03 U	0
luorene	ug/L	3.7	0.082	< 0.03 U		< 0.005 U	< 0.03 U	< 0.03 U	0
ndeno(1,2,3-cd)pyrene	ug/L		0.053	< 0.03 U		< 0.005 U	< 0.03 U	< 0.03 U	0
Naphthalene	ug/L	1.4	< 0.03 U	< 0.03 U		0.019	< 0.03 U	< 0.03 U	0
Phenanthrene	ug/L		0.044	< 0.03 U		< 0.005 U	< 0.03 U	< 0.03 U	< 0
Pyrene	ug/L	2	0.11	< 0.03 U		< 0.005 U	< 0.03 U	< 0.03 U	0.
otal cPAHs TEQ ^(1,2)	ug/L	0.000016	0.09863	< 0.02265 U		0.00909	< 0.02265 U	< 0.02265 U	0.0
Other Semi-Volatile Organic C	Compound	ds (SVOCs)							
Pentachlorophenol	ua/L	0.002	< 2 U	< 2 U	0.44	< 0.05 U	< 2 U	< 2 U	
Polychlorinated Biphenyls (P	J.								
Fotal PCBs (Sum of Aroclors) ^{(1,}		0.000007	< 0.1 U	< 0.1 U		< 0.005 U	< 0.1 U	< 0.1 U	< 0
Total Petroleum Hydrocarbon								1	
Diesel-Range Organics	ug/L	500	100 X	< 60 U		230 X	< 50 U	110 X	
Motor Oil-Range Organics	ug/L	500	< 250 U	< 300 U		< 250 U	< 250 U	290	
Diesel + Oil-Range Organics	ug/L	500	100 X	< 300 U		230 X	< 250 U	400 X	

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent

U - Analyte not detected at or above Reporting Limit (RL) shown.

- UJ Analyte not detected and the Reporting Limit (RL) is an estimate.
- J Result value estimated
- X Chromatographic pattern does not match fuel standard used for quantitation.

Monitoring Well location names highlighted in gray were decommissioned prior to the interim action in 2020.

Metals are reported in the dissolved fraction (filtered) all of the analytes reported from the total fraction (unfiltered)

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Most stringent screening levels are the most stringent preliminary cleanup levels (PCULs) for groundwater (GWs #2-5) established by the May 2021 LDW Preliminary Cleanup Level Workbook (Ecology, 2021).

- 1. The Laboratory Method Reporting Limit (MRL) is the Practical Quantitation Limit (PQL), as per WAC 173-340-700(6)(d), for purposes of this monitoring program. In accordance with WAC 173-340-700(6)(d), the groundwater PCULs are established at the PQL.
- 2. TEQ: Total toxic equivalent concentration of benzo(a)pyrene, calculated in accordance with WAC 173-340-708(8)(e). The total cPAH TEQ PCUL incorporates TEF values for each individual cPAH and is set at the PQL.
- 3. Total PCBs is the sum of detected Aroclor concentrations.

Aspect Consulting

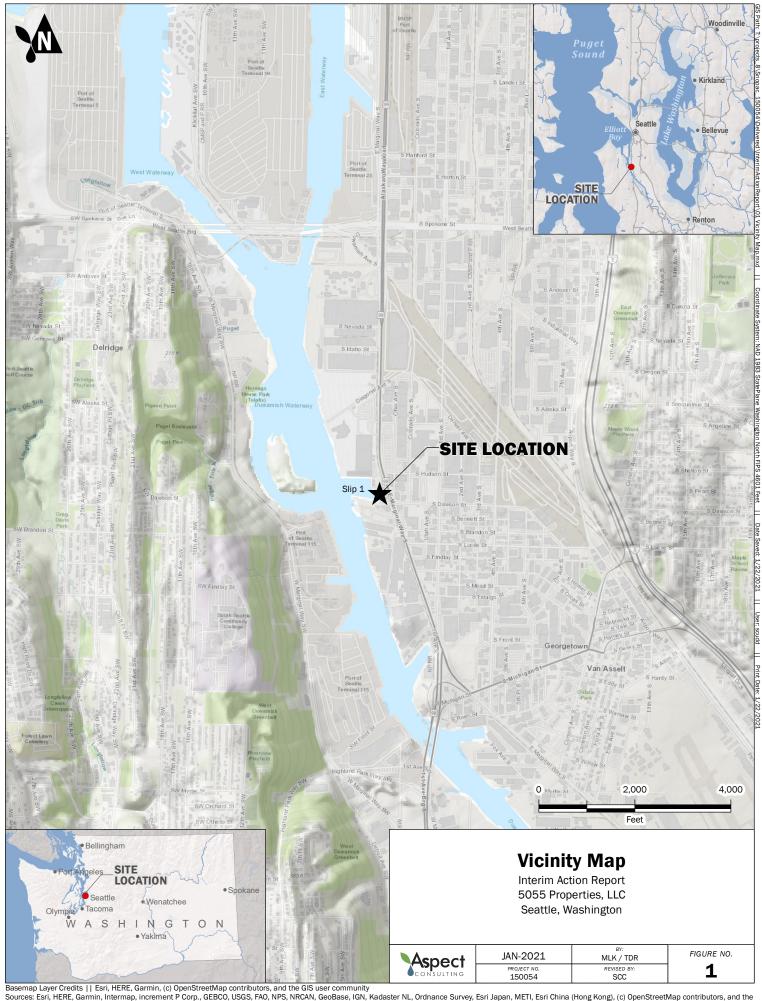
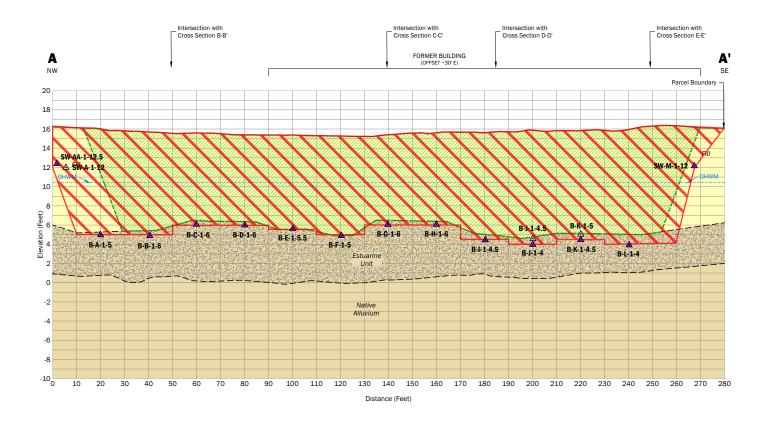
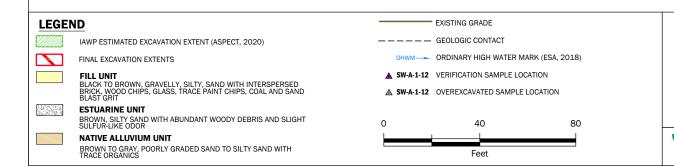
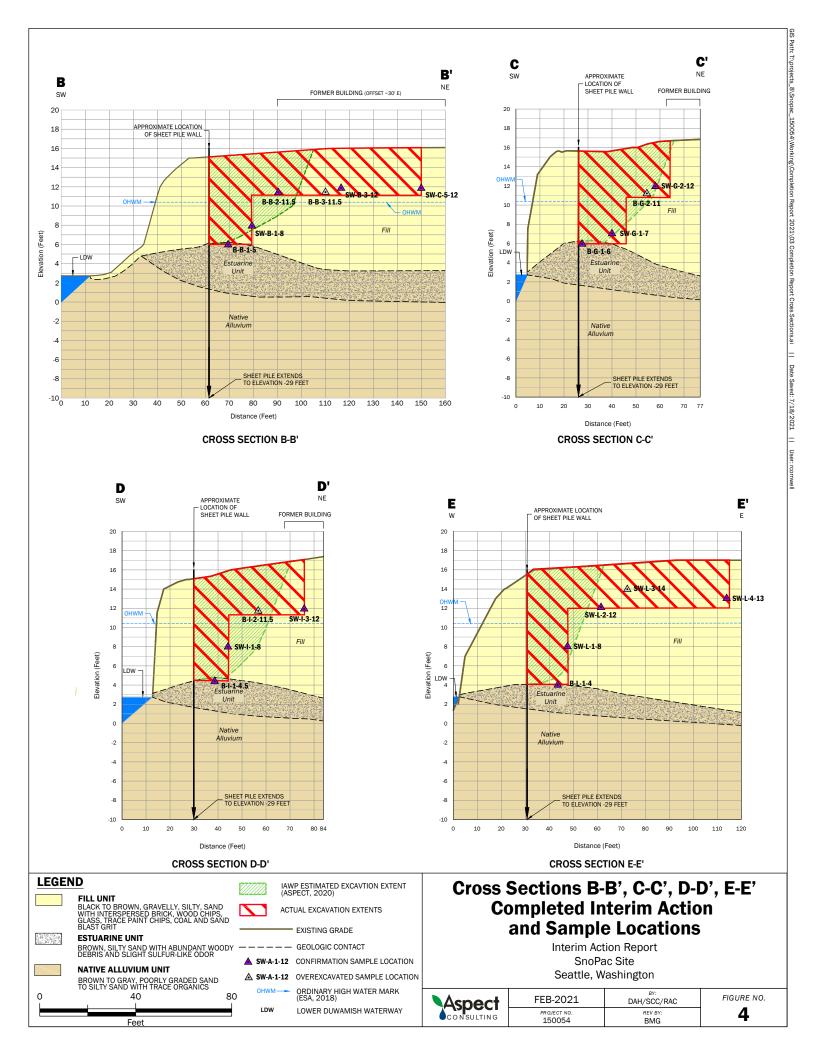
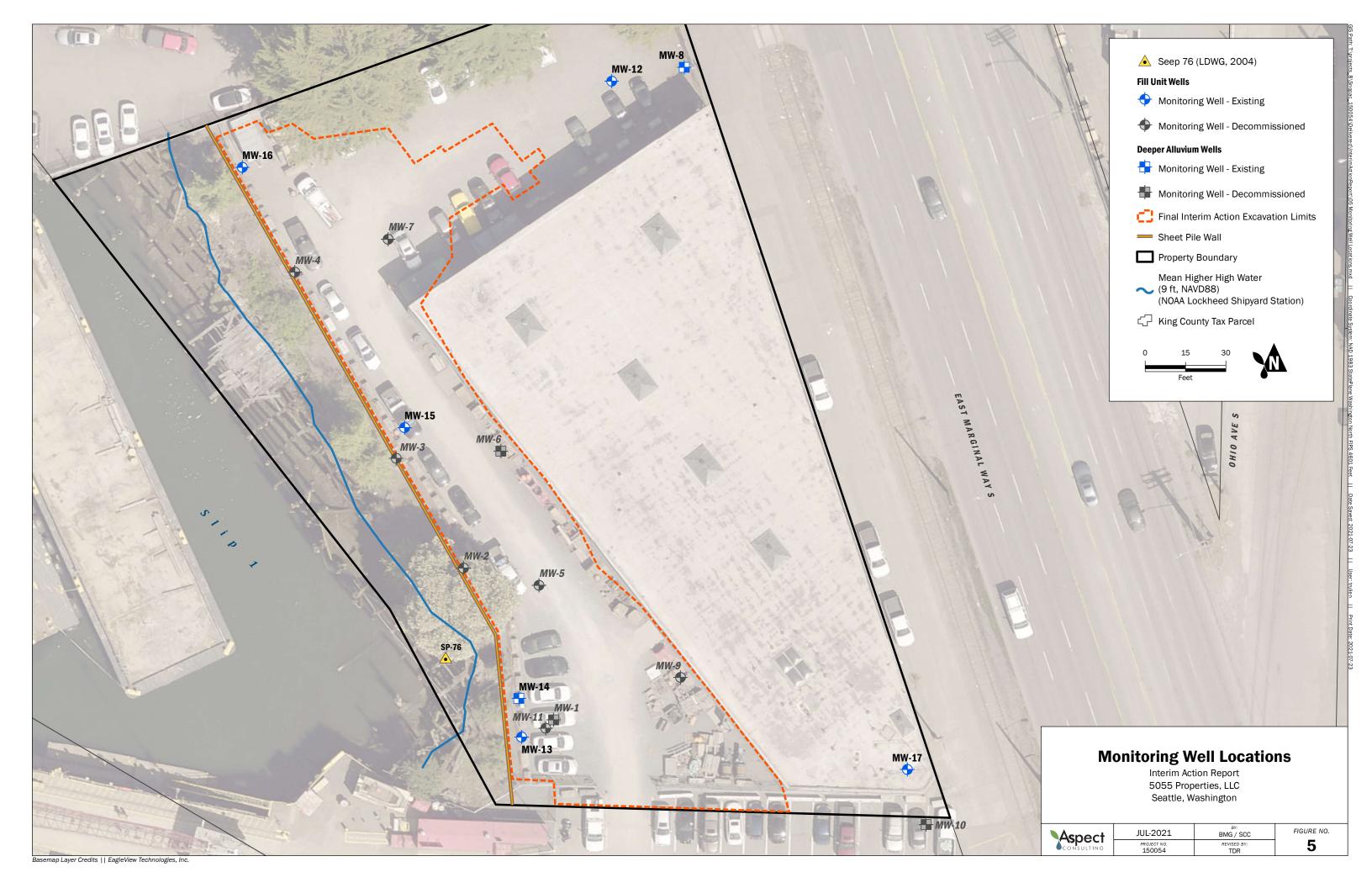




FIGURE NO.

3





Cross Section A-A' Completed Interim Action and Sample Locations

Interim Action Report SnoPac Site Seattle, Washington

Aspect	FEB-2021	BY: DAH/SCC/RAC
CONSULTING	PROJECT NO. 150054	REV BY: BMG

APPENDIX A

Reference Remedial Investigation Tables and Figures

Table 1. Historical Sediment Data

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location:	B3b		LDW-SS3	1	LDW-SC1	7	LDW-SC	17	LDW-S	C17	LDW-SC	:17	EST216	42
				Sample ID:			LDW-SS31_		LDW-SC17_		LDW-SC17	_1-2	LDW-SC1	7_2-4	LDW-SC17	_	EST20-06	SD0044
				Sample Date:	8/17/20		1/21/200		2/23/2006		2/23/200		2/23/20		2/23/200		9/17/1997	6/1/2015
				Matrix:	Sedime		Sedimen		Sediment	t	Sedimer	nt	Sedim		Sedime		Sediment	Sediment
		LDW ROD Remedi	al Action Levels	Sediment Interval (ft):	0 - 0.3	3	0 - 0.33		0 - 1		1- 2		2 - 4		6 - 8.2	?	0 - 0.33	0 - 0.33
		Human Health &	Upper Limit for															
Analyte	Units	Benthic COC RALs	ENR															
Polychlorinated Biphenyls (
Aroclor 1016	mg/kg dw				0.005	U	0.01	U	0.11	U	0.0425	U	0.45	U	0.09	U		0.0065 U
Aroclor 1221	mg/kg dw				0.01	Ū	0.01	Ü	0.11	Ū	0.0425	Ū	0.45	Ū	0.09	Ü		0.0125 U
Aroclor 1232	mg/kg dw				0.005	Ü	0.01	Ü	0.11	Ū	0.0425	Ū	0.45	Ū	0.09	Ü		0.0065 U
Aroclor 1242	mg/kg dw				0.005	Ū	0.01	U	0.11	U	0.0425	Ū	0.45	Ū	0.48			0.028
Aroclor 1248	mg/kg dw				0.005	U	0.195	U	0.39		0.32		1.7		0.09	U		0.0065 U
Aroclor 1254	mg/kg dw				0.18		0.053		0.51		0.5		2.7		1			0.1
Aroclor 1260	mg/kg dw				0.17		0.043		0.32		0.22		5.4		0.45			0.062
Total PCB Aroclors	mg/kg dw				0.35		0.096		1.22		1.04		9.8		1.9	Ì	0.3	0.19
		12	36															
Total PCB Aroclors	mg/kg OC	(195 for top 2 ft)	(195 for top 2 ft)		19.2		4.42		39.9		32		154		58.6		13.6	3.95
Polynuclear Aromatic Hydro	ocarbons (P	AHs)																
1-Methylnaphthalene	mg/kg dw				0.014				0.031	U	0.05	U	2.6		0.4			0.013
2-Methylnaphthalene	mg/kg dw				0.034		0.049	U	0.069		0.050	U	4.5		0.61			0.021
Acenaphthene	mg/kg dw				0.035		0.049	U	0.065		0.38		4.6		1.2			0.034 J
Anthracene	mg/kg dw				1.1		0.17		0.52		1.60		1.9		1.7			0.71 J
Benz(a)anthracene	mg/kg dw				2.8		0.28		1.1		1.5	J	1.5		2.1			1.0 J
Benzo(a)pyrene	mg/kg dw				1.4		0.42		1.3		1.4		0.94		1.6			1.2 J
Benzo(b)fluoranthene	mg/kg dw				1.7		0.58		2.2		1.8		1.7		2.5			2.0 J
Benzo(k)fluoranthene	mg/kg dw				1.2		0.57		1.3		1.4		0.99		1.3			0.55 J
Chrysene	mg/kg dw				5.4		0.63		1.8		2.4	J	1.8		2.6			2.3 J
Dibenz(a,h)anthracene	mg/kg dw				0.24		0.049	U	0.08		0.14		0.07	U	0.26			0.21 J
Dibenzofuran	mg/kg dw				0.036		0.049	U	0.077		0.21		1.7		0.71			0.033 J
Fluoranthene	mg/kg dw				3.6		0.67		2		5.6		7.4		7.1			1.6 J
Fluorene	mg/kg dw				0.15		0.049	U	0.11		0.34		4.3		1.4			0.068 J
Indeno(1,2,3-cd)pyrene	mg/kg dw				0.66		0.11		0.32		0.57	J	0.18		0.32			0.82 J
Naphthalene	mg/kg dw				0.036		0.049	U	0.12		0.15		3.4		1.2			0.043
Pyrene	mg/kg dw				2.3		0.7		2.4		3.7	J	5.7		7.6			1.1 J
2-Methylnaphthalene	mg/kg OC	76	228		1.87		2.24	U	2.25		1.52	U	70.9		18.8			0.437
Acenaphthene	mg/kg OC	32	96		1.92		2.24	U	2.12		11.7		72.4		37			0.707 J
Acenaphthylene	mg/kg OC				4.40		2.24	U	2.19		2.77	J	1.46	J	3.02			1.02
Anthracene	mg/kg OC		1,320		60.4		7.83		17		49.2		29.9		52.5			14.8 J
Benz(a)anthracene	mg/kg OC	220	660		154		12.9		35.9		46.2	J	23.6		64.8			20.8 J
Benzo(a)pyrene	mg/kg OC		594		76.9		19.4		42.5		43.1		14.8		49.4			24.9 J
Benzo(g,h,i)perylene	mg/kg OC	62	186		33		5.07		8.17		15.1		2.2	J	10.8			15.4
Total benzofluoranthenes	mg/kg OC		1,380		159		53		114		98.5		42.5		117			53 J
Chrysene	mg/kg OC	220	660		297		29		58.8		73.8	J	28.3		80.2			47.8 J
Dibenz(a,h)anthracene	mg/kg OC	24	72		13.2		2.24	U	2.61		4.31		1.1	U				4.37 J
Dibenzofuran	mg/kg OC	30	90		1.98		2.24	U	2.52		6.46		26.8		21.9			0.686 J

Table 1

				Sample Location:	B3b	LDW-SS31	LDW-SC17	LDW-SC17	LDW-SC17	LDW-SC17	EST216	42
				Sample ID:		LDW-SS31 0-10				LDW-SC17 6-8.2	EST20-06	SD0044
				Sample Date:	8/17/2004	1/21/2005	2/23/2006	2/23/2006	2/23/2006	2/23/2006	9/17/1997	6/1/2015
				Matrix:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
		LDW ROD Remed	ial Action Levels	Sediment Interval (ft):		0 - 0.33	0 - 1	1- 2	2 - 4	6 - 8.2	0 - 0.33	0 - 0.33
				, ,								
		Human Health &	Upper Limit for									
Analyte	Units	Benthic COC RALs	ENR									
Fluoranthene	mg/kg OC	320	960		198	30.9	65.4	172	117	219		33.3 J
Fluorene	mg/kg OC	46	138		8.24	2.24 L	0.00	10.5	67.7	43.2		1.41 J
Indeno(1,2,3-cd)pyrene	mg/kg OC		204		36.3	5.07	10.5	17.5 J	2.83	9.88		17 J
Naphthalene	mg/kg OC		594		1.98	2.24 L	0.0_	4.62	53.5	37		0.894
Phenanthrene	mg/kg OC		600		41.8	11.1	18.3	36.9	205	130		6.86 J
Pyrene	mg/kg OC	2,000	6,000		126	32.3	78.4	114 J	89.8	235		22.9 J
Total HPAHs	mg/kg OC	1,920	5,760		1,090	188	418	585 J	321 J	793		240 J
Total LPAHs	mg/kg OC	740	2,220		121	18.9	47.1	117 J	425 J	302		25.7 J
	μg											
	TEQ/kg											
сРАН	dw	1000	3000		2,200	600	1,800	2,000 J	1,400	2,400		1,740 J
Metals												
Arsenic	mg/kg dw	57	171		725 J	122	110	170	60	76		24.9 J
Cadmium	mg/kg dw		30.6		1.67	3.2	4.5	7.6	15	20.4		0.6175 J
Chromium	mg/kg dw		1,560		42.5	55	47	47	386	50.3		25.8 J
Copper	mg/kg dw	780	2,340		495 J	245	187	224	219	235		87.3 J
Lead	mg/kg dw	900	2,700		437	172	173	286	1,740	470		39.85 J
Mercury	mg/kg dw	0.82	2.46		0.059	0.33	0.5	0.6	1.29	0.75		0.2405
Silver	mg/kg dw	12.2	36.6		0.891	1.2	1	1.4	2	2.2		0.274 J
Zinc	mg/kg dw	820	2,460		2,080	997	1,260	2,050	3,840	4,550		209 J
Organotin Compounds												_
Tributyltin ion	μg/kg dw				320	81						
Phthalates												_
Bis(2-ethylhexyl)phthalate	mg/kg dw				0.26 J	0.16	0.570	0.44 J	2.3	1		
Bis(2-ethylhexyl)phthalate	mg/kg OC		282		14.3 J	7.37	18.6	13.5 J	36.2	30.9		
Chlorobenzenes												
1,2,4-Trichlorobenzene	mg/kg dw				0.025 U	0.049 L	0.009 J	0.017 J	0.11 J	0.003 U		
1,2,4-Trichlorobenzene	mg/kg OC		4.86		1.37 U			0.523 J	1.73 J	0.102 U		
Other SVOCs and COCs							•					
Benzoic acid	μg/kg dw	1,300	3,900		500 U	485 L	320	320	3,000 J	295 U		
Organic Carbon												
Total Organic Carbon	%				1.82	2.17	3.06	3.25	6.35	3.24	2.21	4.81
Notos:	•	•	·			•	•	•	•			

Results for core LDW-SC17 are shown for reference purposes only. With the exception of PCBs, RALs are not defined below 4 inches in Category 2/3 recovery areas.

Nondetects reported as 1/2 detection limit.

Lab duplicates have been averaged.

>Cat 2/3 RAL and ≤UL for ENR (ENR)

dw = dry weight

LDW = Lower Duwamish Waterway

RAL = remedial action level

ROD = record of decision

TEQ = toxicity equivalence

Data Qualifiers: J = result is estimated, U = result is not detected

Table data courtesy of Integral Consulting, Inc.

Aspect Consulting

5/26/2020

V:\150054 Snopac-Manson\Deliverables\Combined RI\Tables\Table 1 Historical Sediment Data

COC = contaminant of concern ENR = enhanced natural recovery OC = organic carbon SVOC = semivolatile organic compound -- = no data available

Table 1. Historical Sediment Data

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location:	44	45	46	47	48	49	50	51	52	53	54
				Sample ID:	SD0046	SD0047	SD0048	SD0049	SD0050	SD0051	SD0052	SD0053	SD0054	SD0055	SD0056
				Sample Date:	6/2/2015	6/2/2015	6/4/2015	6/3/2015	6/3/2015	6/3/2015	6/1/2015	6/3/2015	6/3/2015	6/1/2015	6/1/2015
				Matrix:	Sediment										
		LDW ROD Remed	ial Action Levels	Sediment Interval (ft):	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33
		Lluman Haalth 9	Unner Limit for												
Amalada	l lucita	Human Health &	Upper Limit for ENR												
Analyte		Benthic COC RALs	ENR				<u> </u>								
Polychlorinated Biphenyls		ı	ı					•	ı	ı	ı		1		
Aroclor 1016	mg/kg dw				0.006 U	0.0065 U	0.006 U								
Aroclor 1221	mg/kg dw				0.0115 U	0.0125 U	0.012 U								
Aroclor 1232	mg/kg dw				0.006 U	0.0065 U									
Aroclor 1242	mg/kg dw				0.074	0.054	0.03								
Aroclor 1248	mg/kg dw				0.006 U	0.0065 U									
Aroclor 1254	mg/kg dw				0.11	0.11	0.24								
Aroclor 1260	mg/kg dw				0.11	0.13	0.18								
Total PCB Aroclors	mg/kg dw				0.294	0.294	0.45								
		12	36												
Total PCB Aroclors	mg/kg OC		(195 for top 2 ft)		8.33	7	12.6								
Polynuclear Aromatic Hydro	ocarbons (P	AHs)													
1-Methylnaphthalene	mg/kg dw				0.009	0.009	0.017 J								
2-Methylnaphthalene	mg/kg dw				0.013	0.015	0.024 J					-		I	
Acenaphthene	mg/kg dw				0.015	0.024	0.038 J								
Anthracene	mg/kg dw				0.14	0.22	0.25 J								
Benz(a)anthracene	mg/kg dw				0.44	0.53	0.5 J								
Benzo(a)pyrene	mg/kg dw				0.41	0.51	0.56 J								
Benzo(b)fluoranthene	mg/kg dw				0.68	0.83	0.94 J								
Benzo(k)fluoranthene	mg/kg dw				0.24	0.28	0.3 J								
Chrysene	mg/kg dw				0.66	0.91	0.85 J								
Dibenz(a,h)anthracene	mg/kg dw				0.068	0.087	0.096 J								
Dibenzofuran	mg/kg dw				0.018	0.028	0.027 J								
Fluoranthene	mg/kg dw				0.8	0.96	0.85 J								
Fluorene	mg/kg dw				0.03	0.049	0.045 J								
Indeno(1,2,3-cd)pyrene	mg/kg dw				0.27	0.34	0.4 J								
Naphthalene	mg/kg dw				0.022	0.021	0.042 J								
Pyrene	mg/kg dw				0.76	0.86	0.85 J								
2-Methylnaphthalene	mg/kg OC	76	228		0.368	0.357	0.67 J								
Acenaphthene	mg/kg OC	32	96		0.425	0.571	1.06 J								
Acenaphthylene	mg/kg OC				0.51	0.548	0.894 J								
Anthracene	mg/kg OC		1,320		3.97	5.24	6.98 J								
Benz(a)anthracene	mg/kg OC		660		12.5	12.6	14 J								
Benzo(a)pyrene	mg/kg OC		594		11.6	12.1	15.6 J								
Benzo(g,h,i)perylene	mg/kg OC		186		7.08	7.62	10.6 J								
Total benzofluoranthenes	mg/kg OC		1,380		26.1	26.4	34.6 J							<u></u>	
Chrysene	mg/kg OC		660		18.7	21.7	23.7 J								
Dibenz(a,h)anthracene	mg/kg OC		72		1.93	2.07	2.68 J							<u></u>	
Dibenzofuran	mg/kg OC		90		0.51	0.667	0.754 J							<u></u>	
DIDCHZUIUIAII	mg/kg OC	50	90		0.01	0.007	U.104 J								

Table 1

				Sample Location:	44	45	46	47	48	49	50	51	52	53	54
				Sample ID:	SD0046	SD0047	SD0048	SD0049	SD0050	SD0051	SD0052	SD0053	SD0054	SD0055	SD0056
				Sample Date:	6/2/2015	6/2/2015	6/4/2015	6/3/2015	6/3/2015	6/3/2015	6/1/2015	6/3/2015	6/3/2015	6/1/2015	6/1/2015
				Matrix:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
		LDW ROD Remed	ial Action Levels	Sediment Interval (ft):	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33
Analyte	Units	Human Health & Benthic COC RALs	Upper Limit for ENR												
Fluoranthene	mg/kg OC	320	960		22.7	22.9	23.7 J								
Fluorene	mg/kg OC	46	138		0.85	1.17	1.26 J								
Indeno(1,2,3-cd)pyrene	mg/kg OC	68	204		7.65	8.1	11.2 J								
Naphthalene	mg/kg OC		594		0.623	0.5	1.17 J		-			-		1	
Phenanthrene	mg/kg OC		600		5.38	7.14	8.66 J								
Pyrene	mg/kg OC		6,000		21.5	20.5	23.7 J		-					-	
Total HPAHs	mg/kg OC		5,760		130	134	160 J								
Total LPAHs	mg/kg OC	740	2,220		11.8	15.2	20 J								
сРАН	μg TEQ/kg dw	1000	3000		607	752	821 J								
Metals		•	•				•			•					
Arsenic	mg/kg dw	57	171		23.4	36.4	102 J	66.2	121	733	52 J	173	474	29.3 J	44.9 J
Cadmium	mg/kg dw	10.2	30.6		0.625	0.61	0.841 J	1.54	1.68	1.28	1.25 J	1.38	1.86	0.63 J	0.453 J
Chromium	mg/kg dw	520	1,560		32.5	31.9	36.4 J	38.6	30.2	47.8	36.8 J	44.3	50	29.5 J	21.7 J
Copper	mg/kg dw	780	2,340		91.1	100	143 J	156	143	240	128 J	199	308	114 J	89.3 J
Lead	mg/kg dw	900	2,700		41.2 J	45.1 J	81.2 J	88.7 J	113 J	176 J	66 J	155 J	299 J	41.4 J	36.5 J
Mercury	mg/kg dw	0.82	2.46		0.274	0.238	0.239	0.284 J	0.261 J	0.601 J	0.288	0.437 J	0.32 J	0.194	0.185
Silver	mg/kg dw	12.2	36.6		0.362	0.344	0.439	0.423	0.459	0.473	0.376 J	0.546	0.761	0.317 J	0.233 J
Zinc	mg/kg dw		2,460		194	206	406 J	527 J	639 J	804 J	421 J	720 J	1,560 J	216 J	193 J
Organotin Compounds															
Tributyltin ion	μg/kg dw														
Phthalates															
Bis(2-ethylhexyl)phthalate	mg/kg dw								-			-		-	
Bis(2-ethylhexyl)phthalate	mg/kg OC	94	282												
Chlorobenzenes															
1,2,4-Trichlorobenzene	mg/kg dw														
1,2,4-Trichlorobenzene	mg/kg OC	1.62	4.86												
Other SVOCs and COCs															
Benzoic acid	μg/kg dw	1,300	3,900												
Organic Carbon															
Total Organic Carbon	%				3.53	4.2	3.58	3.95	4.07	6.52	3.59	4.08	3.83	3.78	4.27
Notes:				•											

Notes

Results for core LDW-SC17 are shown for reference purposes only. With the exception of PCBs, RALs are not defined below 4 inches in Category 2/3 recovery areas.

Nondetects reported as 1/2 detection limit.

Lab duplicates have been averaged.

>Cat 2/3 RAL and ≤UL for ENR (ENR)

UL for ENR (Active Remediation)

dw = dry weight

LDW = Lower Duwamish Waterway

RAL = remedial action level

ROD = record of decision

TEQ = toxicity equivalence

Data Qualifiers: J = result is estimated, U = result is not detected

Table data courtesy of Integral Consulting, Inc.

Aspect Consulting

5/26/2020
V:\150054 Snopac-Manson\Deliverables\Combined RI\Tables\Table 1 Historical Sediment Data

COC = contaminant of concern
ENR = enhanced natural recovery
OC = organic carbon
SVOC = semivolatile organic compound
--- = no data available

Table 1. Historical Sediment Data

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location:	55	56	57	58	59	60	60
				Sample ID:	SD0057	SD0058	SD0059	SD0060	SD0061	SD0062	SD0063 (Field Rep)
				Sample Date:	6/1/2015	6/3/2015	6/1/2015	6/3/2015	6/4/2015	6/5/2015	6/5/2015
				Matrix:	Sediment						
		LDW ROD Remed	ial Action Levels	Sediment Interval (ft):	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33
				· ,							
		Human Health &	Upper Limit for								
Analyte	Units	Benthic COC RALs	ENR								
Polychlorinated Biphenyls (
Aroclor 1016	mg/kg dw										
Aroclor 1221	mg/kg dw										
Aroclor 1232	mg/kg dw										
Aroclor 1242	mg/kg dw										
Aroclor 1248	mg/kg dw										
Aroclor 1254	mg/kg dw										
Aroclor 1260	mg/kg dw										
Total PCB Aroclors	mg/kg dw				-						
		12	36								
Total PCB Aroclors	mg/kg OC		(195 for top 2 ft)								
Polynuclear Aromatic Hydro	carbons (PA	AHs)									
1-Methylnaphthalene	mg/kg dw	-			-			1			•
2-Methylnaphthalene	mg/kg dw										
Acenaphthene	mg/kg dw										
Anthracene	mg/kg dw										
Benz(a)anthracene	mg/kg dw										
Benzo(a)pyrene	mg/kg dw										
Benzo(b)fluoranthene	mg/kg dw										
Benzo(k)fluoranthene	mg/kg dw										
Chrysene	mg/kg dw										
Dibenz(a,h)anthracene	mg/kg dw										
Dibenzofuran	mg/kg dw										
Fluoranthene	mg/kg dw										
Fluorene	mg/kg dw										
Indeno(1,2,3-cd)pyrene	mg/kg dw										
Naphthalene	mg/kg dw										
Pyrene	mg/kg dw	-									-
2-Methylnaphthalene	mg/kg OC	76	228		-						-
Acenaphthene	mg/kg OC	32	96								-
Acenaphthylene	mg/kg OC	-			-			-			-
Anthracene	mg/kg OC		1,320								
Benz(a)anthracene	mg/kg OC	220	660								
Benzo(a)pyrene	mg/kg OC	198	594								
Benzo(g,h,i)perylene	mg/kg OC	62	186								
Total benzofluoranthenes	mg/kg OC		1,380								
Chrysene	mg/kg OC		660								
Dibenz(a,h)anthracene	mg/kg OC		72								
Dibenzofuran	mg/kg OC		90								-

Table 1

DRAFT **Table 1. Historical Sediment Data**

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location:	55	56	57	58	59	60	60
				Sample ID:	SD0057	SD0058	SD0059	SD0060	SD0061	SD0062	SD0063 (Field Rep)
				Sample Date:	6/1/2015	6/3/2015	6/1/2015	6/3/2015	6/4/2015	6/5/2015	6/5/2015
				Matrix:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
		LDW ROD Remedi	al Action I evels	Sediment Interval (ft):	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33	0 - 0.33
				Common morral (re)	0.00	0.00	0 0.00	0 0.00	0 0.00	0.00	0 0.00
Analyte	Units	Human Health & Benthic COC RALs	Upper Limit for ENR								
Fluoranthene	mg/kg OC	320	960								
Fluorene	mg/kg OC	46	138		-						
Indeno(1,2,3-cd)pyrene	mg/kg OC		204		-						
Naphthalene	mg/kg OC	198	594								
Phenanthrene	mg/kg OC	200	600								
Pyrene	mg/kg OC	2,000	6,000								
Total HPAHs	mg/kg OC	1,920	5,760								
Total LPAHs	mg/kg OC	740	2,220								
сРАН	μg TEQ/kg dw	1000	3000		 -						
Metals											
Arsenic	mg/kg dw	57	171		60.9 J	511	40.7 J	632	121.75 J	1,940	1,970
Cadmium	mg/kg dw	10.2	30.6		1.05 J	1.5	0.741 J	0.722	0.9635 J	2.44	2.45
Chromium	mg/kg dw	520	1,560		46 J	41.3	35.5 J	31.1	56.7 J	68.6 J	89.3 J
Copper	mg/kg dw	780	2,340		130 J	298	105 J	174	137 J	848	860
Lead	mg/kg dw	900	2,700		62.7 J	377 J	61.1 J	162 J	90.85 J	820	1,060
Mercury	mg/kg dw	0.82	2.46		0.224	0.136 J	0.255	0.118 J	0.213	0.129	0.069
Silver	mg/kg dw	12.2	36.6		0.357 J	0.669	0.385 J	0.389	0.4155	1.55	1.61
Zinc	mg/kg dw	820	2,460		424 J	1,580 J	278 J	799 J	448.5 J	3,960	5,590
Organotin Compounds											
Tributyltin ion	μg/kg dw										
Phthalates	-										
Bis(2-ethylhexyl)phthalate	mg/kg dw										
Bis(2-ethylhexyl)phthalate	mg/kg OC	94	282								
Chlorobenzenes											
1,2,4-Trichlorobenzene	mg/kg dw										
1,2,4-Trichlorobenzene	mg/kg OC	1.62	4.86								
Other SVOCs and COCs											
Benzoic acid	μg/kg dw	1,300	3,900								
Organic Carbon											
Total Organic Carbon	%				3.53	1.59	4.05	2.56	3.49	1.89	2.18
Notes:											

Results for core LDW-SC17 are shown for reference purposes only. With the exception of PCBs, RALs are not defined below 4 inches in Category 2/3 recovery areas.

Nondetects reported as 1/2 detection limit.

Lab duplicates have been averaged.

>Cat 2/3 RAL and ≤UL for ENR (ENR)

dw = dry weight

LDW = Lower Duwamish Waterway

RAL = remedial action level

ROD = record of decision

TEQ = toxicity equivalence

Data Qualifiers: J = result is estimated, U = result is not detected

Table data courtesy of Integral Consulting, Inc.

Aspect Consulting

5/26/2020

V:\150054 Snopac-Manson\Deliverables\Combined RI\Tables\Table 1 Historical Sediment Data

COC = contaminant of concern ENR = enhanced natural recovery OC = organic carbon SVOC = semivolatile organic compound -- = no data available

		Location	n B-5	B-5	l DE	B-8	B-9	B-12	B-12	B-13	B-13	B-13	B-15	B-15	B-19	FB-1	FB-1A	FB-2	FB-2	FB-2A	FB-2A	FB-2A	FB-2D
			e 01/24/2017		р-5 7 01/24/2017	01/24/2017	01/24/2017		01/25/2017	01/25/2017	01/25/2017	01/25/2017	01/27/2017		01/27/2017	08/25/2011	10/05/2011	08/25/2011	08/25/2011	10/06/2011	10/06/2011	10/06/2011	10/06/2011
		Sample			B5-16-17	B8-12-13	B9-16-17	B12-5-6	B12-6-7	B13-5.5-6.5	B13-10-11		B15-11-12		B19-12-13	082511-FB1-9.5	100511-FB1A-9.8	082511-FB2-5.2	082511-FB2-16.0	100611-FB2A-5.3	100611-FB2A-10.0	100611-FB2A-16.0	100611-FB2D-5.2
			h 10 - 10.2 ft		16 - 17 ft	12 - 13 ft	16 - 17 ft	5 - 6 ft	10 - 11 ft	5.5 - 6.5 ft	10 - 11 ft	17.5 - 18.5 ft		16 - 17 ft	12 - 13 ft	9.5 ft	9.8 ft	5.2 ft	16 ft	5.3 ft	10 ft	16 ft	5.2 ft
		Most Stringent	10 1012 1	10 1110	10 11 10	12 10 10	10 11 10		10 1110	010 010 10	10 111	1110 1010 10		10 11 10	12 10 10	510.10	0.0.0	0.2.10	17.17		10.10	12.12	0.2.10
Analyte	Unit	PCUL (saturated))																				
Polycyclic Aromatic Hydroca	rbons (PA	Hs)																					
1-Methylnaphthalene	mg/kg	29	< 0.5 U								< 0.05 U	< 0.05 U				< 0.0063 U		0.94	< 0.0098 U				
2-Methylnaphthalene	mg/kg	0.67	< 0.5 U								< 0.05 U	< 0.05 U				< 0.0063 U		1.1	< 0.0098 U				
Acenaphthene	mg/kg	0.028	0.15								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.027	< 0.0098 U	< 0.0324 U	< 0.0209 U	< 0.0193 U	
Acenaphthylene	mg/kg	1.3	< 0.1 U								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.021	< 0.0098 U	0.0607	< 0.0209 U	< 0.0193 U	
Anthracene	mg/kg	0.051	0.62								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.1	< 0.0098 U	0.199	< 0.0209 U	< 0.0193 U	
Benz(a)anthracene	mg/kg	0.000057	2.4						0.84	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.14	< 0.0098 U	0.782	< 0.0209 U	< 0.0193 U	
Benzo(a)pyrene	mg/kg	0.000016	3						0.59	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.12	< 0.0098 U	0.586	< 0.0209 U	< 0.0193 U	
Benzo(b)fluoranthene	mg/kg	0.0002	3.5						0.73	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.3	< 0.0098 U	0.51	0.0337	< 0.0193 U	
Benzo(g,h,i)perylene	mg/kg	0.67	1.6								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.1	< 0.0098 U	0.648	< 0.0209 U	< 0.0193 U	
Benzo(k)fluoranthene	mg/kg	0.002	1.5						0.22	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.034	< 0.0098 U	0.386	< 0.0209 U	< 0.0193 U	
Chrysene	mg/kg	0.0064	2.9						0.73	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	1.3	< 0.0098 U	0.73	< 0.0209 U	< 0.0193 U	
Dibenzo(a,h)anthracene	mg/kg	0.000029	0.48						< 0.1 U	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.026	< 0.0098 U	0.144	< 0.0209 U	< 0.0193 U	
Fluoranthene	mg/kg	0.09	4.4								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.31	< 0.0098 U	< 1.02 U	0.035	< 0.0193 U	
Fluorene	mg/kg	0.029	0.13								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.031	< 0.0098 U	< 0.0647 U	< 0.0209 U	< 0.0193 U	
Indeno(1,2,3-cd)pyrene	mg/kg	0.000056	2						0.31	< 0.01 U	< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.064	< 0.0098 U	0.383	< 0.0209 U	< 0.0193 U	
Naphthalene	mg/kg	0.0021	< 0.1 U				< 0.05 U				< 0.01 U	< 0.01 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.0063 U	< 0.0234 U	0.85	< 0.0098 U	3.8	< 0.0209 U	< 0.0193 U	
Phenanthrene	mg/kg	1.5	1.8								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.48	< 0.0098 U	0.847	< 0.0209 U	< 0.0193 U	
Pyrene	mg/kg	0.14	4.1								< 0.01 U	< 0.01 U				< 0.0063 U	< 0.0234 U	0.29	< 0.0098 U	1.14	0.06	< 0.0193 U	
Total Benzofluoranthenes	mg/kg	3.2	5						0.95	< 0.01 U	< 0.01 U	< 0.01 U											
Total HPAHs	mg/kg	12	25.88								< 0.01 U	< 0.01 U											
Total LPAHs	mg/kg	5.2	2.7								< 0.01 U	< 0.01 U											
Total cPAHs TEQ	mg/kg	0.000016	4.017						0.8123	< 0.00755 U	< 0.00755 U	< 0.00755 U				< 0.005 U	< 0.018 U	0.189	< 0.007 U	0.814	0.018	< 0.015 U	

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

*: Ecology soil screening level for TPH model remedies (not LDW PCUL) that applies only if gasoline-range TPH is detected.

		Location	FB-2E	FB-3	FB-3A	FB-3A	FB-4	FB-4A	FB-5	FB-5	FB-5	FB-5A	FB-5A	FB-5B	FB-5C	FB-5C	FB-6	FB-6A	FB-7
		Date	10/06/2011	08/25/2011	10/06/2011	10/06/2011	08/25/2011	10/05/2011	08/25/2011	08/25/2011	08/25/2011	10/05/2011	10/05/2011	10/05/2011	10/05/2011	10/05/2011	08/26/2011	10/05/2011	08/26/2011
		Sample	100611-FB2E-5.2	00/25/2011 2 082511-FB3-14.9	100611-FB3A-7.6	100611-FB3A-14.5		10/05/2011 100511-FB4A-9.7	082511-FB5-6.2	082511-FB5-10.2	082511-FB5-18.0	100511-FB5A-8.4		100511-FB5B-18.0	100511-FB5C-10.2		082611-FB6-11.6	100511-FB6A-11.5	
		Depth	5.2 ft	14.9 ft	7.6 ft	14.5 ft	8.7 ft	9.7 ft	6.2 ft	10.2 ft	18 ft	8.4 ft	18 ft	18 ft	10.2 ft	14.8 ft	11.6 ft	11.5 ft	11.8 ft
		Most Stringent	0.2	111211	112.12	111010			5.2.10		10.10		10.10		70.2.10	111010	111010	111011	+
Analyte	Unit	PCUL (saturated)																	,
Polycyclic Aromatic Hydro	carbons (P	AHs)	_																
1-Methylnaphthalene	mg/kg	29		< 0.0089 U			< 0.006 U				< 0.008 U						< 0.0078 U		< 0.0075 U
2-Methylnaphthalene	mg/kg	0.67		< 0.0089 U			< 0.006 U				< 0.008 U						< 0.0078 U		< 0.0075 U
Acenaphthene	mg/kg	0.028		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	0.0458			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Acenaphthylene	mg/kg	1.3		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	< 0.0188 U			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Anthracene	mg/kg	0.051		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	0.105			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Benz(a)anthracene	mg/kg	0.000057		< 0.0089 U	0.024	< 0.0228 U	< 0.006 U	0.0947			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Benzo(a)pyrene	mg/kg	0.000016		< 0.0089 U	0.0196	< 0.0228 U	< 0.006 U	0.0473			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Benzo(b)fluoranthene	mg/kg	0.0002		< 0.0089 U	0.0219	< 0.0228 U	< 0.006 U	0.0556			< 0.008 U		0.0194				< 0.0078 U	< 0.0231 U	< 0.0075 U
Benzo(g,h,i)perylene	mg/kg	0.67		< 0.0089 U	0.0174	< 0.0228 U	< 0.006 U	0.0234			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Benzo(k)fluoranthene	mg/kg	0.002		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	0.0383			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Chrysene	mg/kg	0.0064		< 0.0089 U	0.0336	< 0.0228 U	< 0.006 U	0.124			< 0.008 U		0.0352				< 0.0078 U	< 0.0231 U	< 0.0075 U
Dibenzo(a,h)anthracene	mg/kg	0.000029		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	< 0.0188 U			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Fluoranthene	mg/kg	0.09		< 0.0089 U	0.0641	0.0508	< 0.006 U	0.434			< 0.008 U		0.0271				< 0.0078 U	< 0.0231 U	< 0.0075 U
Fluorene	mg/kg	0.029		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	< 0.0188 U			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.000056		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	0.021			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Naphthalene	mg/kg	0.0021		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	< 0.0188 U			9.11	< 0.739 U	< 0.0164 U	< 0.743 U	54.9	69.8	< 0.0078 U	< 0.0231 U	< 0.0075 U
Phenanthrene	mg/kg	1.5		< 0.0089 U	< 0.0168 U	< 0.0228 U	< 0.006 U	0.0499			< 0.008 U		< 0.0164 U				< 0.0078 U	< 0.0231 U	< 0.0075 U
Pyrene	mg/kg	0.14		< 0.0089 U	0.072	0.0478	< 0.006 U	0.411			< 0.008 U		0.0274				< 0.0078 U	< 0.0231 U	< 0.0075 U
Total Benzofluoranthenes	mg/kg	3.2																	
Total HPAHs	mg/kg	12																	
Total LPAHs	mg/kg	5.2																	
Total cPAHs TEQ	mg/kg	0.000016		< 0.007 U	0.027	< 0.017 U	< 0.005 U	0.07			< 0.006 U		0.014				< 0.006 U	< 0.018 U	< 0.006 U

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

*: Ecology soil screening level for TPH model remedies (not LDW PCUL) that applies only if gasoline-range TPH is detected.

Most stringent PCUL for saturated soil (nonpotable groundwater) established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

V:\150054 Snopac-Manson\Deliverables\Soil CUL Memo\Draft\RI Tables and Figures\Copy of Table 2 and 4 Soil Data_REV

		Location	FB-7A	I ED 0	FB-8A	ED 0	ED OA	MW-1	BANA/ 4	MW-2	MW-2	MW-2	MW-3	MW-3	NAVA/ 4	NAVA/ 4	MANA/ E	MW-5	MANA/ G	MW-6	MW-7	MW-7	NAVA/ O	MW-9
		Location Date	10/05/2011	FB-8 08/26/2011	10/05/2011	FB-9 08/26/2011	FB-9A 10/05/2011	01/23/2017	MW-1 01/23/2017	01/23/2017	1	01/23/2017	01/23/2017	01/23/2017	MW-4 01/23/2017	MW-4 01/23/2017	MW-5 01/25/2017	01/25/2017	MW-6 01/26/2017	01/26/2017	01/26/2017	01/26/2017	MW-8 01/25/2017	01/25/2017
		Sample	100511-FB7A-11.8	082611-FB8-11.6	100511-FB8A-11.7	082611-FB9-12.0		MW1-10-10.5	MW1-15-16	MW2-5-6	1	MW2-10-11	MW3-5.5-6		1	MW4-12.5-13.5			MW6-7-8		MW7-10-11		MW8-15.5-16.5	MW9-5-6
		Depth	11.8 ft	11.6 ft	11.7 ft	12 ft	11.8 ft	10 - 10.5 ft	15 - 16 ft	5 - 6 ft	10 ft	10 - 11 ft	5.5 - 6 ft	10 - 12 ft	7 - 8 ft	12.5 - 13.5 ft	10 - 10.5 ft	15.8 - 17 ft	7 - 8 ft	15 - 16 ft	10 - 11 ft	17 - 18 ft	15.5 - 16.5 ft	5 - 6 ft
		Most Stringent		111010			111011	10 101011	10 10 10		10.1	10 1110	0.0 0.0	10 1210	1 0 11	12.0 10.0 10	10 1010 10	10.0 11.10	1 0 11	10 10 10	10 1111	11 10 10	1010 1010 10	
Analyte	Unit	PCUL (saturated)																						
Polycyclic Aromatic Hydrod	arbons (PA	Hs)							•									•						
1-Methylnaphthalene	mg/kg	29		< 0.0088 U		< 0.0078 U					< 0.5 U		16											< 0.05 U
2-Methylnaphthalene	mg/kg	0.67		< 0.0088 U		< 0.0078 U					< 0.5 U		22								-			0.056
Acenaphthene	mg/kg	0.028	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.11	-	89								-			< 0.01 U
Acenaphthylene	mg/kg	1.3	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				< 0.1 U	-	2.1								-			< 0.01 U
Anthracene	mg/kg	0.051	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				< 0.1 U	-	120								-			< 0.01 U
Benz(a)anthracene	mg/kg	0.000057	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.79	1	73								-			0.013
Benzo(a)pyrene	mg/kg	0.000016	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.55	-	40								-			0.013
Benzo(b)fluoranthene	mg/kg	0.0002	< 0.0223 U	< 0.0088 U	0.0318	< 0.0078 U	< 0.022 U				0.79	-	65											0.025
Benzo(g,h,i)perylene	mg/kg	0.67	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.41	-	12											0.021
Benzo(k)fluoranthene	mg/kg	0.002	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.22		19											< 0.01 U
Chrysene	mg/kg	0.0064	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.38		110											0.02
Dibenzo(a,h)anthracene	mg/kg	0.000029	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				< 0.1 U		4.1											< 0.01 U
Fluoranthene	mg/kg	0.09	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				3.6		290											0.026
Fluorene	mg/kg	0.029	< 0.0223 U	< 0.0088 U	< 0.0293 U	0.014	< 0.022 U				0.14		63											< 0.01 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.000056	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.28		13											0.016
Naphthalene	mg/kg	0.0021	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.19		24			< 0.05 U								0.04
Phenanthrene	mg/kg	1.5	< 0.0223 U	< 0.0088 U	< 0.0293 U	< 0.0078 U	< 0.022 U				0.33		270											0.033
Pyrene	mg/kg	0.14	< 0.0223 U	< 0.0088 U	< 0.0293 U	0.011	0.0227				3.8		250											0.024
Total Benzofluoranthenes	mg/kg	3.2									1.01		84											0.025
Total HPAHs	mg/kg	12									10.82		876.1											0.158
Total LPAHs	mg/kg	5.2									0.77		568.1											0.073
Total cPAHs TEQ	mg/kg	0.000016	< 0.017 U	< 0.007 U	0.024	< 0.006 U	< 0.017 U				0.7668		58.51											0.0196

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

*: Ecology soil screening level for TPH model remedies (not LDW PCUL) that applies only if gasoline-range TPH is detected.

		Location	n MW-9	MW-10	MW-10	MW-11	MW-12	MW-12	SB-1	SB-2	SB-2	SB-3	SB-4	SB-4	SB-5	SB-6	SB-7	SB-8	SB-8	VSP-02	VSP-06	VSP-07	VSP-08	VSP-11
		Date		01/25/2017	01/25/2017	01/26/2017	01/26/2017	01/26/2017	08/26/2019	08/26/2019	08/26/2019	1	08/26/2019	08/26/2019	08/26/2019	08/26/2019	08/26/2019	08/26/2019	08/26/2019	11/12/2018	11/13/2018			11/12/2018
		Sample				MW11-10-11	MW12-11-12	MW12-17.5-18.5	SB1-10-11	SB2-10.5-11.5	SB2-13-14	SB3-10-11	SB4-8-9	SB4-13-14	SB5-9-10	SB6-10.5-11.5		SB8-10.5-11.5	SB8-13-14	VSP-2-5.1				VSP-11-5.6
		Depti		5 - 6 ft	15.5 - 16.5 ft	10 - 11 ft	11 - 12 ft	17.5 - 18.5 ft	10 - 11 ft	10.5 - 11.5 ft	13 - 14 ft	10 - 11 ft	8 - 9 ft	13 - 14 ft	9 - 10 ft	10.5 - 11.5 ft	10 - 11 ft	10.5 - 11.5 ft	13 - 14 ft	5.1 ft	6.2 ft	8.2 ft	5.6 ft	5.6 ft
		Most Stringent																						
Analyte	Unit	PCUL (saturated))																					1
Polycyclic Aromatic Hydroca	rbons (PA	Hs)																						
1-Methylnaphthalene	mg/kg	29		0.07		< 0.5 U		-			-							-						
2-Methylnaphthalene	mg/kg	0.67		0.076		< 0.5 U																		
Acenaphthene	mg/kg	0.028		< 0.01 U		< 0.1 U				0.0087 J	< 0.002 UJ		< 0.002 U					0.003 J	< 0.002 UJ					
Acenaphthylene	mg/kg	1.3		< 0.01 U		< 0.1 U				< 0.002 U	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Anthracene	mg/kg	0.051		0.015		< 0.1 U				0.0033 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Benz(a)anthracene	mg/kg	0.000057		0.042		0.18				0.0061 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Benzo(a)pyrene	mg/kg	0.000016		0.053		0.25				0.0041 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Benzo(b)fluoranthene	mg/kg	0.0002		0.087		0.35				0.0059 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Benzo(g,h,i)perylene	mg/kg	0.67		0.039		0.2				0.0025 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Benzo(k)fluoranthene	mg/kg	0.002		0.032		< 0.1 U				0.0023 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Chrysene	mg/kg	0.0064		0.069		0.29				0.009 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Dibenzo(a,h)anthracene	mg/kg	0.000029		< 0.01 U		< 0.1 U				< 0.002 U	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Fluoranthene	mg/kg	0.09		0.13		0.34				0.034 J	< 0.002 UJ		< 0.002 U					0.0051 J	< 0.002 UJ					
Fluorene	mg/kg	0.029		0.014		< 0.1 U				< 0.002 UJ	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Indeno(1,2,3-cd)pyrene	mg/kg	0.000056		0.039		0.18				0.0026 J	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Naphthalene	mg/kg	0.0021		0.056		< 0.1 U				< 0.002 U	< 0.002 UJ		< 0.002 U					< 0.002 UJ	< 0.002 UJ					
Phenanthrene	mg/kg	1.5		0.13		0.17				< 0.002 UJ	< 0.002 UJ		< 0.002 U					0.0033 J	< 0.002 UJ					
Pyrene	mg/kg	0.14		0.12		0.4				0.024 J	< 0.002 UJ		< 0.002 U					0.0038 J	< 0.002 UJ					
Total Benzofluoranthenes	mg/kg	3.2		0.119		0.35																		
Total HPAHs	mg/kg	12		0.611		2.19																		
Total LPAHs	mg/kg	5.2		0.215		0.17																		
Total cPAHs TEQ	mg/kg	0.000016		0.07419		0.3339				0.00598 J	< 0.00151 UJ		< 0.00151 U					< 0.00151 UJ	< 0.00151 UJ					

Notes:
Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

*: Ecology soil screening level for TPH model remedies (not LDW PCUL) that applies only if gasoline-range TPH is detected.

		Location Date Sample Depth	B-4 01/24/2017 B4-SBG-0 0 ft	B-6 01/24/2017 B6-0.8-1.1 0.8 - 1.1 ft	B-9 01/24/2017 B9-0-1.5 0 - 1.5 ft	FB-2B 10/06/2011 100611-FB2B-4.7 4.7 ft	FB-2F 10/06/2011 100611-FB2F-2.2 2.2 ft	FB-6 08/26/2011 082611-FB6-1.1	HA-1 04/26/2019 HA-1-0.5 0.5 ft	HA-1 04/26/2019 HA-1-1.5 1.5 ft	MW-3 01/23/2017 MW3-1-2 1 - 2 ft	MW-6 01/26/2017 MW6-SBG-5.2-5.4 5.2 - 5.4 ft	MW-8 01/25/2017 MW8-5-6 5 - 6 ft	SB-1 08/26/2019 SB1-6-7 6 - 7 ft	SB-2 08/26/2019 SB2-2-3 2 - 3 ft	SB-3 08/26/2019 SB3-5-6	SB-4 08/26/2019 SB4-2-3 2 - 3 ft
		Depth	σπ	0.8 - 1.1 π	υ - 1.5 π	4.7 π	2.2 π	1.1 ft	υ.5 π	1.5 π	1-2π	5.2 - 5.4 ft	5-6π	6-7π	2 - 3 π	5 - 6 ft	2-3π
Analyte	Unit	Most Stringent PCUL (vadose)															
Polycyclic Aromatic Hydrocarb	ons (PAHs)	, ,				•		•									
1-Methylnaphthalene	mg/kg	29	< 0.5 U	< 0.5 U							< 0.5 U	< 2.5 U	< 0.05 U				
2-Methylnaphthalene	mg/kg	0.67	< 0.5 U	< 0.5 U							< 0.5 U	< 2.5 U	< 0.05 U				
Acenaphthene	mg/kg	0.5	0.16	0.11							0.39	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Acenaphthylene	mg/kg	1.3	< 0.1 U	< 0.1 U							0.15	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Anthracene	mg/kg	0.96	0.53	0.21							1.2	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Benz(a)anthracene	mg/kg	0.0011	2	0.87	0.43						3	2.4	< 0.01 U	< 0.002 U	0.0023 J		
Benzo(a)pyrene	mg/kg	0.00031	2.3	0.93	0.5						4.2	2.8	< 0.01 U	< 0.002 U	< 0.002 UJ		
Benzo(b)fluoranthene	mg/kg	0.0039	3	1.2	0.74						7.3	3.4	< 0.01 U	< 0.002 U	0.0044 J		
Benzo(g,h,i)perylene	mg/kg	0.67	1.2	0.51							2.2	1.6	< 0.01 U	< 0.002 U	< 0.002 UJ		
Benzo(k)fluoranthene	mg/kg	0.039	1.2	0.42	0.21						2.5	1.4	< 0.01 U	< 0.002 U	< 0.002 UJ		
Chrysene	mg/kg	0.13	2.3	1.2	0.53						12	2.9	< 0.01 U	< 0.002 U	0.0053 J		
Dibenzo(a,h)anthracene	mg/kg	0.00057	0.35	0.15	< 0.2 U						0.59	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Fluoranthene	mg/kg	1.7	4.2	1.7							4.5	4.2	< 0.01 U	< 0.002 U	0.003 J		
Fluorene	mg/kg	0.54	0.17	< 0.1 U							0.35	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Indeno(1,2,3-cd)pyrene	mg/kg	0.011	1.4	0.57	0.3						2	2	< 0.01 U	< 0.002 U	< 0.002 UJ		
Naphthalene	mg/kg	0.039	< 0.1 U	< 0.1 U							< 0.1 U	< 0.5 U	< 0.01 U	< 0.002 U	< 0.002 UJ		
Phenanthrene	mg/kg	1.5	2.2	1.1							1.5	1.7	< 0.01 U	< 0.002 U	< 0.002 UJ		
Pyrene	mg/kg	2.6	3.8	2							6.2	4.5	< 0.01 U	< 0.002 U	< 0.002 UJ		
Total Benzofluoranthenes	mg/kg	3.2	4.2	1.62	0.95						9.8	4.8	< 0.01 U				
Total HPAHs	mg/kg	12	21.75	9.55							44.49	25.2	< 0.01 U				
Total LPAHs	mg/kg	5.2	3.06	1.42							3.59	1.7	< 0.01 U				
Total cPAHs TEQ	mg/kg	0.00031	3.118	1.263	0.6833						5.859	3.774	< 0.00755 U	< 0.00151 U	0.002023 J		

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL).

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation.

*: Ecology soil screening level for TPH model remedies (not LDW PCUL)

that applies only if gasoline-range TPH is detected.

Table 4 Excerpts – Vadose Zone PAH Data

Project No. 150054 - Snopac Property, Seattle, Washington

		Location	SB-5	SB-6	SB-7	SB-8	SSA-1	SSA-2	SSA-3	SSA-4	SUMP	VSP-01	VSP-03	VSP-04	VSP-05	VSP-09
		Date	08/26/2019	08/26/2019	08/26/2019	08/26/2019	07/02/2015	07/02/2015	07/02/2015	07/02/2015	08/26/2019	11/12/2018	11/12/2018	11/12/2018	11/12/2018	11/12/2018
		Sample	SB5-2-3	SB6-5-6	SB7-2-3	SB8-5.5-6.5	SSA-1	SSA-2	SSA-3	SSA-4	SUMP-6-7	VSP-1-2.2	VSP-3-3.6	VSP-4-4.5	VSP-5-2.6	VSP-9-3.2
		Depth	2 - 3 ft	5 - 6 ft	2 - 3 ft	5.5 - 6.5 ft	0 - 0.25 ft	6 - 7 ft	2.2 ft	3.6 ft	4.5 ft	2.6 ft	3.2 ft			
		•														
		Most Ctrimmont														
Analista	11	Most Stringent														
Analyte	Unit	PCUL (vadose)														
Polycyclic Aromatic Hydroca		00		I			0.075	0.040	0.000	0.00		I		T :		
1-Methylnaphthalene	mg/kg	29					0.075	0.043	0.028	0.03						
2-Methylnaphthalene	mg/kg	0.67					0.097	0.053	0.023	0.036						
Acenaphthene	mg/kg	0.5		< 0.002 U		< 0.002 U	0.022	0.045	0.069	0.038	< 0.002 U					
Acenaphthylene	mg/kg	1.3		< 0.002 U		< 0.002 U	0.027	0.042	0.019	0.018	< 0.002 U					
Anthracene	mg/kg	0.96		< 0.002 U		< 0.002 U	0.16	0.2	0.14	0.078	< 0.002 U					
Benz(a)anthracene	mg/kg	0.0011		< 0.002 U		0.013	0.78	0.6	0.59	0.27	< 0.002 U					
Benzo(a)pyrene	mg/kg	0.00031		< 0.002 U		0.011	0.64	1.2	0.79 J	0.38	< 0.002 UJ					
Benzo(b)fluoranthene	mg/kg	0.0039		< 0.002 U		0.029	1.1	1.6	1.0 J	0.71	< 0.002 UJ					
Benzo(g,h,i)perylene	mg/kg	0.67		< 0.002 U		0.0087	0.26	1.4	0.44 J	0.25	< 0.002 UJ					
Benzo(k)fluoranthene	mg/kg	0.039		< 0.002 U		0.0089	0.43	0.59	0.35 J	0.24	< 0.002 UJ					
Chrysene	mg/kg	0.13		< 0.002 U		0.026	0.82	1.5	0.73	0.53	0.0059					
Dibenzo(a,h)anthracene	mg/kg	0.00057		< 0.002 U		0.0024	0.085	0.26	0.12 J	0.067	< 0.002 UJ					
Fluoranthene	mg/kg	1.7		< 0.002 U		0.05	0.65	0.83	0.99	0.53	< 0.002 U					
Fluorene	mg/kg	0.54		< 0.002 U		< 0.002 U	0.046	0.058	0.054	0.034	< 0.002 U					
Indeno(1,2,3-cd)pyrene	mg/kg	0.011		< 0.002 U		0.011	0.3	1.1	0.50 J	0.25	< 0.002 UJ				-	
Naphthalene	mg/kg	0.039		< 0.002 U		< 0.002 U	0.079	0.071	0.032	0.044	< 0.002 U				-	
Phenanthrene	mg/kg	1.5		< 0.002 U		0.014	0.32	0.62	0.64	0.36	< 0.002 U				-	
Pyrene	mg/kg	2.6		< 0.002 U		0.038	0.46	0.76	1.1	0.49	< 0.002 U					
Total Benzofluoranthenes	mg/kg	3.2					1.53	2.19	1.35 J	0.95						
Total HPAHs	mg/kg	12					5.525	9.84	6.61 J	3.717						
Total LPAHs	mg/kg	5.2					0.654	1.036	0.954	0.572						
Total cPAHs TEQ	mg/kg	0.00031		< 0.00151 U		0.01769	0.9177	1.63	1.0533 J	0.539	0.001559					

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL).

U - Analyte not detected at or above Reporting Limit (RL) shown UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation.

*: Ecology soil screening level for TPH model remedies (not LDW PCUL)

that applies only if gasoline-range TPH is detected.

Most stringent PCUL for saturated soil (nonpotable groundwater) established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

DRAFT

Table 4 Excerpts – Vadose Zone PAH Data

Project No. 150054 - Snopac Property, Seattle, Washington

Polycyclic Aromatic Hydrocarbons (Pathematic H				
1-Methylnaphthalene mg 2-Methylnaphthalene mg Acenaphthene mg Acenaphthylene mg Anthracene mg				
2-Methylnaphthalene mg Acenaphthene mg Acenaphthylene mg Anthracene mg	.//			
Acenaphthene mg Acenaphthylene mg Anthracene mg		 	 	
Acenaphthylene mg Anthracene mg	g/kg 0.67	 	 	
Anthracene mg	g/kg 0.5	 	 	
9		 	 	
Benz(a)anthracene mg	g/kg 0.96	 	 	
	g/kg 0.0011	 	 	
	g/kg 0.00031	 	 	
	g/kg 0.0039	 	 	
\(\frac{1}{2}\) /: \(\frac{1}{2}\)	g/kg 0.67	 	 	
	g/kg 0.039	 	 	
	g/kg 0.13	 	 	
	g/kg 0.00057	 	 	
	g/kg 1.7	 	 	
	g/kg 0.54	 	 	
	g/kg 0.011	 	 	
	g/kg 0.039	 	 	
	g/kg 1.5	 	 	
	g/kg 2.6	 	 	
	g/kg 3.2	 	 	
	g/kg 12	 	 	
	g/kg 5.2	 	 	
Total cPAHs TEQ mg	1/kg 0.00031	 	 	

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL).

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation.

*: Ecology soil screening level for TPH model remedies (not LDW PCUL)

that applies only if gasoline-range TPH is detected.

Most stringent PCUL for saturated soil (nonpotable groundwater) established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

Page 3 of 3

DRAFT

Table 5 Excerpts – Groundwater and Seeps Data

Project No. 150054. Snopac Property, Seattle, Washington

					Se	eps										
		Location	ASP-1	ASP-2	ASP-3	ASP-4	ASP-5	ASP-6	MW-1	MW-1	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
		Date	07/02/2015	07/02/2015	07/02/2015	07/02/2015	07/02/2015	07/02/2015	02/07/2017	01/29/2018	02/07/2017	01/30/2018	08/27/2019	02/06/2017	02/08/2017	01/30/2018
		Sample	ASP-1	ASP-2	ASP-3	ASP-4	ASP-5	ASP-6	MW1-020717	MW01-20180129	MW2-020717	MW-02-20180130	MW-2-082719	MW3-020617	MW3-020817	MW-03-20180130
		Most Stringent PCUL Non-Potable Water														
Analyte	Unit	GW #s 2-5														
Polycyclic Aromatic Hydroc		Hs)								•	T	T			ı	T
1-Methylnaphthalene	ug/L		< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	0.033	< 0.025 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U			< 0.2 U	< 0.2 U
2-Methylnaphthalene	ug/L		< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	0.026	< 0.025 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U			< 0.2 U	< 0.2 U
Acenaphthene	ug/L	5.3	< 0.025 U	0.33	3.3	< 0.025 U	0.11	< 0.025 U	< 0.03 U	< 0.03 U	0.044	0.054			0.59	< 0.03 U
Acenaphthylene	ug/L		< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	< 0.03 U				
Anthracene	ug/L	2.1	< 0.025 U	< 0.025 U	0.047	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			0.052	< 0.03 U
Benz(a)anthracene	ug/L	0.00016	< 0.025 U	< 0.025 U	0.14	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	0.032		-	< 0.03 U	0.068
Benzo(a)pyrene	ug/L	0.000016	< 0.025 U	< 0.025 U	0.089	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	0.14
Benzo(b)fluoranthene	ug/L	0.00016	< 0.025 U	< 0.025 U	0.18	< 0.025 U	< 0.025 U	0.028	< 0.03 U	< 0.03 U	< 0.03 U	0.03			0.042	0.2
Benzo(g,h,i)perylene	ug/L		< 0.025 U	< 0.025 U	0.074	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	0.13
Benzo(k)fluoranthene	ug/L	0.0016	< 0.025 U	< 0.025 U	0.051	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	0.06
Chrysene	ug/L	0.016	< 0.025 U	< 0.025 U	0.084	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			0.05	0.15
Dibenzo(a,h)anthracene	ug/L	0.000016	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	< 0.03 U				
Fluoranthene	ug/L	1.8	0.03	0.035	2	0.028	0.19	< 0.025 U	< 0.03 U	< 0.03 U	0.24	0.37			0.27	0.08
Fluorene	ug/L	3.7	0.03	0.035	2	0.028	0.19	< 0.025 U	< 0.03 U	< 0.03 U	0.24	0.37			0.27	0.08
Indeno(1,2,3-cd)pyrene	ug/L	0.00016	< 0.025 U	< 0.025 U	0.073	< 0.025 U	< 0.025 U	< 0.025 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	0.1
Naphthalene	ug/L	1.4	< 0.025 U	0.033	< 0.025 U	< 0.025 U	0.47	< 0.025 U	< 0.03 U	< 0.03 U	0.73	10			< 0.03 U	< 0.03 U
Phenanthrene	ug/L		0.033	0.031	0.053	0.038	0.05	0.037	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U			< 0.03 U	< 0.03 U
Pyrene	ug/L	2	0.03	0.035	1.2	< 0.025 U	0.28	2.2	< 0.03 U	< 0.03 U	0.18	0.25			0.062	0.14
Total cPAHs TEQ	ug/L	0.000016			0.13549		< 0.018875 U	0.020425	< 0.02265 U	< 0.02265 U	< 0.02265 U	0.02585			0.0257	0.1858

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)
U - Analyte not detected at or above Reporting Limit (RL) shown
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

Most stringent PCUL for non-potable groundwater established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

DRAFT

		T							Groundwat	ter						
		Location	MW-4	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8	MW-9	MW-9
		Date	02/06/2017	01/28/2018	08/27/2019	02/05/2017	01/28/2018	02/06/2017	01/29/2018	08/27/2019	02/06/2017	01/30/2018	02/08/2017	01/29/2018	02/07/2017	01/30/2018
		Sample	MW4-020617	MW04-20180128	MW-4-082719	MW5-020517	MW05-20180128	MW6-020617	MW06-20180129	MW-6-082719	MW7-020617	MW-07-20180130	MW8-020817	MW08-20180129	MW9-020717	MW-09-20180130
		Most Stringent PCUL														
		Non-Potable Water														
Analyte	Unit	GW #s 2-5														
Polycyclic Aromatic Hydrod	carbons (PAH	s)														
1-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U
2-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U
Acenaphthene	ug/L	5.3	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Acenaphthylene	ug/L		< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Anthracene	ug/L	2.1	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Benz(a)anthracene	ug/L	0.00016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Benzo(a)pyrene	ug/L	0.000016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Benzo(b)fluoranthene	ug/L	0.00016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Benzo(g,h,i)perylene	ug/L		< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Benzo(k)fluoranthene	ug/L	0.0016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Chrysene	ug/L	0.016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Dibenzo(a,h)anthracene	ug/L	0.000016	< 0.03 U	< 0.03 U	-	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Fluoranthene	ug/L	1.8	< 0.03 U	< 0.03 U	-	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Fluorene	ug/L	3.7	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Indeno(1,2,3-cd)pyrene	ug/L	0.00016	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Naphthalene	ug/L	1.4	0.081	< 0.03 U		< 0.03 U	< 0.03 U	0.031	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Phenanthrene	ug/L		0.056	< 0.03 U		< 0.03 U	< 0.03 U	0.033	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Pyrene	ug/L	2	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Total cPAHs TEQ	ug/L	0.000016	< 0.02265 U	< 0.02265 U		< 0.02265 U	< 0.02265 U	< 0.02265 U	< 0.02265 U		< 0.02265 U	< 0.02265 U	< 0.02265 U	< 0.02265 U	< 0.02265 U	< 0.02265 U

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL) U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

Most stringent PCUL for non-potable groundwater established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

		Location	MW-10	MW-10	MW-11	MW-11	MW-11	MW-12	MW-12
		Date	02/08/2017	01/30/2018	02/08/2017	01/29/2018	08/27/2019	02/07/2017	01/28/2018
		Sample	MW10-020817	MW-10-20180130	MW11-020817	MW11-20180129	MW-11-082719	MW12-020717	MW12-20180128
Analyte	Unit	Most Stringent PCUL Non-Potable Water GW #s 2-5							
Polycyclic Aromatic Hydroca	arbons (PA	Hs)							
1-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U
2-Methylnaphthalene	ug/L		< 0.2 U	< 0.2 U	< 0.2 U	< 0.2 U		< 0.2 U	< 0.2 U
Acenaphthene	ug/L	5.3	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U
Acenaphthylene	ug/L		< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U
Anthracene	ug/L	2.1	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U
Benz(a)anthracene	ug/L	0.00016	< 0.03 U	< 0.03 U	0.046	< 0.03 U	-	< 0.03 U	< 0.03 U
Benzo(a)pyrene	ug/L	0.000016	< 0.03 U	< 0.03 U	0.072	< 0.03 U	-	< 0.03 U	< 0.03 U
Benzo(b)fluoranthene	ug/L	0.00016	< 0.03 U	< 0.03 U	0.11	< 0.03 U	-	< 0.03 U	< 0.03 U
Benzo(g,h,i)perylene	ug/L		< 0.03 U	< 0.03 U	0.062	< 0.03 U	-	< 0.03 U	< 0.03 U
Benzo(k)fluoranthene	ug/L	0.0016	< 0.03 U	< 0.03 U	0.035	< 0.03 U	-	< 0.03 U	< 0.03 U
Chrysene	ug/L	0.016	< 0.03 U	< 0.03 U	0.073	< 0.03 U	-	< 0.03 U	< 0.03 U
Dibenzo(a,h)anthracene	ug/L	0.000016	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	-	< 0.03 U	< 0.03 U
Fluoranthene	ug/L	1.8	< 0.03 U	< 0.03 U	0.082	< 0.03 U	-	< 0.03 U	< 0.03 U
Fluorene	ug/L	3.7	< 0.03 U	< 0.03 U	0.082	< 0.03 U	-	< 0.03 U	< 0.03 U
Indeno(1,2,3-cd)pyrene	ug/L	0.00016	< 0.03 U	< 0.03 U	0.053	< 0.03 U		< 0.03 U	< 0.03 U
Naphthalene	ug/L	1.4	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U		< 0.03 U	< 0.03 U
Phenanthrene	ug/L		< 0.03 U	< 0.03 U	0.044	< 0.03 U		< 0.03 U	< 0.03 U
Pyrene	ug/L	2	< 0.03 U	< 0.03 U	0.11	< 0.03 U		< 0.03 U	< 0.03 U
Total cPAHs TEQ	ug/L	0.000016	< 0.02265 U	< 0.02265 U	0.09863	< 0.02265 U		< 0.02265 U	< 0.02265 U

Notes:

Bold - Analyte Detected

Highlighted cell indicates detected result exceeded most stringent preliminary cleanup level (PCUL)
U - Analyte not detected at or above Reporting Limit (RL) shown
UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

J - Result value estimated

X - Chromatographic pattern does not match fuel standard used for quantitation

Most stringent PCUL for non-potable groundwater established by the July 2019 Lower Duwamish Waterway (LDW) Preliminary Cleanup Level Workbook (Ecology, 2019).

DRAFT Table 7. RI Sediment Data

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location: Sample ID: Sample Date: Matrix:	C01-SD-3- 2/6/2018 Sediment	5	C01 CO1-PW-3 Porewa	` '	C02 C02-SD- 2/6/201 Sedime	8	C03-SD-3-5 2/7/2018 Sediment	C03 CO3-PW-3-5 Porewa	
		LDW ROD Remed	ial Action Levels	Sediment Interval (ft):	3 - 5				3 - 5		3 - 5		
Analyte	Units	Human Health & Benthic COC RALs	Upper Limit for ENR				μg/L					μg/L	
Polychlorinated Biphenyls ((PCBs)			<u>.</u>							<u> </u>		
Aroclor 1016	mg/kg dw				0.0065	U	0.24	UJ	0.14	U	0.0055 U	0.20	UJ
Aroclor 1221	mg/kg dw				0.013	U		UJ	0.27	U		0.40	UJ
Aroclor 1232	mg/kg dw				0.0065	U	0.24	UJ	0.14	U	0.0055 U	0.20	UJ
Aroclor 1242	mg/kg dw				0.053	J	0.64	J	0.72		0.06 J	1.0	J
Aroclor 1248	mg/kg dw				0.0065	U	0.24	UJ	0.14	U	0.0055 U	0.2	UJ
Aroclor 1254	mg/kg dw				0.19		1.5	J	1.9		0.11	1.8	J
Aroclor 1260	mg/kg dw				0.2		0.45	J	0.56	J	0.025	0.51	J
Total PCB Aroclors	mg/kg dw				0.44	J	2.6		3.2	J	0.2 J	3.3	
Total PCB Aroclors	mg/kg OC	12 (195 for top 2 ft)	36 (195 for top 2 ft)		19	L			77	J	26 J		
Polynuclear Aromatic Hydro	ocarbons (PAHs)												
1-Methylnaphthalene	mg/kg dw												
2-Methylnaphthalene	mg/kg dw				0.099		0.011	U	0.033		0.012	12.00	
Acenaphthene	mg/kg dw				0.15		0.067	J	0.061		0.083	63.00	
Anthracene	mg/kg dw				0.24		0.14		0.39		5.4	6.50	
Benz(a)anthracene	mg/kg dw				0.47		0.15		1.7		14	6.40	
Benzo(a)pyrene	mg/kg dw				0.73		0.42		1.5		4	2.60	
Benzo(b)fluoranthene	mg/kg dw				1.1		0.69		2.3		7.6	4.50	
Benzo(k)fluoranthene	mg/kg dw				0.34		0.24		8.0		2.4	1.40	
Chrysene	mg/kg dw				0.78		0.09	J	2.0		16	3.40	
Dibenz(a,h)anthracene	mg/kg dw				0.096		0.05	J	0.18		0.43	0.22	
Dibenzofuran	mg/kg dw				0.13		0.024	U	0.053		0.034	26.00	
Fluoranthene	mg/kg dw				0.96		0.39		4.2		34	50.00	
Fluorene	mg/kg dw				0.15		0.047	J	0.086		0.26	29.00	
Indeno(1,2,3-cd)pyrene	mg/kg dw				0.35		0.16		0.67		1.3	0.81	
Naphthalene	mg/kg dw				0.28		0.03	U	0.094		0.028	0.41	
Pyrene	mg/kg dw				3.5		4.00		6.5		33	48.00	
2-Methylnaphthalene	mg/kg OC	76	228		4.2				0.8		1.6		
Acenaphthene	mg/kg OC	32	96		6.3				1.5		11		
Acenaphthylene	mg/kg OC				2.1		0.047	J	1.3		8.2	0.97	
Anthracene	mg/kg OC	440	1,320		10				9.4		710		
Benz(a)anthracene	mg/kg OC	220	660		20				41		1800		
Benzo(a)pyrene	mg/kg OC	198	594		31				36		530		
Benzo(g,h,i)perylene	mg/kg OC	62	186		14		0.19		13		120	0.75	
Total benzofluoranthenes	mg/kg OC	460	1,380		61		0.93		75		1300	5.90	
Chrysene	mg/kg OC	220	660		33				48		2100		
Dibenz(a,h)anthracene	mg/kg OC	24	72		4.1				4.3		57		
Dibenzofuran	mg/kg OC	30	90		5.5				1.3		4.5		

Table 7

Table 7. RI Sediment Data

Project No. 150054, Snopac Property, Seattle, Washington

				Sample Location: Sample ID: Sample Date: Matrix:	C01-SD-3-5 2/6/2018 Sediment	C01 CO1-PW-3-5 (W) Porewater	C02 C02-SD-3-5 2/6/2018 Sediment	C03-SD-3-5 2/7/2018 Sediment	C03 CO3-PW-3-5 (W) Porewater
		LDW ROD Remed	lial Action Levels	Sediment Interval (ft):	3 - 5		3 - 5	3 - 5	
Analyte	Units	Human Health & Benthic COC RALs	Upper Limit for ENR			μg/L			μg/L
Fluoranthene	mg/kg OC	320	960		41		100	4500	
Fluorene	mg/kg OC	46	138		6.3		2.1	34	
Indeno(1,2,3-cd)pyrene	mg/kg OC	68	204		15		16	170	
Naphthalene	mg/kg OC	198	594		12		2.3	3.7	
Phenanthrene	mg/kg OC	200	600		17	0.13	8.9	200	29.00
Pyrene	mg/kg OC	2,000	6,000		150		160	4300	
Total HPAHs	mg/kg OC	1,920	5,760		370	5.07 J	490	15000	118.00
Total LPAHs	mg/kg OC	740	2,220		54	0.46 J	25	960	129.00
сРАН	μg TEQ/kg dw	1000	3000		1000	0.56 J	2100	6900	4.00
Metals									
Arsenic	mg/kg dw	57	171		11	91	33	7.3	343
Cadmium	mg/kg dw	10.2	30.6		0.77	0.18 J	16	10	0.16 J
Chromium	mg/kg dw	520	1,560		34	2.3 J	41	13	1.9 J
Copper	mg/kg dw	780	2,340		79	5.5	160	53	5.2
Lead	mg/kg dw	900	2,700		71	11	410	79	6.33
Mercury	mg/kg dw	0.82	2.46		0.42	0.2	0.6	0.13	<0.20
Silver	mg/kg dw	12.2	36.6		0.84	0.4 U	1.9	0.65	0.2 U
Zinc	mg/kg dw	820	2,460		150	14 U	3900	2200	12 U
Organotin Compounds									
Tributyltin ion	μg/kg dw								
Phthalates									
Bis(2-ethylhexyl)phthalate	mg/kg dw								
Bis(2-ethylhexyl)phthalate	mg/kg OC	94	282						
Chlorobenzenes									
1,2,4-Trichlorobenzene	mg/kg dw								
1,2,4-Trichlorobenzene	mg/kg OC	1.62	4.86						
Other SVOCs and COCs									
Benzoic acid	μg/kg dw	1,300	3,900						
Organic Carbon									
Total Organic Carbon	%				2.4	NA	4.2	0.76	NA
Notes:									

Notes:

Sampling results from 3-5 foot depth horizon were screened against surface RALs as they will be located immediately below the cap after dredging. Nondetects reported as 1/2 detection limit.

Lab duplicates have been averaged.

>Cat 2/3 RAL and ≤UL for ENR (ENR)

>UL for ENR (Active Remediation

dw = dry weight

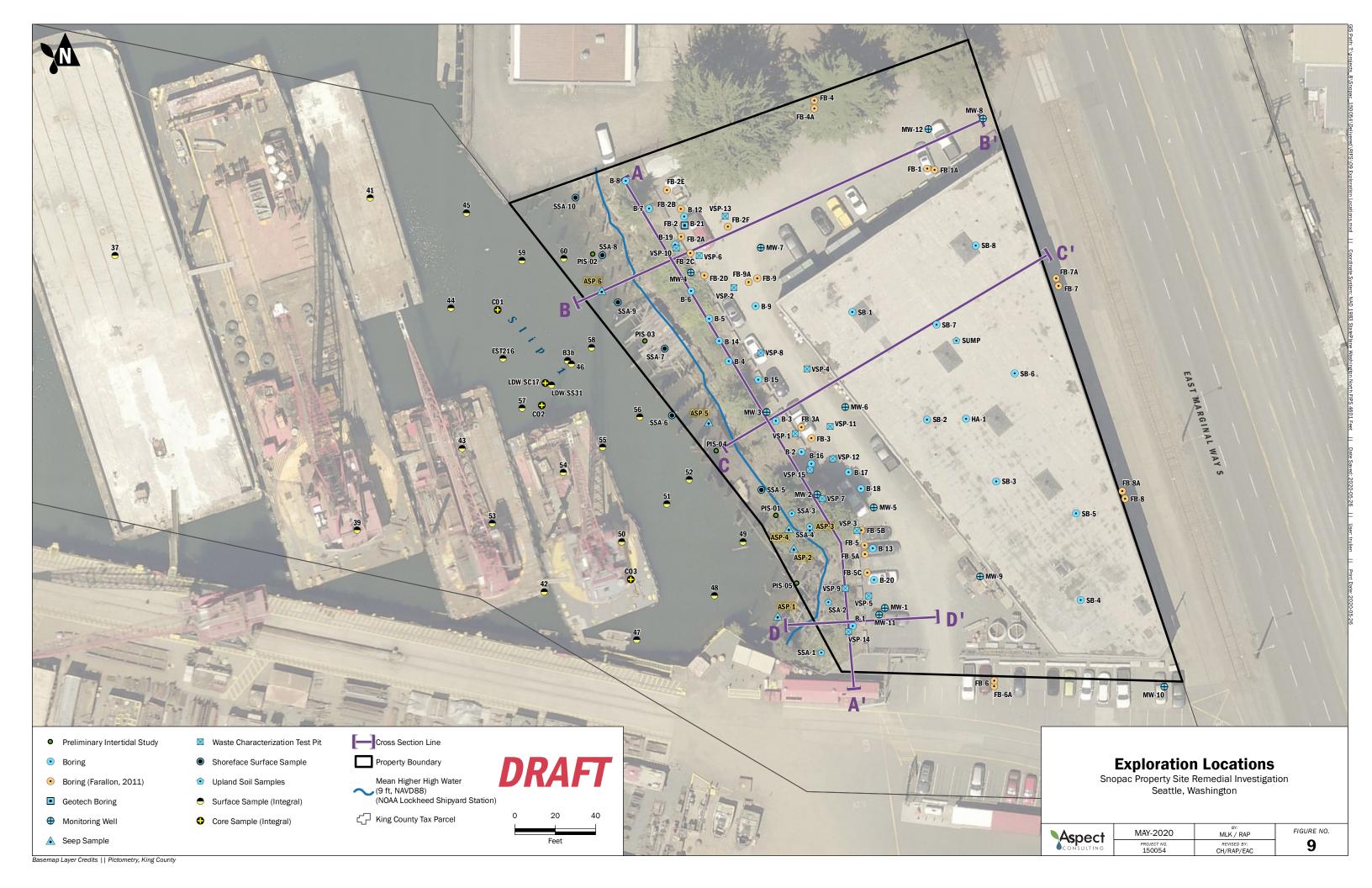
LDW = Lower Duwamish Waterway

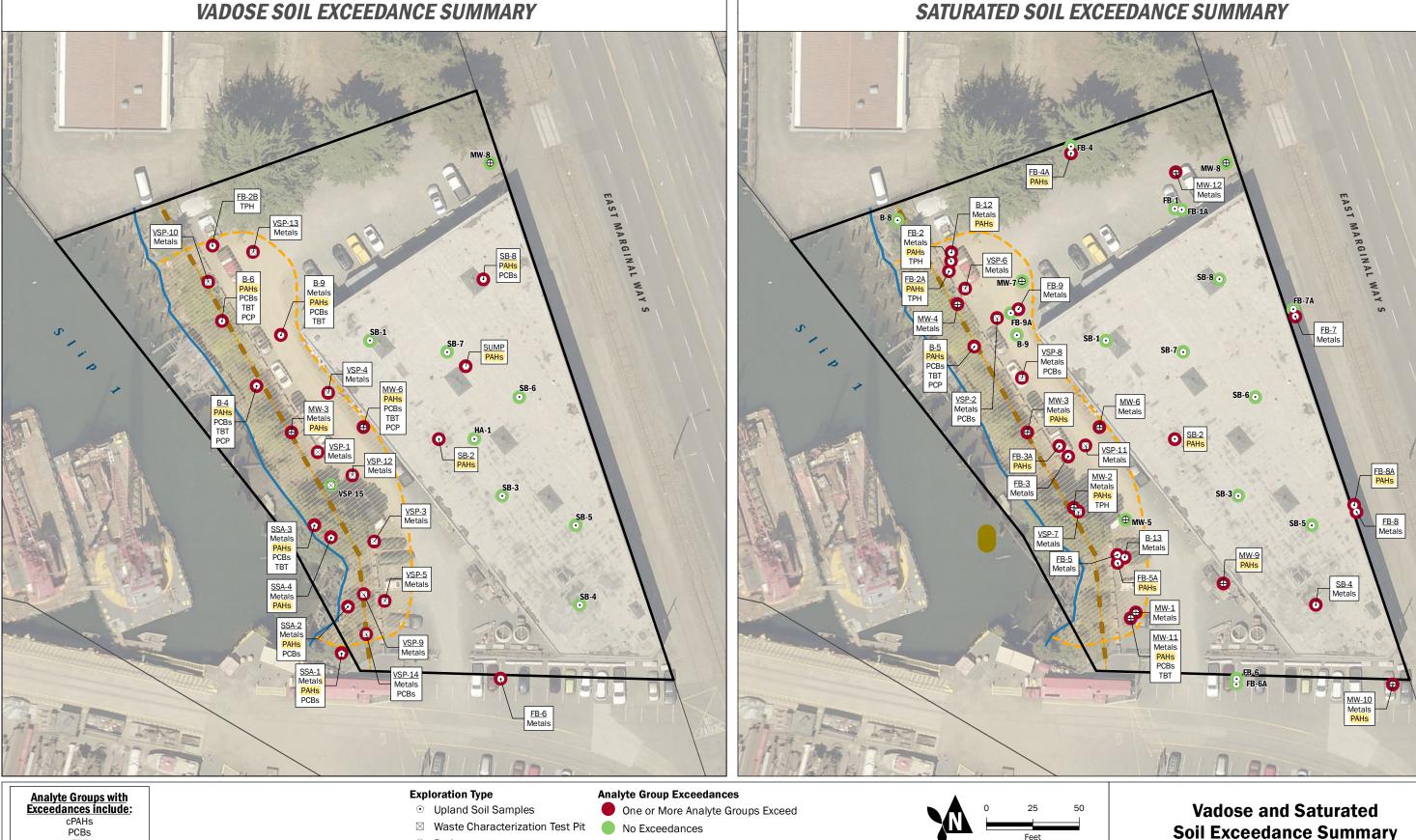
RAL = remedial action level ROD = record of decision

TEQ = toxicity equivalence

Data Qualifiers: J = result is estimated, U = result is not detected

Table data courtesy of Integral Consulting, Inc.


COC = contaminant of concern ENR = enhanced natural recovery


OC = organic carbon

SVOC = semivolatile organic compound

-- = no data available

Aspect Consulting

Mean Higher High Water (9 ft, NAVD88) (NOAA Lockheed Shipyard Station)

-- Proposed Shoring Alignment

Sandblast Grit-Containing Fill

Inferred Extent of Uplands

Snopac Property Site Remedial Investigation

Seattle, Washington

EAC / CH

REVISED BY:

FIGURE NO.

10

MAY-2020

DRAFT

Aspect

Boring

Sump

Notes: Exceedances represent detected concentration greater

than the most stringent media-specific PCUL (Tables 5 and 6).

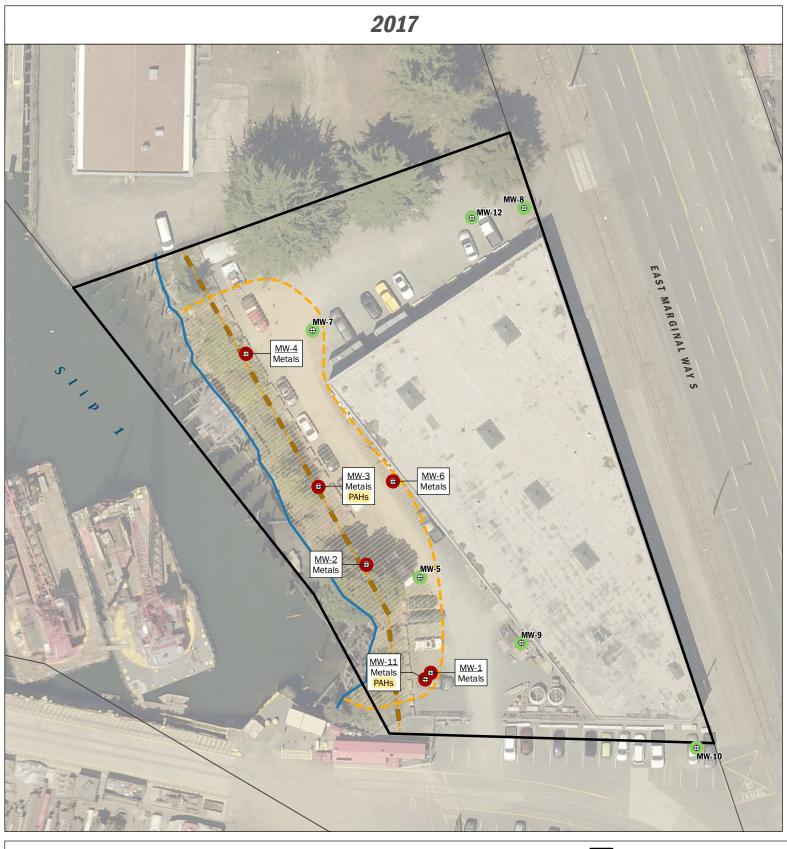
Only analytes or analyte groups which have exceedances are labeled. Visible sandblast grit was found at locations B-4, B-5, B-6, MW-6, and VSP-12 to VSP-14.

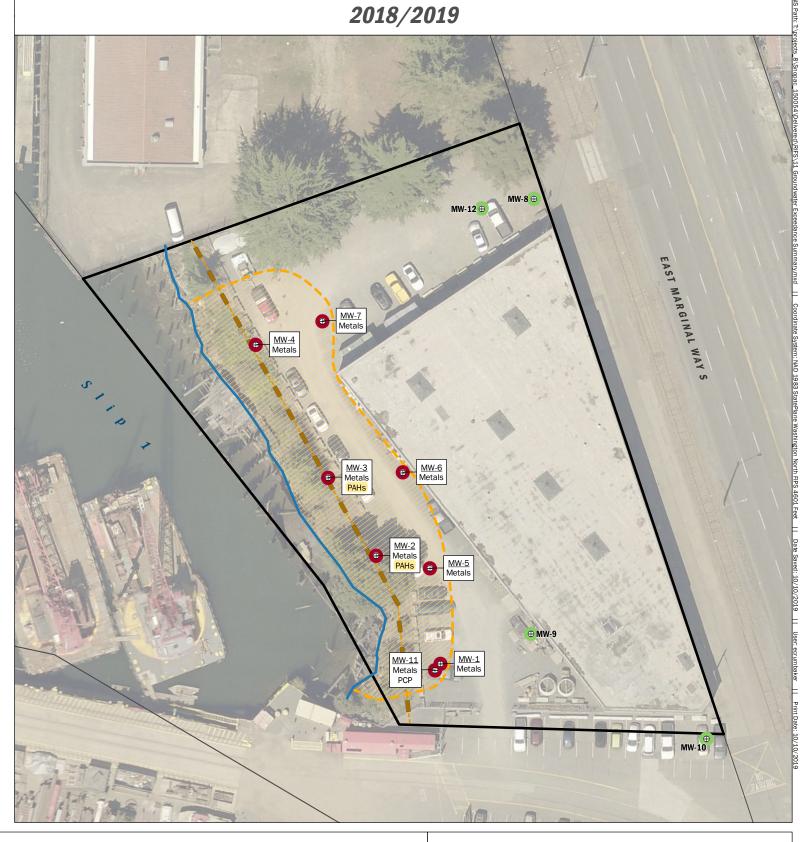
⊕ Monitoring Well

Property Boundary

King County Tax Parcel

T\projects_8\Snopac_150054\Delivered\RIFS


TBT


Metals (including Arsenic,

Copper, Lead, Mercury,

Zinc)

TPH

Analyte Groups with Exceedances include:

cPAHs Metals (including Arsenic, Copper, Zinc)

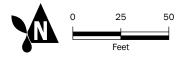
Notes: Exceedances represent detected concentration greater than the most stringent media-specific PCUL described in Table 4. Only analytes or analyte groups which have exceedances are labeled. See Table 4 for detailed analytical results.

Exploration Type

Monitoring Well

Analyte Group Exceedances

- One or More Analyte Groups Exceed
- No Exceedances


Property Boundary

King County Tax Parcel

Mean Higher High Water (9 ft, NAVD88) (NOAA Lockheed Shipyard Station)

-- Proposed Shoring Alignment

Inferred Extent of Uplands
Sandblast Grit-Containing Fill

DRAFT

Snopac Property Site Remedial Investigation Seattle, Washington

Groundwater Exceedance Summary

Aspect

BY: SJG / RAP FIGURE NO. OCT-2019

11

APPENDIX B

King County Industrial Waste Program - Issuance of Wastewater Discharge Authorization No. 1092-01

MINOR DISCHARGE AUTHORIZATION

King County Industrial Waste Program 201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

NUMBER 1092-01

for

5055 Properties, LLC

Site address: 5055 E Marginal Way S

Seattle, Washington

Mailing address: 5209 E Marginal Way S

Seattle, WA 98134

Phone: 206-762-0850

Emergency (24-hour) phone: 206-780-7746

Industry type: Construction Dewatering

Discharge to: West Point

*Note: This authorization is valid only for the specific discharges shown below:

Discharge process: Wastewater generated by Construction Dewatering operation

Pretreatment process: Gravity separation

Maximum discharge volume: 72,000 gallons per day 100 gallons per minute

Effective date: September 9, 2020 **Expiration date:** January 30, 2022

Permission is hereby granted to discharge industrial wastewater from the above-identified facility into the King County sewer system in accordance with the effluent limitations and monitoring requirements set forth in this authorization.

If the industrial user wishes to continue to discharge after the expiration date, an application must be filed for re-issuance of this discharge authorization at least 90 days prior to the expiration date. For information concerning this King County Discharge Authorization please call Industrial Waste Compliance Investigator Todd Gowing at 206-477-5426.

<u>24-HOUR EMERGENCY NOTIFICATION</u>
West Point Treatment Plant: 206-263-3801
Washington State Department of Ecology: 425-649-7000

SPECIAL CONDITIONS

- A. Discharge is to the new side sewer connection constructed under City of Seattle construction permit 6697427-CN as shown on sheet C200.
- B. Dewatering and discharge to the sanitary sewer shall conform to the submitted Temporary Dewatering Plan. Reference the City of Seattle construction permit 6997427-CN
- C. Discharge to the sanitary sewer shall not begin until KCIW has conducted a preoperative inspection of the pretreatment facilities and has sent written notification (email is sufficient) to the permittee that discharges may begin.
- D. All persons responsible for monitoring the discharge to the sanitary sewer shall review a copy of this authorization.
- E. A copy of this authorization shall be on site at all times for review and reference.
- F. This authorization grants the discharge of limited amounts of wastewater from the following waste streams:
 - 1. Contaminated stormwater runoff
 - 2. Excavation dewatering

Wastes or contaminants from sources other than permitted herein shall not be discharged to the sanitary sewer without prior approval from KCIW.

- G. The discharge shall not cause hydraulic overloading conditions of the sewerage conveyance system. During periods of peak hydraulic loading KCIW and Seattle Public Utilities representatives reserve the authority to request that discharge to the sewer be stopped.
- H. All wastewater shall be collected and treated in accordance with treatment methods approved by KCIW. Wastewater shall not bypass treatment systems. Modifications to wastewater treatment systems shall not occur without prior approval from KCIW.
- I. Totalizing and non-resettable flow meters must be installed on all permitted discharge pipes to the sewer.
- J. An accessible sampling spigot must be installed on the discharge pipe from the last treatment unit of the wastewater treatment system. The sample site shall be representative of all industrial waste streams discharged to the sewer from this site. Each sample site shall be accessible to KCIW representatives when discharge to the sewer is occurring.
- K. The contractor shall implement erosion control best management practices to minimize the amount of solids discharged to the sanitary sewer system. As a minimum precaution, the wastewater must be pumped to an appropriately sized settling tank(s) prior to entering the sewer system.

- L. The permittee shall properly operate and maintain all wastewater treatment units to ensure compliance with established discharge limits. Solids accumulation in tanks used for solids settling shall not exceed 25 percent of the tank's working hydraulic capacity. Each tank's working hydraulic capacity is based on the water column height as measured from the bottom of the tank to either the invert elevation of the tank's outlet pipe (gravity discharges) or discharge pump intake (pumped discharges).
- M. Results of all required self-monitoring sampling must be recorded daily. Recorded information for each discharge site must include:
 - 1. Sample date
 - 2. Sample time
 - 3. Sample results
 - 4. Operator name
 - 5. Comments (if applicable)

These records shall be maintained on site and shall be available for review by KCIW personnel during normal business hours.

N. The permittee must establish a sewer account with Seattle Public Utilities and provide necessary reports to ensure accurate assessment of sewer charges for all construction dewatering discharge sites associated with this project.

SELF-MONITORING REQUIREMENTS

A. The following self-monitoring requirements shall be met for this discharge authorization:

<u>Parameter</u>	<u>Frequency</u>	Sample Type/Method
Discharge volume	Daily	In-line flow meter
Discharge rate	Daily	In-line flow meter
Settleable solids	Daily	Grab by Imhoff cone
pH	Daily	Hand-held meter
Nonpolar FOG	Daily	3 Grabs
Arsenic	Weekly	Composite
Chromium	Weekly	Composite
Copper	Weekly	Composite
Lead	Weekly	Composite
Mercury	Weekly	Composite
Nickle	Weekly	Composite
Zinc	Weekly	Composite
PAH	Monthly	Composite

- B. The settleable solids field test by Imhoff cone must be performed as follows:
 - 1. Fill cone to one-liter mark with well-mixed sample
 - 2. Allow 45 minutes to settle
 - 3. Gently stir sides of cone with a rod or by spinning; settle 15 minutes longer
 - 4. Record volume of settleable matter in the cone as ml/L
- C. The three nonpolar fats, oils, and grease (FOG) grab samples shall be of equal volume, collected at least five minutes apart, and analyzed separately. When using U.S. Environmental Protection Agency approved protocols specified in 40 CFR Part 136, the individual grab samples may be composited (at the laboratory) prior to analysis. The result of the composite sample or the average of the concentrations of the three grab samples may be reported as Total FOG unless the value is 100 mg/L or greater, in which case the concentration of nonpolar FOG must be reported.
- D. If a violation of any discharge limits or operating criteria is detected in monitoring, you shall notify KCIW immediately upon receipt of analytical data.
- E. You shall submit an end-of project self-monitoring report (form enclosed) within 15 days from completion of all construction dewatering activities to the sewer or by **February 15**, **2020**, whichever comes first. The report must contain results of required self-monitoring and total volume discharged to the sewer.
- F. All self-monitoring data submitted to KCIW, which required a laboratory analysis, must have been performed by a laboratory accredited by the Washington State Department of Ecology for each parameter tested, using procedures approved by 40 CFR 136. This does not apply to

field measurements performed by the industrial user such as pH, temperature, flow, atmospheric hydrogen sulfide, total dissolved sulfides, total settleable solids by Imhoff cone, or process control information.

- G. All sampling data collected by the permittee and analyzed using procedures approved by 40 CFR 136, or approved alternatives, shall be submitted to KCIW whether required as part of this authorization or done voluntarily by the permittee.
- H. Self-monitoring reports shall be signed by an authorized representative of the industrial user. The authorized representative of the industrial user is defined as:
 - 1. The president, secretary, treasurer, or a vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation
 - 2. The manager of one or more manufacturing, production, or operating facilities, but only if the manager:
 - a. Is authorized to make management decisions that govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiate and direct other comprehensive measures to assure long-term environmental compliance with environmental laws and regulations
 - b. Can ensure that the necessary systems are established or actions taken to gather complete and accurate information for control mechanism requirements and knowledgeable of King County reporting requirements
 - c. Has been assigned or delegated the authority to sign documents, in accordance with corporate procedures
 - 3. A general partner or proprietor if the industrial user is a partnership or proprietorship, respectively
 - 4. A director or highest official appointed or designated to oversee the operation and performance of the industry if the industrial user is a government agency
 - 5. The individuals described in one through four above may designate an authorized representative if:
 - a. The authorization is submitted to King County in writing
 - b. The authorization specifies the individual or position responsible for the overall operation of the facility from which the discharge originates or having overall responsibility for environmental matters for the company or agency

GENERAL DISCHARGE LIMITATIONS

Operating criteria

There shall be no odor of solvent, gasoline, or hydrogen sulfide (rotten egg odor), oil sheen, unusual color, or visible turbidity. The discharge must remain translucent. If any of the discharge limits are exceeded, you must stop discharging and notify KCIW at 206-477-5300.

Corrosive substances

Limits

Maximum: pH 12.0 (s.u.) Instantaneous minimum¹: pH 5.0 (s.u.) pH 5.5 (s.u.)

The instantaneous minimum pH limit is violated whenever any single grab sample or any instantaneous recording is less than pH 5.0. The daily minimum pH limit is violated whenever any continuous recording of 15 minutes or longer remains below pH 5.5 or when each pH value of four consecutive grab samples collected at 15-minute intervals or longer within a 24-hour period remains below pH 5.5.

Discharges of more than 50 gallons per day of caustic solutions equivalent to more than 5 percent NaOH by weight or greater than pH 12.0 are prohibited unless authorized by KCIW and subject to special conditions to protect worker safety, the collection system, and treatment works.

Fats, oils, and grease

Discharge of FOG shall not result in significant accumulations that either alone or in combination with other wastes are capable of obstructing flow or interfere with the operation or performance of sewer works or treatment facilities.

Dischargers of polar FOG (oil and grease from animal and/or vegetable origin) shall minimize free-floating polar FOG. Dischargers may not add emulsifying agents exclusively for the purpose of emulsifying free-floating FOG.

Nonpolar FOG limit: 100 mg/L

The limit for nonpolar FOG is violated when the arithmetic mean of the concentration of three grab samples, taken no more frequently than at five minute intervals, or when the results of a composite sample exceed the limitation.

¹ The instantaneous minimum pH limit is violated whenever any single grab sample or any instantaneous recording is less than pH 5.0.

² The daily minimum pH limit is violated whenever any continuous recording of 15 minutes or longer remains below pH 5.5 or when each pH value of four consecutive grab samples collected at 15-minute intervals or longer within a 24-hour period remains below pH 5.5.

Flammable or explosive materials

No person shall discharge any pollutant, as defined in 40 CFR 403.5, that creates a fire or explosion hazard in any sewer or treatment works, including, but not limited to, waste streams with a closed cup flashpoint of less than 140° Fahrenheit or 60° Centigrade using the test methods specified in 40 CFR 261.21.

At no time shall two successive readings on an explosion hazard meter, at the point of discharge into the system (or at any point in the system), be more than 5 percent nor any single reading be more than 10 percent of the lower explosive limit (LEL) of the meter.

Pollutants subject to this prohibition include, but are not limited to, gasoline, kerosene, naphtha, benzene, toluene, xylene, ethers, alcohols, ketones, aldehydes, peroxides, chlorates, perchlorates, bromates, carbides, hydrides, and sulfides, and any other substances that King County, the fire department, Washington State, or the U.S. Environmental Protection Agency has notified the user are a fire hazard or a hazard to the system.

Petroleum	Maximum Concentration
Compounds	ppm (mg/L)
Benzene	0.07
Ethylbenzene	1.7
Toluene	1.4
Total xylenes	2.2

Heavy metals/cyanide

The industrial user shall not discharge wastes, which exceed the following limitations:

Heavy Metals & Cyanide	Instantaneous Maximum ppm (mg/L) ¹	Daily Average ppm (mg/L) ²
Arsenic	4.0	1.0
Cadmium	0.6	0.5
Chromium	5.0	2.75
Copper	8.0	3.0
Lead	4.0	2.0
Mercury	0.2	0.1
Nickel	5.0	2.5
Silver	3.0	1.0
Zinc	10.0	5.0
Cyanide	3.0	2.0

¹The instantaneous maximum is violated whenever the concentration of any sample, including a grab within a series used to calculate daily average concentrations, exceeds the limitation.

²The daily average limit is violated: a) for a continuous flow system when a composite sample consisting of four or more consecutive samples collected during a 24-hour period over intervals of 15 minutes or greater exceeds the limitation, or b) for a batch system when any sample exceeds the limitation. A composite

sample is defined as at least four grab samples of equal volume taken throughout the processing day from a well-mixed final effluent chamber, and analyzed as a single sample.

High temperature

The industrial user shall not discharge material with a temperature in excess of 65° C (150° F).

Hydrogen sulfide

Atmospheric hydrogen sulfide: 10.0 ppm (As measured at a monitoring manhole designated by KCIW)

Soluble sulfide limits may be established on a case-by-case basis depending upon volume of discharge and conditions in the receiving sewer, including oxygen content and existing sulfide concentrations.

Organic compounds

No person shall discharge any organic pollutants that result in the presence of toxic gases, vapors, or fumes within a public or private sewer or treatment works in a quantity that may cause worker health and safety problems.

Organic pollutants subject to this restriction include, but are not limited to: Any organic pollutants compound listed in 40 CFR Section 433.11 (e) (total toxic organics [TTO] definition), acetone, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), and xylenes.

Settleable solids

Settleable solids concentrations: 7.0 ml/L

GENERAL CONDITIONS

- A. All requirements of King County Code pertaining to the discharge of wastes into the municipal sewer system are hereby made a condition of this discharge authorization.
- B. The industrial discharger shall implement measures to prevent accidental spills or discharges of prohibited substances to the municipal sewer system. Such measures include, but are not limited to, secondary containment of chemicals and wastes, elimination of connections to the municipal sewer system, and spill response equipment.
- C. Any facility changes, which will result in a change in the character or volume of the pollutants discharged to the municipal sewer system, must be reported to your KCIW representative. Any changes that will cause the violation of the effluent limitations specified herein will not be allowed.
- D. In the event the permittee is unable to comply with any of the conditions of this discharge authorization because of breakdown of equipment or facilities, an accident caused by human error, negligence, or any other cause, such as an act of nature the company shall:
 - 1. Take immediate action to stop, contain, and clean up the unauthorized discharges and correct the problem.
 - 2. Immediately notify KCIW and, if after 5 p.m. weekdays and on weekends, call the emergency King County treatment plant phone number on Page 1 so steps can be taken to prevent damage to the sewer system.
 - 3. Submit a written report within 14 days of the event (14-Day Report) describing the breakdown, the actual quantity and quality of resulting waste discharged, corrective action taken, and the steps taken to prevent recurrence.
- E. Compliance with these requirements does not relieve the permittee from responsibility to maintain continuous compliance with the conditions of the discharge authorization or the resulting liability for failure to comply.
- F. The permittee shall, at all reasonable times, allow authorized representatives of KCIW to enter that portion of the premises where an effluent source or disposal system is located or in which any records are required to be kept under the terms and conditions of this authorization.
- G. Nothing in this discharge authorization shall be construed as excusing the permittee from compliance with any applicable federal, state, or local statutes, ordinances, or regulations including discharge into waters of the state. Any such discharge is subject to regulation and enforcement action by the Washington State Department of Ecology.
- H. This discharge authorization does not authorize discharge after its expiration date. If the permittee wishes to continue to discharge after the expiration date, an application must be filed for reissuance of this discharge authorization at least 90 days prior to the expiration date. If the permittee submits its reapplication in the time specified herein, the permittee shall be deemed to have an effective wastewater discharge authorization until KCIW issues or denies the new wastewater discharge authorization. If the permittee fails to file its reapplication in the time period specified herein, the permittee will be deemed to be discharging without authorization.

Compliance Investigator:	(100)	Date:	September 9, 2020
			-

Industrial Waste Program Self-Monitoring Report

Send to: King County Industrial Waste Program

201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

Phone 206-477-5300 / FAX 206-263-3001 **Email: info.KCIW@kingcounty.gov**

	Project Name:	5055 Properties, LLC	Authorization No.:	1092-01
--	---------------	----------------------	--------------------	---------

Project Location: 5055 E Marginal Way S, Seattle

Sample _	pH (s	рН (pH (s.u.)	able ids /L)	ar FOG //L)	anic //L)	nium //L)	(mg/L)	mg/L)	ury //L)	Discharge	Name or initials of person collecting and recording samples and volume
Date	Min.	Max.	Settleable Solids (mL/L)	Nonpolar FOG (mg/L)	Arsenic (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Mercury (mg/L)	Volume (gallons)	each day. If permitted for relief only, explain why you did not discharge to surface water for each day of discharge.	
											bu d	
											n e l — — — — — — — — — — — — — — — — — —	
											r my rison on o include includ	
											unde et ac ac autour autour autour autour autour accere	
											red u liftee frithe frithe frithe googy along all all all all all all all all all al	
											repa at quigat h gat h gat h belie Ecol	
											are programme in the pr	
											ts we assume the man and the m	
											mmen d to a sed or sed	
											ttach ignee Basse stort stort stort stort Ager	
											all a not see a	
											t and steem that the steem to the steem that the st	
											meni na sy, no su yon su know Vash	
											docu with hose is, to y a v y a v y a v with titive	
											this cance	
											that coord stem subm nalyz	
											law in ac last the act of the act	
											tty of sion in a second size of P	
											obena obervit r and r and r and r and r fine allysi sach	
											nder penalty of law that this document and all attachn or supervision in accordance with a system designed father and evaluate the information submitted. Baseful on manage the system, or those persons directly reson, the information submitted is, to the best of my known yor fine and imprisonment for knowng violations. If yor each parameter tested.	
											Lectrity under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquity of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is to the best of my knowledge and belief, true, a cacurate, and complete. I am aware that there are significant penalties for submitting is lase information, including the possibility of fine and imprisonment for knowling violations. I further certify that all data requiring alaboratory for each parameter tested. Signature of Principal Executive of Authorized Agent	
							al Discl				certi rirect rope on por borg	

The authorization holder is responsible for monitoring the discharge in accordance with the monitoring requirements specified in King County Discharge Authorization No. 1092-01. This report form must be completed, signed, and submitted to KCIW by **February 15, 2022**.

Your King County Industrial Waste Program Contact: Todd Gowing, 206-477-5426

Industrial Waste Program Self-Monitoring Report

Send to: King County Industrial Waste Program

201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

Phone 206-477-5300 / FAX 206-263-3001 **Email: info.KCIW@kingcounty.gov**

Project Name: 5055 Properties, LLC Authorization No.: 1092-01	
---	--

Project Location: 5055 E Marginal Way S, Seattle

Sample			Nickle (mg/L)	(mg/L)	PAHs (mg/L)					Name or initials of person collecting and recording samples and volum
Date			Nickle	Zinc (PAHs					each day. If permitted for relief only, explain why you did not discharge to surface water for each day of discharge.
										7 7
										an Firing an Firing and Firing an Fi
										onne requirements to the contract of the contr
										er n Seon saccuration in in in again area
										ared u la life comparation of the plant all life compared in the compared of the plant all life compared to the compared of th
										reps ————————————————————————————————————
						-				
										s we saura si he mana saura sa
										ents Oon -
										Chm led t resided to seed to s
										attare Baation mythy mythy mythy attioned itatee
										Tit of a life of solutions of s
										anc
										nent a sylvania sylva
										occun with a atio
										is do commend in the control of the
										at thi right in this country of the
										con the control of th
										f law in a line at lin
										tty o eva are t are t barrens s week s s s s s s s s s s s s s s s s s s
-					1					and ena ena envis
					-					Territy under penalty of law that this document and all attachments were prepared under my discussion in accordance with a system designed to assure that qualified personnel persons who manage the system or those persons directly responsible for gathering the complete. It am earse that there are significant penalties for submitted for gathering the complete or an aware that there are significant penalties for submitting false information. In the person of my knowledge and belief, true, accurate, and the penaltiple of the penalties for submitting talse information. In the person of the penalties for submitting talse information, including all aboratory for each parameter tested. Signature of Principal Executive or Authorized Anent
										To n or d a sibility of the contract of the co
										ction ction
		1		l	I	T-	tal Dias	harge V	oluma:	December 2 Jine Property of the property of th

The authorization holder is responsible for monitoring the discharge in accordance with the monitoring requirements specified in King County Discharge Authorization No. 1092-01. This report form must be completed, signed, and submitted to KCIW by **February 15, 2022.Your King County Industrial Waste Program Contact:** Todd Gowing, 206-477-5426

APPENDIX C

Seattle Department of Construction and Inspections Construction Permit 669742-CN

CITY OF SEATTLE Construction Permit

Seattle Department of Construction and Inspections 700 Fifth Ave, Suite 2000 P.O. Box 34019 Seattle, WA 98124-4019 (206) 684-8600

DIST 10

APN #:

Site Address: 5055 EAST MARGINAL WAY S SEATTLE, WA 98134

Building ID: None Location:

Legal Description: 357320-1061: INDUSTRIAL ADD THAT POR OF LOTS 15 & 16 DAF - BEG ON E LN SD

Records Filed At: 5055 EAST MARGINAL WAY S

OWNER

5055 Properties LLC John Heckel

5209 East Marginal Way S SEATTLE, WA 98134 Ph: (206) 762-0850

CONTRACTOR

5055 Properties LLC John Heckel

5209 East Marginal Way S SEATTLE, WA 98134 Ph: (206) 762-0850

Application Date: 03/07/2019

Issue Date:

Expiration Date: 11/26/2021

Fees Paid: \$45,376.25 As of Print Date: 05/26/2020

Description of Work: Install shoring near shoreline, demolish existing building, remediate contaminated soils, install ground improvement, install pinning pipe piles, per plan.

Permit Remarks:

Building Code: 2015 SBC

SDCI Valuation: Occupancy Cert Required:

Special Inspections: Land Use Conditions: Non-Separated Uses: N

Building Info: \$3,000,000 Basements:

> Stories: Mezzanines

Site Final Required: Y

Housing & Dwelling Unit(s) this Permit:

Unit Type DU? Units Add Remove None 0

Zoning/Overlay:

0 Council District 2 IG1 U/85 Shoreline Yes

> URBAN_VILLAGE Yes, Additional Information on

File

5/26/20

Date:

		Occupancy	Approved Use per L	and Use Code		
Floors	Туре	Occupancy Group	Use	Location		
Shorin	Not	Not Reviewed		None	Light Manufacturing	0

A/P #	Related Cases/Permits	Project Contacts	Name	Phone
6715955-DM	Demolition Permit	Ordinance	Bill Whipkey	206-233-7229
6697427-CN-007	Upload Documents	Reviewer		
6697427-CN-008	Upload Documents	Structural Reviewer		206-233-7229
20TMP-012056	Upload Documents	Zoning Reviewer	Christopher Ndifon	NA
19TMP-040962	Construction Application Intake	Land Use Reviewer		206-684-0347
6697427-CN-003	• • • • • • • • • • • • • • • • • • • •		Sandra Montgomery	206-684-4389
Additional Information	on on File	Reviewer		

Applicant Signature:

Permitted work must not progress without prior inspection approval. When ready for inspection, make request with the Seattle Department of Construction and Inspections at (206) 684-8900 or on the internet at:

https://cosaccela.seattle.gov/Portal. Provide the permit number, site address, and contact phone. Permission is given to do the above work at the site address shown, according to the conditions hereon and according to the specification pertaining thereto, subject to compliance with the Ordinances of the City of Seattle. Correct information is the responsibility of the applicant. Permits with incorrect information may be subject to additional fees.

You must have a paper copy of your approved and stamped plan set available at your job site for the City Inspector to review. If you do not have your plans printed and ready for review, you may fail your inspection.

City of Seattle Seattle Department of Construction and Inspections 700 Fifth Ave, Suite 2000

POST THIS SIDE OUT

TO THE CONTRACTOR/OWNER,

Additional permits may be required for work occurring under this permit. This permit does not authorize Sewer, Public Right-of-Way Shoring, Drainage and Street Use, Fire Department, Boiler, Electrical, Elevator, Furnace, Gas Piping, Plumbing, or Sign permits. If other permits are required, they must be applied for separately from this permit. The requirements for all other permits related to this Permit, must be completed prior to the Final Inspection of this permit.

The premises must not be occupied until the Final Inspection is completed and occupancy is authorized by the Seattle Department of Construction and Inspections.

PROPERTY LINES MUST BE ESTABLISHED BY SURVEY STAKES PRIOR TO SETBACK/FOUNDATION INSPECTION.

BEFORE BEGINNING CONSTRUCTION:

- A) Before First Ground Disturbance, request an inspection of installed Erosion Control Measures.
- B) When there is **Special Inspections**, Land Use conditions, and/or unusual design elements, a **Pre Construction Conference** is required **prior** to construction. Call 684-8860 to request a Pre Construction conference.
- C) If this permit requires a **Soil Bearing Capacity** special inspection by a Geotechnical Engineer, that approval is required **before** the foundation pour.
- D) When Special Inspections are required, notify the Special Inspection Agency at least 24 hours in advance.

INSPECTION REQUESTS: Please clarify which inspections your project requires before proceeding with your project.

You may request an inspection on the internet or by phone. Inspection requests received **before 7:00 AM** are scheduled for the same working day. Inspection requests received **after 7:00 AM** are scheduled for the next working day. Inspectors are available between the hours of 7:30 AM and 8:30 AM.

- A) Internet: https://cosaccela.seattle.gov/Portal Search for your record and click on the Inspections & Appointments link to schedule your inspection.
- B) 24 hour inspection request line at (206) 684-8900, cell phones are discouraged due to frequent connection problems.
- C) Customer Service at (206) 684-8950 between the hours of 7:30 AM and 4:30 PM.

DURING CONSTRUCTION:

SDCI inspectors will provide an electronic copy of each inspection report through the Seattle Services Portal. Go to the portal, print a copy of the inspection reports, and keep them together or with this Permit, where they can be conveniently referenced,

a.	FIRST GROUND	(non distrubance areas, erosion control,	f.	INSULATION	(Slab, Walls, Ceiling)
	tree protection)				
b.	SETBACK	(Location)	g.	MECHANICAL COVER	
				(If HVAC is authorized by	this permit)
C.	FOUNDATION	(Footings, Walls)	h.	MECHANICAL FINAL	
	[Soil bearing, Re	inforcing steel, Foundation drainage]		(If HVAC is authorized by	this permit)
d.	STRUCTURAL	(Shear Wall, HD's/Straps, Diaphragms)	i.	SITE FINAL	(If required by this permit)
e.	FRAMING	(Sub floor prior to sheathing, Walls, Ceiling)	j.	FINAL INSPECTION	(After all other related permit
				requirements are complet	ted)

PRIOR TO FINAL BUILDING APPROVAL:

Other permit approval sign-offs may be required prior to the Final Inspection of this permit. To speed-up Final approval of this permit, we recommend you acquire other permit final approvals in the signature boxes provided below.

SOIL BEARING		BOILER		SEATTLE FIRE DEPA	RTMENT
Approved By Engineer	Date	Approved By	Date	Approved By	Date
ELECTRICAL		ELEVATOR		LAND USE/DESIGN F	REVIEW
Approved By	Date	Approved By	Date	Approved By	Date
PLUMBING / GASPIPING /	BACKFLOW	SITE / SIDE SEWER		SDOT - PRVT CONTR	ACT/ST. USE
Approved By	Date	Approved By	Date	Approved By	Date
MECHANICAL / REFRIGE	RATION	OTHER		STREET TREES / AR	BORIST
Approved By	Date	Approved By	Date	Approved By	Date

APPENDIX D

Seattle Department of Construction and Inspections Construction Permit 669742-CN Plans

REMEDIAL EXCAVATION

5055 E MARGINAL WAY S, SEATTLE, WASHINGTON

PROPERTIES ON WHICH CONSTRUCTION WILL OCCUR:

KING COUNTY PARCEL NO.: 357320-1061

STREET ADDRESS: 5055 E MARGINAL WAY S PROPERTY OWNER: 5055 PROPERTIES, LLC LEGAL DESCRIPTION: INDUSTRIAL

GENERAL NOTES

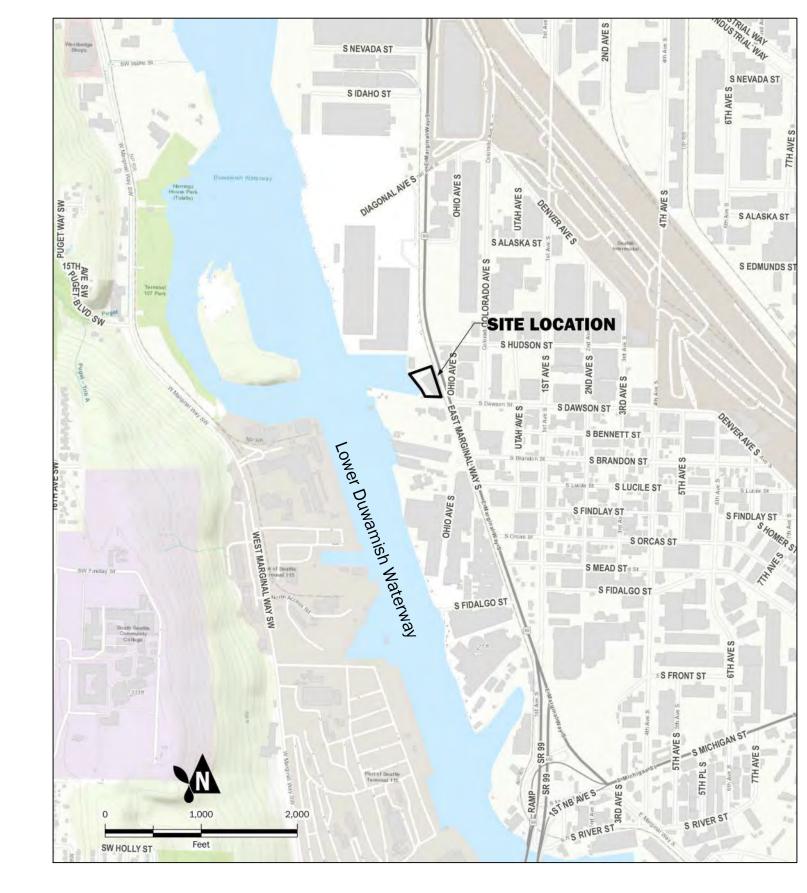
- 1. THE WORK DESCRIBED HEREIN (THE WORK) IS BEING CONDUCTED AS AN INTERIM ACTION TO ADDRESS ECOLOGY SOURCE CONTROL PROGRAM OBJECTIVES AND IN ACCORDANCE WITH MODEL TOXICS CONTROL ACT (MTCA) CLEANUP REGULATION (WAC 173-340).
- THE CONTRACTOR SHALL IMPLEMENT THE WORK ACCORDING TO THIS PLAN SET AND THE PROJECT TECHNICAL SPECIFICATIONS.
- 3. THE WORK INCLUDES EXCAVATION AND OFF-SITE DISPOSAL OF SANDBLAST GRIT AND SOIL CONTAINING SANDBLAST GRIT (CONTAMINATED SOIL) WHICH EXHIBITS ELEVATED CONCENTRATIONS OF METALS AND POLYCYCLIC AROMATIC HYDROCARBONS. THE WORK ALSO INCLUDES DEWATERING AND WATER MANAGEMENT, AND BACKFILLING OF THE EXCAVATION.
- 4. THE ESTIMATED AERIAL EXTENT OF CONTAMINATED SOIL REMOVAL COVERS APPROXIMATELY 9,565 SQUARE FEET AND EXTENDS TO A MAXIMUM DEPTH OF APPROXIMATELY 13 FEET BELOW GROUND SURFACE (BGS). THE FINAL DEPTH AND EXTENT OF EXCAVATION WILL BE BASED ON FIELD SCREENING AND CONFIRMATION SOIL SAMPLING PERFORMED BY THE ENGINEER.
- 5. THE WORK PRESENTED IN THESE PLANS SHALL BE PERFORMED IN ACCORDANCE WITH ALL APPLICABLE LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR CONTAMINATED CONSTRUCTION SITES.
- 6. CONTRACTOR IS RESPONSIBLE FOR EXCAVATION SAFETY AND SHALL FOLLOW ALL APPLICABLE OSHA AND WISHA TRENCHING AND EXCAVATION REGULATIONS.
- 7. CONTRACTOR SHALL MAINTAIN DRY CONDITIONS TO THE EXTENT PRACTICAL DURING EXCAVATION.

MINIMUM HANDLING AND DISPOSAL REQUIREMENTS FOR CONTAMINATED MATERIALS

- 1. ALL CONTRACTOR REQUIREMENTS FOR SCREENING, HANDLING, AND DISPOSAL OF CONTAMINATED SOIL AND WATER ARE PRESENTED IN THE PROJECT TECHNICAL SPECIFICATIONS. THE CONTRACTOR REQUIREMENTS ARE BASED ON THE ECOLOGY-APPROVED FINAL INTERIM ACTION WORK PLAN.
- 2. EXCAVATED SOIL WILL BE SEGREGATED AND HANDLED AS 1) POTENTIAL CLEAN SOIL, 2) CONTAMIANTED SOIL, OR 3) CONTAMINATED DEBRIS. SEGREGATION WILL BE DIRECTED BY THE ENGINEER AND USE VISUAL FIELD SCREENING FOR PRESENCE OF SANDBLAST GRIT. POTENTIAL CLEAN SOIL WILL BE VERIFED WITH ANALYTICAL TESTING. CONTAMINATED SOIL DETERMINED BY FIELD SCREENING DOES NOT REQUIRE VERIFICATION WITH ANALYTICAL TESTING. OVERSIZED MATERIAL WILL BE SEGREGATED FROM EXCAVATED SOILS AND HANDLED AS CONTAMINATED DEBRIS.
- 3. IF TEMPORARY STOCKPILING IS NECCESARY, STOCKPILES LOCATIONS WILL BE APPROVED BY THE ENGINEER. EACH STOCKPILE WILL BE UNDERLAIN AND COVERED BY PLASTIC SHEETING.
- 4. ALL CONTAMINATED SOIL AND CONTAMINATED DEBRIS WILL BE LOADED AND TRANSPORTED OFF-SITE TO A PERMITTED SUBTITLE D DISPOSAL FACILITY. TRUCKS HAULING CONTAMINATED MATERIALS MUST BE COVERED DURING TRANSPORT.
- 5. ALL CONSTRUCTION-GENERATED WASTEWATER WILL BE PRE-TREATED ON-SITE AND DISCHARGED TO SEWER IN ACCORDANCE WITH CONDITIONS OF KING COUNTY INDUSTRIAL WASTE DISCHARGE AUTHORIZATION NO. 1092-01. SOURCES OF WATER INCLUDE TEMPORARY EXCAVATION DEWATERING AND STORMWATER GENERATED WITHIN THE PROJECT SITE. ON-SITE PRETREATMENT WILL CONSIST OF RETENTION IN TANKS FOR REMOVAL OF SETTLEABLE SOLIDS. THE PRE-TREATMENT SYSTEM WILL INCLUDE FLOW METERING, COMPLIANCE SAMPLING POINTS, AND CONVEYANCE TO THE DISCHARGE POINT.

CONSTRUCTION NOTES AND PROPOSED SEQUENCE

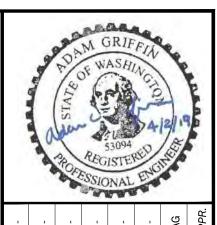
- 1. INSTALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES.
- 2. VERIFY TREE PROTECTION FOR TREES ALONG NORTH PROPERTY BOUNDARY INSTALLED BY OTHERS.
- 3. REMOVE ANY SURFACE DEBRIS AND/OR EQUIPMENT REMAINING FROM THE BUILDING DEMOLITION TO THE EXTENT NEEDED TO COMPLETE THE EXCAVATION.
- 4. MARK LIMITS OF CONTAMINATED SOIL TO BE EXCAVATED.
- 5. INITIATE DEWATERING ACCORDING TO THE DEWATERING PLAN PREPARED BY THE CONTRACTOR.
- 6. EXCAVATE CONTAMINATED SOIL AND LOAD INTO TRUCKS FOR OFF-SITE DISPOSAL. IF NEEDED, SOIL CAN BE STOCKPILED.
- 7. THERE IS THE POTENTIAL FOR HEAVE OF THE ESTUARINE UNIT DURING EXCAVATION. TO MINIMIZE THE POTENTIAL FOR HEAVE, THE CONTRACTOR SHOULD CONDUCT EXCAVATION BELOW ELEVATION 7 FEET NAVD88 ONLY DURING TIME PERIODS WHEN THE TIDE IS BELOW ELEVATION 1 FEET NAVD88.
- 8. THE CONTRACTOR SHOULD MAINTAIN THE OPEN EXCAVATION (BELOW 7 FEET NAVD88) LENGTH TO LESS THAN 40 FEET (PARALLEL TO SHORELINE) TO MINIMIZE DEWATERING RATES AND THE POTENTIAL FOR HEAVE.
- 9. ADVANCE SOIL EXCAVATION TO THE APPROXIMATE LIMITS OF EXCAVATION. ANY EXCAVATION BEYOND THE APPROXIMATE LIMITS WILL BE DIRECTED BY THE ENGINEER.
- THE ENGINEER IS RESPONSIBLE FOR CONDUCTING PERFORMANCE MONITORING AS REQUIRED BY THE ECOLOGY-APPROVED FINAL INTERIM ACTION WORK PLAN. WHEN FIELD SCREENING INDICATES THAT CONTAMINATED SOIL HAS BEEN REMOVED, THE ENGINEER WILL COLLECT SOIL SAMPLES FROM THE EXCAVATION SIDEWALL AND BOTTOM FOR LABORATORY ANALYSIS TO EVALUATE COMPLIANCE WITH REMEDIATION LEVELS. AT LEAST 12 BOTTOM SAMPLES AND 24 SIDEWALL SAMPLES WILL BE COLLECTED. IF RESULTS EXCEED REMEDIATION LEVELS, AND IF FEASIBLE, OVER-EXCAVATION WILL BE DIRECTED BY THE ENGINEER AND ADDITIONAL SOIL SAMPLING.

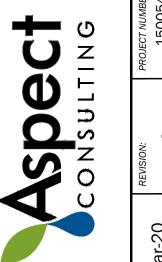

DEWATERING AND WATER MANAGEMENT NOTES

- 1. CONTRACTOR SHALL IMPLEMENT THE DEWATERING PLAN SUBMITTED IN PLAN SET DWP-1.
- 2. DEWATER EXCAVATIONS AS NEEDED TO MAINTAIN UNSATURATED CONDITIONS TO FACILITATE SOIL EXCAVATION, HANDLING, LOADING FOR TRANSPORT, CONFIRMATION SAMPLING BY THE ENGINEER, AND EXCAVATION BACKFILLING.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR ALL REQUIREMENTS AND CONDITIONS OUTLINED IN KING COUNTY INDUSTRIAL WASTE (KCIW) MINOR DISCHARGE AUTHORIZATION NO. 1092-01.

BACKFILL NOTES

- 1. CONTRACTOR CAN BEGIN BACKFILLING AFTER ENGINEER APPROVAL TO A FINAL GRADE FOR GROUND IMPROVEMENTS AT ELEVATION 11.5 FEET NAVD 88 IN ACCORDANCE WITH THE PROJECT TECHNICAL SPECIFICATIONS AND THE GEOTECHNICAL REPORT.
- 2. AFTER GROUND IMPROVEMENTS BY OTHERS, CONTRACTOR SHALL BACKFILL TO THE FINAL GRADE FOR FOUNDATION AT ELEVATION 13.0 NAVD 88 IN ACCORDANCE WITH THE PROJECT TECHNICAL SPECIFICATIONS AND THE GEOTECHNICAL REPORT.

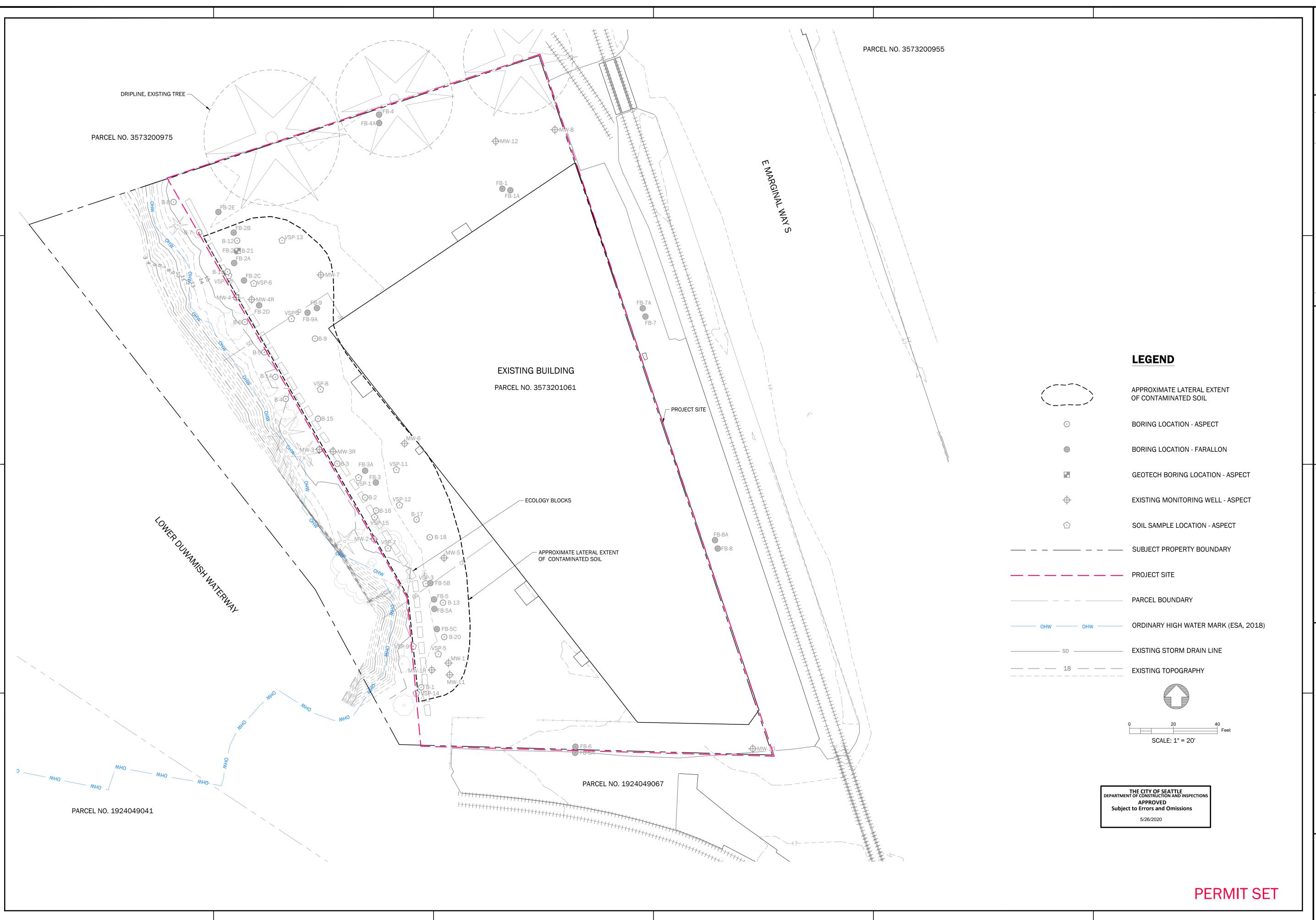

SITE LOCATION

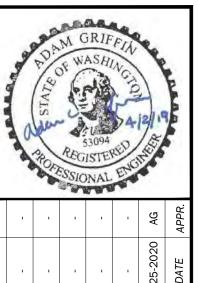

SHEET NO.	SHEET INDEX
01 NOTES 02 EXISTING CONDITIONS 03 EXCAVATION MAP 04 SECTIONS	1 OF 4 2 OF 4 3 OF 4 4 OF 4

THE CITY OF SEATTLE
DEPARTMENT OF CONSTRUCTION AND INSPEC
APPROVED
Subject to Errors and Omissions
5/26/2020

PERMIT SET

				-	
			,	-	·
ibit D.1	7	'	,		
t Drawings	inde	'	-		'
2	2	,	-	-	'
		-		-	·
BY:	REVISED BY:	⋖	NOTE REVISIONS	03-25-2020	₹
CMV	1	REV.	DESCRIPTION	DATE	API
					ı


DATE:
Mar-20


DIAL EXCAVATION PROPERTIES, LLC

REMEDIAL I 5055 PROPI Seattle, W

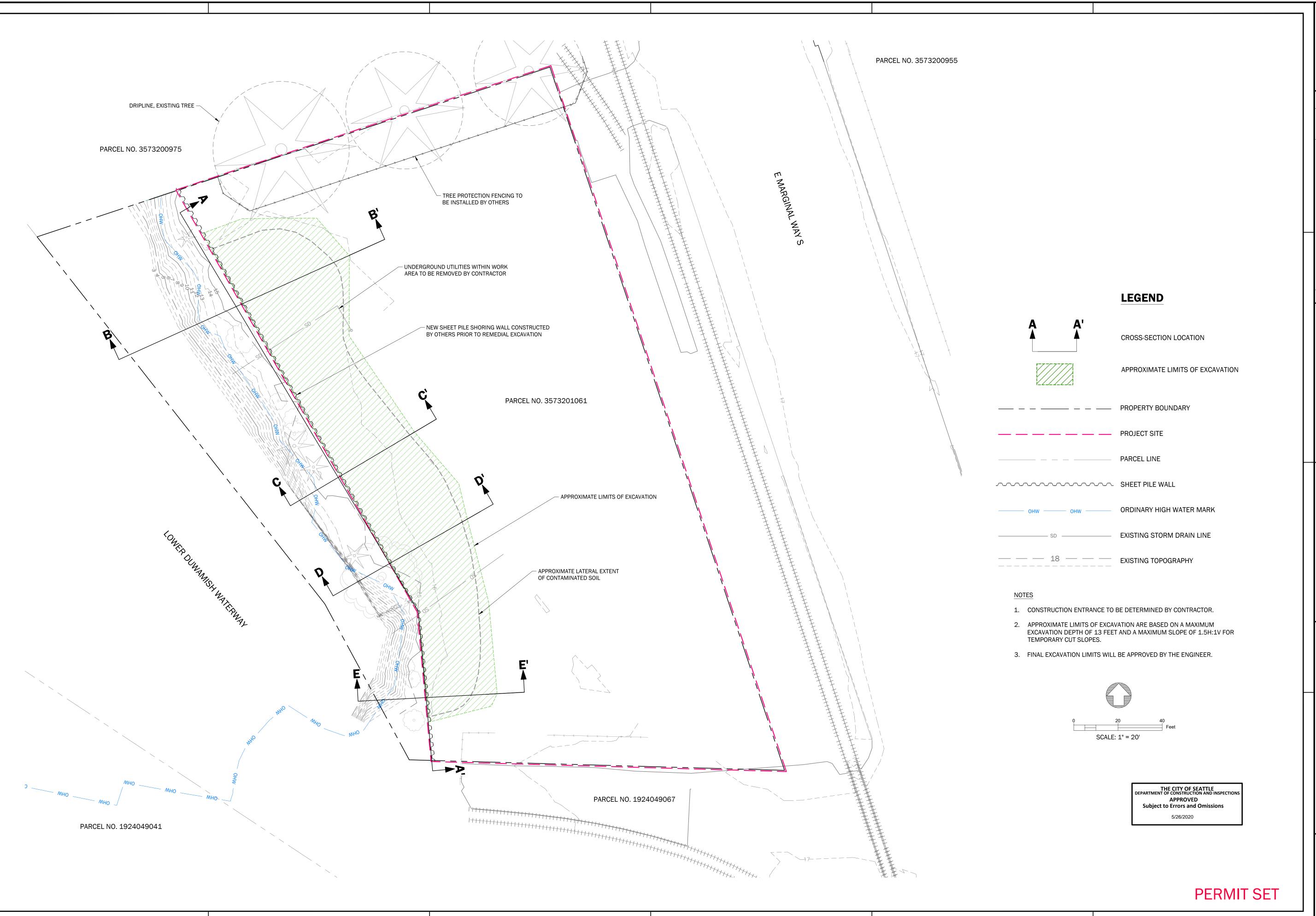
SHEET NUMBER:

HEET **1** OF

		ı	•	1	•
			,	1	
hibit D.1	7	ı	,	1	
ct Drawings	vinge	ı	,	1	,
2	9	ı		-	1
		-		-	-
WN BY:	REVISED BY:	Α	NOTE REVISIONS	03-25-2020 AG	AG
CMV	1	REV.	DESCRIPTION	DATE	APPR.

CONSULTING

MEDIAL EXCAVATION 55 PROPERTIES, LLC Seattle, Washington


EXISTING CO

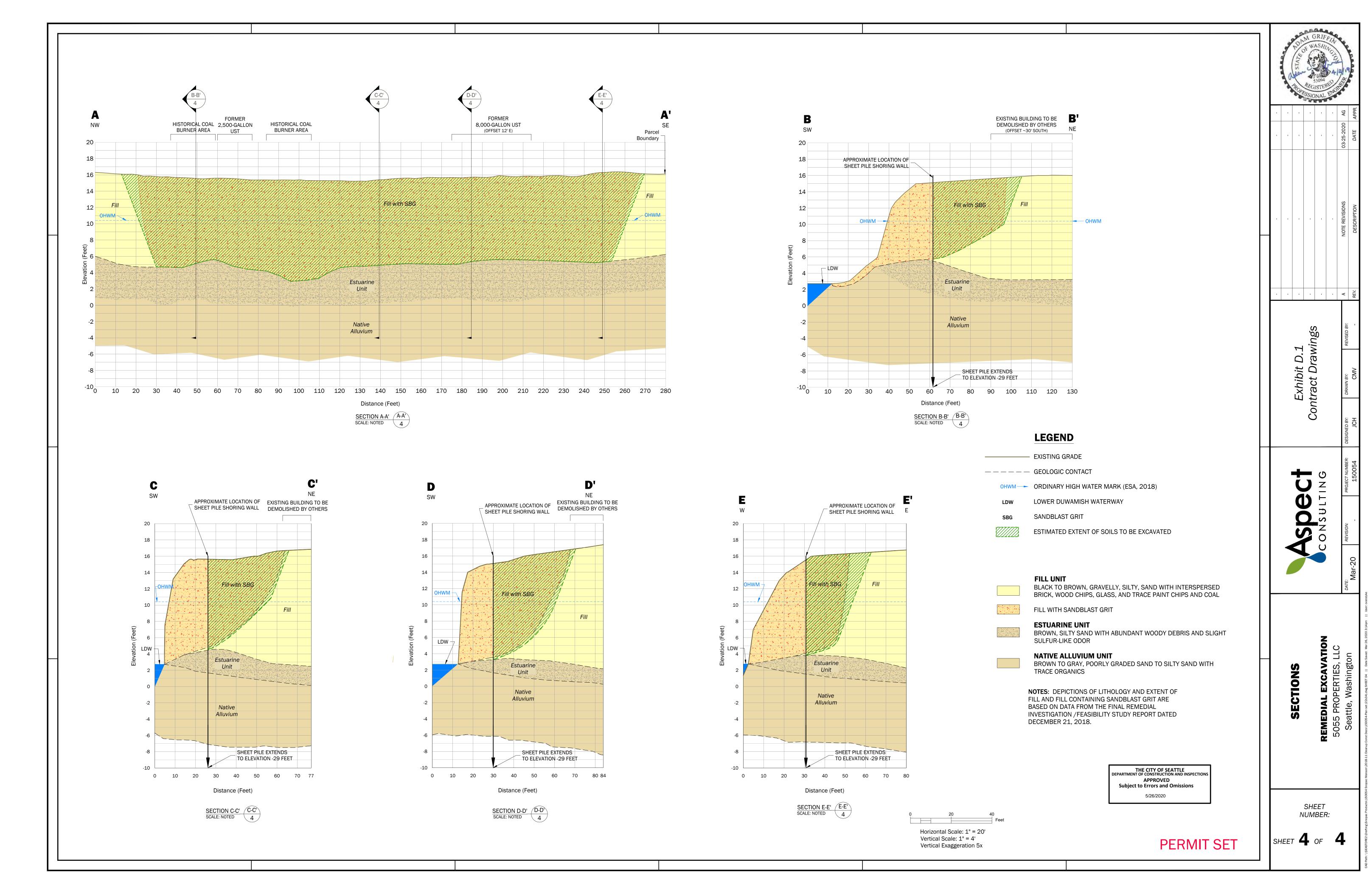
REMEDIAL EX

5055 PROPER

SHEET NUMBER:

ЕЕТ **2** ог

	1		-	,	
	ı	1	1	ı	
bit D.1	ı		,	ı	
Drawings	ı	1	ı	ı	0210
. 7 4 4 5 5	1	1	1	ı	NAL
	1		-	ı	150
3Y: REVISED BY:	∢	NOTE REVISIONS	03-25-2020 AG	AG	
- NMC	REV.	DESCRIPTION	DATE	APPR.	


SONSULTING CONSULTING

EDIAL EXCAVATION
S PROPERTIES, LLC
attle, Washington

REMEDIAL E 5055 PROPE Seattle, Wa

SHEET NUMBER:

ЕЕТ **3** ОГ

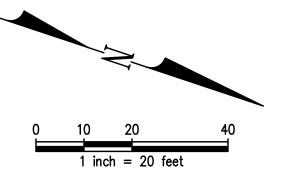
- 20. CONTACT MARK LAMPARD AT KING COUNTY WASTEWATER TREATMENT DIVISION AT 206-477-5414 AND mark.lampard@kingcounty.gov FIVE (5) WORKING DAYS IN ADVANCE OF THE PROJECT PRE-CONSTRUCTION CONFERENCE.
- CONTACT MARK LAMPARD AT KING COUNTY WASTEWATER TREATMENT DIVISION AT 206-477-5414 THREE (3) WORKING DAYS IN ADVANCE OF CONSTRUCTION ACTIVITY WITHIN 50 FEET OF THE KING COUNTY PIPELINE.
- 22. THE PROPOSED CONNECTION TO THE 60-INCH DIAMETER ELLIOT BAY INTERCEPTOR SECTION 3 (EBI3) SHALL BE MADE BY USING AN INSERTA-TEE INSTALLED PER MANUFACTURER'S INSTRUCTIONS.
- 23. A KING COUNTY REPRESENTATIVE SHALL BE ON SITE DURING EXCAVATION, CORING, AND INSTALLATION OF THE CONNECTION TO THE EBI3.
- 24. NO DEBRIS SHALL BE ALLOWED TO ENTER THE KING COUNTY SEWER SYSTEM DURING CONNECTION TO THE EBI3.
- 25. ALL WORK ON THE KING COUNTY PIPELINES AND FACILITIES SHALL NOT BE BACKFILLED UNTIL WORK HAS BEEN INSPECTED AND APPROVED BY A KING COUNTY REPRESENTATIVE.
- 26. THE PROPOSED CONNECTION TO THE EBI3 SHALL BE PLUGGED AND NOT PUT INTO SERVICE UNTIL TRIBUTARY SYSTEM HAS BEEN CLEANED, INSPECTED. TESTED. AND APPROVED BY THE CITY OF SEATTLE.

TEMPORARY EROSION AND SEDIMENT CONTROL NOTES

- - THE TESC FACILITIES SHOWN ON THIS PLAN MUST BE CONSTRUCTED IN CONJUNCTION WITH ALL CLEARING AND GRADING ACTIVITIES, AND IN SUCH A MANNER AS TO ENSURE THAT SEDIMENT LADEN WATER DOES NOT LEAVE THE SITE, ENTER THE DRAINAGE SYSTEM, OR VIOLATE APPLICABLE WATER STANDARDS.
 - THE TESC FACILITIES SHOWN ON THIS PLAN ARE THE MINIMUM REQUIREMENTS FOR ANTICIPATED SITE CONDITIONS. UPGRADE THE TESC FACILITIES AS NEEDED TO
 - 4. THE IMPLEMENTATION, MAINTENANCE, AND REPLACEMENT OF ALL TESC FACILITIES IS THE RESPONSIBILITY OF THE CONTRACTOR UNTIL ALL CONSTRUCTION IS
 - CITY OF SEATTLE INSPECTOR.
 - 3. PROVIDE TEMPORARY CHAINLINK CONSTRUCTION FENCING AS REQUIRED FOR
 - PROVIDE CATCH BASIN INSERTS FOR ALL STORM DRAIN INLETS AND CATCH BASINS DOWN SLOPE OF DISTURBED AREAS, WITHIN 500 FEET OF THE PROJECT SITE.
 - 8. INSPECT STORM DRAIN INLETS AND CATCH BASINS IN THE ROW DAILY. WATER TIRES, SHALL BE CLEAN. IMPLEMENT ADDITIONAL SEDIMENTATION CONTROL METHODS AS NEEDED OR AS DIRECTED BY THE COS INSPECTOR.
 - AREAS RESULTING FROM TEMPORARY CUTS, BACKFILL OF TEMPORARY CUTS TO ROUGH FINAL GRADE, AND STOCK PILES THAT ARE TEMPORARILY EXPOSED. GRADING MUST BE STABILIZED BY OCTOBER 31, AND NO EXCAVATION ACTIVITIES DRY SEASON GRADING EXTENSION LETTER FROM DPD.
 - 10. GRADING MUST BE STABILIZED BY OCTOBER 31ST, AND NO EXCAVATION OR FILL PLACEMENT CAN BE PERFORMED BETWEEN OCTOBER 31ST AND APRIL 1ST WITHOUT WRITTEN PERMISSION FROM THE SDCI GEOTECHNICAL ENGINEERING GROUP.
- 11. NO SEDIMENT SHALL BE TRACKED INTO THE STREET OR ONTO PAVED SURFACES. SEDIMENT SHALL BE REMOVED FROM ALL TRUCKS AND EQUIPMENT PRIOR TO LEAVING THE SITE.
- 12. ALL TEMPORARY DISCHARGE TO THE PUBLIC SEWER SYSTEM MUST MEET ALL REQUIREMENTS OF THE KING COUNTY INDUSTRIAL WASTE PROGRAM DISCHARGE PERMIT, INCLUDING BUT NOT LIMITED TO WATER QUALITY, SPECIAL CONDITIONS, MONITORING. AND REPORTING REQUIREMENTS.
- 13. APPROVAL OF THE DRAINAGE PLAN AND TESC PLAN DOES NOT INCLUDE APPROVAL OF THE GRADING SHOWN HEREIN. GRADING ACTIVITIES WITHIN THE PUBLIC ROW REQUIRE A STREET USE PERMIT FROM SDOT. GRADING ACTIVITIES ON ADJACENT PROPERTIES REQUIRE WRITTEN APPROVAL FROM THE ADJACENT PROPERTY OWNER.
- 14. PROTECT SLOPE FROM EROSION BY EMPLOYING TEMPORARY COVER PRACTICES SUCH AS BMP E1.10: TEMPORARY SEEDING, BMP E1.15: MULCHING, MATTING, AND COMPOST BLANKETS, BMP E1.20: CLEAR PLASTIC COVERING, OR OTHER BMPS PER
- DEMOLITION, AND CONSTRUCTION ACTIVITIES THROUGH THE IMPLIMENTATION OF COS BMP E2.45: DUST CONTROL.
- 16. SEE SOIL REMEDIATION SHEETS FOR SCOPE OF EXCAVATION AND SOIL REMEDIATION
- 17. EMPLOY EXCAVATION AND DEWATERING MEASURES IN ACCORDANCE WITH THE WASHINGTON STATE DEPARTMENT OF ECOLOGY APPROVED INTERIM ACTION WORK PLAN. SEE DWP-1 FOR DETAILS.
- CONTAMINATED GROUNDWATER AND CONSTRUCTION STORMWATER ARE ANTICIPATED, THEREFORE ALL CONSTRUCTION STORMWATER AND GROUNDWATER SHALL BE CONTROLLED AND COLLECTED ON-SITE AND PREVENTED FROM ENTERING THE NUMERICAL WATER QUALITY LIMITS ASSOCIATED WITH THIS AUTHORIZATION. IMPLEMENT TREATMENT METHODS AS DESCRIBED IN THE INTERIM ACTION WORK PLAN ASSOCIATED WITH AGREED ORDER NO. DE 16300 WITH THE WASHINGTON
- PVC CLEANOUT AT THE END OF THE SIDE SEWER WITH THE RIM RAISED TO GRADE

OF PAD-READY WORK SURFACE.

TEMPORARY CHAINLINK CONSTRUCTION FENCE —— OHW ——— OHW ——


ORDINARY HIGH WATER LINE

SHEET PILE WALL - SEE STRUCTURAL

CONSTRUCTION ENTRANCE

SLOPE PROTECTION — SEE NOTE 14

SOIL REMEDIATION AREA — SEE NOTES 16-18

1. ALL NOTES FOUND ON THE COS TESC STANDARD PLANS SHALL APPLY TO THIS

ACCOUNT FOR STORM EVENTS.

APPROVED BY THE OWNER.

5. INSPECT AND MAINTAIN TESC FACILITIES AS NECESSARY OR AS DIRECTED BY THE

SAFETY AND AS DIRECTED BY THE CITY OF SEATTLE INSPECTOR. PLACE FENCING IN A MANNER THAT ALLOWS FULL USE OF ADJACENT FACILITIES.

LEAVING THE SITE DURING CONSTRUCTION, INCLUDING WATER CARRIED BY TRUCK

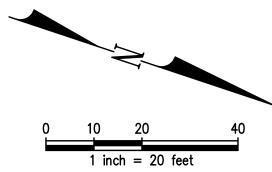
9. PREVENT ON-SITE EROSION BY STABILIZING ALL DISTURBED SOILS, ROUGH GRADING SHALL BE PERFORMED BETWEEN OCTOBER 31 AND APRIL 1 WITHOUT AN APPROVED

THE COS STORMWATER MANUAL.

15. CONTROL SURFACE AND AIR MOVEMENT OF DUST DURING LAND-DISTURBING,

DUWAMISH WATERWAY. DISCHARGE SHALL BE COMPLIANT WITH REQUIREMENTS AND STATE DEPARTMENT OF ECOLOGY TO BRING DISCHARGE WITHIN ALLOWABLE WATER QUALITY LIMITS.

CONTRACTOR IS RESPONSIBLE FOR OBTAINING SIDE SEWER PERMIT FROM THE CITY OF SEATTLE TO CONSTRUCT SIDE SEWER AS SHOWN. DISCHARGE TO SIDE SEWER SHALL MEET ALL REQUIREMENTS OF KING COUNTY INDUSTRIAL WASTE MINOR DISCHARGE AUTHORIZATION NO. 1092-01. AT PROJECT COMPLETION, INSTALL A


PROPERTY LINE

LIMIT OF WORK

TREE PROTECTION FENCE - SEE LANDSCAPE

PIPE PILE - SEE STRUCTURAL

COMPOST SOCK

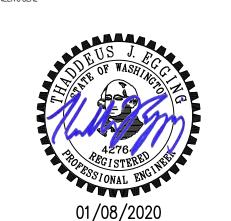
SEATTLE / Pier 56, 1201 Alaskan Way, #200 Seattle, WA 98101 / 206.623.3344 SAN FRANCISCO / 660 Market Street, #300

1601 5th Avenue, Suite 1600 Seattle, WA 98101

206.622.5822

BUILDING

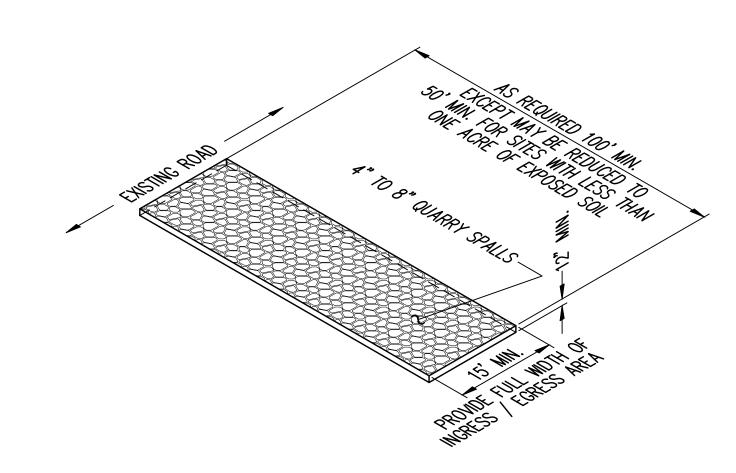
www.kpff.com

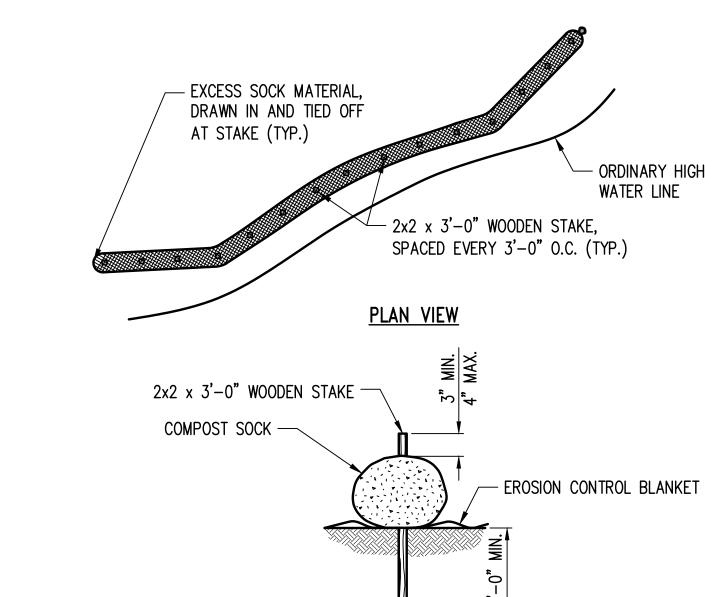

MANSON CONSTRUCTION **ACCESSORY OFFICE**

LOCATION 5055 EAST MARGINAL **WAY SOUTH** SEATTLE, WA 98134

PREPARED FOR MANSON CONSTRUCTION

THE CITY OF SEATTLE TIMENT OF CONSTRUCTION AND INS APPROVED **Subject to Errors and Omissions** 5/26/2020


02 10/11/2019 6697427 CN-2 03 01/10/2020 6697427 CN-3



SEATTLE DCI / OPCD APPROVAL STAMP

SHORELINE TEMPORARY **EROSION AND SEDIMENT** CONTROL

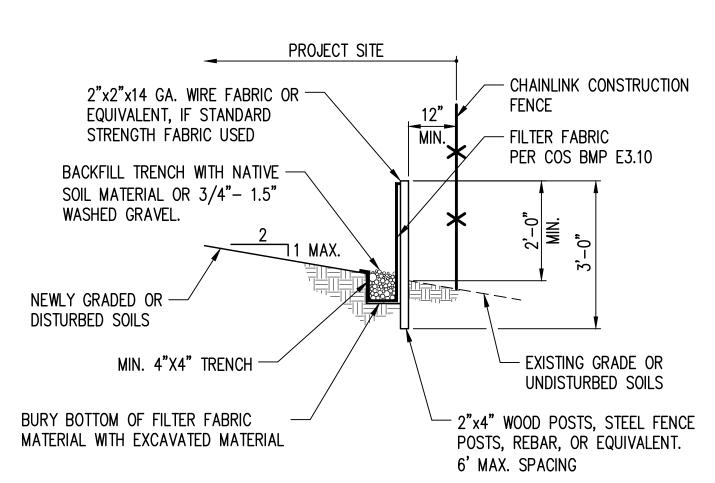
PROJECT NO. 1821100 02/28/19

NOTES:

- CATCH BASIN PROTECTION SHALL COMPLY WITH BMP E3.25 AS PUBLISHED IN THE CITY OF SEATTLE STORMWATER MANUAL.
- INSERTS SHALL BE INSPECTED AND MAINTAINED IN ACCORDANCE WITH THE CITY OF SEATTLE STORMWATER MANUAL.
- CATCH BASIN INSERTS SHALL BE INSTALLED IN DRAINAGE DEVICES PER THE MANUFACTURER'S RECOMMENDATIONS.
- CLEAN AND/OR REPLACE INSERT WHEN ONE THIRD OF THE TRAP IS FILLED WITH

1. CHAIN LINK FABRIC TO BE MIN. 11 GAUGE, GALVANIZED. NO RUSTED OR EXCESSIVELY

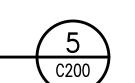
2. FENCE BASES SHALL BE OF SUFFICIENT WEIGHT AND/OR SPREAD TO ADEQUATELY


3. PANEL-TO-PANEL CONNECTIONS SHALL BE MADE AT A MIN. TWO LOCATIONS PER

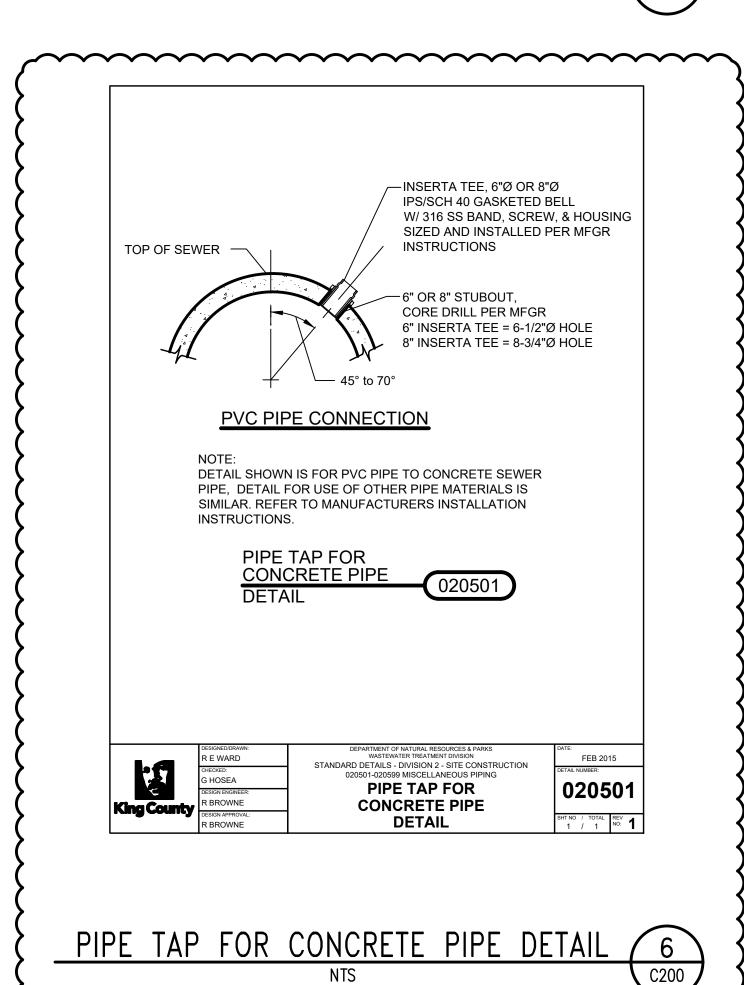
MALFORMED FABRIC.

SUPPORT EACH PANEL.

CONNECTION UNLESS OTHERWISE APPROVED.


C200

TYPICAL CROSS SECTION


1. INSTALL AND MAINTAIN FILTER FABRIC FENCE PER COS BMP E3.10

FILTER FABRIC FENCE NTS

1. INSTALL AND MAINTAIN STABILIZED CONSTRUCTION ENTRANCE PER COS BMP E2.10

COMPOST SOCK NTS

TYPICAL SECTION

1. INSTALL AND MAINTAIN COMPOST SOCK PER COS BMP E3.35

C200

ORDINARY HIGH

WATER LINE

CATCH BASIN PROTECTION NTS

C200

-OVERFLOW (TO BYPASS

PEAK STORM VOLUMES)

MITHUN SEATTLE / Pier 56, 1201 Alaskan Way, #200 Seattle, WA 98101 / 206.623.3344 SAN FRANCISCO / 660 Market Street, #300 San Francisco, CA 94104 / 415.956.0688 mithun.com

1601 5th Avenue, Suite 1600 Seattle, WA 98101

206.622.5822 www.kpff.com

PROJECT MANSON CONSTRUCTION **ACCESSORY OFFICE** BUILDING

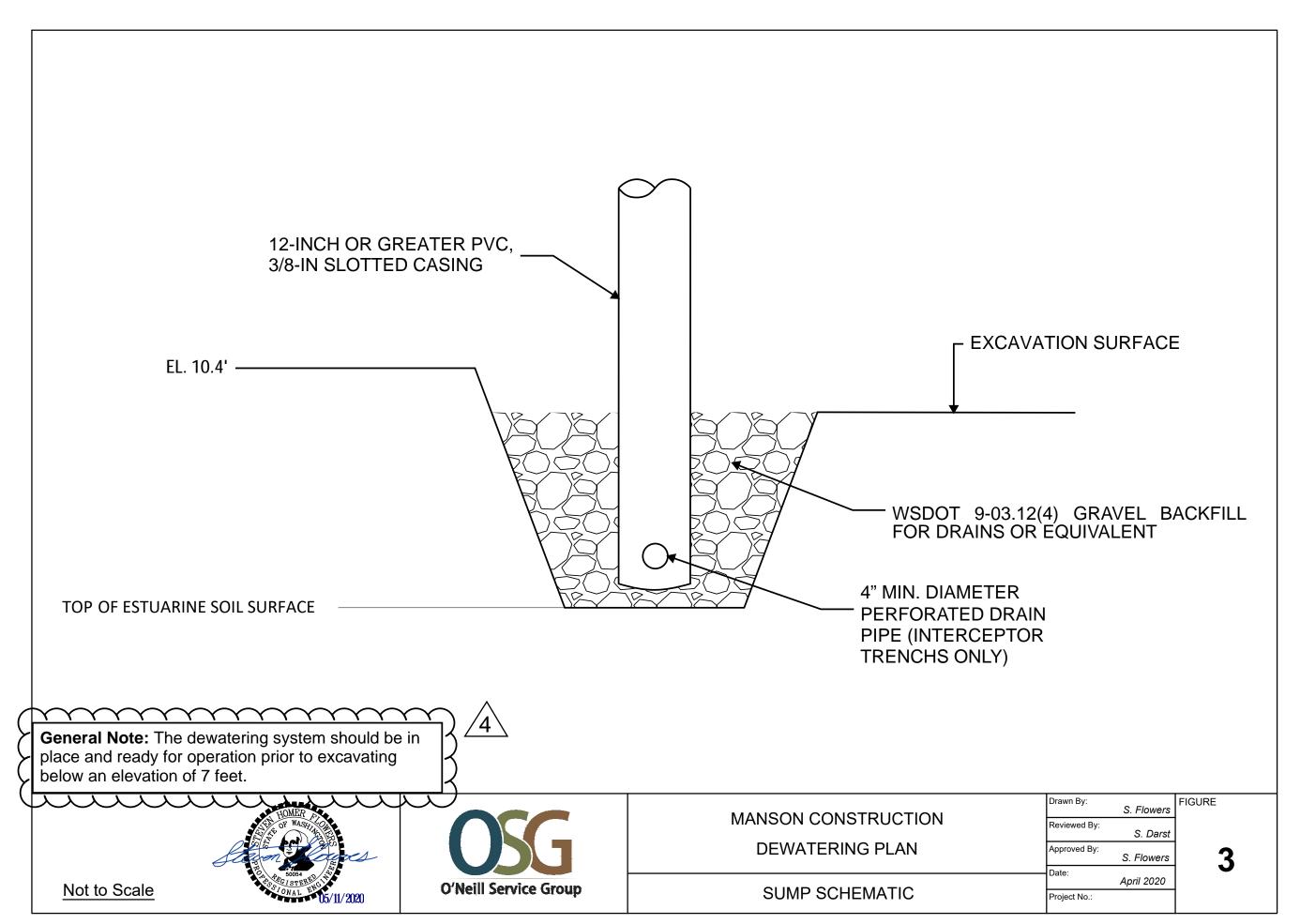
LOCATION **5055 EAST MARGINAL WAY SOUTH** SEATTLE, WA 98134

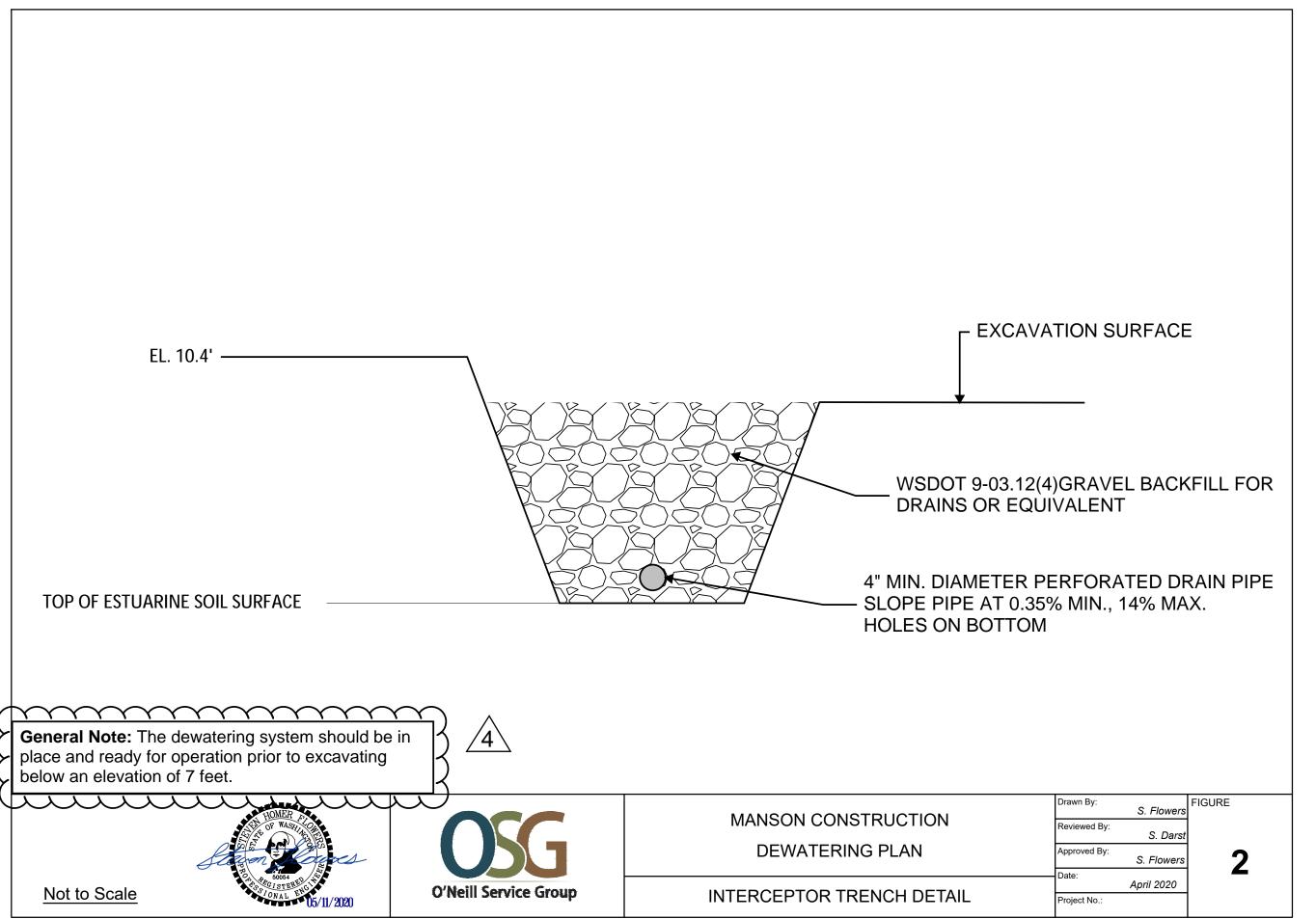
PREPARED FOR MANSON CONSTRUCTION

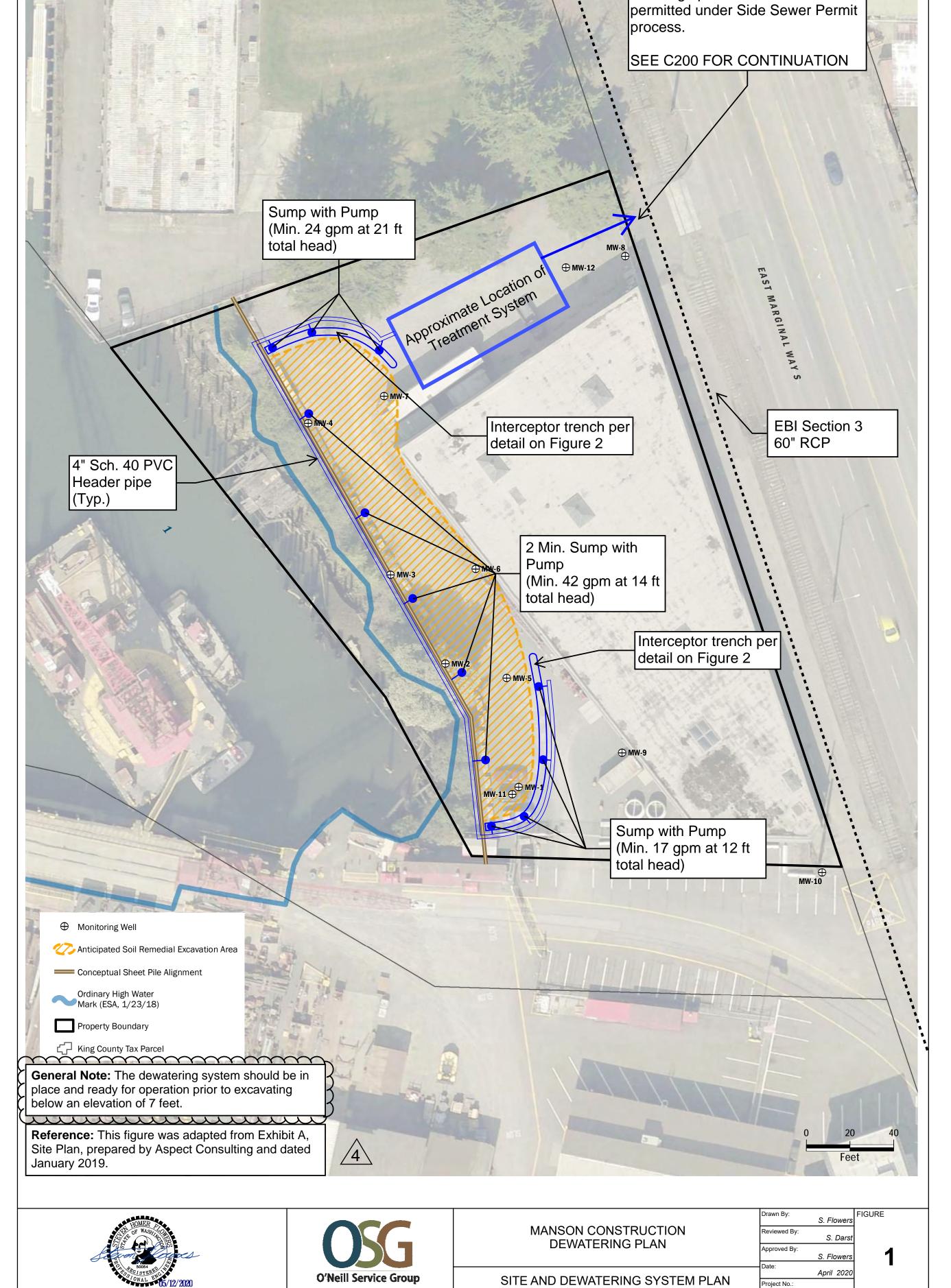
THE CITY OF SEATTLE DEPARTMENT OF CONSTRUCTION AND INSPECTIO APPROVED **Subject to Errors and Omissions** 5/26/2020

NO.	DATE	REVISION
01	07/17/2019	6697427 CN-1
02	10/11/2019	6697427 CN-2
03	01/10/2020	6697427 CN-3
_		
_		

TJE PROJECT MANAGER BCR PROJECT ENGINEER BCR


CM CHECK TJE


ENGINEER'S SEAL



SHORELINE TEMPORARY **EROSION AND SEDIMENT** CONTROL DETAILS

02/28/19

THE CITY OF SEATTLE
DEPARTMENT OF CONSTRUCTION AND INSPECTIONS
APPROVED
Subject to Errors and Omissions
5/26/2020

MANSON
CONSTRUCTION
LOCATION
5055 EAST MARGINAL
WAY SOUTH
SEATTLE, WA 98134

PREPARED FOR

Approximate location of new side sewer connection to be used as discharge point. Connection to be

NO. DATE REVISION

8 03/27/20 6697427-CN - RESPONSE 4

4 05/14/20 6697427-CN - RESPONSE 5

DESIGN PARTNER

PROJECT MANAGER

PROJECT ARCHITECT

PROJECT DESIGNER

PROJECT TEAM MEMBERS

DEWATERING PLAN & DETAILS

DATE

JANUARY 10, 2020

DWP-1
PERMIT SET

APPENDIX E

Well Decommissioning Logs

Resource Protection Well		Notice of Intent No.	LEGI()78	
Submit one well report per well installed. See pa	ige two for instructions.	Type of Well:			
Type of Work:		Resource Protect		Injection Point	
Decommission ⇒ Original NOI No.	ZE 13519	Remediation We Geotechnical Soi		Grounding Wel	
Ecology Well ID Tag No. By y- 375	5	Environmental B		*****	
Site Well Name		Soil- Vap			
Site Well Name Consulting Firm Aspect		Property Owner Ma			า
Was a variance approved for this well/borin	σ? Π Ves Mo No	Well Street Address	5709	E Margin	allocus
If yes, what was the variance for?	, -	City Scattle	Cou	The Viba	way.
		Tan Daniel Ma	Con	my Ring	
		Tax Parcel No.			
		Location (see instruct		WWM	
WELL CONSTRUCTION CERTIFICATIOn accept responsibility for construction of this well, and a		NE 4-4 NE 4,	Section U	Town 40	Range 4E
Washington well construction standards. Materials use	ed and the information	Latitude (Example: 4'	7.12345)		
reported are true to my best knowledge and belief.	·	Longitude (Example:	-120.12345)	
Driller □ Trainee □ Engineer	Lo 27 - 102			linate System)	
Name (Print Last, First Name) Dicking	Der Davia	Borehole diameter	inches	Casing diameter	2 inches
Driller/Engineer/Trainee Signature	Yes -	Static water level			
License No. 3017					
Company Name Holt Scruices 1		☐ Above-ground com	-		
If trainee box is checked, sponsor's license		Stick-up of top o	f well casing	g ft above g	round surface.
Sponsor's signature		Start Date 8-11-70	Olo Com	oleted Date 8-1	1-2020
Construction/Design	V	Vell Data	,	Formation De	
Constitution of the Consti		· · · · · · · · · · · · · · · · · · ·		i dinaddi De	Sorption
				•	
	CONCRETE SUI	RFACE SEAL		0 -	FT
		F	r		
					•
			7.6		
	·				
4	BACKFILL	14 F	r	0 -	FT
(1982년 - 1985년 - 1984년 - 1984년 - 1984년 - 1984	·				
		0 1. 11			
		bentonite_			
		Bentanite Chups.		. 5	
					,
		•		0 -	FT
			İ		
	DEPTH OF BORING	F	Γ		
•			Į.		

Resource Protection Well Submit one well report per well installed. See par Type of Work: Construction Decommission Coriginal NOI No. Ecology Well ID Tag No. Site Well Name Consulting Firm	ge two for instructions. 26.36.19 g?	Well Street Address 57 City Scattle Tax Parcel No. Location (see instructions NE 14-14 NE 14, Sec Latitude (Example: 47.12 Longitude (Example: -12t (WGS 8 Borehole diameter Static water level Above-ground complet	Well Grigection Point Grounding Well Ground Source of Ground Source of Ground Source of Ground Source of Grounds Groun	Heat Pump Lacy 5 or EWM Range 4E
	TT		Completed Date 8-11	
Construction/Design		/ell Data	Formation Des	cription
	CONCRETE SUF	PENTONITE Chips.	0 -	FT FT
	DEPTH OF BORING		0 -	FT

Resource Protection Well Submit one well report per well installed. See protection Type of Work: Construction Decommission Decignal NOI No. Ecology Well ID Tag No. Site Well Name Consulting Firm Consulting	RE13819 O PYes No ON: I constructed and/or	Notice of Intent Type of Well: Resource P Remediation Geotechnic Environme Soil- Property Owner Well Street Add City Scattle Tax Parcel No. Location (see in	rotection Von Well cal Soil Bor ntal Boring Vapor- Mansa dress 570	Vell In Gring G G G G G G G G G G G G G G G G G G G	jection Point rounding Well round Source Fi ther apling twelf an Margina King WWM WWM	eat Pump Way 5. or EWM
Washington well construction standards. Materials us reported are true to my best knowledge and belief.		Latitude (Exam				
Driller □ Trainee □ Engineer		Longitude (Exa				-
Name (Print Last, First Name) Dicking	sep. David	Borehole diame	,	<i>Coordinat</i>		1 inches
Driller/Engineer/Trainee Signature		Static water leve				
Company Name HOLL SCUICES 1	n C	☐ Above-groun				
If trainee box is checked, sponsor's license		Stick-up of				
Sponsor's signature		Start Date 6-			,	
Construction/Design	W	ell Data		J	Formation Desc	ription
	CONCRETE SUR	FACE SEAL	FT		-	_ FT
	BACKFILL	12) Bentanite Chups	FT	0		_ FT
		Mups.			· 2	
				0		FT
	DEPTH OF BORING		FT			

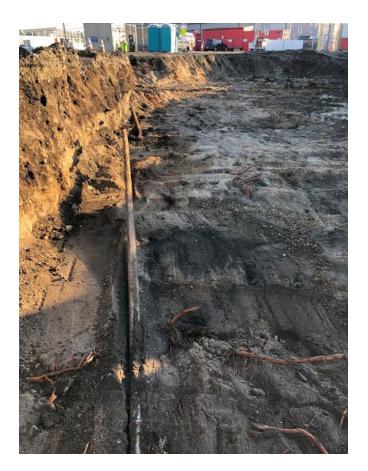
Resource Protection Well		Notice of Intent No. Af	62078	
Submit one well report per well installed. See partype of Work:	age two for instructions.	Type of Well:		
Canatavation	a . A	Resource Protection Remediation Well	Well Injection Point . Grounding Well	
Decommission ⇒ Original NOI No.	1£13519	Geotechnical Soil Bo		eat Pump
Ecology Well ID Tag No. BKY-319		Environmental Borin	g Other	
		Soil- 🗆 Vapor- 🗅		
Site Well Name Consulting Firm ASOCC +		Property Owner Mans	in Construction	
Was a variance approved for this well/boring		Well Street Address 57	09 E Marginal	Ways.
If yes, what was the variance for?		City Scaffle	County King	<i>y</i> .
		Tax Parcel No.	7	
		Location (see instructions	s): WWM □ o	or EWM 🗆
WELL CONSTRUCTION CERTIFICATION		NE 4-4NE 4, Sec	tion 19 Town 14N Ran	ige 4E
accept responsibility for construction of this well, and Washington well construction standards. Materials us	its compliance with all ed and the information		345)	-
reported are true to my best knowledge and belief.		· · · · · · · · · · · · · · · · · · ·	0.12345)	
☐ Driller ☐ Trainee ☐ Engineer			4 Coordinate System)	
Name (Print Last, First Name) Dick in	500 Davia	Borehole diameter	inches Casing diameter	inches
Driller/Engineer/Trainee Signature	X (C)		ft below top of casing Date	
License No. 3017	- 6		tion with bollards	
Company Name HOH Services 1				
If trainee box is checked, sponsor's license	number:		Il casing ft above grou	•
Sponsor's signature		Start Date 6-11-LOLG	Completed Date 8-11	(070
Construction/Design	. W	ell Data	Formation Descr	iption
	CONCRETE SUR	FACE SEAT	0 _	FT
		TROD SEARC		- * 1
		FT		
				•
	BACKFILL	_(3 FT	0 -	FT
			,	-
		Realm la		
	<u> </u>	Bentanite Chups-		
		Crups.	· §	
		·		
				Y TOTAL
				FT
			·	
提及扩充 。				
	DEPTH OF BORING	Tricer		
←	PRIMOR DORING	FT		

Resource Protection Well Submit one well report per well installed. See p. Type of Work: Construction Decommission Original NOI Not Ecology Well ID Tag No. Site Well Name Consulting Firm Co	Rege two for instructions. LE 13976 Reg? □ Yes No	Well Street Address 57 City Scattle Tax Parcel No.	Well Injection Point Grounding Well ring Ground Source He g Other Water-sampling Construction County King	Ways.
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and Washington well construction standards. Materials us reported are true to my best knowledge and belief. Driller Trainee Engineer Name (Print Last, First Name) Driller/Engineer/Trainee Signature License No. Company Name Holl Scores If trainee box is checked, sponsor's license Sponsor's signature	DN: I constructed and/or its compliance with all ed and the information	Latitude (Example: 47.12: Longitude (Example: -120 (WGS 8: Borchole diameter Static water level Above-ground complet Stick-up of top of well	WWM Grant and American Research Researc	nge 4E. inches monument and surface.
Construction/Design		Vell Data	Formation Descr	
	CONCRETE SUR		0 ~	FT
	BACKFILL	15 pt Bentanite Chups.	0 -	FT .
	DEPTH OF BORING	FT	0 -	FT

Resource Protection Well		Notice of Intent No. A	262078	
Submit one well report per well installed. See p	age two for instructions.	Type of Well:		
Type of Work:		Resource Protection	n Well 🔲 Injection Point	,
☐ Construction Decommission ⇒ Original NOI No.	DE 13819	Remediation Well	Grounding Well	T . D
Ecology Well ID Tag No. Bky - 32		Geotechnical Soil B Environmental Bori		
		Soil- Vapor-	U	
Site Well Name Consulting Firm ASOCC		*	an Construction	
Was a variance approved for this well/bori		Well Street Address 5	209 E Margina	11.2045
If yes, what was the variance for?		City Sea Ma	County King	way.
11 yes, what was the variable for:		Tax Parcel No.		AGILETA
	AASII, III A			
			us): WWM	
WELL CONSTRUCTION CERTIFICATI accept responsibility for construction of this well, and			ection 19 Town 24N R	
Washington well construction standards. Materials us reported are true to my best knowledge and belief.	sed and the information		2345)	
Ď Driller □ Trainee □ Engineer			20.12345)	
Name (Print Last, First Name) Dickin	son. Dould	,	84 Coordinate System)	a
Driller/Engineer/Trainee Signature		Borehole diameter	_inches Casing diameter _	inches
License No. 3017		Static water level	_ ft below top of casing Date	ə
Company Name HOLL Services	inc	☐ Above-ground comple	etion with bollards 🛚 🗖 Flush	monument
If trainee box is checked, sponsor's license		Stick-up of top of w	rell casing ft above gro	ound surface
Sponsor's signature			O Completed Date 8-11-	•
. And the second		and the second s		
Construction/Design		ell Data	Formation Desc	ription
	-CONCRETE SUR	FACE SEAL	0 -	_ FT
	BACKFILL	<u>14 </u>	0 -	_ FT
		Bentanite Chups.	· · · · · · · · · · · · · · · · · · ·	
		•	0 -	_ FT
←	DEPTH OF BORING	FT		

Resource Protection Well		Notice of Intent No. $\mathbf{A}\mathcal{E}$	62078	
Submit one well report per well installed. See p Type of Work:	page two for instructions.	Type of Well:	_	
Construction	24 . 26	Resource Protection Remediation Well	Well Injection Point Grounding Well	
Decommission ⇒ Original NOI No.	VE 13976	Geotechnical Soil Bo		eat Pump
Ecology Well ID Tag No. BLY - 317		Environmental Borir		±
Site Well Name Consulting Firm ASOCC+		Soil- U Vapor-		
		Property Owner 1005	in Construction	1
Was a variance approved for this well/bori		Well Street Address 57	09 6 Marginal	Ways.
If yes, what was the variance for?		City Hattle	County King	
,		Tax Parcel No.		
		Location (see instructions		
WELL CONSTRUCTION CERTIFICATI		NE 4-4 NE 4, Sec	etion 19 Town 14N Rai	1ge <u>4E</u>
accept responsibility for construction of this well, and Washington well construction standards. Materials u	sed and the information	Latitude (Example: 47.12	345)	
reported are true to my best knowledge and belief.		Longitude (Example: -12	0.12345)	
Driller ☐ Trainee ☐ Engineer Name (Print Last, First Name)	am Dould	,	14 Coordinate System)	_
Driller/Engineer/Trainee Signature	The state of	Borehole diameter	inches Casing diameter _	inches
License No. 3017		Static water level	ft below top of casing Date	
Company Name Hold Scruices	inc	☐ Above-ground comple	tion with bollards 🛘 Flush	monument
If trainee box is checked, sponsor's license		_ :	ell casing ft above grou	
Sponsor's signature			Completed Date 8-11	•
Constraint -/Dailer	771			
Construction/Design		ell Data	Formation Descr	iption
			•	
*	- CONCRETE SUR	FACE SEAL	0 -	FT
		respon		
		FT		
				·
	. ,			
	-BACKFILL	18 FT	0 -	armente
	DACINILL	10 rı	V -	FT
		0 1 1		
		Bentante		
		Bentanite Chups.	. 7	
			.	
			0 -	FT
			·	
-	DEPTH OF BORING	FT		
	1		1	

Resource Protection Well Submit one well report per well installed. See proceeding the property of Work: Construction Decommission Original NOI No. Ecology Well ID Tag No. Site Well Name Consulting Firm Was a variance approved for this well/bori If yes, what was the variance for? WELL CONSTRUCTION CERTIFICATT accept responsibility for construction of this well, and Washington well construction standards. Materials us reported are true to my best knowledge and belief. Driller Trainee Engineer Name (Print Last, First Name) Driller/Engineer/Trainee Signature License No. Company Name Hold Schulces If trainee box is checked, sponsor's license	ng? Yes No ON: I constructed and/or its compliance with all sed and the information	Remediation Well Geotechnical Soil B Environmental Borin Soil- Vapor- Property Owner Mans Well Street Address City Scattle Tax Parcel No. Location (see instruction NE 14-14 NE 14, See Latitude (Example: 47.12 Longitude (Example: -12 (WGS & Borehole diameter Static water level Above-ground comple	Well Injection Point Grounding Well oring Ground Source or Other Water-sampling Margina County King	Heat Pump Lange HE inches te h monument
Sponsor's signature		Start Date 8-11-2026	Completed Date 8-11	2020
Construction/Design	W	ell Data	Formation Des	cription
	- CONCRETE SUR	FACE SEALFT	0 -	FT
•	BACKFILL	14 FT Bentanile Chups	0	_ FT
			0 -	FT
—————————————————————————————————————	DEPTH OF BORING	FT		


Resource Protection Well		Notice of Intent No.	8F0703A		
Submit one well report per well installed. See page two for instructions,		Type of Well:			
Type of Work:	Resource Protection Well [Injection Point ,				
☐ Construction ☑ Decommission ➡ Original NOI No.	Remediation Well Grounding Well Geotechnical Soil Boring Ground Source Heat Pump				
Ecology Well ID Tag No. BVY-147	Environmental Boring Other				
Site Well Name	☐ Soil- ☐ Vapor- ☐ Water-sampling				
Consulting Firm ASpect		_ Property Owner ሺ	inson Constructi	(M)	
Was a variance approved for this well/boring? ☐ Yes M No					
If yes, what was the variance for?		_ City Seattle	County <u>Una</u>		
- Andrews - Andr		Tax Parcel No	J		
		 Location (see instruc 	tions): WWM	¶ □ or EWM □	
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported are true to my best knowledge and belief.			, Section 19 Town 74N		
		Latitude (Example: 47.12345) Longitude (Example: -120.12345)			
Name (Print Last, First Name) Qickingen, David		Borehole diameter inches Casing diameter 2 inches			
Driller/Engineer/Trainee Signature		Static water level ft below top of casing Date			
License No. 3011		 .			
Company Name HOH Scruices	inc	_ ☐ Above-ground con	npletion with bollards 🛛 Fl	ush monument	
If trainee box is checked, sponsor's license	number:	Stick-up of top o	of well casing ft above	ground surface.	
Sponsor's signature	· · · · · · · · · · · · · · · · · · ·	_ Start Date 8-11-2	670 Completed Date 8-	11-7070	
Construction/Design		Well Data	Formation D		
Communication Design		17 011 17444	1 officiation D	escription	
			·		
CONCRETE S		JRFACE SEAL	0 -	FT .	
	ļ				
		F'	T [
. · ·				•	
	• •	:))			
A contract of the contract of	BACKFILL	<u> [F] </u>	Γ 0 -	FT	
	•	a bando			
		Bestonite Chips			
-		14105			
•		Crups	19		
			0	, nama	
	:		0 -	FT	
		•			
	*	171			
	DEPTH OF BORIN	IG F	ľ		

APPENDIX F

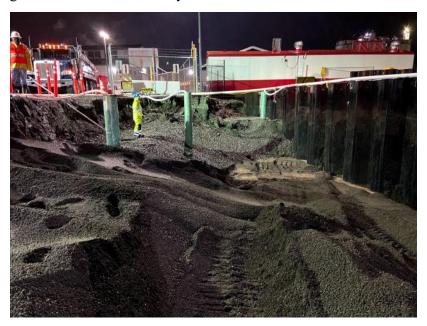
Construction Photos

Photograph 1. 12/28/2020: North facing view of site from southwest corner of site, prior to excavation.

Photograph 2. 12/28/2020: Eastern excavation temporary cut wall excavated to elevation 12 feet (ft). Standing in Cell G-1 and facing south. Dark material in east cut slope is mixed fill, removed in overexcavation.

Photograph 3. 12/29/2020: East facing view of railroad tie and pipe in Cell K-2. Pure sandblast grit observed in sidewall at IAWP estimated extents.

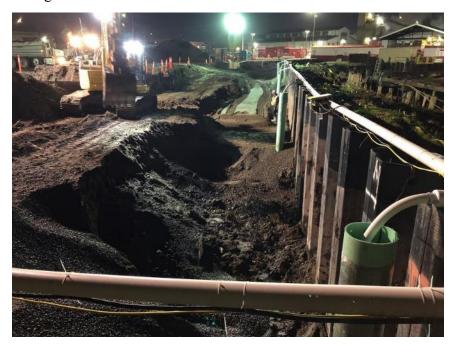
Photograph 4. 12/30/2020: View of clean sand sidewall at eastern side of cell F-2 elevation.


Photograph 5. 12/30/2020: Northwest facing view of excavation progress and dewatering header pipe from approximate location cell I-2.

Photograph 6. 12/31/2020: Northern sidewall extended past planned excavation boundary approximately 5 to 8 ft further north.

Photograph 7. 01/07/2021: Northwest facing view of dewatering system installation. Sumps along shoring and in trenches on north and south ends of site, backfilled with gravel. Excavation currently at elevation 12 ft.


Photograph 8. 01/11/2021: South facing view of first 40 ft of saturated excavation in cells L-1 and K-1, backfilled with Type 26.


Photograph 9. 01/11/2021: Excavation extents bottom sampling in cell J-1, at elevation 4.5 ft in Estuarine Unit.

Photograph 10. 01/12/21: Northwest facing view of completed excavation and partial backfill through cell C-1.

Photograph 11. 01/12/21: South facing view of completed excavation and partial backfill through cell C-1.

Photograph 12. 01/13/21: South facing view of excavation from North of cell A-1. Backfill through cell C-1 and open excavation in cells A-1, B-1.

Photograph 13. 01/13/21: Over excavation in cell J-1 down to Estuarine Unit. Backfill removed and approximately 0.5 ft of Estuarine Unit removed to obtain new bottom sample.

Photograph 14. 01/15/21: South facing view of excavation from Northern limit. Excavation has been backfilled to approximately elevation 10 ft.

Photograph 15. 01/15/2021: Overexcavation to elevation 4.5 ft in cell K-1. Photo documents Estuarine Unit. Sheen and odor from creosote pile observed.

Photograph 16. 01/15/21: Seam of sandblast grit observed in eastern sidewall at K-3, elevation 15 ft, removed in overexcavation.

Photograph 17. 01/15/2021: SBG removed from sidewall. Limit of observed sand blast grit follows west side of original building footprint.

Photograph 18. 01/21/2021. North facing view of northern excavation limit. Cell A-1 is sloped away from retaining wall on property line down to elevation 12 ft.

Photograph 19. South property boundary in cell M-3. Dark gray soil is coal beneath asphalt, not sand blast grit.

Photograph 20. SE facing view – reaching edge of excavation along building footprint and property line in cell N-5.

Photograph 21. 01/22/2021 North facing view from south end of site of backfilled excavation area.

Photograph 22. 08/06/2021 South facing view of fenced off area with signage for access restriction.

APPENDIX G

Data Validation Report and 2a Standard Operating Procedures

DATA VALIDATION REPORT

Prepared by:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, WA 98104

Project No. 150054 • February 2021

V:\150054 Snopac-Manson\Deliverables\Interim Action Report\DRAFT\Appendix G Data Validation\Appendix G DV Report_Final.docx

Contents

l	Introduc	tion	1
2	Data Val	lidation Findings	1
	2.1 Sam	ple Receipt and Preservation	3
	2.2 Mer	cury (EPA 1631E)	3
	2.2.1	Holding Times	
	2.2.2	Method Blanks	
	2.2.3	Laboratory Control Samples/Laboratory Control Sample Duplicates	s
		(LCS/LCSD)	
	2.2.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	2.2.5	Case Narrative/Laboratory Qualification	
	2.2.6	Overall Assessment	
	2.3 Dies	el Range TPHs (NWTPH-DX)	4
	2.3.1	Holding Times	
	2.3.2	Method Blanks	
	2.3.3	Laboratory Control Samples/Laboratory Control Sample Duplicates	
	2.2.4	(LCS/LCSD)	
	2.3.4 2.3.5	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	2.3.6	Overall Assessment	
		oline Range TPHs (NWTPH-GX)	
	2.4 Gast	Holding Times	
	2.4.1	Method Blanks	
	2.4.2	Laboratory Control Samples/Laboratory Control Sample Duplicates	_
	2.4.0	(LCS/LCSD)	
	2.4.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	2.4.5	Case Narrative/Laboratory Qualification	
	2.4.6	Overall Assessment	5
	2.5 Meta	als (SW 6010C)	5
	2.5.1	Holding Times	5
	2.5.2	Method Blanks	
	2.5.3	Laboratory Control Samples/Laboratory Control Sample Duplicates	
		(LCS/LCSD)	
	2.5.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	2.5.5	Case Narrative/Laboratory Qualification	
	2.5.6	Overall Assessment	
		s (SW 8082)	
	2.6.1	Holding Times	
	2.6.2	Method Blanks	
	2.6.3	Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)	
	264		0 7

Qualified	d Data Summary	9
2.7.6	Overall Assessment	8
2.7.5	Case Narrative/Laboratory Qualification	
2.7.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	(LCS/LCSD)	7
2.7.3	Laboratory Control Samples/Laboratory Control Sample Dup	licates
2.7.2	Method Blanks	7
2.7.1	Holding Times	
2.7 PAH	s (SW 8270E)	7
2.6.6	Overall Assessment	7
2.6.5	Case Narrative/Laboratory Qualification	7
	2.6.6 2.7 PAH 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6	2.6.6 Overall Assessment

1 Introduction

This report summarizes the findings of the analysis of soil sample collected from November 2020 through January 2021 at the SnoPac project site. A complete list of samples and analyses for the sample delivery groups (SDG) is provided in Section 2.

Samples were sent to Friedman & Bruya for analysis of various parameters. The analytical methods are summarized in Table 1 below:

Validation **Analysis** Method Lab Level **EPA1631E** Mercury Friedman & Bruya, Inc. 2A **NWTPH-Dx*** Diesel Range TPH Friedman & Bruya, Inc. 2A **NWTPH-Gx*** Gasoline Range TPH Friedman & Bruya, Inc. 2A SW6020B Metals Friedman & Bruya, Inc. 2A SW8082 **PCB Aroclors** Friedman & Bruya, Inc. 2A SW8270E **PAHs** Friedman & Bruya, Inc. 2A

Table 1. Analytical Methods

Data assigned a J/UJ qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be considered approximate when interpreting sample concentrations. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

2 Data Validation Findings

Soil samples in these SDGs, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review by analyte group (analysis).

NWTPH-NWTPH-Sample Sample **SDG** SW8082 SW8270E Name Date **EPA1631E** DX GX SW6020B 12481 SW-A-1-12 12/30/2020 Х Х Х Х 12481 SW-C-3-12 12/31/2020 Х Х Х Х 12481 SW-D-3-12.5 12/31/2020 Х Χ Χ Χ 12481 SW-JK-2-14 12/31/2020 Х

Table 2. Sample Index

^{*}only in SDG 101127

SDG	Sample Name	Sample Date	EPA1631E	NWTPH- DX	NWTPH- GX	SW6020B	SW8082	SW8270E
12482	SW-A-2-12.5	12/31/2020	Х			Х	Х	Х
12482	SW-A-3-12	12/31/2020	Х			х	Х	х
12482	SW-B-3-12	12/31/2020	Х			х	Х	х
12482	SW-D-2-12	12/30/2020	Х			Х	Х	Х
12482	SW-E-2-12	12/30/2020	Х			х	Х	х
12482	SW-F-2-12	12/30/2020	Х			Х	Х	х
12482	SW-G-2-12	12/30/2020	Х			Х	Х	х
12482	SW-H-2-12	12/30/2020	Х			х	Х	х
12482	SW-I-3-12	12/31/2020	Х			х	Х	х
12482	SW-K-2-12	12/31/2020	Х			х	Х	х
12482	SW-L-2-12	12/31/2020	Х			х	Х	х
12482	SW-M-1-12	12/31/2020	Х			х	Х	х
101021	B-A-2-11.5	1/4/2021	Х			Х	Х	х
101021	B-B-2-11.5	1/4/2021	Х			х	Х	х
101021	B-B-3-11.5	1/4/2021	Х			х	Х	х
101021	B-C-2-11.5	1/4/2021	Х			х	Х	х
101021	B-D-2-11.5	1/5/2021	Х			х	Х	х
101021	B-F-2-11.5	1/5/2021	Х			Х	Х	х
101021	B-G-2-11.5	1/5/2021	Х			х	Х	х
101021	B-I-2-11.5	1/5/2021	Х			х	Х	х
101127	B-I-1-4.5	1/11/2021	Х	Х	Х	х	Х	х
101127	B-J-1-4.5	1/11/2021	X			x	Х	х
101127	B-K-1-5	1/11/2021	Х			х	Х	х
101127	B-L-1-4	1/11/2021	X			x	Х	х
101127	SW-I-1-8	1/11/2021	Х	Х	Х	х	Х	х
101127	SW-J-1-8	1/11/2021	X			Х	Х	Х
101127	SW-K-1-5	1/11/2021	Х			х	Х	х
101127	SW-L-1-8	1/11/2021	X			Х	Х	Х
101148	B-C-1-6	1/13/2021	X			X	Х	х
101148	B-D-1-6	1/12/2021	X			Х	Х	Х
101148	B-E-1-5.5	1/12/2021	X			X	Х	х
101148	B-F-1-5	1/12/2021	Х			х	Х	х
101148	B-G-1-6	1/12/2021	X			Х	Х	Х
101148	B-H-1-6	1/12/2021	X			Х	Х	х
101148	SW-C-1-9	1/13/2021	X			Х	Х	Х
101148	SW-D-1-8	1/12/2021	X			Х	Х	Х
101148	SW-E-1-8	1/12/2021	X			X	Х	Х
101148	SW-F-1-8	1/12/2021	X			Х	Х	Х
101148	SW-G-1-7	1/12/2021	Х			Х	Х	Х
101148	SW-H-1-9	1/12/2021	Х			Х	Х	Х
101171	B-A-1-5	1/13/2021	X			Х	Х	Х
101171	B-B-1-5	1/13/2021	X			Х	Х	Х
101171	B-J-1-4	1/13/2021	X			Х	Х	Х
101171	SW-A-1-8	1/13/2021	X			Х	Х	Х
101171	SW-B-1-8	1/13/2021	Х			Х	Х	Х
101207	B-K-1-4.5	1/15/2021	Х			Х	Х	Х

	Sample	Sample		NWTPH-	NWTPH-			
SDG	Name	Date	EPA1631E	DX	GX	SW6020B	SW8082	SW8270E
101207	SW-C-5-12	1/15/2021	Х			Х	Х	Х
101207	SW-D-3-12	1/15/2021	Х			х	Х	х
101207	SW-E-2.5-12	1/15/2021				х		
101207	SW-J-3-13	1/15/2021	Х			х	Х	х
101207	SW-K-3-13	1/15/2021	Х			х	Х	Х
101207	SW-L-3-14	1/15/2021	Х			Х	Х	Х
101285	SW-AA-1- 12.5	1/21/2021	х			х	х	х
101285	SW-AA-2- 12.5	1/21/2021				х		
101319	SW-L-4-13	1/22/2021				х	Х	х
101319	SW-M-3-14	1/22/2021				х	Х	х
101319	SW-N-5-13	1/22/2021				х	Х	Х

2.1 Sample Receipt and Preservation

Sample receipt and preservation (2-6 degrees C) were acceptable for all SDGs.

In SDG 101207 the sample collector erroneously named sample SW-E-2.5-12 as SW-E-2-12 on the Chain of Custody (COC). The actual sample SW-E-2-12 was contained in SDG 012482, and could not be physically confused by the lab.

2.2 Mercury (EPA 1631E)

2.2.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.2.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.2.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

.

2.2.5 Case Narrative/Laboratory Qualification

No issues were noted in the laboratory case narrative. No further action was needed.

2.2.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R. Precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use.

2.3 Diesel RangeTPHs (NWTPH-DX)

2.3.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.3.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.3.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.3.5 Case Narrative/Laboratory Qualification

No issues were noted in the laboratory case narrative. No further action was needed.

2.3.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R. Precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use.

2.4 Gasoline Range TPHs (NWTPH-GX)

2.4.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.4.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.4.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.4.5 Case Narrative/Laboratory Qualification

No issues were noted in the laboratory case narrative. No further action was needed.

2.4.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R. Precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use.

2.5 Metals (SW 6010C)

2.5.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.5.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.5.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.5.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed with the following exception(s):

Arsenic (**SDG: 101127**) – MSD RPD exceeded the control limit. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

Lead (SDG: 101285) – MSD RPD exceeded the control limit. No associated results were detected. No qualification or further action needed.

2.5.5 Case Narrative/Laboratory Qualification

No issues were noted in the laboratory case narrative. No further action was needed.

2.5.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, except as noted above. Precision was acceptable based on the LCS/LCSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

2.6 PCBs (SW 8082)

2.6.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.6.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.6.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.6.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.6.5 Case Narrative/Laboratory Qualification

In sample B-J-I-4.5 (SDG: 101171) the lab noted the high detection of Aroclor 1254 may cause a low level of Aroclor 1260 to go undetected. We have qualified the Aroclor 1260 result as an estimated non-detect (UJ) because of this.

Samples B-C-1-6 and B-E-1-5.5 (SDG: 101148) had reporting limits raised on their non-detected results due to a high moisture content, as noted by the lab. These results have been qualified UJ (estimated non-detect) to indicate this elevated reporting limit.

For sample SW-JK-2-14 (SDG: 012481) the initial analytical result for Aroclor 1254 exceeded the instrument calibration range and was flagged by the lab. The lab performed and reported a reanalysis at a 5x dilution. The original result is rejected (R) in favor of the dilution result.

No further action was needed.

2.6.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R and MS/MSD %R. Precision was acceptable based on the MS/MSD RPD values.

Rejected results (qualified R) should not be used.

The remaining data are of known quality and are acceptable for use as qualified.

2.7 PAHs (SW 8270E)

2.7.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.7.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.7.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.7.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits, with the following exception(s):

2-Methylnaphthalene (**SDGs: 012481 and 012482**) – MS [and/or MSD] %R above upper control limit. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

Benzo(**g,h,i**)**perylene** (**SDGs: 012481 and 012482**) – MS [and/or MSD] %R below lower control limit. Associated results are qualified as estimated (J/UJ).

Fluoranthene (**SDG: 101148**) – MSD RPD exceeded the control limit. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

Indeno(1,2,3-cd) pyrene (SDGs: 012481 and 012482) – MS [and/or MSD] %R below lower control limit. Associated results are qualified as estimated (J/UJ).

Pentachlorophenol (SDG: 101148) – MS [and/or MSD] %R below lower control limit. Associated results are qualified as estimated (J/UJ).

Pentachlorophenol (**SDG: 101127**)— No recovery [or exceptionally low recovery] of MS [and/or MSD]. Associated detections are qualified as estimated (J). Associated non-detections are rejected (R).

2.7.5 Case Narrative/Laboratory Qualification

The laboratory noted in the case narrative that Internal Standard recovery values were outside of compliance for sample SW-C-3-12 (SDG: -12481). The lab flagged associated results, which we have qualified as estimated (J/UJ).

Samples B-C-1-6 and B-E-1-5.5 (SDG: 101148) had reporting limits raised on their non-detected results due to a high moisture content, as noted by the lab. These results have been qualified UJ (estimated non-detect) to indicate this elevated reporting limit.

No further action was needed.

2.7.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R and MS/MSD %R, except as noted above. Precision was acceptable based on the MS/MSD RPD values, except as noted above.

Rejected results (qualified R) should not be used. Additionally, many of the Pentachlorophenol analyses were not requested, and their results have been marked as Do Not Report.

The remaining data are of known quality and are acceptable for use as qualified.

3 Qualified Data Summary

Qualified sample results are listed below. Results just flagged non-detect (U) by lab with no further qualification necessary are not listed.

Table 3. Qualified Data Summary

Sample	Method	Analyte	Report	Qualifier	Reason
B-C-1-6	SW8082	Aroclor 1016	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1221	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1232	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1242	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1248	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1254	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1260	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1262	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8082	Aroclor 1268	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	1-Methylnaphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	2-Methylnaphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Acenaphthene	Y	UJ	The reporting limits were raised due to

Sample	Method	Analyte	Report	Qualifier	Reason
					high moisture content in sample.
B-C-1-6	SW8270E	Acenaphthylene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Anthracene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Benz(a)anthracene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Benzo(a)pyrene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Benzo(b)fluoranthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Benzo(g,h,i)perylene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Benzo(k)fluoranthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Chrysene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Dibenzo(a,h)anthracene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Fluoranthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Fluorene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Indeno(1,2,3-cd)pyrene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Naphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.

Sample	Method	Analyte	Report	Qualifier	Reason
B-C-1-6	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested; The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Phenanthrene	Y	ΟJ	The reporting limits were raised due to high moisture content in sample.
B-C-1-6	SW8270E	Pyrene	Y	ΟJ	The reporting limits were raised due to high moisture content in sample.
B-D-1-6	SW8270E	Fluoranthene	Υ	J	MS/MSD RPD out
B-D-1-6	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
B-E-1-5.5	SW8082	Aroclor 1016	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1221	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1232	Y	ΟJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1242	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1248	Y	ΟJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1254	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1260	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8082	Aroclor 1262	Y	UJ	The reporting limits were raised due to high moisture content in sample.

Sample	Method	Analyte	Report	Qualifier	Reason
B-E-1-5.5	SW8082	Aroclor 1268	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	1-Methylnaphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	2-Methylnaphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Acenaphthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Acenaphthylene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Anthracene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Benz(a)anthracene	Υ	υJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Benzo(a)pyrene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Benzo(b)fluoranthene	Y	υJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Benzo(g,h,i)perylene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Benzo(k)fluoranthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Chrysene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Dibenzo(a,h)anthracene	Y	UJ	The reporting limits were raised due to high moisture content in sample.

Sample	Method	Analyte	Report	Qualifier	Reason
B-E-1-5.5	SW8270E	Fluoranthene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Fluorene	Υ	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Indeno(1,2,3-cd)pyrene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Naphthalene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested; The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Phenanthrene	Y	υJ	The reporting limits were raised due to high moisture content in sample.
B-E-1-5.5	SW8270E	Pyrene	Y	UJ	The reporting limits were raised due to high moisture content in sample.
B-F-1-5	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
B-G-1-6	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
B-H-1-6	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
B-I-1-4.5	SW6020B	Arsenic	Y	J	MS/MSD RPD out
B-J-1-4.5	SW6020B	Arsenic	Υ	J	MS/MSD RPD out
B-J-1-4.5	SW8082	Aroclor 1260	Y	UJ	A low level of Aroclor 1260 may be present in the sample but cannot be quantified due to the level
B-K-1-5	SW6020B	Arsenic	Υ	J	MS/MSD RPD out
B-L-1-4	SW6020B	Arsenic	Y	J	MS/MSD RPD out
B-L-1-4	SW8270E	Pentachlorophenol	N	R	MS/MSD %R=0
SW-A-1-12	SW8270E	2-Methylnaphthalene	Y	J	MS %R High
SW-A-1-12	SW8270E	Benzo(g,h,i)perylene	Y	J	MS %R Low
SW-A-1-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	MS %R Low

Sample	Method	Analyte	Report	Qualifier	Reason
SW-A-2-12.5	SW8270E	2-Methylnaphthalene	Y	J	MS %R High
SW-A-2-12.5	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-A-2-12.5	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-A-3-12	SW8270E	Benzo(g,h,i)perylene	Υ	UJ	MS %R Low
SW-A-3-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	UJ	MS %R Low
SW-B-3-12	SW8270E	2-Methylnaphthalene	Y	J	MS %R High
SW-B-3-12	SW8270E	Benzo(g,h,i)perylene	Y	J	MS %R Low
SW-B-3-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	MS %R Low
SW-C-1-9	SW8270E	Fluoranthene	Y	J	MS/MSD RPD out
SW-C-1-9	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-C-3-12	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-C-3-12	SW8270E	Benzo(a)pyrene	Υ	J	Internal Standard Out
SW-C-3-12	SW8270E	Benzo(b)fluoranthene	Υ	J	Internal Standard Out
SW-C-3-12	SW8270E	Benzo(g,h,i)perylene	N	J	MS %R Low
SW-C-3-12	SW8270E	Benzo(g,h,i)perylene	Y	J	Internal Standard Out; MS %R Low
SW-C-3-12	SW8270E	Benzo(k)fluoranthene	Υ	J	Internal Standard Out
SW-C-3-12	SW8270E	Dibenzo(a,h)anthracene	Υ	J	Internal Standard Out
SW-C-3-12	SW8270E	Indeno(1,2,3-cd)pyrene	N	J	MS %R Low
SW-C-3-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	Internal Standard Out; MS %R Low
SW-D-1-8	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-D-2-12	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-D-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-D-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-D-3-12.5	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-D-3-12.5	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-D-3-12.5	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-E-1-8	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-E-2-12	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-E-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-E-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	MS %R Low
SW-F-1-8	SW8270E	Fluoranthene	Υ	J	MS/MSD RPD out
SW-F-1-8	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-F-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-F-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	MS %R Low
SW-G-1-7	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-G-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-G-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low

Sample	Method	Analyte	Report	Qualifier	Reason
SW-H-1-9	SW8270E	Pentachlorophenol	N	UJ	Very Low MS/MSD %R; DNR - analysis not requested
SW-H-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-H-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-I-1-8	SW6020B	Arsenic	Υ	J	MS/MSD RPD out
SW-I-3-12	SW8270E	Benzo(g,h,i)perylene	Υ	UJ	MS %R Low
SW-I-3-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	UJ	MS %R Low
SW-J-1-8	SW6020B	Arsenic	Υ	J	MS/MSD RPD out
SW-JK-2-14	SW8082	Aroclor 1254	N	R	Result Exceeds Calibration. Use dilution result.
SW-JK-2-14	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-JK-2-14	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-K-1-5	SW6020B	Arsenic	Y	J	MS/MSD RPD out
SW-K-2-12	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-K-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-K-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low
SW-L-1-8	SW6020B	Arsenic	Υ	J	MS/MSD RPD out
SW-L-1-8	SW8270E	Pentachlorophenol	N	R	MS/MSD %R=0
SW-L-2-12	SW8270E	2-Methylnaphthalene	Υ	J	MS %R High
SW-L-2-12	SW8270E	Benzo(g,h,i)perylene	Υ	J	MS %R Low
SW-L-2-12	SW8270E	Indeno(1,2,3-cd)pyrene	Y	J	MS %R Low
SW-M-1-12	SW8270E	2-Methylnaphthalene	Y	J	MS %R High
SW-M-1-12	SW8270E	Benzo(g,h,i)perylene	Y	J	MS %R Low
SW-M-1-12	SW8270E	Indeno(1,2,3-cd)pyrene	Υ	J	MS %R Low

Table 4. Data Qualifier Definitions

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Aspect Level 2A Data Validation SOP

This document explains Aspect's standard procedure for Level 2A Data Validation, which is performed by an experienced chemist and in accordance with the EPA National Functional Guidelines (NFG). This document serves as the baseline process and its parts may be modified or superseded when required by the Quality Assurance Project Plan (QAPP) or necessitated by the professional judgment of the validator.

Receiving

The sample receiving documentation provided by the lab is reviewed to verify that samples were handled correctly and received in good condition.

Samples should be received by the lab at temperatures ≤6°C. If the sample receipt temperature exceeds 6°C, the results will be evaluated using professional judgment. Key factors to consider include the duration between sample collection and receipt, the specific analyses requested, and other sample receipt conditions. A sample receipt temperature greater than 10°C is considered a more serious exceedance and will be evaluated using professional judgment accordingly. If qualification is deemed necessary, results will be qualified as estimated (J/UJ).

Samples should be received by the laboratory in the appropriate containers and with the required preservation for the requested analysis. Samples that do not meet the method specific criteria will be evaluated using professional judgment. Key factors to consider include the timing of any preservation adjustments by the laboratory, the types of containers used for collection, and the size of headspace/bubbles. If qualification is deemed necessary, results will be qualified as estimated (J/UJ).

Results may also be rejected (R) in extreme cases of poor sample receipt conditions.

Hold Times

Sample hold times are reviewed according to the method specific criteria. Sample results that exceed the hold time will be qualified as estimated (J/UJ). If a sample is extracted and/or analyzed at greater than 2x the hold time, it is considered a gross exceedance and any detections will be qualified as estimated (J), while nondetections will be rejected (R).

Blanks (Method, Trip, Field, and Equipment)

All blanks are reviewed to verify that they are free of analytes. Professional judgment is used to evaluate sample results in all cases when blanks contain detections, but in general the following logic is applied. If an analyte is detected in any blank, associated nondetections in the samples will not be qualified, while results that are less than the reporting limit (RL) are qualified as nondetect (U). If the blank detection is less than the RL, sample results that are greater than the RL will not be qualified. If the blank detection is \geq RL, sample result detections \geq RL and \leq 10x the blank result will be qualified as estimated (J), while results greater than 10x the blank result will not be qualified.

Method blanks are associated with samples based on the analytical batch. Trip blanks are associated with samples based on the collection date. Field and equipment blanks are associated with samples based on the collection date and relevant collection methods.

Surrogates

The surrogate recoveries in all samples are reviewed to verify that they fall within the laboratory defined control limits. If the surrogate recovery is above the upper control limit, associated detections will be qualified as estimated (J), while associated nondetections will not be qualified. If the surrogate recovery is below the lower control limit, associated results will be qualified as estimated (J/UJ). If the surrogate recovery is zero, associated detections will be qualified as estimated (J), while associated nondetections will be rejected (R).

The surrogate-to-analyte association is determined by the laboratory. In general, QC samples are not evaluated for surrogate recovery.

Laboratory Control Samples and Laboratory Control Sample Duplicates (LCSs/LCSDs)

The LCS/LCSD recoveries in all samples are reviewed to verify that they fall within the laboratory defined control limits. If the LCS/LCSD recovery is above the upper control limit, associated detections will be qualified as estimated (J), while associated nondetections will not be qualified. If the LCS/LCSD recovery is below the lower control limit, associated results will be qualified as estimated (J/UJ). If the LCS/LCSD recovery is zero, associated detections will be qualified as estimated (J), while associated nondetections may be rejected (R), unless further evidence is provided that the instrument used was capable of detecting the specified analyte at the time of analysis.

The LCSD relative percent differences (RPDs) are reviewed to verify that they are less than or equal to the laboratory defined control limit. If the LCSD RPD is above the control limit, associated sample detections will be qualified as estimated (J), while associated nondetections will not be qualified.

LCSs and LCSDs are associated with samples based on the analytical batch.

Matrix Spikes and Matrix Spike Duplicates (MSs/MSDs)

The MS/MSD recoveries in all samples are reviewed to verify that they fall within the laboratory defined control limits. If the MS/MSD recovery is above the upper control limit, associated detections will be qualified as estimated (J), while associated nondetections will not be qualified. If the MS/MSD recovery is below the lower control limit, associated results will be qualified as estimated (J/UJ). If the MS/MSD recovery is zero, associated detections will be qualified as estimated (J), while associated nondetections may be rejected (R), unless further evidence is provided that the instrument used was capable of detecting the specified analyte at the time of analysis.

The MSD RPDs are reviewed to verify that they are less than or equal to the laboratory defined control limit. If the MSD RPD is above the control limit, associated sample detections will be qualified as estimated (J), while associated nondetections will not be qualified.

MSs and MSDs are typically only associated with the parent sample and its field duplicates but can be associated with other samples if the sample matrices and other qualities are known to be sufficiently similar. MSs/MSDs of samples not belonging to the specific Aspect project will not be considered for evaluation.

Duplicates (Lab and Field)

The duplicate RPDs are reviewed to verify that they are less than or equal to the laboratory (or QAPP, for field duplicates) defined control limit. If the duplicate RPD is above the control limit, associated sample detections will be qualified as estimated (J), while associated nondetections will not be qualified.

Duplicates are typically only associated with the parent sample and its field duplicates but can be associated with other samples if the sample matrices and other qualities are known to be sufficiently similar. Lab duplicates of samples not belonging to the specific Aspect project will not be considered for evaluation.

Case Narrative and Other Laboratory-Applied Flags

The case narrative, any other remaining laboratory-applied flags, and other notes from the laboratory are reviewed and professional judgment is used to determine if any qualification is warranted.

One common occurrence is when a result exceeds the calibration range. If the laboratory provided the results from a follow-up dilution analysis, only the result from the dilution analysis will be reported, while the original result will be set to do not report (DNR). If no dilution results were provided, the original result will be reported and qualified as estimated due to calibration range exceedance (E) or estimated (J).

Another common occurrence for total petroleum hydrocarbon (TPH) analyses is when a result's chromatographic pattern does not match the fuel standard in which the result will be qualified as such (X).

Qualifiers

Aspect uses a controlled list of standardized validation qualifiers. Validation or Interpreted qualifiers may be different than laboratory-applied flags or qualifiers.

Data Qualifier	Definition
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.

Data Qualifier	Definition					
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.					
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.					
Х	(Used exclusively for TPH analyses). The chromatographic pattern does not match the fuel standards used for quantitation. Result may not represent fuel contamination.					
Е	Result exceeded the instrument calibration range. Result is qualitatively useful as a detection, but the numeric value should not be used for quantitation.					
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.					

DATA VALIDATION REPORT

Snopac Property Uplands Groundwater Sampling June 2021 106490, 106507

Prepared by:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, WA 98104

Project No. [150054] • [July 2021]

C:\Users\jsanford\Desktop\DV Report_Template.docx

Contents

1	Introdu	ıction11	1
2	Data Va	alidation Findings	1
	2.1 Sa	mple Receipt and Preservation	2
	2.2 SV	OCs (SW 8270EC & SW8270ESIM)	2
	2.2.1	Holding Times	
	2.2.2	Method Blanks	2
	2.2.3	Laboratory Control Samples/Laboratory Control Sample Duplicat (LCS/LCSD)	
	2.2.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	2
	2.2.5	Field Duplicate (FD)	
	2.2.6	Other	
	2.2.7	Overall Assessment	
	2.3 Me	etals & Mercury (EPA 200.8 and EPA 1631E)	3
	2.3.1	Holding Times	3
	2.3.2	Method Blanks	
	2.3.3	Laboratory Control Samples/Laboratory Control Sample Duplicat (LCS/LCSD)	
	2.3.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	3
	2.3.5	Field Duplicate (FD)	3
	2.3.6	Other	
	2.3.7	Overall Assessment	3
	2.4 PC	Bs (SW 8082)	4
	2.4.1	Holding Times	4
	2.4.2	Method Blanks	
	2.4.3	Laboratory Control Samples/Laboratory Control Sample Duplicat (LCS/LCSD)	
	2.4.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	4
	2.4.5	Field Duplicate (FD)	4
	2.4.6	Overall Assessment	4
	2.5 TP	H Diesel (NWTPH-DX)	4
	2.5.1	Holding Times	4
	2.5.2	Method Blanks	
	2.5.3	Laboratory Control Samples/Laboratory Control Sample Duplicat (LCS/LCSD)	
	2.5.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	4
	2.5.5	Case Narrative/Laboratory Qualification	5
	2.5.6	Overall Assessment	5
	2.6 Tri	butyltin (by GC/MS)	5
	2.6.1	Holding Times	5
	2.6.2	Method Blanks	5

3	Qualified	I Data Summary	6
	2.6.7	Overall Assessment	5
	2.6.6	Case Narrative/Laboratory Qualification	5
	2.6.5	Field Duplicate (FD)	5
	2.6.4	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	
	2.6.3	Laboratory Control Samples/Laboratory Control Sample Duplicate (LCS/LCSD)	
	262	Laboratory Control Compley Laboratory Control Comple Duplicate	٠.

1 Introduction

This report summarizes the findings of groundwater sample analysis collected in June 2021. A complete list of samples and analyses for each sample delivery group (SDG) is provided in Section 2.

Samples were sent to Friedman and Bruya for analysis of various parameters, and sub-contracted to Eurofins Test America for tributyltin analysis. The analytical methods are summarized in Table 1 below:

SDG	Analysis	Method	Lab	Validation Level
106490	Mercury	EPA1631E	Friedman and Bruya	2A
106490	Metals	EPA200.8	Friedman and Bruya	2A
106490	Diesel Range	NWTPH-DX	Friedman and Bruya	2A
106490	PCBs	SW8082	Friedman and Bruya	2A
106490	SVOC	SW8270E	Friedman and Bruya	2A
106490	Pentachlorophenol	SW8270ESIM	Friedman and Bruya	2A
106490	Tributyltin	Butyltins by GC/MS	Eurofins/TestAmerica	2A
106507	PCBs	SW8082	Friedman and Bruya	2A
106507	SVOC	SW8270E	Friedman and Bruya	2A
106507	Tributyltin	Butyltins by GC/MS	Eurofins/TestAmerica	2A

Table 1. Analytical Methods

Data assigned a J/UJ qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be considered when interpreting sample concentrations. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

2 Data Validation Findings

Samples in these SDGs, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review by analyte group (analysis).

Table 2. Sample Index

					0111000000			
Sample	Sample	EPA1631	EPA200	Tributylt	NWTPH-	SW808	SW8270	SW8270ESI
Name	Date	E	.8	in	DX	2	E	M
MW-12-	06/25/20	Х	Х					
062521	21							
MW-13-	06/25/20	X	Х	Х	Х	Х	Х	X
062521	21							
MW-14-	06/25/20	Х	Х	Х		Х	Х	
062521	21							
MW-15-	06/25/20	Х	Х	Х		Х	Х	
062521	21							
MW-160-	06/25/20	X	Х	Х		Х	Х	
062521	21							
MW-16-	06/25/20	X	Х	Х		Х	Х	
062521	21							
MW-17-	06/25/20	X	Х	Х		Х	Х	
062521	21							
MW-8-	06/25/20	X	Х	Х		Х	Х	
062521	21							
MW-12-	06/29/20			Х		Х	Х	
062921	21							

2.1 Sample Receipt and Preservation

Sample receipt and preservation (2-6 degrees C) were acceptable.

2.2 SVOCs (SW 8270EC & SW8270ESIM)

2.2.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.2.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.2.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.2.5 Field Duplicate (FD)

All FD RPD and Deltas were within the control limit, with the following exception:

Phenanthrene – The FD Delta exceeded the control limit. The associated results are qualified as estimated (J).

2.2.6 Other

The laboratory reported detections between the MDL and RL. These values are qualified as estimated (J). No further action was needed.

2.2.7 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, and the MS/MSD %R except as noted above. Precision was acceptable based on the LCS/LCSD RPD values and the MS/MSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

2.3 Metals & Mercury (EPA 200.8 and EPA 1631E)

2.3.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.3.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.3.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits, with the following exception:

Zinc – MS and MSD %R below lower control limit. Associated results are qualified as estimated (J/UJ).

2.3.5 Field Duplicate (FD)

All FD RPD were within the control limit, with the following exception(s):

Zinc – The FD delta exceeded the control limit. The associated results are qualified as estimated (J/).

2.3.6 Other

The laboratory reported detections between the MDL and RL. These values are qualified as estimated (J). No further action was needed.

2.3.7 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, and the MS/MSD %R except as noted above. Precision was acceptable based on the LCS/LCSD RPD values and the MS/MSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

2.4 PCBs (SW 8082)

2.4.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.4.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits, with the following exception(s):

Aroclor 1260 – LCS and LCSD %R above upper control limit. No associated results were detections. Non-detections do not require qualification.

2.4.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.4.5 Field Duplicate (FD)

All FD RPD were within the control limit. No qualification or action was needed.

2.4.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, and the MS/MSD %R except as noted above. Precision was acceptable based on the LCS/LCSD RPD values and the MS/MSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

2.5 TPH Diesel (NWTPH-DX)

2.5.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.5.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.5.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.5.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.5.5 Case Narrative/Laboratory Qualification

The laboratory noted that the chromatographic pattern for Diesel Range Organics detection did not match that for fuel/diesel standard used for quantitation. Detected value is likely not diesel fuel.

2.5.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, and the MS/MSD %R except as noted above. Precision was acceptable based on the LCS/LCSD RPD values and the MS/MSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

2.6 Tributyltin (by GC/MS)

2.6.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.6.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.6.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.6.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.6.5 Field Duplicate (FD)

All FD RPD were within the control limit. No qualification or action was needed.

2.6.6 Case Narrative/Laboratory Qualification

The laboratory noted in the case narrative that the surrogate recovery in the LCS/LCSD was outside control. None of the analytical samples results appear to have been impacted. No further action was needed.

2.6.7 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R, and the MS/MSD %R except as noted above. Precision was acceptable based on the LCS/LCSD RPD values and the MS/MSD RPD values, except as noted above. The data are of known quality and are acceptable for use as qualified.

3 Qualified Data Summary

Qualified sample results are listed below. Results just flagged non-detect (U) by lab with no further qualification necessary are not listed.

Table 3. Qualified Data Summary

Sample ID	Method	Analyte	Qualifier	Reason
MW-12-062521	EPA200.8	Zinc	J	MS/MSD %R Low; Reported as a detection between MDL and RL
MW-13-062521	EPA200.8	Copper	J	Reported as a detection between MDL and RL
MW-13-062521	EPA200.8	Zinc	J	MS/MSD %R Low
MW-13-062521	NWTPH-DX	Diesel Range Organics	Х	Chromatographic pattern does not match fuel standard used for quantitation
MW-14-062521	EPA200.8	Zinc	J	MS/MSD %R Low; Reported as a detection between MDL and RL
MW-15-062521	EPA200.8	Copper	J	Reported as a detection between MDL and RL
MW-15-062521	EPA200.8	Zinc	J	MS/MSD %R Low; Reported as a detection between MDL and RL
MW-15-062521	SW8270E	Naphthalene	J	Reported as a detection between MDL and RL
MW-160-062521	EPA200.8	Copper	J	Reported as a detection between MDL and RL
MW-160-062521	EPA200.8	Zinc	J	MS/MSD %R Low; Field Dup Delta Out
MW-160-062521	SW8270E	Phenanthrene	J	Field Dup Delta Out
MW-16-062521	EPA200.8	Copper	J	Reported as a detection between MDL and RL
MW-16-062521	EPA200.8	Zinc	J	MS/MSD %R Low; Reported as a detection between MDL and RL; Field Dup Delta Out
MW-16-062521	SW8270E	Phenanthrene	J	Field Dup Delta Out
MW-17-062521	EPA200.8	Zinc	J	MS/MSD %R Low
MW-17-062521	SW8270E	Naphthalene	J	Reported as a detection between MDL and RL
MW-8-062521	EPA200.8	Zinc	UJ	MS/MSD %R Low
MW-8-062521	SW8270E	Naphthalene	J	Reported as a detection between MDL and RL

Table 4. Data Qualifier Definitions

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

ASPECT CONSULTING

Data Qualifier	Definition
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
Х	Chromatographic pattern does not match fuel standard used for quantitation.

APPENDIX H

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 6, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on December 31, 2020 from the SnoPac-Manson PO 150054, F&BI 012481 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0106R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 31, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac-Manson PO 150054, F&BI 012481 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
012481 -01	SW-A-1-12
012481 -02	SW-C-3-12
012481 -03	SW-D-3-12.5
012481 -04	SW-JK-2-14

An 8270E internal standard failed the acceptance criteria for sample SW-C-3-12. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

Several 8270E compounds failed below the acceptance criteria in the matrix spike sample. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-A-1-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012481-01 x10

 Date Analyzed:
 01/04/21
 Data File:
 012481-01 x10.079

 Matrix:
 Soil
 Instrument:
 ICPMS2

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1,190

 Copper
 762

 Lead
 1,250

 Zinc
 3,760

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-C-3-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012481-02 x5

 Date Analyzed:
 01/04/21
 Data File:
 012481-02 x5.066

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 508

 Copper
 308

 Lead
 428

 Zinc
 1,550

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-D-3-12.5 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012481-03 x5

 Date Analyzed:
 01/04/21
 Data File:
 012481-03 x5.067

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 31.9

 Copper
 139

 Lead
 145

 Zinc
 674

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-JK-2-14 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012481-04 x20

 Date Analyzed:
 01/04/21
 Data File:
 012481-04 x20.068

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5,640

 Copper
 3,350

 Lead
 4,120

 Zinc
 17,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC Date Received: Not Applicable Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 I1-02 mb x0.4

 Date Analyzed:
 01/04/21
 Data File:
 I1-02 mb x0.4.037

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic <0.4

 Arsenic
 <0.4</td>

 Copper
 <2</td>

 Lead
 <0.4</td>

 Zinc
 <2</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012481

Date Extracted: 01/04/21 Date Analyzed: 01/04/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Total Mercury
SW-A-1-12 012481-01	0.17
SW-C-3-12 012481-02	0.056
SW-D-3-12.5 012481-03	0.085
SW-JK-2-14 012481-04	1.0
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-A-1-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012481-01 1/25
Date Analyzed:	01/04/21	Data File:	010410.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	45 d	32	100
Phenol-d6	$52~\mathrm{d}$	46	107
Nitrobenzene-d5	55 d	24	127
2-Fluorobiphenyl	65 d	46	108
2,4,6-Tribromophenol	113 d ca	25	127
Terphenyl-d14	68 d	50	150

Terphenyl-d14	68 d		
Compounds:	Concentration mg/kg (ppm)		
Naphthalene	0.13		
2-Methylnaphthalene	0.16		
1-Methylnaphthalene	0.10		
Acenaphthylene	< 0.05		
Acenaphthene	0.066		
Fluorene	0.078		
Phenanthrene	0.67		
Anthracene	0.14		
Fluoranthene	0.91		
Pyrene	0.77		
Benz(a)anthracene	0.41		
Chrysene	0.46		
Benzo(a)pyrene	0.50		
Benzo(b)fluoranthene	0.61		
Benzo(k)fluoranthene	0.23		
Indeno(1,2,3-cd)pyrene	0.32		
Dibenz(a,h)anthracene	0.070		
Benzo(g,h,i)perylene	0.30		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: SW-C-3-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054
Date Extracted: 01/04/21 Lab ID: 012481-02
Date Analyzed: 01/04/21 Data File: 010417.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	48	36	114
Phenol-d6	57	47	116
Nitrobenzene-d5	54	38	117
2-Fluorobiphenyl	71	50	150
2,4,6-Tribromophenol	70 ca	25	187
Terphenyl-d14	88	50	150

Terphenyl-d14	88
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.015
2-Methylnaphthalene	0.026
1-Methylnaphthalene	0.017
Acenaphthylene	< 0.002
Acenaphthene	0.0022
Fluorene	0.0024
Phenanthrene	0.033
Anthracene	0.0054
Fluoranthene	0.062
Pyrene	0.080
Benz(a)anthracene	0.033
Chrysene	0.045
Benzo(a)pyrene	$0.058\mathrm{J}$
Benzo(b)fluoranthene	$0.088\mathrm{J}$
Benzo(k)fluoranthene	$0.030 \mathrm{~J}$
Indeno(1,2,3-cd)pyrene	$0.036\mathrm{J}$
Dibenz(a,h)anthracene	$0.0075 \; \mathrm{J}$
Benzo(g,h,i)perylene	$0.034~\mathrm{J}$

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-C-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012481-02 1/5
Date Analyzed:	01/04/21	Data File:	010411.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	47 d	32	100
Phenol-d6	57 d	46	107
Nitrobenzene-d5	56 d	24	127
2-Fluorobiphenyl	72 d	46	108
2,4,6-Tribromophenol	70 d ca	25	127
Terphenyl-d14	75 d	50	150

Concentration mg/kg (ppm)
0.053
0.067
0.027
0.046
< 0.01
0.047

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-D-3-12.5	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012481-03
Date Analyzed:	01/04/21	Data File:	010418.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	50	36	114
Phenol-d6	61	47	116
Nitrobenzene-d5	56	38	117
2-Fluorobiphenyl	70	50	150
2,4,6-Tribromophenol	75 ca	25	187
Terphenyl-d14	94	50	150

1 ci piiciiyi ai i	0 1
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.026
2-Methylnaphthalene	0.033
1-Methylnaphthalene	0.026
Acenaphthylene	0.0037
Acenaphthene	0.0035
Fluorene	0.0041
Phenanthrene	0.053
Anthracene	0.0085
Fluoranthene	0.059
Pyrene	0.079
Benz(a)anthracene	0.030
Chrysene	0.047
Benzo(a)pyrene	0.044
Benzo(b)fluoranthene	0.086
Benzo(k)fluoranthene	0.032
Indeno(1,2,3-cd)pyrene	0.022
Dibenz(a,h)anthracene	0.0049
Benzo(g,h,i)perylene	0.022

ENVIRONMENTAL CHEMISTS

Operator:

VM

Analysis For Semivolatile Compounds By EPA Method 8270E

mg/kg (ppm) Dry Weight

Client Sample ID:	SW-JK-2-14	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012481-04 1/25
Date Analyzed:	01/05/21	Data File:	010430.D
Matrix:	Soil	Instrument:	GCMS9

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	50 d	32	100
Phenol-d6	62 d	46	107
Nitrobenzene-d5	60 d	24	127
2-Fluorobiphenyl	68 d	46	108
2,4,6-Tribromophenol	123 d	25	127
Terphenyl-d14	73 d	50	150

Terphenyl-d14	73 d
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.05
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.05
Acenaphthene	0.058
Fluorene	< 0.05
Phenanthrene	0.84
Anthracene	0.13
Fluoranthene	2.0
Pyrene	1.9
Benz(a)anthracene	1.1
Chrysene	1.3
Benzo(a)pyrene	1.4
Benzo(b)fluoranthene	1.8
Benzo(k)fluoranthene	0.56
Indeno(1,2,3-cd)pyrene	0.96
Dibenz(a,h)anthracene	0.21
Benzo(g,h,i)perylene	0.81

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	SnoPac-Manson PO 150054
D . D 1	01/04/01	T 1 TD	01 001 1

Date Extracted: 01/04/21 Lab ID: 01-001 mb Date Analyzed: 01/04/21 Data File: 010407.DMatrix: GCMS9 Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	75	32	100
Phenol-d6	83	46	107
Nitrobenzene-d5	93	24	127
2-Fluorobiphenyl	96	46	108
2,4,6-Tribromophenol	72 ca	25	127
Terphenyl-d14	100	50	150

<0.002 <0.002

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-A-1-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 012481-01 Date Analyzed: 01/04/21 Data File: 010406.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 83 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.14 Aroclor 1260 0.16 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-C-3-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Date Extracted: Lab ID: 012481-02 Date Analyzed: 01/04/21 Data File: 010407.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 81 23 127

< 0.002

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.046Aroclor 1260 0.059

Aroclor 1262

Aroclor 1268

15

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-D-3-12.5 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 012481-03 Date Analyzed: 01/04/21 Data File: 010408.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 88 23 127

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.089 Aroclor 1260 0.15Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-JK-2-14 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 012481-04 Date Analyzed: 01/04/21 Data File: 010409.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 67 23 127

TCMX 67 23 127

Concentration
mg/kg (ppm)

Aroclor 1221 <0.002

Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.23 ve Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-JK-2-14 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/04/21 012481-04 1/5 Date Analyzed: 01/05/21 Data File: $010517.\mathrm{D}$ Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 83 d 23 127

Concentration

Compounds: mg/kg (ppm)
Aroclor 1254 0.33

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 01-2 mbDate Analyzed: 01/04/21 Data File: 010405.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 94 23 127

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012481

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 012481-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	976	0 b	0 b	75-125	0 b
Copper	mg/kg (ppm)	50	635	0 b	0 b	75 - 125	0 b
Lead	mg/kg (ppm)	50	1,030	0 b	1910 b	75 - 125	200 b
Zinc	mg/kg (ppm)	50	3,180	0 b	0 b	75 - 125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	87	80-120
Copper	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	100	80-120
Zinc	mg/kg (ppm)	50	99	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012481

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 012481-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	192 b	159 b	71-125	19 b

		Percent		
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	125	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012481

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 012482-01 (Matrix Spike)

		Sample	Percent	
Reporting	Spike	Result	Recovery	Acceptance
Units	Level	(Wet wt)	MS	Criteria
mg/kg (ppm)	0.83	0.012	124	50-150
mg/kg (ppm)	0.83	0.0064	166 vo	50-150
mg/kg (ppm)	0.83	0.0056	108	50-150
mg/kg (ppm)	0.83	< 0.002	76	50-150
mg/kg (ppm)	0.83	0.010	77	50-150
mg/kg (ppm)	0.83	0.0097	82	50-150
mg/kg (ppm)	0.83	0.085	95	50-150
mg/kg (ppm)	0.83	0.022	79	50-150
mg/kg (ppm)	0.83	0.10	84	50-150
mg/kg (ppm)	0.83	0.12	101	50-150
mg/kg (ppm)	0.83	0.049	91	50-150
mg/kg (ppm)	0.83	0.054	147	50-150
mg/kg (ppm)	0.83	0.062	105	50-150
mg/kg (ppm)	0.83	0.065	129	50-150
mg/kg (ppm)	0.83	0.023	106	50-150
mg/kg (ppm)	0.83	0.032	44 vo	50-150
mg/kg (ppm)	0.83	0.0070	56	50-150
mg/kg (ppm)	0.83	0.028	46 vo	50-150
	mg/kg (ppm)	Units Level mg/kg (ppm) 0.83 mg/kg (ppm) 0.83	Reporting Units Spike Level Result (Wet wt) mg/kg (ppm) 0.83 0.012 mg/kg (ppm) 0.83 0.0064 mg/kg (ppm) 0.83 0.0056 mg/kg (ppm) 0.83 0.002 mg/kg (ppm) 0.83 0.010 mg/kg (ppm) 0.83 0.097 mg/kg (ppm) 0.83 0.085 mg/kg (ppm) 0.83 0.10 mg/kg (ppm) 0.83 0.12 mg/kg (ppm) 0.83 0.049 mg/kg (ppm) 0.83 0.054 mg/kg (ppm) 0.83 0.062 mg/kg (ppm) 0.83 0.023 mg/kg (ppm) 0.83 0.023 mg/kg (ppm) 0.83 0.032 mg/kg (ppm) 0.83 0.023 mg/kg (ppm) 0.83 0.032 mg/kg (ppm) 0.83 0.032 mg/kg (ppm) 0.83 0.0070	Reporting Units Spike Level Result (Wet wt) Recovery MS mg/kg (ppm) 0.83 0.012 124 mg/kg (ppm) 0.83 0.0064 166 vo mg/kg (ppm) 0.83 0.0056 108 mg/kg (ppm) 0.83 <0.002

			Percent	Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	84	86	58-108	2
2-Methylnaphthalene	mg/kg (ppm)	0.83	89	89	70-130	0
1-Methylnaphthalene	mg/kg (ppm)	0.83	90	90	70-130	0
Acenaphthylene	mg/kg (ppm)	0.83	100	100	70-130	0
Acenaphthene	mg/kg (ppm)	0.83	95	95	70-130	0
Fluorene	mg/kg (ppm)	0.83	98	98	70-130	0
Phenanthrene	mg/kg (ppm)	0.83	102	102	70-130	0
Anthracene	mg/kg (ppm)	0.83	99	98	70-130	1
Fluoranthene	mg/kg (ppm)	0.83	109	109	70-130	0
Pyrene	mg/kg (ppm)	0.83	104	94	70-130	10
Benz(a)anthracene	mg/kg (ppm)	0.83	107	105	70-130	2
Chrysene	mg/kg (ppm)	0.83	110	106	70-130	4
Benzo(a)pyrene	mg/kg (ppm)	0.83	109	107	70-130	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	108	102	70-130	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	112	110	70-130	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	109	115	70-130	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	114	112	70-130	2
Benzo(g,h,i)pervlene	mg/kg (ppm)	0.83	113	111	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 01/06/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012481

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 012482-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	< 0.002	54	53	29-125	2
Aroclor 1260	mg/kg (ppm)	0.083	0.0028	56	50	25 - 137	11

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.083	81	55-137
Aroclor 1260	mg/kg (ppm)	0.083	87	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. 50-0-3-125 Sw-C-3-12 3 3W-A-1-12 Phone (182327343 Email bareer; a griffin Company Aspect City, State, ZIP Seather WA 98/04 Address 701 2m Are Ste 550 Report To Breegh Green ì JK-2-14 Sample ID 012481 Relinquished by Bullynbr Received by Relinquished by: Received by: 03 2 É OIAB Adam Gnithin Lab ID SIGNATURE 12/20/20 12/3/12/1115 12/3/12 Sampled Date SAMPLE CHAIN OF CUSTODY $M_{\mathcal{E}}$ 1135 1110 Time Sampled BB SAMPLERS (signature) Project specific RLs? Yes No PROJECT NAME REMARKS Snotal Munson Sample ഗ Type 0 **(**) S # of Jars 1 PRINT NAME N N N Green NWTPH-Dx NWTPH-Gx NWTPH-HCID INVOICE TO 150054 ANALYSES REQUESTED VOCs EPA 8260 R PO# **/** PAHs EPA 8270 メ PCBs EPA 8082 COMPANY Samples received mutals * ☐ Archive samples Default: Dispose after 30 days Rush charges authorized by: ☐ Standard turnaround يو ق KRUSH 2-chan Page# TURNAROUND TIME SAMPLE DISPOSAL 123 120 120 120 دا ق 2 そんの、たりの DATE T of___ 17% TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 7, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on December 31, 2020 from the SnoPac-Manson PO 150054, F&BI 012482 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0107R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 31, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac-Manson PO 150054, F&BI 012482 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
012482 -01	SW-D-2-12
012482 -02	SW-E-2-12
012482 -03	SW-F-2-12
012482 -04	SW-G-2-12
012482 -05	SW-H-2-12
012482 -06	SW-A-2-12.5
012482 -07	SW-A-3-12
012482 -08	SW-B-3-12
012482 -09	SW-I-3-12
012482 -10	SW-K-2-12
012482 -11	SW-L-2-12
012482 -12	SW-M-1-12

Several 8270E compounds did not pass the acceptance criteria in the matrix spike sample. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-D-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
Data Extracted:	01/04/91	I.ah ID:	019489-01

 Date Extracted:
 01/04/21
 Lab ID:
 012482-01

 Date Analyzed:
 01/04/21
 Data File:
 012482-01.167

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 12.5
Copper 15.4
Lead 14.6
Zinc 54.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-E-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012482-02 x2

 Date Analyzed:
 01/04/21
 Data File:
 012482-02 x2.078

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

67.4

Analyte: Concentration mg/kg (ppm)

Arsenic 18.9
Copper 18.6
Lead 14.0

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-F-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 1.80

 Copper
 7.16

 Lead
 1.70

 Zinc
 33.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-G-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
T . T		T 1 TT	

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 1.32

 Copper
 5.77

 Lead
 1.02

 Zinc
 12.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-H-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
D . D 1	01/04/01	T 1 TD	010400 07

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.33

 Copper
 7.04

 Lead
 2.56

 Zinc
 18.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-A-2-12.5	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
		T 1 TT	

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 9.40

 Copper
 26.1

 Lead
 17.3

 Zinc
 72.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-A-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
D . D 1	04/04/04	T 1 TD	010400 05

 Date Extracted:
 01/04/21
 Lab ID:
 012482-07

 Date Analyzed:
 01/04/21
 Data File:
 012482-07.053

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \; (ppm) \end{array}$

 Arsenic
 1.60

 Copper
 4.10

 Lead
 1.02

 Zinc
 11.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-B-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012482-08 x2

 Date Analyzed:
 01/04/21
 Data File:
 012482-08 x2.070

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \; (ppm) \end{array}$

 Arsenic
 8.55

 Copper
 11.2

 Lead
 10.1

 Zinc
 34.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-I-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
B - B - 1		T 1 TD	

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 2.02

 Copper
 6.07

 Lead
 1.26

 Zinc
 14.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-K-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.14

 Copper
 23.3

 Lead
 13.4

 Zinc
 57.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-L-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 012482-11 x2

 Date Analyzed:
 01/04/21
 Data File:
 012482-11 x2.072

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.48

 Copper
 20.7

 Lead
 12.5

 Zinc
 37.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-M-1-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/21	Project:	SnoPac-Manson PO 150054
D . D 1	01/01/01	T 1 TT	010400 10 0

 Date Extracted:
 01/04/21
 Lab ID:
 012482-12 x2

 Date Analyzed:
 01/04/21
 Data File:
 012482-12 x2.077

 Matrix:
 Soil
 Instrument:
 ICPMS2

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 4.12
Copper 14.5
Lead 21.8
Zinc 31.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac-Manson PO 150054

 Date Extracted:
 01/04/21
 Lab ID:
 I1-02 mb x0.4

 Date Analyzed:
 01/04/21
 Data File:
 I1-02 mb x0.4.037

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

 Arsenic
 <0.4</td>

 Copper
 <2</td>

 Lead
 <0.4</td>

 Zinc
 <2</td>

Analyte:

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

Date Extracted: 01/04/21

Date Analyzed: 01/04/21 and 01/05/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
SW-D-2-12 012482-01	0.020
SW-E-2-12 012482-02	0.021
SW-F-2-12 012482-03	0.012
SW-G-2-12 012482-04	<0.01
SW-H-2-12 012482-05	0.010
SW-A-2-12.5 012482-06	0.044
SW-A-3-12 012482-07	0.010
SW-B-3-12 012482-08	0.048
SW-I-3-12 012482-09	<0.01
SW-K-2-12 012482-10	0.061
SW-L-2-12 012482-11	0.033

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

Date Extracted: 01/04/21

Date Analyzed: 01/04/21 and 01/05/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
SW-M-1-12 012482-12	0.025
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-D-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-01
Date Analyzed:	01/05/21	Data File:	010431.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	54	32	100
Phenol-d6	61	46	107
Nitrobenzene-d5	65	24	127
2-Fluorobiphenyl	70	46	108
2,4,6-Tribromophenol	78	25	127
Terphenyl-d14	90	50	150

Terphenyl-d14	90	
	Concentration	
Compounds:	mg/kg (ppm)	
Naphthalene	0.013	
2-Methylnaphthalene	0.0074	
1-Methylnaphthalene	0.0065	
Acenaphthylene	< 0.002	
Acenaphthene	0.011	
Fluorene	0.011	
Phenanthrene	0.098	
Anthracene	0.026	
Fluoranthene	0.12	
Pyrene	0.14	
Benz(a)anthracene	0.056	
Chrysene	0.062	
Benzo(a)pyrene	0.072	
Benzo(b)fluoranthene	0.075	
Benzo(k)fluoranthene	0.026	
Indeno(1,2,3-cd)pyrene	0.037	
Dibenz(a,h)anthracene	0.0080	
Benzo(g,h,i)perylene	0.032	

ENVIRONMENTAL CHEMISTS

Operator:

VM

Analysis For Semivolatile Compounds By EPA Method 8270E

mg/kg (ppm) Dry Weight

Units:

Client Sample ID:	SW-E-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-02
Date Analyzed:	01/04/21	Data File:	010416.D
Matrix:	Soil	Instrument:	GCMS8

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	59	36	114
Phenol-d6	68	47	116
Nitrobenzene-d5	65	38	117

Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	59	36	114
Phenol-d6	68	47	116
Nitrobenzene-d5	65	38	117
2-Fluorobiphenyl	78	50	150
2,4,6-Tribromophenol	81 ca	25	187
Terphenyl-d14	96	50	150
	Qtt		

1 0	
	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	0.020
2-Methylnaphthalene	0.0094
1-Methylnaphthalene	0.0077
Acenaphthylene	< 0.002
Acenaphthene	0.012
Fluorene	0.013
Phenanthrene	0.10
Anthracene	0.026
Fluoranthene	0.12
Pyrene	0.13
Benz(a)anthracene	0.055
Chrysene	0.061
Benzo(a)pyrene	0.075
Benzo(b)fluoranthene	0.078
Benzo(k)fluoranthene	0.029
Indeno(1,2,3-cd)pyrene	0.038
Dibenz(a,h)anthracene	0.0078
Benzo(g,h,i)perylene	0.033

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-F-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-03
Date Analyzed:	01/04/21	Data File:	010413.D

Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60	36	114
Phenol-d6	69	47	116
Nitrobenzene-d5	64	38	117
2-Fluorobiphenyl	75	50	150
2,4,6-Tribromophenol	78 ca	25	187
Terphenyl-d14	84	50	150

0.014

0.013

0.0028

rerphenyi-u14	04
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	0.0030
Fluorene	0.0021
Phenanthrene	0.029
Anthracene	0.0068
Fluoranthene	0.041
Pyrene	0.042
Benz(a)anthracene	0.019
Chrysene	0.023
Benzo(a)pyrene	0.027
Benzo(b)fluoranthene	0.031
Benzo(k)fluoranthene	0.012

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i) perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-G-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-04
Date Analyzed:	01/04/21	Data File:	010406.D

Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	5 3	36	114
Phenol-d6	62	47	116
Nitrobenzene-d5	66	38	117
2-Fluorobiphenyl	74	50	150
2,4,6-Tribromophenol	56 ca	25	187
Terphenyl-d14	81	50	150

Terphenyl-d14	81	
Compounds:	Concentration mg/kg (ppm)	
Naphthalene	< 0.002	
2-Methylnaphthalene	< 0.002	
1-Methylnaphthalene	< 0.002	
Acenaphthylene	< 0.002	
Acenaphthene	< 0.002	
Fluorene	< 0.002	
Phenanthrene	0.017	
Anthracene	0.0037	
Fluoranthene	0.025	
Pyrene	0.024	
Benz(a)anthracene	0.010	
Chrysene	0.012	
Benzo(a)pyrene	0.013	
Benzo(b)fluoranthene	0.013	
Benzo(k)fluoranthene	0.0058	
Indeno(1,2,3-cd)pyrene	0.0075	
Dibenz(a,h)anthracene	< 0.002	
Benzo(g,h,i)perylene	0.0080	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-H-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-05
Date Analyzed:	01/04/21	Data File:	010407.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60	36	114
Phenol-d6	69	47	116
Nitrobenzene-d5	71	38	117
2-Fluorobiphenyl	80	50	150
2,4,6-Tribromophenol	67 ca	25	187
Terphenyl-d14	87	50	150

Terphenyl-d14	87
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	0.0032
Anthracene	< 0.002
Fluoranthene	0.0054
Pyrene	0.0049
Benz(a)anthracene	0.0027
Chrysene	0.0040
Benzo(a)pyrene	0.0039
Benzo(b)fluoranthene	0.0052
Benzo(k)fluoranthene	0.0021
Indeno(1,2,3-cd)pyrene	0.0027
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0026

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-A-2-12.5	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-06
Date Analyzed:	01/04/21	Data File:	010408.D
Matrix:	Soil	Instrument:	GCMS8

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	53	36	114
Phenol-d6	65	47	116
Nitrobenzene-d5	67	38	117
2-Fluorobiphenyl	77	50	150
2,4,6-Tribromophenol	58 ca	25	187
Terphenyl-d14	88	50	150

Terpnenyi-a14	88
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.034
2-Methylnaphthalene	0.058
1-Methylnaphthalene	0.055
Acenaphthylene	< 0.002
Acenaphthene	0.0020
Fluorene	< 0.002
Phenanthrene	0.060
Anthracene	0.0056
Fluoranthene	0.027
Pyrene	0.043
Benz(a)anthracene	0.013
Chrysene	0.028
Benzo(a)pyrene	0.014
Benzo(b)fluoranthene	0.019
Benzo(k)fluoranthene	0.0049
Indeno(1,2,3-cd)pyrene	0.0081
Dibenz(a,h)anthracene	0.0021
Benzo(g,h,i)perylene	0.0098

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-A-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-07
Date Analyzed:	01/04/21	Data File:	010409.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	53	36	114
Phenol-d6	61	47	116
Nitrobenzene-d5	57	38	117
2-Fluorobiphenyl	70	50	150
2,4,6-Tribromophenol	70 ca	25	187
Terphenyl-d14	85	50	150

2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	70 70 ca 85	50 25 50	
G 1	Concentration		
Compounds:	mg/kg (ppm)		
Naphthalene	< 0.002		
2-Methylnaphthalene	< 0.002		
1-Methylnaphthalene	< 0.002		
Acenaphthylene	< 0.002		
Acenaphthene	< 0.002		
Fluorene	< 0.002		
Phenanthrene	0.0021		
Anthracene	< 0.002		
Fluoranthene	0.0030		
Pyrene	0.0029		
Benz(a)anthracene	< 0.002		
Chrysene	< 0.002		
Benzo(a)pyrene	0.0022		
Benzo(b)fluoranthene	0.0024		
Benzo(k)fluoranthene	< 0.002		
Indeno(1,2,3-cd)pyrene	< 0.002		
Dibenz(a,h)anthracene	< 0.002		
Benzo(g,h,i)perylene	< 0.002		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-B-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-08
Date Analyzed:	01/04/21	Data File:	010410.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	36	114
Phenol-d6	70	47	116
Nitrobenzene-d5	68	38	117
2-Fluorobiphenyl	82	50	150
2,4,6-Tribromophenol	76 ca	25	187
Terphenyl-d14	85	50	150

09
Concentration
mg/kg (ppm)
0.0022
0.0039
0.0022
< 0.002
< 0.002
< 0.002
0.0041
< 0.002
0.0048
0.0053
0.0028
0.0048
0.0043
0.0060
0.0023
0.0037
< 0.002
0.0039

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-I-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-09
Date Analyzed:	01/04/21	Data File:	010411.D

Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: 2-Fluorophenol	% Recovery: 57	Lower Limit: 36	Upper Limit: 114
Phenol-d6	69	47	116
Nitrobenzene-d5	64	38	117
2-Fluorobiphenyl	77	50	150
2,4,6-Tribromophenol	81 ca	25	187
Terphenyl-d14	90	50	150

< 0.002

< 0.002

1 crpitchyr u 1 4	00
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002

Dibenz(a,h)anthracene

Benzo(g,h,i) perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-K-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-10 1/5
Date Analyzed:	01/05/21	Data File:	010515.D

Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	52 d	32	100
Phenol-d6	61 d	46	107
Nitrobenzene-d5	62 d	24	127
2-Fluorobiphenyl	73 d	46	108
2,4,6-Tribromophenol	90 d	25	127
Terphenyl-d14	77 d	50	150

rerpnenyi-ar4	77 a
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.093
2-Methylnaphthalene	0.071
1-Methylnaphthalene	0.056
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	0.060
Anthracene	0.015
Fluoranthene	0.085
Pyrene	0.074
Benz(a)anthracene	0.039
Chrysene	0.086
Benzo(a)pyrene	0.047
Benzo(b)fluoranthene	0.085
Benzo(k)fluoranthene	0.033
Indeno(1,2,3-cd)pyrene	0.050
Dibenz(a,h)anthracene	0.017
Benzo(g,h,i)perylene	0.091

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-L-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
Date Extracted:	01/04/21	Lab ID:	012482-11
Date Analyzed:	01/04/21	Data File:	010420.D

Matrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	55	36	114
Phenol-d6	59	47	116
Nitrobenzene-d5	62	38	117
2-Fluorobiphenyl	74	50	150
2,4,6-Tribromophenol	69 ca	25	187
Terphenyl-d14	103	50	150

Terpnenyl-d14	103
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.076
2-Methylnaphthalene	0.095
1-Methylnaphthalene	0.073
Acenaphthylene	0.0053
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	0.045
Anthracene	0.0096
Fluoranthene	0.041
Pyrene	0.059
Benz(a)anthracene	0.021
Chrysene	0.033
Benzo(a)pyrene	0.033
Benzo(b)fluoranthene	0.060
Benzo(k)fluoranthene	0.019
Indeno(1,2,3-cd)pyrene	0.024
Dibenz(a,h)anthracene	0.0060
Benzo(g,h,i)perylene	0.032
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Operator:

VM

Analysis For Semivolatile Compounds By EPA Method 8270E

mg/kg (ppm) Dry Weight

Client Sample ID: SW-M-1-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054 Date Extracted: 01/04/21 Lab ID: 012482-12 Date Analyzed: 01/04/21 Data File: 010419.DMatrix: Soil Instrument: GCMS8

Upper Lower Surrogates: % Recovery: Limit: Limit: 2-Fluorophenol 36 114 7047 116

Phenol-d6 Nitrobenzene-d5 67 38 117 2-Fluorobiphenyl 7750 150 2,4,6-Tribromophenol 187 80 ca 25 Terphenyl-d14 109 50 150

Concentration Compounds: mg/kg (ppm) Naphthalene 0.013 2-Methylnaphthalene 0.015 1-Methylnaphthalene 0.011 Acenaphthylene 0.0027 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene 0.020 0.0066 Anthracene Fluoranthene 0.036 Pyrene 0.050 Benz(a)anthracene 0.021 Chrysene 0.046 Benzo(a)pyrene 0.040 Benzo(b)fluoranthene 0.096 Benzo(k)fluoranthene 0.029 Indeno(1,2,3-cd)pyrene 0.030 Dibenz(a,h)anthracene 0.0067 Benzo(g,h,i)perylene 0.033 < 0.05 Pentachlorophenol

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	SnoPac-Manson PO 150054
Data Estraatad.	01/04/01	Lak ID.	01 001 -

01/04/21 Lab ID: 01-001 mb Date Extracted: Date Analyzed: 01/04/21 Data File: 010407.DGCMS9Soil Matrix: Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	75	32	100
Phenol-d6	83	46	107
Nitrobenzene-d5	93	24	127
2-Fluorobiphenyl	96	46	108
2,4,6-Tribromophenol	72 ca	25	127
Terphenyl-d14	100	50	150

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-D-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
D . D 1	04/04/04	T 1 TD	010100 01

Date Extracted: 01/04/21 Lab ID: 012482-01Date Analyzed: 01/04/21 Data File: 010411.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 71 23 127

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.0065Aroclor 1260 0.0033 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-E-2-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Lab ID: Date Extracted: 012482-02 Date Analyzed: 01/04/21 Data File: 010414.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 82 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.0027 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-F-2-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
D . D 1	04/04/04	T 1 TD	010400 00

Date Extracted: 01/04/21 Lab ID: 012482-03 Date Analyzed: 01/04/21 Data File: 010415.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates:\\ TCMX \end{array}$ 23 79 Concentration

Compounds: mg/kg (ppm) Aroclor 1221 < 0.002 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-G-2-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Date Extracted: Lab ID: 012482-04 Date Analyzed: 01/04/21 Data File: 010416.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 87 23 127

< 0.002

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002

Aroclor 1262

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-H-2-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Lab ID: Date Extracted: 012482-05 Date Analyzed: 01/04/21 Data File: 010417.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 81 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-A-2-12.5	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054
		T 1 TT	

Date Extracted: 01/04/21 Lab ID: 012482 - 06Date Analyzed: 01/04/21 Data File: 010419.DMatrix: Soil Instrument: GC7mg/kg (ppm) Dry Weight Units: IJLOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	65	23	127

Surrogates: TCMX	% Recovery: 65	Limit: 23	Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	< 0.002		
Aroclor 1232	< 0.002		
Aroclor 1016	< 0.002		
Aroclor 1242	< 0.002		
Aroclor 1248	< 0.002		
Aroclor 1254	< 0.002		
Aroclor 1260	< 0.002		
Aroclor 1262	0.0033		
Aroclor 1268	< 0.002		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-A-3-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 012482 - 07Date Extracted: Lab ID: Date Analyzed: 01/04/21 Data File: 010420.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 70 Concentration Compounds: mg/kg (ppm)

< 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-B-3-12	Client:	Aspect Consulting, LLC
Date Received:	12/31/20	Project:	SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 012482 - 08Date Analyzed: 01/04/21 Data File: 010421.DMatrix: Soil Instrument: GC7mg/kg (ppm) Dry Weight Units: IJLOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	77	23	127

TCMX	77	23	
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	< 0.002		
Aroclor 1232	< 0.002		
Aroclor 1016	< 0.002		
Aroclor 1242	< 0.002		
Aroclor 1248	< 0.002		
Aroclor 1254	< 0.002		
Aroclor 1260	< 0.002		
Aroclor 1262	< 0.002		
Aroclor 1268	< 0.002		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-I-3-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Date Extracted: Lab ID: 012482-09 Date Analyzed: 01/04/21 Data File: 010422.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 95 23 127

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-K-2-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Date Extracted: Lab ID: 012482-10 Date Analyzed: 01/04/21 Data File: 010423.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 91 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-L-2-12 Client: Aspect Consulting, LLC Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

01/04/21 Lab ID: Date Extracted: 012482 - 11Date Analyzed: 01/04/21 Data File: 010424.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower % Recovery: Limit:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 89 23

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.0024 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-M-1-12 Client: Aspect Consulting, LLC
Date Received: 12/31/20 Project: SnoPac-Manson PO 150054

Date Extracted: 01/04/21 Lab ID: 012482-12 Date Analyzed: 01/04/21 Data File: 010425.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 92 23 127

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 < 0.002
Aroclor 1232 < 0.002
Aroclor 1016 < 0.002
Aroclor 1242 < 0.002
Aroclor 1248 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/04/21 01-2 mbDate Analyzed: 01/04/21 Data File: 010405.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 94 23 127

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 012481-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	976	0 b	0 b	75-125	0 b
Copper	mg/kg (ppm)	50	635	0 b	0 b	75 - 125	0 b
Lead	mg/kg (ppm)	50	1,030	0 b	1910 b	75 - 125	200 b
Zinc	mg/kg (ppm)	50	3,180	0 b	0 b	75 - 125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	87	80-120
Copper	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	100	80-120
Zinc	mg/kg (ppm)	50	99	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 012481-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	192 b	159 b	71-125	19 b

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	125	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 012482-01 (Matrix Spike)

			Sample	Percent	
Analyte	Reporting Units	Spike Level	Result (Wet wt)	Recovery MS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	0.012	124	50-150
2-Methylnaphthalene	mg/kg (ppm)	0.83	0.0064	166 vo	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.83	0.0056	108	50-150
Acenaphthylene	mg/kg (ppm)	0.83	< 0.002	76	50-150
Acenaphthene	mg/kg (ppm)	0.83	0.010	77	50-150
Fluorene	mg/kg (ppm)	0.83	0.0097	82	50-150
Phenanthrene	mg/kg (ppm)	0.83	0.085	95	50-150
Anthracene	mg/kg (ppm)	0.83	0.022	79	50-150
Fluoranthene	mg/kg (ppm)	0.83	0.10	84	50-150
Pyrene	mg/kg (ppm)	0.83	0.12	101	50-150
Benz(a)anthracene	mg/kg (ppm)	0.83	0.049	91	50-150
Chrysene	mg/kg (ppm)	0.83	0.054	147	50-150
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.062	105	50-150
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.065	129	50-150
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.023	106	50-150
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.032	44 vo	50-150
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	0.0070	56	50-150
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.028	46 vo	50-150
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.05	83	50-150

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	84	86	58-108	2
2-Methylnaphthalene	mg/kg (ppm)	0.83	89	89	70-130	0
1-Methylnaphthalene	mg/kg (ppm)	0.83	90	90	70-130	0
Acenaphthylene	mg/kg (ppm)	0.83	100	100	70-130	0
Acenaphthene	mg/kg (ppm)	0.83	95	95	70-130	0
Fluorene	mg/kg (ppm)	0.83	98	98	70-130	0
Phenanthrene	mg/kg (ppm)	0.83	102	102	70-130	0
Anthracene	mg/kg (ppm)	0.83	99	98	70-130	1
Fluoranthene	mg/kg (ppm)	0.83	109	109	70-130	0
Pyrene	mg/kg (ppm)	0.83	104	94	70-130	10
Benz(a)anthracene	mg/kg (ppm)	0.83	107	105	70-130	2
Chrysene	mg/kg (ppm)	0.83	110	106	70-130	4
Benzo(a)pyrene	mg/kg (ppm)	0.83	109	107	70-130	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	108	102	70-130	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	112	110	70-130	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	109	115	70-130	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	114	112	70-130	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	113	111	70-130	2
Pentachlorophenol	mg/kg (ppm)	0.83	80	86	64-134	7

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 12/31/20

Project: SnoPac-Manson PO 150054, F&BI 012482

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 012482-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	< 0.002	54	53	29-125	2
Aroclor 1260	mg/kg (ppm)	0.083	0.0028	56	50	25 - 137	11

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.083	81	55-137
Aroclor 1260	mg/kg (ppm)	0.083	87	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Sauthe WA Address Fol 2nd Ane Company__ Report To Breen Great Papect 250 Adam 40104 8

Phone Gill327343 Email boyner; agnifin

SAMPLE CHAIN OF CUSTODY U)

10 P

SAMPLERS (signature) Project specific RLs? REMARKS PROJECT NAME Supar -marson E INVOICE TO 150054 PO# 00118/61 □ Other_ Default: Dispose after 30 days Page#_

** RUSH 1/4/21 per 86 14/1/23 ** ☐ Archive samples Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL

7 4 7						D. J. J. L.	2079 70% 4
1231 x 1/25	Rock	Cross	Birden Cross	æ	in the	Relinquished by	Friedman & Bruya, Inc.
DATE TIME	COMPANY	IAME	PRINT NAME		SIGNATURE	SIGN	~********
		Y	2	S	12/31 1205	70	SW-K-2-12
	/ / /	Y	2	c>	143 1215	2 100	SW-I-3-12
	X X	X	7	O	18/31 1125	13 80	SW-B-3-12
	×	×	2	S	12/31 1100	12 16	SW-A-3-12
	X X X X X X X X X X X X X X X X X X X		2		1731 1100	00 1	SW-A-2-12-5
	× ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*	· <	12/30 1555	PS.	21-2-H-ms
	/ X X)			1470 1635	94	Sw-6-2-12
	<u> </u>			V	1430 1625	03 1	Sm-E-2-12
	XXX	×			1430/10 11000	02	SW-E-2-12
	XX		2	S	1/w/2 1620	0/48 2/20/2	21-2-d- WS
Notes As, (a, Pb, Hy, Ba	PAHs EPA 8270 PCBs EPA 8082 Metals	NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	Jars of NWTPH-Dx	e Sample led Type	Date Time Sampled Sampled	Lab ID	Sample ID
	ANALYSES REQUESTED	ANAL	,	***************************************			
,							

Ph. (206) 285-8282

Received by:

Seattle, WA 98119-2029 3012 16th Avenue West

Relinquished by:

するの

याधीव

Samples received at

Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West Friedman & Bruya, Inc. SW-M-1-12 Sw-1-2-12 かかってい Phone (el 12732 734) Email byreer; agriffin City, State, ZIP. Address Company_ Report To Breum Our Sample ID 50 Received by: Relinquished by: Relinquished by: Regarded by: V Lab ID # B SIGNATURE 12/3/12 12/3//20 Date Sampled IISO 1155 Time Sampled SAMPLE CHAIN OF CUSTODY B Project specific RLs? (Yes) REMARKS PROJECT NAME SAMPLERS (signature) Sm Par - Manson しつの Sample Breespan (Steen **(**) Type **(/**) PRINT NAME # of Jars N N NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID 150054 INVOICE TO * MALYSES REQUESTED VOCs EPA 8260 PO# X B FIR Samples received at Hoser PCBs EPA 8082 COMPANY Metals PLP 8270 SAMPLE DISPOSAL

D Archive samples Default: Dispose after 30 days Rush charges authorized by: O RUSH Standard turnaround Page # L of 7
TURNAROUND TIME 12/3/2 8 (EK 13° 4 Ċ *45, 6, 178, 18, 18, 18 DATEto 12 st रिंड 1253 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 7, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 5, 2021 from the SnoPac-Manson PO 150054, F&BI 101021 project. There are 34 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0107R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 5, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac-Manson PO 150054, F&BI 101021 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101021 -01	B-A-2-11.5
101021 -02	B-B-2-11.5
101021 -03	B-B-3-11.5
101021 -04	B-C-2-11.5
101021 -05	B-D-2-11.5
101021 -06	B-F-2-11.5
101021 -07	B-G-2-11.5
101021 -08	B-I-2-11.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-A-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
D (D) 1	01/00/01	T 1 TD	101001 01

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg\ (ppm) \end{array}$

 Arsenic
 1.34

 Copper
 6.79

 Lead
 1.45

 Zinc
 16.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-B-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac- Manson PO 150054

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

 Arsenic
 <1</td>

 Copper
 5.98

 Lead
 <1</td>

 Zinc
 12.6

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-B-3-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
D (D) 1	01/00/01	T 1 ID	101001 00

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 11.0

 Copper
 20.2

 Lead
 17.8

 Zinc
 52.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-C-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
D . D 1	01/00/01	T 1 TD	101001 04

 Date Extracted:
 01/06/21
 Lab ID:
 101021-04

 Date Analyzed:
 01/06/21
 Data File:
 101021-04.046

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \; (ppm) \end{array}$

 Arsenic
 1.63

 Copper
 5.92

 Lead
 1.26

 Zinc
 13.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-D-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Data Extracted	01/06/91	Lab ID:	101091 05

 Date Extracted:
 01/06/21
 Lab ID:
 101021-05

 Date Analyzed:
 01/06/21
 Data File:
 101021-05.047

 Matrix:
 Soil
 Instrument:
 ICPMS2

63.2

162

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 37.9
Copper 34.7

Lead

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-F-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
D + D + + 1	01/00/01	T 1 ID	101001 00

 Date Extracted:
 01/06/21
 Lab ID:
 101021-06

 Date Analyzed:
 01/06/21
 Data File:
 101021-06.048

 Matrix:
 Soil
 Instrument:
 ICPMS2

87.0

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.49
Copper 9.67
Lead 3.29

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-G-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
T . T			

 Date Extracted:
 01/06/21
 Lab ID:
 101021-07

 Date Analyzed:
 01/06/21
 Data File:
 101021-07.049

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 6.88

 Copper
 8.62

 Lead
 165

 Zinc
 60.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-I-2-11.5 Client: Aspect Consulting, LLC
Date Received: 01/05/21 Project: SnoPac- Manson PO 150054

 Date Extracted:
 01/06/21
 Lab ID:
 101021-08 x5

 Date Analyzed:
 01/06/21
 Data File:
 101021-08 x5.057

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5.61

 Copper
 188

 Lead
 32.3

 Zinc
 72.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac- Manson PO 150054

01/06/21 Lab ID: I1-06 mb Date Extracted: Date Analyzed: 01/06/21 Data File: I1-06 mb.036 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration
Analyte: mg/kg (ppm)

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 01/05/21 Date Extracted: 01/06/21 Date Analyzed: 01/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
B-A-2-11.5 101021-01 x0.5	0.017
B-B-2-11.5 101021-02 x0.5	0.015
B-B-3-11.5 101021-03 x0.5	0.023
B-C-2-11.5 101021-04 x0.5	0.010
B-D-2-11.5 101021-05 x0.5	0.034
B-F-2-11.5 101021-06 x0.5	0.13
B-G-2-11.5 101021-07 x0.5	0.029
B-I-2-11.5 101021-08 x0.5	0.067
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-A-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-01
Date Analyzed:	01/06/21	Data File:	010606.D

Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	70	32	100
Phenol-d6	75	46	107
Nitrobenzene-d5	85	24	127
2-Fluorobiphenyl	87	46	108
2,4,6-Tribromophenol	90	25	127
Terphenyl-d14	93	50	150

1 cr piletty i d i i	00
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-B-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-02
Date Analyzed:	01/06/21	Data File:	010607.D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	64	32	100
Phenol-d6	72	46	107
Nitrobenzene-d5	81	24	127
2-Fluorobiphenyl	84	46	108
2,4,6-Tribromophenol	95	25	127
Terphenyl-d14	96	50	150

96
Concentration mg/kg (ppm)
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B-B-3-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054 01/06/21 Lab ID: 101021-03 Date Extracted: Date Analyzed: 01/06/21 Data File: 010611.DMatrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	55	32	100
Phenol-d6	63	46	107
Nitrobenzene-d5	66	24	127
2-Fluorobiphenyl	73	46	108
2,4,6-Tribromophenol	85	25	127
Terphenyl-d14	84	50	150

rerphenyr-ur4	04
Compounds:	Concentration mg/kg (ppm)
-	
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	0.0034
Anthracene	< 0.002
Fluoranthene	0.0072
Pyrene	0.0072
Benz(a)anthracene	0.0041
Chrysene	0.0056
Benzo(a)pyrene	0.0060
Benzo(b)fluoranthene	0.0076
Benzo(k)fluoranthene	0.0027
Indeno(1,2,3-cd)pyrene	0.0045
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0048

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-C-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-04
Date Analyzed:	01/06/21	Data File:	010608.D
Matrix:	Soil	Instrument:	GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	75	32	100
Phenol-d6	80	46	107
Nitrobenzene-d5	88	24	127
2-Fluorobiphenyl	91	46	108
2,4,6-Tribromophenol	95	25	127
Terphenyl-d14	94	50	150

Terphenyl-d14	94
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-D-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-05 1/5
Date Analyzed:	01/06/21	Data File:	010613.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60 d	32	100
Phenol-d6	69 d	46	107
Nitrobenzene-d5	76 d	24	127
2-Fluorobiphenyl	80 d	46	108
2,4,6-Tribromophenol	100 d	25	127
Terphenyl-d14	83 d	50	150

Terphenyl-d14	83 d
Compounds:	Concentration mg/kg (ppm)
Naphthalene	0.018
2-Methylnaphthalene	0.018
1-Methylnaphthalene	0.017
Acenaphthylene	< 0.01
Acenaphthene	0.032
Fluorene	0.027
Phenanthrene	0.23
Anthracene	0.060
Fluoranthene	0.24
Pyrene	0.22
Benz(a)anthracene	0.11
Chrysene	0.12
Benzo(a)pyrene	0.12
Benzo(b)fluoranthene	0.12
Benzo(k)fluoranthene	0.047
Indeno(1,2,3-cd)pyrene	0.066
Dibenz(a,h)anthracene	0.016
Benzo(g,h,i)perylene	0.060

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-F-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-06
Date Analyzed:	01/06/21	Data File:	010609.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol	% Recovery: 52 59 64 67 78	Lower Limit: 32 46 24 46 25	Upper Limit: 100 107 127 108 127
Terphenyl-d14	78 78	50	$\begin{array}{c} 127 \\ 150 \end{array}$

1 cr pricity i a i i	10
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	0.0034
Pyrene	0.0027
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	0.0022
Benzo(b)fluoranthene	0.0026
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B-G-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054 01/06/21 Lab ID: 101021-07 Date Extracted: Date Analyzed: 01/06/21 Data File: 010610.DSoil Matrix: Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	52	32	100
Phenol-d6	61	46	107
Nitrobenzene-d5	64	24	127
2-Fluorobiphenyl	69	46	108
2,4,6-Tribromophenol	83	25	127
Terphenyl-d14	81	50	150

resplicity of t	O1
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	0.0023
Pyrene	0.0021
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	0.0021
Benzo(b)fluoranthene	0.0026
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0021

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-I-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054
Date Extracted:	01/06/21	Lab ID:	101021-08 1/5
Date Analyzed:	01/06/21	Data File:	010612.D
Matrix:	Soil	Instrument:	GCMS9
Units:	mg/kg (ppm) Dry Weight	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	61 d	32	100
Phenol-d6	69 d	46	107
Nitrobenzene-d5	73 d	24	127
2-Fluorobiphenyl	81 d	46	108
2,4,6-Tribromophenol	95 d	25	127
Terphenyl-d14	84 d	50	150

2-Fluorobiphenyl	81 d	46	1
2,4,6-Tribromophenol	95 d	25	1
Terphenyl-d14	84 d	50	1
	Concentration		
Compounds:	mg/kg (ppm)		
Naphthalene	0.022		
2-Methylnaphthalene	0.016		
1-Methylnaphthalene	0.012		
Acenaphthylene	< 0.01		
Acenaphthene	< 0.01		
Fluorene	< 0.01		
Phenanthrene	0.026		
Anthracene	< 0.01		
Fluoranthene	0.033		
Pyrene	0.029		
Benz(a)anthracene	0.012		
Chrysene	0.020		
Benzo(a)pyrene	0.020		
Benzo(b)fluoranthene	0.028		
Benzo(k)fluoranthene	< 0.01		
Indeno(1,2,3-cd)pyrene	0.026		
Dibenz(a,h)anthracene	< 0.01		
Benzo(g,h,i)perylene	0.033		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	SnoPac- Manson PO 150054
D + E + + 1	01/00/01	T 1 ID	01 000 10

Date Extracted: 01/06/21 Lab ID: 01-062 mb2 Date Analyzed: 01/06/21 Data File: 010604.DGCMS9Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	78 vo	15	61
Phenol-d6	85 vo	10	46
Nitrobenzene-d5	111	17	143
2-Fluorobiphenyl	96	50	150
2,4,6-Tribromophenol	97	50	150
Terphenyl-d14	102	50	150

< 0.002

< 0.002

< 0.002

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002

Benz(a)anthracene

Benzo(a)pyrene

Chrysene

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-A-2-11.5	Client:	Aspect Consulting, LLC
Date Received:	01/05/21	Project:	SnoPac- Manson PO 150054

Date Extracted: 01/06/21 Lab ID: 101021-01 Date Analyzed: 01/06/21 Data File: 010606.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 63 23 127

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-B-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-02 Date Analyzed: 01/06/21 Data File: 010610.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 69 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-B-3-11.5 Client: Aspect Consulting, LLC
Date Received: 01/05/21 Project: SnoPac- Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-03 Date Analyzed: 01/06/21 Data File: 010611.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 66 23 127

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-C-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-04 Date Analyzed: 01/06/21 Data File: 010612.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 67 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-D-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-05 Date Analyzed: 01/06/21 Data File: 010613.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery: Limit:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 62 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-F-2-11.5 Client: Aspect Consulting, LLC
Date Received: 01/05/21 Project: SnoPac- Manson PO 150054

Date Extracted: 01/06/21 Lab ID: 101021-06 Date Analyzed: 01/06/21 Data File: 010614.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 69 23 127

TCMX 69 23 127

Concentration

mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-G-2-11.5 Client: Aspect Consulting, LLC Date Received: 01/05/21 Project: SnoPac-Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-07 Date Analyzed: 01/06/21 Data File: 010615.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower % Recovery:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 23 81 Concentration

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-I-2-11.5 Client: Aspect Consulting, LLC
Date Received: 01/05/21 Project: SnoPac- Manson PO 150054

Lab ID: Date Extracted: 01/06/21 101021-08 Date Analyzed: 01/06/21 Data File: 010616.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 85 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.0072 Aroclor 1260 0.011 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac- Manson PO 150054

Date Extracted: 01/06/21 Lab ID: 01-068 mb Date Analyzed: 01/06/21 Data File: 010604.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 94 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 01/05/21

Project: SnoPac-Manson PO 150054, F&BI 101021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101021-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1	88	86	75-125	2
Copper	mg/kg (ppm)	50	5.38	92	90	75 - 125	2
Lead	mg/kg (ppm)	50	<1	95	94	75 - 125	1
Zinc	mg/kg (ppm)	50	11.3	91	88	75 - 125	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	91	80-120
Copper	mg/kg (ppm)	50	107	80-120
Lead	mg/kg (ppm)	50	105	80-120
Zinc	mg/kg (ppm)	50	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 01/05/21

Project: SnoPac-Manson PO 150054, F&BI 101021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101021-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	91	96	71 - 125	5

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	90	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 01/05/21

Project: SnoPac-Manson PO 150054, F&BI 101021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
Analyte	$\begin{array}{c} \text{Reporting} \\ \text{Units} \end{array}$	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	89	91	58-108	2
2-Methylnaphthalene	mg/kg (ppm)	0.83	93	94	70-130	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	93	94	70-130	1
Acenaphthylene	mg/kg (ppm)	0.83	97	99	70-130	2
Acenaphthene	mg/kg (ppm)	0.83	92	94	70-130	2
Fluorene	mg/kg (ppm)	0.83	96	99	70-130	3
Phenanthrene	mg/kg (ppm)	0.83	97	101	70-130	4
Anthracene	mg/kg (ppm)	0.83	96	99	70-130	3
Fluoranthene	mg/kg (ppm)	0.83	103	106	70-130	3
Pyrene	mg/kg (ppm)	0.83	89	91	70-130	2
Benz(a)anthracene	mg/kg (ppm)	0.83	99	101	70-130	2
Chrysene	mg/kg (ppm)	0.83	100	103	70-130	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	99	103	70-130	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	93	96	70-130	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	95	102	70-130	7
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	115	119	70-130	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	112	122	70-130	9
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	109	121	70-130	10

ENVIRONMENTAL CHEMISTS

Date of Report: 01/07/21 Date Received: 01/05/21

Project: SnoPac-Manson PO 150054, F&BI 101021

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101021-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	< 0.002	74	70	29-125	6
Aroclor 1260	mg/kg (ppm)	0.083	< 0.002	79	74	25 - 137	7

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.083	93	55-137
Aroclor 1260	mg/kg (ppm)	0.083	101	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY

ME 01-05-21

Seattle, WA 98119-2029 Ph. (206) 286-8282 18-8- 8-C-2-115 3012 16 Avenue West Priedman & Bruya, Inc. Q 8-6-2-11 B-B-2-11.5 S Phone 612-132-7343 Email barce 1@ aspect consulting compecting RLs? City, State, ZIP Seattle, WA 98104 Address 710 2nd Ave Sie 550 Company Aspect Consulting Report To BYERUN Green/Adum Enithm ス・オ・コーニン R- D-2-11.5 8-8-3-11.5 Ì A-2-11.5 1 Sample ID Z-11.S Relinquished by: Relinquished by: Received by: Received by: 90 $0 \times$ L, 05 94 02 01 11-18 11-121 (III dis.) SIGNATURE RACIONA 115/21 Sampled Ł 2081 1253 1245 212 1630 CPC OPC Sampled 1130 SAMPLERS (signature) Time REMARKS PROJECT NAME Some Pac - Namson 5 Sample Type 人でるこ C) DIE PRINT NAME r Yes NWTPH-Dx Commo! Z NWTPH-Gx BTEX EPA 8021 12002H NWTPH-HCID INVOICE TO ANALYSES REQUESTED も VOCs EPA 8260 P0# >PAHs EPA 8270 PORCH FORCE Samples received at 3 PCBs EPA 8082 COMPANY \times Wetals* □ Archive samples X RUSH 2-Day per 36- 1/5/21 Default: Dispose after 30 days Rush charges authorized by: **E Standard turnaround TURNAROUND TIME SAMPLE DISPOSAL * As, Cu, Pb, DATE ज Hg, 70 Notes TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 13, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 12, 2021 from the SnoPac PO 150054, F&BI 101127 project. There are 40 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 12, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac PO 150054, F&BI 101127 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101127 -01	B-L-1-4
101127 -02	SW-L-1-8
101127 -03	B-K-1-5
101127 -04	SW-K-1-5
101127 -05	B-J-1-4.5
101127 -06	SW-J-1-8
101127 -07	B-I-1-4.5
101127 -08	SW-I-1-8

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Date Analyzed: 01/12/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
B-I-1-4.5 101127-07	<5	100
SW-I-1-8 101127-08	<5	80
Method Blank	<5	94

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Date Analyzed: 01/12/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 56-165)
B-I-1-4.5 101127-07	<50	<250	91
SW-I-1-8 101127-08	<50	<250	88
Method Blank	<50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-L-1-4 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 5.13

 Copper
 23.7

 Lead
 3.27

 Zinc
 26.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-L-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 5.59

 Copper
 18.1

 Lead
 3.45

 Zinc
 50.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-K-1-5	Client:	Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

34.3

Analyte: Concentration mg/kg (ppm)

Arsenic 10.3
Copper 24.3
Lead 7.35

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-K-1-5	Client:	Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-04

 Date Analyzed:
 01/12/21
 Data File:
 101127-04.087

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.16

 Copper
 6.29

 Lead
 <1</td>

 Zinc
 25.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 19.5

 Copper
 51.9

 Lead
 26.0

 Zinc
 81.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-J-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-06

 Date Analyzed:
 01/12/21
 Data File:
 101127-06.047

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 1.12 Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-J-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 Copper
 6.78

 Zinc
 21.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-I-1-4.5 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-07 x2

 Date Analyzed:
 01/12/21
 Data File:
 101127-07 x2.083

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 4.92 Copper 16.9 Lead 3.07 Zinc 20.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-I-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-08

 Date Analyzed:
 01/12/21
 Data File:
 101127-08.049

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 1.05 Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-I-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 $\begin{array}{c} \text{Copper} & 6.54 \\ \text{Zinc} & 20.6 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: SnoPac PO 150054, F&BI 101127

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Date Analyzed: 01/12/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Total Mercury
B-L-1-4 101127-01	0.036
SW-L-1-8 101127-02	0.041
B-K-1-5 101127-03	0.035
SW-K-1-5 101127-04	<0.01
B-J-1-4.5 101127-05	0.12
SW-J-1-8 101127-06	<0.01
B-I-1-4.5 101127-07	0.028
SW-I-1-8 101127-08	<0.01
Method Blank i1-15 MB2	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-L-1-4	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127
Date Extracted: 01/12/21 Lab ID: 101127-01

Date Extracted: 01/12/21 Lab ID: 101127-01
Date Analyzed: 01/12/21 Data File: 011206.D
Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	60	36	114
Phenol-d6	69	47	116
Nitrobenzene-d5	70	38	117
2-Fluorobiphenyl	72	50	150
2,4,6-Tribromophenol	73	25	187
Terphenyl-d14	83	50	150

Terphenyl-d14 Concentration Compounds: mg/kg (ppm) Naphthalene 0.0071 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene 0.0029 < 0.002 Anthracene Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002

Chrysene

< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-L-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

 Date Received:
 01/12/21
 Project:
 SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-02

 Date Analyzed:
 01/12/21
 Data File:
 011207.D

Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	70	36	114
Phenol-d6	79	47	116
Nitrobenzene-d5	87	38	117
2-Fluorobiphenyl	78	50	150
2,4,6-Tribromophenol	88	25	187
Terphenyl-d14	93	50	150

Compounds:	mg/kg (ppm)
Naphthalene	0.010
2-Methylnaphthalene	0.0075
1-Methylnaphthalene	0.011
Acenaphthylene	< 0.002
Acenaphthene	0.036
Fluorene	0.018
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	0.064
Pyrene	0.11
Benz(a)anthracene	0.0084
Chrysene	0.0058
Benzo(a)pyrene	0.0048
Benzo(b)fluoranthene	0.011
Benzo(k)fluoranthene	0.0041
Indeno(1,2,3-cd)pyrene	0.0059
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0058
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-K-1-5	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127
Date Extracted: 01/12/21 Lab ID: 101127-03

Date Extracted: 01/12/21 Lab ID: 101127-03
Date Analyzed: 01/12/21 Data File: 011208.D
Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	61	36	114
Phenol-d6	69	47	116
Nitrobenzene-d5	69	38	117
2-Fluorobiphenyl	69	50	150
2,4,6-Tribromophenol	80	25	187
Terphenyl-d14	80	50	150

0.015

0.014

0.018

Concentration Compounds: mg/kg (ppm) Naphthalene 0.11 2-Methylnaphthalene 0.029 1-Methylnaphthalene 0.019 Acenaphthylene < 0.002 Acenaphthene 0.036 Fluorene 0.024Phenanthrene 0.071Anthracene 0.015Fluoranthene 0.040 Pyrene 0.034Benz(a)anthracene 0.011

Chrysene

Benzo(a)pyrene

Benzo(b)fluoranthene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-K-1-5	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127
Date Extracted: 01/12/21 Lab ID: 101127-04

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	32	100
Phenol-d6	67	46	107
Nitrobenzene-d5	72	24	127
2-Fluorobiphenyl	73	46	108
2,4,6-Tribromophenol	75	25	127
Terphenyl-d14	76	50	150

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-J-1-4.5	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127
Date Extracted: 01/12/21 Lab ID: 101127-05

Date Analyzed: 01/12/21 Data File: 011210.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	32	100
Phenol-d6	69	46	107
Nitrobenzene-d5	78	24	127
2-Fluorobiphenyl	70	46	108
2,4,6-Tribromophenol	87	25	127
Terphenyl-d14	81	50	150

0.051

Terphenyl-d14 Concentration Compounds: mg/kg (ppm) Naphthalene 0.18 2-Methylnaphthalene 0.058 1-Methylnaphthalene 0.090 Acenaphthylene 0.0045Acenaphthene 0.16 Fluorene 0.12 Phenanthrene 0.43 Anthracene 0.096

Fluoranthene 0.30 Pyrene 0.26 Benz(a)anthracene 0.11 Chrysene 0.14 Benzo(a)pyrene 0.11 Benzo(b)fluoranthene 0.13 Benzo(k)fluoranthene 0.046 Indeno(1,2,3-cd)pyrene 0.055Dibenz(a,h)anthracene 0.014

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-J-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

 Date Received:
 01/12/21
 Project:
 SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-06

Date Extracted: 01/12/21 Lab ID: 101127-06
Date Analyzed: 01/12/21 Data File: 011208.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	56	32	100
Phenol-d6	61	46	107
Nitrobenzene-d5	68	24	127
2-Fluorobiphenyl	66	46	108
2,4,6-Tribromophenol	74	25	127
Terphenyl-d14	76	50	150

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-I-1-4.5	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

 Date Received:
 01/12/21
 Project:
 SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-07

Date Extracted: 01/12/21 Lab ID: 101127-07
Date Analyzed: 01/12/21 Data File: 011209.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	65	32	100
Phenol-d6	71	46	107
Nitrobenzene-d5	82	24	127
2-Fluorobiphenyl	78	46	108
2,4,6-Tribromophenol	90	25	127
Terphenyl-d14	82	50	150

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-I-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

 Date Received:
 01/12/21
 Project:
 SnoPac PO 150054, F&BI 101127

 Date Extracted:
 01/12/21
 Lab ID:
 101127-08

Date Analyzed: 01/12/21 Lab ID: 101127-08
Date Analyzed: 01/12/21 Data File: 011209.D
Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

	Lower	Upper
% Recovery:	Limit:	Limit:
57	36	114
65	47	116
62	38	117
68	50	150
80	25	187
76	50	150
	57 65 62 68 80	% Recovery: Limit: 57 36 65 47 62 38 68 50 80 25

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101127

Lab ID: Date Extracted: 01/12/21 01-082 mb2Date Analyzed: 01/12/21 Data File: $011206.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	71	32	100
Phenol-d6	77	46	107
Nitrobenzene-d5	89	24	127
2-Fluorobiphenyl	88	46	108
2,4,6-Tribromophenol	83	25	127
Terphenyl-d14	85	50	150

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-L-1-4 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Lab ID: 101127-01 Date Analyzed: 01/12/21 Data File: 011210.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 30 23

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-L-1-8	Client:	Aspect Consulting, LLC

Date Received: 01/12/21Project: SnoPac PO 150054, F&BI 101127

Lab ID: Date Extracted: 01/12/21 101127-02 Date Analyzed: 01/12/21 Data File: 011211.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 23 Concentration

Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-K-1-5	Client:	Aspect Consulting, LLC

Date Received: 01/12/21Project: SnoPac PO 150054, F&BI 101127

Lab ID: Date Extracted: 01/12/21 101127-03 Date Analyzed: 01/12/21 Data File: 011212.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 26 23

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.011 Aroclor 1260 0.0098 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-K-1-5	Client:	Aspect Consulting, LLC

Date Received: 01/12/21Project: SnoPac PO 150054, F&BI 101127

Lab ID: Date Extracted: 01/12/21 101127-04 011213.D Date Analyzed: 01/12/21 Data File: Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 41

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-J-1-4.5 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Lab ID: 101127-05 Date Analyzed: 01/12/21 Data File: 011204.DGC9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

Surrogates: % Recovery: Limit: Limit: TCMX 25 23 120

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.002 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.080 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

Note: A low level of Aroclor 1260 may be present in the sample but cannot be quantified due to the level of Aroclor 1254 present in the sample.

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-J-1-8 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Lab ID: 101127-06 Date Analyzed: 01/12/21 Data File: $011205.\mathrm{D}$ Matrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 32 120 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-I-1-4.5 Client: Aspect Consulting, LLC

Date Received: 01/12/21 Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Lab ID: 101127-07 Date Analyzed: 01/12/21 Data File: 011206.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 30 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-I-1-8	Client:	Aspect Consulting, LLC

Date Received: 01/12/21Project: SnoPac PO 150054, F&BI 101127

Lab ID: Date Extracted: 01/12/21 101127-08 Date Analyzed: 01/12/21 Data File: 011207.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 120 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101127

Date Extracted: 01/12/21 Lab ID: 01-86 mb2 Date Analyzed: 01/12/21 Data File: 011209.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 36 23

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 101120-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	< 5	<5	nm

			I GICGIII		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	110	61-153	-

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 101110-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	29,000	18 b	92 b	64-133	135 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	100	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101101-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	5.15	144 b	82 b	75-125	55 b
Copper	mg/kg (ppm)	50	136	71 b	56 b	75 - 125	$24 \mathrm{\ b}$
Lead	mg/kg (ppm)	50	125	$126 \mathrm{b}$	98 b	75 - 125	$25 \mathrm{\ b}$
Zinc	mg/kg (ppm)	50	182	$428 \mathrm{\ b}$	87 b	75 - 125	132 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	95	80-120
Copper	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	50	101	80-120
Zinc	mg/kg (ppm)	50	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101101-01 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	111	113	71-125	2

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	5	113	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101102-01 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	0.056	73	76	50-150	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	84	83	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	84	50-150	1
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	92	91	50-150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	86	85	50-150	1
Fluorene	mg/kg (ppm)	0.83	< 0.01	86	88	50-150	2
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	89	77	50-150	14
Anthracene	mg/kg (ppm)	0.83	< 0.01	91	90	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	91	77	50-150	17
Pyrene	mg/kg (ppm)	0.83	< 0.01	82	69	50-150	17
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	98	92	50-150	6
Chrysene	mg/kg (ppm)	0.83	< 0.01	94	87	50-150	8
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	100	93	50-150	7
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	93	93	50-150	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	99	94	50-150	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	106	92	50-150	14
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	106	96	50-150	10
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	96	83	50-150	15
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.25	0 ip	0 ip	50-150	nm

Laboratory Code. Laboratory Control Sample 1/5								
Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria				
Naphthalene	mg/kg (ppm)	0.83	94	58-108				
2-Methylnaphthalene	mg/kg (ppm)	0.83	92	70-130				
1-Methylnaphthalene	mg/kg (ppm)	0.83	92	70-130				
Acenaphthylene	mg/kg (ppm)	0.83	103	70-130				
Acenaphthene	mg/kg (ppm)	0.83	97	70-130				
Fluorene	mg/kg (ppm)	0.83	99	70-130				
Phenanthrene	mg/kg (ppm)	0.83	102	70-130				
Anthracene	mg/kg (ppm)	0.83	103	70-130				
Fluoranthene	mg/kg (ppm)	0.83	107	70-130				
Pyrene	mg/kg (ppm)	0.83	100	70-130				
Benz(a)anthracene	mg/kg (ppm)	0.83	105	70-130				
Chrysene	mg/kg (ppm)	0.83	108	70-130				
Benzo(a)pyrene	mg/kg (ppm)	0.83	107	70-130				
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	103	70-130				
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	106	70-130				
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	110	70-130				
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	112	70-130				
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	113	70-130				
Pentachlorophenol	mg/kg (ppm)	0.83	111	64-134				
i entacinorophenoi	mg/kg (ppm)	0.65	111	04-154				

ENVIRONMENTAL CHEMISTS

Date of Report: 01/13/21 Date Received: 01/12/21

Project: SnoPac PO 150054, F&BI 101127

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101101-01 1/6 (Duplicate)

·	Reporting Units	Sample Result	Duplicate Result	RPD
Analyte		(Wet Wt)	(Wet Wt)	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.02	< 0.02	nm
Aroclor 1260	mg/kg (ppm)	0.24	0.26	8

Laboratory Code: 101101-01 ms 1/6 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	87	29-125
Aroclor 1260	mg/kg (ppm)	0.25	0.24	171 b	25 - 137

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	96	55-137
Aroclor 1260	mg/kg (ppm)	0.25	110	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. City, State, ZIP Seath Sw-1-1-0 Phone 6/12327343 Address no 2 he Report To B. Gran Company Aspect B-K-1-5 Sw - K - 1 - S Sw-I-1-8 B-I-1-4.5 Sw-J-1-8 B-J-1-4.5 B-1-1-4 Sample ID Email Squeet agriffin @ A. の、たと、 Received by: Relinquiched by: Relinquished by Ste 550 00 20 20 R 200 67A-F 3 012-8 Lab ID SIGNATURE heise Sampled 2310 Shrz 2025 2000 2300 2250 2015 Sampled 5681 Time SAMPLERS (signature) Project specific RLs? - Kes/ , REMIARKS PROJECT NAME Sno Pac Sample James Broxa Type S ひてるとな # of Jars PRINT NAME ~ 6 S 1 ب 6 NWTPH-Dx \sim うろう NWTPH-Gx BTEX EPA 8021 NWTPH-HCID 150054 INVOICE TO ANALYSES REQUESTED A VOCs EPA 8260 P0# PAHs EPA 8270 アチナ PCBs EPA 8082 Metals ** COMPANY Samples received at PCP ☐ Archive samples Standard turnaround Rush charges authorized by: Default: Dispose after 30 days TURNAROUND TIME SAMPLE DISPOSAL Vall 8-2-1-8 * As, Ca, Pb, Hg, As 25/ 25x-8 DATE 12/20 B-7-1-

3° C

0320

S. 10 TIME

弘

SAMPLE CHAIN OF CUSTODY ME

01-12-21

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 14, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 14, 2021 from the SnoPac 150054, F&BI 101171 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 14, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac 150054, F&BI 101171 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101171 -01	B-A-1-5
101171 -02	SW-A-1-8
101171 -03	B-B-1-5
101171 -04	SW-B-1-8
101171 -05	B-J-1-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-A-1-5	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
D (D () 1	01/1/101	T 1 ID	101171 01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 7.57

 Copper
 17.4

 Lead
 2.69

 Zinc
 15.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-A-1-8 Client: Aspect Consulting, LLC
Date Received: 01/14/21 Project: SnoPac 150054, F&BI 101171
Data Ferturated: 01/14/91 Lab ID: 101171 02

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 1.11

 Copper
 6.45

 Lead
 <1</td>

 Zinc
 48.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-B-1-5	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
T . T		T 1 TT	

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5.00

 Copper
 17.5

 Lead
 2.65

 Zinc
 20.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-B-1-8	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Data Errtmantadi	01/14/91	Lab ID:	101171 04

 Date Extracted:
 01/14/21
 Lab ID:
 101171-04

 Date Analyzed:
 01/14/21
 Data File:
 101171-04.038

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.45

 Copper
 7.26

 Lead
 <1</td>

 Zinc
 29.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-J-1-4	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Data Extracted:	01/14/91	Lah ID:	101171-05

 Date Extracted:
 01/14/21
 Lab ID:
 101171-05

 Date Analyzed:
 01/14/21
 Data File:
 101171-05.041

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 3.24

 Copper
 22.8

 Lead
 3.22

 Zinc
 20.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac 150054, F&BI 101171

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Date Analyzed: 01/14/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
B-A-1-5 101171-01	0.032
SW-A-1-8 101171-02	0.016
B-B-1-5 101171-03	0.026
SW-B-1-8 101171-04	0.010
B-J-1-4 101171-05	0.033
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-A-1-5	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Date Extracted:	01/14/21	Lab ID:	101171-01
Date Analyzed:	01/14/21	Data File:	011407.D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	65	32	100
Phenol-d6	70	46	107
Nitrobenzene-d5	85	24	127
2-Fluorobiphenyl	79	46	108
2,4,6-Tribromophenol	96	25	127
Terphenyl-d14	86	50	150

86
Concentration mg/kg (ppm)
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

mg/kg (ppm) Dry Weight

Units:

Client Sample ID:	SW-A-1-8	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Date Extracted:	01/14/21	Lab ID:	101171-02
Date Analyzed:	01/14/21	Data File:	011408.D
Matrix:	Soil	Instrument:	GCMS9

Operator:

VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	55	32	100
Phenol-d6	59	46	107
Nitrobenzene-d5	67	24	127

Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	55	32	100
Phenol-d6	59	46	107
Nitrobenzene-d5	67	24	127
2-Fluorobiphenyl	65	46	108
2,4,6-Tribromophenol	90	25	127
Terphenyl-d14	82	50	150
-			

Terphenyi-u14	02
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-B-1-5	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Date Extracted:	01/14/21	Lab ID:	101171-03
Data Analyzad	01/14/91	Data File:	011400 D

Date Analyzed: 01/14/21 Data File: 011409.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: 2-Fluorophenol	% Recovery: 61	Lower Limit: 32	Upper Limit: 100
Phenol-d6	68	46	107
Nitrobenzene-d5	78	24	127
2-Fluorobiphenyl	75	46	108
2,4,6-Tribromophenol	97	25	127
Terphenyl-d14	84	50	150

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002 Benzo(g,h,i)perylene < 0.002 Pentachlorophenol < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

mg/kg (ppm) Dry Weight

Units:

Client Sample ID:	SW-B-1-8	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Date Extracted:	01/14/21	Lab ID:	101171-04
Date Analyzed:	01/14/21	Data File:	011410.D
Matrix:	Soil	Instrument:	GCMS9

Operator:

VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	48	32	100
Phenol-d6	52	46	107
Nitrobenzene-d5	57	24	127

Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	48	32	100
Phenol-d6	52	46	107
Nitrobenzene-d5	57	24	127
2-Fluorobiphenyl	56	46	108
2,4,6-Tribromophenol	81	25	127
Terphenyl-d14	79	50	150

1 ci piletiyi-d14	10
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-J-1-4	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171
Date Extracted:	01/14/21	Lab ID:	101171-05
D - 4 - A 1 1.	01/14/01	D-4- E1	011411 D

Date Analyzed: 01/14/21 Data File: 011411.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	59	32	100
Phenol-d6	65	46	107
Nitrobenzene-d5	73	24	127
2-Fluorobiphenyl	72	46	108
2,4,6-Tribromophenol	89	25	127
Terphenyl-d14	79	50	150

Terpnenyl-d14	79
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	SnoPac 150054, F&BI 101171
D (D () 1	01/1/101	T 1 TD	01 100 1

Date Extracted: 01/14/21 Lab ID: 01-108 mb Date Analyzed: 01/14/21 Data File: 011406.D GCMS9Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	75	32	100
Phenol-d6	79	46	107
Nitrobenzene-d5	93	24	127
2-Fluorobiphenyl	90	46	108
2,4,6-Tribromophenol	93	25	127
Terphenyl-d14	95	50	150

< 0.002

< 0.05

Terphenyl-d14 95 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 < 0.002 Anthracene Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002

Benzo(g,h,i)perylene

Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-A-1-5 Client: Aspect Consulting, LLC Date Received: 01/14/21 Project: SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 101171-01 Date Analyzed: 01/14/21 Data File: $011407.\mathrm{D}$ Matrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 94

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-A-1-8 Client: Aspect Consulting, LLC
Date Received: 01/14/21 Project: SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 101171-02 Date Analyzed: 01/14/21 Data File: 011405.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 76 23 127

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-B-1-5 Client: Aspect Consulting, LLC Date Received: 01/14/21 Project: SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 101171-03 Date Analyzed: 01/14/21 Data File: 011408.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 71

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-B-1-8	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 101171-04 Date Analyzed: 01/14/21 Data File: 011406.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower % Recovery: Limit:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 80 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-J-1-4	Client:	Aspect Consulting, LLC
Date Received:	01/14/21	Project:	SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 101171-05 Date Analyzed: 01/14/21 Data File: 011409.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Lower Lower Limit: Limit: TCMX 69 23 127

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Date Received: Not Applicable Project: SnoPac 150054, F&BI 101171

Date Extracted: 01/14/21 Lab ID: 01-102 mb2Date Analyzed: 01/14/21 Data File: 011404.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 125 23 Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221

Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101136-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	101	101	75-125	0
Copper	mg/kg (ppm)	50	<25	94	101	75 - 125	7
Lead	mg/kg (ppm)	50	<5	95	100	75 - 125	5
Zinc	mg/kg (ppm)	50	40.9	90	103	75 - 125	13

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	80-120
Copper	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	50	101	80-120
Zinc	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101136-02 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	94	104	71-125	10

Laboratory Code: Laboratory Control Sample 1/20

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	5	85	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101171-04 (Matrix Spike)

-			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.002	49 vo	54	50-150	10
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.002	54	57	50-150	5
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.002	54	57	50-150	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.002	60	60	50-150	0
Acenaphthene	mg/kg (ppm)	0.83	< 0.002	57	57	50-150	0
Fluorene	mg/kg (ppm)	0.83	< 0.002	63	62	50-150	2
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.05	83	67	50-150	21 vo
Phenanthrene	mg/kg (ppm)	0.83	< 0.002	66	64	50-150	3
Anthracene	mg/kg (ppm)	0.83	< 0.002	65	64	50-150	2
Fluoranthene	mg/kg (ppm)	0.83	< 0.002	75	73	50-150	3
Pyrene	mg/kg (ppm)	0.83	< 0.002	68	65	50-150	5
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.002	75	69	50-150	8
Chrysene	mg/kg (ppm)	0.83	< 0.002	75	70	50-150	7
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.002	78	73	50-150	7
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.002	80	76	50-150	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.002	78	76	50-150	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.002	69	66	50-150	4
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.002	69	65	50-150	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.002	63	59	50-150	7

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	79	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	81	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.83	81	70-130
Acenaphthylene	mg/kg (ppm)	0.83	91	70-130
Acenaphthene	mg/kg (ppm)	0.83	85	70-130
Fluorene	mg/kg (ppm)	0.83	88	70-130
Pentachlorophenol	mg/kg (ppm)	0.83	114	64-134
Phenanthrene	mg/kg (ppm)	0.83	92	70-130
Anthracene	mg/kg (ppm)	0.83	90	70-130
Fluoranthene	mg/kg (ppm)	0.83	97	70-130
Pyrene	mg/kg (ppm)	0.83	90	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	94	70-130
Chrysene	mg/kg (ppm)	0.83	96	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	96	70-130
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	95	70-130
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	97	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	100	70-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	98	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/14/21 Date Received: 01/14/21

Project: SnoPac 150054, F&BI 101171

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101148-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.83	< 0.002	90	100	29-125	11
Aroclor 1260	mg/kg (ppm)	0.83	< 0.002	86	101	25 - 137	16

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.83	101	55-137
Aroclor 1260	mg/kg (ppm)	0.83	108	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. SW-8-1-8 SW-4-1-8 8-A-1-5 8-13-1-5 Phone 612 232 7 345 Email agriffing aspect carbuiling and Project specific RLs? - (Yes) City, State, ZIP Seathe, WA-9810-Address 710 Wd AVE SH SSO Company Aspect Report To B. Green 8-1-1-4 Sample ID Relinquished by: Received by: Relinquished by Received by: A. QUITAIN 20 00 8.4.50 02Aib 0 Lab ID SIGNATURE 1113/21 Sampled Date \leftarrow 2330 とと 1200 2210 2100 SAMPLE CHAIN OF CUSTODY Sampled Time REMARKS PROJECT NAME SAMPLERS (signature) orly one Sample Type Mines Broxs J Puchel Cornwell P PRINT NAME # of Jars N NWTPH-Dx Machil C NWTPH-Gx **FB0081** NWTPH-HCID INVOICE TO ANALYSES REQUESTED イリ VOCs EPA 8260 Samplds received at PO# となが PAHs EPA 8270 TA B \times PCBs EPA 8082 Samples received at COMPANY Metals* Standard turnaround

KRUSH HELOM I duy

Rush charges authorized by: Default: Dispose after 30 days ☐ Archive samples Page # TURNAROUND TIME SAMPLE DISPOSAL T å É *ならる DATE あんど Notes 0030 OWIO TIME BI3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 15, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 13, 2021 from the SnoPac PO 150054, F&BI 101148 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0115R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 13, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac PO 150054, F&BI 101148 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101148 -01	B-H-1-6
101148 -02	SW-H-1-9
101148 -03	B-G-1-6
101148 -04	SW-G-1-8
101148 -05	B-F-1-5
101148 -06	SW-F-1-8
101148 -07	B-E-1-5.5
101148 -08	SW-E-1-8
101148 -09	SW-G-1-7
101148 -10	SW-D-1-8
101148 -11	B-D-1-6
101148 -12	B-C-1-6
101148 -13	SW-C-1-9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-H-1-6	Client:	Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-01

 Date Analyzed:
 01/13/21
 Data File:
 101148-01.036

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 4.69

 Copper
 27.0

 Lead
 3.93

 Zinc
 22.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-H-1-9	Client:	Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-02

 Date Analyzed:
 01/13/21
 Data File:
 101148-02.037

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.17

 Copper
 6.77

 Lead
 2.42

 Zinc
 19.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-G-1-6 Clie	ent: Aspect Consulting, LL	C
-------------------------	----------------------------	---

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 3.66

 Copper
 18.2

 Lead
 3.76

 Zinc
 21.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-F-1-5	Client:	Aspect Consulting, LLC
------------	---------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-05

 Date Analyzed:
 01/13/21
 Data File:
 101148-05.041

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.33

 Copper
 24.7

 Lead
 3.57

 Zinc
 19.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-F-1-8	Client:	Aspect Consulting, LLC
---------------------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-06

 Date Analyzed:
 01/13/21
 Data File:
 101148-06.042

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.23

 Copper
 20.7

 Lead
 1.95

 Zinc
 73.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-E-1-5.5 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-07

 Date Analyzed:
 01/13/21
 Data File:
 101148-07.043

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 4.58

 Copper
 26.1

 Lead
 3.98

 Zinc
 20.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-E-1-8	Client:	Aspect Consulting, LLC
------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-08

 Date Analyzed:
 01/13/21
 Data File:
 101148-08.044

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.33

 Copper
 7.45

 Lead
 1.12

 Zinc
 17.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	SW-G-1-7	Client:	Aspect Consulting, LLC
------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-09

 Date Analyzed:
 01/13/21
 Data File:
 101148-09.045

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic 1.14
Copper 6.39
Lead 1.38
Zinc 44.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-10

 Date Analyzed:
 01/13/21
 Data File:
 101148-10.046

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.29

 Copper
 6.07

 Lead
 1.11

 Zinc
 14.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-D-1-6 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-11

 Date Analyzed:
 01/13/21
 Data File:
 101148-11.047

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \; (ppm) \end{array}$

 Arsenic
 7.05

 Copper
 19.9

 Lead
 3.42

 Zinc
 27.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-C-1-6 Clie	ent: Aspect Consulting, LI	ъС
-------------------------	----------------------------	----

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 5.23

 Copper
 31.2

 Lead
 4.62

 Zinc
 23.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

 Date Extracted:
 01/13/21
 Lab ID:
 101148-13

 Date Analyzed:
 01/13/21
 Data File:
 101148-13.049

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.40

 Copper
 5.17

 Lead
 1.73

 Zinc
 21.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101148

01/13/21 Lab ID: Date Extracted: I1-20 mb Date Analyzed: 01/13/21 Data File: I1-20 mb.034 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: mg/kg (ppm)

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Date Analyzed: 01/13/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
B-H-1-6 101148-01	0.040
SW-H-1-9 101148-02	0.018
B-G-1-6 101148-03	0.029
B-F-1-5 101148-05	0.035
SW-F-1-8 101148-06	0.028
B-E-1-5.5 101148-07	0.046
SW-E-1-8 101148-08	0.015
SW-G-1-7 101148-09	0.010
SW-D-1-8 101148-10	<0.01
B-D-1-6 101148-11	0.035
B-C-1-6 101148-12	0.042

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Date Analyzed: 01/13/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
SW-C-1-9 101148-13	<0.01
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-H-1-6	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 101148-01 01/13/21 Date Analyzed: 01/13/21 Data File: $011305.\mathrm{D}$ Matrix: Instrument: GCMS8 Soil mg/kg (ppm) Dry Weight Units: VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	73	36	114
Phenol-d6	83	47	116
Nitrobenzene-d5	81	38	117
2-Fluorobiphenyl	87	50	150
2,4,6-Tribromophenol	85	25	187
Terphenyl-d14	87	50	150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-H-1-9	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-02 Date Analyzed: 01/13/21 Data File: 011306.D Matrix: GCMS8 Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	45	36	114
Phenol-d6	51	47	116
Nitrobenzene-d5	49	38	117
2-Fluorobiphenyl	52	50	150
2,4,6-Tribromophenol	69	25	187
Terphenyl-d14	78	50	150

$\begin{array}{c} \text{Concentration} \\ \text{Compounds:} & \text{mg/kg (ppm)} \\ \text{Naphthalene} & <0.002 \\ \text{2-Methylnaphthalene} & <0.002 \\ \end{array}$

2-Methylnaphthalene 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002 Benzo(g,h,i)perylene < 0.002 Pentachlorophenol < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-G-1-6	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-03

Date Extracted: 01/13/21 Lab ID: 101148-03
Date Analyzed: 01/13/21 Data File: 011304.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	69	32	100
Phenol-d6	75	46	107
Nitrobenzene-d5	97	24	127
2-Fluorobiphenyl	84	46	108
2,4,6-Tribromophenol	93	25	127
Terphenyl-d14	83	50	150

Concentration mg/kg (ppm) Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 40.002 1-Methylnaphthalene 40.002 Acenaphthylene 40.002 Acenaphthene 40.002 Fluorene 40.002 Phononthylone 40.002

Acenaphthene Fluorene Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002 Benzo(g,h,i)perylene < 0.002 Pentachlorophenol < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-F-1-5	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-05

Date Extracted: 01/13/21 Lab 1D: 101148-05
Date Analyzed: 01/13/21 Data File: 011305.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	75	32	100
Phenol-d6	80	46	107
Nitrobenzene-d5	95	24	127
2-Fluorobiphenyl	87	46	108
2,4,6-Tribromophenol	96	25	127
Terphenyl-d14	87	50	150

< 0.05

Concentration mg/kg (ppm) Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Concentration mg/kg (ppm) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Fluorene Phenanthrene < 0.002 < 0.002 Anthracene Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002 Benzo(g,h,i)perylene < 0.002

Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-F-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-06

Date Extracted. 01/13/21 Eab ID. 101148-06
Date Analyzed: 01/13/21 Data File: 011306.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	32	100
Phenol-d6	66	46	107
Nitrobenzene-d5	75	24	127
2-Fluorobiphenyl	76	46	108
2,4,6-Tribromophenol	89	25	127
Terphenyl-d14	82	50	150

0.025

< 0.05

Concentration Compounds: mg/kg (ppm) Naphthalene 0.0023 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene 0.0032 Fluorene 0.0046 Phenanthrene 0.0088 Anthracene 0.0080 Fluoranthene 0.064 Pyrene 0.046 Benz(a)anthracene 0.024 Chrysene 0.070 Benzo(a)pyrene 0.038 Benzo(b)fluoranthene 0.050Benzo(k)fluoranthene 0.022 Indeno(1,2,3-cd)pyrene 0.029 Dibenz(a,h)anthracene 0.0081

Benzo(g,h,i)perylene

Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-E-1-5.5	Client:	Aspect Consulting, LLC
Date Received:	01/13/21	Project:	SnoPac PO 150054, F&BI 101148
Date Extracted:	01/13/21	Lab ID:	101148-07
Date Analyzed:	01/13/21	Data File:	011307.D
Matrix:	Soil	Instrument:	GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	50	32	100
Phenol-d6	63	46	107
Nitrobenzene-d5	72	24	127
2-Fluorobiphenyl	76	46	108
2,4,6-Tribromophenol	91	25	127
Terphenyl-d14	79	50	150

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.004
2-Methylnaphthalene	< 0.004
1-Methylnaphthalene	< 0.004
Acenaphthylene	< 0.004
Acenaphthene	< 0.004
Fluorene	< 0.004
Phenanthrene	< 0.004
Anthracene	< 0.004
Fluoranthene	< 0.004
Pyrene	< 0.004
Benz(a)anthracene	< 0.004
Chrysene	< 0.004
Benzo(a)pyrene	< 0.004
Benzo(b)fluoranthene	< 0.004
Benzo(k)fluoranthene	< 0.004
Indeno(1,2,3-cd)pyrene	< 0.004
Dibenz(a,h)anthracene	< 0.004
Benzo(g,h,i)perylene	< 0.004
Pentachlorophenol	< 0.1

Note: The reporting limits were raised due to high moisture content in sample.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-E-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 101148-08

Date Extracted: 01/13/21 Lab ID: 101148-08
Date Analyzed: 01/13/21 Data File: 011308.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	38	32	100
Phenol-d6	42 vo	46	107
Nitrobenzene-d5	47	24	127
2-Fluorobiphenyl	50	46	108
2,4,6-Tribromophenol	77	25	127
Terphenyl-d14	75	50	150

< 0.002

<0.002 <0.002

< 0.05

Terphenyl-d14 75Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 < 0.002 Anthracene Fluoranthene < 0.002 Pyrene < 0.002 Benz(a)anthracene < 0.002 Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-G-1-7	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-09

Date Extracted: 01/13/21 Lab ID: 101148-09
Date Analyzed: 01/13/21 Data File: 011309.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	40	32	100
Phenol-d6	45 vo	46	107
Nitrobenzene-d5	50	24	127
2-Fluorobiphenyl	54	46	108
2,4,6-Tribromophenol	80	25	127
Terphenyl-d14	77	50	150

Concentration Compounds: mg/kg (ppm)

Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-D-1-8	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-10

Date Extracted: 01/13/21 Lab ID: 101148-10
Date Analyzed: 01/13/21 Data File: 011310.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	30 vo	32	100
Phenol-d6	41 vo	46	107
Nitrobenzene-d5	44	24	127
2-Fluorobiphenyl	51	46	108
2,4,6-Tribromophenol	79	25	127
Terphenyl-d14	80	50	150

Concentration

Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-D-1-6	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-11

Date Extracted:01/13/21Lab ID:101148-11Date Analyzed:01/13/21Data File:011308.DMatrix:SoilInstrument:GCMS8Units:mg/kg (ppm) Dry WeightOperator:VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	36	114
Phenol-d6	58	47	116
Nitrobenzene-d5	5 3	38	117
2-Fluorobiphenyl	65	50	150
2,4,6-Tribromophenol	77	25	187
Terphenyl-d14	76	50	150

< 0.05

Terphenyl-d14 Concentration Compounds: mg/kg (ppm) Naphthalene 0.00572-Methylnaphthalene 0.0040 1-Methylnaphthalene 0.0038 Acenaphthylene < 0.002 Acenaphthene 0.0070 Fluorene 0.0060 Phenanthrene 0.055Anthracene 0.0088 Fluoranthene 0.056 Pyrene 0.052Benz(a)anthracene 0.019 Chrysene 0.024 Benzo(a)pyrene 0.027Benzo(b)fluoranthene 0.027 Benzo(k)fluoranthene 0.011 Indeno(1,2,3-cd)pyrene 0.014 Dibenz(a,h)anthracene 0.0028 Benzo(g,h,i)perylene 0.013

Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B-C-1-6 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 101148-12 Date Analyzed: 01/13/21 Data File: 011309.DMatrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	55	36	114
Phenol-d6	70	47	116
Nitrobenzene-d5	66	38	117
2-Fluorobiphenyl	77	50	150
2,4,6-Tribromophenol	88	25	187
Terphenyl-d14	90	50	150

Terpilenyi-dr4	30
Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.004
2-Methylnaphthalene	< 0.004
1-Methylnaphthalene	< 0.004
Acenaphthylene	< 0.004
Acenaphthene	< 0.004
Fluorene	< 0.004
Phenanthrene	< 0.004
Anthracene	< 0.004
Fluoranthene	< 0.004
Pyrene	< 0.004
Benz(a)anthracene	< 0.004
Chrysene	< 0.004
Benzo(a)pyrene	< 0.004
Benzo(b)fluoranthene	< 0.004
Benzo(k)fluoranthene	< 0.004
Indeno(1,2,3-cd)pyrene	< 0.004
Dibenz(a,h)anthracene	< 0.004
Benzo(g,h,i)perylene	< 0.004
Pentachlorophenol	< 0.1

Note: The reporting limits were raised due to high moisture content in sample.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-C-1-9	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148
Date Extracted: 01/13/21 Lab ID: 101148-13

Date Analyzed: 01/13/21 Lab ID. 101148-13
Date Analyzed: 01/13/21 Data File: 011307.D
Matrix: Soil Instrument: GCMS8
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	44	36	114
Phenol-d6	58	47	116
Nitrobenzene-d5	54	38	117
2-Fluorobiphenyl	64	50	150
2,4,6-Tribromophenol	80	25	187
Terphenyl-d14	88	50	150

Concentration

Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	0.0021
Pyrene	< 0.002
Benz(a)anthracene	0.0021
Chrysene	0.0025
Benzo(a)pyrene	0.0036
Benzo(b)fluoranthene	0.0058
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	0.0025
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0024
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101148

Lab ID: 01/13/21 Date Extracted: 01-101 mb2 Date Analyzed: 01/13/21 Data File: 011304.DMatrix: Soil Instrument: GCMS8 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 114 Lower Surrogates: 2-Fluorophenol % Recovery: Limit: 36 Phenol-d6 88 47 116 Nitrobenzene-d5 90 38 1172-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 50 89 150 88 25 187 97 50 150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-H-1-6	Client:	Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-01 011308.D Date Analyzed: 01/13/21 Data File: Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 80 23 127

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-H-1-9	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-02 Date Analyzed: 01/13/21 Data File: 011309.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 81

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-G-1-6	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-03 Date Analyzed: 01/13/21 Data File: 011310.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 93 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-F-1-5	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-05 Date Analyzed: 01/13/21 Data File: 011311.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 23 91

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-06 Date Analyzed: 01/13/21 Data File: 011312.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 85 23 127

TCMX 85 23 127

Concentration

Compounds: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-E-1-5.5 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 101148-07 Date Analyzed: 01/13/21 Data File: 011315.DGC9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 74 23 120

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.004 Aroclor 1232 < 0.004 Aroclor 1016 < 0.004 Aroclor 1242 < 0.004 Aroclor 1248 < 0.004 Aroclor 1254 < 0.004 Aroclor 1260 < 0.004 Aroclor 1262 < 0.004 Aroclor 1268 < 0.004

Note: The reporting limits were raised due to high moisture content in sample.

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-E-1-8	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-08 011316.D Date Analyzed: 01/13/21 Data File: Matrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery: Limit:

Upper Limit: 120 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 68 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-G-1-7 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 101148-09 Date Analyzed: 01/13/21 Data File: 011317.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 58 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-D-1-8	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-10 011313.D Date Analyzed: 01/13/21 Data File: Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 86 23

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	B-D-1-6	Client:	Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-11 011314.D Date Analyzed: 01/13/21 Data File: Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 93 23 127

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: B-C-1-6 Client: Aspect Consulting, LLC

Date Received: 01/13/21 Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 101148-12 Date Analyzed: 01/13/21 Data File: 011318.DGC9 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight IJLOperator:

Surrogates: % Recovery: Limit: Limit: TCMX 83 23 120

Concentration mg/kg (ppm) Compounds: Aroclor 1221 < 0.004 Aroclor 1232 < 0.004 Aroclor 1016 < 0.004 Aroclor 1242 < 0.004 Aroclor 1248 < 0.004 Aroclor 1254 < 0.004 Aroclor 1260 < 0.004 Aroclor 1262 < 0.004 Aroclor 1268 < 0.004

Note: The reporting limits were raised due to high moisture content in sample.

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-C-1-9	Client:	Aspect Consulting, LLC

Date Received: 01/13/21Project: SnoPac PO 150054, F&BI 101148

Lab ID: Date Extracted: 01/13/21 101148-13 Date Analyzed: 01/13/21 Data File: 011319.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 120 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 74

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101148

Date Extracted: 01/13/21 Lab ID: 01-102 mb Date Analyzed: 01/13/21 Data File: 011306.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 94

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101136-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	101	101	75-125	0
Copper	mg/kg (ppm)	50	<25	94	101	75 - 125	7
Lead	mg/kg (ppm)	50	<5	95	100	75 - 125	5
Zinc	mg/kg (ppm)	50	40.9	90	103	75 - 125	13

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	80-120
Copper	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	50	101	80-120
Zinc	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101136-02 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	94	104	71-125	10

Laboratory Code: Laboratory Control Sample 1/20

			Percent		
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Mercury	mg/kg (ppm)	5	85	68-125	-

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101142-01 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	0.013	79	76	10-188	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	0.0080	85	82	50-150	4
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	82	43-132	4
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	89	86	50-150	3
Acenaphthene	mg/kg (ppm)	0.83	0.017	85	80	50-150	6
Fluorene	mg/kg (ppm)	0.83	0.015	89	83	46-140	7
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.25	13 vo	0 vo	32-151	nm
Phenanthrene	mg/kg (ppm)	0.83	0.15	85	75	15-244	12
Anthracene	mg/kg (ppm)	0.83	0.027	90	82	33-146	9
Fluoranthene	mg/kg (ppm)	0.83	0.15	98	78	19-162	23 vo
Pyrene	mg/kg (ppm)	0.83	0.16	92	84	10-238	9
Benz(a)anthracene	mg/kg (ppm)	0.83	0.069	95	91	50-150	4
Chrysene	mg/kg (ppm)	0.83	0.081	91	85	50-150	7
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.096	106	102	48-134	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.091	104	105	38-158	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.038	104	101	41-151	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.052	96	93	19-144	3
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	0.011	92	93	21-140	1
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.053	84	82	7-144	2

Laboratory Code: Laboratory Control Sample 1/5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.83	84	60-105
2-Methylnaphthalene	mg/kg (ppm)	0.83	91	64-107
1-Methylnaphthalene	mg/kg (ppm)	0.83	92	64-105
Acenaphthylene	mg/kg (ppm)	0.83	94	70-130
Acenaphthene	mg/kg (ppm)	0.83	88	70-130
Fluorene	mg/kg (ppm)	0.83	96	70-130
Pentachlorophenol	mg/kg (ppm)	0.83	96	61-136
Phenanthrene	mg/kg (ppm)	0.83	90	70-130
Anthracene	mg/kg (ppm)	0.83	94	70-130
Fluoranthene	mg/kg (ppm)	0.83	101	70-130
Pyrene	mg/kg (ppm)	0.83	91	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	96	70-130
Chrysene	mg/kg (ppm)	0.83	97	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	108	64-112
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	109	61-118
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	111	61-116
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	96	52-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	93	54-125
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	85	47-128

ENVIRONMENTAL CHEMISTS

Date of Report: 01/15/21 Date Received: 01/13/21

Project: SnoPac PO 150054, F&BI 101148

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101148-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.83	< 0.002	90	100	29-125	11
Aroclor 1260	mg/kg (ppm)	0.83	< 0.002	86	101	25 - 137	16

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.83	101	55-137
Aroclor 1260	mg/kg (ppm)	0.83	108	51-150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at 2 °C	Sar	Total Control		Received by:	Ph. (206) 285-8282
- Constitution of the Cons	Total Control of the	The state of the s		Religiushed by:	Seattle, WA 98119-2029 Rehi
1/13 0310	RAR	TANK BIOR		Area by: 1	3012 16th Avenue West Received
1/8/1/ 080	Apec	Breage Green		hed by	Friedman & Bruya, Inc. Reli
DATE	COMPANY	PRINT NAME		SIGNATURE	
	NXX		1360	0	Sw-1-1-8
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			09	SW-G-1-7
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2770	8	SW-F-1-8
181/8			2138	07	B-F-1-5.5
Timeon label 2135	XXX		2150	8	
			2045	05	B-F-1-5
HOLD	\$ \$W	2	2030	04/	Sw-6-1-8
		4	2018	03	86-1-6
		2	2000	0%	18 SW-H-7-9
	XXX	2	1750 S	0148 1/12/21	8-4-2-6
Notes *As, W, Pb, Hg, In	NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 Metals **	Sample Jars of NWTPH-Dx NWTPH-Gx BTEX EPA 8021	Time Sar Sampled Ty	Date Lab ID Sampled	Sample ID
YED	TXSES			Commence and the	- Andrews - Andr
Delaule, Dispose areas oo aaje		ic RLs? -(Yes)/ No I	Project specific RLs?	Darser, Dansking	Phone Course 7343 Email
Default: Dienese after 30 days		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			i
SAMPLE DISPOSAL Archive samples	INVOICE TO		REMARKS	LA ORION	C Z
Rush charges authorized by:	150054	Smother	Ş	ess 45	Company HS/res
Standard turnaround	P0#	ME	PROJECT NAME		•
TURNAROUND TIME	9	signature) Breenn	SAMPLERS (signature)	Gniffin	Panart To Bibur A
Page # Of 2	1 01-13-21	SAMPLE CHAIN OF CUSTOD	SAMPLE CH		801101

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone 6 123234 Email Address Report To B. brew A. Grithin B-D-J-6 City, State, ZIP Company_ 8-C-7-6 Sw-C-1-9 Sample ID Religguished by: Relinquished by: Received by: a ĺ Lab ID SIGNATURE 7 Date Sampled در 12 SAMPLE CHAIN OF CUSTODY Time Sampled opoyo 2320 8%0 SAMPLERS (signature) PROJECT NAME Project specific RLs? -REMARKS Sno Pou Sample Type S Green 5 James broken Jars # of PRINT NAME Yes Creek NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID 150059 INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 COMPANY Metals Samples received at SAMPLE DISPOSAL

Archive samples RUSH 17000 Rush charges authorized by: Default: Dispose after 30 days TURNAROUND TIME * As, Cu, Pb, 2 2 DATE 20 of 2 0310 8130 TIME

12/20

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 18, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 15, 2021 from the SnoPac PO 150054, F&BI 101207 project. There are 32 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 15, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac PO 150054, F&BI 101207 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101207 -01	SW-C-5-12
101207 -02	SW-D-3-12
101207 -03	B-K-1-4.5
101207 -04	SW-E-2-12
101207 -05	SW-J-3-13
101207 -06	SW-K-3-13
101207 -07	SW-L-3-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-C-5-12 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-01

 Date Analyzed:
 01/18/21
 Data File:
 101207-01.043

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 1.86

 Copper
 7.81

 Lead
 5.41

 Zinc
 20.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-02

 Date Analyzed:
 01/18/21
 Data File:
 101207-02.050

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.02

 Copper
 6.96

 Lead
 2.14

 Zinc
 16.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-K-1-4.5 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 10.1 Lead 3.85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-K-1-4.5 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 Copper
 19.7

 Zinc
 23.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-E-2-12 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-04

 Date Analyzed:
 01/18/21
 Data File:
 101207-04.052

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 4.88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-05

 Date Analyzed:
 01/18/21
 Data File:
 101207-05.053

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.45

 Copper
 8.16

 Lead
 1.64

 Zinc
 17.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-K-3-13	Client:	Aspect Consulting, LLC
----------------------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-06

 Date Analyzed:
 01/18/21
 Data File:
 101207-06.054

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 3.02

 Copper
 7.06

 Lead
 2.46

 Zinc
 27.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-L-3-14 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

 Date Extracted:
 01/18/21
 Lab ID:
 101207-07

 Date Analyzed:
 01/18/21
 Data File:
 101207-07.055

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 108 Lead 73.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-L-3-14 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Copper 108 Zinc 367

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101207

Lab ID: I1-27 mbDate Extracted: 01/18/21Date Analyzed: 01/18/21 Data File: I1-27 mb.041 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: Concentration mg/kg (ppm)

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

Date Extracted: 01/18/21 Date Analyzed: 01/18/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Total Mercury
SW-C-5-12 101207-01	0.019
SW-D-3-12 101207-02	0.015
B-K-1-4.5 101207-03	0.036
SW-J-3-13 101207-05	0.088
SW-K-3-13 101207-06	0.017
SW-L-3-14 101207-07	0.039
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-C-5-12	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207
Date Extracted: 01/18/21 Lab ID: 101207-01

Date Extracted: 01/18/21 Lab ID: 101207-01
Date Analyzed: 01/18/21 Data File: 011807.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	62	32	100
Phenol-d6	67	46	107
Nitrobenzene-d5	76	24	127
2-Fluorobiphenyl	77	46	108
2,4,6-Tribromophenol	82	25	127
Terphenyl-d14	87	50	150

Concentration Compounds: mg/kg (ppm)

Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	0.0042
Anthracene	< 0.002
Fluoranthene	0.0063
Pyrene	0.0056
Benz(a)anthracene	0.0031
Chrysene	0.0040
Benzo(a)pyrene	0.0040
Benzo(b)fluoranthene	0.0059
Benzo(k)fluoranthene	0.0022
Indeno(1,2,3-cd)pyrene	0.0036
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	0.0037
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-D-3-12	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207
Date Extracted: 01/18/21 Lab ID: 101207-02

Date Extracted: 01/18/21 Lab ID: 101207-02
Date Analyzed: 01/18/21 Data File: 011808.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	55	32	100
Phenol-d6	59	46	107
Nitrobenzene-d5	65	24	127
2-Fluorobiphenyl	67	46	108
2,4,6-Tribromophenol	84	25	127
Terphenyl-d14	79	50	150

Compounds	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	0.0029
Pyrene	0.0026
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	0.0021
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B-K-1-4.5	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: 101207-03 Date Extracted: 01/18/21Date Analyzed: 01/18/21 Data File: $011806.\mathrm{D}$ Matrix: GCMS8 Soil Instrument: mg/kg (ppm) Dry Weight Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	61	36	114
Phenol-d6	69	47	116
Nitrobenzene-d5	65	38	117
2-Fluorobiphenyl	72	50	150
2,4,6-Tribromophenol	82	25	187
Terphenyl-d14	86	50	150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	0.0021
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-J-3-13	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207
Date Extracted: 01/18/21 Lab ID: 101207-05

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	46	36	114
Phenol-d6	56	47	116
Nitrobenzene-d5	55	38	117
2-Fluorobiphenyl	71	50	150
2,4,6-Tribromophenol	87	25	187
Terphenyl-d14	89	50	150

Compounds: Concentration mg/kg (ppm)

Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	0.0029
Anthracene	< 0.002
Fluoranthene	0.0043
Pyrene	0.0042
Benz(a)anthracene	0.0022
Chrysene	0.0030
Benzo(a)pyrene	0.0025
Benzo(b)fluoranthene	0.0032
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002
Pentachlorophenol	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-K-3-13	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207 Date Extracted: 01/18/21 Lab ID: 101207-06

Date Extracted. 01/18/21 Lab ID. 101207-00

Date Analyzed: 01/18/21 Data File: 011808.D

Matrix: Soil Instrument: GCMS8

Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	63	36	114
Phenol-d6	71	47	116
Nitrobenzene-d5	68	38	117
2-Fluorobiphenyl	77	50	150
2,4,6-Tribromophenol	91	25	187
Terphenyl-d14	88	50	150

Compounds: Concentration mg/kg (ppm)

Naphthalene < 0.002 2-Methylnaphthalene 0.0024 1-Methylnaphthalene 0.0021Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene 0.0037 < 0.002 Anthracene Fluoranthene 0.0029 Pyrene 0.0030 Benz(a)anthracene < 0.002 Chrysene 0.0025Benzo(a)pyrene 0.0029 Benzo(b)fluoranthene 0.0036Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene 0.0022 Dibenz(a,h)anthracene < 0.002 0.0023 Benzo(g,h,i)perylene Pentachlorophenol < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-L-3-14	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207
Date Extracted: 01/18/21 Lab ID: 101207-07

Date Extracted: 01/18/21 Lab ID: 101207-07
Date Analyzed: 01/18/21 Data File: 011809.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	50	32	100
Phenol-d6	60	46	107
Nitrobenzene-d5	65	24	127
2-Fluorobiphenyl	74	46	108
2,4,6-Tribromophenol	95	25	127
Terphenyl-d14	92	50	150

0.022

0.028

0.024

0.072

0.0063

Terphenyl-d14 92Concentration Compounds: mg/kg (ppm) Naphthalene 0.0083 2-Methylnaphthalene 0.0091 1-Methylnaphthalene 0.0072Acenaphthylene < 0.002 Acenaphthene 0.0037 Fluorene 0.0036 Phenanthrene 0.042 Anthracene 0.010 Fluoranthene 0.073 Pyrene 0.078 Benz(a)anthracene 0.040 Chrysene 0.048 Benzo(a)pyrene 0.053Benzo(b)fluoranthene 0.065

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Pentachlorophenol

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101207

Date Extracted: 01/18/21 Lab ID: 01-117 mb Date Analyzed: 01/18/21 Data File: 011806.D Matrix: GCMS9 Soil Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	71	32	100
Phenol-d6	75	46	107
Nitrobenzene-d5	87	24	127
2-Fluorobiphenyl	87	46	108
2,4,6-Tribromophenol	92	25	127
Terphenyl-d14	93	50	150

< 0.002

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.002 2-Methylnaphthalene < 0.002 1-Methylnaphthalene < 0.002 Acenaphthylene < 0.002 Acenaphthene < 0.002 Fluorene < 0.002 Phenanthrene < 0.002 Anthracene < 0.002 Fluoranthene < 0.002 Pyrene < 0.002

Chrysene < 0.002 Benzo(a)pyrene < 0.002 Benzo(b)fluoranthene < 0.002 Benzo(k)fluoranthene < 0.002 Indeno(1,2,3-cd)pyrene < 0.002 Dibenz(a,h)anthracene < 0.002 Benzo(g,h,i)perylene < 0.002 Pentachlorophenol < 0.05

Benz(a)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-C-5-12 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Date Extracted: 01/18/21 Lab ID: 101207-01 Date Analyzed: 01/18/21 Data File: $011808.\mathrm{D}$ Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 83 23

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.0023 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	SW-D-3-12	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: Date Extracted: 01/18/21 101207-02 011806.DDate Analyzed: 01/18/21 Data File: Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 83 23 127

< 0.002

< 0.002

< 0.002

Concentration mg/kg (ppm)

Aroclor 1221 <0.002

Aroclor 1232 <0.002

Aroclor 1016 <0.002

Aroclor 1242 <0.002

Aroclor 1248 <0.002

Aroclor 1248 <0.002

Aroclor 1254 <0.002

Aroclor 1260

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: Date Extracted: 01/18/21 101207-03 Date Analyzed: 01/18/21 Data File: $011805.\mathrm{D}$ Matrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

< 0.002

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242< 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-J-3-13 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: Date Extracted: 01/18/21 101207-05 Date Analyzed: 01/18/21 Data File: 011806.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 72 23

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-K-3-13 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: Date Extracted: 01/18/21 101207-06 Date Analyzed: 01/18/21 Data File: 011807.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 78

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-L-3-14 Client: Aspect Consulting, LLC

Date Received: 01/15/21 Project: SnoPac PO 150054, F&BI 101207

Lab ID: Date Extracted: 01/18/21 101207-07 Date Analyzed: 01/18/21 Data File: 011807.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 83 23

< 0.002

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 0.013 Aroclor 1260 0.025Aroclor 1262 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101207

Date Extracted: 01/18/21 Lab ID: 01-118 mb Date Analyzed: 01/18/21 Data File: 011804.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 82 23

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101207-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.75	98	94	75-125	4
Copper	mg/kg (ppm)	50	7.34	94	88	75 - 125	7
Lead	mg/kg (ppm)	50	5.08	91	87	75 - 125	4
Zinc	mg/kg (ppm)	50	18.9	94	84	75 - 125	11

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	94	80-120
Copper	mg/kg (ppm)	50	98	80-120
Lead	mg/kg (ppm)	50	96	80-120
Zinc	mg/kg (ppm)	50	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101207-01 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	98	94	71-125	4

Laboratory Code: Laboratory Control Sample 1/20

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	5	102	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101207-01 (Matrix Spike)

-			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.002	58	61	50-150	5
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.002	67	68	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.002	67	69	50-150	3
Acenaphthylene	mg/kg (ppm)	0.83	< 0.002	74	77	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.002	71	73	50-150	3
Fluorene	mg/kg (ppm)	0.83	< 0.002	78	81	50-150	4
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.05	92	88	50-150	4
Phenanthrene	mg/kg (ppm)	0.83	0.0040	80	85	50-150	6
Anthracene	mg/kg (ppm)	0.83	< 0.002	78	82	50-150	5
Fluoranthene	mg/kg (ppm)	0.83	0.0059	89	96	50-150	8
Pyrene	mg/kg (ppm)	0.83	0.0053	80	86	50-150	7
Benz(a)anthracene	mg/kg (ppm)	0.83	0.0029	87	91	50-150	4
Chrysene	mg/kg (ppm)	0.83	0.0038	86	90	50-150	5
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.0037	90	95	50-150	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.0056	92	93	50-150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.0021	87	94	50-150	8
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.0034	82	82	50-150	0
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.002	81	84	50-150	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.0035	69	72	50-150	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

			Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	81	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	86	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.83	87	70-130
Acenaphthylene	mg/kg (ppm)	0.83	91	70-130
Acenaphthene	mg/kg (ppm)	0.83	86	70-130
Fluorene	mg/kg (ppm)	0.83	92	70-130
Pentachlorophenol	mg/kg (ppm)	0.83	113	64-134
Phenanthrene	mg/kg (ppm)	0.83	93	70-130
Anthracene	mg/kg (ppm)	0.83	92	70-130
Fluoranthene	mg/kg (ppm)	0.83	101	70-130
Pyrene	mg/kg (ppm)	0.83	94	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	98	70-130
Chrysene	mg/kg (ppm)	0.83	99	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	98	70-130
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	94	70-130
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	95	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	112	70-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	111	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/18/21 Date Received: 01/15/21

Project: SnoPac PO 150054, F&BI 101207

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101207-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.83	< 0.002	87	84	29-125	4
Aroclor 1260	mg/kg (ppm)	0.83	< 0.002	89	90	25 - 137	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.83	97	55-137
Aroclor 1260	mg/kg (ppm)	0.83	106	51 - 150

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. SW-C-5-12 SW-D-3-12 SW-6-2-12 SW-1-3-14 SW-K-3-13 SW-1-3-13 Phone 6/2 2327343 Email of minicaspect consulting of the RLs? - (Yes) スースー1-4.0 City, State, ZIP Seath, WA 98104 Address 710 2nd Ave, Ste 550 Company Aspect Consulting Report To B. Green 01207 Sample ID Received by: Relinquished by Relinquished by: Receiver A. GINTTIM 5 00 05 S 02 20 0 Lab ID SIGNATURE The second 15/2 Sampled Date 705 1700 1200 220 SAMPLE CHAIN OF CUSTODY ME Time Sampled 3 三 3 3 REMARKS PROJECT NAME SAMPLERS (signature) Sino Ric Sample Туре Lactor PRINT NAME # of Jars Karehul NWTPH-Dx (Comme) NWTPH-Gx45005 NWTPH-HCID INVOICE TO な ANALYSES REQUESTED VOCs EPA 8260 PO# X X \times PAHs EPA 8270 TSPS7 $\overline{\times}$ PCBs EPA 8082 COMPANY Metals * X Default: Dispose after 30 days □ Other ☐ Archive samples XRUSH 1024 1/8 Samples received at 400 TURNAROUND TIME SAMPLE DISPOSAL Page # * 75, Cu, Po, reservic Ø DATE Notes 230 1881 TIME BI

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 22, 2021

Breevn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 21, 2021 from the SnoPac PO 150054, F&BI 101285 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0122R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 21, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac PO 150054, F&BI 101285 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101285 -01	SW-AA-1-12.5
101285 -02	SW-AA-2-12.5
101285 -03	SW-M-4-13

The 6020 lead sample and duplicate relative percent difference was outside of control limits. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-AA-1-12.5 Client: Aspect Consulting, LLC

Date Received: 01/21/21 Project: SnoPac PO 150054, F&BI 101285

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

 Arsenic
 1.08

 Copper
 5.88

 Lead
 <1</td>

 Zinc
 12.2

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-AA-2-12.5 Client: Aspect Consulting, LLC

Date Received: 01/21/21 Project: SnoPac PO 150054, F&BI 101285

 Date Extracted:
 01/21/21
 Lab ID:
 101285-02

 Date Analyzed:
 01/21/21
 Data File:
 101285-02.102

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 1.14

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101285

Lab ID: Date Extracted: 01/21/21 I1-40 mb Date Analyzed: 01/21/21 Data File: I1-40 mb.099 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

mg/kg (ppin/ Dry Weight Operator.

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 <1</td>

 Copper
 <5</td>

 Lead
 <1</td>

 Zinc
 <5</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

Date Extracted: 01/21/21 Date Analyzed: 01/21/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
SW-AA-1-12.5 101285-01	<0.01
Method Blank i1-40 MB	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-AA-1-12.5	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 01/21/21 Project: SnoPac PO 150054, F&BI 101285

Lab ID: Date Extracted: 101285-01 01/21/21Date Analyzed: 01/22/21 Data File: 012142.DMatrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	54	32	100
Phenol-d6	66	46	107
Nitrobenzene-d5	61	24	127
2-Fluorobiphenyl	72	46	108
2,4,6-Tribromophenol	85	25	127
Terphenyl-d14	92	50	150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101285

Lab ID: Date Extracted: 01/21/21 01-188 mb2 Date Analyzed: 01/22/21 Data File: $012152.\mathrm{D}$ Matrix: Soil GCMS9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

	Lower	Upper
% Recovery:	Limit:	Limit:
74	32	100
83	46	107
76	24	127
85	46	108
89	25	127
93	50	150
	74 83 76 85 89	% Recovery: Limit: 74 32 83 46 76 24 85 46 89 25

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-AA-1-12.5 Client: Aspect Consulting, LLC

Date Received: 01/21/21 Project: SnoPac PO 150054, F&BI 101285

Date Extracted: 01/21/21 Lab ID: 101285-01 Date Analyzed: 01/22/21 Data File: 012206.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 55 23 120

TCMX 55 23 120

Concentration
Compounds: mg/kg (ppm)

< 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101285

Date Extracted: 01/21/21 Lab ID: 01-190 mb Date Analyzed: 01/22/21 Data File: 012204.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 23 85

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101236-40 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	3.08	88	89	75-125	1
Copper	mg/kg (ppm)	50	21.9	60 b	69 b	75 - 125	14 b
Lead	mg/kg (ppm)	50	7.42	91	161 vo	75 - 125	56 vo
Zinc	mg/kg (ppm)	50	32.4	95	111	75 - 125	16

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	89	80-120
Copper	mg/kg (ppm)	50	99	80-120
Lead	mg/kg (ppm)	50	98	80-120
Zinc	mg/kg (ppm)	50	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101236-40 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	108	106	71-125	2

Laboratory Code: Laboratory Control Sample 1/20

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	5	100	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101203-66 1/5 (Matrix Spike)

			Sample	Percent	Percent		
A a l+ a	Reporting	Spike	Result	Recovery	Recovery MSD	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	75	74	50-150	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	83	82	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	79	78	50-150	1
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	86	83	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	80	79	50-150	1
Fluorene	mg/kg (ppm)	0.83	< 0.01	87	86	50-150	1
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	83	82	50-150	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	84	85	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	96	96	50-150	0
Pyrene	mg/kg (ppm)	0.83	< 0.01	79	82	50-150	4
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	85	86	50-150	1
Chrysene	mg/kg (ppm)	0.83	< 0.01	84	84	50-150	0
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	92	93	50-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	84	85	50-150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	86	89	50-150	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	77	50-150	6
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	80	74	50-150	8
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	73	70	50-150	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

			Percent			
Analyte	$egin{array}{c} ext{Reporting} \ ext{Units} \end{array}$	Spike Level	Recovery LCS	Acceptance Criteria		
Naphthalene	mg/kg (ppm)	0.83	83	58-108		
2-Methylnaphthalene	mg/kg (ppm)	0.83	88	70-130		
1-Methylnaphthalene	mg/kg (ppm)	0.83	85	70-130		
Acenaphthylene	mg/kg (ppm)	0.83	93	70-130		
Acenaphthene	mg/kg (ppm)	0.83	88	70-130		
Fluorene	mg/kg (ppm)	0.83	91	70-130		
Phenanthrene	mg/kg (ppm)	0.83	91	70-130		
Anthracene	mg/kg (ppm)	0.83	93	70-130		
Fluoranthene	mg/kg (ppm)	0.83	101	70-130		
Pyrene	mg/kg (ppm)	0.83	93	70-130		
Benz(a)anthracene	mg/kg (ppm)	0.83	95	70-130		
Chrysene	mg/kg (ppm)	0.83	94	70-130		
Benzo(a)pyrene	mg/kg (ppm)	0.83	99	70-130		
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	94	70-130		
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	90	70-130		
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	103	70-130		
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	100	70-130		
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	99	70-130		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/22/21 Date Received: 01/21/21

Project: SnoPac PO 150054, F&BI 101285

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101285-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	< 0.002	89	76	44-107	16
Aroclor 1260	mg/kg (ppm)	0.083	< 0.002	98	86	38-124	13

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.083	88	47-158
Aroclor 1260	mg/kg (ppm)	0.083	99	69 - 147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16th Avenue West Seattle, WA 98119-2029	Friedman &	Swes							SW-M-4-13	SW-AA-2-125	R SA AI		S.		Phone 612	City, State,	Address 1	Company Aspect	101285 Report To B
		<u>ن</u> ت	т т				-			4-13	2-12.5	ナーカル	7	Sample ID		Phone 612232 1343 Email by tev & uspectors in the Project specific RLs?	City, State, ZIP Statta, WA 98104	Address 710 LAN Nr, Six SSO	toect	10/285 Report To B. Grew, A. Contino
Received by:	Received by: MA	Relinquished by: LOUM	SIC							S	02	0		Lab ID		OWNWAND	FINK YR	* SSO		datin
	an Wh	May 7	SIGNATURE							(1/21/21	>	Date Sampied		Warterson Ingentrative				
	7									1130	Dano	2480	•	Time Sampled	4	Project 8	REMARKS	××××××××××××××××××××××××××××××××××××××	PROJEC	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) Luchul (
	Am W-P	regar Togat			^					<u></u>		S		Sample :		pecific RLs?	S	Smapai	PROJECT NAME	CHAIN o
	Boy	Marked	PRINT NAME				·						NW	TPH-Gx		· Kest No			THE CONTRACT OF THE CONTRACT O	SAMPLERS (signature) fuched to
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		E	Sambles re									BTEX NWT VOCs	EPA 8021 PH-HCID EPA 8260	ANAL	3	INVOICE TO	- Fast	[ODY O
	128	- FOREST	COMPANY	Samples received at 600						**************************************		XXXX	PCBs Yleta		ANALYSES REQUESTED		CE TO		PO#	
	Vanish of the second se	7 107-5117	AN	<u>á</u>							×		Arse	mic	STED	□ Other Default: D	SAMPLE DI	Rush charg	Standard	Page #
	يطلحل	12/12	DATE					7	per 80	ř	3 8 5	·	#A 5, CU, Pb,	Notes		□ 0ther Default: Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	d turnaround	AROUND
	1135	1185	HMIL					1	, 1	c	S		5 'B	w w		30 days	SAL	d by:	747	BZ2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 26, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on January 22, 2021 from the SnoPac PO 150054, F&BI 101319 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data, Adam Griffin ASP0126R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 22, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac PO 150054, F&BI 101319 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
101319 -01	SW-L-4-13
101319 -02	SW-M-3-14
101319 -03	SW-N-5-13

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-L-4-13 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.60

 Copper
 6.36

 Lead
 1.16

 Zinc
 65.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-M-3-14 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

 Date Extracted:
 01/25/21
 Lab ID:
 101319-02

 Date Analyzed:
 01/25/21
 Data File:
 101319-02.040

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.29

 Copper
 7.13

 Lead
 1.98

 Zinc
 14.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: SW-N-5-13 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 1.69

 Copper
 6.51

 Lead
 1.63

 Zinc
 15.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101319

01/25/21 Lab ID: Date Extracted: I1-44 mb Date Analyzed: 01/25/21 Data File: I1-44 mb.036 Matrix: Soil Instrument: ICPMS2 SP

mg/kg (ppm) Dry Weight Units: Operator:

ConcentrationAnalyte: mg/kg (ppm)

Arsenic <1 Copper <5 Lead <1 Zinc <5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/26/21 Date Received: 01/22/21

Project: SnoPac PO 150054, F&BI 101319

Date Extracted: 01/25/21 Date Analyzed: 01/25/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Total Mercury
SW-L-4-13 101319-01	<0.01
SW-M-3-14 101319-02	<0.01
SW-N-5-13 101319-03	<0.01
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-L-4-13	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Lab ID: Date Extracted: 101319-01 01/22/21Date Analyzed: 01/22/21 Data File: 012211.DMatrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

	Lower	Upper
% Recovery:	Limit:	Limit:
73	32	100
79	46	107
87	24	127
79	46	108
81	25	127
82	50	150
	73 79 87 79 81	% Recovery: Limit: 73 32 79 46 87 24 79 46 81 25

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-M-3-14	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Lab ID: Date Extracted: 101319-02 01/22/21 Date Analyzed: 01/22/21 Data File: 012212.DMatrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	66	32	100
Phenol-d6	74	46	107
Nitrobenzene-d5	68	24	127
2-Fluorobiphenyl	75	46	108
2,4,6-Tribromophenol	85	25	127
Terphenyl-d14	79	50	150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	SW-N-5-13	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Lab ID: Date Extracted: 101319-03 01/22/21 Date Analyzed: 01/22/21 Data File: 012213.DMatrix: Instrument: Soil GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

	Lower	Upper
% Recovery:	Limit:	Limit:
70	32	100
76	46	107
80	24	127
77	46	108
88	25	127
85	50	150
	70 76 80 77 88	% Recovery: Limit: 70 32 76 46 80 24 77 46 88 25

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101319

Lab ID: Date Extracted: 01/22/21 01-188 mb3 Date Analyzed: 01/22/21 Data File: $012209.\mathrm{D}$ Matrix: Soil GCMS9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	67	32	100
Phenol-d6	73	46	107
Nitrobenzene-d5	76	24	127
2-Fluorobiphenyl	70	46	108
2,4,6-Tribromophenol	75	25	127
Terphenyl-d14	78	50	150

Concentration

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.002
2-Methylnaphthalene	< 0.002
1-Methylnaphthalene	< 0.002
Acenaphthylene	< 0.002
Acenaphthene	< 0.002
Fluorene	< 0.002
Phenanthrene	< 0.002
Anthracene	< 0.002
Fluoranthene	< 0.002
Pyrene	< 0.002
Benz(a)anthracene	< 0.002
Chrysene	< 0.002
Benzo(a)pyrene	< 0.002
Benzo(b)fluoranthene	< 0.002
Benzo(k)fluoranthene	< 0.002
Indeno(1,2,3-cd)pyrene	< 0.002
Dibenz(a,h)anthracene	< 0.002
Benzo(g,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-L-4-13 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Date Extracted: 01/22/21 Lab ID: 101319-01 Date Analyzed: 01/25/21 Data File: $012505.\mathrm{D}$ Matrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 70

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-M-3-14 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Lab ID: Date Extracted: 01/22/21 101319-02 Date Analyzed: 01/25/21 Data File: $012506.\mathrm{D}$ Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 70

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: SW-N-5-13 Client: Aspect Consulting, LLC

Date Received: 01/22/21 Project: SnoPac PO 150054, F&BI 101319

Date Extracted: 01/22/21 Lab ID: 101319-03 Date Analyzed: 01/25/21 Data File: $012507.\mathrm{D}$ Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 65

Concentration Compounds: mg/kg (ppm) < 0.002 Aroclor 1221 Aroclor 1232 < 0.002 Aroclor 1016 < 0.002 Aroclor 1242 < 0.002 Aroclor 1248 < 0.002 Aroclor 1254 < 0.002 Aroclor 1260 < 0.002 Aroclor 1262 < 0.002 Aroclor 1268 < 0.002

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: SnoPac PO 150054, F&BI 101319

Date Extracted: 01/22/21 Lab ID: 01-190 mb2 Date Analyzed: 01/25/21 Data File: $012504.\mathrm{D}$ Matrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: TCMX 81 23 127

 Aroclor 1248
 <0.002</td>

 Aroclor 1254
 <0.002</td>

 Aroclor 1260
 <0.002</td>

 Aroclor 1262
 <0.002</td>

 Aroclor 1268
 <0.002</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 01/26/21 Date Received: 01/22/21

Project: SnoPac PO 150054, F&BI 101319

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 101294-02 1/20 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	<2	83	88	71-125	6

Laboratory Code: Laboratory Control Sample 1/20

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	5	85	68-125

ENVIRONMENTAL CHEMISTS

Date of Report: 01/26/21 Date Received: 01/22/21

Project: SnoPac PO 150054, F&BI 101319

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 101294-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1	85	80	75-125	6
Copper	mg/kg (ppm)	50	9.00	88	81	75 - 125	8
Lead	mg/kg (ppm)	50	4.03	92	87	75 - 125	6
Zinc	mg/kg (ppm)	50	23.2	92	83	75 - 125	10

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	90	80-120
Copper	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	96	80-120
Zinc	mg/kg (ppm)	50	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/26/21 Date Received: 01/22/21

Project: SnoPac PO 150054, F&BI 101319

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 101203-66 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$_{ m RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	75	74	50-150	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	83	82	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	79	78	50-150	1
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	86	83	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	80	79	50-150	1
Fluorene	mg/kg (ppm)	0.83	< 0.01	87	86	50-150	1
Pentachlorophenol	mg/kg (ppm)	0.83	< 0.25	93	93	50-150	0
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	83	82	50-150	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	84	85	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	96	96	50-150	0
Pyrene	mg/kg (ppm)	0.83	< 0.01	79	82	50-150	4
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	85	86	50-150	1
Chrysene	mg/kg (ppm)	0.83	< 0.01	84	84	50-150	0
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	92	93	50-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	84	85	50-150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	86	89	50-150	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	77	50-150	6
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	80	74	50-150	8
Benzo(g.h.i)pervlene	mg/kg (ppm)	0.83	< 0.01	73	70	50-150	4

Laboratory Code: Laboratory Control Sample 1/5

			Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	83	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	88	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.83	85	70-130
Acenaphthylene	mg/kg (ppm)	0.83	93	70-130
Acenaphthene	mg/kg (ppm)	0.83	88	70-130
Fluorene	mg/kg (ppm)	0.83	91	70-130
Pentachlorophenol	mg/kg (ppm)	0.83	94	64-134
Phenanthrene	mg/kg (ppm)	0.83	91	70-130
Anthracene	mg/kg (ppm)	0.83	93	70-130
Fluoranthene	mg/kg (ppm)	0.83	101	70-130
Pyrene	mg/kg (ppm)	0.83	93	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	95	70-130
Chrysene	mg/kg (ppm)	0.83	94	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	99	70-130
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	94	70-130
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	90	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	103	70-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	100	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/26/21 Date Received: 01/22/21

Project: SnoPac PO 150054, F&BI 101319

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 101285-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.083	< 0.002	89	76	44-107	16
Aroclor 1260	mg/kg (ppm)	0.083	< 0.002	98	86	38-124	13

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.083	88	47-158
Aroclor 1260	mg/kg (ppm)	0.083	99	69 - 147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-104116-1 Client Project/Site: 106490

For:

Friedman & Bruya 3012 16TH AVENUE WEST Seattle, Washington 98119-2029

Attn: Michael Erdahl

Authorized for release by: 7/14/2021 3:04:25 PM

Nathan Lewis, Project Manager I (253)922-2310

Nathan.Lewis@Eurofinset.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Friedman & Bruya Project/Site: 106490 Laboratory Job ID: 580-104116-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	
Chronicle	13
Certification Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

- 0

4

7

9

10

Case Narrative

Client: Friedman & Bruya Job ID: 580-104116-1 Project/Site: 106490

Job ID: 580-104116-1

Laboratory: Eurofins FGS, Seattle

Narrative

Job Narrative 580-104116-1

Comments

No additional comments.

Receipt

The samples were received on 6/29/2021 1:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS Semi VOA

Method Organotins: Surrogate recovery for the following sample was outside the upper control limit: MW16-062521 (580-104116-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Qualifiers

GC/MS Semi VOA

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 4 of 18

•

9

4

5

8

10

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW15-062521 Lab Sample ID: 580-104116-1

Date Collected: 06/25/21 07:55 Matrix: Water

Date Collected: 06/25/21 07:55 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotins -	Organotins, PSEP (GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed 07/06/21 22:45	Dil Fac
Tributyltin	ND		0.35		ug/L		00/30/21 12:04	07/06/21 22:45	ı
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	76		10 - 142				06/30/21 12:04	07/06/21 22:45	1

6

8

46

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW16-062521 Lab Sample ID: 580-104116-2

Matrix: Water

Date Collected: 06/25/21 08:00 Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/06/21 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	151	S1+	10 - 142				06/30/21 12:04	07/06/21 23:11	1

6

Q

9

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW13-062521 Lab Sample ID: 580-104116-3

Date Collected: 06/25/21 10:05 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.33		ug/L		06/30/21 12:04	07/06/21 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	84		10 - 142				06/30/21 12:04	07/06/21 23:37	1

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW14-062521 Lab Sample ID: 580-104116-4

Date Collected: 06/25/21 10:09 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotins	s - Organotins, PSEP (GC/M	IS)					
Analyte	Result Qualif	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND ND	0.34	ug/L		06/30/21 12:04	07/07/21 00:03	1
Surrogate	%Recovery Qualif	ier Limits			Prepared	Analyzed	Dil Fac
Tripentyltin	35	10 - 142			06/30/21 12:04	07/07/21 00:03	1

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW17-062521 Lab Sample ID: 580-104116-5

Date Collected: 06/25/21 11:47

Date Received: 06/29/21 13:55

Matrix: Water

Method: Organotins	- Organotins, PSEP ((GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	38		10 - 142				06/30/21 12:04	07/07/21 00:30	1

6

_

9

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-8-062521 Lab Sample ID: 580-104116-6

Date Collected: 06/25/21 12:00 Matrix: Water

Date Collected: 06/25/21 12:00 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.34		ug/L		06/30/21 12:04	07/07/21 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	36		10 - 142				06/30/21 12:04	07/07/21 00:56	1

7

8

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-160-062521 Lab Sample ID: 580-104116-7

Date Collected: 06/25/21 13:30 Matrix: Water

Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP	(GC/MS)							lethod: Organotins - Organotins, PSEP (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac											
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 01:22	1											
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac											
Tripentyltin	95		10 - 142				06/30/21 12:04	07/07/21 01:22	1											

6

8

3

QC Sample Results

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490 Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-360666/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 361143 **Prep Batch: 360666**

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.30 06/30/21 12:04 07/06/21 21:26 Tributyltin ND ug/L

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tripentyltin 103 10 - 142 06/30/21 12:04 07/06/21 21:26

Lab Sample ID: LCS 580-360666/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 361143 **Prep Batch: 360666** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Tributyltin 1.79 0.295 J ug/L 16 11 - 150 LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 10 - 142 111

Lab Sample ID: LCSD 580-360666/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 361143 Prep Batch: 360666 Spike LCSD LCSD %Rec. RPD

Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Tributyltin 1.79 0.348 ug/L 19 11 - 150

LCSD LCSD Surrogate %Recovery Qualifier Limits Tripentyltin 140 10 - 142

7/14/2021

Client: Friedman & Bruya Project/Site: 106490

Client Sample ID: MW15-062521

Date Collected: 06/25/21 07:55 Date Received: 06/29/21 13:55 Lab Sample ID: 580-104116-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 22:45	TL1	FGS SEA

Client Sample ID: MW16-062521

Date Collected: 06/25/21 08:00 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 23:11	TL1	FGS SEA

Client Sample ID: MW13-062521

Date Collected: 06/25/21 10:05 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 23:37	TL1	FGS SEA

Client Sample ID: MW14-062521

Date Collected: 06/25/21 10:09

Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-4

Lab Sample ID: 580-104116-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 00:03	TL1	FGS SEA

Cli

Date Received: 06/29/21 13:55

Client Sample ID: MW17-062521	Lab Sample ID: 580-104116-5
Date Collected: 06/25/21 11:47	Matrix: Water
Date Received: 06/29/21 13:55	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 00:30	TL1	FGS SEA

Client Sample ID: MW-8-062521

D

Date Collected	l: 06/25/21	12:00				Matrix: Water
Date Received	: 06/29/21	13:55				
_	Batch	Batch	Dilution	Batch	Prepared	

		Batch	Batch			Dilution	Batch	Prepared		
Prep Type	•	Type	Method	F	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA		Prep	Organotin				360666	06/30/21 12:04	RJL	FGS SEA
Total/NA		Analysis	Organotins			1	361143	07/07/21 00:56	TL1	FGS SEA

Lab Chronicle

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-160-062521 Lab Sample ID: 580-104116-7

Date Collected: 06/25/21 13:30 Matrix: Water Date Received: 06/29/21 13:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 01:22	TL1	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

3

4

6

9

Accreditation/Certification Summary

Client: Friedman & Bruya

Job ID: 580-104116-1

Project/Site: 106490

Laboratory: Eurofins FGS, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-004	02-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	Dept. of Energy	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
California	State	2954	06-30-21 *
Florida	NELAP	E87575	06-30-22
Kentucky (WW)	State	KY98042	12-31-21
Louisiana	NELAP	03073	06-30-22
Maine	State	2020012	05-02-22
Montana (UST)	State	NA	04-14-27
New Jersey	NELAP	WA014	06-30-22
New York	NELAP	11662	04-01-22
Oregon	NELAP	4167	07-07-21
US Fish & Wildlife	US Federal Programs	058448	05-31-22
USDA	US Federal Programs	P330-20-00031	02-10-23
Washington	State	C788	07-13-21
Wisconsin	State	399133460	08-31-21

5

4

8

9

10

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Friedman & Bruya
Project/Site: 106490

Job ID: 580-104116-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
580-104116-1	MW15-062521	Water	06/25/21 07:55	06/29/21 13:55	
580-104116-2	MW16-062521	Water	06/25/21 08:00	06/29/21 13:55	
580-104116-3	MW13-062521	Water	06/25/21 10:05	06/29/21 13:55	
580-104116-4	MW14-062521	Water	06/25/21 10:09	06/29/21 13:55	
580-104116-5	MW17-062521	Water	06/25/21 11:47	06/29/21 13:55	
580-104116-6	MW-8-062521	Water	06/25/21 12:00	06/29/21 13:55	
580-104116-7	MW-160-062521	Water	06/25/21 13:30	06/29/21 13:55	

4

6

6

9

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To	Michae	l Erda	hl			SUB	CONT	RACT	ER E) وبرب	ins			4				# l IAROUI			
-	Friedma			ı, Inc.		PRO		NAMI					PO#		Standard TAT RUSH Rush charges authorized by:						
Address	3012 16	th Ave	<u> W</u>				10	649	0			B	-312	-		Rush cl	harges	s author	rized	oy:	
City, State, ZIP				edmanandbruya	a.com	REM	ARKS Pl	ease E	mail F	Result	s	***************************************				□ Dispo □ Retu	ose aft rn san	PLE DIS ter 30 d mples ith inst	ays		
											ANA	LYSES	REC	QUEST	red		·····	T			٦
Sample ID	Lab ID		ate ipled	Time Sampled	Mat	ו צויו	# of jars	Dioxins/Furans	БРН	VPH	Tribdy14in								Not	es	
MW15-062521		6/2	5/21	0 <i>75</i> 5	Wate	v	ļ				×										
MW16 - 062521			•	০৪৩১			l				×										
MW13-062521				2915 1005			1				×										
MW14-062521				1005 1009			1				×		***************************************								
MW17-062521				1009 (147			ſ				×		A								
MW-8-062521				447 1200			1				<u> </u>										
4w-160-062521			ł	1330			1				<i>></i>										
A-4-1					***************************************																_
Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Rolinguished By:		1		Micha	F ael Ero	<u> </u>	NAM	E		Fri	COl edman	MPA & Bı			DATE 0/28/21		TIME				
Seattle, WA 98119-	2029	Receive	ed by:				10				V	Most	1	Fr.	٠,			1 0	1/21	135	
Ph. (206) 285-8282	-	Relinqu	uished b	y:	}1	 	/	11 (11) (1 11) (1		E 8171 1821	1710					. 3 ° t	10 _nc:4/,		7	1)	
Fax (206) 283-5044 Received by:				- - 58						Yes_No	FedEx: UPS: Lab Cour: \(\sum_{1} \sum_										

Client: Friedman & Bruya

List Source: Eurofins FGS, Seattle

Job Number: 580-104116-1

Login Number: 104116 List Number: 1

Creator: Greene, Ashton R

Creator: Greene, Ashton R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins FGS, Seattle

Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-104115-1 Client Project/Site: 106507

For:

Friedman & Bruya 3012 16TH AVENUE WEST Seattle, Washington 98119-2029

Attn: Michael Erdahl

Authorized for release by: 7/14/2021 12:21:29 PM

Nathan Lewis, Project Manager I (253)922-2310

Nathan.Lewis@Eurofinset.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Friedman & Bruya Project/Site: 106507 Laboratory Job ID: 580-104115-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

4

5

9

10

Case Narrative

Client: Friedman & Bruya

Job ID: 580-104115-1

Project/Site: 106507

Job ID: 580-104115-1

Laboratory: Eurofins FGS, Seattle

Narrative

Job Narrative 580-104115-1

Comments

No additional comments.

Receipt

The sample was received on 6/29/2021 1:55 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS Semi VOA

Method Organotins: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 580-360666 and analytical batch 580-361143 recovered outside control limits for the following analytes: Dibutyltin. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

•

3

6

10

1

Definitions/Glossary

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Page 4 of 11

Eurofins FGS, Seattle

Client Sample Results

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Client Sample ID: MW-12-062921 Lab Sample ID: 580-104115-1

Date Collected: 06/29/21 10:55 Matrix: Water

Date Collected: 06/29/21 10:55 Matrix: Water Date Received: 06/29/21 14:03

Method: Organotins	- Organotins, PSEP (GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 01:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	48		10 - 142				06/30/21 12:04	07/07/21 01:48	1

_

0

9

10

44

QC Sample Results

Client: Friedman & Bruya Job ID: 580-104115-1 Project/Site: 106507

Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-360666/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 361143

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.30 06/30/21 12:04 07/06/21 21:26 ND ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tripentyltin 103 10 - 142 06/30/21 12:04 07/06/21 21:26

Lab Sample ID: LCS 580-360666/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analyte

Tributyltin

Analysis Batch: 361143

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Tributyltin 1.79 0.295 J ug/L 16 11 - 150

LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 10 - 142 111

Lab Sample ID: LCSD 580-360666/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 361143 Prep Batch: 360666 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Tributyltin 1.79 0.348 ug/L 19 11 - 150

LCSD LCSD

Surrogate %Recovery Qualifier Limits Tripentyltin 140 10 - 142

Eurofins FGS, Seattle

Prep Type: Total/NA

Prep Batch: 360666

Prep Batch: 360666

7/14/2021

Lab Chronicle

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Client Sample ID: MW-12-062921 Lab Sample ID: 580-104115-1

Date Collected: 06/29/21 10:55

Date Received: 06/29/21 14:03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 01:48	TL1	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

7

8

9

10

Accreditation/Certification Summary

Client: Friedman & Bruya Job ID: 580-104115-1 Project/Site: 106507

Laboratory: Eurofins FGS, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-004	02-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	Dept. of Energy	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
California	State	2954	06-30-21 *
Florida	NELAP	E87575	06-30-22
Kentucky (WW)	State	KY98042	12-31-21
Louisiana	NELAP	03073	06-30-22
Maine	State	2020012	05-02-22
Montana (UST)	State	NA	04-14-27
New Jersey	NELAP	WA014	06-30-22
New York	NELAP	11662	04-01-22
Oregon	NELAP	4167	07-07-21
US Fish & Wildlife	US Federal Programs	058448	05-31-22
USDA	US Federal Programs	P330-20-00031	02-10-23
Washington	State	C788	07-13-21
Wisconsin	State	399133460	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins FGS, Seattle

Sample Summary

Client: Friedman & Bruya Project/Site: 106507

Job ID: 580-104115-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
580-104115-1	MW-12-062921	Water	06/29/21 10:55	06/29/21 14:03	

1

6

Ω

9

40

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To	Michael	Erdahl			SUBCO	NTRAC'	rer e	urof	2~′					,		AROUND	of	
	Triodmo	n and Bruya	Inc		PROJEC	T NAM	E/NO.				PO#	PO# Standard TAT						
		th Ave W	1, 1110.		ارد	650	7			B-3	312			Rush c	harge	authoriz		
City, State, ZIP_S Phone #(206) 285			edmanandbruy	a.com	REMAR!	KS Please I	Email I	Result	s					□ Disp □ Retu	ose af rn sar	PLE DISP er 30 day aples ith instru		
						1			ANA	LYSES	REG	UES'	TED			1		
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix # o	75	ЕРН	НЫ	ていしなしたい							1	Notes	
MW-12-062921		6/29/21	1055	wate	ν. [又									
								***										-
Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinguished by				7 Mi	chael E	PRINT dahl	' NAM	1E		Fri			PANY DATE Bruya 6/24/21.		TIME 1225			
Seattle, WA 98119-2029 Received by:			-	Kin	Por	ile-			6	FG	1			129/20	1355			
Ph. (206) 285-8282		Relinquished	oy:						 	il den		herm I		7 Cor:	11 2	• Unc: 4	.3 .	
Fax (206) 283-5044 Received by:			58	580-104115 Chain of Custody				Cooler Dsc: Lab Cour: F Blue lcg: Wet, Dry, None Other:				<u> </u>	/14/2021					

Client: Friedman & Bruya

Job Number: 580-104115-1

Login Number: 104115 List Source: Eurofins FGS, Seattle

List Number: 1

Creator: Greene, Ashton R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 15, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the amended results from the testing of material submitted on June 25, 2021 from the SnoPac 150054, F&BI 106490 project. The naphthalene, mercury and metals reporting limits were lowered.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0708R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 8, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on June 25, 2021 from the SnoPac 150054, F&BI 106490 project. There are 42 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0708R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 25, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC SnoPac 150054, F&BI 106490 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-15-062521
MW-16-062521
MW-12-062521
MW-13-062521
MW-14-062521
MW-17-062521
MW-8-062521
MW-160-062521

The samples were sent to Eurofins for tributyltin analysis. The report will be forwarded upon receipt.

Zinc in the 200.8 matrix spike and matrix spike duplicate failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

The 8082 laboratory control sample and laboratory control sample duplicate failed the relative percent difference for Aroclor 1260. PCBs were not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

Date Extracted: 06/28/21 Date Analyzed: 06/28/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
MW-13-062521 106490-04	230 x	<250	83
Method Blank _{01-1504 MB}	<50	<250	130

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	MW-15-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-01
Date Analyzed:	07/01/21	Data File:	106490-01.148
Matrix:	Water	Instrument:	ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	5.55
Copper	3.76
Lead	<1
Nickel	12.9
Zinc	4.57

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-062521 Client: Aspect Consulting, LLC Date Received: 06/25/21 Project: SnoPac 150054, F&BI 106490

 Date Extracted:
 06/30/21
 Lab ID:
 106490-02 x2

 Date Analyzed:
 07/01/21
 Data File:
 106490-02 x2.157

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Copper
 4.54

 Lead
 <1</td>

 Nickel
 10.0

 Zinc
 5.07

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-16-062521 Client: Aspect Consulting, LLC Date Received: 06/25/21 Project: SnoPac 150054, F&BI 106490

 Date Extracted:
 06/30/21
 Lab ID:
 106490-02 x10

 Date Analyzed:
 06/30/21
 Data File:
 106490-02 x10.158

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 24.1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	MW-12-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-03
Data Analyzadi	07/01/91	Data File	106400 02 140

 Date Extracted.
 06/30/21
 Lab ID.
 100490-03

 Date Analyzed:
 07/01/21
 Data File:
 106490-03.149

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

1.99

 $\begin{array}{c} \text{Concentration}\\ \text{Analyte:} & \text{ug/L (ppb)} \\ \\ \text{Arsenic} & 23.7 \\ \text{Copper} & <1 \\ \text{Lead} & <1 \\ \text{Nickel} & 14.1 \\ \end{array}$

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-13-062521 Client: Aspect Consulting, LLC Date Received: 06/25/21 Project: SnoPac 150054, F&BI 106490 Date Extracted: 06/30/21 Lab ID: 106490-04

 Date Extracted:
 06/30/21
 Lab ID:
 106490-04

 Date Analyzed:
 07/01/21
 Data File:
 106490-04.150

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 2.97

 Copper
 4.03

 Lead
 <1</td>

 Nickel
 42.6

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-13-062521 Client: Aspect Consulting, LLC
Date Received: 06/25/21 Project: SnoPac 150054, F&BI 106490

 Date Extracted:
 06/30/21
 Lab ID:
 106490-04 x10

 Date Analyzed:
 06/30/21
 Data File:
 106490-04 x10.147

Concentration

Analyte: ug/L (ppb)

Zinc 161

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	MW-14-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lah ID:	106490-05

Lab ID: Date Extracted: 06/30/21 106490-05 Date Analyzed: 07/01/21 Data File: 106490-05.151 Matrix: Water Instrument: ICPMS2 ug/L (ppb) Units: SPOperator:

Analyte:	Concentration ug/L (ppb)
Arsenic	1.03
Copper	<1
Lead	<1
Nickel	2.79
Zinc	1.62

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	MW-17-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-06

 Date Extracted:
 06/30/21
 Lab 1D:
 106490-06

 Date Analyzed:
 07/01/21
 Data File:
 106490-06.152

 Matrix:
 Water
 Instrument:
 ICPMS2

 Units:
 ug/L (ppb)
 Operator:
 SP

Analyte:	Concentration ug/L (ppb)
Arsenic	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

 Client ID:
 MW-8-062521
 Client:
 Aspect Consulting, LLC

 Date Received:
 06/25/21
 Project:
 SnoPac 150054, F&BI 106490

 Date Extracted:
 06/30/21
 Lab ID:
 106490-07

 Date Extracted:
 07/01/21
 Lab ID:
 106490-07

Analyte: Concentration ug/L (ppb)

 Arsenic
 1.17

 Copper
 <1</td>

 Lead
 <1</td>

 Nickel
 1.74

 Zinc
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Analyte: Concentration ug/L (ppb)

 Copper
 6.26

 Lead
 <1</td>

 Nickel
 11.0

 Zinc
 17.4

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-160-062521 Client: Aspect Consulting, LLC
Date Received: 06/25/21 Project: SnoPac 150054, F&BI 106490

 Date Extracted:
 06/30/21
 Lab ID:
 106490-08 x10

 Date Analyzed:
 06/30/21
 Data File:
 106490-08 x10.159

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 23.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC Date Received: NA Project: SnoPac 150054, F&BI 106490

06/30/21 Lab ID: Date Extracted: I1-407 mb Date Analyzed: 06/30/21 Data File: I1-407 mb.095 ICPMS2 Matrix: Water Instrument: Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 <1</td>

 Copper
 <1</td>

 Lead
 <0.5</td>

 Nickel
 <1</td>

 Zinc
 <1</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

Date Extracted: 06/28/21 Date Analyzed: 06/29/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Dissolved Mercury</u>
MW-15-062521 106490-01	<0.01
MW-16-062521 106490-02	< 0.01
MW-12-062521 106490-03	< 0.01
MW-13-062521 106490-04	< 0.01
MW-14-062521 106490-05	< 0.01
MW-17-062521 106490-06	< 0.01
MW-8-062521 106490-07	< 0.01
MW-160-062521 106490-08	<0.01
Method Blank i1-403 MB	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis for Semivolatile Phenols By EPA Method 8270E SIM

 Client Sample ID:
 MW-13-062521
 Client:
 Aspect Consulting, LLC

 Date Received:
 06/25/21
 Project:
 SnoPac 150054, F&BI 106490

 Date Extracted:
 07/01/21
 Lab ID:
 106490-04 1/0.25

Date Analyzed: 07/02/21 Data File: 070227.D

Matrix: Water Instrument: GCMS12

Units: ug/L (ppb) Operator: VM

Concentration

Compounds: ug/L (ppb)
Pentachlorophenol <0.05

ENVIRONMENTAL CHEMISTS

Analysis for Semivolatile Phenols By EPA Method 8270E SIM

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac 150054, F&BI 106490

Date Extracted: 07/01/21 Lab ID: 01-1540 mb 1/0.25

Concentration

Compounds: ug/L (ppb)

Pentachlorophenol <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-15-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-01 1/0.25
Date Analyzed:	07/01/21	Data File:	070110.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	12	11	65
Phenol-d6	9 ip	11	65
Nitrobenzene-d5	59	50	150
2-Fluorobiphenyl	54	50	150
2,4,6-Tribromophenol	57	30	131
Terphenyl-d14	57	50	150

rorphony rarr	٠.
Compounds:	Concentration ug/L (ppb)
Naphthalene	0.011
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	0.013
Fluorene	0.0050
Phenanthrene	0.016
Anthracene	< 0.005
Fluoranthene	0.012
Pyrene	0.012
Benz(a)anthracene	< 0.005
Chrysene	< 0.005
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-16-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-02 1/0.25
Date Analyzed:	07/01/21	Data File:	070111.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	14	11	65
Phenol-d6	10 ip	11	65
Nitrobenzene-d5	64°	50	150
2-Fluorobiphenyl	68	50	150
2,4,6-Tribromophenol	81	30	131
Terphenyl-d14	76	50	150

Terphenyr-ur4	70
C1	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.005
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	< 0.005
Fluorene	< 0.005
Phenanthrene	0.014
Anthracene	< 0.005
Fluoranthene	0.0065
Pyrene	0.0080
Benz(a)anthracene	< 0.005
Chrysene	< 0.005
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-13-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-04 1/0.25
Date Analyzed:	07/01/21	Data File:	070112.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

	Lower	Upper
% Recovery:	Limit:	Limit:
10 ip	11	65
9 ip	11	65
60	50	150
64	50	150
78	30	131
76	50	150
	10 ip 9 ip 60 64 78	% Recovery: Limit: 10 ip 11 9 ip 11 60 50 64 50 78 30

respires, rati	
Compounds:	Concentration ug/L (ppb)
Naphthalene	0.005
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	0.072
Acenaphthylene	0.080
Acenaphthene	3.4
Fluorene	1.1
Phenanthrene	0.014
Anthracene	0.095
Fluoranthene	0.86
Pyrene	0.56
Benz(a)anthracene	0.019
Chrysene	0.019
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW-14-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-05 1/0.25
Date Analyzed:	07/01/21	Data File:	070113.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	10 ip	11	65
Phenol-d6	9 ip	11	65
Nitrobenzene-d5	50°	50	150
2-Fluorobiphenyl	50	50	150
2,4,6-Tribromophenol	66	30	131
Terphenyl-d14	65	50	150

Concentration Compounds: ug/L (ppb) Naphthalene 0.622-Methylnaphthalene < 0.05 1-Methylnaphthalene 0.12Acenaphthylene 0.0055Acenaphthene 0.87 Fluorene 0.10 Phenanthrene 0.092Anthracene 0.039Fluoranthene 0.11 Pyrene 0.11 Benz(a)anthracene < 0.005 Chrysene < 0.005 Benzo(a)pyrene < 0.005 Benzo(b)fluoranthene < 0.005 Benzo(k)fluoranthene < 0.005 Indeno(1,2,3-cd)pyrene < 0.005 Dibenz(a,h)anthracene < 0.005 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-17-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-06 1/0.25
Date Analyzed:	07/01/21	Data File:	070114.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	7 ip	11	65
Phenol-d6	6 ip	11	65
Nitrobenzene-d5	42 ip	50	150
2-Fluorobiphenyl	43 ip	50	150
2,4,6-Tribromophenol	68	30	131
Terphenyl-d14	55	50	150

Terpnenyi-a14	99
Common do	Concentration
Compounds:	ug/L (ppb)
Naphthalene	0.015
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	0.0067
Fluorene	< 0.005
Phenanthrene	0.012
Anthracene	< 0.005
Fluoranthene	0.0065
Pyrene	0.0060
Benz(a)anthracene	< 0.005
Chrysene	< 0.005
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-8-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-07 1/0.25
Date Analyzed:	07/01/21	Data File:	070115.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	13	11	65
Phenol-d6	10 ip	11	65
Nitrobenzene-d5	63	50	150
2-Fluorobiphenyl	64	50	150
2,4,6-Tribromophenol	93	30	131
Terphenyl-d14	83	50	150

rorphony rarr	
Compounds:	Concentration ug/L (ppb)
Naphthalene	0.0068
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	< 0.005
Fluorene	< 0.005
Phenanthrene	0.0085
Anthracene	< 0.005
Fluoranthene	< 0.005
Pyrene	< 0.005
Benz(a)anthracene	< 0.005
Chrysene	< 0.005
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-160-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-08 1/0.25
Date Analyzed:	07/01/21	Data File:	070116.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	3 ip	11	65
Phenol-d6	3 ip	11	65
Nitrobenzene-d5	$24 ext{ ip}$	50	150
2-Fluorobiphenyl	28 ip	50	150
2,4,6-Tribromophenol	44	30	131
Terphenyl-d14	41 ip	50	150

Terpnenyi-a14	41 lp
Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.005
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	< 0.005
Fluorene	< 0.005
Phenanthrene	0.0075
Anthracene	< 0.005
Fluoranthene	0.0070
Pyrene	0.0092
Benz(a)anthracene	< 0.005
Chrysene	< 0.005
Benzo(a)pyrene	< 0.005
Benzo(b)fluoranthene	< 0.005
Benzo(k)fluoranthene	< 0.005
Indeno(1,2,3-cd)pyrene	< 0.005
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	01-1531 mb 1/0.25
D - 4 - A 1 1.	07/01/01	D-4- Ett.	070100 D

Date Analyzed:07/01/21Data File:070109.DMatrix:WaterInstrument:GCMS12Units:ug/L (ppb)Operator:VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	15	11	65
Phenol-d6	10 vo	11	65
Nitrobenzene-d5	75	50	150
2-Fluorobiphenyl	76	50	150
2,4,6-Tribromophenol	78	30	131
Terphenyl-d14	89	50	150

< 0.005

< 0.005

< 0.005

< 0.005

< 0.01

Concentration Compounds: ug/L (ppb) Naphthalene < 0.005 2-Methylnaphthalene < 0.05 1-Methylnaphthalene < 0.05 Acenaphthylene < 0.005 Acenaphthene < 0.005 Fluorene < 0.005 Phenanthrene < 0.005 Anthracene < 0.005 Fluoranthene < 0.005 Pyrene < 0.005 Benz(a)anthracene < 0.005 Chrysene < 0.005 Benzo(a)pyrene < 0.005

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-15-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490

Lab ID: 06/28/21 106490-01 1/0.25 Date Extracted: Date Analyzed: 06/29/21 Data File: 062907.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	37	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-16-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490

Date Extracted: Lab ID: 106490-02 1/0.25 06/28/21 Date Analyzed: 06/29/21 Data File: $062908.\mathrm{D}$ Matrix: Water Instrument: GC7Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	24	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-13-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490

Date Extracted: Lab ID: 06/28/21 106490-04 1/0.25 Date Analyzed: 06/29/21 Data File: 062910.DMatrix: Instrument: Water GC7Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	28	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-14-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490

Lab ID: 06/30/21 106490-05 1/0.25 Date Extracted: Date Analyzed: 06/30/21 Data File: 063010.DMatrix: Water Instrument: GC7ug/L (ppb) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	40	24	127

Concentration ug/L (ppb)
8 41 /
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-17-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
Date Extracted:	06/30/21	Lab ID:	106490-06 1/0.25

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	26	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-8-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490
		T 1 TT	

Date Extracted: 06/28/21Lab ID: 106490-07 1/0.25 Date Analyzed: 06/29/21 Data File: 062913.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	29	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-160-062521	Client:	Aspect Consulting, LLC
Date Received:	06/25/21	Project:	SnoPac 150054, F&BI 106490

Date Extracted: Lab ID: 106490-08 1/0.25 06/28/21 Date Analyzed: 06/29/21 Data File: 062914.DMatrix: Instrument: Water GC7Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	32	24	127

Compounds:	Concentration ug/L (ppb)
Aroclor 1221	< 0.005
Aroclor 1232	< 0.005
Aroclor 1016	< 0.005
Aroclor 1242	< 0.005
Aroclor 1248	< 0.005
Aroclor 1254	< 0.005
Aroclor 1260	< 0.005
Aroclor 1262	< 0.005
Aroclor 1268	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac 150054, F&BI 106490

Date Extracted: 06/28/21 Lab ID: 01-1506 mb 1/0.25

Surrogates: % Recovery: Lower Limit: Limit: TCMX 25 24 127

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.005 Aroclor 1232 < 0.005 Aroclor 1016 < 0.005 Aroclor 1242 < 0.005 Aroclor 1248 < 0.005 Aroclor 1254 < 0.005 Aroclor 1260 < 0.005 Aroclor 1262 < 0.005 Aroclor 1268 < 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: SnoPac 150054, F&BI 106490

Date Extracted: 06/30/21 Lab ID: 01-1532 mb 1/0.25

Date Analyzed: 06/30/21 Data File: 063007.D Matrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Lower Limit: Limit: TCMX 47 24 127

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.005 Aroclor 1232 < 0.005 Aroclor 1016 < 0.005 Aroclor 1242 < 0.005 Aroclor 1248 < 0.005 Aroclor 1254 < 0.005 Aroclor 1260 < 0.005 Aroclor 1262 < 0.005 Aroclor 1268 < 0.005

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	132	140	63-142	6

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 106488-02 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	11.5	97	94	70-130	3
Copper	ug/L (ppb)	20	<5	70	70	70-130	0
Lead	ug/L (ppb)	10	<1	76	76	70-130	0
Nickel	ug/L (ppb)	20	6.52	73	71	70-130	3
Zinc	ug/L (ppb)	50	<5	68 vo	67 vo	70-130	1

	Percent				
Reporting	Spike	Recovery	Acceptance		
Units	Level	LCS	Criteria		
ug/L (ppb)	10	94	85-115		
ug/L (ppb)	20	100	85-115		
ug/L (ppb)	10	97	85-115		
ug/L (ppb)	20	100	85-115		
ug/L (ppb)	50	92	85-115		
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 10 ug/L (ppb) 20 ug/L (ppb) 10 ug/L (ppb) 20 ug/L (ppb) 20	Reporting Units Spike Level Recovery LCS ug/L (ppb) 10 94 ug/L (ppb) 20 100 ug/L (ppb) 10 97 ug/L (ppb) 20 100		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Laboratory Code: 106490-01 (Matrix Spike)

				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Mercury	ug/L (ppb)	0.01	< 0.01	79	82	71-125	4	

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Mercury	ug/L (ppb)	0.01	96	99	78 - 125	3

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILE PHENOLS BY EPA METHOD 8270E SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 30)
Pentachlorophenol	ug/L (ppb)	0.63	99	96	70-130	3

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	67	67	66-94	0
2-Methylnaphthalene	ug/L (ppb)	5	72	71	68-98	1
1-Methylnaphthalene	ug/L (ppb)	5	73	71	67-97	3
Acenaphthylene	ug/L (ppb)	5	77	76	70-130	1
Acenaphthene	ug/L (ppb)	5	73	72	70-130	1
Fluorene	ug/L (ppb)	5	79	77	70-130	3
Phenanthrene	ug/L (ppb)	5	79	80	70-130	1
Anthracene	ug/L (ppb)	5	80	81	70-130	1
Fluoranthene	ug/L (ppb)	5	88	87	70-130	1
Pyrene	ug/L (ppb)	5	86	84	70-130	2
Benz(a)anthracene	ug/L (ppb)	5	84	85	70-130	1
Chrysene	ug/L (ppb)	5	84	84	70-130	0
Benzo(a)pyrene	ug/L (ppb)	5	90	90	70-130	0
Benzo(b)fluoranthene	ug/L (ppb)	5	89	87	62-130	2
Benzo(k)fluoranthene	ug/L (ppb)	5	84	84	70-130	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	94	94	70-130	0
Dibenz(a,h)anthracene	ug/L (ppb)	5	89	91	70-130	2
Benzo(g,h,i)perylene	ug/L (ppb)	5	86	87	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.13	53	60	25-111	12
Aroclor 1260	ug/L (ppb)	0.13	65	81	23-123	22 vo

ENVIRONMENTAL CHEMISTS

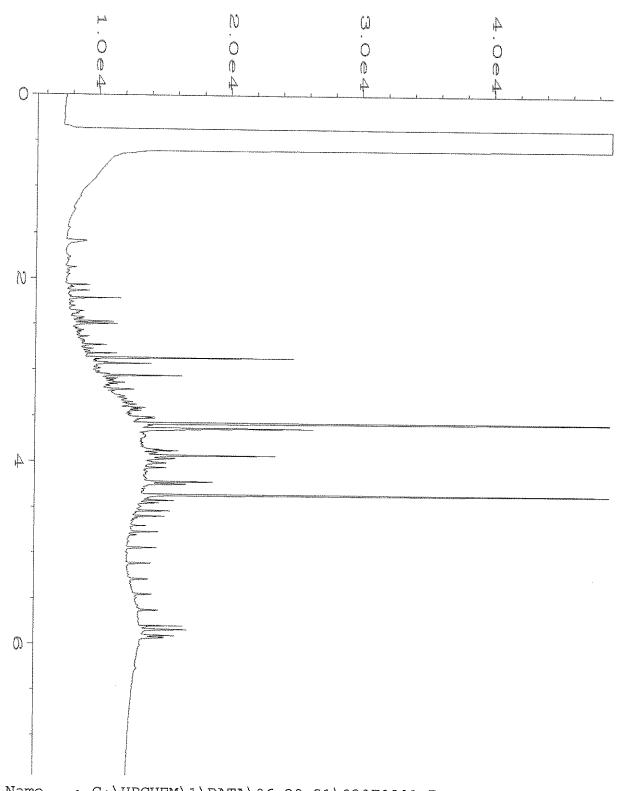
Date of Report: 07/08/21 Date Received: 06/25/21

Project: SnoPac 150054, F&BI 106490

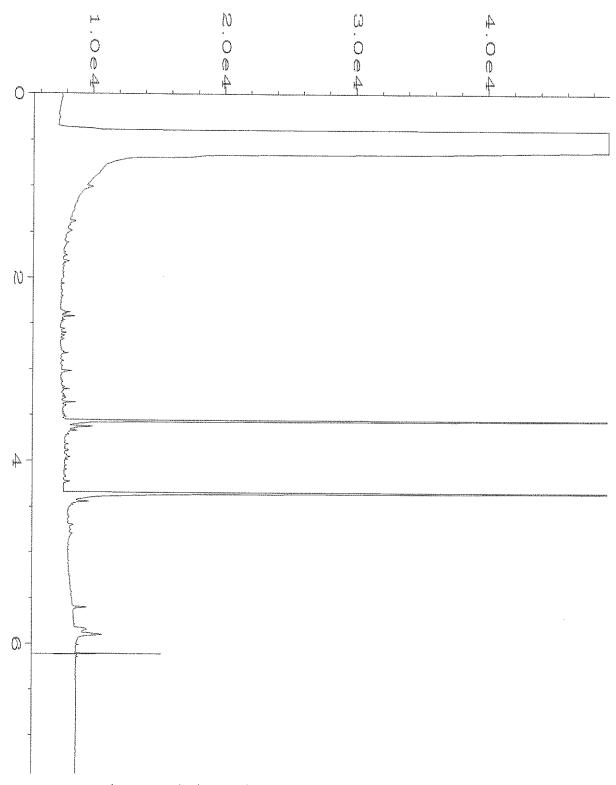
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.13	66	64	25-111	3
Aroclor 1260	ug/L (ppb)	0.13	77	80	23-123	4

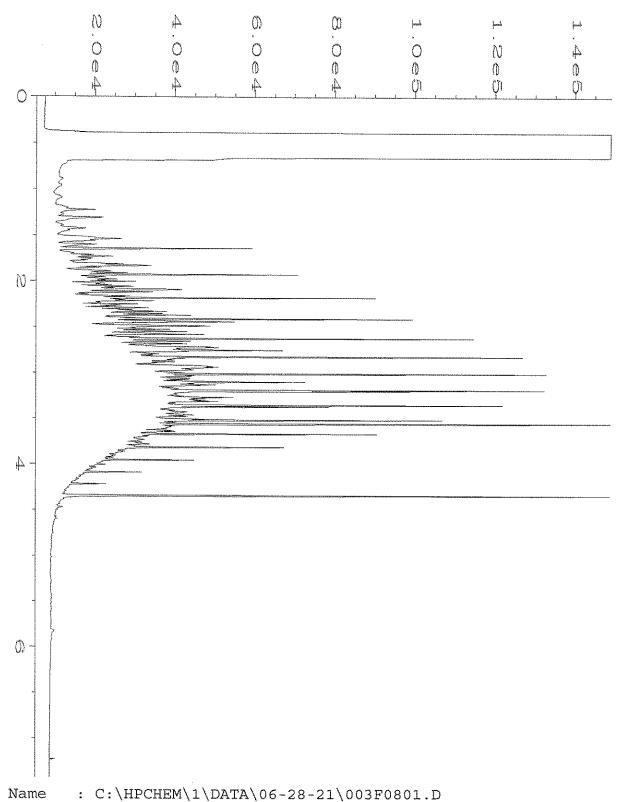
ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


Seattle, WA 98119-2029 WID-180-087321 MW-9-067821 3012 16th Avenue West Priedman & Bruya, Inc. 125290-1-1-NW MU-14-062821 MW-16-062521 MW-13-062521 My-15-06252) MU-17-06252) Company Aspert Phone316-617-0497 City, State, ZIP. Address Report To Breeze Gree Chhaai Sample ID Email by world est works by Project specific RLs? - Kes y No Relinguished by Relinquished by: Received by: Received by: 外外 TKW 30 D+14-30 05 K-3I 36450 の人も正 \supseteq CY A SO Lab ID から SIGNATURE 1000 D Sampled Date とたの 十十二 1380 1700 215 0200 SAMPLE CHAIN OF CUSTODY 1200 8 Sampled Time REMARKS PROJECT NAME SAMPLERS (signature) STORE 450 Sample Type YOU New Shink Ö Ō Ō # of PRINT NAME る。生きるであ X NWTPH-Dx NWTPH-Gx で変え INVOICE TO VOCs EPA 8260 ou-low!PAH-\$170 PAH: EPA 8270 #Og# Х PAH: EPA 8270
PCB: EPA 8082
DISSING AS, CUPB
NI, In - ZOO. 8
DISSING HA
MALA 1831E
Tribagarion
SAZSAUS が発 X Samples received at 3 °C REQUESTED COMPANY K У < y Default: Dispose after 30 days O Archive samples Rush charges authorized by: HSUN O (YStandard turnaround < Page # / TURNAROUND TIME PLP - 8270-8M SAMPLE DISPOSAL X 74/52/9 Notes Spirity & TDS 77/2 , l6 / 6796 5 / 17840 5 / 17840 8 / 1270 DATE 10 / 1375 2 / 5498 <25 / 564 12 / 1230 景 HME

Ph. (206) 285-8282


Notes 506 PAH. P.S. TBT issaudia Coper


```
Data File Name
               : C:\HPCHEM\1\DATA\06-28-21\030F0901.D
Operator
                : TL
                                               Page Number
Instrument
                : GC1
                                               Vial Number
                                                               : 30
Sample Name
                : 106490-04
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 28 Jun 21
                                               Instrument Method: DX.MTH
                             04:58 PM
Report Created on: 29 Jun 21 10:19 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\06-28-21\024F0701.D
Operator
                 : TL
                                                 Page Number
Instrument
                                                 Vial Number
                 : GC1
                                                                   : 24
Sample Name
                 : 01-1504 mb
                                                 Injection Number : 1
Sequence Line : 7
Run Time Bar Code:
Acquired on : 28 Jun 21 03:19 PM
                                                 Instrument Method: DX.MTH
Report Created on: 29 Jun 21 10:26 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
Operator
                 : TL
                                                 Page Number
                                                 Vial Number
Instrument
                 : GC1
                                                                   : 3
Sample Name
                 : 500 Dx 63-79C
                                                 Injection Number: 1
Sequence Line: 8
Run Time Bar Code:
Acquired on : 28 Jun 21 04:20 PM
                                                 Instrument Method: DX.MTH
Report Created on: 29 Jun 21 10:19 AM
                                                 Analysis Method : DEFAULT.MTH
```


Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-104116-1 Client Project/Site: 106490

For:

Friedman & Bruya 3012 16TH AVENUE WEST Seattle, Washington 98119-2029

Attn: Michael Erdahl

Authorized for release by: 7/14/2021 3:04:25 PM

Nathan Lewis, Project Manager I (253)922-2310

Nathan.Lewis@Eurofinset.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Friedman & Bruya Project/Site: 106490 Laboratory Job ID: 580-104116-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	
Chronicle	13
Certification Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

- 0

4

7

9

10

Case Narrative

Client: Friedman & Bruya Job ID: 580-104116-1 Project/Site: 106490

Job ID: 580-104116-1

Laboratory: Eurofins FGS, Seattle

Narrative

Job Narrative 580-104116-1

Comments

No additional comments.

Receipt

The samples were received on 6/29/2021 1:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS Semi VOA

Method Organotins: Surrogate recovery for the following sample was outside the upper control limit: MW16-062521 (580-104116-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Qualifiers

GC/MS Semi VOA

Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 4 of 18

•

9

4

5

8

10

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW15-062521 Lab Sample ID: 580-104116-1

Date Collected: 06/25/21 07:55 Matrix: Water

Date Collected: 06/25/21 07:55 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotins -	Organotins, PSEP (GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed 07/06/21 22:45	Dil Fac
Tributyltin	ND		0.35		ug/L		00/30/21 12:04	07/06/21 22:45	ı
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	76		10 - 142				06/30/21 12:04	07/06/21 22:45	1

6

8

46

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW16-062521 Lab Sample ID: 580-104116-2

Matrix: Water

Date Collected: 06/25/21 08:00 Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/06/21 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	151	S1+	10 - 142				06/30/21 12:04	07/06/21 23:11	1

6

Q

9

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW13-062521 Lab Sample ID: 580-104116-3

Date Collected: 06/25/21 10:05 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP (
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.33		ug/L		06/30/21 12:04	07/06/21 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	84		10 - 142				06/30/21 12:04	07/06/21 23:37	1

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW14-062521 Lab Sample ID: 580-104116-4

Date Collected: 06/25/21 10:09 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotins	Method: Organotins - Organotins, PSEP (GC/MS)											
Analyte	Result Qualif	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac					
Tributyltin	ND ND	0.34	ug/L		06/30/21 12:04	07/07/21 00:03	1					
Surrogate	%Recovery Qualif	ier Limits			Prepared	Analyzed	Dil Fac					
Tripentyltin	35	10 - 142			06/30/21 12:04	07/07/21 00:03	1					

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW17-062521 Lab Sample ID: 580-104116-5

Date Collected: 06/25/21 11:47

Date Received: 06/29/21 13:55

Matrix: Water

Method: Organotins	- Organotins, PSEP ((GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	38		10 - 142				06/30/21 12:04	07/07/21 00:30	1

6

_

9

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-8-062521 Lab Sample ID: 580-104116-6

Date Collected: 06/25/21 12:00 Matrix: Water

Date Collected: 06/25/21 12:00 Matrix: Water Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.34		ug/L		06/30/21 12:04	07/07/21 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	36		10 - 142				06/30/21 12:04	07/07/21 00:56	1

7

8

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-160-062521 Lab Sample ID: 580-104116-7

Date Collected: 06/25/21 13:30 Matrix: Water

Date Received: 06/29/21 13:55

Method: Organotine	s - Organotins, PSEP	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 01:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	95		10 - 142				06/30/21 12:04	07/07/21 01:22	1

6

8

3

QC Sample Results

Client: Friedman & Bruya Job ID: 580-104116-1 Project/Site: 106490

Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-360666/1-A	Client Sample ID: Method Blank
Lub Guillpic ID. IIID GGG-GGGGGG/1-A	Onent oumple ib. Method Blank

Matrix: Water

Analysis Batch: 361143

Prep Type: Total/NA **Prep Batch: 360666** MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac

Unit

ug/L

ug/L

MB MB

ND

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tripentyltin 103 10 - 142 06/30/21 12:04 07/06/21 21:26

0.30

Lab Sample ID: LCS 580-360666/2-A **Client Sample ID: Lab Control Sample**

LCS LCS

LCSD LCSD

0.348

Result Qualifier

0.295 J

Result Qualifier

Matrix: Water

Analyte

Tributyltin

Analysis Batch: 361143

Analyte Tributyltin

Added 1.79 LCS LCS

Limits

Spike

Added

1.79

Spike

%Recovery Qualifier 10 - 142 111

Lab Sample ID: LCSD 580-360666/3-A

Matrix: Water

Surrogate

Tripentyltin

Tributyltin

Analysis Batch: 361143

Analyte

LCSD LCSD Surrogate **%Recovery Qualifier** Limits Tripentyltin 140 10 - 142

06/30/21 12:04 07/06/21 21:26

Prep Type: Total/NA **Prep Batch: 360666**

%Rec.

Limits

11 - 150

Client Sample ID: Lab Control Sample Dup

D %Rec

16

Prep Type: Total/NA **Prep Batch: 360666**

%Rec. RPD

%Rec Limits RPD Limit 19

11 - 150

ug/L

Unit

Eurofins FGS, Seattle

Client: Friedman & Bruya

Project/Site: 106490

Client Sample ID: MW15-062521

Date Collected: 06/25/21 07:55 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-1

Matrix: Water

Job ID: 580-104116-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 22:45	TL1	FGS SEA

Client Sample ID: MW16-062521

Date Collected: 06/25/21 08:00 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 23:11	TL1	FGS SEA

Client Sample ID: MW13-062521

Date Collected: 06/25/21 10:05 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/06/21 23:37	TL1	FGS SEA

Client Sample ID: MW14-062521

Date Collected: 06/25/21 10:09 Date Received: 06/29/21 13:55

Lab Sample ID: 580-104116-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 00:03	TL1	FGS SEA

Client Sample ID: MW17-062521	Lab Sample ID: 580-104116-5
Date Collected: 06/25/21 11:47	Matrix: Water
Date Received: 06/29/21 13:55	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 00:30	TL1	FGS SEA

Client Sample ID: MW-8-062521

Date Collected: 06/25/21 12:00

Date Received: 06/29/21 13:55

Lab	Sample	ID:	580-104116-6	

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
l	Total/NA	Analysis	Organotins		1	361143	07/07/21 00:56	TL1	FGS SEA

Lab Chronicle

Client: Friedman & Bruya Job ID: 580-104116-1

Project/Site: 106490

Client Sample ID: MW-160-062521 Lab Sample ID: 580-104116-7

Date Collected: 06/25/21 13:30 **Matrix: Water**

Date Received: 06/29/21 13:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 01:22	TL1	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Friedman & Bruya

Job ID: 580-104116-1

Project/Site: 106490

Laboratory: Eurofins FGS, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-004	02-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	Dept. of Energy	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
California	State	2954	06-30-21 *
Florida	NELAP	E87575	06-30-22
Kentucky (WW)	State	KY98042	12-31-21
Louisiana	NELAP	03073	06-30-22
Maine	State	2020012	05-02-22
Montana (UST)	State	NA	04-14-27
New Jersey	NELAP	WA014	06-30-22
New York	NELAP	11662	04-01-22
Oregon	NELAP	4167	07-07-21
US Fish & Wildlife	US Federal Programs	058448	05-31-22
USDA	US Federal Programs	P330-20-00031	02-10-23
Washington	State	C788	07-13-21
Wisconsin	State	399133460	08-31-21

4

8

9

10

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Friedman & Bruya
Project/Site: 106490

Job ID: 580-104116-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
580-104116-1	MW15-062521	Water	06/25/21 07:55	06/29/21 13:55	
580-104116-2	MW16-062521	Water	06/25/21 08:00	06/29/21 13:55	
580-104116-3	MW13-062521	Water	06/25/21 10:05	06/29/21 13:55	
580-104116-4	MW14-062521	Water	06/25/21 10:09	06/29/21 13:55	
580-104116-5	MW17-062521	Water	06/25/21 11:47	06/29/21 13:55	
580-104116-6	MW-8-062521	Water	06/25/21 12:00	06/29/21 13:55	
580-104116-7	MW-160-062521	Water	06/25/21 13:30	06/29/21 13:55	

_

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To	Michae	l Erda	hl			SUB	CONT	RACT	ER E) وبرب	ins			4				# l IAROUI			
Company Friedman and Bruya, Inc.				PROJECT NAME/NO. PO#					≤Standard TAT □ RUSH												
Address3012 16th Ave W					10	649	0			B	, -31Z Rush charges authorize			rized	oy:						
City, State, ZIP				edmanandbruya	a.com	REM	ARKS Pl	ease E	mail F	Result	s	***************************************				□ Dispo □ Retu	ose aft rn san	PLE DIS ter 30 d nples ith inst	ays		
										· ·····	ANA	LYSES	REC	QUEST	red		·····	T			٦
Sample ID	Lab ID		ate ipled	Time Sampled	Mat	ו צויו	# of jars	Dioxins/Furans	БРН	VPH	Tribdy14in								Not	es	
MW15-062521		6/2	5/21	0 <i>75</i> 5	Wate	v	ļ				×										
MW16 - 062521			•	০৪৩১			l				×										
MW13-062521				2915 1005			1				×										
MW14-062521				1005 1009			1				×		***************************************								
MW17-062521				1009 (147			ſ				×		A								
MW-8-062521				447 1200			1				<u> </u>										
4w-160-062521			ł	1330			1				<i>></i>										
A-4-1					***************************************																_
Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinquished By:		1		Micha	F ael Ero	<u> </u>	NAM	E		Fri	COl edman	MPA & Bı			DATE 0/28/21		TIME				
Seattle, WA 98119-	2029	Receive	ed by:				10				V	Most	1	Fr.	٠,			1 0	1/21	135	
Ph. (206) 285-8282	-	Relinqu	uished b	y:	}1	 	/	11 (11) (1 11) (1		E 8171 1821	1710			IR9c		. 3 ° t	10 _nc:4/,		7	1)	
Fax (206) 283-5044 Received by:			- - 58	O-104116	6 Chain		7 Of 18			Coole Packi Cust.	r Dsc: ng: Seal: Y		S 4 4	FedEx	c:			7	/14/2		

Client: Friedman & Bruya Job Number: 580-104116-1

Login Number: 104116 List Source: Eurofins FGS, Seattle

List Number: 1

Creator: Greene, Ashton R

Creator: Greene, Ashton R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins FGS, Seattle

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 15, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the amended results from the testing of material submitted on June 29, 2021 from the Snopac 150054, F&BI 106507 project. The naphthalene reporting limits were lowered.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0708R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 8, 2021

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on June 29, 2021 from the Snopac 150054, F&BI 106507 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP0708R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 29, 2021 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Snopac 150054, F&BI 106507 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

106507 -01 MW-12-062921

Sample MW-12-062921 was sent to Eurofins for tributyltin analysis. The report generated by Eurofins will be forwarded to your office upon receipt.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method $8270\mathrm{E}$

Client Sample ID:	MW-12-062921	Client:	Aspect Consulting, LLC
Date Received:	06/29/21	Project:	Snopac 150054, F&BI 106507
Date Extracted:	06/30/21	Lab ID:	106507-01 1/0.25
Date Analyzed:	07/01/21	Data File:	070117.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	16	11	65
Phenol-d6	14	11	65
Nitrobenzene-d5	56	50	150
2-Fluorobiphenyl	54	50	150
2,4,6-Tribromophenol	81	30	131
Terphenyl-d14	62	50	150

Terphenyr arr	02
Compounds:	Concentration ug/L (ppb)
Naphthalene	0.016
2-Methylnaphthalene	< 0.05
1-Methylnaphthalene	< 0.05
Acenaphthylene	< 0.005
Acenaphthene	0.0070
Fluorene	< 0.005
Phenanthrene	0.022
Anthracene	< 0.005
Fluoranthene	0.029
Pyrene	0.031
Benz(a)anthracene	0.012
Chrysene	0.013
Benzo(a)pyrene	0.015
Benzo(b)fluoranthene	0.020
Benzo(k)fluoranthene	0.0070
Indeno(1,2,3-cd)pyrene	0.0065
Dibenz(a,h)anthracene	< 0.005
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Snopac 150054, F&BI 106507
Date Extracted:	06/30/21	Lab ID:	01-1531 mb 1/0.25
TO 1 A 1 1	05/01/01	D + D'1	050100 D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	15	11	65
Phenol-d6	10 vo	11	65
Nitrobenzene-d5	75	50	150
2-Fluorobiphenyl	76	50	150
2,4,6-Tribromophenol	78	30	131
Terphenyl-d14	89	50	150

Concentration Compounds: ug/L (ppb) Naphthalene < 0.005 2-Methylnaphthalene < 0.05 1-Methylnaphthalene < 0.05 Acenaphthylene < 0.005 Acenaphthene < 0.005 Fluorene < 0.005 Phenanthrene < 0.005 Anthracene < 0.005 Fluoranthene < 0.005 Pyrene < 0.005 Benz(a)anthracene < 0.005 Chrysene < 0.005

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

< 0.005

< 0.005

< 0.005

< 0.005

< 0.005

< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	MW-12-062921	Client:	Aspect Consulting, LLC
Date Received:	06/29/21	Project:	Snopac 150054, F&BI 106507
Date Extracted:	06/30/21	Lab ID:	106507-01 1/0.25

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	44	24	127

Concentration ug/L (ppb)
8 41 /
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005
< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Snopac 150054, F&BI 106507

Date Extracted: 06/30/21 Lab ID: 01-1532 mb 1/0.25

Surrogates: % Recovery: Lower Limit: Limit: TCMX 47 24 127

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.005 Aroclor 1232 < 0.005 Aroclor 1016 < 0.005 Aroclor 1242 < 0.005 Aroclor 1248 < 0.005 Aroclor 1254 < 0.005 Aroclor 1260 < 0.005 Aroclor 1262 < 0.005 Aroclor 1268 < 0.005

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/29/21

Project: Snopac 150054, F&BI 106507

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.25

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	5	67	67	66-94	0
2-Methylnaphthalene	ug/L (ppb)	5	72	71	68-98	1
1-Methylnaphthalene	ug/L (ppb)	5	73	71	67-97	3
Acenaphthylene	ug/L (ppb)	5	77	76	70-130	1
Acenaphthene	ug/L (ppb)	5	73	72	70-130	1
Fluorene	ug/L (ppb)	5	79	77	70-130	3
Phenanthrene	ug/L (ppb)	5	79	80	70-130	1
Anthracene	ug/L (ppb)	5	80	81	70-130	1
Fluoranthene	ug/L (ppb)	5	88	87	70-130	1
Pyrene	ug/L (ppb)	5	86	84	70-130	2
Benz(a)anthracene	ug/L (ppb)	5	84	85	70-130	1
Chrysene	ug/L (ppb)	5	84	84	70-130	0
Benzo(a)pyrene	ug/L (ppb)	5	90	90	70-130	0
Benzo(b)fluoranthene	ug/L (ppb)	5	89	87	62-130	2
Benzo(k)fluoranthene	ug/L (ppb)	5	84	84	70-130	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	94	94	70-130	0
Dibenz(a,h)anthracene	ug/L (ppb)	5	89	91	70-130	2
Benzo(g,h,i)perylene	ug/L (ppb)	5	86	87	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 07/08/21 Date Received: 06/29/21

Project: Snopac 150054, F&BI 106507

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample 1/0.25

·	·	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.13	66	64	25-111	3
Aroclor 1260	ug/L (ppb)	0.13	77	80	23 - 123	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Freeyn
Company Aspect Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West City, State, ZIP & Uttu, WA 98104 Address 710 2Nd Nr. Ste 550 Friedman & Bruya, Inc. Phone316-617-0449 Email by concaspect and littly Project specific RLs? - (Yes) / No MW-12-062921 Sample ID 10630 Relinquisted by: Relinquished by: Received by: Received by: Ulbaja D-1110 Lab ID SIGNATURE Sampled Date TESS DAINT DE CETERE Sampled PROJECT NAME SAMPLERS (signature) Time REMARKS Snopac Radius Comwiell ٤ James Sample Type # of Jars W PRINT NAME allus NWTPH-Dx BTEX EPA 8021 120021 NWTPH-HCID INVOICE TO F 6 ANALYSES REQUESTED VOCs EPA 8260 PO# Roser PAHs EPA 8270 F\$B PCBs EPA 8082 tow level PAH & 270 PCB - wetlog & 0878 COMPANY 34/al Page #_ Samples received at __ × SAMPLE DISPOSAL Of Archive samples X Standard turnaround Default: Dispose after 30 days O Other_ Rush charges authorized by: ** TURNAROUND TIME DOH PERM Thomas Volume DATE 4ºc Notes 120 0/2/ TIME

Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-104115-1

Client Project/Site: 106507

For:

Friedman & Bruya 3012 16TH AVENUE WEST Seattle, Washington 98119-2029

Attn: Michael Erdahl

Authorized for release by: 7/14/2021 12:21:29 PM

Nathan Lewis, Project Manager I (253)922-2310

Nathan.Lewis@Eurofinset.com

·····LINKS ······

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Friedman & Bruya Project/Site: 106507 Laboratory Job ID: 580-104115-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

4

5

0

8

9

Case Narrative

Client: Friedman & Bruya

Job ID: 580-104115-1

Project/Site: 106507

Job ID: 580-104115-1

Laboratory: Eurofins FGS, Seattle

Narrative

Job Narrative 580-104115-1

Comments

No additional comments.

Receipt

The sample was received on 6/29/2021 1:55 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS Semi VOA

Method Organotins: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 580-360666 and analytical batch 580-361143 recovered outside control limits for the following analytes: Dibutyltin. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

3

4

5

0

0

1 0

Definitions/Glossary

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Page 4 of 11

Client Sample Results

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Date Collected: 06/29/21 10:55 East Sample 15: 050-15-110-1

Date Received: 06/29/21 14:03

Method: Organotins	- Organotins, PSEP	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		0.35		ug/L		06/30/21 12:04	07/07/21 01:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	48		10 - 142				06/30/21 12:04	07/07/21 01:48	1

6

8

3

QC Sample Results

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-360666/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water Analysis Batch: 361143

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.30 06/30/21 12:04 07/06/21 21:26 Tributyltin ND ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tripentyltin 103 10 - 142 06/30/21 12:04 07/06/21 21:26

Lab Sample ID: LCS 580-360666/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 361143

Prep Batch: 360666 Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits

Analyte Tributyltin 1.79 0.295 J ug/L 16 11 - 150

LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 10 - 142 111

Lab Sample ID: LCSD 580-360666/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 361143 Prep Batch: 360666 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Tributyltin 1.79 0.348 ug/L 19 11 - 150

LCSD LCSD

Surrogate %Recovery Qualifier Limits Tripentyltin 140 10 - 142

Eurofins FGS, Seattle

7/14/2021

Prep Batch: 360666

Lab Chronicle

Client: Friedman & Bruya Job ID: 580-104115-1

Project/Site: 106507

Client Sample ID: MW-12-062921 Lab Sample ID: 580-104115-1

Date Collected: 06/29/21 10:55 Matrix: Water

Date Received: 06/29/21 14:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Organotin			360666	06/30/21 12:04	RJL	FGS SEA
Total/NA	Analysis	Organotins		1	361143	07/07/21 01:48	TL1	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

4

7

9

Accreditation/Certification Summary

Client: Friedman & Bruya Job ID: 580-104115-1 Project/Site: 106507

Laboratory: Eurofins FGS, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-004	02-19-22
ANAB	Dept. of Defense ELAP	L2236	01-19-22
ANAB	Dept. of Energy	L2236	01-19-22
ANAB	ISO/IEC 17025	L2236	01-19-22
California	State	2954	06-30-21 *
Florida	NELAP	E87575	06-30-22
Kentucky (WW)	State	KY98042	12-31-21
Louisiana	NELAP	03073	06-30-22
Maine	State	2020012	05-02-22
Montana (UST)	State	NA	04-14-27
New Jersey	NELAP	WA014	06-30-22
New York	NELAP	11662	04-01-22
Oregon	NELAP	4167	07-07-21
US Fish & Wildlife	US Federal Programs	058448	05-31-22
USDA	US Federal Programs	P330-20-00031	02-10-23
Washington	State	C788	07-13-21
Wisconsin	State	399133460	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Friedman & Bruya Project/Site: 106507

Job ID: 580-104115-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
580-104115-1	MW-12-062921	Water	06/29/21 10:55	06/29/21 14:03	

4

6

Ω

9

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To	Michael	Erdahl			SUBCO	NTRAC'	rer e	urof	2~′					,		AROUND	of	
	Triodmo	n and Bruya	Inc		PROJEC	T NAM	E/NO.				PO#			≲Stan □ RUS		TAT		
		th Ave W	1, 1110.		106507 B-3					i i								
City, State, ZIP_S Phone #(206) 285			edmanandbruy	a.com	REMAR!	KS Please I	Email I	Result	s					□ Disp □ Retu	ose af rn sar	PLE DISP er 30 day aples ith instru	s	
						1			ANA	LYSES	REG	UES'	TED			1		
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix # o	75	ЕРН	НЫ	ていしなしたい							1	Notes	
MW-12-062921		6/29/21	1055	wate	ν. [又									
								***										-
Friedman & Bruya 3012 16th Avenue		Relinquished	SIGNATURE		7 Mi	chael E	PRINT dahl	' NAM	1E		Fri	CC edmai	MPA n & B			DATE 2/24/21.	TIME 1225	
Seattle, WA 98119-	2029	Received by:	Te		-	Kin	Por	7)0			6	FG	1			129/20	1355	
Ph. (206) 285-8282 Relinquished by:									m + 1/30 1/30 1 1/30									
Fax (206) 283-5044 Received by:				58	——————————————————————————————————————				Cooler Dsc: Lab Cour: Y. Seal: Yes No & Lab Cour: Y. Blue Ics; Wet, Dry, None Other:				<u> </u>	/14/2021				

Client: Friedman & Bruya

Job Number: 580-104115-1

Login Number: 104115 List Source: Eurofins FGS, Seattle

List Number: 1

Creator: Greene, Ashton R

Creator. Greene, Ashton N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX I

Dewatering Discharge Self-Monitoring Reports

Industrial Waste Program Self-Monitoring Report

Send to: King County Industrial Waste Program

201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

Phone 206-477-5300 / FAX 206-263-3001 Email: info.KCIW@kingcounty.gov

Project Name: 5055 Properties, LLC Authorization No.: 1092-01

Project Location: 5055 E Marginal Way S, Seattle

Sample	pH ((s.u.)	able ids /L)	ar FOG //L)	enic //L)	nium //L)	(mg/L)	mg/L)	ury (L)	Discharge	Name or initials of person collecting and recording samples and volume
Date	Min.	Max.	Settleable Solids (mL/L)	Nonpolar FOG (mg/L)	Arsenic (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Mercury (mg/L)	Volume (gallons)	each day. If permitted for relief only, explain why you did not discharge to surface water for each day of discharge. AG
1/11/2021	6.80	6.82	< 0.1	< 3.0						1531	T.
1/12/2021	6.87	6.98	< 0.1	< 3.0						24876	and
1/13/2021	6.98	7.01	< 0.1	< 3.0	0.0078	0.0018	0.0085	< 0.001	< 0.001	24367	or no ate, ate, adding
1/14/2021	7.03	7.08	< 0.1	< 3.0						21635	i ron
1/15/2021	7.04	7.06	< 0.1	< 3.0						7132	nde dan dan dan dan dan dan dan core
											red u la life de la la life de la la life de la
											Ogran
											prediction of the control of the con
											a fall fall fall fall fall fall fall fa
											s s w ss w mss in titting en in the state of
											L fu pont
											chr eed res
											atta Signatus Bara Bara Bara Bara Signation Bara Bara Bara Bara Bara Bara Bara Bar
											all red dire
											and ————————————————————————————————————
											en says system ————————————————————————————————————
											tham tion if it is a very second and the second and
											doo
											nfoc or this major was a second of the secon
											nat t he i eem, he i soon all E
											account to the transfer of the
									-		Di la alun alun alun alun alun alun alun a
									1		tty c Sion Test and a second s
						-			ļ		eena ena en a an aid an aid
											nder penalty of law that this document and all attachn or supervision in accordance with a system designed and read and earluate the information submitted. Based the middle and earluate the information submitted. Based who manage the system, or those persons directly reso, the information submitted is, to the best of my kno il am aware that there are significant penalties for suility of fine and imprisonment for knowing violations. If an analysis were analyzed by a Washington State Defor each parameter tested.
											Index of the state
						1			1		Teartify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified be resonnel properly gather and evaluate the information submitted. Based on my inquire of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and bellef, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including alboratory analysis were analyzed by a Washington State Department of Ecology accredited laboratory for each parameter tested. Signature of Principal Executive or Authorized Agent Date
			1								a both

The authorization holder is responsible for monitoring the discharge in accordance with the monitoring requirements specified in King County Discharge Authorization No. 1092-01. This report form must be completed, signed, and submitted to KCIW by **February 15, 2022**.

Your King County Industrial Waste Program Contact: Todd Gowing, 206-477-5426

Industrial Waste Program Self-Monitoring Report

Send to: King County Industrial Waste Program

201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

Phone 206-477-5300 / FAX 206-263-3001 **Email: info.KCIW@kingcounty.gov**

Project Name: 5055 Properties, LLC Authorization No.: 1092-01	Authorization No.: 1092-01	me: 5055 Pro	Project Name
---	----------------------------	---------------------	---------------------

Project Location: 5055 E Marginal Way S, Seattle

Sample		(mg/L)	(mg/L)	(mg/L)					Name or initials of person collecting and recording samples and volume
Date		Nickle (mg/L)	Zinc (PAHs (mg/L)					each day. If permitted for relief only, explain why you did not discharge to surface water for each day of discharge.
1/13/2021		0.042	0.041						
1/14/2021				0.0018					an and gring
									nnel eduii
									r my rsol
									and the second s
									red u la life de la
									D D D D D D D D D D D D D D D D D D D
									prepare
									ere tropic and tropic and the tropic
									s s w s ssu
									To a to a form t
									chr.
									and the same and t
									all declarations of the second
									and ————————————————————————————————————
									ent sulfibers as with the same as with t
									e or
									d do
									this are an are sed –
									The second secon
									aav t aacc aacc aacc aacc acc acc acc acc a
		+							nof the range of t
									alty alty alty alty alty alto a sis v are
									Terrify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information, submitted. Based on my inquiry of the person or property gather and evaluate the information submitted is, to the best of my knowledge and belief, tute, accordance property for the information submitted is, to the best of my knowledge and belief, tute, accordance the system designed to assure that there are significant penalties for submitting the morphology of the possibility of fine and imprisonment for knowing violations. I further certify that all data requiring laboratory for each parameter tested. Signature of Principal Executive or Authorized Agent
									der
									- und in ordination of the contraction of the contr
		+		1					ritify son in the pose bors of the pose bors of the pose in the po
I	L				Tot	al Dical	∟ harge V	olumo:	a para la para

The authorization holder is responsible for monitoring the discharge in accordance with the monitoring requirements specified in King County Discharge Authorization No. 1092-01. This report form must be completed, signed, and submitted to KCIW by **February 15, 2022.Your King County Industrial Waste Program Contact:** Todd Gowing, 206-477-5426

APPENDIX J

Republic Soil Disposal Tracking

Appendix H. Republic Tonnage Report Project No. 150054, Snopac, Seattle, Washington

	Faci	ility and			
Γicket Date		icket ımber	Truck #	Material	Material Total
2/28/2020 I	01	990543	G90 GRADY	SW-CONT SOIL	15.30 TN
2/28/2020 I	01	990544	G92 GRADY	SW-CONT SOIL	16.16 TN
2/28/2020 I	01	990545	G68 GRADY	SW-CONT SOIL	17.17 TN
2/28/2020 I	01	990547	G90 GRADY	SW-CONT SOIL	16.79 TN
2/28/2020 I	01	990548	G68 GRADY	SW-CONT SOIL	17.12 TN
2/28/2020 I	01	990549	G92 GRADY	SW-CONT SOIL	17.57 TN
2/28/2020 I	01	990551	G90 GRADY	SW-CONT SOIL	18.99 TN
2/28/2020 I	01	990552	G68 GRADY	SW-CONT SOIL	17.17 TN
2/28/2020 I	01	990553	G92 GRADY	SW-CONT SOIL	16.94 TN
2/28/2020 I	01	990554	G90 GRADY	SW-CONT SOIL	16.57 TN
2/28/2020 I	01	990556	G68 GRADY	SW-CONT SOIL	18.12 TN
2/28/2020 I	01	990557	G92 GRADY	SW-CONT SOIL	16.15 TN
2/28/2020 I	01	990559	G90 GRADY	SW-CONT SOIL	18.52 TN
2/28/2020 I	01	990561	G68 GRADY	SW-CONT SOIL	15.73 TN
2/28/2020 I	01	990562	G92 GRADY	SW-CONT SOIL	16.68 TN
2/28/2020 I	01	990563	G90 GRADY	SW-CONT SOIL	14.82 TN
2/28/2020 I	01	990566	G68 GRADY	SW-CONT SOIL	15.99 TN
2/28/2020 I	01	990567	G92 GRADY	SW-CONT SOIL	16.73 TN
2/28/2020 I	01	990569	G90 GRADY	SW-CONT SOIL	13.12 TN
2/28/2020 I	01	990571	G68 GRADY	SW-CONT SOIL	13.89 TN
2/28/2020 I	01	990572	G92 GRADY	SW-CONT SOIL	14.90 TN
2/28/2020 I	01	990573	G90 GRADY	SW-CONT SOIL	14.12 TN
2/28/2020 I	01	990574	G68 GRADY	SW-CONT SOIL	15.62 TN
2/28/2020 I	01	990575	G92 GRADY	SW-CONT SOIL	17.61 TN
2/28/2020 I	01	990576	G90 GRADY	SW-CONT SOIL	16.14 TN
2/28/2020 I	01	990578	G68 GRADY	SW-CONT SOIL	16.21 TN
2/28/2020 I	01	990579	G92 GRADY	SW-CONT SOIL	16.56 TN
2/28/2020 I	01	990583	G90 GRADY	SW-CONT SOIL	16.49 TN
2/28/2020 I	01	990584	G68 GRADY	SW-CONT SOIL	14.87 TN
2/28/2020 I	01	990585	G92 GRADY	SW-CONT SOIL	14.99 TN
2/28/2020 I	01	990586	G90 GRADY	SW-CONT SOIL	15.26 TN
2/28/2020 I	01	990587	G68 GRADY	SW-CONT SOIL	15.05 TN
2/28/2020 I	01	990588	G92 GRADY	SW-CONT SOIL	16.69 TN
2/28/2020 I	01	990589	G90 GRADY	SW-CONT SOIL	15.87 TN
2/28/2020 I	01	990590	G68 GRADY	SW-CONT SOIL	14.81 TN
2/28/2020 I	01	990591	G92 GRADY	SW-CONT SOIL	16.59 TN
2/28/2020 I	01	990592	G90 GRADY	SW-CONT SOIL	14.75 TN
2/28/2020 I 2/28/2020 I	01	990593	G68 GRADY	SW-CONT SOIL	15.74 TN 19.01 TN
	01	990595	G92 GRADY	SW-CONT SOIL	
2/28/2020 I	01	990596	G90 GRADY	SW-CONT SOIL	15.98 TN
2/28/2020 I	01	990597	G68 GRADY	SW-CONT SOIL	17.96 TN
2/28/2020 I	01	990598	G92 GRADY	SW-CONT SOIL	20.71 TN
2/28/2020 I	01	990600	G90 GRADY	SW-CONT SOIL	18.12 TN
2/28/2020 I	01	990601	G68 GRADY	SW-CONT SOIL	17.56 TN
2/28/2020 I	01	990602	G92 GRADY	SW-CONT SOIL	21.05 TN
2/29/2020 I 2/29/2020 I	01 01	990610	G90 GRADY G92 GRADY	SW-CONT SOIL SW-CONT SOIL	16.05 TN 19.27 TN
2/29/2020 I	01	990611 990612	G68 GRADY	SW-CONT SOIL	18.05 TN
2/29/2020 I	01	990616	G90 GRADY	SW-CONT SOIL	15.71 TN
2/29/2020 I	01	990618	G90 GRADT G92 GRADY	SW-CONT SOIL	19.82 TN
2/29/2020 I	01	990619	G68 GRADY	SW-CONT SOIL	18.03 TN
2/29/2020 I	01	990623	G90 GRADY	SW-CONT SOIL	15.96 TN
2/29/2020 I	01	990627	G92 GRADY	SW-CONT SOIL	19.36 TN
2/29/2020 I	01	990628	G68 GRADY	SW-CONT SOIL	17.48 TN
2/29/2020 I	01	990633	G90 GRADY	SW-CONT SOIL	14.97 TN
2/29/2020 I	01	990637	G92 GRADY	SW-CONT SOIL	19.82 TN
2/29/2020 I	01	990639	G68 GRADY	SW-CONT SOIL	19.36 TN
2/29/2020 I	01	990640	G90 GRADY	SW-CONT SOIL	17.93 TN
2/29/2020 I	01	990644	G92 GRADY	SW-CONT SOIL	20.97 TN
2/29/2020 I	01	990645	G68 GRADY	SW-CONT SOIL	18.32 TN
2/29/2020 I	01	990646	G90 GRADY	SW-CONT SOIL	14.91 TN
2/29/2020 I	01	990652	G92 GRADY	SW-CONT SOIL	20.16 TN
2/29/2020 I	01	990653	G68 GRADY	SW-CONT SOIL	17.22 TN
2/29/2020 I	01	990656	G90 GRADY	SW-CONT SOIL	18.90 TN
2/29/2020 I	01	990660	G92 GRADY	SW-CONT SOIL	19.65 TN
2/29/2020 I	01	990661	G68 GRADY	SW-CONT SOIL	14.29 TN
2/29/2020 I	01	990663	G90 GRADY	SW-CONT SOIL	21.38 TN
2/29/2020 I	01	990669	G92 GRADY	SW-CONT SOIL	20.49 TN
2/29/2020 I	01	990670	G68 GRADY	SW-CONT SOIL	21.81 TN
2/29/2020 I	01	990672	G90 GRADY	SW-CONT SOIL	20.00 TN
2/29/2020 I	01	990674	G68 GRADY	SW-CONT SOIL	21.18 TN
2/29/2020 I	01	990676	G90 GRADY	SW-CONT SOIL	19.00 TN
2/29/2020 I	01	990677	G92 GRADY	SW-CONT SOIL	23.02 TN
2/29/2020 I	01	990679	G68 GRADY	SW-CONT SOIL	17.26 TN
2/29/2020 I	01	990681	G90 GRADY	SW-CONT SOIL	18.53 TN
2/29/2020 I	01	990683	G92 GRADY	SW-CONT SOIL	22.62 TN
2/29/2020 I	01	990684	G68 GRADY	SW-CONT SOIL	21.43 TN
2/29/2020 I	01	990685	G90 GRADY	SW-CONT SOIL	19.67 TN
2/29/2020 I	01	990686	G92 GRADY	SW-CONT SOIL	22.69 TN
2/29/2020 I	01	990689	G68 GRADY	SW-CONT SOIL	20.78 TN
2/29/2020 I	01	990690	G90 GRADY	SW-CONT SOIL	18.80 TN
2/29/2020 I	01	990691	G92 GRADY	SW-CONT SOIL	23.03 TN
	01	990693	G90 GRADY	SW-CONT SOIL	20.06 TN
2/29/2020 I	0.				

Appendix H. Republic Tonnage Report Project No. 150054, Snopac, Seattle, Washington

	Fac	ility and					
Γicket Date	Т	icket umber	Truck#	Material	Material Total		
2/29/2020 I	01	990696	G90 GRADY	SW-CONT SOIL	17.26 TN		
2/29/2020 I	01	990697	G68 GRADY	SW-CONT SOIL	21.28 TN		
2/29/2020 I	01	990698	G92 GRADY	SW-CONT SOIL	21.23 TN		
12/29/2020 I	01	990699	G90 GRADY	SW-CONT SOIL	19.03 TN		
12/29/2020 I	01	990700	G68 GRADY	SW-CONT SOIL	21.22 TN		
12/29/2020 I	01	990701	G92 GRADY	SW-CONT SOIL	22.99 TN		
12/29/2020 I	01	990702	G90 GRADY	SW-CONT SOIL	18.57 TN		
2/29/2020 I	01	990703	G68 GRADY	SW-CONT SOIL	19.97 TN		
12/29/2020 I	01	990704	G92 GRADY	SW-CONT SOIL	19.78 TN		
12/29/2020 I	01	990705	G90 GRADY	SW-CONT SOIL	20.94 TN		
12/30/2020 I	01	990719	G90 GRADY	SW-CONT SOIL	18.90 TN		
12/30/2020 I	01	990720	G92 GRADY	SW-CONT SOIL	21.52 TN		
12/30/2020 1	01	990724	G90 GRADY	SW-CONT SOIL	17.74 TN		
12/30/2020 1	01	990726	G92 GRADY	SW-CONT SOIL	19.48 TN		
12/30/2020 I	01	990727	G90 GRADY	SW-CONT SOIL	15.46 TN		
12/30/2020 I	01	990728	G92 GRADY	SW-CONT SOIL	22.67 TN		
12/30/2020 I 12/30/2020 I	01 01	990729	G90 GRADY G92 GRADY	SW-CONT SOIL SW-CONT SOIL	19.43 TN 21.78 TN		
		990731					
12/30/2020 I 12/30/2020 I	01 01	990732 990733	G90 GRADY G92 GRADY	SW-CONT SOIL SW-CONT SOIL	19.64 TN 21.18 TN		
12/30/2020 I 12/30/2020 I	01	990733 990734	G68 GRADY	SW-CONT SOIL SW-CONT SOIL	21.18 IN 19.75 TN		
12/30/2020 I	01	990734	G90 GRADY	SW-CONT SOIL	19.75 TN 16.22 TN		
12/30/2020 I	01	990736	G92 GRADY	SW-CONT SOIL	21.35 TN		
12/30/2020 I	01	990737	G68 GRADY	SW-CONT SOIL	16.16 TN		
12/30/2020 I	01	990738	G90 GRADY	SW-CONT SOIL	16.16 TN		
12/30/2020 I	01	990739	G92 GRADY	SW-CONT SOIL	16.78 TN		
12/30/2020 I	01	990740	G90 GRADY	SW-CONT SOIL	14.86 TN		
12/30/2020 1	01	990741	G68 GRADY	SW-CONT SOIL	16.67 TN		
12/30/2020 I	01	990743	G92 GRADY	SW-CONT SOIL	22.24 TN		
12/30/2020 1	01	990744	G90 GRADY	SW-CONT SOIL	17.51 TN		
12/30/2020 I	01	990746	G68 GRADY	SW-CONT SOIL	19.67 TN		
12/30/2020 I	01	990747	G92 GRADY	SW-CONT SOIL	23.08 TN		
12/30/2020 I	01	990749	G90 GRADY	SW-CONT SOIL	20.33 TN		
12/30/2020 I	01	990750	G68 GRADY	SW-CONT SOIL	20.65 TN		
12/31/2020 I	01	990756	G92 GRADY	SW-CONT SOIL	22.17 TN		
12/31/2020 I	01	990757	G6 GRADY	SW-CONT SOIL	20.13 TN		
12/31/2020 I	01	990758	G111 GRADY	SW-CONT SOIL	23.56 TN		
12/31/2020 I	01	990760	G92 GRADY	SW-CONT SOIL	22.91 TN		
12/31/2020 I	01	990761	G6 GRADY	SW-CONT SOIL	20.93 TN		
12/31/2020 I	01	990763	G111 GRADY	SW-CONT SOIL	24.00 TN		
12/31/2020 I	01	990765	G92 GRADY	SW-CONT SOIL	21.20 TN		
12/31/2020 I	01	990766	G6 GRADY	SW-CONT SOIL	21.31 TN		
12/31/2020 I	01	990767	G111 GRADY	SW-CONT SOIL	23.79 TN		
12/31/2020 I	01	990770	G92 GRADY	SW-CONT SOIL	22.36 TN		
12/31/2020 I	01	990771	G6 GRADY	SW-CONT SOIL	21.19 TN		
12/31/2020 I	01	990773	G111 GRADY	SW-CONT SOIL	24.09 TN		
12/31/2020 I 12/31/2020 I	01 01	990775 990778	G92 GRADY G6 GRADY	SW-CONT SOIL SW-CONT SOIL	21.63 TN 20.41 TN		
12/31/2020 I	01	990778	G111 GRADY	SW-CONT SOIL	20.41 TN 21.16 TN		
12/31/2020 I	01	990782	G92 GRADY	SW-CONT SOIL	22.05 TN		
12/31/2020 I	01	990783	G6 GRADY	SW-CONT SOIL	21.24 TN		
12/31/2020 I	01	990787	G92 GRADY	SW-CONT SOIL	18.65 TN		
01/06/2021 I	01	990857	G67 GRADY	SW-CONT SOIL	34.66 TN		
01/06/2021 I	01	990859	G67 GRADY	SW-CONT SOIL	17.11 TN		
01/06/2021 I	01	990860	G112 GRADY	SW-CONT SOIL	20.55 TN		
01/06/2021 I	01	990861	G111 GRADY	SW-CONT SOIL	22.01 TN		
01/06/2021 I	01	990863	G67 GRADY	SW-CONT SOIL	19.63 TN		
)1/06/2021 I	01	990864	G111 GRADY	SW-CONT SOIL	23.91 TN		
01/06/2021 I	01	990865	G112 GRADY	SW-CONT SOIL	27.60 TN		
)1/06/2021 I	01	990866	G67 GRADY	SW-CONT SOIL	22.76 TN		
01/06/2021 I	01	990867	G112 GRADY	SW-CONT SOIL	19.65 TN		
01/06/2021 I	01	990868	G111 GRADY	SW-CONT SOIL	20.83 TN		
)1/07/2021 I	01	990876	G64 GRADY	SW-CONT SOIL	16.31 TN		
01/07/2021 I	01	990878	G114 GRADY	SW-CONT SOIL	19.30 TN		
01/07/2021 I	01	990879	G64 GRADY	SW-CONT SOIL	19.81 TN		
01/07/2021 I	01	990880	G114 GRADY	SW-CONT SOIL	18.64 TN		
01/07/2021 I	01	990881	G64 GRADY	SW-CONT SOIL	21.48 TN		
01/07/2021 I	01	990883	G114 GRADY	SW-CONT SOIL	17.30 TN		
)1/07/2021 I	01	990884	G64 GRADY	SW-CONT SOIL SW-CONT SOIL	18.30 TN 18.78 TN		
)1/07/2021 I)1/07/2021 I	01 01	990885 990887	G114 GRADY G64 GRADY	SW-CONT SOIL SW-CONT SOIL	18.78 TN 16.75 TN		
	01						
)1/07/2021 I	01	990889	G114 GRADY	SW-CONT SOIL	17.18 TN		
)1/07/2021 I)1/07/2021 I	01 01	990891	G64 GRADY	SW-CONT SOIL SW-CONT SOIL	18.69 TN 21.03 TN		
)1/07/2021 I)1/07/2021 I	01 01	990892 990893	G114 GRADY G64 GRADY	SW-CONT SOIL SW-CONT SOIL	21.03 TN 18.80 TN		
)1/07/2021 I)1/07/2021 I	01	990893	G04 GRADY G114 GRADY	SW-CONT SOIL	20.31 TN		
)1/07/2021 I)1/07/2021 I	01	990894 990897	G114 GRADY G64 GRADY	SW-CONT SOIL SW-CONT SOIL	20.31 TN 22.15 TN		
)1/07/2021 I)1/07/2021 I	01	990897	G04 GRADY G114 GRADY	SW-CONT SOIL SW-CONT SOIL	22.15 TN 20.24 TN		
)1/07/2021 I)1/07/2021 I	01	990898	G114 GRADY G64 GRADY	SW-CONT SOIL SW-CONT SOIL	20.24 TN 18.15 TN		
)1/07/2021 I	01	990900	G114 GRADY	SW-CONT SOIL	20.52 TN		
)1/07/2021 I	01	990901	G114 GRAD1 G64 GRADY	SW-CONT SOIL	20.52 TN 16.41 TN		
)1/07/2021 I	01	990905	G114 GRADY	SW-CONT SOIL	16.41 TN 16.81 TN		
)1/07/2021 I	01	990906	G114 GRAD1 G64 GRADY	SW-CONT SOIL	14.53 TN		
	01	990909	G114 GRADY	SW-CONT SOIL	18.01 TN		
)1/07/2021 I		ggnani	(7 14 (784))	5///=(.(.))(1.5(.))	TX [17] TWI		

Appendix H. Republic Tonnage Report Project No. 150054, Snopac, Seattle, Washington

		011630- Manson Construction Co.		
	Facility and Ticket			Material
Ticket Date	Number	Truck #	Material	Total
)1/07/2021 I	01 990915	G114 GRADY	SW-CONT SOIL	17.41 TN
01/11/2021 I	01 991013	G115 GRADY	SW-CONT SOIL	24.21 TN
01/11/2021 I	01 991014	57 GRADY	SW-CONT SOIL	21.93 TN
01/11/2021 I	01 991015	G115 GRADY	SW-CONT SOIL	20.38 TN
01/11/2021 I	01 991016	91 GRADY	SW-CONT SOIL	25.55 TN
01/11/2021 I	01 991017	57 GRADY	SW-CONT SOIL	20.94 TN
01/11/2021 I	01 991018	G115 GRADY	SW-CONT SOIL	19.26 TN
01/11/2021 I	01 991019	91 GRADY	SW-CONT SOIL	21.84 TN
01/11/2021 I	01 991020	57 GRADY	SW-CONT SOIL	16.93 TN
01/11/2021 I	01 991021 01 991022	G115 GRADY	SW-CONT SOIL SW-CONT SOIL	15.23 TN 17.24 TN
01/11/2021 I 01/11/2021 I	01 991022 01 991023	91 GRADY 57 GRADY	SW-CONT SOIL	17.24 TN 17.61 TN
01/11/2021 I	01 991023	G115 GRADY	SW-CONT SOIL	13.29 TN
01/11/2021 I	01 991025	91 GRADY	SW-CONT SOIL	11.93 TN
01/11/2021 I	01 991026	57 GRADY	SW-CONT SOIL	14.32 TN
01/11/2021 I	01 991027	G115 GRADY	SW-CONT SOIL	14.31 TN
01/11/2021 I	01 991028	91 GRADY	SW-CONT SOIL	19.79 TN
01/11/2021 I	01 991029	57 GRADY	SW-CONT SOIL	17.11 TN
01/11/2021 I	01 991030	G115 GRADY	SW-CONT SOIL	16.07 TN
01/11/2021 I	01 991031	91 GRADY	SW-CONT SOIL	15.55 TN
01/11/2021 I	01 991032	57 GRADY	SW-CONT SOIL	14.50 TN
01/11/2021 I	01 991033	G115 GRADY	SW-CONT SOIL	16.96 TN
01/12/2021 I	01 991037	91 GRADY	SW-CONT SOIL	20.14 TN
01/12/2021 I	01 991038	57 GRADY	SW-CONT SOIL	16.47 TN
01/12/2021 I	01 991039	G115 GRADY	SW-CONT SOIL	16.69 TN
01/12/2021 I	01 991040	91 GRADY	SW-CONT SOIL	17.99 TN
01/12/2021 I	01 991041	57 GRADY	SW-CONT SOIL	14.40 TN
01/12/2021 I	01 991042	G115 GRADY	SW-CONT SOIL	11.14 TN
01/12/2021 I	01 991045	91 GRADY	SW-CONT SOIL	13.26 TN
01/12/2021 I	01 991046	57 GRADY	SW-CONT SOIL	12.72 TN
01/12/2021 I	01 991047	G115 GRADY	SW-CONT SOIL	14.75 TN
01/12/2021 I	01 991048	91 GRADY	SW-CONT SOIL	17.28 TN
01/12/2021 I	01 991049	57 GRADY	SW-CONT SOIL	18.66 TN
01/12/2021 I	01 991050	57 GRADY	SW-CONT SOIL	18.75 TN
01/12/2021 I	01 991064	G115 GRADY	SW-CONT SOIL	20.56 TN
01/12/2021 I	01 991065	57 GRADY	SW-CONT SOIL	23.40 TN
01/12/2021 I	01 991066	91 GRADY	SW-CONT SOIL	23.77 TN
01/12/2021 I	01 991067	G115 GRADY	SW-CONT SOIL	22.05 TN
01/12/2021 I	01 991068	57 GRADY	SW-CONT SOIL	16.48 TN
01/12/2021 I	01 991069	91 GRADY	SW-CONT SOIL	21.09 TN
01/12/2021 I	01 991070	G115 GRADY	SW-CONT SOIL	17.23 TN
01/12/2021 I	01 991071	57 GRADY	SW-CONT SOIL	16.81 TN
01/12/2021 I	01 991072	91 GRADY	SW-CONT SOIL	19.49 TN
01/12/2021 I	01 991073	G115 GRADY	SW-CONT SOIL	18.93 TN
01/12/2021 I	01 991074	91 GRADY	SW-CONT SOIL	19.78 TN
01/12/2021 I	01 991075	57 GRADY	SW-CONT SOIL	20.40 TN
01/12/2021 I	01 991076	G115 GRADY	SW-CONT SOIL	20.12 TN
01/12/2021 I	01 991077	91 GRADY	SW-CONT SOIL	19.55 TN
01/12/2021 I 01/12/2021 I	01 991078 01 991079	57 GRADY G115 GRADY	SW-CONT SOIL SW-CONT SOIL	14.42 TN 16.12 TN
01/12/2021 I 01/12/2021 I	01 991079	91 GRADY	SW-CONT SOIL	16.12 TN 16.03 TN
01/12/2021 I	01 991080	57 GRADY	SW-CONT SOIL	13.06 TN
01/12/2021 I 01/12/2021 I	01 991082	G115 GRADY	SW-CONT SOIL	11.54 TN
01/12/2021 I 01/12/2021 I	01 991082	91 GRADY	SW-CONT SOIL	13.98 TN
01/12/2021 I 01/12/2021 I	01 991083	57 GRADY	SW-CONT SOIL	16.20 TN
01/12/2021 I	01 991086	G115 GRADY	SW-CONT SOIL	17.51 TN
01/12/2021 I	01 991087	91 GRADY	SW-CONT SOIL	19.09 TN
01/12/2021 I	01 991088	57 GRADY	SW-CONT SOIL	15.79 TN
01/12/2021 I	01 991089	G115 GRADY	SW-CONT SOIL	13.18 TN
01/12/2021 I	01 991090	91 GRADY	SW-CONT SOIL	16.61 TN
01/12/2021 I	01 991091	57 GRADY	SW-CONT SOIL	15.03 TN
01/12/2021 I	01 991092	G115 GRADY	SW-CONT SOIL	16.50 TN
01/12/2021 I	01 991093	91 GRADY	SW-CONT SOIL	18.26 TN
01/12/2021 I	01 991094	57 GRADY	SW-CONT SOIL	17.70 TN
01/12/2021 I	01 991095	G115 GRADY	SW-CONT SOIL	17.59 TN
01/12/2021 I	01 991096	91 GRADY	SW-CONT SOIL	18.56 TN
01/12/2021 I	01 991097	G115 GRADY	SW-CONT SOIL	15.64 TN
01/12/2021 I	01 991098	57 GRADY	SW-CONT SOIL	16.86 TN
01/12/2021 I	01 991099	91 GRADY	SW-CONT SOIL	20.40 TN
01/13/2021 I	01 991100	57 GRADY	SW-CONT SOIL	16.28 TN
01/13/2021 I	01 991101	91 GRADY	SW-CONT SOIL	20.07 TN
01/13/2021 I	01 991102	G115 GRADY	SW-CONT SOIL	17.50 TN
01/13/2021 I	01 991103	57 GRADY	SW-CONT SOIL	14.72 TN
01/13/2021 I	01 991104	G115 GRADY	SW-CONT SOIL	17.13 TN
01/13/2021 I	01 991105	91 GRADY	SW-CONT SOIL	17.78 TN
01/13/2021 I	01 991106	G115 GRADY	SW-CONT SOIL	16.22 TN
01/13/2021 I	01 991125	57 GRADY	SW-CONT SOIL	19.78 TN
01/13/2021 I	01 991126	57 GRADY	SW-CONT SOIL	20.09 TN
01/13/2021 I	01 991127	57 GRADY	SW-CONT SOIL	18.53 TN
01/13/2021 I	01 991128	57 GRADY	SW-CONT SOIL	18.37 TN
01/13/2021 I	01 991129	57 GRADY	SW-CONT SOIL	21.42 TN
01/13/2021 I	01 991130	57 GRADY	SW-CONT SOIL	18.14 TN
01/13/2021 I	01 991131	57 GRADY	SW-CONT SOIL	13.53 TN
01/13/2021 I	01 991132	57 GRADY	SW-CONT SOIL	19.55 TN

Appendix H. Republic Tonnage Report Project No. 150054, Snopac, Seattle, Washington

Ticket Date 01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	Т	991134 991135 991136 991137 991138 991139 991203 991205 991208 991213	Truck # 57 GRADY G115 GRADY G100 GRADY	Material SW-CONT SOIL	Material Total 16.00 TN 19.42 TN 18.84 TN 20.46 TN 18.11 TN
01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/15/2021 I	01 01 01 01 01 01 01 01 01	991134 991135 991136 991137 991138 991139 991203 991205 991208	57 GRADY 57 GRADY 57 GRADY 57 GRADY 57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL	Total 16.00 TN 19.42 TN 18.84 TN 20.46 TN 18.11 TN
01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/14/2021 I 01/15/2021 I	01 01 01 01 01 01 01 01 01	991134 991135 991136 991137 991138 991139 991203 991205 991208	57 GRADY 57 GRADY 57 GRADY 57 GRADY 57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL	16.00 TN 19.42 TN 18.84 TN 20.46 TN 18.11 TN
01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01 01 01 01 01	991135 991136 991137 991138 991139 991203 991205 991208	57 GRADY 57 GRADY 57 GRADY 57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL	19.42 TN 18.84 TN 20.46 TN 18.11 TN
01/14/2021 01/14/2021 01/14/2021 01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01 01 01 01	991136 991137 991138 991139 991203 991205 991208	57 GRADY 57 GRADY 57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL	18.84 TN 20.46 TN 18.11 TN
01/14/2021 01/14/2021 01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01 01 01	991137 991138 991139 991203 991205 991208	57 GRADY 57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL SW-CONT SOIL	20.46 TN 18.11 TN
01/14/2021 01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01 01	991138 991139 991203 991205 991208	57 GRADY 57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL SW-CONT SOIL	18.11 TN
01/14/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01 01	991139 991203 991205 991208	57 GRADY G115 GRADY G100 GRADY	SW-CONT SOIL	
01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01 01	991203 991205 991208	G115 GRADY G100 GRADY		15.06 TN
01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01 01	991205 991208	G100 GRADY	011 001L	19.28 TN
01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01 01	991208		SW-CONT SOIL	22.32 TN
01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01 01		G115 GRADY	SW-CONT SOIL	19.07 TN
01/15/2021 01/15/2021 01/15/2021 01/15/2021 01/15/2021	01		G100 GRADY	SW-CONT SOIL	21.02 TN
01/15/2021 I 01/15/2021 I 01/15/2021 I		991214	G115 GRADY	SW-CONT SOIL	20.23 TN
01/15/2021 I 01/15/2021 I	0.	991215	G100 GRADY	SW-CONT SOIL	23.76 TN
01/15/2021 I 01/15/2021 I	01	991218	G115 GRADY	SW-CONT SOIL	21.53 TN
	01	991219	G100 GRADY	SW-CONT SOIL	21.14 TN
	01	991224	G115 GRADY	SW-CONT SOIL	20.41 TN
01/15/2021 I	01	991225	G100 GRADY	SW-CONT SOIL	20.35 TN
01/15/2021 I	01	991229	G115 GRADY	SW-CONT SOIL	20.39 TN
01/15/2021 I	01	991231	G100 GRADY	SW-CONT SOIL	19.91 TN
01/15/2021 I	01	991242	G115 GRADY	SW-CONT SOIL	18.46 TN
01/15/2021 I	01	991245	G115 GRADY	SW-CONT SOIL	20.53 TN
01/15/2021 I	01	991247	G100 GRADY	SW-CONT SOIL	20.13 TN
01/15/2021 I	01	991248	G100 GRADT G115 GRADY	SW-CONT SOIL	16.28 TN
01/15/2021 I	01	991250	G100 GRADY	SW-CONT SOIL	21.60 TN
01/15/2021 I	01	991251	G115 GRADY	SW-CONT SOIL	19.20 TN
01/15/2021 I	01	991252	G100 GRADY	SW-CONT SOIL	21.44 TN
01/15/2021 I	01	991253	G115 GRADY	SW-CONT SOIL	19.65 TN
01/15/2021 I	01	991254	G100 GRADY	SW-CONT SOIL	22.14 TN
01/15/2021 I	01	991255	G115 GRADY	SW-CONT SOIL	18.03 TN
01/15/2021 I	01	991256	G100 GRADY	SW-CONT SOIL	21.80 TN
01/15/2021 I	01	991257	G115 GRADY	SW-CONT SOIL	17.61 TN
01/21/2021 I	01	991430	50 JMR	SW-CONT SOIL	21.80 TN
01/21/2021 I	01	991439	16 JMR	SW-CONT SOIL	16.30 TN
01/21/2021 I	01	991441	50 JMR	SW-CONT SOIL	21.83 TN
01/21/2021 I	01	991449	16 JMR	SW-CONT SOIL	18.99 TN
01/21/2021 I	01	991454	50 JMR	SW-CONT SOIL	21.25 TN
01/21/2021 I	01	991455	16 JMR	SW-CONT SOIL	17.37 TN
01/21/2021 I	01	991464	50 JMR	SW-CONT SOIL	17.78 TN
01/21/2021 I	01	991470	16 JMR	SW-CONT SOIL	18.65 TN
01/21/2021 I	01	991474	50 JMR	SW-CONT SOIL	18.50 TN
01/21/2021 I	01	991480	16 JMR	SW-CONT SOIL	19.48 TN
01/21/2021 I	01	991486	50 JMR	SW-CONT SOIL	19.46 TN
01/21/2021 I	01	991493	16 JMR	SW-CONT SOIL	18.77 TN
01/21/2021 I	01	991501	50 JMR	SW-CONT SOIL	19.93 TN
01/21/2021 I	01	991505	16 JMR	SW-CONT SOIL	19.20 TN
01/21/2021 I	01	991513	50 JMR	SW-CONT SOIL	15.25 TN
01/21/2021 I	01	991515	16 JMR	SW-CONT SOIL	5.66 TN
01/21/2021 I	01	991520	16 JMR	SW-CONT SOIL	15.15 TN
01/21/2021 I	01	991523	50 JMR	SW-CONT SOIL	15.83 TN
01/21/2021 I	01	991525	16 JMR	SW-CONT SOIL	18.00 TN
01/21/2021 I	01	991528	50 JMR	SW-CONT SOIL	19.04 TN
01/21/2021 I	01	991530	16 JMR	SW-CONT SOIL	13.49 TN
01/22/2021 I	01	991550	550 JMR	SW-CONT SOIL	23.16 TN
01/22/2021 I	01	991551	16 JMR	SW-CONT SOIL	20.96 TN
01/22/2021 I	01	991553	50 JMR	SW-CONT SOIL	20.75 TN
01/22/2021 I	01	991554	550 JMR	SW-CONT SOIL	22.36 TN
01/22/2021 I	01	991558	16 JMR	SW-CONT SOIL	19.03 TN
01/22/2021 I	01	991560	50 JMR	SW-CONT SOIL	21.64 TN
01/22/2021 I	01	991561	550 JMR	SW-CONT SOIL	19.05 TN
01/22/2021 I 01/22/2021 I	01	991561	16 JMR	SW-CONT SOIL	19.05 TN 19.02 TN
01/22/2021 I 01/22/2021 I	01	991562	50 JMR	SW-CONT SOIL SW-CONT SOIL	19.02 TN 21.62 TN
01/22/20211 01/22/2021 I	01	991565	50 JMR 550 JMR	SW-CONT SOIL	15.43 TN
01/22/20211 01/22/2021 I	01	991568	16 JMR	SW-CONT SOIL	18.59 TN
01/22/2021 I 01/22/2021 I	01		16 JMR 550 JMR	SW-CONT SOIL SW-CONT SOIL	18.59 TN 17.03 TN
		991574	550 JMR 50 JMR		
01/22/2021 I 01/22/2021 I	01	991575		SW-CONT SOIL SW-CONT SOIL	20.83 TN
	01	991576	16 JMR	SW-CONT SOIL SW-CONT SOIL	19.43 TN
01/22/2021 I	01	991578	50 JMR		21.61 TN
01/22/2021 I	01	991582	50 JMR	SW-CONT SOIL	1.89 TN
				Matarial Communication	
				Material Summary	
Tickets R	eporte Repor		322 Items 322	VG - SW-CONT SOIL	5983.31 TN

CERTIFICATE OF DESTRUCTION

I, <u>Don Tibbets</u> ,	of Republic Services
	entire product described in Section A has
been properly and legally disposed	of in Roosevelt Regional MSW Landfill
on <u>7/28/20 -7/26,</u> 20 <u>21</u> (attach any	appropriate documentation).
I understand that due to potential co	oncerns related to such things as health,
quality, and loss of goodwill, <u>5055 F</u>	Properties LLC (Company) does not
want this product to be distributed t	o consumers, even through so called
"distressed merchandise" channels	of trade, and I further certify that these items
were destroyed in such a manner tl	nat it cannot be sold, and that the company
has taken every reasonable step to	prevent resale of said items.
Name (print): <u>Don Tibbets</u>	
Signature: Don Tibbet, s	
Signature:	
Title: _Area Director of Operations_	
Date: <u>7/26/2021</u>	
Section A- Products Destroyed (a	attached additional sheets if needed):
Waste Profile Number (if applicable):4178203185 / TB-3185
Description of Product	Quantity or Weight
Inland Soil	5 983 31 Tons

1

May 2009

Summary Contract Activity Report July 28, 2020 to July 26, 2021 Specific Contract(s): 'TB-3185'

All Ticket Types History and Waiting * - Confirmed Qty Applied to Billing

Contract Inbound Outbound Inbound Outbound Inbound Outbound Bill TB-3185	Billing Qty Material To	tal Tax Tota	Total Co	ount	Count
TB-3185					
SW-CONT SOIL 5,983.31 0.00 TN 0.00 0.00 YD 0.00 0.00 5,983	33.31 TN \$320,107.9	91 \$0.00	\$320,107.91	322	
Contract Totals: 5,983.31 0.00 TN 0.00 0.00 YD 0.00 0.00 5,983	33.31 TN \$320,107.9	\$0.00	\$320,107.91	322	322

DH23122 07/26/2021 3:05 PM

REGIONAL DISPOSAL COMPANY INTERMODAL - 4558

Page 1 of 1

All Facilities

APPENDIX K

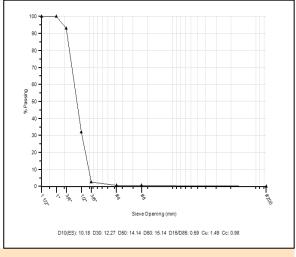
Material Specifications and Import Clean Certification

Compliance Report

Sample Information

Sample No -1603881682

Product Id 91054


Product Name AASHTO #57 - 3/4" Washed Gravel Specification WSDOT 9-03.12 (4) Gravel BFF Drains

Date Sampled 09/17/2020 16:16
Sampled By Garret Varnell
Sample Type Investigative
Sample Method Loader Mixed Pad
Sample Location Black Diamond A-511

12/14/2020

Notes

StonemontQC

Gradation Result	s		Quality Results				
Date Tested	09/17/2020 16:16						
Tested By	Cassius Hughes						
Sieve	% Passing	Tolerances	Test	Result	Unit	Tolerances	Method
1 1/2" (37.5mm)	100.0						
1" (25mm)	100.0	≤100					
3/4" (19mm)	93.1	80-100					
1/2" (12.5mm)	32.0						
3/8" (9.5mm)	2.6	0-40					
#4 (4.75mm)	0.7	0-4					
#8 (2.36mm)	0.5						
#200 (75µm)	0.12	0-2					

Lehigh Materials Ltd.

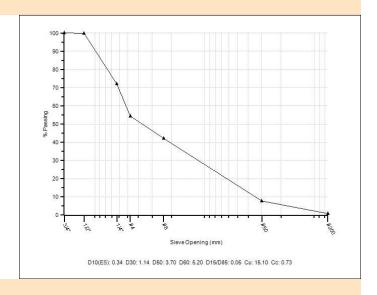
Compliance Report

Sample Information

Sample No -1605806900

Product Id 91250

Product Name COS Type 26 **Specification** C.O.S. Type 26


Date Sampled 01/07/2020 13:03
Sampled By Dan Reimland

Sample Type Investigative

Sample Method Loader Mixed Pad

Notes

stockpile sample

Gradation Results Quality Results

Date Tested 01/07/2020 13:03
Tested By Dan Reimland

rested by	Dan Reimland						
Sieve	% Passing	Tolerances	Test	Result	Unit	Tolerances	Method
3/4" (19mm)	100.0	≤100					
1/2" (12.5mm)	99.6						
1/4" (6.3mm)	72.0						
#4 (4.75mm)	54.3	28-56					
#8 (2.36mm)	42.2	20-50					
#50 (.3mm)	7.7	3-12					
#200 (75µm)	0.93	0-1					

EXHIBIT E.6 Imported Fill Certification Form

The undersigned's signature on this form certifies the specification and quality of the imported fill to be used as backfill.

- The imported fill is Type 26 mineral aggregate and complies with City of Seattle Standard Specification 9-03.16.
- 2. The imported materials is virgin native rock or aggregate produced from a quarry, with no man-made or recycled materials within it.
- 3. The supplier's quarry is free from environmental contamination defined as detectable concentrations of petroleum hydrocarbons or other organic chemicals (e.g., PCBs, solvents); concentrations of metals above Puget Sound natural background levels defined by Department of Ecology; or any other characteristic (e.g., unpleasant odor) making the fill unsuitable for use at the Project Site in the judgement of the Engineer or Owner.

By signing this form, I certify that all imported fill satisfies contractual requirements.

Contractor: Grady Excavating, Inc.	
By: Cem Jack (Signature)	
Name: All Son Good (Name, printed or typed)	
Title: Project Manager	
Date: 12/15/2020	

APPENDIX L

ProUCL Outputs for Statistical Compliance Summary

User Selected Options	eneral UCL Statistics	for Data Se	ts with Non-Detects	
·	neet4.wst			
	FF			
	5%			
	000			
validation of Bookshap operations 20	,,,,			
ursenic				
		General S	Statistics	
N	Number of Valid Data	47	Number of Detected Data	46
Number of D	istinct Detected Data	41	Number of Non-Detect Data Percent Non-Detects	2.13%
Raw Stati	istics		Log-transformed Statistics	
raw Stati	Minimum Detected	1.05	Minimum Detected	0.0488
	Maximum Detected	10.1	Maximum Detected	2.313
	Mean of Detected	3.074	Mean of Detected	0.909
	SD of Detected	2.169	SD of Detected	0.649
	Minimum Non-Detect	1	Minimum Non-Detect	0
	/laximum Non-Detect	1	Maximum Non-Detect	0
Normal Distribution Test with Shapi	n Detected Values Onliro Wilk Test Statistic	0.834	Lognormal Distribution Test with Detected Values On Shapiro Wilk Test Statistic	ly 0.922
	ro Wilk Critical Value	0.834	5% Shapiro Wilk Critical Value	0.922
Data not Normal at 5%		0.343	Data not Lognormal at 5% Significance Level	0.343
Assuming Normal			Assuming Lognormal Distribution	
DL/2	2 Substitution Method		DL/2 Substitution Method	
	Mean	3.019	Mean	0.875
	SD	2.178	SD	0.683
	95% DL/2 (t) UCL	3.552	95% H-Stat (DL/2) UCL	3.712
Maximum Likelihood Es	stimate(MLE) Method		Log ROS Method	
	Mean	3.004	Mean in Log Scale	0.874
	SD	2.178	SD in Log Scale	0.686
	95% MLE (t) UCL	3.538	Mean in Original Scale	3.018
			SD in Original Scale	2.179
9	95% MLE (Tiku) UCL	3.505	3D III Oligiliai 3cale	
(95% MLE (Tiku) UCL	3.505	95% t UCL	3.552
(95% MLE (Tiku) UCL	3.505		
(95% MLE (Tiku) UCL	3.505	95% t UCL	3.516
(95% MLE (Tiku) UCL	3.505	95% t UCL 95% Percentile Bootstrap UCL	3.516 3.596
Gamma Distribution Test witl			95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.516 3.596
Gamma Distribution Test wit			95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	3.516 3.596 3.72
Gamma Distribution Test wit	h Detected Values On	ly	95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only	3.516 3.596 3.72
Gamma Distribution Test wit	h Detected Values On star (bias corrected)	ly 2.344	95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only	3.552 3.516 3.596 3.72
Gamma Distribution Test wit	h Detected Values On star (bias corrected) Theta Star nu star	2.344 1.311 215.6	95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	3.516 3.596 3.72
Gamma Distribution Test witl	h Detected Values On star (bias corrected) Theta Star	ly 2.344 1.311	95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL Data Distribution Test with Detected Values Only	3.516 3.596 3.72

	·	K-S Tes	t Statistic	0.758			Mean	3.031
		5% K-S Criti		0.132			SD	2.142
Data	not Gamma Distribute	ted at 5% Signi	ificance L	evel			SE of Mean	0.316
							95% KM (t) UCL	3.561
		mma Distributio					95% KM (z) UCL	3.55
Ga	amma ROS Statistics			1 0000= 0			95% KM (jackknife) UCL	3.56
				1.0000E-6		95	% KM (bootstrap t) UCL	3.677
		 	Maximum	10.1		050/ 1/11/15	95% KM (BCA) UCL	3.57
			Mean	3.008		<u> </u>	ercentile Bootstrap) UCL	3.543 4.408
			Median	2.23			% KM (Chebyshev) UCL	
			SD	2.192 1.069			% KM (Chebyshev) UCL	5.004 6.174
		Т	k star Theta star	2.815		99	% KM (Chebyshev) UCL	0.174
		I	Nu star	100.4		Potential I	JCLs to Use	
			AppChi2	78.32			% KM (Chebyshev) UCL	4.408
05% 0	Gamma Approximate U			3.858		93	% Kivi (Criebysnev) OCL	4.400
	5% Adjusted Gamma			3.889				
Note: DL/2 is	not a recommended	d method.						
Note: Su	ggestions regarding	the selection o	of a 95%	UCL are pro	ovided to he	lp the user to select t	ne most appropriate 95%	6 UCL.
These r	ecommendations are	e hased unon t	the result	s of the sim	ulation stud	ies summarized in Sir	ngh, Maichle, and Lee (2	2006)
111000 1							igni, maiorno, ana 200 (i	2000).
		For addition	ıaı insigni	, the user if	lay want to	consult a statistician.		
		Number of V	/alid Data	General 45	Statistics	N	umber of Detected Data	34
	Number o	of Distinct Detec		23			nber of Non-Detect Data	11
							Percent Non-Detects	24.44%
	Raw S	Statistics				Log-transfor	med Statistics	
		Minimum	Detected	0.01			Minimum Detected	-4.605
		Maximum	Detected	0.13			Maximum Detected	-2.04
		Mean of	Detected	0.0314			Mean of Detected	-3.674
		SD of	Detected	0.0241			SD of Detected	0.641
		Minimum No	on-Detect	0.01			Minimum Non-Detect	-4.605
		Maximum No	on-Detect	0.1			Maximum Non-Detect	-2.303
Nata Data Is		£ 1/N/ N/ - tl				Niversity		4.4
	ave multiple DLs - Use			menaea			er treated as Non-Detect	44
	ods (except KM, DL/2,		ioas),				ber treated as Detected	•
Observations	s < Largest ND are trea	eated as NDs				Single DL	Non-Detect Percentage	97.78%
				UCL St	tatistics			
Norr	mal Distribution Test	with Detected	Values O			ormal Distribution Tes	t with Detected Values	Only
				0.751	3			0.948
		hapiro Wilk Tes		0.933			napiro Wilk Test Statistic	
	5% Sh	hapiro Wilk Tes hapiro Wilk Criti	cal Value			5% Sh	napiro Wilk Test Statistic apiro Wilk Critical Value	0.933
	5% Sh Data not Normal at 5	hapiro Wilk Criti			D		napiro Wilk Test Statistic apiro Wilk Critical Value at 5% Significance Leve	
		hapiro Wilk Criti			D		apiro Wilk Critical Value	0.933
	Data not Normal at 5	hapiro Wilk Criti	e Level		D	ata appear Lognormal	apiro Wilk Critical Value	
	Data not Normal at 5	hapiro Wilk Criti 5% Significance	e Level n		D	ata appear Lognormal Assuming Logn	apiro Wilk Critical Value at 5% Significance Leve	
	Data not Normal at 5	hapiro Wilk Criti 5% Significance rmal Distribution	e Level n	0.0279	D	ata appear Lognormal Assuming Logn	apiro Wilk Critical Value at 5% Significance Leve	
	Data not Normal at 5	hapiro Wilk Criti 5% Significance rmal Distribution	e Level n n Method		D	ata appear Lognormal Assuming Logn	apiro Wilk Critical Value at 5% Significance Leve	ol .
	Data not Normal at 5	hapiro Wilk Criti 5% Significance rmal Distribution	e Level n n Method Mean	0.0279	D	ata appear Lognormal Assuming Logn	apiro Wilk Critical Value at 5% Significance Leve ormal Distribution L/2 Substitution Method Mean	-3.918

95% DL/2 (t) UCL	0.0339	95% H-Stat (DL/2) UCL	0.039
Maximum Likelihaad Estimate/MLE) Mathad	N/A	Log DOS Mothod	
Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly	IN/A	Log ROS Method Mean in Log Scale	-3.951
MEE method falled to converge property		SD in Log Scale	0.803
		Mean in Original Scale	0.0262
		SD in Original Scale	0.0232
		95% t UCL	0.032
		95% Percentile Bootstrap UCL	0.0321
		95% BCA Bootstrap UCL	0.0335
		95% H-UCL	0.0345
Gamma Distribution Test with Detected Values O		Data Distribution Test with Detected Values Only	
k star (bias corrected)	2.312	Data appear Gamma Distributed at 5% Significance I	_evel
Theta Star	0.0136	ı	
nu star	157.2		
A-D Test Statistic	0.667	Nonparametric Statistics	
5% A-D Critical Value	0.756	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.756	Mean	0.0271
5% K-S Critical Value	0.152	SD	0.0226
Data appear Gamma Distributed at 5% Significance	Level	SE of Mean	0.00349
		95% KM (t) UCL	0.033
Assuming Gamma Distribution		95% KM (z) UCL	0.0329
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.033
Minimum	1.0000E-6	95% KM (bootstrap t) UCL	0.0355
Maximum	0.13	95% KM (BCA) UCL	0.0328
Mean	0.0252	95% KM (Percentile Bootstrap) UCL	0.0333
Median	0.019	95% KM (Chebyshev) UCL	0.0423
SD	0.0246	97.5% KM (Chebyshev) UCL	0.0489
k star	0.329	99% KM (Chebyshev) UCL	0.0618
Theta star	0.0766	, ,	
Nu star	29.61	Potential UCLs to Use	
AppChi2	18.19	95% KM (Percentile Bootstrap) UCL	0.0333
95% Gamma Approximate UCL (Use when n >= 40)	0.041	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
95% Adjusted Gamma UCL (Use when n < 40)			
Note: DL/2 is not a recommended method.	0.0		
Note: Suggestions regarding the selection of a 95% (UCL are pro	ovided to help the user to select the most appropriate 95%	UCL.
These recommendations are based upon the results	s of the sim	ulation studies summarized in Singh, Maichle, and Lee (2	006).
For additional insight	, the user m	ay want to consult a statistician.	
Zinc			
			
	General		
Number of Valid Observations	45	Number of Distinct Observations	41
Raw Statistics		Log-transformed Statistics	
Minimum	11.4	Minimum of Log Data	2.434
Maximum	87	Maximum of Log Data	4.466
· ·	87 27.09	Maximum of Log Data Mean of log Data	4.466 3.162

Median	20.9		
SD	16.78		
Std. Error of Mean	2.501		
Coefficient of Variation	0.619		
Skewness	1.964		
	Relevant U	CL Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.768	Shapiro Wilk Test Statistic	0.924
Shapiro Wilk Critical Value	0.945	Shapiro Wilk Critical Value	0.945
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	31.29	95% H-UCL	30.8
95% UCLs (Adjusted for Skewness)	31.23	95% Chebyshev (MVUE) UCL	35.63
95% Adjusted -CLT UCL (Chen-1995)	31.98	97.5% Chebyshev (MVUE) UCL	39.52
95% Modified-t UCL (Johnson-1978)	31.41	99% Chebyshev (MVUE) UCL	47.16
3375 Madilled (33E (001113011-1370)	VI.71	3378 Chebyshev (WVOL) OCL	.,
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.577	Data do not follow a Discernable Distribution (0.05	j)
Theta Star	7.573	,	<u> </u>
MLE of Mean	27.09		
MLE of Standard Deviation	14.32		
nu star	322		
Approximate Chi Square Value (.05)	281.4	Nonparametric Statistics	
Adjusted Level of Significance	0.0447	95% CLT UCL	31.2
Adjusted Chi Square Value	280.1	95% Jackknife UCL	31.29
		95% Standard Bootstrap UCL	31.12
Anderson-Darling Test Statistic	1.787	95% Bootstrap-t UCL	32.4
Anderson-Darling 5% Critical Value	0.753	95% Hall's Bootstrap UCL	31.94
Kolmogorov-Smirnov Test Statistic	0.171	95% Percentile Bootstrap UCL	31.47
Kolmogorov-Smirnov 5% Critical Value	0.132	95% BCA Bootstrap UCL	31.9
Data not Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	37.99
		97.5% Chebyshev(Mean, Sd) UCL	42.71
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	51.97
95% Approximate Gamma UCL (Use when n >= 40)	30.99		
95% Adjusted Gamma UCL (Use when n < 40)	31.13		
Determination of the		11. 250 2	04.00
Potential UCL to Use		Use 95% Student's-t UCL or 95% Modified-t UCL	31.29
		ovided to help the user to select the most appropriate 95%	UCL.
		imulation studies summarized in Singh, Singh, and laci (20	02)
and Singh and Singh (2003). For a	dditional in	sight, the user may want to consult a statistician.	
cenaphthene			
		Statistics	
	General	Otationo	
Number of Valid Data	General 45		5
Number of Valid Data Number of Distinct Detected Data		Number of Detected Data	5 40

	Log-transformed Statistics		Raw Statistics
-6.215	Minimum Detected	0.002	Minimum Detected
-3.324	Maximum Detected	0.036	Maximum Detected
-5.211	Mean of Detected	0.0102	Mean of Detected
1.148	SD of Detected	0.0145	SD of Detected
-6.215	Minimum Non-Detect	0.002	Minimum Non-Detect
-5.521	Maximum Non-Detect	0.004	Maximum Non-Detect
43	Number treated as Non-Detect	mended	Note: Data have multiple DLs - Use of KM Method is recom
2	Number treated as Detected		For all methods (except KM, DL/2, and ROS Methods),
95.56%	Single DL Non-Detect Percentage		Observations < Largest ND are treated as NDs
	Detected Values in this data ootstrap may be performed on this data set		
	reliable enough to draw conclusions		
	- Samuel	,	and rooming delocations
	observations for accurate and meaningful results.		It is recommended to have 10-15 or n
nlv	atistics Lognormal Distribution Test with Detected Values C	UCL St	Normal Distribution Test with Detected Values O
11y 0.857	Cognormal Distribution Test with Detected Values Cognormal Distribution Test Statistics Test Stat	0.658	Shapiro Wilk Test Statistic
0.857	5% Shapiro Wilk Critical Value	0.762	5% Shapiro Wilk Critical Value
0.702	Data appear Lognormal at 5% Significance Level	0.762	Data not Normal at 5% Significance Level
	Data appear Loynormal at 5% Significance Level		Data Hot Normal at 5% Significance Level
	Assuming Lognormal Distribution		Assuming Normal Distribution
	DL/2 Substitution Method		DL/2 Substitution Method
-6.688	DL/2 Substitution Method Mean	0.00207	DL/2 Substitution Method Mean
0.648	Mean SD	0.00207	Mean SD
0.048	95% H-Stat (DL/2) UCL	0.00527	95% DL/2 (t) UCL
0.0016/	95 % N-3(a) (DL/2) UCL	0.00339	95% DL/2 (t) UCL
	Log ROS Method	N/A	Maximum Likelihood Estimate(MLE) Method
-10.27	Mean in Log Scale		MLE method failed to converge properly
2.889	SD in Log Scale		
0.00124	Mean in Original Scale		
0.00544	SD in Original Scale		
0.0026	95% t UCL		
0.00281	95% Percentile Bootstrap UCL		
0.00381	95% BCA Bootstrap UCL		
0.02	95% H-UCL		
	<u> </u>	ml. r	Commo Distribution Took with Date and M. C.
	Data Diatribution Tool with Datastad Value - Only	шу	Gamma Distribution Test with Detected Values C k star (bias corrected)
	Data Distribution Test with Detected Values Only	0.504	k star (bias corrected)
evel	Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance I	0.504	<u> </u>
evel	•	0.0203	Theta Star
evel	•		<u> </u>
evel	•	0.0203	Theta Star
evel	Data appear Gamma Distributed at 5% Significance L	0.0203 5.036	Theta Star
	Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics	0.0203 5.036 0.651	Theta Star nu star A-D Test Statistic
0.00292	Data appear Gamma Distributed at 5% Significance L Nonparametric Statistics Kaplan-Meier (KM) Method	0.0203 5.036 0.651 0.693	Theta Star nu star A-D Test Statistic 5% A-D Critical Value
0.00292	Nonparametric Statistics Kaplan-Meier (KM) Method Mean	0.0203 5.036 0.651 0.693 0.693 0.365	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic
0.00292	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	0.0203 5.036 0.651 0.693 0.693 0.365	Theta Star nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value

0.00402	95% KM (jackknife) UCL		Gamma ROS Statistics using Extrapolated Data
0.00819	95% KM (bootstrap t) UCL	1.0000E-6	Minimum
0.00893	95% KM (BCA) UCL	0.036	Maximum
0.00547	95% KM (Percentile Bootstrap) UCL	0.00114	Mean
0.00658	95% KM (Chebyshev) UCL	1.0000E-6	Median
0.00817	97.5% KM (Chebyshev) UCL	0.00546	SD
0.0113	99% KM (Chebyshev) UCL	0.135	k star
		0.00842	Theta star
	Potential UCLs to Use	12.18	Nu star
0.00433	95% KM (t) UCL	5.344	AppChi2
		0.00259	95% Gamma Approximate UCL (Use when n >= 40)
		0.00267	95% Adjusted Gamma UCL (Use when n < 40)
			lote: DL/2 is not a recommended method.
% UCL.	ovided to help the user to select the most appropriate 95%	JCL are pro	Note: Suggestions regarding the selection of a 95%
2006).	nulation studies summarized in Singh, Maichleichle, and 120	of the sim	These recommendations are based upon the result
	may want to consult a statistician.	the user m	nal insight, th For additional insight
	Statistics	General	
3	Number of Detected Data	45	Number of Valid Data
42	Number of Non-Detect Data	3	Number of Distinct Detected Data
	Percent Non-Detects	-	
93.33%			
93.33%			
93.33%	Log-transformed Statistics		Raw Statistics
	Log-transformed Statistics Minimum Detected	0.0023	Raw Statistics Minimum Detected
-6.075	Minimum Detected	0.0023 0.0025	
-6.075 -5.991	Minimum Detected Maximum Detected	0.0025	Minimum Detected Maximum Detected
-6.075 -5.991 -6.033	Minimum Detected Maximum Detected Mean of Detected	0.0025 0.0024	Minimum Detected Maximum Detected Mean of Detected
-6.075 -5.991 -6.033 0.0417	Minimum Detected Maximum Detected Mean of Detected SD of Detected	0.0025 0.0024 1.0000E-4	Minimum Detected Maximum Detected Mean of Detected SD of Detected
-6.075 -5.991 -6.033 0.0417 -6.215	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	0.0025 0.0024 1.0000E-4 0.002	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect
-6.075 -5.991 -6.033 0.0417 -6.215	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	0.0025 0.0024 1.0000E-4	Minimum Detected Maximum Detected Mean of Detected SD of Detected
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect	0.0025 0.0024 1.0000E-4 0.002 0.004	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect	0.0025 0.0024 1.0000E-4 0.002 0.004	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Note: Data have multiple DLs - Use of KM Method is recom
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect	0.0025 0.0024 1.0000E-4 0.002 0.004	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recomfor all methods (except KM, DL/2, and ROS Methods),
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521 45 0 100.00%	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect	0.0025 0.0024 1.0000E-4 0.002 0.004	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recomfor all methods (except KM, DL/2, and ROS Methods),
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect	0.0025 0.0024 1.0000E-4 0.002 0.004 mended	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage	0.0025 0.0024 1.0000E-4 0.002 0.004 mended	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Sor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are o
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mumber treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage	0.0025 0.0024 1.0000E-4 0.002 0.004 mended	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome for all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of The number of detected data may not be added.
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods.	0.0025 0.0024 1.0000E-4 0.002 0.004 mended	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of The number of detected data may not be added.
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods.	0.0025 0.0024 1.0000E-4 0.002 0.004 mended	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of The number of detected data may not be additionally the second of the secon
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mumber treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage act Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display!	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enough return a 'N/a or more Distinct of the control of the	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of The number of detected data may not be add Those methods will
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display!	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enough return a 'N// or more Distinct using 4 to	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recomfor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of the number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display!	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enough return a 'N// or more Distinct using 4 to	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Sor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are o The number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display!	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enough return a 'N// or more Distinct using 4 to	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Otoe: Data have multiple DLs - Use of KM Method is recommod for all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of the number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display!	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enough return a 'N// or more Disusing 4 to be observation	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Sor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are o The number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521 45 0	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mumber treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage Ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. /A' value on your output display! sistinct Values for bootstrap methods. 9 distinct values may not be reliable. ions for accurate and meaningful results and estimates.	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enoughereturn a 'N/A or more Distinct using 4 to the observation	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Sor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are o The number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521 45 0	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mumber treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage Interpretation of the state	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enoughereturn a 'N/A or more Distinct using 4 to the observation	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recomfor all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of The number of detected data may not be add Those methods will It is necessary to have 4 However, results obtained It is recommended to have 10 to 15 or more
-6.075 -5.991 -6.033 0.0417 -6.215 -5.521 45 0	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Mumber treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage Ct Detected Values in this data set ugh to perform GOF tests, bootstrap, and ROS methods. A' value on your output display! Distinct Values for bootstrap methods. O 9 distinct values may not be reliable. D 9 distinct values may not be reliable. D 10 distinct values may not be reliable. D 2 distinct values may not be reliable. D 3 distinct values may not be reliable. D 4 distinct values may not be reliable. D 5 distinct Values of Shapiro Wilk Test Statistic	0.0025 0.0024 1.0000E-4 0.002 0.004 mended hly 3 Distinct equate enoughereturn a 'N// or more Distinct using 4 to be observation UCL Story	Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Maximum Non-Detect Mote: Data have multiple DLs - Use of KM Method is recome for all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Warning: There are of the number of detected data may not be added to the suilloss of the number of detected data may not be added to the suilloss of the number of detected data may not be added to the suilloss of the number of detected data may not be added to the suilloss of the number of detected data may not be added to the number of detecte

Assuming Normal Distribution		Aggreeing Loggormal Distribution			
DL/2 Substitution Method	1	Assuming Lognormal Distribution DL/2 Substitution Method			
Mean			-6.803		
		Mean			
	4.1963E-4	SD	0.272 0.00124		
95% DL/2 (t) UCL	. 0.00127	95% H-Stat (DL/2) UCL	0.00124		
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method			
MLE method failed to converge properly		Mean in Log Scale	-6.34		
		SD in Log Scale	0.156		
		Mean in Original Scale	0.00179		
		SD in Original Scale			
		95% t UCL	0.00186		
		95% Percentile Bootstrap UCL	0.00185		
		95% BCA Bootstrap UCL	0.00185		
		95% H-UCL	0.00186		
Gamma Distribution Test with Detected Values 0	Only	Data Distribution Test with Detected Values Onl	у		
k star (bias corrected)	N/A	Data appear Normal at 5% Significance Level			
Theta Star	N/A				
nu stai	N/A				
A-D Test Statistic	: N/A	Nonparametric Statistics			
5% A-D Critical Value		Kaplan-Meier (KM) Method			
K-S Test Statistic		Mean	0.00231		
5% K-S Critical Value			3.3756E-5		
Data not Gamma Distributed at 5% Significance L		SE of Mean			
Data not Gamma Distributed at 5% digimicance i		95% KM (t) UCL	0.00232		
Assuming Gamma Distribution		95% KM (z) UCL	0.00232		
Gamma ROS Statistics using Extrapolated Data	1	95% KM (jackknife) UCL	0.00237		
Minimum		95% KM (bootstrap t) UCL	0.00231		
Maximum		95% KM (BCA) UCL	0.0025		
Mean		95% KM (Percentile Bootstrap) UCL	N/A		
Median		95% KM (Chebyshev) UCL	0.00233		
SD		97.5% KM (Chebyshev) UCL	0.00235		
k star		99% KM (Chebyshev) UCL	0.00237		
Theta star		(1.1.)			
Nu star		Potential UCLs to Use			
AppChi2		95% KM (t) UCL	0.00232		
95% Gamma Approximate UCL (Use when n >= 40)	N/A	95% KM (Percentile Bootstrap) UCL	N/A		
95% Adjusted Gamma UCL (Use when n < 40)	N/A				
Note: DL/2 is not a recommended method.					
Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95°	% UCL.		
These recommendations are based upon the result	ts of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).		
For additional insigh	t, the user m	nay want to consult a statistician.			
Total cPAHs TEQ					
1000 0171110 TEG					
	General	Statistics			
Number of Valid Data	45	45 Number of Detected Dat			
Number of Distinct Detected Data	17	Number of Non-Detect Data	28		
		Percent Non-Detects	62.22%		

Raw Statistics		Log-transformed Statistics	
Minimum Detecte	d 0.00303	Minimum Detected	-5.799
Maximum Detecte	d 0.07	Maximum Detected	-2.659
Mean of Detected	d 0.0213	Mean of Detected	-4.486
SD of Detecte	d 0.023	SD of Detected	1.181
Minimum Non-Dete	ot 0.00302	Minimum Non-Detect	-5.802
Maximum Non-Dete	ot 0.00302	Maximum Non-Detect	-5.802
		latistics	
Normal Distribution Test with Detected Values	-	Lognormal Distribution Test with Detected Values C	•
Shapiro Wilk Test Statist		Shapiro Wilk Test Statistic	0.847
5% Shapiro Wilk Critical Valu	e 0.892	5% Shapiro Wilk Critical Value	0.892
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Metho	d	DL/2 Substitution Method	
Mea	n 0.00897	Mean	-5.736
S	D 0.0169	SD	1.216
95% DL/2 (t) UC	L 0.0132	95% H-Stat (DL/2) UCL	0.0109
Maximum Likelihood Estimate(MLE) Metho	d N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-6.772
		SD in Log Scale	2.238
		Mean in Original Scale	0.00839
		SD in Original Scale	0.0172
		95% t UCL	0.0127
		95% Percentile Bootstrap UCL	0.0128
		95% BCA Bootstrap UCL	0.0139
		95% H-UCL	0.0546
Gamma Distribution Test with Detected Values	•	Data Distribution Test with Detected Values Only	
k star (bias corrected	1	Data do not follow a Discernable Distribution (0.09)	o)
Theta Sta			
nu sta	ar 27.06		
A-D Test Statist	c 1.286	Nonparametric Statistics	
5% A-D Critical Valu		Kaplan-Meier (KM) Method	
K-S Test Statist		Mean	0.00991
5% K-S Critical Valu		SD	0.0163
Data not Gamma Distributed at 5% Significance		SE of Mean	0.00251
Data not danina Distributed at 5% digrimeance	Level	95% KM (t) UCL	0.00231
Assuming Gamma Distribution		95% KM (z) UCL	0.0141
Gamma ROS Statistics using Extrapolated Da	2		
		95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.0139
Minimu			0.0166
Maximu		95% KM (BCA) UCL	0.0145
Mea		95% KM (Percentile Bootstrap) UCL	0.0141
Media		95% KM (Chebyshev) UCL	0.0209
S		97.5% KM (Chebyshev) UCL	0.0256
k sta Theta sta		99% KM (Chebyshev) UCL	0.0349
Nu sta		Potential UCLs to Use	
ivu Sta	13.24	Folential OCES to USE	

			For additi	ional insight,	the user m	nay want to	consult a s	tatistician.			
These	recommer	dations are	based upor	n the results	of the sim	ulation stud	lies summa	rized in Sin	gh, Maichle	, and Lee (2006).
Note: S	Suggestions	regarding	the selection	n of a 95% l	JCL are pro	ovided to he	elp the user	to select th	e most app	ropriate 95°	% UCL.
Note: DL/2	is not a rec	ommended	method.								
	95% Adjus	ted Gamma	UCL (Use w	hen n < 40)	0.018						
95%	Gamma Ap	proximate L	JCL (Use wh	en n >= 40)	0.0176						
				AppChi2	6.055				95% KM	(BCA) UCL	0.0145

Gene	eral UCL Statistics	for Data Se	ets with Non-Detects	
User Selected Options	COL Clationou			
From File Sheet	et4.wst			
Full Precision OFF				
Confidence Coefficient 95%				
Number of Bootstrap Operations 2000	l			
Naphthalene				
		General	Statistics	
Nun	nber of Valid Data	45	Number of Detected Data	9
Number of Distir	nct Detected Data	9	Number of Non-Detect Data	36
			Percent Non-Detects	80.00%
Raw Statistic	cs		Log-transformed Statistics	
M	Minimum Detected	0.0021	Minimum Detected	-6.166
M	laximum Detected	0.093	Maximum Detected	-2.375
1	Mean of Detected	0.0235	Mean of Detected	-4.708
	SD of Detected	0.035	SD of Detected	1.43
Min	imum Non-Detect	0.002	Minimum Non-Detect	-6.215
Maxi	timum Non-Detect	0.004	Maximum Non-Detect	-5.52 ⁻
Note: Date house moultinle Disc. 11-1-11/4	M Method is recom	mended	Number treated as Non-Detect	39
vote. Data nave multiple DLs - Use of KN				
<u>'</u>			Number treated as Detected	6
For all methods (except KM, DL/2, and RC Observations < Largest ND are treated as Note: It should	NOS Methods), as NDs Warning: There d be noted that even	en though t	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set	
From File Sheet4.wst				
For all methods (except KM, DL/2, and R0 Observations < Largest ND are treated as Note: It should the resu	NOS Methods), IS NDS Warning: There d be noted that evoluting calculations	en though t may not be ore distinct	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data cootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results.	86.67%
For all methods (except KM, DL/2, and RCObservations < Largest ND are treated as Note: It should the result is recommended to	Warning: There d be noted that evoluting calculations of have 10-15 or me	en though the may not be ore distinct UCL Story	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. tatistics Lognormal Distribution Test with Detected Values O	86.67%
For all methods (except KM, DL/2, and RC Observations < Largest ND are treated as Note: It should the resu It is recommended to Normal Distribution Test with Do	Warning: There d be noted that evoluting calculations to have 10-15 or me	en though the may not be ore distinct UCL Starty 0.651	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. tatistics Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic	86.67% enly 0.871
Normal Distribution Test with Do	Warning: There d be noted that evo ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value	en though the may not be ore distinct UCL Starty 0.651	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. attistics Lognormal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	86.67% 9nly 0.871
Normal Distribution Test with Do	Warning: There d be noted that evo ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value	en though the may not be ore distinct UCL Starty 0.651	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. attistics Lognormal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	86.67% 9nly 0.871
Note: It should the result is recommended to Normal Distribution Test with Downson Shapiro V Data not Normal at 5% Sig	Warning: There d be noted that evo ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level	en though the may not be ore distinct UCL Starty 0.651	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data cootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. Eatistics Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	86.67% only 0.87°
Note: It should the result is recommended to Normal Distribution Test with Description of Shapiro V Data not Normal at 5% Sig	Warning: There d be noted that eve ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level	en though the may not be ore distinct UCL Starty 0.651	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. atistics Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution	86.67% only 0.87°
Note: It should the result is recommended to Normal Distribution Test with Description of Shapiro V Data not Normal at 5% Sig	Warning: There d be noted that evo ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level ubstitution Method	en though the may not be ore distinct UCL Starty 0.651 0.829	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. Eatistics Lognormal Distribution Test with Detected Values Of Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method	86.67% only 0.87
Note: It should the result is recommended to Normal Distribution Test with Description of Shapiro V Data not Normal at 5% Sig	Warning: There d be noted that eve ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean	en though the may not be ore distinct UCL Starty 0.651 0.829	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. attistics Lognormal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean	86.67% 0.87° 0.829
Note: It should the result is recommended to Normal Distribution Test with Downson Shapiro V Data not Normal at 5% Sig Assuming Normal Distribution DL/2 Su	Warning: There d be noted that eve ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD	en though the may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. tatistics Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	86.67% 0.87 0.829
Note: It should the result is recommended to Normal Distribution Test with Downson Shapiro V Data not Normal at 5% Sig Assuming Normal Distribution DL/2 Su	Warning: There d be noted that eve ulting calculations b have 10-15 or me Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. atistics Lognormal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	86.67% 0.87 0.829
Note: It should the result is recommended to Normal Distribution Test with Downship Shapiro V Data not Normal at 5% Sig Assuming Normal Di./2 Su Maximum Likelihood Estimates	Warning: There d be noted that evoluting calculations of have 10-15 or more Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. tatistics Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	86.67% 0.829 -6.437 1.076 0.00429
Note: It should the result is recommended to Normal Distribution Test with Downship Shapiro V Data not Normal at 5% Sig Assuming Normal Di./2 Su Maximum Likelihood Estimates	Warning: There d be noted that evoluting calculations of have 10-15 or more Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. Eatistics Lognormal Distribution Test with Detected Values Consumption Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	86.67% 0.87 0.829 -6.43 1.076 0.00429
Note: It should the result is recommended to Normal Distribution Test with Downship Shapiro V Data not Normal at 5% Sig Assuming Normal Di./2 Su Maximum Likelihood Estimates	Warning: There d be noted that evoluting calculations of have 10-15 or more Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. atistics Lognormal Distribution Test with Detected Values C Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	-6.43 1.076 0.00429
For all methods (except KM, DL/2, and RG Observations < Largest ND are treated as Note: It should the resu It is recommended to Shapiro N 5% Shapiro N Data not Normal at 5% Sig Assuming Normal Discount DL/2 Su Maximum Likelihood Estimates	Warning: There d be noted that evoluting calculations of have 10-15 or more Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. Lognormal Distribution Test with Detected Values Of Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale	-6.43° 1.070 0.00429 -9.490 3.33° 0.0048
For all methods (except KM, DL/2, and R0 Observations < Largest ND are treated as Note: It should the resu It is recommended to Shapiro N 5% Shapiro N Data not Normal at 5% Sig Assuming Normal Di DL/2 Su Maximum Likelihood Estima	Warning: There d be noted that evoluting calculations of have 10-15 or more Detected Values Or Wilk Test Statistic Wilk Critical Value gnificance Level istribution ubstitution Method Mean SD 95% DL/2 (t) UCL	en though the may not be may not be ore distinct UCL Starty 0.651 0.829 0.00554 0.0175 0.00992	Number treated as Detected Single DL Non-Detect Percentage Detected Values in this data pootstrap may be performed on this data set reliable enough to draw conclusions observations for accurate and meaningful results. Lognormal Distribution Test with Detected Values O Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	-6.437 0.829 -6.437 1.076 0.00425 -9.498 3.337 0.00481

		L	L				L	9!	5% BCA Bo	otstrap UCL	0.0121
										95% H-UCL	0.348
Ga	mma Distrib	oution Test	with Detecte	ed Values O	nly		ata Distribu	ition Test wi	ith Detected	l Values Only	,
			k star (bias	s corrected)	0.5	Data Foll	low Appr. G	amma Distr	ibution at 5	% Significan	ce Level
				Theta Star	0.0469						
				nu star	9.008						
			A-D T	est Statistic	0.833			Vonparamet	tric Statistic	S	
			5% A-D C	ritical Value	0.76			Kap	olan-Meier (ł	KM) Method	
			K-S T	est Statistic	0.76					Mean	0.00638
				ritical Value	0.291					SD	0.0171
Data follo	ow Appr. Ga	amma Distr	ibution at 59	% Significan	ce Level					SE of Mean	0.0027
										KM (t) UCL	0.0109
	Ass	suming Gan	ıma Distribu	tion					95%	KM (z) UCL	0.0108
G	amma ROS	S Statistics	using Extrap	olated Data					5% KM (jac	,	0.0106
				Minimum	1.0000E-6			95	% KM (boots		0.0369
				Maximum	0.093					(BCA) UCL	0.0116
				Mean	0.0047		9	95% KM (Pe			0.0114
				Median					6 KM (Cheb		0.0181
				SD	0.0177				· ·	yshev) UCL	0.0232
				k star	0.126			99%	6 KM (Cheb	yshev) UCL	0.0332
				Theta star	0.0372						
				Nu star	11.38			Potential U	CLs to Use		
				AppChi2	4.821				95%	KM (t) UCL	0.0109
			ICL (Use wh	.	0.0111						
	-		UCL (Use w	hen n < 40)	0.0114						
Note: DL/2	is not a reco	ommended	method.								
		•								ropriate 95%	- 1
These	recommen	dations are	•						gh, Maichle	e, and Lee (2	2006).
			For additi	onal insight	, the user m	ay want to	consult a s	atistician.			

APPENDIX M

Monitoring Well Installation Boring Logs

	se Fraction e	≤5% Fines		GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND			
200 Sieve)%¹ of Coars No. 4 Sieve	%5≅		GP	Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND			
ined on No.	Gravels - More than 50%¹ of Coarse Fraction Retained on No. 4 Sieve	≥15% Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND			
1 50%1 Reta	Gravels - I	≥15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND			
Coarse-Grained Soils - More than 50%1 Retained on No. 200 Sieve	e Fraction	≤5% Fines		SW	Well-graded SAND Well-graded SAND WITH GRAVEL			
ained Soils	Sands - $50\%^1$ or More of Coarse Fraction Passes No. 4 Sieve	82≅		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL			
Coarse-Gr	$50\%^{1}$ or More Passes No.	≥15% Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL			
	Sands -	≥15%		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL			
Sieve	/S 75 75 76 76 76			ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL			
e Passes No. 200 Sieve	Silts and Clays	וווון דבפס ווו		CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL			
	S	רולמומ ר		OL	ORGANIC SILT SANDY OF GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL			
ils - 50%1 or	ys More	NOIG NOIG		МН	ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL			
Fine-Grained Soils - 50%1 or Moi	Silts and Clays			СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL			
Fine-	υ) τ <u>ι</u>	Liquid L		ОН	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL			
Highly	Organic Soils			PT	PEAT and other mostly organic soils			

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

MC PS FC GH AL C Str OC Comp K SG	= = =	Particle Fines C Hydrom Atterbe Consoli Strengt Organic Proctor Hydrau	Content (9	bution 5 0.075 mm 6 Loss by Ig 6 Loss ty Ig 6 Lost	•		TECHNICAL LAB TES	STS
		Organio	c Chemical	 S			CHEMICAL LAB TES	STS
BTEX TPH-Dx TPH-G VOCs SVOCs PAHs PCBs RCRA8 MTCA5 PP-13	= [= [= [= []	Benzer Diesel a Gasolir Volatile Semi-V Polycyc Polychl Metals As, Ba,	ne, Toluene, and Oil-Ran ne-Range Pe Organic Co olatile Orga dic Aromatic orinated Bi Cd, Cr, Pb, Cr, Hg, Pb	Ethylbenze ge Petroleu etroleum Hy ompounds nic Compoi c Hydrocart ohenyls Hg, Se, Ag, d = dissolv	unds oon ((d =	lydrocarbons carbons S Compounds dissolved, t t = total)		otal)
PID	= 1	Photoic	nization De	etector			FIELD TES	STS
Sheen			en Test	: T				
SPT ² NSPT			rd Penetrat andard Pen		st			
DCPT	= [Dynam	ic Cone Per	netration Te	st			
Descript Boulders Cobbles Coarse of Fine Gra Coarse of Medium Fine Sar Silt and	Grave avel Sand Sand nd	= = = = = = d =	Larger tha 3 inches t 3 inches t 3/4 inche No. 4 (4.7 No. 10 (2. No. 40 (0.	00 mm) to	s es 4.75 o. 1 No.	5 mm) 0 (2.00 mm) 40 (0.425 m . 200 (0.075	nm)	
% by We	eight	Mod	ifier	% by Weig	ht	Modifier	ESTIMATE	ED¹
<1 1 to <5 5 to 10		Trac		15 to 25 30 to 45 >50	=		PERCENTA	GE

Moist Damp but no visible water Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

RELATIVE DENSITY Non-Cohesive or Coarse-Grained Soils

Density ³	SPT ² Blows/Foot	Penetration with 1/2" Diameter Rod
Very Loose	= 0 to 4	≥ 2'
Loose	= 5 to 10	1' to 2'
Medium Dense	= 11 to 30	3" to 1'
Dense	= 31 to 50	1" to 3"
Very Dense	= > 50	< 1"

Cohesive or Fine-Grained Soils

CONSISTENCY Manual Test

Consistency ³	SPT ² Blows/Foot

Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Very Soft = 0 to 1Penetrated 1/4" to 1" easily by thumb. Easily molded. Soft 2 to 4 Penetrated >1/4" with effort by thumb. Molded with strong pressure.

Medium Stiff = 5 to 8 = 9 to 15 Stiff Indented ~1/4" with effort by thumb.

Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

GEOLOGIC CONTACTS

Observed and Distinct

Observed and Gradual

Inferred

Exploration Log Key

	A	SD	ect			Snopac 202'	1 - 150054 Specific Location			Environmental Exploration Lo Coordinates (Lat,Lon WGS84) Exploration Num		
	D _C		JLTING		50	055 E Marginal Way	•	t		47.5560, -122.3392 (est)		
		Contrac		Equ	uipment		Sampling Metho			Ground Surface Elev.	MW-1	
	(Casca	de	Direct	t push rig	,	Percussion ham	ımer		15' (est)	Ecology Well Ta BMM669	ag No.
		Operat			on Method		Vork Start/Completio			Top of Casing Elev.	Depth to Water (Bel	low GS)
		Scot	t	Dire	ct push		6/21/2021			NA	12.5' (ATD	
Depth (feet)			Exploration Completio	Notes and n Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
0 -	- 15		8" flush monun	n-mount steel nent	T	2 1.251(2)	PID=0.0 Sheen=None		gray, no	FILL (EXCAVATION BAC EL WITH SILT AND SAND (GW odor; fine to coarse, subround	/-GM); moist, dark	0
1 -	- 14		Concreseal	ete monument			Sheen-none	00.00	gravel; f	ine to coarse sand		- 1
2 -	- 13		Hydrati chips	ed bentonite								- 2
3 -	- 12				0		PID=0.0 Sheen=None	00000				- 3
4 -	11											- 4
5 -	10						PID=0.0 Sheen=None					- 5
6 -	9											- 6
7 -	8		2/12 si pack	lica sand filter			PID=0.0 Sheen=None					- 7
7 -	7		0.010"	slotted screen				00.00.				- 8
9 -	- 6						PID=0.0 Sheen=None	B				- 9
10-	- 5							00000				-10
11-	4						PID=0.0 Sheen=None			FILL		-11
12-	- 3		<u>∑</u> 6/21/	/2021						WITH SILT (SP-SM); wet, gray nded, non-scintillant sand	, no odor;	-12
13-	- 2						Sheen=None PID=0.0		wood de	AL); medium plasticity, very moiebris, no odor of exploration at 13 ft. bgs.	st, brown, contains	13
14-	1											-14
3 - 11- 12- 13- 14-				e Recovery re 1.68" ID		Water Fe Level	evel ATD		of symbo		Explorati Log MW-13 Sheet 1 of 2	,

	Aspec	+		Snopac 2021 Project Address & Site				Environmental Ex	ploration Log Exploration Number	
1	CONSULTIN	-		<i>Project Address & Site</i> larginal Way, SW c		M\\/_12		47.5560, -122.3392 (est)	1	
	Contractor		uipment	arginai vvay, Svv C	Sampling Metho			Ground Surface Elev.	− MW-14	
								15' (est)	Ecology Well Tag N BMM670	Vo.
	Cascade Operator		t push rig on Method(s	(c) M	Percussion ham Vork Start/Completion			Top of Casing Elev. Depth to Water		
	Scott			5)	6/21/2021	II Dales		, ,		<i>G</i> 3)
		Dire	ect push	Analytical	0/21/2021			NA NA	13.5' (ATD)	
Depth (feet)	(feet) Comple	on Notes and etion Details	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Oept (ft)
Depth (feet) 0	(feet) Completed and the complete of the compl	drated bentonite os	Sample Type/ID T T T T T T T T T T T T T		PID=0.0 Sheen=None Material Type 0	SILT (M wood de	FILL (EXCAVATION BACI L WITH SILT AND SAND (GW , moist to very moist, dark gray, subrounded to subangular grave ESTUARINE UNIT IL); medium plasticity, moist, br bris, no odor; brown silt; trace f ALLUVIUM WITH SILT (SP-SM); low plastic brounded, non-scintillant sand;	KFILL) -GM); low no odors; fine to el; fine to coarse own, contains ine sand city, wet, gray, no brown silt	5 10 15 20	
TON LOG TEMPLATE (BISERVERI, A)	- 40				PID=0.0 Sheen=None PID=0.0 Sheen=None				-	25
[23					PID=0.0 Sheen=None		Bottom o	of exploration at 25 ft. bgs.		
Sample Type	No Soil Sam Continuous	pple Recovery core 1.68" ID		Water Fe	vel ATD		of symbol Logged b		Exploration Log MW-14 Sheet 1 of 1)

	Δ	spec	+	,	Snopac 202' Project Address & Site	1 - 150054			Environmental Ex		
		NSULTIN	-		al Way, W edge of	•	.14 & 1.41.4	V-16	Coordinates (Lat,Lon WGS84) 47.5563, -122.3394 (est)	Exploration Num	
		Contractor		uipment	ai way, w euge oi	Sampling Metho		V-10	Ground Surface Elev.	- MW-15	5
		Cascade	· ·	push rig		Percussion ham			15' (est) Ecology W		
		Operator		on Method((s) V	Vork Start/Completio				Depth to Water (Belo	ow GS)
		Scott		ct push		6/21/2021	2 0100		NA 10.5' (A'		
Depth (feet)	Elev. (feet)		tion Notes and letion Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
0 -	- 15	8" mo	flush-mount steel onument		()	PID=0.0 Sheen=None		gray, no	FILL (EXCAVATION BACK L WITH SILT AND SAND (GW odor; fine to coarse, subrounde ne to coarse sand; brown silt	-GM); moist, dark	0
2 -	- 14 - 13	Co	ncrete monument al			PID=0.0 Sheen=None	00.00.00 00.00.00				- 1 - 2
3 -	- 12		drated bentonite			Sheen-None					- 3
4 -	- 11		drated bentonite								- 4
5 -	- 10	2/1 pac	12 silica sand filter ck				00.00				- 5
6 -	9					PID=0.0 Sheen=None	00.00				- 6
150054: GPJ July 20, 2021	- 8						00000000000000000000000000000000000000				- 7
	- 7 - 6		110" eletted garage			PID=0.0 Sheen=None					- 8
9 - 9 - 10-	- 5		010" slotted screen								+ 9 + 10
MORECI SIGNIA	- 4	□ □ □ □	6/21/2021			PID=0.0			FILL VITH SILT (SP-SM); low plastic fine, subrounded; non-scintillar		
KI.ASPECI.LOCALIF	- 3					Sheen=None		SILT (M	ESTUARINE UNIT IL); medium plasticity, very mois bris present; brown silt; trace fir	st, brown, no odor,	-12
TAIE WEISEKVE	- 2					PID=0.0 Sheen=None		Bottom o	of exploration at 13 ft. bgs.		13
14-	- 1										- 14
NEW STANDARD EXPLORATION LOG TEMPLATE \(\text{NBISERVER! ASPECT LOCALIPROJECT SIGNITM/PROJECT SISNOPAC 2021}\) Sample			nple Recovery core 1.68" ID		Water Level	evel ATD		of symbol		Exploration Log MW-15 Sheet 1 of 1	

	Δ	<u>er</u>)ec	+		Snopac 202' Project Address & Site	1 - 150054	Environmental Exploration Log Coordinates (Lat,Lon WGS84) Exploration Number					
7			ULTING	-	50			47.5565, -122.3397 (est)	1				
		Contra			5055 E Marginal Way, NW corner of lot Equipment Sampling Method					Ground Surface Elev.	- MW-16		
		Casca				_	Percussion han			15' (est)	Ecology Well Ta	gy Well Tag No.	
					Direct push rig Exploration Method(s) И					Top of Casing Elev.	BMM672 Depth to Water (Below GS)		
	Operator Scott			· ·	Direct push		Work Start/Completion Dates 6/21/2021 to 6/22/2021			NA	10.5' (ATD)		
Depth	Elev		Exploration	on Notes and	Sample	Analytical Sample Number &	Field Tests	Material		Description	10.0 (7112)	Depth	
(feet)	(feet	t)	Comple	ush-mount steel	Type/ID	Lab Test(s)	Ticia resis	Туре		Безеприон		(ft)	
0 -	15	X		nument			PID=0.0 Sheen=None	0191		FILL (EXCAVATION BACI	KFILL)	+ 0	
							Sneen=None	0000		EL WITH SILT AND SAND (GW ; fine to coarse, subrounded to s	'-GM); moist, gray,		
	l	M							fine to c	coarse sand; brown silt	subangulai gravei,	١.	
1 -	14							8:8	ł			+ 1	
			Con	crete monument									
2 -	13							000	1			+ 2	
_								8,8	}			-	
3 -	12								1			- 3	
			Hyd chip	rated bentonite				8:18					
					\square								
4 -	11								<u> </u>			+ 4	
				silica sand filter				8:18:					
_	40		pacl	K								_	
5 -	10							Ŏ, J	1			+ 5	
								8:18:	7				
6 -	9		∄				DID 00					 6	
							PID=0.0 Sheen=None	8:18;	ł				
]]					8.8					
7 -	8											 7	
] 0 01	0" slotted prepack				0:18	ł				
			scre					8.8					
8 -	7						PID=0.0 Sheen=None]			+ 8	
			311				Oncen-None		ł				
9 -	- 6							8.8				- 9	
3]				
								8:18	ł				
10-	- 5							20 4				10	
			∄	21/2021				8.8					
									SILT (N	ESTUARINE UNIT ML); medium plasticity, moist, br	own with wood		
11-	4						PID=0.0 Sheen=None		debris; l	brown silt; trace fine sand	own, with wood	- 11	
							Sileeri-None						
12-	3											- 12	
12												'2	
									-	ALLUVIUM		\dashv	
13-	2						PID=0.0			WITH SILT (SP-SM); low plastic o odor; fine, subrounded; non-sc		13	
							Sheen=None		brown s	silt]	
									Bottom	of exploration at 13 ft. bgs.			
14-	1											14	
		egend No:		ple Recovery			evel ATD		See Expl	loration Log Key for explanation	Exploration	or	
Sample				core 1.68" ID		Water Level			of symbo	bls	Log	J.1	
9 - 10 - 11 - 12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14	` '	_ 501				W _e			Logged b		MW-16		
	1					I			whhlored	d by: AET 7/20/21	Sheet 1 of 1		

	C	SPE Ontractor Cascade Operator		Snopac 2021 - 150 Project Address & Site Specific Lo 5055 E Marginal Way, SE corn Equipment Sampli Direct push rig Percussi Exploration Method(s) Work Start/C				nd mer		Environmental Ex Coordinates (Lat,Lon WGS84) 47.5559, -122.3386 (est) Ground Surface Elev. 15' (est) Top of Casing Elev.	Exploration Log Exploration Number MW-17 Ecology Well Tag No. BMM673 Depth to Water (Below GS)	
Depth	Elev.	Scott	ploration N	Direct push lotes and Sample		Analytical Sample Number &	Analytical ample Number & Field Tests			NA Description	10' (ATD)	
	(feet)		8" flush- monume	Details Type/ID L		Lab Test(s)	PID=0.0 Sheen=None		SAND V	FILL AND WITH SILT (SP-SM); moist, gray to gray brown, bod debris present, no odor, no sheen; fine to medium; bn-scintillany sand; trace gray silt		
5 -	- 10		2/12 silic pack	d bentonite ca sand filter	0							_ _ _ _ 5
-	_		screen				PID=0.0 Sheen=None PID=0.0 Sheen=None		SILT (M debris pi	ESTUARINE UNIT IL); medium plasticity, moist, da resent, no odor; dark gray silt; tr	ark gray, wood race fine sand	_
10-	- 5		☑ 6/22/2	021			PID=0.0 Sheen=None		odor; fin	ALLUVIUM SAND (SM); low plasticity, wet, ge to medium; non-scintillant sar (SILT (ML); low plasticity, mois and debris; brown silt; trace fine services.	nd; gray brown silt	- 10 -
15-	- 0						PID=0.0 Sheen=None PID=0.0 Sheen=None		Bottom o	of exploration at 15 ft. bgs.		_ _ 15
Sample				Recovery : 1.68" ID		Water revel	evel ATD		of symbol		Exploration Log MW-17 Sheet 1 of 1)n