2019 Annual Groundwater Monitoring Report North Marina Bayside/ABW Everett, Washington

October 18, 2019

Prepared for

Port of Everett Everett, Washington

2019 Annual Groundwater Monitoring Report North Marina Bayside/ABW Everett, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by: _	Stythamie Remondo Project Manager	Stephanie Renando
Document reviewed by: _	Kathuyn L. Haitley Senior Associate; Quality Reviewer	Kathryn Hartley

Date: October 18, 2019 Project No.: 0147037.030

File path: P:\147\037\FileRm\R\Ann Moni Rpts\2019 Annual Moni Rpt\LAI_2019 ABW Bayside Annual GW Rpt 101819.docx tam

Project Coordinator:

This page intentionally left blank.

TABLE OF CONTENTS

		Page
1.0 INTROD	UCTION	1-1
1.1 E	Background	1-1
1.2	Site Description	1-1
2.0 FIELD A	CTIVITIES	2-1
2.1 F	Routine Groundwater Monitoring Activities	2-1
2.1.1	Water Level Measurements	2-1
2.1.2	Groundwater Sampling	2-1
2.1.3	Groundwater Analysis	2-1
2.1.4	Quality Assurance	2-1
2.2	Well (P-27C) Modification	2-2
3.0 2019 GF	ROUNDWATER MONITORING RESULTS	3-1
3.1	Groundwater Levels	3-1
3.2	Groundwater Quality	3-1
4.0 SUMMA	ARY OF 2019 MONITORING RESULTS	4-1
5.0 CONCLU	JSIONS	5-1
6.0 USE OF	THIS REPORT	6-1
7.0 REFEREI	NCES	7-1
	FIGURES	
<u>Figure</u>	<u>Title</u>	
1	Vicinity Map	
2	Groundwater Monitoring Locations	
3	Groundwater Flow Contours June 18, 2019	
	TABLES	
<u>Table</u>	<u>Title</u>	
1	Groundwater Elevation Summary	
2	Groundwater Monitoring Results	
	ADDENDICEC	
	APPENDICES	
<u>Appendix</u>	<u>Title</u>	
Α	Revised Monitoring Well Installation Log for P-27C	
В	Laboratory Data Report	
С	Groundwater Monitoring Data 2014-2015	

LIST OF ABBREVIATIONS AND ACRONYMS

Bayside/ABW	North Marina Bayside Marine/American Boiler Works
°C	degrees Celsius
Ecology	Washington State Department of Ecology
EPA	US Environmental Protection Agency
FeAs	iron-arsenic
ft	foot/feet
LAI	Landau Associates, Inc.
μg/L	micrograms per liter
μS/cm	microsiemens per centimeter
mg/L	milligrams per liter
mV	millivolt
MTCA	Model Toxics Control Act
NFA	no further action
ORP	oxygen reduction potential
Port	Port of Everett
PVC	polyvinylchloride
RL	reporting limit
Site	North Marina Bayside Marine/American Boiler Works
TOC	top of casing
VCP	voluntary cleanup program

1.0 INTRODUCTION

This report summarizes the field activities and analytical results for the annual groundwater quality monitoring events completed in June 2019 at the North Marina Bayside Marine/American Boiler Works site (Bayside/ABW Site or Site) in Everett, Washington (Figure 1).

1.1 Background

Cleanup at the Site was completed through the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in 2015 as described in the Investigation and Cleanup Report (Landau Associates, Inc. [LAI] 2015). Ecology issued a no further action (NFA) determination in October 2015 (Ecology 2015). The NFA and associated environmental covenant require confirmational groundwater monitoring for a period of 5 years in order to demonstrate that concentrations of arsenic in groundwater are above the Model Toxics Control Act (MTCA) Method A cleanup level only where reducing conditions are present, and that concentrations of arsenic in groundwater meet the cleanup level at the downgradient point of compliance (monitoring well P-27). The four monitoring wells identified for groundwater monitoring consist of wells HWA-MW1, HWA-MW2, P-26, and P-27.

As documented in the 2017 monitoring report, monitoring well P-27 and replacement monitoring well P-27B (which was installed in mid-March 2016 in the immediate vicinity of monitoring well P-27) were damaged during ongoing redevelopment activities at the Site and at the adjacent Everett Shipyard site. The damaged wells were decommissioned in May of 2017 (LAI 2018). With approval from Ecology, monitoring well P-27B was replaced with P-27C, which was installed in June 2018 in the immediate vicinity of monitoring well P-27B. The well locations are shown on Figure 2. Due to continued construction at the Site during 2019, the well casing for P-27C was raised to match the new construction grade. The modification to P-27C was conducted immediately after the 2019 monitoring event and is described below in Section 2.2.

1.2 Site Description

The Site is located on the eastern portion of the Port of Everett (Port) Waterfront Place Central Redevelopment Area and is approximately 3 acres in size. The Site is generally bounded by 13th Street/ Port Gardner Way followed by a boatyard to the north, West Marine View Drive followed by railroad tracks to the east, 14th Street followed by the former Everett Shipyard site to the south, and recently developed land and a boat storage yard to the west. Port Gardner Bay and a marina are located to the southwest of the Site. The eastern portion of the Bayside Marine/ABW VCP Site consists of the former ABW Plant I leasehold, which is now owned by American Classic Homes. The western portion of the Site consists of a portion of the former Everett Bayside Marine Leasehold, which is owned by the Port and leased for redevelopment as a hotel. Redevelopment is occurring across the Waterfront Place Central Redevelopment Area, including at the Site.

2.0 FIELD ACTIVITIES

This section describes modifications to well P-27C and groundwater monitoring activities conducted in June 2019.

2.1 Routine Groundwater Monitoring Activities

Described below are the activities conducted on an annual basis as part of the confirmational groundwater monitoring plan prescribed for the Site by Ecology. Monitoring activities conducted in June 2019 include water level measurements, groundwater sampling and analysis, and quality assurance.

2.1.1 Water Level Measurements

Static water levels were measured prior to groundwater sampling at each of the four wells (HWA-MW1, HWA-MW2, P-26, and P-27C). The depth to groundwater was measured to the nearest 0.01 ft from the top of the north side of the polyvinylchloride (PVC) casing to groundwater using an electric water level indicator. Depth to water measurements at each well were converted to groundwater elevations using surveyed elevations for the top of the PVC casing. The surveyed TOC elevation for P-27 was used to generate groundwater elevations for P-27C as the TOC elevation for P-27C was not surveyed prior to the 2019 sampling event.

2.1.2 Groundwater Sampling

Groundwater samples were collected with a peristaltic pump using low-flow groundwater sampling procedures. Prior to collecting samples, depth to groundwater was measured at each location. The wells were then purged and field parameters (temperature in degrees Celcius [°C]; conductivity [microsiemens per centimeter $\{\mu S/cm\}$]; dissolved oxygen [milligrams per liter $\{mg/L\}$]; pH; and oxygen reduction potential [ORP; millivolts $\{mV\}$]) were recorded every 3 minutes until stabilization objectives were achieved.

2.1.3 Groundwater Analysis

In accordance with the Confirmational Monitoring Plan (Appendix C; Ecology 2015), samples were collected and analyzed for dissolved arsenic, nitrate, sulfate, and methane at each monitoring well. Samples for dissolved arsenic analysis were field-filtered using a 0.45-micron single-use groundwater filter. Samples were submitted to ALS Environmental laboratory in Everett, Washington. Samples were also tested for ferrous iron in the field using a Hach® iron field testing kit.

2.1.4 Quality Assurance

Field and laboratory control samples were used to evaluate data precision, accuracy, representativeness, completeness, and comparability of the analytical results. The quality control samples included collection and analysis of one field duplicate for each analysis performed and

analysis of a laboratory duplicate. The field duplicate was collected from monitoring well HWA-MW1 and identified on the chain-of-custody as 'DUP'.

Validation of the analytical data was performed by LAI following the guidelines in the appropriate sections of the US Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data Review (EPA 1999; 2004), and included evaluation of the following:

- Chain-of-Custody records
- Holding times
- Laboratory method blanks
- Blank spikes/laboratory control samples
- Field duplicate results
- Completeness
- Overall assessment of data quality.

Based on the validation, all of the data were determined to be acceptable for use. No qualification of the data was necessary.

2.2 Well (P-27C) Modification

Well P-27C was modified on June 26, 2019, after the groundwater sampling event on June 18, 2019. The well was assessed prior to sampling and was found to be intact and did not require repair. The well required modification due to construction activities in the surrounding area. The top of well casing was raised approximately 4 feet (ft) to meet the new grade of the landscape planter bed in which the well is now located. The top of casing (TOC) elevation was surveyed immediately following modification, and the new TOC elevation is included in Appendix A.

3.0 2019 GROUNDWATER MONITORING RESULTS

This section presents the results of the 2019 annual groundwater monitoring event, which consists of groundwater elevation data and groundwater quality data.

3.1 Groundwater Levels

Groundwater elevations calculated using water level measurements collected from each monitoring well were used to evaluate groundwater flow direction at the Site. The calculated groundwater elevations are presented in Table 1. Groundwater elevation contours were plotted using the calculated groundwater elevations and are shown on Figure 3. The contours indicate the groundwater at the Site generally flows to the west, consistent with previous monitoring events at the Site.

3.2 Groundwater Quality

The 2019 annual monitoring event was completed on June 18, 2018. The analytical results are summarized in Table 2 and the laboratory analytical report is included in Appendix B. Groundwater samples were analyzed for dissolved arsenic, methane, nitrate, and sulfate at all sample locations. In addition, samples were tested at all locations for ferrous iron using a Hach field test kit.

Arsenic was detected in samples from monitoring wells HWA-MW1, HWA-MW2, and P-26, at concentrations ranging from 12 to 17 micrograms per liter ($\mu g/L$), which exceed the cleanup level (5 $\mu g/L$). The detected concentrations of dissolved arsenic in these wells were within the range of previously detected concentrations, with the exception of the concentration detected at HWA-MW1 (12 $\mu g/L$), which is the lowest concentration detected at that location. Dissolved arsenic was not detected at downgradient well P-27C.

The annual 2019 groundwater data indicate that conditions are naturally reduced at the Site, which is consistent with previous Site data. Conditions that are at least iron-reducing will release arsenic due to reduction (solubilization) of iron-arsenic (FeAs) complexes. Site data indicate that conditions are not only iron-reducing, based on the detection of ferrous iron at all monitoring locations, but also indicate sulfate reduction (i.e. conditions are more strongly reducing than required for solubilization of FeAs), based on the low detected concentrations of sulfate (less than 0.26 mg/L to 0.32mg/L) in three of the four Site monitoring wells. In addition, methane was detected in all of the groundwater samples, indicating that conditions are also methanogenic (methane producing), which is also indicative of highly reducing conditions.

4.0 SUMMARY OF 2019 MONITORING RESULTS

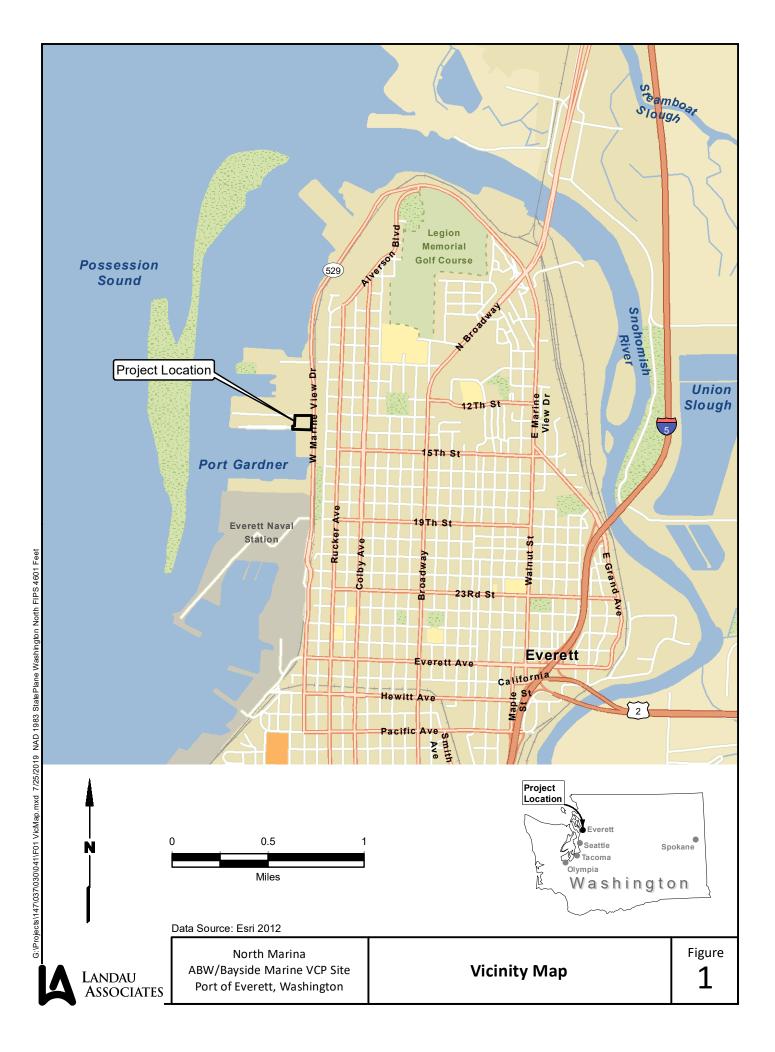
Concentrations of dissolved arsenic detected in groundwater at the Site during routine monitoring completed in 2019 are generally consistent with previous sampling data, with no detection of dissolved arsenic above the laboratory reporting limit (RL) at the downgradient well (P-27C). The results from the 2019 monitoring event are consistent with historical data and indicate that dissolved arsenic concentrations meet the cleanup level at the point of compliance.

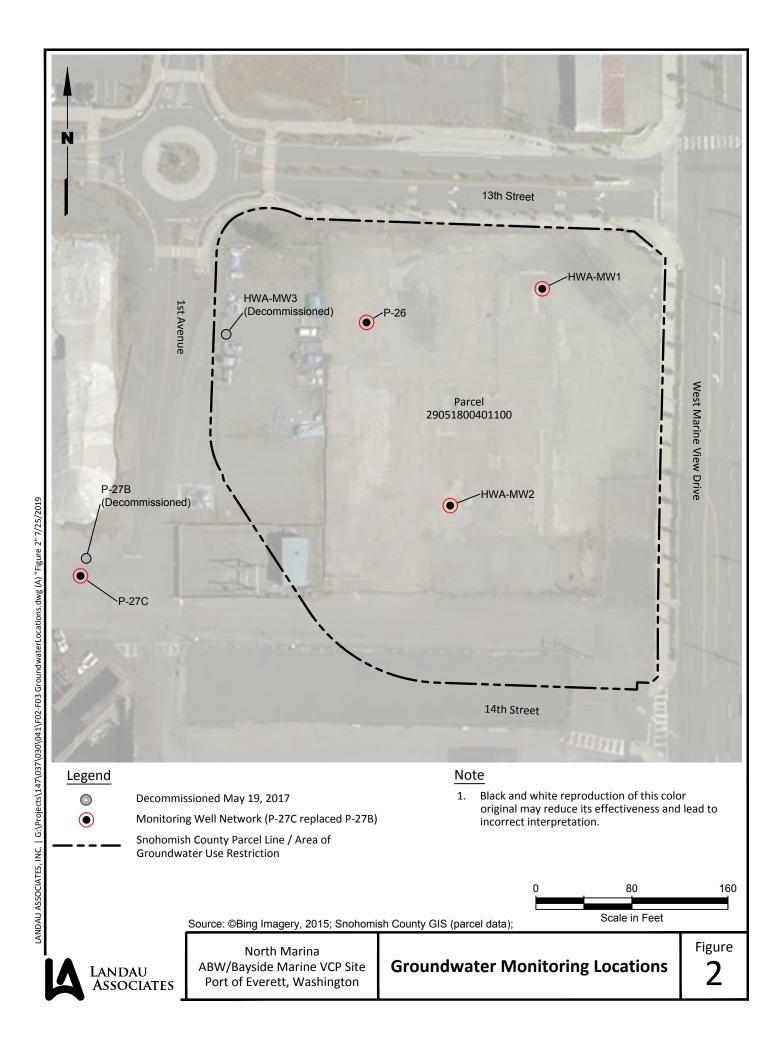
The maximum detected concentration of dissolved arsenic during the 2019 monitoring event (17 μ g/L) is below the maximum detected concentrations during monitoring completed in 2017 and 2018 (18 μ g/L). Concentrations of dissolved arsenic are stable or decreasing. Data from 2014 and 2015 monitoring events are included in Appendix C.

Site data continue to support the conclusion that elevated concentrations of arsenic are present due to reducing conditions and are unrelated to Site releases. Ferrous iron and methane were detected in in all four samples during the 2019 event; nitrate was not detected in two (HWA-MW2 and P-26) of the four wells. Sulfate was either not detected or detected at low concentrations in all but the downgradient well. Sulfate concentrations have generally been highest at P-27C. This trend, in conjunction with the low dissolved arsenic concentration at P-27C (not detected above laboratory reporting limits), supports the conclusion that elevated arsenic concentrations at the Site are associated with reducing conditions, and reducing conditions sufficiently dissipate by the time groundwater migrates to the P-27C vicinity for groundwater to achieve the Site cleanup standard for arsenic.

5.0 CONCLUSIONS

Based on the results of 2019 groundwater monitoring, Site groundwater does not pose a threat to human health and the environment. Because groundwater at the Site is not used as drinking water, the pathway of concern is a release to marine surface water. With the exception of the anomalous result during the 2017 monitoring event, dissolved arsenic was not detected at concentrations greater than the cleanup level in any of the ten groundwater samples collected from the downgradient monitoring well P-27/P-27B/P-27C between March of 2014 and June of 2019, indicating that there is no complete pathway to surface water.


In accordance with the NFA and environmental covenant, compliance monitoring and reporting will continue to be conducted on an annual basis until 2020.


6.0 USE OF THIS REPORT

This document has been prepared for the exclusive use of the Port of Everett and Ecology for specific application to the North Marina Bayside/ABW Project. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of the Port and Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by the Port and Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

7.0 REFERENCES

- Ecology. 2015. Letter: Re: No Further Action at the following Site: North Marina Bayside ABW, 1332 West Marine View Drive, Everett, WA 98201. From Washington State Department of Ecology, to Elise Gronewald, Port of Everett. October 1.
- EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. Edited by Office of Emergency and Remedial Response. Washington, DC: US Environmental Protection Agency.
- EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Edited by Office of Superfund Remediation and Technology Innovation: US Environmental Protection Agency.
- LAI. 2015. Environmental Investigation and Cleanup Documentation, American Boiler Works/Bayside Marine Site, Everett, Washington. Landau Associates, Inc. April 27.
- LAI. 2018. 2017 Annual Groundwater Monitoring Report, North Marina Bayside/ABW, Everett, Washington. Landau Associates, Inc. February 1.

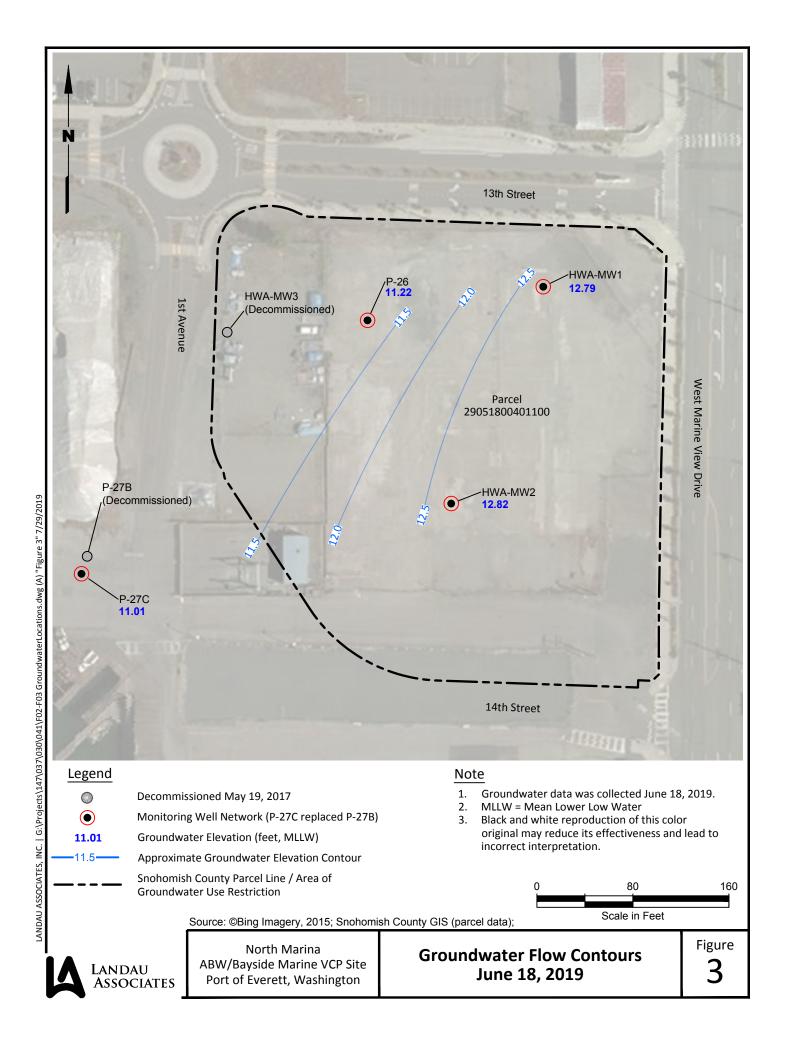


Table 1 Groundwater Elevation Summary North Marina Bayside/ABW Site Everett, Washington

Well ID	Date	TOC Elevation (ft)	GW Depth (ft)	GW Elevation
	3/29/2016		1.82	15.63
	6/13/2016		4.40	13.05
	9/20/2016		4.92	12.53
HWA-MW1	11/29/2016	17.45	1.02	16.43
	5/16/2017		1.87	15.58
	6/28/2018		4.00	13.45
	6/18/2019		4.66	12.79
	3/29/2016		1.80	15.70
	6/13/2016		4.13	13.37
HWA-MW2	9/20/2016		4.62	12.88
	11/29/2016	17.50	2.08	15.42
	5/16/2017		2.00	15.50
	6/28/2018		3.45	14.05
	6/18/2019		4.68	12.82
	3/29/2016		2.78	14.44
	6/13/2016		4.41	12.81
	9/20/2016		5.98	11.24
P-26	11/29/2016	17.22	2.08	15.14
	5/16/2017		2.84	14.38
	6/28/2018		4.16	13.06
	6/18/2019		6.00	11.22
	3/29/2016		4.30	10.94
	6/13/2016		4.97	10.27
P-27B	9/20/2016	15.24	5.20	10.04
_	11/29/2016		3.63	11.61
	5/16/2017		3.95	11.29
P-27C (a)	6/28/2018	15.24	4.95	10.29
1-2/0 (a)	6/18/2019	13.24	4.23	11.01

Abbreviations and Acronyms:

ft = foot/feet

GW = groundwater

ID = identification

TOC = Top of Casing

Notes:

(a) P-27C installed within immediate vicinity of P-27B, which was decommissioned after the 2017 monitoring event. P-27C was installed to replace P-27B as the point of compliance downgradient of the Site. Groundwater elevation was measured after June 2019 modifications.

Table 2
Groundwater Monitoring Results
North Marina Bayside/ABW Site
Everett, Washington

				EPA 200.8	RSK-175	EPA 300	0.0	Hach Kit
Sample	Sample	Sample	Laboratory	Dissolved Arsenic	Methane	Nitrate	Sulfate	Ferrous Iron
Location	Date (a)	Туре	Sample ID	μg/L		mg/L		
			Site Cleanup Level:	5	NA	NA	NA	NA
HWA-MW1	03/29/2016	N	EV16030229-03	22	3.0 J	0.15 U	1.8	2.5
HWA-MW1	03/29/2016	FD	EV16030229-02	21	3.9 J	0.15 U	1.8	2.5
HWA-MW1	6/13/2016	N	EV16060085-05	36	3.6	0.15 U	0.26 U	1.8
HWA-MW1	6/13/2016	FD	EV16060085-02	35	3.3	0.15 U	0.26 U	1.8
HWA-MW1	9/20/2016	N	EV16090134-02	35	3.8	0.15 U	13	2.0
HWA-MW1	9/20/2016	FD	EV16090134-01	34	4.0	0.15 U	13	2.0
HWA-MW1	11/29/2016	N	EV16110191-04	24	2.1	0.15 U	2.3	3.2
HWA-MW1	11/29/2016	FD	EV16110191-02	24	1.9	0.15 U	2.7	3.2
HWA-MW1	5/16/2017	N	EV17050101-04	18	0.38	0.15 UJ	3.3	2.0
HWA-MW1	5/16/2017	FD	EV17050101-03	18	0.38	0.54 J	3.3	NM
HWA-MW1	6/28/2018	N	EV18060181-04	18	0.42 J	0.15 U	3.4	3.3
HWA-MW1	6/28/2018	FD	EV18060181-01	18	0.63 J	0.15 U	3.2	3.3
HWA-MW1	6/18/2019	N	EV19060126-05	12	2.0	0.15 U	0.26 U	4.4
HWA-MW1	6/18/2019	FD	EV19060126-01	12	1.7	0.27	0.26 U	4.4
HWA-MW2	03/29/2016	N	EV16030229-04	9.8	31	0.15 U	0.26 U	1.5
HWA-MW2	6/13/2016	N	EV16060085-03	11	5.1	0.15 U	0.26 U	1.0
HWA-MW2	9/20/2016	N	EV16090134-04	24	4.8	0.15 U	0.26 U	2.6
HWA-MW2	11/29/2016	N	EV16110191-03	15	8.3	0.15 U	0.26 U	2.4
HWA-MW2	5/16/2017	N	EV17050101-02	10	7.8	0.15 U	0.26 U	0.0
HWA-MW2	6/28/2018	N	EV18060181-03	18	4.7	0.15 U	0.34	2.4
HWA-MW2	6/18/2019	N	EV19060126-03	17	4.3	0.15 U	0.32	4.4

Landau Associates

Table 2 Groundwater Monitoring Results North Marina Bayside/ABW Site Everett, Washington

				EPA 200.8	RSK-175	EPA 300).0	Hach Kit
Sample	Sample	Sample	Laboratory	Dissolved Arsenic	Methane	Nitrate	Sulfate	Ferrous Iron
Location	Date (a)	Туре	Sample ID	μg/L		mg/L		
			Site Cleanup Level:	5	NA	NA	NA	NA
P-26	03/29/2016	N	EV16030229-01	18	10	0.15 U	0.26 U	2.0
P-26	6/13/2016	N	EV16060085-04	7.2	5.9	0.15 U	0.26 U	1.4
P-26	9/20/2016	N	EV16090134-03	2.8	3.5	0.15 U	0.26 U	1.8
P-26	11/29/2016	N	EV16110191-05	23	2.3	0.15 U	0.26 U	2.0
P-26	5/16/2017	N	EV17050101-05	18	1.6	0.15 U	0.26 U	3.4
P-26	6/28/2018	N	EV18060181-05	18	1.3	0.15 U	0.26 U	4.6
P-26	6/18/2019	N	EV19060126-04	14	3.2	0.15 U	0.26 U	5.0
P-27B	03/29/2016	N	EV16030229-05	1.2	3.1	0.15 U	17	0.5
P-27B	6/13/2016	N	EV16060085-01	1.3	1.8	0.15 U	2.6	1.2
P-27B	9/20/2016	N	EV16090134-05	1.5	4.3	0.15 U	0.26 U	3.0
P-27B	11/29/2016	N	EV16110191-01	2.2	0.010 U	0.74	16	0.8
P-27B (b)	5/16/2017	N	EV17050101-01	6.2	0.21	8.2	120	0.0
P-27C (c)	6/28/2018	N	EV18060181-02	4.0 U	0.30	0.15 U	220	4.4
P-27C	6/18/2019	N	EV19060126-02	1.0 U	0.21	0.18	100	3.0

Notes:

- U = The compound was not detected at the reported concentration.
- UJ = The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Bold = detected compound

Green Box = detected concentration is greater than Site Cleanup Level

- (a) Sampling frequency changed from quarterly to annually beginning 2017.
- (b) The arsenic reporting limit was raised by the laboratory to address background contamination in the associated method blank.
- (c) P-27C installed within immediate vicinity of P-27B, which was decommissioned after the 2017 monitoring event. P-27C was installed to replace P-27B as the point of compliance downgradient of the Site.

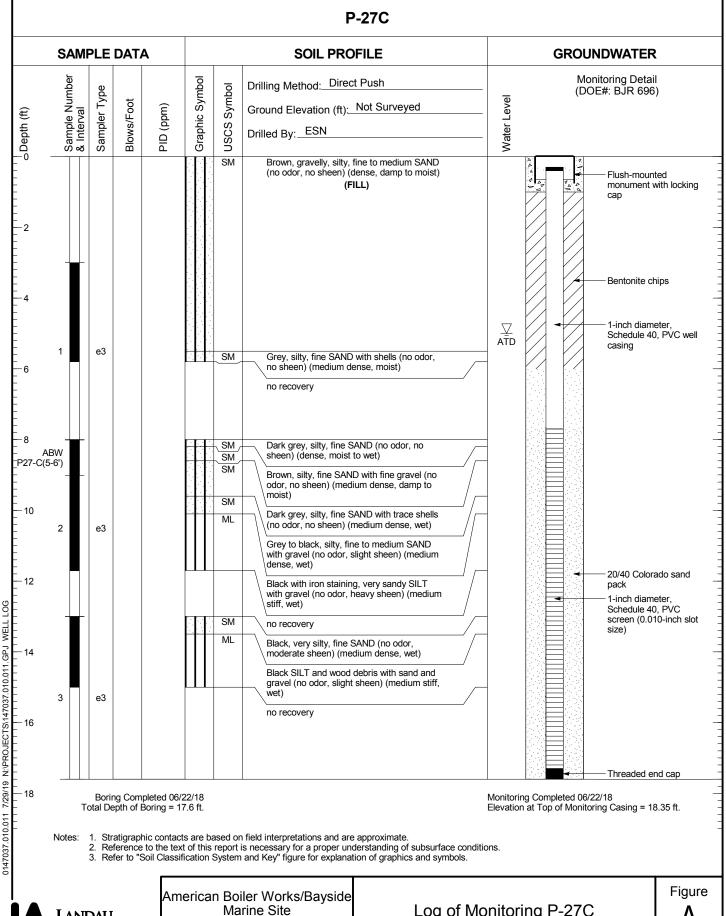
Abbreviations and Acronyms:

EPA = United States Environmental Protection Agency

FD = field duplicate

ID = identification

μg/L = microgram per liter


mg/L = milligram per liter

NA = not applicable

N = primary sample

NM = not measured

Revised Monitoring Well Installation Log for P-27C

LANDAU **ASSOCIATES**

Marine Site Everett, Washington

Log of Monitoring P-27C

Laboratory Data Report

June 26, 2019

Ms. Kathryn Hartley Landau Associates, Inc. 130 - 2nd Ave. S. Edmonds, WA 98020

Dear Ms. Hartley,

On June 18th, 5 samples were received by our laboratory and assigned our laboratory project number EV19060126. The project was identified as your ABW Marine - 147037.030.043. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Landau Associates, Inc. DATE: 6/26/2019

130 - 2nd Ave. S. ALS JOB#: EV19060126 Edmonds, WA 98020 ALS SAMPLE#: EV19060126-01

Kathryn Hartley DATE RECEIVED: 06/18/2019

CLIENT PROJECT: ABW Marine - 147037.030.043 COLLECTION DATE: 6/18/2019 10:00:00 AM

CLIENT SAMPLE ID DUP WDOE ACCREDITATION: C601

			REPORTING	DILUTION		ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
Methane	RSK-175	1.7	0.010	1	MG/L	06/25/2019	CCN
Nitrate	EPA-300.0	0.27	0.15	1	MG/L	06/20/2019	SMH
Sulfate	EPA-300.0	U	0.26	1	MG/L	06/20/2019	SMH
Arsenic (Dissolved)	EPA-200.8	12	1.0	1	UG/L	06/25/2019	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc. DATE: 6/26/2019

 130 - 2nd Ave. S.
 ALS JOB#:
 EV19060126

 Edmonds, WA 98020
 ALS SAMPLE#:
 EV19060126-02

CLIENT CONTACT: Kathryn Hartley DATE RECEIVED: 06/18/2019

CLIENT PROJECT: ABW Marine - 147037.030.043 COLLECTION DATE: 6/18/2019 10:20:00 AM

CLIENT SAMPLE ID P-27C-190618 WDOE ACCREDITATION: C601

			REPORTING	DILUTION		ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
Methane	RSK-175	0.21	0.010	1	MG/L	06/25/2019	CCN
Nitrate	EPA-300.0	0.18	0.15	1	MG/L	06/20/2019	SMH
Sulfate	EPA-300.0	100	2.6	10	MG/L	06/19/2019	SMH
Arsenic (Dissolved)	EPA-200.8	U	1.0	1	UG/L	06/25/2019	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc. DATE: 6/26/2019

 130 - 2nd Ave. S.
 ALS JOB#:
 EV19060126

 Edmonds, WA 98020
 ALS SAMPLE#:
 EV19060126-03

CLIENT CONTACT: Kathryn Hartley DATE RECEIVED: 06/18/2019

CLIENT PROJECT: ABW Marine - 147037.030.043 COLLECTION DATE: 6/18/2019 11:25:00 AM

CLIENT SAMPLE ID HWA-MW2-190618 WDOE ACCREDITATION: C601

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A	ANALYSIS By
Methane	RSK-175	4.3	0.020	2	MG/L	06/25/2019	CCN
Nitrate	EPA-300.0	U	0.15	1	MG/L	06/20/2019	SMH
Sulfate	EPA-300.0	0.32	0.26	1	MG/L	06/20/2019	SMH
Arsenic (Dissolved)	EPA-200.8	17	1.0	1	UG/L	06/25/2019	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc. DATE: 6/26/2019

 130 - 2nd Ave. S.
 ALS JOB#:
 EV19060126

 Edmonds, WA 98020
 ALS SAMPLE#:
 EV19060126-04

CLIENT CONTACT: Kathryn Hartley DATE RECEIVED: 06/18/2019

CLIENT PROJECT: ABW Marine - 147037.030.043 COLLECTION DATE: 6/18/2019 12:10:00 PM

CLIENT SAMPLE ID P-26-190618 WDOE ACCREDITATION: C601

			REPORTING	DILUTION		ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
Methane	RSK-175	3.2	0.020	2	MG/L	06/25/2019	CCN
Nitrate	EPA-300.0	U	0.15	1	MG/L	06/20/2019	SMH
Sulfate	EPA-300.0	U	0.26	1	MG/L	06/20/2019	SMH
Arsenic (Dissolved)	EPA-200.8	14	1.0	1	UG/L	06/25/2019	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc. DATE: 6/26/2019

 130 - 2nd Ave. S.
 ALS JOB#:
 EV19060126

 Edmonds, WA 98020
 ALS SAMPLE#:
 EV19060126-05

CLIENT CONTACT: Kathryn Hartley DATE RECEIVED: 06/18/2019

CLIENT PROJECT: ABW Marine - 147037.030.043 COLLECTION DATE: 6/18/2019 1:00:00 PM

CLIENT SAMPLE ID HWA-MW1-190618 WDOE ACCREDITATION: C601

			REPORTING	DILUTION		ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
Methane	RSK-175	2.0	0.010	1	MG/L	06/25/2019	CCN
Nitrate	EPA-300.0	U	0.15	1	MG/L	06/20/2019	SMH
Sulfate	EPA-300.0	U	0.26	1	MG/L	06/20/2019	SMH
Arsenic (Dissolved)	EPA-200.8	12	1.0	1	UG/L	06/25/2019	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc.

DATE: 6/26/2019 130 - 2nd Ave. S. ALS SDG#: EV19060126

Edmonds, WA 98020 WDOE ACCREDITATION: C601

CLIENT CONTACT: Kathryn Hartley

CLIENT PROJECT: ABW Marine - 147037.030.043

LABORATORY BLANK RESULTS

MBLK-R341235 - Batch R341235 - Water by RSK-175

	_			REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Methane	RSK-175	U	MG/L	0.010	06/25/2019	CCN

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-R341327 - Batch R341327 - Water by EPA-300.0

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Sulfate	EPA-300.0	U	MG/L	0.26	06/19/2019	SMH

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-R341328 - Batch R341328 - Water by EPA-300.0

ANALYTE	METHOD	RESULTS	UNITS	LIMITS	ANALYSIS DATE	ANALYSIS BY
Nitrate	EPA-300.0	U	MG/L	0.15	06/20/2019	SMH
Sulfate	EPA-300.0	U	MG/L	0.26	06/20/2019	SMH

U - Analyte analyzed for but not detected at level above reporting limit.

MB-062419W - Batch 142406 - Water by EPA-200.8

				REPORTING	ANALYSIS	ANALYSIS	
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY	
Arsenic (Dissolved)	EPA-200.8	U	UG/L	1.0	06/25/2019	RAL	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Landau Associates, Inc.

DATE: 6/26/2019 ALS SDG#: EV19060126

130 - 2nd Ave. S. Edmonds, WA 98020

WDOE ACCREDITATION: C601

LIMITS

CLIENT CONTACT: Kathryn Hartley

CLIENT PROJECT: ABW Marine - 147037.030.043

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R341235 - Water by RSK-175

				LIIV	110	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Methane - BS	RSK-175	96.3		80	120	06/25/2019	CCN
Methane - BSD	RSK-175	95.5	1	80	120	06/25/2019	CCN

ALS Test Batch ID: R341327 - Water by EPA-300.0

				LIM	ITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Sulfate - BS	EPA-300.0	104		80	120	06/19/2019	SMH
Sulfate - BSD	EPA-300.0	99.0	4	80	120	06/19/2019	SMH

ALS Test Batch ID: R341328 - Water by EPA-300.0

				LIN	IIIS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Nitrate - BS	EPA-300.0	96.5		80	120	06/20/2019	SMH
Nitrate - BSD	EPA-300.0	92.5	4	80	120	06/20/2019	SMH
Sulfate - BS	EPA-300.0	103		80	120	06/20/2019	SMH
Sulfate - BSD	EPA-300.0	99.0	3	80	120	06/20/2019	SMH

ALS Test Batch ID: 142406 - Water by EPA-200.8

				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Arsenic (Dissolved) - BS	EPA-200.8	99.5		89.1	110	06/25/2019	RAL
Arsenic (Dissolved) - BSD	EPA-200.8	99.2	0	89.1	110	06/25/2019	RAL

APPROVED BY

Laboratory Director

ALS ENVIRONMENTAL Sample Receiving Checklist

Client: Landau	ALS Job #: _	EV	1906	0126
Project: ABW Marine 147037,030,043	•		····	
Received Date: 6/18/19 Received Time: 13,4	6	Ву: _	prof	
Type of shipping container: Cooler Box	Other	·		
Shipped via: FedEx Ground UPS Mail FedEx Express	Courier		Hand Del	ivered X
Were custody seals on outside of shipping container? If yes, how many? Where? Custody seal date: Seal name:		Yes	X X	<u>N/A</u>
Was Chain of Custody properly filled out (ink, signed, dated, e	etc.)?	<u></u>		
Did all bottles have labels?		<u>×</u> _		
Did all bottle labels and tags agree with Chain of Custody?		<u>~</u>		
Were samples received within hold time?		<u>K</u>		
Did all bottles arrive in good condition (unbroken, etc.)?				
Was sufficient amount of sample sent for the tests indicated?		<u>X</u>		
Was correct preservation added to samples?		<u>×</u>		
If no, Sample Control added preservative to the following: Sample Number Reagent Analyte				
Were VOA vials checked for absence of air bubbles? Bubbles present in sample #:	·	<u>X</u>		
Temperature of cooler upon receipt: 14.0 c on Tce Explain any discrepancies:	Cold Cool	Am	bient N	J/A
Was client contacted? Who was called?	By whom?		Da	te:
Outcome of call:				

EV19060120

LANDAU ASSOCIATES		Chain-of-Custody	stody	Seattle	X Seattle/Edmonds (425) 778-0907	25) 778-0907 493	Spokane (509) 327-9737 Portland (503) 542-1080	-9737 1080	Date 6/18/19	Standard X Accelerated	
	INCCOL	5						!]			
Project Name AB	ABW Marine		Project No. 14703	47037	7.030.043	243	Co	· [Testing Parameters		
	to took #	Everett	/Annual	7.5	June 2019	2019	(C) 008 100 N			Special Handling Requirements:	
Sampler's Name Device Branch	Kum Bri	7				\ <u></u>	(E) (E) (E)				-
Project Contact Kethryn Hactley	thryn Har	Heu				7	7587 77 77 77 77 77 77 77 77 77 77 77 77 7			Hod: Pool:	- Ja
Send Results To Kethryn Harthey, Dani Sorganson & Stephanic Renando	Inunitarity,	Dani Sory	msan £54c	shanic Re		Pan) Du Ensy			/ Stored on ice: (Yes) / No	
. Sample I.D.	, 1	Date	Time	Matrix	5	Diss.	Distriction of the state of the			Observations/Comments	
ر 200		1/8/19	1000	40	4	X X					
2-27-190618			1020	40		X X				Allow water samples to settle, collect aliquot from clear portion	
3 HWA-MWZ-190618	81901		1125	40	7	× × ×	\ \ 				
			1210	40	7	× × ×				NW I PH-Dx - Acid wash cleanup	
1	8190	→	1300	40	7	× ×	5.4			Silica gel cleariup	
									*	old k Dissolved metal samples were field filtered	ט
									5	Other - B'11 70E	1
										(FLS (A Conculable)	1
											1
										litrates Have short Hold	e\\
										Line	1
											1
											ı
		:									1
											1
											ı
											!
Relinquished by			Received by	,			Relinquished by		Re	Received by	
Signatur	1		Signature Mr Fen				Signature		Sig	Signature	
Printed Name Devan Brandt	in Brandt		Printed Name Clan		Perry		Printed Name		- Pri	Printed Name	
Company LAI	1		Company	3	2		Company		- O	Company	
Date 6/18/19	Time 1346	16	Date 6/18	19	Time /3	13146	Date	Time	Date	te Time	1
u			WHITE COPY	WHITE COPY - Laboratory		YELLOW COPY - Project File	\ \	PINK COPY - Client Representative	presentative		10/2018

Groundwater Monitoring Data 2014-2015

GROUNDWATER ANALYTICAL DATA (2014-2015) NORTH MARINA ABW/BAYSIDE MARINE VCP SITE PORT OF EVERETT, WASHINGTON

Sample ID Laboratory ID Date Collected	Preliminary Cleanup Level (a)	P-26 7/24/2014	P-26 8/18/2014	P-26 9/3/2014	P-26 ZN28F 12/3/2014	P-26 ZZ75C 3/10/2015	P-27 YC90A 3/13/2014	Dup of P-27 DUP-1 YC90B 3/13/2014	P-27 7/24/2014	P-27 9/3/201	P-27 ZN28A 12/3/2014	Dup of P-27 DUP1 ZN28B 12/3/2014	P-27 AC91A/ZZ75G 3/26/2015	Dup of P-27 DUP-2 ZZ75F 3/10/2015	HWA-MW1	HWA-MW1 8/18/2014	HWA-MW1 9/3/2014	HWA-MW1 ZN28D 12/3/2014
DISSOLVED METALS (µg/L) Method SW6000-7000 Arsenic Cadmium Chromium Copper Lead Mercury	5 240,000 2.4	15 1 U 2 U 2 U 1 U 0.2 U	9.8	6.3 1 U 2 U 2 U 1 U 0.2 U	18.6 0.1 U 2 0.5 0.1 U 0.1 U	12.8 0.1 U 1 0.5 U 0.1 U 0.1 U	0.5 U 0.1 U 0.5 U 0.1 U 0.1 U	0.6 0.1 U 0.6 0.1 U 0.1 U	1 U 1 U 2 U 2 U 1 U 0.2 U	1 U 1 U 2 U 2 U 1 U 0.2 U	3.0 0.1 U 1 U 0.8 0.1 U 0.1 U		1.7 0.1 U 0.5 U 0.5 0.1 U 0.1 U		64 1 U 2.1 2 U 1 U 0.2 U	77	91 1 U 2.2 2 U 1 U 0.2 U	65.1 0.1 U 3 0.7 0.1 U 0.1 U
Silver Zinc	81	2.5 U		5.7	4 U	4 U	4 U	5	2.5 U	8.2	5		4 U		2.5 U		7.6	8
NWTPH-Dx (mg/L) Diesel-Range Motor Oil-Range NWTPH-Gx (mg/kg) Gasoline-Range DISSOLVED GASES (µg/L)	0.5 0.5 0.8	0.14 0.25 U		0.18 0.25 U	0.10 U 0.20 U	0.10 U 0.20 U	0.13 U 0.27 U	0.11 U 0.23 U	0.13 U 0.25 U	0.13 U 0.25 U	0.10 U 0.20 U 0.25 U	0.25 ს	0.10 U 0.20 U J 0.25 U	0.25 U	0.15 0.25 ∪		0.13 0.25 U	0.10 U 0.20 U
RSK-175 Methane					8980	15100					503	536	5780					15000
CONVENTIONALS (mg/L) Method EPA300.0 Nitrate Sulfate			0.18 0.26 U	0.19 0.37	0.1 U 0.1 U	0.1 0.2				0.15 U 0.58	0.1 U 9.1		0.1 U 4.1			0.15 U 0.26 U	0.27 0.26 U	0.1 0.5
Field Parameters pH Conductance (μS/cm) Temperature (°C) Dissolved Oxygen (mg/l) ORP (mV) Ferrous Iron (mg/L) Turbidity (NTU)		6.42 1112 18.3 3	7.01 989 17.6 0.33 95 1.2	7.14 968 20.7 0.39 120 1	6.71 4.59 13.07 0.49 -92.2 1.2 87.87	6.04 404 11.94 4.41 -82 1.8 12.3	6.39 856 11.79 1.92 -84.7	6.33 856 11.79 1.92 -84.7	7.05 3430 18.5 0.23	7.21 481 20.2 0.63 39 0.4	7.3 460 10.9 0.95 -42.6 1.5		6.37 421 11.54 1.19 -28 1.4		6.59 1259 20.6 0.27	6.87 1204 17.9 0.54 50 1.6	6.8 968 22.7 0.39 49 1.5	6.74 736 11.93 0.51 -114.6 1.6

GROUNDWATER ANALYTICAL DATA (2014-2015) NORTH MARINA ABW/BAYSIDE MARINE VCP SITE PORT OF EVERETT, WASHINGTON

Sample ID Laboratory ID Date Collected	Preliminary Cleanup Level (a)	Dup of HWA-MW1 DUP2 ZN28E 12/3/2014	HWA-MW1 ZZ75B 3/10/2015	Dup of HWA-MW1 DUP-1 ZZ75A 3/10/2015	HWA-MW2 7/24/2014	HWA-MW2 9/3/2014	HWA-MW2 ZN28G 12/3/2014	HWA-MW2 ZZ75D 3/10/2015	HWA-MW3	HWA-MW3 9/3/2014	HWA-MW3 ZN28C 12/3/2014	HWA-MW3 ZZ75E 3/10/2015
DISSOLVED METALS (μg/L)												
Method SW6000-7000												
Arsenic	5	66.3	51.5	52.5	2.7	8.2	9.6	8.1	2.1	1 U	2.4	3.2
Cadmium		0.1 U	0.1 U	0.1 U	1 U	1 U	0.1 U	0.1 U	1 U	1 U	0.1 U	0.1 U
Chromium	240,000	2	1.8	1.8	2.1	2.8	2	1.4	2 U	2 U	1	1.1
Copper	2.4	0.7	0.8	0.7	2 U	2 U	0.6	0.5 U	2 U	2 U	0.6	0.5
Lead		0.2	0.1 U	0.1 U	1 U	1 U	0.1 U	0.1 U	1 U	1 U	0.1 U	0.1 U
Mercury		0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U
Silver												
Zinc	81	8	4	4 U	2.5 U	13	4	4 U	2.5 U	10	6	4 U
MATRIL D. ((L)												
NWTPH-Dx (mg/L)	0.5	0.40.11	0.40.11	0.40.11		0.44	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11	0.40.11
Diesel-Range Motor Oil-Range	0.5 0.5	0.10 U 0.20 U	0.10 U 0.20 U	0.10 U 0.20 U	0.22 0.25 U	0.14 0.25 U	0.10 U 0.20 U	0.10 U 0.20 U	0.13 U 0.25 U	0.13 U 0.25 U	0.10 U 0.20 U	0.10 U 0.20 U
Motor Oil-Range	0.5	0.20 0	0.20 0	0.20 0	0.25 0	0.25 0	0.20 0	0.20 0	0.25 0	0.25 0	0.20 0	0.20 0
NWTPH-Gx (mg/kg)												
Gasoline-Range	0.8											
Case into Harige	0.0											
DISSOLVED GASES (µg/L)												
RSK-175												
Methane		14000	17700	16900			13300	25200			3480	9550
CONVENTIONALS (mg/L)												
Method EPA300.0												
Nitrate		0.1	0.1 U	0.1 U		0.61	0.1 U	0.1 U		0.17	0.1 U	0.1 U
Sulfate		0.4	0.2	0.3		0.26 U	0.1 U	0.8		0.26 U	0.1	0.5
Field Parameters												
pH		6.75	6.19		6.42	6.38	6.15	6.22	6.71	7.13	6.82	6.78
Conductance (µS/cm)		736 11.94	663 11.95		1400 17.7	847 20.5	389 13.23	326 11.46	1031 15.4	938	406 11.87	334 11.09
Temperature (°C) Dissolved Oxygen (mg/l)		0.52	11.95 5.05		0.21	20.5 0.66	0.36	2.37	0.26	17 0.41	0.54	11.09
ORP (mV)		-114.6	-105		0.21	75	-13.8	-70	0.20	143	-63.5	-80
Ferrous Iron (mg/L)		1.6	1.4			0.6	5	1.8		1.7	1.8	1.4
Turbidity (NTU)		2.05	8.82			0.0	104.2	62.1		•••	26.7	70.9

Box indicates exceedance of cleanup level.
Bold indicates detected value.
ND = Not Detected

µg/L = micrograms per liter

mg/L = milligrams per liter

mg/kg = milligrams per kilogram

U = Indicates the compound was undetected

UJ = The analyte was not detected in the sample; the reported sample detection limit is an estimate.