# FOCUSED SUBSURFACE INVESTI-STIGATION, MONITORING WELL INSTALLATION & GROUNDWATER MONITORING REPORT

#### **BLT Trucking**

8010 South 259<sup>th</sup> Street Kent, Washington 98032

February 18, 2022

Prepared for:

Mr. Preet Chohan BLT Transport 8010 South 259<sup>th</sup> Street Kent, Washington 98032

Chanel Long **Environmental Scientist** 

Kaden Reed

Staff Project Manager

David R. Polivka L.G. / L.Hg. Senior Hydrogeologist



Prepared by:

ECI | Environmental Services PO Box 153 Fox Island, Washington 98333 Office: (253) 238-9270

ECI Project No.: 0611-01-03-02



Practical Environmental Compliance Solutions

Offices In: Anchorage | Tacoma | Portland

#### **Table of Contents**

| <b>1.0</b><br>1.1                               | INTRODUCTION<br>Property Description/Location                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>.4</b><br>.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2.0</b><br>2.1<br>2.2                        | PHYSICAL SETTING<br>Geology<br>Hydrogeology                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>.4</b><br>.4<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>3.0</b><br>3.1<br>3.2<br>3.3                 | PREVIOUS INVESTIGATIONS / INTERIM ACTIONS<br>EcoCon Inc. – Focused Subsurface Investigation – May and June 2016<br>EcoCon Inc. – Site Characterization Report – July 2016<br>Stormwater System Installation                                                                                                                                                                                                                                                                         | <b>.5</b><br>.6<br>.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.0                                             | REGULATORY COMPLIANCE & CONTAMINANTS OF CONCERN                                                                                                                                                                                                                                                                                                                                                                                                                                     | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.1<br><b>5.0</b><br>5.1<br>5.<br>5.            | FOCUSED SUBSURFACE INVESTIGATION AND WELL INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                              | . 8<br>.9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.0<br>6.1<br>6.2<br>6.<br>6.<br>6.<br>6.<br>6. | GROUNDWATER MONITORING PROGRAM       Anonitoring Well Installation – March 2021         Monitoring Well Installation – March 2021       Groundwater Sampling Activities         2.1       First Quarter 2021 Groundwater Monitoring – March 2021         2.2       Second Quarter 2021 Groundwater Monitoring – June 2021         2.3       Third Quarter 2021 Groundwater Monitoring – September 2021         2.4       Fourth Quarter 2021 Groundwater Monitoring – November 2021 | 14<br>14<br>15<br>16<br>18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.0                                             | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.0                                             | RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9.0<br>9.1<br>9.2<br>9.3                        | REPORT LIMITATIONS AND GUIDELINES FOR USE                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>21</b><br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br> |

# List of Tables

| Table 1: Contaminants of Concern                                   | 9          |
|--------------------------------------------------------------------|------------|
| Table 2: Soil Analytical Results                                   | 12         |
| Table 3: First Quarter 2021 Groundwater Sample Analytical Results  | 16         |
| Table 4: Second Quarter 2021 Groundwater Sample Analytical Results | 18         |
| Table 5: Third Quarter 2021 Groundwater Sample Analytical Results  | 19         |
| Table 6: Fourth Quarter 2021 Groundwater Sample Analytical Results | 20         |
| Table 7: Summary of Groundwater Analytical Results                 | Appendix B |

| List of Appendices                                          |       |
|-------------------------------------------------------------|-------|
| Table 9: Summary of Groundwater ElevationsAppen             | dix B |
| Table 8: Summary of Monitoring Well Analytical ResultsAppen | dix B |

#### List of Appendices

### Appendix A - Project Figures

- Figure 1: Site Vicinity Map
- Figure 2: Q1 2021 Groundwater Analytical and Elevation Map
- Figure 3: Q2 2021 Groundwater Analytical and Elevation Map
- Figure 4: Q3 2021 Groundwater Analytical and Elevation Map
- Figure 5: Q4 2021 Groundwater Analytical and Elevation Map
- Figure 6: 2021 Boring Sample Location Map
- Figure 7: Historical Groundwater Analytical Map
- Figure 8: Historical Boring/Sample Location Map

#### Appendix B – Project Tables

- Table 6: Summary of Historical Soil Analytical Results
- Table 7: Summary of Historical Groundwater Analytical Results
- Table 8: Summary of Monitoring Well Analytical Results
- Table 9: Summary of Groundwater Elevations

#### Appendix C – Project Documentation

- Field Sampling Forms
- Boring Logs & Well Construction Details
- Soil Disposal Receipts

#### Appendix D – Project Analytical Results

- Laboratory Analytical Report
- Chain of Custody

Page iii

### 1.0 INTRODUCTION

EcoCon, Inc. (ECI) has prepared this Groundwater Monitoring Report to document all four consecutive groundwater-sampling events conducted after additional remedial actions took place in September 2020 at 8010 South 259<sup>th</sup> Street, Kent, Washington (Property/Subject Property) (Figure 1, Appendix A). This report details field activities and observations, sampling activities, analytical results, and provides conclusions and recommendations.

As established in WAC 173-340-200, the "Site" means the same as "Facility" and is defined as:

"...any area where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, or placed or otherwise come to be located..."

For this report, the "Site" is defined by the full lateral and vertical extent of petroleum hydrocarbons originating from a former automobile wrecking yard that was present on the Subject Property. Therefore, the contaminants of concern (COCs) at the Site are:

- Gasoline-range Organics (GRO),
- Diesel-range Organics (DRO),
- Oil-range Organics (ORO)
- Select Volatile Organic Compounds: Benzene, Toluene, Ethylbenzene, Xylenes (BTEX),
- MTCA 5 Metals:, Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), and mercury (Hg), and
- PCB Mixtures, if ORO is detected from waste oil,

#### 1.1 Property Description/Location

According to the King County Assessor, the Property consists of a single tax parcel (Number 000660-0045) 65,015 square feet in size, currently zoned Commercial Manufacturing II (CM-2) by the City of Kent and is listed by the King County Assessor's office as being used for light industrial purposes as is the rest of the vicinity. The lot is currently an asphalt paved dispatch, staging, and service yard for BLT Transport LLC that has been improved with one structure used for maintenance and office purposes.

# 2.0 PHYSICAL SETTING

Geological and hydrogeological conditions can often affect, to some extent, the environmental integrity of a property. Underlying soil and bedrock formations may facilitate or impede the migration of chemical contaminants in groundwater and may even be the source of contaminants such as radon and metals. This section of the report summarizes geologic factors that may affect the Subject Property regarding environmental concerns.

#### 2.1 Geology

The Subject Property is located within the Puget Sound Basin, which is classified as unconsolidated Pleistocene continental glacial drift. The glacial deposits predominantly consist of sand and silt, with

varying amounts of gravel and cobbles (United States Geological Survey, 2005). More specifically, according to the Washington State Department Natural Resources Geologic Portal, the Subject Property is part of a meandering river valley characterized by thick fluvial and floodplain deposits of the Green and White Rivers, and numerous small streams. These deposits consist of gravel, sand, silt, with some clay. Locally could contain low-level terrace, marsh, peat and glacial deposits locally.

The Natural Resources Conservation Service (NRCS) Web Soil Survey describes the soils at the Subject Property as Urban land.

### 2.2 Hydrogeology

The primary aquifers in the Puget Sound region are typically in glacial sands and gravels overlain by relatively impermeable glacial till deposits, that are present at or near the ground surface. Within these till deposits are localized areas or lenses of water-bearing sands and gravels that may result in a shallow, localized, perched water table. Lateral and vertical migration of shallow groundwater may be impeded by the relatively impermeable nature of the till and by the sometimes-discontinuous nature of the perched water-bearing sands and gravel. In some areas the hydrogeology is controlled by large gravel deposits that are the result of advance and recessional glacial outwash or non-glacial alluvium deposited by rivers in the region.

Perched and discontinuous zones of shallow groundwater may be seasonally or perennially present, depending on site-specific conditions. Shallow groundwater flow directions fluctuate and tend to follow topographic gradient but are also affected by seasonal high-water tables and variable soil characteristics. Groundwater migration pathways may also follow underground conduits.

According to ECI well logs, the depth to groundwater at the Site ranges from 5 to 10 feet below ground surface (bgs). According to the United States Geological Survey (USGS) Auburn, WA, 2020, 7.5-minute quadrangle topographic map, the Property is in the Green River Valley at an elevation of approximately 40 feet above Mean Sea Level (MSL).

The Property is located between the beginning and end of a significant meander in the Green River which is situated approximately 480 feet to the southwest and 825 feet southeast of the Property and flows in a general north-northwesterly direction into Puget Sound (Elliott Bay) approximately 12.5 miles north-northwest of the Subject Property. State Route 167 is approximately 0.66 miles west of the Subject Property.

# 3.0 PREVIOUS INVESTIGATIONS / INTERIM ACTIONS

#### 3.1 EcoCon Inc. – Focused Subsurface Investigation – May and June 2016

On May 16, 2016, because a Phase I Environmental Site Assessment completed by Aerotech Environmental in 2015 identified the Property as having been an automobile wrecking yard, ECI oversaw the advancement of eight borings on the Property to determine if the soil and/or groundwater on and beneath the Property had been impacted. These boring were located after dividing the Property into a grid of eight equal sections. One boring was advanced in each section. One soil sample was collected from each boring at a depth of 2 to 4 feet bgs. In addition, groundwater was encountered at a depth of 7 to 7.5 feet bgs and a

sample was collected from each boring. The samples were analyzed for hydrocarbon Identification using the NWTPH-HCID analytical method.

The analytical results of the HCID analyses revealed that four of the soil samples contained ORO contaminants. GRO and DRO were not detected above the laboratory practical quantitation limits (PQLs). These four samples were subsequently analyzed for ORO. ORO was identified at concentrations exceeding the MTCA Method A Cleanup Level in two of the four soil samples. These were in samples from borings B2 and B3 (Figure 8, Appendix A).

The analytical results of the groundwater samples revealed the presence of ORO in three of the samples analyzed by NWTPH-HCID. GRO and DRO were not detected above the laboratory PQLs. The samples that contained ORO were subsequently analyzed for ORO using method NWTPH-Dx extended with a silica gel cleanup to remove the effects of natural organic matter and silt in the samples. The analytical results did not report DRO or ORO above the laboratory PQLs.

Based on the analytical results of the soil samples, ECI returned to the Property on June 1, 2016, and excavated eight test pits in the northern portion of the Property to delineate the ORO contamination previously found (Figure 8, Appendix A). Soil samples were collected from a depth of 3 and 6 feet bgs in each test pit.

Ten of the samples were analyzed for DRO and ORO. Of the ten samples analyzed, four detected DRO and/or ORO above the laboratory PQLs but below the MTCA Method A Cleanup Levels.

ECI concluded that the use of the Property as an automobile wrecking yard resulted in the release of oilrange hydrocarbons onto the surface soil in the northern portion of the Property. ECI also indicated that clean surface rock had been brought onto the Property after the automobile wrecking yard was no longer operating, which would explain why the contamination was not observed at the immediate surface.

ECI recommended:

"That soil containing concentrations in excess of the MTCA Method A Cleanup Level... be excavated, removed from the Property, and disposed of at an appropriate Subtitle D Landfill."

# 3.2 EcoCon Inc. – Site Characterization Report – July 2016

After the initial FSI and sometime between June 1, 2016, and June 15 -16, 2016, approximately 6 to 7 feet of soil was excavated at site for the stormwater basin. The soils were segregated into two stockpiles. The first stockpile (SP1) was the top 2 to 3 feet of clean imported surface rock and soil over the entire stormwater basin area. This pile was estimated to contain 1,000 cubic yards (1,500 tons) of material was potentially to be reused on the site.

The second stockpile (SP2) was the lower 2 to 4 feet below the top 2 to 3 feet excavated for stockpile SP1. This stockpile was the native soils below the imported fill and was estimated to contain 1,000 cubic yards

(1,500 tons) of material and may have contained the ORO contaminated soils observed during ECI's previous investigation.

Following the stockpiling of the excavated soil by the excavation contractor, ECI returned to the site on June 15 and 16, 2016 to sample the stockpiles. ECI collected 10 samples from each stockpile for analysis. In addition, ECI collected 10 soil samples from the sidewalls and base of the northern portion of the excavation near where ORO contamination had previously been observed (Figure 8, Appendix A).

A total of 30 Samples were analyzed for DRO and ORO. The analytical results revealed that 24 of the samples had detectable concentrations of DRO and/or ORO. However, only one sample from stockpile SP2 (SP2-9) contained a concentration of ORO above the MTCA Method A Cleanup Level. Based on these results, 15 samples, (five from each stockpile and five from the excavation) were analyzed for PCBs and MTCA 5 metals.

The analytical results from the additional analyses revealed that PCBs were present above the MTCA Method A Industrial Cleanup Level in one of the samples from the northern sidewall of the excavation and that cadmium was present above the MTCA Method A Industrial Cleanup Level in six of the stockpile samples and five of the excavation samples.

ECI recommended further excavation within the stormwater basin to remove the area with PCB contaminated soil, as well as removal of the area of stockpile SP2 with ORO contaminated soil. This was performed without ECI presence and placed into a separate stockpile (SP3). In addition, ECI recommended engaging with Ecology on possible cleanup alternatives and closure pathways.

On June 29, 2016, ECI returned to the Property and collected a composite sample from stockpile SP3 for disposal profiling (SP3-Composite). In addition, one sample from the sidewall of the over-excavated PCB area within the stormwater basin excavation was collected for analysis. The analytical results of the sidewall sample were reported as being below the Method A Industrial Cleanup Levels. The composite sample from stockpile SP3 did not detect concentrations of the contaminants of concern above their respective laboratory PQLs and or above their respective MTCA Method A industrial Cleanup Levels.

Based on the analytical results of the sample from stockpile SP3 a special waste profile was completed for disposal of the soil in stockpile SP3 at Republic Services Roosevelt Regional Landfill in Klickitat, Washington via their 3rd and Lander transfer station in Seattle, Washington. Copies of disposal receipts obtained by ECI showed that BLT Trucking transported a total of 175.38 tons of contaminated soil to the transfer facility on July 13 and 18, 2016. It should be noted that the disposal receipts were obtained after the completion of ECI's July 2016 Site Characterization Report. (Disposal receipts are available in Appendix C)

#### 3.3 Stormwater System Installation

Following the excavation, stockpiling, and sampling of potentially contaminated soils and the disposal of the soils in stockpile SP3, the excavation contractor completed excavation of the stormwater basin and the stormwater infiltration pipes were installed and backfilled with pea gravel, and the silty sand with gravel stockpiled soils. Subsequent to ECI's investigations, it is estimated that the depth of the stormwater basin excavation was extended approximately 6 to 8 feet.

Samples of the excavated soils were not collected by the property owner during the excavation and installation of the stormwater management system. Due to samples not being collected, in March 2021, ECI recommended additional investigations which included the advancement of soil borings and groundwater monitoring in and around the stormwater excavation to confirm that the soils in that area are not contaminated from previous activities on the Subject Property.

#### 4.0 REGULATORY COMPLIANCE & CONTAMINANTS OF CONCERN

Regulatory compliance for this project is based on the Washington Administrative Code (WAC) 173-340 – Model Toxic Control Act (MTCA) - RCW Chapter 70.105D (recodified in 2020 as Chapter 70A.305 RCW), implemented by the Washington State Department of Ecology (Ecology). Pursuant to Chapter 70A.305 RCW, Ecology has established procedures for developing cleanup levels and requirements for cleanup actions. The rules establishing these levels and requirements were developed by Ecology in consultation with a Science Advisory Board (established under the Act) and with representatives from local government, citizen, environmental, and business groups. The rules were first published in February 1991, with amendments in January 1996, February 2001, and October 2007.

#### 4.1 Contaminants of Concern (COCs) and Cleanup Levels

Pursuant to Chapter 70.105D RCW, Ecology has established procedures for developing cleanup levels and requirements for cleanup actions. The MTCA regulations provide three approaches for establishing cleanup levels:

- Method A: ARARs and Tables. This method is to be used where the cleanup action is routine and involves relatively few hazardous substances. The soil and groundwater cleanup levels are set at concentrations at least as stringent as concentrations specified in applicable state and federal laws (ARARs) and are presented in Tables 720-1, 740-1, and 745-1 of the regulations (WAC 173-340).
- Method B: Universal Method. Method B is the "universal method" for determining cleanup levels for all media at all sites. Under Method B, cleanup levels for individual hazardous substances are established using applicable state and federal laws and the risk equations and other requirements specified in WAC 173-340.

Method B has two tiers, a "Standard" tier and a "Modified" tier. The "Standard" Method B tier uses generic default assumptions to calculate cleanup levels. The "Modified" Method B tier provides for the use of chemical-specific or site-specific information to change selected default assumptions. These can be established using a quantitative risk assessment process.

• Method C: Conditional Method. When compliance with cleanup levels developed under Method A or B are impossible to achieve or may cause greater environmental harm, Method C cleanup levels for individual hazardous substances may be established for surface water, groundwater, and air. Method C industrial soil and air cleanup levels may also be established at industrial properties that meet specific criteria.

Like Method B, Method C is divided into two tiers, a "Standard" and a "Modified" tier. The "Standard" Method C tier uses generic default assumptions to calculate cleanup levels. The "Modified" Method

C tier provides for the use of chemical-specific or site-specific information to change selected default assumptions. These can be established using a quantitative risk assessment process.

Based upon the results of previous investigations, ECI has determined that Method A cleanup levels are appropriate for this Site. The Contaminants of Concern (COCs) and respective MTCA Method A Cleanup Levels are presented below in Table 1:

| Contaminant                                       | Analytical Method | MTCA <sup>1</sup> Method A Soil<br>Cleanup Levels<br>(mg/kg) <sup>2</sup> | MTCA <sup>3</sup> Method A<br>Groundwater Cleanup<br>Levels (µg/l) <sup>4</sup> |
|---------------------------------------------------|-------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Gasoline-range Organics (GRO)                     | NWTPH-Gx          | 100/30                                                                    | 1,000/800 <sup>5</sup>                                                          |
| Diesel-range Organics (DRO)                       | NWTPH-Dx          | 2,000                                                                     | 500                                                                             |
| Oil-range Organics (ORO)                          | NWTPH-Dx          | 2,000                                                                     | 500                                                                             |
| Benzene                                           | EPA Method 8260D  | 0.03                                                                      | 5                                                                               |
| Toluene                                           | EPA Method 8260D  | 7                                                                         | 1,000                                                                           |
| Ethylbenzene                                      | EPA Method 8260D  | 6                                                                         | 700                                                                             |
| Xylenes                                           | EPA Method 8260D  | 9                                                                         | 1,000                                                                           |
| Lead                                              | EPA Method 7010   | 250                                                                       | 15                                                                              |
| Cadmium                                           | EPA Method 7010   | 2                                                                         | 5                                                                               |
| Chromium                                          | EPA Method 7010   | 19/2,000 <sup>6</sup>                                                     | 50                                                                              |
| Arsenic                                           | EPA Method 7010   | 20                                                                        | 5                                                                               |
| Polychlorinated biphenyls (PCBs)                  | EPA Method 8082   | 1                                                                         | 0.1                                                                             |
| Carcinogenic Polyaromatic<br>Hydrocarbons (cPAHs) | EPA Method 8270   | Varies                                                                    | Varies                                                                          |

Table 1: Contaminants of Concern

#### 5.0 FOCUSED SUBSURFACE INVESTIGATION AND WELL INSTALLATION

#### 5.1 Focused Subsurface Investigation – March 2021

On March 16, 2021, ECI oversaw the advancement of ten borings on the Property near where previous investigations had found contamination above cleanup levels in 2016 (Figure 6, Appendix A). During excavation for a stormwater basin, the soil in these areas was excavated, stockpiled, sampled, and those soils above cleanup levels transported for offsite disposal at a permitted landfill. However, subsequent to

<sup>&</sup>lt;sup>1</sup> MTCA = Model Toxics Control Act

<sup>&</sup>lt;sup>2</sup> mg/kg = milligram per kilogram

<sup>&</sup>lt;sup>3</sup> MTCA = Model Toxics Control Act

<sup>&</sup>lt;sup>4</sup> μg/l = micrograms per liter

<sup>&</sup>lt;sup>5</sup> Gasoline Range Organics in Groundwater: Gasoline mixtures without benzene and the total of ethylbenzene, toluene and xylene are less than 1% of the gasoline mixture has a Groundwater soil CUL = 1000 μg/L. All other gasoline mixtures have a groundwater CUL = 800 μg/L.

<sup>&</sup>lt;sup>6</sup> = Chromium VI MTCA Method A Cleanup Level is 19 mg/kg, Chromium III MTCA Method A Cleanup Level is 2,000 mg/kg

#### **FSI, Monitoring Well Installation & Groundwater Monitoring Report** 8010 South 259<sup>th</sup> Street, Kent, WA 98032

the excavation of the contaminated areas, the excavation was extended deeper for the installation of the stormwater infiltration piping. The purpose of the borings was to obtain samples to confirm that the soils around and beneath the stormwater basin excavation have been effectively remediated and/or not affected by previous activities on the Property. In addition, five of the borings were completed as groundwater monitoring wells to confirm that the groundwater has not been affected by the contamination previously found on the Property.

Six of the borings were located around the perimeter of the stormwater basin in areas near where previous investigations had found contamination. Four of the borings were located within the stormwater basin to obtain samples of the native soils beneath the basin excavation. The borings were drilled to an approximate depth of 15 feet bgs using push-probe drilling techniques (Geoprobe<sup>®</sup>) by Standard Environmental Probe of Tumwater, Washington, a Washington State licensed driller.

During drilling, soil samples were collected continuously using a Macro-Core<sup>®</sup> sampler for the purpose of logging lithology, determining the location of the groundwater, and screening for contamination. Each 4-foot-long section of soil core was logged for lithology and field screened for evidence of contamination using visual and olfactory screening methods.

#### 5.1.1 Soil Sampling Collection

Relatively undisturbed soil samples were collected directly from the Macro-Core<sup>®</sup> samplers extracted from each boring. The samples were transferred into laboratory-provided analyte specific sample containers by sampling technicians using disposable single use nitrile gloves and assigned a unique sample identification. Samples collected for GRO and BTEX were collected using the Ecology and EPA recommended EPA 5035 sampling method. The samples were placed in a climate-controlled container and maintained at or below 4° Celsius until they were delivered to an Ecology accredited laboratory, Libby Environmental Inc. in Olympia, Washington under industry standard chain of custody protocol.

#### 5.1.2 Analytical Results

A total of 25 soil samples were collected from the borings and 15 were analyzed for COCs. Based on field screening, nine samples were analyzed for GRO and BTEX, and 10 were analyzed for DRO/ORO. Because PCBs and metals were found in previous investigations, one sample from each boring was analyzed for PCBs, and MTCA-5 Metals (arsenic, cadmium, total chromium, lead, and mercury),

Based on the analytical results from the MTCA 5 analyses, five additional samples were analyzed for arsenic. Because ORO was detected above cleanup levels in several of the samples during previous investigations, samples from the borings near three of the locations were analyzed for cPAHs as required by MTCA Table 830-1. In addition, two of the soil samples analyzed were reported as containing concentrations of total chromium greater than the MTCA Method A Cleanup level for hexavalent chromium, those two samples were analyzed for hexavalent chromium.

The analytical results revealed that except for lead, total chromium, and arsenic, the contaminants of concern were reported as not being present above the respective laboratory PQLs. Lead, total chromium, and arsenic were reported above the respective laboratory PQLs in every sample analyzed. The concentrations of lead were reported as being below the MTCA Method A Cleanup Levels. As previously

#### **FSI, Monitoring Well Installation & Groundwater Monitoring Report** 8010 South 259<sup>th</sup> Street, Kent, WA 98032

mentioned, the concentration of total chromium was greater than The MTCA Method A Cleanup Level for hexavalent chromium and below the cleanup Level for trivalent chromium in the shallow samples from two of the borings (boring B-9 and B-10). Those two samples were analyzed for hexavalent chromium. The analytical results of the hexavalent chromium analyses were reported as being below the laboratory PQL.

Arsenic was reported above the MTCA Method A Cleanup Level of 20 mg/kg in five of the samples collected at a depth of 15 feet bgs. The concentrations were just above the cleanup level and ranged from20 mg/kg to 26 mg/kg. Because arsenic was not detected above 6.92 mg/kg in shallow samples during the previous investigations or above the cleanup level in the shallow samples from this investigation, it is ECI's opinion that the arsenic found at 15 feet bgs is not a result of activities on the Subject Property. The analytical results for the soil samples are summarized below in Table 2.

February 18, 2022

#### Table 2: Soil Analytical Results

|                |                 | Tota<br>Hyd            | al Petrole<br>drocarbo | eum<br>ons                                         | Se      | elect Vola<br>Consti | tile Orgar<br>tuents | nic     |      |                |                     | Metals  |         |         |                          |                                  |
|----------------|-----------------|------------------------|------------------------|----------------------------------------------------|---------|----------------------|----------------------|---------|------|----------------|---------------------|---------|---------|---------|--------------------------|----------------------------------|
| Sample<br>Name | Date<br>Sampled | Gasoline-range Organic | Diesel-range Organic   | Oil-range Organic                                  | Benzene | Toluene              | Ethyl benzene        | Xylenes | Lead | Total Chromium | Hexavalent Chromium | Cadmium | Arsenic | Mercury | PCB Mixture <sup>7</sup> | PAHs (carcinogenic) <sup>8</sup> |
|                |                 |                        |                        | Sample Reported in Milligrams per Kilogram (mg/Kg) |         |                      |                      |         |      |                |                     |         |         |         |                          |                                  |
| B-9:3          | 3/16/21         | <10                    | <50                    | <250                                               | <0.02   | <0.10                | <0.05                | <0.15   | 180  | 25             | <0.53               | <1.0    | 17      | <0.5    | ND                       | ND                               |
| B-9:15         | 3/16/21         |                        |                        |                                                    |         |                      |                      |         |      |                |                     |         | 20      |         |                          |                                  |
| B-10:4         | 3/16/21         | <10                    | <50                    | <250                                               | < 0.02  | <0.10                | < 0.05               | <0.15   | 100  | 31             | <0.57               | <1.0    | 14      | <0.5    | ND                       | ND                               |
| B-10:15        | 3/16/21         |                        |                        |                                                    |         |                      |                      |         |      |                |                     |         | 23      |         |                          |                                  |
| B-11:4         | 3/16/21         | <10                    | <50                    | <250                                               | <0.02   | <0.10                | <0.05                | <0.15   | 8    | 5.6            |                     | <1.0    | 16      | <0.5    | ND                       | ND                               |
| B-11:15        | 3/16/21         |                        |                        |                                                    |         |                      |                      |         |      |                |                     |         | 26      |         |                          |                                  |
| B-12:15        | 3/16/21         | <10                    | <50                    | <250                                               | < 0.02  | <0.10                | <0.05                | <0.15   | 75   | 11             |                     | <1.0    | 22      | <0.5    | ND                       |                                  |
| B-13:15        | 3/16/21         |                        | <50                    | <250                                               |         |                      |                      |         | 15   | 5.4            |                     | <1.0    | 17      | <0.5    | ND                       |                                  |
| B-14:16        | 3/16/21         | <10                    | <50                    | <250                                               | <0.02   | <0.10                | < 0.05               | <0.15   | <5.0 | <5.0           |                     | <1.0    | 12      | <0.5    | ND                       |                                  |
| B-15:15        | 3/16/21         | <10                    | <50                    | <250                                               | <0.02   | <0.10                | <0.05                | <0.15   | <5.0 | 6.9            |                     | <1.0    | 18.6    | <0.5    | ND                       |                                  |
| B-16:5         | 3/16/21         | <10                    | <50                    | <250                                               | <0.02   | <0.10                | < 0.05               | <0.15   | 140  | 7.4            |                     | <1.0    | 13      | <0.5    | ND                       |                                  |

<sup>7</sup> PCB Mixtures. Cleanup level based on applicable federal law (40 C.F.R. 761.61). This is a total value for all PCBs.

<sup>8</sup> PAHs (Benzo(a)pyrene). Cleanup level based on direct contact using Equation 740-2. If other carcinogenic PAHs are suspected of being present at the site, test for them and use this value as the total concentration that all carcinogenic PAHs must meet using the toxicity equivalency methodology in WAC 173-340-708(8)

ECI | Environmental Services O: (866) 730-9369 F: (253) 369-6228 E: info@ecocononline.com Page 12

**FSI, Monitoring Well Installation & Groundwater Monitoring Report** 8010 South 259<sup>th</sup> Street, Kent, WA 98032

February 18, 2022

|                |                       | Tota<br>Hyd            | al Petrole<br>drocarbo | eum<br>ons                                         | Se      | elect Vola<br>Consti | tile Orgar<br>tuents | nic     |      |                |                     | Metals  |         |         |                          |                                  |
|----------------|-----------------------|------------------------|------------------------|----------------------------------------------------|---------|----------------------|----------------------|---------|------|----------------|---------------------|---------|---------|---------|--------------------------|----------------------------------|
| Sample<br>Name | Date<br>Sampled       | Gasoline-range Organic | Diesel-range Organic   | Oil-range Organic                                  | Benzene | Toluene              | Ethyl benzene        | Xylenes | Lead | Total Chromium | Hexavalent Chromium | Cadmium | Arsenic | Mercury | PCB Mixture <sup>7</sup> | PAHs (carcinogenic) <sup>8</sup> |
|                |                       |                        |                        | Sample Reported in Milligrams per Kilogram (mg/Kg) |         |                      |                      |         |      |                |                     |         |         |         |                          |                                  |
| B-17:4         | 3/16/21               | <10                    | <50                    | <250                                               | <0.02   | <0.10                | < 0.05               | <0.15   | 7.8  | 12             |                     | <1.0    | 15      | <0.5    | ND                       |                                  |
| B-17:15        | 3/16/21               |                        |                        |                                                    |         |                      |                      |         |      |                |                     |         | 14      |         |                          |                                  |
| B-18:3         | 3/16/21               | <10                    | <50                    | <250                                               | <0.02   | <0.10                | <0.05                | <0.15   | 10   | 14             |                     | <1.0    | 13      | <0.5    | ND                       |                                  |
| B-18:15        | 3/16/21               |                        |                        |                                                    |         |                      |                      |         |      |                |                     |         | 25      |         |                          |                                  |
| Laborat        | tory PQL <sup>9</sup> | 10                     | 50                     | 250                                                | 1       | 2                    | 1                    | 2       | 5.0  | 5.0            | 0.534               | 5.0     | 3.0     | 0.5     | 0.02                     | 0.1                              |
| Method         | d A CUL <sup>10</sup> | 30/100                 | 2,000                  | 2,000                                              | 5       | 1,000                | 700                  | 1,000   | 250  | 2,000          | 19                  | 2       | 20      | 2       | 0.1                      | 1                                |

Bold: Analyte reported exceeding the laboratory PQL

<sup>9</sup> Practical Quantitative Limits

<sup>10</sup> Washington Model Toxic Control Act Method A Cleanup Levels

### 6.0 GROUNDWATER MONITORING PROGRAM

This groundwater monitoring program was initiated the first quarter of 2021 on the Subject Property following excavation of contaminated soils found during excavation for a stormwater basin and the installation of the infiltration pipes in 2016. It includes:

- Installation of five groundwater-monitoring wells in March 2021;
- Sampling the wells on a quarterly basis for the constituents of concern at the Site, and
- Comparing the analytical results with their respective MTCA Method A Cleanup Levels (CULs).

#### 6.1 Monitoring Well Installation – March 2021

Five out of the ten borings advanced on the Subject Property on March 16, 2021, were completed as monitoring wells. Boring B9, B11, B14, B15, and B18 were all completed as monitoring wells. The wells were constructed pursuant to the Washington State Resource Protection Well Regulations (Chapter 173-160 WAC) with 10 feet of ¾-inch diameter 0.010-inchslotted PVC well screen starting at the base of the boring. The boring logs and well construction details are presented in Appendix C.

To assure that representative samples of the groundwater could be obtained, on March 19, 2021, each well was developed to remove the effects that drilling may have had on the soils adjacent to the boring and to clean the sand-pack of silt that may have been introduced during well construction. This was accomplished by surging the well and pumping the water from the well until the water was clear or as clean as reasonably possible.

The following wells were installed on the Subject Property:

- **MW1**: was installed west of the stormwater basin excavation.
- **MW2**: was installed north of the northwest portion of the stormwater basin excavation.
- **MW3**: was installed in the northeast portion of the stormwater basin excavation.
- MW4: was installed in the northeast portion of the stormwater basin excavation east of well MW3.
- **MW5**: was installed outside the southwestern portion of the stormwater basin to the south.

#### 6.2 Groundwater Sampling Activities

Groundwater samples were collected from the five monitoring wells (MW1 through MW5) over four consecutive quarters, in accordance with American Society of Testing and Materials (ASTM) Guideline D6771-02 "Standard Practice for Low-Flow Purging and Sampling for Wells and Devices used for Ground-Water Quality Investigations".

ECI field staff followed the procedures described below when collecting groundwater samples:

• The cap from each monitoring well at the Site was removed and the groundwater level was allowed to equilibrate to atmospheric pressure for a minimum of 20 minutes.

**FSI, Monitoring Well Installation & Groundwater Monitoring Report** 8010 South 259<sup>th</sup> Street, Kent, WA 98032

- The depth to groundwater in each monitoring well at the Site was measured relative to the top of the well casing using an electronic water-level meter.
- Each monitoring well that was sampled was then purged at a low-flow rate (100 to 300 milliliters per minute) using a peristaltic pump and dedicated polyethylene tubing. "Field parameters" of temperature, pH, dissolved oxygen (DO), oxygen reduction potential (ORP) and specific conductivity were monitored during purging using a water quality meter and a flow-through cell to determine when these parameters stabilized.

Samples were collected in new laboratory-provided analyte-specific sample containers and assigned a unique sample ID. The samples were placed in a climate-controlled container and maintained at or below 4° Celsius util they were delivered to an Ecology accredited laboratory, Libby Environmental Inc. in Olympia, Washington under industry standard chain of custody protocol.

#### 6.2.1 First Quarter 2021 Groundwater Monitoring – March 2021

The first consecutive groundwater monitoring event was conducted on March 30, 2021, and groundwater samples were collected from the five groundwater monitoring wells (MW1 through MW5) installed on the Subject Property. The samples were collected to confirm that the groundwater has not been affected by the contamination previously found on the Property.

At the time of groundwater sampling the groundwater levels were found to be between 7.08 and 7.50 feet below the top of the casing of each well (Table 9 Appendix B). Based on the depths to water and the professionally surveyed elevations of the well casings, the groundwater flow appeared to be to the north in the western portion of the Site and to the east in the eastern portion of the Site (Figure 2, Appendix A). However, it should be noted that the depths to groundwater are within the elevation of the infiltration pipes of the stormwater basin. It is likely that the groundwater levels and flow are affected by the stormwater basin.

The analytical results of samples collected revealed that the only contaminant of concern reported above the laboratory PQLs was arsenic. Except for the sample from monitoring well MW4, total arsenic was reported above the laboratory PQL in each of the samples from the monitoring wells. Arsenic was not reported above the laboratory PQL in the sample from monitoring well MW4.

Of the samples with total arsenic concentrations reported greater than the laboratory PQL, only the samples from monitoring wells MW1 and MW2 had concentrations that exceeded the MTCA Method A Cleanup Level of  $5.0 \mu g/L$ .

Because the reported concentration of total arsenic was above MTCA Method A Cleanup Level in the samples from monitoring wells MW1 and MW2, those samples were additionally analyzed for dissolved arsenic. The analytical results for dissolved arsenic for each sample was reported as being below the laboratory PQL which is below the MTCA Method A Cleanup Level.

A summary of the laboratory analytical results for this event is provided in Table 3 below. A summary of the analytical results for all of the monitoring well sampling events is provided in Table 8, Appendix B. The laboratory data sheets are presented in Appendix D.

|                |                 | Total<br>Hydi                 | Total Petroleum<br>Hydrocarbons |                      |         | elect Vola<br>Const | atile Org<br>ituents | anic     |          | То        | tal Meta | als     |                      | PC<br>B | Chl<br>ori |
|----------------|-----------------|-------------------------------|---------------------------------|----------------------|---------|---------------------|----------------------|----------|----------|-----------|----------|---------|----------------------|---------|------------|
| Sample<br>Name | Date<br>Sampled | Gasoline-<br>range<br>Organic | Diesel-range<br>Organic         | Oil-range<br>Organic | Benzene | Toluene             | Ethyl benzene        | Xylenes  | Lead     | Chromium  | Cadmium  | Arsenic | Dissolved<br>Arsenic |         |            |
|                |                 |                               |                                 |                      | Sar     | nples Rep           | ported in            | Microgra | ms per L | iter (µg, | /I)      | 0       |                      | 0       |            |
| MW1            | 3/30/21         | <100                          | <200                            | <400                 | <1.0    | <2.0                | <1.0                 | <2.0     | <5.0     | <5.0      | <5.0     | 6.4     | <3.0                 | ND      | ND         |
| MW2            | 3/30/21         | <100                          | <200                            | <400                 | <1.0    | <2.0                | <1.0                 | <2.0     | <5.0     | <5.0      | <5.0     | 6.9     | <3.0                 | ND      | ND         |
| MW3            | 3/30/21         | <100                          | <200                            | <400                 | <1.0    | <2.0                | <1.0                 | <2.0     | <5.0     | <5.0      | <5.0     | 3.4     |                      | ND      | ND         |
| MW4            | 3/30/21         | <100                          | <200                            | <400                 | <1.0    | <2.0                | <1.0                 | <2.0     | <5.0     | <5.0      | <5.0     | <3.0    |                      | ND      | ND         |
| MW5            | 3/30/21         | <100                          | <200                            | <400                 | <1.0    | <2.0                | <1.0                 | <2.0     | <5.0     | <5.0      | <5.0     | 4.3     |                      | ND      | ND         |
| Labora         | tory PQL        | 100                           | 200                             | 400                  | 1       | 2                   | 1                    | 2        | 5.0      | 5.0       | 5.0      | 3.0     |                      | 0.02    | 0.1        |
| Metho          | d A CULs        | 800/1,000                     | 500                             | 500                  | 5       | 1,000               | 700                  | 1,000    | 15       | 50        | 5        | 5.0     |                      | NE      | NE         |

| Table 3: First Quarter 20 | )21 Groundwater Sam | ple Analytical Results |
|---------------------------|---------------------|------------------------|
|---------------------------|---------------------|------------------------|

**Bold**: Sample Results Exceed the Laboratory PQL

Red: Sample Results Exceed the MTCA Cleanup Level

# 6.2.2 Second Quarter 2021 Groundwater Monitoring – June 2021

The second consecutive groundwater monitoring event was conducted on June 15, 2021, and groundwater samples were collected from each of the five monitoring wells (MW1 through MW4). At the time of sampling, groundwater levels were found to be between 8.04 and 8.50 feet below the top of the casing of each well (Table 9, Appendix B). Based on the depths to water and the professionally surveyed elevations of the well casings, the groundwater flow appeared to be to the northwest in the western portion of the Site and to the east in the eastern portion of the Site and may be slightly mounded within the stormwater basin (Figure 3, Appendix A). However, it should be noted that the depths to groundwater levels and flow are affected by the stormwater basin. It should also be noted that there was reportedly 1.10 inches of precipitation the day before the sampling.

The analytical results of samples collected revealed that the only contaminant of concern reported above the laboratory PQLs was arsenic. Except for the sample from monitoring well MW2, total arsenic was reported above the laboratory PQL in each of the samples from the monitoring wells. Arsenic was not reported above the laboratory PQL in the sample from monitoring well MW2. Of the samples with total arsenic concentrations reported greater than the laboratory PQL, the samples from monitoring wells MW1, MW3, and MW5 had concentrations that exceeded the MTCA Method A Cleanup Level of  $5.0 \mu g/L$ .

Because the reported concentration of total arsenic was above MTCA Method A Cleanup Levels in samples from monitoring wells MW1, MW3, and MW5, the samples were analyzed for dissolved arsenic. The results of the dissolved arsenic analyses were reported to be above the MTCA Method A Cleanup Levels for each sample.

It should be noted that the concentrations of dissolved arsenic were reported as being greater than the concentration levels of the total arsenic analytical results. This can occasionally occur for a number of reasons. The variation could be caused by laboratory error and/or field sampling errors. However, there are also variations that are a result of the preparation and analytical methods used. According to the EPA analytical method most commonly used, EPA Method 7010 - Graphite Furnace Atomic Absorption Spectrophotometry (GFAA), *"arsenic analysis can suffer from severe nonspecific absorption and light scattering caused by matrix components during atomization."* When this occurs, the concentrations reported appear higher than may be in the sample.

Another potential reason total metal concentrations can be occasionally reported as being lower than dissolved metals is that water samples for total and dissolved metals are handled and prepared for analyses differently. Samples for dissolved analyses are either filtered in the field to remove particles greater than 0.45 microns and then acidified with nitric acid or the sample is filtered and acidified by the laboratory upon receipt. This acidified sample can then be directly analyzed by the chosen analytical method. Samples for total metals analyses are acidified in the field with nitric acid to prevent the precipitation and changes in the oxidation states of the metals.

Before a sample for total metals is analyzed it needs to be "digested". According to the EPA Method 7010: "With the exception of the analyses for dissolved constituents, all samples require digestion prior to Analysis. Samples which are to be analyzed only for dissolved constituents need not be digested if they have been filtered and acidified." The digestion method used for GFAA is EPA Method 3015 - Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. This method takes the metals from the solid and colloidal portions of a sample and puts them into solution so that they can be analyzed. One comment that is made in the method is that the "method is not intended to accomplish total decomposition of the sample, the extracted analyte concentrations may not reflect the total content in the sample". When this occurs the concentrations in a sample analyzed for dissolved metals may be higher than the concentration for total metals and will vary from sample to sample depending on the concentrations and the physical and chemical makeup of each sample.

Because the actual reason for the discrepancy between the total and dissolved arsenic in the samples cannot be determined and that the dissolved arsenic analytical results reported during the first and third consecutive groundwater monitoring events conducted on September 23, 2021, and March 30, 2021, reported concentrations below the laboratory PQL for arsenic, ECI does not consider the analytical results

for arsenic from this sampling event to be representative of true concentrations of total and/or dissolved arsenic within the groundwater at the Site.

A summary of the laboratory analytical results for this event is provided in Table 4 below. A summary of the groundwater monitoring well samples is provided in Table 8, Appendix B. The laboratory data sheets are presented in Appendix D.

|                |                 | Total Petroleum<br>Hydrocarbons |                         |                      | S       | elect Vola<br>Const | itile Orga<br>ituents | anic       | Total Metals |           |         |         |                      | PC<br>B | Chl<br>ori |
|----------------|-----------------|---------------------------------|-------------------------|----------------------|---------|---------------------|-----------------------|------------|--------------|-----------|---------|---------|----------------------|---------|------------|
| Sample<br>Name | Date<br>Sampled | Gasoline-<br>range<br>Organic   | Diesel-range<br>Organic | Oil-range<br>Organic | Benzene | Toluene             | Ethyl benzene         | Xylenes    | Lead         | Chromium  | Cadmium | Arsenic | Dissolved<br>Arsenic |         |            |
|                |                 |                                 | -                       | 1                    | Sa      | mples Re            | ported i              | n Microgra | ams per      | Liter (µg | g/l)    |         |                      |         |            |
| MW1            | 6/15/21         | <100                            | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0      | <5.0    | 5.9     | 18                   | ND      | ND         |
| MW2            | 6/15/21         | <100                            | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0      | <5.0    | <3.0    |                      | ND      | ND         |
| MW3            | 6/15/21         | <100                            | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0      | <5.0    | 6.7     | 9.1                  | ND      | ND         |
| MW4            | 6/15/21         | <100                            | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0      | <5.0    | 4.3     |                      | ND      | ND         |
| MW5            | 6/15/21         | <100                            | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0      | <5.0    | 17      | 23                   | ND      | ND         |
| Labora         | atory PQL       | 100                             | 200                     | 400                  | 1       | 2                   | 1                     | 2          | 5.0          | 5.0       | 5.0     | 3.0     | 3.0                  | 0.02    | 0.1        |
| Metho          | od A CULs       | 800/1,0<br>00                   | 500                     | 500                  | 5       | 1,000               | 700                   | 1,000      | 15           | 50        | 5       | 5.0     | 5.0                  | NE      | NE         |

| Tuble 4. Second Quarter 2021 Orbanawater Sumple Analytical Results | Table 4: Second | Quarter | 2021 | Groundwater | Sample | Analy | /tical | Results |
|--------------------------------------------------------------------|-----------------|---------|------|-------------|--------|-------|--------|---------|
|--------------------------------------------------------------------|-----------------|---------|------|-------------|--------|-------|--------|---------|

Bold: Sample Results Exceed PQL

Red: Sample Results Exceed CUL

# 6.2.3 Third Quarter 2021 Groundwater Monitoring – September 2021

The third consecutive groundwater monitoring event was conducted on September 23, 2021, and groundwater samples were collected from each of the five monitoring wells (MW1 through MW5). At the time of sampling, groundwater levels were found to be between 9.03 and 10.30 feet below the top of the casing of each well (Table 9, Appendix B). Based on the depths to water and the professionally surveyed elevations of the well casings, the groundwater appears to be mounded in the area of the stormwater basin with the primary flow to the east in the eastern portion of the Site and to the west in the western portion of the Site. This mound is likely caused by the infiltration of precipitation that occurred prior to the date of the sampling event. Approximately 1.5 inches of precipitation occurred within the five days preceding the sampling.

The analytical results of samples collected revealed that the only contaminants of concern reported above the laboratory PQLs were DRO and arsenic in the sample from monitoring well MW4 and arsenic in the sample from monitoring well MW1. Except for the concentration of total arsenic in the sample from monitoring well MW4, the concentrations were reported as being below the MTCA Method A Cleanup Levels. Because the reported concentration of total arsenic was above MTCA Method A Cleanup Level in the samples from monitoring well MW4, the sample from that monitoring well was additionally analyzed for dissolved arsenic. The analytical result for dissolved arsenic was reported as being below the laboratory PQL which is below the MTCA Method A Cleanup Level.

A summary of the laboratory analytical results for this event is provided in Table 5 below. A summary of the groundwater monitoring well samples is provided in Table 8, Appendix B. The laboratory data sheets are presented in Appendix D.

|                |                 | Total<br>Hyd                  | Petroleu<br>rocarbor    | ım<br>IS             | S       | elect Vola<br>Const | atile Orga<br>ituents | anic       | Total Metals |          |          |         |      | ē          | AHs            |
|----------------|-----------------|-------------------------------|-------------------------|----------------------|---------|---------------------|-----------------------|------------|--------------|----------|----------|---------|------|------------|----------------|
| Sample<br>Name | Date<br>Sampled | Gasoline-<br>range<br>Organic | Diesel-range<br>Organic | Oil-range<br>Organic | Benzene | Toluene             | Ethyl benzene         | Xylenes    | Lead         | Chromium | Cadmium  | Arsenic |      | PCB Mixtur | Chlorinated P/ |
|                |                 |                               | 1                       | I                    | T       | Sample              | s Report              | ed in Mici | rograms      | per Lite | r (µg/l) | 1       | I    | T          | 1              |
| MW1            | 9/23/21         | <100                          | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0     | <5.0     | 3.1     |      | ND         | ND             |
| MW2            | 9/23/21         | <100                          | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0     | <5.0     | <3.0    |      | ND         | ND             |
| MW3            | 9/23/21         | <100                          | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0     | <5.0     | <3.0    |      | ND         | ND             |
| MW4            | 9/23/21         | <100                          | <200                    | 460                  | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0     | <5.0     | 7.4     | <3.0 | ND         | ND             |
| MW5            | 9/23/21         | <100                          | <200                    | <400                 | <1.0    | <2.0                | <1.0                  | <2.0       | <5.0         | <5.0     | <5.0     | <3.0    |      | ND         | ND             |
| Labora         | tory PQL        | 100                           | 200                     | 400                  | 1       | 2                   | 1                     | 2          | 5.0          | 5.0      | 5.0      | 3.0     | 3.0  | 0.02       | 0.1            |
| Metho          | d A CULs        | 800/1,000                     | 500                     | 500                  | 5       | 1,000               | 700                   | 1,000      | 15           | 50       | 5        | 5.0     | 5.0  | NE         | NE             |

Table 5: Third Quarter 2021 Groundwater Sample Analytical Results

Bold: Sample Results Exceed PQL

Red: Sample Results Exceed CUL

#### 6.2.4 Fourth Quarter 2021 Groundwater Monitoring – November 2021

The fourth consecutive groundwater monitoring event was conducted on November 17, 2021, and groundwater samples were collected from each of the five monitoring wells (MW1 through MW5). At the time of sampling, groundwater levels were found to be between 5.74 and 7.68 feet below the top of the casing of each well (Table 9, Appendix B). Based on the depths to water and the professionally surveyed elevations of the well casings, the groundwater flow appears to be to the east (Figure 5, Appendix A). However, it should be noted that the depths to groundwater are within the elevation of the infiltration pipes of the stormwater basin. It is likely that the groundwater levels and flow are affected by the stormwater basin.

The analytical results of samples collected from monitoring wells MW1, MW2, and MW4 revealed concentrations of arsenic exceeding the laboratory PQL. However, only the arsenic monitoring wells MW1 and MW4 were at a concentration that exceeded its MTCA Method A Cleanup Level. The concentration of

arsenic in the sample from monitoring well MW2 had an arsenic concentration below the MTCA Method A Cleanup Level.

Due to the previous analytical results indicating that dissolved arsenic was reported as below the laboratory PQL, dissolved arsenic was not analyzed for MW1 and MW4.

A summary of the laboratory analytical results for this event is provided in Table 6 below. A summary of the groundwater monitoring well samples is provided in Table 8, Appendix B. The laboratory data sheets are presented in Appendix D.

|                |                 | Total Po<br>Hydro             | etroleum<br>carbons                             | ı                    | S       | elect Vola<br>Consti | tile Orga<br>ituents | nic     |      | Total    |         | e       | AHs        |                |
|----------------|-----------------|-------------------------------|-------------------------------------------------|----------------------|---------|----------------------|----------------------|---------|------|----------|---------|---------|------------|----------------|
| Sample<br>Name | Date<br>Sampled | Gasoline-<br>range<br>Organic | Diesel-range<br>Organic                         | Oil-range<br>Organic | Benzene | Toluene              | Ethyl benzene        | Xylenes | Lead | Chromium | Cadmium | Arsenic | PCB Mixtur | Chlorinated P/ |
|                |                 |                               | Samples Reported in Micrograms per Liter (µg/l) |                      |         |                      |                      |         |      |          |         |         |            |                |
| MW1            | 11/17/21        | <100                          | <200                                            | <400                 | <1.0    | <2.0                 | <1.0                 | <2.0    | <5.0 | <5.0     | <5.0    | 6.5     | ND         | ND             |
| MW2            | 11/17/21        | <100                          | <200                                            | <400                 | <1.0    | <2.0                 | <1.0                 | <2.0    | <5.0 | <5.0     | <5.0    | 3.3     | ND         | ND             |
| MW3            | 11/17/21        | <100                          | <200                                            | <400                 | <1.0    | <2.0                 | <1.0                 | <2.0    | <5.0 | <5.0     | <5.0    | <3.0    | ND         | ND             |
| MW4            | 11/17/21        | <100                          | <200                                            | <400                 | <1.0    | <2.0                 | <1.0                 | <2.0    | <5.0 | <5.0     | <5.0    | 19      | ND         | ND             |
| MW5            | 11/17/21        | <100                          | <200                                            | <400                 | <1.0    | <2.0                 | <1.0                 | <2.0    | <5.0 | <5.0     | <5.0    | <3.0    | ND         | ND             |
| Labora         | atory PQL       | 100                           | 200                                             | 400                  | 1       | 2                    | 1                    | 2       | 5.0  | 5.0      | 5.0     | 3.0     | 0.02       | 0.1            |
| Metho          | od A CULs       | 800/1,000                     | 500                                             | 500                  | 5       | 1,000                | 700                  | 1,000   | 15   | 50       | 5       | 5.0     | NE         | NE             |

Table 6: Fourth Quarter 2021 Groundwater Sample Analytical Results

Bold: Sample Results Exceed PQL

Red: Sample Results Exceed CUL

#### 7.0 SUMMARY

In March 2021, ECI oversaw the advancement of ten soil borings and the installation of five groundwater monitoring wells on the Property near where previous investigations had found contamination above cleanup levels during excavation for a stormwater basin in 2016. The contaminated soil was independently remediated in 2016 by the owner of the Property through excavation and off-site disposal (disposal receipts provided by the owner of the Property available in Appendix C). The borings advanced in March 2021 were to confirm that the soils around and beneath the stormwater basin excavation had been effectively remediated and/or not affected by previous activities on the Property.

A total of 25 soil samples were collected from the borings and 15 were analyzed for COCs. The analytical results revealed that except for lead, total chromium, and arsenic, the contaminants of concern were reported as not being present above the respective laboratory PQLs. Lead, total chromium, and arsenic were reported above the respective laboratory PQLs in every sample analyzed. However, arsenic was the

only sample reported to exceed the MTCA Method A Cleanup Levels in five of the samples collected from a depth of 15 feet bgs. The concentrations were just above the cleanup level of 20 mg/kg and ranged from 20 mg/kg to 26 mg/kg. Because arsenic was not detected above 6.92 mg/kg in shallow samples during the previous investigations or above the cleanup level in the shallow samples from this investigation, it is ECI's opinion that the arsenic found at 15 feet bgs is not a result of activities on the Subject Property.

Between May 2021 and November 2021, ECI conducted four groundwater quarterly sampling events, where samples were collected from the five groundwater monitoring wells installed at the Site. The samples were collected to confirm that the groundwater had not been affected by the contamination previously found on the Property.

The analytical results showed total arsenic to be above its MTCA Method A Cleanup Level throughout the four quarters in samples from one or more monitoring wells. The samples reporting concentrations of total arsenic above the MTCA Method A Cleanup Level for the first through third consecutive groundwater monitoring event were further analyzed for dissolved arsenic. With the exception of the second consecutive groundwater monitoring event, the analytical results for all samples were reported below the laboratory PQL for dissolved arsenic. The remaining COCs were reported below their respective laboratory PQLs or below their respective MTCA Method A Cleanup Levels for all of the monitoring wells (MW1 through MW5).

The analytical results from the second quarter sampling event reported the concentrations of dissolved arsenic above the concentration levels of the total arsenic analytical results. This can occasionally occur due to numerous reasons ranging from sampling and/or laboratory errors to the EPA acknowledged limitations with the analytical and sample preparation methods.

Because the actual reason for the discrepancy between the total and dissolved arsenic in the samples cannot be determined and that the dissolved arsenic analytical results reported during the first and third consecutive groundwater monitoring events conducted on September 23, 2021, and March 30, 2021, reported concentrations were below the laboratory PQL for arsenic, ECI does not consider the analytical results for arsenic from this sampling event to be representative of true concentrations of total and/or dissolved arsenic within the groundwater at the Site.

#### 8.0 **RECOMMENDATIONS**

Based on the consistent analytical results indicating that the soil at Site has been remediated and that the groundwater does not appear to have been affected by activities on the Property, ECI recommends the issuance of a No Further Action determination for the Site.

#### 9.0 REPORT LIMITATIONS AND GUIDELINES FOR USE

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology, and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. EcoCon Inc. includes these explanatory "limitations"

provisions in our reports to help reduce such risks. Please confer with EcoCon if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or Site.

### 9.1 Use of this Report by Others

Our report was prepared for the exclusive use of Mr. Preet Chohan/BLT Trucking (Client) and/or his designated parties. This report may be provided to regulatory agencies for review if requested or required. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

This report has been prepared for subsurface investigation activities at the Subject Property. ECI considered a number of unique, project-specific factors when establishing the scope of services for this project and report. No one except our Client should rely on this environmental report without first conferring with ECI. This report should not be applied for any purpose or project except the one originally contemplated.

Unless ECI specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important site changes were made.

If important changes are made after the date of this report, ECI should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

# 9.2 Uncertainty May Remain after Completion of Site Investigation and Remedial Activities

The investigation and remediation activities completed in a portion of a site cannot wholly eliminate uncertainty regarding the potential for contamination in connection with the entire property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from the locations sampled. It is always possible that contamination exists in areas that were not explored, sampled, or analyzed.

#### 9.3 Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the Site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability, or groundwater fluctuations. Always contact EcoCon before applying this report to determine if it is still applicable.

#### 9.4 Soil and Groundwater End Use

The cleanup levels referenced in this report are Site- and situation-specific and could change with time due to regulatory or Site changes. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater).

Note that hazardous substances may be present in some of the Site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. Because these cleanup levels can change, ECI should be contacted to evaluate the potential for associated environmental liabilities prior to the export of soil or groundwater from the Subject Site or reuse of the affected media on the Site. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the Subject Site to another location or its reuse on the Site in instances that we were not aware of or could not control.

### 9.5 Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from the locations sampled at the Site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. EcoCon Inc. reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the Site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

# List of Appendices

# **Appendix A: Project Figures**

Figure 1: Site Vicinity Map

Figure 2: Q1 2021 Groundwater Analytical and Elevation Map Figure 3: Q2 2021 Groundwater Analytical and Elevation Map Figure 4: Q3 2021 Groundwater Analytical and Elevation Map Figure 5: Q4 2021 Groundwater Analytical and Elevation Map Figure 6: 2021 Boring Sample Location Map Figure 7: Historical Groundwater Analytical Map Figure 8: Historical Boring/Sample Location Map

# **Appendix B: Project Tables**

Table 6: Summary of Historical Soil Analytical Results Table 7: Summary of Historical Groundwater Analytical Results Table 8: Summary of Monitoring Well Analytical Results Table 9: Summary of Groundwater Elevations

# **Appendix C: Project Documentation**

Field Sampling Forms Boring Logs & Well Construction Details Soil Disposal Receipts

# **Appendix D: Laboratory Data Sheet**

Laboratory Analytical Report Sample Chain of Custody

# **Appendix A: Project Figures**

Figure 1: Site Vicinity Map Figure 2: Q1 2021 Groundwater Analytical and Elevation Map Figure 3: Q2 2021 Groundwater Analytical and Elevation Map Figure 4: Q3 2021 Groundwater Analytical and Elevation Map Figure 5: Q4 2021 Groundwater Analytical and Elevation Map Figure 6: 2021 Boring Sample Location Map Figure 7: Historical Groundwater Analytical Map Figure 8: Historical Boring/Sample Location Map









February 10, 2022 C.Long S.Spencer ECI-001 0611-01-03-02





roviding Practical Environmental Co





February 10, 2022 C.Long S.Spencer ECI-001 0611-01-03-02

Figure No.: Sheet 03 of 08



roviding Practical Environmental C





February 10, 2022 C.Long S.Spencer ECI-001 0611-01-03-02





roviding Practical Environmental C





February 10, 2022 C.Long S.Spencer ECI-001 0611-01-03-02





roviding Practical Environmental Co





Soil Boring Location < CUL</li>
 GRO: Gasoline Range Organics
 DRO: Diesel Range Organics
 ORO: Oil Range Organics

As: Arsenic Monitoring Well < MTCA CUL's

Monitoring Well > MTCA CUL's

Explanation

Cd: Cadmium Cr: Chromium Pb: lead

BTEX: Benzene, Toluene, Ethylbenzene, Total Xylenes BOLD: Above laboratory reporting limit

Soil Boring Location > CUL
 Red: Above Cleanup Level
 mg/Kg: milligram per kilogram
 NA: Not run for that COC
 ND: Not detected above laboratory reporting limit

**2021 Boring Sample Location Map** FSI, Monitoring Well Installation & Groundwater Monitoring Report 8010 South 259th Street Kent, Washington Date: Fe Completed By: Reviewed By.: Version: Project No.:

February 10, 2022 y: C.Long :: S.Spencer ECI-001 0611-01-03-02





roviding Practical Environmental Compliance Solutions (fices In: Anchorage | Tacoma | Portland



B8-GW-7.5' (μg/L) Gasoline Range Organics: <200 Diesel Range Organics: <500 Oil Range Organics: <500 B8

8

B7-GW-7' (μg/L) Gasoline Range Organics: <200 Diesel Range Organics: <500 Oil Range Organics: <500 **B7** 

Gasoline Range Organics: <200

Date: Completed By: Reviewed By .: Version: Project No.:

February 10, 2022 Figure No.: C.Long S.Spencer ECI-001 0611-01-03-02





oviding Practical Environmental C





Ν

Soil Boring Location
G: Gasoline Range Organics
D: Diesel Range Organics
HO: Heavy Oil Range Organics

**Explanation** 

mg/Kg: milligram per kilogram ug/L: microgram per liter ND: Not detected above laboratory reporting limit Historical Boring / Sample Location Map FSI, Monitoring Well Installation & Groundwater Monitoring Report 8010 South 259th Street Kent, Washington Date: Fe Completed By: Reviewed By.: Version: Project No.:

February 10, 2022 y: C.Long :: S.Spencer ECI-001 0611-01-03-02





roviding Practical Environmental Compliance Solutions flices In: Anchorage | Tacoma | Portland

# **Appendix B: Project Tables**

Table 6: Summary of Historical Soil Analytical Results Table 7: Summary of Historical Groundwater Analytical Results Table 8: Summary of Monitoring Well Analytical Results Table 9: Summary of Groundwater Elevations





| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample<br>Depth<br>(feet bgs) |           | Gasoline-Range Organics | Diesel-Range Organics | Oil-Range Organics | сРАНѕ | PCB Mixtures | cVOCs         | Arsenic    | Cadmium    | Chromium (Total) | Chromium VI | Mercury | Lead |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-------------------------|-----------------------|--------------------|-------|--------------|---------------|------------|------------|------------------|-------------|---------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |           |                         |                       |                    | Sa    | mple Resu    | lts in millig | rams per k | ilogram (m | g/kg)            |             |         | _    |
| B1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                             | 5/16/2016 | <20                     | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| B2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                             | 5/16/2016 | <20                     | 1,100                 | 2,800              |       | 5.7          |               | 5.7        | 5.17       | 228              | <0.548      | <1      | 470  |
| B3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                             | 5/16/2016 | <20                     | 730                   | 2,100              |       |              |               |            |            |                  |             |         |      |
| B4-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                             | 5/16/2016 | <20                     | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| B5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                             | 5/16/2016 | <20                     | 680                   | 1,900              |       |              |               |            |            |                  |             |         |      |
| D0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                             | 5/16/2016 | <20                     | /8                    | 350                |       |              |               |            |            |                  |             |         |      |
| B7-2.5<br>B8-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                           | 5/16/2016 | <20                     | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| TP9-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                             | 6/1/2016  | ~20                     | <50                   | <250               |       |              |               | 6 14       |            | 7 12             |             |         | 22.7 |
| TP10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | 240x                  | 970                |       |              |               |            |            |                  |             |         |      |
| TP10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                             | 6/1/2016  |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| TP11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| TP12-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| TP13-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | 600x                  | 1.500              |       |              |               |            |            |                  |             |         |      |
| TP13-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                             | 6/1/2016  |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| TP14-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | 78                    | 350                |       |              |               |            |            |                  |             |         |      |
| TP15-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 6/1/2016  |                         | 260x                  | 1.000              |       |              |               |            |            |                  |             |         |      |
| TP16-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                           | 6/1/2016  |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| SP1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 76                    | <250               |       |              |               |            |            |                  |             |         |      |
| SP1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 230                   | 800                |       | 2.1          |               | 5.71       | 1.74       | 188              |             | <1      | 160  |
| SP1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 250                   | 920                |       | 3.7          |               | 6.49       | 2.62       | 102              |             | <1      | 262  |
| SP1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 280                   | 970                |       | 0.99         |               | 4.95       | <1         | 33.3             |             | <1      | 85.8 |
| SP1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 21                    | 660                |       |              |               |            |            |                  |             |         |      |
| SP1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 89                    | 840                |       | 0.71         |               | 5.63       | 1.04       | 206              |             | <1      | 94.8 |
| SP1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | 150                   | 750                |       | 1.9          |               | 5.39       | 2.19       | 162              |             | <1      | 224  |
| SP1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| SP1-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/15/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| SP1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                            | 6/15/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| SP2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 120                   | 290                |       |              |               |            |            |                  |             |         |      |
| SP2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 240                   | 650                |       | 0.55         |               | 6.45       | 1.05       | 15.9             |             | <1      | 102  |
| SP2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 82                    | <250               |       |              |               |            |            |                  |             |         |      |
| SP2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 140                   | 50                 |       |              |               |            |            |                  |             |         |      |
| SP2-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 180                   | 610                |       | 2.4          |               | 6.02       | 2.95       | 460              |             | <1      | 293  |
| SP2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 440                   | 1,100              |       | 1.9          |               | 4.6        | 2.51       | 62.2             |             | <1      | 265  |
| SP2-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 490                   | 1,400              |       | 1            |               | 7.79       | 2.13       | 56.9             |             | 1.07    | 152  |
| SP2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| SP2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                            | 6/16/2016 |                         | 1,400                 | 3,200              |       |              |               |            |            |                  |             |         |      |
| SP2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                            | 6/16/2016 |                         | 380                   | 1,100              |       | 5.4          |               | 5.26       | 4.23       | 198              |             | 1.99    | 443  |
| SP3-Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                            | 6/29/2016 |                         | 96                    | <250               |       | 1.2          |               | 2.91       | <1         | 11.8             |             | <1      | 42.3 |
| A1-WSW01-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                             | 6/16/2016 |                         | 280                   | 1,100              |       | 4.9          |               | 7.2        | 4.79       | 253              |             | <1      | 387  |
| A1-NSW01-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                             | 6/16/2016 |                         | 640                   | 1,800              |       | 7.8          |               | 6.92       | 4.5        | 651              |             | 1.22    | 393  |
| A1-B04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                             | 6/16/2016 |                         | 160                   | 450                |       |              |               |            |            |                  |             |         |      |
| A2-NSW01-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                             | 6/16/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| A2-B04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                             | 6/16/2016 |                         | <50                   | <250               |       |              |               |            |            |                  |             |         |      |
| A3-N5W01-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                             | 6/16/2016 |                         | 250                   | 870                |       |              |               |            |            |                  |             |         |      |
| A3-BU4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                             | 6/16/2016 |                         | 520                   | 1,400              |       | 3.1          |               | 5.14       | 3.64       | 162              |             | 1.58    | 388  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                             | 6/20/2016 |                         | 500                   | 1,200              |       | 14           |               | 5.5        | 4.5        | 203              |             | <1      | 100  |
| A4-INSVVU2-U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                             | 6/16/2016 |                         |                       | 020                |       | 3.87         |               | 5.87       | 1.78       | 27.8             |             | <1      | 198  |
| A4-E3WUI-U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                             | 6/16/2016 |                         | 23                    | 030                |       |              |               | 4 72       | 2.12       | 200              |             | 1.24    | 207  |
| Laboratory Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>hod Reporti              | ng Limit  | 20                      | 500                   | 250                | 0.01  | 0.2          | Varios        | 4.72       | 3.13       | 290              | 0 549       | 1.24    | 1    |
| MTCA-A Industrial Cleanup Levels 100/30 2.000 2.000 2 <sup>1</sup> 10 Varies 20 2 2.000 19                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |           |                         |                       |                    |       |              | 2             | 1.000      |            |                  |             |         |      |
| votes:         : Total concentrations using the toxicity equivalency methodology in WAC 173-340-708 (8)         : Cleanup Level for Chromium III         VD: Not detected above laboratory reporting limit         WTCA = Model Toxics Control Act         = not analyzed for this constituent         c= not analyzed for this constituent         * Ecology has not designated a MTCA Method A cleanup Levels         Bold Red indicates the detected concentration that is below Ecology MTCA Method A Cleanup Levels |                               |           |                         |                       |                    |       |              |               |            |            |                  |             |         |      |

Table 7 : Summary of Groundwater Analytical Results



Practical Environmental Compliance Solutions

**BLT Trucking** 

offic 8010 South 259th Street, Kent, WA 98032

|             | Sample          | Date      | Total Petroleum Hydrocarbons (μg/l) |        |           |  |  |  |
|-------------|-----------------|-----------|-------------------------------------|--------|-----------|--|--|--|
| Well Number | Depth (ft)      | Sampled   | Gasoline                            | Diesel | Heavy Oil |  |  |  |
| B1-GW-7     | 7               | 5/16/2016 | <200                                | <50    | <500      |  |  |  |
| B2-GW-7.5   | 7.5             | 5/16/2016 | <200                                | <50    | <250      |  |  |  |
| B3-GW-7.5   | 7.5             | 5/16/2016 | <200                                | <50    | <250      |  |  |  |
| B4-GW-7     | 7               | 5/16/2016 | <200                                | <50    | <250      |  |  |  |
| B5-GW-7.5   | 7.5             | 5/16/2016 | <200                                | <500   | <500      |  |  |  |
| B6-GW-7     | 7               | 5/16/2016 | <200                                | <500   | <500      |  |  |  |
| B7-GW-7     | 7               | 5/16/2016 | <200                                | <500   | <500      |  |  |  |
| B8-GW-7.5   | 7.5             | 5/16/2016 | <200                                | <500   | <500      |  |  |  |
| Labora      | atory Reporting | g Limit   | 200                                 | 50/500 | 250/500   |  |  |  |
| MTCA M      | lethod A Clean  | up Levels | 800 <sup>1</sup>                    | 500    | 500       |  |  |  |

#### Notes:

(µg/l) = micrograms per liter

-- Not analyzed for constituent

< Not detected above the laboratory reporting limit

**Red Bold** indicates the detected concentration exceeds Ecology MTCA Method A cleanup level **Bold** indicates the detected concentration is below Ecology MTCA Method A cleanup levels <sup>1</sup> TPH-Gasoline Cleanup Level with the presence of Benzene anywhere at the Site


### Practical Environmental Compliance Solutions

Offices In: Anchorage | Tacoma | Portland

8010 South 259th Street, Kent, WA 98032

| Well Number<br>MW-1<br>MW-2<br>MW-3<br>MW-4<br>MW-4<br>Laboratory Re                                                                     | Date                | Total Petroleum Hydrocarbons (µg/l) Select Volatile Or |        |           |         |         |              |               | Volatile Organ | tile Organic Compounds (μg/l) |         |          |               |                      |         |        |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|--------|-----------|---------|---------|--------------|---------------|----------------|-------------------------------|---------|----------|---------------|----------------------|---------|--------|
|                                                                                                                                          | Sampled             | Gasoline                                               | Diesel | Heavy Oil | Benzene | Toluene | Ethylbenzene | Total Xylenes | РСВ            | Lead                          | Cadmium | Chromium | Total Arsenic | Dissolved<br>Arsenic | Mercury | PAH's  |
|                                                                                                                                          | 3/30/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 6.4           | <3.0                 | <0.1    | ND     |
| MW-1                                                                                                                                     | 6/15/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 5.9           | 18.0                 | <0.1    | ND     |
| Well Number<br>MW-1<br>A<br>MW-2<br>A<br>MW-3<br>A<br>MW-3<br>A<br>MW-4<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 9/23/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 3.1           |                      | <0.1    | ND     |
|                                                                                                                                          | 11/17/2021          | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 6.5           |                      | <0.1    | ND     |
|                                                                                                                                          | 3/30/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 6.9           | <3.0                 | <0.1    | ND     |
| MW-2                                                                                                                                     | 6/15/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
| 11111 2                                                                                                                                  | 9/23/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
|                                                                                                                                          | 11/17/2021          | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 3.3           |                      | <0.1    | ND     |
|                                                                                                                                          | 3/30/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 3.4           |                      | <0.1    | ND     |
| MW-3                                                                                                                                     | 6/15/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 6.7           | 9.1                  | <0.1    | ND     |
| 10100 5                                                                                                                                  | 9/23/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
|                                                                                                                                          | 11/17/2021          | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
|                                                                                                                                          | 3/30/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
| NA/N/-A                                                                                                                                  | 6/15/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 4.3           |                      | <0.1    | ND     |
| 10100 4                                                                                                                                  | 9/23/2021           | <100                                                   | <200   | 460       | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 7.4           | <3.0                 | <0.1    | ND     |
|                                                                                                                                          | 11/17/2021          | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 19.0          |                      | <0.1    | ND     |
|                                                                                                                                          | 3/30/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 4.3           |                      | <0.1    | ND     |
| MM-5                                                                                                                                     | 6/15/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | 17.0          | 23.0                 | <0.1    | ND     |
| 10100-5                                                                                                                                  | 9/23/2021           | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
|                                                                                                                                          | 11/17/2021          | <100                                                   | <200   | <400      | <1.0    | <2.0    | <1.0         | <2.0          | ND             | <5.0                          | <0.5    | <5.0     | <3.0          |                      | <0.1    | ND     |
| Laboratory Re                                                                                                                            | eporting Limit      | 100                                                    | 200    | 400       | 1.0     | 2.0     | 1.0          | 2.0           | Varies         | 5.00                          | 0.5     | 5.0      | 3.0           | 3.0                  | 0.1     | Varies |
| MTCA Metho<br>Lev                                                                                                                        | od A Cleanup<br>els | 800 <sup>1</sup>                                       | 500    | 500       | 5       | 1,000   | 700          | 1,000         | Varies         | 15.000                        | 41      |          | 5             | 5                    | 2       | Varies |

#### Notes:

(µg/l) = micrograms per liter

-- Not analyzed for constituent

< Not detected above the laboratory reporting limit

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

<sup>1</sup> TPH-Gasoline Cleanup Level with the presence of Benzene anywhere at the Site

## Table 9 : Summary of Groundwater Elevations

## **BLT Trucking**

Practical Environmental Compliance Solutions

Offices Ht Anchorage | Tacorro | Porland

## 8010 South 259th Street, Kent, WA 98032

| Wall   | Elevation of | Latitude/Lo | ongitude    | Date of     | Depth to     | Groundwater | Change in |
|--------|--------------|-------------|-------------|-------------|--------------|-------------|-----------|
| vven   | TOC          | Latitude    | Longitude   | Measurement | Water (feet) | (feet)      | (feet)    |
|        |              |             |             | 03/30/21    | 7.08         | 41.53       |           |
| N/1/1  | 19 61        | 17 270125   | 177 727276  | 06/15/21    | 8.14         | 40.47       | 1.06      |
|        | 40.01        | 47.570455   | -122.252570 | 09/23/21    | 9.61         | 39.00       | 1.47      |
|        |              |             |             | 11/17/21    | 5.74         | 42.87       | -3.87     |
|        |              |             |             | 03/30/21    | 7.43         | 41.43       |           |
| N414/2 | 48.86        | 47 270400   | 122 222244  | 06/15/21    | 8.41         | 40.45       | 0.98      |
| IVIVVZ |              | 47.570499   | -122.252244 | 09/23/21    | 9.65         | 39.21       | 1.24      |
|        |              |             |             | 11/17/21    | 6.77         | 42.09       | -2.88     |
|        |              |             |             | 03/30/21    | 7.35         | 41.50       |           |
| N/1N/2 | 48.85        | 17 270110   | -122.231744 | 06/15/21    | 8.04         | 40.81       | 0.69      |
| 101005 |              | 47.570440   |             | 09/23/21    | 9.03         | 39.82       | 0.99      |
|        |              |             |             | 11/17/21    | 6.94         | 41.91       | -2.09     |
|        |              |             |             | 03/30/21    | 7.50         | 41.12       |           |
| NA1A/A | 19 67        | 17 270461   | 122 221621  | 06/15/21    | 8.50         | 40.12       | 1.00      |
| 101004 | 40.02        | 47.370401   | -122.251051 | 09/23/21    | 10.30        | 38.32       | 1.80      |
|        |              |             |             | 11/17/21    | 7.68         | 40.94       | -2.62     |
|        |              |             |             | 03/30/21    | 7.41         | 41.59       |           |
|        | 40.00        | 17 270206   | 122 222105  | 06/15/21    | 8.20         | 40.80       | 0.79      |
| 101005 | 49.00        | 47.570296   | -122.232105 | 09/23/21    | 9.40         | 39.60       | 1.20      |
|        |              |             |             | 11/17/21    | 6.99         | 42.01       | -2.41     |

Notes:

mental

TOC = Top of casing elevation relative to assigned benchmark. -- = Not measured, not available, or not applicable

# **Appendix C: Project Documentation**

Field Sampling Forms Boring Logs & Well Construction Details Soil Disposal Receipts

Providing Practical Environmental Compliance Solutions offices In: Anchorage | Tacoma | Portland



| Date: | 3/30/2021 |
|-------|-----------|
|-------|-----------|

| Project Name:                           | BLT Trar         | nsport      |                     | Proj                            | ject No.: 0611-01         | Well N                    | Well No.: MW1                                                               |                     |                      |                                            |  |
|-----------------------------------------|------------------|-------------|---------------------|---------------------------------|---------------------------|---------------------------|-----------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------|--|
| Field Personne                          | el: SRB/C        | ZL          |                     | Stat                            | tic Water Level: 7        | .08                       | •                                                                           |                     |                      |                                            |  |
| Water Level M                           | leasurem         | nent M      | ethod: E-Ta         | pe                              |                           |                           |                                                                             |                     |                      |                                            |  |
| Time Start Pur                          | ge: 10:36        | 5           |                     | Tim                             | e End Purge: 10:          | 51                        | Time S                                                                      | ampled: 10:52       |                      |                                            |  |
| Measuring Poi                           | nt Descri        | iption:     | тос                 | •                               |                           |                           |                                                                             |                     |                      |                                            |  |
| Purge Method                            | : Low-Flo        | w           |                     | Pur                             | ge Depth: 1' from         | n bottom                  |                                                                             |                     |                      |                                            |  |
| Well Volume<br>Calculation              | Total (<br>(f    | Depth<br>t) | Depth to<br>(f      | o Water<br>:)                   | Water<br>Column (ft)      | Multip<br>¾''=.022        | Multiplier for Casing Diameter (in)<br>¾''=.0229, 1"=.041, 2"=.163, 4"=.653 |                     |                      | Casing Volume<br>(gal)                     |  |
| (Fill in before                         | 14.              | .21         | 7.0                 | )8                              | 7.13                      | .0229                     | .0229                                                                       |                     | 0.16                 |                                            |  |
| Poi 2118)                               | Notes:           | :           |                     |                                 |                           |                           |                                                                             |                     |                      |                                            |  |
| Time 10:20 10:42 10:45 10:49 10:54      |                  |             |                     |                                 |                           |                           |                                                                             |                     |                      |                                            |  |
| Denth tr                                | Nater (          | (ft)        | 2 /1                | 8 30                            | 8 20                      | 10:48<br>8 24             | 8 34                                                                        |                     |                      |                                            |  |
| Volume P                                | urged (n         | nL)         | 600                 | 1 200                           | 1 800                     | 2 400                     | 3 000                                                                       |                     |                      |                                            |  |
| Volume i                                | nH (+/-0         | .1)         | 6.65                | 6.57                            | 6.54                      | 6.55                      | 6.56                                                                        |                     |                      |                                            |  |
| Temperature C ( $+/-10$ )         11.27 |                  |             | 11.35               | 5 11.30                         | 11.30                     | 11.23                     |                                                                             |                     |                      |                                            |  |
| Conductivity mS/cm (3%) 0.343           |                  |             | 0.338               | 0.337                           | 0.339                     | 0.341                     |                                                                             |                     |                      |                                            |  |
| Turbidity (<10) 47.51                   |                  |             |                     | 41.61                           | . 21.05                   | 9.59                      | 7.71                                                                        |                     |                      |                                            |  |
| DO (+/- 0.3) 2.97                       |                  |             |                     | 1.76                            | 1.03                      | 0.87                      | 0.75                                                                        |                     |                      |                                            |  |
| ORP (+/- 10) 100.6                      |                  |             | 98.3                | 94.8                            | 92.9                      | 92.3                      |                                                                             |                     |                      |                                            |  |
|                                         | Со               | lor         | Clear               | Clear                           | Clear                     | Clear                     | Clear                                                                       |                     |                      |                                            |  |
| C                                       | dor/She          | en          | None                | None                            | e None                    | None                      | None                                                                        |                     |                      |                                            |  |
| Comments: Stop                          | oped sam         | pling @     | 11:10-turbic        | lity (water                     | r cloudy). Checked        | turbidity, 34.87          | 7. After 2 mi                                                               | nutes turbidity 9   | .09. Resi            | umed Sampling                              |  |
| Percent Recov                           | ery:             |             | Depth to            | Water at                        | : Sampling (ft):          | Nc                        | ote(s):                                                                     |                     |                      |                                            |  |
| Sampling / Fie                          | ld Equipr        | ment (N     | Manufactu           | e / Mode                        | el / Last Calibratio      | on):                      | /                                                                           |                     | _/                   |                                            |  |
| Sampling / Fie                          | ld Equipr        | ment (N     | Manufactu           | e / Mode                        | el / Last Calibratio      | on):                      | /                                                                           |                     | _/                   |                                            |  |
| Sampling / Fie                          | ld Equipr        | ment (N     | Manufactu           | e / Mode                        | el / Last Calibratio      | on):                      | /                                                                           |                     | _/                   |                                            |  |
| Sample Sample Qu                        | ample<br>uantity | 40 ml       | Cor<br>L VOA/500 ml | itainer Ty<br>Amber / 1<br>Poly | /pe<br>. L Amber / 250 mL | Preservativ<br>Filtered   | e / Field<br>(FF)                                                           | Analysis<br>Request | Visi<br>(Clea        | ual Observation<br>r, Cloudy, Silty, Etc.) |  |
|                                         |                  |             |                     |                                 |                           |                           |                                                                             |                     |                      |                                            |  |
|                                         |                  |             |                     |                                 |                           |                           |                                                                             |                     |                      |                                            |  |
|                                         |                  |             |                     |                                 |                           |                           |                                                                             |                     |                      |                                            |  |
| Total Discharg                          | e (gal):         |             |                     | Disp                            | oosal Method:             |                           |                                                                             | Drum Designa        | tion(s)/             | Volume:                                    |  |
| WELL HEAD                               | COND             | ITION       | S CHECK             | LIST <u>(Ci</u>                 | rcle YES or NO            | if NO, add                | d commen                                                                    | <u>ts)</u>          |                      |                                            |  |
| Well Security                           | Device           | s OK (      | (Bollards,          | Christy L                       | _id, Casing Lid a         | and Lock): <mark>Y</mark> | <mark>'ES</mark> / NC                                                       | Well Ca             | sing: <mark>Y</mark> | <mark>ES</mark> / NO                       |  |
| Inside of Wel<br>Comments:              | ll Head a        | and Ou      | uter Casin          | g Dry:                          | <mark>YES</mark> / NO     |                           |                                                                             |                     |                      |                                            |  |

| Date: | 3/30/2021 |  |
|-------|-----------|--|
|-------|-----------|--|

| Project Name:                            | BLT Transp         | ort                   | Pro                                | ject No.: 0611-01                | Well No                   | Well No.: MW2                                                                |                     |                      |                                            |  |  |  |
|------------------------------------------|--------------------|-----------------------|------------------------------------|----------------------------------|---------------------------|------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------|--|--|--|
| Field Personne                           | el: SRB/CZL        |                       | Stat                               | tic Water Level: 7               | .43                       | l                                                                            |                     |                      |                                            |  |  |  |
| Water Level M                            | easuremer          | t Method: E-T         | аре                                |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Time Start Pur                           | ge: 13:04          |                       | Tim                                | e End Purge: 13:2                | 22                        | Time Sa                                                                      | Time Sampled: 13:23 |                      |                                            |  |  |  |
| Measuring Poi                            | nt Descript        | on: TOC               | I                                  |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Purge Method                             | : Low-Flow         |                       | Pur                                | ge Depth: 1' from                | n bottom                  |                                                                              |                     |                      |                                            |  |  |  |
| Well Volume<br>Calculation               | Total De<br>(ft)   | oth Depth t<br>(†     | o Water<br>ft)                     | Water<br>Column (ft)             | Multip<br>¾''=.022        | Multiplier for Casing Diameter (in)<br>¾′′′=.0229, 1″=.041, 2″=.163, 4″=.653 |                     |                      | Casing Volume<br>(gal)                     |  |  |  |
| (Fill in before                          | 14.19              | 7.                    | 43                                 | 6.76                             | .0229                     |                                                                              |                     |                      | 0.15                                       |  |  |  |
| purging)                                 | Notes:             |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Time 12:07 12:10 12:12 12:16 12:10 12:22 |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Dowth to                                 | Lime               | 13:07                 | 13:10                              | 7 70                             | 13:16                     | 13:19                                                                        | 13:22               |                      |                                            |  |  |  |
| Volumo D                                 | wraed (m)          | 7.80                  | 1.200                              | 7.70                             | 7.70                      | 7.70                                                                         | 7.70                |                      |                                            |  |  |  |
| volume P                                 |                    | 6.53                  | 6.43                               | 6.47                             | 6.48                      | 5,000                                                                        | 6.50                |                      |                                            |  |  |  |
| рн (+/-0.1) 0.53                         |                    |                       | 11 95                              | 0.47<br>5 11.90                  | 11 90                     | 11 98                                                                        | 11 98               |                      |                                            |  |  |  |
| Conductivity mS/cm (3%) 0.560            |                    |                       |                                    | 0.564                            | 0.564                     | 0.562                                                                        | 0.562               |                      |                                            |  |  |  |
| Turbidity (<10) 110                      |                    |                       |                                    | 24.84                            | 14.48                     | 10.97                                                                        | 7.22                |                      |                                            |  |  |  |
| [                                        | DO (+/- 0.3)       | 1.27                  | 0.88                               | 0.82                             | 0.76                      | 0.68                                                                         | 0.61                |                      |                                            |  |  |  |
| C                                        | )RP (+/- 10)       | 86.5                  | 86.3                               | 85.3                             | 83.4                      | 81.9                                                                         | 81.3                |                      |                                            |  |  |  |
|                                          | Color              | Cloudy                | Cloud                              | y Cloudy                         | Clear                     | Clear                                                                        | Clear               |                      |                                            |  |  |  |
| C                                        | dor/Sheen          | None                  | None                               | e None                           | None                      | None                                                                         | None                |                      |                                            |  |  |  |
| Comments:                                |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Percent Recov                            | ery:               | Depth to              | Water at                           | : Sampling (ft):                 | Nc                        | ote(s):                                                                      |                     |                      |                                            |  |  |  |
| Sampling / Fie                           | ld Equipme         | nt (Manufactu         | re / Mode                          | el / Last Calibratio             | on):                      | /_                                                                           |                     | _/                   |                                            |  |  |  |
| Sampling / Fie                           | ld Equipme         | nt (Manufactu         | re / Mode                          | el / Last Calibratio             | on):                      | /_                                                                           |                     | _/                   |                                            |  |  |  |
| Sampling / Fie                           | ld Equipme         | nt (Manufactu         | re / Mode                          | el / Last Calibratio             | on):                      | /_                                                                           |                     | _/                   |                                            |  |  |  |
| Sample Si<br>No. Qi                      | ample<br>uantity 4 | Co<br>10 mL VOA/500 m | ntainer Ty<br>IL Amber / 1<br>Poly | <b>/pe</b><br>. L Amber / 250 mL | Preservativ<br>Filtered   | re / Field<br>I (FF)                                                         | Analysis<br>Request | Vis<br>(Clea         | ual Observation<br>r, Cloudy, Silty, Etc.) |  |  |  |
|                                          |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
|                                          |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
|                                          |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |
| Total Discharg                           | e (gal):           |                       | Disp                               | oosal Method:                    |                           |                                                                              | Drum Designa        | tion(s)/             | Volume:                                    |  |  |  |
| WELL HEAD                                | CONDITI            | ONS CHECK             | (LIST (Ci                          | rcle YES or NO                   | if NO, add                | d comment                                                                    | <u>s)</u>           |                      |                                            |  |  |  |
| Well Security                            | Devices (          | OK (Bollards,         | Christy I                          | Lid, Casing Lid a                | and Lock): <mark>Y</mark> | <mark>ΈS</mark> / NO                                                         | Well Ca             | sing: <mark>Y</mark> | <mark>ES</mark> / NO                       |  |  |  |
| Inside of We                             | I Head and         | d Outer Casir         | ng Dry:                            | <mark>YES</mark> / NO            |                           |                                                                              |                     |                      |                                            |  |  |  |
| Comments:                                |                    |                       |                                    |                                  |                           |                                                                              |                     |                      |                                            |  |  |  |

| Date: | 3/30/2021 |
|-------|-----------|
|-------|-----------|

| Project Name:                  | BLT Trans                                | port    |                   | Pro                          | oject                     | t No.: 0611-01       | -03-02                    | Well N                      | Well No.: MW3                                           |                        |                    |                               |  |
|--------------------------------|------------------------------------------|---------|-------------------|------------------------------|---------------------------|----------------------|---------------------------|-----------------------------|---------------------------------------------------------|------------------------|--------------------|-------------------------------|--|
| Field Personne                 | I: SRB/CZL                               |         |                   | Sta                          | atic V                    | Water Level: 7       | .35                       |                             |                                                         |                        |                    |                               |  |
| Water Level M                  | easureme                                 | nt Me   | thod: E-Ta        | аре                          |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
| Time Start Pur                 | ge: 12:27                                |         |                   | Tir                          | ne E                      | nd Purge: 12:4       | 15                        | Time S                      | ampled: 12:46                                           |                        |                    |                               |  |
| Measuring Poi                  | nt Descript                              | tion: T | ОС                |                              |                           |                      |                           | 1                           |                                                         |                        |                    |                               |  |
| Purge Method                   | : Low-Flow                               | I       |                   | Pu                           | ırge [                    | Depth: 1' from       | bottom                    |                             |                                                         |                        |                    |                               |  |
| Well Volume<br>Calculation     | Total De<br>(ft)                         | epth    | Depth to<br>(f    | o Water<br>t)                | ater Water<br>Column (ft) |                      | Multipl<br>¾''=.022       | ier for Casi<br>9, 1"=.041, | r for Casing Diameter (in)<br>1″=.041, 2″=.163, 4″=.653 |                        |                    | Casing Volume<br>(gal)<br>.15 |  |
| (Fill in before<br>purging)    | 13.67                                    | 7       | 7.35              |                              |                           | 6.32                 | .0229                     |                             |                                                         |                        |                    |                               |  |
| P ~ . 0 0/                     | Notes:                                   |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
|                                | Time 12:30 12:33 12:36 12:39 12:42 12:45 |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
| Denth to                       | Mater (ft                                | 2       | 7 / 2             | 7 /1                         | 5                         | 7.45                 | 7 45                      | 7.45                        | 7 45                                                    |                        |                    |                               |  |
| Depth to Water (ft) 7:43       |                                          |         |                   | 1 20                         | 5<br>10                   | 1 800                | 2 400                     | 3 000                       | 3 600                                                   |                        |                    |                               |  |
| Volumen                        | nH (+/-0 1                               | )       | 7 16              | 7 1                          | 0<br>0                    | 7.06                 | 2,400                     | 7 04                        | 7 01                                                    |                        |                    |                               |  |
| Temperature C $(+/-1.0)$ 10.85 |                                          |         | 10.5              | 56                           | 10.61                     | 10.63                | 10.57                     | 10.56                       |                                                         |                        |                    |                               |  |
| Conductivity mS/cm (3%) 0.464  |                                          |         |                   | 0.46                         | 51                        | 0.458                | 0.457                     | 0.455                       | 0.454                                                   |                        |                    |                               |  |
| Turbidity (<10) 2.58           |                                          |         |                   |                              | 1                         | 0.33                 | 2.41                      | 0.01                        | 2.89                                                    |                        |                    |                               |  |
| DO (+/- 0.3) 3.30              |                                          |         |                   | 1.2                          | 6                         | 0.85                 | 0.77                      | 0.65                        | 0.58                                                    |                        |                    |                               |  |
| ORP (+/- 10) 120.1             |                                          |         | 110               | .8                           | 102.5                     | 97.7                 | 90.0                      | 88.6                        |                                                         |                        |                    |                               |  |
|                                | Colo                                     | r       | Clear             | Clea                         | ar                        | Clear                | Clear                     | Clear                       | Clear                                                   |                        |                    |                               |  |
| C                              | dor/Sheer                                | า       | Odor              | Odo                          | or                        | Odor                 | Odor                      | Odor                        | Odor                                                    |                        |                    |                               |  |
| Comments:                      |                                          |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
| Percent Recove                 | ery:                                     |         | Depth to          | Water a                      | at Sa                     | mpling (ft):         | No                        | ote(s):                     |                                                         |                        |                    |                               |  |
| Sampling / Fiel                | d Equipme                                | ent (M  | lanufactu         | re / Moo                     | del /                     | Last Calibratio      | on):                      | /                           |                                                         | _/                     |                    |                               |  |
| Sampling / Fiel                | d Equipme                                | ent (M  | lanufactu         | re / Moo                     | del /                     | Last Calibratio      | on):                      | /                           |                                                         | _/                     |                    |                               |  |
| Sampling / Fiel                | d Equipme                                | ent (M  | lanufactu         | re / Moo                     | del /                     | Last Calibratio      | on):                      | /                           |                                                         | _/                     |                    |                               |  |
| Sample Sa<br>No. Qu            | ample<br>Jantity                         | 40 mL   | Cor<br>VOA/500 ml | ntainer 7<br>Amber /<br>Poly | Гуре<br>1 L А             | mber / 250 mL        | Preservativ<br>Filtered   | e / Field<br>(FF)           | Analysis<br>Request                                     | Visu<br>(Clea          | ual Ob<br>r, Cloud | servation<br>y, Silty, Etc.)  |  |
|                                |                                          |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
|                                |                                          |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
|                                |                                          |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |
| Total Discharge                | e (gal):                                 |         |                   | Dis                          | spos                      | al Method:           |                           |                             | Drum Designa                                            | tion(s)/\              | /olum              | e:                            |  |
| WELL HEAD                      | CONDIT                                   | IONS    | CHECK             | LIST (C                      | Circle                    | e YES or NO          | if NO, add                | <u>d commen</u>             | <u>ts)</u>                                              |                        |                    |                               |  |
| Well Security                  | Devices                                  | OK (E   | Bollards,         | Christy                      | Lid,                      | , Casing Lid a       | and Lock): <mark>Y</mark> | <mark>ES</mark> / NC        | Well Ca                                                 | sing: <mark>Y</mark> l | <mark>ES</mark> /  | NO                            |  |
| Inside of Wel                  | l Head an                                | id Ou   | ter Casin         | g Dry:                       | Y                         | <mark>ES</mark> / NO |                           |                             |                                                         |                        |                    |                               |  |
| Comments:                      |                                          |         |                   |                              |                           |                      |                           |                             |                                                         |                        |                    |                               |  |

| Date: | 3/30/2021 |
|-------|-----------|
|-------|-----------|

| Project Name:               | BLT Transp                    | ort                    | Proj                            | ject No.: 0611-01       | Well N                    | Well No.: MW4              |                                     |                      |                                            |  |
|-----------------------------|-------------------------------|------------------------|---------------------------------|-------------------------|---------------------------|----------------------------|-------------------------------------|----------------------|--------------------------------------------|--|
| Field Personne              | I: SRB/CZL                    |                        | Stat                            | ic Water Level: 7       | .50                       | •                          |                                     |                      |                                            |  |
| Water Level M               | easuremen                     | t Method: E-Ta         | аре                             |                         |                           |                            |                                     |                      |                                            |  |
| Time Start Pur              | ge: 11:34                     |                        | Tim                             | e End Purge: 11:4       | 49                        | Time S                     | ampled: 11:50                       |                      |                                            |  |
| Measuring Poir              | nt Descripti                  | on: TOC                |                                 |                         |                           |                            |                                     |                      |                                            |  |
| Purge Method:               | Low-Flow                      |                        | Pur                             | ge Depth: 1' from       | n bottom                  |                            |                                     |                      |                                            |  |
| Well Volume<br>Calculation  | Total Dep<br>(ft)             | oth Depth to<br>(f     | o Water<br>t)                   | Water<br>Column (ft)    | Multipl<br>¾''=.022       | lier for Cas<br>9, 1"=.041 | ing Diameter (i<br>, 2"=.163, 4"=.( | n)<br>653            | Casing Volume<br>(gal)                     |  |
| (Fill in before<br>purging) | 14.20                         | 7.5                    | 50                              | 6.70                    | .0229                     | .0229                      |                                     |                      | 0.15                                       |  |
| P 99/                       | Notes:                        |                        |                                 |                         |                           |                            |                                     |                      |                                            |  |
|                             | Timo                          | 11.27                  | 11.40                           | 11.42                   | 11.46                     | 11.40                      |                                     |                      |                                            |  |
| Denth to                    | Water (ft)                    | 8.8                    | 8 5                             | 85                      | 8 48                      | 8 48                       |                                     |                      |                                            |  |
| Volume P                    | urged (mL)                    | 600                    | 1.200                           | 1.800                   | 2.400                     | 3.000                      |                                     |                      |                                            |  |
|                             | pH (+/-0.1)                   | 6.92                   | 6.91                            | 6.90                    | 6.91                      | 6.92                       |                                     |                      |                                            |  |
| Temperature                 | C. (+/- 1.0)                  | 10.68                  | 10.90                           | 10.92                   | 10.85                     | 10.93                      |                                     |                      |                                            |  |
| Conductivity m              | nS/cm (3%)                    | 0.496                  | 0.494                           | 0.495                   | 0.496                     | 0.496                      |                                     |                      |                                            |  |
| Turbidity (<10) 5.84        |                               |                        |                                 | 0.00                    | 0.00                      | 4.25                       |                                     |                      |                                            |  |
| DO (+/- 0.3) 1.40           |                               |                        |                                 | 0.85                    | 0.71                      | 0.67                       |                                     |                      |                                            |  |
| 0                           | RP (+/- 10)                   | 97.2                   | 95.4                            | 93.1                    | 90.0                      | 87.5                       |                                     |                      |                                            |  |
|                             | Color                         | Clear                  | Clear                           | Clear                   | Clear                     | Clear                      |                                     |                      |                                            |  |
| 0                           | dor/Sheen                     | Odor                   | Odor                            | Odor                    | Odor                      | Odor                       |                                     |                      |                                            |  |
| Comments: Fai               | nt Odor.                      |                        |                                 |                         |                           |                            |                                     |                      |                                            |  |
| Percent Recove              | ery:                          | Depth to               | Water at                        | Sampling (ft):          | No                        | ote(s):                    |                                     |                      |                                            |  |
| Sampling / Fiel             | d Equipmer                    | nt (Manufactu          | re / Mode                       | el / Last Calibratio    | on):                      | /                          |                                     | _/                   |                                            |  |
| Sampling / Fiel             | d Equipmer                    | nt (Manufactu          | re / Mode                       | el / Last Calibratio    | on):                      | /                          |                                     | _/                   |                                            |  |
| Sampling / Fiel             | d Equipmer                    | nt (Manufactu          | re / Mode                       | el / Last Calibratio    | on):                      | /                          |                                     | _/                   |                                            |  |
| Sample Sa<br>No. Qu         | ample<br>lantity <sup>4</sup> | Cor<br>0 mL VOA/500 ml | ntainer Ty<br>Amber / 1<br>Poly | /pe<br>L Amber / 250 mL | Preservativ<br>Filtered   | e / Field<br>(FF)          | Analysis<br>Request                 | Visı<br>(Clea        | ual Observation<br>r, Cloudy, Silty, Etc.) |  |
|                             |                               |                        |                                 |                         |                           |                            |                                     |                      |                                            |  |
|                             |                               |                        |                                 |                         |                           |                            |                                     |                      |                                            |  |
|                             |                               |                        |                                 |                         |                           |                            |                                     |                      |                                            |  |
| Total Discharge             | e (gal):                      |                        | Disp                            | osal Method:            |                           |                            | Drum Designa                        | tion(s)/             | Volume:                                    |  |
| WELL HEAD                   | CONDITIO                      | ONS CHECK              | LIST (Ci                        | rcle YES or NO          | if NO, add                | d commer                   | <u>its)</u>                         |                      |                                            |  |
| Well Security               | Devices C                     | OK (Bollards,          | Christy L                       | id, Casing Lid          | and Lock): <mark>Y</mark> | <mark>'ES</mark> / NC      | Well Ca                             | sing: <mark>Y</mark> | <mark>ES</mark> / NO                       |  |
| Inside of Well<br>Comments: | l Head and                    | l Outer Casin          | g Dry:                          | <mark>YES</mark> / NO   |                           |                            |                                     |                      |                                            |  |

| Date: | 3/30/2021 |
|-------|-----------|
|-------|-----------|

| Project Name:                 | BLT Transpo                        | ort                    | Proj                              | ject No.: 0611-01       | Well No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well No.: MW5                |                                  |                        |                                            |  |  |  |  |
|-------------------------------|------------------------------------|------------------------|-----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|------------------------|--------------------------------------------|--|--|--|--|
| Field Personne                | I: SRB/CZL                         |                        | Stat                              | ic Water Level: 7       | .41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                            |                                  |                        |                                            |  |  |  |  |
| Water Level M                 | easurement                         | : Method: E-Ta         | аре                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
| Time Start Pur                | ge: 09:42                          |                        | Tim                               | e End Purge: 10:0       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Sa                      | ampled: 10:01                    |                        |                                            |  |  |  |  |
| Measuring Poir                | nt Descriptio                      | on: TOC                |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
| Purge Method:                 | Low-Flow                           |                        | Pur                               | ge Depth: 1' from       | bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                  |                        | -                                          |  |  |  |  |
| Well Volume<br>Calculation    | Total Dep<br>(ft)                  | th Depth to            | o Water<br>t)                     | Water<br>Column (ft)    | Multipl<br>¾''=.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lier for Casi<br>9, 1"=.041, | ng Diameter (i<br>2″=.163, 4″=.6 | Casing Volume<br>(gal) |                                            |  |  |  |  |
| (Fill in before               | 13.71                              | 7.4                    | 41                                | 6.30                    | 6.30 .0229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                  | 0.14                   |                                            |  |  |  |  |
| parsing)                      | Notes:                             |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
|                               | Time 09:45 09:48 09:54 09:57 10:00 |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
| Dopth to                      | Mator (ft)                         | 7 02                   | 7 05                              | 09:51<br>09:51          | 09:54<br><u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> 09:54 <u> </u> <u> </u> <u> </u> <u> </u> 09:54 <u> </u> <u> </u> <u> </u> 09:54 <u> </u> <u> </u> <u> </u> 00 <u> </u> 0 <u> 0 </u> 0 <u> 0</u></u> | 09:57                        | 10:00                            |                        |                                            |  |  |  |  |
| Volume P                      | urged (mL)                         | 600                    | 1 200                             | 1 800                   | 2 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 000                        | 3 600                            |                        |                                            |  |  |  |  |
| Volume r                      | pH (+/-0.1)                        | 6.09                   | 6.25                              | 6.34                    | 6.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.44                         | 6.45                             |                        |                                            |  |  |  |  |
| Temperature                   | C. (+/- 1.0)                       | 11.70                  | 11.81                             | . 11.84                 | 11.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.90                        | 11.94                            |                        |                                            |  |  |  |  |
| Conductivity mS/cm (3%) 0.488 |                                    |                        | 0.483                             | 0.482                   | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.481                        | 0.480                            |                        |                                            |  |  |  |  |
| Turbidity (<10) 3.42          |                                    |                        |                                   | 0.00                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                         | 0.00                             |                        |                                            |  |  |  |  |
| C                             | 00 (+/- 0.3)                       | 1.49                   | 1.01                              | 0.83                    | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.70                         | 0.67                             |                        |                                            |  |  |  |  |
| 0                             | RP (+/- 10)                        | 130.8                  | 132.4                             | 129.5                   | 126.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.2                        | 119.0                            |                        |                                            |  |  |  |  |
|                               | Color                              | Clear                  | Clear                             | Clear                   | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear                        | Clear                            |                        |                                            |  |  |  |  |
| 0                             | dor/Sheen                          | None                   | None                              | None                    | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                         | None                             |                        |                                            |  |  |  |  |
| Comments:                     |                                    |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
| Percent Recove                | ery:                               | Depth to               | Water at                          | Sampling (ft):          | Nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ote(s):                      |                                  |                        |                                            |  |  |  |  |
| Sampling / Fiel               | d Equipmer                         | it (Manufactur         | re / Mode                         | el / Last Calibratio    | on):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                            |                                  | _/                     |                                            |  |  |  |  |
| Sampling / Fiel               | d Equipmer                         | it (Manufactur         | re / Mode                         | el / Last Calibratio    | on):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /_                           |                                  | _/                     |                                            |  |  |  |  |
| Sampling / Fiel               | d Equipmer                         | ıt (Manufactur         | re / Mode                         | el / Last Calibratio    | on):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                            |                                  | _/                     |                                            |  |  |  |  |
| Sample Sa<br>No. Qu           | ample<br>antity 4                  | Cor<br>0 mL VOA/500 ml | ntainer Ty<br>- Amber / 1<br>Poly | /pe<br>L Amber / 250 mL | Preservativ<br>Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e / Field<br>(FF)            | Analysis<br>Request              | Visı<br>(Clea          | ual Observation<br>r, Cloudy, Silty, Etc.) |  |  |  |  |
|                               |                                    |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
|                               |                                    |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
|                               |                                    |                        |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |
| Total Discharge               | e (gal):                           |                        | Disp                              | osal Method:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Drum Designa                     | tion(s)/               | Volume:                                    |  |  |  |  |
| WELL HEAD                     | CONDITIO                           | ONS CHECK              | <u>LIST (Ci</u>                   | rcle YES or NO          | if NO, add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d commen                     | <u>ts)</u>                       |                        |                                            |  |  |  |  |
| Well Security                 | Devices C                          | K (Bollards,           | Christy L                         | _id, Casing Lid a       | and Lock): <mark>Y</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>'ES</mark> / NO        | Well Ca                          | sing: <mark>Y</mark>   | <mark>ES</mark> / NO                       |  |  |  |  |
| Inside of Well<br>Comments:   | l Head and                         | Outer Casin            | g Dry:                            | <mark>YES</mark> / NO   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                  |                        |                                            |  |  |  |  |

| Project Name: I             | BLT Trucking       |                   | Proj          | ect No.: 0611-01            | -03-02             | Well No.                          | : MW1                              | Date: 6/15/21          |  |  |  |  |
|-----------------------------|--------------------|-------------------|---------------|-----------------------------|--------------------|-----------------------------------|------------------------------------|------------------------|--|--|--|--|
| Field Personnel             | : SRB/CZL          |                   | Stat          | ic Water Level: 8           | .14                |                                   |                                    |                        |  |  |  |  |
| Water Level Me              | easurement         | Method: E-Ta      | аре           |                             |                    |                                   |                                    |                        |  |  |  |  |
| Time Start Purg             | e: 11:15           |                   | Tim           | e End Purge: 11:3           | 33                 | Time San                          | npled: 11:35                       |                        |  |  |  |  |
| Measuring Poin              | t Descriptio       | n: TOC            | 1             |                             |                    | •                                 |                                    |                        |  |  |  |  |
| Purge Method:               | Low-Flow           |                   | Pur           | Purge Depth: 1' from bottom |                    |                                   |                                    |                        |  |  |  |  |
| Well Volume<br>Calculation  | Total Dept<br>(ft) | h Depth to<br>(fi | o Water<br>t) | Water<br>Column (ft)        | Multip<br>¾''=.022 | lier for Casing<br>29, 1″=.041, 2 | g Diameter (in)<br>"=.163, 4"=.653 | Casing Volume<br>(gal) |  |  |  |  |
| (Fill in before<br>purging) | 14.36              | 8.41              |               | 5.95                        | .0229              |                                   |                                    | 0.14                   |  |  |  |  |
| par 88)                     | Notes:             |                   |               |                             |                    |                                   |                                    |                        |  |  |  |  |
|                             | Time               | 11.10             | 44.24         | 11.24                       | 11.27              | 11.20                             | 11.22                              |                        |  |  |  |  |
| Time 11:18                  |                    | 11:18             | 11:21         | . 11:24                     | 11:27              | 11:30                             | 11:33                              |                        |  |  |  |  |
| Depth to Water (ft)         |                    | 9.95              | 9.32          | 9.10                        | 9.40               | 9.27                              | 9.32                               |                        |  |  |  |  |
| Volume Pu                   | urged (mL)         | 300               | 600           | 900                         | 1200               | 1500                              | 1800                               |                        |  |  |  |  |
| 1                           | oH (+/-0.1)        | 6.80              | 6.79          | 6.78                        | 6.78               | 6.76                              | 6.77                               |                        |  |  |  |  |
| Temperature                 | C. (+/- 1.0)       | 13.99             | 14.10         | 14.34                       | 14.34              | 14.14                             | 14.16                              |                        |  |  |  |  |
| Conductivity u              | S/cm (3%)          | 262               | 265           | 268                         | 270                | 275                               | 275                                |                        |  |  |  |  |
| Turb                        | idity (<10)        | 69                | 74            | 41.62                       | 28.21              | 7.03                              | 4.94                               |                        |  |  |  |  |
| D                           | O (+/- 0.3)        | 2.00              | 1.08          | 0.87                        | 0.58               | 0.40                              | 0.31                               |                        |  |  |  |  |
| OI                          | RP (+/- 10)        | -5.6              | -3.3          | -0.7                        | 2.2                | 3.6                               | 4.6                                |                        |  |  |  |  |
|                             | Color              | Clear             | Clear         | Clear                       | Clear              | Clear                             | Clear                              |                        |  |  |  |  |
| 0                           | dor/Sheen          | None              | None          | None                        | None               | None                              | None                               |                        |  |  |  |  |
| Comments:                   |                    |                   |               |                             |                    |                                   |                                    |                        |  |  |  |  |
| Percent Recove              | ery:               | Depth to          | Water at      | Sampling (ft):              | No                 | ote(s):                           |                                    |                        |  |  |  |  |
| Sampling / Field            | d Equipment        | (Manufactur       | re / Mode     | el / Last Calibratio        | on):               | /                                 | /                                  |                        |  |  |  |  |
| Sampling / Field            | d Equipment        | (Manufactur       | re / Mode     | el / Last Calibratio        | on):               | /                                 | /                                  |                        |  |  |  |  |

/\_ Sampling / Field Equipment (Manufacture / Model / Last Calibration): ./\_ Container Type Sample Sample Preservative / Field Analysis Visual Observation 40 mL VOA/500 mL Amber / 1 L Amber / 250 mL Quantity No. Filtered (FF) Request (Clear, Cloudy, Silty, Etc.) Poly

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

| Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): YE | <mark>ES</mark> / NO | Well Casing: <mark>YES</mark> / NO |
|---------------------------------------------------------------------------|----------------------|------------------------------------|
| Inside of Well Head and Outer Casing Dry: YES / NO                        |                      |                                    |
| Comments:                                                                 |                      |                                    |
|                                                                           |                      |                                    |

| Project Name:                                 | BLT Trucking       | 5                  | Proj       | ject No.: 0611-01    | L-03-02            | Well No.                        | : MW2               |                     | Date: 6                | 5/15/21 |  |  |
|-----------------------------------------------|--------------------|--------------------|------------|----------------------|--------------------|---------------------------------|---------------------|---------------------|------------------------|---------|--|--|
| Field Personne                                | l: SRB/CZL         |                    | Stat       | ic Water Level: 8    | 3.41               |                                 |                     |                     |                        |         |  |  |
| Water Level Me                                | easurement         | Method: E-Ta       | pe         |                      |                    |                                 |                     |                     |                        |         |  |  |
| Time Start Purg                               | ge: 12:12          |                    | Tim        | e End Purge: 12:     | 27                 | Time San                        | Time Sampled: 12:28 |                     |                        |         |  |  |
| Measuring Poir                                | nt Descriptio      | n: TOC             |            |                      |                    |                                 |                     |                     |                        |         |  |  |
| Purge Method:                                 | Low-Flow           |                    | Pur        | ge Depth: 1' fron    | n bottom           |                                 |                     |                     |                        |         |  |  |
| Well Volume<br>Calculation<br>(Fill in before | Total Dept<br>(ft) | h Depth to:<br>(ft | )<br>Water | Water<br>Column (ft) | Multip<br>¾''=.022 | lier for Casin<br>9, 1"=.041, 2 | g Diame<br>2″=.163, | ter (in)<br>4"=.653 | Casing Volume<br>(gal) |         |  |  |
|                                               | 14.25              | 8.14               |            | 6.11                 | .0229              |                                 |                     |                     | 0.14                   |         |  |  |
| purging)                                      | Notes:             |                    |            | •<br>•               |                    | ·                               | ·                   |                     |                        |         |  |  |
|                                               |                    |                    |            | r                    |                    | 1                               | •                   | r                   |                        |         |  |  |
|                                               | Time               | 12:15              | 12:18      | 3 12:21              | 12:24              | 12:27                           |                     |                     |                        |         |  |  |
| Depth to                                      | Water (ft)         | 8.85               | 8.89       | 8.82                 | 8.84               | 8.85                            |                     |                     |                        |         |  |  |
| Volume P                                      | urged (mL)         | 300                | 600        | 900                  | 1200               | 1500                            |                     |                     |                        |         |  |  |
| I                                             | pH (+/-0.1)        | 6.87               | 6.89       | 6.88                 | 6.88               | 6.88                            |                     |                     |                        |         |  |  |
| Temperature                                   | C. (+/- 1.0)       | 13.81              | 13.88      | 3 13.93              | 13.91              | 13.90                           |                     |                     |                        |         |  |  |
| Conductivity u                                | ıS/cm (3%)         | 271                | 274        | 274                  | 274                | 274                             |                     |                     |                        |         |  |  |
| Turk                                          | oidity (<10)       | 55                 | 5.93       | 3.67                 | 1.98               | 0.87                            |                     |                     |                        |         |  |  |
| D                                             | 00 (+/- 0.3)       | 1.29               | 0.39       | 0.35                 | 0.37               | 0.39                            |                     |                     |                        |         |  |  |
| 0                                             | RP (+/- 10)        | 66.6               | 59.1       | 57.3                 | 56.5               | 56.2                            |                     |                     |                        |         |  |  |
|                                               | Color              | Clear              | Clear      | Clear                | Clear              | Clear                           |                     |                     |                        |         |  |  |

| Comments: This well has poor recharge, did not allow for time for stabilization of parameters. |                                                                         |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|
| Percent Re                                                                                     | ecovery:                                                                | Depth to Water at Sampling (ft):                                      | Note(s):                              |                     |                                                    |  |  |  |  |  |
| Sampling ,                                                                                     | Sampling / Field Equipment (Manufacture / Model / Last Calibration):/// |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / /                       |                                                                         |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling ,                                                                                     | / Field Equip                                                           | ment (Manufacture / Model / Last Calibratio                           | on):/                                 |                     | _/                                                 |  |  |  |  |  |
| Sample<br>No.                                                                                  | Sample<br>Quantity                                                      | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |
|                                                                                                |                                                                         |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
|                                                                                                |                                                                         |                                                                       |                                       |                     |                                                    |  |  |  |  |  |

None

None

None

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

None

Odor/Sheen

None

| Well Security Devices OK (Bollards, Christy | Lid, Cas | sing | J Lid and Lock): <mark>YES</mark> / NO | Well Casing: <mark>YES</mark> / NO |
|---------------------------------------------|----------|------|----------------------------------------|------------------------------------|
| Inside of Well Head and Outer Casing Dry:   | YES      | /    | NO                                     |                                    |
| Comments:                                   |          |      |                                        |                                    |
|                                             |          |      |                                        |                                    |

| Project Name:                                             | BLT Trucking       | Ş                 | Pro           | ject No.: 0611-0     | 1-03-02            | Well No.                         | : MW3                               | Date:                  | 6/15/21 |  |  |  |
|-----------------------------------------------------------|--------------------|-------------------|---------------|----------------------|--------------------|----------------------------------|-------------------------------------|------------------------|---------|--|--|--|
| Field Personne                                            | I: SRB/CZL         |                   | Stat          | tic Water Level:     | 8.04               |                                  |                                     |                        |         |  |  |  |
| Water Level Me                                            | easurement         | Method: E-Ta      | аре           |                      |                    |                                  |                                     |                        |         |  |  |  |
| Time Start Purg                                           | ge: 10:55          |                   | Tim           | e End Purge: 11      | :10                | Time Sar                         | Time Sampled: 11:11                 |                        |         |  |  |  |
| Measuring Poir                                            | nt Descriptio      | n: TOC            | •             |                      |                    |                                  |                                     |                        |         |  |  |  |
| Purge Method:                                             | Low-Flow           |                   | Pur           | ge Depth: 1' froi    | n bottom           |                                  |                                     |                        |         |  |  |  |
| Well Volume<br>Calculation<br>(Fill in before<br>purging) | Total Dept<br>(ft) | h Depth to:<br>(f | o Water<br>t) | Water<br>Column (ft) | Multip<br>¾''=.022 | lier for Casin<br>29, 1"=.041, 2 | g Diameter (in)<br>2″=.163, 4″=.653 | Casing Volume<br>(gal) |         |  |  |  |
|                                                           | 14.45              | 8.04              |               | 6.41                 | .0229              |                                  |                                     | .15                    |         |  |  |  |
| purging)                                                  | Notes:             |                   |               |                      |                    |                                  |                                     |                        |         |  |  |  |
|                                                           |                    |                   | 1             |                      |                    | 1                                | 1                                   |                        |         |  |  |  |
|                                                           | Time               | 10:58             | 11:01         | L 11:04              | 11:07              | 11:10                            |                                     |                        |         |  |  |  |
| Depth to                                                  | Water (ft)         | 8.22              | 8.20          | 8.20                 | 8.20               | 8.20                             |                                     |                        |         |  |  |  |
| Volume P                                                  | urged (mL)         | 300               | 600           | 900                  | 1200               | 1500                             |                                     |                        |         |  |  |  |
| l                                                         | pH (+/-0.1)        | 7.15              | 7.22          | 7.25                 | 7.26               | 7.26                             |                                     |                        |         |  |  |  |
| Temperature                                               | C. (+/- 1.0)       | 16.67             | 16.90         | 0 17.04              | 17.16              | 17.24                            |                                     |                        |         |  |  |  |
| Conductivity u                                            | ıS/cm (3%)         | 226               | 226           | 228                  | 228                | 228                              |                                     |                        |         |  |  |  |
| Turk                                                      | oidity (<10)       | 6.81              | 4.11          | 5.84                 | 0.93               | 0.58                             |                                     |                        |         |  |  |  |
| D                                                         | 00 (+/- 0.3)       | 0.80              | 0.21          | 0.11                 | 0.10               | 0.15                             |                                     |                        |         |  |  |  |
| 0                                                         | RP (+/- 10)        | -8.8              | -55.3         | -69.9                | -82.8              | -96.6                            |                                     |                        |         |  |  |  |
|                                                           | Color              | Clear             | Clear         | - Clear              | Clear              | Clear                            |                                     |                        |         |  |  |  |

| Comment       | Comments: Chemical odor                                                  |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|--|
| Percent Re    | ecovery:                                                                 | Depth to Water at Sampling (ft):                                      | Note(s):                              |                     |                                                    |  |  |  |  |  |  |
| Sampling ,    | Sampling / Field Equipment (Manufacture / Model / Last Calibration):///  |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sampling ,    | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sampling ,    | / Field Equip                                                            | ment (Manufacture / Model / Last Calibratio                           | on):/                                 |                     | _/                                                 |  |  |  |  |  |  |
| Sample<br>No. | Sample<br>Quantity                                                       | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |
|               |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
|               |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |

Odor

Odor

Odor

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

Odor

Odor/Sheen

Odor

| Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): YES / NO Well Casing: YES / NO |  |
|-------------------------------------------------------------------------------------------------------|--|
| Inside of Well Head and Outer Casing Dry: YES / NO                                                    |  |
| Comments:                                                                                             |  |
|                                                                                                       |  |

| Project Name:                                 | BLT Trucking       |                 | Proj          | ect No.: 0611-01     | -03-02             | Well No.:                         | : MW4 D                          | ate: 6/1 | 15/21                  |  |  |
|-----------------------------------------------|--------------------|-----------------|---------------|----------------------|--------------------|-----------------------------------|----------------------------------|----------|------------------------|--|--|
| Field Personne                                | : SRB/CZL          |                 | Stat          | ic Water Level: 8    | .50                |                                   |                                  |          |                        |  |  |
| Water Level Me                                | easurement         | Method: E-T     | ape           |                      |                    |                                   |                                  |          |                        |  |  |
| Time Start Purg                               | ge: 10:08          |                 | Tim           | e End Purge: 10:2    | 26                 | Time San                          | npled: 10:27                     |          |                        |  |  |
| Measuring Poir                                | nt Descriptio      | n: TOC          |               |                      |                    |                                   |                                  |          |                        |  |  |
| Purge Method:                                 | Low-Flow           |                 | Pur           | ge Depth: 1' from    | n bottom           |                                   |                                  |          |                        |  |  |
| Well Volume<br>Calculation<br>(Fill in before | Total Dept<br>(ft) | h Depth t<br>(f | o Water<br>t) | Water<br>Column (ft) | Multip<br>¾''=.022 | lier for Casing<br>29, 1"=.041, 2 | g Diameter (in<br>."=.163, 4"=.6 | i)<br>53 | Casing Volume<br>(gal) |  |  |
|                                               | 14.39              | 8.50            |               | 5.89                 | .0229              |                                   |                                  |          | 0.13                   |  |  |
| purging)                                      | Notes:             |                 |               |                      |                    |                                   |                                  |          |                        |  |  |
|                                               |                    |                 |               |                      |                    |                                   |                                  |          |                        |  |  |
|                                               | Time               | 10:11           | 10:14         | 10:17                | 10:20              | 10:23                             | 10:26                            |          |                        |  |  |
| Depth to                                      | Water (ft)         | 10.08           | 9.45          | 9.42                 | 9.43               | 9.41                              | 9.42                             |          |                        |  |  |
| Volume P                                      | urged (mL)         | 300             | 600           | 900                  | 1200               | 1500                              | 1800                             |          |                        |  |  |
|                                               | pH (+/-0.1)        | 6.91            | 6.93          | 6.98                 | 7.06               | 7.12                              | 7.15                             |          |                        |  |  |
| Temperature                                   | C. (+/- 1.0)       | 16.65           | 16.43         | 16.66                | 16.45              | 16.34                             | 16.35                            |          |                        |  |  |
| Conductivity u                                | ıS/cm (3%)         | 281             | 280           | 280                  | 279                | 279                               | 279                              |          |                        |  |  |
| Turk                                          | oidity (<10)       | 10.76           | 6.25          | 6.20                 | 3.81               | 4.35                              | 5.26                             |          |                        |  |  |
| D                                             | 00 (+/- 0.3)       | 0.67            | 0.66          | 0.62                 | 0.83               | 0.67                              | 0.64                             |          |                        |  |  |
| 0                                             | RP (+/- 10)        | 27.6            | 14.3          | 3.0                  | -10.3              | -17.9                             | -24.3                            |          |                        |  |  |
|                                               | Color              | Clear           | Clear         | Clear                | Clear              | Clear                             | Clear                            |          |                        |  |  |
| 0                                             | dor/Sheen          | Odor            | Odor          | Odor                 | Odor               | Odor                              | Odor                             |          |                        |  |  |
|                                               |                    |                 |               |                      |                    |                                   |                                  |          |                        |  |  |

| Comments                                                    | Comments: Chemical odor                                                    |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| Percent Recovery: Depth to Water at Sampling (ft): Note(s): |                                                                            |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                  | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                  | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                  | <sup>/</sup> Field Equip                                                   | ment (Manufacture / Model / Last Calibratio                           | on):/                                 |                     | _/                                                 |  |  |  |  |  |  |  |
| Sample<br>No.                                               | Sample<br>Quantity                                                         | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |  |
|                                                             |                                                                            |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
|                                                             |                                                                            |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |

| Well Security Devices OK (Bollards, Christy I | Lid, Ca | sing | l Lid and Lock): <mark>YES</mark> | / NO | Well Casing: <mark>YES</mark> / NO |
|-----------------------------------------------|---------|------|-----------------------------------|------|------------------------------------|
| Inside of Well Head and Outer Casing Dry:     | YES     | /    | NO                                |      |                                    |
| Comments:                                     |         |      |                                   |      |                                    |
|                                               |         |      |                                   |      |                                    |

| Project Name:                    | Project Name: BLT Trucking |                   |            |                             | 0611-01 | -03-02                                                                      | Well No.: | o.: MW5 Date: 6/15/21 |          |      |                    |  |
|----------------------------------|----------------------------|-------------------|------------|-----------------------------|---------|-----------------------------------------------------------------------------|-----------|-----------------------|----------|------|--------------------|--|
| Field Personnel                  | : SRB/CZL                  |                   | Stat       | Static Water Level: 8.20    |         |                                                                             |           |                       |          |      |                    |  |
| Water Level Me                   | easurement I               | Vethod: E-Ta      | pe         |                             |         |                                                                             |           |                       |          |      |                    |  |
| Time Start Purge: 09:19          |                            |                   | Tim        | Time End Purge: 09:31       |         |                                                                             |           | Time Sampled: 09:35   |          |      |                    |  |
| Measuring Point Description: TOC |                            |                   |            |                             |         |                                                                             |           |                       |          |      |                    |  |
| Purge Method: Low-Flow           |                            |                   |            | Purge Depth: 1' from bottom |         |                                                                             |           |                       |          |      |                    |  |
| Well Volume<br>Calculation       | Total Deptl<br>(ft)        | n Depth to<br>(ft | )<br>Water | ater Water<br>Column (ft)   |         | Multiplier for Casing Diameter (in)<br>¾''=.0229, 1"=.041, 2"=.163, 4"=.653 |           |                       | ı)<br>53 | Casi | ng Volume<br>(gal) |  |
| (Fill in before                  | 14.41                      | 8.20              |            | 6.21                        |         | .0229                                                                       |           |                       |          | 0.14 |                    |  |
| parsing)                         | Notes:                     |                   |            |                             |         |                                                                             |           |                       |          |      |                    |  |
|                                  |                            |                   |            |                             |         |                                                                             | <u>.</u>  |                       |          |      |                    |  |
| Time 09:22                       |                            |                   |            | (                           | 09:28   | 09:31                                                                       |           |                       |          |      |                    |  |
| Depth to                         | Water (ft)                 | 8.50              | 8.50       |                             | 8.50    | 8.50                                                                        |           |                       |          |      |                    |  |

| Depth to Water (ft)      | 8.50  | 8.50  | 8.50  | 8.50  |  |  |
|--------------------------|-------|-------|-------|-------|--|--|
| Volume Purged (mL)       | 300   | 600   | 900   | 1200  |  |  |
| рН (+/-0.1)              | 6.53  | 6.67  | 6.70  | 6.71  |  |  |
| Temperature C. (+/- 1.0) | 16.75 | 16.80 | 16.87 | 16.86 |  |  |
| Conductivity uS/cm (3%)  | 405   | 404   | 405   | 404   |  |  |
| Turbidity (<10)          | 9.39  | 3.71  | 3.61  | 2.46  |  |  |
| DO (+/- 0.3)             | 1.61  | 0.59  | 0.50  | 0.41  |  |  |
| ORP (+/- 10)             | 153.3 | 141.4 | 144.2 | 140.2 |  |  |
| Color                    | Clear | Clear | Clear | Clear |  |  |
| Odor/Sheen               | None  | None  | None  | None  |  |  |

| Comment                                                                   | 5:                                                                       |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|
| Percent Recovery:     Depth to Water at Sampling (ft):     Note(s):       |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / // |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling ,                                                                | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling ,                                                                | / Field Equip                                                            | ment (Manufacture / Model / Last Calibratio                           | on):/                                 |                     | _/                                                 |  |  |  |  |  |
| Sample<br>No.                                                             | Sample<br>Quantity                                                       | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |
|                                                                           |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
|                                                                           |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |

| Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): <mark>YES</mark> , | / NO | Well Casing: <mark>YES</mark> / NO |
|-------------------------------------------------------------------------------------------|------|------------------------------------|
| Inside of Well Head and Outer Casing Dry: YES / NO                                        |      |                                    |
| Comments:                                                                                 |      |                                    |
|                                                                                           |      |                                    |

| Project Name:                  | BLT Trucking       | 5                 | Proj          | ject No.: 0611-01                      | -03-02              | Well No.:                                                                  | MW | /1 |                        | Date | : 9/23/21 |
|--------------------------------|--------------------|-------------------|---------------|----------------------------------------|---------------------|----------------------------------------------------------------------------|----|----|------------------------|------|-----------|
| Field Personnel                | : CZL              |                   | Stat          | Static Water Level:9.61                |                     |                                                                            |    |    |                        |      |           |
| Water Level Me                 | easurement         | Method: E-Ta      | ape           |                                        |                     |                                                                            |    |    |                        |      |           |
| Time Start Purg                | ge: 1420           |                   | Tim           | Time End Purge: 1432Time Sampled: 1435 |                     |                                                                            |    |    |                        |      |           |
| Measuring Poir                 | nt Descriptio      | n: TOC            |               |                                        |                     |                                                                            |    |    |                        |      |           |
| Purge Method:                  | Low-Flow           |                   | Pur           | urge Depth: 1' from bottom             |                     |                                                                            |    |    |                        |      |           |
| Well Volume<br>Calculation     | Total Dept<br>(ft) | h Depth to:<br>(f | o Water<br>t) | Water<br>Column (ft)                   | Multipl<br>¾''=.022 | Multiplier for Casing Diameter (in)<br>¾"=.0229, 1"=.041, 2"=.163, 4"=.653 |    |    | Casing Volume<br>(gal) |      |           |
| (Fill in before                | 14.36              | 9.61              |               | 4.75                                   | .0229               |                                                                            |    |    |                        | 0.33 |           |
| parsing/                       | Notes:             |                   |               |                                        |                     |                                                                            |    |    |                        |      |           |
|                                |                    |                   |               |                                        |                     |                                                                            | -  |    |                        |      |           |
|                                | Time               | 1423              | 1426          | 1429                                   | 1432                |                                                                            |    |    |                        |      |           |
| Depth to                       | Water (ft)         | 9.75              | 9.75          | 9.75                                   | 9.75                |                                                                            |    |    |                        |      |           |
| Volume P                       | urged (mL)         | 300               | 600           | 900                                    | 1200                |                                                                            |    |    |                        |      |           |
| pH (+/-0.1) 6.83               |                    | 6.82              | 6.81          | 6.81                                   |                     |                                                                            |    |    |                        |      |           |
| Temperature C. (+/- 1.0) 20.13 |                    |                   |               | 18.35                                  | 18.12               |                                                                            |    |    |                        |      |           |
| Conductivity uS/cm (3%) 482    |                    |                   |               | 494                                    | 497                 |                                                                            |    |    |                        |      |           |
| Turh                           | nidity (<10)       | 78 3              | 43.6          | 77.0                                   | 47.4                |                                                                            |    |    |                        |      |           |

| Temperature C. (+/- 1.0) | 20.13 | 18.81 | 18.35 | 18.12 |  |  |
|--------------------------|-------|-------|-------|-------|--|--|
| Conductivity uS/cm (3%)  | 482   | 493   | 494   | 497   |  |  |
| Turbidity (<10)          | 78.3  | 43.6  | 77.0  | 47.4  |  |  |
| DO (+/- 0.3)             | 0.98  | 0.49  | 0.27  | 0.40  |  |  |
| ORP (+/- 10)             | 8     | 5     | -1    | -5    |  |  |
| Color                    | Clear | Clear | Clear | Clear |  |  |
| Odor/Sheen               | None  | None  | None  | None  |  |  |

| Comments                                                                  | 5:                                                                         |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|
| Percent Re                                                                | Percent Recovery:Depth to Water at Sampling (ft):Note(s):                  |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / // |                                                                            |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sampling /                                                                | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / / |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sampling /                                                                | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / / |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sample<br>No.                                                             | Sample<br>Quantity                                                         | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly                                      | Preservative / Field<br>Filtered (FF) | Analysis<br>Request                                     | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |
| MW1                                                                       | 1                                                                          | (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly | NHO3                                  | DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals | Clear                                              |  |  |  |  |  |  |
| WELL H                                                                    | EAD COND                                                                   | NITIONS CHECKLIST (Circle YES or NC                                                                        | ) if NO, add comme                    | nts)                                                    |                                                    |  |  |  |  |  |  |

| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BLT Trucking  | 5           | Proj  | iect No.: 0611-0                                                                         | 1-03-02 | Well No.: | M٧   | /2     | Dat | te: 9/23/21            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------|------------------------------------------------------------------------------------------|---------|-----------|------|--------|-----|------------------------|--|
| Field Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l: CZL        |             | Stat  | ic Water Level:                                                                          | 9.65    |           |      |        |     |                        |  |
| Water Level Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | easurement    | Method: E-T | ape   |                                                                                          |         |           |      |        |     |                        |  |
| Time Start Purg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge: 1240      |             | Tim   | e End Purge: 12                                                                          | 52      | Time Sam  | pled | : 1255 |     |                        |  |
| Measuring Poir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Descriptio | n: TOC      |       |                                                                                          |         |           |      |        |     |                        |  |
| Purge Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low-Flow      |             | Pur   | urge Depth: 1' from bottom                                                               |         |           |      |        |     |                        |  |
| Well Volume<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calculation<br>Calcul |               |             |       | erWaterMultiplier for Casing Diameter (in)Column (ft)¾"=.0229, 1"=.041, 2"=.163, 4"=.653 |         |           |      |        | Ca  | Casing Volume<br>(gal) |  |
| (Fill in before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.25         | 9.65        |       |                                                                                          | .0229   |           |      |        |     |                        |  |
| Por 911/9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes:        |             |       |                                                                                          |         |           |      |        |     |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |       |                                                                                          |         |           | -    |        |     |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time          | 1243        | 1246  | 1249                                                                                     | 1252    |           |      |        |     |                        |  |
| Depth to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water (ft)    | 10.10       | 10.10 | 10.10                                                                                    | 10.10   |           |      |        |     |                        |  |
| Volume P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urged (mL)    | 300         | 600   | 900                                                                                      | 1200    |           |      |        |     |                        |  |
| pH (+/-0.1) 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 6.79        | 6.77  | 6.81                                                                                     |         |           |      |        |     |                        |  |
| Temperature C. (+/- 1.0) 19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |       | 19.49                                                                                    | 19.25   |           |      |        |     |                        |  |
| Conductivity uS/cm (3%) 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |             |       | 541                                                                                      | 533     |           |      |        |     |                        |  |
| Turk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-10)         | 41.0        | 110   | 21.6                                                                                     | 21.0    |           |      |        |     |                        |  |

| Temperature C. (+/- 1.0) | 19.81 | 19.59 | 19.49 | 19.25 |  |  |
|--------------------------|-------|-------|-------|-------|--|--|
| Conductivity uS/cm (3%)  | 508   | 511   | 541   | 533   |  |  |
| Turbidity (<10)          | 41.9  | 118   | 31.6  | 21.8  |  |  |
| DO (+/- 0.3)             | 0.23  | 0.06  | 0.00  | 0.00  |  |  |
| ORP (+/- 10)             | 9     | 6     | 3     | 1     |  |  |
| Color                    | Clear | Clear | Clear | Clear |  |  |
| Odor/Sheen               | None  | None  | None  | None  |  |  |

| Comments                                                                  | Comments: This well has poor recharge, did not allow for time for stabilization of parameters. |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|
| Percent Re                                                                | ecovery:                                                                                       | Depth to Water at Sampling (ft):                                                                           | Note(s):                              |                                                         |                                                    |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / // |                                                                                                |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sampling /                                                                | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / /                     |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |
| Sampling /                                                                | ' Field Equip                                                                                  | ment (Manufacture / Model / Last Calibratio                                                                | on):/                                 |                                                         | _/                                                 |  |  |  |  |  |  |
| Sample<br>No.                                                             | Sample<br>Quantity                                                                             | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly                                      | Preservative / Field<br>Filtered (FF) | Analysis<br>Request                                     | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |
| MW2                                                                       | 1                                                                                              | (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly | NHO3                                  | DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals | Clear                                              |  |  |  |  |  |  |

| Project Name:                                      | BLT Trucking      | 5            | Proj  | ect                                                                                             | No.: 0611-01   | -03-02 | W  | ell No.: M         | W3 |                        | Date: 9 | 9/23/21 |  |
|----------------------------------------------------|-------------------|--------------|-------|-------------------------------------------------------------------------------------------------|----------------|--------|----|--------------------|----|------------------------|---------|---------|--|
| Field Personnel                                    | : SRB/CZL         |              | Stat  | ic W                                                                                            | /ater Level: 9 | .03    |    |                    |    |                        |         |         |  |
| Water Level Me                                     | easurement        | Method: E-Ta | ape   |                                                                                                 |                |        |    |                    |    |                        |         |         |  |
| Time Start Purg                                    | ge: 1150          |              | Tim   | e En                                                                                            | d Purge: 120   | 2      | Ti | Time Sampled: 1210 |    |                        |         |         |  |
| Measuring Poir                                     | nt Descriptio     | n: TOC       |       |                                                                                                 |                |        |    |                    |    |                        |         |         |  |
| Purge Method:                                      | Low-Flow          |              | Pur   | Purge Depth: 1' from bottom                                                                     |                |        |    |                    |    |                        |         |         |  |
| Well Volume<br>Calculation<br>(ft)<br>(ft)<br>(ft) |                   |              |       | er Water Multiplier for Casing Diameter (in)<br>Column (ft) ¾"=.0229, 1"=.041, 2"=.163, 4"=.653 |                |        |    |                    |    | Casing Volume<br>(gal) |         |         |  |
| (Fill in before 14.45 9.03                         |                   |              |       |                                                                                                 |                | .0229  |    |                    |    |                        |         |         |  |
| purging)                                           | Notes:            |              |       |                                                                                                 |                |        |    |                    | ·  |                        |         |         |  |
|                                                    |                   |              |       |                                                                                                 |                |        |    |                    |    |                        |         |         |  |
|                                                    | Time              | 1153         | 1156  |                                                                                                 | 1159           | 1202   |    |                    |    |                        |         |         |  |
| Depth to                                           | Water (ft)        | 9.10         | 9.10  |                                                                                                 | 9.10           | 9.10   |    |                    |    |                        |         |         |  |
| Volume P                                           | urged (mL)        | 300          | 600   |                                                                                                 | 900            | 1200   |    |                    |    |                        |         |         |  |
| I                                                  | pH (+/-0.1)       | 7.18         | 7.21  |                                                                                                 | 7.21           | 7.21   |    |                    |    |                        |         |         |  |
| Temperature                                        | C. (+/- 1.0)      | 24.54        | 23.81 |                                                                                                 | 23.58          | 23.31  |    |                    |    |                        |         |         |  |
| Conductivity u                                     | ıS/cm (3%)        | 197          | 194   |                                                                                                 | 193            | 195    |    |                    |    |                        |         |         |  |
| Turb                                               | oidity (<10)      | 19           | 15.3  |                                                                                                 | 13.7           | 12.6   |    |                    |    |                        |         |         |  |
| D                                                  | DO (+/- 0.3) 0.40 |              |       |                                                                                                 | 0.00           | 0.00   |    |                    |    |                        |         |         |  |
| 0                                                  | RP (+/- 10)       | -23          | -76   |                                                                                                 | -90            | -101   |    |                    |    |                        |         |         |  |
|                                                    | Color             | Clear        | Clear |                                                                                                 | Clear          | Clear  |    |                    |    |                        |         |         |  |
| 0                                                  | dor/Sheen         | Odor         | Odor  |                                                                                                 | Odor           | Odor   |    |                    |    |                        |         |         |  |

| Comments: Chemical odor                                                                                                                                                                                 |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|
| Percent Recovery: Depth to Water at Sampling (ft): Note(s):                                                                                                                                             |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): //                                                                                                                                 |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling /                                                                                                                                                                                              | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |
| Sampling /                                                                                                                                                                                              | ' Field Equip                                                            | ment (Manufacture / Model / Last Calibratic                           | on):/                                 |                     | _/                                                 |  |  |  |  |  |
| Sample<br>No.                                                                                                                                                                                           | Sample<br>Quantity                                                       | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |
| MW3     1     (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly     NHO3     DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals     Clear |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |

| Project Name:                  | BLT Trucking         |                | Proj      | ect No.: 06                             | 511-01                      | -03-02           | Well No              | о.: MV    | V4  | Date: 9/            | 23/21 |   |
|--------------------------------|----------------------|----------------|-----------|-----------------------------------------|-----------------------------|------------------|----------------------|-----------|-----|---------------------|-------|---|
| Field Personne                 | : SRB/CZL            |                | Stat      | ic Water Le                             | evel: 1                     | 0.30             |                      |           |     |                     |       |   |
| Water Level M                  | easurement           | Method: E-Ta   | ape       |                                         |                             |                  |                      |           |     |                     |       |   |
| Time Start Purg                | ge: 1340             |                | Tim       | Time End Purge: 1352 Time Sampled: 1355 |                             |                  |                      |           |     |                     |       |   |
| Measuring Poir                 | nt Description       | n: TOC         |           |                                         |                             |                  |                      |           |     |                     |       |   |
| Purge Method:                  | Low-Flow             |                | Pur       | urge Depth: 1' from bottom              |                             |                  |                      |           |     |                     |       |   |
| Well Volume<br>Calculation     | o Water<br>t)        | Wate<br>Column | r<br>(ft) | Multipl<br>¾''=.022                     | ier for Casi<br>9, 1″=.041, | ng Dia<br>2"=.10 | meter (i<br>53, 4"=. | n)<br>653 | Cas | ing Volume<br>(gal) |       |   |
| (Fill in before                | 14.39                | 10.30          |           |                                         |                             | .0229            |                      |           |     |                     |       |   |
| purging)                       | Notes:               |                |           |                                         |                             |                  |                      |           |     |                     |       |   |
|                                |                      |                | -         |                                         |                             |                  |                      |           |     |                     |       | _ |
|                                | Time                 | 1343           | 1346      | 13                                      | 49                          | 1352             |                      |           |     |                     |       |   |
| Depth to                       | Water (ft)           | 10.51          | 10.51     | 10.                                     | 60                          | 10.60            |                      |           |     |                     |       |   |
| Volume P                       | urged (mL)           | 300            | 600       | 90                                      | 00                          | 1200             |                      |           |     |                     |       |   |
|                                | pH (+/-0.1)          | 6.90           | 6.92      | 6.9                                     | 92                          | 6.92             |                      |           |     |                     |       |   |
| Temperature C. (+/- 1.0) 21.22 |                      |                | 21.39     | 21.                                     | 43                          | 21.55            |                      |           |     |                     |       |   |
| Conductivity uS/cm (3%) 392    |                      |                |           | 38                                      | 33                          | 390              |                      |           |     |                     |       |   |
| Turk                           | Turbidity (<10) 62.5 |                |           | 57                                      | .1                          | 46.7             |                      |           |     |                     |       |   |
| D                              | 00 (+/- 0.3)         | 0.34           | 0.00      | 0.0                                     | 00                          | 0.00             |                      |           |     |                     |       |   |

| ORP (+/- 10)            | -17          | -56   | -61    | -72   |  |  |  |
|-------------------------|--------------|-------|--------|-------|--|--|--|
| Color                   | Clear        | Clear | Clear  | Clear |  |  |  |
| Odor/Sheen              | Odor         | Odor  | Odor   | Odor  |  |  |  |
|                         |              |       |        |       |  |  |  |
| Comments: Chemical odor |              |       |        |       |  |  |  |
| Percent Recovery:       | npling (ft): | No    | te(s): |       |  |  |  |
|                         |              |       |        |       |  |  |  |

Sampling / Field Equipment (Manufacture / Model / Last Calibration): Sampling / Field Equipment (Manufacture / Model / Last Calibration): Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / Container Type Sample Sample Preservative / Field Analysis Visual Observation 40 mL VOA/500 mL Amber / 1 L Amber / 250 mL Quantity No. Filtered (FF) (Clear, Cloudy, Silty, Etc.) Request Poly DRO, ORO, (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs, GRO, BTEX, MW4 1 (1) 250mL Unpreserved Poly, (1) 250mL Preserved NHO3 Clear PAHs, PCBs, Poly MTCA 5 Metals

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

| Project Name:              | BLT Trucking     |               | Proj                 | ect No.: 0611-01     | -03-02                            | Well No.                            | : MW5                  | Date: 9/23/21 |
|----------------------------|------------------|---------------|----------------------|----------------------|-----------------------------------|-------------------------------------|------------------------|---------------|
| Field Personnel            | : CZL            |               | Stat                 | ic Water Level: 9    | .40                               |                                     |                        |               |
| Water Level Me             | easurement       | Method: E-Ta  | ape                  |                      |                                   |                                     |                        |               |
| Time Start Purg            | ge: 1030         |               | Tim                  | e End Purge: 104     | 8                                 | Time San                            | npled: 1050            |               |
| Measuring Poir             | nt Descriptio    | n: TOC        |                      |                      |                                   |                                     | ·                      |               |
| Purge Method:              | Low-Flow         |               | Pur                  | ge Depth: 1' from    | bottom                            |                                     |                        |               |
| Well Volume<br>Calculation | h Depth to<br>(f | o Water<br>t) | Water<br>Column (ft) | Multip<br>¾''=.022   | lier for Casing<br>29, 1"=.041, 2 | g Diameter (in)<br>."=.163, 4"=.653 | Casing Volume<br>(gal) |               |
| (Fill in before            | 14.41            | 9.40          |                      |                      | .0229                             |                                     |                        |               |
| Purging)                   | Notes:           |               |                      |                      |                                   |                                     | -                      |               |
|                            |                  |               |                      |                      |                                   | 1                                   | 1                      |               |
| Time 1033                  |                  |               |                      | 1039                 | 1042                              | 1045                                | 1048                   |               |
| Depth to                   | Water (ft)       | 9.60          | 9.60                 | 9.60                 | 9.60                              | 9.60                                | 9.60                   |               |
| Volume P                   | urged (mL)       | 300           | 600                  | 900                  | 1200                              | 1500                                | 1800                   |               |
|                            | oH (+/-0.1)      | 6.12          | 6.71                 | 6.71                 | 6.71                              | 6.71                                | 6.71                   |               |
| Temperature                | C. (+/- 1.0)     | 21.30         | 21.02                | 21.03                | 20.86                             | 21.02                               | 21.13                  |               |
| Conductivity u             | ıS/cm (3%)       | 692           | 73                   | 725                  | 741                               | 735                                 | 744                    |               |
| Turb                       | oidity (<10)     | 14.4          | 8.3                  | .2                   | 6.0                               | 6.1                                 | 6.6                    |               |
| D                          | 0 (+/- 0.3)      | 1.52          | 0.59                 | 0.42                 | 1.80                              | 1.60                                | 1.51                   |               |
| 0                          | RP (+/- 10)      | 106           | 95                   | 87                   | 78                                | 74                                  | 68                     |               |
|                            | Color            | Clear         | Clear                | Clear                | Clear                             | Clear                               | Clear                  |               |
| 0                          | dor/Sheen        | None          | None                 | None                 | None                              | None                                | None                   |               |
| Comments:                  |                  |               |                      |                      |                                   |                                     |                        |               |
| Percent Recove             | ery:             | Depth to      | Water at             | Sampling (ft):       | No                                | ote(s):                             |                        |               |
| Sampling / Field           | d Equipment      | (Manufactu    | e / Mode             | el / Last Calibratio | on):                              | /                                   | /                      |               |
| Sampling / Field           | d Equipment      | (Manufactu    | re / Mode            | el / Last Calibratio | on):                              | /                                   | /                      |               |
| Someling / Field           | d Faulamant      | /Manufactur   | o / Mode             | l / Last Calibrati   | 20):                              | 1                                   | 1                      |               |

| Sampling /    | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / / |                                                                                                            |                                       |                                                         |                                                    |  |  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| Sample<br>No. | Sample<br>Quantity                                                         | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly                                      | Preservative / Field<br>Filtered (FF) | Analysis<br>Request                                     | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |  |
| MW5           | 1                                                                          | (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly | NHO3                                  | DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals | Clear                                              |  |  |  |  |  |  |  |

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

Well Casing: YES / NO Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): YES / NO Inside of Well Head and Outer Casing Dry: YES / NO Comments:

| Project Na               | me: BLT Tru         | cking                                                                                                            |                     | Proi                              | iect N       | lo.: 0611-01        | -03-02                  | Well N                     | No.: MW1                             |               | Date                   | : 11/17/21                   |
|--------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|--------------|---------------------|-------------------------|----------------------------|--------------------------------------|---------------|------------------------|------------------------------|
| Field Perso              | onnel: CZL          | 0                                                                                                                |                     | Stat                              | ,<br>tic Wa  | ater Level:5.       | 74                      |                            |                                      |               |                        |                              |
| Water Leve               | el Measurer         | nent M                                                                                                           | ethod: E-Ta         | ape                               |              |                     |                         |                            |                                      |               |                        |                              |
| Time Start               | Purge: 123          | )                                                                                                                |                     | Tim                               | e Enc        | d Purge: 124        | 5                       | Time                       | Sampled: 1250                        |               |                        |                              |
| Measuring                | Point Desc          | ription:                                                                                                         | тос                 |                                   |              |                     | -                       |                            |                                      |               |                        |                              |
| Purge Met                | hod: Low-F          | ow                                                                                                               |                     | Pure                              | ge De        | oth: 1' from        | bottom                  |                            |                                      |               |                        |                              |
| Well Volur<br>Calculatio | me Total            | Depth<br>ft)                                                                                                     | Depth to<br>(f      | o Water<br>t)                     | Cc           | Water<br>olumn (ft) | Multip<br>¾''=.022      | lier for Ca<br>29, 1"=.042 | sing Diameter (i<br>1, 2″=.163, 4″=. | in)<br>653    | Casing Volume<br>(gal) |                              |
| (Fill in befo            | ore 14.36           |                                                                                                                  | 5.74                |                                   | 8.6          | 2                   | .0229                   |                            |                                      |               | 0.20                   |                              |
| purging,                 | Notes               | 5:                                                                                                               |                     |                                   |              |                     |                         |                            |                                      |               |                        |                              |
|                          | •                   |                                                                                                                  |                     |                                   |              |                     |                         |                            |                                      |               |                        |                              |
|                          | T                   | ime                                                                                                              | 1233                | 1236                              |              | 1239                | 1242                    | 1245                       |                                      |               |                        |                              |
| Dept                     | Depth to Water (ft) |                                                                                                                  |                     |                                   |              |                     |                         |                            |                                      |               |                        |                              |
| Volun                    | ne Purged (         | mL)                                                                                                              | 300                 | 600                               |              | 900                 | 1200                    | 1500                       |                                      |               |                        |                              |
| pH (+/-0.1) 7.63         |                     |                                                                                                                  |                     |                                   |              | 6.53                | 6.48                    | 6.43                       |                                      |               |                        |                              |
| Temperat                 | ture C. (+/-        | 1.0)                                                                                                             | 13.3                | 14.1                              |              | 14.3                | 14.0                    | 13.8                       |                                      |               |                        |                              |
| Conductiv                | vity uS/cm (        | 3%)                                                                                                              | 552                 | 557                               |              | 556                 | 578                     | 581                        |                                      |               |                        |                              |
|                          | Turbidity (<        | :10)                                                                                                             | 100.82              | 101.73                            | 3            | 137.12              | 22.05                   | 12.59                      |                                      |               |                        |                              |
|                          | DO (+/-             | 0.3)                                                                                                             | 30.3                | 13.0                              |              | 9.8                 | 8.6                     | 7.5                        |                                      |               |                        |                              |
|                          | ORP (+/-            | 10)                                                                                                              | 31.2                | 47.2                              |              | 43.0                | 39.5                    | 36.9                       |                                      |               |                        |                              |
|                          | C                   | olor                                                                                                             | Clear               | Clear                             |              | Clear               | Clear                   | Clear                      |                                      |               |                        |                              |
|                          | Odor/Sh             | een                                                                                                              | None                | None                              | 9            | None                | None                    | None                       |                                      |               |                        |                              |
| Comments                 | :                   |                                                                                                                  |                     |                                   |              |                     |                         |                            |                                      |               |                        |                              |
| Percent Re               | covery:             |                                                                                                                  | Depth to            | Water at                          | : Sam        | pling (ft):         | No                      | ote(s):                    |                                      |               |                        |                              |
| Sampling /               | Field Equip         | ment (I                                                                                                          | Manufactu           | re / Mode                         | el / La      | ast Calibratio      | on):                    | /                          |                                      | _/            |                        |                              |
| Sampling /               | Field Equip         | ment (I                                                                                                          | Manufactu           | re / Mode                         | el / La      | ast Calibratio      | on):                    | /                          |                                      | _/            |                        |                              |
| Sampling /               | Field Equip         | ment (I                                                                                                          | Manufactu           | re / Mode                         | el / La      | ast Calibratio      | on):                    | /                          |                                      | _/            |                        |                              |
| Sample<br>No.            | Sample<br>Quantity  | 40 m                                                                                                             | Cor<br>L VOA/500 ml | ntainer Ty<br>L Amber / 1<br>Poly | /pe<br>L Amb | oer / 250 mL        | Preservativ<br>Filtered | ve / Field<br>I (FF)       | Analysis<br>Request                  | Visu<br>(Clea | ual Ob<br>r, Cloud     | servation<br>y, Silty, Etc.) |
| MW1                      | 1                   | (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly Clear |                     |                                   |              |                     |                         |                            |                                      | ar            |                        |                              |

WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments) Well Casing: YES / NO Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): YES / NO Inside of Well Head and Outer Casing Dry: YES / NO

MTCA 5 Metals

Comments:

| Project Name:              | BLT Trucking      | Į.                                               | Proj  | ject N                      | o.: 0611-01  | -03-02                            |                         | Well No.: MV | /2                     | _ | Date | : 11/17/21 |
|----------------------------|-------------------|--------------------------------------------------|-------|-----------------------------|--------------|-----------------------------------|-------------------------|--------------|------------------------|---|------|------------|
| Field Personne             | l: CZL            |                                                  | Stat  | tic Wa                      | ter Level: 6 | .77                               |                         |              |                        |   |      |            |
| Water Level M              | easurement        | Method: E-Ta                                     | аре   |                             |              |                                   |                         |              |                        |   |      |            |
| Time Start Purg            | ge: 1327          |                                                  | Tim   | e End                       | Purge: 133   | 9                                 |                         | Time Sampled | : 1340                 |   |      |            |
| Measuring Poir             | nt Descriptio     | n: TOC                                           |       |                             |              |                                   |                         |              |                        |   |      |            |
| Purge Method:              | Low-Flow          |                                                  | Pur   | Purge Depth: 1' from bottom |              |                                   |                         |              |                        |   |      |            |
| Well Volume<br>Calculation | o Water<br>t)     | Vater Water Multiplier<br>Column (ft) ¾''=.0229, |       |                             | ier<br>9, 1  | for Casing Dia<br>L"=.041, 2"=.16 | neter (in<br>53, 4"=.6! | )<br>53      | Casing Volume<br>(gal) |   |      |            |
| (Fill in before            | 14.25             | 6.77                                             |       | 7.48                        | 3            | .0229                             |                         |              |                        |   | 0.17 |            |
| parsing/                   | Notes:            |                                                  |       |                             |              |                                   |                         |              |                        |   |      |            |
|                            |                   |                                                  | [     |                             |              |                                   |                         |              |                        |   |      |            |
|                            | Time              | 1330                                             | 1333  |                             | 1336         | 1339                              |                         |              |                        |   |      |            |
| Depth to                   | Water (ft)        |                                                  |       |                             |              |                                   |                         |              |                        |   |      |            |
| Volume P                   | urged (mL)        | 300                                              | 600   |                             | 900          | 1200                              |                         |              |                        |   |      |            |
|                            | pH (+/-0.1)       | 7.72                                             | 7.63  |                             | 7.56         | 7.53                              |                         |              |                        |   |      |            |
| Temperature                | C. (+/- 1.0)      | 14.2                                             | 14.3  |                             | 14.5         | 14.6                              |                         |              |                        |   |      |            |
| Conductivity u             | uS/cm (3%)        | 127.5                                            | 123.0 | )                           | 118.8        | 120.8                             |                         |              |                        |   |      |            |
| Turbidity (<10) 52.93      |                   |                                                  | 36.45 | 5                           | 23.46        | 16.26                             |                         |              |                        |   |      |            |
| C                          | 00 (+/- 0.3)      | 15.7                                             | 11.3  |                             | 8.9          | 8.4                               |                         |              |                        |   |      |            |
| 0                          | ORP (+/- 10) 25.4 |                                                  |       |                             | 34.3         | 35.7                              |                         |              |                        |   |      |            |
|                            | Color             | Clear                                            | Clear |                             | Clear        | Clear                             |                         |              |                        |   |      |            |

| Comments                                                                                                                                                                                      | 5:                                                                        |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| Percent Recovery:     Depth to Water at Sampling (ft):     Note(s):                                                                                                                           |                                                                           |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / /                                                                                                                      |                                                                           |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                                                                                                                                                    | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / /  |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                                                                                                                                                    | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / // |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sample<br>No.                                                                                                                                                                                 | Sample<br>Quantity                                                        | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |  |
| MW2     1     (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly     NHO3     DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals |                                                                           |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |

None

None

Odor/Sheen

None

None

 WELL HEAD CONDITIONS CHECKLIST (Circle YES or NO -- if NO, add comments)

 Well Security Devices OK (Bollards, Christy Lid, Casing Lid and Lock): YES / NO

 Inside of Well Head and Outer Casing Dry:
 YES / NO

 Comments:

| Project Name:                                     | BLT Trucking   |             | Proj  | ect No.: 0611-01            | -03-02                      | Well No.: M            | W3 | Date: 11/17/21 |  |  |  |
|---------------------------------------------------|----------------|-------------|-------|-----------------------------|-----------------------------|------------------------|----|----------------|--|--|--|
| Field Personnel                                   | : CZL          |             | Stat  | ic Water Level: 6           | .95                         | ·                      |    |                |  |  |  |
| Water Level Me                                    | easurement l   | Method: E-T | ape   |                             |                             |                        |    |                |  |  |  |
| Time Start Purg                                   | ge: 1017       |             | Tim   | e End Purge: 102            | .9                          | d: 1030                |    |                |  |  |  |
| Measuring Poir                                    | nt Description | n: TOC      |       |                             |                             | ·                      |    |                |  |  |  |
| Purge Method:                                     | Low-Flow       |             | Pur   | Purge Depth: 1' from bottom |                             |                        |    |                |  |  |  |
| Well Volume<br>Calculation<br>(ft)<br>Calculation |                |             |       | Water<br>Column (ft)        | ameter (in)<br>163, 4"=.653 | Casing Volume<br>(gal) |    |                |  |  |  |
| (Fill in before 14.45 6.95                        |                |             |       | 7.50                        | .0229                       |                        |    | 0.17           |  |  |  |
| purging)                                          | Notes:         |             |       |                             |                             |                        |    |                |  |  |  |
|                                                   | _              |             |       |                             |                             |                        |    |                |  |  |  |
|                                                   | Time           | 1017        | 1023  | 1026                        | 1029                        |                        |    |                |  |  |  |
| Depth to                                          | Water (ft)     |             |       |                             |                             |                        |    |                |  |  |  |
| Volume Pu                                         | urged (mL)     | 300         | 600   | 900                         | 1200                        |                        |    |                |  |  |  |
| F                                                 | oH (+/-0.1)    | 8.01        | 7.78  | 7.70                        | 7.69                        |                        |    |                |  |  |  |
| Temperature                                       | C. (+/- 1.0)   | 11.5        | 12.0  | 11.9                        | 11.9                        |                        |    |                |  |  |  |
| Conductivity u                                    | IS/cm (3%)     | 144.4       | 148.9 | 149.6                       | 150.1                       |                        |    |                |  |  |  |
| Turb                                              | oidity (<10)   | 5.86        | 4.44  | 3.76                        | 3.51                        |                        |    |                |  |  |  |
| D                                                 | O (+/- 0.3)    | 24.8        | 12.0  | 10.6                        | 9.8                         |                        |    |                |  |  |  |
| 0                                                 | RP (+/- 10)    | -46.1       | -43.7 | .52.0                       | -59.5                       |                        |    |                |  |  |  |
|                                                   | Color          | Clear       | Clear | Clear                       | Clear                       |                        |    |                |  |  |  |
| Odor/Sheen None                                   |                |             |       | None                        | None                        |                        |    |                |  |  |  |
| Comments:                                         | Comments:      |             |       |                             |                             |                        |    |                |  |  |  |

| Comments                                                                                                                                                                       | 5:                                                                        |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|--|
| Percent Re                                                                                                                                                                     | Percent Recovery:Depth to Water at Sampling (ft):Note(s):                 |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / /                                                                                                       |                                                                           |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sampling /                                                                                                                                                                     | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / /  |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sampling /                                                                                                                                                                     | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / // |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |
| Sample<br>No.                                                                                                                                                                  | Sample<br>Quantity                                                        | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |
| MW31(2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>PolyNHO3DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 MetalsClear |                                                                           |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |

| Project Name:              | BLT Trucking        |                  | Proj          | ect No.: 0611-01     | -03-02             | Well No.:                         | : MW4 Dat                          | :e: 11/1 | 7/21                   |
|----------------------------|---------------------|------------------|---------------|----------------------|--------------------|-----------------------------------|------------------------------------|----------|------------------------|
| Field Personnel            | : CZL               |                  | Stat          | ic Water Level: 7    | .68                |                                   |                                    |          |                        |
| Water Level Me             | easurement N        | Method: E-Ta     | ape           |                      |                    |                                   |                                    |          |                        |
| Time Start Purg            | ge: 0935            |                  | 095           | 3                    |                    | 1000                              |                                    |          |                        |
| Measuring Poir             | nt Descriptior      | n: TOC           |               |                      |                    |                                   |                                    |          |                        |
| Purge Method:              | Low-Flow            |                  | Pur           | ge Depth: 1' from    | n bottom           |                                   |                                    |          |                        |
| Well Volume<br>Calculation | Total Depth<br>(ft) | n Depth to<br>(f | o Water<br>t) | Water<br>Column (ft) | Multip<br>¾''=.022 | lier for Casing<br>29, 1"=.041, 2 | g Diameter (in)<br>"=.163, 4"=.653 | 3        | Casing Volume<br>(gal) |
| (Fill in before            | 14.39               | 7.68             |               | 6.71                 | .0229              |                                   |                                    | C        | ).15                   |
| purging)                   | Notes:              | ·                |               |                      |                    |                                   |                                    |          |                        |
|                            |                     |                  |               |                      |                    |                                   |                                    |          |                        |
|                            | Time                | 0938             | 0941          | 0944                 | 0947               | 0950                              | 0953                               |          |                        |
| Depth to                   | Water (ft)          |                  |               |                      |                    |                                   |                                    |          |                        |
| Volume Pi                  | urged (mL)          | 300              | 600           | 900                  | 1200               | 1500                              | 1800                               |          |                        |
| I                          | oH (+/-0.1)         | 7.36             | 7.33          | 7.33                 | 7.33               | 7.31                              | 7.31                               |          |                        |
| Temperature                | C. (+/- 1.0)        | 11.8             | 12.0          | 11.7                 | 11.9               | 12.0                              | 12.4                               |          |                        |
| Conductivity u             | ıS/cm (3%)          | 186              | 189.8         | 190.9                | 192.3              | 191.0                             | 192.2                              |          |                        |
| Turb                       | oidity (<10)        | 11.61            | 12.68         | 570                  | 5.54               | 3.68                              | 5.61                               |          |                        |
| D                          | 0 (+/- 0.3)         | 61.5             | 49.0          | 26.8                 | 18.9               | 17.1                              | 16.2                               |          |                        |
| 0                          | RP (+/- 10)         | 102.7            | 85.0          | 43.0                 | 13.8               | -1.5                              | -15.8                              |          |                        |
| Color Clear                |                     |                  |               | Clear                | Clear              | Clear                             | Clear                              |          |                        |
| 0                          | dor/Sheen           | None             | None          | None                 | None               | None                              | None                               |          |                        |
| Comments:                  |                     |                  |               |                      |                    |                                   |                                    |          |                        |

| Comments                                                                                                                                                                                      | 5.                                                                       |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| Percent Re                                                                                                                                                                                    | Percent Recovery:     Depth to Water at Sampling (ft):     Note(s):      |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration)://                                                                                                                        |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling /                                                                                                                                                                                    | Sampling / Field Equipment (Manufacture / Model / Last Calibration): / / |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sampling / Field Equipment (Manufacture / Model / Last Calibration): / //                                                                                                                     |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
| Sample<br>No.                                                                                                                                                                                 | Sample<br>Quantity                                                       | Container Type<br>40 mL VOA/500 mL Amber / 1 L Amber / 250 mL<br>Poly | Preservative / Field<br>Filtered (FF) | Analysis<br>Request | Visual Observation<br>(Clear, Cloudy, Silty, Etc.) |  |  |  |  |  |  |  |
| MW4     1     (2) 1L Ambers, (1) 500mL Amber, (3) 40 mL VOAs,<br>(1) 250mL Unpreserved Poly, (1) 250mL Preserved<br>Poly     NHO3     DRO, ORO,<br>GRO, BTEX,<br>PAHs, PCBs,<br>MTCA 5 Metals |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                               |                                                                          |                                                                       |                                       |                     |                                                    |  |  |  |  |  |  |  |

| Project Name                  | : BLT Truc         | king                |                              | Proj                                | Project No.: 0611-01-03-02 Well |                                |                         |                             | lo.: MW5                                   |                              | Date                       | : 11/17/21                    |
|-------------------------------|--------------------|---------------------|------------------------------|-------------------------------------|---------------------------------|--------------------------------|-------------------------|-----------------------------|--------------------------------------------|------------------------------|----------------------------|-------------------------------|
| Field Personn                 | el: CZL            | 0                   |                              | Stat                                | ic W                            | /ater Level: 6                 | .99                     |                             |                                            |                              |                            |                               |
| Water Level N                 | Neasurem           | ent Me              | thod: E-Ta                   | ape                                 |                                 |                                |                         |                             |                                            |                              |                            |                               |
| Time Start Pu                 | rge: 1128          |                     |                              | Tim                                 | e En                            | d Purge: 114                   | 3                       | Time                        | Sampled: 1                                 | 145                          |                            |                               |
| Measuring Po                  | oint Descri        | ption: 1            | ГОС                          |                                     |                                 | 0                              |                         |                             |                                            |                              |                            |                               |
| Purge Metho                   | d: Low-Flo         | w                   |                              | Pur                                 | ge D                            | epth: 1' from                  | bottom                  |                             |                                            |                              |                            |                               |
| Well Volume<br>Calculation    | Total D<br>(ft     | )<br>)              | Depth to<br>(f               | Depth to Water<br>(ft)              |                                 | Water<br>Column (ft)           | Multip<br>¾‴=.022       | lier for Cas<br>29, 1"=.041 | sing Diame<br>L, 2"=.163,                  | eter (in)<br>4"=.653         | Cas                        | ing Volume<br>(gal)           |
| (Fill in before               | 14.41              |                     | 6.99                         |                                     | 7.42                            |                                | .0229                   |                             |                                            |                              | 0.17                       | ,                             |
| purging)                      | Notes:             |                     |                              |                                     |                                 |                                |                         |                             |                                            |                              |                            |                               |
|                               |                    |                     |                              |                                     |                                 |                                |                         |                             |                                            |                              |                            |                               |
|                               | Tin                | ne                  | 1131                         | 1134                                |                                 | 1137                           | 1140                    | 1143                        |                                            |                              |                            |                               |
| Depth                         | to Water (         | ft)                 |                              |                                     |                                 |                                |                         |                             |                                            |                              |                            |                               |
| Volume                        | Purged (m          | iL)                 | 300                          | 600                                 |                                 | 900                            | 1200                    | 1500                        |                                            |                              |                            |                               |
|                               | pH (+/-0.          | 1)                  | 7.34                         | 7.25                                |                                 | 7.18                           | 7.14                    | 7.10                        |                                            |                              |                            |                               |
| Temperature C. (+/- 1.0) 14.3 |                    |                     |                              | 14.3                                |                                 | 14.4                           | 14.5                    | 14.6                        |                                            |                              |                            |                               |
| Conductivity                  | uS/cm (39          | %)                  | 393.3                        | 403.0                               | )                               | 405.6                          | 403.6                   | 405.0                       |                                            |                              |                            |                               |
| Tu                            | rbidity (<1        | 0)                  | 19.41                        | 15.28                               | }                               | 8.66                           | 8.22                    | 6.03                        |                                            |                              |                            |                               |
|                               | DO (+/- 0.         | 3)                  | 18.6                         | 14.1                                |                                 | 10.1                           | 8.9                     | 7.8                         |                                            |                              |                            |                               |
|                               | ORP (+/- 1         | 0)                  | 11.3                         | 9.6                                 |                                 | 4.0                            | 0.1                     | -3.2                        |                                            |                              |                            |                               |
|                               | Col                | or                  | Clear                        | Clear                               |                                 | Clear                          | Clear                   | Clear                       |                                            |                              |                            |                               |
|                               | Odor/Shee          | en                  | None                         | None                                |                                 | None                           | None                    | None                        |                                            |                              |                            |                               |
| Comments:                     |                    |                     |                              |                                     |                                 |                                |                         |                             |                                            |                              |                            |                               |
| Percent Reco                  | very:              |                     | Depth to                     | Water at                            | San                             | npling (ft):                   | No                      | ote(s):                     |                                            |                              |                            |                               |
| Sampling / Fig                | eld Equipm         | nent (N             | lanufactu                    | re / Mode                           | el / L                          | ast Calibratio                 | on):                    | /                           |                                            | /                            |                            |                               |
| Sampling / Fig                | eld Equipm         | nent (N             | lanufactu                    | re / Mode                           | el / L                          | ast Calibratio                 | on):                    | /                           |                                            | /                            |                            |                               |
| Sampling / Fig                | eld Equipm         | nent (N             | lanufactu                    | re / Mode                           | el / L                          | ast Calibratio                 | on):                    | /                           |                                            | /                            |                            |                               |
| Sample Sample No.             | Sample<br>Quantity | 40 mL               | Cor<br>VOA/500 m             | ntainer Ty<br>L Amber / 1<br>Poly   | /pe<br>L Am                     | 1ber / 250 mL                  | Preservativ<br>Filtered | ve / Field<br>d (FF)        | Analys<br>Reque                            | sis<br>st                    | Visual Ob<br>(Clear, Cloud | servation<br>ly, Silty, Etc.) |
| MW5                           | 1                  | (2) 1L A<br>(1) 250 | Ambers, (1) 5<br>mL Unpreser | 500mL Ambe<br>rved Poly, (1<br>Poly | er, (3)<br>L) 250               | ) 40 mL VOAs,<br>DmL Preserved | NHC                     | )3                          | DRO, OF<br>GRO, BT<br>PAHs, PC<br>MTCA 5 N | RO,<br>EX,<br>CBs,<br>letals | Cle                        | ear                           |
| WELL HEA                      | D COND             |                     | S CHECK                      | KLIST (C                            | ircle                           | YES or NC                      | ) if NO, ac             | ld comme                    | ents)                                      |                              |                            |                               |
| Well Securi                   | ty Device          | s OK (              | Bollards,                    | Christy                             | Lid,                            | Casing Lid                     | and Lock):              | YES / N                     | O W                                        | ell Casir                    | ng: <mark>YES</mark> /     | NO                            |

Inside of Well Head and Outer Casing Dry: YES / NO

Comments:

|                |                 |               |               |                              | Project: 0611-01-03    |              |                          |                                                                                        | ori                       | ng ID:                                | B9/MW-1               |                               |              |
|----------------|-----------------|---------------|---------------|------------------------------|------------------------|--------------|--------------------------|----------------------------------------------------------------------------------------|---------------------------|---------------------------------------|-----------------------|-------------------------------|--------------|
| E              |                 | Practical Env | rironmental C | ompliance Solutions          | Location:              | 800 South    | n 259th St Kent, WA      | Broid                                                                                  |                           | lumbori                               |                       | 0611-01-03                    |              |
|                | Services        |               | Onicesin      | Anchorage   locoma   Poniana | Client:                | В            | LT Trucking              |                                                                                        | 5011                      |                                       |                       | 00                            | 11-01-03     |
| Date           | Start/Finish:   |               | 3/16          | 5/2021                       | Drilling               | Method:      | DPT                      | υ                                                                                      | GW                        | WELL-GRADED GR                        | AVEL, FI              | Cation<br>NE TO C             | OARSE GRAVEL |
| L              | ogged By:       |               | C. Mo         | Fadden                       | Auger                  | ID/OD:       |                          | /E SOIL                                                                                | GP POORLY-GRAD            |                                       |                       |                               |              |
| Cł             | necked By:      |               | C. Mo         | Fadden                       | Borehol                | e ID/OD:     | 3 inches                 | S GC CLAYEY GRAVEL<br>SW WELL-GRADED SAND, FINE TO COARSE SAND<br>S POPOLY COARSE SAND |                           |                                       |                       | RSE SAND                      |              |
| C              | ontractor:      | Star          | ndard Envi    | ronmental Probe              | Sam                    | pler:        | Macrocore                | NON-CC                                                                                 | SM<br>SC                  | SILTY SAND                            | JAND                  |                               |              |
|                | Operator:       |               | Ru            | ssell                        | Hammer                 | Wt./Fall:    |                          | ML SILT<br>O CL CLAY                                                                   |                           |                                       |                       |                               |              |
| Bori           | ng Location:    |               | 566           | мар                          | Water                  | Depth:       | <br>8 foot               | E SOIL                                                                                 | OL<br>MH                  | ORGANIC SILT, OR<br>SILT OF HIGH PLAS | GANIC C<br>STICITY, I | LAY<br>ELASTIC                | SILT         |
|                | Neather         | Cle           | ear - 35 de   | <br>prees Farenheit          | Boring                 | Depth:       | 15 feet                  | DHESIV                                                                                 | СН<br>ОН                  | CLAY OF HIGH PLA<br>ORGANIC CLAY, OF  | STICITY,              | FAT CL/<br>SILT               | λY           |
|                | veatiler.       |               |               | <u> </u>                     | Doning                 | Deptil       | 10 1001                  | 8                                                                                      | PT                        | PEAT                                  |                       |                               | _            |
| Depth (ft bgs) | Sample No.      | Time          | PID Reading   | Remarks: Odo<br>Sheen, Etc   |                        | Soil and     |                          |                                                                                        | Unified<br>Classificatior |                                       |                       | ven<br>Construction<br>Detail |              |
| 0              |                 |               |               |                              |                        | Asp          | halt Surface             |                                                                                        |                           |                                       |                       |                               | Monument     |
| 1              |                 |               | 0.0           |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               | Bentonite    |
| 2              |                 |               |               |                              |                        |              |                          |                                                                                        |                           | SM                                    |                       |                               |              |
| 3              | B-9:3           | 9:36          |               |                              | Silty Sa               | nd with aray | rel: brown: damp_mos     | stlv fin                                                                               | e                         |                                       |                       |                               | Sand         |
| 4              |                 |               |               |                              | sand w                 | ith some sil | t and minor gravel; no   | o odor                                                                                 | -                         |                                       |                       |                               |              |
| 5              |                 |               |               |                              | -                      |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 6              |                 |               |               |                              | _                      |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 7              | B-9·8           | 9.46          |               |                              |                        |              |                          |                                                                                        |                           | ML                                    |                       |                               |              |
| ,<br>8         | 0.0             | 0.40          |               |                              |                        | creased Sa   | ad content: wet: no odo  |                                                                                        |                           |                                       |                       |                               |              |
| 0              |                 |               |               |                              | - "                    |              | iu content, wet, no ouoi |                                                                                        |                           |                                       |                       |                               |              |
| 9              |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 10             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 11             |                 |               |               |                              | Poorly-gra             | aded Sand;   | brown; wet; fine sand    | ; no o                                                                                 |                           |                                       |                       |                               |              |
| 12             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 13             |                 |               |               |                              | _                      |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 14             |                 |               |               |                              | Silt; gray;            | medium pla   | asticitiy; low dilatancy | ; no o                                                                                 | dor                       | MC                                    |                       |                               |              |
| 15             | B-9:15          | 9:55          | •             |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 16             |                 |               |               |                              |                        | Termina      | ation of borehole        |                                                                                        |                           |                                       |                       |                               |              |
| 17             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 18             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 19             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 20             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 21             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 22             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 23             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 24             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 25             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 26             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 27             |                 |               |               |                              | _                      |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 28             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 20             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 29             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| 30             |                 |               |               |                              |                        |              |                          |                                                                                        |                           |                                       |                       |                               |              |
| Notes          | : vveil Tag ID: | BNN691 - I    | ww-1; Scr     | een 5-15'; 0.010" Slo        | t; Sand 3-15' <u>,</u> | Bentonite 1  | I-J <sup>-</sup>         |                                                                                        |                           |                                       |                       |                               |              |

| 6              |                          | Dreation       |             | Same line og Coludia og        | Project:    | C            | 611-01-03               | В      | or       | ing ID:                         | B10                             |
|----------------|--------------------------|----------------|-------------|--------------------------------|-------------|--------------|-------------------------|--------|----------|---------------------------------|---------------------------------|
| Er             | nvironmental<br>Services | Practical Envi | Offices In  | :Anchorage   Tacoma   Portland | Location:   | 800 South    | 259th St Kent, WA       | Pro    | oject    | Number:                         | 0611-01-03                      |
| Data           | Start/Finish:            |                | 2/16        | 2001                           | Client:     | B<br>Mathadi |                         |        |          | Jnified Soil Class              | ification System                |
| Date           |                          |                |             | 5/2021                         | Drining     |              | DPT                     | SILS   | GW<br>GP | WELL-GRADED GR<br>POORLY-GRADED | AVEL, FINE TO COARSE<br>GRAVEL  |
|                | byged By:                |                | C. Mc       | Fadden                         | Borehol     |              | 3 inches                | SIVE S | GM<br>GC | SILTY GRAVEL<br>CLAYEY GRAVEL   |                                 |
| C              | ontractor:               | Star           | dard Envi   | ronmental Probe                | Sam         | pler:        | Macrocore               | COHE   | SW<br>SP | WELL-GRADED SA<br>POORLY-GRADED | ND, FINE TO COARSE SAND<br>SAND |
|                | Operator:                |                | Ru          | Issell                         | Hammer      | Wt./Fall:    |                         | NON    | SM<br>SC | SILTY SAND<br>CLAYEY SAND       |                                 |
| Bori           | ng Location:             |                | See         | e Map                          | Ground I    | Elevation:   |                         | ILS    | CL       |                                 |                                 |
| Co             | ordinates:               |                |             |                                | Water       | Depth:       | 8 feet                  | IVE SC | MH<br>CH | SILT OF HIGH PLAS               | STICITY, ELASTIC SILT           |
| ١              | Weather:                 | Cle            | ar - 35 de  | grees Farenheit                | Boring      | Depth:       | 15 feet                 | COHES  | OH<br>PT | ORGANIC CLAY, OI<br>PEAT        | RGANIC SILT                     |
| Depth (ft bgs) | Sample No.               | Time           | PID Reading | Remarks: Odor,<br>Sheen, Etc   |             | Soil and     | Rock Description        |        |          |                                 | Unified<br>Classification       |
| 0              |                          |                |             |                                |             | Asp          | halt Surface            |        |          |                                 |                                 |
| 1              |                          |                |             |                                |             |              |                         |        |          |                                 |                                 |
| 2              |                          |                |             |                                | Silty Sand: | brown: dan   | np: mostly fine to med  | dium   | ı sar    | d                               |                                 |
| 3              |                          |                |             |                                | with        | some silt a  | nd minor gravel; no o   | dor    |          |                                 | SM                              |
| 4              | B-10:4                   | 10:40          |             |                                |             |              |                         |        |          |                                 |                                 |
| 5              |                          |                |             |                                |             |              |                         |        |          |                                 |                                 |
| 6              |                          |                |             |                                | Poorly-grad | ed Sand with | silt; brown; damp; no o | dor;   | most     | ly                              | SP-SM                           |
| 7              |                          |                |             |                                | -           | line s       |                         |        |          |                                 |                                 |
| 8              | B-10:8                   | 10:45          |             |                                |             |              |                         |        |          |                                 |                                 |
| 9              |                          |                |             |                                | -           |              |                         |        |          |                                 |                                 |
| 10             |                          |                |             |                                | Wet;        | poorly-grade | d sand; brown; wet; no  | odor   | Г        |                                 | SP                              |
| 11             |                          |                |             |                                | -           |              |                         |        |          |                                 |                                 |
| 12             |                          |                |             |                                |             |              |                         |        |          |                                 |                                 |
| 13             |                          |                |             |                                | -           |              |                         |        |          |                                 |                                 |
| 14             |                          |                |             |                                | -           | Sandy Silt   | ; gray; wet; no odor    |        |          |                                 | ML                              |
| 15             | B-10:15                  | 10:46          |             |                                | -           |              |                         |        |          |                                 |                                 |
| 16             |                          |                |             |                                |             | Termina      | ation of borehole       |        |          |                                 |                                 |
| 17             |                          |                |             |                                |             |              |                         |        |          | -                               |                                 |
| 18             |                          |                |             |                                |             |              |                         |        |          | -                               |                                 |
| 19             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 20             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 21             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 22             |                          |                |             |                                | 1           |              |                         |        |          | 1                               |                                 |
| 23             | <u> </u>                 |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 24             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 25             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 26             |                          |                |             |                                | 1           |              |                         |        |          | 1                               |                                 |
| 27             |                          |                |             |                                | 1           |              |                         |        |          | 1                               |                                 |
| 28             | <u> </u>                 |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 29             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| 30             |                          |                |             |                                | 1           |              |                         |        |          | -                               |                                 |
| <u>Not</u> es  | : Well Tag ID:           |                |             | I                              | 1           |              |                         |        |          | 1                               |                                 |
|                | -                        |                |             |                                |             |              |                         |        |          |                                 |                                 |

|                |                       |               |              |                            | Project:      | C             | 0611-01-03             | B      | oriı     | ng ID:                                |                       | B1′             | 1/MW2                  |
|----------------|-----------------------|---------------|--------------|----------------------------|---------------|---------------|------------------------|--------|----------|---------------------------------------|-----------------------|-----------------|------------------------|
| E              |                       | Practical Env | ironmental C | Compliance Solutions       | Location:     | 800 South     | n 259th St Kent, WA    | Pro    | iect N   | lumber:                               |                       | 061             | 11-01-03               |
|                | 00111003              | 1             |              |                            | Client:       | В             | LT Trucking            |        |          | Unified Soil (                        | laccifi               | cation          | Sustam                 |
| Date           | Start/Finish:         |               | 3/16         | 5/2021                     | Drilling      | Method:       | DPT                    | - P    | GW<br>GP | WELL-GRADED GR                        | AVEL, FI              | NE TO C         | OARSE GRAVEL           |
|                | ogged By:             |               | C. Mo        | Fadden                     | Auger         | ID/OD:        |                        | VE SO  | GM<br>GC | SILTY GRAVEL                          | 0101122               |                 |                        |
| Cł             | necked By:            |               | C. Mc        | Fadden                     | Borehol       | e ID/OD:      | 3 inches               | OHESI  | SW<br>SP | WELL-GRADED SA                        | ND, FINE<br>SAND      | то соа          | RSE SAND               |
| C              | ontractor:            | Star          | ndard Envi   | ronmental Probe            | Sam           | pler:         | Macrocore              | NON-C  | SM<br>SC | SILTY SAND<br>CLAYEY SAND             |                       |                 |                        |
| Bari           | Operator:             |               | Ru           | ISSEI                      | Hammer        | Wt./Fall:     |                        | S.     | ML<br>CL | SILT<br>CLAY                          |                       |                 |                        |
| Воп            | ordinates:            |               | 366          | емар                       | Water         | Depth:        | <br>P foot             | E SOIL | OL<br>MH | ORGANIC SILT, OR<br>SILT OF HIGH PLAS | GANIC C<br>STICITY, I | LAY<br>ELASTIC  | SILT                   |
|                | Neather:              | Cle           | ar - 35 de   | <br>arees Farenheit        | Boring        | Depth:        | 15 feet                | HESIV  | CH<br>OH | CLAY OF HIGH PLA<br>ORGANIC CLAY, OF  | STICITY,              | FAT CLA<br>SILT | Υ                      |
|                |                       |               |              |                            | Doring        | Deptil        | 10 1001                | 8      | PT       | PEAT                                  |                       |                 | _                      |
| Depth (ft bgs) | Sample No.            | Time          | PID Reading  | Remarks: Odo<br>Sheen, Etc |               | Soil and      | Rock Description       |        |          | Unified<br>Classificatior             |                       | NA/-II          | Construction<br>Detail |
| 0              |                       |               |              |                            |               | Asph          | alt Surface 12"        |        |          |                                       |                       |                 | Monument               |
| 1              |                       |               |              |                            | Sandy         | Silt with gra | avel; brown; damp; no  | o odc  | or       |                                       |                       |                 | Bentonite              |
| 2              |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 3              |                       |               |              |                            |               |               |                        |        |          | ML                                    |                       |                 |                        |
| 4              | B11:4                 | 11:40         | 0.0          |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 5              |                       |               |              |                            | Poo           | rly-graded Sa | and; brown; damp; no o | dor    |          |                                       |                       |                 |                        |
| 6              |                       |               |              |                            |               | , ,           |                        |        |          |                                       |                       |                 |                        |
| 7              |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| ,<br>,         | D 11.0                | 11.20         | 0.0          |                            |               |               | Wet                    |        |          | <u>е</u> р                            |                       | ▋               |                        |
| 0              | D-11.0                | 11.30         | 0.0          |                            |               |               | Wet                    |        |          | 55                                    |                       |                 |                        |
| 9              |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 10             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 11             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 12             |                       |               |              |                            |               | Silt; gra     | y; moist; no odor      |        |          |                                       |                       |                 |                        |
| 13             |                       |               |              |                            |               |               |                        |        |          | ML                                    |                       |                 |                        |
| 14             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 15             | B-11:15               | 11:35         | 0.0          |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 16             |                       |               |              |                            |               | Termina       | ation of borehole      |        |          |                                       |                       |                 |                        |
| 17             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 18             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 19             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 20             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 21             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 22             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 23             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 24             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 25             |                       |               |              |                            |               |               |                        |        |          |                                       | <u> </u>              |                 |                        |
| 26             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 27             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 20             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 20             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 29             |                       |               |              |                            |               |               |                        |        |          |                                       |                       |                 |                        |
| 30             |                       |               |              |                            |               |               | • • • • •              |        |          |                                       |                       |                 |                        |
| Notes          | <u>:</u> 0-5' minimun | n recovery    | 1st attemp   | t. Silty Sand observe      | a, 85% recove | ery (0-5') on | 2nd attempt. Screen    | 5-15   | o'; 0.0  | 10" Slot; San                         | d 3-1                 | o', Ber         | ntonite 1-3'           |

|                |                          |                |                            |                              | Project:           | 0           | 611-01-03            | Bo      | orii           | ng ID:                        | B12                                       |
|----------------|--------------------------|----------------|----------------------------|------------------------------|--------------------|-------------|----------------------|---------|----------------|-------------------------------|-------------------------------------------|
| E              | nvironmental<br>Services | Practical Envi | ironmental C<br>Offices In | Compliance Solutions         | Location:          | 800 South   | 1 259th St Kent, WA  | Proj    | ect N          | lumber:                       | 0611-01-03                                |
| Data           |                          | 1              | 2/40                       | 2/2024                       | Client:            | B           |                      |         | Uni            | fied Soil Classi              | fication System                           |
| Date           |                          |                | 3/10                       | 5/2021                       | Drilling           | Method:     | DPT                  | OILS    | GW<br>GP       | WELL-GRADED GR                | AVEL, FINE TO COARSE<br>GRAVEL            |
| Ct             | bygeu by.                |                | C. Mc                      | Fadden                       | Borehol            |             | <br>3 inches         | SIVE SO | GM<br>GC       | SILTY GRAVEL<br>CLAYEY GRAVEL |                                           |
| C C            | ontractor:               | Star           | dard Envi                  | ronmental Probe              | Sam                | pler:       | Macrocore            | COHE    | SW<br>SP       | WELL-GRADED SAM               | ND, FINE TO COARSE SAND<br>SAND           |
| (              | Operator:                |                | Ru                         | issell                       | Hammer             | Wt./Fall:   |                      | NON     | SM<br>SC<br>MI | CLAYEY SAND                   |                                           |
| Bori           | ng Location:             |                | See                        | e Map                        | Ground I           | Elevation:  |                      | OILS    | CL             | CLAY<br>ORGANIC SILT. OR      | GANIC CLAY                                |
| Co             | ordinates:               |                |                            |                              | Water              | Depth:      | 8 feet               | SIVE SO | МН<br>СН       | SILT OF HIGH PLAS             | TICITY, ELASTIC SILT<br>STICITY, FAT CLAY |
| 1              | Weather:                 | Cle            | ar - 48 de                 | grees Farenheit              | Boring             | Depth:      | 15 feet              | COHES   | OH<br>PT       | ORGANIC CLAY, OF<br>PEAT      | RGANIC SILT                               |
| Depth (ft bgs) | Sample No.               | Time           | PID Reading                | Remarks: Odor,<br>Sheen, Etc |                    | Soil and    | Rock Description     |         |                | Unified<br>Classification     |                                           |
| 0              |                          |                |                            |                              |                    | Asp         | halt Surface         |         |                |                               |                                           |
| 1              |                          |                |                            |                              |                    | P           | ea Gravel            |         |                |                               |                                           |
| 2              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 3              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 4              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 5              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 6              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 7              |                          |                |                            |                              |                    |             |                      |         |                |                               | GW                                        |
| 8              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 9              |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 10             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 11             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 12             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 13             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 14             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 15             | B-12:15                  |                | 0.0                        |                              |                    | Sandy Silt  | ; gray; wet; no odor |         |                |                               | ML                                        |
| 16             |                          |                |                            |                              |                    | Termina     | ation of borehole    |         |                |                               |                                           |
| 17             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 18             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 19             |                          |                |                            |                              |                    |             |                      |         |                | 1                             |                                           |
| 20             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 21             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 22             |                          |                |                            |                              |                    |             |                      |         |                | 1                             |                                           |
| 23             |                          |                |                            |                              |                    |             |                      |         |                | 1                             |                                           |
| 24             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 25             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 26             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 27             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 28             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 29             |                          |                |                            |                              |                    |             |                      |         |                |                               |                                           |
| 30             |                          |                |                            |                              |                    |             |                      |         |                | 1                             |                                           |
| Notes          | : Well Tag ID:           | No recover     | ry 0-5' 1st                | I<br>attempt. 10% recover    | <br>y 0-5' 2nd att | empt, minin | num recovery.        |         |                | 1                             |                                           |
|                | _ 5                      |                |                            |                              | -                  |             | ,                    |         |                |                               |                                           |

|                |                 |                |              |                                 | Project:  | C            | 611-01-03               | в          | ori      | na ID:                                | B13                                     |
|----------------|-----------------|----------------|--------------|---------------------------------|-----------|--------------|-------------------------|------------|----------|---------------------------------------|-----------------------------------------|
|                |                 | Practical Envi | ironmental C | Compliance Solutions            | Location: | 800 South    | n 259th St Kent, WA     | _          |          |                                       |                                         |
| E              | Services        |                | Offices In   | : Anchorage   Tacoma   Portland | Client:   | В            | LT Trucking             | <u>Pro</u> | ject l   | Number:                               | 0611-01-03                              |
| Date           | Start/Finish:   |                | 3/16         | 6/2021                          | Drilling  | Method:      | DPT                     |            | Un<br>GW | ified Soil Classi<br>WELL-GRADED GR   | fication System<br>AVEL, FINE TO COARSE |
| L              | ogged By:       |                | C. Mo        | Fadden                          | Auger     | ID/OD:       |                         | SOILS      | GP<br>GM | POORLY-GRADED                         | GRAVEL                                  |
| Cł             | necked By:      |                | C. Mo        | Fadden                          | Boreho    | e ID/OD:     | 3 inches                | HESIVE     | GC<br>SW | CLAYEY GRAVEL<br>WELL-GRADED SA       | ND, FINE TO COARSE SAND                 |
| С              | ontractor:      | Star           | ndard Envi   | ronmental Probe                 | Sam       | pler:        | Macrocore               | ON-CO      | SP<br>SM | POORLY-GRADED                         | SAND                                    |
| (              | Operator:       |                | Ru           | Issell                          | Hammer    | Wt./Fall:    |                         | 2<br>0     | ML<br>CL | SILT<br>CLAY                          |                                         |
| Bori           | ng Location:    |                | See          | е Мар                           | Ground    | Elevation:   |                         | E SOIL     | OL<br>MH | ORGANIC SILT, OR<br>SILT OF HIGH PLAS | GANIC CLAY<br>TICITY, ELASTIC SILT      |
|                | Weather:        |                | ar - 50 de   | <br>grees Farenheit             | Boring    | Depth:       | 15 feet                 | HESIV      | СН<br>ОН | CLAY OF HIGH PLA<br>ORGANIC CLAY, OF  | STICITY, FAT CLAY<br>RGANIC SILT        |
|                | weather.        |                | ai - 50 ue   |                                 | Bornig    | Deptil.      | 10 1661                 | 8          | PT       | PEAT                                  | -                                       |
| Depth (ft bgs) | Sample No.      | Time           | PID Reading  | Remarks: Odo<br>Sheen, Etc      |           | Soil and     | Rock Description        |            |          |                                       | Unified<br>Classificatior               |
| 0              |                 |                |              |                                 |           | Asp          | halt Surface            |            |          |                                       |                                         |
| 1              |                 |                | 0.0          |                                 |           | No           | recovery 0-5'           |            |          | ]                                     |                                         |
| 2              |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 3              |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 4              |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 5              |                 |                |              |                                 | Silty     | Sand with gr | avel; brown; damp; no o | odor       |          |                                       |                                         |
| 6              |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 7              |                 |                |              |                                 |           |              |                         |            |          | 1                                     | SM                                      |
| 8              | B-13:8          | 13:12          |              |                                 |           |              | Wet                     |            |          | -                                     |                                         |
| 9              |                 |                |              |                                 |           | Peag         | ıravel; grey; wet       |            |          |                                       |                                         |
| 10             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 11             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 12             |                 |                |              |                                 |           |              |                         |            |          | 1                                     | GW                                      |
| 13             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 14             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 15             | B-13:15         | 13:18          |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 16             |                 |                | ,            |                                 |           | Termina      | ation of borehole       |            |          |                                       |                                         |
| 17             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 18             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 19             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 20             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 21             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 22             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 23             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 24             |                 |                |              |                                 |           |              |                         |            |          | -                                     |                                         |
| 25             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 26             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 27             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 28             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 29             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| 30             |                 |                |              |                                 |           |              |                         |            |          | 1                                     |                                         |
| Notes          | :: Well Tag ID: | 50% recove     | ery 5-10'    | l                               |           |              |                         |            |          | I                                     |                                         |

|                |                |               |                    |                               | Project:      | C             | 0611-01-03            | В       | ori      | ng ID:                                | E                      | 314          | 4/MW3                  |
|----------------|----------------|---------------|--------------------|-------------------------------|---------------|---------------|-----------------------|---------|----------|---------------------------------------|------------------------|--------------|------------------------|
| E              |                | Practical Env | rironmental C      | Compliance Solutions          | Location:     | 800 South     | n 259th St Kent, WA   | Dre     |          | Jumbor:                               |                        | 064          | 11 01 03               |
|                | Services       |               | Unices in          | Anctorage   raconia   Poniana | Client:       | В             | LT Trucking           |         | Лест     |                                       |                        | 00           | 11-01-03               |
| Date           | Start/Finish:  |               | 3/16               | 6/2021                        | Drilling      | Method:       | DPT                   | . v,    | GW       | WELL-GRADED GR                        | RAVEL, FI              | NE TO C      | System<br>DARSE GRAVEL |
| L(             | ogged By:      |               | C. Mo              | Fadden                        | Auger         | ID/OD:        |                       | /E SOII | GM       | SILTY GRAVEL                          | GRAVEL                 |              |                        |
| Cł             | necked By:     |               | C. Mo              | Fadden                        | Borehol       | e ID/OD:      | 3 inches              | OHESIV  | SW       | WELL-GRADED SA                        | ND, FINE               | ТО СОА       | RSE SAND               |
| С              | ontractor:     | Star          | ndard Envi         | ronmental Probe               | Sam           | pler:         | Macrocore             | NON-CI  | SM<br>SC | SILTY SAND                            | OAND                   |              |                        |
| (<br>Bori      | Operator:      |               | Ru                 | ISSEI                         | Hammer        | Wt./Fall:     |                       | -<br>   | ML<br>CL | SILT<br>CLAY                          |                        |              |                        |
| Боп            | ordinatos:     |               | 366                | амар                          | Wator         | Dopth:        | <br>8 feet            | E SOIL  | OL<br>MH | ORGANIC SILT, OR<br>SILT OF HIGH PLAS | GANIC CI<br>STICITY, E | AY<br>LASTIC | SILT                   |
|                | Weather:       | Cle           | ear - 50 de        | <br>prees Farenheit           | Boring        | Depth:        | 20 feet               | OHESIV  | CH<br>OH | CLAY OF HIGH PLA<br>ORGANIC CLAY, OI  | STICITY,<br>RGANIC S   | FAT CLA      | Y                      |
|                |                |               |                    | <u> </u>                      | Doning        | Dopan         | 201000                | 8       | PT       | PEAT                                  |                        |              | _                      |
| Depth (ft bgs) | Sample No.     | Time          | PID Reading        | Remarks: Odo<br>Sheen, Etc    |               | Soil and      | Rock Description      |         |          | Unified<br>Classificatior             |                        | INAC         | Construction<br>Detail |
| 0              |                |               |                    |                               |               | Asp           | ohalt Surface         |         |          |                                       |                        |              | Monument               |
| 1              |                |               | 0.0                |                               |               |               |                       |         |          |                                       |                        |              | Bentonite              |
| 2              |                |               |                    |                               | fill; Silty s | and with gr   | avel; dark brown; dar | np; {   | 50%      |                                       |                        |              |                        |
| 3              |                |               |                    |                               | <b> </b>      | 3.            | recovery              | • • •   |          |                                       |                        |              |                        |
| 4              |                |               |                    |                               | 1             |               |                       |         |          |                                       |                        |              | Sand                   |
| 5              | B-14:5         | 13:53         |                    |                               |               |               |                       |         |          | 1                                     |                        |              |                        |
| 6              |                |               |                    |                               | -             |               |                       |         |          |                                       |                        |              |                        |
| 7              |                |               |                    |                               | -             |               |                       |         |          |                                       |                        |              |                        |
| 8              |                |               |                    |                               | -             | 5-10          | )'; no recovery       |         |          | SM                                    |                        |              |                        |
| 0              |                |               |                    |                               | -             |               |                       |         |          |                                       |                        |              |                        |
| 9              |                |               |                    |                               | -             |               |                       |         |          |                                       |                        |              |                        |
| 10             |                |               |                    |                               |               |               |                       |         |          | -                                     |                        |              |                        |
| 11             |                |               |                    |                               | -             |               |                       |         |          |                                       |                        |              |                        |
| 12             |                |               |                    |                               | 10-1          | 5', minimun   | n recovery; no native | soil    |          |                                       |                        |              |                        |
| 13             |                |               |                    |                               | -             | er            | ncountered            |         |          |                                       |                        |              |                        |
| 14             |                |               |                    |                               | 4             |               |                       |         |          |                                       |                        |              |                        |
| 15             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 16             | B-14:16        | 14:02         |                    |                               | 4             |               |                       |         |          |                                       |                        |              |                        |
| 17             |                |               |                    |                               |               | onucl in 15   | 20' aoro. Nativo at 1 | בי כ    | Sandy    |                                       |                        |              |                        |
| 18             |                |               |                    |                               |               | Si            | It; grey; wet         | J. 3    | anuy     | ML                                    |                        |              |                        |
| 19             |                |               |                    |                               | 4             |               |                       |         |          |                                       |                        |              |                        |
| 20             |                |               | <b>↓</b>           |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 21             |                |               |                    |                               |               | Termina       | ation of borehole     |         |          |                                       |                        |              |                        |
| 22             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 23             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 24             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 25             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 26             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 27             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 28             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 29             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| 30             |                |               |                    |                               |               |               |                       |         |          |                                       |                        |              |                        |
| Notes          | : Well Tag ID: | B-14:16 co    | l<br>llected 1' in | I<br>nto native soil Screen   | <u> </u>      | .010" slot si | creen, bentonite 1-4' | bori    | na col   | l<br>lapsed 15-20                     | ļ                      |              |                        |
|                |                |               |                    |                               | , . 0.        |               |                       |         |          |                                       |                        |              |                        |

|               |                  |               |               |                               | Project:      | C                        | 0611-01-03                                   | Bor                                                                       | ina ID:                               | B           | 15           | 5/MW4                  |
|---------------|------------------|---------------|---------------|-------------------------------|---------------|--------------------------|----------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|-------------|--------------|------------------------|
| E             |                  | Practical Env | vironmental C | Anchorage   Tacoma   Portland | Location:     | 800 South                | n 259th St Kent, WA                          | Proiec                                                                    | t Number:                             |             | 061          | 1-01-03                |
|               | 361 VICE3        |               |               |                               | Client:       | В                        | LT Trucking                                  | ,                                                                         | Unified Soil (                        |             | tion         | Ruotom                 |
| Date          | Start/Finish:    |               | 3/16          | 6/2021                        | Drilling      | Method:                  | DPT                                          | S GW                                                                      | WELL-GRADED GF                        | RAVEL, FINE | TO CO        | DARSE GRAVEL           |
| L             | ogged By:        |               | C. Mo         | Fadden                        | Auger         | ID/OD:                   |                                              | S GN                                                                      | SILTY GRAVEL                          | OIVIVEE     |              |                        |
| Cł            | necked By:       |               | C. Mc         | Fadden                        | Borehol       | e ID/OD:                 | 3 inches                                     | SHO SF                                                                    | WELL-GRADED SA                        | ND, FINE T  | O COAI       | RSE SAND               |
|               | ontractor:       | Sta           | ndard Envi    |                               | Sam           | pier:                    | Macrocore                                    | NON SN                                                                    | SILTY SAND                            |             |              |                        |
| Bori          | ng Location:     |               |               | Man                           | Ground F      | Invation:                |                                              | . თ. CL                                                                   | SILT<br>CLAY                          |             |              |                        |
| Cc            | ordinates:       |               | 000           |                               | Water         | Depth:                   | 8 feet                                       | IO S M⊦                                                                   | ORGANIC SILT, OR<br>SILT OF HIGH PLAS | GANIC CLA   | Y<br>ASTIC : | SILT                   |
| 1             | Weather:         | Cle           | ear - 52 de   | grees Farenheit               | Boring        | Depth:                   | 15 feet                                      | UESHO<br>PHO<br>PHO<br>PHO<br>PHO<br>PHO<br>PHO<br>PHO<br>PHO<br>PHO<br>P | ORGANIC CLAY, O                       | STICITY, FA | AT CLA<br>.T | Ŷ                      |
|               |                  |               | _             | jr,                           |               | •                        |                                              | O PI                                                                      |                                       |             |              | F                      |
| Depth (ft bgs | Sample No.       | Time          | PID Reading   | Remarks: Odd<br>Sheen, Etc    |               | Soil and                 | Rock Description                             |                                                                           | Unified<br>Classificatio              |             | IIOM         | Construction<br>Detail |
| 0             |                  |               |               |                               |               | Asp                      | ohalt Surface                                |                                                                           |                                       |             | 1            | Monument               |
| 1             |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              | Bentonite              |
| 2             |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 3             |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 4             |                  |               |               |                               |               | <u> </u>                 |                                              |                                                                           |                                       |             |              |                        |
| 5             | B15:5            |               | 0.0           |                               |               | fill; Silt               | y Sand; no odor                              |                                                                           |                                       |             |              | Sand                   |
| 6             |                  |               |               |                               | -             |                          |                                              |                                                                           | SM                                    |             |              |                        |
| 7             |                  |               |               |                               | -             |                          |                                              |                                                                           |                                       |             |              |                        |
| 8             |                  |               |               |                               | -             |                          |                                              |                                                                           |                                       |             |              |                        |
| 9             |                  |               |               |                               |               |                          |                                              |                                                                           | -                                     |             |              |                        |
| 10            |                  |               |               |                               | -             | Wet Incre                | ased angular gravel                          |                                                                           |                                       |             |              |                        |
| 11            |                  |               |               |                               | -             | ,                        |                                              |                                                                           |                                       |             |              |                        |
| 12            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 12            |                  |               |               |                               | -             |                          |                                              |                                                                           |                                       |             |              |                        |
| 10            |                  |               |               |                               | Native so     | il observed;<br>odor, 3" | ; wet; Sandy Silt; grey<br>wood chunk at 13' | ; wet; no                                                                 | ML                                    |             | -            |                        |
| 14            | D15-15           |               | *             |                               | -             |                          |                                              |                                                                           |                                       |             | -            |                        |
| 10            | B15.15           |               | 0.0           |                               |               | Termin                   | ation of borehole                            |                                                                           |                                       |             |              |                        |
| 17            |                  |               |               |                               |               | T CITIMA                 |                                              |                                                                           |                                       |             |              |                        |
| 1/            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 10            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 19            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 20            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 21            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 22            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 20            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 24            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 20            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 20            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 2/            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 28            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| 29            |                  |               |               |                               |               |                          |                                              |                                                                           | _                                     |             |              |                        |
| 30            |                  |               |               |                               |               |                          |                                              |                                                                           |                                       |             |              |                        |
| Notes         | : Well Tag ID: 3 | Screen 5-1    | 5' 1" 0.010   | " Slot, Sand 4-15', Be        | entonite 1-4' |                          |                                              |                                                                           |                                       |             |              |                        |

|                |                |               |              |                              | Project:  | C          | 611-01-03           | в      | ori      | ng ID:                        | B16                       |
|----------------|----------------|---------------|--------------|------------------------------|-----------|------------|---------------------|--------|----------|-------------------------------|---------------------------|
| Er             |                | Practical Env | ironmental ( | Compliance Solutions         | Location: | 800 South  | n 259th St Kent, WA | Pro    | viect    | Number:                       | 0611-01-03                |
|                | Services       |               | Onican       |                              | Client:   | В          | LT Trucking         |        |          | nified Sell Cless             | fination System           |
| Date           | Start/Finish:  |               | 3/1          | 6/2021                       | Drilling  | Method:    | DPT                 | LS.    | GW       | WELL-GRADED GR                | AVEL, FINE TO COARSE      |
| Lo             | ogged By:      |               | C. M         | cFadden                      | Auger     | ID/OD:     |                     | VE SOI | GM<br>GC | SILTY GRAVEL<br>CLAYEY GRAVEL |                           |
| Cr             | necked By:     | Stor          | C. M         | cFadden                      | Borehol   | e ID/OD:   | 3 inches            | COHESI | SW<br>SP | WELL-GRADED SA                | ND, FINE TO COARSE SAND   |
|                | Operator:      | Stal          |              | ussell                       | Hammer    | Wt./Fall:  |                     | -NON   | SM<br>SC | SILTY SAND<br>CLAYEY SAND     |                           |
| Bori           | ng Location:   |               | Se           | e Map                        | Ground    | Elevation: |                     | ILS    | CL       | SILT<br>CLAY                  |                           |
| Co             | ordinates:     |               |              |                              | Water     | Depth:     | 8 feet              | IVE SC | MH<br>CH | SILT OF HIGH PLAS             | TICITY, ELASTIC SILT      |
| ١              | Weather:       | Cle           | ear - 52 de  | grees Farenheit              | Boring    | Depth:     | 15 feet             | COHES  | OH<br>PT | ORGANIC CLAY, OF<br>PEAT      | SGANIC SILT               |
| Depth (ft bgs) | Sample No.     | Time          | PID Reading  | Remarks: Odor,<br>Sheen, Etc |           | Soil and   | Rock Description    |        |          |                               | Unified<br>Classification |
| 0              |                |               |              |                              |           |            | Asphalt             |        |          |                               |                           |
| 1              |                |               | 0.0          |                              |           |            |                     |        |          |                               |                           |
| 2              |                |               |              |                              |           |            |                     |        |          |                               |                           |
| 3              |                |               |              |                              |           |            |                     |        |          |                               |                           |
| 4              |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 5              | B16:5          | 16:18         |              |                              |           |            |                     |        |          | 1                             |                           |
| 6              |                |               |              |                              |           |            |                     |        |          | 1                             | SM                        |
| 7              |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 8              | B16:8          | 16:23         |              |                              |           |            | wet                 |        |          | 1                             |                           |
| 9              |                |               |              |                              |           |            |                     |        |          | -                             |                           |
| 10             |                |               |              |                              |           |            |                     |        |          | -                             |                           |
| 11             |                |               |              |                              |           | Sand       | y Silt; wet gray    |        |          |                               |                           |
| 12             |                |               |              |                              |           |            |                     |        |          | -                             |                           |
| 13             |                |               |              |                              |           | w          | ood chucnk          |        |          | -                             | ML                        |
| 14             |                |               |              |                              |           |            |                     |        |          | -                             |                           |
| 15             | B16:15         | 16:30         | 0.0          |                              |           |            |                     |        |          | 1                             |                           |
| 16             |                |               |              |                              |           | Termina    | ation of borehole   |        |          |                               |                           |
| 17             |                |               |              |                              |           |            |                     |        |          | -                             |                           |
| 18             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 19             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 20             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 21             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 22             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 23             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 24             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 25             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 26             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 27             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 28             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 29             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| 30             |                |               |              |                              |           |            |                     |        |          | 1                             |                           |
| Notes          | : Well Tag ID: |               | 1            | 1                            |           |            |                     |        |          | 1                             |                           |

|                |                          |                |              |                                 | Project:  | C          | 0611-01-03           | B            | oring IF      | )·                              | <b>B17</b>                                 |
|----------------|--------------------------|----------------|--------------|---------------------------------|-----------|------------|----------------------|--------------|---------------|---------------------------------|--------------------------------------------|
| 6              | <b>ECI</b>               | Practical Envi | ironmental C | Compliance Solutions            | Location: | 800 South  | n 259th St Kent, WA  |              |               | ·.                              |                                            |
| E              | nvironmental<br>Services |                | Offices In   | : Anchorage   Tacoma   Portland | Client    | В          |                      | - <u>Pro</u> | oject Number: |                                 | 0611-01-03                                 |
| Date           | Start/Finish:            |                | 3/16         | 6/2021                          | Drilling  | Method:    | DPT                  |              | Unified       | Soil Classificati               | on System                                  |
| L              | ogged By:                |                | C. Mo        | Fadden                          | Auger     | ID/OD:     |                      | SOILS        | GP            | WELL-GRADED GR<br>POORLY-GRADED | AVEL, FINE TO COARSE<br>GRAVEL             |
| С              | hecked By:               |                | C. Mo        | Fadden                          | Borehol   | e ID/OD:   | 3 inches             | E SIVE       | GC            | CLAYEY GRAVEL                   | ND FINE TO COARSE SAND                     |
| С              | ontractor:               | Stan           | ndard Envi   | ronmental Probe                 | Sam       | pler:      | Macrocore            | N-COHE       | SP            | POORLY-GRADED<br>SILTY SAND     | SAND                                       |
|                | Operator:                |                | Rı           | issell                          | Hammer    | Wt./Fall:  |                      | Ō            | SC<br>ML      | CLAYEY SAND<br>SILT             |                                            |
| Bori           | ing Location:            |                | See          | е Мар                           | Ground I  | Elevation: |                      | SOILS        | CL<br>OL      | CLAY<br>ORGANIC SILT, OR        | GANIC CLAY                                 |
| Co             | oordinates:              |                |              |                                 | Water     | Depth:     | 8 feet               | ESIVE        | CH<br>CH      | SILT OF HIGH PLAS               | STICITY, ELASTIC SILT<br>STICITY, FAT CLAY |
|                | Weather:                 | Cle            | ar - 55 de   | grees Farenheit                 | Boring    | Depth:     | 15 feet              | COH          | PT            | PEAT                            |                                            |
| Depth (ft bgs) | Sample No.               | Time           | PID Reading  | Remarks: Odor<br>Sheen, Etc     |           | Soil a     | and Rock Descriptio  | on           |               |                                 | Unified<br>Classification                  |
| 0              |                          |                |              |                                 |           |            | Asphalt Surface      |              |               |                                 |                                            |
| 1              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 2              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 3              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 4              | B17:4                    | 16:45          |              |                                 |           |            |                      |              |               |                                 | SM                                         |
| 5              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 6              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 7              | B17:7.5                  | 16:50          |              |                                 |           |            | wet at 7.5'          |              |               |                                 |                                            |
| 8              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 9              |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 10             |                          |                |              |                                 |           |            |                      |              |               |                                 | SP                                         |
| 11             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 12             |                          |                |              |                                 |           |            | Sandy Silt           |              |               |                                 |                                            |
| 13             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 14             |                          |                |              |                                 |           |            |                      |              |               |                                 | ML                                         |
| 15             | B17:15                   | 16:55          |              |                                 |           |            |                      |              |               |                                 |                                            |
| 16             |                          |                |              |                                 |           | Ter        | mination of borehole |              |               |                                 |                                            |
| 17             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 18             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 19             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 20             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 21             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 22             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 23             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 24             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 25             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 26             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 27             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 28             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 29             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| 30             |                          |                |              |                                 |           |            |                      |              |               |                                 |                                            |
| Notes          | <u>.</u><br>Well Taq ID: |                |              | I                               | 1         |            |                      |              |               | 1                               |                                            |
|                | 5                        |                |              |                                 |           |            |                      |              |               |                                 |                                            |

|                |                          |               |              |                                 | Project:    | (            | 0611-01-03             | R       | ori             |                               |                | R               | 19     | R/MW/5                 |
|----------------|--------------------------|---------------|--------------|---------------------------------|-------------|--------------|------------------------|---------|-----------------|-------------------------------|----------------|-----------------|--------|------------------------|
| 6              | ECI                      | Practical Env | ironmental C | Compliance Solutions            | Location:   | 800 Sout     | n 259th St Kent, WA    | Ľ       |                 |                               | L              |                 |        |                        |
| E              | nvironmental<br>Services |               | Offices In   | : Anchorage   Tacoma   Portland | Client:     | В            |                        | Pro     | oject I         | lumber:                       |                | (               | 061    | 1-01-03                |
| Date           | Start/Finish:            |               | 3/16         | 6/2021                          | Drilling    | Method:      | DPT                    |         | 0.11            | Unified Soil C                | lass           | ificat          | ion S  | System                 |
| L              | oaaed Bv:                |               | C. Mo        | Fadden                          | Auger       | ID/OD:       |                        | SOILS   | GW<br>GP        | WELL-GRADED GR                | SAVEL GRAV     | , FINE 1<br>'EL | тосс   | DARSE GRAVEL           |
| Cł             | necked By:               |               | C. Mo        | Fadden                          | Borehol     | e ID/OD:     | 3 inches               | SIVE S  | GC              | SILTY GRAVEL<br>CLAYEY GRAVEL |                |                 |        |                        |
| с              | ontractor:               | Star          | ndard Envi   | ronmental Probe                 | Sam         | pler:        | Macrocore              | -COHE   | SP              | POORLY-GRADED                 | ND, FI<br>SAND | INE TO          | COA    | RSE SAND               |
| (              | Operator:                |               | Ru           | issell                          | Hammer      | · Wt./Fall:  |                        | NON     | SIM<br>SC<br>ML | CLAYEY SAND                   |                |                 |        |                        |
| Bori           | ng Location:             |               | See          | e Map                           | Ground I    | Elevation:   |                        | OILS .  | CL              | CLAY<br>ORGANIC SILT. OR      | GANI           |                 |        |                        |
| Co             | ordinates:               |               |              |                                 | Water       | Depth:       | 8 feet                 | SIVE SO | MH<br>CH        | SILT OF HIGH PLAS             | STICIT         | Y, ELAS         | STIC S | SILT<br>Y              |
| 1              | Weather:                 | Cle           | ear - 35 de  | grees Farenheit                 | Boring      | Depth:       | 15 feet                | COHES   | OH<br>PT        | ORGANIC CLAY, OI<br>PEAT      | RGAN           | IC SILT         |        |                        |
| Depth (ft bgs) | Sample No.               | Time          | PID Reading  | Remarks: Odor,<br>Sheen, Etc    |             | Soil and     | Rock Description       |         |                 | Unified<br>Classification     |                |                 | Mall   | Construction<br>Detail |
| 0              |                          |               |              |                                 |             | Asp          | ohalt Surface          |         |                 |                               |                |                 |        | Monument               |
| 1              |                          |               |              |                                 |             | Sandy Silt;  | grey; damp; no odor    |         |                 | ML                            |                |                 |        | Bentonite              |
| 2              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 3              | B18:3                    | 17:35         | 0.0          |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 4              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 5              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        | Sand                   |
| 6              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 7              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| ,<br>,         | D10.0                    | 17.40         |              |                                 | Wet:        | poorly-grade | d Sand: wet: brown: no | odo     | r               | <u>ep</u>                     |                |                 |        |                        |
| °              | D10.0                    | 17.40         |              |                                 | vvei,       | poony-grade  |                        | ouo     |                 | 5P                            |                |                 |        |                        |
| 9              |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 10             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 11             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 12             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 13             |                          |               |              |                                 |             | Sandy Silt   | ; grey; wet; no odor   |         |                 | ML                            |                |                 |        |                        |
| 14             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 15             | B18:15                   | 17:50         |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 16             |                          |               |              |                                 |             |              |                        |         |                 |                               | L              |                 |        |                        |
| 17             |                          |               |              |                                 |             |              |                        |         |                 |                               | L              |                 |        |                        |
| 18             |                          |               |              |                                 |             |              |                        |         |                 |                               | L              |                 |        |                        |
| 19             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 20             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 21             |                          |               |              |                                 |             |              |                        |         |                 |                               |                |                 |        |                        |
| 22             |                          |               |              |                                 |             |              |                        |         |                 |                               | Γ              |                 |        |                        |
| 23             |                          |               |              |                                 |             |              |                        |         |                 |                               | Γ              |                 |        |                        |
| 24             |                          |               |              |                                 |             |              |                        |         |                 |                               | Γ              |                 |        |                        |
| 25             |                          |               |              |                                 |             |              |                        |         |                 |                               | ſ              |                 |        |                        |
| 26             |                          |               |              |                                 |             |              |                        |         |                 |                               | ┢              |                 |        |                        |
| 27             |                          |               |              |                                 |             |              |                        |         |                 |                               | ┢              |                 |        |                        |
| 28             |                          |               |              |                                 | +           |              |                        |         |                 |                               | ⊢              |                 |        |                        |
| 29             |                          |               |              |                                 |             |              |                        |         |                 |                               | ┢              |                 |        |                        |
| 20             |                          |               |              |                                 |             |              |                        |         |                 |                               | ┢              |                 |        |                        |
| Notes          |                          | Soroca E 1    | 5' 1" 0 04C  | <br>)" Clot Cond 4 45' D        |             |              |                        |         |                 |                               |                |                 |        |                        |
| INDICES        | <u>.</u> wei ragiD:      | SCIEELI D-1   | 5 1 0.010    | 5 SIOL, SATIU 4-15, B6          | smonite 1-4 |              |                        |         |                 |                               |                |                 |        |                        |

| REGIONAL DISPOSAL INTERMODAL             | SITE01 TICKET # 93956  | 7 VCELL                      |
|------------------------------------------|------------------------|------------------------------|
| 3rd and lander -Seattle, WA              | WEIGHMASTER IN - D     | rında L. OUT - Kim L.        |
| CUSTOMER 333410                          | DATE/TIME IN7/18/16 8: | 43 am DATE/TWE 89/16 8:55 am |
| BLT Transport LLC<br>11910 SE 277th St.  | VEHICLE COBUN          | CONTAINER                    |
| Kent, WA 98030                           | REFERENCE              |                              |
|                                          | BILL OF LADING         |                              |
| • SCALE IN GROSS WEIGHT 101,640 NET TONS | 32.44                  | INBOUND                      |
| SCALE OUT TARE WEIGHT 36,760 NET WEIGHT  | 64,880                 | INVOICE                      |

| QTY.    | UNIT     | <u><u><u></u></u></u>                | DESCRIPTION                                                | RATE                | EXTENSION            | TAX | TOTAL     |
|---------|----------|--------------------------------------|------------------------------------------------------------|---------------------|----------------------|-----|-----------|
| 0.00    | YD       | Tracking QTY                         |                                                            | •                   |                      |     |           |
| 32.41   | tn       | SW-CONT SOIL W/FUEL                  | Origin:KENT/KING 1008                                      |                     |                      |     |           |
|         |          |                                      | It's die Right Thing!                                      |                     |                      |     | NET AMOUN |
| The     | undersig | gned individual signing this documen | t on behalf of Customer acknowledges that he or she has re | and understands the | terms and conditions | n F | CHANGE    |
| -F042UP | R (07/12 | 2)                                   | SIGNATURE                                                  | mell Sa             | inul                 |     | CHECK#    |

| REGIO     | DNAL D   | ISPOSAL INTERMODAL -                |                                             | SITE <sub>01</sub> TICK | ET# 939              | 580 SELL             |                      |                            |
|-----------|----------|-------------------------------------|---------------------------------------------|-------------------------|----------------------|----------------------|----------------------|----------------------------|
| 3rd a     | ind la   | nder -Seattle, WA                   |                                             | WEIGHMASTE              | R IN -               | Drinda L. O          | UT - Kim L.          |                            |
| ISTOMER 3 | 33410    | A                                   | 4                                           |                         | 7/18/16 1            | 0:32 am DATE/        | <b>1971897</b> 16 10 | ):43 am                    |
| 1         | 1910 s   | SE 277th St.                        |                                             | VEHICLE                 | COBUN                | CONT                 | AINER                |                            |
| K         | ent, N   | WA 98030                            |                                             | REFERENCE               |                      |                      |                      |                            |
| COLLE     | actin    | -1010I                              |                                             | BILL OF LADIN           | IG                   |                      |                      |                            |
|           | SCA      | LE IN GROSS WEIGHT                  | 91,600 NET TONS                             | 27.30                   |                      |                      | INBOUND              | 1.12                       |
|           | SCAL     | E OUT TARE WEIGHT                   | 37,000 NET WEIGHT 5                         | 4,600                   |                      |                      | INVOICE              |                            |
| QTY.      | UNIT     |                                     | DESCRIPTION                                 |                         | RATE                 | EXTENSION            | TAX                  | TOTA                       |
| 27.30     | YD<br>tn | Tracking QTY<br>SW-CONT SOIL W/FUEL | Origin:KENT/KING 1008                       | 20                      |                      |                      |                      |                            |
|           |          |                                     | It's the Right                              | Thing!                  |                      |                      |                      |                            |
| The       | undersig | ned individual signing this docume  | ent on behalf of Customer acknowledges that | he or she has read and  | )<br>understands the | terms and conditions | F                    | NET AMO<br>TENDER<br>CHANC |

| REGIONAL DISPOSAL INTERMODAL<br>3rd and lander -Seattle, WA<br>CUSTOMER<br>333410<br>BLT Transport LLC<br>11910 SE 277th St.<br>Kent, WA 98030<br>Contract:LW-16161 |                                                                            |                                                                                                | SITE 01 TICK<br>WEIGHMASTER<br>DATE/TIME IN<br>VEHICLE<br>REFERENCE<br>BILL OF LADIN | SITE     O1     TCKET #     939595     CELL       WEIGHMASTER     IN - Drinda L. OUT - Ki       DATE/TIME IN     7/18/16     12:56 pm     DATE/TIME OUT       7/18/16     12:56 pm     7/18/10       VEHICLE     COBUN     CONTAINER       REFERENCE     BILL OF LADING |                     |                  |                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--------------------------------------------|
| * SCA                                                                                                                                                               | ALE IN GROSS WEIGHT<br>LE OUT TARE WEIGHT                                  | 92,640 NET TONS<br>36,880 NET WEIGHT                                                           | 27.88                                                                                | Velan - Mil                                                                                                                                                                                                                                                             |                     | INBOUN<br>INVOIC | D<br>E                                     |
| QTY. UNIT                                                                                                                                                           |                                                                            | DESCRIPTION                                                                                    |                                                                                      | RATE                                                                                                                                                                                                                                                                    | EXTENSION           | TAX              | TOTAL                                      |
| 27.83 tn                                                                                                                                                            | SW-CONT SOIL W/FUEL                                                        | Origin:KENT/KING 1008                                                                          | CHOOST<br>The ing!                                                                   |                                                                                                                                                                                                                                                                         |                     |                  |                                            |
| The undersion on the rever                                                                                                                                          | gned individual signing this docum<br>se side and that he or she has the a | ant on behalf of Customer acknowledges that<br>authority to sign this document on behalf of th | he or she use read and<br>e customer                                                 | understands the                                                                                                                                                                                                                                                         | terms and condition | 18               | NET AMOUNT<br>TENDERED<br>CHANGE<br>CHECK# |
| SITE REGIONAL DISPOSAL INTERMODAL - |        |            |       | SITE <sub>01</sub> | TICKET #   | 939471      | CELL                           |
|-------------------------------------|--------|------------|-------|--------------------|------------|-------------|--------------------------------|
| 3rd and lander -Seattle, WA         |        |            | J     | WEIGHM             | ASTER      | IN - Kim L. | OUT - JAMIE B.                 |
| CUSTOMER 333410                     |        |            |       | DATE/TI            | ME IN7/13/ | 16 0:56 am  | DATE/TIME 007<br>13/16 9:12 am |
| 11910 SE 277th St.                  |        |            | 1     | VEHICLE            | 1 CO       | BUN         | CONTAINER                      |
| Kent, WA 98030                      |        |            |       | REFERE             | NCE        |             |                                |
| CONFLACT: FM-10101                  |        |            |       | BILL OF            | LADING     |             |                                |
| SCALE IN GROSS WEIGHT               | 95,560 | NET TONS   | 29.0  | 9                  |            |             | INBOUND                        |
| SCALE OUT TARE WEIGHT               | 37,380 | NET WEIGHT | 58,18 | 0                  |            |             | INVOICE                        |

| QTY. UNIT         |                                         | DESCRIPTION           | RATE | EXTENSION | TAX         | TOTAL     |
|-------------------|-----------------------------------------|-----------------------|------|-----------|-------------|-----------|
| 0.00 Y<br>29.09 t | D Tracking QTY<br>n SW-CONT SOIL W/FUEL | Origin:KENT/KING 100% |      |           | 1<br>1<br>1 |           |
|                   |                                         | SAFETY                | -    |           |             |           |
|                   |                                         | it's the Right Thing! |      |           |             | NET AMOUN |

The undersigned individual signing this document on behalf of Customer acknowledges that he or she has read and understands the terms and conditional on the reverse side and that he or she has the authority to sign this document on behalf of the customer.

**CHECK#** 

CHANGE

| E REGIONAL 1<br>3rd and 1<br>STOMER 333410<br>BLT Tr<br>11910<br>Kent,<br>Contract: | DISPOSAL INTERMODAL -<br>ander -Seattle, WA<br>cansport LLC<br>SE 277th St.<br>WA 98030<br>LW-16161 |                                                                                                     | WEIGHMASTER<br>DATE/TIME IN7/<br>VEHICLE 1<br>REFERENCE<br>BILL OF LADING | 9394<br>IN -<br>13/16 12<br>COBUN | 79 C           | UT - JAMIE B.<br>ATE/THE 13/16 | 12:52 pm  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|----------------|--------------------------------|-----------|
| SCI<br>SCAJ                                                                         | ALE IN GROSS WEIGHT<br>LE OUT TARE WEIGHT                                                           | 97,660 NET TONS 30<br>37,120 NET WEIGHT 60,                                                         | ).27<br>540                                                               |                                   |                | INBOUND<br>INVOICE             |           |
| OTY. UNIT                                                                           | man al la comu                                                                                      | DESCRIPTION                                                                                         |                                                                           | RATE                              | EXTENSIO       | N TAX                          | TOTAL     |
|                                                                                     |                                                                                                     | ts the Right i                                                                                      | Phing!                                                                    |                                   |                |                                |           |
| The undersion the reve                                                              | Igned individual signing this docum                                                                 | ent on behalf of Customer acknowledges that he<br>uthority to sign this document on behalf of the g | or she has read and us                                                    | nderstands the                    | lerms and cond | illops                         | NET AMOUN |

| 333410<br>BLT Transport LLC<br>11910 SE 277th St.<br>Kent, WA 98030<br>Contract:LW-16161 |                                                | DATE/TIME IN<br>7/13/16 1<br>VEHICLE<br>REFERENCE<br>BILL OF LADING |           | ие бот | 1:08 am-  |
|------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|-----------|--------|-----------|
| SCALE IN GROSS WE<br>SCALE OUT TARE WE                                                   | TGHT 93,860 NET TONS<br>IGHT 37,060 NET WEIGHT | 28.40<br>56,800                                                     | II<br>II  | IBOUND |           |
| QTY. UNIT                                                                                | DESCRIPTION                                    | RATE                                                                | EXTENSION | XAT    | TOTAL     |
|                                                                                          | SAFE<br>It's the Right                         | Barbarbarbarbarbarbarbarbarbarbarbarbarba                           |           |        |           |
|                                                                                          |                                                |                                                                     |           | F      | NET AMOUN |

REGIONAL DISPOSAL COMPANY INTERMODA PO BOX 677839 DALLAS, TX 75267-7839 (206) 332-7731

.

ü

TO:

BLT Transport LLC 11910 SE 277th St. Kent, WA 98030



INVOICE NO. PAGE JUI-15-16 DATE 333410 CUSTOMER NO. SITE NO. REFERENCE NO.

| RVICE DATE                                                                                                                             | TCDE                                      | ntal Ave. S., Kent                                                                                                                                                                                                                                                                                             | DESCRIPTION                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                   | REFERENCE                                                   | QTY.                                                            | AMOUNT                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
| 10 101                                                                                                                                 | MI                                        | Vehicle:                                                                                                                                                                                                                                                                                                       | 1 COBUN                                                                                                                                                                                                                                                                                      | ¢45.00                                                                                                                                                                                                            | 01 020471                                                   | 20 00 TN                                                        | ±1 300 0F                                                   |
| 12 - Jui                                                                                                                               | VII                                       | SW-CONT SOIL M                                                                                                                                                                                                                                                                                                 | V/FUEL                                                                                                                                                                                                                                                                                       | \$45.00                                                                                                                                                                                                           | 01-9394/1                                                   | 29.09 114                                                       | \$1,309.05                                                  |
|                                                                                                                                        |                                           | Vehicle:                                                                                                                                                                                                                                                                                                       | 1 COBUN                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
| 13 - Jul                                                                                                                               | VH                                        | SW-CONT SOIL W                                                                                                                                                                                                                                                                                                 | V/FUEL                                                                                                                                                                                                                                                                                       | \$45.00                                                                                                                                                                                                           | 01-939476                                                   | 28.40 TN                                                        | \$1,278.00                                                  |
|                                                                                                                                        |                                           | Vehicle:                                                                                                                                                                                                                                                                                                       | 1 COBUN                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
| 13 - Jul                                                                                                                               | VH                                        | SW-CONT SOIL W                                                                                                                                                                                                                                                                                                 | V/FUEL                                                                                                                                                                                                                                                                                       | \$45.00                                                                                                                                                                                                           | 01-939479                                                   | 30.27 TN                                                        | \$1,362.15                                                  |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | Material Summary                                                                                                                                                                                                  |                                                             |                                                                 |                                                             |
|                                                                                                                                        | VH                                        | SW-CONT SOIL V                                                                                                                                                                                                                                                                                                 | N/FUEL                                                                                                                                                                                                                                                                                       | <u>Platenai Sammary</u>                                                                                                                                                                                           |                                                             | 87.76 TN                                                        |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                   |                                                             |                                                                 |                                                             |
|                                                                                                                                        |                                           | Payment due upon receipt over 30 days from date of in                                                                                                                                                                                                                                                          | of his invoice. 1.5% per mo                                                                                                                                                                                                                                                                  | onth (18% per annum) late charge on t                                                                                                                                                                             | balances                                                    |                                                                 |                                                             |
| Account S                                                                                                                              | tatus                                     | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv                                                                                                                                                                                                                      | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not raflected                                                                                                                                                                                                                       | onth (18% per annum) late charge on t                                                                                                                                                                             | balances                                                    | AL                                                              | \$3 040 20                                                  |
| Account S                                                                                                                              | tatus                                     | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple                                                                                                                                                                                      | of his invoice. 1.5% per monoce.<br>voice date are not reflected<br>asse include your account me                                                                                                                                                                                             | onth (18% per annum) late charge on t<br>number on your check and include the                                                                                                                                     | balances<br>TOT<br>bottom THIS                              | AL<br>5 INVOICE                                                 | \$3,949.20                                                  |
| Account S                                                                                                                              | tatus                                     | Payment due upon receipt of<br>over 30 days from date of in<br>Payments received after Inw<br>To ensure proper credit, ple<br>portion of this involce. Whe<br>numbers and the amounts of                                                                                                                       | of this invoice. 1.5% per mo<br>nvoica.<br>voice date are not reflected<br>ase include your account n<br>en making payment on mult<br>of payment.                                                                                                                                            | onth (18% per annum) late charge on t<br>,<br>umber on your check and include the<br>tiple accounts, please include the acco                                                                                      | balances<br>bottom<br>sunt                                  | AL<br>S INVOICE                                                 | \$3,949.20                                                  |
| ACCOUNT S                                                                                                                              | tatus                                     | Payment dus upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts o<br>31 - 60 DAYS                                                                                                         | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>ase include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS                                                                                                                             | onth (18% per annum) late charge on t<br>umber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS                                                                           | balances<br>bottom<br>bunt<br>PLE                           | AL<br>S INVOICE<br>EASE PAY                                     | \$3,949.20<br><b>THIS</b>                                   |
| CURRENT<br>\$ 3,94                                                                                                                     | itatus<br>19.20                           | Payment due upon receipt of over 30 days from date of in Payments received after Inv To ensure proper credit, ple portion of this invoice. When numbers and the amounts of 31 - 60 DAYS \$ 0.00                                                                                                                | of his invoice. 1.5% per monvoica.<br>voice date are not reflected<br>asse include your account n<br>an making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00                                                                                                                     | onth (18% per annum) late charge on t<br>humber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00                                                               | balances<br>bottom<br>Dunt<br>FLE                           | AL<br>S INVOICE<br>EASE PAY                                     | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to                                                                                             | itatus<br>19.20<br>o suspend se           | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>ervice without notice on any pas                                                          | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>pase include your account n<br>an making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>St due account.                                                                                              | onth (18% per annum) late charge on t<br>number on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00                                                               | balances<br>bottom<br>sunt<br>PLI<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT                            | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to                                                                                             | 9.20<br>suspend se                        | Payment due upon receipt of<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this involca. Whe<br>numbers and the amounts of<br>31 - 60 DAYS<br>\$ 0.00<br>envice without notice on any pas                                                        | of his invoice. 1.5% per me<br>nvoice.<br>voice date are not reflected<br>asse include your account n<br>an making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:                                                                          | onth (18% per annum) late charge on the<br>unimber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00                                                            | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT                            | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to                                                                                             | 9.20<br>suspend se                        | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>envice without notice on any pas                                                          | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>ases include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS                                                       | onth (18% per annum) late charge on the<br>unimber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00                                                            | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY                                     | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.                                                                              | 9.20<br>suspend se<br>0000                | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pas                                                          | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>asse include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS                                                       | onth (18% per annum) late charge on the<br>unimber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD                                    | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY                                     | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.<br>PAGE                                                                      | 9.20<br>suspend se<br>0000                | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pas<br>provide without notice on any pas<br>0049829 R<br>1 P | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>asse include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>PO BOX 677839                                      | onth (18% per annum) late charge on the<br>immer on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD                                      | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT                            | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.<br>PAGE<br>DATE                                                              | 9.20<br>suspend se<br>0000<br>Jul-1       | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this involce. Whe<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pass<br>po049829 R<br>1 P<br>15-16                           | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>ases include your account n<br>an making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>20 BOX 677839<br>DALLAS, TX 75267                  | onth (18% per annum) late charge on the<br>unimber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD                                    | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT<br>IOUNT OF<br>AITTANCE    | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.<br>PAGE<br>DATE                                                              | 9.20<br>suspend se<br>0000<br>Jul-1<br>33 | Payment due upon receipt of<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this involce. Whe<br>numbers and the amounts of<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pase<br>po049829 R<br>1 P<br>15-16 E<br>3410               | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>ase include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>20 BOX 677839<br>DALLAS, TX 75267<br>(206) 332-7731 | onth (18% per annum) late charge on the<br>unimber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD<br>2-7839                          | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT<br>IOUNT OF                | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.<br>PAGE<br>DATE<br>USTOMER NO.                                               | 9.20<br>9.20<br>0000<br>Jul-1<br>33       | Payment due upon receipt of<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this involce. Whe<br>numbers and the amounts of<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pass<br>po049829 R<br>1 P<br>15-16 E<br>3410 (             | of his invoice. 1.5% per mo<br>nvoice.<br>voice date are not reflected<br>ase include your account n<br>en making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>20 BOX 677839<br>DALLAS, TX 75267<br>(206) 332-7731 | onth (18% per annum) late charge on the<br>immer on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD<br>2-7839                            | balances<br>bottom<br>bunt<br>PLE<br>AN                     | AL<br>S INVOICE<br>EASE PAY<br>IOUNT<br>IOUNT OF<br>AITTANCE    | \$3,949.20<br><b>THIS</b><br>\$3,949.20                     |
| CURRENT<br>\$ 3,94<br>reserve the right to<br>INVOICE NO.<br>PAGE<br>DATE<br>USTOMER NO.<br>SITE NO.                                   | 9.20<br>9.20<br>0000<br>Jul-1<br>33       | Payment due upon receipt o<br>over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. When<br>numbers and the amounts o<br>31 - 60 DAYS<br>\$ 0.00<br>arvice without notice on any pass<br>po049829 R<br>1 P<br>15-16 E<br>3410 (              | of his invoice. 1.5% per monoice.<br>voice date are not reflected<br>asse include your account n<br>an making payment on mult<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>PO BOX 677839<br>DALLAS, TX 75267<br>(206) 332-7731     | onth (18% per annum) late charge on the<br>sumber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD<br>7-7839                           | balances<br>bottom<br>bunt<br>PLE<br>AN<br>DA<br>AMC<br>REN | AL<br>S INVOICE<br>EASE PAY<br>IOUNT<br>OUNT OF<br>MITTANCE     | \$3,949.20<br>THIS<br>\$3,949.20                            |
| CCOUNT S<br>CURRENT<br>\$ 3,94<br>eserve the right to<br>NVOICE NO.<br>PAGE<br>DATE<br>JSTOMER NO.<br>SITE NO.<br>SITE NO.<br>SITE NO. | 9.20<br>9.20<br>0000<br>Jul-1<br>33       | Payment due upon receipt over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this involce. Whe<br>numbers and the amounts of<br>31 - 60 DAYS<br>\$ 0.00<br>envice without notice on any pass<br>0049829 R<br>1 P<br>15-16 E<br>3410 (                    | of this invoice. 1.5% per monoica.<br>voice data are not reflected<br>base include your account in<br>an making payment on multi<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>20 BOX 677839<br>DALLAS, TX 75267<br>(206) 332-7731  | onth (18% per annum) late charge on to<br>humber on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD<br>2-7839                            | balances<br>bottom<br>bunt<br>PLEASE RETU                   | AL<br>S INVOICE<br>EASE PAY<br>TOUNT OF<br>TOUNT OF<br>AITTANCE | \$3,949.20<br><b>THIS</b><br>\$3,949.20<br>TION WITH REMITT |
| CURRENT<br>\$ 3,94<br>eserve the right to<br>INVOICE NO.<br>PAGE<br>DATE<br>USTOMER NO.<br>SITE NO.<br>EFERENCE NO.                    | 19.20<br>9.20<br>0000<br>Jul-1<br>33:     | Payment due upon receipt over 30 days from date of in<br>Payments received after Inv<br>To ensure proper credit, ple<br>portion of this invoice. Whe<br>numbers and the amounts of<br>31 - 60 DAYS<br>\$ 0.00<br>envice without notice on any pass<br>0049829 R<br>1 P<br>15-16 E<br>3410 (                    | of his invoice. 1.5% per monoscient<br>voice date are not reflected<br>asse include your account n<br>an making payment on multi<br>of payment.<br>61 - 90 DAYS<br>\$ 0.00<br>st due account.<br>Please remit to:<br>REGIONAL DISPOS<br>20 BOX 677839<br>DALLAS, TX 75267<br>(206) 332-7731  | onth (18% per annum) late charge on the<br>immor on your check and include the<br>tiple accounts, please include the acco<br>OVER 90 DAYS<br>\$ 0.00<br>SAL COMPANY INTERMOD<br>7-7839<br>F<br>ach check stub *** | balances<br>bottom<br>bunt<br>PLEASE RETU                   | AL<br>S INVOICE<br>EASE PAY<br>TOUNT<br>TOUNT OF<br>MITTANCE    | \$3,949.20<br><b>THIS</b><br>\$3,949.20<br>TION WITH REMITT |

REGIONAL DISPOSAL COMPANY INTERMODA PO BOX 677839 DALLAS, TX 75267-7839 (206) 332-7731

. . .

· ....

TO: -

BLT Transport LLC 11910 SE 277th St. Kent, WA 98030

.



INVOICE NO. PAGE 1 DATE Jul-31-16 333410 CUSTOMER NO. SITE NO. REFERENCE NO.

| HAT DATE |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 | · · · · · ·                     |                           |                   |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|---------------------------|-------------------|
| ICE DATE | 10 CODE | al Ave. S., Kent                                                                                                                                                                                                                         | DESCRIPTION                                                                                                                                                      |                                                                                 | REFERENCE                       | ΩΤΥ.                      | AMOUNT            |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         | Vehicle: COE                                                                                                                                                                                                                             | BUN                                                                                                                                                              |                                                                                 |                                 |                           |                   |
| 18 - Jul | VH      | SW-CONT SOIL W/FL                                                                                                                                                                                                                        | IEL                                                                                                                                                              | \$45.00                                                                         | 01-939567                       | 32.44 TN                  | \$1,459.80        |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
| 0 1.4    | 101     | Vehicle: COI                                                                                                                                                                                                                             | BUN                                                                                                                                                              | A.E. 00                                                                         | 04 000500                       |                           |                   |
| 18 - Jui | VH      | SW-CONT SULL W/FL                                                                                                                                                                                                                        | IEL                                                                                                                                                              | \$45.00                                                                         | 01-939580                       | 27.30 IN                  | \$1,228.50        |
|          |         | Vehicle: COI                                                                                                                                                                                                                             | BUN                                                                                                                                                              |                                                                                 |                                 |                           |                   |
| l8 - Jul | VH      | SW-CONT SOIL W/FL                                                                                                                                                                                                                        | IEL                                                                                                                                                              | \$45.00                                                                         | 01-939595                       | 27.88 TN                  | \$1,254.60        |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          | Material                                                                                                                                                         | Summarv                                                                         |                                 |                           |                   |
|          | VH      | SW-CONT SOIL W/FI                                                                                                                                                                                                                        | JEL                                                                                                                                                              |                                                                                 |                                 | 87.62 TN                  |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         |                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                 |                                 |                           |                   |
|          |         | Payment due upon receipt of this<br>over 30 days from date of invoice                                                                                                                                                                    | Invoice. 1.5% per month (18% per r                                                                                                                               | unum) late charge on b                                                          | alances                         |                           |                   |
| ount S   | tatus   | Payment due upon receipt of this<br>over 30 days from date of invoice<br>Payments received after invoice,<br>To ensure proper credit, please in                                                                                          | Invoice. 1.5% per month (18% per a<br>late are not reflected.<br>clude your account number on your                                                               | nnum) late charge on ba                                                         | alances<br>TOTA                 | L                         | \$3,942.90        |
| ount S   | tatus   | Payment due upon receipt of this<br>over 30 days from date of invoice<br>Payments received after invoice,<br>To ensure proper credit, please in<br>portion of this invoice, When mal<br>numbers and the amounts of pay                   | Invoice. 1.5% per month (18% per a<br>late are not reflected.<br>clude your account number on your<br>ding payment on multiple accounts,<br>ment.                | nnum) late charge on ba<br>check and include the b<br>please include the accou  | atances<br>TOTA<br>ottom<br>Int | L<br>INVOICE              | \$3,942.90        |
| CURRENT  | tatus   | Payment due upon receipt of this<br>over 30 days from date of invoice<br>Payments received after invoice of<br>To ensure proper credit, please in<br>portion of this involce. When mai<br>numbers and the amounts of pay<br>31 - 60 DAYS | Invoice. 1.5% per month (18% per e<br>late are not reflected.<br>clude your account number on your<br>drg payment on multiple accounts,<br>ment.<br>61 - 90 DAYS | unnum) late charge on ba<br>check and include the b<br>please include the accou | atances<br>ottom<br>Int<br>PLE  | L<br>INVOICE<br>ASE PAY T | \$3,942.90<br>HIS |

We reserve the right to suspend service without notice on any past due account.

#### Please remit to:

| INVOICE NO.<br>PAGE | 0000049872<br>1<br>Jul-31-16               | REGIONAL DISPOSAL COMPANY INTE<br>PO BOX 677839<br>DALLAS, TX 75267-7839 | AMOUNT OF                      |              |
|---------------------|--------------------------------------------|--------------------------------------------------------------------------|--------------------------------|--------------|
|                     | 333410                                     | (206) 332-7731                                                           | REMITIANCE                     |              |
| SITE NO             | 000 120                                    |                                                                          |                                |              |
| STELLES.            |                                            |                                                                          | DI FACE DETUDU TUDO DODTION MI |              |
| REFERENCE NO.       |                                            |                                                                          | PLEASE RETURN THIS PORTION WIT | H REMITTANCE |
| REMARKS             | *** Please referen                         | ce your invoice number on each check stub ***                            |                                |              |
|                     | For Billing Inquirie<br>chartje@republicse | s: Call (206)332-7731 or email:<br>ervices.com                           |                                |              |

## **Appendix D: Project Analytical Results**

Laboratory Analytical Report Chain of Custody

Providing Practical Environmental Compliance Solutions Offices In: Anchorage | Tacoma | Portland





3322 South Bay Road NE • Olympia, WA 98506-2957

April 14, 2021

Charles McFadden ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. McFadden:

Please find enclosed the analytical data report for the BLT Trucking project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

z I Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environmen                                     | tal, In            | IC.                |                       | CI                            | naiı         | n o         | fC                      | ust                     | od                            | y F      | Rec                     | or              | d       |                                         |                                                                                                                |       |        |       | www.L                | .ibbyEnv | ironmental.com                                   |
|------------------------------------------------------|--------------------|--------------------|-----------------------|-------------------------------|--------------|-------------|-------------------------|-------------------------|-------------------------------|----------|-------------------------|-----------------|---------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|--------|-------|----------------------|----------|--------------------------------------------------|
| 3322 South Bay Road NE                               | Ph:                | 360-352-2          | 110                   |                               |              |             |                         | 2                       | RA                            | 00       | ,                       |                 |         |                                         |                                                                                                                | -     |        |       |                      |          | 1                                                |
| Olympia, WA 98506                                    | Fax:               | 360-352-4          | 154                   |                               |              |             | Date                    | e: )                    | 150                           | 12       | -                       | -               | 1       |                                         | <u> </u>                                                                                                       | Pa    | ge:    |       |                      | 10       |                                                  |
| Client: CL                                           |                    |                    |                       |                               |              |             | Proj                    | ect N                   | lanag                         | ger:     | (                       | ha              | rles    | 1                                       | nctad                                                                                                          | den   |        |       |                      |          |                                                  |
| Address: 15 South Ore                                | gen St             | - Ste              | Eller war             |                               |              | 1           | Proj                    | ect N                   | ame                           | :        | BL                      | T_              | Tru     | c Ki                                    | bg                                                                                                             |       |        |       |                      |          |                                                  |
| City: Tacona                                         | Sector States      | State: 🗸           | A Zip:                |                               |              |             | Loca                    | ation:                  | K                             | Ser      | +                       |                 |         |                                         |                                                                                                                | City  | y, Sta | ite:  | Wa                   |          |                                                  |
| Phone: 253-318-386                                   | 4                  | Fax:               |                       |                               |              |             | Coll                    | ector                   | : 5                           | SRB      | + (                     | CZ              | L       |                                         |                                                                                                                | Dat   | te of  | Colle | ction:               | 5/30     | 1 II                                             |
| Client Project # 0611-01-0                           | 20-50              |                    |                       |                               |              | _           | Ema                     | ail:                    |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| Sample Number                                        | Denth              | Time               | Sample                | Container                     |              | S 826       |                         | augreet                 | 2100<br>2100<br>57 - 60<br>11 | S AN AN  |                         | 10 <sup>+</sup> | X S S   | 100 00 00 00 00 00 00 00 00 00 00 00 00 | 6792<br>6792<br>6192<br>70<br>71<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 210 V | 18210  | 1480  | R <sup>2</sup>       | ADI      | 4-8-21<br>INALYSIS<br>DED PER<br>LES VIA<br>TAT. |
| 1 MING                                               | Doput              | 1501               | 1,900                 | 2 1-Limber                    |              | $\bigwedge$ | $\overline{\mathbf{A}}$ | X                       |                               | X        | $\overline{\mathbf{X}}$ | X               | ΓŤ      | V                                       | Ý                                                                                                              | 1     | 1      | ŕ     | <u> </u>             |          |                                                  |
| 2 MINI                                               |                    | 1052               | 1                     | 2 Pory , 30 8/2>              |              |             | X                       | $\overline{\checkmark}$ |                               | X        | X                       | X               |         |                                         |                                                                                                                | Ø     |        | 1     |                      |          |                                                  |
| 3 MINY                                               |                    | 1168               |                       |                               |              |             | X                       | $\overline{\mathbf{x}}$ |                               | X        | X                       | X               |         | $\overline{\mathbf{x}}$                 |                                                                                                                |       | 1      |       |                      |          |                                                  |
| 4 MW3                                                |                    | 1246               |                       | ×                             | 1            |             | X                       | X                       |                               | X        | X                       | X               |         | X                                       | 1                                                                                                              |       |        |       |                      |          |                                                  |
| 5 MINZ                                               |                    | 1323               |                       |                               |              |             | X                       | X                       |                               | X        | X                       | X               |         | X                                       |                                                                                                                | 8     | )      |       |                      |          |                                                  |
| 6                                                    |                    | 1.002              |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       | 1.                   |          |                                                  |
| 7                                                    |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 8                                                    |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 9                                                    |                    |                    |                       |                               | ARA          |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 10                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 11                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 12                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 13                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 14                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 15                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 16                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| 17                                                   |                    |                    |                       |                               |              |             |                         |                         |                               |          |                         |                 |         |                                         |                                                                                                                |       |        |       |                      |          |                                                  |
| Relinquished by 3/21/2                               | 2010(              | 11120              | Date / Time           | Received by:                  |              |             |                         |                         |                               |          | Date /                  | Time            |         | Sam                                     | ple Re                                                                                                         | eceip | ot     | Rer   | narks:               | . 1      |                                                  |
| Relinquished by:                                     | AS I               | 11108              | Date / Time           | Received by:                  | $\checkmark$ | -           |                         |                         | 331/                          | 121      | 112<br>Date /           | Time            | Good    | Cond                                    | ition?                                                                                                         | Y     | °C     | - Ku  | 674                  | L. L I   | MTLA S<br>Detector                               |
| i territorio a pji                                   |                    |                    | 50007 11110           | 1.004.04.41.                  |              |             |                         |                         |                               |          |                         |                 | Sampl   | e Ter                                   | np.                                                                                                            |       | °C     | ev    | Lead                 | culs.    | Poly bottle                                      |
| Relinquished by:                                     |                    |                    | Date / Time           | Received by:                  |              |             |                         |                         |                               | E        | Date /                  | Time            | Total I | Numb                                    | er of                                                                                                          |       |        | fa    | as fil               | terd.    | Bottle marthed                                   |
| LEGAL ACTION CLAUSE: In the event of default of payn | nent and/or failur | e to pay, Client a | grees to pay the cost | ts of collection including of | court cos    | ts and rea  | asonable                | attornev                | fees to t                     | be deter | mined by                | a court         | of law. | ntaine                                  | rs                                                                                                             |       |        | TA    | T: 24<br>Distributio | HR 4     | 8HR 5-DAY                                        |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description       |                | Method        | MW5       | MW1       | MW4       | MW3       | MW2       |
|--------------------------|----------------|---------------|-----------|-----------|-----------|-----------|-----------|
|                          |                | Blank         |           |           |           |           |           |
| Date Sampled             |                | N/A           | 3/30/2021 | 3/30/2021 | 3/30/2021 | 3/30/2021 | 3/30/2021 |
| Date Analyzed            | PQL            | 4/2/2021      | 4/2/2021  | 4/2/2021  | 4/2/2021  | 4/2/2021  | 4/2/2021  |
|                          | (µg/L)         | $(\mu g/L)$   | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    |
| Benzene                  | 1.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Toluene                  | 2.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Ethylbenzene             | 1.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Total Xylenes            | 2.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Gasoline                 | 100            | nd            | nd        | nd        | nd        | nd        | nd        |
| Surrogate Recovery       |                |               |           |           |           |           |           |
| Dibromofluoromethane     |                | 104           | 110       | 103       | 102       | 93        | 100       |
| 1,2-Dichloroethane-d4    |                | 101           | 104       | 93        | 99        | 98        | 102       |
| Toluene-d8               |                | 90            | 3         | 90        | 89        | 93        | 93        |
| 4-Bromofluorobenzene     |                | 85            | 82        | 85        | 81        | 89        | 78        |
| "nd" Indicates not deter | cted at listed | detection lin | nit.      |           |           |           |           |

#### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

### ANALYSES PERFORMED BY: Melissa Harrington

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Matrix Spike Sample Identification: L210331-3 |                         |          |          |          |          |     |          |      |  |  |  |  |
|-----------------------------------------------|-------------------------|----------|----------|----------|----------|-----|----------|------|--|--|--|--|
|                                               | Date Analyzed: 4/2/2021 |          |          |          |          |     |          |      |  |  |  |  |
|                                               | Spiked                  | MS       | MSD      | MS       | MSD      | RPD | Limits   | Data |  |  |  |  |
|                                               | Conc.                   | Response | Response | Recovery | Recovery |     | Recovery | Flag |  |  |  |  |
|                                               | (µg/L)                  | (µg/L)   | (µg/L)   | (%)      | (%)      | (%) | (%)      |      |  |  |  |  |
| Benzene                                       | 4.0                     | 3.5      | 3.7      | 88       | 93       | 5.6 | 65-135   |      |  |  |  |  |
| Toluene                                       | 4.0                     | 4.4      | 4.5      | 110      | 113      | 2.2 | 65-135   |      |  |  |  |  |
| Ethylbenzene                                  | 4.0                     | 3.8      | 4.1      | 95       | 103      | 7.6 | 65-135   |      |  |  |  |  |
| Total Xylenes                                 | 12.0                    | 10.4     | 10.3     | 87       | 86       | 1.0 | 65-135   |      |  |  |  |  |
| Surrogate Recovery (%)                        |                         |          |          | MS       | MSD      |     |          |      |  |  |  |  |
| Dibromofluoromethane                          |                         |          |          | 98       | 102      |     | 65-135   |      |  |  |  |  |
| 1,2-Dichloroethane-d4                         |                         |          |          | 96       | 96       |     | 65-135   |      |  |  |  |  |
| Toluene-d8                                    |                         |          |          | 94       | 97       |     | 65-135   |      |  |  |  |  |
| 4-Bromofluorobenzene                          |                         |          |          | 91       | 87       |     | 65-135   |      |  |  |  |  |

#### QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ACCEPTABLE RPD IS 35%

#### ANALYSES PERFORMED BY: Melissa Harrington

| Date Analyzed         | l: 4/2/2021 |          |          |            |      |
|-----------------------|-------------|----------|----------|------------|------|
|                       | Spiked      | LCS      | LCS      | LCS        | Data |
|                       | Conc.       | Response | Recovery | Recovery   | Flag |
|                       | (µg/L)      | (µg/L)   | (%)      | Limits (%) |      |
| Benzene               | 4.0         | 3.7      | 93       | 80-120     |      |
| Toluene               | 4.0         | 4.8      | 120      | 80-120     |      |
| Ethylbenzene          | 4.0         | 4.5      | 113      | 80-120     |      |
| Total Xylenes         | 12.0        | 11.4     | 95       | 80-120     |      |
| Surrogate Recovery    |             |          |          |            |      |
| Dibromofluoromethane  |             |          | 96       | 65-135     |      |
| 1,2-Dichloroethane-d4 |             |          | 96       | 65-135     |      |
| Toluene-d8            |             |          | 95       | 65-135     |      |
| 4-Bromofluorobenzene  |             |          | 89       | 65-135     |      |

#### Laboratory Control Sample

ANALYSES PERFORMED BY: Melissa Harrington

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                            | Date          | Surrogate      | Diesel      | Oil         |
|-----------------------------------|---------------|----------------|-------------|-------------|
| Number                            | Analyzed      | Recovery (%)   | $(\mu g/L)$ | $(\mu g/L)$ |
| Method Blank                      | 4/2/2021      | 108            | nd          | nd          |
| MW5                               | 4/2/2021      | 110            | nd          | nd          |
| MW5 Dup                           | 4/2/2021      | 109            | nd          | nd          |
| MW1                               | 4/2/2021      | 112            | nd          | nd          |
| MW4                               | 4/2/2021      | 115            | nd          | nd          |
| MW3                               | 4/2/2021      | 113            | nd          | nd          |
| MW2                               | 4/2/2021      | 116            | nd          | nd          |
| Practical Quantitation Limit      |               |                | 200         | 400         |
| "nd" Indicates not detected at th | e listed dete | ection limits. |             |             |

### Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

### ANALYSES PERFORMED BY: Jenny Anderson

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description      | PQL          | Method         | LCS         | LCSD     | MW5       | MW1       | MW4       |
|-------------------------|--------------|----------------|-------------|----------|-----------|-----------|-----------|
|                         |              | Blank          |             |          |           |           |           |
| Date Sampled            |              | N/A            | N/A         | N/A      | 3/30/2021 | 3/30/2021 | 3/30/2021 |
| Date Analyzed           |              | 4/6/2021       | 4/6/2021    | 4/6/2021 | 4/6/2021  | 4/6/2021  | 4/6/2021  |
|                         | $(\mu g/L)$  | (µg/L)         | (µg/L)      | (µg/L)   | (µg/L)    | (µg/L)    | (µg/L)    |
| Aroclor 1016            | 0.02         | nd             | 91%         | 84%      | nd        | nd        | nd        |
| Aroclor 1221            | 0.02         | nd             |             |          | nd        | nd        | nd        |
| Aroclor 1232            | 0.02         | nd             |             |          | nd        | nd        | nd        |
| Aroclor 1242            | 0.02         | nd             |             |          | nd        | nd        | nd        |
| Aroclor 1248            | 0.02         | nd             |             |          | nd        | nd        | nd        |
| Aroclor 1254            | 0.02         | nd             |             |          | nd        | nd        | nd        |
| Aroclor 1260            | 0.02         | nd             | 110%        | 98%      | nd        | nd        | nd        |
| Surrogate Recovery      |              |                |             |          |           |           |           |
| TCMX                    |              | 122            | 117         | 127      | 124       | 121       | 127       |
| DCBP                    |              | 124            | 94          | 107      | 113       | 124       | 125       |
| "nd" Indicates not de   | tected at li | isted detectio | n limit.    |          |           |           |           |
| "int" Indicates that in | iterference  | prevents det   | ermination. |          |           |           |           |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135% ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Paul Burke

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description      | PQL         | MW3            | MW2           |         |
|-------------------------|-------------|----------------|---------------|---------|
| 1 1                     |             |                |               |         |
| Date Sampled            |             | 3/30/2021      | 3/30/2021     |         |
| Date Analyzed           |             | 4/6/2021       | 4/6/2021      |         |
|                         | (µg/L)      | (µg/L)         | (µg/L)        |         |
| Aroclor 1016            | 0.02        | nd             | nd            |         |
| Aroclor 1221            | 0.02        | nd             | nd            |         |
| Aroclor 1232            | 0.02        | nd             | nd            |         |
| Aroclor 1242            | 0.02        | nd             | nd            |         |
| Aroclor 1248            | 0.02        | nd             | nd            |         |
| Aroclor 1254            | 0.02        | nd             | nd            |         |
| Aroclor 1260            | 0.02        | nd             | nd            |         |
|                         |             |                |               |         |
| Surrogate Recovery      |             |                |               |         |
| TCMX                    |             | 123            | 121           |         |
| DCBP                    |             | 115            | 115           |         |
| "nd" Indicates not der  | tected at 1 | isted detectio | n limit.      |         |
| "int" Indicates that in | terference  | e prevents det | ermination.   |         |
| ACCEPTABLE RECOV        | ERY LIMI    | TS FOR SURRO   | DGATE 65% T   | O 135%  |
| ACCEPTABLE RECOV        | ERY LIMI'   | TS FOR MATE    | XIX SPIKES: 7 | 5%-125% |
| ACCEPTABLE RPD IS 2     | 20%         |                |               |         |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ANALYSES PERFORMED BY: Paul Burke

**BLT TRUCKING PROJECT** ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                      | Date     | Lead        | Cadmium     | Chromium    | Arsenic |
|-----------------------------|----------|-------------|-------------|-------------|---------|
| Number                      | Analyzed | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | (µg/L)  |
| Method Blank                | 4/1/2021 | nd          | nd          | nd          | nd      |
| MW5                         | 4/1/2021 | nd          | nd          | nd          | 4.3     |
| MW5 Dup                     | 4/1/2021 | nd          | nd          | nd          | 3.9     |
| MW1                         | 4/1/2021 | nd          | nd          | nd          | 6.4     |
| MW4                         | 4/1/2021 | nd          | nd          | nd          | nd      |
| MW3                         | 4/1/2021 | nd          | nd          | nd          | 3.4     |
| MW2                         | 4/1/2021 | nd          | nd          | nd          | 6.9     |
| Drastical Opportitation Lie | :4       | 5.0         | 0.5         | 5.0         | 2.0     |
| Practical Quantitation Li   |          | 5.0         | 0.5         | 5.0         | 5.0     |

### Analyses of Total Metals in Water by EPA Method 7010 Series

nd<sup>-</sup> Indicates not detected at the listed detection limits.

### ANALYSES PERFORMED BY: Sherry Chilcutt

### QA/QC for Total Metals in Water by EPA Method 7010 Series

| Sample  | Date     | Lead         | Cadmium      | Chromium     | Arsenic      |
|---------|----------|--------------|--------------|--------------|--------------|
| Number  | Analyzed | (% Recovery) | (% Recovery) | (% Recovery) | (% Recovery) |
| LCS     | 4/1/2021 | 91%          | 107%         | 99%          | 96%          |
| MW5 MS  | 4/1/2021 | 89%          | 116%         | 87%          | 79%          |
| MW5 MSD | 4/1/2021 | 90%          | 115%         | 94%          | 88%          |
| RPD     | 4/1/2021 | 1%           | 1%           | 8%           | 11%          |

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

### ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

### Analyses of Dissolved Arsenic in Water by EPA Method 7010 Series

| Sample                                                      | Date      | Arsenic     |  |  |  |  |
|-------------------------------------------------------------|-----------|-------------|--|--|--|--|
| Sample                                                      | Date      | Aischie     |  |  |  |  |
| Number                                                      | Analyzed  | $(\mu g/L)$ |  |  |  |  |
| Method Blank                                                | 4/13/2021 | nd          |  |  |  |  |
| MW1                                                         | 4/13/2021 | nd          |  |  |  |  |
| MW2                                                         | 4/13/2021 | nd          |  |  |  |  |
| MW2 Dup                                                     | 4/13/2021 | nd          |  |  |  |  |
| Practical Quantitation Limit                                |           | 3.0         |  |  |  |  |
| "nd" Indicates not detected at the listed detection limits. |           |             |  |  |  |  |

### ANALYSES PERFORMED BY: Sherry Chilcutt

### QA/QC for Dissolved Arsenic in Water by EPA Method 7010 Series

| Sample<br>Number | Date<br>Analyzed | Arsenic<br>(% Recovery) |
|------------------|------------------|-------------------------|
| LCS              | 4/13/2021        | 112%                    |
| MW2 MS           | 4/13/2021        | 118%                    |
| MW2 MSD          | 4/13/2021        | 112%                    |
| RPD              | 4/13/2021        | 5%                      |

# ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Libby Project # L210331-3 Date Received 3/31/21 11:28 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

### Sample Receipt Checklist

| Chain of Custody                                              |              |                |             |       |         |
|---------------------------------------------------------------|--------------|----------------|-------------|-------|---------|
| 1. Is the Chain of Custody complete?                          | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 2. How was the sample delivered?                              |              | Hand Delivered | ☑ Picked Up |       | Shipped |
| Log In                                                        |              |                |             |       |         |
| 3. Cooler or Shipping Container is present.                   | $\checkmark$ | Yes            | 🗌 No        |       | 🗌 N/A   |
| 4. Cooler or Shipping Container is in good condition.         | $\checkmark$ | Yes            | 🗌 No        |       | □ N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    |              | Yes            | ✓ No        |       | □ N/A   |
| 6. Was an attempt made to cool the samples?                   | $\checkmark$ | Yes            | 🗌 No        |       | □ N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             |              | 2.5            | °C          |       |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          |              | 4.4            | °C          |       |         |
| 9. Did all containers arrive in good condition (unbroken)?    | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 10. Is it clear what analyses were requested?                 | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 11. Did container labels match Chain of Custody?              | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 12. Are matrices correctly identified on Chain of Custody?    | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 13. Are correct containers used for the analysis indicated?   | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 14. Is there sufficient sample volume for indicated analysis? | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 15. Were all containers properly preserved per each analysis? | $\checkmark$ | Yes            | 🗌 No        |       |         |
| 16. Were VOA vials collected correctly (no headspace)?        | $\checkmark$ | Yes            | 🗌 No        |       | □ N/A   |
| 17. Were all holding times able to be met?                    | $\checkmark$ | Yes            | 🗌 No        |       |         |
|                                                               |              |                |             |       |         |
| Discrepancies/ Notes                                          |              |                |             |       |         |
| 18. Was client notified of all discrepancies?                 |              | Yes            | 🗌 No        |       | ☑ N/A   |
| Person Notified:                                              |              |                |             | Date: |         |
| By Whom:                                                      |              |                |             | Via:  |         |
| Regarding:                                                    |              |                |             |       |         |
| 19. Comments.                                                 |              |                |             |       |         |
|                                                               |              |                |             |       |         |
|                                                               |              |                |             |       |         |
|                                                               |              |                |             |       |         |



3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: BLT Trucking Work Order Number: 2104008

April 12, 2021

#### Attention Kodey Eley:

Fremont Analytical, Inc. received 5 sample(s) on 4/1/2021 for the analyses presented in the following report.

### Mercury by EPA Method 245.1

#### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

\_\_\_\_



| CLIENT:<br>Project:<br>Work Order: | Libby Environmental<br>BLT Trucking<br>2104008 | Work Order S        | Sample Summary     |
|------------------------------------|------------------------------------------------|---------------------|--------------------|
| Lab Sample ID                      | Client Sample ID                               | Date/Time Collected | Date/Time Received |
| 2104008-001                        | MW 5                                           | 03/30/2021 10:01 AM | 04/01/2021 9:45 AM |
| 2104008-002                        | MW 1                                           | 03/30/2021 10:52 AM | 04/01/2021 9:45 AM |
| 2104008-003                        | MW 4                                           | 03/30/2021 11:50 AM | 04/01/2021 9:45 AM |
| 2104008-004                        | MW 3                                           | 03/30/2021 12:46 PM | 04/01/2021 9:45 AM |
| 2104008-005                        | MW 2                                           | 03/30/2021 1:23 PM  | 04/01/2021 9:45 AM |



**Case Narrative** 

WO#: **2104008** Date: **4/12/2021** 

CLIENT:Libby EnvironmentalProject:BLT Trucking

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### **III. ANALYSES AND EXCEPTIONS:**

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Notations:

During the original PAH extraction, samples were incorrectly spiked leading to false detections. Samples were re-extracted out of hold.

4/14/2021: Revision 1 includes additional language in the Case Narrative.

### **Qualifiers & Acronyms**



 WO#:
 2104008

 Date Reported:
 4/12/2021

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate



| Client: Libby Environmental    | Collection Date: 3/30/2021 10:01:00 AM |            |      |           |          |                      |
|--------------------------------|----------------------------------------|------------|------|-----------|----------|----------------------|
| Project: BLT Trucking          |                                        |            |      |           |          |                      |
| Lab ID: 2104008-001            |                                        |            | I    | Matrix: W | /ater    |                      |
| Client Sample ID: MW 5         |                                        |            |      |           |          |                      |
| Analyses                       | Result                                 | RL         | Qual | Units     | DF       | Date Analyzed        |
| Polyaromatic Hydrocarbons by E | PA Method 8                            | 270 (SIM)  |      | Batc      | h ID: 31 | 1939 Analyst: SB     |
| Benz(a)anthracene              | ND                                     | 0.134      | н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Chrysene                       | ND                                     | 0.134      | Н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Benzo(b)fluoranthene           | ND                                     | 0.134      | Н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Benzo(k)fluoranthene           | ND                                     | 0.134      | Н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Benzo(a)pyrene                 | ND                                     | 0.134      | Н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                     | 0.134      | Н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Dibenz(a,h)anthracene          | ND                                     | 0.134      | н    | µg/L      | 1        | 4/12/2021 2:22:00 PM |
| Surr: 2-Fluorobiphenyl         | 80.6                                   | 47.6 - 142 | н    | %Rec      | 1        | 4/12/2021 2:22:00 PM |
| Surr: Terphenyl-d14            | 96.9                                   | 15.9 - 137 | Н    | %Rec      | 1        | 4/12/2021 2:22:00 PM |
| Mercury by EPA Method 245.1    |                                        |            |      | Batc      | h ID: 31 | 1914 Analyst: LB     |
| Mercury                        | ND                                     | 0.100      |      | µg/L      | 1        | 4/8/2021 12:24:52 PM |



| Client: Libby Environmental     | Collection Date: 3/30/2021 10:52:00 AM |            |      |           |          |                      |
|---------------------------------|----------------------------------------|------------|------|-----------|----------|----------------------|
| Project: BLT Trucking           |                                        |            |      |           |          |                      |
| Lab ID: 2104008-002             |                                        |            | I    | Matrix: W | /ater    |                      |
| Client Sample ID: MW 1          |                                        |            |      |           |          |                      |
| Analyses                        | Result                                 | RL         | Qual | Units     | DF       | Date Analyzed        |
| Polyaromatic Hydrocarbons by El | PA Method 8                            | 270 (SIM)  |      | Batc      | h ID: 3′ | 1898 Analyst: IH     |
| Benz(a)anthracene               | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Chrysene                        | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Benzo(b)fluoranthene            | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Benzo(k)fluoranthene            | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Benzo(a)pyrene                  | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Indeno(1,2,3-cd)pyrene          | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Dibenz(a,h)anthracene           | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 3:18:03 PM  |
| Surr: 2-Fluorobiphenyl          | 74.4                                   | 47.6 - 142 | н    | %Rec      | 1        | 4/8/2021 3:18:03 PM  |
| Surr: Terphenyl-d14             | 86.0                                   | 15.9 - 137 | Н    | %Rec      | 1        | 4/8/2021 3:18:03 PM  |
| Mercury by EPA Method 245.1     |                                        |            |      | Batc      | h ID: 3′ | 1914 Analyst: LB     |
| Mercury                         | ND                                     | 0.100      |      | µg/L      | 1        | 4/8/2021 12:29:57 PM |



| Client: Libby Environmental    | Collection Date: 3/30/2021 11:50:00 AM |            |      |           |          |                      |
|--------------------------------|----------------------------------------|------------|------|-----------|----------|----------------------|
| Project: BLT Trucking          |                                        |            |      |           |          |                      |
| Lab ID: 2104008-003            |                                        |            | I    | Matrix: W | /ater    |                      |
| Client Sample ID: MW 4         |                                        |            |      |           |          |                      |
| Analyses                       | Result                                 | RL         | Qual | Units     | DF       | Date Analyzed        |
| Polyaromatic Hydrocarbons by E | PA Method 8                            | 270 (SIM)  |      | Batc      | h ID: 31 | 898 Analyst: IH      |
| Benz(a)anthracene              | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Chrysene                       | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Benzo(b)fluoranthene           | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Benzo(k)fluoranthene           | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Benzo(a)pyrene                 | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Indeno(1,2,3-cd)pyrene         | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Dibenz(a,h)anthracene          | ND                                     | 0.103      | Н    | µg/L      | 1        | 4/8/2021 3:39:24 PM  |
| Surr: 2-Fluorobiphenyl         | 77.2                                   | 47.6 - 142 | н    | %Rec      | 1        | 4/8/2021 3:39:24 PM  |
| Surr: Terphenyl-d14            | 81.3                                   | 15.9 - 137 | Н    | %Rec      | 1        | 4/8/2021 3:39:24 PM  |
| Mercury by EPA Method 245.1    |                                        |            |      | Batc      | h ID: 31 | 914 Analyst: LB      |
| Mercury                        | ND                                     | 0.100      |      | µg/L      | 1        | 4/8/2021 12:31:39 PM |



| Client: Libby Environmental     | Collection Date: 3/30/2021 12:46:00 PM |            |      |           |          |                      |
|---------------------------------|----------------------------------------|------------|------|-----------|----------|----------------------|
| Project: BLT Trucking           |                                        |            |      |           |          |                      |
| Lab ID: 2104008-004             |                                        |            | I    | Matrix: W | /ater    |                      |
| Client Sample ID: MW 3          |                                        |            |      |           |          |                      |
| Analyses                        | Result                                 | RL         | Qual | Units     | DF       | Date Analyzed        |
| Polyaromatic Hydrocarbons by EF | PA Method 8                            | 270 (SIM)  |      | Batc      | h ID: 31 | 1898 Analyst: IH     |
| Benz(a)anthracene               | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Chrysene                        | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Benzo(b)fluoranthene            | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Benzo(k)fluoranthene            | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Benzo(a)pyrene                  | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Indeno(1,2,3-cd)pyrene          | ND                                     | 0.102      | Н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Dibenz(a,h)anthracene           | ND                                     | 0.102      | н    | µg/L      | 1        | 4/8/2021 4:00:44 PM  |
| Surr: 2-Fluorobiphenyl          | 74.4                                   | 47.6 - 142 | н    | %Rec      | 1        | 4/8/2021 4:00:44 PM  |
| Surr: Terphenyl-d14             | 77.2                                   | 15.9 - 137 | Н    | %Rec      | 1        | 4/8/2021 4:00:44 PM  |
| Mercury by EPA Method 245.1     |                                        |            |      | Batc      | h ID: 31 | 1914 Analyst: LB     |
| Mercury                         | ND                                     | 0.100      |      | µg/L      | 1        | 4/8/2021 12:33:22 PM |



| Client: Libby Environr | mental               |                   |      | Collectio | n Date   | e: 3/30/2021 1:23:00 PM |
|------------------------|----------------------|-------------------|------|-----------|----------|-------------------------|
| Project: BLT Trucking  |                      |                   |      |           |          |                         |
| Lab ID: 2104008-005    |                      |                   |      | Matrix: V | Vater    |                         |
| Client Sample ID: MW   | 2                    |                   |      |           |          |                         |
| Analyses               | Result               | RL                | Qual | Units     | DF       | Date Analyzed           |
| Polyaromatic Hydroca   | arbons by EPA Method | <u>8270 (SIM)</u> |      | Bato      | ch ID: ( | 31898 Analyst: IH       |
| Benz(a)anthracene      | ND                   | 0.103             | Н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Chrysene               | ND                   | 0.103             | Н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Benzo(b)fluoranthene   | ND                   | 0.103             | н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Benzo(k)fluoranthene   | ND                   | 0.103             | н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Benzo(a)pyrene         | ND                   | 0.103             | Н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Indeno(1,2,3-cd)pyrene | ND                   | 0.103             | Н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Dibenz(a,h)anthracene  | ND                   | 0.103             | Н    | µg/L      | 1        | 4/8/2021 4:22:10 PM     |
| Surr: 2-Fluorobiphenyl | 81.0                 | 47.6 - 142        | Н    | %Rec      | 1        | 4/8/2021 4:22:10 PM     |
| Surr: Terphenyl-d14    | 84.4                 | 15.9 - 137        | Н    | %Rec      | 1        | 4/8/2021 4:22:10 PM     |
| Mercury by EPA Meth    | <u>od 245.1</u>      |                   |      | Bato      | h ID: 🔅  | 31914 Analyst: LB       |
| Mercury                | ND                   | 0.100             |      | µg/L      | 1        | 4/8/2021 12:35:04 PM    |



| Work Order:      | 2104008      |                 |       |           |             | QC SUMMARY                                         | REPORT         |
|------------------|--------------|-----------------|-------|-----------|-------------|----------------------------------------------------|----------------|
| CLIENT:          | Libby Enviro | nmental         |       |           |             | Management has EDA N                               |                |
| Project:         | BLT Trucking | g               |       |           |             | Mercury by EPA                                     | vietnoa 245.1  |
| Sample ID: MB-31 | 914          | SampType: MBLK  |       |           | Units: µg/L | Prep Date: 4/8/2021 RunNo: 66421                   |                |
| Client ID: MBLK  | W            | Batch ID: 31914 |       |           |             | Analysis Date: <b>4/8/2021</b> SeqNo: <b>13363</b> | <b></b> €4     |
| Analyte          |              | Result          | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RI        | PDLimit Qual   |
| Mercury          |              | ND              | 0.100 |           |             |                                                    |                |
| Sample ID: LCS-3 | 1914         | SampType: LCS   |       |           | Units: µg/L | Prep Date: 4/8/2021 RunNo: 66421                   |                |
| Client ID: LCSW  | 1            | Batch ID: 31914 |       |           |             | Analysis Date: 4/8/2021 SeqNo: 133639              | 95             |
| Analyte          |              | Result          | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RI        | PDLimit Qual   |
| Mercury          |              | 2.13            | 0.100 | 2.500     | 0           | 85.2 85 115                                        |                |
| Sample ID: 21040 | 16-001ADUP   | SampType: DUP   |       |           | Units: µg/L | Prep Date: 4/8/2021 RunNo: 66421                   |                |
| Client ID: BATC  | н            | Batch ID: 31914 |       |           |             | Analysis Date: 4/8/2021 SeqNo: 133639              | <b>9</b> 7     |
| Analyte          |              | Result          | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RI        | PDLimit Qual   |
| Mercury          |              | ND              | 1.00  |           |             | 0                                                  | 20             |
| Sample ID: 21040 | 16-001AMS    | SampType: MS    |       |           | Units: µg/L | Prep Date: 4/8/2021 RunNo: 66421                   |                |
| Client ID: BATC  | н            | Batch ID: 31914 |       |           |             | Analysis Date: 4/8/2021 SeqNo: 133639              | 98             |
| Analyte          |              | Result          | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RI        | PDLimit Qual   |
| Mercury          |              | 21.5            | 1.00  | 25.00     | 0           | 86.0 70 130                                        |                |
| Sample ID: 21040 | 16-001AMSD   | SampType: MSD   |       |           | Units: µg/L | Prep Date: 4/8/2021 RunNo: 66421                   |                |
| Client ID: BATC  | н            | Batch ID: 31914 |       |           |             | Analysis Date: 4/8/2021 SeqNo: 133639              | <del>)</del> 9 |
| Analyte          |              | Result          | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RI        | PDLimit Qual   |
| Mercury          |              | 22.8            | 1.00  | 25.00     | 0           | 91.2 70 130 21.50 5.87                             | 20             |



|                         | nont                  |        |           |             |      |              |                       | Date: 4/12/2021   |      |
|-------------------------|-----------------------|--------|-----------|-------------|------|--------------|-----------------------|-------------------|------|
|                         | nalytical             |        |           |             |      |              |                       |                   |      |
| Work Order: 2104008     |                       |        |           |             |      |              | QC                    | SUMMARY REF       | ORT  |
| <b>CLIENT:</b> Libby En | vironmental           |        |           |             | Po   | lvaromat     | ie Uvdrocarbone I     | ov EBA Mothod 927 |      |
| Project: BLT Truc       | cking                 |        |           |             | FU   | nyaromai     |                       |                   |      |
| Sample ID: MB-31898     | SampType: <b>MBLK</b> |        |           | Units: µg/L |      | Prep Dat     | te: 4/7/2021          | RunNo: 66433      |      |
| Client ID: MBLKW        | Batch ID: 31898       |        |           |             |      | Analysis Dat | te: 4/8/2021          | SeqNo: 1336520    |      |
| Analyte                 | Result                | RL     | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Val | %RPD RPDLimit     | Qual |
| Benz(a)anthracene       | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Chrysene                | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Benzo(b)fluoranthene    | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Benzo(k)fluoranthene    | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Benzo(a)pyrene          | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Indeno(1,2,3-cd)pyrene  | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Dibenz(a,h)anthracene   | ND                    | 0.0983 |           |             |      |              |                       |                   |      |
| Surr: 2-Fluorobiphenyl  | 1.71                  |        | 1.967     |             | 86.7 | 47.6         | 142                   |                   |      |
| Surr: Terphenyl-d14     | 1.86                  |        | 1.967     |             | 94.4 | 15.9         | 137                   |                   |      |
| Sample ID: LCS-31898    | SampType: LCS         |        |           | Units: µg/L |      | Prep Dat     | te: 4/7/2021          | RunNo: 66433      |      |
| Client ID: LCSW         | Batch ID: 31898       |        |           |             |      | Analysis Dat | te: 4/8/2021          | SeqNo: 1336521    |      |
| Analyte                 | Result                | RL     | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Val | %RPD RPDLimit     | Qual |
| Benz(a)anthracene       | 3.06                  | 0.0996 | 3 984     | 0           | 76.8 | 37.6         | 130                   |                   |      |

| Client ID: MBLKW       | Batch ID: 318 | 98     |           |             |      | Analysis Da | te: 4/8/202 | 21          | SeqNo: 133 | 86520    |      |
|------------------------|---------------|--------|-----------|-------------|------|-------------|-------------|-------------|------------|----------|------|
| Analyte                | Result        | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Benz(a)anthracene      | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Chrysene               | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Benzo(b)fluoranthene   | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Benzo(k)fluoranthene   | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Benzo(a)pyrene         | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Indeno(1,2,3-cd)pyrene | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Dibenz(a,h)anthracene  | ND            | 0.0983 |           |             |      |             |             |             |            |          |      |
| Surr: 2-Fluorobiphenyl | 1.71          |        | 1.967     |             | 86.7 | 47.6        | 142         |             |            |          |      |
| Surr: Terphenyl-d14    | 1.86          |        | 1.967     |             | 94.4 | 15.9        | 137         |             |            |          |      |
| Sample ID: LCS-31898   | SampType: LCS | ;      |           | Units: µg/L |      | Prep Da     | te: 4/7/202 | 21          | RunNo: 664 | 133      |      |
| Client ID: LCSW        | Batch ID: 318 | 98     |           |             |      | Analysis Da | te: 4/8/202 | 21          | SeqNo: 133 | 86521    |      |
| Analyte                | Result        | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Benz(a)anthracene      | 3.06          | 0.0996 | 3.984     | 0           | 76.8 | 37.6        | 130         |             |            |          |      |
| Chrysene               | 2.86          | 0.0996 | 3.984     | 0           | 71.9 | 36.3        | 112         |             |            |          |      |
| Benzo(b)fluoranthene   | 2.92          | 0.0996 | 3.984     | 0           | 73.2 | 26.7        | 120         |             |            |          |      |
| Benzo(k)fluoranthene   | 3.13          | 0.0996 | 3.984     | 0           | 78.5 | 16.4        | 121         |             |            |          |      |
| Benzo(a)pyrene         | 3.22          | 0.0996 | 3.984     | 0           | 80.9 | 20.1        | 127         |             |            |          |      |
| Indeno(1,2,3-cd)pyrene | 2.85          | 0.0996 | 3.984     | 0           | 71.4 | 14.6        | 106         |             |            |          |      |
| Dibenz(a,h)anthracene  | 2.89          | 0.0996 | 3.984     | 0           | 72.6 | 12.5        | 106         |             |            |          |      |
| Surr: 2-Fluorobiphenyl | 1.59          |        | 1.992     |             | 79.9 | 47.6        | 142         |             |            |          |      |
| Surr: Terphenyl-d14    | 1.71          |        | 1.992     |             | 86.0 | 15.9        | 137         |             |            |          |      |
| Sample ID: LCSD-31898  | SampType: LCS | D      |           | Units: µg/L |      | Prep Da     | te: 4/7/202 | 21          | RunNo: 664 | 133      |      |
| Client ID: LCSW02      | Batch ID: 318 | 98     |           |             |      | Analysis Da | te: 4/8/202 | 21          | SeqNo: 133 | 86522    |      |
| Analyte                | Result        | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Benz(a)anthracene      | 3.29          | 0.0994 | 3.978     | 0           | 82.7 | 37.6        | 130         | 3.060       | 7.27       | 30       |      |



| Work Order:        | 2104008     |           |        |        |           |             |      |               |                        | 00.5        |            |           | PORT    |
|--------------------|-------------|-----------|--------|--------|-----------|-------------|------|---------------|------------------------|-------------|------------|-----------|---------|
| CLIENT:            | Libby Envir | onmental  |        |        |           |             |      |               |                        |             |            |           |         |
| Project:           | BLT Trucki  | ng        |        |        |           |             | Po   | lyaromati     | c Hydro                | carbons b   | y EPA Met  | thod 827( | 0 (SIM) |
| Sample ID: LCSD    | -31898      | SampType  | LCSD   |        |           | Units: µg/L |      | Prep Date     | : 4/7/202 <sup>-</sup> | 1           | RunNo: 664 | 433       |         |
| Client ID: LCSW    | /02         | Batch ID: | 31898  |        |           |             |      | Analysis Date | 4/8/202 <sup>4</sup>   | 1           | SeqNo: 13: | 36522     |         |
| Analyte            |             | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit              | RPD Ref Val | %RPD       | RPDLimit  | Qual    |
| Chrysene           |             |           | 3.07   | 0.0994 | 3.978     | 0           | 77.2 | 36.3          | 112                    | 2.864       | 6.95       | 30        |         |
| Benzo(b)fluoranthe | ene         |           | 3.51   | 0.0994 | 3.978     | 0           | 88.2 | 26.7          | 120                    | 2.915       | 18.4       | 30        |         |
| Benzo(k)fluoranthe | ene         |           | 2.94   | 0.0994 | 3.978     | 0           | 74.0 | 16.4          | 121                    | 3.128       | 6.12       | 30        |         |
| Benzo(a)pyrene     |             |           | 3.49   | 0.0994 | 3.978     | 0           | 87.7 | 20.1          | 127                    | 3.223       | 7.86       | 30        |         |
| Indeno(1,2,3-cd)py | /rene       |           | 3.11   | 0.0994 | 3.978     | 0           | 78.1 | 14.6          | 106                    | 2.846       | 8.78       | 30        |         |
| Dibenz(a,h)anthrac | cene        |           | 3.17   | 0.0994 | 3.978     | 0           | 79.6 | 12.5          | 106                    | 2.892       | 9.01       | 30        |         |
| Surr: 2-Fluorobi   | phenyl      |           | 1.63   |        | 1.989     |             | 81.9 | 47.6          | 142                    |             | 0          | 0         |         |
| Surr: Terphenyl-   | -d14        |           | 1.81   |        | 1.989     |             | 91.1 | 15.9          | 137                    |             | 0          | 0         |         |
| Sample ID: 21030   | 65-006IMS   | SampType  | MS     |        |           | Units: µg/L |      | Prep Date     | : 4/7/202 <sup>,</sup> | 1           | RunNo: 664 | 433       |         |
| Client ID: BATC    | н           | Batch ID: | 31898  |        |           |             |      | Analysis Date | : 4/8/202 <sup>,</sup> | 1           | SeqNo: 13: | 37277     |         |
| Analyte            |             | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit              | RPD Ref Val | %RPD       | RPDLimit  | Qual    |
| Benz(a)anthracene  | 9           |           | 2.95   | 0.0992 | 3.969     | 0           | 74.2 | 28.5          | 109                    |             |            |           | н       |
| Chrysene           |             |           | 2.89   | 0.0992 | 3.969     | 0           | 72.8 | 25.8          | 96.9                   |             |            |           | н       |
| Benzo(b)fluoranthe | ene         |           | 3.02   | 0.0992 | 3.969     | 0           | 76.2 | 10.3          | 99.5                   |             |            |           | н       |
| Benzo(k)fluoranthe | ene         |           | 3.15   | 0.0992 | 3.969     | 0           | 79.3 | 6.1           | 98.9                   |             |            |           | н       |
| Benzo(a)pyrene     |             |           | 3.44   | 0.0992 | 3.969     | 0           | 86.6 | 6.94          | 99.7                   |             |            |           | н       |
| Indeno(1,2,3-cd)py | /rene       |           | 2.71   | 0.0992 | 3.969     | 0           | 68.3 | 2.48          | 78.2                   |             |            |           | н       |
| Dibenz(a,h)anthrac | cene        |           | 2.75   | 0.0992 | 3.969     | 0           | 69.2 | 5             | 75                     |             |            |           | н       |
| Surr: 2-Fluorobi   | phenyl      |           | 1.59   |        | 1.984     |             | 80.2 | 47.6          | 142                    |             |            |           | н       |
| Surr: Terphenyl-   | -d14        |           | 1.61   |        | 1.984     |             | 81.0 | 15.9          | 137                    |             |            |           | Н       |
| Sample ID: MB-31   | 1939        | SampType  | MBLK   |        |           | Units: µg/L |      | Prep Date     | : 4/9/202 <sup>,</sup> | 1           | RunNo: 664 | 497       |         |
| Client ID: MBLK    | W           | Batch ID: | 31939  |        |           |             |      | Analysis Date | : 4/12/202             | 21          | SeqNo: 13; | 37947     |         |
| Analyte            |             | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit              | RPD Ref Val | %RPD       | RPDLimit  | Qual    |
| Benz(a)anthracene  | e           |           | ND     | 0.0991 |           |             |      |               |                        |             |            |           |         |
| Chrvsene           |             |           | ND     | 0.0991 |           |             |      |               |                        |             |            |           |         |

| Fremont    |
|------------|
| Analytical |

| Work Order:        | 2104008       |           |        |        |           |             |      |              |                    | 009         |            |          | ORT     |
|--------------------|---------------|-----------|--------|--------|-----------|-------------|------|--------------|--------------------|-------------|------------|----------|---------|
| CLIENT:            | Libby Enviror | nmental   |        |        |           |             | _    | _            |                    |             |            |          |         |
| Project:           | BLT Trucking  | 9         |        |        |           |             | Po   | olyaromat    | ic Hydro           | ocarbons b  | y EPA Me   | thod 827 | 0 (SIM) |
| Sample ID: MB-31   | 939           | SampType: | MBLK   |        |           | Units: µg/L |      | Prep Dat     | e: <b>4/9/202</b>  | 21          | RunNo: 664 | 497      |         |
| Client ID: MBLK    | w             | Batch ID: | 31939  |        |           |             |      | Analysis Dat | te: <b>4/12/20</b> | )21         | SeqNo: 13: | 37947    |         |
| Analyte            |               | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benzo(b)fluoranthe | ene           |           | ND     | 0.0991 |           |             |      |              |                    |             |            |          |         |
| Benzo(k)fluoranthe | ene           |           | ND     | 0.0991 |           |             |      |              |                    |             |            |          |         |
| Benzo(a)pyrene     |               |           | ND     | 0.0991 |           |             |      |              |                    |             |            |          |         |
| Indeno(1,2,3-cd)py | rene          |           | ND     | 0.0991 |           |             |      |              |                    |             |            |          |         |
| Dibenz(a,h)anthrac | cene          |           | ND     | 0.0991 |           |             |      |              |                    |             |            |          |         |
| Surr: 2-Fluorobip  | ohenyl        |           | 1.77   |        | 1.981     |             | 89.5 | 47.6         | 142                |             |            |          |         |
| Surr: Terphenyl-   | d14           |           | 2.45   |        | 1.981     |             | 124  | 15.9         | 137                |             |            |          |         |
| Sample ID: LCS-3   | 1939          | SampType: | LCS    |        |           | Units: µg/L |      | Prep Dat     | e: <b>4/9/202</b>  | 21          | RunNo: 664 | 497      |         |
| Client ID: LCSW    |               | Batch ID: | 31939  |        |           |             |      | Analysis Dat | te: <b>4/12/20</b> | 021         | SeqNo: 13  | 37948    |         |
| Analyte            |               | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benz(a)anthracene  | )             |           | 3.61   | 0.0992 | 3.969     | 0           | 91.0 | 37.6         | 130                |             |            |          |         |
| Chrysene           |               |           | 3.45   | 0.0992 | 3.969     | 0           | 87.0 | 36.3         | 112                |             |            |          |         |
| Benzo(b)fluoranthe | ene           |           | 3.91   | 0.0992 | 3.969     | 0           | 98.6 | 26.7         | 120                |             |            |          |         |
| Benzo(k)fluoranthe | ene           |           | 3.50   | 0.0992 | 3.969     | 0           | 88.3 | 16.4         | 121                |             |            |          |         |
| Benzo(a)pyrene     |               |           | 3.88   | 0.0992 | 3.969     | 0           | 97.7 | 20.1         | 127                |             |            |          |         |
| Indeno(1,2,3-cd)py | rene          |           | 3.63   | 0.0992 | 3.969     | 0           | 91.5 | 14.6         | 106                |             |            |          |         |
| Dibenz(a,h)anthrac | cene          |           | 3.68   | 0.0992 | 3.969     | 0           | 92.8 | 12.5         | 106                |             |            |          |         |
| Surr: 2-Fluorobip  | ohenyl        |           | 1.56   |        | 1.984     |             | 78.5 | 47.6         | 142                |             |            |          |         |
| Surr: Terphenyl-   | d14           |           | 1.97   |        | 1.984     |             | 99.2 | 15.9         | 137                |             |            |          |         |
| Sample ID: LCSD-   | -31939        | SampType: | LCSD   |        |           | Units: µg/L |      | Prep Dat     | e: <b>4/9/202</b>  | 21          | RunNo: 664 | 497      |         |
| Client ID: LCSW    | 02            | Batch ID: | 31939  |        |           | . •         |      | Analysis Dat | ie: <b>4/12/20</b> | 021         | SeqNo: 13  | 37949    |         |
| Analyte            |               | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benz(a)anthracene  | 9             |           | 3.66   | 0.0994 | 3.976     | 0           | 92.0 | 37.6         | 130                | 3.611       | 1.24       | 30       |         |
| Chrysene           |               |           | 3.63   | 0.0994 | 3.976     | 0           | 91.3 | 36.3         | 112                | 3.454       | 4.95       | 30       |         |
| Benzo(b)fluoranthe | ene           |           | 3.70   | 0.0994 | 3.976     | 0           | 93.0 | 26.7         | 120                | 3.911       | 5.59       | 30       |         |

|                    | AII          | шушси     |         |        |           |             |      |             |                    |             |            |           |          |
|--------------------|--------------|-----------|---------|--------|-----------|-------------|------|-------------|--------------------|-------------|------------|-----------|----------|
| Work Order:        | 2104008      |           |         |        |           |             |      |             |                    | QCS         | SUMMAI     | RY REF    | PORT     |
| CLIENT:            | Libby Enviro | onmental  |         |        |           |             | De   |             | tio I brain.       |             |            |           |          |
| Project:           | BLT Truckin  | ng        |         |        |           |             | P0   | iyaroma     | tic Hydro          | ocarbons b  | y EPA ivie | inoa 8270 | U (SINI) |
| Sample ID: LCSD    | -31939       | SampType  | e: LCSD |        |           | Units: µg/L |      | Prep Da     | te: 4/9/202        | 21          | RunNo: 664 | 497       |          |
| Client ID: LCSW    | /02          | Batch ID: | 31939   |        |           |             |      | Analysis Da | ite: 4/12/20       | 21          | SeqNo: 133 | 37949     |          |
| Analyte            |              |           | Result  | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benzo(k)fluoranthe | ene          |           | 4.05    | 0.0994 | 3.976     | 0           | 102  | 16.4        | 121                | 3.504       | 14.5       | 30        |          |
| Benzo(a)pyrene     |              |           | 4.07    | 0.0994 | 3.976     | 0           | 102  | 20.1        | 127                | 3.876       | 4.99       | 30        |          |
| Indeno(1,2,3-cd)py | /rene        |           | 3.79    | 0.0994 | 3.976     | 0           | 95.4 | 14.6        | 106                | 3.630       | 4.44       | 30        |          |
| Dibenz(a,h)anthrac | cene         |           | 3.90    | 0.0994 | 3.976     | 0           | 98.0 | 12.5        | 106                | 3.681       | 5.71       | 30        |          |
| Surr: 2-Fluorobi   | phenyl       |           | 1.56    |        | 1.988     |             | 78.3 | 47.6        | 142                |             | 0          | 0         |          |
| Surr: Terphenyl-   | -d14         |           | 2.02    |        | 1.988     |             | 102  | 15.9        | 137                |             | 0          | 0         |          |
| Sample ID: 21041   | 29-001BMS    | SampType  | e: MS   |        |           | Units: µg/L |      | Prep Da     | te: <b>4/9/202</b> | !1          | RunNo: 664 | 497       |          |
| Client ID: BATC    | н            | Batch ID: | 31939   |        |           |             |      | Analysis Da | te: 4/12/20        | 21          | SeqNo: 133 | 37953     |          |
| Analyte            |              |           | Result  | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benz(a)anthracene  | Э            |           | 3.11    | 0.0990 | 3.961     | 0           | 78.6 | 28.5        | 109                |             |            |           |          |
| Chrysene           |              |           | 3.08    | 0.0990 | 3.961     | 0           | 77.9 | 25.8        | 96.9               |             |            |           |          |
| Benzo(b)fluoranthe | ene          |           | 3.48    | 0.0990 | 3.961     | 0           | 87.8 | 10.3        | 99.5               |             |            |           |          |
| Benzo(k)fluoranthe | ene          |           | 3.03    | 0.0990 | 3.961     | 0           | 76.5 | 6.1         | 98.9               |             |            |           |          |
| Benzo(a)pyrene     |              |           | 3.26    | 0.0990 | 3.961     | 0           | 82.2 | 6.94        | 99.7               |             |            |           |          |
| Indeno(1,2,3-cd)py | /rene        |           | 3.19    | 0.0990 | 3.961     | 0           | 80.5 | 2.48        | 78.2               |             |            |           | S        |
| Dibenz(a,h)anthrac | cene         |           | 3.26    | 0.0990 | 3.961     | 0           | 82.2 | 5           | 75                 |             |            |           | S        |
| Surr: 2-Fluorobi   | phenyl       |           | 1.06    |        | 1.980     |             | 53.6 | 47.6        | 142                |             |            |           |          |
| Surr: Terphenyl-   | -d14         |           | 1.76    |        | 1.980     |             | 88.9 | 15.9        | 137                |             |            |           |          |

NOTES:

Fremont

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).



### Sample Log-In Check List

|     |                               | LIBBI                                                                             | Work Order Numb        | per: 2104008     |                |
|-----|-------------------------------|-----------------------------------------------------------------------------------|------------------------|------------------|----------------|
| Lo  | gged by:                      | Gabrielle Coeuille                                                                | Date Received:         | 4/1/2021         | 9:45:00 AM     |
| Cha | in of Custe                   | ody                                                                               |                        |                  |                |
| 1.  | Is Chain of C                 | ustody complete?                                                                  | Yes 🖌                  | No 🗌             | Not Present    |
| 2.  | How was the                   | sample delivered?                                                                 | FedEx                  |                  |                |
| Log | <u>In</u>                     |                                                                                   |                        |                  |                |
| 3.  | Coolers are p                 | present?                                                                          | Yes 🖌                  | No 🗌             |                |
| 4.  | Shipping con                  | tainer/cooler in good condition?                                                  | Yes 🖌                  | No 🗌             |                |
| 5.  | Custody Seal<br>(Refer to com | ls present on shipping container/cooler?<br>Inments for Custody Seals not intact) | Yes                    | No 🗌             | Not Present 🗹  |
| 6.  | Was an atten                  | npt made to cool the samples?                                                     | Yes 🗸                  | No 🗌             | NA 🗌           |
| 7.  | Were all item                 | s received at a temperature of >2°C to 6°C *                                      | Yes 🗹                  | No 🗌             |                |
| 8.  | Sample(s) in                  | proper container(s)?                                                              | Yes 🔽                  | No 🗌             |                |
| 9.  | Sufficient sar                | nple volume for indicated test(s)?                                                | Yes 🖌                  | No 🗌             |                |
| 10. | Are samples                   | properly preserved?                                                               | Yes 🗹                  | No 🗌             |                |
| 11. | Was preserva                  | ative added to bottles?                                                           | Yes                    | No 🖌             | NA 🗌           |
| 12. | Is there head                 | space in the VOA vials?                                                           | Yes                    | No 🗌             | NA 🗹           |
| 13. | Did all sample                | es containers arrive in good condition(unbroken)?                                 | Yes 🖌                  | No 🗌             |                |
| 14. | Does paperw                   | ork match bottle labels?                                                          | Yes 🖌                  | No 🗌             |                |
| 15. | Are matrices                  | correctly identified on Chain of Custody?                                         | Yes 🖌                  | No 🗌             |                |
| 16. | Is it clear what              | at analyses were requested?                                                       | Yes 🖌                  | No 🗌             |                |
| 17. | Were all hold                 | ling times able to be met?                                                        | Yes 🗌                  | No 🗹             |                |
| Spe | cial Handl                    | ing (if applicable)                                                               |                        |                  |                |
| 18. | Was client no                 | ptified of all discrepancies with this order?                                     | Yes 🖌                  | No 🗌             |                |
|     | Person                        | Notified: Sherry Chilcutt Date:                                                   |                        | 4/7/2021         |                |
|     | By Who                        | m: Brianna Barnes Via:                                                            | ✓ eMail □ Ph           | one 🗌 Fax        | In Person      |
|     | Regardi                       | ng: PAH extraction error in original run. Rec                                     | questing authorization | on to re-extract | t out of hold. |
|     | Client Ir                     | nstructions: See additional remarks                                               |                        |                  |                |

#### 19. Additional remarks:

OK to re-extract out of hold. Will provide additional volume for MW5 (volume was consumed in first extraction).

#### Item Information

| Item #   | Temp ⁰C |
|----------|---------|
| Sample 1 | 3.4     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C



### Sample Log-In Check List

| Client              | t Name:                   | LIBBY                                                                          | Work Order Numb | oer: 2104008 |               |
|---------------------|---------------------------|--------------------------------------------------------------------------------|-----------------|--------------|---------------|
| Logge               | ed by:                    | Brianna Barnes                                                                 | Date Received:  | 4/1/2021     | 9:45:00 AM    |
| Chain               | of Custo                  | <u>ody</u>                                                                     |                 |              |               |
| 1. ls (             | Chain of C                | ustody complete?                                                               | Yes 🖌           | No 🗌         | Not Present   |
| 2. Ho               | w was the                 | sample delivered?                                                              | UPS             |              |               |
| <u>Log In</u>       |                           |                                                                                |                 |              |               |
| 3. Co               | olers are p               | resent?                                                                        | Yes 🖌           | No 🗌         |               |
| 4. Shi              | ipping cont               | ainer/cooler in good condition?                                                | Yes 🖌           | No 🗌         |               |
| 5. Cu<br>(Re        | stody Seal<br>efer to com | s present on shipping container/cooler?<br>ments for Custody Seals not intact) | Yes             | No 🗌         | Not Present 🗹 |
| 6. Wa               | as an atten               | npt made to cool the samples?                                                  | Yes 🖌           | No 🗌         | NA 🗌          |
| 7. We               | ere all item              | s received at a temperature of >2°C to 6°C *                                   | Yes 🖌           | No 🗌         |               |
| <b>8</b> . Sa       | mple(s) in                | proper container(s)?                                                           | Yes 🔽           | No 🗌         |               |
| 9. Su               | fficient san              | nple volume for indicated test(s)?                                             | Yes 🖌           | No 🗆         |               |
| 10. Are             | e samples                 | properly preserved?                                                            | Yes 🖌           | No 🗌         |               |
| 11. Wa              | as preserva               | ative added to bottles?                                                        | Yes             | No 🗹         | NA 🗌          |
| 12. <sup>Is t</sup> | here head                 | space in the VOA vials?                                                        | Yes             | No 🗌         | NA 🗹          |
| 13. Dic             | d all sample              | es containers arrive in good condition(unbroken)?                              | Yes 🗹           | No 🗌         |               |
| 14. Do              | es paperw                 | ork match bottle labels?                                                       | Yes 🗹           | No 🗌         |               |
| 15. Are             | e matrices                | correctly identified on Chain of Custody?                                      | Yes 🔽           | No 🗌         |               |
| 16. ls i            | t clear wha               | at analyses were requested?                                                    | Yes 🖌           | No 🗌         |               |
| 17. We              | ere all hold              | ing times able to be met?                                                      | Yes             | No 🗹         |               |
| <u>Specia</u>       | al Handli                 | ing (if applicable)                                                            |                 |              |               |
| 18. <sup>Wa</sup>   | as client no              | tified of all discrepancies with this order?                                   | Yes             | No 🗌         | NA 🗹          |
|                     | Person                    | Notified: Date                                                                 |                 |              |               |
|                     | By Who                    | m: Via:                                                                        | eMail Ph        | one 🗌 Fax    | In Person     |
|                     | Regardi                   | ng:                                                                            |                 |              |               |
|                     | Client In                 | structions:                                                                    |                 |              |               |

Additional volume for "MW5" received 4/8/2021 @ 0918.

#### Item Information

| Item # | Temp ⁰C |
|--------|---------|
| Sample | 5.9     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

| Libby Environmental, Inc.                |            |                   |                | Chain of Custody Record        |                             |                                         |                                                                                                     |             | ord              | W04008 www.LibbyEnvironmer              |                                             |                   | ental.com |                  |       |
|------------------------------------------|------------|-------------------|----------------|--------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|------------------|-----------------------------------------|---------------------------------------------|-------------------|-----------|------------------|-------|
| Olympia, WA 98506                        | Fax        | Fax: 360-352-2110 |                |                                |                             | Date: 3/31/21                           |                                                                                                     |             |                  | Page:                                   |                                             |                   | of        |                  |       |
| Client: Libby Environmental Inc.         |            |                   |                |                                | Project Manager: Kaley Eley |                                         |                                                                                                     |             |                  |                                         | f 17                                        |                   |           |                  |       |
| Address: See Above                       |            |                   |                |                                |                             | Proje                                   | ct Name:                                                                                            | BLT I       | Teuckin          | -en                                     |                                             |                   |           |                  | 17 0  |
| City:                                    | State: Zin |                   |                |                                |                             | Location:                               |                                                                                                     |             |                  | Cit                                     | City State: Kingt WA                        |                   |           |                  |       |
| Phone:                                   | Fay        |                   |                |                                |                             | Collector: SRB                          |                                                                                                     |             |                  | Date of Collection: 3/30/21             |                                             |                   |           |                  |       |
| Client Project # 1 2 1/0 221-3           |            |                   |                |                                |                             | Email: 1 th or Occur 1                  |                                                                                                     |             |                  |                                         | 00                                          |                   | Colle     | 5100/1. J/ 00/2. |       |
| Sample Number                            | Depth      | Time              | Sample<br>Type | Container                      |                             | 200 000 000 000 000 000 000 000 000 000 | 2100<br>2100<br>810<br>810<br>810<br>810<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8 | Returned 23 | 2000 C           | 101 101 101 101 101 101 101 101 101 101 | 200 200 - 1<br>200 200 - 1<br>200 - 200 - 1 | 00000             |           | Field Notes      |       |
| 1 MW 5                                   |            | 1001              | H20            | +Poly x2                       |                             |                                         |                                                                                                     |             |                  | X                                       | X                                           |                   | Í         | [                |       |
| 2 MW 1                                   | -          | 1052              |                | A.                             |                             |                                         |                                                                                                     |             |                  | K                                       | ×                                           | 4                 |           |                  |       |
| 3 MW 4                                   |            | 1150              |                |                                |                             |                                         |                                                                                                     |             |                  | X                                       | ×                                           |                   |           |                  |       |
| 4 MW 3                                   |            | 1246              |                |                                |                             |                                         |                                                                                                     |             |                  | X                                       | ×                                           |                   |           |                  |       |
| 5 MW 2                                   | <u> </u>   | 1323              |                |                                |                             |                                         |                                                                                                     |             |                  | x                                       | X                                           |                   |           |                  |       |
| 6                                        |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 7                                        |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 8                                        |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 9                                        |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 10                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 11                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 12                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 13                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 14                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 15                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 16                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| 17                                       |            |                   |                |                                |                             |                                         |                                                                                                     |             |                  |                                         |                                             | 1                 |           |                  |       |
| Relinquished by:                         | - 3/       | 31/21             | Date / Time    | Received by:                   |                             |                                         |                                                                                                     | Date / Ti   | me Good          | Sample<br>Condition                     | Receip                                      | n N               | Rem       | arks: Standar    | d     |
| Relinquished by: Date / Time             |            |                   |                | Received by: Date / Time Coole |                             |                                         |                                                                                                     | r Temp °C   |                  |                                         |                                             | 5 Daug TA-        | ٢         |                  |       |
| Belinguished by: Date / Time             |            |                   |                | Received by:                   |                             |                                         |                                                                                                     | Samp        | He Temp. * Helle |                                         |                                             | icld filtered Bot | tles for  |                  |       |
| an a |            |                   |                |                                |                             |                                         |                                                                                                     |             | Co               | number o                                | 1                                           |                   | TAT       | E 24HR 48HR      | 5-DAY |

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution White - Lab, Yellow - Originator



3322 South Bay Road NE • Olympia, WA 98506-2957

June 24, 2021

Charles McFadden ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. McFadden:

Please find enclosed the analytical data report for the BLT Trucking project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

3 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environmental, Inc. Chain of Custody Record www.LibbyEnvironmental.com                                                                         |                                                                                                                                            |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 3322 South Bay Road NE Ph: 360-352-2110                                                                                                              | (16002)                                                                                                                                    |  |  |  |  |  |  |  |  |
| Olympia, WA 98506 Fax: 360-352-4154                                                                                                                  | Date: 6/19/202 Page: of                                                                                                                    |  |  |  |  |  |  |  |  |
| Client: FCL                                                                                                                                          | Project Manager: CHAILES MCFADDEN                                                                                                          |  |  |  |  |  |  |  |  |
| Address: P.O.C BOX 153                                                                                                                               | Project Name: BUT TRVCKING                                                                                                                 |  |  |  |  |  |  |  |  |
| City: FOX IDLAND State: WA Zip: 9833 3                                                                                                               | Location: LENT, IN A City, State:                                                                                                          |  |  |  |  |  |  |  |  |
| Phone: 263-318-386 Fax:                                                                                                                              | Collector: 5 RB / CEL Date of Collection: 6/19/202                                                                                         |  |  |  |  |  |  |  |  |
| Client Project # $\emptyset 6 1 \cdot \emptyset 1 - \emptyset 3 \cdot \emptyset d$                                                                   | Email: CHARLES @ ALLECI.COM                                                                                                                |  |  |  |  |  |  |  |  |
| Sample Number Depth Time Type Type                                                                                                                   | 56 5 <sup>10</sup> 5 <sup>1</sup> |  |  |  |  |  |  |  |  |
| 1 MWS Q935 WALTER SOOMLANBER                                                                                                                         |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 2 MWY 100T 0000                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 3 MW 5                                                                                                                                               |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 4 MW 1135                                                                                                                                            |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 5 MWC 128 V                                                                                                                                          |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 6                                                                                                                                                    |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 7                                                                                                                                                    |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 8                                                                                                                                                    |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 9                                                                                                                                                    |                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 13                                                                                                                                                   |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 14                                                                                                                                                   |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 15                                                                                                                                                   |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 16                                                                                                                                                   |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 17 Date / Time Designation                                                                                                                           |                                                                                                                                            |  |  |  |  |  |  |  |  |
| 6/15/2 1434                                                                                                                                          | 6/15/21 We condition? Y N MTCA & JF ANY TOTAL                                                                                              |  |  |  |  |  |  |  |  |
| Relinquished by: Date / Time Received by:                                                                                                            | Date / Time Cooler Temp. °C DETECTIONS TXCEED CW 5                                                                                         |  |  |  |  |  |  |  |  |
|                                                                                                                                                      | Sample Temp. °C                                                                                                                            |  |  |  |  |  |  |  |  |
| Relinquished by: Date / Time Received by:                                                                                                            | Date / Time Total Number of                                                                                                                |  |  |  |  |  |  |  |  |
| LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs at | Ind reasonable attorney fees to be determined by a court of law.                                                                           |  |  |  |  |  |  |  |  |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                     |        | Method    | MW5       | MW5 Dup   | MW4       | MW3       | MW1       |  |  |
|--------------------------------------------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
|                                                        |        | Blank     |           | _         |           |           |           |  |  |
| Date Sampled                                           |        | N/A       | 6/15/2021 | 6/15/2021 | 6/15/2021 | 6/15/2021 | 6/15/2021 |  |  |
| Date Analyzed                                          | PQL    | 6/16/2021 | 6/16/2021 | 6/16/2021 | 6/16/2021 | 6/16/2021 | 6/16/2021 |  |  |
|                                                        | (µg/L) | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    |  |  |
| Benzene                                                | 1.0    | nd        | nd        | nd        | nd        | nd        | nd        |  |  |
| Toluene                                                | 2.0    | nd        | nd        | nd        | nd        | nd        | nd        |  |  |
| Ethylbenzene                                           | 1.0    | nd        | nd        | nd        | nd        | nd        | nd        |  |  |
| Total Xylenes                                          | 2.0    | nd        | nd        | nd        | nd        | nd        | nd        |  |  |
| Gasoline                                               | 100    | nd        | nd        | nd        | nd        | nd        | nd        |  |  |
| Surrogate Recovery                                     |        |           |           |           |           |           |           |  |  |
| Dibromofluoromethane                                   |        | 122       | 126       | 131       | 128       | 119       | 127       |  |  |
| 1,2-Dichloroethane-d4                                  |        | 111       | 112       | 115       | 117       | 116       | 112       |  |  |
| Toluene-d8                                             |        | 97        | 98        | 97        | 97        | 96        | 97        |  |  |
| 4-Bromofluorobenzene                                   |        | 93        | 92        | 93        | 91        | 95        | 93        |  |  |
| "nd" Indicates not detected at listed detection limit. |        |           |           |           |           |           |           |  |  |

#### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

### ANALYSES PERFORMED BY: Sherry Chilcutt
BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description         |                | MW2             |       |
|----------------------------|----------------|-----------------|-------|
| Date Sampled               |                | 6/15/2021       |       |
| Date Analyzed              | PQL            | 6/16/2021       |       |
|                            | (µg/L)         | (µg/L)          |       |
| Benzene                    | 1.0            | nd              |       |
| Toluene                    | 2.0            | nd              |       |
| Ethylbenzene               | 1.0            | nd              |       |
| Total Xylenes              | 2.0            | nd              |       |
| Gasoline                   | 100            | nd              |       |
| Surrogate Recovery         |                |                 |       |
| Dibromofluoromethane       |                | 123             |       |
| 1,2-Dichloroethane-d4      |                | 114             |       |
| Toluene-d8                 |                | 97              |       |
| 4-Bromofluorobenzene       |                | 93              |       |
| "nd" Indicates not detec   | cted at listed | detection limit |       |
| "int" Indicates that inter | rference pre   | vents determina | tion. |

### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ANALYSES PERFORMED BY: Sherry Chilcutt

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Matrix Spike Sample Identification: MW5 |        |          |             |          |          |     |          |      |  |
|-----------------------------------------|--------|----------|-------------|----------|----------|-----|----------|------|--|
| Date Analyzed: 6/16/2021                |        |          |             |          |          |     |          |      |  |
|                                         | Spiked | MS       | MSD         | MS       | MSD      | RPD | Limits   | Data |  |
|                                         | Conc.  | Response | Response    | Recovery | Recovery |     | Recovery | Flag |  |
|                                         | (µg/L) | (µg/L)   | $(\mu g/L)$ | (%)      | (%)      | (%) | (%)      |      |  |
| Benzene                                 | 5.0    | 6.0      | 6.1         | 120      | 122      | 1.8 | 65-135   |      |  |
| Toluene                                 | 5.0    | 5.6      | 5.9         | 112      | 119      | 6.3 | 65-135   |      |  |
| Ethylbenzene                            | 5.0    | 5.7      | 5.8         | 113      | 115      | 2.1 | 65-135   |      |  |
| Total Xylenes                           | 15.0   | 17.1     | 17.3        | 114      | 115      | 1.2 | 65-135   |      |  |
| Surrogate Recovery (%)                  |        |          |             | MS       | MSD      |     |          |      |  |
| Dibromofluoromethane                    |        |          |             | 131      | 129      |     | 65-135   |      |  |
| 1,2-Dichloroethane-d4                   |        |          |             | 115      | 114      |     | 65-135   |      |  |
| Toluene-d8                              |        |          |             | 98       | 97       |     | 65-135   |      |  |
| 4-Bromofluorobenzene                    |        |          |             | 93       | 93       |     | 65-135   |      |  |

### QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ACCEPTABLE RPD IS 35%

### ANALYSES PERFORMED BY: Sherry Chilcutt

| Date Analyzed         | · 6/16/2021 |          |          |            |      |
|-----------------------|-------------|----------|----------|------------|------|
| 2 ato 1 mary 200      | Spiked      | LCS      | LCS      | LCS        | Data |
|                       | Conc.       | Response | Recovery | Recovery   | Flag |
|                       | (µg/L)      | (μg/L)   | (%)      | Limits (%) | C    |
| Benzene               | 5.0         | 5.9      | 117      | 80-120     |      |
| Toluene               | 5.0         | 5.8      | 116      | 80-120     |      |
| Ethylbenzene          | 5.0         | 5.7      | 115      | 80-120     |      |
| Total Xylenes         | 15.0        | 17.6     | 117      | 80-120     |      |
| Surrogate Recovery    |             |          |          |            |      |
| Dibromofluoromethane  |             |          | 115      | 65-135     |      |
| 1,2-Dichloroethane-d4 |             |          | 109      | 65-135     |      |
| Toluene-d8            |             |          | 98       | 65-135     |      |
| 4-Bromofluorobenzene  |             |          | 97       | 65-135     |      |

### Laboratory Control Sample

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                                                      | Date      | Surrogate    | Diesel      | Oil         |  |  |  |  |  |
|-------------------------------------------------------------|-----------|--------------|-------------|-------------|--|--|--|--|--|
| Number                                                      | Analyzed  | Recovery (%) | $(\mu g/L)$ | $(\mu g/L)$ |  |  |  |  |  |
| Method Blank                                                | 6/16/2021 | 84           | nd          | nd          |  |  |  |  |  |
| MW5                                                         | 6/16/2021 | 91           | nd          | nd          |  |  |  |  |  |
| MW5 Dup                                                     | 6/16/2021 | 81           | nd          | nd          |  |  |  |  |  |
| MW4                                                         | 6/16/2021 | 92           | nd          | nd          |  |  |  |  |  |
| MW3                                                         | 6/16/2021 | 87           | nd          | nd          |  |  |  |  |  |
| MW1                                                         | 6/16/2021 | 92           | nd          | nd          |  |  |  |  |  |
| MW2                                                         | 6/16/2021 | 80           | nd          | nd          |  |  |  |  |  |
| Practical Quantitation Limit 200 400                        |           |              |             |             |  |  |  |  |  |
| "nd" Indicates not detected at the listed detection limits. |           |              |             |             |  |  |  |  |  |

### Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

### ANALYSES PERFORMED BY: Jenny Anderson

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                     | PQL                                                       | Method    | LCS       | LCSD      | MW5       | MW4       | MW3       |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|                                                        | -                                                         | Blank     |           |           |           |           |           |  |  |  |
| Date Sampled                                           |                                                           | N/A       | N/A       | N/A       | 6/15/2021 | 6/15/2021 | 6/15/2021 |  |  |  |
| Date Analyzed                                          |                                                           | 6/15/2021 | 6/15/2021 | 6/15/2021 | 6/15/2021 | 6/15/2021 | 6/15/2021 |  |  |  |
|                                                        | (µg/L)                                                    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    |  |  |  |
| Aroclor 1016                                           | 0.02                                                      | nd        | 95%       | 114%      | nd        | nd        | nd        |  |  |  |
| Aroclor 1221                                           | 0.02                                                      | nd        |           |           | nd        | nd        | nd        |  |  |  |
| Aroclor 1232                                           | 0.02                                                      | nd        |           |           | nd        | nd        | nd        |  |  |  |
| Aroclor 1242                                           | 0.02                                                      | nd        |           |           | nd        | nd        | nd        |  |  |  |
| Aroclor 1248                                           | 0.02                                                      | nd        |           |           | nd        | nd        | nd        |  |  |  |
| Aroclor 1254                                           | 0.02                                                      | nd        |           |           | nd        | nd        | nd        |  |  |  |
| Aroclor 1260                                           | 0.02                                                      | nd        | 96%       | 83%       | nd        | nd        | nd        |  |  |  |
| Surrogate Recovery                                     |                                                           |           |           |           |           |           |           |  |  |  |
| TCMX                                                   |                                                           | 83        | 80        | 121       | 127       | 134       | 131       |  |  |  |
| DCBP                                                   |                                                           | 90        | 116       | 127       | 111       | 118       | 103       |  |  |  |
| "nd" Indicates not detected at listed detection limit. |                                                           |           |           |           |           |           |           |  |  |  |
| "int" Indicates that in                                | "int" Indicates that interference prevents determination. |           |           |           |           |           |           |  |  |  |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135% ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                     | POL         | MW1             | MW2         |        |  |  |
|--------------------------------------------------------|-------------|-----------------|-------------|--------|--|--|
| 1 1                                                    |             |                 |             |        |  |  |
| Date Sampled                                           |             | 6/15/2021       | 6/15/2021   |        |  |  |
| Date Analyzed                                          |             | 6/15/2021       | 6/15/2021   |        |  |  |
|                                                        | (µg/L)      | (µg/L)          | (µg/L)      |        |  |  |
| Aroclor 1016                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1221                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1232                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1242                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1248                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1254                                           | 0.02        | nd              | nd          |        |  |  |
| Aroclor 1260                                           | 0.02        | nd              | nd          |        |  |  |
| Surrogate Recovery                                     |             |                 |             |        |  |  |
| TCMX                                                   |             | 133             | 77          |        |  |  |
| DCBP                                                   |             | 108             | 99          |        |  |  |
| "nd" Indicates not de                                  | tected at 1 | isted detection | n limit.    |        |  |  |
| "int" Indicates that in                                | terference  | e prevents det  | ermination. |        |  |  |
| ACCEPTABLE RECOV                                       | ERY LIMI    | TS FOR SURR     | DGATE 65% T | O 135% |  |  |
| ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% |             |                 |             |        |  |  |
| ACCEPTABLE RPD IS 2                                    | 20%         |                 |             |        |  |  |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ANALYSES PERFORMED BY: Paul Burke

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                                                      | Date      | Lead        | Cadmium     | Chromium    | Arsenic     |  |  |  |
|-------------------------------------------------------------|-----------|-------------|-------------|-------------|-------------|--|--|--|
| Number                                                      | Analyzed  | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ |  |  |  |
| Method Blank                                                | 6/18/2021 | nd          | nd          | nd          | nd          |  |  |  |
| MW5                                                         | 6/18/2021 | nd          | nd          | nd          | 13          |  |  |  |
| MW5 Dup                                                     | 6/18/2021 | nd          | nd          | nd          | 17          |  |  |  |
| MW4                                                         | 6/18/2021 | nd          | nd          | nd          | 4.3         |  |  |  |
| MW3                                                         | 6/18/2021 | nd          | nd          | nd          | 6.7         |  |  |  |
| MW1                                                         | 6/18/2021 | nd          | nd          | nd          | 5.9         |  |  |  |
| MW2                                                         | 6/18/2021 | nd          | nd          | nd          | nd          |  |  |  |
| Practical Quantitation                                      | n Limit   | 5.0         | 0.5         | 5.0         | 3.0         |  |  |  |
| "nd" Indicates not detected at the listed detection limits. |           |             |             |             |             |  |  |  |

### Analyses of Total Metals in Water by EPA Method 7010 Series

### ANALYSES PERFORMED BY: Kodey Eley

### QA/QC for Total Metals in Water by EPA Method 7010 Series

| Sample  | Date      | Lead         | Cadmium      | Chromium     | Arsenic      |
|---------|-----------|--------------|--------------|--------------|--------------|
| Number  | Analyzed  | (% Recovery) | (% Recovery) | (% Recovery) | (% Recovery) |
| LCS     | 6/18/2021 | 110%         | 113%         | 103%         | 103%         |
| MW5 MS  | 6/18/2021 | 108%         | 93%          | 108%         | 99%          |
| MW5 MSD | 6/18/2021 | 107%         | 91%          | 105%         | 98%          |
| RPD     | 6/18/2021 | 1%           | 2%           | 3%           | 1%           |

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

### ANALYSES PERFORMED BY: Kodey Eley

BLT TRUCKING PROJECT ECI Libby Project # L210615-3 Date Received 6/15/21 14:34 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

### Sample Receipt Checklist

| Chain of Custody                                              |                |             |         |
|---------------------------------------------------------------|----------------|-------------|---------|
| 1. Is the Chain of Custody complete?                          | ✓ Yes          | 🗌 No        |         |
| 2. How was the sample delivered?                              | Hand Delivered | ✓ Picked Up | Shipped |
| Log In                                                        |                |             |         |
| 3. Cooler or Shipping Container is present.                   | ☑ Yes          | 🗌 No        | 🗌 N/A   |
| 4. Cooler or Shipping Container is in good condition.         | ✓ Yes          | 🗌 No        | 🗌 N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    | Yes            | ✓ No        | 🗌 N/A   |
| 6. Was an attempt made to cool the samples?                   | ✓ Yes          | 🗌 No        | 🗌 N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             | 6.0            | °C          |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          | 14.8           | °C          |         |
| 9. Did all containers arrive in good condition (unbroken)?    | ✓ Yes          | 🗌 No        |         |
| 10. Is it clear what analyses were requested?                 | ✓ Yes          | 🗌 No        |         |
| 11. Did container labels match Chain of Custody?              | ✓ Yes          | 🗌 No        |         |
| 12. Are matrices correctly identified on Chain of Custody?    | ☑ Yes          | 🗌 No        |         |
| 13. Are correct containers used for the analysis indicated?   | ☑ Yes          | 🗌 No        |         |
| 14. Is there sufficient sample volume for indicated analysis? | ✓ Yes          | 🗌 No        |         |
| 15. Were all containers properly preserved per each analysis? | ✓ Yes          | 🗌 No        |         |
| 16. Were VOA vials collected correctly (no headspace)?        | ✓ Yes          | 🗌 No        | 🗋 N/A   |
| 17. Were all holding times able to be met?                    | ☑ Yes          | 🗌 No        |         |
|                                                               |                |             |         |
| Discrepancies/ Notes                                          |                |             |         |
| 18. Was client notified of all discrepancies?                 | Yes            | 🗌 No        | ✓ N/A   |
| Person Notified:                                              |                | Date:       |         |
| By Whom:                                                      |                | Via:        |         |
| Regarding:                                                    |                | _           |         |
| 19. Comments.                                                 |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |



3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: BLT Trucking Work Order Number: 2106291

June 23, 2021

#### **Attention Sherry Chilcutt:**

Fremont Analytical, Inc. received 5 sample(s) on 6/16/2021 for the analyses presented in the following report.

#### Mercury by EPA Method 245.1

#### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



| CLIENT:<br>Project:<br>Work Order: | Libby Environmental<br>BLT Trucking<br>2106291 | work Order Sample Summa |                    |  |  |  |  |
|------------------------------------|------------------------------------------------|-------------------------|--------------------|--|--|--|--|
| Lab Sample ID                      | Client Sample ID                               | Date/Time Collected     | Date/Time Received |  |  |  |  |
| 2106291-001                        | MW1                                            | 06/15/2021 11:35 AM     | 06/16/2021 9:04 AM |  |  |  |  |
| 2106291-002                        | MW2                                            | 06/15/2021 12:28 PM     | 06/16/2021 9:04 AM |  |  |  |  |
| 2106291-003                        | MW3                                            | 06/15/2021 11:11 AM     | 06/16/2021 9:04 AM |  |  |  |  |
| 2106291-004                        | MW4                                            | 06/15/2021 10:27 AM     | 06/16/2021 9:04 AM |  |  |  |  |
| 2106291-005                        | MW5                                            | 06/15/2021 9:35 AM      | 06/16/2021 9:04 AM |  |  |  |  |



**Case Narrative** 

WO#: **2106291** Date: **6/23/2021** 

CLIENT:Libby EnvironmentalProject:BLT Trucking

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### **III. ANALYSES AND EXCEPTIONS:**

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

### **Qualifiers & Acronyms**



 WO#:
 2106291

 Date Reported:
 6/23/2021

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification DF - Dilution Factor DUP - Sample Duplicate HEM - Hexane Extractable Material ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- **REP Sample Replicate**
- RL Reporting Limit
- **RPD** Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate



| Client: Libby Environmental    | Collection Date: 6/15/2021 11:35:00 AM |                   |      |           |       |                      |
|--------------------------------|----------------------------------------|-------------------|------|-----------|-------|----------------------|
| Project: BLT Trucking          |                                        |                   |      |           |       |                      |
| Lab ID: 2106291-001            |                                        |                   |      | Matrix: W | /ater |                      |
| Client Sample ID: MW1          |                                        |                   |      |           |       |                      |
| Analyses                       | Result                                 | RL                | Qual | Units     | DF    | Date Analyzed        |
| Polyaromatic Hydrocarbons by E | PA Method                              | <u>8270 (SIM)</u> |      | Batc      | h ID: | 32680 Analyst: SB    |
| Benz(a)anthracene              | ND                                     | 0.0984            |      | μg/L      | 1     | 6/17/2021 8:31:08 PM |
| Chrysene                       | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Benzo(b)fluoranthene           | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Benzo(k)fluoranthene           | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Benzo(a)pyrene                 | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Dibenz(a,h)anthracene          | ND                                     | 0.0984            |      | µg/L      | 1     | 6/17/2021 8:31:08 PM |
| Surr: 2-Fluorobiphenyl         | 108                                    | 33.2 - 139        |      | %Rec      | 1     | 6/17/2021 8:31:08 PM |
| Surr: Terphenyl-d14            | 121                                    | 24.6 - 136        |      | %Rec      | 1     | 6/17/2021 8:31:08 PM |
| Mercury by EPA Method 245.1    |                                        |                   |      | Batc      | h ID: | 32754 Analyst: LB    |
| Mercury                        | ND                                     | 0.100             |      | µg/L      | 1     | 6/23/2021 4:58:30 PM |



| Client: Libby Environmental    | Collection Date: 6/15/2021 12:28:00 PM |                   |      |           |       |                      |
|--------------------------------|----------------------------------------|-------------------|------|-----------|-------|----------------------|
| Project: BLT Trucking          |                                        |                   |      |           |       |                      |
| Lab ID: 2106291-002            |                                        |                   |      | Matrix: W | /ater |                      |
| Client Sample ID: MW2          |                                        |                   |      |           |       |                      |
| Analyses                       | Result                                 | RL                | Qual | Units     | DF    | Date Analyzed        |
| Polyaromatic Hydrocarbons by E | PA Method 8                            | <u>3270 (SIM)</u> |      | Batc      | h ID: | 32680 Analyst: SB    |
| Benz(a)anthracene              | ND                                     | 0.0986            |      | μg/L      | 1     | 6/17/2021 8:52:34 PM |
| Chrysene                       | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Benzo(b)fluoranthene           | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Benzo(k)fluoranthene           | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Benzo(a)pyrene                 | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Dibenz(a,h)anthracene          | ND                                     | 0.0986            |      | µg/L      | 1     | 6/17/2021 8:52:34 PM |
| Surr: 2-Fluorobiphenyl         | 112                                    | 33.2 - 139        |      | %Rec      | 1     | 6/17/2021 8:52:34 PM |
| Surr: Terphenyl-d14            | 123                                    | 24.6 - 136        |      | %Rec      | 1     | 6/17/2021 8:52:34 PM |
| Mercury by EPA Method 245.1    |                                        |                   |      | Batc      | h ID: | 32754 Analyst: LB    |
| Mercury                        | ND                                     | 0.100             |      | µg/L      | 1     | 6/23/2021 5:05:44 PM |



| Client: Libby Environmental    |              |                   | (    | Collectior | n Date  | : 6/15/2021 11:11:00 AM |
|--------------------------------|--------------|-------------------|------|------------|---------|-------------------------|
| Project: BLT Trucking          |              |                   |      |            |         |                         |
| Lab ID: 2106291-003            |              |                   |      | Matrix: W  | /ater   |                         |
| Client Sample ID: MW3          |              |                   |      |            |         |                         |
| Analyses                       | Result       | RL                | Qual | Units      | DF      | Date Analyzed           |
| Polyaromatic Hydrocarbons by E | EPA Method 8 | <u>3270 (SIM)</u> |      | Batcl      | h ID: 3 | 2680 Analyst: SB        |
| Benz(a)anthracene              | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Chrysene                       | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Benzo(b)fluoranthene           | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Benzo(k)fluoranthene           | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Benzo(a)pyrene                 | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Indeno(1,2,3-cd)pyrene         | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Dibenz(a,h)anthracene          | ND           | 0.0998            |      | µg/L       | 1       | 6/17/2021 9:14:05 PM    |
| Surr: 2-Fluorobiphenyl         | 103          | 33.2 - 139        |      | %Rec       | 1       | 6/17/2021 9:14:05 PM    |
| Surr: Terphenyl-d14            | 88.3         | 24.6 - 136        |      | %Rec       | 1       | 6/17/2021 9:14:05 PM    |
| Mercury by EPA Method 245.1    |              |                   |      | Batc       | h ID: 3 | 2754 Analyst: LB        |
| Mercury                        | ND           | 0.100             |      | µg/L       | 1       | 6/23/2021 5:07:26 PM    |



| Client: Libby Environmental    |            |                   |      | Collectior | n Dat | e: 6/15/2021 10:27:00 AM |
|--------------------------------|------------|-------------------|------|------------|-------|--------------------------|
| Project: BLT Trucking          |            |                   |      |            |       |                          |
| Lab ID: 2106291-004            |            |                   |      | Matrix: W  | /ater |                          |
| Client Sample ID: MW4          |            |                   |      |            |       |                          |
| Analyses                       | Result     | RL                | Qual | Units      | DF    | Date Analyzed            |
| Polyaromatic Hydrocarbons by E | EPA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: | 32680 Analyst: SB        |
| Benz(a)anthracene              | ND         | 0.0990            |      | μg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Chrysene                       | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Benzo(b)fluoranthene           | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Benzo(k)fluoranthene           | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Benzo(a)pyrene                 | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Indeno(1,2,3-cd)pyrene         | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Dibenz(a,h)anthracene          | ND         | 0.0990            |      | µg/L       | 1     | 6/17/2021 9:35:35 PM     |
| Surr: 2-Fluorobiphenyl         | 107        | 33.2 - 139        |      | %Rec       | 1     | 6/17/2021 9:35:35 PM     |
| Surr: Terphenyl-d14            | 76.9       | 24.6 - 136        |      | %Rec       | 1     | 6/17/2021 9:35:35 PM     |
| Mercury by EPA Method 245.1    |            |                   |      | Batc       | h ID: | 32754 Analyst: LB        |
| Mercury                        | ND         | 0.100             |      | µg/L       | 1     | 6/23/2021 5:09:09 PM     |



| Client: Libby Environmental    |            |                   | (    | Collectior | n Date:  | 6/15/2021 9:35:00 AM |
|--------------------------------|------------|-------------------|------|------------|----------|----------------------|
| Project: BLT Trucking          |            |                   |      |            |          |                      |
| Lab ID: 2106291-005            |            |                   |      | Matrix: W  | /ater    |                      |
| Client Sample ID: MW5          |            |                   |      |            |          |                      |
| Analyses                       | Result     | RL                | Qual | Units      | DF       | Date Analyzed        |
| Polyaromatic Hydrocarbons by I | EPA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: 32 | 2709 Analyst: SB     |
| Benz(a)anthracene              | ND         | 0.0982            |      | μg/L       | 1        | 6/22/2021 1:12:11 PM |
| Chrysene                       | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Benzo(b)fluoranthene           | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Benzo(k)fluoranthene           | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Benzo(a)pyrene                 | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Indeno(1,2,3-cd)pyrene         | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Dibenz(a,h)anthracene          | ND         | 0.0982            |      | µg/L       | 1        | 6/22/2021 1:12:11 PM |
| Surr: 2-Fluorobiphenyl         | 82.0       | 33.2 - 139        |      | %Rec       | 1        | 6/22/2021 1:12:11 PM |
| Surr: Terphenyl-d14            | 105        | 24.6 - 136        |      | %Rec       | 1        | 6/22/2021 1:12:11 PM |
| Mercury by EPA Method 245.1    |            |                   |      | Batc       | h ID: 32 | 2754 Analyst: LB     |
| Mercury                        | ND         | 0.100             |      | µg/L       | 1        | 6/23/2021 5:10:50 PM |



| Work Order:      | 2106291      |                      |       |           |             |      |              |             | QC S        |            | RY REF   | PORT    |
|------------------|--------------|----------------------|-------|-----------|-------------|------|--------------|-------------|-------------|------------|----------|---------|
| CLIENT:          | Libby Enviro | onmental             |       |           |             |      |              |             | Moro        |            | A Mothod | 1 245 1 |
| Project:         | BLT Truckir  | ng                   |       |           |             |      |              |             | Werc        |            | A Method | 1 245.1 |
| Sample ID: MB-32 | 2754         | SampType: MBLK       |       |           | Units: µg/L |      | Prep Dat     | te: 6/23/20 | 21          | RunNo: 681 | 67       |         |
| Client ID: MBLK  | W            | Batch ID: 32754      |       |           |             | 1    | Analysis Dat | te: 6/23/20 | 21          | SeqNo: 137 | 76033    |         |
| Analyte          |              | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Mercury          |              | ND                   | 0.100 |           |             |      |              |             |             |            |          |         |
| Sample ID: LCS-3 | 2754         | SampType: LCS        |       |           | Units: µg/L |      | Prep Dat     | te: 6/23/20 | 21          | RunNo: 681 | 67       |         |
| Client ID: LCSW  | 1            | Batch ID: 32754      |       |           |             | /    | Analysis Dat | te: 6/23/20 | 21          | SeqNo: 137 | 6034     |         |
| Analyte          |              | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Mercury          |              | 2.74                 | 0.100 | 2.500     | 0           | 110  | 85           | 115         |             |            |          |         |
| Sample ID: 21062 | 81-025CDUP   | SampType: <b>DUP</b> |       |           | Units: µg/L |      | Prep Dat     | te: 6/23/20 | 21          | RunNo: 681 | 67       |         |
| Client ID: BATC  | н            | Batch ID: 32754      |       |           |             | /    | Analysis Dat | te: 6/23/20 | 21          | SeqNo: 137 | 76036    |         |
| Analyte          |              | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Mercury          |              | 0.196                | 0.100 |           |             |      |              |             | 0.1740      | 11.9       | 20       |         |
| Sample ID: 21062 | 81-025CMS    | SampType: <b>MS</b>  |       |           | Units: µg/L |      | Prep Dat     | te: 6/23/20 | 21          | RunNo: 681 | 67       |         |
| Client ID: BATC  | н            | Batch ID: 32754      |       |           |             | 1    | Analysis Dat | te: 6/23/20 | 21          | SeqNo: 137 | 6037     |         |
| Analyte          |              | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Mercury          |              | 2.80                 | 0.100 | 2.500     | 0.1740      | 105  | 70           | 130         |             |            |          |         |
| Sample ID: 21062 | 81-025CMSD   | SampType: <b>MSD</b> |       |           | Units: µg/L |      | Prep Dat     | te: 6/23/20 | 21          | RunNo: 681 | 67       |         |
| Client ID: BATC  | н            | Batch ID: 32754      |       |           |             |      | Analysis Dat | te: 6/23/20 | 21          | SeqNo: 137 | 76038    |         |
| Analyte          |              | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Mercury          |              | 2.82                 | 0.100 | 2.500     | 0.1740      | 106  | 70           | 130         | 2.800       | 0.712      | 20       |         |



| Ĭ | <b>Fremont</b><br>Analytical |
|---|------------------------------|
|---|------------------------------|

| Work Order:         | 2106291      |           |        |        |           |             |      |             |             | 2.00        | SUMMA      |          | PORT    |
|---------------------|--------------|-----------|--------|--------|-----------|-------------|------|-------------|-------------|-------------|------------|----------|---------|
| CLIENT:             | Libby Enviro | onmental  |        |        |           |             | -    |             |             |             |            |          |         |
| Project:            | BLT Truckir  | ng        |        |        |           |             | PO   | olyaroma    | tic Hydro   | ocarbons b  | y EPA Me   | thod 827 | U (SIM) |
| Sample ID: MB-320   | 680          | SampType  | MBLK   |        |           | Units: µg/L |      | Prep Da     | te: 6/16/20 | 21          | RunNo: 68( | 043      |         |
| Client ID: MBLK     | W            | Batch ID: | 32680  |        |           |             |      | Analysis Da | te: 6/17/20 | 21          | SeqNo: 137 | 73215    |         |
| Analyte             |              | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benz(a)anthracene   |              |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Chrysene            |              |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Benzo(b)fluoranthe  | ne           |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Benzo(k)fluoranther | ne           |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Benzo(a)pyrene      |              |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Indeno(1,2,3-cd)pyr | rene         |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Dibenz(a,h)anthrac  | ene          |           | ND     | 0.0988 |           |             |      |             |             |             |            |          |         |
| Surr: 2-Fluorobip   | henyl        |           | 1.88   |        | 1.975     |             | 95.2 | 33.2        | 139         |             |            |          |         |
| Surr: Terphenyl-o   | d14          |           | 2.22   |        | 1.975     |             | 112  | 24.6        | 136         |             |            |          |         |
| Sample ID: LCS-32   | 2680         | SampType  | LCS    |        |           | Units: µg/L |      | Prep Da     | te: 6/16/20 | 21          | RunNo: 68( | )43      |         |
| Client ID: LCSW     |              | Batch ID: | 32680  |        |           |             |      | Analysis Da | te: 6/17/20 | 21          | SeqNo: 137 | 73216    |         |
| Analyte             |              | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benz(a)anthracene   | 1            |           | 2.99   | 0.0981 | 3.926     | 0           | 76.1 | 33.1        | 130         |             |            |          |         |
| Chrysene            |              |           | 2.69   | 0.0981 | 3.926     | 0           | 68.5 | 34.7        | 113         |             |            |          |         |
| Benzo(b)fluoranthe  | ne           |           | 2.54   | 0.0981 | 3.926     | 0           | 64.8 | 24.9        | 128         |             |            |          |         |
| Benzo(k)fluoranther | ne           |           | 2.54   | 0.0981 | 3.926     | 0           | 64.8 | 21.3        | 131         |             |            |          |         |
| Benzo(a)pyrene      |              |           | 2.69   | 0.0981 | 3.926     | 0           | 68.6 | 23.2        | 139         |             |            |          |         |
| Indeno(1,2,3-cd)pyr | rene         |           | 2.27   | 0.0981 | 3.926     | 0           | 57.9 | 14.9        | 123         |             |            |          |         |
| Dibenz(a,h)anthrac  | ene          |           | 2.34   | 0.0981 | 3.926     | 0           | 59.6 | 12.2        | 125         |             |            |          |         |
| Surr: 2-Fluorobip   | henyl        |           | 1.92   |        | 1.963     |             | 97.7 | 33.2        | 139         |             |            |          |         |
| Surr: Terphenyl-o   | d14          |           | 1.98   |        | 1.963     |             | 101  | 24.6        | 136         |             |            |          |         |
| Sample ID: LCSD-    | 32680        | SampType  | LCSD   |        |           | Units: µg/L |      | Prep Da     | te: 6/16/20 | 21          | RunNo: 68( | 043      |         |
| Client ID: LCSW     | 02           | Batch ID: | 32680  |        |           |             |      | Analysis Da | te: 6/17/20 | 21          | SeqNo: 137 | 73217    |         |
| Analyte             |              | F         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Benz(a)anthracene   | 1            |           | 3.11   | 0.0981 | 3.925     | 0           | 79.2 | 33.1        | 130         | 2.987       | 3.98       | 30       |         |



| Work Order: 2106       | 6291             |        |           |             |      |                |           | QC S        | SUMMAI     | RY REF   | PORT |
|------------------------|------------------|--------|-----------|-------------|------|----------------|-----------|-------------|------------|----------|------|
| CLIENT: Libb           | y Environmental  |        |           |             | Po   | lvaromativ     |           | oarbone b   |            | bod 827  |      |
| Project: BLT           | Trucking         |        |           |             | FC   | nyaromatic     | s riyure  |             |            |          |      |
| Sample ID: LCSD-32680  | SampType: LCSD   |        |           | Units: µg/L |      | Prep Date:     | 6/16/20   | 21          | RunNo: 680 | )43      |      |
| Client ID: LCSW02      | Batch ID: 32680  |        |           |             |      | Analysis Date: | 6/17/20   | 21          | SeqNo: 137 | 73217    |      |
| Analyte                | Result           | RL     | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Chrysene               | 2.87             | 0.0981 | 3.925     | 0           | 73.1 | 34.7           | 113       | 2.688       | 6.47       | 30       |      |
| Benzo(b)fluoranthene   | 2.77             | 0.0981 | 3.925     | 0           | 70.6 | 24.9           | 128       | 2.542       | 8.63       | 30       |      |
| Benzo(k)fluoranthene   | 2.72             | 0.0981 | 3.925     | 0           | 69.2 | 21.3           | 131       | 2.543       | 6.60       | 30       |      |
| Benzo(a)pyrene         | 2.93             | 0.0981 | 3.925     | 0           | 74.6 | 23.2           | 139       | 2.694       | 8.25       | 30       |      |
| Indeno(1,2,3-cd)pyrene | 2.32             | 0.0981 | 3.925     | 0           | 59.1 | 14.9           | 123       | 2.274       | 2.04       | 30       |      |
| Dibenz(a,h)anthracene  | 2.38             | 0.0981 | 3.925     | 0           | 60.7 | 12.2           | 125       | 2.338       | 1.80       | 30       |      |
| Surr: 2-Fluorobiphenyl | 1.89             |        | 1.962     |             | 96.5 | 33.2           | 139       |             | 0          | 0        |      |
| Surr: Terphenyl-d14    | 2.17             |        | 1.962     |             | 110  | 24.6           | 136       |             | 0          | 0        |      |
| Sample ID: 2106223-001 | CMS SampType: MS |        |           | Units: µg/L |      | Prep Date:     | 6/16/20   | 21          | RunNo: 68( | )43      |      |
| Client ID: BATCH       | Batch ID: 32680  |        |           |             |      | Analysis Date: | 6/17/20   | 21          | SeqNo: 137 | 3235     |      |
| Analyte                | Result           | RL     | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Benz(a)anthracene      | 3.02             | 0.0992 | 3.968     | 0           | 76.2 | 25.3           | 122       |             |            |          |      |
| Chrysene               | 2.71             | 0.0992 | 3.968     | 0           | 68.3 | 22.8           | 111       |             |            |          |      |
| Benzo(b)fluoranthene   | 2.63             | 0.0992 | 3.968     | 0           | 66.2 | 8.57           | 125       |             |            |          |      |
| Benzo(k)fluoranthene   | 2.55             | 0.0992 | 3.968     | 0           | 64.2 | 7.05           | 124       |             |            |          |      |
| Benzo(a)pyrene         | 2.87             | 0.0992 | 3.968     | 0           | 72.3 | 9.61           | 130       |             |            |          |      |
| Indeno(1,2,3-cd)pyrene | 2.04             | 0.0992 | 3.968     | 0           | 51.5 | 5              | 120       |             |            |          |      |
| Dibenz(a,h)anthracene  | 2.09             | 0.0992 | 3.968     | 0           | 52.6 | 5              | 122       |             |            |          |      |
| Surr: 2-Fluorobiphenyl | 2.16             |        | 1.984     |             | 109  | 33.2           | 139       |             |            |          |      |
| Surr: Terphenyl-d14    | 2.01             |        | 1.984     |             | 101  | 24.6           | 136       |             |            |          |      |
| Sample ID: MB-32709    | SampType: MBLK   |        |           | Units: µg/L |      | Prep Date:     | 6/18/20   | 21          | RunNo: 681 | 36       |      |
| Client ID: MBLKW       | Batch ID: 32709  |        |           |             |      | Analysis Date: | 6/22/20   | 21          | SeqNo: 137 | 75210    |      |
| Analyte                | Result           | RL     | SPK value | SPK Ref Val | %REC | LowLimit H     | lighLimit | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Bonz(a)anthracono      | ND               | 0.0994 |           |             |      |                |           |             |            |          |      |

0.0994

ND

Original

Chrysene

| Fremont           |
|-------------------|
| <b>Analytical</b> |

| Work Order:        | 2106291     |                 |        |           |             |                                                    |             |             | 20          | SUMMA      | RY REF    | PORT     |
|--------------------|-------------|-----------------|--------|-----------|-------------|----------------------------------------------------|-------------|-------------|-------------|------------|-----------|----------|
| CLIENT:            | Libby Envir | onmental        |        |           |             | Delveremetic Hydrocerbone by EDA Method 9270 (SIM) |             |             |             |            |           |          |
| Project:           | BLT Trucki  | ng              |        |           |             | Po                                                 | lyaroma     | tic Hydro   | ocarbons b  | y EPA Me   | (noa 827) | U (SINI) |
| Sample ID: MB-32   | 2709        | SampType: MBLK  |        |           | Units: µg/L |                                                    | Prep Da     | te: 6/18/20 | )21         | RunNo: 681 | 36        |          |
| Client ID: MBLK    | W           | Batch ID: 32709 |        |           |             |                                                    | Analysis Da | te: 6/22/20 | )21         | SeqNo: 137 | 75210     |          |
| Analyte            |             | Result          | RL     | SPK value | SPK Ref Val | %REC                                               | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benzo(b)fluoranthe | ene         | ND              | 0.0994 |           |             |                                                    |             |             |             |            |           |          |
| Benzo(k)fluoranthe | ene         | ND              | 0.0994 |           |             |                                                    |             |             |             |            |           |          |
| Benzo(a)pyrene     |             | ND              | 0.0994 |           |             |                                                    |             |             |             |            |           |          |
| Indeno(1,2,3-cd)py | /rene       | ND              | 0.0994 |           |             |                                                    |             |             |             |            |           |          |
| Dibenz(a,h)anthrac | cene        | ND              | 0.0994 |           |             |                                                    |             |             |             |            |           |          |
| Surr: 2-Fluorobi   | phenyl      | 1.64            |        | 1.988     |             | 82.6                                               | 33.2        | 139         |             |            |           |          |
| Surr: Terphenyl-   | -d14        | 2.15            |        | 1.988     |             | 108                                                | 24.6        | 136         |             |            |           |          |
| Sample ID: LCS-3   | 2709        | SampType: LCS   |        |           | Units: µg/L |                                                    | Prep Da     | te: 6/18/20 | )21         | RunNo: 681 | 36        |          |
| Client ID: LCSW    | 1           | Batch ID: 32709 |        |           |             |                                                    | Analysis Da | te: 6/22/20 | )21         | SeqNo: 137 | 75211     |          |
| Analyte            |             | Result          | RL     | SPK value | SPK Ref Val | %REC                                               | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benz(a)anthracene  | Э           | 3.21            | 0.0997 | 3.986     | 0           | 80.5                                               | 33.1        | 130         |             |            |           |          |
| Chrysene           |             | 2.78            | 0.0997 | 3.986     | 0           | 69.9                                               | 34.7        | 113         |             |            |           |          |
| Benzo(b)fluoranthe | ene         | 3.13            | 0.0997 | 3.986     | 0           | 78.6                                               | 24.9        | 128         |             |            |           |          |
| Benzo(k)fluoranthe | ene         | 2.92            | 0.0997 | 3.986     | 0           | 73.2                                               | 21.3        | 131         |             |            |           |          |
| Benzo(a)pyrene     |             | 3.24            | 0.0997 | 3.986     | 0           | 81.3                                               | 23.2        | 139         |             |            |           |          |
| Indeno(1,2,3-cd)py | /rene       | 2.96            | 0.0997 | 3.986     | 0           | 74.3                                               | 14.9        | 123         |             |            |           |          |
| Dibenz(a,h)anthrac | cene        | 3.05            | 0.0997 | 3.986     | 0           | 76.5                                               | 12.2        | 125         |             |            |           |          |
| Surr: 2-Fluorobi   | phenyl      | 1.55            |        | 1.993     |             | 78.0                                               | 33.2        | 139         |             |            |           |          |
| Surr: Terphenyl-   | -d14        | 2.10            |        | 1.993     |             | 105                                                | 24.6        | 136         |             |            |           |          |
| Sample ID: LCSD    | -32709      | SampType: LCSD  |        |           | Units: µg/L |                                                    | Prep Da     | te: 6/18/20 | )21         | RunNo: 681 | 36        |          |
| Client ID: LCSW    | /02         | Batch ID: 32709 |        |           |             |                                                    | Analysis Da | te: 6/22/20 | )21         | SeqNo: 137 | 5212      |          |
| Analyte            |             | Result          | RL     | SPK value | SPK Ref Val | %REC                                               | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benz(a)anthracene  | e           | 3.39            | 0.0992 | 3.966     | 0           | 85.5                                               | 33.1        | 130         | 3.208       | 5.52       | 30        |          |
| Chrysene           |             | 3.03            | 0.0992 | 3.966     | 0           | 76.4                                               | 34.7        | 113         | 2.785       | 8.45       | 30        |          |
| Benzo(b)fluoranthe | ene         | 3.13            | 0.0992 | 3.966     | 0           | 79.0                                               | 24.9        | 128         | 3.135       | 0.0227     | 30        |          |



| Work Order:        | 2106291      |           |         |        |           |             |            |              |            | QC S        |            | RY REF    | PORT     |
|--------------------|--------------|-----------|---------|--------|-----------|-------------|------------|--------------|------------|-------------|------------|-----------|----------|
| CLIENT:            | Libby Enviro | onmental  |         |        |           |             | <b>D</b> - |              |            |             |            | (h) 007(  |          |
| Project:           | BLT Truckir  | ng        |         |        |           |             | Po         | lyaromat     | ic Hydro   | ocarbons b  | Y EPA Me   | inod 8270 | J (5INI) |
| Sample ID: LCSD-   | -32709       | SampType  | e: LCSD |        |           | Units: µg/L |            | Prep Dat     | e: 6/18/20 | 21          | RunNo: 681 | 136       |          |
| Client ID: LCSW    | 02           | Batch ID: | 32709   |        |           |             |            | Analysis Dat | e: 6/22/20 | 21          | SeqNo: 137 | 75212     |          |
| Analyte            |              | l         | Result  | RL     | SPK value | SPK Ref Val | %REC       | LowLimit     | HighLimit  | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benzo(k)fluoranthe | ene          |           | 3.42    | 0.0992 | 3.966     | 0           | 86.2       | 21.3         | 131        | 2.918       | 15.8       | 30        |          |
| Benzo(a)pyrene     |              |           | 3.52    | 0.0992 | 3.966     | 0           | 88.7       | 23.2         | 139        | 3.242       | 8.13       | 30        |          |
| Indeno(1,2,3-cd)py | rrene        |           | 3.19    | 0.0992 | 3.966     | 0           | 80.5       | 14.9         | 123        | 2.963       | 7.52       | 30        |          |
| Dibenz(a,h)anthrac | cene         |           | 3.29    | 0.0992 | 3.966     | 0           | 82.8       | 12.2         | 125        | 3.048       | 7.52       | 30        |          |
| Surr: 2-Fluorobip  | ohenyl       |           | 1.79    |        | 1.983     |             | 90.1       | 33.2         | 139        |             | 0          | 0         |          |
| Surr: Terphenyl-   | d14          |           | 2.24    |        | 1.983     |             | 113        | 24.6         | 136        |             | 0          | 0         |          |
| Sample ID: 21062   | 91-005AMS    | SampType  | : MS    |        |           | Units: µg/L |            | Prep Dat     | e: 6/18/20 | 21          | RunNo: 681 | 136       |          |
| Client ID: MW5     |              | Batch ID: | 32709   |        |           |             |            | Analysis Dat | e: 6/22/20 | 21          | SeqNo: 137 | 75214     |          |
| Analyte            |              | I         | Result  | RL     | SPK value | SPK Ref Val | %REC       | LowLimit     | HighLimit  | RPD Ref Val | %RPD       | RPDLimit  | Qual     |
| Benz(a)anthracene  | 9            |           | 2.99    | 0.112  | 4.498     | 0           | 66.4       | 25.3         | 122        |             |            |           |          |
| Chrysene           |              |           | 2.70    | 0.112  | 4.498     | 0           | 59.9       | 22.8         | 111        |             |            |           |          |
| Benzo(b)fluoranthe | ene          |           | 2.90    | 0.112  | 4.498     | 0           | 64.4       | 8.57         | 125        |             |            |           |          |
| Benzo(k)fluoranthe | ene          |           | 2.83    | 0.112  | 4.498     | 0           | 63.0       | 7.05         | 124        |             |            |           |          |
| Benzo(a)pyrene     |              |           | 3.14    | 0.112  | 4.498     | 0           | 69.8       | 9.61         | 130        |             |            |           |          |
| Indeno(1,2,3-cd)py | rrene        |           | 2.75    | 0.112  | 4.498     | 0           | 61.1       | 5            | 120        |             |            |           |          |
| Dibenz(a,h)anthrac | cene         |           | 2.84    | 0.112  | 4.498     | 0           | 63.0       | 5            | 122        |             |            |           |          |
| Surr: 2-Fluorobip  | ohenyl       |           | 1.79    |        | 2.249     |             | 79.8       | 33.2         | 139        |             |            |           |          |
| Surr: Terphenyl-   | d14          |           | 1.97    |        | 2.249     |             | 87.6       | 24.6         | 136        |             |            |           |          |



### Sample Log-In Check List

| Clier             | nt Name:                    | LIBBY                                                                          | Work Order Numb | oer: 2106291 |               |
|-------------------|-----------------------------|--------------------------------------------------------------------------------|-----------------|--------------|---------------|
| Logg              | ged by:                     | Gabrielle Coeuille                                                             | Date Received:  | 6/16/2021    | 9:04:00 AM    |
| Chain             | n of Custo                  | <u>ody</u>                                                                     |                 |              |               |
| 1. Is             | Chain of Cu                 | ustody complete?                                                               | Yes 🖌           | No 🗌         | Not Present   |
| 2. H              | ow was the                  | sample delivered?                                                              | <u>UPS</u>      |              |               |
| <u>Log lı</u>     | <u>n</u>                    |                                                                                |                 |              |               |
| 3. C              | oolers are p                | resent?                                                                        | Yes 🗹           | No 🗌         | NA 🗌          |
| 4. SI             | hipping cont                | ainer/cooler in good condition?                                                | Yes 🖌           | No 🗌         |               |
| 5. Ci<br>(R       | ustody Seal<br>Refer to com | s present on shipping container/cooler?<br>ments for Custody Seals not intact) | Yes             | No 🗌         | Not Present 🗹 |
| 6. W              | as an atten                 | npt made to cool the samples?                                                  | Yes 🗹           | No 🗌         | NA 🗌          |
| 7. W              | /ere all item               | s received at a temperature of >2°C to 6°C *                                   | Yes 🖌           | No 🗌         |               |
| 8. Sa             | ample(s) in                 | proper container(s)?                                                           | Yes 🔽           | No 🗌         |               |
| 9. S              | ufficient san               | nple volume for indicated test(s)?                                             | Yes 🗹           | No 🗌         |               |
| 10. A             | re samples                  | properly preserved?                                                            | Yes 🖌           | No 🗌         |               |
| 11. W             | /as preserva                | ative added to bottles?                                                        | Yes             | No 🗹         | NA 🗌          |
| 12. <sup>Is</sup> | there head                  | space in the VOA vials?                                                        | Yes             | No 🗌         | NA 🗹          |
| 13. Di            | id all sample               | es containers arrive in good condition(unbroken)?                              | Yes 🔽           | No 🗌         |               |
| 14. D             | oes paperw                  | ork match bottle labels?                                                       | Yes 🗹           | No 🗌         |               |
| 15. A             | re matrices                 | correctly identified on Chain of Custody?                                      | Yes 🖌           | No 🗌         |               |
| 16. <sup>Is</sup> | it clear wha                | at analyses were requested?                                                    | Yes 🖌           | No 🗌         |               |
| 17. W             | /ere all hold               | ing times able to be met?                                                      | Yes 🗹           | No 🗌         |               |
| <u>Speci</u>      | ial Handli                  | <u>ing (if applicable)</u>                                                     |                 |              |               |
| 18. W             | as client no                | tified of all discrepancies with this order?                                   | Yes             | No 🗌         | NA 🗹          |
|                   | Person I                    | Notified: Date                                                                 |                 |              |               |
|                   | By Who                      | m: Via:                                                                        | eMail Pho       | one 🗌 Fax 🛛  | In Person     |
|                   | Regardi                     | ng:                                                                            |                 |              |               |
|                   | Client In                   | structions:                                                                    |                 |              |               |

#### Item Information

| Item #   | Temp ⁰C |
|----------|---------|
| Sample 1 | 3.8     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C



3322 South Bay Road NE • Olympia, WA 98506-2957

July 1, 2021

Charles McFadden ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. McFadden:

Please find enclosed the analytical data report for the BLT Trucking project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

z 2 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environmental, Inc.                                                                                   | Chain c                                    | of Custody                                                                                                                        | <b>Recor</b>          | d               |                                          | www.LibbyEnvironmental.com                                             |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|------------------------------------------|------------------------------------------------------------------------|--|--|--|
| 3322 South Bay Road NE Ph: 360-352-2110                                                                     |                                            | <i>C I</i>                                                                                                                        | 1600                  | 1               |                                          |                                                                        |  |  |  |
| Olympia, WA 98506 Fax: 360-352-4154                                                                         |                                            | Date: 6/                                                                                                                          | 121200                |                 | Page:                                    | of                                                                     |  |  |  |
| Client: LCL                                                                                                 |                                            | Project Manager: CHAILES MCFADDEN                                                                                                 |                       |                 |                                          |                                                                        |  |  |  |
| Address: P.O.C BOX 163                                                                                      | 0                                          | Project Name: BUT TRVCKING                                                                                                        |                       |                 |                                          |                                                                        |  |  |  |
| city: FOX IDLAND State: WA Zip.                                                                             | 9833.5                                     | Location:                                                                                                                         | KANT,                 | IN A            | City, Star                               | te:                                                                    |  |  |  |
| Phone: 263-318-386 Fax:                                                                                     |                                            | Collector: 61                                                                                                                     | 28/0                  | Ĥ               | Date of (                                | Collection: 6/19/202                                                   |  |  |  |
| Client Project # Ø611. Ø1-Ø3. Ø2                                                                            |                                            | Email: CH/                                                                                                                        | FRIES C               | ? AllECI.       | COM                                      |                                                                        |  |  |  |
| Sample Number Depth Time Type                                                                               | Container                                  | 6) 5 <sup>10</sup><br>6) 5 <sup>10</sup><br>6) 5 <sup>10</sup><br>5 <sup>10</sup> 5 <sup>10</sup> 5 <sup>10</sup> 5 <sup>10</sup> | EST CONTRACTOR        | S CS 27 27 07   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Field Notes                                                            |  |  |  |
| 1 MWS \$935 WATER                                                                                           | DILAMBER<br>GODMLANNER                     |                                                                                                                                   | XXXX                  | X               | Ø                                        | 6-24-21 ADD-ON                                                         |  |  |  |
| 2 MWY 1027                                                                                                  | D POCY                                     |                                                                                                                                   |                       |                 |                                          | REQUEST PER                                                            |  |  |  |
| 3 M123 1111                                                                                                 | 5 VOAS                                     |                                                                                                                                   |                       |                 | $\otimes$                                | CHARLES VIA EMAIL.                                                     |  |  |  |
| 4 MW   1135                                                                                                 |                                            |                                                                                                                                   |                       |                 | $\otimes$                                | STD TAT                                                                |  |  |  |
| 5 MW2 1228 V                                                                                                |                                            |                                                                                                                                   | VIVIE                 |                 |                                          |                                                                        |  |  |  |
| 6                                                                                                           |                                            |                                                                                                                                   | 0 0 0                 |                 |                                          |                                                                        |  |  |  |
| 7                                                                                                           |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 8                                                                                                           |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 9                                                                                                           |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 10                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 11                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 12                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 13                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 14                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 15                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 16                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| 17                                                                                                          |                                            |                                                                                                                                   |                       |                 |                                          |                                                                        |  |  |  |
| Relinquisher by: Date (Time                                                                                 | Received by:                               |                                                                                                                                   | Date / Time           | Sample I        | Receipt                                  | Remarks: RUN DIStOUTD                                                  |  |  |  |
| Delinguided by                                                                                              | Bassingthing                               | - 61                                                                                                                              | 15/21 143             | Good Condition? | Y N                                      | MTCA 5 JF ANY 1014C                                                    |  |  |  |
| Date / Time                                                                                                 | Received by:                               |                                                                                                                                   | Date / TIMe           | Cooler Temp.    | 0<br>°C                                  | DO LECITOR & MAY COLD ON C                                             |  |  |  |
| Relinquished by: Date / Time                                                                                | Received by:                               |                                                                                                                                   | Date / Time           | Total Number of | ~                                        |                                                                        |  |  |  |
| LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the cos | ts of collection including court costs and | reasonable attornev fees to be                                                                                                    | determined by a court | Containers      |                                          | TAT: 24HR 48HR 5-DAY<br>Distribution: White - Lab. Yellow - Originator |  |  |  |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210615-3B Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                             | Date                     | Arsenic     |
|------------------------------------|--------------------------|-------------|
| Number                             | Analyzed                 | $(\mu g/L)$ |
| Method Blank                       | 6/30/2021                | nd          |
| MW5                                | 6/30/2021                | 23          |
| MW3                                | 6/30/2021                | 9.1         |
| MW1                                | 6/30/2021                | 18          |
| MW1 Dup                            | 6/30/2021                | 14          |
| Practical Quantitation Limit       |                          | 3.0         |
| "nd" Indicates not detected at the | listed detection limits. |             |

### Analyses of Dissolved Arsenic in Water by EPA Method 7010 Series

### ANALYSES PERFORMED BY: Kodey Eley

### QA/QC for Dissolved Arsenic in Water by EPA Method 7010 Series

| Sample<br>Number | Date<br>Analyzed | Arsenic<br>(% Recovery) |
|------------------|------------------|-------------------------|
| LCS              | 6/30/2021        | 110%                    |
| MW1 MS           | 6/30/2021        | 81%                     |
| MW1 MSD          | 6/30/2021        | 81%                     |
| RPD              | 6/30/2021        | 0%                      |

# ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

### ANALYSES PERFORMED BY: Kodey Eley

BLT TRUCKING PROJECT ECI Libby Project # L210615-3B Date Received 6/15/21 14:34 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

### Sample Receipt Checklist

| Chain of Custody                                              |                |             |         |
|---------------------------------------------------------------|----------------|-------------|---------|
| 1. Is the Chain of Custody complete?                          | ✓ Yes          | 🗌 No        |         |
| 2. How was the sample delivered?                              | Hand Delivered | ✓ Picked Up | Shipped |
| Log In                                                        |                |             |         |
| 3. Cooler or Shipping Container is present.                   | ☑ Yes          | 🗌 No        | 🗌 N/A   |
| 4. Cooler or Shipping Container is in good condition.         | ✓ Yes          | 🗌 No        | 🗌 N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    | 🗌 Yes          | ✓ No        | 🗌 N/A   |
| 6. Was an attempt made to cool the samples?                   | ✓ Yes          | 🗌 No        | 🗌 N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             | 6.0            | °C          |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          | 14.8           | °C          |         |
| 9. Did all containers arrive in good condition (unbroken)?    | ✓ Yes          | 🗌 No        |         |
| 10. Is it clear what analyses were requested?                 | ✓ Yes          | 🗌 No        |         |
| 11. Did container labels match Chain of Custody?              | ✓ Yes          | 🗌 No        |         |
| 12. Are matrices correctly identified on Chain of Custody?    | ☑ Yes          | 🗌 No        |         |
| 13. Are correct containers used for the analysis indicated?   | ☑ Yes          | 🗌 No        |         |
| 14. Is there sufficient sample volume for indicated analysis? | ✓ Yes          | 🗌 No        |         |
| 15. Were all containers properly preserved per each analysis? | ✓ Yes          | 🗌 No        |         |
| 16. Were VOA vials collected correctly (no headspace)?        | ✓ Yes          | 🗌 No        | 🗋 N/A   |
| 17. Were all holding times able to be met?                    | ☑ Yes          | 🗌 No        |         |
|                                                               |                |             |         |
| Discrepancies/ Notes                                          |                |             |         |
| 18. Was client notified of all discrepancies?                 | Yes            | 🗌 No        | ✓ N/A   |
| Person Notified:                                              |                | Date:       |         |
| By Whom:                                                      |                | Via:        |         |
| Regarding:                                                    |                | _           |         |
| 19. Comments.                                                 |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |

| Libby Environr                                     | nental      | , Inc.   |              | C            | nain | of Cu    | stod              | y R         | ecor                                                   | rd    | 21                     | 0122      | 91    |        | www.LibbyEnvironmental.com |       |  |
|----------------------------------------------------|-------------|----------|--------------|--------------|------|----------|-------------------|-------------|--------------------------------------------------------|-------|------------------------|-----------|-------|--------|----------------------------|-------|--|
| 4 <del>139 Libby Road</del> NE<br>Olympia WA 98506 | Ph:<br>Fax: | 360-352- | 2110<br>4154 |              |      | Date:    | 6/15/             | 20          |                                                        |       |                        | 0000      | Page  | e:     | l of l                     | (0    |  |
| Client: Libba Eaul                                 | connect     | al. the  |              |              |      | Projec   | t Manag           | ger:        | Koden                                                  | El    | ev                     |           |       |        |                            | of 16 |  |
| Address: See Aller                                 | 10.11.01    | any end  | ~            |              |      | Projec   | t Name            | :           | C                                                      | )     | 1                      |           |       |        |                            | 16    |  |
| City:                                              |             | State:   | Zip          | );           |      | Locati   | on:               |             |                                                        |       |                        |           | City, | Stat   | e: Kent, WA                | age   |  |
| Phone:                                             |             | Fax:     |              |              |      | Collec   | tor: Si           | 2B/         | CZL                                                    |       |                        |           | Date  | e of C | Collection: 6/15/21        | - U   |  |
| Client Project # L2106                             | 15-3        |          |              |              |      | Email    | Libb              | yen         | Car                                                    | uni   | .com                   |           |       |        | 0, ,                       |       |  |
| Sample Number                                      | Depth       | Time     | Sample       | Container    |      | 1.100 ml | 5 <sup>8</sup> /3 | *<br>*<br>* | <br> | Jinde | Alline Color           |           | 311   |        | Field Notes                |       |  |
| 1 Mull                                             |             | 1135     | HTO          | P-1.         |      | 1 T      |                   |             | Í                                                      | T     | 1 T                    | X         | X     |        |                            |       |  |
| 2 1412                                             | /           | 1228     | 1            | 1014         |      |          |                   |             |                                                        | T     |                        | ×         | X     |        |                            |       |  |
| 2 1000 2                                           | -           | 1000     |              |              | ++   | ++       |                   |             | -                                                      | t     |                        | X         | X     |        |                            |       |  |
| 3 MW 3                                             | -           |          |              |              |      | +-+      |                   |             |                                                        | +     | + +                    | V         |       |        |                            |       |  |
| 4 MWH                                              | -           | 1027     |              |              |      |          |                   |             |                                                        | _     |                        |           | ~     |        |                            |       |  |
| 5 MW 5                                             |             | 0935     | 2            | 7            |      |          |                   |             |                                                        |       |                        | X         | ×     |        |                            |       |  |
| 6                                                  |             |          |              |              |      |          |                   |             |                                                        |       |                        |           |       |        |                            |       |  |
| 7                                                  |             |          |              |              |      |          |                   |             |                                                        |       |                        |           |       |        |                            |       |  |
| 8                                                  |             |          |              |              |      |          |                   |             |                                                        |       |                        |           |       |        |                            |       |  |
| 9                                                  |             |          |              |              |      |          |                   |             |                                                        |       |                        |           |       |        |                            |       |  |
| 10 -                                               |             |          |              |              |      |          |                   |             |                                                        |       |                        |           |       |        | <b>D</b>                   | _     |  |
| Relinquished by:                                   | Date        | Time     | 11.21        | Received by: |      |          |                   | Date /      | Time                                                   | -     | Samp                   | ole Re    | ceipt |        | Remarks:                   |       |  |
| Relinquished by                                    | Date        | / Time   | 1030         | Received by: |      |          | _                 | Date /      | Time                                                   | Go    | od Condit              | ion?      | Ŷ     | °C     | Studie                     |       |  |
| UPS                                                |             |          |              | neri. 1      | lons | In 1     | 111111            | 11          | 904                                                    | Se    | als Intact?            | Y         | N     | N/A    | TAT                        |       |  |
| Relinquished by:                                   | Date        | / Time   | (            | Received by: | in   | 0-0      | pape              | Date /      | Time                                                   | To    | tal Numbe<br>Container | r of<br>s |       |        | 191                        |       |  |

LEGAE ACTION CLAUSE In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney firm to be determined by a court of time



3322 South Bay Road NE • Olympia, WA 98506-2957

October 5, 2021

Kaden Reed ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Reed:

Please find enclosed the analytical data report for the BLT Trucking Project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environn       | nental,  | Inc.      |        | Ch           | nain | of        | Cu                | lst        | ody   | Re                           | ecó      | rd      |               |         |       |          |       |        | www.LibbyEnvironmenta |
|----------------------|----------|-----------|--------|--------------|------|-----------|-------------------|------------|-------|------------------------------|----------|---------|---------------|---------|-------|----------|-------|--------|-----------------------|
| 4139 Libby Road NE   | Ph:      | 360-352-2 | 2110   |              |      |           |                   | 9          | 1/0-  | 10                           | ,        |         |               |         |       |          |       |        | 1 1                   |
| Olympia, WA 98506    | Fax:     | 360-352-4 | 1154   |              |      | <u>ي</u>  | Date:             | : /        | 143   | 1.2                          |          | 0       |               | D       |       | Page     | :     |        | \ of (                |
| Client: CL           |          |           |        |              |      |           | Proje             | ect M      | anage | : 1                          | r K      | ad      | 2             | Ke      | ee    |          |       |        |                       |
| Address: PO Box      | 153      |           | -      |              |      |           | Proje             | ect Na     | ame:  | BL                           | <u></u>  | Ton     | ch            | hy      |       |          |       |        | / /                   |
| City: Fox Isl        | nd       | State:    | NA Zip | D: 48333     |      |           | Locat             | tion:      | Ke    | n                            | - 11     | NA      | -             |         |       | City,    | Stat  | te:    | Kent, LA              |
| Phone:               |          | Fax:      |        |              |      |           | Colle             | ctor:      | C     | Se                           | ne       | L       | 94            | g       |       | Date     | of C  | Collec | tion: 9/23/21         |
| Client Project # 066 | -01-0    | 3-02      | -      |              |      |           | Emai              | il:        | Ka    | le                           | C        | 4110    | 2ú            | On      | 1     |          |       |        |                       |
| THE BA               |          |           | Sample | Container    |      | 8260      | ARK S             | + 802      | ATT R | HD+                          | PH-DA    | + 10 11 | O Jo          | 8210    | 2 She | 210 M    | 21215 |        |                       |
| Sample Number        | Depth    | Time      | Туре   | Туре         | X30  | 12        | $\langle \rangle$ | $\sqrt{2}$ | / 🔊/  | 22                           | <u> </u> | 28/ C   | <u>\$</u> / { | N.      | Ž     | <u>~</u> |       |        | Field Notes           |
| $1 M \omega$         | -        | 1935      | N      | 1500 ml      |      | 전         | <u> </u>          |            | - 2   | $\langle \downarrow \rangle$ | X.       | _       | X             | X       |       |          |       |        | Dissolved met         |
| 2 Mal                | <u> </u> | 1250      |        | 3004         |      | $\square$ |                   |            |       |                              |          |         |               |         |       |          |       |        | on hold               |
| 3 MW3                |          | 1210      |        | 1 HN03 0019  |      |           |                   |            |       | _                            |          |         |               |         |       |          |       |        | penden analy          |
| 4 MWY                | ~        | 1355      |        | Junp. pory   |      |           |                   |            | 0     |                              |          | _       |               |         |       |          |       |        | / - /                 |
| 5 MWT                | -        | 1050      | V      |              |      | ×         | *                 |            |       |                              | Ψ        |         | ×             |         |       |          |       |        |                       |
| 6                    |          |           |        |              |      |           |                   |            |       |                              |          | _       |               |         |       |          |       |        | MUNI Time:12          |
| 7                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 8                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 9                    |          |           |        | ·            |      |           |                   |            |       |                              |          | e.      |               |         |       |          |       |        |                       |
| 0                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 1                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 2                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 3                    |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| 4                    |          |           |        |              |      | -         |                   |            |       |                              | 1.       |         |               |         |       |          |       |        |                       |
| 15                   |          |           |        |              |      |           |                   |            |       |                              | *        |         |               |         |       |          |       |        |                       |
| 16                   |          | _         |        |              |      |           |                   |            | *     | 6                            |          | 1 3     |               |         |       |          |       |        |                       |
| 17                   |          |           |        |              |      |           |                   |            |       |                              |          |         |               |         |       |          |       |        |                       |
| Relinquished by:     | Date     | / Time    | -      | Received by: |      |           |                   |            | Da    | ite / 1                      | Time     |         | Sar           | nple    | Rec   | eipt     |       | Rem    | arks:                 |
| ann Ing              | - 9/2:   | 3/21 1    | 010    | har-         |      | •         |                   | 9          | 124/2 | 1 1                          | 157      | Goo     | d Con         | dition? |       | YN       | V     |        |                       |
| Relinquished by:     | Date     | / Time    |        | Received by: |      |           |                   |            | Da    | ite / 1                      | ime      | Tem     | p.            |         |       | 0        | C     |        |                       |
| Polinguished by:     | Data     | / Time    |        | Peceived by: |      |           |                   |            | De    | to / 7                       | Time     | Seal    | s Intac       | ot?     | Y     | NN       | I/A   |        |                       |
| veninquisneu by.     | Date     | / Time    |        | Neceived by. |      |           |                   |            | Da    |                              | me       | lota    | i Num         | Der of  |       |          |       |        |                       |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description       |                | Method        | MW1       | MW2       | MW3       | MW4       | MW5       |
|--------------------------|----------------|---------------|-----------|-----------|-----------|-----------|-----------|
|                          |                | Blank         |           |           |           |           |           |
| Date Sampled             |                | N/A           | 9/23/2021 | 9/23/2021 | 9/23/2021 | 9/23/2021 | 9/23/2021 |
| Date Analyzed            | PQL            | 9/26/2021     | 9/26/2021 | 9/26/2021 | 9/26/2021 | 9/26/2021 | 9/26/2021 |
|                          | (µg/L)         | (µg/L)        | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    |
| Benzene                  | 1.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Toluene                  | 2.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Ethylbenzene             | 1.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Total Xylenes            | 2.0            | nd            | nd        | nd        | nd        | nd        | nd        |
| Gasoline                 | 100            | nd            | nd        | nd        | nd        | nd        | nd        |
| Surrogate Recovery       |                |               |           |           |           |           |           |
| Dibromofluoromethane     |                | 119           | 104       | 106       | 107       | 107       | 108       |
| 1,2-Dichloroethane-d4    |                | 117           | 101       | 104       | 105       | 98        | 103       |
| Toluene-d8               |                | 96            | 92        | 90        | 92        | 92        | 92        |
| 4-Bromofluorobenzene     |                | 96            | 92        | 88        | 95        | 86        | 87        |
| "nd" Indicates not detec | rted at listed | detection lin | nit       |           |           |           |           |

### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

letected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

**BLT TRUCKING PROJECT** ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description         |                | MW5 Dup         |
|----------------------------|----------------|-----------------|
| Date Sampled               |                | 9/23/2021       |
| Date Analyzed              | PQL            | 9/26/2021       |
|                            | (µg/L)         | (µg/L)          |
| Benzene                    | 1.0            | nd              |
| Toluene                    | 2.0            | nd              |
| Ethylbenzene               | 1.0            | nd              |
| Total Xylenes              | 2.0            | nd              |
| Gasoline                   | 100            | nd              |
| Surrogate Recovery         |                |                 |
| Dibromofluoromethane       |                | 109             |
| 1,2-Dichloroethane-d4      |                | 101             |
| Toluene-d8                 |                | 92              |
| 4-Bromofluorobenzene       |                | 87              |
| "nd" Indicates not detect  | cted at listed | detection limit |
| "int" Indicates that inter | rforonco nro   | vonte dotormin  |

### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

'int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| I                      | Matrix Spike Sample Identification: MW5 |          |           |           |          |      |          |      |  |  |  |  |
|------------------------|-----------------------------------------|----------|-----------|-----------|----------|------|----------|------|--|--|--|--|
|                        |                                         | Date     | Analyzed: | 9/26/2021 |          |      |          |      |  |  |  |  |
|                        | Spiked                                  | MS       | MSD       | MS        | MSD      | RPD  | Limits   | Data |  |  |  |  |
|                        | Conc.                                   | Response | Response  | Recovery  | Recovery |      | Recovery | Flag |  |  |  |  |
|                        | (µg/L)                                  | (µg/L)   | (µg/L)    | (%)       | (%)      | (%)  | (%)      |      |  |  |  |  |
| Benzene                | 5.0                                     | 4.5      | 5.0       | 90        | 100      | 10.5 | 65-135   |      |  |  |  |  |
| Toluene                | 5.0                                     | 4.6      | 5.0       | 92        | 100      | 8.3  | 65-135   |      |  |  |  |  |
| Ethylbenzene           | 5.0                                     | 4.3      | 4.8       | 86        | 96       | 11.0 | 65-135   |      |  |  |  |  |
| Total Xylenes          | 15.0                                    | 12.8     | 14.1      | 85        | 94       | 9.7  | 65-135   |      |  |  |  |  |
| Surrogate Recovery (%) |                                         |          |           | MS        | MSD      |      |          |      |  |  |  |  |
| Dibromofluoromethane   |                                         |          |           | 108       | 107      |      | 65-135   |      |  |  |  |  |
| 1,2-Dichloroethane-d4  |                                         |          |           | 101       | 104      |      | 65-135   |      |  |  |  |  |
| Toluene-d8             |                                         |          |           | 96        | 94       |      | 65-135   |      |  |  |  |  |
| 4-Bromofluorobenzene   |                                         |          |           | 99        | 95       |      | 65-135   |      |  |  |  |  |

### QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ACCEPTABLE RPD IS 35%

### ANALYSES PERFORMED BY: Sherry Chilcutt

### Laboratory Control Sample

| Date Analyzed: 9      | 9/26/2021 |             |          |            |      |
|-----------------------|-----------|-------------|----------|------------|------|
|                       | Spiked    | LCS         | LCS      | LCS        | Data |
|                       | Conc.     | Response    | Recovery | Recovery   | Flag |
|                       | (µg/L)    | $(\mu g/L)$ | (%)      | Limits (%) |      |
| Benzene               | 5.0       | 5.9         | 117      | 80-120     |      |
| Toluene               | 5.0       | 6.0         | 120      | 80-120     |      |
| Ethylbenzene          | 5.0       | 5.5         | 109      | 80-120     |      |
| Total Xylenes         | 15.0      | 16.4        | 109      | 80-120     |      |
| Surrogate Recovery    |           |             |          |            |      |
| Dibromofluoromethane  |           |             | 116      | 65-135     |      |
| 1,2-Dichloroethane-d4 |           |             | 110      | 65-135     |      |
| Toluene-d8            |           |             | 97       | 65-135     |      |
| 4-Bromofluorobenzene  |           |             | 102      | 65-135     |      |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210331-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                            | Date           | Surrogate      | Diesel      | Oil         |
|-----------------------------------|----------------|----------------|-------------|-------------|
| Number                            | Analyzed       | Recovery (%)   | $(\mu g/L)$ | $(\mu g/L)$ |
| Method Blank                      | 9/28/2021      | 71             | nd          | nd          |
| MW1                               | 9/28/2021      | 81             | nd          | nd          |
| MW2                               | 9/28/2021      | 65             | nd          | nd          |
| MW3                               | 9/28/2021      | 45             | nd          | nd          |
| MW4                               | 9/28/2021      | 110            | nd          | 460         |
| MW5                               | 9/28/2021      | 94             | nd          | nd          |
| Practical Quantitation Limit      |                |                | 200         | 400         |
| "nd" Indicates not detected at th | ne listed dete | ection limits. |             |             |

### Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 42% TO 150%

### ANALYSES PERFORMED BY: Randolph Kraus

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description      | PQL         | Method          | LCS         | LCSD      | MW1       | MW2       | MW3       |
|-------------------------|-------------|-----------------|-------------|-----------|-----------|-----------|-----------|
|                         |             | Blank           |             |           |           |           |           |
| Date Sampled            |             | N/A             | N/A         | N/A       | 9/23/2021 | 9/23/2021 | 9/23/2021 |
| Date Analyzed           |             | 10/2/2021       | 10/2/2021   | 10/2/2021 | 10/2/2021 | 10/2/2021 | 10/2/2021 |
|                         | $(\mu g/L)$ | (µg/L)          | (µg/L)      | (µg/L)    | (µg/L)    | (µg/L)    | (µg/L)    |
| Aroclor 1016            | 0.02        | nd              | 106%        | 105%      | nd        | nd        | nd        |
| Aroclor 1221            | 0.02        | nd              |             |           | nd        | nd        | nd        |
| Aroclor 1232            | 0.02        | nd              |             |           | nd        | nd        | nd        |
| Aroclor 1242            | 0.02        | nd              |             |           | nd        | nd        | nd        |
| Aroclor 1248            | 0.02        | nd              |             |           | nd        | nd        | nd        |
| Aroclor 1254            | 0.02        | nd              |             |           | nd        | nd        | nd        |
| Aroclor 1260            | 0.02        | nd              | 106%        | 124%      | nd        | nd        | nd        |
| Surrogate Recovery      |             |                 |             |           |           |           |           |
| TCMX                    |             | 123             | 132         | 127       | 131       | 126       | 128       |
| DCBP                    |             | 126             | 124         | 126       | 114       | 122       | 126       |
| "nd" Indicates not de   | tected at 1 | isted detection | n limit.    |           |           |           |           |
| "int" Indicates that in | iterference | prevents det    | ermination. |           |           |           |           |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135% ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                        | PQL    | MW4       | MW5       |  |  |  |  |
|-----------------------------------------------------------|--------|-----------|-----------|--|--|--|--|
|                                                           |        |           |           |  |  |  |  |
| Date Sampled                                              |        | 9/23/2021 | 9/23/2021 |  |  |  |  |
| Date Analyzed                                             |        | 10/2/2021 | 10/2/2021 |  |  |  |  |
|                                                           | (µg/L) | (µg/L)    | (µg/L)    |  |  |  |  |
| Aroclor 1016                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1221                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1232                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1242                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1248                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1254                                              | 0.02   | nd        | nd        |  |  |  |  |
| Aroclor 1260                                              | 0.02   | nd        | nd        |  |  |  |  |
| ~ ~ ~                                                     |        |           |           |  |  |  |  |
| Surrogate Recovery                                        |        |           |           |  |  |  |  |
| TCMX                                                      |        | 112       | 130       |  |  |  |  |
| DCBP                                                      |        | 112       | 111       |  |  |  |  |
| "nd" Indicates not detected at listed detection limit.    |        |           |           |  |  |  |  |
| "int" Indicates that interference prevents determination. |        |           |           |  |  |  |  |
| ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%      |        |           |           |  |  |  |  |
| ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125%    |        |           |           |  |  |  |  |
| ACCEPTABLE RPD IS 20%                                     |        |           |           |  |  |  |  |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ANALYSES PERFORMED BY: Paul Burke

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                                                      | Date      | Lead   | Cadmium | Chromium | Arsenic     |  |  |  |
|-------------------------------------------------------------|-----------|--------|---------|----------|-------------|--|--|--|
| Number                                                      | Analyzed  | (µg/L) | (µg/L)  | (µg/L)   | $(\mu g/L)$ |  |  |  |
| Method Blank                                                | 9/27/2021 | nd     | nd      | nd       | nd          |  |  |  |
| MW1                                                         | 9/27/2021 | nd     | nd      | nd       | 3.1         |  |  |  |
| MW1 Dup                                                     | 9/27/2021 | nd     | nd      | nd       | 3.0         |  |  |  |
| MW2                                                         | 9/27/2021 | nd     | nd      | nd       | nd          |  |  |  |
| MW3                                                         | 9/27/2021 | nd     | nd      | nd       | nd          |  |  |  |
| MW4                                                         | 9/27/2021 | nd     | nd      | nd       | 7.4         |  |  |  |
| MW5                                                         | 9/27/2021 | nd     | nd      | nd       | nd          |  |  |  |
| Practical Quantitation Limit                                |           | 5.0    | 0.5     | 5.0      | 3.0         |  |  |  |
| "nd" Indicates not detected at the listed detection limits. |           |        |         |          |             |  |  |  |

### Analyses of Total Metals in Water by EPA Method 7010 Series

### ANALYSES PERFORMED BY: Eric Welte

### QA/QC for Total Metals in Water by EPA Method 7010 Series

| Sample  | Date      | Lead         | Cadmium      | Chromium     | Arsenic      |
|---------|-----------|--------------|--------------|--------------|--------------|
| Number  | Analyzed  | (% Recovery) | (% Recovery) | (% Recovery) | (% Recovery) |
| LCS     | 9/27/2021 | 115%         | 91%          | 92%          | 112%         |
| MW5 MS  | 9/27/2021 | 116%         | 83%          | 116%         | 107%         |
| MW5 MSD | 9/27/2021 | 116%         | 85%          | 107%         | 117%         |
| RPD     | 9/27/2021 | 0%           | 2%           | 8%           | 9%           |

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

### ANALYSES PERFORMED BY: Eric Welte
BLT TRUCKING PROJECT ECI Libby Project # L210924-3 Date Received 9/22/21 12:05 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

## Sample Receipt Checklist

| Chain of Custody                                              |                |             |         |
|---------------------------------------------------------------|----------------|-------------|---------|
| 1. Is the Chain of Custody complete?                          | ✓ Yes          | 🗌 No        |         |
| 2. How was the sample delivered?                              | Hand Delivered | ✓ Picked Up | Shipped |
| Log In                                                        |                |             |         |
| 3. Cooler or Shipping Container is present.                   | ☑ Yes          | 🗌 No        | □ N/A   |
| 4. Cooler or Shipping Container is in good condition.         | ✓ Yes          | 🗌 No        | □ N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    | 🗌 Yes          | ✓ No        | □ N/A   |
| 6. Was an attempt made to cool the samples?                   | ☑ Yes          | 🗌 No        | □ N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             | 2.1            | _°C         |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          | 4.5            | 5 °C        |         |
| 9. Did all containers arrive in good condition (unbroken)?    | ✓ Yes          | 🗌 No        |         |
| 10. Is it clear what analyses were requested?                 | ✓ Yes          | 🗌 No        |         |
| 11. Did container labels match Chain of Custody?              | ⊡ Yes          | 🗌 No        |         |
| 12. Are matrices correctly identified on Chain of Custody?    | ☑ Yes          | 🗌 No        |         |
| 13. Are correct containers used for the analysis indicated?   | ☑ Yes          | 🗌 No        |         |
| 14. Is there sufficient sample volume for indicated analysis? | ✓ Yes          | 🗌 No        |         |
| 15. Were all containers properly preserved per each analysis? | ✓ Yes          | 🗌 No        |         |
| 16. Were VOA vials collected correctly (no headspace)?        | ☑ Yes          | 🗌 No        | □ N/A   |
| 17. Were all holding times able to be met?                    | ☑ Yes          | 🗌 No        |         |
|                                                               |                |             |         |
| Discrepancies/ Notes                                          |                |             |         |
| 18. Was client notified of all discrepancies?                 | 🗌 Yes          | 🗌 No        | ✓ N/A   |
| Person Notified:                                              |                | D           | ate:    |
| By Whom:                                                      |                | _           | Via:    |
| Regarding:                                                    |                |             |         |
| 19. Comments.                                                 |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |



3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: BLT Trucking Work Order Number: 2109477

October 05, 2021

#### **Attention Kodey Eley:**

Fremont Analytical, Inc. received 5 sample(s) on 9/28/2021 for the analyses presented in the following report.

#### Mercury by EPA Method 245.1

#### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



| CLIENT:<br>Project: | Libby Environmental<br>BLT Trucking | Work Order S        | Sample Summary      |
|---------------------|-------------------------------------|---------------------|---------------------|
| Work Order:         | 2109477                             |                     |                     |
| Lab Sample ID       | Client Sample ID                    | Date/Time Collected | Date/Time Received  |
| 2109477-001         | MW1                                 | 09/23/2021 2:35 PM  | 09/28/2021 11:00 AM |
| 2109477-002         | MW2                                 | 09/23/2021 12:50 PM | 09/28/2021 11:00 AM |
| 2109477-003         | MW3                                 | 09/23/2021 12:10 PM | 09/28/2021 11:00 AM |
| 2109477-004         | MW4                                 | 09/23/2021 1:55 PM  | 09/28/2021 11:00 AM |
| 2109477-005         | MW5                                 | 09/23/2021 10:50 AM | 09/28/2021 11:00 AM |



**Case Narrative** 

WO#: **2109477** Date: **10/5/2021** 

CLIENT:Libby EnvironmentalProject:BLT Trucking

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### **III. ANALYSES AND EXCEPTIONS:**

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

## **Qualifiers & Acronyms**



WO#: **2109477** Date Reported: **10/5/2021** 

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification DF - Dilution Factor DUP - Sample Duplicate HEM - Hexane Extractable Material ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- **REP Sample Replicate**
- RL Reporting Limit
- **RPD** Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate



| Client: Libby Environmental    |            |                   |      | Collectior | n Date  | e: 9/23/2021 2:35:00 PM |
|--------------------------------|------------|-------------------|------|------------|---------|-------------------------|
| Project: BLT Trucking          |            |                   |      |            |         |                         |
| Lab ID: 2109477-001            |            |                   |      | Matrix: W  | /ater   |                         |
| Client Sample ID: MW1          |            |                   |      |            |         |                         |
| Analyses                       | Result     | RL                | Qual | Units      | DF      | Date Analyzed           |
| Polyaromatic Hydrocarbons by I | EPA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: 🗄 | 33880 Analyst: SB       |
| Benz(a)anthracene              | ND         | 0.0994            |      | μg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Chrysene                       | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Benzo(b)fluoranthene           | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Benzo(k)fluoranthene           | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Benzo(a)pyrene                 | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Indeno(1,2,3-cd)pyrene         | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Dibenz(a,h)anthracene          | ND         | 0.0994            |      | µg/L       | 1       | 10/1/2021 1:23:11 PM    |
| Surr: 2-Fluorobiphenyl         | 65.2       | 34.2 - 137        |      | %Rec       | 1       | 10/1/2021 1:23:11 PM    |
| Surr: Terphenyl-d14            | 79.1       | 37.3 - 150        |      | %Rec       | 1       | 10/1/2021 1:23:11 PM    |
| Mercury by EPA Method 245.1    |            |                   |      | Batc       | h ID: 🗄 | 33869 Analyst: CH       |
| Mercury                        | ND         | 0.100             |      | µg/L       | 1       | 9/29/2021 3:41:18 PM    |



| Client: Libby Environmental    |             |                   | (    | Collectior | n Dat | e: 9/23/2021 12:50:00 PM |
|--------------------------------|-------------|-------------------|------|------------|-------|--------------------------|
| Project: BLT Trucking          |             |                   |      |            |       |                          |
| Lab ID: 2109477-002            |             |                   |      | Matrix: W  | /ater |                          |
| Client Sample ID: MW2          |             |                   |      |            |       |                          |
| Analyses                       | Result      | RL                | Qual | Units      | DF    | Date Analyzed            |
| Polyaromatic Hydrocarbons by E | PA Method 8 | <u>3270 (SIM)</u> |      | Batc       | h ID: | 33880 Analyst: SB        |
| Benz(a)anthracene              | ND          | 0.0992            |      | μg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Chrysene                       | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Benzo(b)fluoranthene           | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Benzo(k)fluoranthene           | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Benzo(a)pyrene                 | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Indeno(1,2,3-cd)pyrene         | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Dibenz(a,h)anthracene          | ND          | 0.0992            |      | µg/L       | 1     | 10/1/2021 1:44:48 PM     |
| Surr: 2-Fluorobiphenyl         | 67.1        | 34.2 - 137        |      | %Rec       | 1     | 10/1/2021 1:44:48 PM     |
| Surr: Terphenyl-d14            | 79.7        | 37.3 - 150        |      | %Rec       | 1     | 10/1/2021 1:44:48 PM     |
| Mercury by EPA Method 245.1    |             |                   |      | Batc       | h ID: | 33869 Analyst: CH        |
| Mercury                        | ND          | 0.100             |      | µg/L       | 1     | 9/29/2021 3:42:59 PM     |



| Client: Libby Environmental    |            |                   | (    | Collectior | n Dat | e: 9/23/2021 12:10:00 PM |
|--------------------------------|------------|-------------------|------|------------|-------|--------------------------|
| Project: BLT Trucking          |            |                   |      |            |       |                          |
| Lab ID: 2109477-003            |            |                   |      | Matrix: W  | /ater |                          |
| Client Sample ID: MW3          |            |                   |      |            |       |                          |
| Analyses                       | Result     | RL                | Qual | Units      | DF    | Date Analyzed            |
| Polyaromatic Hydrocarbons by E | EPA Method | <u>3270 (SIM)</u> |      | Batc       | h ID: | 33880 Analyst: SB        |
| Benz(a)anthracene              | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Chrysene                       | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Benzo(b)fluoranthene           | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Benzo(k)fluoranthene           | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Benzo(a)pyrene                 | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Indeno(1,2,3-cd)pyrene         | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Dibenz(a,h)anthracene          | ND         | 0.0994            |      | µg/L       | 1     | 10/1/2021 2:49:41 PM     |
| Surr: 2-Fluorobiphenyl         | 66.2       | 34.2 - 137        |      | %Rec       | 1     | 10/1/2021 2:49:41 PM     |
| Surr: Terphenyl-d14            | 73.1       | 37.3 - 150        |      | %Rec       | 1     | 10/1/2021 2:49:41 PM     |
| Mercury by EPA Method 245.1    |            |                   |      | Batc       | h ID: | 33869 Analyst: CH        |
| Mercury                        | ND         | 0.100             |      | µg/L       | 1     | 9/29/2021 3:44:40 PM     |



| Client: Libby Environmental    |              |                   | (    | Collectior | n Dat | e: 9/23/2021 1:55:00 PM |
|--------------------------------|--------------|-------------------|------|------------|-------|-------------------------|
| Project: BLT Trucking          |              |                   |      |            |       |                         |
| Lab ID: 2109477-004            |              |                   |      | Matrix: W  | /ater |                         |
| Client Sample ID: MW4          |              |                   |      |            |       |                         |
| Analyses                       | Result       | RL                | Qual | Units      | DF    | Date Analyzed           |
| Polyaromatic Hydrocarbons by I | EPA Method 8 | <u>3270 (SIM)</u> |      | Batc       | h ID: | 33880 Analyst: SB       |
| Benz(a)anthracene              | ND           | 0.0990            |      | μg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Chrysene                       | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Benzo(b)fluoranthene           | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Benzo(k)fluoranthene           | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Benzo(a)pyrene                 | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Indeno(1,2,3-cd)pyrene         | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Dibenz(a,h)anthracene          | ND           | 0.0990            |      | µg/L       | 1     | 10/1/2021 3:11:23 PM    |
| Surr: 2-Fluorobiphenyl         | 59.4         | 34.2 - 137        |      | %Rec       | 1     | 10/1/2021 3:11:23 PM    |
| Surr: Terphenyl-d14            | 62.0         | 37.3 - 150        |      | %Rec       | 1     | 10/1/2021 3:11:23 PM    |
| Mercury by EPA Method 245.1    |              |                   |      | Batc       | h ID: | 33869 Analyst: CH       |
| Mercury                        | ND           | 0.100             |      | µg/L       | 1     | 9/29/2021 3:46:22 PM    |



| Client: Libby Environmental    |           |                   |      | Collectior | n Date  | e: 9/23/2021 10:50:00 AM |
|--------------------------------|-----------|-------------------|------|------------|---------|--------------------------|
| Project: BLT Trucking          |           |                   |      |            |         |                          |
| Lab ID: 2109477-005            |           |                   |      | Matrix: W  | /ater   |                          |
| Client Sample ID: MW5          |           |                   |      |            |         |                          |
| Analyses                       | Result    | RL                | Qual | Units      | DF      | Date Analyzed            |
| Polyaromatic Hydrocarbons by E | PA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: 🗄 | 33880 Analyst: SB        |
| Benz(a)anthracene              | ND        | 0.0991            |      | μg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Chrysene                       | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Benzo(b)fluoranthene           | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Benzo(k)fluoranthene           | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Benzo(a)pyrene                 | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Indeno(1,2,3-cd)pyrene         | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Dibenz(a,h)anthracene          | ND        | 0.0991            |      | µg/L       | 1       | 10/1/2021 3:33:03 PM     |
| Surr: 2-Fluorobiphenyl         | 66.8      | 34.2 - 137        |      | %Rec       | 1       | 10/1/2021 3:33:03 PM     |
| Surr: Terphenyl-d14            | 77.5      | 37.3 - 150        |      | %Rec       | 1       | 10/1/2021 3:33:03 PM     |
| Mercury by EPA Method 245.1    |           |                   |      | Batc       | h ID: 🗄 | 33869 Analyst: CH        |
| Mercury                        | ND        | 0.100             |      | µg/L       | 1       | 9/29/2021 3:51:27 PM     |



| Work Order:<br>CLIENT: | 2109477<br>Libby Enviro | nmental              |       |           |             |                                             | REPORT       |
|------------------------|-------------------------|----------------------|-------|-----------|-------------|---------------------------------------------|--------------|
| Project:               | BLT Truckin             | g                    |       |           |             |                                             | lethou 245.1 |
| Sample ID: MB-33       | 3869                    | SampType: MBLK       |       |           | Units: µg/L | Prep Date: 9/29/2021 RunNo: 70213           |              |
| Client ID: MBLK        | W                       | Batch ID: 33869      |       |           |             | Analysis Date: 9/29/2021 SeqNo: 142487      | D            |
| Analyte                |                         | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RP | DLimit Qual  |
| Mercury                |                         | ND                   | 0.100 |           |             |                                             |              |
| Sample ID: LCS-3       | 3869                    | SampType: LCS        |       |           | Units: µg/L | Prep Date: 9/29/2021 RunNo: 70213           |              |
| Client ID: LCSW        | 1                       | Batch ID: 33869      |       |           |             | Analysis Date: 9/29/2021 SeqNo: 142487      | 1            |
| Analyte                |                         | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RP | DLimit Qual  |
| Mercury                |                         | 2.44                 | 0.100 | 2.500     | 0           | 97.6 85 115                                 |              |
| Sample ID: 21094       | 74-001CDUP              | SampType: <b>DUP</b> |       |           | Units: µg/L | Prep Date: 9/29/2021 RunNo: 70213           |              |
| Client ID: BATC        | н                       | Batch ID: 33869      |       |           |             | Analysis Date: 9/29/2021 SeqNo: 142487      | 3            |
| Analyte                |                         | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RP | DLimit Qual  |
| Mercury                |                         | ND                   | 0.100 |           |             | 0                                           | 20           |
| Sample ID: 21094       | 74-001CMS               | SampType: <b>MS</b>  |       |           | Units: µg/L | Prep Date: 9/29/2021 RunNo: 70213           |              |
| Client ID: BATC        | н                       | Batch ID: 33869      |       |           |             | Analysis Date: 9/29/2021 SeqNo: 142487      | 4            |
| Analyte                |                         | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RP | 'DLimit Qual |
| Mercury                |                         | 2.33                 | 0.100 | 2.500     | 0           | 93.2 70 130                                 |              |
| Sample ID: 21094       | 74-001CMSD              | SampType: <b>MSD</b> |       |           | Units: µg/L | Prep Date: 9/29/2021 RunNo: 70213           |              |
| Client ID: BATC        | н                       | Batch ID: 33869      |       |           |             | Analysis Date: 9/29/2021 SeqNo: 142487      | 5            |
| Analyte                |                         | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val %RPD RP | DLimit Qual  |
| Mercury                |                         | 2.45                 | 0.100 | 2.500     | 0           | 98.0 70 130 2.330 5.02                      | 20           |

| Fremont    |
|------------|
| Analytical |

| Work Order: 210947       | 77              |        |           |             |      |             | 00                  | SUMMARY REP          | ORT   |
|--------------------------|-----------------|--------|-----------|-------------|------|-------------|---------------------|----------------------|-------|
| CLIENT: Libby E          | Invironmental   |        |           |             | _    |             |                     |                      | (a)   |
| Project: BLT Tr          | ucking          |        |           |             | Po   | olyaroma    | tic Hydrocarbons    | s by EPA Method 8270 | (SIM) |
| Sample ID: LCSD-33880    | SampType: LCS   |        |           | Units: µg/L |      | Prep Da     | te: 9/29/2021       | RunNo: 70297         |       |
| Client ID: LCSW          | Batch ID: 33880 |        |           |             |      | Analysis Da | te: 10/1/2021       | SeqNo: 1426762       |       |
| Analyte                  | Result          | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit RPD Ref V | al %RPD RPDLimit     | Qual  |
| Benz(a)anthracene        | 3.40            | 0.0998 | 3.990     | 0           | 85.3 | 52.2        | 108                 |                      |       |
| Chrysene                 | 3.22            | 0.0998 | 3.990     | 0           | 80.7 | 44.5        | 106                 |                      |       |
| Benzo(b)fluoranthene     | 3.55            | 0.0998 | 3.990     | 0           | 88.9 | 41.3        | 109                 |                      |       |
| Benzo(k)fluoranthene     | 3.11            | 0.0998 | 3.990     | 0           | 77.9 | 38.8        | 112                 |                      |       |
| Benzo(a)pyrene           | 3.53            | 0.0998 | 3.990     | 0           | 88.4 | 48.2        | 115                 |                      |       |
| Indeno(1,2,3-cd)pyrene   | 3.27            | 0.0998 | 3.990     | 0           | 82.0 | 35          | 111                 |                      |       |
| Dibenz(a,h)anthracene    | 3.39            | 0.0998 | 3.990     | 0           | 84.8 | 36.4        | 113                 |                      |       |
| Surr: 2-Fluorobiphenyl   | 1.26            |        | 1.995     |             | 62.9 | 34.2        | 137                 |                      |       |
| Surr: Terphenyl-d14      | 1.63            |        | 1.995     |             | 81.5 | 37.3        | 150                 |                      |       |
| Sample ID: MB-33880      | SampType: MBLK  |        |           | Units: µg/L |      | Prep Da     | te: 9/29/2021       | RunNo: 70297         |       |
| Client ID: MBLKW         | Batch ID: 33880 |        |           |             |      | Analysis Da | te: 10/1/2021       | SeqNo: 1426765       |       |
| Analyte                  | Result          | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit RPD Ref V | al %RPD RPDLimit     | Qual  |
| Benz(a)anthracene        | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Chrysene                 | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Benzo(b)fluoranthene     | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Benzo(k)fluoranthene     | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Benzo(a)pyrene           | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Indeno(1,2,3-cd)pyrene   | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Dibenz(a,h)anthracene    | ND              | 0.0996 |           |             |      |             |                     |                      |       |
| Surr: 2-Fluorobiphenyl   | 1.33            |        | 1.993     |             | 66.7 | 34.2        | 137                 |                      |       |
| Surr: Terphenyl-d14      | 1.66            |        | 1.993     |             | 83.4 | 37.3        | 150                 |                      |       |
| Sample ID: 2109425-001CM | S SampType: MS  |        |           | Units: µg/L |      | Prep Da     | te: 9/29/2021       | RunNo: 70297         |       |
| Client ID: BATCH         | Batch ID: 33880 |        |           |             |      | Analysis Da | te: 10/1/2021       | SeqNo: 1426926       |       |
| Analyte                  | Result          | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit RPD Ref V | al %RPD RPDLimit     | Qual  |
| Benz(a)anthracene        | 3.36            | 0.100  | 3.999     | 0           | 84.0 | 48.3        | 104                 |                      |       |



#### Work Order: 2109477

Project:

**CLIENT:** Libby Environmental

**BLT Trucking** 

## QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

| Sample ID: 2109425-001CMS | SampType: MS    |       |           | Units: µg/L |      | Prep Da     | te: 9/29/202 | 21          | RunNo: 702 | 297      |      |
|---------------------------|-----------------|-------|-----------|-------------|------|-------------|--------------|-------------|------------|----------|------|
| Client ID: BATCH          | Batch ID: 33880 |       |           |             |      | Analysis Da | te: 10/1/202 | 21          | SeqNo: 142 | 26926    |      |
| Analyte                   | Result          | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Chrysene                  | 3.18            | 0.100 | 3.999     | 0           | 79.5 | 41.7        | 105          |             |            |          |      |
| Benzo(b)fluoranthene      | 3.45            | 0.100 | 3.999     | 0           | 86.4 | 34.4        | 109          |             |            |          |      |
| Benzo(k)fluoranthene      | 3.01            | 0.100 | 3.999     | 0           | 75.2 | 29.2        | 111          |             |            |          |      |
| Benzo(a)pyrene            | 3.42            | 0.100 | 3.999     | 0           | 85.5 | 34.8        | 114          |             |            |          |      |
| Indeno(1,2,3-cd)pyrene    | 3.08            | 0.100 | 3.999     | 0           | 77.1 | 8.88        | 117          |             |            |          |      |
| Dibenz(a,h)anthracene     | 3.21            | 0.100 | 3.999     | 0           | 80.3 | 9.16        | 119          |             |            |          |      |
| Surr: 2-Fluorobiphenyl    | 1.28            |       | 1.999     |             | 64.1 | 34.2        | 137          |             |            |          |      |
| Surr: Terphenyl-d14       | 1.59            |       | 1.999     |             | 79.7 | 37.3        | 150          |             |            |          |      |



## Sample Log-In Check List

| Client Name: LIBBY |                              |                                                                                  | Work Or      | Work Order Number: 2109477 |              |               |  |  |  |
|--------------------|------------------------------|----------------------------------------------------------------------------------|--------------|----------------------------|--------------|---------------|--|--|--|
| L                  | ogged by:                    | Gabrielle Coeuille                                                               | Date Re      | ceived:                    | 9/28/2021    | 11:00:21 AM   |  |  |  |
| <u>Cha</u>         | ain of Cust                  | ody                                                                              |              |                            |              |               |  |  |  |
| 1.                 | Is Chain of C                | custody complete?                                                                | Yes          | ✓                          | No 🗌         | Not Present   |  |  |  |
| 2.                 | How was the                  | sample delivered?                                                                | <u>Clien</u> | <u>t</u>                   |              |               |  |  |  |
| Loc                | <u>, In</u>                  |                                                                                  |              |                            |              |               |  |  |  |
| 3.                 | Coolers are                  | present?                                                                         | Yes          | ✓                          | No 🗌         | NA 🗌          |  |  |  |
| 4.                 | Shipping con                 | tainer/cooler in good condition?                                                 | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 5.                 | Custody Sea<br>(Refer to con | Is present on shipping container/cooler?<br>nments for Custody Seals not intact) | Yes          |                            | No 🗌         | Not Present 🗹 |  |  |  |
| 6.                 | Was an atter                 | npt made to cool the samples?                                                    | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 7.                 | Were all item                | ns received at a temperature of >2°C to 6°C *                                    | Yes          | ✓                          | No 🗌         | NA 🗌          |  |  |  |
| 8.                 | Sample(s) in                 | proper container(s)?                                                             | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 9.                 | Sufficient sa                | mple volume for indicated test(s)?                                               | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 10                 | Are samples                  | properly preserved?                                                              | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 11                 | Was preserv                  | ative added to bottles?                                                          | Yes          |                            | No 🗹         | NA 🗌          |  |  |  |
| 12                 | Is there head                | Ispace in the VOA vials?                                                         | Yes          |                            | No 🗌         | NA 🗹          |  |  |  |
| 13                 | Did all samp                 | les containers arrive in good condition(unbroken)?                               | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 14                 | Does paperw                  | vork match bottle labels?                                                        | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 15                 | Are matrices                 | correctly identified on Chain of Custody?                                        | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 16                 | Is it clear wh               | at analyses were requested?                                                      | Yes          | ✓                          | No 🗌         |               |  |  |  |
| 17                 | Were all hold                | ling times able to be met?                                                       | Yes          | ✓                          | No 🗌         |               |  |  |  |
| <u>Spe</u>         | cial Handl                   | ing (if applicable)                                                              |              |                            |              |               |  |  |  |
| 18                 | Was client n                 | otified of all discrepancies with this order?                                    | Yes          |                            | No 🗌         | NA 🔽          |  |  |  |
|                    | Person                       | Notified: Date                                                                   | :            |                            |              |               |  |  |  |
|                    | By Who                       | via:                                                                             | 🗌 eMai       | I 🗌 Ph                     | ione 🗌 Fax [ | In Person     |  |  |  |
|                    | Regard                       | ing:                                                                             |              |                            |              |               |  |  |  |
|                    | Client Ir                    | nstructions:                                                                     |              |                            |              |               |  |  |  |
| 19                 | Additional re                | marks:                                                                           |              |                            |              |               |  |  |  |

#### Item Information

| Item #   | Temp ⁰C |
|----------|---------|
| Sample 1 | 4.2     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

| Libby Environmental, Inc. |       |           |                | CI                | Chain of Custody Record |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     | V                              | www.LibbyEnvironmental.com |              |       |          |
|---------------------------|-------|-----------|----------------|-------------------|-------------------------|----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|-----------------------------------------|--------------------|---------------------|--------------------------------|----------------------------|--------------|-------|----------|
| 3322 South Bay Road NE    | Ph:   | 360-352-2 | 110            |                   |                         | D                          | ate: 9-           | 17-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i i         |                                       |                                         |                    | Pag                 | e:                             |                            | I o          | of 1  |          |
| Client: i Jahu E.         | T dA. | 500-552-4 | 154            |                   |                         | P                          | roiect M          | anaq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er: K       | odey                                  | Eley                                    | /                  |                     |                                |                            |              |       | 4        |
| Address:                  |       |           |                |                   |                         | Project Name: BLT Trucking |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            | of 1         |       |          |
| Address.                  |       | States    | Zini           |                   |                         | - 1                        | Location: City, S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     | . Stat                         | tate: Kent, WA             |              |       |          |
| City:                     |       | State.    | ζιμ.           |                   |                         | -                          | Collector C I P   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     | Date of Collection: 9-23-7.1 0 |                            |              |       |          |
| Phone:                    | -     | Fax:      |                |                   |                         | -                          | mail              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Qu                                    |                                         |                    | Dat                 |                                |                            |              |       | <u> </u> |
| Client Project # C210924  | -3    | 1         | 1              |                   | T                       |                            |                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           |                                       | 77                                      | 77                 | 7                   | 7                              | 77                         |              | 7     |          |
| Sample Number             | Depth | Time      | Sample<br>Type | Container<br>Type | 10                      | 280 CU                     | 2 Daugher         | 200<br>5+ 80<br>5+ | CT IN THE T | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | S Melas            | 0/10/10<br>20/10/10 | 8270 J                         | L                          | Field        | Notes |          |
| 1 MW/1                    | -     | 1435      | 4-0            | Ry                | T T                     |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       | 2                                       | (                  | X                   |                                |                            |              |       |          |
| 2 MW 7                    | -     | 1250      | 1              | /                 |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         | <                  | X                   |                                |                            |              |       |          |
| 3 11/1/10/3               |       | 1716      |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         | e l                | ×                   |                                |                            |              |       | _        |
| 4 MWH                     | -     | 1355      |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       | 2                                       | ×                  | X                   |                                |                            |              |       |          |
| 5 MW 5                    |       | 1050      | T              |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         | X                  | X                   |                                |                            |              |       |          |
| 6                         |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    | _                   |                                |                            | _            |       |          |
| 7                         |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 8                         |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 9                         |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 10                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 11                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 12                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 13                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 14                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| 15                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     | _                              |                            |              |       |          |
| 16                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         | _                  |                     |                                |                            |              |       |          |
| 17                        |       |           |                |                   |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                         |                    |                     |                                |                            |              |       |          |
| Relinquished by: MA       | G     | -28-2     | Date / Time    | Received by:      | ~                       | _                          |                   | 9/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stri        | te / Time                             | Good C                                  | ample<br>ondition? | Receip              | N                              | Rem                        | arks:<br>St. | d tat |          |
| Relinquished by:          |       |           | Date / Time    | Received by:      |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Da          | te / Time                             | Cooler<br>Sample                        | Temp.<br>Temp.     |                     | °C                             | -                          |              |       |          |
| Relinquished by:          |       |           | Date / Time    | Received by:      |                         |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Da          | te / Time                             | Total N<br>Con                          | umber of<br>ainers |                     |                                | TAT                        | : 24HR       | 48HR  | 5-DAY    |

LEGAL ACTION CLAUSE. In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Orginator



3322 South Bay Road NE • Olympia, WA 98506-2957

October 8, 2021

Kaden Reed ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Reed:

Please find enclosed the analytical data report for the BLT Trucking Project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

5 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environmental, Inc. Cha                           |             |                        |                                                | air               | ain of Custody Record       |       |          |                  |        |            |           |        |                  | www.LibbyEnvironmental.com |                                                                                                 |      |                                           |         |            |         |           |           |
|---------------------------------------------------------|-------------|------------------------|------------------------------------------------|-------------------|-----------------------------|-------|----------|------------------|--------|------------|-----------|--------|------------------|----------------------------|-------------------------------------------------------------------------------------------------|------|-------------------------------------------|---------|------------|---------|-----------|-----------|
| 4139 Libby Road NE<br>Olympia, WA 98506                 | Ph:<br>Fax: | 360-352-2<br>360-352-4 | 2110<br>154                                    |                   |                             |       | Date     | : 9              | 1/2-   | 3/         | 21        |        |                  |                            | ~                                                                                               |      | Pag                                       | e:      |            | 1       | of        | [         |
| Client: FCI                                             |             |                        |                                                |                   |                             |       | Proje    | ect M            | lanag  | jer:       | Q         | Ka     | d                | 2                          | Ke                                                                                              | e    | X                                         |         |            |         | _         |           |
| Address: PO Rev.                                        | 153         |                        |                                                |                   |                             |       | Proje    | ect N            | ame:   | B          | LT        | T      | vn               | chb                        | ~                                                                                               |      |                                           |         |            | ,       |           |           |
| City: Fox Islo                                          | nd          | State: (               | NA zip                                         | : 98333           | Location: Kent wh City, Sta |       |          |                  |        |            |           |        |                  | Stat                       | e:                                                                                              | Kei  | nt 1                                      | A       |            |         |           |           |
| Phone:                                                  |             | Fax:                   | Collector: Chance Long Date of Collection: 9/2 |                   |                             |       |          |                  | 1/23   | 121        |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| Client Project # 0611-01-03-02 Email: Karle CAllecitory |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| Sample Number                                           | Depth       | Time                   | Sample<br>Type                                 | Container<br>Type | 15                          | 5 828 | AR AN AN | 5+ 802<br>5+ 802 | APH JA | STO STORES | \$ 27 - C | 24H 24 | 10 11<br>NH 8210 | Sering C                   | 310<br>3210<br>32<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | SA P | 50° 00 00 00 00 00 00 00 00 00 00 00 00 0 | Aleials | E C        | Fie     | eld Notes | 5         |
| 1 Mul                                                   |             | 1945                   | int                                            | 24 Ante           |                             | X     | X        |                  |        | X          | X         |        |                  | X                          | X                                                                                               |      |                                           |         |            | Disco   | Wed       | metals    |
| 2 Mart                                                  | -           | 1250                   | 0,0                                            | 3104              |                             | 1     | 1        |                  |        | 1          | T         | 9      |                  | T                          | -                                                                                               |      |                                           |         |            | On      | hold      |           |
| 3 MW3                                                   | -           | 1210                   |                                                | 1 HNOS POIN       |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            | Dent    | lan a     | nalysis   |
| 4 MW4                                                   | -           | 1355                   |                                                | Junp. pory        |                             | 1     |          |                  |        | 1          |           |        |                  | 11                         |                                                                                                 |      | $\otimes$                                 |         |            | 1       | 50        | 1.5       |
| 5 MW5                                                   | -           | 105D                   | V                                              | , , ,             |                             | K     | ¥        |                  |        | ¥          | ¥         |        |                  | V                          | ¥                                                                                               |      |                                           |         |            |         |           |           |
| 6                                                       |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            | MUN     | Tip       | ne: 1435  |
| 7                                                       |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 8                                                       |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 9                                                       |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        | 4                |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 10                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 11                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 12                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 13                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 14                                                      |             |                        |                                                |                   |                             |       | ·        |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 15                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            | . *       |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 16                                                      |             |                        |                                                |                   |                             |       |          |                  |        | 54         |           |        | · · ·            |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| 17                                                      |             |                        |                                                |                   |                             |       |          |                  |        |            |           |        |                  |                            |                                                                                                 |      |                                           |         |            |         |           |           |
| Relinquished by:                                        | Date        | / Time                 |                                                | Received by:      |                             |       |          | ~                |        | Date       | / Time    | e      |                  | San                        | nple                                                                                            | Rec  | eipt                                      |         | Rem        | harks:  |           |           |
| and god                                                 | 9/22        | 3/21 1                 | 610                                            | my.               |                             |       |          | 9                | 125    | 121        | 165       | 7      | Good             | Cond                       | lition?                                                                                         |      | Υ                                         | N       | 10-<br>0c0 | 5-21 AN | IZYJAU    | SADDED    |
| Relinquished by:                                        | Date        | / Time                 |                                                | Receiyed by:      |                             |       |          |                  |        | Date       | / Time    | e      | Tem              | ).                         |                                                                                                 |      |                                           | °C      | CT.        | TAT     | s vin e   | MHIC.     |
| Relinguished by:                                        | Dato        | / Time                 |                                                | Received by:      |                             |       |          |                  |        | Date       | / Time    | 9      | Seals            | Intac                      | t?                                                                                              | Y    | N                                         | N/A     | 21         | 5 141.  |           | 0         |
| toinquisited by.                                        | Dale        | 1 11116                |                                                | Received by.      |                             |       |          |                  |        | Date       | ,         |        | C                | ontaine                    | ers                                                                                             |      |                                           |         | TA         | T: 24⊦  | IR 481    | IR \$-DAY |

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L210924-3B Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

## Analyses of Dissolved Metals in Water by EPA Method 7010 Series

| Sample                                  | Date                   | Arsenic     |
|-----------------------------------------|------------------------|-------------|
| Number                                  | Analyzed               | $(\mu g/L)$ |
| Method Blank                            | 10/7/2021              | nd          |
| MW4                                     | 10/7/2021              | nd          |
| MW4 Dup                                 | 10/7/2021              | nd          |
| Practical Quantitation Limit            |                        | 3.0         |
| "nd" Indicates not detected at the list | sted detection limits. |             |

## ANALYSES PERFORMED BY: Eric Welte

## QA/QC for Dissolved Metals in Water by EPA Method 7010 Series

| Sample<br>Number | Date<br>Analyzed | Arsenic<br>(% Recovery) |
|------------------|------------------|-------------------------|
| LCS              | 10/7/2021        | 108%                    |
| L211005-5 MS     | 10/7/2021        | 100%                    |
| L211005-5 MSD    | 10/7/2021        | 96%                     |
| RPD              | 10/7/2021        | 4%                      |

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Eric Welte

BLT TRUCKING PROJECT ECI Libby Project # L210924-3B Date Received 9/22/21 12:05 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

## Sample Receipt Checklist

| Chain of Custody                                              |                |             |         |
|---------------------------------------------------------------|----------------|-------------|---------|
| 1. Is the Chain of Custody complete?                          | ✓ Yes          | 🗌 No        |         |
| 2. How was the sample delivered?                              | Hand Delivered | ✓ Picked Up | Shipped |
| Log In                                                        |                |             |         |
| 3. Cooler or Shipping Container is present.                   | ☑ Yes          | 🗌 No        | □ N/A   |
| 4. Cooler or Shipping Container is in good condition.         | ✓ Yes          | 🗌 No        | □ N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    | 🗌 Yes          | ✓ No        | □ N/A   |
| 6. Was an attempt made to cool the samples?                   | ☑ Yes          | 🗌 No        | □ N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             | 2.1            | _°C         |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          | 4.5            | 5 °C        |         |
| 9. Did all containers arrive in good condition (unbroken)?    | ✓ Yes          | 🗌 No        |         |
| 10. Is it clear what analyses were requested?                 | ✓ Yes          | 🗌 No        |         |
| 11. Did container labels match Chain of Custody?              | ⊡ Yes          | 🗌 No        |         |
| 12. Are matrices correctly identified on Chain of Custody?    | ☑ Yes          | 🗌 No        |         |
| 13. Are correct containers used for the analysis indicated?   | ☑ Yes          | 🗌 No        |         |
| 14. Is there sufficient sample volume for indicated analysis? | ✓ Yes          | 🗌 No        |         |
| 15. Were all containers properly preserved per each analysis? | ✓ Yes          | 🗌 No        |         |
| 16. Were VOA vials collected correctly (no headspace)?        | ☑ Yes          | 🗌 No        | □ N/A   |
| 17. Were all holding times able to be met?                    | ☑ Yes          | 🗌 No        |         |
|                                                               |                |             |         |
| Discrepancies/ Notes                                          |                |             |         |
| 18. Was client notified of all discrepancies?                 | 🗌 Yes          | 🗌 No        | ✓ N/A   |
| Person Notified:                                              |                | D           | ate:    |
| By Whom:                                                      |                | _           | Via:    |
| Regarding:                                                    |                |             |         |
| 19. Comments.                                                 |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |



3322 South Bay Road NE • Olympia, WA 98506-2957

November 24, 2021

Kaden Reed ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Reed:

Please find enclosed the analytical data report for the BLT Trucking Project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

| Libby Environmental, Inc.                            |                              |                    |                             | Chain of Custody Record       |               |                                                      |                |                              |                               |          |          |        |               | www.Libb                                                           | yEnviron | mental.com   |        |               |           |                     |
|------------------------------------------------------|------------------------------|--------------------|-----------------------------|-------------------------------|---------------|------------------------------------------------------|----------------|------------------------------|-------------------------------|----------|----------|--------|---------------|--------------------------------------------------------------------|----------|--------------|--------|---------------|-----------|---------------------|
| 3322 South Bay Road NE                               | Ph:                          | 360-352-2          | 110                         |                               |               |                                                      | 1              | 11.                          | _                             | 1        |          |        |               |                                                                    |          |              | 1.     |               | - 1       |                     |
| Olympia, WA 98506                                    | Fax:                         | 360-352-4          | 154                         |                               |               | Dat                                                  | e: '           | .11                          | 1/                            | 21       |          | A      |               |                                                                    | Pag      | e:           | V      |               | of (      |                     |
| Client: ECL                                          |                              |                    |                             |                               |               | Pro                                                  | ject N         | lanag                        | ger:                          | K        | -0.0     | len    | R             | eel                                                                |          |              |        |               |           |                     |
| Address: P.O. BOX                                    | 153                          |                    |                             |                               |               | Project Name: BLT Trucking                           |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| city: FOX Island                                     |                              | State: V           | VA Zip                      | : 98333                       | >             | Location: SOID S. 259th St., City, State: BEKENT, WA |                |                              |                               |          |          |        |               | A                                                                  |          |              |        |               |           |                     |
| Phone:                                               |                              | Fax:               |                             |                               |               | Col                                                  | lector         | : C                          | ho                            | ne       | l        |        |               |                                                                    | Date     | e of C       | Collec | tion:         |           |                     |
| Client Project # 0/011-01-03-02                      |                              |                    |                             |                               |               | Em                                                   | ail: (         | Cha                          | ine                           | 10       | all      | leci,  | con           | 7                                                                  | ;        | K            | adt    | eneall        | leci.c    | on                  |
| THE BOAT                                             | Death                        | Time               | Sample                      | Container                     | 5             | E LA                                                 | augree<br>MICH | 2100<br>2100<br>5 60<br>5 60 | S PHI                         |          | A 10+    | SA CAS | 8 Merel       | \$<br>8210<br>8210<br>8210<br>8210<br>8210<br>8210<br>8210<br>8210 | o vo     | 8210         |        | Field         | d Notoo   |                     |
|                                                      | Depth                        | 11me               | H                           | (2) 12 gmber                  |               |                                                      | X              |                              |                               | $\leq$   | $\times$ |        | $\frac{c}{c}$ | 27 9                                                               | 7        | $\leftarrow$ | f 1    | Diccol        | u Notes   | otals               |
| 2 MANIZ                                              | -                            | 12.50              | 120                         | (1)500 pumber                 |               | fî                                                   | 1              |                              |                               | 7        | 1        |        | Ì             | -                                                                  |          |              |        | on he         | old a     | ending              |
| 3 MAW 3                                              | -                            | 10:30              |                             | (2)250mL                      |               | ++                                                   |                |                              |                               | ++       | +        |        | $\parallel$   |                                                                    |          |              |        | ana           | Lysis     | STOTIC              |
| 4 MWH                                                | (                            | 10:00              |                             | (3) VOAS                      |               | 11                                                   |                |                              |                               |          |          |        | 11            |                                                                    |          |              |        |               | )         |                     |
| 5 MWS                                                | -                            | 11:45              | 5                           |                               |               | V                                                    | V              |                              | V                             | V        | V        | ,      | V             |                                                                    |          |              |        |               |           |                     |
| 6                                                    |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 7                                                    |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 8                                                    |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 9                                                    |                              |                    |                             | 1                             |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 10                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 11                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 12                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 13                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 14                                                   |                              |                    |                             |                               | -             |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 15                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 16                                                   |                              |                    |                             |                               |               |                                                      |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| 17                                                   |                              |                    |                             |                               |               | 1                                                    |                |                              |                               |          |          |        |               |                                                                    |          |              |        |               |           |                     |
| Relinquished by: Date / Time                         |                              |                    | Received by:<br>Date / Time |                               |               |                                                      |                | Sample Receipt               |                               |          |          | t<br>N | Rem           | arks:                                                              |          |              |        |               |           |                     |
| Relinquished by:                                     | Relinquished by: Date / Time |                    | Received by:                |                               | 1             | 1                                                    |                | D                            | Date / Time Cooler Temp. °C   |          |          |        |               | °C                                                                 |          |              |        |               |           |                     |
|                                                      |                              |                    |                             |                               |               |                                                      |                |                              | Sample Temp. °C               |          |          |        | °C            |                                                                    |          |              |        |               |           |                     |
| Relinquished by: Date / Time                         |                              |                    | Received by: Date / Time    |                               |               |                                                      |                |                              | Total Number of<br>Containers |          |          |        | TAT           | : 24HF                                                             | R 48HI   | R S-DAK      |        |               |           |                     |
| LEGAL ACTION CLAUSE: In the event of default of pour | ant and/or failur            | n to now Client or | man to now the or           | ets of collection including o | out costs and | resconshi                                            | e attornes     | fees to t                    | he deterr                     | nined by | a court  | of law |               |                                                                    |          |              |        | Distribution: | White Lab | (allow - Originator |

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description       |               | Method        | MW1        | MW2        | MW3        | MW4        | MW4 Dup    |
|--------------------------|---------------|---------------|------------|------------|------------|------------|------------|
|                          |               | Blank         |            |            |            |            | _          |
| Date Sampled             |               | N/A           | 11/17/2021 | 11/17/2021 | 11/17/2021 | 11/17/2021 | 11/17/2021 |
| Date Analyzed            | PQL           | 11/19/2021    | 11/19/2021 | 11/19/2021 | 11/19/2021 | 11/19/2021 | 11/19/2021 |
|                          | (µg/L)        | (µg/L)        | (µg/L)     | (µg/L)     | (µg/L)     | (µg/L)     | (µg/L)     |
| Benzene                  | 1.0           | nd            | nd         | nd         | nd         | nd         | nd         |
| Toluene                  | 2.0           | nd            | nd         | nd         | nd         | nd         | nd         |
| Ethylbenzene             | 1.0           | nd            | nd         | nd         | nd         | nd         | nd         |
| Total Xylenes            | 2.0           | nd            | nd         | nd         | nd         | nd         | nd         |
| Gasoline                 | 100           | nd            | nd         | nd         | nd         | nd         | nd         |
| Surrogate Recovery       |               |               |            |            |            |            |            |
| Dibromofluoromethane     |               | 118           | 115        | 118        | 120        | 122        | 110        |
| 1,2-Dichloroethane-d4    |               | 106           | 98         | 111        | 101        | 99         | 98         |
| Toluene-d8               |               | 93            | 96         | 96         | 96         | 99         | 93         |
| 4-Bromofluorobenzene     |               | 83            | 83         | 84         | 81         | 86         | 84         |
| "nd" Indicates not detec | ted at listed | detection lin | nit.       |            |            |            |            |

#### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

#### ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description         |                | MW5               |        |
|----------------------------|----------------|-------------------|--------|
| Sample Description         |                | 101 00 5          |        |
| Date Sampled               |                | 11/17/2021        |        |
| Date Analyzed              | PQL            | 11/19/2021        |        |
| ,                          | (µg/L)         | (µg/L)            |        |
| Benzene                    | 1.0            | nd                |        |
| Toluene                    | 2.0            | nd                |        |
| Ethylbenzene               | 1.0            | nd                |        |
| Total Xylenes              | 2.0            | nd                |        |
| Gasoline                   | 100            | nd                |        |
| Surrogate Recovery         |                |                   |        |
| Dibromofluoromethane       |                | 119               |        |
| 1,2-Dichloroethane-d4      |                | 101               |        |
| Toluene-d8                 |                | 95                |        |
| 4-Bromofluorobenzene       |                | 78                |        |
| "nd" Indicates not detec   | cted at listed | l detection limit |        |
| "int" Indicates that inter | rference pre   | vents determina   | ition. |

### Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ANALYSES PERFORMED BY: Sherry Chilcutt

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Matrix Spike Sample Identification: MW4 |        |          |           |            |          |     |          |      |  |  |  |  |
|-----------------------------------------|--------|----------|-----------|------------|----------|-----|----------|------|--|--|--|--|
|                                         |        | Date     | Analyzed: | 11/19/2021 | _        |     |          |      |  |  |  |  |
|                                         | Spiked | MS       | MSD       | MS         | MSD      | RPD | Limits   | Data |  |  |  |  |
|                                         | Conc.  | Response | Response  | Recovery   | Recovery |     | Recovery | Flag |  |  |  |  |
|                                         | (µg/L) | (µg/L)   | (µg/L)    | (%)        | (%)      | (%) | (%)      |      |  |  |  |  |
| Benzene                                 | 5.0    | 5.1      | 5.4       | 102        | 107      | 5.0 | 65-135   |      |  |  |  |  |
| Toluene                                 | 5.0    | 5.8      | 5.5       | 117        | 109      | 6.5 | 65-135   |      |  |  |  |  |
| Ethylbenzene                            | 5.0    | 5.2      | 5.3       | 103        | 106      | 2.7 | 65-135   |      |  |  |  |  |
| Total Xylenes                           | 15.0   | 14.4     | 14.9      | 96         | 99       | 3.3 | 65-135   |      |  |  |  |  |
| Surrogate Recovery (%)                  |        |          |           | MS         | MSD      |     |          |      |  |  |  |  |
| Dibromofluoromethane                    |        |          |           | 111        | 103      |     | 65-135   |      |  |  |  |  |
| 1,2-Dichloroethane-d4                   |        |          |           | 100        | 97       |     | 65-135   |      |  |  |  |  |
| Toluene-d8                              |        |          |           | 93         | 93       |     | 65-135   |      |  |  |  |  |
| 4-Bromofluorobenzene                    |        |          |           | 94         | 90       |     | 65-135   |      |  |  |  |  |

#### QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Water

ACCEPTABLE RPD IS 35%

#### ANALYSES PERFORMED BY: Sherry Chilcutt

#### Date Analyzed: 11/19/2021 Spiked LCS LCS LCS Data Conc. Response Recovery Recovery Flag $(\mu g/L)$ $(\mu g/L)$ (%) Limits (%) 5.0 5.5 110 80-120 Benzene 5.0 5.7 114 80-120 Toluene Ethylbenzene 5.0 5.1 103 80-120 99 15.0 14.9 80-120 Total Xylenes Surrogate Recovery 117 65-135 Dibromofluoromethane 99 65-135 1,2-Dichloroethane-d4 95 65-135 Toluene-d8 85 65-135 4-Bromofluorobenzene

#### Laboratory Control Sample

ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                                                      | Date       | Surrogate    | Diesel | Oil         |  |  |  |  |  |  |
|-------------------------------------------------------------|------------|--------------|--------|-------------|--|--|--|--|--|--|
| Number                                                      | Analyzed   | Recovery (%) | (µg/L) | $(\mu g/L)$ |  |  |  |  |  |  |
| Method Blank                                                | 11/22/2021 | 77           | nd     | nd          |  |  |  |  |  |  |
| MW1                                                         | 11/22/2021 | 74           | nd     | nd          |  |  |  |  |  |  |
| MW2                                                         | 11/22/2021 | 82           | nd     | nd          |  |  |  |  |  |  |
| MW3                                                         | 11/22/2021 | 62           | nd     | nd          |  |  |  |  |  |  |
| MW4                                                         | 11/22/2021 | 59           | nd     | nd          |  |  |  |  |  |  |
| MW5                                                         | 11/22/2021 | 82           | nd     | nd          |  |  |  |  |  |  |
| Practical Quantitation Limit                                |            |              | 200    | 400         |  |  |  |  |  |  |
| 'nd" Indicates not detected at the listed detection limits. |            |              |        |             |  |  |  |  |  |  |

## Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 42% TO 150%

## ANALYSES PERFORMED BY: Randolph Kraus

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                        | PQL         | Method         | LCS        | LCSD       | MW1        | MW2        | MW3        |  |  |  |
|-----------------------------------------------------------|-------------|----------------|------------|------------|------------|------------|------------|--|--|--|
|                                                           |             | Blank          |            |            |            |            |            |  |  |  |
| Date Sampled                                              |             | N/A            | N/A        | N/A        | 11/17/2021 | 11/17/2021 | 11/17/2021 |  |  |  |
| Date Analyzed                                             |             | 11/19/2021     | 11/19/2021 | 11/19/2021 | 11/19/2021 | 11/19/2021 | 11/19/2021 |  |  |  |
|                                                           | (µg/L)      | (µg/L)         | (µg/L)     | (µg/L)     | (µg/L)     | (µg/L)     | (µg/L)     |  |  |  |
| Aroclor 1016                                              | 0.02        | nd             | 86%        | 106%       | nd         | nd         | nd         |  |  |  |
| Aroclor 1221                                              | 0.02        | nd             |            |            | nd         | nd         | nd         |  |  |  |
| Aroclor 1232                                              | 0.02        | nd             |            |            | nd         | nd         | nd         |  |  |  |
| Aroclor 1242                                              | 0.02        | nd             |            |            | nd         | nd         | nd         |  |  |  |
| Aroclor 1248                                              | 0.02        | nd             |            |            | nd         | nd         | nd         |  |  |  |
| Aroclor 1254                                              | 0.02        | nd             |            |            | nd         | nd         | nd         |  |  |  |
| Aroclor 1260                                              | 0.02        | nd             | 117%       | 102%       | nd         | nd         | nd         |  |  |  |
| Surrogate Recovery                                        |             |                |            |            |            |            |            |  |  |  |
| TCMX                                                      |             | 119            | 72         | 113        | 102        | 119        | 104        |  |  |  |
| DCBP                                                      |             | 126            | 73         | 117        | 103        | 101        | 102        |  |  |  |
| "nd" Indicates not de                                     | tected at 1 | isted detectio | n limit.   |            |            |            |            |  |  |  |
| "int" Indicates that interference prevents determination. |             |                |            |            |            |            |            |  |  |  |

#### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135% ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample Description                                        | PQL      | MW4         | MW5          |        |  |  |
|-----------------------------------------------------------|----------|-------------|--------------|--------|--|--|
|                                                           |          |             |              |        |  |  |
| Date Sampled                                              |          | 11/17/2021  | 11/17/2021   |        |  |  |
| Date Analyzed                                             |          | 11/19/2021  | 11/19/2021   |        |  |  |
|                                                           | (µg/L)   | (µg/L)      | (µg/L)       |        |  |  |
| Aroclor 1016                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1221                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1232                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1242                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1248                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1254                                              | 0.02     | nd          | nd           |        |  |  |
| Aroclor 1260                                              | 0.02     | nd          | nd           |        |  |  |
|                                                           |          |             |              |        |  |  |
| Surrogate Recovery                                        |          |             |              |        |  |  |
| TCMX                                                      |          | 133         | 98           |        |  |  |
| DCBP                                                      |          | 127         | 102          |        |  |  |
| "nd" Indicates not detected at listed detection limit.    |          |             |              |        |  |  |
| "int" Indicates that interference prevents determination. |          |             |              |        |  |  |
| ACCEPTABLE RECOV                                          | ERY LIMI | TS FOR SURR | OGATE 65% TO | 0 135% |  |  |
| ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125%    |          |             |              |        |  |  |
| ACCEPTABLE RPD IS                                         | 20%      |             |              |        |  |  |

### Analyses of PCB (Polychlorinated Biphenyls) in Water by EPA Method 8082

ANALYSES PERFORMED BY: Sherry Chilcutt

BLT TRUCKING PROJECT ECI Kent, Washington Libby Project # L211118-5 Client Project # 0611-01-03-02 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

| Sample                                                      | Date       | Lead        | Cadmium     | Chromium    | Arsenic     |  |  |
|-------------------------------------------------------------|------------|-------------|-------------|-------------|-------------|--|--|
| Number                                                      | Analyzed   | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ |  |  |
| Method Blank                                                | 11/19/2021 | nd          | nd          | nd          | nd          |  |  |
| MW1                                                         | 11/19/2021 | nd          | nd          | nd          | 6.5         |  |  |
| MW2                                                         | 11/19/2021 | nd          | nd          | nd          | 3.3         |  |  |
| MW3                                                         | 11/19/2021 | nd          | nd          | nd          | nd          |  |  |
| MW4                                                         | 11/19/2021 | nd          | nd          | nd          | 19          |  |  |
| MW5                                                         | 11/19/2021 | nd          | nd          | nd          | nd          |  |  |
| Practical Quantitation Limit 5.0 0.5 5.0 3.0                |            |             |             |             |             |  |  |
| "nd" Indicates not detected at the listed detection limits. |            |             |             |             |             |  |  |

## Analyses of Total Metals in Water by EPA Method 7010 Series

## ANALYSES PERFORMED BY: Eric Welte

## QA/QC for Total Metals in Water by EPA Method 7010 Series

| Sample        | Date       | Lead         | Cadmium      | Chromium     | Arsenic      |
|---------------|------------|--------------|--------------|--------------|--------------|
| Number        | Analyzed   | (% Recovery) | (% Recovery) | (% Recovery) | (% Recovery) |
| LCS           | 11/19/2021 | 101%         | 108%         | 115%         | 115%         |
| L211118-5 MS  | 11/19/2021 | 111%         | 86%          | 101%         | 108%         |
| L211118-5 MSD | 11/19/2021 | 103%         | 88%          | 101%         | 107%         |
| RPD           | 11/19/2021 | 7%           | 2%           | 0%           | 1%           |

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

## ANALYSES PERFORMED BY: Eric Welte

BLT TRUCKING PROJECT ECI Libby Project # L211118-5 Date Received 11/18/21 11:18 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By MH

## Sample Receipt Checklist

| Chain of Custody                                              |                |             |         |
|---------------------------------------------------------------|----------------|-------------|---------|
| 1. Is the Chain of Custody complete?                          | ✓ Yes          | 🗌 No        |         |
| 2. How was the sample delivered?                              | Hand Delivered | ✓ Picked Up | Shipped |
| Log In                                                        |                |             |         |
| 3. Cooler or Shipping Container is present.                   | ⊡ Yes          | 🗌 No        | □ N/A   |
| 4. Cooler or Shipping Container is in good condition.         | ✓ Yes          | 🗌 No        | □ N/A   |
| 5. Cooler or Shipping Container has Custody Seals present.    | 🗌 Yes          | ✓ No        | □ N/A   |
| 6. Was an attempt made to cool the samples?                   | ☑ Yes          | 🗌 No        | □ N/A   |
| 7. Temperature of cooler (0°C to 8°C recommended)             | -0.3           | <u>°C</u>   |         |
| 8. Temperature of sample(s) (0°C to 8°C recommended)          | 6.8            | <u>°C</u>   |         |
| 9. Did all containers arrive in good condition (unbroken)?    | ✓ Yes          | 🗌 No        |         |
| 10. Is it clear what analyses were requested?                 | ✓ Yes          | 🗌 No        |         |
| 11. Did container labels match Chain of Custody?              | ☑ Yes          | 🗌 No        |         |
| 12. Are matrices correctly identified on Chain of Custody?    | ☑ Yes          | 🗌 No        |         |
| 13. Are correct containers used for the analysis indicated?   | ☑ Yes          | 🗌 No        |         |
| 14. Is there sufficient sample volume for indicated analysis? | ✓ Yes          | 🗌 No        |         |
| 15. Were all containers properly preserved per each analysis? | ✓ Yes          | 🗌 No        |         |
| 16. Were VOA vials collected correctly (no headspace)?        | ☑ Yes          | 🗌 No        | □ N/A   |
| 17. Were all holding times able to be met?                    | ☑ Yes          | 🗌 No        |         |
|                                                               |                |             |         |
| Discrepancies/ Notes                                          |                |             |         |
| 18. Was client notified of all discrepancies?                 | 🗌 Yes          | 🗌 No        | ✓ N/A   |
| Person Notified:                                              |                | _ [         | Date:   |
| By Whom:                                                      |                | _           | Via:    |
| Regarding:                                                    |                |             |         |
| 19. Comments.                                                 |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |
|                                                               |                |             |         |



3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: BLT Trucking Work Order Number: 2111434

November 24, 2021

#### Attention Kodey Eley:

Fremont Analytical, Inc. received 5 sample(s) on 11/19/2021 for the analyses presented in the following report.

#### Mercury by EPA Method 245.1 Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910



| CLIENT:<br>Project:<br>Work Order: | Libby Environmental<br>BLT Trucking<br>2111434 | Work Order Sample Su |                     |  |  |  |
|------------------------------------|------------------------------------------------|----------------------|---------------------|--|--|--|
| Lab Sample ID                      | Client Sample ID                               | Date/Time Collected  | Date/Time Received  |  |  |  |
| 2111434-001                        | MW1                                            | 11/17/2021 12:50 PM  | 11/19/2021 11:51 AM |  |  |  |
| 2111434-002                        | MW2                                            | 11/17/2021 1:40 PM   | 11/19/2021 11:51 AM |  |  |  |
| 2111434-003                        | MW3                                            | 11/17/2021 10:30 AM  | 11/19/2021 11:51 AM |  |  |  |
| 2111434-004                        | MW4                                            | 11/17/2021 10:00 AM  | 11/19/2021 11:51 AM |  |  |  |
| 2111434-005                        | MW5                                            | 11/17/2021 11:45 AM  | 11/19/2021 11:51 AM |  |  |  |



**Case Narrative** 

WO#: **2111434** Date: **11/24/2021** 

CLIENT:Libby EnvironmentalProject:BLT Trucking

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

## **Qualifiers & Acronyms**



WO#: **2111434** Date Reported: **11/24/2021** 

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate



Work Order: **2111434** Date Reported: **11/24/2021** 

| Client: Libby Environmental    | Collection Date: 11/17/2021 12:50:00 PM |                   |      |       |       |                       |
|--------------------------------|-----------------------------------------|-------------------|------|-------|-------|-----------------------|
| Project: BLT Trucking          |                                         |                   |      |       |       |                       |
| Lab ID: 2111434-001            | Matrix: Water                           |                   |      |       |       |                       |
| Client Sample ID: MW1          |                                         |                   |      |       |       |                       |
| Analyses                       | Result                                  | RL                | Qual | Units | DF    | Date Analyzed         |
| Polyaromatic Hydrocarbons by I | EPA Method                              | <u>8270 (SIM)</u> |      | Batc  | h ID: | 34530 Analyst: SB     |
| Benz(a)anthracene              | ND                                      | 0.0991            |      | μg/L  | 1     | 11/23/2021 4:00:51 PM |
| Chrysene                       | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Benzo(b)fluoranthene           | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Benzo(k)fluoranthene           | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Benzo(a)pyrene                 | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Dibenz(a,h)anthracene          | ND                                      | 0.0991            |      | µg/L  | 1     | 11/23/2021 4:00:51 PM |
| Surr: 2-Fluorobiphenyl         | 102                                     | 49.6 - 128        |      | %Rec  | 1     | 11/23/2021 4:00:51 PM |
| Surr: Terphenyl-d14            | 95.5                                    | 38.2 - 138        |      | %Rec  | 1     | 11/23/2021 4:00:51 PM |
| Mercury by EPA Method 245.1    |                                         |                   |      | Batc  | h ID: | 34538 Analyst: CH     |
| Mercury                        | ND                                      | 0.100             |      | µg/L  | 1     | 11/23/2021 2:46:57 PM |



Work Order: **2111434** Date Reported: **11/24/2021** 

| Client: Libby Environmental    | Collection Date: 11/17/2021 1:40:00 PM |                   |      |       |       |                       |
|--------------------------------|----------------------------------------|-------------------|------|-------|-------|-----------------------|
| Project: BLT Trucking          |                                        |                   |      |       |       |                       |
| Lab ID: 2111434-002            | Matrix: Water                          |                   |      |       |       |                       |
| Client Sample ID: MW2          |                                        |                   |      |       |       |                       |
| Analyses                       | Result                                 | RL                | Qual | Units | DF    | Date Analyzed         |
| Polyaromatic Hydrocarbons by I | EPA Method                             | <u>8270 (SIM)</u> |      | Batc  | h ID: | 34530 Analyst: SB     |
| Benz(a)anthracene              | ND                                     | 0.0999            |      | μg/L  | 1     | 11/23/2021 4:22:21 PM |
| Chrysene                       | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Benzo(b)fluoranthene           | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Benzo(k)fluoranthene           | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Benzo(a)pyrene                 | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Dibenz(a,h)anthracene          | ND                                     | 0.0999            |      | µg/L  | 1     | 11/23/2021 4:22:21 PM |
| Surr: 2-Fluorobiphenyl         | 80.5                                   | 49.6 - 128        |      | %Rec  | 1     | 11/23/2021 4:22:21 PM |
| Surr: Terphenyl-d14            | 85.5                                   | 38.2 - 138        |      | %Rec  | 1     | 11/23/2021 4:22:21 PM |
| Mercury by EPA Method 245.1    |                                        |                   |      | Batc  | h ID: | 34538 Analyst: CH     |
| Mercury                        | ND                                     | 0.100             |      | µg/L  | 1     | 11/23/2021 2:48:38 PM |



Work Order: **2111434** Date Reported: **11/24/2021** 

| Client: Libby Environmental    | Collection Date: 11/17/2021 10:30:00 AM |                   |      |       |       |                       |
|--------------------------------|-----------------------------------------|-------------------|------|-------|-------|-----------------------|
| Project: BLT Trucking          |                                         |                   |      |       |       |                       |
| Lab ID: 2111434-003            | Matrix: Water                           |                   |      |       |       |                       |
| Client Sample ID: MW3          |                                         |                   |      |       |       |                       |
| Analyses                       | Result                                  | RL                | Qual | Units | DF    | Date Analyzed         |
| Polyaromatic Hydrocarbons by E | EPA Method                              | <u>8270 (SIM)</u> |      | Batc  | h ID: | 34530 Analyst: SB     |
| Benz(a)anthracene              | ND                                      | 0.0995            |      | μg/L  | 1     | 11/23/2021 4:43:50 PM |
| Chrysene                       | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Benzo(b)fluoranthene           | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Benzo(k)fluoranthene           | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Benzo(a)pyrene                 | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Indeno(1,2,3-cd)pyrene         | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Dibenz(a,h)anthracene          | ND                                      | 0.0995            |      | µg/L  | 1     | 11/23/2021 4:43:50 PM |
| Surr: 2-Fluorobiphenyl         | 92.3                                    | 49.6 - 128        |      | %Rec  | 1     | 11/23/2021 4:43:50 PM |
| Surr: Terphenyl-d14            | 94.1                                    | 38.2 - 138        |      | %Rec  | 1     | 11/23/2021 4:43:50 PM |
| Mercury by EPA Method 245.1    |                                         |                   |      | Batc  | h ID: | 34538 Analyst: CH     |
| Mercury                        | ND                                      | 0.100             |      | µg/L  | 1     | 11/23/2021 2:50:19 PM |


## **Analytical Report**

Work Order: **2111434** Date Reported: **11/24/2021** 

| Client: Libby Environmental    |            |                   |      | Collection | n Dat | e: 11/17/2021 10:00:00 AM |
|--------------------------------|------------|-------------------|------|------------|-------|---------------------------|
| Project: BLT Trucking          |            |                   |      |            |       |                           |
| Lab ID: 2111434-004            |            |                   |      | Matrix: W  | /ater |                           |
| Client Sample ID: MW4          |            |                   |      |            |       |                           |
| Analyses                       | Result     | RL                | Qual | Units      | DF    | Date Analyzed             |
| Polyaromatic Hydrocarbons by I | EPA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: | 34530 Analyst: SB         |
| Benz(a)anthracene              | ND         | 0.0999            |      | μg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Chrysene                       | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Benzo(b)fluoranthene           | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Benzo(k)fluoranthene           | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Benzo(a)pyrene                 | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Indeno(1,2,3-cd)pyrene         | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Dibenz(a,h)anthracene          | ND         | 0.0999            |      | µg/L       | 1     | 11/23/2021 5:05:31 PM     |
| Surr: 2-Fluorobiphenyl         | 95.0       | 49.6 - 128        |      | %Rec       | 1     | 11/23/2021 5:05:31 PM     |
| Surr: Terphenyl-d14            | 97.2       | 38.2 - 138        |      | %Rec       | 1     | 11/23/2021 5:05:31 PM     |
| Mercury by EPA Method 245.1    |            |                   |      | Batc       | h ID: | 34538 Analyst: CH         |
| Mercury                        | ND         | 0.100             |      | µg/L       | 1     | 11/23/2021 2:52:01 PM     |



## **Analytical Report**

Work Order: **2111434** Date Reported: **11/24/2021** 

| Client: Libby Environmental  |            |                   |      | Collection | n Dat | e: 11/17/2021 11:45:00 AM |
|------------------------------|------------|-------------------|------|------------|-------|---------------------------|
| Project: BLT Trucking        |            |                   |      |            |       |                           |
| Lab ID: 2111434-005          |            |                   |      | Matrix: W  | /ater |                           |
| Client Sample ID: MW5        |            |                   |      |            |       |                           |
| Analyses                     | Result     | RL                | Qual | Units      | DF    | Date Analyzed             |
| Polyaromatic Hydrocarbons by | EPA Method | <u>8270 (SIM)</u> |      | Batc       | h ID: | 34530 Analyst: SB         |
| Benz(a)anthracene            | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Chrysene                     | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Benzo(b)fluoranthene         | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Benzo(k)fluoranthene         | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Benzo(a)pyrene               | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Indeno(1,2,3-cd)pyrene       | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Dibenz(a,h)anthracene        | ND         | 0.0994            |      | µg/L       | 1     | 11/23/2021 5:26:58 PM     |
| Surr: 2-Fluorobiphenyl       | 104        | 49.6 - 128        |      | %Rec       | 1     | 11/23/2021 5:26:58 PM     |
| Surr: Terphenyl-d14          | 101        | 38.2 - 138        |      | %Rec       | 1     | 11/23/2021 5:26:58 PM     |
| Mercury by EPA Method 245.1  |            |                   |      | Batc       | h ID: | 34538 Analyst: CH         |
| Mercury                      | ND         | 0.100             |      | µg/L       | 1     | 11/23/2021 2:57:06 PM     |



| Work Order:<br>CLIENT:<br>Project: | 2111434<br>Libby Enviro<br>BLT Truckin | nmental<br>g         |       |           |             |                                | <b>QC SUMMARY REPORT</b><br>Mercury by EPA Method 245.1 |
|------------------------------------|----------------------------------------|----------------------|-------|-----------|-------------|--------------------------------|---------------------------------------------------------|
| Sample ID: MB-34                   | 538                                    | SampType: MBLK       |       |           | Units: µg/L | Prep Date: 11/23/2021          | RunNo: 71515                                            |
| Client ID: MBLK                    | W                                      | Batch ID: 34538      |       |           |             | Analysis Date: 11/23/2021      | SeqNo: <b>1456843</b>                                   |
| Analyte                            |                                        | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Re | f Val %RPD RPDLimit Qual                                |
| Mercury                            |                                        | ND                   | 0.100 |           |             |                                |                                                         |
| Sample ID: LCS-3                   | 4538                                   | SampType: LCS        |       |           | Units: µg/L | Prep Date: 11/23/2021          | RunNo: 71515                                            |
| Client ID: LCSW                    | 1                                      | Batch ID: 34538      |       |           |             | Analysis Date: 11/23/2021      | SeqNo: <b>1456844</b>                                   |
| Analyte                            |                                        | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Re | f Val %RPD RPDLimit Qual                                |
| Mercury                            |                                        | 2.28                 | 0.100 | 2.500     | 0           | 91.2 85 115                    |                                                         |
| Sample ID: 21114                   | 24-001EDUP                             | SampType: <b>DUP</b> |       |           | Units: µg/L | Prep Date: 11/23/2021          | RunNo: 71515                                            |
| Client ID: BATC                    | н                                      | Batch ID: 34538      |       |           |             | Analysis Date: 11/23/2021      | SeqNo: <b>1456846</b>                                   |
| Analyte                            |                                        | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Re | f Val %RPD RPDLimit Qual                                |
| Mercury                            |                                        | ND                   | 0.100 |           |             |                                | 0 20                                                    |
| Sample ID: 21114                   | 24-001EMS                              | SampType: <b>MS</b>  |       |           | Units: µg/L | Prep Date: 11/23/2021          | RunNo: 71515                                            |
| Client ID: BATC                    | н                                      | Batch ID: 34538      |       |           |             | Analysis Date: 11/23/2021      | SeqNo: <b>1456847</b>                                   |
| Analyte                            |                                        | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Re | f Val %RPD RPDLimit Qual                                |
| Mercury                            |                                        | 2.48                 | 0.100 | 2.500     | 0           | 99.2 70 130                    |                                                         |
| Sample ID: 21114                   | 24-001EMSD                             | SampType: <b>MSD</b> |       |           | Units: µg/L | Prep Date: 11/23/2021          | RunNo: 71515                                            |
| Client ID: BATC                    | н                                      | Batch ID: 34538      |       |           |             | Analysis Date: 11/23/2021      | SeqNo: 1456848                                          |
| Analyte                            |                                        | Result               | RL    | SPK value | SPK Ref Val | %REC LowLimit HighLimit RPD Re | f Val %RPD RPDLimit Qual                                |
| Mercury                            |                                        | 2.34                 | 0.100 | 2.500     | 0           | 93.6 70 130 2                  | 2.480 5.81 20                                           |

| Fremont    |
|------------|
| Analytical |

| Work Order:                        | 2111434                                  |           |        |        |           |             |      |             |             | 00.9        |                |          | PORT    |  |
|------------------------------------|------------------------------------------|-----------|--------|--------|-----------|-------------|------|-------------|-------------|-------------|----------------|----------|---------|--|
| CLIENT:                            | Libby Enviro                             | nmental   |        |        |           |             | _    | _           |             |             |                |          |         |  |
| Project:                           | BLT Trucking Polyaromatic Hydrocarbons b |           |        |        |           |             |      |             |             |             |                | thod 827 | 0 (SIM) |  |
| Sample ID: MB-34530 SampType: MBLK |                                          |           |        |        |           | Units: µg/L |      | Prep Dat    | te: 11/22/2 | 021         | RunNo: 71533   |          |         |  |
| Client ID: MBLK                    | W Batch ID: 34530                        |           |        |        |           |             |      | Analysis Da | te: 11/23/2 | 021         | SeqNo: 1457108 |          |         |  |
| Analyte                            |                                          | I         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD           | RPDLimit | Qual    |  |
| Benz(a)anthracene                  | )                                        |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Chrysene                           |                                          |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Benzo(b)fluoranthe                 | ene                                      |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Benzo(k)fluoranthe                 | ene                                      |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Benzo(a)pyrene                     |                                          |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Indeno(1,2,3-cd)py                 | rene                                     |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Dibenz(a,h)anthrac                 | cene                                     |           | ND     | 0.0995 |           |             |      |             |             |             |                |          |         |  |
| Surr: 2-Fluorobip                  | ohenyl                                   |           | 1.93   |        | 1.990     |             | 96.9 | 49.6        | 128         |             |                |          |         |  |
| Surr: Terphenyl-                   | d14                                      |           | 1.99   |        | 1.990     |             | 99.9 | 38.2        | 138         |             |                |          |         |  |
| Sample ID: LCS-34                  | 4530                                     | SampType  | : LCS  |        |           | Units: µg/L |      | Prep Dat    | te: 11/22/2 | 021         | RunNo: 71      | 533      |         |  |
| Client ID: LCSW                    | ,                                        | Batch ID: | 34530  |        |           |             |      | Analysis Da | te: 11/23/2 | 021         | SeqNo: 14      | 57109    |         |  |
| Analyte                            |                                          | I         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD           | RPDLimit | Qual    |  |
| Benz(a)anthracene                  | )                                        |           | 2.89   | 0.100  | 4.002     | 0           | 72.2 | 53.4        | 115         |             |                |          |         |  |
| Chrysene                           |                                          |           | 2.81   | 0.100  | 4.002     | 0           | 70.3 | 52          | 111         |             |                |          |         |  |
| Benzo(b)fluoranthe                 | ene                                      |           | 2.94   | 0.100  | 4.002     | 0           | 73.5 | 45.3        | 109         |             |                |          |         |  |
| Benzo(k)fluoranthe                 | ene                                      |           | 2.78   | 0.100  | 4.002     | 0           | 69.5 | 40          | 117         |             |                |          |         |  |
| Benzo(a)pyrene                     |                                          |           | 2.90   | 0.100  | 4.002     | 0           | 72.5 | 49.1        | 115         |             |                |          |         |  |
| Indeno(1,2,3-cd)py                 | rene                                     |           | 2.54   | 0.100  | 4.002     | 0           | 63.4 | 35.7        | 108         |             |                |          |         |  |
| Dibenz(a,h)anthrac                 | ene                                      |           | 2.65   | 0.100  | 4.002     | 0           | 66.1 | 36.9        | 111         |             |                |          |         |  |
| Surr: 2-Fluorobip                  | ohenyl                                   |           | 2.00   |        | 2.001     |             | 100  | 49.6        | 128         |             |                |          |         |  |
| Surr: Terphenyl-                   | d14                                      |           | 2.04   |        | 2.001     |             | 102  | 38.2        | 138         |             |                |          |         |  |
| Sample ID: LCSD-                   | -34530                                   | SampType  | : LCSD |        |           | Units: µg/L |      | Prep Dat    | te: 11/22/2 | 021         | RunNo: 71      | 533      |         |  |
| Client ID: LCSW                    | 02                                       | Batch ID: | 34530  |        |           |             |      | Analysis Da | te: 11/23/2 | 021         | SeqNo: 14      | 57110    |         |  |
| Analyte                            |                                          | I         | Result | RL     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD           | RPDLimit | Qual    |  |
| Benz(a)anthracene                  | 9                                        |           | 3.36   | 0.0997 | 3.989     | 0           | 84.1 | 53.4        | 115         | 2.891       | 14.9           | 30       |         |  |

| Fremont    |
|------------|
| Analytical |

| Work Order:       | 2111434    |           |         |        |           |                    |      |             |             | QC S        | SUMMA     | RY REF   | PORT    |
|-------------------|------------|-----------|---------|--------|-----------|--------------------|------|-------------|-------------|-------------|-----------|----------|---------|
| CLIENI:           |            | onmental  |         |        |           |                    | Ро   | lyaroma     | tic Hydr    | ocarbons b  | y EPA Me  | thod 827 | 0 (SIM) |
|                   | DLI IIUCKI | SampType  |         |        |           | Unite: uall        |      | Pren Da     | to: 11/22/2 | 0021        | RunNo: 71 | 522      | . ,     |
|                   |            | Samprype  | 5. LC3D |        |           | οπιs. <b>μg/</b> L |      |             |             |             |           |          |         |
| Client ID: LCSV   | W02        | Batch ID: | 34530   |        |           |                    |      | Analysis Da | te: 11/23/2 | 2021        | SeqNo: 14 | 57110    |         |
| Analyte           |            |           | Result  | RL     | SPK value | SPK Ref Val        | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD      | RPDLimit | Qual    |
| Chrysene          |            |           | 3.26    | 0.0997 | 3.989     | 0                  | 81.8 | 52          | 111         | 2.814       | 14.8      | 30       |         |
| Benzo(b)fluoranth | nene       |           | 3.49    | 0.0997 | 3.989     | 0                  | 87.5 | 45.3        | 109         | 2.941       | 17.0      | 30       |         |
| Benzo(k)fluoranth | iene       |           | 3.26    | 0.0997 | 3.989     | 0                  | 81.7 | 40          | 117         | 2.782       | 15.8      | 30       |         |
| Benzo(a)pyrene    |            |           | 3.49    | 0.0997 | 3.989     | 0                  | 87.6 | 49.1        | 115         | 2.903       | 18.5      | 30       |         |
| Indeno(1,2,3-cd)p | yrene      |           | 3.08    | 0.0997 | 3.989     | 0                  | 77.1 | 35.7        | 108         | 2.537       | 19.2      | 30       |         |
| Dibenz(a,h)anthra | acene      |           | 3.22    | 0.0997 | 3.989     | 0                  | 80.7 | 36.9        | 111         | 2.647       | 19.5      | 30       |         |
| Surr: 2-Fluorob   | piphenyl   |           | 2.11    |        | 1.994     |                    | 106  | 49.6        | 128         |             | 0         | 0        |         |
| Surr: Terpheny    | l-d14      |           | 2.16    |        | 1.994     |                    | 108  | 38.2        | 138         |             | 0         | 0        |         |
| Sample ID: 21114  | 429-001CMS | SampType  | e: MS   |        |           | Units: µg/L        |      | Prep Da     | te: 11/22/2 | 2021        | RunNo: 71 | 533      |         |
| Client ID: BATC   | СН         | Batch ID: | 34530   |        |           |                    |      | Analysis Da | te: 11/23/2 | 2021        | SeqNo: 14 | 57112    |         |
| Analyte           |            |           | Result  | RL     | SPK value | SPK Ref Val        | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD      | RPDLimit | Qual    |
| Benz(a)anthracen  | ie         |           | 3.33    | 0.0996 | 3.985     | 0                  | 83.6 | 35.4        | 124         |             |           |          |         |
| Chrysene          |            |           | 3.24    | 0.0996 | 3.985     | 0                  | 81.2 | 36.1        | 120         |             |           |          |         |
| Benzo(b)fluoranth | nene       |           | 3.34    | 0.0996 | 3.985     | 0                  | 83.9 | 24.3        | 119         |             |           |          |         |
| Benzo(k)fluoranth | iene       |           | 3.29    | 0.0996 | 3.985     | 0                  | 82.7 | 20.5        | 134         |             |           |          |         |
| Benzo(a)pyrene    |            |           | 3.41    | 0.0996 | 3.985     | 0                  | 85.6 | 22.3        | 130         |             |           |          |         |
| Indeno(1,2,3-cd)p | byrene     |           | 2.91    | 0.0996 | 3.985     | 0                  | 73.0 | 19.3        | 118         |             |           |          |         |
| Dibenz(a,h)anthra | acene      |           | 3.06    | 0.0996 | 3.985     | 0                  | 76.9 | 19.5        | 122         |             |           |          |         |
| Surr: 2-Fluorob   | piphenyl   |           | 2.13    |        | 1.992     |                    | 107  | 49.6        | 128         |             |           |          |         |
| Surr: Terpheny    | ′l-d14     |           | 2.17    |        | 1.992     |                    | 109  | 38.2        | 138         |             |           |          |         |



## Sample Log-In Check List

| Client Name: LIBBY                                                        |                                                        | Work Order Numb | oer: 2111434 |               |
|---------------------------------------------------------------------------|--------------------------------------------------------|-----------------|--------------|---------------|
| Logged by: Gabrielle C                                                    | coeuille                                               | Date Received:  | 11/19/202    | 1 11:51:00 AM |
| Chain of Custody                                                          |                                                        |                 |              |               |
| 1. Is Chain of Custody comp                                               | lete?                                                  | Yes 🖌           | No 🗌         | Not Present   |
| 2. How was the sample delive                                              | vered?                                                 | <u>Client</u>   |              |               |
| <u>Log In</u>                                                             |                                                        |                 |              |               |
| 3. Coolers are present?                                                   |                                                        | Yes 🗸           | No 🗌         | NA 🗌          |
| 4. Shipping container/cooler                                              | in good condition?                                     | Yes 🖌           | No 🗌         |               |
| <ol> <li>Custody Seals present on<br/>(Refer to comments for C</li> </ol> | shipping container/cooler?<br>ustody Seals not intact) | Yes             | No 🗌         | Not Present 🗹 |
| 6. Was an attempt made to                                                 | cool the samples?                                      | Yes 🗹           | No 🗌         | NA 🗌          |
| 7. Were all items received a                                              | t a temperature of >2°C to 6°C *                       | Yes 🖌           | No 🗌         |               |
| 8. Sample(s) in proper conta                                              | iner(s)?                                               | Yes 🔽           | No 🗌         |               |
| 9. Sufficient sample volume                                               | for indicated test(s)?                                 | Yes 🗹           | No 🗆         |               |
| 10. Are samples properly pres                                             | served?                                                | Yes 🖌           | No 🗌         |               |
| 11. Was preservative added t                                              | o bottles?                                             | Yes             | No 🔽         | NA 🗌          |
| 12. Is there headspace in the                                             | VOA vials?                                             | Yes             | No 🗌         | NA 🗹          |
| 13. Did all samples container                                             | s arrive in good condition(unbroken)?                  | Yes 🗹           | No 🗌         |               |
| 14. Does paperwork match be                                               | ottle labels?                                          | Yes 🗹           | No 🗌         |               |
| 15. Are matrices correctly ide                                            | ntified on Chain of Custody?                           | Yes 🖌           | No 🗌         |               |
| 16. Is it clear what analyses v                                           | vere requested?                                        | Yes 🖌           | No 🗌         |               |
| 17. Were all holding times ab                                             | le to be met?                                          | Yes 🗹           | No 🗌         |               |
| Special Handling (if app                                                  | licable)                                               |                 |              |               |
| 18. Was client notified of all d                                          | iscrepancies with this order?                          | Yes             | No 🗌         | NA 🗹          |
| Person Notified:                                                          | Date                                                   |                 |              |               |
| By Whom:                                                                  | Via:                                                   | eMail Pho       | one 🗌 Fax [  | In Person     |
| Regarding:                                                                |                                                        |                 |              |               |
| Client Instructions:                                                      |                                                        |                 |              |               |

## Item Information

| Item #   | Temp ⁰C |
|----------|---------|
| Sample 1 | 4.7     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

| Libby Environme           | ental, In  | IC.       |                   | CI                       | nain | of Cu                                    | ustoc                                                  | iy F     | Reco     | ord       | t t                         |                              |                     |        | www.LibbyEnvironn | nental.com |
|---------------------------|------------|-----------|-------------------|--------------------------|------|------------------------------------------|--------------------------------------------------------|----------|----------|-----------|-----------------------------|------------------------------|---------------------|--------|-------------------|------------|
| 3322 South Bay Road NE    | Ph:        | 360-352-2 | 2110              |                          |      | 20.5                                     | 8.2                                                    | 0        | 21       |           |                             |                              |                     |        | 2111434           | . 1        |
| Olympia, WA 98506         | Fax:       | 360-352-4 | 1154              |                          |      | Date:                                    | : 11-                                                  | - 16     | - 01     | -         |                             | Pa                           | ge:                 |        | of                |            |
| Client: Libby En          | circonnect | ol, In    | 2 -               |                          |      | Project Manager: Kedy Eley               |                                                        |          |          |           |                             |                              |                     | 4      |                   |            |
| Address: SEE AF           | SENE       |           |                   |                          |      | Project Name: BLT Trucking               |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| City:                     |            | State:    | Zip               | c                        |      | Loca                                     | tion:                                                  |          |          |           |                             | Cit                          | y, Stat             | te: 🁔  | int, was          | ge 1       |
| Phone:                    |            | Fax:      |                   |                          |      | Colle                                    | ctor:                                                  |          |          |           |                             | Da                           | te of C             | Collec | tion: 11-17-2     | Pa         |
| Client Project # L211118- | 3          |           |                   |                          |      | Emai                                     | it: 15                                                 | ibby     | eng      | Par       | nuil.com                    |                              | _                   |        |                   |            |
| Sample Number             | Depth      | Time      | Sample<br>Type    | Container<br>Type        | 100  | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 101-07-00<br>101-07-00<br>510-07-00-00<br>510-07-00-00 | 200 Line | SC CO    | 4 68 17   | 5 48 3 4                    | 210<br>214 820 3<br>24 520 3 | 150<br>1.51<br>1.51 | \$     | Field Notes       |            |
| 1 110                     |            | 1250      | H-10              | Aber/Paly                |      |                                          |                                                        |          |          |           | ×                           | X                            |                     |        |                   |            |
| 2 MWZ                     |            | 1340      |                   | 0                        |      |                                          |                                                        |          |          |           | $\times$                    | ×                            | \$                  |        |                   |            |
| 3 MWB                     |            | 1030      |                   |                          |      |                                          |                                                        |          |          |           | $\times$                    |                              | :                   |        |                   |            |
| 4 MW4                     |            | 1000      |                   |                          |      |                                          |                                                        |          |          |           | $ $ $\times$                | X                            |                     |        |                   |            |
| 5 MWS                     |            | 1145      |                   |                          |      |                                          |                                                        |          |          |           | ×                           | ×                            | <                   |        |                   |            |
| 6                         |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 7                         |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 8                         |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 9                         |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 10                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 11                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 12                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 13                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 14                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 15                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| 16                        |            | _         |                   |                          |      |                                          |                                                        |          |          |           |                             |                              | -                   |        |                   |            |
| 17                        |            |           |                   |                          |      |                                          |                                                        |          |          |           |                             |                              |                     |        |                   |            |
| Relinquished by           |            | 11-18-    | Date / Time<br>こ) | e Received by:<br>Wealth |      |                                          |                                                        | 1        | Date / T | ime<br>5) | Samp<br>Good Condition      | le Receij                    | pt<br>N             | Ren    | TO TAT            |            |
| Relinguished by           |            |           | Date / Time       | e Received by:           |      |                                          |                                                        | t        | Date / T | ime       | Cooler Temp.<br>Sample Temp |                              | °C<br>°C            |        | 12                |            |
| Relinquished by:          |            |           | Date / Tim        | e Received by:           |      |                                          |                                                        | (        | Date / T | ime       | Total Number<br>Containers  | of                           |                     | TA     | T: 24HR 48HF      | S-DAY      |