PECEIVED JUN 2 1 1994 ENVIRONMENTAL ENG.

Progress Report No. 4

Vapor Extraction System Monitoring

Unocal Service Station 5353

Seattle: Washington

June 15, 1994

For Unocal CERT - Northern Region

June 15, 1994

Geotechnical, Geoenvironmental and Geologic Services

Unocal CERT - Northern Region P.O. Box 76 Seattle, Washington 98111

Attention: Dr. Mark Brearley, R.G.

We are submitting two copies of our "Progress Report No. 4, Vapor Extraction System Monitoring" for the site of Unocal Service Station 5353 in Seattle, Washington. This progress report summarizes VES-related monitoring activities conducted between July 15, 1993 and March 10, 1994. Future progress reports will be provided to Unocal to update the information presented in this report. Contractual terms for our services are described in blanket contract number B1982G.

We appreciate the opportunity to be of continued service to Unocal. Please call if you have questions regarding this report.

Yours very truly,

GeoEngineers, Inc.

Stephen C. Perrigo

Principal

NLP:SCP:vvv

Document ID: 0161013.PR4

cc: Washington State Dept. of Ecology Northwest Regional Office 3190 - 160th Ave. S.E. Bellevue, WA 98008-5452 Attn: Mr. Wally Moon

File No. 0161-013-R69

GeoEngineers, Inc. 8410-154th Avenue N.E. Redmond, WA 98052 Telephone (206) 861-6000 Fax (206) 861-6050

Printed on recycled paner

CONTENTS

	<u>Page No.</u>
INTRODUCTION	1
PREVIOUS STUDIES	1
SCOPE	2
VES OPERATION AND MONITORING	2
VES MAINTENANCE	3
VES OPERATIONAL DATA	3
Flow Rate and Applied Vacuum Measurements	3
Combustible Vapor Measurements	3
TVH and Methane Concentrations	4
MONITORING WELLS AND RECOVERY WELLS DATA	4
Ground Water Measurements	4
Combustible Vapors	5
Recovery Wells	5
Monitoring Wells	5
Ground Vacuum	5
WATER DISPOSAL	6
CONCLUSIONS AND RECOMMENDATIONS	6
LIMITATIONS	7
TABLES	Table No.
Vapor Extraction System, Operational Configurations	1
Vapor Extraction System Operation and Monitoring Data	2
Volumes of Recovered Gasoline and Methane	3
Water and Product Levels in Monitoring and Recovery Wells	4
Subsurface Combustible Vapor Monitoring Data, Recovery Wells	5
Subsurface Combustible Vapor Monitoring Data, Monitoring Wells	6
Ground Vacuum Monitoring Data, Recovery Wells	7
Ground Vacuum Monitoring Data, Monitoring Wells	8
FIGURES	Figure No.
Vicinity Map	1
Site and Immediate Vicinity	2
Monitoring Well Locations	3
Vapor Extraction System Layout	4
Ground Water Elevations on 12/29/93 and 12/30/93	5

CONTENTS (continued)

FIGURES (Continued)	Figure No.
Combustible Vapor Concentrations in Selected Wells on 09/15/93 Ground Vacuums on 08/03/93	6 7
APPENDICES	Page No.
Appendix A - Monitoring and Recovery Wells Measurements	
and Sampling	A-1
Ground Water Elevations	A-1
Combustible Vapor Concentrations	: A-1
Ground Vacuum	A-1
VES Measurements and Sampling	A-1
Measurements	A-1
Vapor Sampling	A-1
Purge and Decontamination Water	A-2
Appendix B - Chemical Analytical Program	B-1
Analytical Methods	B-1
Analytical Data Review	B-1
Analytical Data Review Summary	∌ B-1
Chemical Analytical Data and	
Chain-of-Custody Record	B-2 B-117

PROGRESS REPORT NO. 4 VAPOR EXTRACTION SYSTEM MONITORING UNOCAL SERVICE STATION 5353 SEATTLE, WASHINGTON FOR

UNOCAL CERT - NORTHERN REGION

INTRODUCTION

This report summarizes the results of GeoEngineers' VES (vapor extraction system) monitoring and related activities conducted at the site of Unocal Service Station 5353 from July 15, 1993 through March 10, 1994. The property owned by Unocal consists of the southern half of the city block bounded by Mercer Street to the south, Westlake Avenue North to the west, Valley Street to the north and Terry Avenue North to the east. Unocal Service Station 5353 (600 Westlake Avenue North) and an adjacent Denny's restaurant (601 Terry Avenue North) are located on the Unocal property. The northern half of the city block described above is owned by the city of Seattle. The Ecology (Washington State Department of Ecology) UST (underground storage tank) site number is 008463. The site location is shown relative to surrounding physical features in Figure 1. The site location and the immediate vicinity are shown in Figure 2.

PREVIOUS STUDIES

Unocal Service Station 5353 is the site of an 80,000-gallon release of leaded premium gasoline that occurred in 1980. Site characterization and remediation activities completed at the site between 1980 and 1981 included drilling and installing 32 monitoring wells, and installing a free product recovery system. Over 40,000 gallons of free product were recovered between 1980 and 1983. The free product recovery system was taken out of operation in 1983 because of a decreasing recovery rate. A VES was installed at the site in 1988 to mitigate combustible vapors in the soil beneath the site and to reduce explosive potential. The VES design and installation details, and monitoring data obtained during VES operation before July 15, 1993 are presented in the following reports: "Progress Report No. 1" dated July 12, 1988, "Interim Status Report" dated October 3, 1988, "Progress Report No. 2" dated January 3, 1991 and "Progress Report No. 3" dated October 1, 1993.

GeoEngineers conducted additional subsurface explorations, including drilling and installation of 18 monitoring wells, from October 1991 to February 1992. The purpose of those supplemental explorations was to define the approximate extent and concentrations of residual petroleum contamination in soil and ground water in the vicinity of the site. The results of this study are presented in our "Supplemental Report of Geoenvironmental Services" dated July 7, 1992. The approximate locations of monitoring wells installed at the site in 1980 and additional monitoring wells installed in 1991 and 1992 are shown in Figure 3.

In October 1991, the city of Seattle requested that Unocal take steps to monitor combustible vapors in buildings, crawl spaces, vaults and other surface or subsurface structures on the city's property where vapors could potentially accumulate and result in health and safety hazards. Vapor monitoring of the city property occupying the northern half of the city block bounded by Mercer Street, Terry Avenue, Fairview Street and Westlake Avenue was implemented by GeoEngineers in October 1991. The results of monitoring from October 1991 to July 1992 are presented in our "Report of Geoenvironmental Services," dated December 2, 1992.

A site assessment, including tank removal activities and the installation of six monitoring wells, was performed at the city of Seattle property north of the Unocal site in early 1991. The assessment was completed by SCS (SCS Engineers) for the city of Seattle. The results of the SCS study, as summarized in their reports dated January 1991 and May 1991, indicate that petroleum-related soil and ground water contamination is present beneath the city of Seattle property. The approximate locations of the six monitoring wells installed by SCS are shown in Figure 3.

GeoEngineers performed aquifer testing at the site in February 1993. The results of these activities are summarized in our "Report of Hydrogeological Services" dated May 27, 1993.

The results of soil and ground water sampling activities completed during this reporting period will be summarized in a separate report to Unocal.

SCOPE

The purpose of our services conducted during the current reporting period was to monitor operation of the VES. The specific scope of services completed during this reporting period is as follows.

- 1. Periodically maintain and monitor the operation of the VES, as described in the "VES Operation and Monitoring" section of this report.
- 2. Dispose of purge and decontamination water stored on site at GeoEngineers' Redmond sanitary sewer connection in accordance with Metro Discharge Authorization Number 393.

VES OPERATION AND MONITORING

GENERAL

The system operated continuously from the beginning of this reporting period to November 15. The blower was turned off on November 15 to allow vapor sampling in monitoring wells by Dr. Paul Lundegard of Unocal. The blower would not restart after vapor sampling. The blower was repaired by A.L. Sleister & Sons, Inc. on January 5 and the system was subsequently monitored on January 6. The system was turned off again from February 15 to 25 to allow additional vapor sampling. The system then was operated continuously through March 9. The on and off periods and the system operational configuration during these periods are summarized in Table 1. During this reporting period, vapors were extracted from the northeastern, northwestern, southeastern and southwestern collection areas at the Unocal site and

the eastern and western collection areas on the Seattle property. The locations of the vapor collection areas are shown in Figure 4.

The current reporting period, July 15, 1993 through March 10, 1994, comprised 238 days. The VES operated for approximately 177 days of the reporting period.

VES monitoring was conducted on a regular basis during the current reporting period. The monitoring frequency, approximately monthly when the system was operating, depended on the operational configuration of the VES. VES monitoring activities included (1) obtaining combustible vapor concentrations and ground vacuum in select monitoring and recovery wells, (2) measuring VES operational characteristics including flow rate, applied vacuum and vapor temperature, and (3) obtaining vapor samples from the VES sample port for field measurement of combustible vapor concentration and for chemical analysis of methane and TVH. Not all of these activities were completed during each monitoring visit. Monitoring data and estimated equivalent gasoline and methane recovery are summarized in Tables 2 through 8. Our field procedures for monitoring activities are described in Appendix A. Laboratory reports for vapor sample chemical analyses and our review of the laboratory QA/QC (quality assurance/quality control) program are presented in Appendix B.

VES MAINTENANCE

A new vacuum gauge, with a range of 0 to 50 inches of water column, was added to the system at the beginning of the reporting period.

The ground vacuums measured in monitoring and recovery wells on our March 9, 1994 visit were lower than usual. The water trap on the VES was emptied on March 10. Vacuums measured in the recovery wells increased after emptying the water trap.

VES OPERATIONAL DATA

VES flow rates, vapor stream temperatures, applied vacuums and system operational configurations observed during this reporting period are presented in Table 2. Data for the preceding six month period are included for comparison.

Flow Rate and Applied Vacuum Measurements

The flow rate ranged from 115 to 120 cfm (cubic feet per minute) during the reporting period, with a time-weighted average of about 119 cfm. The applied vacuum ranged from 27 to 34 inches of water column during the reporting period. The applied vacuums are dependent on the VES operational configuration and are probably also dependent on soil moisture content, ground water levels and moisture content of the extracted vapors.

Combustible Vapor Measurements

The vapor stream extracted from the subsurface was characterized by obtaining field measurements of combustible vapors and by obtaining vapor samples for chemical analysis of

TVH and methane. Measurements and vapor samples were obtained from the effluent vapor stream and are representative of the vapor stream emitted to the atmosphere. The concentration of combustible vapors in the vapor stream generally were low (120 ppm [parts per million] or less) over the reporting period, with a temporary increase to 520 ppm when the system was restarted on January 5, 1994.

TVH and Methane Concentrations

Vapor samples obtained from the effluent stream on the dates indicated in Table 2 were analyzed for TVH and methane. Laboratory results are summarized in Table 2. Laboratory reports and our review of the laboratory QA/QC program are presented in Appendix B. The laboratory reported the methane concentration in the sample obtained on January 6, 1994 as a percentage. During the period between August 3 and October 15, 1993, the laboratory reported methane concentrations in parts per million. In Table 2, we have converted the January methane value to parts per million, for the purpose of comparison to the older data. The unit of parts per million is used throughout the remainder of this report.

TVH was not detected in the samples obtained during the reporting period. During the period from August 3 to October 15, 1993 methane concentrations ranged from 21 to 80 ppm. The methane concentration was 1,200 ppm in the sample obtained on January 6, 1994, immediately after the system was restarted after a down period of 51 days.

The approximate volume of recovered methane (converted to cubic feet) was calculated for this reporting period using laboratory data, measured vapor flow rates and known durations of VES operational configurations. The recovered gasoline vapor volume could not be calculated because the TVH concentrations were less than laboratory detection limits. The calculated volume of methane for the reporting period and cumulative totals of gasoline and methane for the life of the system through March 9, 1994 are presented in Table 3. The equivalent of 10,455 cubic feet of methane were recovered during this reporting period. The equivalent of approximately 4,728 gallons of gasoline and 193,944 cubic feet of methane have been recovered by the system from its initial start-up to March 9, 1994. Daily emissions of gasoline vapors to the atmosphere during this reporting period did not exceed the 15 pounds per day allowed by the PSAPCA permit. All volume calculations are based on an assumption of standard temperature and pressure.

MONITORING WELLS AND RECOVERY WELLS DATA

Ground Water Measurements

Ground water levels were measured in selected monitoring wells on December 29 and 30, 1993 and March 9, 1994, as summarized in Table 4. Data for the previous six month period are included in the table for comparison. The ground water elevations presented in Table 4 are referenced to the city of Seattle datum. The ground water elevations in the vicinity of the site ranged from about 8.4 to 10.7 feet on December 29 and 30, 1993 and from about 7.6 to 11.3 feet on March 9, 1993, with the exception of MW-41 which is located significantly upgradient of the

site. The general direction of ground water flow is toward the east and northeast. This is consistent with past observations at this site. Inferred ground water contours based on measurements obtained from the selected wells on December 29 and December 30, 1993 are shown in Figure 5.

Combustible Vapors

Recovery Wells. Combustible vapors were measured in the recovery wells on August 3 and September 15, 1993 and March 9, 1994. The results are presented in Table 5. Data for the preceding six month period are included in the table for comparison.

Combustible vapor concentrations in the recovery wells located on the Unocal site were less than 100 ppm during this reporting period with the exception of a concentration of 500 ppm in RW-4A on March 9, 1994.

Combustible vapor concentrations in the recovery wells located on the Seattle property were greater than 10,000 ppm, with the exception of concentrations of 5,800 and 2,000 ppm in SMW-5 on September 15, 1993 and March 9, 1994, respectively.

Monitoring Wells. Combustible vapor concentrations were measured in selected monitoring wells (generally, those wells installed in 1991 or 1992) on August 3 and September 15, 1993 and March 9, 1994. The results are presented in Table 6. Data for the preceding six month period are included in the table for comparison.

Combustible vapor concentrations in monitoring well SMW-4, located on city of Seattle property, were greater than 10,000 ppm. The combustible vapor concentrations in MW-32A through MW-35 ranged from less than 100 ppm to 500 ppm during the reporting period. These monitoring wells are located near the vapor extraction system. The combustible vapor concentrations measured in MW-36 and MW-41 ranged from 380 to 4,000 ppm. The combustible vapor concentrations in MW-37, MW-38 and MW-43 varied from less than 100 ppm to greater than 10,000 ppm during the reporting period. The remaining wells had combustible vapor concentrations greater than 10,000 ppm. Combustible vapor concentrations measured in selected monitoring wells (generally, those wells installed in 1991 or 1992) on September 15, 1993 are shown in Figure 6.

Ground Vacuum

Ground vacuum was measured in the recovery wells and in the monitoring wells on August 3 and September 15, 1993 and March 9 and/or March 10, 1994. The results are presented in Tables 7 and 8. Data from the preceding six month period are included in the table for comparison.

Vacuum measured in the recovery wells on the Unocal site ranged from 0 to 1.4 inches of water column in August and September 1993. On March 9, 1994, the vacuum in the recovery wells ranged from 0 to 1.0 inches. Vacuum in the recovery wells on the Seattle property ranged from 0 to 0.04 inches of water column. A general downward trend in recovering well vacuums

was observed from August 1993 to March 1994. Vacuum in the recovery wells is dependent on the VES operational configuration, and is probably also dependent on soil moisture content, ground water levels and moisture content of the extracted vapors. On March 10, 1994, the VES water trap was drained. After draining the water trap, vacuums in the recovery wells ranged from 0 to 2.0 inches.

Vacuum in the monitoring wells ranged from 0 to 0.36 inches of water column when measured in August 1993. No measurable vacuums were observed in the monitoring wells in September 1993 and March 1994. Changes in the ground vacuum between monitoring dates could be dependent on soil moisture content, ground water levels, changing atmospheric pressure conditions, and applied vacuum in the recovery wells. However, we believe that ground vacuum was affected by equipment inefficiencies at the beginning of the reporting period that were subsequently corrected, and high moisture content in the vapor stream resulting in an accumulation of water in the system at the end of the reporting period. Ground vacuum measured on August 3, 1993 and inferred vacuum contours based on these data are shown in Figure 7.

WATER DISPOSAL

Purge and decontamination water that was stored on site in one 55-gallon drum was aerated using a Rotron blower equipped with a flexible hose on October 15, 1993. The water was aerated to remove the volatile hydrocarbons from the water. A composite sample (COMPOSITE DRUM) was obtained from the aerated water for chemical analysis of BETX by EPA Method 8020, and fats, oil and grease by EPA Method 413.2 on October 15. Chemical analytical testing of COMPOSITE DRUM confirmed that the water quality is in compliance with GeoEngineers' Metro disposal permit criteria specified in Metro Discharge Authorization 393. The water was disposed of into the Metro sanitary sewer connection at GeoEngineers' Redmond office on February 23, 1994.

CONCLUSIONS AND RECOMMENDATIONS

The low TVH and methane concentrations in vapor samples obtained from the effluent vapor stream indicate that the VES is successfully removing vapors from within its area of influence. The comparatively low combustible vapor concentrations in the recovery wells and on-site monitoring wells indicate that the VES is effective in removing vapors from the immediate vicinity of the Unocal site.

High concentrations of combustible vapors remain beneath the Seattle property and other surrounding properties.

Although TVH and methane concentrations in the effluent stream remain low, we recommend continuing to operate the VES. The VES introduces oxygen into the subsurface which enhances natural biodegradation of the nonvolatile hydrocarbons which are not removed by the VES.

We recommend that future monitoring of VES operational characteristics and routine maintenance be continued on a monthly basis. We also recommend that measurements in the recovery and monitoring wells continue to be taken on a quarterly basis.

LIMITATIONS

We have prepared this report for use by Unocal in their evaluation of ongoing vapor extraction efforts at Service Station 5353. This report may be made available to potential buyers of the property and to regulatory agencies. This report is not intended for use by others and the information contained herein may not be applicable to other sites.

Our services have been completed in accordance with generally accepted practices in this area at the time the report was prepared. No warranty or other conditions, express or implied, should be understood.

We appreciate the opportunity to be of service on this project. Please call if you have any questions regarding this report.

Respectfully submitted,

GeoEngineers, Inc.

Norman L. Puri, P.E.

Environmental Engineer

Stephen C. Perrigo

Principal

NLP:SCP:vvv

Document ID: 0161013.PR4

TABLE 1 VAPOR EXTRACTION SYSTEM OPERATIONAL CONFIGURATIONS

Ope	rating	System		S	System Co	nfiguratio	n¹ .	
	riod	Status			ocal			attie ²
Start	End	(On/Off)	NW	NE	SW	SE	W	E
12/08/90	01/16/91	Off	-		-	-	-	-
01/16/91	01/31/91	On	-	-	0	0	-	_
01/31/91	02/15/91	Off	-	_	-	-	-	
02/15/91	03/04/91	Оп		-	-	0		-
03/04/91	03/18/91	Off	-	-	-	-		
03/18/91	04/01/91	On	-	-	0	0	-	-
04/01/91	04/18/91	Off	-	-	-	-	-	-
04/18/91	05/01/91	On	-	-	_	0	-	-
05/01/91	05/20/91	Off				-		-
05/20/91	06/05/91	On	0	0	0	0	-	-
06/05/91	06/19/91	Off		-		-		-
06/19/91	07/03/91	On	-	-	0	0	_	
07/03/91	07/16/91	Off		.	-	_		-
07/16/91	08/01/91	On	0	0	0	0		.
08/01/91	08/19/91	Off	-	-	_	-	_	
08/19/91	08/29/91	On	-	-	0	0	-	-
08/29/91	09/16/91	Off		-	_		-	
09/16/91	10/03/91	On	-	-	0	0	_	
10/03/91	10/15/91	Off	-	-	-	-	-	_
10/15/91	10/31/91	On			0	0	-	
10/31/91	11/15/91	Off		-	-	-	-	A _
11/15/91	12/02/91	On	0	0	0	0	_	
12/02/91	12/16/91	Off	-	_	-	-	_	-
12/16/91	12/30/91	On	-	-	0	0	i -	-
12/30/91	01/21/92	Off	-	-	_	-	_	-
01/21/92	02/11/92	On		-	0	0		-
02/11/92	02/28/92	On	-	-		<u>-</u>	0	0
02/28/92	03/13/92	On	_	-	-	-	0	-
03/13/92	03/27/92	On	-		-	0	_	_
03/27/92	04/13/92	On			0	0	0	0
04/13/92	04/23/92	On	-	-	0	0	_	_
04/23/92	05/08/92	On			0	0	0	0
05/08/92	05/21/92	On	-		-	0	0	.
05/21/92	06/05/92	On	-	-	-	0	0	0
06/05/92	06/18/92	On	-	-	0	0	-	-
06/18/92	06/24/92	On	-	-	0	0	0	0
06/24/92	11/15/93	On	0	0	0	0	0	0
11/15/93	01/05/94	Off	-	-		_	_	-
01/06/94	02/15/94	On	0	0	0	0	0	0
02/15/94	02/25/94	Off			-	-	_	-
02/25/94	Present	On	0	0	0	0	0	0

1... = closed, "O" = open

²The city of Seattle wells were not connected to the system before January 31, 1992.

TABLE 2 VAPOR EXTRACTION SYSTEM OPERATION AND MONITORING DATA

		Methane	(ppm) ⁷	100	77	65	ı	37	47	21	80	1,200	<500
or³		¥	(mdd)	<175	<175	<175	1	<175	<175	<175	<175	<175	<175
Effluent Vapor ³		Ę	(mg/m³) ⁵	<500	<500	<500	1	<500	<500	<500	<500	<500	<500
	Combustible Vapor	Concentration ⁴	(ppm)	140	200	220	<100	<100	<100	<100	120	520	<100
		Seattle	E	0	0	0	0	0	0	0	0	0	0
	aj	Sea	Α	0	0	0	0	0	0	0	0	0	0
	peration: ıration ²		SE	0	0	0	0	0	0	0	0	0	0
	System Operational Configuration ²	Unocal	MS	0	0	0	0	0	0	0	0	0	0
	Ó	Unc	NE	0	0	0	0	0	0	0	0	0	0
			ΝN	0	0	0	0	0	0	0	0	0	0
		Vacuum	(inches)	1.2	ı	t	. 0	24	27	32	34	34	34
	Vapor	Temperature	(°F)	<50	<50	<50	1	29	70	99	09	ı	.09
	Flow	Rate	(ctm)	118	120	120	0	120	118	120	120	120	115
			Time	0080	0816	1430	0220	7080	080	0060	0090	0020	0020
			Date	01/08/93	02/19/93	03/22/93	04/30/93	06/23/93	08/03/93	09/15/93	10/15/93	01/06/94	03/09/94

votes:

Vacuum expressed as inches of water column.

2. = closed; 'O' = open

Measurements and samples were obtained from the vapor stream as it exited the subsurface.

⁴Measurement made with Bacharach TLV Sniffer calibrated to hexane.

Stotal volatile hydrocarbons analysis by GC/FID, exprassed as mg/m3.

67 otal volatile hydrocarbons analysis by, GC/FID, expressed as ppm. GeoEngineers converted all values reported in mg/m³ to ppm using the Ideal Gas Law and an assumed average

molecular weight of 70 grams per mole for the hydrocarbon vapors.

7 Methane analysis by GC/FID, expressed as ppm.

cfm = cubic feet per minute

ppm = parts per million (volume basis)

mg/m3 = milligrams per cubic meter

*- * = no measurement taken

TABLE 3
VOLUMES OF RECOVERED GASOLINE AND METHANE

Operation	Operation Period		l Equivalent Recovery
Period Start Date	Duration (days)	Gasoline (gallons)	Methane (cubic feet)
07/14/93	21	0	109
0 8/03/93	43	0	251
09/15/93	30	0	261
10/15/93	31	0	322
01/06/94	40	0	8,294
02/25/94	12	0	1,218
Total (07/14/93 - 03/09/94)	177	. 0	10,455
Previous Cumulative Total		4,728	183,489
TOTAL		4,728	193,944

TABLE 4 (Page 1 of 2)
WATER AND PRODUCT LEVELS IN MONITORING AND RECOVERY WELLS

<u> </u>			1/20	02/16/93	04/30/93	£6/c	07/14/93	4/93	12/29/93 0	12/29/93 or 12/30/93	03/09/94	3/94
		Casing Rim	Water	Product	Water	Product	Water	Product	Water	Product	Water	Product
		Elevation1	Elevation ¹	Thickness	Elevation ¹	Thickness	Elevation1	Thickness	Elevation ¹	Thickness	Elevation1	Thickness
	Well	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
L_	MW-1	20.12	Σ×	WN	10.48		WN	WN	WN	WN	WN	MN
	MW-2	20.07	ΣZ	ΣŽ	ΣZ	ž	10.112	90.0	ΣŽ	Ν̈́N	Ν̈́Z	ΣZ
	MW-3	19.38	ΣZ	ž	Σ	¥Z	10.23	0.01	ΣŽ	ΣX	ΝN	ΣZ
	MW-11	19.82	ΣZ	ΣX	ΣZ	ž	Σχ	MΝ	Σχ	×	NN.	ΣΣ
	MW-13	21.73	ΣZ	ž	MN	ž	ΣZ	¥.	ΣŽ	ΣZ	ΣŽ	ΣŽ
	MW-14	19.28	ΣŽ	¥	10.35	ı	Σ	×	ž	ž	ΣX	×
	MW-15	20.48	ΣZ	ΣZ	ΝZ	XX	ΣŽ	ΣZ	¥Z	¥Z	∑ Z	NN.
	MW-16	21,19	Σz	ΣŽ	ΣŽ	ž	ΣŽ	ž	NZ.	ΣŽ	Ν̈́Z	Ž
	MW-17	21.28	ΣZ	ž	11.55	1	ž	NM	¥Z	N.	ΣŽ	ž
	MW-18	21.09	ΣZ	ΣŽ	ž	ΣZ	10.79	ı	¥Z	ΣX	ΣŽ	ΣZ
	MW-19	20.97	ΣZ	Σχ	Z	WZ.	11.032	0.42	ΣŽ	ΣZ	Σ	ž
	MW-24	21.49	MN	ž	10.81	I	ΣX	WN	ΣZ	ΣN	N N	ΣZ
	MW-25	21.16	MN	ž	12.83	1	Σχ	WN	Σχ	ΣN	ΣZ	ΣŽ
	MW-27	20.71	Σχ	ΣŽ	11.94	1	Ž	WN	ΣŽ	ΣŽ	ΣZ	ΣZ
	MW-29	18.63	ΣZ	ΣZ	ΣZ	ΣŽ	∑Z	×Ν	ž	ΣZ	ΣZ	ΣŽ
	MW-32A	20.70	9.57	ı	9.84		ž	N.	9.97	ı	10.04	ı
	MW-33	20.75	9.57	ı	10.10	ı	Σz	N.	9.93		10.17	ı
_•	MW-34	21.42	10.08	1	10,53	ı	Σ	WN	10.41	ı	10.55	1
	MW-35	20,10	10.14	1	10.32	ı	ΣΖ	WZ	9.87	ı	ΣZ	ΣŽ
	MW-36	17.80	Σχ	WZ	ΣZ	ΣZ	ΣŽ	ΣN	8.38	ı	9.19	1
	MW-37	21.01	10.33	;	10.41	1	ΣZ	N	10.422	0.40	10.712	0.10
	MW-38	16.52	MX	ΣZ	ΣX	×Z	Σ	Σ	ž	ž	7.59	I
	WW-39	24.47	Σχ	¥	MN	×	ΣZ	Z	ΣŽ	ΣŽ	11.27	ı
	MW-40	20.89	69.6	1	10.42	1	Σχ	×	10.21	1	10.43	ı
	MW-41	27.00	ΝM	ΣZ	15,55	1	ΣŽ	×	15.76	1	15.68	ı
	MW-42	20.34	10.23	1	10.97		NM	NM	10.72	;	10.83	1
ļ						_						

Notes appear on page 2 of 2.

TABLE 4 (Page 2 of 2)

		02/16/93	6/93	04/30/93	0/93	07/14/93	4/93	12/29/93 0	12/29/93 or 12/30/93	0/60	03/09/94
	Casing Rim	Water	Product	Water	Product	Water	Product	Water	Product	Water	Product
•	Elevation ¹	Elevation1	Thickness	Elevation ¹	Thickness	Elevation ¹	Thickness	Elevation ¹	Thickness	Elevation ¹	Thickness
Well	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW-43	21.04	₩N	ΝN	10.49	ı	MΝ	ΝN	WN	ΣZ	10,55	t
MW-44	18.73	ΣZ	ΣZ	10.69	1	×	Ž	ΣX	NZ.	10.30	ı
MW-45	18.15	9.14	ı	10.02	1	×	ΣZ	9.36	1	9.75	1
MW-46	16.91	ΣZ	Σχ	9.80	ı	×	ΣZ	ΣN	ΣŽ	8.17	ı
MW-47	19.83	ΣZ	ΣZ	NZ Z	Ž	×	¥Ž	10.33	ı	9.35	ı
MW-48	18.49	8.80	1	8.06	ı	W.	¥Ž	ΣX	ΣZ	10.39	ı
MW-49	12.61	8.97	1	ž	ΣŽ	Σ̈́	¥ž	×	Ž	:	t
RW-4A	21.28	ž	1	Σχ	Ž	₩ Z	Ž	ΣZ	ΣŽ	Σ	¥
RW-5A	21.40	ΣŽ	ΣŽ	ΣZ	ΣŽ	ΣZ	Ž	×	Σ	ΣX	WN
RW-7	50,66	×××	ž	ΣZ	Σχ	¥Z	ž	ΣZ	NZ.	Ž	WN
RW-8	19.92	ΣŽ	ΣZ	NZ Z	ΣZ	∑	ΣŽ	Σχ	Σχ	Ž	WZ
RW-9	20.61	∑Z	Σz	ΣX	Σ	¥N	Σ	×	ΣZ	N.	¥
RW-10	20.59	ΣZ	Σz	ΣZ	Σ	ΣZ	Σ	N.W.	Σχ	Σ	NZ.
RW-26	20.72	ΣZ	ΣZ	ž	N.	Σ	Σ	ΝW	ΣZ	Σ	ΣX
RW-28	21.17	NM	ΝM	NM	NM	WN	NM	NM	NM	NM	¥.

Notes:

**IElevations referenced to city of Seattle datum.

"Water table elevations corrected for presence of free product. A specific gravity of 0.85 was assumed for the free product.

. •.

NM = not measured

"-" = none detected

TABLE 5 SUBSURFACE COMBUSTIBLE VAPOR MONITORING DATA¹ RECOVERY WELLS

Vapor										
Collection	Well									
Area ²	Number	01/08/93	02/19/93	03/22/93	04/30/93	06/29/93	07/14/93	08/03/93	09/15/93	03/09/94
Northwest	RW-7	100	1	-	100	1	ı	<100	<100	<100
	RW-8	× 100	×100	<100	×100	× 81 8	1	× 100	×100	×100
	RW-9	100	8	<100	×100	× 8 18	1	× 18	× 18	<100
	RW-10	× 100	× 100	<100	<100	×180	ı	×100	× 100	<100
	PW-26	<100	<100	1	160	<100	:	<100	<100	<100
Northeast	RW-28	1	<100	<100	1	< 100	ı	<100	<100	<100
Southwest	RW-5A	< 100	120		<100	1	1	<100	<100	<100
Southeast	HW-4A	220	160	1	220	-	1	<100	<100	200
Seattle West	SMW-2S	1	> 10,000	> 10,000	1	1	> 10,000	> 10,000	> 10,000	>10,000
	SMW-5	t	> 10,000	> 10,000	è e	> 10,000	> 10,000	> 10,000	5,800	2,000
Seattle East	MW-32	1	> 10,000	>10,000	> 10,000	> 10,000	ı	> 10,000	> 10,000	>10,000
	MW-49	-	> 10,000	> 10,000	>10,000	> 10,000	-	> 10,000	>10,000	>10,000
VES Operational Configuration ³	onfiguration ³									
Northwest		0	0	0	0	0	0	0	0	0
Northeast		0	0	0	0	0	0	0	0	0
Southwest		0	0	0	0	0	0	0	0	0
Southeast		0	0	0	0	0	0	0	0	0
Seattle West		0	0	0	0	0	0	0	0	0
Seattle East		0	0	0	0	0	0	0	0	0
Sealle East			>)	,		,	,	Ž	

3			۰	
		э.		
í				
٠	1	2	i.	
		ř	ï	
١		Č	Ĺ	
		Ċ	ľ	
١		Ċ	ľ	
١		Č	ľ	֡
١		Č	ľ	
		ċ	ľ	
		Ċ	ľ	
		Ċ	ľ	
		Š	į	
		(ľ	
			ľ	

Vapor concentrations were measured using a Bacharach TLV Sniffer calibrated to hexane. Pesuits are expressed in parts per million

Vapor collection areas are shown in Figure 4.

VES operational configuration shows the configuration of vapor withdrawal at the time the concentrations were measured.

.O. = oben; ... = closed

"-" = not measured

TABLE 6 (Page 1 of 2)
SUBSURFACE COMBUSTIBLE VAPOR MONITORING DATA¹
MONITORING WELLS

										}	
Well						Date					
Number	01/08/93	02/19/93	03/02/93	03/04/93	03/22/93	04/30/93	06/29/93	07/14/93	08/03/93	09/15/93	03/09/94
MW-1	1	-	;	1	1	<100	<100	-	:		1
MW-2	1	<100	ı	ı	× 100	,	×100	> 10,000	t	1	1
MW-3	1	ı	ſ	ı	ı	ı	×100	> 10,000	ı	1	I
MW-11	1	t				:	t	1	_		ı
MW-13	ı	1	1	1	ı	t		1	1	ı	ı
MW-14	> 10,000	>10,000	1	ı	> 10,000	> 10,000	3,000	t	1	ı	1
MW-15	1	t	ŀ	1	ł	ı	1	ı	1	t	1
MW-16	ţ	:	:	;	•	-	-	1	1	1	_
MW-17	< 100	×100	:	ı	006	> 10,000	<100	1	ı	1	1
MW-18	J	I	ı	I	ı	ı	1	> 10,000	ı	1	·
MW-19	ï		1	ı	ı	1	ı	> 10,000	ŀ	t	ı
MW-24	;	200	1		< 100	<100	<100	1	-	_	1
MW-25		ı		t	:	> 10,000	t	1	I	1	1
MW-27	<100	×100	t	ı	1	×100	×100	1	1	1	i
MW-29	ł	ı	ı	ı	1	ŀ	1	1	1	t	ı
MW-32A	<100	800		t	<100	5,000	<100	1	<100	<100	200
MW-33	<100	<100	1	1	× 100	8	<100	1	<100	<100	<u>8</u>
MW-34	8	100	ì	ı	< 100	<100	< 100	;	× 100	×100	901
MW-35	150	2,000	1	1	1	> 10,000	<100	1	×18	× 100	ı
MW-36	;	1		-		:	1	1	1,600	3,000	380
MW-37	> 10,000	> 10,000	ŧ	> 10,000	200	> 10,000	<100	t	< 100	<100	> 10,000
MW-38	;	i	1	ı	ı	1	ı	ı	<100	>10,000	> 10,000
WW-39	;	i	ı	t	1	t	1	1	> 10,000	> 10,000	> 10,000
MW-40	> 10,000	>10,000	-	>10,000	> 10,000	420	> 10,000	ı	>10,000	> 10,000	> 10,000
MW-41	2,100	3,000	ı	1	1,700	3,000	3,000	1	4,000	3,600	3,000
MW-42	520	<100	1	ı	> 10,000	> 10,000	> 10,000	ŀ	> 10,000	> 10,000	> 10,000
MW-43	> 10,000	>10,000	8,000	6,000	> 10,000	> 10,000	> 10,000	1	>10,000	× 100	> 10,000
MW-44	> 10,000	>10,000	> 10,000	>10,000	> 10,000	> 10,000	>10,000	-	>10,000	> 10,000	> 10,000

Notes appear on page 2 of 2.

TABLE 6 (Page 2 of 2)

Well					Date	te					
Number	01/08/93	02/19/93	03/02/93	03/04/93	03/22/93	04/30/93	06/53/93	07/14/93	08/03/93	09/15/93	03/09/94
MW-45	> 10,000	> 10,000	-	t	>10,000	> 10,000	> 10,000	1		> 10,000	> 10,000
MW-46	> 10,000	4,000	ţ	1	> 10,000	220	×100	ı	1	1	> 10,000
MW-47	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	ı	> 10,000	1	> 10,000	> 10,000	> 10,000
MW-48		> 10,000	> 10,000	>10,000	> 10,000	> 10,000	> 10,000	1	> 10,000	>10,000	> 10,000
SMW-4	1	1	1	1	1	ı	1	•	> 10,000	> 10,000	> 10,000
ES Operational	VES Operational Configuration ²							\$2.00 Per 18 Per 18 Per 19 Per	THE TAX SECTION		
Northwest	0	0	0	0	0	0	0	0	0	0	0
Northeast	0	0	0	0	0	0	0	0	0	0	0
Southwest	0	0	0	0	0	0	0	0	0	0	0
Southeast	0	0	0	0	0	0	0	0	0	0	0
Seattle West	0	0	0	0	0	0	0	0	0	0	0
Seattle East	0	0	0	0	0	0	0	0		0	0

Notes:

'Vapor concentrations were measured using a Bacharach TLV Sniffer calibrated to hexane. Results are expressed in parts per million.

VES operational configuration shows the configuration of vapor withdrawal at the time the vapor concentrations were measured.

O = open; - = closed

_ = open, = = cio

TABLE 7 GROUND VACUUM MONITORING DATA¹ RECOVERY WELLS

Vapor										
Collection	Well					Date				
Area ²	Number	01/08/93	02/19/93	03/22/93	04/30/93	06/29/93	08/03/93	09/15/93	03/09/94	03/10/94
Northwest	7-WH	0.48	ŧ	ı	00:00	1	1.00	00:00	0.10	0.50
	RW-8	0.54	0.43	0:30	0.00	0.41	0.42	0.00	0.10	0.50
	RW-9	0.52	0.44	0.30	0.00	0.42	0.44	0.00	0.10	0.50
	RW-10	0.54	0.46	0,40	00.00	0.42	0.40	0.00	0.00	0.50
	RW-26	0.42	0.36	1	00.00	0.34	0.34	00.00	0.20	0.50
Northeast	RW-28	I	0.00	0.10	00:00	:	0.00	0.00	0.00	00.0
Southwest	RW-5A	0.52	0.20	1	0.00	:	1,40	1.20	0.20	0.50
Southeast	RW-4A	2.00	1.80	ı	00.00	_	1.00	0.04	1.00	2.00
Seattle West	SMW-2S	· ·	0.10	0.10	I	1	0.00	0.00	0.00	ŧ
	SMW-5	•	0.20	0.00	1	0.01	0.00	0.00	0.00	ı
Seattle East	MW-32	l	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ı
	MW-49	1	0.20	0.00	0.00	0.00	0.04	0.00	0.00	1
VES Operational Configuration ²	onfiguration ²									
Northwest		0	0	0	0	0	0	0	0	0
Northeast		0	0	0	0	0	0	0	0	0
Southwest		0	0	0	0	0	0	0	0	0
Southeast		0	0	0	0	0	0	0	0	0
Seattle West		0	0	0	0	0	0	0	0	0
Seattle East		0	. 0	0	0	0	0	0	0	0

Notes:

Measured using Magnehelic vacuum gauges. Results are expressed in inches of water column.

²VES operational configuration shows the configuration of vapor withdrawal at the time the vacuum was measured. "O" = open, "." = closed.

[&]quot;-" = not measured

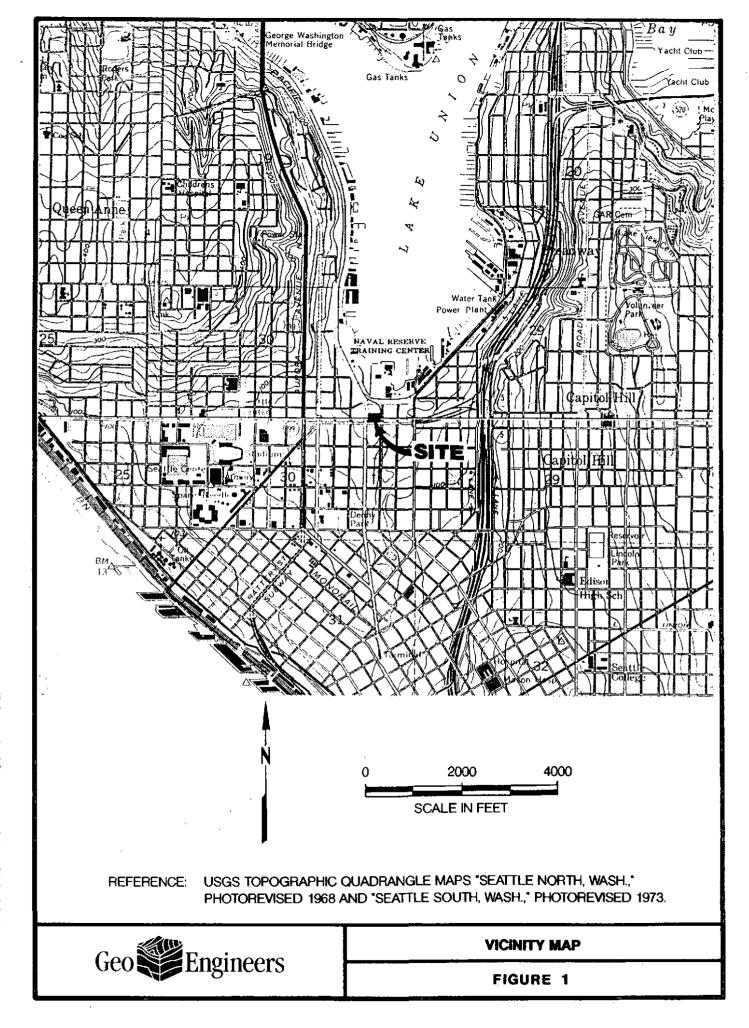
TABLE 8 (Page 1 of 2) GROUND VACUUM MONITORING DATA¹ MONITORING WELLS

Well				Date	ıte			
Number	01/08/93	02/19/93	03/22/93	04/30/93	06/29/93	08/03/93	09/15/93	03/09/94
NW-1	1	1	1	00'0	0.01	1	·	l
MW-2	1	ı	0.20	1	0.03	1	1	1
MW-3	1	1	1	1	0.01	ı	ı	ı
MW-11	1	ť	-	I	-		1	-
MW-13	ı	1	1	I	Ι	1	1	1
MW-14	00'0	00:00	0.00	0.00	0.00	t	ı	1
MW-15	. 1	ı	ŗ	1	ı	ı	l	ı
MW-16	1	-	-	-	_	1	1	_
MW-17	00'0	00.0	00.0	0.00	0.01	1	1	
MW-18	ł	ı	1	ı	1	ı	1	. 1
MW-19	ŧ	1	1		ı	ı	ı	ı
MW-24	1	00'0	0.00	0.00	0.01	-	-	ı
MW-25	1	I	*	0.00	1	!	ı	t
MW-27	00.00	00:00	i	00:00	0.01	ł	ı	1
MW-29	1	1	ı	ı	J	1	•	ı
MW-32A	0.46	0.40	0.35	0.00	0.40	0.36	00'0	0.00
MW-33	0.00	00:0	00:00	0.00	0.01	0.00	0.00	0.00
MW-34	0.22	0.18	0.10	0.00	0.24	0.20	0.00	00:00
MW-35	0.32	0.29	1	00'0	0.28	0.22	0.00	1
MW-36	-	F		:	1	0.00	00'0	00.00
MW-37	0.14	0.07	0.20	0.00	1	ı	0.00	0.00
MW-38	I	. 1	1	I	1	0.00	0.00	0.00
WW-39	I	,	I	ı	1	0.00	0.00	00:00
MW-40	0.00	0.00	0.00	0.0	0.00	0.00	00'0	0.00
MW-41	0.02	0.02	0.10	0.00	0.00	0.00	0.00	0.00
MW-42	00'0	00:00	0.00	0.00	0.00	0.00	0.00	0.00
MW-43	0.00	00:00	0.00	0,00	10.0	00.00	00.00	0.00
MW-44	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
4 - 7	0,70							

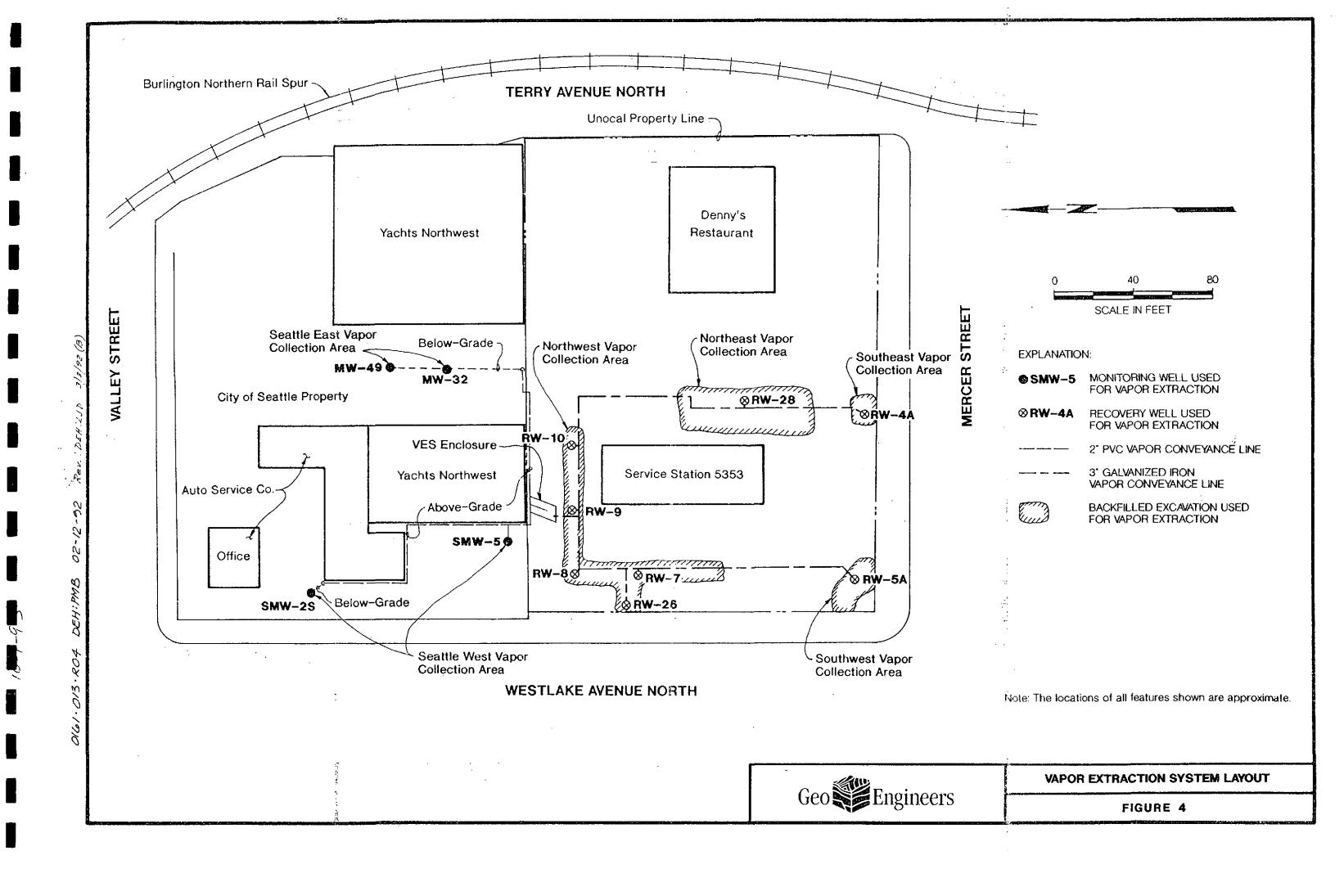
Notes appear on page 2 of 2.

TABLE 8 (Page 2 of 2)

Well				Õ	Date			
Number	01/08/93	02/19/93	03/22/93	04/30/93	06/29/93	08/03/93	09/15/93	03/09/94
MW-45	00:00	00:0	0.05	0.00	0.01	1	0.00	00'0
MW-46	00:00	0.00	0.00	00'0	0.00	î	ı	00:00
MW-47	00.0	0.00	0.00	:	00:00	0.00	0.00	00'0
MW-48		0.00	0.00	0.00	00:00	00.0	0.00	00'0
SMW-4	_		-	•	1	00'0	0.00	00:0
or Collection Syst	Vapor Collection System Operational Status ²	atus ²						
Northwest	0	0	0	0	0	0	0	0
Northeast	0	0	0	0	0	0	0	0
Southwest	0	0	0	0	0	0	0	0
Southeast	0	0	o	0	0	0	0	0
Seattle West	0	0	0	0	0	0	0	0
Seattle East	0	ō	0	0	0	0	0	0


Notes:

¹Measured using Magnehelic vacuum gauges. Results are expressed in inches of water column


²VES operational configuration shows the configuration of vapor withdrawal at the time the vactium was measured.

, y

"-" = not measured; "0" = open; "" = closed

0161-013-869 1418-304 8/24/95/13

0161.013.R69 MP.BOH BRA195/L

0161-013-869

0161-013-869

APPENDIX/A,

APPENDIX A

MONITORING AND RECOVERY WELLS MEASUREMENTS AND SAMPLING GROUND WATER ELEVATIONS

Depths to the ground water table relative to the monitoring well casing rims were measured on December 29 and December 30, 1993 and March 9, 1994. The measurements were made using an electric water level indicator. The water level indicator was cleaned with a Liquinox solution wash and a distilled water rinse prior to use in each well. Ground water elevations were calculated by subtracting the water table depths from the casing rim elevations. The ground water elevations are summarized in Table 4.

COMBUSTIBLE VAPOR CONCENTRATIONS

Combustible vapor concentrations were measured in selected recovery and monitoring well casings on the dates indicated in Tables 5 and 6. A Bacharach TLV Sniffer calibrated to hexane was used to measure the combustible vapor concentrations in the well casings. A slip cap was used to produce a temporary seal in the monitoring well casings when obtaining vapor concentrations. The lower threshold of significance for the TLV Sniffer in this application is 100 ppm (parts per million), equivalent to 1 percent of the LEL (lower explosive limit) of hexane.

GROUND VACUUM

Ground vacuum was measured in the accessible monitoring and recovery well casings with a Magnehelic gauge with a resolution of 0.01 inches of water column. A slip cap enabled a tight fit around the monitoring well casings. Vacuum pressures were measured in the well casings while the on-site VES was operating. The ground vacuum data are presented in Tables 7 and 8.

VES MEASUREMENTS AND SAMPLING

MEASUREMENTS

The operating efficiency of the VES was monitored with manufactured meters permanently installed on the system. The meters include the following: (1) air flow meter, (2) vapor temperature meter, and (3) vacuum pressure gauge.

Combustible vapor concentrations also were obtained from the system using a Bacharach TLV Sniffer calibrated to hexane. The sample port for vapor measurement and sampling is located in the vapor conveyance line between the blower and the discharge stack. The data are presented in Table 2.

VAPOR SAMPLING

Vapor samples were obtained from the sample port in the vapor conveyance line on the dates listed in Table 2. The vapor samples were collected in evacuated stainless steel containers by opening the valve in the sample port and allowing the vacuum in the canister to draw in the

vapors. Chain-of-custody procedures were followed in transporting the vapor samples to the testing laboratory. The laboratory data sheets and chain-of-custody records are in Appendix B.

PURGE AND DECONTAMINATION WATER

Purge and decontamination water was stored on site in one 55-gallon drum. Air was injected into the drums on October 15, 1993 in an attempt to remove the volatile hydrocarbons from the water. A drum sample was obtained with a disposable bailer and analyzed for BETX, and fats, oil and grease on October 15, 1993. Based on chemical analytical results the BETX, and fats, oil and grease concentrations of the purge water are in compliance with GeoEngineers' Metro disposal permit criteria and the water was transported to GeoEngineers' Redmond facility for disposal in the sanitary sewer on February 23, 1994.

(APPENDIX B

APPENDIX B

CHEMICAL ANALYTICAL PROGRAM

ANALYTICAL METHODS

Chain-of-custody procedures were followed during the transport of the field samples to the analytical laboratory. The water sample was held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory QA/QC (quality assurance/quality control) records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

ANALYTICAL DATA REVIEW

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. The laboratory QA/QC and data quality exceptions documented by the laboratory were reviewed by GeoEngineers using the applicable data validation guidelines from the following documents: "Guidance Document for the Assessment of RCRA Environmental Data Quality" draft dated 1988; "National Functional Guidelines for Organic Data Review" draft dated 1991; and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses" dated 1988.

ANALYTICAL DATA REVIEW SUMMARY

No significant data quality exceptions were noted in the laboratory report or during our review. Based on our data quality review, it is our opinion that the analytical data are of acceptable quality for their intended use.

GeoEngineers

JAN 3 1 1994

SIGNATURE PAGE

Routing

Reviewed by:

ATI Project Manager

Client:

GEO ENGINEERS

REDMOND, WASHINGTON

Project Name:

UNOCAL W. LAKE & MERCER

Project Number:

161-013-R69

Project Location:

VES

Accession Number:

401195

Project Manager:

NORM PURI

Sampled By:

MAX WILLS

Analysis Report

Analysis: METHANE

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

401195 GEO ENGINEERS 161-013-R69 UNOCAL W. LAKE & MERCER VES SEMI-VOLATILE FUELS

[0) Page 1 Date 26-Jan-94

Accession:

401195

Client: Project Number: GEO ENGINEERS

161-013-R69 UNOCAL W. LAKE & MERCER

Project Name: Project Location: Test:

VES METHANE

Analysis Method: Extraction Method: N/A

ASTM D1946

Matrix: QC Level: AIR В

Lab Id: 001 Client Sample Id:

Sample Date/Time:

06-JAN-94 0700

940106

Received Date:

10-JAN-94

Batch: GEA311 Blank: A

Dry Weight %:

N/A

Extraction Date: Analysis Date:

N/A 20-JAN-94

Parameter:

Units:

Results:

Rpt Lmts:

. 0:

METHANE ANALYST

INITIALS

0.12 KW

0.05

Comments:

10.00 py. 1

1200 ppm by on 214/19 Coulty Papadalias on 214/19

[0] Page 2 Date 26-Jan-94

"Method Report Summary"

Accession Number: 401195

Client:

GEO ENGINEERS 161-013-R69

Project Number:

UNOCAL W. LAKE & MERCER

Project Name: UNOO Project Location: VES Test: METR

METHANE

Client Sample Id:

Parameter:

Unit:

Result:

940106

METHANE

왕

0.12

Analysis Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

401195 GEO ENGINEERS 161-013-R69 UNOCAL W. LAKE & VES GC/VOA

(0) Page 1 Ďate 12-Jan-94

Accession:

401195

Client:

GEO ENGINEERS 161-013-R69

Project Number: Project Name: Project Location:

UNOCAL W. LAKE &

VES

Test:

TOTAL VOLATILE HYDROCARBONS IN CANISTER

Analysis Method:

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Extraction Method: N/A Matrix: QC Level:

AIR Ι

Lab Id:

001

Sample Date/Time:

06-JAN-94 0700

Received Date:

10-JAN-94

Client Sample Id:

940106

Extraction Date: N/A Analysis Date:

11-JAN-94

Batch: CAB004

Blank: A

Dry Weight %:

N/A

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL VOLATILE HYDROCARBONS

ANALYST

MG/M3 INITIALS ИD LKD 500 '

Comments:

Quality Control Report

Analysis: METHANE

Accession: Client: Project Number: Project Name: Project Location: Department:

401195 GEO ENGINEERS 161-013-R69 UNOCAL W. LAKE & MERCER VES SEMI-VOLATILE FUELS

[0) Page 1 Date 26-Jan-94

"QC Report"

Title:

Air Blank GEA311

Batch:

Analysis Method: ASTM D1946

Extraction Method: N/A

Blank Id: A

Date Analyzed: 20-JAN-94 Date Extracted: N/A

Parameters:

Units:

Results:

Reporting Limits:

METHANE

ND

0.05

Comments: ANALYST: KW CHECK STANDARD (POST-RUN)

DATE: 1-21-94

METHOD: ASTM D1946

COMPOUND	RF (IC)	RF (CS)	<u>%D</u>	<u>OC LIMIT</u>
CARBON MONOXIDE	1.85E-05	1.84E-05	0.4	15
METHANE	2.05E-05	2.05E-05	0.4	15

SOURCE FOR CONTROL LIMIT IS INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND ASTM D1946.

(0) Page 2 Date 26-Jan-94

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG = MICROGRAMS UG/L = PARTS PER BILLION.UG/KG = PARTS PER BILLION MG/M3 = MILLIGRAM PER CUBIC METER. PPMV = PART PER MILLION BY VOLUME. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

ND = NOT DETECTED ABOVE REPORTING LIMIT.

RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION)

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

ATI/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

ATI/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

ATI/GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

ATI/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

LJT = LISA THOMASON = CHRISTY DRAPER CD ΙP = INGRID PITTMAN RΡ = ROB PEREZ SKR = SVETLANA RODKINA DGH = DARREL HALSELL KW = KAREN WADSWORTH

PΒ = PAMELA BREWTON MV

= MONIQUE VERHEYDEN = STEVE WILHITE

SW

Quality Control Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

401195 GEO ENGINEERS 161-013-R69 UNOCAL W. LAKE & VES GC/VOA

(0) Page 1 Date 12-Jan-94

"QC Report"

Title:

Bag/Can Blank

Batch: CABOO4

Analysis Method: 5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Extraction Method: N/A

Blank Id: A	Date Analyzed:	11-JAN-94 Dat	e Extracted:	N/A
Parameters:		Units:	Results:	Reporting Limits:
BENZENE ETHYL BENZENE TOLUENE XYLENES TOTAL PETROLEU TRIFLUOROTOLUE TRIFLUOROTOLUE ANALYST	NE (PID)	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 *REC/SURR *REC/SURR INITIALS	ND ND ND ND ND 91 85 LKD	1 1 5 2 500 70-130 70-130

Comments:

(0) Page 2 Date 12-Jan-94

"QC Report"

Title: Batch: Bag/Can Reagent

CABOO4

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Analysis Method: 5030 Extraction Method: N/A

	RS Date Analyzed: RSD Date Analyzed:	11-JAN-94 11-JAN-94			RS Date Extracted: N/A RSD Date Extracted: N/A							
Parameten BENZENE TOLUENE	s:	Spike Added 50 50	Sample Conc <1 <5	RS Conc 46 47	RS %Rec 92 94	RSD Conc 43 45	RSD %Rec 86 90	RPD 7 4	RPD Lmts 11 14	Rec Lmts 82-120 77-125		
Surrogate TRIFLUORO	es: OTOLUENE (PID)				90		90			70-130		

Comments:

Notes:

UNITS IN MG/M3 = MILLIGRAM PER CUBIC METER N/S = NOT SUBMITTED <= LESS THAN REPORTING LIMIT SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND METHOD REFERENCE.
UNITS IN UG = MICROGRAMS. N/S = NOT SUBMITTED

[0) Page 3
Date 12-Jan-94

Common notation for Organic reporting

N/S = NOT SUBMITTED
N/A = NOT APPLICABLE
D = DILUTED OUT
UG/L = PARTS PER BILLION.
UG/KG = PARTS PER BILLION.
MG/KG = PARTS PER MILLION.
MG/KG = PARTS PER MILLION.
< = LESS THAN DETECTION LIMIT.
* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS
SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM
AND REFERENCED METHOD.
ORGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS.
** COMPOUNDS FLAGGED IN METHOD ARE NOT WITHIN THE FIVE POINT CURVE. THEY
ARE SEARCHED FOR QUALITATIVELY.
ND = NOT DETECTED ABOVE REPORTING LIMIT.

SR-SHELLEY REAMSMA MLP-MELISSA POPE TSH-TRICIA HOLSTON LKD-LEIGH DUVALL MM-MIKE MCKENZIE KWS-KENDALL SMITH RY-RON YOKUM KKS-KIMBERLY SMITH GF-GREG FOOTE ALM-AMY LEE MILLER NC-NICOLE CALL JP-JOSEPH POPE JENNIFER ALEXANDER -HEATHER BIANCALANA PAM-PENNY A. MALOUIN RLE-ROBERT L. ELSPERMAN MCW-M. CLAUDIA WALTON

PROJECT SAMPLE INSPECTION FORM

	Accession #: 40195			Date received: 11139	4	
		<u></u>				
1.	Was there a Chain of Custody?	NO	7.	Are samples correctly preserved for analysis required?	YES N	0 -
2.	Was Chain of Custody properly relinquished? YES	МО	8.	Is there sufficient volume for analysis requested?	MES N	0
3.	Were samples received cold? (At 4° or on ice) YES	NO	9,	Were samples received within holding time?	PES N	0
4.	Were all containers properly labeled and identified?	МО	10.	Was there headspace greater than ¼" in diameter in volatile bottles?	YES N	o N/A
5.	Were samples received in proper containers for analysis requested?	NO	11.	If sent, were matrix spike bottles returned?	YES N	0 (N/A)
6.	Were all sample containers received intact? YES	Ю		. 05		
Trac	king Number: $\frac{155}{0}$	 	_ Shi	pped By: <u>LQ+S</u>	٠,	
Cool	er Number: NJS					٠.
Out (of Control Events and Inspection Comm	nents:	:			
	•				<u> </u>	
				<u> </u>		
					,	
	<u> </u>					,
				*	<u>-</u>	.,
		· - · · · · ·			<u> </u>	
					······································	
. .						
						
Inšpe	ected By: S.F. Date: 1/10/6	î (Loc	aged By: SF Date:	1/11/	9 4
Ţ				To Kith	Hukt	························

CHAIN OF CUSTODY

ATI LAB. 1.D. # 40195

11 EAST OLIVE ROAD

PHONE (904) 474-1001

PENSACOLA, FLORIDA 32514

PART 1 — Bottle Shipment Information

		pinein															
CLIENT:	/	المستوا						CLIEN					-	· · · ·	_		
	1050		NEG	25		·	}			1/6	1 -	013					
		PRESER	VATIVE		Р	LASTIC	CONT	AINERS				GLAS	S CON	TAINE	RS		
SAMPLE ONTAINERS SHIPPED OTY.		A COUNTY OF THE PARTY OF THE PA	Men Leaving			1 1000 H	/ gallon	A Million	to min min col	(0) m (2)	/ ///er/A)	40 m Via	402 mm	16 a.		Much dily to	66 Soun
7																<u> </u>	T190
									· .								
					<u> - </u>												
RELINOUISHE	Delo	na h		TIME		TE 1719	- 1	CEIVE	0						ГІМЕ		DATE
DW DRINKING WW WASTEWA GW GROUNDV SW SURFACEV SO SOIL	VATER VATER VATER	A S	DL OIL R AIR L SLUD(\$'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/	/	/	/_/	/	/	/_/	/ 	LAB USE
SAMPLE		DATE	TIME	MATRIX	10	<u> </u>	/	//	/ 1		 	\leftarrow		<u> </u>	TOT	AL _	ONLY
94010		1/6/94	0700 a	AIR	1	X	-	+				 -	-	-	 		
			 	 				\vdash			_	 	_		 		
		- -		1 11 12	 							 			 -		
						1		1									
					•		•							•		•	
ST, PHONE PROJECT N A'CAN	TCBN	STANDARD - 14 RUSH: (MUST BE AP) 0-48 HOURS - 2 x STD	3-7 DAYS - 1.5 x STD PRIJ TCLP - 1 WEEK RUSH - 1.5 x	AGO - METHO PRIMTING, INC., HUNISMILLE, A.									-				

(904) 474-1001

SIGNATURE PAGE

GeoEngineers

AUG 2 6 1993

Reviewed by:

Client:

GEO ENGINEERS

REDMOND, WASHINGTON

Project Name:

WESTLAKE/MERCER

Project Number:

Project Location:

0161-013-R69 T5.1 VES

Accession Number:

308168

Project Manager:

NORM PURI

Sampled By:

MTW/NLP

Analysis Report

Analysis: METHANE

Accession: Client: Project Number: Project Name: Project Location: Department:

308168 GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER VES

SEMI-VOLATILE FUELS

[0] Page 1 Date 23-Aug-93

Accession:

308168

Client:

GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER

Project Number: Project Name: Project Location:

VES

Test:

METHANE

Analysis Method: Extraction Method: N/A

ATI/GC/FIX

Matrix: QC Level: AÏR Ι

Lab Id:

Client Sample Id:

001 930803-1 Sample Date/Time: Received Date:

03-AUG-93 0800 05-AUG-93

Extraction Date:

Batch: GEA239 Blank: A

Dilution Factor: 1 Dry Weight %:

N/A

Analysis Date:

N/A 23-AUG-93

Parameter:

Units:

Results:

Rpt Lmts:

0:

METHANE ANALYST PPMV INITIALS

47 RP 5

Comments:

[0] Page 2 Date 23-Aug-93

"Method Report Summary"

Accession Number: 308168

Client:

Project Number:

GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER

Project Name:

Project Location: VES

Test:

METHANE

Client Sample Id:

Parameter:

Unit:

Result:

930803-1

METHANE

PPMV

47

Analysis Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:

Project Number: Project Name: Project Location: Department:

308168

GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER

VES GC/VOA

(0) Page 1 Date 13-Aug-93

Accession:

308168

Client:

GEO ENGINEERS 0161-013-R69 T5.1

Project Number: Project Name:

WESTLAKE/MERCER

Project Location: Test:

VES

Analysis Method:

TOTAL VOLATILE HYDROCARBONS IN CANISTER 5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Extraction Method: N/A

AIR

Matrix: OC Level: I

Lab Id:

001

Sample Date/Time: Received Date:

03-AUG-93 0800

Client Sample Id:

930803-1

05-AUG-93

Batch: CAB130 Blank: A

Dilution Factor: 1 Dry Weight %: N

N/A

Extraction Date: Analysis Date:

N/A 11-AUG-93

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL VOLATILE HYDROCARBONS

ANALYST

MG/M3 INITIALS ND TSH 500

Comments:

Quality Control Report

Analysis: METHANE

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

308168 GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER VES

SEMI-VOLATILE FUELS

(0) Page 1 Date 23-Aug-93

"QC Report"

Title: Batch: Air Blank GEA239 ATI/GC/FIX

Analysis Method:

Extraction Method: N/A

Blank Id: A Date Analyzed: 23-AUG-93 Date Extracted: N/A

Parameters:

Units:

Results:

Reporting Limits:

METHANE

PPMV

ND

- 5

Comments:

ANALYST: ROB PEREZ

[0] Page 2 Date 23-Aug-93

"QC Report"

itle: atch: Air Reagent GEA239

nalysis Method:

ATI/GC/FIX

xtraction Method: N/A

RS Date Analyzed: 23-AUG-93 RSD Date Analyzed: 23-AUG-93

RS Date Extracted: N/A RSD Date Extracted: N/A

RS RSD RSD

Rpd Rec

'arameters:

Spike Added

Sample RS Conc Conc <5 99

Rec% Conc 99 96

Rec% Rpd Lmts Lmts 50 50-150 96

ETHANE 100

urrogates:

omments:

otes:

PPMV = PARTS PER MILLION PER VOLUME < = LESS THAN REPORTING LIMIT.

* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS.

SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE

PROGRAM AND REFERENCE METHOD.

N/S = NOT SUBMITTED

N/A = NOT APPLICABLE D = DILUTED OUT

{0} Page 3
Date 23-Aug-93

Common notation for Organic reporting

= NOT SUBMITTED = NOT APPLICABLE DILUTED OUT G/L = PARTS PER BILLION. G/KG = PARTS PER BILLION. G/KG = PARTS PER MILLION BY VOLUME. G/KG = PARTS PER MILLION. G/L = PARTS PER MILLION.

LESS THAN DETECTION LIMIT.

VALUES OUTSIDE OF QUALITY CONTROL LIMITS

RCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM
ND REFERENCED METHOD.

EGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

- NOT DETECTED ABOVE REPORTING LIMIT.

ff/GC/FID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

T/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

= LISA THOMASON

CHRISTY DRAPER
JOE POPE

= INGRID PITTMAN

= ROB PEREZ

= SVETLANA RODKINA

H = DARREL HALSELL

Quality Control Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:

Project Number: Project Name: Project Location:

Department:

308168

GEO ENGINEERS 0161-013-R69 T5.1 WESTLAKE/MERCER

VES GC/VOA

[0] Page 1 Date 13-Aug-93

"QC Report"

Title: Batch:

BAG/CAN BLANK
CAB130
5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992 Analysis Method:

Extraction Method: N/A

î	Blank Id: A Date	Analyzed:	11-AUG-93	Date	Extracted:	N/A	
	Parameters:		Units:		Results:	Reporting Limits:	
		PROCARBON PID) PID)	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SI %REC/SI INITIAI	JRR	ND ND ND ND ND 99 100 KWS	1 1 5 2 500 70-130 70-130	

Comments:

[0] Page 2 Date 13-Aug-93

"QC Report"

itle:

BAG/CAN REAGENT

atch: halysis Method: CAB130

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

ktraction Method: N/A

		nalyzed: 11-AUG-93 Analyzed: 11-AUG-93				RS Date Extracted: N/A RSD Date Extracted: N/A							
arameter ENZENE OLUENE	s:	Spike Added 50 50	Sample Conc <1 <5	RS Conc 50 52	RS Rec% 100 104	RSD Conc 53 55	RSD Rec% 106 110	Rpd 6 6	Rpd Lmts 11 14	Rec Lmts 82-120 77-125			
arrogate	s: TOLUENE (PID)				99		99			70-130			

omments:

otes:

N/S = NOT SUBMITTEDUNITS IN MG/M3 = MILLIGRAM PER CUBIC METER < = LESS THAN REPORTING LIMIT SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND METHOD REFERENCE. UNITS IN UG = MICROGRAMS. N/S = NOT SUBMITTED

(0) Page 3 Ďate 13-Aug-93

Common notation for Organic reporting

= NOT SUBMITTED = NOT APPLICABLE

DILUTED OUT

3/L = PARTS PER BILLION.

/KG = PARTS PER BILLION. KG = PARTS PER MILLION.

L = PARTS PER MILLION.

LESS THAN DETECTION LIMIT.

= VALUES OUTSIDE OF QUALITY CONTROL LIMITS

RCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM : REFERENCED METHOD.

ANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS.

COMPOUNDS FLAGGED IN METHOD ARE NOT WITHIN THE FIVE POINT CURVE. THEY E SEARCHED FOR QUALITATIVELY.

NOT DETECTED ABOVE REPORTING LIMIT.

II/GC/FID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

SHELLEY REAMSMA -MELISSA POPE SH-TRICIA HOLSTON D-LEIGH DUVALL MIKE MCKENZIE KENDALL SMITH T-RON YOKUM KS-KIMBERLY SMITH GREG FOOTE DIANNA FÓX

CLAIRE FORNSEL

CHAIN OF CUSTODY

ATI LAB. 1.D.# 308/68

11 EAST OLIVE ROAD

PHONE (904) 474-1001

PENSACOLA, FLORIDA 32514

PART 1 — Bottle Shipment Information

CLIENT PROJECT NUMBER:	Į.
GEOFMAINGERS 161-013-R69	75.1
PRESERVATIVE PLASTIC CONTAINERS GLASS CONTAINE	as a
SAMPLE NTAINERS SHIPPED OTY T T T T T T T T T T T T	A TOCH
	77,00
	<u>'</u>
Syc. 9 Wdoo & 1510 7-30-93	IME DATE
PART 2 — Sample Information ————————————————————————————————————	VES ———
SAMPLE MATRIX W DRINKINGWATER OL OIL W WASTEWATER AR AIR W GROUNDWATER SL SLUDGE W SURFACEWATER O SOIL SAMPLE I.D. DATE TIME MATRIX	
SAMPLE I.D. DATE TIME MATRIX // V	TOTAL LAB USE ONLY
730803~1 8/3/93 0800 AIR XX	1

GeoEngineers

SIGNATURE PAGE

SEP 2 8 1993

Reviewed by:

Client:

GEO ENGINEERS

REDMOND, WASHINGTON

Project Name:

UNOCAL

Project Number:

161-013-R69

Project Location:

N/S

Accession Number:

309582

Project Manager:

NORM PURI

Sampled By:

MTW

Analysis Report

Analysis: METHANE

Accession: Client: Project Number: Project Name: Project Location: Department:

309582 GEO ENGINEERS 161-013-R69 UNOCAL

N/S SEMI-VOLATILE FUELS

[0] Page 1 Date 22-Sep-93

Accession:

309582

Client:

GEO ENGINEERS 161-013-R69 UNOCAL

Project Number: Project Name: Project Location: Test: Analysis Method:

N/S METHANE ATI SOP 640

Matrix: QC Level:

Extraction Method: N/A AIR В

Lab Id:

Client Sample Id:

001 930915-1

Sample Date/Time: Received Date:

15-SEP-93 0900` 17-SEP-93

Batch: GEA262 Blank: A

Dry Weight %:

N/A

Extraction Date: Analysis Date:

N/A 21-SEP-93

Parameter:

Results:

Rpt Lmts:

Units:

Q:

METHANE ANALYST

PPMV INITIALS

21 RP 10

Comments:

[0] Page 2 Date 22-Sep-93

"Method Report Summary"

Accession Number: 309582

Client: GEO ENGINEERS 161-013-R69

Project Number: 161-Project Name: UNOO Project Location: N/S Test: METH UNOCAL METHANE

Client Sample Id:

Parameter:

Unit:

Result:

930915-1

METHANE

PPMV

21

Analysis Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:

Project Number: Project Name: Project Location: Department:

309582 GEO ENGINEERS 161-013-R69 UNOCAL

N/S GC/VOA

[0] Page 1 Date 23-Sep-93

Accession:

309582

Client:

GEO ENGINEERS 161-013-R69

Project Number: Project Name:

UNOCAL

Project Location:

N/S

Test:

Analysis Method: Extraction Method: N/A

TOTAL VOLATILE HYDROCARBONS IN CANISTER 5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Matrix: QC Level: AIR Ι

-Lab Id:

001

Sample Date/Time: 15-SEP-93 0900°

Client Sample Id:

930915-1

Received Date:

17-SEP-93

Batch: CAB156

Blank: B

Dry Weight %:

N/A

Extraction Date: Analysis Date:

N/A 21-SEP-93

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL VOLATILE HYDROCARBONS

ANALYST

MG/M3 INÍTIALS ND TSH 500

Comments:

Quality Control Report

Analysis: METHANE

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

309582 GEO ENGINEERS 161-013-R69 UNOCAL N/S

epartment: SEMI-VOLATILE FUELS

[0] Page 1 Date 22-Sep-93

"QC Report"

Title: Batch: Air Blank GEA262

Analysis Method: ATI SOP 640

Extraction Method: N/A

Date Analyzed: 21-SEP-93

-93 Date Extracted: N/A

Parameters:

Blank Id: A

Units:

Results:

Reporting Limits:

METHANE

PPMV

ND

5

Comments:

ANALYST: ROB PEREZ

(0) Page 2 Date 22-Sep-93

Common notation for Organic reporting

/A = NOT APPLICABLE = DILUTED OUT G/L = PARTS PER BILLION. 3/KG = PARTS PER BILLION. 3/M3 = MILLIGRAM PER CUBIC METER. PMV = PART PER MILLION BY VOLUME. 3/KG = PARTS PER MILLION. 3/L = PARTS PER MILLION. = LESS THAN DETECTION LIMIT. = VALUES OUTSIDE OF QUALITY CONTROL LIMITS OURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM ND REFERENCED METHOD. RGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS. D = NOT DETECTED ABOVE REPORTING LIMIT.

/s = NOT SUBMITTED

ri/GC/FID ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

ri/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

ri/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

[/GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

TI/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

JT = LISA THOMASON = CHRISTY DRAPER D = JOE POPE = INGRID PITTMAN = ROB PEREZ

KR = SVETLANA RODKINA

GH = DARREL HALSELL

INDEPENDANT QC CHECK STANDARD

DATE: 9/21/93 BATCH: GEA262 CC STANDARD ID: 01-FGS-6-3 IQC STANDARD ID: 01-FGS-7-1

COMPOUND NAME

RF (CC) RF (IQC) %D QC LIMIT

METHANE

2.52E-04 2.66E-04 5.6 15

PARENT SOURCE:

01-FGS-6-3:SCOTT SPECIALTY GASES, CAN MIX 234, LOT#4-A-KC-5-17-93 01-FGS-7-1:AIR PRODUCTS, METHANE PRIMARY STANDARD, LOT#07334

SOURCE FOR CONTROL LIMIT IS INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND ATI SOP 640.

Quality Control Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:

Project Number: Project Name: Project Location:

Department:

309582

GEO ENGINEERS 161-013-R69 UNOCAL

N/S GC/VOA

. [0] Page 1 Date 23-Sep-93

"QC Report"

Title:

Batch:

Bag/Can Blank CAB156 5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992 Analysis Method:

Extraction Method: N/A

Blank Id: B	Date	Analyzed:	21-SEP-93	Date	Extracted:	N/A	
Parameters:			Unit	s:	Results:	Reporting	Limits:
BENZENE ETHYL BENZENE TOLUENE XYLENES TOTAL PETROLEUM TRIFLUOROTOLUEM ANALYST	WE (PI	D)		3 3 3 3 /surr /surr	ND ND ND ND ND 99 99 GF	1 1 5 2 500 70-130 70-130	

Comments:

[0] Page 2 Date 23-Sep-93

"QC Report"

itle: atch: BAG/CAN REAGENT

CAB156

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992 nalysis Method:

xtraction Method: N/A

	RS Date Analyzed: RSD Date Analyzed:				RS Date Extracted: N/A RSD Date Extracted: N/A					
'arameter: ENZENE	s:	Spike Added 50 50	Sample Conc <1 <5	RS Conc 45 46	RS %Rec 90 92	RSD Conc 41 42	RSD %Rec 82 84	RPD 9 9	RPD Lmts 11 14	Rec Lmts 82-120 77-125
urrogate:	s: TOLUENE (PID)				97		96			70-130

comments:

otes:

UNITS IN MG/M3 = MILLIGRAM PER CUBIC METER N/S = NOT SUBMITTED < = LESS THAN REPORTING LIMIT</pre> SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND METHOD REFERENCE.
UNITS IN UG = MICROGRAMS. N/S = NOT SUBMITTED

[0] Page 3 Date 23-Sep-93

Common notation for Organic reporting

= NOT SUBMITTED
= NOT APPLICABLE
= DILUTED OUT

G/L = PARTS PER BILLION.

G/KG = PARTS PER BILLION.

KG = PARTS PER MILLION.

L = PARTS PER MILLION.

= LESS THAN DETECTION LIMIT.
= VALUES OUTSIDE OF QUALITY CONTROL LIMITS

WRCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM

REFERENCED METHOD.

ANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS.

* COMPOUNDS FLAGGED IN METHOD ARE NOT WITHIN THE FIVE POINT CURVE. THEY

PE SEARCHED FOR QUALITATIVELY.

R-SHELLEY REAMSMA
LP-MELISSA POPE
L-TRICIA HOLSTON
L-LEIGH DUVALL
MIKE MCKENZIE
WS-KENDALL SMITH
C-RON YOKUM
KIMBERLY SMITH
GREG FOOTE
EF-CLAIRE FORNSEL
LM-AMY LEE MILLER
NICOLE CALL
JOSEPH POPE

= NOT DETECTED ABOVE REPORTING LIMIT.

PROJECT SAMPLE INSPECTION FORM

	Accession #: 3095	382_		Date received: 17	SEP-	23
1.	Was there a Chain of Custody?	YES NO	7.	Are samples correctly preserved analysis required?	for YES	D _{NO} "
2.	Was Chain of Custody properly relinquished	17 (YES) NO	8.	Is there sufficient volume for an requested?	alysis YES	NO .
3.	Were samples received cold?	YES NO	9.	Were samples received within h	olding (YES) NO
4.	Were all containers properly labeled and identified?	YES NO	10.	Was there headspace greater the	en ¼" YES	NO N/A
5.	Were samples received in proper containers analysis requested?	for YES NO	11.	If sent, were matrix spike bottle returned?	s YES	NO (N/A)
6.	Were all sample containers received intact?	YES NO				
racl	king Number: <u>17-9330F50</u> -	1000003800		Shipped By: ℓ	175	
ool	er Number://A					
	6					
ut (of Control Events and Inspecti	on Comments:				
		· .		· · · · · · · · · · · · · · · · · · ·		
		·				
					· · · · · · · · · · · · · · · · · · ·	
						-
						· ×
		, <u>, , , , , , , , , , , , , , , , , , </u>				
				·		
	· · · · · · · · · · · · · · · · · · ·					
			 			
					<u></u>	
	,			٠,		
ıspe	ected By: 2 Date	e: 9/18/9-3	, 	Logged By:	Date: _ <i></i>	118/23
	i, '	/	Ð	7 /		/

HAIN OF CUSTODY

LAB. ID. # 309582

Analytical Technologies, Inc.

11 EAST OLIVE ROAD

PHONE (904) 474-1001

RT 1 — Bo	- Bottle Shipment Information							PENSACOLA, FLORIDA 32514											
_iENT:	ent a	DINEUM	7					CLIENT PROJECT NUMBER:											
	000							<u> </u>				حب			TAIN	EDO		\top	
		PRESERV	ATIVE	<u>, </u>	P:	LASTIC	CON	I AINE	HS	,}		,	BLAS	S CON	7	EHS	 _		
AMPLE MINERS PED		A PETATE A SEA	Table Sentill		# # # # # # # # # # # # # # # # # # #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	miles	Minital 1786 Marie Marie	IS SECOND	130 M/M (31)			A III VIII	4 Q. MIII	7 MIN 18 18 18 18 18 18 18 18 18 18 18 18 18		Wing.	AT	P. A. P.
																		A _T	165
					$\sqcup \downarrow$	\perp	\perp	_ _			4		_	 	ļ				
_		 		}}-	11	+	\perp		-		+	\dotplus		+	-				
 	.	 - -	\vdash	+				+		$\vdash +$	+	+		+-	╁╌	Н			
		 	 -			Ì	┤	_		7	+	_	\top	1	1			_	
ELINOVISHED	11	1		TIME	DA	TE Fi ~	2 F	ECEN	VED		•	•				TIME	Ē	DATE	
2.4.0	אלים.	u		1445	12-	. F. M	<u> </u>		_										
		nformat		-				– PA	RAM ,	IETEI	RS /	AND	PRE	SER	VAT	(VE	s	,	
DRINKINGW WASTEWAT GROUNDW V SURFACEW	ATER ER ATER	A	L OIL R AIR L SLUDG	ΒE	/	N. V.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				/	/	/	/,				′	
SAMPLE I.I		DATE	TIME	MATRIX]\{	~/ <i>\</i>	/(۱	/		/	, ,	/			/		OTAL		USE ILY
130915		9/15/93		AIR	X	×					$ \top $						i		
																Ţ			
L		 		 	<u> </u>		ļ	-	-	_	1			-	╀	+		-	
—		 -		+-	-	 		+	+	+	\dashv			 	╁	+		+	
=		-	<u> </u>	 	-	 		╁╌	\top	-	+	_		ļ <u></u> -	+	+		+	
																		I	
		 		-	ļ	_	ļ	+	+	-	_			<u> </u>	\vdash	- -		↓—	
	- wa	 		 	 - -	\vdash	+	+	+-	+	\dashv			-	+	+		+	
										_									
		<u> </u>							\perp		\downarrow							Ī	
-		 		-	╄-	-			\perp		\dashv				 -	+-		-	
		-		1			+	+-	+	 -	+			 -	+	+-		+	
			-		1	1	TO1	TAL N	UMBF	R OF	вот	TLES		MIATE	ERS		ı		
INQUISHED	BY:				DA	TE 1						i)					•	DATE	TIME
707	m-1	M	4 k V	1,000	09	15 1	300	1/1	ius	të c	10	elz.	ald	DIN			2	17/23	1001
		1			1			109		. /	<i></i>								
(6.1	-			-					<i></i>	マー	21	- - Q						<u></u>	
ESS 841	<u>ار د.</u> د ر	er (% 1 5 414	AUEN	₹ PRO	JECT N	3MAI	س	20 6.	4 (· Y	
ATE WA	المسالدة	ZIP 572	45-2			3Y <u>/</u>							NEED	DATA	PACE	AGE	BY		. (DATE
ENO. 1704			<u> </u>	SAM	PLE SI	TE							QUAL	ITY CO	NTRO	L REF	PORTIN	G LEVEL	(circle one
CT MANAGE	R (perso	on to receiv	e data)	PUR	CHASE	ORDE	R NU	MBER					NONE		1		2	3	neco-
			THECO						25.01	AL D	107					EX	THA CC	PIES OF	HEPOR

	TURN AROUND TIMES (check or	ne)	SPECIAL INSTR	
	STANDARD - 14 TO 21 DAYS	X		FOR METHAN ONLY. STANJARA
	RUSH: (MUST BE APPROVED IN ADVANCE)		A-C / VA	UNCIO STANDARY
	0-48 HOURS - 2 x STD PRICE	()	1-1-	J
ļ.	3-7 DAYS - 1.5 x STD PRICE	Ø	1/7/	
ľ	TOLP - 1 WEEK BUSH - 15 - STRIPPICE	П	1	18 – 48

Pensacola, Florida 32514

SIGNATURE PAGE

	•
Reviewed	hv.
1001201100	~ 1 .

The Project Manager

GeoEngineers

NOV 1 2 1993

Client:

GEO ENGINEERS

REDMOND, WASHINGTON

Project Name:

UNOCAL W. LAKE

Project Number:

NORM PURI

Project Location:

VES 161-013-R69

Accession Number:

310702

Project Manager:

NORM PURI

Sampled By:

MTW

ANALYTICAL TECHNOLOGIES, INC.

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

GeoEngineers

NOV 1 2 1993

Routing	
File	The second secon

Analysis Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

310702 GEO ENGINEERS NORM PURI UNOCAL W. LAKE VES 161-013-R69 GC/VOA

[0] Page 1 Date 02-Nov-93

Accession:

310702

Client:

Project Number: Project Name:

GEO ENGINEERS NORM PURI UNOCAL W. LAKE

Project Location:

VES 161-013-R69

Test:

Analysis Method:

TOTAL VOLATILE HYDROCARBONS IN CANISTER 8020 / SW 846, 3rd Edition, September 1986 and Revision 1, July 1992

Extraction Method: N/A Matrix:

AIR

QC Level:

I

Lab Id:

001

Sample Date/Time: Received Date:

15-OCT-93 0530 26-OCT-93

Client Sample Id:

931015-1

Extraction Date:

A\N

Batch: ETB135 Blank: C

Dry Weight %:

N/A

Analysis Date:

29-OCT-93

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL VOLATILE HYDROCARBONS

ANALYST

MG/M3 INITIALS

ND RY 500

Comments:

Analysis Report

Analysis: METHANE

Accession:
Client:
Project Number:
Project Name:
Project Location:
Department:

310702 GEO ENGINEERS NORM PURI UNOCAL W. LAKE VES 161-013-R69 SEMI-VOLATILE FUELS

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001 ANALYTICAL TECHNOLOGIES, INC.

> (0) Page 1 Date 09-Nov-93

Accession:

310702

Client:

GEO ENGINEERS NORM PURI

Project Number: Project Name: Project Location:

UNOCAL W. LAKE VES 161-013-R69

Tesť:

METHANE ATI SOP 640

Analysis Method: Extraction Method: N/A

Matrix: QC Level: AIR N

Lab Id:

001

Sample Date/Time: Received Date:

15-OCT-93 0530

Client Sample Id:

931015-1

Extraction Date:

26-OCT-93

Batch: GEA284

Blank: A

Dry Weight %:

N/A

Analysis Date:

N/A 05-NOV-93

Parameter:

Units:

Results:

Rpt Lmts:

Q:

METHANE ANALYST PPMV INITIALS

80 RP 10

Comments:

(0) Page 2 Date 09-Nov-93

"Method Report Summary"

Accession Number: 310702

Client: GEO ENGINEERS NORM PURI Project Number:

Project Name: UNOCAL W. LAKE Project Location: VES 161-013-R69

Test: **METHANE**

Client Sample Id:

Parameter:

Unit:

Result:

931015-1

METHANE

PPMV

80

[0) Page 3
Date 09-Nov-93

Common notation for Organic reporting

/S = NOT SUBMITTED
/A = NOT APPLICABLE
= DILUTED OUT
G = MICROGRAMS
G/L = PARTS PER BILLION.
G/KG = PARTS PER BILLION.
G/M3 = MILLIGRAM PER CUBIC METER.
PMV = PART PER MILLION BY VOLUME.
G/KG = PARTS PER MILLION.
G/L = PARTS PER MILLION.
= LESS THAN DETECTION LIMIT.
= VALUES OUTSIDE OF QUALITY CONTROL LIMITS

OURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM ND REFERENCED METHOD.

RGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

D = NOT DETECTED ABOVE REPORTING LIMIT.

PT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

PD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION)

TI/GC/FID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

TI/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

TI/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

TI/GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

TI/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

JT = LISA THOMASON
D = CHRISTY DRAPER
P = INGRID PITTMAN
P = ROB PEREZ

KR = SVETLANA RODKINA GH = DARREL HALSELL W = KAREN WADSWORTH

B = PAMELA BREWTON

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001 NALYTICAL TECHNOLOGIES, INC.

GeoEngineers

NOV 1 2 1993

Routing	***************************************		<u></u>
File	. П	О	Ы

Quality Control Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:
Project Number:
Project Name:
Project Location:

Department:

310702 GEO ENGINEERS NORM PURI UNOCAL W. LAKE VES 161-013-R69 GC/VOA

[0] Page 1 Date 02-Nov-93

"QC Report"

Title: Batch:

Bag/Can Blank ETB135 8020 / SW 846, 3rd Edition, September 1986 and Revision 1, July 1992 Analysis Method: 8020 Extraction Method: N/A

Blank Id: C Date Analyzed	: 29-OCT-93 Dat	e Extracted:	: N/A	
Parameters:	Units:	Results:	Reporting Limits:	
BENZENE ETHYL BENZENE TOLUENE XYLENES TOTAL PETROLEUM HYDROCARBON TRIFLUOROTOLUENE (PID) TRIFLUOROTOLUENE (FID) ANALYST	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 *REC/SURR *REC/SURR INITIALS	ND ND ND ND ND 98 99 GF	1 1 5 2 500 70-130 70-130	

Comments:

(0) Page 2 Date 02-Nov-93

"QC Report"

itle: atch: Bag/Can Reagent ETB135

8020 / SW 846, 3rd Edition, September 1986 and Revision 1, July 1992 lysis Method:

raction Method: N/A

FLŬOROTOLUENE (PID)

RS Date Analyzed: 27-OCT-93 RS Date Extracted: N/A RSD Date Analyzed: 27-OCT-93 RSD Date Extracted: N/A Spike RSD RSD RPD Rec Sample RS RS %Rec RPD Lmts Lmts Added Conc Conc %Rec Conc arameters: 41 82-120 50 <1 43 86 82 5 11 ZENE 77-125 90 42 84 14 UENE 50 <5 45 urrogates: 70-130 99 96

omments:

otes:

UNITS IN MG/M3 = MILLIGRAM PER CUBIC METER N/S = NOT SUBMITTED< = LESS THAN REPORTING LIMIT</pre> SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND METHOD REFERENCE. UNITS IN UG = MICROGRAMS. N/S = NOT SUBMITTED

[0] Page 3 Date 02-Nov-93

Common notation for Organic reporting

/A = NOT APPLICABLE

= DILUTED OUT

G/L = PARTS PER BILLION.

G/KG = PARTS PER BILLION.

G/KG = PARTS PER MILLION.

G/L = PARTS PER MILLION.

= LESS THAN DETECTION LIMIT.

= VALUES OUTSIDE OF QUALITY CONTROL LIMITS

OURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM

ND REFERENCED METHOD.

RGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS.

* COMPOUNDS FLAGGED IN METHOD ARE NOT WITHIN THE FIVE POINT CURVE. THEY

RE SEARCHED FOR QUALITATIVELY.

D = NOT DETECTED ABOVE REPORTING LIMIT.

R-SHELLEY REAMSMA
LP-MELISSA POPE
SH-TRICIA HOLSTON
KD-LEIGH DUVALL
M-MIKE MCKENZIE
WS-KENDALL SMITH
Y-RON YOKUM
KS-KIMBERLY SMITH
F-GREG FOOTE
EF-CLAIRE FORNSEL
LM-AMY LEE MILLER
C-NICOLE CALL
-JOSEPH POPE

/S = NOT SUBMITTED

Quality Control Report

Analysis: FIXED GASES AND METHANE

CHECK STANDARD (POST-RUN)

DATE: 11-05-93

METHOD: ATI SOP 640

 COMPOUND
 RF (CC)
 RF (CS)
 %D
 QC LIMIT

 METHANE
 7.00E-02
 7.10E-02
 1.4
 15

SGURCE FOR CONTROL LIMITIS INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND ATI SOP 640.

SIGNATURE PAGE

Reviewed by:

ATI/Project Manager

Client:

GEO ENGINEERS

REDMOND, WASHINGTON

Project Name: .

UNICAL WESTLAKE AND MERCER

Project Number:

161-013-R69

Project Location: UNICAL WESTLAKE AND MERCER

Accession Number:

403499

Project Manager:

NORM PURI

Sampled By:

MWA

Analysis Report

Analysis: METHANE

Accession:

Client:

Project Number: Project Name: Project Location:

Department:

403499

GEO ENGINEERS

161-013-R69
UNICAL WESTLAKE AND MERCER
UNICAL WESTLAKE AND MERCER
SEMI-VOLATILE FUELS

[0] Page 1 Date 30-Mar-94

Accession:

403499

Client:

GEO ENGINEERS 161-013-R69

UNICAL WESTLAKE AND MERCER

Project Number: Project Name: Project Location:

UNICAL WESTLAKE AND MERCER

Test:

METHANE

Analysis Method: Extraction Method: N/A

ASTM D1946

Matrix: QC Level:

AIR N

Lab Id:

001

Client Sample Id:

Sample Date/Time: Received Date:

09-MAR-94 0710

940309-1

18-MAR-94

Batch: GEA041

Blank: A

Dry Weight %: N/A

Extraction Date: Analysis Date:

N/A 28-MAR-94

Parameter:

Results:

Rpt Lmts:

Q:

METHANE

Units:

ANALYST

INITIALS

ND ΚW 0.05

Comments:

[0] Page 2 Date 30-Mar-94

Common notation for Organic reporting

N/S = NOT SUBMITTED
N/A = NOT APPLICABLE
D = DILUTED OUT
UG = MICROGRAMS
UG/L = PARTS PER BILLION.
UG/KG = PARTS PER BILLION.
MG/M3 = MILLIGRAM PER CUBIC METER.
PPMV = PART PER MILLION BY VOLUME.
MG/KG = PARTS PER MILLION.
MG/L = PARTS PER MILLION.
< = LESS THAN DETECTION LIMIT.

* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

ND = NOT DETECTED ABOVE REPORTING LIMIT.

RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION)

ATI/GC/FID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

ATI/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

ATI/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

ATI/GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

ATI/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

LJT = LISA THOMASON CD = CHRISTY DRAPER IP = INGRID PITTMAN RP = ROB PEREZ SKR = SVETLANA RODKINA

DGH = DARREL HALSELL
KW = KAREN WADSWORTH
PB = PAMELA BREWTON

MV = MONIQUE VERHEYDEN

SW = STEVE WILHITE DC = DAVID CELESTIAL

Analysis Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession: Client:

Project Number: Project Name: Project Location: Department:

403499
GEO ENGINEERS
161-013-R69
UNICAL WESTLAKE AND MERCER
UNICAL WESTLAKE AND MERCER
GC/VOA

[0) Page 1 Date 24-Mar-94

Accession:

403499

Client:

GEO ENGINEERS

Project Number: Project Name: Project Location:

161-013-R69 UNICAL WESTLAKE AND MERCER

UNICAL WESTLAKE AND MERCER

Test:

TOTAL VOLATILE HYDROCARBONS IN CANISTER

Analysis Method: 5030 Extraction Method: N/A

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Matrix: QC Level:

AIR Ι

Lab Id:

001

Sample Date/Time: 09-MAR-94 0710

Client Sample Id:

940309-1

Received Date: 18-MAR-94

Extraction Date: N/A

Batch: ETB056 Blank: A

Dry Weight %:

N/A

Analysis Date:

21-MAR-94

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL VOLATILE HYDROCARBONS

ANALYST

MG/M3 INITIALS ND KKS 500

Comments:

ANALYTICAL TECHNOLOGIES, INC.

11 EAST OLIVE ROAD

PENSACOLA, FLORIDA

32514

QUALITY CONTROL REPORT

ANALYSIS:

METHANE PLUS FIXED GASES

ACCESSION:

403499

CLIENT:

GEO ENGINEERS

PROJECT NUMBER:

161-013-R69

PROJECT NAME:

UNICAL WESTLAKE AND MERCER

PROJECT LOCATION:

UNICAL WESTLAKE AND MERCER

DEPARTMENT:

SEMI-VOLATILE FUELS

NITROGEN BLANK ANALYSIS

DATE: <u>3-28-94</u>

METHOD: ASTM D1946

BATCH: GEA041

COMPOUND	UNITS	REPORTING LIMIT	RESULT
METHANE	VOLUME %	0.05	ND

CHECK STANDARD (POST-RUN)

DATE: <u>3-28-94</u>

METHOD: ASTM D1946

BATCH: GEA041

COMPOUND	RF (IC)	RF (PS)	%D	QC LIMITS
METHANE	1.98 E -5	1.99 E-5	0.51	15

SOURCE FOR CONTROL LIMIT IS INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND ASTM D1946.

Quality Control Report

Analysis: TOTAL VOLATILE HYDROCARBONS IN CANISTER

Accession:

Client:

Project Number: Project Name: Project Location: Department:

403499

GEO ENGINEERS
161-013-R69
UNICAL WESTLAKE AND MERCER
UNICAL WESTLAKE AND MERCER
GC/VOA

[0] Page 1 Date 24-Mar-94

"QC Report"

Title: Batch:

Bag/Can Blank

ETB056 5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992 Analysis Method: 5030 Extraction Method: N/A

Blank Id: A	Date Analyz	ed: 21-MAR-94	Date Extracted	l: N/A	
Parameters:		Units:	Results:	Reporting	Limits:
BENZENE ETHYL BENZENE TOLUENE XYLENES TOTAL PETROLEUN TRIFLUOROTOLUEN TRIFLUOROTOLUEN ANALYST	NE (PID)	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SI %REC/SI INITIA	JRR 107	1 5 2 500 70-130 70-130	

Comments:

[0] Page 2 Date 24-Mar-94

"QC Report"

Title:

Bag/Can Reagent

Batch:

ETĔ056

Analysis Method:

5030/8020/8015 / SW 846, 3rd Edition, Sep. 1986 and Rev. 1, July 1992

Extraction Method: N/A

RS Dat RSD Da	e Analyzed: 21-MAR-94 ce Analyzed: 21-MAR-94				RS Date Extracted: N/A RSD Date Extracted: N/A						
Parameters: BENZENE TOLUENE		Spike Added 50 50	Sample Conc <1 <5	RS Conc 48 48	RS %Rec 96 96	RSD Conc 49 49	RSD %Rec 98 98	RPD 2 2	RPD Lmis 11 14	Rec Lmts 82-120 77-125	
Surrogates: TRIFLUOROTOLUENE	(PID)				98		99			70-130	

Comments:

Notes:

UNITS IN MG/M3 = MILLIGRAM PER CUBIC METER N/S = NOT SUBMITTED < = LESS THAN REPORTING LIMIT
SOURCE FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND METHOD REFERENCE.
UNITS IN UG = MICROGRAMS. N/S = NOT SUBMITTED

(0) Page 3 Date 24-Mar-94

Common notation for Organic reporting

SH-TRICIA HOLSTON

KD-LEIGH DUVALL

M-MIKE MCKENZIE

KWS-KENDALL SMITH

KKS-KIMBERLY SMITH

F-GREG FOOTE

C-NICOLE CALL

JP-JOSEPH POPE

JA-JENNIFER ALEXANDER

B-HEATHER BIANCALANA

AM-PENNY A. MALOUIN

MCW-MARIE CLAUDIA WALTON

SB-SHARON BRADDOCK

PROJECT SAMPLE INSPECTION FORM

Accession #: 403499	Date received: 18-114R-94
1. Was there a Chain of Custody? YES NO	7. Are samples correctly preserved for YES NO analysis required?
2. Was Chain of Custody properly relinquished? YES NO	8. Is there sufficient volume for analysis YES NO requested?
3. Were samples received cold? (At 40 or on ice) YES NO	9. Were samples received within holding YES NO time?
4. Were all containers properly labeled and identified?	10. Was there headspace greater than X YES NO N/A in diameter in volatile bottles?
5. Were semples received in proper containers for YES NO analysis requested?	11. If sent, were matrix spike bottles YES NO N/A
6. Were all sample containers received intact? YES NO	41
Tracking Number:	Shipped By:
Cooler Number:	· ·
Out of Control Events and Inspection Comments	•
	:
	, ,
nspected By: DRB Date: 3-16	11/2000 By: 18-94 Date: 3-18-94

CHAIN OF CUSTODY RECORD

GEOENGINEERS, INC. 8410 154TH AVENUE N.E. REDMOND, WASHINGTON 98052 (206) 861-6000

DATE 3/9/94
PAGE OF /
LAB ATT PACT
LAB NO,

200	MOLENOO WELL AND TO SEE OF SEE		Ł	j.	OLOV LATAN		
5	NOTION DIMENTION	Mod	14/4Ce 000 /4/2	-	אוא די ויי	חשבוסטם מוס ושאות	MOLEG/COMMENIO
	PROJECT NUMBER	16/0/3-869	69.				(Preserved, fittered, etc.)
	PROJECT MANAGER	Noi	Pari	7V			
	SAMPLEDBY	AWM		1			-
SAM	SAMPLE IDENTIFICATION	SAMPLE COLLECTION	CTION # OF	17	······································		
8	GEOENGINEERS	DATE TIME	MATRIX JAHS				
	1-605076	dLO KYYE	1 Jif	XX			No RETY MOCOCCUM
				,			
RELIK	REUNQUISHED BY	FIRM GET	RELINQUISHED BY	FIRM	×	RELINQUISHED BY	FIRM
SIGNA	Jan	M	SIGNATURE			SIGNATURE	
PRINT	PRINTED NAME / CAMED /	D	PRINTED NAME			PRINTED NAME	
DATE	DATE 2/9/94	тіме <i>130</i> 0	DATE	тме		DATE	TIME
RECE	10/0	FIRM ATT	RECEIVED BY	FIRM	M	RECEIVED BY	FIRM
SIGNA	SIGNATURE - LOLLINK HOW	ないか	SIGNATURE			SIGNATURE	
PRINT	PRINTED NAME ALLED D	Barel	PHINTED NAME			PRINTED NAME	
DATE	3-13-94	TIME 123/	DATE	TIME		DATE	TIME
ADDI	ADDITIONAL COMMENTS:						
,					·		
- 5,2							

560 Noches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

GeoEngineers

NOV 0 9 1993

ATI I.D. # 9310-154

November 8, 1993

GeoEngineers, Inc. 8410 154th Avenue N.E. Redmond WA 98052

Attention : Norm Puri

Project Number: 0161-013-R04

Project Name : Unocal - WL&M

Dear Mr. Puri:

On October 18, 1993, Analytical Technologies, Inc. (ATI), received two samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

Sincerely,

Elaine M. Wacker

Elaine M. Walker Project Manager

EMW/hal/elf

Enclosure

SAMPLE CROSS REFERENCE SHEET

: GEOENGINEERS, INC. : 0161-013-R04 LIENT

PROJECT # PROJECT NAME : UNOCAL - WL&M

ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
9310-154-1	MW-2	10/15/93	PRODUCT
	COMPOSITE DRUM	10/15/93	WATER

---- TOTALS ----

SAMPLES MATRIX _____ _____ PRODUCT 1 1 WATER

ATI STANDARD DISPOSAL PRACTICE ______

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled isposal date.

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M

ANALYSIS	TECHNIQUE	REFERENCE	LAB
PURGEABLE HALOCARBONS	GC/ELCD	EPA 8010	R
BETX	GC/PID	EPA 8020	R
TOTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-G	R
TOTAL PETROLEUM HYDROCARBONS	GC/FID	WA DOE WTPH-D	R
OIL & GREASE	IR	EPA 413.2	R
LEAD	AA/GF	EPA 7421	R

R = ATI - RentonSD = ATI - San Diego PHX = ATI - Phoenix PNR = ATI - Pensacola FC = ATI - Fort Collins

JB = Subcontract

CASE NARRATIVE

: GEOENGINEERS, INC.

PROJECT # : 0161-013-R04

PROJECT NAME : UNOCAL - WL&M

CASE NARRATIVE: VOLATILE ORGANICS ANALYSIS

One (1) sample was received by ATI on October 18, 1993, for the following analysis: EPA method 8010.

All corresponding quality assurance and quality control results defined as blank spike/blank spike duplicate (BS/BSD), method blank and surrogate recoveries were within the ATI established control limits.

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : PRODUCT EPA METHOD : 8010	DILUTION FACT	: N/A D : 10/25/93 : 10/25/93 : mg/Kg
COMPOUNDS	RESULTS	
		•
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE	<0.10 <0.50 <0.10	
CHLOROBENZENE CHLOROETHANE CHLOROFORM	<0.25 <0.50 <0.10 <1.0	
1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 4-DICHLOROBENZENE	<0.25 <0.25 <0.25 <0.25	
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE		
1,1-DICHLOROETHENE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE		
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		
METHYLENE CHLORIDE	<1.0 <0.10 <0.10	
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE	<0.10 <0.10 <0.10 <0.25	
VINYL CHLORIDE	<0.50	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOCHLOROMETHANE	86	38 - 140

BROMOCHLOROMETHANE

ATI I.D. # 9310-154-1

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : MW-2 SAMPLE MATRIX : PRODUCT EPA METHOD : 8010	DATE SAMPLED : 10/15/93 DATE RECEIVED : 10/18/93 DATE EXTRACTED : 10/25/93 DATE ANALYZED : 10/26/93 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE 1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE IBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	<0.10 <0.50 <0.10 <0.25 <0.50 <0.10 <1.0 <0.25 <0.25 <0.25 <0.25 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10
TRICHLOROFLUOROMETHANE	<0.25
VINYL CHLORIDE	<0.50
SURROGATE PERCENT RECOVERY	LIMITS

79

38 - 140

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 0161-013-R04
PROJECT NAME : UNOCAL - WL&M

DATE EXTRACTED : 10/25/93 DATE ANALYZED : 10/25/93 UNITS : mg/Kg

93

38 - 140

SAMPLE MATRIX : PRODUCT

BROMOCHLOROMETHANE

EPA METHOD : 8010

				~ ~			
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.250 <0.100 <0.100	4.00 4.00 4.00	4.16 4.08 4.01	104 102 100	4.55 4.34 4.33	114 109 108	9 6 8
CONTROL LIMITS				% REC.	•		RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				71 - 1 30 - 1 55 - 1	61		20 22 24
SURROGATE RECOVERIES	S	SPIKE		DUP. S	PIKE	LIMITS	

90

CASE NARRATIVE

: GEOENGINEERS, INC.

PROJECT # : 0161-013-R04

PROJECT NAME : UNOCAL - WL&M

CASE NARRATIVE : BETX - GASOLINE ANALYSIS

Two (2) samples were received by ATI on October 18, 1993, for BETX analysis according to EPA method 8020 and gasoline range hydrocarbons according to WA DOE WTPH-G.

The surrogate recovery of bromofluorobenzene for sample 9310-154-2 (COMPOSITE DRUM) was outside of the ATI established control limits due to matrix interference.

BETX - GASOLINE DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-G/8020(BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 10/18/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<100 TOLUENE TO DODECANE GASOLINE
SURROGATE PERCENT RECOVERY	LIMITS
ROMOFLUOROBENZENE	111 76 - 120 102 50 - 150

BETX - GASOLINE DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-G/8020(BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 10/19/93 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<100 TOLUENE TO DODECANE GASOLINE
SURROGATE PERCENT RECOVERY ROMOFLUOROBENZENE	LIMITS 109 76 - 120

SORROGATE PERCENT RECOVERS		1111111
ROMOFLUOROBENZENE	. 109 102	76 - 120 50 - 150

BETX - GASOLINE DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-G/8020 (BETX)	
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<100 TOLUENE TO DODECANE GASOLINE
SURROGATE PERCENT RECOVERY	LIMITS
_ROMOFLUOROBENZENE	110 76 - 120 102 50 - 150

TRIFLUOROTOLUENE

ATI I.D. # 9310-154-1

BETX - GASOLINE DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : MW-2 SAMPLE MATRIX : PRODUCT METHOD : WA DOE WTPH-G/8020(BETX)	DATE SAMPLED : 10/15/93 DATE RECEIVED : 10/18/93 DATE EXTRACTED : N/A DATE ANALYZED : 10/20/93 UNITS : ug/L DILUTION FACTOR : 50
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	1300 310 1700 4100 50000 TOLUENE TO DODECANE GASOLINE
SURROGATE PERCENT RECOVERY	LIMITS
_ROMOFLUOROBENZENE	112 76 - 120

99

50 - 150

ATI I.D. # 9310-154-2

BETX - GASOLINE DATA SUMMARY

PROJECT # : PROJECT NAME : CLIENT I.D. :	GEOENGINEERS, INC. 0161-013-R04 UNOCAL - WL&M COMPOSITE DRUM WATER WA DOE WTPH-G/8020(BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 10/20/93 : ug/L
COMPOUNDS		RESULTS	
ETHYLBENZENE TOLUENE		<0.5 1.5 1.8 480 D5	
SUR	RROGATE PERCENT RECOVERY	:	LIMITS
BROMOFLUOROBENZ	ZENE	157 F	76 - 120

05 = Value from a twenty fold diluted analysis. = Out of limits due to matrix interference.

BETX - GASOLINE QUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT

PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M

SAMPLE MATRIX : WATER

METHOD

: WA DOE WTPH-G/8020(BETX)

SAMPLE I.D. # : BLANK

DATE EXTRACTED : N/A : 10/18/93 DATE ANALYZED

UNITS : ug/L

-							:		
COMPOUNDS	3		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYL GASOLINE	ENES		<0.500 <0.500 <0.500 <100	20.0 20.0 40.0 1000	19.0 20.1 40.2 1060	95 101 101 106	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CON	TROL LI	MITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYL ASOLINE	ENES					80 - 11 78 - 11 80 - 11 75 - 12	11 14		20 20 20 20
SUR	ROGATE	RECOVERIES		SPIKE		DUP. SI	PIKE	LIMITS	
BROMOFLUO TRIFLUORO				112 102		N/A N/A		76 - 13 50 - 1	

BETX - GASOLINE OUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 0161-013-R04

DATE EXTRACTED : N/A

PROJECT NAME : UNOCAL - WL&M

DATE ANALYZED : 10/19/93

SAMPLE MATRIX : WATER

UNITS

: ug/L

: WA DOE WTPH-G/8020(BETX) METHOD

COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES GASOLINE	<0.500 <0.500 <0.500 <100	20.0 20.0 40.0 1000	19.2 20.5 40.7 1110	96 102 102 111	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES ASOLINE				80 - 1 78 - 1 80 - 1 75 - 1	11 14		20 20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE TRIFLUOROTOLUENE		110 103		N/A N/A		76 - 1 50 - 1	20 50

BETX - GASOLINE QUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT PROJECT # : 0161-013-R04

: WA DOE WTPH-G/8020 (BETX)

PROJECT NAME : UNOCAL - WL&M

SAMPLE MATRIX : WATER

METHOD

SAMPLE I.D. # : BLANK

DATE EXTRACTED : N/A

DATE ANALYZED

: 10/20/93

UNITS : ug/L

				_			
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES GASOLINE	<0.500 <0.500 <0.500 <100	20.0 20.0 40.0 1000	19.1 20.3 41.0 1160	96 102 102 116	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES ASOLINE				80 - 1: 78 - 1: 80 - 1: 75 - 1:	11 14		20 20 20 20
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENŻENE TRIFLUOROTOLUENE		111 104		N/A N/A	•	76 - 1 50 - 1	20 50

CASE NARRATIVE

: GEOENGINEERS, INC.

PROJECT # : 0161-013-R04

PROJECT NAME : UNOCAL - WL&M

CASE NARRATIVE : TOTAL PETROLEUM HYDROCARBONS (WA DOE WTPH-D) ANALYSIS

One (1) water sample was received by ATI on October 18, 1993, for analysis by WA DOE WTPH-D extended method. The sample was extracted on October 18, 1993, and analyzed on October 19, 1993.

The relative percent difference (RPD) between the associated quality control sample 9310-155-1 and its duplicate was outside of ATI established control limits due to a high level of target analytes.

The surrogate recovery for sample 9310-154-1 (MW-2) was outside of ATI established control limits due to sample dilution.

-TERPHENYL

ATI I.D. # 9310-154

50 - 150

101

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 0161-013-R04 PROJECT NAME : UNOCAL - WL&M CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER METHOD : WA DOE WTPH-D	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 10/18/93 DATE ANALYZED : 10/18/93 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<0.25 C12 - C24 DIESEL
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<0.75 C24 - C34 MOTOR OIL
SURROGATE PERCENT RECOVERY	LIMITS

ATI I.D. # 9310-154-1

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

PROJECT # PROJECT NAMI CLIENT I.D. SAMPLE MATRI METHOD	: WA DOE WTPH-D		DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 10/18/93 : 10/18/93 : 10/19/93 : mg/L
COMPOUNDS			RESULTS	
FUEL HYDROCA HYDROCARBON HYDROCARBON FUEL HYDROCA HYDROCARBON	ARBONS RANGE QUANTITATION USING ARBONS		200 C12 - C24 DIESEL 150 C24 - C34	
	QUANTITATION USING	G	MOTOR OIL	
	SURROGATE PERCENT	RECOVERY	:	LIMITS
TERPHENYL			154 I	50 - 150

I = Surrogate out of limits due to sample dilution.

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

CLIENT	: GEOENGINEERS, INC.	SAMPLE I.D. #	: 9310-155-1
	: 0161-013-R04	DATE EXTRACTED	: 10/18/93
= :	: UNOCAL - WL&M	DATE ANALYZED	: 10/19/93
SAMPLE MATRIX	· WATER	UNITS	: mg/L

: WA DOE WTPH-D METHOD

COMPO	UND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
DIESE	L	15.7	20.8	28G	N/A	N/A	N/A	N/A	N/A	N/A
CONTROL LIMITS							% RE	C.		RPD
DIESE:	L						N/A			20
SURROGATE RECOVERIES				SAMPLE DUP. I			LIMI	TS		
O-TER	PHENYL				139		112	112 50 -		

_____ out of limits due to high levels of target analytes in sample.

TOTAL PETROLEUM HYDROCARBONS OUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT

SAMPLE I.D. # : BLANK

PROJECT # : 0161-013-R04

DATE EXTRACTED : 10/18/93

PROJECT NAME : UNOCAL - WL&M

DATE ANALYZED : 10/18/93

SAMPLE MATRIX : WATER

UNITS

: mg/L

METHOD

: WA DOE WTPH-D

						- -	
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
DIESEL	<0.250	2.50	2.47	99	2.56	102	4
	V0.250	2.50		% REC.			RPD
CONTROL LIMITS				_			
DIESEL				70 - 3	L15		20
SURROGATE RECOVER	IES	SPIKE		DUP. 8	SPIKE	LIMITS	3
O-TERPHENYL		103		106		50 - 1	.50

CASE NARRATIVE

CLIENT

: GEOENGINEERS, INC.

PROJECT NAME : UNOCAL - WL&M

PROJECT # : 0161-013-R04

CASE NARRATIVE : OIL & GREASE ANALYSIS

One (1) water sample was received by ATI on October 18, 1993, for oil and grease analysis. This sample was extracted and analyzed in accordance with EPA method 413.2.

All corresponding quality assurance and quality control results defined as matrix spike/matrix spike duplicate (MS/MSD) and blank spike (BS) were within the ATI established control limits. The BS served as the Laboratory Control Sample (LCS). The relative percent difference (RPD) for sample 9310-138-7 and its duplicate was out of ATI established control limits. These samples were determined to be non-homogeneous.

ATI I.D. # 9310-154

OIL & GREASE DATA SUMMARY

: GEOENGINEERS, INC. CLIENT

PROJECT # : 0161-013-R04

PROJECT NAME : UNOCAL - WL&M

EPA METHOD : 413.2

DATE EXTRACTED : 10/18/93

DATE ANALYZED : 10/18/93 UNITS

: mg/L

SAMPLE MATRIX : WATER

ATI I.D. # CLIENT I.D. OIL & GREASE

9310-154-2 COMPOSITE DRUM 25 METHOD BLANK <1

OIL & GREASE QUALITY CONTROL DATA

: GEOENGINEERS, INC. CLIENT PROJECT # : 0161-013-R04

SAMPLE I.D. # : 9310-138-7

DATE EXTRACTED : 10/18/93

PROJECT NAME : UNOCAL - WL&M

DATE ANALYZED : 10/18/93

EPA METHOD

: 413.2

: mg/L UNITS

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
OIL & GREASE	2.70	5.83	73H	10	10.1	74	N/A	N/A	N/A

H = Out of limits.

```
Recovery = (Spiked Result - Sample Result)
                                                 \times 100
                    Spike Concentration
```

RPD (Relative % Difference) = | (Spike Result - Dup. Spike Result) | Average Result

OIL & GREASE QUALITY CONTROL DATA

SAMPLE I.D. # : BLANK : GEOENGINEERS, INC. CLIENT DATE EXTRACTED : 10/18/93 PROJECT # : 0161-013-R04 DATE ANALYZED : 10/18/93 PROJECT NAME : UNOCAL - WL&M : mg/L

UNITS EPA METHOD : 413.2

SAMPLE MATRIX : WATER

COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED RESULT	DUP. % REC.	RPD
OIL & GREASE	<1	N/A	N/A	10 .	8.92	89	9.20	92	3

% Recovery = (Spiked Result - Sample Result) Spike Concentration RPD (Relative % Difference) = | (Spike Result - Dup. Spike Result) | Average Result

CASE NARRATIVE

CLIENT

: GEOENGINEERS, INC.

PROJECT # : 0161-013-R04

PROJECT NAME : UNOCAL - WL&M

CASE NARRATIVE: METALS ANALYSIS

EPA SW-846 method 7421 was used to analyze the sample for the content of lead.

The percent recovery for lead in the matrix spike (MS) performed on sample 9310-144-4 was out of ATI established control limits due to matrix interference and has been flagged "F".

All other quality control parameters were within ATI established control limits.

METALS ANALYSIS

CLIENT

: GEOENGINEERS, INC.

MATRIX : PRODUCT

PROJECT # : 0161-013-R04

-PROJECT-NAME-:-UNOGAL---WL&M----

DATE PREPARED ELEMENT

LEAD

10/20/93

10/28/93

METALS ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC.
PROJECT # : 0161-013-R04
PROJECT NAME : UNOCAL - WL&M

MATRIX : PRODUCT

UNITS : mg/Kg

ATI I.D. #

CLIENT I.D.

9310-154-1 METHOD BLANK

MW-2

42

<0:15

METALS ANALYSIS QUALITY CONTROL DATA

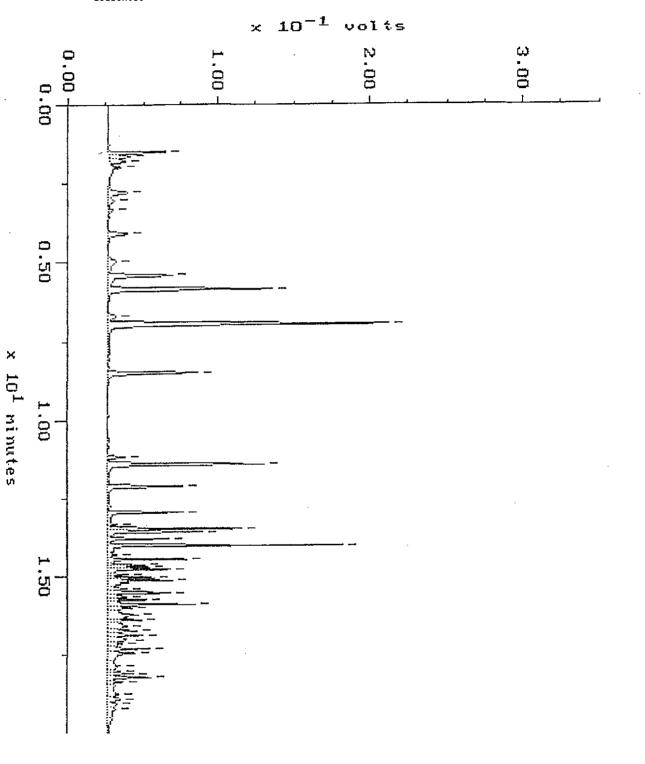
CLIENT : GEOENGINEERS, INC. MATRIX : PRODUCT

PROJECT #

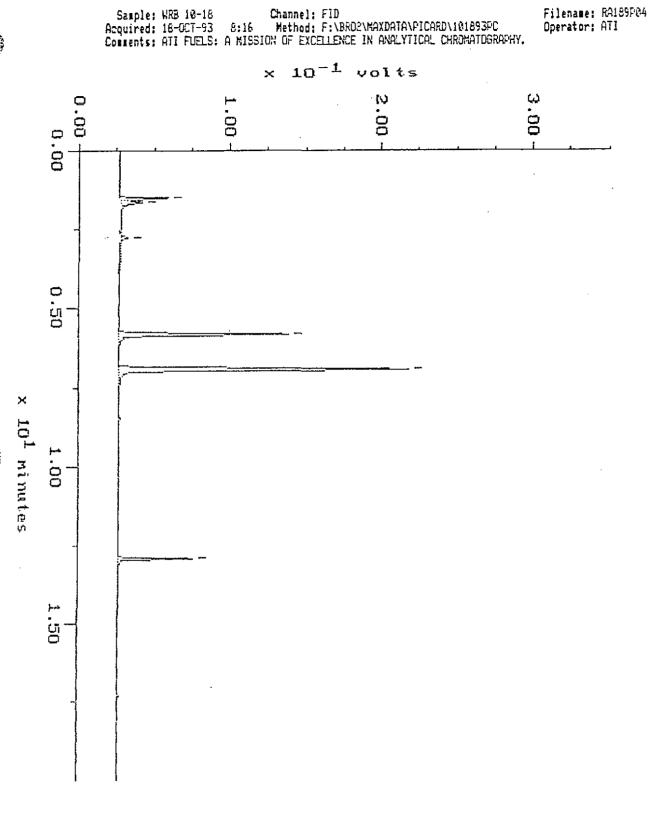
: 0161-013-R04 PROJECT NAME : UNOCAL - WL&M

UNITS : mg/Kg

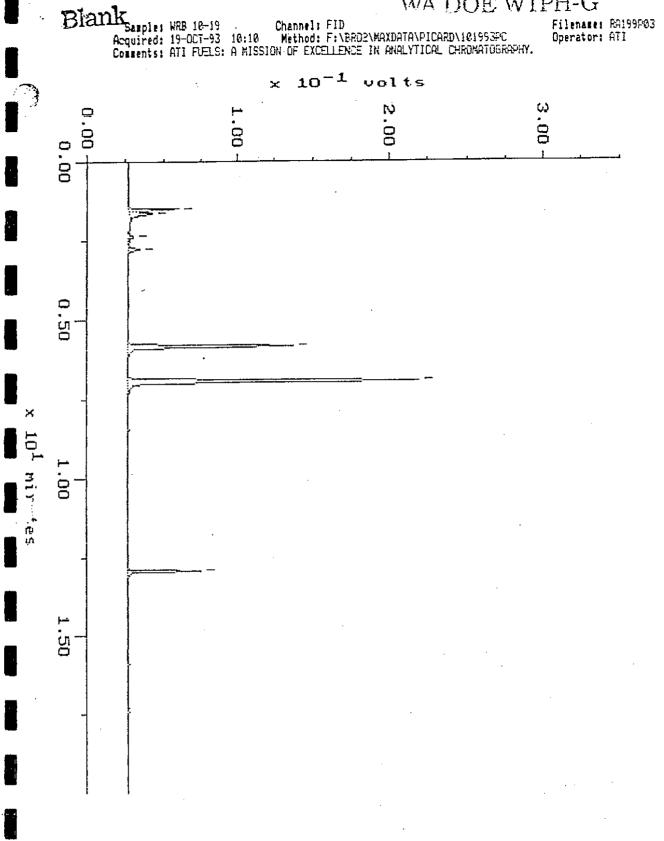
	-						
ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
LEAD	9310-144-4	3.2	2.9	. 10	5.21	1.38	146F
LEAD	BLANK	<0.15	N/A	N/A	1.48	1.25	118

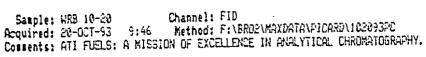

= Out of limits due to matrix interference.

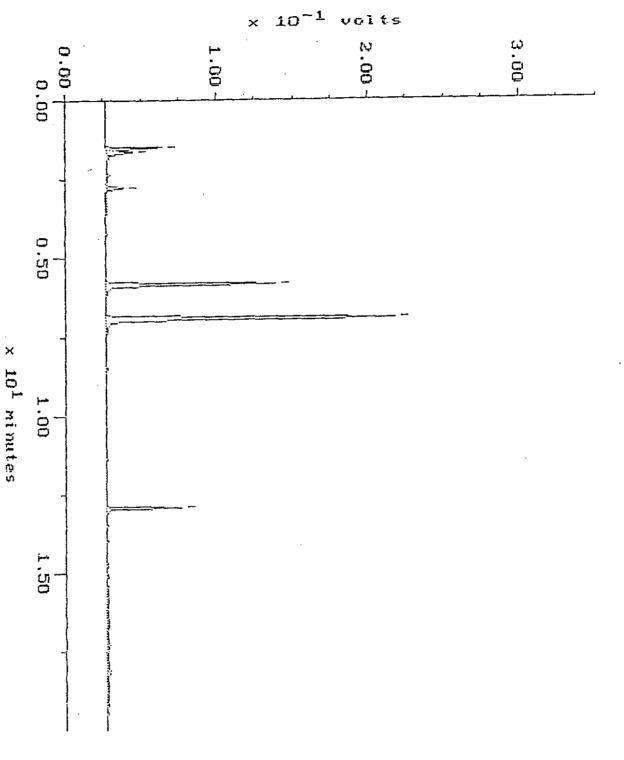
% Recovery = (Spike Sample Result - Sample Result) x 100 Spike Concentration RPD (Relative % Difference) = | (Sample Result - Duplicate Result) | ----- x 100 Average Result


WA DOE WTPH-G

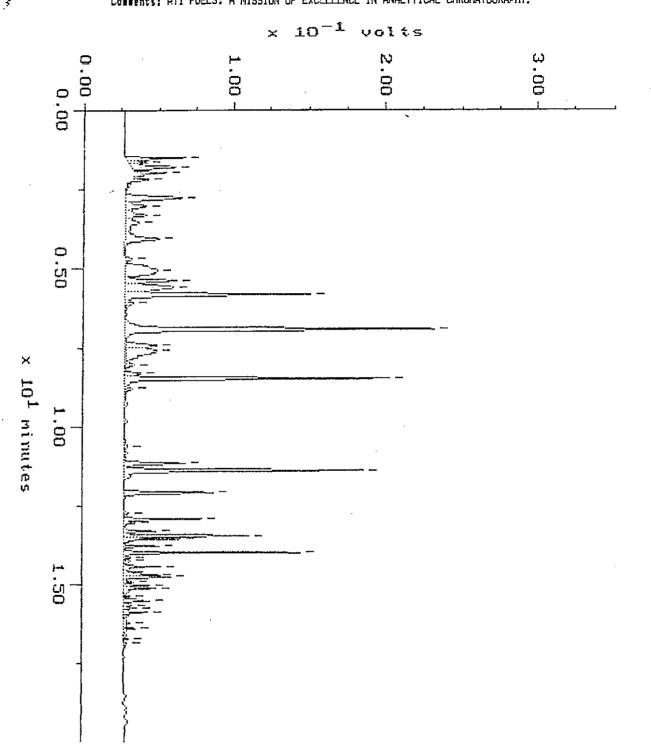
Filename: RA199P37 Operator: ATI

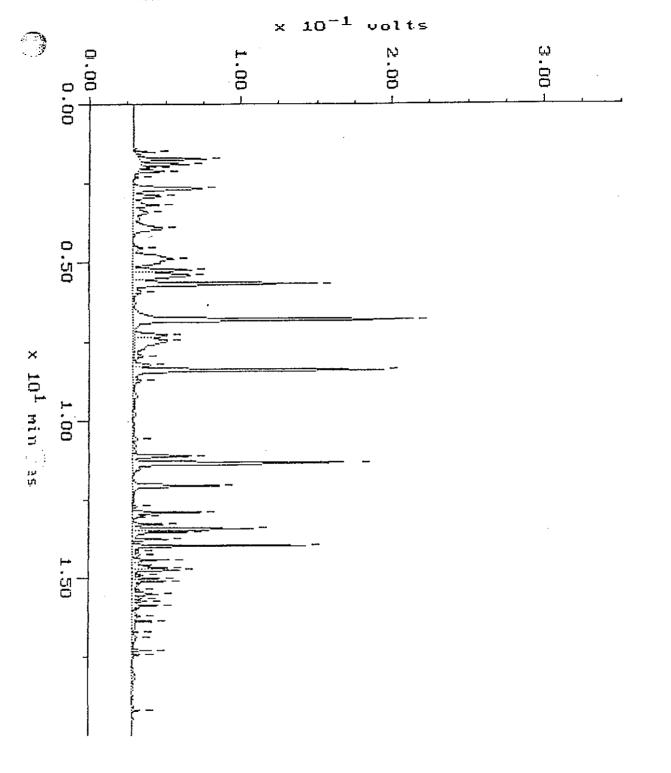

Sample: 9316-154-1 DIL Channel: FID
Acquired: 20-OCT-93 4:43 Method: F:\BRO2\MAXDATA\PICARD\101993PC
Dilution: 1: 50.000
Comments: ATI FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY.

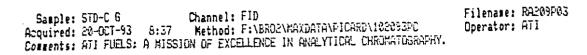

Filename: RA189F04 Operator: ATI

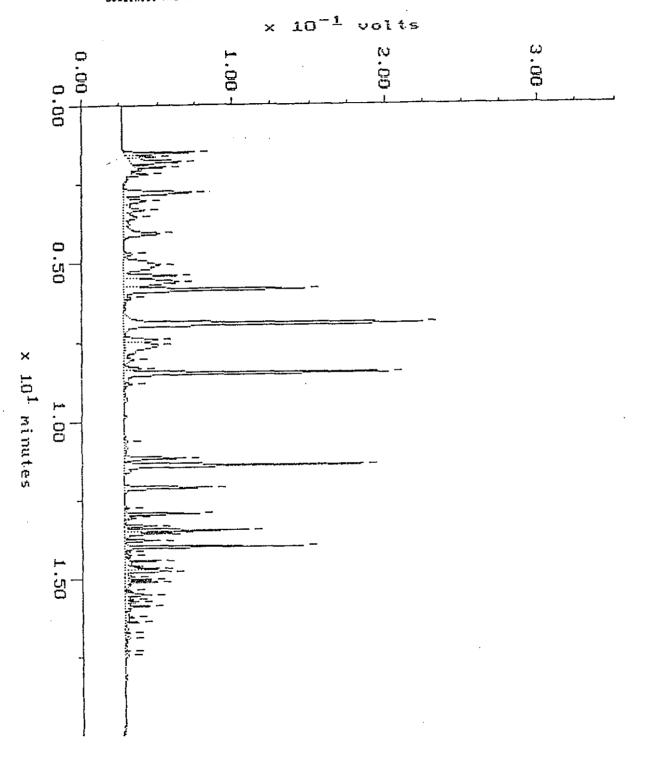


WA DOE WTPH-G


Filename: RA209P05 Operator: ATI

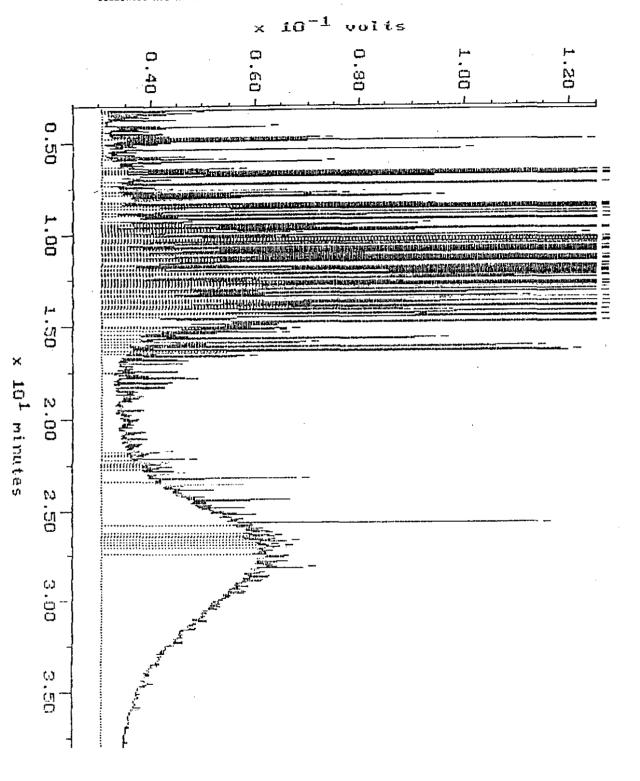

Filenase: RA189P01 Operator: ATI

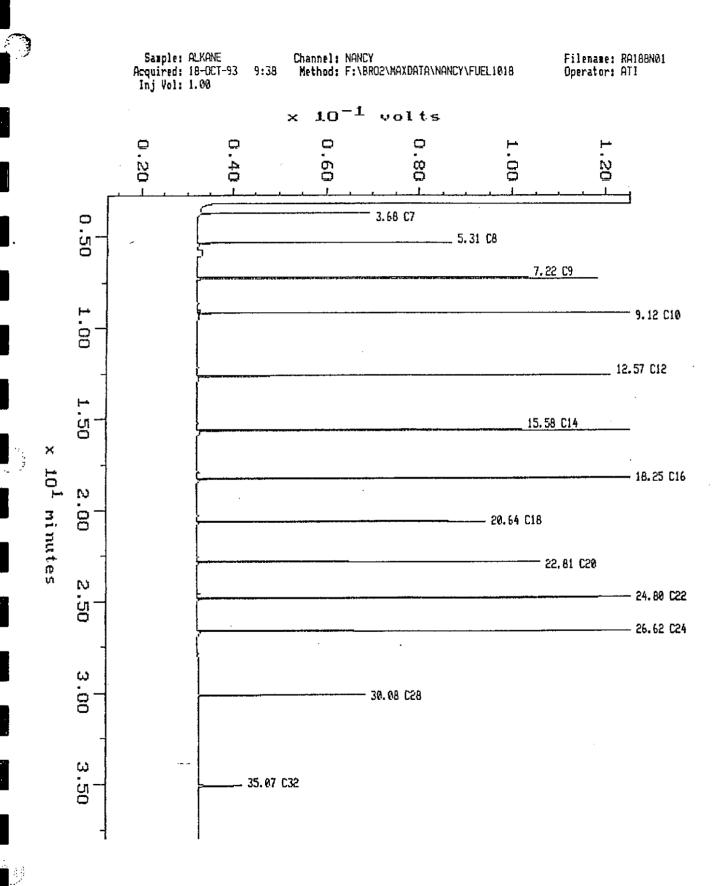

Sample: STD-C G Channel: FID
Acquired: 15-OCT-93 6:25 Method: F:\BRO2\MAXDATA\PICARD\101893PC
Comments: ATI FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATOGRAPHY.



Sample: STD-C G Channel: FID
Acquired: 19-OCT-93 8:58 Method: F:\BRO2\MAXDATA\PICARD\101993PC
Comments: ATI FUELS: A MISSION OF EXCELLENCE IN ANALYTICAL CHROMATUGRAPHY.

Filename: RA199F01 Operator: ATI

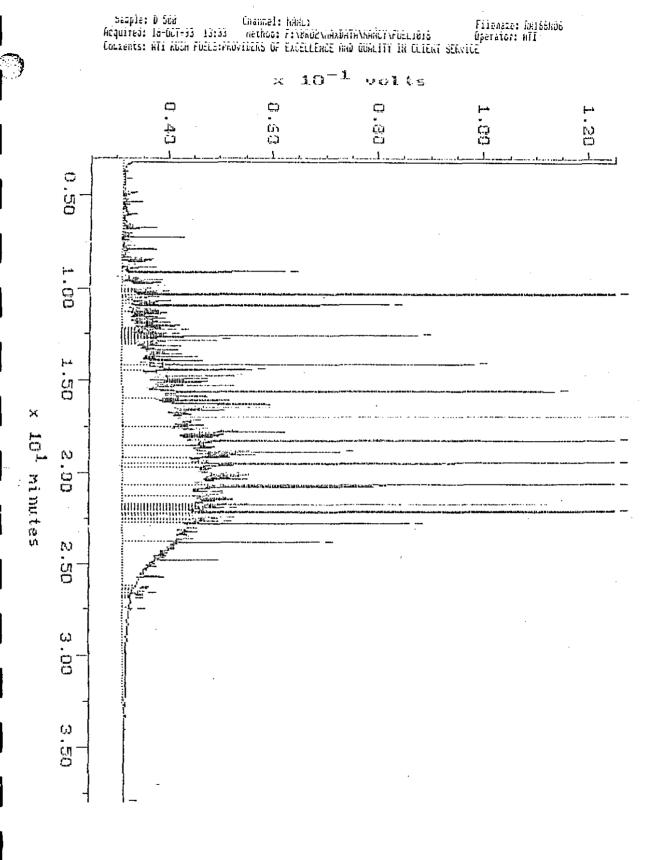




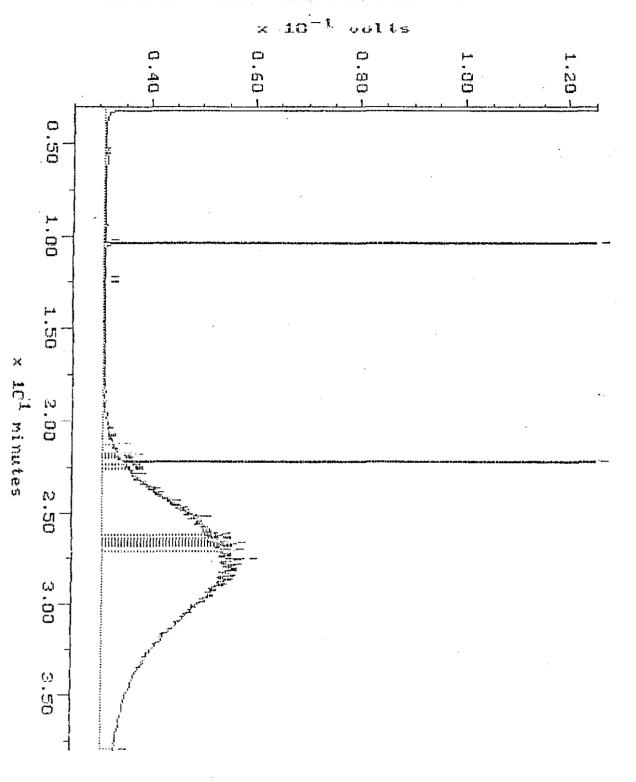
WA DOE WTPH-D

Filename: RA198H07 Operator: ATI Sample: 9310-154-1 DIL Channel: NANCY Acquired: 13-001-93 15:18 Kethod: F:\ko2\kaxdata\hakcy\FUEL1019 Optilution: 1: 50.000 Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE Channel: NANCY Methoo: F:\bkoz\maxDaTa\NANCY\FUEL1019




Alkane

Blank


Sacple: KRR 18-16 Channel: NANCY Fileneze: KAISANBB Acquired: 18-001-93 15:88 Retbod: F:VEROZYMAXDATANKACYNFUELIBIS Dperator: RIL Courants: ATT RUSH FUELS: PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

Filenaue: RA188H07 Operator: ATI

Sample: NO 500 Channel: NANCY FOR Acquired: 18-001-93 14:20 Method: F:\bKOZ\KAXDATA\KAKCY\FUEL1018 OF Comments: ATT RUSH FUELS:PKOVIDERS OF EXCELLENCE AND OURLITY IN CLIENT SERVICE

