Memo

5205 Corporate Ctr. Ct. SE, Ste. A Olympia, WA 98503-5901 Phone: 360.570.1700 Fax: 360.570.1777 www.uspioneer.com

То:	Brandon Smith (West Bay Development Group, LLC)
From:	Joel Hecker, L.G., L.HG. (PIONEER Technologies Corporation [PIONEER])
CC:	Mike Reid (City of Olympia), Margaret Olson (USEPA), Nick Acklam (Ecology), Kim Seely (Coastline Law Group), Troy Bussey (PIONEER)
Date:	March 31, 2022
Subject:	RI Data Gap Report Addendum #1 Hardel Mutual Plywood Corporation Site 1210 West Bay Drive NW, Olympia, Washington Voluntary Cleanup Program (VCP) Project ID SW1757, Cleanup Site ID 3704

Introduction

The purpose of this technical memorandum (memo) is to summarize the results for the additional Remedial Investigation (RI) data gap activities conducted at the Hardel Mutual Plywood Corporation (Hardel) site (Site) located in Olympia, Washington (see Figure 1) that were funded by the City of Olympia's United States Environmental Protection Agency (USEPA) brownfield assessment grant. This memo is an addendum to the August 2021 RI Data Gap Report submitted to the Washington State Department of Ecology's (Ecology's) VCP (PIONEER 2021b).

The objectives of the May 2021 through February 2022 investigation activities summarized in this memo were to fill the following RI gaps prior to preparing and submitting a Focused Feasibility Study (FS) report to Ecology's VCP:

- Determine if constituents of potential concern (COPCs) in groundwater (GW) are present at concentrations exceeding GW screening levels (SLs) near the downgradient upland boundary with Budd Inlet (i.e., potential point of compliance [POC] monitoring well [MW] locations).
- Verify shallow GW flow direction throughout the Site towards Budd Inlet.
- Evaluate methane concentrations in the subsurface beneath planned structures.

The work plan for these investigation activities was approved by USEPA on March 29, 2021. Minor work plan updates and clarifications for methane soil gas sampling were submitted to USEPA and Ecology for review in September 2021. The minor updates and clarifications consisted of (1) adding another soil vapor probe (SVP) location per Ecology's request, and (2) clarifying some of the standard operating procedures for collecting measurements from SVPs.

Background

Site investigation and remediation activities were previously completed between 2004 and 2012 to assess and address releases from historical operations, including the former plywood manufacturing facility operated by Hardel from 1951 through 1996 (see Figure 2). These previous MTCA investigation and remediation activities were completed pursuant to the 2007 Agreed Order #DE 4108 (AO) between Hardel and Ecology. Ecology stated in a 2012 letter that Hardel had satisfied all AO requirements and "no additional remedial action is necessary at this site unless new or different information becomes known" (Ecology 2012b).

PIONEER conducted a Phase II Environmental Site Assessment (ESA) and additional investigation activities between June 2020 and January 2021 for due diligence purposes to evaluate soil and GW constituent concentrations (PIONEER 2020,

2021b). In general, these investigation activities confirmed that the Site is relatively clean, which is expected given the size and scope of completed remediation activities (PIONEER 2021b). However, some minor SL exceedances were detected sporadically in soil and GW within the interior of the upland area. The identified COPCs for these sporadic SL exceedances are total petroleum hydrocarbons (TPH) in the gasoline range (TPH-G), TPH in the diesel range (TPH-D), TPH in the heavy oil range (TPH-HO), benzene, ethylbenzene, ethylene dibromide (EDB), acenaphthene, anthracene, fluoranthene, fluorene, pyrene, total carcinogenic polynuclear aromatic hydrocarbons (cPAHs), total naphthalenes, tetrachloroethylene (PCE), arsenic, and silver (PIONEER 2021b). Although many of the petroleum-related COPCs were detected in B202 and/or MW104 GW (and at least one petroleum constituent concentration at B202 and MW104 was greater than ten times the GW SL), the B202 and MW104 GW SL exceedances are localized and are likely associated with treated wood debris (PIONEER 2021b). The other GW SL exceedances at the Site are (1) a slight total cPAHs GW SL exceedance in a direct-push GW sample at B204, (2) a slight EDB GW SL exceedance in a direct-push GW sample at B3, (3) a slight pyrene GW SL exceedance at a previous AO confirmational monitoring location (MW-15), (4) a slight arsenic GW SL exceedance in MW101 during the August 2020 GW monitoring (GWM) event¹, and (5) the slight PCE and EDB/arsenic GW SL exceedances at B5 and B6, respectively, that are attributable to the Reliable Steel site (see Figure 2). There were no GW SL exceedances in MW102, MW103, MW105, and MW106 (potential POC MWs located downgradient of B202, MW104, B204, B3, and/or MW-15) during the August 2020, November 2020, and/or January 2021 GWM events (PIONEER 2021b). In order to confirm the sporadic GW SL exceedances at B202, MW104, B204, B3, MW-15, and MW101 are not impacting downgradient groundwater at potential POC MW locations, a few additional GWM-related activities (e.g., installing a potential POC MW downgradient of MW101, conducting additional GWM events) were proposed (PIONEER 2021a).

During the 2020 Phase II ESA, PIONEER installed and sampled two SVPs (B10 and B11). Methane soil gas concentrations (i.e., less than 30%) and pressure differentials (i.e., less than 500 pascals) in these two SVPs indicated that no further action was necessary regarding a potential methane hazard in accordance with ASTM Designation E2993-16 (Standard Guide for Evaluating Potential Methane Hazards as a Result of Methane in the Vadose Zone). However, additional methane investigation activities were proposed because of the amount of subsurface wood debris at the Site, the relatively high methane concentration in the B11 SVP (23%), and the limited nature of the 2020 methane investigation activities (PIONEER 2020).

Scope of Investigation

In accordance with the amended work plan (PIONEER 2021a, 2021c), the following investigation activities were completed between April 2021 and February 2022 (see Figures 2 and 3):

- Installing and developing one additional MW at a potential northern POC location (MW107).
- Installing three piezometers (PZ101 through PZ103).

¹ The arsenic GW SL has been increased from 5 ug/L to 8 ug/L to account for Ecology's recent establishment of a natural background arsenic concentration of 8 ug/L for Puget Sound Basin groundwater (Ecology 2022). As a result, the arsenic GW concentrations between 5 ug/L and 8 ug/L (i.e., the MW104 arsenic concentration of 5.5 ug/L during the August 2020 GWM event, the MW101 arsenic concentration of 6.2 ug/L during the November 2020 GWM event, and the MW101 arsenic concentration of 6.8 ug/L during the January 2021 GWM event) are no longer consider GW SL exceedances.

- Surveying the existing MW (MW101 through MW106), new MW (MW107), and piezometer (PZ101 through PZ103) locations.
- Advancing soil borings and installing 18 SVPs (SVP1 through SVP7, SVP9 through SVP12, SVP14, and SVP16 through SVP21).²
- Collecting soil samples from MW107, PZ101 through PZ103, SVP1, SVP4, SVP8, SVP10, SVP13, SVP15, SVP18, and SVP19 for visual classification, field screening, and potential laboratory analyses if evidence of impact was observed.³
- Completing four quarterly gauging events of the piezometers and MW network to determine the elevation of the potentiometric surface and GW flow direction. The four quarterly GWM events were conducted on May 5, 2021, August 13, 2021, November 16, 2021, and February 1, 2022.
- Collecting four total quarters of GW samples from the potential POC MW locations (MW102, MW103, MW105 through MW107) using standard low-flow methodology.⁴ Field water quality parameters for each quarterly event are presented on Table 1.
- Submitting GW samples for analysis of TPH-G, TPH-D, TPH-HO, benzene, toluene, ethylbenzene, xylenes, EDB, 1,2-dichloroethane, methyl tertiary-butyl ether, PCE and its degradation byproducts, polynuclear aromatic hydrocarbons (PAHs), dissolved arsenic, and dissolved silver.
- Collecting field measurements of the pressure differential and methane, oxygen, and carbon dioxide soil gas concentrations from the installed SVPs during two different sampling events (the first on October 7, 2021 and the second on October 13, 2021).⁵
- Submitting soil gas samples collected from SVP6, SVP7, and SVP19 on October 13, 2021 to Fremont Analytical for analysis of methane, carbon dioxide, oxygen, and nitrogen.⁶
- Collecting field measurements of the pressure differential and methane, oxygen, and carbon dioxide soil gas concentrations from SVP6 at the start of purging on November 16, 2021.⁷

⁵ Field measurements were obtained at the start of purging and at the end of purging.

⁶ In order to verify the accuracy of the field methane measurements, soil gas samples were collected for laboratory analysis from SVP6, SVP7, and SVP19, which were the only SVPs with a field methane concentration exceeding 30% on October 13, 2021. The laboratory analyses were not paid for by the City of Olympia's USEPA brownfield assessment grant.

² In accordance with the work plan (PIONEER 2021a), SVP8, SVP13, and SVP15 were not installed because the depths to GW at these proposed locations were less than three feet below ground surface (bgs).

³ In accordance with the work plan (PIONEER 2021a), nearly two-thirds of the SVPs were advanced without visual classification or field screening because the borings were blind drilled.

⁴ One or more quarterly events had already been completed for MW102, MW103, MW105, and MW106 prior to the investigation activities associated with this work plan. As a result, only MW107 required four additional quarterly events. MW102 only required one additional quarterly event as it was previously sampled in August 2020, November 2020, and January 2021. MW103 only required two additional quarterly events as it was previously sampled in August 2020 and November 2020. MW105 and MW106 only required three additional quarterly events as they were previously sampled in January 2021.

⁷ The objective was to collect field measurements from SVP6, SVP7, and SVP19 at the start of purging and at the end of purging to see if the October 2021 results were replicated. SVP6 could not be fully purged because groundwater was present within the SVP screen and tubing. Field measurements were not obtained from SVP7 and SVP19 because the SVP tubing had been removed (likely by an animal or trespasser) from these two SVPs.

- Collecting field measurements of methane ambient air concentrations near the end of the uncapped SVP tube and approximately four feet above ground surface at SVP3, SVP6, SVP7, SVP9, SVP16 through SVP19, and B11 on November 16, 2021.
- Collecting methane ambient air concentrations at the bottom of holes dug to a depth of approximately one foot adjacent to SVP3, SVP6, SVP7, and SVP9.⁸

The investigation activities were completed in accordance with the amended work plan (PIONEER 2021a, 2021c) with the following exceptions:

- A high tide GW gauging event and a low tide GW gauging event were conducted for the August 2021 GWM event (rather than a single gauging event for each GWM event as indicated in the work plan).
- Field measurements were not obtained from pre-existing SVP B10 as hoped because groundwater was present within the SVP screen and tubing.
- Field measurements were not obtained from pre-existing SVP B11 as hoped because the B11 SVP could not be found (e.g., the tubing and cap may have been removed by an animal or trespasser).
- Additional methane investigation activities were conducted, including (1) collecting soil gas measurements during three separate sampling events on October 7, October 13, and November 16, 2021, (2) collecting and submitting three soil gas samples for laboratory analysis, and (3) collecting ambient air measurements.

Results

Surface and Subsurface Conditions

Soil samples were visually classified in general accordance with ASTM Practice D2488. Detailed descriptions of the soil conditions encountered at each boring during the May 2021 through February 2022 investigation activities are included in Attachment 1.

The subsurface lithology encountered during the investigation activities were consistent with previous investigation activities. The subsurface consists of fill, marine sands, silt, and varying amounts of wood from 0 to 20 feet bgs. In some areas, poorly sorted gravel is present.

Shallow GW conditions encountered during the investigation activities were consistent with previous investigation activities. GW was previously observed at depths ranging from 0.4 to 12 feet bgs with an easterly GW flow direction towards Budd Inlet (Ecology 2012a, PIONEER 2020). During the May 2021 through February 2022 investigation activities, GW was encountered at depths of approximately 0.2 to 10 feet bgs. Shallow GW flow was confirmed to be flowing east towards Budd Inlet during synoptic gauging events completed near low tide in May 2021, near both low and high tide in August 2021, near low tide in November 2021, and near low tide in February 2022 (see Table 2 and Figures 4 through 8).

⁸ Holes were dug with a shovel. Holes were not dug adjacent to other key locations (e.g., SVP19) due to the presence of an impervious surface (e.g., asphalt).

2021 Soil Analytical Results

No evidence of soil impact was observed at the time of MW, SVP, and piezometer installation associated with this work plan; therefore, no soil samples were collected or submitted for laboratory analysis.

2021 GW Analytical Results

All constituent concentrations in all GW samples collected from the five potential POC MWs sampled pursuant to this work plan were less than the applicable GW SLs (see Table 3). Figure 2 provides a summary of the GW sampling results for the five potential POC MWs relative to previous GW sampling results. Laboratory analytical reports are included in Attachment 2.

2021 Methane Investigation Results

The 2021 methane soil gas concentrations are presented in Table 4. The maximum methane soil gas concentrations obtained during all completed sampling events are summarized in Figure 3. The key methane soil gas results were:

- The maximum methane soil gas concentrations in SVP6, SVP7, SVP11, and SVP19 exceeded 30%.
- Methane soil gas concentrations in SVP6, SVP7, and SVP19 increased as the amount of SVP purging increased. By contrast, methane soil gas concentrations in SVP11 dramatically decreased as the amount of SVP purging increased.
- The methane concentrations in the SVP6, SVP7, and SVP19 samples analyzed by the laboratory replicated the SVP6, SVP7, and SVP19 field measurements. The associated laboratory analytical report is included in Attachment 2.
- The maximum methane soil gas concentrations in SVP1 through SVP5, SVP9, SVP10, SVP12, SVP14, SVP16 through SVP18, SVP20, and SVP21 were less than 30%. However, the methane soil gas concentrations at SVP9, SVP16, and SVP18 have the potential to exceed 30% in the future since concentrations increased as the amount of SVP purging increased, and the final concentrations were near 30%.

Methane was not detected in any of the ambient air measurements obtained on November 16, 2021 (with a detection limit of 0.05%), with the exception that a methane concentration of 0.8% was detected in the ambient air near the end of the uncapped SVP tube at SVP6. Methane was not detected at the bottom of holes dug to a depth of approximately one foot adjacent to SVP3, SVP6, SVP7, and SVP9.

The pressure differentials at all sampling locations during the October 7, 2021, October 13, 2021, and November 16, 2021 sampling events were less than 500 pascals. The maximum pressure differential at any sampling location was 40 pascals.

Conclusions and Recommendations

There were no GW SL exceedances in any of the five potential POC MWs (MW102, MW103, and MW105 through MW107) during four quarters of GWM (i.e., the results from these May 2021 through February 2022 GWM events along with previous August 2020, November 2020, and January 2021 GWM results [PIONEER 2021b]). Since the minor GW SL exceedances at B202, MW104, B204, B3, MW-15, and MW101 are not impacting downgradient groundwater at these

five potential POC MWs, no additional GW sampling activities are recommended for existing MWs prior to preparation of the Focused FS report.

The potential for subsurface methane to cause an indoor air hazard at this Site is low as discussed in PIONEER's Summary of Recent Methane Investigation memo (see Attachment 3). Nonetheless, additional methane investigation and mitigation measures are recommended to eliminate the potential methane hazard (see Attachment 3).

References

Ecology. 2012a. Final Cleanup Action Plan, Hardel Mutual Plywood, Thurston County, Washington. April.

- Ecology. 2012b. Satisfaction of Agreed Order No. DE 4108: Hardel Mutual Plywood, FS #75128579. August 22.
- Ecology. 2022. Natural Background Groundwater Arsenic Concentrations in Washington State, Publication No. 14-09-044. January.
- PIONEER. 2020. Phase II Environmental Site Assessment, Hardel Mutual Plywood Corporation, 1210 West Bay Drive NW, Olympia, Washington. October.
- PIONEER. 2021a. RI Data Gaps Investigation Work Plan, Hardel Mutual Plywood Corporation, 1210 West Bay Drive NW, Olympia, Washington. March.
- PIONEER. 2021b. Remedial Investigation Data Gap Report, Hardel Mutual Plywood Corporation Site, 1210 West Bay Drive NW, Olympia, Washington. August.
- PIONEER. 2021c. Minor Updates/Clarifications to the March 2021 RI Data Gaps Investigation Work Plan for Methane Soil Vapor Sampling at the Hardel Mutual Plywood Corporation Site, Olympia Washington USEPA Brownfield Assessment Grant (BF01J66201). September 28.

Enclosures

Figure 1	Location Map
Figure 2	Summary of Groundwater Sampling Locations and Results
Figure 3	Methane Soil Vapor Probe Results
Figure 4	May 2021 Groundwater Flow Map
Figure 5	August 2021 Groundwater Flow Map – High Tide
Figure 6	August 2021 Groundwater Flow Map – Low Tide
Figure 7	November 2021 Groundwater Flow Map
Figure 8	February 2022 Groundwater Flow Map
Table 1	May 2021 – February 2022 Stabilized Water Quality Field Parameters
Table 2	May 2021 – February 2022 Groundwater Elevations
Table 3	Summary of RI Data Gap Investigation Groundwater Analytical Results
Table 4	2021 SVP Methane Results
Attachment 1	Boring Logs / MW Construction Summaries
Attachment 2	Laboratory Analytical Reports
Attachment 3	Summary of Recent Methane Investigation

Professional Certification

This document was prepared under my direction. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that I was in responsible charge of the work performed for this document.

March 31, 2022

Joel Hecker Senior Scientist/Hydrogeologist PIONEER Technologies Corporation Washington L.G. and L.HG. Registration No. 3285 Date

Figures

ects \Citv

aps Investigation/Fig 3_Methane Results.mxd; Author: MK; Date Saved: 3/29/2022

os Investigation\Fig 7_Nov 2021 GW Flow Map.mxd; Author: MK; Date Saved: 3/28/2022

Tables

Table 1: May 2021-February 2022 Stabilized Water Quality Field Parameters

			Specific		Dissolved				
		рН	Conductance	Turbidity	Oxygen	Temperature	ORP	Odor	Color
Location	Sample Date	STD Units	μS/cm	NTU	mg/L	°C	mV		
2Q2021 GWM Event									
MW-102	5/5/2021	6.34	230	4.9	1.19	13.9	24.0	No odor	Clear
MW-103	5/5/2021	6.20	428	28.4	0.71	12.9	18.3	No odor	Clear
MW-105	5/5/2021	6.44	1,650	25.1	1.17	14.4	49.4	No odor	Clear
MW-106	5/5/2021	6.24	562	4.3	1.20	13.0	-18.0	No odor	Clear
MW-107	5/5/2021	6.51	1,202	3.4	1.32	13.8	-33.7	Sulfur odor	Clear
3Q2021 GWM Event									
MW-103	8/13/2021	6.39	625	10.4	0.13	21.5	-40.5	No odor	Clear
MW-105	8/13/2021	6.58	3,845	13.2	0.19	15.5	-19.6	No odor	Clear
MW-106	8/13/2021	6.43	776	3.0	0.14	19.2	-55.7	No odor	Clear
MW-107	8/13/2021	6.74	1,614	4.0	0.16	17.1	-96.5	No odor	Clear
4Q2021 GWM Event	-								
MW-105	11/16/2021	6.03	1,063	20.0	0.13	14.0	-74.6	No odor	Clear
MW-106	11/16/2021	6.36	490	6.6	0.58	14.2	-79.7	No odor	Clear
MW-107	11/16/2021	6.72	1,562	4.2	0.29	14.7	-106.4	No odor	Clear
1Q2022 GWM Event									
MW-107	2/1/2022	6.82	1,489	4.8	0.31	12.6	-124.3	No odor	Clear

Notes:

°C: Degrees Celsius; mg/L: milligrams per liter; mV: millivolts; NM: Not measured; NTU: nephelometric turbidity units; ORP: oxidation-reduction potential; TOC: top of casing; µS/cm: microsiemens per centimeter

All results are from unfiltered field samples.

		May 5,		y 5, 2021 Event August 13, 2021 High Tide Event			August 13, 2021 Low Tide Event			November 16, 2021 Low Tide Event				February 01, 2022 Low Tide Event									
Location ID	Northing	Easting	TOC Elevation (feet NAVD88)	Time ⁽¹⁾ (AM)	Measured Depth to GW (feet from TOC)	Measured LNAPL Thickness (feet)	GW Elevation (feet NAVD88)	Time ⁽²⁾ (AM)	Measured Depth to GW (feet from TOC)	Measured LNAPL Thickness (feet)	GW Elevation (feet NAVD88)	Time ⁽²⁾ (AM)	Measured Depth to GW (feet from TOC)	Measured LNAPL Thickness (feet)	GW Elevation (feet NAVD88)	Time ⁽³⁾ (AM)	Measured Depth to GW (feet from TOC)	Measured LNAPL Thickness (feet)	GW Elevation (feet NAVD88)	Time ⁽⁴⁾ (PM)	Measured Depth to GW (feet from TOC)	Measured LNAPL Thickness (feet)	GW Elevation (feet NAVD88)
MW101	638447.57	1038803.42	15.72	9:40	4.73		10.99	9:28	5.62		10.10	15:30	5.59		10.13	9:00	4.04		11.68	12:03	4.74		10.98
MW102	638382.34	1039004.53	13.64	9:37	2.94		10.70	9:55	3.90		9.74	15:28	4.04		9.60	9:02	1.39		12.25	12:25	2.12		11.52
MW103	638216.88	1039055.58	12.80	9:34	1.49		11.31	9:54	2.56		10.24	15:27	2.65		10.15	9:08	0.02		12.78	12:23	0.55		12.25
MW104	637910.53	1039077.88	13.98	9:29	4.47		9.51	9:51	5.63		8.35	15:24	5.91		8.07	8:45	4.45		9.53	12:14	4.40		9.58
MW105	637921.74	1039086.43	14.66	9:28	9.00		5.66	9:52	5.94		8.72	15:23	8.60		6.06	8:45	8.55		6.11	12:16	8.66		6.00
MW106	638002.06	1039084.92	13.98	9:31	4.95		9.03	9:52	5.49		8.49	15:25	5.91		8.07	9:05	3.71		10.27	12:18	4.02		9.96
MW107	638493.10	1038822.85	17.02	9:39	9.39		7.63	9:57	9.66		7.36	15:29	9.72		7.30	8:58	7.96		9.06	12:30	9.00		8.02
PZ101	638350.02	1038734.38	16.28	9:41	4.15		12.13	9:30	5.13		11.15	15:32	5.13		11.15	8:56	3.09		13.19	12:04	3.85		12.43
PZ102	638125.01	1038768.84	15.40	9:43	1.77		13.63	9:33	2.82		12.58	15:33	2.73		12.67	8:53	0.74		14.66	12:08	1.01		14.39
PZ103	637850.42	1038817.08	15.30	9:45	2.37		12.93	9:36	4.34		10.96	15:36	4.33		10.97	8:50	0.11		15.19	12:10	0.53		14.77

Table 2: May 2021-February 2022 Groundwater Elevations

Notes:

--: No LNAPL thickness was detected; TOC: top of casing

Northings and Eastings in Washington State Plane, South Zone, North American Datum of 1983 (2011).

Top of Casing (TOC) elevations and GW elevations are in feet via the North American Vertical Datum of 1988 (NAVD88).

⁽¹⁾ Monitoring wells and piezometers were gauged during a synoptic event near low tide, which was at 08:35 AM on 5/5/2021.

⁽²⁾ Monitoring wells and piezometers were gauged during a synoptic events near high tide and low tide, which were at 09:32 AM and 3:43 PM on 8/13/2021, respectively.

⁽³⁾ Monitoring wells and piezometers were gauged during a synoptic event near low tide, which was at 09:29 AM on 11/16/2021.

⁽⁴⁾ Monitoring wells and piezometers were gauged during a synoptic event near low tide, which was at 12:05 PM on 02/01/2022.

Table 3: Summary of RI Data Gap Investigation Groundwater Analytical Results

							Sample Loca	tion and Sample Date							
Constituent		Groundwater	MW102	MW	/103		MW105			MW106			MW	107	
Category	COPC (1,2)	SL ⁽³⁾	5/5/2021	5/5/2021	8/13/2021	5/5/2021	8/13/2021	11/16/2021	5/5/2021	8/13/2021	11/16/2021	5/5/2021	8/13/2021	11/16/2021	2/1/2022
TDU	TPH-D	500	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U
	TPH-G	800	100 U	100 U	130	100 U	110	160	100 U	100 U	100 U	100 U	100 U	100 U	100 U
(ug/L)	TPH-HO	500	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U
	Benzene	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
VOCs	Ethylbenzene	31	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
(ug/L)	Ethylene Dibromide (EDB)	0.050	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
	Tetrachloroethylene (PCE)	2.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Acenaphthene	30	0.97	1.5	1.8	8.1	5.9	9.5	0.10 U	0.10 U	0.098 U	0.32	0.26	0.28	0.31
	Anthracene	100	0.099 U	0.099 U	0.10 U	0.10 U	0.10 U	0.099 U	0.10 U	0.10 U	0.098 U	0.099 U	0.10 U	0.10 U	0.099 U
SVOCs/	Fluoranthene	6.0	0.099 U	0.099 U	0.10 U	0.10 U	0.10 U	0.099 U	0.10 U	0.10 U	0.098 U	0.099 U	0.10 U	0.10 U	0.099 U
PAHs	Fluorene	10	0.30	0.20	0.29	3.0	1.9	4.2	0.10 U	0.10 U	0.098 U	0.099 U	0.10 U	0.10 U	0.099 U
(ug/L)	Naphthalenes, Total ⁽⁴⁾	160	1.4	0.30 U	0.30 U	0.22	0.30 U	0.22	0.30 U	0.30 U	0.29 U	0.30 U	0.30 U	0.30 U	0.30 U
	Pyrene	8.0	0.099 U	0.099 U	0.10 U	0.10 U	0.10 U	0.099 U	0.10 U	0.10 U	0.098 U	0.099 U	0.10 U	0.10 U	0.099 U
	Total cPAHs TEF ⁽⁵⁾	0.015	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Metals	Arsenic	8.0	2.9	1.0 U	3.0 U	1.0 U	3.0 U	1.0 U	1.0 U	3.0 U	1.7	1.0 U	3.0 U	2.3	3.0 U
(ug/L)	Silver	1.9	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U

Notes:

J: estimated concentration; NA: constituent not analyzed, U: constituent not detected at the shown reporting limit

Bold font concentrations were detections.

⁽¹⁾ The laboratory analyzed additional VOCs (1,1-dichloroethylene, cis- and trans-1,2-dichloroethylene, ethylene dichloride, methyl-tert-butyl-ether, trichloroethylene, and phenanthrene) which are not included in the table because they are not considered COPCs in groundwater. Refer to the laboratory analytical reports in Attachment 2 for the full list of analytical results.

(2) Constituent results are shown as two significant figures in standard notation, except numbers greater than 100 are rounded to a whole number. The following data reduction rules were used for duplicate samples had a detected result, then the average concentration was used, (b) if neither sample had a detected result, then the lower reporting limit was used, and (c) if only one of the two samples had a detected result, then the detected result, then the detected result, then the laboratory provided two results for the same non-duplicate samples: (a) if one or both results were a detect, then the highest detection was used, and (b) if both results were a detect, then the highest detection was used, and (b) if both results were a detect, then the highest detection was used, and (b) if both results were non-detects, then the lower reporting limit was used.
(3) See August 2021 Data Gap Investigation Report (PIONEER 2021) for calculation of SLs. As mentioned in the report, a non-detect result with a reporting limit.

(4) The following data reduction rules were used for naphthalene results from USEPA Method SW846-8260 and SW846-8270: (a) if naphthalene was detected by one or both methods, then the highest detection was used, and (b) if naphthalene was not detected by either method, then the lower reporting limit was used. Additionally, the following data reduction rules were used for compound totaling of total naphthalenes: (a) if one or more individual constituents was detected in a sample, the non-detect constituents were detected in a sample, the sum of the reporting limits for the individual constituents was used.

⁽⁵⁾ Total cPAHs concentrations were calculated using MTCA toxicity equivalence factors (TEFs) per WAC 173-340-708(8) and data reduction rules per the 2001 MTCA Concise Explanatory Statement (Ecology 2001c). If a constituent was detected in any sample in any media, non-detect results for that constituent in other samples were assumed to equal half of the laboratory reporting limit in the TEF calculation. If a constituent was non-detect in all samples from all samples from all sampled media, non-detect results for that constituent were assumed to equal zero in the TEF calculation.

Table 4: 2021 SVP Methane Results

Location ID	10/7/21 Initial Methane Concentration	10/7/21 Final Methane Concentration	10/13/21 Initial Methane Concentration	10/13/21 Final Methane Concentration	Lab Analysis of 10/13/21 Field Sample	11/16/21 Methane Concentration	Maximum Methane Concentration
SVP B10	NM	NM	NM	NM		NM	NM
SVP B11	NLP	NLP	NLP	NLP		NLP	NM
SVP1	0.0	0.0	0.0	0.0		NM	0.0
SVP2	0.2	0.0	0.0	0.0		NM	0.2
SVP3	16.4	18.1	17.3	17.1		NM	18.1
SVP4	0.0	0.0	0.0	0.0		NM	0.0
SVP5	2.6	0.3	0.0	0.0		NM	2.6
SVP6	20.9	21.3	37.4	37.8	40.1	61.2	61.2
SVP7	2.2	8.5	63.6	63.7	60.4	NLP	63.7
SVP9	20.1	20.3	27.1	26.6		NM	27.1
SVP10	8.2	0.1	21.1	0.5		NM	21.1
SVP11	80.5	62.7	0.0	0.0		NM	80.5
SVP12	0.0	0.0	0.0	0.0		NM	0.0
SVP14	0.0	0.0	0.0	0.0		NM	0.0
SVP16	17.0	19.5	23.7	28.7		NM	28.7
SVP17	5.2	5.4	7.6	10.2		NM	10.2
SVP18	3.5	4.4	19.5	20.4		NM	20.4
SVP19	39.0	48.4	52.0	58.2	63.8	NLP	63.8
SVP20	0.0	0.0	0.0	0.0		NM	0.0
SVP21	0.0	0.0	0.0	0.0		NM	0.0

Notes:

--: no laboratory sample analyzed; NLP: no longer present; NM: not measured

All concentrations are shown as percent by volume.

Initial concentrations were those measured in the beginning of purging.

Final concentrations were those measured at the end of purging.

Attachment 1

PROJI	ECT:				Hardel			Log of	MW107
BORIN	IG LOO		1:		MW107		GROUND SU	IRFACE ELEVATI 10.5	ON AND DATUM:
DRILL	ING CO	ONTRA	сто	R:	ESN		DATE START	TED: 4/22/21	DATE FINISHED: 4/22/21
DRILL	ING M	ETHOD):	Holl	ow Stem Augers		TOTAL DEPT	ГН (ft.): 20	MEASURING POINT: Ground Surface
DRILL	ING E	QUIPME	ENT:	DT78	300 Combo Rig	DEPTH TO WATER:	DURING: 11	AFTER: 10.5	
LOGG	ED BY	<u>'</u> :		J	loel Hecker		SCREEN INT 4.0-7	ERVAL: 16.0	BOREHOLE BACKFILL: See Well Construction
Ea	S		S	ng					
DEP1 (feet	Sample No.	Sample	Litho.	PID Readi	DESCRIPTION	BORING REMARKS		WELL CONS AND/OR DF	TRUCTION DETAILS
0		•	×		Asphalt FILL - Fine to Coarse SAND		0_	8 🛞 🛛	Cover
1-		×	× ×	0.0	\with gravel, gray, moist/				Cement Bentonite
2-		×	×× ××				2-	8 🕅 🖞	Casing
3-		× ×	×× ×× ××	0.0			3-		Screen
4-	-	×	×				4-		
5-	-	× ×	× × ×	0.0	FILL - SILTY CLAY, trace wood, trace gravel, grav		5-	Cover: steel we	8-inch diameter, flush-mount il cover tr Portland cement concrete
6-	-	× × ×	× × -x				6-	Benton (beneat pellets (Casing	tie: Hydrated granular bentonite h cement); Hydrated bentonite beneath sand backfill) 1-inch diameter schedule
7-		×	×× × ×	0.0			7-	40 PVČ Screen 40, 0.01	casing : 1-inch diameter schedule I0 slot size, PVC screen
8-		× ×	× × ×				8-		
9-	ollected	×	·× × ×	0.0			9-		
10-	Tple Co	× •	× ×	-			10-		
11-	No San	.0	·	0.0			11-		
12-		0	710. 		Fine SILTY SAND with shells,	No odors or	12-		
13-		·		0.0	gray, wet	in soil column	13-		
14-		•					14-		
15-		•. •.	<u></u>	0.0			15-		
16-							16-		
17-				0.0	SILT, gray, wet	Seam of silty gravel 17-17.25'	17-		
18-		- - -					18-		
19-		。 。	0-0-0	0.0	Fine to Coarse SILTY SAND with gravel, gray, wet		19		
20 PIO		۲ech ۲ech	 nnol	oaies	Corporation		20		Page 1 of 1

PROJI	ECT:				Hardel Olympia, WA		Log of PZ101					
BORIN	IG LOO	CATIC	DN:		PZ101		GROUND SURFACE ELEVATION AND DATUM: 4.5					
DRILL	ING CO	ONTR	ACTO	२:	ESN		DATE STARTED: DATE FINISHED: 4/22/21 4/22/21					
DRILL	ING M	ETHO	D:		Direct Push		TOTAL DEPTH (ft.): MEASURING POINT: 15 Ground Surface					
DRILL	ING EC	QUIPN	MENT:	DT78	300 Combo Rig	DEPTH TO DURING: AFTER: WATER: ~5 4.5						
LOGG	ED BY	<u>':</u>		J	loel Hecker	SCREEN INTERVAL: BOREHOLE BACKFILL: 2.4-12.4 See Well Construction						
DEPTH (feet)	Sample No.	Sample Sample	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS					
	No Sample Collected	5		 0.0 0.0 0.0 0.0	FILL - Fine to Coarse gravel with SAND, gray, moist-to-wet	No odors or staining noted in soil column	0					
PIO	NEEF	R Teo	chnolo	ogies	Corporation	1	Page 1 of 1					

PROJ	ECT:				Hardel Olympia, WA	Log of PZ102						
BORI	NG LO	CATIO	N:		PZ102		GROUND SURFACE ELEVATION AND DATUM: 2.7					
DRILL	ING C	ONTRA	АСТО	R:	ESN		DATE STARTED: DATE FINISHED: 4/22/21 4/22/21					
DRILL	ING M	ETHO	D:		Direct Push		TOTAL DEPTH (ft.): MEASURING POINT: 15 Ground Surface					
DRILL	ING E	QUIPM	ENT:	DT78	300 Combo Rig		DEPTH TO DURING: AFTER:					
LOGG	ED BY	/ :		J	loel Hecker		SCREEN INTERVAL: BOREHOLE BACKFILL: 2.7-12.7 See Well Construction					
	S	AMPLE	S	ŋ								
DEPTI (feet)	Sample No.	Sample	Litho.	PID Readir	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS					
0 1- 2- 3- 3- 5- 6- 7- 8- 9- 10- 11- 11- 12- 11- 11- 12- 13- 11- 11- 11- 11- 11- 11- 11	No Sample Collected			0.0 0.0 0.0 0.0	FILL - Fine to Coarse SILTY SAND with gravel, gray, moist-to-wet FILL - SILTY CLAY, gray FILL - CLAYEY SAND with wood, brown, wet	No odors or staining noted in soil column	0 Cover 1- Entonite 2- Cover 3- Screen 3- Sand 2- Sand 2- End Cap 6- 6- 6- 6- 7- 6- 7- 7- 7- 10- 10- 11- 11- 11- 11- 12- 13- 15 Cover: 8-inch diameter, flush-mount steel well cover Cover: 8-inch diameter schedule 40, 0.010 slot size, PVC screen 10- 11- 11- 11- 12- 13- 14- 15-					
PIO	NEEF	R Tec	hnol	ogies	Corporation		Page 1 of 1					

PROJ	ECT:				Hardel Olympia, WA		Log of PZ103					
BORI	NG LOO	CATIC	DN:		PZ103		GROUND SURFACE ELEVATION AND DATUM: 2.5					
DRILL	ING C	ONTR	ACTO	R:	ESN		DATE STARTED: DATE FINISHED: 4/22/21 4/22/21					
DRILL	ING M	ETHC	D:		Direct Push		TOTAL DEPTH (ft.): MEASURING POINT: 15 Ground Surface					
DRILL	ING E	QUIPN	MENT:	DT78	300 Combo Rig		DEPTH TO DURING: AFTER: WATER: 3 2.5					
LOGO	ED BY	<u>':</u>		·	loel Hecker		SCREEN INTERVAL: BOREHOLE BACKFILL: 2.5-12.5 See Well Construction					
DEPTH (feet)	Sample No.	Sample T	ES Litho.	PID Reading	DESCRIPTION	BORING REMARKS	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS					
0 1- 2- 3- 3- 5- 5- 6- 7- 8- 8- 9-	No Sample Collected			0.0 0.0 0.0 0.0	FILL - Fine to Coarse SAND with gravel, gray, moist-to-wet	No odors or staining noted in soil column	0 Cover 1- Entonite 2- Casing 3- Screen 3- Sand 2- End Cap Cover: 8-inch diameter, flush-mount steel well cover Cement: Portland cement concrete Bentonite: Hydrated granular bentonite (beneath cement); Hydrated bentonite pellets (beneath sand backfill) Casing: 1-inch diameter schedule 40, 0.010 slot size, PVC screen					
10- 11- 12- 13- 14- 15				0.0	Fine SILTY SAND with shells, gray, wet Ground WOOD fibers							
PIO	NEEF	R Teo	chnol	ogies	Corporation		Page 1 of 1					

Hardel Olympia, WA													
SVP LOCATION: DATE STARTED: 1 10/7/2121													
DRILL	S CORPO	DRATION											
DRILLING METHOD: Direct Push Log of SVP No.													
DRILL	DRILLING EQUIPMENT: Geoprobe DEPTH TO WATER (ft.): TOTAL												
LOGG	GED BY	BOREHOLE BACKFILL: See Below											
E.	SA		ES	bu									
DEPT (feet)	Sample No.	Sample	Litho.	PID Readi	DESCR	IPTION	BORING REMARKS		PROBE CONS AND/OR DR	STRUCTION	DETAILS MARKS		
0	_				TOPSOIL		_	0					
1-	_							1-			Hydrated bentonite was placed from the base of the borehole to		
2-	_				FILL - Fine to SAND, brown	Coarse SILTY , moist		2-			depths of six inches below the desired depth of the SVP. Six inches of sand was placed above and		
3-	_						-	3—			below the SVP and 1/4" diameter HDPE tubing was installed from the top of		
4-	_							4			the SVP to approximately two feet above the ground surface.		
5-	-				FILL - SAND	with gravel,	Gravel at 5'	5					
6					WOOD		-	6					
PIC	NEEI	R Te	chnol	ogies	Corporation		J				Page 1 of 1		

				Ha	ardel		\langle		\mathbf{b}				
SVF	P LOCA	TION:		4	DATE STARTED:	0/7/2121	_			тм			
DRILL	ING C	ONTRACT	DR:	ESN				CHNOLOGIES	S CORPO	DRATION			
DRILL	ING M	ETHOD:	C)irect Push			Log of SVP	No.	4				
DRILL	ING E	QUIPMENT	:	Geoprobe			DEPTH TO WATER (ft.): 3.8						
LOGG	ED BY	<u>/:</u>		JH/AR			SCREEN INTERVAL: BOREHOLE BACKFILL: See Below						
et)	SA	MPLES	D ding										
DEP (fee	Samp No.	Samp Litho.	Rea	DESCRI	PTION	BORING REMARKS		AND/OR DR	ILLING REI	I DE TAILS MARKS			
0 1- 2- 3- 4- 5-				FILL - Fine to 0 with gravel, gra	Coarse SAND ay, moist to wet					Hydrated bentonite was placed from the base of the borehole to depths of six inches below the desired depth of the SVP. Six inches of sand was placed above and below the SVP and 1/4" diameter HDPE tubing was installed from the top of the SVP to approximately two feet above the ground surface.			
6 PIC		R Techno	logies	Corporation			6	F//A		Page 1 of 1			

Hardel Olympia, WA										•	
SVF	P LOCA	TION:		8	_			F P			
DRILL	ING C	ONTRAC	CTOR:	ESN		TECHNOLOGIES CORPORATION					
DRILL	ING M	ETHOD:	C	irect Push			Log of SVP No. 8				
DRILL	ING E	QUIPME	NT:	Geoprobe			DEPTH	TO WATER (ft.):	TOTAL DE	EPTH (ft.):	
LOGG	ED BY	<u>.</u>		JH/AR			SCREE	N INTERVAL:	BOREHO See Be	LE BACKFILL: Plow	
DEPTH (feet)	Sample No.	Sample	PID Reading	DESCRI	PTION	BORING REMARKS	PROBE CONSTRUCTION AND/OR DRILLING REM			DETAILS MARKS	
0		000000000000000000000000000000000000000	° ° °	CRUSHED CC	NCRETE		0				
-	-	<u> </u>					-				
1-	-						1-			SVP not installed due to shallow groundwater	
2-	-						2—			conditions.	
-	_						-				
3-	-			FILL - Fine to (with gravel, tra trace concrete, wet	Coarse SAND ice asphalt, , gray, moist to		3-				
4-	-						4-				
-	-										
5-	-						5—				
-	-										
6 PIO	NEEF	<mark>∶∶¦</mark> R Tech	·∷∣ nologies	Corporation			6			Page 1 of 1	

Hardel Olympia, WA										•	
SVF	P LOCA	TION:		10	DATE STARTED: 10				F B		
DRILL	ING CO	ONTRACT	OR:	ESN		TECHNOLOGIES CORPORATION					
DRILL	ING M	ETHOD:	C)irect Push		Log of SVP No. 10					
DRILL	ING E		T: ,	Geoprobe			DEPTH TO	WATER (ft.):	TOTAL DI	EPTH (ft.):	
LOGG	ED BY	:					SCREEN IN	3.6 NTERVAL:	BOREHO	6 LE BACKFILL:	
				JH/AR					See Be	elow	
E	SΑ		dui								
DEP]	Sampl No.	Sampl Litho.	PIC Read	DESCRI	PTION	BORING REMARKS		PROBE CONSTRUCTION DET AND/OR DRILLING REMAR			
0 1- 2- 3- 4- 5-				FILL - Fine to with gravel, brack Fine to Coarse with gravel, gravel	Coarse SAND own, moist					Hydrated bentonite was placed from the base of the borehole to depths of six inches below the desired depth of the SVP. Six inches of sand was placed above and below the SVP and 1/4" diameter HDPE tubing was installed from the top of the SVP to approximately two feet above the ground surface.	
6 PIC	NEEF	R Techn	∵¦ ologies	Corporation			6			Page 1 of 1	

Hardel Olympia, WA										\Rightarrow
SVF	LOCA	TION	l:		DATE STARTED				► R	
DRILL	ING CO	ONTR	RACTC	R:	ESN		TECHNOLOGIES	G CORPO	DRATION	
DRILL	ING M	ETHC	DD:	D	Direct Push		Log of SVP	No.	13	
DRILL	ING E	QUIPN	MENT:	. (Geoprobe		DEPTH T	O WATER (ft.):	TOTAL D	EPTH (ft.):
LOGG	ED BY	:					SCREEN	2.6 INTERVAL:	BOREHC	6 DLE BACKFILL:
					JH/AR				See Be	elow
H E ₽	SA v	MPL 	ES	ling						
DEP ⁻	Sampl No.	Sampl	Litho.	PIC Read	DESCRIPTION	BORING REMARKS	PROBE CONSTRUCTION DETA AND/OR DRILLING REMARKS			I DETAILS MARKS
0							0			
-							-			
1-							1-			SVP not
										shallow
-	_				FILL - Fine to Coarse SAND	Coarse SAND				conditions.
					with gravel, trace concrete, gray, moist					
2-							2—			
-							_			
3-							3-			
-						_				
4-							4—			
					FILL - Lean CLAY, gray					
-										
5-						_	5-			
-					WOOD					
6 PIO		R Te	chnol	oaies	Corporation		6			Page 1 of 1

Hardel Olympia, WA											
SVP	LOCA	ATION:		15	DATE STARTED: 10		PION	л е	E R		
DRILL	ING C	ONTRAC	CTOR:	ESN		TECHNOLOGIES CORPORATION					
DRILL	ING M	ETHOD:	۵	irect Push				Log of SVP	No.	15	
DRILL	ING E	QUIPME	NT:	Geoprobe			DEPTH	TO WATER (ft.): 2.2	TOTAL DI	EPTH (ft.): 6	
LOGG	ED BY	':		JH/AR		-	SCREE	N INTERVAL:	BOREHO See Be	LE BACKFILL: elow	
DEPTH (feet)	Sample No.	Sample	PID PID Reading	DESCRI	PTION	BORING REMARKS	PROBE CONSTRUCTION DETAILS AND/OR DRILLING REMARKS				
0		00	° ° °	Crushed Conc	rete		0				
- 1-	-						1-			SVP not installed due to shallow groundwater conditions.	
2-				FILL - Fine to (with gravel, bro	Coarse SAND own, moist to		2-				
3-				wet			3—				
4							4-				
5	-			FILL - GRAVE	L, gray, wet		5				
PIONEER Technologies Corporation										Page 1 of 1	

Hardel Olympia, WA									$\overline{}$		€
SVF	P LOCA	TION	:		18	DATE STARTED: 1	F		I E	ER	
DRILL	ING C	ONTR	ACTOR	:	ESN	1	TECHNOLOGIES CORPORATION				
DRILL	ING M	ETHC	D:	D	irect Push		Log of SVP No. 18				
DRILL	ING E	QUIPN	MENT:	0	Geoprobe			DEPTH TO	O WATER (ft.):	TOTAL DI	EPTH (ft.):
LOGG	ED BY	′:			•			SCREEN	3.Z INTERVAL:	BOREHO	6 LE BACKFILL:
					JH/AR					See Be	elow
DEPTH (feet)	Sample No.	Sample	ES Litho.	Reading	DESCRI	PTION	BORING REMARKS		PROBE CONS AND/OR DR	TRUCTION	I DETAILS MARKS
0					ASPHALT			0			
			00		Aggregate Bas	se					
1- 2- 3-					FILL - Fine to (with shells, gra	Coarse SAND ay, moist					Hydrated bentonite was placed from the base of the borehole to depths of six inches below the desired depth of the SVP. Six inches of sand was placed above and below the SVP and 1/4" diameter HDPE tubing was installed from the top of the SVP to
5-	-				Fine SILTY SA gray, wet	ND with shells,		5-			approximately two feet above the ground surface.
PIC	NEEF	R Te	chnolo	gies	Corporation						Page 1 of 1

Hardel Olympia, WA											•		
SVP	LOCA	TION:			19	DATE STARTED:	_			► D			
DRILLI	NG CC	ONTRA	асто	R:	ESN		TECHNOLOGIES CORPORATION						
DRILLI	NG ME	ETHO	D:	D	irect Push			Log of SVP No. 19					
DRILLI	NG EC	QUIPM	ENT:	(Geoprobe			DEPTH TO	O WATER (ft.): 4	TOTAL DI	EPTH (ft.):		
LOGGE	ED BY:	:			JH/AR			SCREEN	INTERVAL:	BOREHO See Be	30REHOLE BACKFILL: See Below		
Ξ	SA	MPLE	ES	ng									
DEPT (feet	Sample No.	Sample	Litho.	PID Readi	DESCRI	PTION	BORING REMARKS	PROBE CONSTRUCTION I AND/OR DRILLING REM			I DETAILS MARKS		
0					ASPHALT			0					
		c	00		Aggregate Bas	se							
1					FILL - Fine to with gravel, gra	Coarse SAND ay, moist		1			Hydrated bentonite was placed from the base of the borehole to depths of six		
3—		•						3-			the desired depth of the SVP. Six inches of sand was placed above and below the SVP and 1/4"		
4					Fine SILTY SA shells increasi gray, moist to	ND, trace ng with depth, wet		4-			diameter HDPE tubing was installed from the top of the SVP to approximately two feet above the ground surface.		
5	NEFR	{ Tec		ogies	Corporation			5			Page 1 of 1		

Attachment 2

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

June 9, 2021

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Data Gap Investigation Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy I Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.
Libby Environmen	tal, Ir	IC.		C	nair	0	fC	ust	ody	y F	Rec	or	d						www	.LibbyE	nvironme	ental.com
3322 South Bay Road NE	Ph:	360-352-2	2110				-	c	-1-	10								,				
Olympia, WA 98506	Fax:	360-352-4	4154				Date):)	15	12	-					Pa	ge:			01		
Client: Miner Technologi	cs Corl	<u>،</u>	CANADA CONTRACTOR CONTRACTOR	And a state of the s			Proj	ect M	lanag	jer:	JU	er	He	deur								
Address: 5205 Corporat	te cu	tr ct.	55				Project Name: Harder Data Gape Investigation															
City: Olynpia		State: 😡	A Zip:	99503			Loca	ation:	Ha	rde	J	SH	r			Cit	y, Sta	ate:	Oly	wf	ł	
Phone: 360 - 570-1700				Colle	ector:	SH	ç						Da	te of	Colle	ection	: 5/5	121				
Client Project # Horder De	ata C	rops In	v,				Ema	il:	Hec	ke.	-j6	U	Splo	neer	-, co	2						
THE BRAT	Death	Time	Sample	Container		6326		ATPH-	2100 5+ 826	RH.		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 00 00 00 00 00 00 00 00 00 00 00 00	AH 82	S 320	10 0 8210 0 82	1 2 2 C	0.40 5 10 8	3		
	Depth	Time	Type	туре	$\mathbb{K}_{\mathbb{Z}}$	1		<u>/ </u>	14		2 87	4	74	20	$\sqrt{2}$		Y	¥	\frown	Field h	votes	
1 GW 19W11 2 - 05 21		1200	GW	multiple		V	$\frac{1}{\sqrt{2}}$			$\mathbf{\hat{\mathbf{x}}}$	-				$\widehat{\mathbf{v}}$		` Ŷ	+				
2 GW - MWINFOS FI		1413			$\left \right $	$\hat{\mathbf{v}}$	Ŷ			$\frac{1}{2}$					$\frac{x}{\sqrt{2}}$			+	+			
3 GW-11W103 - 03 DI		1035			$\left \right $	$\overline{\mathbf{v}}$	$\overline{}$			5					$\hat{\cdot}$				+			
4 GW- MW100- 0121		1035			$\left \right $	5	X		-+	\bigcirc					$\dot{\mathbf{x}}$			-				
5 GW- MW101-0321		1350				X	X			X					<u>^</u>		1					
6 GW-MWIOF -05 21-01		1330			$\left \right $	~									X	×		+				
7-18-050121		-		4		X																
8																		+				
9																						
10																	_					
11																						
12																						
13	****																_					
14																			_			
15																		_				
16	and the state of the																					
17																						
Relinquished by:	51	5/21	Date / Time	Received by	1/1/				~		ate / T	ime 2	Good	Sam	ple	Receij V		Re	mark	s: Nassible	, pien	sche
Relinquished by:	-1	- 10	Date / Time	Received by:					25	2.U D	ate / T	ime	Coole	er Tem	p.		°C		in	interr	al du	plicates
/													Samp	le Ter	np.		°C		From	mu	107 5	ample:
Relinquished by:			Date / Time	Received by:						D	ate / T	ime	Total	Numb	er of			- (Metal	I Are	AOLID A	5 DAV
														- nali ie	0.0			11/	11: 2	240K	401K	D-DAY

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

Sample Description		Method	GW-MW102-	GW-MW103-	GW-MW105-	GW-MW106-	GW-MW107-
		Blank	0521	0521	0521	0521	0521
Date Sampled	Reporting	N/A	5/5/2021	5/5/2021	5/5/2021	5/5/2021	5/5/2021
Date Analyzed	Limits	5/7/2021	5/7/2021	5/7/2021	5/7/2021	5/7/2021	5/7/2021
	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$
Vinyl chloride	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans -1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Toluene	2.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		108	111	110	108	108	108
1,2-Dichloroethane-d4		96	101	97	91	94	96
Toluene-d8		99	99	100	99	99	98
4-Bromofluorobenzene		102	102	99	101	101	98
"nd" Indicates not detected at	listed detection	n limit					

Volatile Organic Compounds by EPA Method 8260D in Water

Indicates not detected at listed detection limit. nd

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HARDEL DATA GAPS INVESTIGATION PROJECT **Pioneer Technologies** Olympia, Washington Libby Project # L210505-1

Sample Description		GW-MW107-	TB-050521			
		0521 Dup		 	 	
Date Sampled	Reporting	5/5/2021	5/5/2021			
Date Analyzed	Limits	5/7/2021	5/7/2021			
	(µg/L)	(µg/L)	$(\mu g/L)$			
Vinyl chloride	0.2	nd	nd			
1,1-Dichloroethene	0.5	nd	nd			
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd			
trans -1,2-Dichloroethene	1.0	nd	nd			
cis-1,2-Dichloroethene	1.0	nd	nd			
Benzene	1.0	nd	nd			
1,2-Dichloroethane (EDC)	1.0	nd	nd			
Trichloroethene (TCE)	0.4	nd	nd			
Toluene	2.0	nd	nd			
Tetrachloroethene (PCE)	1.0	nd	nd			
1,2-Dibromoethane (EDB) *	0.01	nd	nd			
Ethylbenzene	1.0	nd	nd			
Total Xylenes	2.0	nd	nd			
Naphthalene	5.0	nd	nd			
1-Methylnaphthalene	5.0	nd	nd			
2-Methylnaphthalene	5.0	nd	nd			
Surrogate Recovery				 		
Dibromofluoromethane		110	111	 	 	
1,2-Dichloroethane-d4		96	104			
Toluene-d8		98	97			
4-Bromofluorobenzene		100	98			
"nd" Indicates not detected at	listed detection	on limit.				
"int" Indicates that interference	e prevents de	termination				

Volatile Organic Compounds by EPA Method 8260D in Water

'int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Gasoline							
Number	Analyzed	Recovery (%)	$(\mu g/L)$							
Method Blank	5/7/2021	99%	nd							
GW-MW102-0521	5/7/2021	99%	nd							
GW-MW103-0521	5/7/2021	100%	nd							
GW-MW105-0521	5/7/2021	99%	nd							
GW-MW106-0521	5/7/2021	99%	nd							
GW-MW107-0521	5/7/2021	98%	nd							
GW-MW107-0521 Dup	5/7/2021	98%	nd							
Practical Quantitation Limit 100										
"nd" Indicates not detected at the listed detection limits.										
"int" Indicates that interference	prevents determinat	tion.								

Gasoline by NWTPH-Gx in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

HARDEL DATA GAPS INVESTIGATION PROJECT **Pioneer Technologies** Olympia, Washington Libby Project # L210505-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	$(\mu g/L)$
Method Blank	5/6/2021	95%	nd	nd
GW-MW102-0521	5/6/2021	94%	nd	nd
GW-MW103-0521	5/6/2021	91%	nd	nd
GW-MW105-0521	5/6/2021	86%	nd	nd
GW-MW106-0521	5/6/2021	93%	nd	nd
GW-MW107-0521	5/6/2021	92%	nd	nd
GW-MW107-0521 Dup	5/6/2021	90%	nd	nd
Practical Quantitation Limit			200	400
"nd" Indicates not detected at	the listed dete	ection limits.		

Diesel & Oil by NWTPH-Dx/Dx Extended in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Kory Dixon

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

	Matrix Sp	oike Sample Ic	lentification:	GW-MW107	-0521			
	Spiked Conc. (ug/L)	MS Response (ug/L)	MSD Response (ug/L)	MS Recovery (%)	MSD Recovery (%)	RPD	Limits Recovery (%)	Data Flag
Vinyl chloride	5.0	4.3	4.5	87	90	3.6	65-135	
1,1-Dichloroethene	5.0	4.7	5.1	95	102	7.7	65-135	
Methyl <i>tert</i> - Butyl Ether (MTBE)	5.0	5.3	5.0	105	101	4.3	65-135	
trans -1,2-Dichloroethene	5.0	5.4	5.6	109	113	3.6	65-135	
cis-1,2-Dichloroethene	5.0	4.9	4.9	98	99	1.0	65-135	
Benzene	5.0	4.4	4.5	88	89	1.1	65-135	
1,2-Dichloroethane (EDC)	5.0	4.7	4.8	95	96	1.9	65-135	
Trichloroethene (TCE)	5.0	4.8	4.8	95	95	0.2	65-135	
Toluene	5.0	4.2	4.4	84	87	3.5	65-135	
Tetrachloroethene (PCE)	5.0	5.8	4.9	115	98	15.9	65-135	
1,2-Dibromoethane (EDB) *	5.0	4.4	4.4	87	88	1.1	65-135	
Ethylbenzene	5.0	4.6	4.4	91	88	3.6	65-135	
Total Xylenes	15.0	13.0	12.7	87	85	2.3	65-135	
Naphthalene	5.0	3.8	4.0	75	79	5.2	65-135	
1-Methylnaphthalene	5.0	5.9	5.1	119	103	14.3	65-135	
2-Methylnaphthalene	5.0	6.4	5.1	128	102	23.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				113	113		65-135	
1,2-Dichloroethane-d4				106	106		65-135	
Toluene-d8				100	100		65-135	
4-Bromofluorobenzene				105	103		65-135	
ACCEPTABLE RPD IS 35%								

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Water

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	
Vinyl chloride	5.0	5.2	103	80-120	
1,1-Dichloroethene	5.0	5.5	110	80-120	
Methyl tert-Butyl Ether (MTBE)	5.0	5.6	112	80-120	
trans -1,2-Dichloroethene	5.0	4.9	97	80-120	
cis-1,2-Dichloroethene	5.0	5.6	112	80-120	
Benzene	5.0	5.3	107	80-120	
1,2-Dichloroethane (EDC)	5.0	5.3	106	80-120	
Trichloroethene (TCE)	5.0	5.5	111	80-120	
Toluene	5.0	5.3	105	80-120	
Tetrachloroethene (PCE)	5.0	4.9	97	80-120	
1,2-Dibromoethane (EDB) *	5.0	5.9	117	80-120	
Ethylbenzene	5.0	5.9	119	80-120	
Total Xylenes	15.0	17.4	116	80-120	
Naphthalene	5.0	5.5	109	80-120	
1-Methylnaphthalene	10.0	8.0	80	80-120	
2-Methylnaphthalene	10.0	8.5	85	80-120	
Surrogate Recovery					
Dibromofluoromethane			92	65-135	
1,2-Dichloroethane-d4			73	65-135	
Toluene-d8			69	65-135	
4-Bromofluorobenzene			103	65-135	

Laboratory Control Sample

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

CCV 5/7/2021

	Spiked	CCV	CCV	CCV	
	Conc.	Response	Recovery	Recovery	
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl chloride	10.0	9.8	98	80-120	
1,1-Dichloroethene	10.0	10.4	104	80-120	
Methyl tert-Butyl Ether (MTBE)	10.0	11.8	118	80-120	
trans-1,2-Dichloroethene	10.0	11.9	119	80-120	
cis-1,2-Dichloroethene	10.0	10.7	107	80-120	
Benzene	10.0	10.1	101	80-120	
1,2-Dichloroethane (EDC)	10.0	10.0	100	80-120	
Trichloroethene (TCE)	10.0	10.9	109	80-120	
Toluene	10.0	10.0	100	80-120	
Tetrachloroethene (PCE)	10.0	12.0	120	80-120	
1,2-Dibromoethane (EDB) *	10.0	11.3	113	80-120	
Ethylbenzene	10.0	11.5	115	80-120	
Total Xylenes	30.0	34.2	114	80-120	
Naphthalene	10.0	9.2	92	80-120	
1-Methylnaphthalene	10.0	11.0	110	80-120	
2-Methylnaphthalene	10.0	11.3	113	80-120	
Surrogate Recovery					
Dibromofluoromethane			94	65-135	
1,2-Dichloroethane-d4			73	65-135	
Toluene-d8			70	65-135	
4-Bromofluorobenzene			105	65-135	

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Gasoline	Gasoline	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
500 ppb LCS	5/7/2021	543	109%	70-130%
500 ppb LCSD	5/7/2021	582	116%	70-130%
RPD			6%	30%
Practical Quantitat	ion Limit	100		

QA/QC Gasoline by NWTPH-Gx in Water

CCV Gasoline by NWTPH-Gx in Water

Sample	Date	Gasoline	CCV Recovery	CCV Recovery Limits
Number	Analyzed	(µg/L)	(%)	(%)
1000 ppb CCV	5/7/2021	1076	108%	80-120%
Practical Quantitation	on Limit	100		

HARDEL DATA GAPS INVESTIGATION PROJECT Pioneer Technologies Olympia, Washington Libby Project # L210505-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Diesel	Diesel	CCV Recovery Limits
Number	Analyzed	$(\mu g/L)$	(% Recovery)	(%)
400 ppb LCS	5/6/2021	370	93%	70-130%
400 ppb LCSD	5/6/2021	370	93%	70-130%
RPD			0%	30%
Practical Quantitation Limit		50		

QA/QC Diesel by NWTPH-Dx in Water

CCV Diesel by NWTPH-Dx in Water

Sample	Date	Diesel	CCV	CCV Recovery Limits
Number	Analyzed	(µg/L)	(%)	(%)
CCV Kilvan FID 1 500 ppm	5/6/2021	430	86%	85-115%
CCV Kilvan FID 1 500 ppm	5/6/2021	440	88%	85-115%
Practical Quantitation Limit		50		

HARDEL DATA GAPS INVESTIGATION PROJECT

Pioneer Technologies

Libby Project # L210505-1

Date Received 5/5/2021 Time Received 2:58 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By RJK

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.3	_°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	2.3	_°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	🗌 N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:		_	
19. Comments.			

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Data Gaps Investigation Work Order Number: 2105070

May 28, 2021

Attention Kodey Eley:

Fremont Analytical, Inc. received 6 sample(s) on 5/6/2021 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

CLIENT: Project: Work Order:	Libby Environmental Hardel Data Gaps Investigation 2105070	work Order Sample Summary							
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received						
2105070-001	GW-MW102-0521	05/05/2021 1:00 PM	05/06/2021 10:27 AM						
2105070-002	GW-MW103-0521	05/05/2021 12:15 PM	05/06/2021 10:27 AM						
2105070-003	GW-MW105-0521	05/05/2021 10:55 AM	05/06/2021 10:27 AM						
2105070-004	GW-MW106-0521	05/05/2021 11:35 AM	05/06/2021 10:27 AM						
2105070-005	GW-MW107-0521	05/05/2021 1:50 PM	05/06/2021 10:27 AM						
2105070-006	GW-MW107-0521-01	05/05/2021 1:50 PM	05/06/2021 10:27 AM						

Case Narrative

WO#: **2105070** Date: **5/28/2021**

CLIENT:Libby EnvironmentalProject:Hardel Data Gaps Investigation

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2105070** Date Reported: **5/28/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: Libby Environmental	Ital Collection Date: 5/5/2021 1:00:00 PM										
Project: Hardel Data Gaps Inve	stigation										
Lab ID: 2105070-001	9			Matrix: W	/ater						
Client Sample ID: GW-MW102-	0521				ator						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>270 (SIM)</u>		Batc	h ID:	32250 Analyst: IH					
Nanhthalene	0 927	0 0993		ug/l	1	5/11/2021 1:05:07 PM					
2-Methylnanbthalene	0.527	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
1-Methylnaphthalene	0.144	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Acenanhthylene	0.000 ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Acenaphthene	0.968	0.0993		µg/⊑ ua/l	1	5/11/2021 1:05:07 PM					
Fluorene	0.298	0.0993		ua/l	1	5/11/2021 1:05:07 PM					
Phenanthrene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Anthracene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Fluoranthene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Pvrene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Benz(a)anthracene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Chrvsene	ND	0.0993		ua/L	1	5/11/2021 1:05:07 PM					
Benzo(b)fluoranthene	ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Benzo(k)fluoranthene	ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Benzo(a)pyrene	ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Indeno(1,2,3-cd)pyrene	ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Dibenz(a,h)anthracene	ND	0.0993		µg/L	1	5/11/2021 1:05:07 PM					
Benzo(g,h,i)perylene	ND	0.0993		μg/L	1	5/11/2021 1:05:07 PM					
Surr: 2-Fluorobiphenyl	84.2	33.2 - 139		%Rec	1	5/11/2021 1:05:07 PM					
Surr: Terphenyl-d14	94.3	24.6 - 136		%Rec	1	5/11/2021 1:05:07 PM					
Dissolved Metals by EPA Meth	nod 200.8			Batc	h ID:	32446 Analyst: EH					
Arsenic	2.91	1.00		µg/L	1	5/26/2021 11:01:53 PM					
Silver	ND	0.350		µg/L	1	5/11/2021 2:03:29 AM					

Client: Libby Environmental	ent: Libby Environmental Collection Date: 5/5/2021 12:15:00 PM										
Project: Hardel Data Gaps Invest	igation										
l ah ID: 2105070-002	.g			Matrix: W	/ater						
Client Sample ID: GW MW103.06	501				ator						
Chefit Sample ID. Gw-www105-00			<u> </u>								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Batc	h ID:	32250 Analyst: IH					
Naphthalene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
2-Methylnaphthalene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
1-Methylnaphthalene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Acenaphthylene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Acenaphthene	1.51	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Fluorene	0.200	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Phenanthrene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Anthracene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Fluoranthene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Pyrene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Benz(a)anthracene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Chrysene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Benzo(b)fluoranthene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Benzo(k)fluoranthene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Benzo(a)pyrene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Indeno(1,2,3-cd)pyrene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Dibenz(a,h)anthracene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Benzo(g,h,i)perylene	ND	0.0991		µg/L	1	5/11/2021 1:48:18 PM					
Surr: 2-Fluorobiphenyl	81.0	33.2 - 139		%Rec	1	5/11/2021 1:48:18 PM					
Surr: Terphenyl-d14	89.5	24.6 - 136		%Rec	1	5/11/2021 1:48:18 PM					
Dissolved Metals by EPA Metho	<u>d 200.8</u>			Batc	h ID:	32239 Analyst: EH					
Arsenic	ND	1.00		µg/L	1	5/11/2021 2:08:03 AM					
Silver	ND	0.350		µg/L	1	5/11/2021 2:08:03 AM					

Client: Libby Environmental	ent: Libby Environmental Collection Date: 5/5/2021 10:55:00 AM										
Project: Hardel Data Gaps Inves	stigation										
Lab ID: 2105070-003	9			Matrix: W	ater						
Client Sample ID: GW-MW105-	0521				ator						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
Polyaromatic Hydrocarbons by	y EPA Method 8	<u>270 (SIM)</u>		Batc	h ID:	32250 Analyst: IH					
Naphthalene	0.119	0.0997		ua/L	1	5/11/2021 2:09:56 PM					
2-Methylnaphthalene	ND	0.0997		ua/L	1	5/11/2021 2:09:56 PM					
1-Methvinaphthalene	ND	0.0997		ua/L	1	5/11/2021 2:09:56 PM					
Acenaphthylene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Acenaphthene	8.05	0.0997		μg/L	1	5/11/2021 2:09:56 PM					
Fluorene	3.04	0.0997		μg/L	1	5/11/2021 2:09:56 PM					
Phenanthrene	0.557	0.0997		μg/L	1	5/11/2021 2:09:56 PM					
Anthracene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Fluoranthene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Pyrene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Benz(a)anthracene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Chrysene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Benzo(b)fluoranthene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Benzo(k)fluoranthene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Benzo(a)pyrene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Indeno(1,2,3-cd)pyrene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Dibenz(a,h)anthracene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Benzo(g,h,i)perylene	ND	0.0997		µg/L	1	5/11/2021 2:09:56 PM					
Surr: 2-Fluorobiphenyl	85.7	33.2 - 139		%Rec	1	5/11/2021 2:09:56 PM					
Surr: Terphenyl-d14	106	24.6 - 136		%Rec	1	5/11/2021 2:09:56 PM					
Dissolved Metals by EPA Meth	od 200.8			Batc	h ID:	32239 Analyst: EH					
Arsenic	ND	1.00		µg/L	1	5/11/2021 2:12:37 AM					
Silver	ND	0.350		µg/L	1	5/11/2021 2:12:37 AM					

Collection Date: 5/5/2021 11:35:00 AM										
Project: Hardel Data Gaps Invest	idation									
Lab ID: 2105070-004	0			Matrix: W	/ater					
Client Sample ID: GW-MW106-0	521				ator					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed				
-										
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Batc	h ID:	32250 Analyst: IH				
Naphthalene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
2-Methylnaphthalene	ND	0.0999		μg/L	1	5/11/2021 2:31:32 PM				
1-Methylnaphthalene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Acenaphthylene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Acenaphthene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Fluorene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Phenanthrene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Anthracene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Fluoranthene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Pyrene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Benz(a)anthracene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Chrysene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Benzo(b)fluoranthene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Benzo(k)fluoranthene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Benzo(a)pyrene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Indeno(1,2,3-cd)pyrene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Dibenz(a,h)anthracene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Benzo(g,h,i)perylene	ND	0.0999		µg/L	1	5/11/2021 2:31:32 PM				
Surr: 2-Fluorobiphenyl	78.7	33.2 - 139		%Rec	1	5/11/2021 2:31:32 PM				
Surr: Terphenyl-d14	89.9	24.6 - 136		%Rec	1	5/11/2021 2:31:32 PM				
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID:	32239 Analyst: EH				
Arsenic	ND	1.00		µg/L	1	5/11/2021 2:17:10 AM				
Silver	ND	0.350		µg/L	1	5/11/2021 2:17:10 AM				

Client: Libby Environmental	ental Collection Date: 5/5/2021 1:50:00 PM										
Project: Hardel Data Gaps Investi	dation										
Lab ID: 2105070-005	0			Matrix: Water							
Client Sample ID: GW-MW107-05	521				ater						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
				D /							
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Batc	n id:	32250 Analyst: IH					
Naphthalene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
2-Methylnaphthalene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
1-Methylnaphthalene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Acenaphthylene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Acenaphthene	0.316	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Fluorene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Phenanthrene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Anthracene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Fluoranthene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Pyrene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Benz(a)anthracene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Chrysene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Benzo(b)fluoranthene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Benzo(k)fluoranthene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Benzo(a)pyrene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Indeno(1,2,3-cd)pyrene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Dibenz(a,h)anthracene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Benzo(g,h,i)perylene	ND	0.0984		µg/L	1	5/11/2021 2:53:20 PM					
Surr: 2-Fluorobiphenyl	89.4	33.2 - 139		%Rec	1	5/11/2021 2:53:20 PM					
Surr: Terphenyl-d14	103	24.6 - 136		%Rec	1	5/11/2021 2:53:20 PM					
Dissolved Metals by EPA Metho	<u>d 200.8</u>			Batc	h ID:	32365 Analyst: EH					
Arsenic	ND	1.00		µg/L	1	5/21/2021 11:22:06 PM					
Silver	ND	0.350		µg/L	1	5/21/2021 11:22:06 PM					

Client: Libby Environmental	tal Collection Date: 5/5/2021 1:50:00 PM										
Project: Hardel Data Gaps Inves	stigation										
Lab ID: 2105070-006	3			Matrix: W	/ater						
Client Sample ID: GW-MW107-	0521-01				ator						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>270 (SIM)</u>		Batc	h ID:	32250 Analyst: IH					
Naphthalene	ND	0.0994		ua/L	1	5/11/2021 3:15:02 PM					
2-Methylnaphthalene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
1-Methylnaphthalene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Acenaphthylene	ND	0.0994		μg/L	1	5/11/2021 3:15:02 PM					
Acenaphthene	0.317	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Fluorene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Phenanthrene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Anthracene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Fluoranthene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Pyrene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Benz(a)anthracene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Chrysene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Benzo(b)fluoranthene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Benzo(k)fluoranthene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Benzo(a)pyrene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Indeno(1,2,3-cd)pyrene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Dibenz(a,h)anthracene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Benzo(g,h,i)perylene	ND	0.0994		µg/L	1	5/11/2021 3:15:02 PM					
Surr: 2-Fluorobiphenyl	84.9	33.2 - 139		%Rec	1	5/11/2021 3:15:02 PM					
Surr: Terphenyl-d14	101	24.6 - 136		%Rec	1	5/11/2021 3:15:02 PM					
Dissolved Metals by EPA Meth	nod 200.8			Batc	h ID:	32365 Analyst: EH					
Arsenic	ND	1.00		µg/L	1	5/21/2021 11:40:19 PM					
Silver	ND	0.350		µg/L	1	5/21/2021 11:40:19 PM					

Work Order:	2105070									QC S			PORT
CLIENT:	Libby Enviro	nmental							D:-				
Project:	Hardel Data	Gaps Inve	stigation						DIS	solved we	als by EP	A Method	a 200.8
Sample ID: ICB-	-32239	SampType	e: ICB			Units: µg/L		Prep Da	te: 5/10/20)21	RunNo: 67	151	
Client ID: ICB		Batch ID:	32239					Analysis Da	te: 5/10/20)21	SeqNo: 13	53206	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	1.00									
Silver			ND	0.350									
Sample ID: ICV-	32239	SampType	e: ICV			Units: µg/L		Prep Da	te: 5/10/20)21	RunNo: 67	151	
Client ID: ICV		Batch ID:	32239				Analysis Date: 5/10/2021			SeqNo: 1353208			
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			107	1.00	100.0	0	107	90	110				
Silver			4.94	0.350	5.000	0	98.8	90	110				
Sample ID: CCV	/-32239A	SampType	e: CCV			Units: µg/L		Prep Da	te: 5/11/20)21	RunNo: 67	151	
Client ID: CCV	1	Batch ID:	32239					Analysis Da	te: 5/11/20)21	SeqNo: 13	53209	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			119	1.00	100.0	0	119	85	115				S
Silver			5.68	0.350	5.000	0	114	85	115				
S - Outlying s	pike recovery obser	ved (high bia	s). Detection	s will be qu	alified with a C	Q.							
Sample ID: CCE	3-32239A	SampType	e: CCB			Units: µg/L		Prep Da	te: 5/11/20)21	RunNo: 67	151	
Client ID: CCE	3	Batch ID:	32239					Analysis Da	te: 5/11/20)21	SeqNo: 13	53210	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	1.00									
Silver			ND	0.350									

Work Or	der:	2105070									QC S	SUMMAI		PORT
CLIENT:		Libby Enviro	nmental							Died	solved Met	ale by ED	A Mothor	4 200 8
Project:		Hardel Data	Gaps Inves	tigation						DIS				200.0
Sample ID:	MB-322	39FB	SampType:	MBLK			Units: µg/L		Prep Dat	e: 5/7/2021		RunNo: 671	151	
Client ID:	MBLKW	V	Batch ID:	32239					Analysis Dat	e: 5/11/202	:1	SeqNo: 13	53211	
Analyte			R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
NOTES: Filter Bla	ink													
Sample ID:	MB-322	39	SampType:	MBLK			Units: µg/L		Prep Dat	e: 5/7/2021		RunNo: 671	151	
Client ID:	MBLKW	V	Batch ID:	32239					Analysis Dat	e: 5/11/202	:1	SeqNo: 13	53212	
Analyte			R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID:	210504	5-002CDUP	SampType:	DUP			Units: µg/L		Prep Dat	e: 5/7/2021		RunNo: 671	151	
Client ID:	ватсн		Batch ID:	32239					Analysis Dat	e: 5/11/202	:1	SeqNo: 13	53215	
Analyte			R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver				ND	0.350						0		30	
Sample ID:	CCV-32	239B	SampType:	CCV			Units: µg/L		Prep Dat	e: 5/11/202	1	RunNo: 671	151	
Client ID:	ссу		Batch ID:	32239					Analysis Dat	e: 5/11/202	:1	SeqNo: 13	53221	
Analyte			R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				125	1.00	100.0	0	125	85	115				S
Silver				6.20	0.350	5.000	0	124	85	115				S
NOTES:														

S - Outlying spike recovery observed (high bias). Detections will be qualified with a Q.

Work Order	r: 2	2105070												
CLIENT:	I	_ibby Enviror	nmental											
Project:	I	Hardel Data	Gaps Inve	stigation						Dis	solved Met	tals by EP	A Method	d 200.8
Sample ID: CC	B-322	239B	SampType	: CCB			Units: µg/L		Prep Da	te: 5/11/20)21	RunNo: 67	151	
Client ID: CC	в		Batch ID:	32239					Analysis Da	te: 5/11/20	021	SeqNo: 13	53222	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID: CC	CV-322	39C	SampType	e: CCV			Units: µg/L		Prep Da	te: 5/11/20)21	RunNo: 67	151	
Client ID: CC	v		Batch ID:	32239					Analysis Da	te: 5/11/20)21	SeqNo: 13	53232	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				124	1.00	100.0	0	124	85	115				S
Silver				6.04	0.350	5.000	0	121	85	115				S
NOTES: S - Outlying :	spike	recovery observ	ved (high bia	s). Detection	s will be qu	alified with a 0	Q.							
Sample ID: CC	B-322	239C	SampType	E CCB			Units: µg/L		Prep Da	te: 5/11/20)21	RunNo: 67	151	
Client ID: CC	в		Batch ID:	32239					Analysis Da	te: 5/11/20)21	SeqNo: 13	53233	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID: ICE	B-322	39A	SampType	: ICB			Units: µg/L		Prep Da	te: 5/12/20)21	RunNo: 67	151	
Client ID: ICE	в		Batch ID:	32239					Analysis Da	te: 5/12/20)21	SeqNo: 13	54320	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									

Fremont
Analytical

Work Or	der:	2105070									00.5			PORT		
CLIENT:		Libby Enviro	onmental													
Project:		Hardel Data	a Gaps Inve	stigation						Dis	solved Met	als by EP	A Method	1 200.8		
Sample ID:	ICV-32	239A	SampType	: ICV			Units: µg/L		Prep Da	te: 5/12/20	21	RunNo: 67	151			
Client ID:	ICV		Batch ID:	32239					Analysis Da	ite: 5/12/20	21	SeqNo: 13	54322			
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Arsenic				108	1.00	100.0	0	108	90	110						
Silver				4.79	0.350	5.000	0	95.9	90	110						
Sample ID:	CCV-3	2239D	SampType	CCV			Units: µg/L		Prep Da	te: 5/12/20	21	RunNo: 67	151			
Client ID:	ссу		Batch ID:	32239					Analysis Da	ite: 5/12/20	21	SeqNo: 13	54323			
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Arsenic				106	1.00	100.0	0	106	85	115						
Silver				5.10	0.350	5.000	0	102	85	115						
Sample ID:	CCB-3	2239D	SampType	CCB			Units: µg/L		Prep Da	te: 5/12/20	21	RunNo: 67	151			
Client ID:	ССВ		Batch ID:	32239					Analysis Da	te: 5/12/20	21	SeqNo: 13	54324			
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Arsenic				ND	1.00											
Silver				ND	0.350											
Sample ID:	LCS-3	2239	SampType	: LCS			Units: µg/L		Prep Da	te: 5/7/202	1	RunNo: 67	151			
Client ID:	LCSW		Batch ID:	32239					Analysis Da	ite: 5/12/20	21	SeqNo: 13	54326			
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Arsenic				111	1.00	100.0	0	111	85	115						
Silver				5.29	0.350	5.000	0	106	85	115						

Work Ord	ler:	2105070									00 9			
CLIENT:		Libby Enviro	onmental											
Project:		Hardel Data	a Gaps Inve	stigation						Dis	ssolved Met	als by EP	A Method	200.8
Sample ID: 2	210504	15-002CDUP	SampType	: DUP			Units: µg/L		Prep Da	te: 5/7/202	21	RunNo: 671	151	
Client ID:	BATCH	1	Batch ID:	32239					Analysis Da	te: 5/12/20)21	SeqNo: 13	54328	
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic NOTES: R - High R	RPD ob	oserved.		6.46	1.00						19.22	99.4	30	R
Sample ID: 2	210504	15-002CMS	SampType	: MS			Units: µg/L		Prep Da	te: 5/7/202	21	RunNo: 671	151	
Client ID:	BATCH	4	Batch ID:	32239					Analysis Da	te: 5/12/20)21	SeqNo: 13	54329	
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				550	1.00	500.0	8.022	108	70	130				
Silver				25.4	0.350	25.00	0	102	70	130				
Sample ID: 2	210504	15-002CMSD	SampType	: MSD			Units: µg/L		Prep Da	te: 5/7/20 2	21	RunNo: 671	151	
Client ID:	BATCH	4	Batch ID:	32239					Analysis Da	te: 5/12/20)21	SeqNo: 13	54330	
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				518	1.00	500.0	8.022	102	70	130	633.8	20.1	30	
Silver				26.7	0.350	25.00	0	107	70	130	29.21	8.82	30	
Sample ID: (CCV-3	2239E	SampType	ccv			Units: µg/L		Prep Da	te: 5/12/20)21	RunNo: 671	151	
Client ID: (ccv		Batch ID:	32239					Analysis Da	te: 5/12/20)21	SeqNo: 13	54333	
Analyte			I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				103	1.00	100.0	0	103	85	115				
Silver				4.75	0.350	5.000	0	95.0	85	115				

Work Order	r: 2105070								00 9			
CLIENT:	Libby Envir	onmental										
Project:	Hardel Data	a Gaps Investigation						Diss	olved Met	als by EP	A Method	d 200.8
Sample ID: CC	B-32239E	SampType: CCB			Units: µg/L		Prep Da	te: 5/12/2021	I	RunNo: 671	151	
Client ID: CC	В	Batch ID: 32239					Analysis Da	te: 5/12/2021	I	SeqNo: 13	54334	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Silver		ND	0.350									
Sample ID: 210	05070-005BDUP	SampType: DUP			Units: µg/L		Prep Da	te: 5/7/2021		RunNo: 671	151	
Client ID: GV	V-MW107-0521	Batch ID: 32239					Analysis Da	te: 5/12/2021	I	SeqNo: 135	54338	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		35.1	1.00						20.51	52.6	30	R
Silver		ND	0.350						0		30	
NOTES: R - High RPI	D observed.											
Sample ID: CC	CV-32239F	SampType: CCV			Units: µg/L		Prep Da	te: 5/13/2021	I	RunNo: 671	151	
Client ID: CC	CV	Batch ID: 32239					Analysis Da	te: 5/13/2021	I	SeqNo: 135	54339	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		107	1.00	100.0	0	107	85	115				
Silver		5.02	0.350	5.000	0	100	85	115				
Sample ID: CC	CB-32239F	SampType: CCB			Units: µg/L		Prep Da	te: 5/13/2021	1	RunNo: 671	51	
Client ID: CC	В	Batch ID: 32239					Analysis Da	te: 5/13/2021	I	SeqNo: 13	54340	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Silver		ND	0.350									

Work Order:	2105070								00 9	SUMMA	RY REF	PORT
CLIENT:	Libby Enviro	nmental									A	
Project:	Hardel Data	Gaps Investigat	ion					Dis	solved Me	tals by EP	A Method	a 200.8
Sample ID: ICB-:	32365	SampType: ICB			Units: µg/L		Prep Da	te: 5/21/20)21	RunNo: 67	425	
Client ID: ICB		Batch ID: 323	65				Analysis Da	te: 5/21/20)21	SeqNo: 13	59607	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Silver		ND	0.330									
Sample ID: ICV-3	32365	SampType: ICV			Units: µg/L		Prep Da	te: 5/21/20)21	RunNo: 67	425	
Client ID: ICV		Batch ID: 323	65				Analysis Da	te: 5/21/20)21	SeqNo: 13	59609	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		105	1.00	100.0	0	105	90	110				
Silver		5.13	0.350	5.000	0	103	90	110				
Sample ID: CCV-	-32365A	SampType: CCV	1		Units: µg/L		Prep Da	te: 5/21/20)21	RunNo: 67	425	
Client ID: CCV		Batch ID: 323	65				Analysis Da	te: 5/21/20)21	SeqNo: 13	59610	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		100	1.00	100.0	0	100	85	115				
Silver		5.18	0.350	5.000	0	104	85	115				
Sample ID: CCB	-32365A	SampType: CCE	3		Units: µg/L		Prep Da	te: 5/21/20)21	RunNo: 67	425	
Client ID: CCB		Batch ID: 323	65				Analysis Da	te: 5/21/20)21	SeqNo: 13	59611	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Silver		ND	0.350									

Work Order:	: 2105070								00.5			ORT
CLIENT:	Libby Envir	onmental										
Project:	Hardel Data	a Gaps Investigat	ion					Dis	solved Met	als by EP	A Method	200.8
Sample ID: MB-	-32365	SampType: MBL	.К		Units: µg/L		Prep Dat	e: 5/20/20	21	RunNo: 674	125	
Client ID: MBI	LKW	Batch ID: 3236	65				Analysis Dat	e: 5/21/20	21	SeqNo: 13	59612	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Silver		ND	0.350									
Sample ID: LCS	S-32365	SampType: LCS			Units: µg/L		Prep Dat	e: 5/20/20	21	RunNo: 674	125	
Client ID: LCS	SW	Batch ID: 3236	65				Analysis Dat	e: 5/21/20	21	SeqNo: 13	59613	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		103	1.00	100.0	0	103	85	115				
Silver		4.95	0.350	5.000	0	98.9	85	115				
Sample ID: 210	5070-005BDUP	SampType: DUP	,		Units: µg/L		Prep Dat	e: 5/20/20	21	RunNo: 674	425	
Client ID: GW	-MW107-0521	Batch ID: 3236	65				Analysis Dat	e: 5/21/20	21	SeqNo: 13	59615	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00						0		30	
Silver		ND	0.350						0		30	
Sample ID: 210	5070-005BMS	SampType: MS			Units: µg/L		Prep Dat	e: 5/20/20	21	RunNo: 674	125	
Client ID: GW	-MW107-0521	Batch ID: 3236	65				Analysis Dat	e: 5/21/20	21	SeqNo: 13	59616	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		499	1.00	500.0	0.5810	99.6	70	130				
Silver		23.8	0.350	25.00	0	95.4	70	130				

Fremont
Analytical

Work Ord	ler: 2	2105070									00 5	SUMMAI	RY REF	PORT
CLIENT:	I	Libby Enviro	nmental							D:-			A Matha	4 000 0
Project:		Hardel Data	Gaps Inves	stigation						DIS	solved we	als by EP	A Method	a 200.8
Sample ID: 2	2105070	-005BMSD	SampType	: MSD			Units: µg/L		Prep Date	e: 5/20/20	21	RunNo: 674	125	
Client ID:	GW-MW	107-0521	Batch ID:	32365					Analysis Date	e: 5/21/20	21	SeqNo: 13	59617	
Analyte			F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				508	1.00	500.0	0.5810	102	70	130	498.6	1.92	30	
Silver				24.1	0.350	25.00	0	96.6	70	130	23.84	1.25	30	
Sample ID:	CCV-323	365B	SampType	CCV			Units: µg/L		Prep Date	e: 5/21/20	21	RunNo: 674	125	
Client ID:	CCV		Batch ID:	32365					Analysis Date	e: 5/21/20	21	SeqNo: 13	59620	
Analyte			F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				96.6	1.00	100.0	0	96.6	85	115				
Silver				5.16	0.350	5.000	0	103	85	115				
Sample ID:	CCB-32	365B	SampType	: CCB			Units: µg/L		Prep Date	e: 5/21/20	21	RunNo: 674	125	
Client ID:	ССВ		Batch ID:	32365					Analysis Date	e: 5/21/20	21	SeqNo: 13	59621	
Analyte			F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID: I	ICB-324	46	SampType	: ICB			Units: µg/L		Prep Date	e: 5/26/20	21	RunNo: 67	575	
Client ID: I	ICB		Batch ID:	32446					Analysis Date	e: 5/26/20	21	SeqNo: 136	62848	
Analyte			F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Sample ID: I	ICV-324	46	SampType	: ICV			Units: µg/L		Prep Date	e: 5/26/20	21	RunNo: 67	575	
Client ID:	ICV		Batch ID:	32446					Analysis Date	e: 5/26/20	21	SeqNo: 136	62850	
Analyte			F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				108	1.00	100.0	0	108	90	110				

Work Order:	2105070					OC SUM	MARY REPORT
CLIENT:	Libby Envir	onmental					
Project:	Hardel Dat	a Gaps Investigation				Dissolved Metals	by EPA Method 200.8
Sample ID: ICV-3	32446	SampType: ICV			Units: µg/L	Prep Date: 5/26/2021 Rur	nNo: 67575
Client ID: ICV		Batch ID: 32446				Analysis Date: 5/26/2021 Sec	qNo: 1362850
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sample ID: CCV	-32446A	SampType: CCV			Units: µg/L	Prep Date: 5/26/2021 Rur	nNo: 67575
Client ID: CCV		Batch ID: 32446				Analysis Date: 5/26/2021 Sec	qNo: 1362851
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic		96.8	1.00	100.0	0	96.8 85 115	
Sample ID: CCB	-32446A	SampType: CCB			Units: µg/L	Prep Date: 5/26/2021 Rur	nNo: 67575
Client ID: CCB		Batch ID: 32446				Analysis Date: 5/26/2021 Sec	qNo: 1362852
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic		ND	1.00				
Sample ID: MB-3	32446	SampType: MBLK			Units: µg/L	Prep Date: 5/26/2021 Rur	nNo: 67575
Client ID: MBL	ĸw	Batch ID: 32446				Analysis Date: 5/26/2021 Sec	qNo: 1362853
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic		ND	1.00				
Sample ID: LCS-	32446	SampType: LCS			Units: µg/L	Prep Date: 5/26/2021 Rur	nNo: 67575
Client ID: LCS	N	Batch ID: 32446				Analysis Date: 5/26/2021 Sec	qNo: 1362854
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic		102	1.00	100.0	0	102 85 115	

Work Orde	er: 2105070					OC SUMMARY REPORT
CLIENT:	Libby Enviro	onmental				
Project:	Hardel Data	Gaps Investigation				Dissolved Metals by EPA Method 200.8
Sample ID: 21	105070-001BDUP	SampType: DUP			Units: µg/L	Prep Date: 5/26/2021 RunNo: 67575
Client ID: G	GW-MW102-0521	Batch ID: 32446				Analysis Date: 5/26/2021 SeqNo: 1362856
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic		2.60	1.00			2.912 11.4 30
Sample ID: 21	105070-001BMS	SampType: MS			Units: µg/L	Prep Date: 5/26/2021 RunNo: 67575
Client ID: G	GW-MW102-0521	Batch ID: 32446				Analysis Date: 5/26/2021 SeqNo: 1362857
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic		476	1.00	500.0	2.006	94.8 70 130
Sample ID: C	CV-32446B	SampType: CCV			Units: µg/L	Prep Date: 5/26/2021 RunNo: 67575
Client ID: C	CV	Batch ID: 32446				Analysis Date: 5/26/2021 SeqNo: 1362858
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic		98.9	1.00	100.0	0	98.9 85 115
Sample ID: C	CB-32446B	SampType: CCB			Units: µg/L	Prep Date: 5/26/2021 RunNo: 67575
Client ID: C	СВ	Batch ID: 32446				Analysis Date: 5/26/2021 SeqNo: 1362859
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic		ND	1.00			
Sample ID: 21	105070-001BMSD	SampType: MSD			Units: µg/L	Prep Date: 5/26/2021 RunNo: 67575
Client ID: G	GW-MW102-0521	Batch ID: 32446				Analysis Date: 5/26/2021 SeqNo: 1362860
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic		490	1.00	500.0	2.006	97.6 70 130 476.2 2.86 30

Work Order:	2105070							00	SUMMARY RE	PORT
CLIENT:	Libby Enviror	nmental								
Project:	Hardel Data	Gaps Investigation						Dissolved Me	etals by EPA Metho	d 200.8
Sample ID: CCV-3	32446C	SampType: CCV			Units: µg/L		Prep Da	te: 5/27/2021	RunNo: 67575	
Client ID: CCV		Batch ID: 32446					Analysis Da	te: 5/27/2021	SeqNo: 1362865	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		101	1.00	100.0	0	101	85	115		
Sample ID: CCB-3	32446C	SampType: CCB			Units: µg/L		Prep Dat	te: 5/27/2021	RunNo: 67575	
Client ID: CCB		Batch ID: 32446					Analysis Da	te: 5/27/2021	SeqNo: 1362866	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		ND	1.00							

Fremont
Analytical

Work Order:	2105070									00.5	SUMMAF		PORT
CLIENT:	Libby Environr	nental					_						
Project:	Hardel Data G	aps Inves	stigation				Ро	Iyaroma	tic Hydroc	arbons by	y EPA Met	hod 8270	D (SIM)
Sample ID: PAH IC	СВ	SampType	ICB			Units: µg/L		Prep Da	te: 4/2/2021		RunNo: 663	29	
Client ID: ICB		Batch ID:	32250					Analysis Da	te: 4/2/2021		SeqNo: 135	6895	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			ND	0.100									
2-Methylnaphthale	ne		ND	0.100									
1-Methylnaphthale	ne		ND	0.100									
Acenaphthylene			ND	0.100									
Acenaphthene			ND	0.100									
Fluorene			ND	0.100									
Phenanthrene			ND	0.100									
Anthracene			ND	0.100									
Fluoranthene			ND	0.100									
Pyrene			ND	0.100									
Benz(a)anthracene	9		ND	0.100									
Chrysene			ND	0.100									
Benzo(b)fluoranthe	ene		ND	0.100									
Benzo(k)fluoranthe	ene		ND	0.100									
Benzo(a)pyrene			ND	0.100									
Indeno(1,2,3-cd)py	rene		ND	0.100									
Dibenz(a,h)anthrac	cene		ND	0.100									
Benzo(g,h,i)peryler	ne		ND	0.100									
Surr: 2-Fluorobip	ohenyl		495		500.0		99.0	72.7	131				
Surr: Terphenyl-	d14		562		500.0		112	74.6	134				
Sample ID: PAH IC	CV	SampType	ICV			Units: µg/L		Prep Da	te: 4/2/2021		RunNo: 663	29	
Client ID: ICV		Batch ID:	32250					Analysis Da	te: 4/2/2021		SeqNo: 135	6896	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			1,050	0.100	1,000	0	105	70	130				
2-Methylnaphthale	ne		1,050	0.100	1,000	0	105	70	130				
1-Methylnaphthale	ne		1,080	0.100	1,000	0	108	70	130				
Acenaphthylene			1,090	0.100	1,000	0	109	70	130				
Acenaphthene			1,050	0.100	1,000	0	105	70	130				

Original

OC SUMMARY REPORT

Work Order: 2105070

CLIENT:	Libby Envi	ronmental										
Project:	Hardel Da	ta Gaps Investigatio	n			Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)						
Sample ID: PAH I	cv	V SampType: ICV			Units: µg/L		Prep Date: 4/2/2021			RunNo: 66329		
Client ID: ICV		Batch ID: 32250				Analysis Date: 4/2/2021				SeqNo: 1356896		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene		1,090	0.100	1,000	0	109	70	130				
Phenanthrene		1,080	0.100	1,000	0	108	70	130				
Anthracene		1,060	0.100	1,000	0	106	70	130				
Fluoranthene		1,090	0.100	1,000	0	109	70	130				
Pyrene		1,100	0.100	1,000	0	110	70	130				
Benz(a)anthracene	e	1,070	0.100	1,000	0	107	70	130				
Chrysene		1,080	0.100	1,000	0	108	70	130				
Benzo(b)fluoranthe	ene	1,020	0.100	1,000	0	102	70	130				
Benzo(k)fluoranthe	ene	1,200	0.100	1,000	0	120	70	130				
Benzo(a)pyrene		1,210	0.100	1,000	0	121	70	130				
Indeno(1,2,3-cd)py	/rene	1,080	0.100	1,000	0	108	70	130				
Dibenz(a,h)anthrac	cene	1,100	0.100	1,000	0	110	70	130				
Benzo(g,h,i)peryle	ne	1,090	0.100	1,000	0	109	70	130				
Surr: 2-Fluorobi	phenyl	524		500.0		105	70.2	145				
Surr: Terphenyl-	-d14	574		500.0		115	71.3	142				
Sample ID: CCV-3	ample ID: CCV-32251B SampType: CCV				Units: µg/L		Prep Da	te: 5/11/20	21	RunNo: 67	194	
Client ID: CCV		Batch ID: 32250				Analysis Date: 5/11/2021		SeqNo: 1356911				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		849	0.100	1,000	0	84.9	80	120				
2-Methylnaphthale	ne	859	0.100	1,000	0	85.9	80	120				

Pyrene

1-Methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluoranthene

Fluorene

895

873

877

881

860

854

874

846

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

1,000

1,000

1,000

1,000

1,000

1,000

1,000

1,000

0

0

0

0

0

0

0

0

89.5

87.3

87.7

88.1

86.0

85.4

87.4

84.6

80

80

80

80

80

80

80

80

120

120

120

120

120

120

120

120

Work Order:	2105070								00.9		
CLIENT:	Libby Enviror	nmental									
Project:	Hardel Data	a Gaps Investigation Polyaromatic Hydrocarbons by EPA Method 8270									0 (SIM)
Sample ID: CCV-32251B		SampType: CCV				Units: µg/L		Prep Dat	e: 5/11/2021	RunNo: 67194	
Client ID: CCV		Batch ID:	32250					Analysis Dat	e: 5/11/2021	SeqNo: 1356911	
Analyte		R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benz(a)anthracene	e		897	0.100	1,000	0	89.7	80	120		
Chrysene			832	0.100	1,000	0	83.2	80	120		
Benzo(b)fluoranthe	ene		914	0.100	1,000	0	91.4	80	120		
Benzo(k)fluoranthene			801	0.100	1,000	0	80.1	80	120		
Benzo(a)pyrene			877	0.100	1,000	0	87.7	80	120		
Indeno(1,2,3-cd)pyrene			913	0.100	1,000	0	91.3	80	120		
Dibenz(a,h)anthrac	cene		934	0.100	1,000	0	93.4	80	120		
Benzo(g,h,i)perylei	ne		842	0.100	1,000	0	84.2	80	120		
Surr: 2-Fluorobi	phenyl		425		500.0		85.0	70.2	145		
Surr: Terphenyl-d14			473		500.0		94.7	71.3	142		
Sample ID: MB-32	2250	SampType:	MBLK			Units: µg/L		Prep Dat	e: 5/10/2021	RunNo: 67194	
Sample ID: MB-32 Client ID: MBLK	2250 W	SampType: Batch ID:	MBLK 32250			Units: µg/L		Prep Dat Analysis Dat	e: 5/10/2021 e: 5/11/2021	RunNo: 67194 SeqNo: 1353957	
Sample ID: MB-32 Client ID: MBLK Analyte	2250 W	SampType: Batch ID: R	MBLK 32250 Result	RL	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene	2250 W	SampType: Batch ID: R	MBLK 32250 Result	RL 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale	2250 W	SampType: Batch ID: R	MBLK 32250 Result ND ND	RL 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale	2250 7W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND	RL 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	2250 W ne ne	SampType: Batch ID:	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	2250 W ne ne	SampType: Batch ID:	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthe	2250 W ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Sample ID: MB-32 Client ID: MBLK Analyte Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthe Benzo(k)fluoranthe	2250 W ne ne ne	SampType: Batch ID: R	MBLK 32250 Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986 0.0986	SPK value	Units: µg/L SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 5/10/2021 e: 5/11/2021 HighLimit RPD Ref Val	RunNo: 67194 SeqNo: 1353957 %RPD RPDLimit	Qual
Fremont											

Analytical											

Work Order:	2105070								00 5	SUMMA	RY REF	PORT
CLIENT:	Libby Environment	al				-						
Project:	Hardel Data Gaps	Investigation				Po	lyaroma	tic Hydro	ocarbons b	y EPA Met	thod 8270	D (SIM)
Sample ID: MB-322	50 Sam	pType: MBLK			Units: µg/L		Prep Da	te: 5/10/20	21	RunNo: 671	194	
Client ID: MBLKW	V Batc	h ID: 32250					Analysis Da	te: 5/11/20	21	SeqNo: 135	53957	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyre	ene	ND	0.0986									
Dibenz(a,h)anthrace	ene	ND	0.0986									
Benzo(g,h,i)perylene	e	ND	0.0986									
Surr: 2-Fluorobiph	nenyl	1.51		1.972		76.7	33.2	139				
Surr: Terphenyl-d	14	1.89		1.972		95.7	24.6	136				
Sample ID: LCS-32	250 Sam	pType: LCS			Units: µg/L		Prep Da	te: 5/10/20	21	RunNo: 671	194	
Client ID: LCSW	Batc	h ID: 32250					Analysis Da	te: 5/11/20	21	SeqNo: 135	53958	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		2.76	0.0987	3.949	0	69.9	24.1	124				
2-Methylnaphthalene	е	2.92	0.0987	3.949	0	73.9	32	129				
1-Methylnaphthalene	е	3.00	0.0987	3.949	0	76.0	30.4	125				
Acenaphthylene		3.02	0.0987	3.949	0	76.4	34.5	130				
Acenaphthene		3.07	0.0987	3.949	0	77.7	33.1	126				
Fluorene		3.37	0.0987	3.949	0	85.2	34.4	134				
Phenanthrene		3.40	0.0987	3.949	0	86.1	41.2	130				
Anthracene		3.29	0.0987	3.949	0	83.4	34.3	127				
Fluoranthene		3.48	0.0987	3.949	0	88.0	42.2	135				
Pyrene		3.33	0.0987	3.949	0	84.4	40.9	133				
Benz(a)anthracene		3.34	0.0987	3.949	0	84.5	33.1	130				
Chrysene		3.07	0.0987	3.949	0	77.7	34.7	113				
Benzo(b)fluoranthen	ne	3.10	0.0987	3.949	0	78.6	24.9	128				
Benzo(k)fluoranthen	e	2.95	0.0987	3.949	0	74.7	21.3	131				
Benzo(a)pyrene		3.27	0.0987	3.949	0	82.8	23.2	139				
Indeno(1,2,3-cd)pyre	ene	2.88	0.0987	3.949	0	72.8	14.9	123				
Dibenz(a,h)anthrace	ene	2.96	0.0987	3.949	0	75.0	12.2	125				
Benzo(g,h,i)perylene	Э	2.68	0.0987	3.949	0	67.7	11.8	122				
Surr: 2-Fluorobiph	nenyl	1.56		1.974		79.1	33.2	139				
Surr: Terphenyl-d	14	1.88		1.974		95.0	24.6	136				

Work Order: CLIENT: Project:	2105070 Libby Enviror Hardel Data	nmental Gaps Inve	stigation				Pc	olyaroma	tic Hydro	QC S	SUMMAI y EPA Met	RY REF	PORT 0 (SIM)
Sample ID: LCS-32	2250	SampType	LCS			Units: µg/L		Prep Dat	te: 5/10/20	21	RunNo: 671	94	
Client ID: LCSW		Batch ID:	32250					Analysis Da	te: 5/11/20	21	SeqNo: 13	53958	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: LCSD-3	32250	SampType	LCSD			Units: µg/L		Prep Da	te: 5/10/20	21	RunNo: 67 1	94	
Client ID: LCSW0	02	Batch ID:	32250					Analysis Da	te: 5/11/20	21	SeqNo: 13	53959	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			1.76	0.0990	3.962	0	44.5	24.1	124	2.762	44.2	30	R
2-Methylnaphthalen	ne		1.88	0.0990	3.962	0	47.3	32	129	2.916	43.5	30	R
1-Methylnaphthalen	ne		1.95	0.0990	3.962	0	49.3	30.4	125	3.003	42.4	30	R
Acenaphthylene			1.96	0.0990	3.962	0	49.6	34.5	130	3.016	42.2	30	R
Acenaphthene			2.02	0.0990	3.962	0	51.1	33.1	126	3.067	41.0	30	R
Fluorene			2.21	0.0990	3.962	0	55.7	34.4	134	3.366	41.6	30	R
Phenanthrene			2.30	0.0990	3.962	0	58.1	41.2	130	3.402	38.6	30	R
Anthracene			2.28	0.0990	3.962	0	57.5	34.3	127	3.294	36.5	30	R
Fluoranthene			2.45	0.0990	3.962	0	61.8	42.2	135	3.476	34.7	30	R
Pyrene			2.33	0.0990	3.962	0	58.9	40.9	133	3.335	35.3	30	R
Benz(a)anthracene			2.40	0.0990	3.962	0	60.5	33.1	130	3.338	32.9	30	R
Chrysene			2.18	0.0990	3.962	0	55.0	34.7	113	3.068	33.9	30	R
Benzo(b)fluoranther	ne		2.24	0.0990	3.962	0	56.6	24.9	128	3.103	32.2	30	R
Benzo(k)fluoranther	ne		2.10	0.0990	3.962	0	53.1	21.3	131	2.948	33.5	30	R
Benzo(a)pyrene			2.35	0.0990	3.962	0	59.4	23.2	139	3.271	32.7	30	R
Indeno(1,2,3-cd)pyr	rene		2.08	0.0990	3.962	0	52.6	14.9	123	2.876	32.0	30	R
Dibenz(a,h)anthrace	ene		2.14	0.0990	3.962	0	54.1	12.2	125	2.963	32.1	30	R
Benzo(g,h,i)perylen	е		1.92	0.0990	3.962	0	48.5	11.8	122	2.675	32.7	30	R
Surr: 2-Fluorobipl	henyl		0.998		1.981		50.4	33.2	139		0	0	
Surr: Terphenyl-d	114		1.35		1.981		68.0	24.6	136		0	0	

R - High RPD observed, spike recovery is within range.

Work Order:	2105070									2.00	SUMMAI	RY REF	PORT
CLIENT:	Libby Enviro	nmental					_						
Project:	Hardel Data	Gaps Inves	stigation				Ро	lyaromati	c Hydro	ocarbons b	y EPA Me	thod 827	O (SIM)
Sample ID: 21050	70-001AMS	SampType	: MS			Units: µg/L		Prep Date	e: 5/10/20	21	RunNo: 671	194	
Client ID: GW-M	W102-0521	Batch ID:	32250					Analysis Date	e: 5/11/20	21	SeqNo: 13	53961	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			3.92	0.101	4.042	0.9274	74.1	25.1	120				
2-Methylnaphthale	ne		3.33	0.101	4.042	0.1436	78.9	20.4	134				
1-Methylnaphthale	ne		3.58	0.101	4.042	0.3296	80.5	31.5	122				
Acenaphthylene			3.22	0.101	4.042	0	79.6	34.9	125				
Acenaphthene			4.19	0.101	4.042	0.9678	79.7	33.2	123				
Fluorene			3.81	0.101	4.042	0.2982	86.8	41.1	127				
Phenanthrene			3.52	0.101	4.042	0.08083	85.1	41.6	126				
Anthracene			3.46	0.101	4.042	0	85.5	34.1	123				
Fluoranthene			3.56	0.101	4.042	0	88.2	50	126				
Pyrene			3.40	0.101	4.042	0	84.2	46.7	125				
Benz(a)anthracene)		3.38	0.101	4.042	0	83.6	25.3	122				
Chrysene			3.15	0.101	4.042	0	77.9	22.8	111				
Benzo(b)fluoranthe	ene		3.16	0.101	4.042	0	78.1	8.57	125				
Benzo(k)fluoranthe	ne		3.24	0.101	4.042	0	80.1	7.05	124				
Benzo(a)pyrene			3.50	0.101	4.042	0	86.6	9.61	130				
Indeno(1,2,3-cd)py	rene		3.14	0.101	4.042	0	77.7	5	120				
Dibenz(a,h)anthrac	ene		3.22	0.101	4.042	0	79.7	5	122				
Benzo(g,h,i)peryler	ne		2.93	0.101	4.042	0	72.6	5	114				
Surr: 2-Fluorobig	ohenyl		1.71		2.021		84.8	33.2	139				
Surr: Terphenyl-	d14		1.95		2.021		96.4	24.6	136				
Sample ID: QCS-3	2251B	SampType	QCS			Units: µg/L		Prep Date	e: 5/11/20	21	RunNo: 671	194	
Client ID: BATCI	н	Batch ID:	32250					Analysis Date	e: 5/11/20	21	SeqNo: 13	56912	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			852	0.100	1,000	0	85.2	50	150				
2-Methylnaphthale	ne		859	0.100	1,000	0	85.9	50	150				
1-Methylnaphthale	ne		891	0.100	1,000	0	89.1	50	150				
Acenaphthylene			880	0.100	1,000	0	88.0	50	150				
Acenaphthene			877	0.100	1,000	0	87.7	50	150				

Work Order: 2105070

Work Order:	2105070									2 00	SUMMAI	RY RFF	ORT
CLIENT:	Libby Enviro	nmental					_						
Project:	Hardel Data	Gaps Inve	stigation				Po	olyaromat	ic Hydro	ocarbons b	y EPA Me	hod 8270) (SIM)
Sample ID: QCS-3	32251B	SampType	e: QCS			Units: µg/L		Prep Dat	te: 5/11/20	21	RunNo: 671	94	
Client ID: BATC	н	Batch ID:	32250					Analysis Dat	te: 5/11/20	21	SeqNo: 13	6912	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene			876	0.100	1,000	0	87.6	50	150				
Phenanthrene			845	0.100	1,000	0	84.5	50	150				
Anthracene			843	0.100	1,000	0	84.3	50	150				
Fluoranthene			874	0.100	1,000	0	87.4	50	150				
Pyrene			843	0.100	1,000	0	84.3	50	150				
Benz(a)anthracene	9		901	0.100	1,000	0	90.1	50	150				
Chrysene			809	0.100	1,000	0	80.9	50	150				
Benzo(b)fluoranthe	ene		876	0.100	1,000	0	87.6	50	150				
Benzo(k)fluoranthe	ene		864	0.100	1,000	0	86.4	50	150				
Benzo(a)pyrene			886	0.100	1,000	0	88.6	50	150				
Indeno(1,2,3-cd)py	rene		921	0.100	1,000	0	92.1	50	150				
Dibenz(a,h)anthrac	cene		944	0.100	1,000	0	94.4	50	150				
Benzo(g,h,i)peryle	ne		838	0.100	1,000	0	83.8	50	150				
Surr: 2-Fluorobi	phenyl		427		500.0		85.4	50	150				
Surr: Terphenyl-	d14		478		500.0		95.5	50	150				

Sample Log-In Check List

Clien	nt Name: LI	BBY	Work Order Numb	per: 2105070	
Logg	ged by: Ga	abrielle Coeuille	Date Received:	5/6/2021	10:27:00 AM
<u>Chain</u>	of Custod	Y			
1. Is	Chain of Cust	ody complete?	Yes 🖌	No 🗌	Not Present
2. Ho	ow was the sar	nple delivered?	<u>UPS</u>		
<u>Log In</u>	<u>1</u>				
3. Co	oolers are pres	ent?	Yes 🖌	No 🗌	NA 🗌
4. Sh	nipping contain	er/cooler in good condition?	Yes 🖌	No 🗌	
5. Cı (R	ustody Seals p tefer to comme	resent on shipping container/cooler? ents for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
6. W	as an attempt	made to cool the samples?	Yes 🖌	No 🗌	NA 🗌
7. W	ere all items re	eceived at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
8. Sa	ample(s) in pro	per container(s)?	Yes 🖌	No 🗌	
9. Si	ufficient sample	e volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Ar	re samples pro	perly preserved?	Yes 🗹	No 🗌	
11. W	as preservativ	e added to bottles?	Yes	No 🗹	NA 🗌
12. ^{Is}	there headspa	ace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Di	id all samples of	containers arrive in good condition(unbroken)?	Yes 🔽	No 🗌	
14. Do	oes paperwork	match bottle labels?	Yes 🖌	No 🗌	
15. ^{Ar}	re matrices cor	rectly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. ^{Is}	it clear what a	nalyses were requested?	Yes 🗹	No 🗌	
17. W	ere all holding	times able to be met?	Yes 🖌	No 🗌	
<u>Specia</u>	al Handling	<u>ı (if applicable)</u>			
18. W	as client notifie	ed of all discrepancies with this order?	Yes 🖌	No 🗌	NA 🗌
	Person Not	ified: Kristina Ikerd Date:		5/6/2021	
	By Whom:	Gabrielle Coeuille Via:	✔ eMail Photo	one 🗌 Fax	In Person
	Regarding:	Which sample should be duplicate?			
	Client Instru	uctions: Please run the dublicate for GW-MW10)7-0521		

....

Item Information

Item #	Temp °C
Sample 1	1.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environmen	tal, In	C.				Cł	nair	1 0	f C	ust	od	y F	Rec	or	d	4	100	22	m		www.L	ibbyEnv	/ironme	ntal.com	
3322 South Bay Road NE	Ph:	360-352-2	2110								ć	1	70	-		V	103	01	U						
Olympia, WA 98506	Fax:	360-352-4	1154					3	Date	£	5	- 5 -	20	21			-	Pá	ige:			of	1	32	-
Client: Libby En	vironi	menta	1, 1	inc	<u>.</u>				Proje	ect N	lana	ger:		Ko	dey	1 L	=le	¥							-
Address: (see	above)				_			Proje	ect N	ame	: ト	lan	del	1	Dat	٩	Gap	5	Inv	estig	atic	n	631	
City:		State:		Zip:					Loca	tion:								Ci	ty, Sta	ate: (Dlym	pia,	WA	Pag	
Phone:		Fax:							Colle	ector		TH						Da	ate of	Colle	ction:	5-	5-20	21	
Client Project # L21050	5-1								Ema	il:		lik	by	en	0	gn	nai	1. 00	m						
Sample Number	Depth	Time	Sam Typ	ple	Conta Ty	ainer pe	10	20 20 20 20 20 20 20 20 20 20 20 20 20 2	AN CONT	LCP A	2200 27 10	S S S S S S S S S S S S S S S S S S S	Sel 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	100 m	100 00 00 00 00 00 00 00 00 00 00 00 00	Neldes Children Child	0/10/ 10/58/10/	010270	have a	St MAY	ield No	otes	>	
1 GW-MW102-0521		1300	Wat	2	Amber	/Poly											X	X							
2GW-MW103-0521		1215	1			ĺ											X	×							
3GW-MW105-0521		1055															X	X							
4 GW - MW106-0521		1135															X	X							108
5GW - MW 107 - 0521		1350															X	×							ō
6GW-MW107-0521-01		1350	1		1	-											X	X							e 3.
7						_																			Pag
8																									
9																									
10										_															
11																									
12																						_			
13																									
14																									
15																									
16																									
17						4	1																		
Relinquished by:			Date /	Time	Receive	d by: A	5	L		5	11	210	ate / 1	Time	Good	San	iple	Recei	pt N	Ren	narks:	IF	o-ssib	e,	
Relinguished by:			Date /	Time	Receive	a by:	t	1			141	D	ate / 1	Time	Coole Samp	er Ten de Ter	np. mp.		°C °C	Fro	m M	WIO7	Samp	liplical ile	res
Relinquished by:			Date /	Time	Receive	d by:						D	ate / 1	Ime	Total Co	Numt ntaine	per of ers			TA	T: 24	HR 4	8HR (5-DAY	Ð

3322 South Bay Road NE • Olympia, WA 98506-2957

August 24, 2021

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel GWM Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy I Un

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen	tal, Ir	IC.		Cł	nair	1 0	f Cı	ust	od	y R	leco	orc	ł							www.L	_ibbyEn	vironm	ental.com
3322 South Bay Road NE	Ph:	360-352-2	2110				Data	<	2/12	1-1							Dog			1	of	1	
Olympia, WA 98506	Fax:	360-352-4	1154				Date		91	IL		. 1	1			F	aye	3.			01		
Client: Ploneer lec	pupple	ge.	- 1				Proje	ect M	lanag	er:	Soe	1 1	tu	~						_			
Address: 5205 Corpon	rate	Cente	· ct.				Proje	ect N	ame:	Ha	arde	1	Gu	m						,			
City: Lacery		State: V	JA Zip:				Loca	tion:	Har	de	1					(City,	Stat	te: (314	WA		
Phone: 360-576-170	10	Fax:					Colle	ector:	24	1						[Date	of C	Colle	ction:	8/12/	121	
Client Project # Hardel	GWI	М					Ema	il: H	tect	eri	e us	i pi	one	oric	om	\		,	,	,	t.	>	
THE BARA		_	Sample	Container		5326	00	STPH-	2100 5+ 826 5+ 826	R H	SP SP	0 ⁺	5 M	50 ¹⁵ 00 ¹⁶	315 10 10 10 10 10	18210	NO	8210 5210	- Les	S D	State N		
Sample Number	Depth	Time	Type	Туре	K2	29			1	$\sqrt{2}$	187	1	187		27	- 50				-	-leid ING	Jies	
1 GW MW103 - 0812		845	GW	Mult.		X	<u> </u>			$\frac{1}{\sqrt{2}}$		+	-+	-	\mathbf{x}	-	X	$\overline{\mathbf{v}}$					
2 GW-MWIOS-0813		705]		X	X			$\dot{\mathbf{x}}$		+			\rightarrow		X	$\overline{\mathbf{X}}$		Do	Malum	e call	ited @
3 GW-MW106-0013		745				X	X			<u>×</u>		-		-			<u>X</u>	X		MWI	06- pl	case i	in dip
4 GW-MW107-0913		915	1			X	X			X		+		-	×	-	Ŷ	X		San	ne Fir	PAHS	w Frem
5 TB-081321		-		U		X				_		+	_		_	-	X						
6										_		\downarrow			\rightarrow	_	_						
7										_					_								
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							
Relinquished by:	GI	_ /	Date / Time	Received by:	A 1	1/	1	0	10	D	ate / Tin	ne	5	Sam	ole F	Rece	eipt		Ren	narks:	,		
22WK	210	3/21	1626	An	CN	K	+	Y	-13	-21	102	0	Good	Condit	ion?	,	Y	N					
Reindersned by:			Date / Time	Received Dy:						D	ate / In		Sampl	e Tem	n.			°C	-				
Relinquished by:			Date / Time	Received by:						D	ate / Tin	ne	Total I	Numbe	r of				1				\sim
													Cor	ntainer	s				TA	T: 24	4HR	48HR	(5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay	Client agrees to pay the costs of collection including court costs and reasonable a	ttorney fees to be determined by a court of law
the of the right out to be the other of particular and the particular of the particu	and and a part of part of a second of a	

Distribution: White - Lab, Yellow Originator

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	GW-MW103-	GW-MW105-	GW-MW106-	GW-MW106-	- GW-MW107-
		Blank	0813	0813	0813	0813 Dup	0813
Date Sampled	Reporting	N/A	8/13/2021	8/13/2021	8/13/2021	8/13/2021	8/13/2021
Date Analyzed	Limits	8/13/2021	8/13/2021	8/13/2021	8/13/2021	8/13/2021	8/13/2021
	(µg/L)						
Vinyl chloride	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Toluene	2.0	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
n-Butylbenzene	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorolbenzene	2.0	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		80	105	102	87	111	86
1,2-Dichloroethane-d4		102	107	113	131	117	125
Toluene-d8		95	87	84	69	88	66
4-Bromofluorobenzene		91	129	98	100	99	98

Volatile Organic Compounds by EPA Method 8260D in Water

'nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		TB-081321
Date Sampled	Reporting	8/13/2021
Date Analyzed	Limits	8/13/2021
2	(µg/L)	(µg/L)
Vinyl chloride	0.2	nd
1,1-Dichloroethene	0.5	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd
trans-1,2-Dichloroethene	1.0	nd
cis-1,2-Dichloroethene	1.0	nd
Benzene	1.0	nd
1,2-Dichloroethane (EDC)	1.0	nd
Trichloroethene (TCE)	0.4	nd
Toluene	2.0	nd
Tetrachloroethene (PCE)	1.0	nd
1,2-Dibromoethane (EDB) *	0.01	nd
Ethylbenzene	1.0	nd
Total Xylenes	2.0	nd
Naphthalene	5.0	nd
1-Methylnaphthalene	5.0	nd
2-Methylnaphthalene	5.0	nd
Surrogate Recovery		
Dibromofluoromethane		118
1,2-Dichloroethane-d4		115
Toluene-d8		93
4-Bromofluorobenzene		96
"nd" Indicates not detected at	listed detect	ion limit.
"int" Indicates that interference	ce prevents d	etermination
* ANALYZED BY SIM		

Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Gasoline					
Number	Analyzed	Recovery (%)	$(\mu g/L)$					
Method Blank	8/13/2021	95%	nd					
GW-MW103-0813	8/13/2021	87%	130					
GW-MW105-0813	8/13/2021	84%	110					
GW-MW106-0813	8/13/2021	69%	nd					
GW-MW106-0813 Dup	8/13/2021	88%	nd					
GW-MW107-0813	8/13/2021	66%	nd					
Practical Quantitation Limit			100					
"nd" Indicates not detected at the listed detection limits.								
"int" Indicates that interference prevents determination.								

Gasoline by NWTPH-Gx in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1

Sample	Date	Surrogate	Diesel	Oil				
Number	Analyzed	Recovery (%)	$(\mu g/L)$	$(\mu g/L)$				
Method Blank	8/17/2021	75%	nd	nd				
GW-MW103-0813	8/17/2021	81%	nd	nd				
GW-MW105-0813	8/17/2021	79%	nd	nd				
GW-MW106-0813	8/17/2021	75%	nd	nd				
GW-MW106-0813 Dup	8/17/2021	81%	nd	nd				
GW-MW107-0813	8/17/2021	77%	nd	nd				
Practical Quantitation Limit 200 400								
"nd" Indicates not detected at the listed detection limits.								

Diesel & Oil by NWTPH-Dx/Dx Extended in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 42% TO 150%

ANALYSES PERFORMED BY: Randolph Kraus

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Arsenic					
Number	Analyzed	(µg/L)					
Method Blank	8/17/2021	nd					
GW-MW103-0813	8/17/2021	nd					
GW-MW105-0813	8/17/2021	nd					
GW-MW106-0813	8/17/2021	nd					
GW-MW106-0813 Dup	8/17/2021	nd					
GW-MW107-0813	8/17/2021	nd					
Practical Quantitation Limit		3.0					
"nd" Indicates not detected at the listed detection limits.							

Analyses of Dissolved Arsenic in Water by EPA 7010 Series

ANALYSES PERFORMED BY: Eric Welte

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Matrix Spike Sample Identification: GW-MW106-0813								
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)	
Vinyl chloride	5.0	6.2	6.0	124	120	3.3	65-135	
1,1-Dichloroethene	5.0	5.5	5.6	109	112	2.5	65-135	
Methyl tert-Butyl Ether (MTBE)	5.0	5.2	5.8	104	115	10.0	65-135	
trans -1,2-Dichloroethene	5.0	5.5	5.8	111	117	5.1	65-135	
cis-1,2-Dichloroethene	5.0	5.3	5.4	105	108	2.8	65-135	
Benzene	5.0	3.5	3.9	69	77	10.9	65-135	
1,2-Dichloroethane (EDC)	5.0	4.3	4.8	86	95	10.4	65-135	
Trichloroethene (TCE)	5.0	4.1	4.6	81	92	12.7	65-135	
Toluene	5.0	3.5	4.3	71	86	19.2	65-135	
Tetrachloroethene (PCE)	5.0	3.8	4.2	76	83	8.3	65-135	
1,2-Dibromoethane (EDB) *	5.0	4.5	4.7	91	95	4.5	65-135	
Ethylbenzene	5.0	3.3	3.9	67	79	16.5	65-135	
Total Xylenes	15.0	9.2	10.7	61	72	15.4	65-135	S
Naphthalene	5.0	4.6	4.2	91	83	9.4	65-135	
1-Methylnaphthalene	10.0	8.1	6.3	81	63	25.7	65-135	S
2-Methylnaphthalene	10.0	7.7	5.8	77	58	27.1	65-135	S
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				112	112		65-135	
1,2-Dichloroethane-d4				109	106		65-135	
Toluene-d8				93	98		65-135	
4-Bromofluorobenzene				123	119		65-135	

QA/QC Data - Volatile Organic Compounds by EPA 8260D in Water

* ANALYZED BY SIM

"S" Spike recovery outside accepted recovery limits. ACCEPTABLE RPD IS 35%

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	-
Vinyl chloride	5.0	5.8	117	80-120	
1,1-Dichloroethene	5.0	6.0	119	80-120	
Methyl tert-Butyl Ether (MTBE)	5.0	5.4	108	80-120	
trans-1,2-Dichloroethene	5.0	5.8	116	80-120	
cis-1,2-Dichloroethene	5.0	4.1	81	80-120	
Benzene	5.0	4.6	92	80-120	
1,2-Dichloroethane (EDC)	5.0	5.3	107	80-120	
Trichloroethene (TCE)	5.0	5.7	114	80-120	
Toluene	5.0	5.1	102	80-120	
Tetrachloroethene (PCE)	5.0	5.6	112	80-120	
1,2-Dibromoethane (EDB) *	5.0	4.7	94	80-120	
Ethylbenzene	5.0	4.7	94	80-120	
Total Xylenes	15.0	13.6	91	80-120	
Naphthalene	5.0	5.1	103	80-120	
1-Methylnaphthalene	5.0	4.3	86	80-120	
2-Methylnaphthalene	5.0	4.4	87	80-120	
Surrogate Recovery					
Dibromofluoromethane			77	65-135	
1,2-Dichloroethane-d4			100	65-135	
Toluene-d8			105	65-135	
4-Bromofluorobenzene			115	65-135	
* ANALYZED BY SIM					

Laboratory Control Sample

HARDEL GWM PROJECT Pioneer Technologies Corp. Olympia, Washington Libby Project # L210813-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC Dissolved Arsenic by EPA Method 7010 Series in Water

Sample	Date	Arsenic
Number	Analyzed	(% Recovery)
LCS 081721	8/17/2021	93%
GW-MW106-0813 MS	8/17/2021	100%
GW-MW106-0813 MSD	8/17/2021	96%
RPD	8/17/2021	4%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

QA/QC Dissolved Arsenic by EPA Method 7010 Series in Water

Sample	Date	Arsenic
Number	Analyzed	(ug/l)
Spike Concentration		20.0
LCS	8/17/2021	18.6
Spike Concentration		20.0
GW-MW106-0813 MS	8/17/2021	20.05
GW-MW106-0813 MSD	8/17/2021	19.10
RPD	8/17/2021	5%

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Eric Welte

HARDEL GWM PROJECT Pioneer Technologies Corp. Libby Project # L210813-1 Date Received 8/13/2021 Time Received 10:26 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By SC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	🗌 N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	🗌 N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)	-1.2	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	1.9	_°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	🗌 N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:		_	
19. Comments.			

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel GWM Work Order Number: 2108200

August 20, 2021

Attention Kodey Eley:

Fremont Analytical, Inc. received 4 sample(s) on 8/13/2021 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

-

CLIENT: Project: Work Order:	Libby Environmental Hardel GWM 2108200	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2108200-001	GW-MW103-0813	08/12/2021 8:45 AM	08/13/2021 3:02 PM
2108200-002	GW-MW105-0813	08/12/2021 7:05 AM	08/13/2021 3:02 PM
2108200-003	GW-MW106-0813	08/12/2021 7:45 AM	08/13/2021 3:02 PM
2108200-004	GW-MW107-0813	08/12/2021 9:15 AM	08/13/2021 3:02 PM

Case Narrative

WO#: **2108200** Date: **8/20/2021**

CLIENT:Libby EnvironmentalProject:Hardel GWM

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Rev 1: Report has been revised to report silver, as requested by the client.

Qualifiers & Acronyms

WO#: **2108200** Date Reported: **8/20/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: Libby Environmental		Collection Date: 8/12/2021 8:45:00 AM				
Project: Hardel GWM						
Lab ID: 2108200-001				Matrix: W	/ater	
Client Sample ID: GW-MW103-0	0813					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polvaromatic Hydrocarbons by	v EPA Method 8	270 (SIM)		Batc	h ID: 33	403 Analyst: SB
Naphthalene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
2-Methylnaphthalene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
1-Methylnaphthalene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Acenaphthylene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Acenaphthene	1.84	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Fluorene	0.287	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Phenanthrene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Anthracene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Fluoranthene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Pyrene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Benz(a)anthracene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Chrysene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Benzo(b)fluoranthene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Benzo(k)fluoranthene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Benzo(a)pyrene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Indeno(1,2,3-cd)pyrene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Dibenz(a,h)anthracene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Benzo(g,h,i)perylene	ND	0.0995		µg/L	1	8/20/2021 11:07:38 AM
Surr: 2-Fluorobiphenyl	86.5	34.2 - 137		%Rec	1	8/20/2021 11:07:38 AM
Surr: Terphenyl-d14	92.4	37.3 - 150		%Rec	1	8/20/2021 11:07:38 AM
Dissolved Metals by EPA Meth	od 200.8			Batc	h ID: 33	376 Analyst: EH
Silver	ND	0.350		µg/L	1	8/17/2021 11:55:20 PM

Client: Libby Environmental		Collection Date: 8/12/2021 7:05:00 AM				
Project: Hardel GWM						
Lab ID: 2108200-002				Matrix: W	/ater	
Client Sample ID: GW-MW105-	0813					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	v EPA Method 8	270 (SIM)		Batc	h ID: 33	403 Analyst: SB
<u>- organomatio riganobarisono s</u>		<u>210 (0111)</u>				
Naphthalene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
2-Methylnaphthalene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
1-Methylnaphthalene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Acenaphthylene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Acenaphthene	5.88	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Fluorene	1.90	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Phenanthrene	0.332	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Anthracene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Fluoranthene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Pyrene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Benz(a)anthracene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Chrysene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Benzo(b)fluoranthene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Benzo(k)fluoranthene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Benzo(a)pyrene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Indeno(1,2,3-cd)pyrene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Dibenz(a,h)anthracene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Benzo(g,h,i)perylene	ND	0.0998		µg/L	1	8/20/2021 11:51:01 AM
Surr: 2-Fluorobiphenyl	89.2	34.2 - 137		%Rec	1	8/20/2021 11:51:01 AM
Surr: Terphenyl-d14	90.4	37.3 - 150		%Rec	1	8/20/2021 11:51:01 AM
Dissolved Metals by EPA Meth	<u>10d 200.8</u>			Batc	h ID: 33	376 Analyst: EH
Silver	ND	0.350		µg/L	1	8/18/2021 12:12:04 AM

Client: Libby Environmental		Collection Date: 8/12/2021 7:45:00 AM				
Project: Hardel GWM						
Lab ID: 2108200-003				Matrix: W	/ater	
Client Sample ID: GW-MW106-08	313					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Batc	h ID: 33	3403 Analyst: SB
Naphthalene	ND	0.0999		ua/L	1	8/20/2021 12:12:37 PM
2-Methylnaphthalene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
1-Methylnaphthalene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Acenaphthylene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Acenaphthene	ND	0.0999		μg/L	1	8/20/2021 12:12:37 PM
Fluorene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Phenanthrene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Anthracene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Fluoranthene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Pyrene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Benz(a)anthracene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Chrysene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Benzo(b)fluoranthene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Benzo(k)fluoranthene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Benzo(a)pyrene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Indeno(1,2,3-cd)pyrene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Dibenz(a,h)anthracene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Benzo(g,h,i)perylene	ND	0.0999		µg/L	1	8/20/2021 12:12:37 PM
Surr: 2-Fluorobiphenyl	96.1	34.2 - 137		%Rec	1	8/20/2021 12:12:37 PM
Surr: Terphenyl-d14	89.2	37.3 - 150		%Rec	1	8/20/2021 12:12:37 PM
Dissolved Metals by EPA Metho	<u>d 200.8</u>			Batc	h ID: 33	3376 Analyst: EH
Silver	ND	0.350		µg/L	1	8/17/2021 11:33:04 PM

Client: Libby Environmental				Collection	n Date:	8/12/2021 9:15:00 AM
Project: Hardel GWM						
Lab ID: 2108200-004				Matrix: W	/ater	
Client Sample ID: GW-MW107-0	813				ator	
Analysis	Desult		0	11	DF	Data Awaharad
Analyses	Result	RL	Quai	Units	DF	Date Analyzed
Debueremetie Ubudreserhene bu		070 (CIM)		Boto	ь ID· 2/	Applyct: SP
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Dalu	IIID. 3.	Analysi. SD
Naphthalene	ND	0.0995		μg/L	1	8/20/2021 12:55:36 PM
2-Methylnaphthalene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
1-Methylnaphthalene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Acenaphthylene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Acenaphthene	0.256	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Fluorene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Phenanthrene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Anthracene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Fluoranthene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Pyrene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Benz(a)anthracene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Chrysene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Benzo(b)fluoranthene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Benzo(k)fluoranthene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Benzo(a)pyrene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Indeno(1,2,3-cd)pyrene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Dibenz(a,h)anthracene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Benzo(g,h,i)perylene	ND	0.0995		µg/L	1	8/20/2021 12:55:36 PM
Surr: 2-Fluorobiphenyl	89.5	34.2 - 137		%Rec	1	8/20/2021 12:55:36 PM
Surr: Terphenyl-d14	84.1	37.3 - 150		%Rec	1	8/20/2021 12:55:36 PM
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID: 3	3376 Analyst: EH
Silver	ND	0.350		µg/L	1	8/18/2021 12:17:38 AM

Work Order: CLIENT: Project:	2108200 Libby Enviro Hardel GWN	nmental /I							Diss	QC S	SUMMA als by EP	RY REF A Method	PORT 1 200.8
Sample ID: MB-33	376	SampType	MBLK			Units: µg/L		Prep Da	te: 8/17/2021	I	RunNo: 693	306	
Client ID: MBLK	W	Batch ID:	33376					Analysis Da	te: 8/17/2021	I	SeqNo: 14	04331	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			ND	0.350									
Sample ID: LCS-3	3376	SampType	LCS			Units: µg/L		Prep Da	te: 8/17/2021	l	RunNo: 69:	306	
Client ID: LCSW		Batch ID:	33376					Analysis Da	te: 8/17/2021	I	SeqNo: 14	04332	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			5.23	0.350	5.000	0	105	85	115				
Sample ID: 21082	00-003BDUP	SampType	DUP			Units: µg/L		Prep Da	te: 8/17/2021	I	RunNo: 69:	306	
Client ID: GW-M	W106-0813	Batch ID:	33376					Analysis Da	te: 8/17/202 1	I	SeqNo: 14	04335	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			ND	0.350						0		30	
Sample ID: 21082	00-003BMS	SampType	MS			Units: µg/L		Prep Da	te: 8/17/2021	I	RunNo: 69:	306	
Client ID: GW-M	W106-0813	Batch ID:	33376					Analysis Da	te: 8/17/2021	I	SeqNo: 14	04337	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			25.9	0.350	25.00	0	104	70	130				
Sample ID: 21082	00-003BMSD	SampType	MSD			Units: µg/L		Prep Da	te: 8/17/2021		RunNo: 69:	306	
Client ID: GW-M	W106-0813	Batch ID:	33376					Analysis Da	te: 8/17/2021	l	SeqNo: 14	04339	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			26.5	0.350	25.00	0	106	70	130	25.93	2.09	30	

Fremont
Analytical

Work Order:	2108200												
CLIENT:	Libby Environ	mental											
Project:	Hardel GWM						Po	olyaromat	ic Hydro	ocarbons b	y EPA Met	thod 8270) (SIM)
Sample ID: MB-334	403	SampType	: MBLK			Units: µg/L		Prep Dat	e: 8/18/20	21	RunNo: 693	367	
Client ID: MBLKW	N	Batch ID:	33403					Analysis Dat	e: 8/20/20	21	SeqNo: 140)5809	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			ND	0.0981									
2-Methylnaphthalen	e		ND	0.0981									
1-Methylnaphthalen	e		ND	0.0981									
Acenaphthylene			ND	0.0981									
Acenaphthene			ND	0.0981									
Fluorene			ND	0.0981									
Phenanthrene			ND	0.0981									
Anthracene			ND	0.0981									
Fluoranthene			ND	0.0981									
Pyrene			ND	0.0981									
Benz(a)anthracene			ND	0.0981									
Chrysene			ND	0.0981									
Benzo(b)fluoranther	ne		ND	0.0981									
Benzo(k)fluoranther	ne		ND	0.0981									
Benzo(a)pyrene			ND	0.0981									
Indeno(1,2,3-cd)pyr	ene		ND	0.0981									
Dibenz(a,h)anthrace	ene		ND	0.0981									
Benzo(g,h,i)perylen	e		ND	0.0981									
Surr: 2-Fluorobip	henyl		1.74		1.961		88.6	34.2	137				
Surr: Terphenyl-c	114		1.81		1.961		92.4	37.3	150				
Sample ID: LCS-33	403	SampType	LCS			Units: µg/L		Prep Dat	e: 8/18/20	21	RunNo: 693	367	
Client ID: LCSW		Batch ID:	33403					Analysis Dat	e: 8/20/20	21	SeqNo: 140	05810	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			3.03	0.0994	3.976	0	76.2	32.5	104				
2-Methylnaphthalen	e		3.11	0.0994	3.976	0	78.3	32.4	112				
1-Methylnaphthalen	e		3.08	0.0994	3.976	0	77.4	34.8	111				
Acenaphthylene			3.03	0.0994	3.976	0	76.2	37.5	110				
Acenaphthene			2.93	0.0994	3.976	0	73.6	39.5	106				

Work Order: 2	108200								20	SUMMA		PORT
CLIENT: L	ibby Environmental					_						
Project: ⊦	lardel GWM					Po	lyaromat	ic Hydro	ocarbons b	y EPA Me	thod 827	0 (SIM)
Sample ID: LCS-3340)3 SampT	ype: LCS			Units: µg/L		Prep Dat	e: 8/18/20)21	RunNo: 69:	367	
Client ID: LCSW	Batch I	D: 33403					Analysis Dat	e: 8/20/20	21	SeqNo: 14	05810	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene		3.12	0.0994	3.976	0	78.5	45.7	111				
Phenanthrene		3.01	0.0994	3.976	0	75.6	49.5	109				
Anthracene		2.94	0.0994	3.976	0	74.0	52.2	104				
Fluoranthene		3.14	0.0994	3.976	0	78.8	51.9	113				
Pyrene		3.12	0.0994	3.976	0	78.5	49.2	111				
Benz(a)anthracene		3.04	0.0994	3.976	0	76.3	52.2	108				
Chrysene		2.92	0.0994	3.976	0	73.5	44.5	106				
Benzo(b)fluoranthene		2.62	0.0994	3.976	0	65.8	41.3	109				
Benzo(k)fluoranthene		3.00	0.0994	3.976	0	75.4	38.8	112				
Benzo(a)pyrene		2.91	0.0994	3.976	0	73.1	48.2	115				
Indeno(1,2,3-cd)pyren	ne	2.47	0.0994	3.976	0	62.2	35	111				
Dibenz(a,h)anthracen	e	2.56	0.0994	3.976	0	64.4	36.4	113				
Benzo(g,h,i)perylene		2.40	0.0994	3.976	0	60.4	28.9	108				
Surr: 2-Fluorobiphe	nyl	1.90		1.988		95.6	34.2	137				
Surr: Terphenyl-d14	4	1.90		1.988		95.7	37.3	150				
Sample ID: LCSD-33	403 SampT	ype: LCSD			Units: µg/L		Prep Dat	e: 8/18/20	021	RunNo: 69:	367	
Client ID: LCSW02	Batch I	D: 33403					Analysis Dat	e: 8/20/20	21	SeqNo: 14	05811	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Analyte	Result					LOWLINI	riigii∟iiiit				Quai
Naphthalene	2.45	0.0983	3.930	0	62.3	32.5	104	3.032	21.2	30	
2-Methylnaphthalene	2.55	0.0983	3.930	0	64.9	32.4	112	3.114	19.9	30	
1-Methylnaphthalene	2.52	0.0983	3.930	0	64.2	34.8	111	3.076	19.8	30	
Acenaphthylene	2.50	0.0983	3.930	0	63.6	37.5	110	3.030	19.1	30	
Acenaphthene	2.39	0.0983	3.930	0	60.7	39.5	106	2.926	20.4	30	
Fluorene	2.57	0.0983	3.930	0	65.4	45.7	111	3.121	19.3	30	
Phenanthrene	2.55	0.0983	3.930	0	64.8	49.5	109	3.005	16.5	30	
Anthracene	2.48	0.0983	3.930	0	63.1	52.2	104	2.942	17.0	30	
Fluoranthene	2.71	0.0983	3.930	0	68.9	51.9	113	3.135	14.6	30	
Pyrene	2.72	0.0983	3.930	0	69.2	49.2	111	3.121	13.7	30	

Revision v1

QC SUMMARY REPORT

Work Order: 2108200

CLIENT: Libby Envir	ronmental										
Project: Hardel GW	/M				Ро	lyaromat	tic Hydro	ocarbons b	y EPA Me	thod 827	0 (SIM)
Sample ID: LCSD-33403	SampType: LCSD			Units: µg/L		Prep Dat	te: 8/18/20)21	RunNo: 69:	367	
Client ID: LCSW02	Batch ID: 33403					Analysis Dat	te: 8/20/20	21	SeqNo: 14	05811	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	2.71	0.0983	3.930	0	68.9	52.2	108	3.036	11.4	30	
Chrysene	2.60	0.0983	3.930	0	66.1	44.5	106	2.924	11.8	30	
Benzo(b)fluoranthene	2.54	0.0983	3.930	0	64.5	41.3	109	2.616	3.13	30	
Benzo(k)fluoranthene	2.63	0.0983	3.930	0	66.9	38.8	112	2.997	13.1	30	
Benzo(a)pyrene	2.72	0.0983	3.930	0	69.1	48.2	115	2.906	6.75	30	
Indeno(1,2,3-cd)pyrene	2.33	0.0983	3.930	0	59.2	35	111	2.473	6.11	30	
Dibenz(a,h)anthracene	2.42	0.0983	3.930	0	61.6	36.4	113	2.559	5.46	30	
Benzo(g,h,i)perylene	2.24	0.0983	3.930	0	57.0	28.9	108	2.402	6.89	30	
Surr: 2-Fluorobiphenyl	1.58		1.965		80.3	34.2	137		0	0	
Surr: Terphenyl-d14	1.69		1.965		86.2	37.3	150		0	0	
Sample ID: 2108200-001AMS	SampType: MS			Units: µg/L		Prep Dat	te: 8/18/20	021	RunNo: 69:	367	
Client ID: GW-MW103-0813	Batch ID: 33403					Analysis Dat	te: 8/20/20	021	SeqNo: 14	05814	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.98	0.103	4.114	0	72.5	34	110				
2-Methylnaphthalene	3.09	0.103	4.114	0	75.2	14.8	131				
1-Methylnaphthalene	3.11	0.103	4.114	0	75.7	25.1	123				
Acenaphthylene	2.93	0.103	4.114	0	71.3	35.6	115				

Acenaphthylene	2.93	0.103	4.114	0	71.3	35.6	115
Acenaphthene	4.96	0.103	4.114	1.844	75.8	39.2	111
Fluorene	3.40	0.103	4.114	0.2870	75.8	46.9	113
Phenanthrene	3.04	0.103	4.114	0	73.9	52.5	107
Anthracene	3.03	0.103	4.114	0	73.6	49.3	104
Fluoranthene	3.15	0.103	4.114	0	76.5	53.2	110
Pyrene	3.14	0.103	4.114	0	76.3	50.5	107
Benz(a)anthracene	3.03	0.103	4.114	0	73.7	48.3	104
Chrysene	2.84	0.103	4.114	0	69.1	41.7	105
Benzo(b)fluoranthene	2.79	0.103	4.114	0	67.7	34.4	109
Benzo(k)fluoranthene	2.72	0.103	4.114	0	66.1	29.2	111
Benzo(a)pyrene	3.02	0.103	4.114	0	73.3	34.8	114

Revision v1

Work Order: CLIENT: Project:	2108200 Libby Envir Hardel GW	onmental M					Ро	lyaromat	ic Hydr	QC S ocarbons b	SUMMA y EPA Me	RY REF	PORT 0 (SIM)
Sample ID: 21082	00-001AMS	SampType	e: MS			Units: µg/L		Prep Dat	e: 8/18/2 0)21	RunNo: 69	367	
Client ID: GW-N	IW103-0813	Batch ID:	33403					Analysis Dat	e: 8/20/2 0	021	SeqNo: 14	05814	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)py	/rene		2.46	0.103	4.114	0	59.9	8.88	117				
Dibenz(a,h)anthra	cene		2.53	0.103	4.114	0	61.5	9.16	119				
Benzo(g,h,i)peryle	ne		2.40	0.103	4.114	0.03639	57.4	7.67	110				
Surr: 2-Fluorobi	phenyl		1.86		2.057		90.7	34.2	137				
Surr: Terphenyl	-d14		1.84		2.057		89.5	37.3	150				
Sample ID: 21082	00-003ADUP	SampType	: DUP			Units: µg/L		Prep Dat	e: 8/18/2 (021	RunNo: 69	367	
Client ID: GW-N	IW106-0813	Batch ID:	33403					Analysis Dat	e: 8/20/2 0	021	SeqNo: 14	05819	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			ND	0.0998						0		30	
2-Methylnaphthale	ene		ND	0.0998						0		30	
1-Methylnaphthale	ene		ND	0.0998						0		30	
Acenaphthylene			ND	0.0998						0		30	
Acenaphthene			ND	0.0998						0		30	
Fluorene			ND	0.0998						0		30	
Phenanthrene			ND	0.0998						0		30	
Anthracene			ND	0.0998						0		30	
Fluoranthene			ND	0.0998						0		30	
Pyrene			ND	0.0998						0		30	
Benz(a)anthracene	е		ND	0.0998						0		30	
Chrysene			ND	0.0998						0		30	
Benzo(b)fluoranthe	ene		ND	0.0998						0		30	
Benzo(k)fluoranthe	ene		ND	0.0998						0		30	
Benzo(a)pyrene			ND	0.0998						0		30	
Indeno(1,2,3-cd)py	/rene		ND	0.0998						0		30	
Dibenz(a,h)anthra	cene		ND	0.0998						0		30	
Benzo(g,h,i)peryle	ne		ND	0.0998						0		30	
Surr: 2-Fluorobi	phenyl		1.88		1.996		94.2	34.2	137		0		
Surr: Terphenyl	-d14		1.80		1.996		90.0	37.3	150		0		

Work Order:	2108200						00.5		ORT
CLIENT:	Libby Environ	mental							
Project:	Hardel GWM					Polyaromati	c Hydrocarbons by	y EPA Method 8270	(SIM)
Sample ID: 21082	00-003ADUP	SampType: DUP		Ur	nits: µg/L	Prep Date	: 8/18/2021	RunNo: 69367	
Client ID: GW-M	IW106-0813	Batch ID: 33403				Analysis Date	: 8/20/2021	SeqNo: 1405819	
Analyte		Result	RL	SPK value SPK R	ef Val	%REC LowLimit I	HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Sample Log-In Check List

C	ient Name:	LIBBY	Work Order Numb	per: 2108200	
Lo	ogged by:	Clare Griggs	Date Received:	8/13/2021	3:02:00 PM
Cha	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	<u>In</u>				
3.	Coolers are p	present?	Yes 🖌	No 🗌	
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.	Custody Seal (Refer to com	ls present on shipping container/cooler? ments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present 🗹
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🔽	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗹	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	tified of all discrepancies with this order?	Yes 🖌	No 🗌	
	Person	Notified: Kodev Elev Date:		8/16/2021	
	By Who	m: Clare Griaas Via:	eMail Pho	one 🗌 Fax	In Person
	Regardi	ng: Confirming whether or not the Dissolve	d Metals volume wa	s field filtered.	
	Client In	structions: Volume was field filtered.			
19.	Additional rer	narks:			

Item Information

Item #	Temp ⁰C
Sample	2.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environmer	Chain of Custody Recor								rd	2108200					www.LibbyEnvironmental.com								
3322 South Bay Road NE	2001-										paro po												
Olympia, WA 98506	Fax	360-352-	4154				Date	: (37	13	5/ 7	21			_		Pag	e:	1		of)	9
Client: LIONG EY	Nirani	nental	. Ine		Project Manager: Koduey Elec							ley	~							of			
Address: (SEE	ress: (SEE APOVE)								Project Name: Hardel EWA									MC 9					
City:		State:	Zip	Location:									City, State: Oumpio, WA							Pag			
Phone:		new control of the second			Colle	ctor:					_	Date of Collection: 3/12/21						1					
Client Project # L2/08/3				Emai	il:	1:6	bye	enve	20	ima	ilec	con	5										
Sample Number	Depth	Time	Sample Type	Container Type	1	5 820 D	Col Col	SPICE C	+ 1826 + 1826	N. R. M.	Sol of the second	0000	2 2 2 2 A	100 00 00 00 00 00 00 00 00 00 00 00 00	Netes 20	10 11 8210	o vol	8210		Fie	Id Notes	3	
1 Grus-MW103-0813	-	845	H20	multi											X		X		ŕ	Í			
2GW-MW105-0813	1	705													X		×						
3 GW-MW106-0813	/	745													×		×			Extra	Value	E	
4 GW-MW107-0813	/	915													X		×			Dupi	cates	0 10	
5																						-	_
6																							
7																		_					
8									+				1										_
9	1												1										
10							-		-				-										
11								+	+		_			_									
12								\neg	+														
13								-	+										-				
14						-	-	+	+					-				_	-				
15								+	-														_
16							-	+	+	-							-		-				
17							-	+	-							-							
Relinquished by	Received by: Date / Time Date / Time 8/13/2 1/459 Goo							Good	Sample Receipt					Remarks:									
Reinquished by:	20 8/1	3/21	Date / Time 1459	Received by:	ing /	M	oh	2	8/1	3	ate / 1 311	Time	Coole Samp	er Terr de Ter	np. mp.			°C °C	Ple	ase t	un D	ups a	n
Reinquished by:		(Date / T(me	Received by:	9		/		V	Da	ate / 1	Time	Total Co	Numt ntaine	per of ers				TAT	T: 24HF	Grw-1 R 48H	MW106 R 5-	DAY

Distribution: White - Lab, Yellow - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

December 20, 2021

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy I Un

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmental, Inc. Chain of Custody Record www.LibbyEnvironmental.com																						
3322 South Bay Road NE Olympia, WA 98506	3322 South Bay Road NE Ph: 360-352-2110 Olympia, WA 98506 Fax: 360-352-4154							Date:										e:	1	of		
Client: Pinneer	Client: Pinnee								Project Manager: The Hect													
Address: 5265 Corporate With Ct. SE. Ste A								Project Name: Hordel														
City: Numpig State: WA Zip: 98503							Location: City, St										Stat	ate: WA				
Phone: Fax:							Collector: Avy, Ruschalh E									Date of Collection:						
Client Project # Hordel							Email: Hecteri@usploneer.com															
THE BALL	Danth	Time	Sample	Container		5326		augher augher	2100 27 002	S I I I I	SC CO	10+ 0+ 0+		10 10 10 10 10 10 10 10 10 10 10 10 10 1	Neighs 1	.0.10	in vol	8270	100 5591	M HI HAS		
	Depth	9:11	Туре	Туре	K 2	$\sqrt{2}$	V P	$2 \otimes$	<u> </u>	X 4	28	<u> </u>	74	<u> </u>	Z Q'	15	X	X	<u> </u>	/ Field Notes		
1 GW 111005-11104	-	10:00	6	puit .		8	Y			X					X		X	V				
2 GW MUNT- MAL	-	14.55	6	aut		8	X			N					X		X	X		Pun dup on 107		
ATR - MAL		0.00	G	140.1		0	~			~							X	~		port or port to t		
5																						
6																						
7																						
8																						
9																						
10																						
11																						
12																						
13																						
14																				11-22-21 ANALYSIS		
15																				ADDED PER JOEL		
16																				VIA EMAIL .		
17																						
Relinquished by:			Date / Time	Received by: Date / Time							Time	Sample Receipt						Remarks: non de p				
Relinquished by	14/21 11:55 Date / Time	Received by Date / Time							Time	Good Condition? Y N					N ℃	- Onalyses Fir all						
			20107 11110										Samp	Sample Temp. °C					analytes including			
Relinquished by: Date / Time				Received by: Date / Time							Total Number of Containers						Frenont PAHS TAT: 24HR 48HR (5-DAY)					

LEGAL ACTION CLAUSE: In the event of default of nevment and/or failure to nev. Client agrees to nev the costs	s of collection including court costs and reasonable attorney fees to be determined by a court of la
LEGAL ROTION OLAGOE, IT THE EVENT OF BUILDING WINDING WINDING OF BUILDING OF B	
	· · · · · · · · · · · · · · · · · · ·

Distribution: White - Lab, Yellow - Originator

HARDEL PROJECT **Pioneer Technologies** Olympia, Washington Libby Project # L211116-4

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	GW-	GW-	GW-	GW-	TB-111621
		Blank	MW105-	MW106-	MW107-	MW107-	
			111621	111621	111621	111621	
						Dup	
Date Sampled		N/A	11/16/2021	11/16/2021	11/16/2021	11/16/2021	11/16/2021
Date Analyzed	PQL	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)
Benzene	1.0	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Total Xylenes	2.0	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	nd	nd
Naphthalene	5.0	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	5.0	nd	nd	nd	nd	nd	nd
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	nd	nd
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		117	116	119	117	118	116
1,2-Dichloroethane-d4		108	102	106	105	110	103
Toluene-d8		100	101	100	101	101	100
4-Bromofluorobenzene		95	103	96	100	99	97
"nd" Indicates not detected	ed at listed	detection lin	nit.				

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination. * ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt
HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L211116-4 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(µg/L)
Method Blank	11/18/2021	100	nd
GW-MW105-111621	11/18/2021	101	160
GW-MW106-111621	11/18/2021	100	nd
GW-MW107-111621	11/18/2021	101	nd
GW-MW107-111621 Dup	11/18/2021	101	nd
Practical Quantitation Limit			100
"nd" Indicates not detected at th	e listed detection lin	nits.	
"int" Indicates that interference	prevents determinat	ion.	
ACCEPTABLE RECOVERY LIMIT	S FOR SURROGATE	(Toluene-d8): 65% TO 135	·%

Gasoline by NWTPH-Gx in Water

HARDEL PROJECT **Pioneer Technologies** Olympia, Washington Libby Project # L211116-4

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	$(\mu g/L)$	$(\mu g/L)$
Method Blank	11/16/2021	88%	nd	nd
GW-MW105-111621	11/16/2021	80%	nd	nd
GW-MW106-111621	11/16/2021	78%	nd	nd
GW-MW107-111621	11/16/2021	83%	nd	nd
GW-MW107-111621 Dup	11/16/2021	65%	nd	nd
Practical Quantitation Limit			200	400
"nd" Indicates not detected a	t the listed det	ection limits		

Diesel & Oil by NWTPH-Dx/Dx Extended in Water

at the listed de

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Randolph Kraus

HARDEL PROJECT Pioneer Technologies Libby Project # L211116-4 Date Received 11/16/2021 Time Received 11:55 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	🗌 N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	🗌 N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)	-2.0	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	6.6	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	🗌 N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	☑ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:			
19. Comments.			

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Kodey Eley 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Work Order Number: 2111363

December 16, 2021

Attention Kodey Eley:

Fremont Analytical, Inc. received 3 sample(s) on 11/17/2021 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v2

CLIENT: Project: Work Order:	Libby Environmental Hardel 2111363	work Order Sample Summa					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received				
2111363-001	GW-MW105-111621	11/16/2021 9:11 AM	11/17/2021 10:00 AM				
2111363-001	GW-MW105-111621	11/16/2021 9:11 AM	11/17/2021 10:00 AM				
2111363-002	GW-MW106-111621	11/16/2021 10:00 AM	11/17/2021 10:00 AM				
2111363-002	GW-MW106-111621	11/16/2021 10:00 AM	11/17/2021 10:00 AM				
2111363-003	GW-MW107-111621	11/16/2021 10:53 AM	11/17/2021 10:00 AM				
2111363-003	GW-MW107-111621	11/16/2021 10:53 AM	11/17/2021 10:00 AM				

Case Narrative

WO#: **2111363** Date: **12/16/2021**

CLIENT:Libby EnvironmentalProject:Hardel

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

12/16/21: Revision 1 includes re-analysis of Silver per client request. 12/17/21: Revision 2 includes re-analysis of Silver per client request.

Qualifiers & Acronyms

WO#: **2111363** Date Reported: **12/16/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2111363** Date Reported: **12/16/2021**

Client: Libby Environmental				Collectio	n Date:	11/16/2021 9:11:00 AM
Project: Hardel						
I ab ID: 2111363-001				Matrix: \/	/ator	
Client Semple ID: CW MW40E 1	14604				alei	
Client Sample ID: Gw-ww105-1			• •			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	<u>270 (SIM)</u>		Batc	h ID: 34	512 Analyst: SB
Naphthalene	0.115	0.0994		µg/L	1	11/22/2021 4:20:29 PM
2-Methylnaphthalene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
1-Methylnaphthalene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Acenaphthylene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Acenaphthene	9.48	0.994	D	µg/L	10	11/23/2021 10:50:08 AM
Fluorene	4.18	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Phenanthrene	1.16	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Anthracene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Fluoranthene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Pyrene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Benz(a)anthracene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Chrysene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Benzo(b)fluoranthene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Benzo(k)fluoranthene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Benzo(a)pyrene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Indeno(1,2,3-cd)pyrene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Dibenz(a,h)anthracene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Benzo(g,h,i)perylene	ND	0.0994		µg/L	1	11/22/2021 4:20:29 PM
Surr: 2-Fluorobiphenyl	97.5	49.6 - 128		%Rec	1	11/22/2021 4:20:29 PM
Surr: Terphenyl-d14	97.0	38.2 - 138		%Rec	1	11/22/2021 4:20:29 PM
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID: 34	564 Analyst: EH
Arsenic	ND	1.00		µg/L	1	12/6/2021 1:17:56 PM
Silver	ND	0.350		μg/L	1	12/15/2021 5:21:01 PM

Analytical Report

Work Order: **2111363** Date Reported: **12/16/2021**

Client: Libby Environmental				Collection	n Date	: 11/16/2021 10:00:00 AM
Project: Hardel						
l ab ID: 2111363-002				Matrix W	/ater	
Client Sample ID: GW-MW106-11	1621				ater	
Analyzas	Booult	ы	Qual	Unito	DE	Doto Analyzad
Analyses	Result	ĸĽ	Quai	Units	DF	Date Analyzeu
Polyaromatic Hydrocarbons by I	EPA Method 8	<u>270 (SIM)</u>		Batc	h ID: 3	4512 Analyst: SB
Naphthalene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
2-Methylnaphthalene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
1-Methylnaphthalene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Acenaphthylene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Acenaphthene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Fluorene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Phenanthrene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Anthracene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Fluoranthene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Pyrene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Benz(a)anthracene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Chrysene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Benzo(b)fluoranthene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Benzo(k)fluoranthene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Benzo(a)pyrene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Indeno(1,2,3-cd)pyrene	ND	0.0984		µg/L	1	11/22/2021 4:42:03 PM
Dibenz(a.h)anthracene	ND	0.0984		ua/L	1	11/22/2021 4:42:03 PM
Benzo(g.h.i)pervlene	ND	0.0984		ua/L	1	11/22/2021 4:42:03 PM
Surr: 2-Fluorobiphenvl	99.9	49.6 - 128		%Rec	1	11/22/2021 4:42:03 PM
Surr: Terphenyl-d14	96.9	38.2 - 138		%Rec	1	11/22/2021 4:42:03 PM
Dissolved Metals by EPA Method	<u>d 200.8</u>			Batc	h ID: 3	4564 Analyst: EH
Arsenic	1.72	1.00		μg/L	1	12/6/2021 1:20:16 PM
Silver	ND	0.350		μg/L	1	12/16/2021 2:40:56 PM

Analytical Report

Work Order: **2111363** Date Reported: **12/16/2021**

Client: Libby Environmental				Collectio	n Date:	11/16/2021 10:53:00 AM
Project: Hardel						
I ab ID: 2111363-003				Matrix: \A	lator	
Client Semple ID: CW/ MW/407 44	4004				alei	
Client Sample ID: Gw-ww107-11	1021					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	270 (SIM)		Batc	h ID: 34	1512 Analyst: SB
Naphthalene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
2-Methylnaphthalene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
1-Methylnaphthalene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Acenaphthylene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Acenaphthene	0.287	0.100		µg/L	1	11/22/2021 2:11:22 PM
Fluorene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Phenanthrene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Anthracene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Fluoranthene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Pyrene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Benz(a)anthracene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Chrysene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Benzo(b)fluoranthene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Benzo(k)fluoranthene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Benzo(a)pyrene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Indeno(1,2,3-cd)pyrene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Dibenz(a,h)anthracene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Benzo(g,h,i)perylene	ND	0.100		µg/L	1	11/22/2021 2:11:22 PM
Surr: 2-Fluorobiphenyl	100	49.6 - 128		%Rec	1	11/22/2021 2:11:22 PM
Surr: Terphenyl-d14	90.8	38.2 - 138		%Rec	1	11/22/2021 2:11:22 PM
Dissolved Metals by EPA Method	<u>d 200.8</u>			Batc	h ID: 3₄	1657 Analyst: EH
Arsenic	2.37	1.00		μg/L	1	12/8/2021 12:02:58 PM
Silver	ND	0.350		µg/L	1	12/15/2021 5:54:27 PM

	2111303										SUMMAI	RY REF	ORT
CLIENT:	Libby Enviror	nmental							Dia	solved Met	tale by ED	A Mothor	1 200 8
Project:	Hardel								Dis		Lais by EF	A Method	1 200.0
Sample ID: MB-34	4564	SampType:	MBLK			Units: µg/L		Prep Da	te: 11/29/2	2021	RunNo: 717	'13	
Client ID: MBLK	(W	Batch ID:	34564					Analysis Da	te: 12/3/20)21	SeqNo: 146	51811	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic NOTES:	ation verification fo	r this analyte	ND exceeds ac	1.00	iteria								Q
Sample ID: LCS-:	34564	SampType:	LCS			Units: ua/L		Prep Da	te: 11/29/2	2021	RunNo: 717	′13	
Client ID: LCSV	I	Batch ID:	34564					Analysis Da	te: 12/3/20)21	SeqNo: 1461812		
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			112	1.00	100.0	0	112	85	115				
Sample ID: 21112	96-002BDUP	SampType:	DUP			Units: µg/L		Prep Da	te: 11/29/2	2021	RunNo: 717	'13	
Client ID: BATC	Н	Batch ID:	34564					Analysis Da	te: 12/3/20	21	SeqNo: 146	51814	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic NOTES:	ation verification fo	r this analyte	ND	1.00	iteria					0		30	Q
						Lipitor		Drop Do	to: 44/00/	004	DunNot 747	24.0	
Sample ID: 21112	96-002BINS	Samp Type:	INI S			Units: µg/L		Pred Da	te: 11/29/2	2021	Runino: /1/	13	
	u	Rotch ID:	24564						to: 10/2/20	24	SocNo: 14	1015	
Client ID: BATC Analyte	Η	Batch ID: F	34564 Result	RL	SPK value	SPK Ref Val	%REC	Analysis Da LowLimit	te: 12/3/2(HighLimit	21 RPD Ref Val	SeqNo: 146 %RPD	1815 RPDLimit	Qual
Client ID: BATC Analyte Arsenic	н	Batch ID: F	34564 Result 556	RL 1.00	SPK value 500.0	SPK Ref Val	%REC 111	Analysis Da LowLimit 70	te: 12/3/20 HighLimit 130	021 RPD Ref Val	SeqNo: 146 %RPD	1815 RPDLimit	Qual
Client ID: BATC Analyte Arsenic Sample ID: 21112	96-002BMSD	Batch ID: F SampType:	34564 Result 556 MSD	RL 1.00	SPK value 500.0	SPK Ref Val 0 Units: µg/L	%REC 111	Analysis Da LowLimit 70 Prep Da	te: 12/3/20 HighLimit 130 te: 11/29/2	021 RPD Ref Val	SeqNo: 146 %RPD RunNo: 717	1815 RPDLimit	Qual
Client ID: BATC Analyte Arsenic Sample ID: 21112 Client ID: BATC	H 296-002BMSD H	Batch ID: F SampType: Batch ID:	34564 Result 556 MSD 34564	RL 1.00	SPK value 500.0	SPK Ref Val 0 Units: µg/L	%REC 111	Analysis Da LowLimit 70 Prep Da Analysis Da	te: 12/3/20 HighLimit 130 te: 11/29/2 te: 12/3/20	221 RPD Ref Val	SeqNo: 146 %RPD RunNo: 717 SeqNo: 146	1815 RPDLimit 13 1816	Qual
Client ID: BATC Analyte Arsenic Sample ID: 21112 Client ID: BATC Analyte	H 96-002BMSD H	Batch ID: F SampType: Batch ID: F	34564 Result 556 MSD 34564 Result	RL 1.00 RL	SPK value 500.0 SPK value	SPK Ref Val 0 Units: µg/L SPK Ref Val	%REC 111 %REC	Analysis Da LowLimit 70 Prep Da Analysis Da LowLimit	te: 12/3/2(HighLimit 130 te: 11/29/2 te: 12/3/2(HighLimit	221 RPD Ref Val 2021 221 RPD Ref Val	SeqNo: 146 %RPD RunNo: 717 SeqNo: 146 %RPD	r1815 RPDLimit r13 s1816 RPDLimit	Qual

Fremont
Analytical

Work Or	der:	2111363									2.00	SUMMA		PORT
CLIENT:		Libby Envir	ronmental											
Project:		Hardel								DIS	ssolved liver	als by EP	A Method	d 200.8
Sample ID:	MB-34	563FB	SampTyp	e: MBLK			Units: µg/L		Prep Da	te: 11/29/2	2021	RunNo: 71	713	
Client ID:	MBLK	w	Batch ID:	34564					Analysis Da	te: 12/3/20)21	SeqNo: 14	61922	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									Q
NOTES: Q - Initial	l calibra	tion verification	for this analyt	e exceeds a	cceptance c	riteria.								
Sample ID:	MB-34	658FB	SampTyp	e: MBLK			Units: µg/L		Prep Da	te: 12/7/20)21	RunNo: 71	811	
Client ID:	MBLK	w	Batch ID:	34657					Analysis Da	te: 12/8/20	021	SeqNo: 14	64193	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID:	MB-34	657	SampTyp	e: MBLK			Units: µg/L		Prep Da	te: 12/7/20)21	RunNo: 71	811	
Client ID:	MBLK	w	Batch ID:	34657					Analysis Da	te: 12/8/20	021	SeqNo: 14	64194	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				ND	1.00									
Silver				ND	0.350									
Sample ID:	LCS-3	4657	SampTyp	e: LCS			Units: µg/L		Prep Da	te: 12/7/20)21	RunNo: 71	811	
Client ID:	LCSW		Batch ID:	34657					Analysis Da	te: 12/8/20)21	SeqNo: 14	64195	
Analyte				Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic				525	1.00	500.0	0	105	85	115				
Silver				25.6	0.350	25.00	0	102	85	115				

Fremont
Analytical

Work Order: 2111363					QC SUMMARY REPORT
Project: Libby Envir	ronmentai				Dissolved Metals by EPA Method 200.8
Sample ID: 2111363-003BDUP	SampType: DUP			Units: µg/L	Prep Date: 12/7/2021 RunNo: 71811
Client ID: GW-MW107-111621	Batch ID: 34657				Analysis Date: 12/8/2021 SeqNo: 1464199
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic	2.31	1.00			1.361 51.8 30
Silver	ND	0.350			0 30
Sample ID: 2111363-003BMS	SampType: MS			Units: µg/L	Prep Date: 12/7/2021 RunNo: 71811
Client ID: GW-MW107-111621	Batch ID: 34657				Analysis Date: 12/8/2021 SeqNo: 1464200
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Arsenic	528	1.00	500.0	1.361	105 70 130
Silver NOTES:	9.94	0.350	25.00	0.2910	38.6 70 130 S
S - Spike recovery indicates a p	Dossible matrix effect.				
Sample ID: MB-34742FB	SampType: MBLK			Units: µg/L	Prep Date: 12/14/2021 RunNo: 71986
Client ID: MBLKW	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468646
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Silver NOTES:	ND	0.350			
				11-11-11-11-11	
				Units: µg/L	Prep Date: 12/14/2021 RunNo: /1986
Client ID: MBLKW	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468647
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Silver	ND	0.350			

Work Order: CLIENT: Project:	2111363 Libby Enviro Hardel	nmental				QC SUMMARY REPOR Dissolved Metals by EPA Method 20
Sample ID: LCS-	34743	SampType: LCS			Units: µg/L	Prep Date: 12/14/2021 RunNo: 71986
Client ID: LCS	N	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468648
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Silver		25.2	0.350	25.00	0	101 85 115
Sample ID: 2111	363-001BDUP	SampType: DUP			Units: µg/L	Prep Date: 12/14/2021 RunNo: 71986
Client ID: GW-I	MW105-111621	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468650
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Silver		ND	0.350			3.372 200 30 R
Sample ID: 2111	363-001BMS	SampType: MS			Units: µg/L	Prep Date: 12/14/2021 RunNo: 71986
Client ID: GW-I	MW105-111621	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468651
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Silver		26.7	0.350	25.00	3.372	93.2 70 130
Sample ID: 2111	363-001BMSD	SampType: MSD			Units: µg/L	Prep Date: 12/14/2021 RunNo: 71986
Client ID: GW-I	MW105-111621	Batch ID: 34743				Analysis Date: 12/15/2021 SeqNo: 1468654
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Silver		25.2	0.350	25.00	3.372	87.3 70 130 26.66 5.69 30
Sample ID: MB-3	4755FB	SampType: MBLK			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019
Client ID: MBL	ĸw	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469222
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Silver		ND	0.350			

Work Order: CLIENT: Project:	2111363 Libby Envir Hardel	QC SUMMARY RE Dissolved Metals by EPA Metho	QC SUMMARY REPORT solved Metals by EPA Method 200.8							
Sample ID: MB-34	1783	SampType: MBLK			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019				
Client ID: MBLK	W	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469223				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimi	Qual			
Silver		ND	0.350							
Sample ID: LCS-3	4783	SampType: LCS			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019				
Client ID: LCSW	1	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469224				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimi	Qual			
Silver		26.2	0.350	25.00	0	105 85 115				
Sample ID: 21121	95-002DDUP	SampType: DUP			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019				
Client ID: BATC	н	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469226				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimi	Qual			
Silver		ND	0.350			0 30)			
Sample ID: 21121	95-002DMS	SampType: MS			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019				
Client ID: BATC	н	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469227				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimi	Qual			
Silver		25.9	0.350	25.00	0	104 70 130				
Sample ID: 21121	95-002DMSD	SampType: MSD			Units: µg/L	Prep Date: 12/16/2021 RunNo: 72019				
Client ID: BATC	н	Batch ID: 34783				Analysis Date: 12/16/2021 SeqNo: 1469228				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimi	Qual			
Silver		26.6	0.350	25.00	0	106 70 130 25.94 2.54 30)			

	rem	ont alytical							Date: 12	/16/2021				
Work Order:	2111363							2 30	SUMMA	RY REF	PORT			
CLIENT:	Libby Enviror	nmental				Da		tia Uludua asuk awa k		4h a d 007(
Project:	Hardel					PO	oiyaroma	lic Hydrocarbons b						
Sample ID: MB-34	1512	SampType: MBLK			Units: µg/L		Prep Da	te: 11/19/2021	RunNo: 71	505				
Client ID: MBLK	Ŵ	Batch ID: 34512					Analysis Da	te: 11/22/2021	SeqNo: 14	56425				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual			
Naphthalene		ND	0.0990											
2-Methylnaphthale	ne	ND	0.0990											
1-Methylnaphthale	ne	ND	0.0990											
Acenaphthylene		ND	0.0990											
Acenaphthene		ND	0.0990											
Fluorene		ND	0.0990											
Phenanthrene		ND	0.0990											
Anthracene		ND	0.0990											
Fluoranthene		ND	0.0990											
Pyrene		ND	0.0990											
Benz(a)anthracene	e	ND	0.0990											
Chrysene		ND	0.0990											
Benzo(b)fluoranthe	ene	ND	0.0990											
Benzo(k)fluoranthe	ene	ND	0.0990											
Benzo(a)pyrene		ND	0.0990											
Indeno(1,2,3-cd)py	/rene	ND	0.0990											
Dibenz(a,h)anthrac	cene	ND	0.0990											
Benzo(g,h,i)peryle	ne	ND	0.0990											
Surr: 2-Fluorobi	phenyl	1.99		1.980		101	49.6	128						
Surr: Terphenyl	-d14	2.14		1.980		108	38.2	138						
Sample ID: LCS-3	4512	SampType: LCS			Units: µg/L		Prep Da	te: 11/19/2021	RunNo: 71	505				
Client ID: LCSW	I	Batch ID: 34512					Analysis Da	te: 11/22/2021	SeqNo: 14	56426				
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual			
Naphthalene		3.37	0.0981	3.923	0	86.0	52.2	104						
2-Methylnaphthale	ne	3.34	0.0981	3.923	0	85.0	51.9	109						
1-Methylnaphthale	ne	3.23	0.0981	3.923	0	82.4	54.3	107						
Acenaphthylene		3.24	0.0981	3.923	0	82.5	55.5	110						
Acenaphthene		3.16	0.0981	3.923	0	80.4	54.3	105						

	rem An	ont	
Work Order:	2111363		
CLIENT:	Libby Enviro	nmental	
Project:	Hardel		
Sample ID: LCS-3	4512	SampType: LCS	

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-34512 SampType				Units: µg/L		Prep Da	te: 11/19/2	2021	RunNo: 715	05	
Client ID: LCSW	Batch ID: 34512	2				Analysis Da	te: 11/22/2	2021	SeqNo: 145	6426	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	3.27	0.0981	3.923	0	83.4	60.5	110				
Phenanthrene	3.34	0.0981	3.923	0	85.1	57.8	110				
Anthracene	3.17	0.0981	3.923	0	80.7	56.4	109				
Fluoranthene	3.36	0.0981	3.923	0	85.6	58.9	114				
Pyrene	3.35	0.0981	3.923	0	85.5	56.7	115				
Benz(a)anthracene	3.24	0.0981	3.923	0	82.6	53.4	115				
Chrysene	3.27	0.0981	3.923	0	83.3	52	111				
Benzo(b)fluoranthene	3.43	0.0981	3.923	0	87.3	45.3	109				
Benzo(k)fluoranthene	3.34	0.0981	3.923	0	85.2	40	117				
Benzo(a)pyrene	3.43	0.0981	3.923	0	87.4	49.1	115				
Indeno(1,2,3-cd)pyrene	3.08	0.0981	3.923	0	78.5	35.7	108				
Dibenz(a,h)anthracene	3.20	0.0981	3.923	0	81.5	36.9	111				
Benzo(g,h,i)perylene	3.19	0.0981	3.923	0	81.4	35.5	110				
Surr: 2-Fluorobiphenyl	1.99		1.962		102	49.6	128				
Surr: Terphenyl-d14	2.05		1.962		104	38.2	138				
Sample ID: LCSD-34512	SampType: LCSD			Units: µg/L		Prep Da	te: 11/19/2	2021	RunNo: 715	05	
Client ID: LCSW02	Batch ID: 34512	2				Analysis Da	te: 11/22/2	2021	SeqNo: 145	6427	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.27	0.0993	3.971	0	82.5	52.2	104	3.372	2.93	30	
2-Methylnaphthalene	3.32	0.0993	3.971	0	83.6	51.9	109	3.336	0.532	30	
1-Methylnaphthalene	3.20	0.0993	3.971	0	80.6	54.3	107	3.234	1.02	30	
Acenaphthylene	3.22	0.0993	3.971	0	81.2	55.5	110	3.237	0.457	30	
Acenaphthene	3.16	0.0993	3.971	0	79.6	54.3	105	3.155	0.198	30	
Fluorene	3.32	0.0993	3.971	0	83.7	60.5	110	3.273	1.57	30	
Phenanthrene	3.38	0.0993	3.971	0	85.1	57.8	110	3.339	1.15	30	
Anthracene	3.19	0.0993	3.971	0	80.3	56.4	109	3.168	0.713	30	
Fluoranthene	3.39	0.0993	3.971	0	85.4	58.9	114	3.358	0.956	30	
Pyrene	3.44	0.0993	3.971	0	86.5	56.7	115	3.353	2.43	30	

ND

0.105

0.105

0.105

0.105

0.105

0.105

0.105

0.105

0.105

0.105

Work Order: 2111363

Work Order: 2111363 CLIENT: Libby Enviro Project: Hardel	onmental				Ро	lyaromat	ic Hydro	QC S	SUMMAI y EPA Met	RY REF	PORT 0 (SIM)
Sample ID: LCSD-34512	SampType: LCSD			Units: µg/L		Prep Dat	e: 11/19/2	021	RunNo: 715	505	
Client ID: LCSW02	Batch ID: 34512					Analysis Dat	e: 11/22/2	021	SeqNo: 145	6427	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	3.35	0.0993	3.971	0	84.4	53.4	115	3.242	3.25	30	
Chrysene	3.25	0.0993	3.971	0	81.9	52	111	3.266	0.398	30	
Benzo(b)fluoranthene	3.03	0.0993	3.971	0	76.2	45.3	109	3.426	12.4	30	
Benzo(k)fluoranthene	3.84	0.0993	3.971	0	96.8	40	117	3.343	14.0	30	
Benzo(a)pyrene	3.41	0.0993	3.971	0	85.8	49.1	115	3.428	0.666	30	
Indeno(1,2,3-cd)pyrene	3.05	0.0993	3.971	0	76.9	35.7	108	3.079	0.879	30	
Dibenz(a,h)anthracene	3.19	0.0993	3.971	0	80.2	36.9	111	3.196	0.341	30	
Benzo(g,h,i)perylene	3.22	0.0993	3.971	0	81.1	35.5	110	3.194	0.785	30	
Surr: 2-Fluorobiphenyl	1.95		1.985		98.2	49.6	128		0	0	
Surr: Terphenyl-d14	2.03		1.985		102	38.2	138		0	0	
Sample ID: 2111363-003ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 11/19/2	021	RunNo: 715	505	
Client ID: GW-MW107-111621	Batch ID: 34512					Analysis Dat	e: 11/22/2	021	SeqNo: 145	6429	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.105						0		30	
2-Methylnaphthalene	ND	0.105						0		30	
1-Methylnaphthalene	ND	0.105						0		30	
Acenaphthylene	ND	0.105						0		30	
Acenaphthene	0.278	0.105						0.2866	2.96	30	

Fluorene

Pyrene

Chrysene

Phenanthrene

Anthracene

Fluoranthene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)pyrene

30

30

30

30

30

30

30

30

30

30

0

0

0

0

0

0

0

0

0

0

Work Order:2111363CLIENT:Libby EnviroProject:Hardel	onmental				Ро	olyaromati	c Hydro	QC S	SUMMAI y EPA Met	RY REF	PORT (SIM)
Sample ID: 2111363-003ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 11/19/2	021	RunNo: 71	505	
Client ID: GW-MW107-111621	Batch ID: 34512					Analysis Date	: 11/22/2	021	SeqNo: 14	56429	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	ND	0.105						0		30	
Dibenz(a,h)anthracene	ND	0.105						0		30	
Benzo(g,h,i)perylene	ND	0.105						0		30	
Surr: 2-Fluorobiphenyl	2.18		2.090		104	49.6	128		0		
Surr: Terphenyl-d14	2.02		2.090		96.5	38.2	138		0		
Sample ID: 2111360-001AMS	SampType: MS			Units: µg/L		Prep Date	e: 11/19/2	021	RunNo: 715	505	
Client ID: BATCH	Batch ID: 34512					Analysis Date	e: 11/22/2	021	SeqNo: 14	56431	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.74	0.0983	3.933	0	69.6	40.8	115				
2-Methylnaphthalene	2.73	0.0983	3.933	0	69.4	41.8	118				
1-Methylnaphthalene	2.68	0.0983	3.933	0	68.2	44.9	116				
Acenaphthylene	2.77	0.0983	3.933	0	70.4	46.9	115				
Acenaphthene	2.62	0.0983	3.933	0	66.7	47.3	112				
Fluorene	2.82	0.0983	3.933	0	71.6	54	113				
Phenanthrene	2.81	0.0983	3.933	0	71.5	46.5	120				
Anthracene	2.76	0.0983	3.933	0	70.1	42.3	118				
Fluoranthene	2.85	0.0983	3.933	0.04680	71.4	41.4	127				
Pyrene	2.80	0.0983	3.933	0	71.2	34.1	128				
Benz(a)anthracene	2.75	0.0983	3.933	0	69.8	35.4	124				
Chrysene	2.68	0.0983	3.933	0	68.1	36.1	120				
Benzo(b)fluoranthene	2.78	0.0983	3.933	0	70.6	24.3	119				
Benzo(k)fluoranthene	2.77	0.0983	3.933	0	70.5	20.5	134				
Benzo(a)pyrene	2.84	0.0983	3.933	0	72.2	22.3	130				
Indeno(1,2,3-cd)pyrene	2.51	0.0983	3.933	0	63.7	19.3	118				
Dibenz(a,h)anthracene	2.62	0.0983	3.933	0	66.7	19.5	122				
Benzo(g,h,i)perylene	2.67	0.0983	3.933	0.03799	67.0	9.14	124				
Surr: 2-Fluorobiphenyl	1.67		1.967		84.8	49.6	128				
Surr: Terphenyl-d14	1.63		1.967		83.0	38.2	138				

Work Order: CLIENT:	2111363 Libby Environ	mental			QC SUMMARY REPOR	T
Project:	Hardel				Polyaromatic Hydrocarbons by EPA Method 8270 (SIN	Л)
Sample ID: 21113	60-001AMS	SampType: MS		Units: µg/L	L Prep Date: 11/19/2021 RunNo: 71505	
Client ID: BATC	н	Batch ID: 34512			Analysis Date: 11/22/2021 SeqNo: 1456431	
Analyte		Result	RL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual	

Client Name: LIBBY	Work Order Nun	nber: 2111363	
Logged by: Clare Griggs	Date Received:	11/17/2021 10	:00:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No 🗌 N	lot Present
2. How was the sample delivered?	UPS		
<u>Log In</u>			
3. Coolers are present?	Yes 🔽	No 🗌	NA 🗌
4. Shipping container/cooler in good condition?	Yes 🗸	No 🗌	
 Custody Seals present on shipping container/c (Refer to comments for Custody Seals not intained) 	cooler? Yes 🗌	No 🗌 N	lot Present 🗹
6. Was an attempt made to cool the samples?	Yes	No 🔽	NA 🗌
- · ·	Unknown prior to	receipt.	
7. Were all items received at a temperature of >	2°C to 6°C * Yes	No 🗌	NA 🗹
8. Sample(s) in proper container(s)?	Yes 🔽	No 🗌	
 Sufficient sample volume for indicated test(s)? 	Yes 🖌	No 🗌	
10. Are samples properly preserved?	Yes 🖌	No 🗌	
11. Was preservative added to bottles?	Yes 🖌	No 🗌	NA 🗌
			HNO3
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good cond	lition(unbroken)? Yes 🗹	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of C	ustody? Yes 🗹	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗸	No 🗌	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this	s order? Yes 🗹	No 🗌	NA 🗌
Person Notified: Korv Dixon	Date:	11/17/2021	
By Whom: Clare Griggs	Via: 🖌 eMail 🗌 P	hone 🗌 Fax 🗌 In	Person
Regarding: Dissolved metals vo	lume.		
Client Instructions: Volume was field filte	ered.		
19. Additional remarks:			

Item Information

Item #	Temp ⁰C
Sample	7.2

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Libby Environmen	ital, In	IC.		CI	nair	ı of	Cu	sto	dy I	Rec	or	d		211	120	2		www.l	ibbyEn	vironme	ntal.com
3322 South Bay Road NE	Ph:	360-352-2	110			,	Jotor	11/	1/11					211-	Page	5	,		of		
Olympia, WA 98506	Fax:	360-352-4	154				Jale.	112	War C	1	,	<i>C</i> 1			ray	0.			01		
Client: Libby Enviro	nmente	1, Inl					Projec	t Mana	ager:	Kod	ley	Ele	y_							_	f 20
Address: SEE I	ABOUE)					_	Projec	t Nam	e:	Han	del			_			_				0
City:		State:	Zip:			- 1	ocati	on:	_						City,	Stat	e: C	iy m	pia, U	UA	ge 1
Phone:		Fax:					Collec	tor: 🖡	AR		-	-	_		Date	e of C	Collec	ction:	11/16	121	Pa
Client Project # L211116 -	4					1	Email:	1:1	olog	ene	gen	mil.c	cm					7 8	,		
THE BOAT	Denth	Time	Sample	Container		5320	o Davis		S260 PH		4 5 8 5	N ST S	100 0 00 00 00 00 00 00 00 00 00 00 00 0	82 10 82 10 84 83	10 10 10 10	8270	J. J.			otes	
	Depth	Time	Type	туре	K-		4	× ·	4	Ύ	< <i>b</i> .	<u> </u>		1	1×		(<u> </u>	ICIC IV	0100	
1 GW-MW03-111621	-	7.11	grab		-		-	+-	-		-		-(2						
2 GW -MW106-111621		10106							-	-	-			-	C						100
3 (7W-MW10 F-11-1621	-	10:23	-				-		-		-			-	1			FUT	du	pon	107
4								-	-	-			-	+	+		-				
5					-		-	_	-	-		\vdash			-	-	-				
6							_	_	-		_		_	-	-		-				
7					-		_			-	_		-		-		-				
8							_							_	-			-	-		
9								_					_	_	_						
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17 2	1/																				
Relinquished by	1	11(12)	Date / Time	Received by:	m	25	H	11/	17	Date /	Time	Good	Sam	on2	ceip	t	Ren	narks:	STE	D TAT	
Reinquishee by:		116/0	Date / Time	Received by:	2/1	aru	9		+ 1	Date /	Time	Coole	r Temp le Tem	р.		°C °C	Ple	Cau	vv mm-u	m [107-11	7up 1621
Relinquished by:			Date / Time	Received by:						Date /	Time	Total Co	Numbe ntainer	r of s			TA	T: 2	AHR	nalyse 48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environmen	ital, In	IC.		CI	hair	۱ of	Cu	isto	dy	Rec	or	d	0	111	26	2	9	www.L	.ibbyEn	vironme	ntal.com
3322 South Bay Road NE	Ph:	360-352-2	110			,	Datas	11	NO	7 \			1	111	Page	S	,		of		
Olympia, WA 98506	Fax:	360-352-4	154			-	Jate.		Her (-	,	0			raye	2.	1		01		
Client: Libby Envivo	nmente	1, Inl	*				rojec	ct Ma	nager	: Koc	1eg	Ele	4				-			_	f 20
Address: SEE I	ABOVE)					<u>_</u>	Projec	ct Nar	ne:	Har	del						_				0
City:		State:	Zip:				_ocati	ion:							City,	State	e: C	lym	pia, U	UA	ge 2
Phone:		Fax:				1	Collec	otor:	AR	-	-	-			Date	of C	ollec	tion:	11/16	121	- Ba
Client Project # L211116 -	4					1	Email	: \	ibby	ene	gen	mil.c	cm		_	~	_	7 6 7		_	
THE BOAT	Denth	Time	Sample	Container		5 826	201 X	RH CT	BE RE R		10+ 0+ 00 38 00	57 59 57 59 50 50 50 50 50 50 50 50 50 50 50 50 50	50 0 Ne 0	210 21	S S S	5270				otes	
	Deptn	Time	Type	туре	K3	\bigwedge		Ŷ	Y	er v		<u> </u>				1	-	,	Ioid It	0100	
1 GW-MW03-11621	-	7.11	grab		-		-	-		-					5						
2 GW -MW106-111621	-	10-06			+		-	-	+-	+			-î	-	X	-			1	-	10.7
3 (7W-MW10 F-11-1621	-	10:23	-		-		-			+					\mathbf{a}			Ror	n Dis	p on s Aan	or KI
4							-		-	+	-			+		-	-	Std	ΓΑΤ, 1	2/9/21	-CG
5					-		-							-	$\left \right $	-		-			
6							-	-	-	-			-	-		_					
7					-		_	-	_	-			_	-		_					
8							_		_	-	-			-		_		_			
9								_	-	_				-							
10														-							
11																					
12																_					
13																					
14																					
15																					
16																					
17 .2	/																				
Relinquished by	1	1/16/21	Date / Time	Received by:	M	an	the	11	117	Date /	Time	Good	Sample Condition	e Rec 17	ceipt Y	N	Ren	narks:	STE	TAT	2
Relinquishee by:			Date / Time	Received by:			0			Date /	Time	Coole	r Temp. le Temp.		_	°C °C	on	Care	vy mm-l	107-11	1621
Relinquished by:			Date / Time	Received by:						Date /	Time	Total Cor	Number ontainers	of			TAT	T: 24	4HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

February 9, 2022

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite C Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen	tal, In	C.		Cl	nair	n of	Cu	stoc	ly F	Rec	or	d						www.Lib	byEnviron	mental.com
3322 South Bay Road NE	Ph:	360-352-2	110																	
Olympia, WA 98506	Fax:	360-352-4	154			-	Date:	2/1/7	1,2						Pa	ge:		and the second sec	of	
Client: Plonee	Teo	ih,					Projec	t Mana	ger:	Jue	1	Hed	Fer l	- Landard and Andrea						
Address: 5205 Corporat	te cen	te ct.	SE			L	Projec	t Name	e:	Have	ser									
City: Olympia		State: 6	A Zip:	98503			Locati	on: H	ordi	1					City	y, Sta	ite:	013,0	A	
Phone: 365-828- 373	9	Fax:				_	Collec	tor: J	A	-					Dat	te of	Colle	ection: 2	11/22	
Client Project # Hardel						_	Email:	Hec	kerj	C.	igzi	ones	·. co	M						
Sample Number	Depth	Time	Sample Type	Container Type	1	58000	D AN	2H-5+ 5	ALLAN THE	SR SR S	4 60 th	X S S	8191 0 V	5015 H 8210	210 J	8270 8820	ALGAN DESCRIPTION	J ASIAS	Id Notes	
1 (14-MW107-020122	3-18	11:42	(s	nuit		V	X	Ť	ÎXÎ		<u> </u>	ſ	Ť	X	Ív	Tx 1	1	1	u notoc	
2 TB- 020122		11.12				X									X	1	\vdash			
3						~														
4																				
5																1				
6																				
7																				
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
16																				
17						/														
Relinquished by:	21	1/22	Date / Time	Received by:	uf			2	D	ate / T	ime Sol	Good	Samp Condit	ion?	eceip Y	t N	Ren	narks:		
Relinquisted by:			Date / Time	Received by:					D	ate / T	ïme	Cooler	Temp			°C 2°				
Relinquished by:			Date / Time	Received by:					D	ate / T	ïme	Total N Cor	le rem Numbe	p. er of s		0	TA	T: 24HF	R 48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	GW-MW107	7-GW-MW107-	TB-020122	
		Blank	020122	020122 Dup		
Date Sampled		N/A	2/1/2022	2/1/2022	2/1/2022	
Date Analyzed	PQL	2/3/2022	2/3/2022	2/3/2022	2/3/2022	
·	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	
Benzene	1.0	nd	nd	nd	nd	
Toluene	1.0	nd	nd	nd	nd	
Ethylbenzene	1.0	nd	nd	nd	nd	
Total Xylenes	2.0	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	
1,2-Dibromoethane (EDB) *	0.01	nd	nd	nd	nd	
Naphthalene	5.0	nd	nd	nd	nd	
1-Methylnaphthalene	5.0	nd	nd	nd	nd	
2-Methylnaphthalene	5.0	nd	nd	nd	nd	
Methyl tert-Butyl Ether (MTBE)	5.0	nd	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		129	138 S	128	132	
1,2-Dichloroethane-d4		133	146 S	136 S	132	
Toluene-d8		99	96	89	94	
4-Bromofluorobenzene		92	101	96	91	

Volatile Organic Compounds by EPA Method 8260D in Water

"nd" Indicates not detected at listed detection limit.

"S" Spike compound recovery is outside acceptance limits (High Bias). Sample is nd, no further action required.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Matrix Spike Sample Identification: GW-MW107-020122								
Date Analyzed: 2/3/2022								
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	$(\mu g/L)$	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	5.0	4.7	6.2	94	125	28.2	65-135	
1,1-Dichloroethene	5.0	5.7	6.7	114	133	15.7	65-135	
trans-1,2-Dichloroethene	5.0	6.1	7.5	122	150	20.3	65-135	S
cis-1,2-Dichloroethene	5.0	3.3	3.9	66	79	17.7	65-135	
Trichloroethene (TCE)	5.0	4.0	4.8	80	96	18.2	65-135	
Tetrachloroethene (PCE)	5.0	4.1	5.4	83	109	27.4	65-135	
Methyl tert-Butyl Ether (MTBE)	5.0	4.2	4.5	84	91	7.8	65-135	
Benzene	5.0	3.7	4.6	75	93	21.5	65-135	
1,2-Dichloroethane (EDC)	5.0	5.1	5.8	102	115	11.8	65-135	
Toluene	5.0	3.7	4.5	74	89	18.7	65-135	
1,2-Dibromoethane (EDB)	5.0	4.6	4.4	92	88	4.2	65-135	
Ethylbenzene	5.0	3.7	4.7	74	95	24.6	65-135	
Total Xylenes	15.0	10.3	13.2	69	88	24.7	65-135	
Naphthalene	5.0	3.5	3.5	71	69	2.6	65-135	
1-Methylnaphthalene	5.0	4.5	3.4	89	68	26.5	65-135	
2-Methylnaphthalene	5.0	3.5	3.2	71	65	8.6	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				119	114		65-135	
1,2-Dichloroethane-d4				126	110		65-135	
Toluene-d8				91	87		65-135	
4-Bromofluorobenzene				99	97		65-135	

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

"S" Spike compound recovery is outside acceptance limits. A duplicate analysis was performed with acceptable recovery.

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004

Date Analyzed: 2/3/2022						
	Spiked	LCS	LCS	LCS	Data	
	Conc.	Response	Recovery	Recovery	Flag	
	(µg/L)	(µg/L)	(%)	Limits (%)		
Vinyl Chloride (VC)	5.0	4.5	90	80-120		
1,1-Dichloroethene	5.0	5.3	106	80-120		
trans-1,2-Dichloroethene	5.0	5.8	117	80-120		
cis-1,2-Dichloroethene	5.0	4.1	83	80-120		
Trichloroethene (TCE)	5.0	4.4	88	80-120		
Tetrachloroethene (PCE)	5.0	5.3	106	80-120		
Methyl tert-Butyl Ether (MTBE)	5.0	5.9	117	80-120		
Benzene	5.0	4.2	84	80-120		
1,2-Dichloroethane (EDC)	5.0	5.0	99	80-120		
Toluene	5.0	4.5	90	80-120		
1,2-Dibromoethane (EDB)	5.0	5.0	99	80-120		
Ethylbenzene	5.0	4.5	89	80-120		
Total Xylenes	15.0	13.1	88	80-120		
Naphthalene	5.0	5.5	110	80-120		
1-Methylnaphthalene	5.0	5.4	108	80-120		
2-Methylnaphthalene	5.0	4.6	92	80-120		
Surrogate Recovery						
Dibromofluoromethane			108	65-135		
1,2-Dichloroethane-d4			110	65-135		
Toluene-d8 88 65-135						
4-Bromofluorobenzene			99	65-135		

Laboratory Control Sample

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline					
Number	Analyzed	Recovery (%)	$(\mu g/L)$					
Method Blank	2/3/2022	99	nd					
GW-MW107-020122	2/3/2022	96	nd					
GW-MW107-020122 Dup	2/3/2022	89	nd					
Practical Quantitation Limit	Practical Quantitation Limit 100							
"nd" Indicates not detected at the listed detection limits.								
"int" Indicates that interference prevents determination.								
ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%								

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample Number	Date Analyzed	Surrogate Recovery (%)	Diesel (µg/L)	Oil (µg/L)			
Method Blank	2/3/2022	81	nd	nd			
GW-MW107-020122	2/3/2022	67	nd	nd			
Practical Quantitation Limit 200 400							
"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interference prevents determination.							

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 42% TO 150%

ANALYSES PERFORMED BY: Randolph Kraus

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Dissolved Arsenic in Water by EPA Method 7010 Series

Sample	Date	Arsenic				
Number	Analyzed	(µg/L)				
Method Blank	2/3/2022	nd				
GW-MW107-020122	2/3/2022	nd				
GW-MW107-020122 Dup	2/3/2022	nd				
		2.0				
Practical Quantitation Limit		3.0				
"nd" Indicates not detected at the listed detection limits.						

ANALYSES PERFORMED BY: Eric Welte

HARDEL PROJECT Pioneer Technologies Olympia, Washington Libby Project # L22B004 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Arsenic
Number	Analyzed	(% Recovery)
LCS	2/3/2022	97%
LCS Dup	2/3/2022	104%
RPD	2/3/2022	7%
GW-MW107-020122 MS	2/3/2022	112%
GW-MW107-020122 MSD	2/3/2022	107%
RPD	2/3/2022	5%

QA/QC Dissolved Arsenic by EPA Method 7010 Series in Water

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Eric Welte

HARDEL PROJECT Pioneer Technologies Libby Project # L22B004 Date Received 2/1/22 13:01 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By RJK

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	🗹 Yes	1	🗌 No		
2. How was the sample delivered?	⊡ Han	nd Delivered	Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	⊡ Yes		🗌 No		□ N/A
4. Cooler or Shipping Container is in good condition.	🗹 Yes		🗌 No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes		✓ No		□ N/A
6. Was an attempt made to cool the samples?	🗹 Yes		🗌 No		□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		-6.3	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		0.6	°C		
9. Did all containers arrive in good condition (unbroken)?	🗹 Yes		🗌 No		
10. Is it clear what analyses were requested?	✓ Yes		🗌 No		
11. Did container labels match Chain of Custody?	⊡ Yes		🗌 No		
12. Are matrices correctly identified on Chain of Custody?	🗹 Yes		🗌 No		
13. Are correct containers used for the analysis indicated?	🗹 Yes		🗌 No		
14. Is there sufficient sample volume for indicated analysis?	✓ Yes		🗌 No		
15. Were all containers properly preserved per each analysis?	✓ Yes		🗌 No		
16. Were VOA vials collected correctly (no headspace)?	🗹 Yes		🗌 No		□ N/A
17. Were all holding times able to be met?	🗹 Yes		🗌 No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?	🗌 Yes		🗌 No		✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Work Order Number: 2202030

February 09, 2022

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 1 sample(s) on 2/2/2022 for the analyses presented in the following report.

Dissolved Metals by EPA Method 200.8 Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Libby Environmental Hardel 2202030	Work Order Sample Summ					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received				
2202030-001	GW-MW107-020122	02/01/2022 11:42 AM	02/02/2022 9:14 AM				
2202030-001	GW-MW107-020122	02/01/2022 11:42 AM	02/02/2022 9:14 AM				

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2202030** Date: **2/9/2022**

CLIENT:Libby EnvironmentalProject:Hardel

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.
Qualifiers & Acronyms

 WO#:
 2202030

 Date Reported:
 2/9/2022

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2202030

 Date Reported:
 2/9/2022

Client: Libby Environmental				Collection	n Dat	te: 2/1/2022 11:42:00 AM
Lab ID: 2202030-001				Matrix: W	/ater	
Client Sample ID: GW-MW107	-020122					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons	by EPA Method 8	<u>3270 (SIM)</u>		Batc	h ID:	35281 Analyst: SB
Naphthalene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
2-Methylnaphthalene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
1-Methylnaphthalene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Acenaphthylene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Acenaphthene	0.305	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Fluorene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Phenanthrene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Anthracene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Fluoranthene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Pyrene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Benz(a)anthracene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Chrysene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Benzo(b)fluoranthene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Benzo(k)fluoranthene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Benzo(a)pyrene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Indeno(1,2,3-cd)pyrene	ND	0.0992		µg/L	1	2/8/2022 4:31:56 PM
Dibenz(a.h)anthracene	ND	0.0992		ua/L	1	2/8/2022 4:31:56 PM
Benzo(a.h.i)pervlene	ND	0.0992		ua/L	1	2/8/2022 4:31:56 PM
Surr: 2-Fluorobiphenvl	93.5	49.6 - 128		%Rec	1	2/8/2022 4:31:56 PM
Surr: Terphenyl-d14	97.9	38.2 - 138		%Rec	1	2/8/2022 4:31:56 PM
Dissolved Metals by EPA Met	thod 200.8			Batc	h ID:	35273 Analyst: EH
Silver	ND	0.350		µg/L	1	2/7/2022 12:47:15 PM

Work Order:	2202030					QC	SUMMARY REPORT
CLIENT:	Libby Enviro	nmental				Dissolved Me	tale by EBA Method 200 8
Project:	Hardel					Dissolved me	tals by EFA Method 200.8
Sample ID: MB-3	5272FB	SampType: MBLK			Units: µg/L	Prep Date: 2/7/2022	RunNo: 73092
Client ID: MBL	Ŵ	Batch ID: 35273				Analysis Date: 2/7/2022	SeqNo: 1492419
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver NOTES: Filter Blank		ND	0.350				
Sample ID: MB-3	5273	SampType: MBLK			Units: µg/L	Prep Date: 2/7/2022	RunNo: 73092
Client ID: MBL	Ŵ	Batch ID: 35273				Analysis Date: 2/7/2022	SeqNo: 1492420
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		ND	0.350				
Sample ID: LCS-3	35273	SampType: LCS			Units: µg/L	Prep Date: 2/7/2022	RunNo: 73092
Client ID: LCSV	I	Batch ID: 35273				Analysis Date: 2/7/2022	SeqNo: 1492421
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		25.5	0.350	25.00	0	102 85 115	
Sample ID: 22015	50-001BDUP	SampType: DUP			Units: µg/L	Prep Date: 2/7/2022	RunNo: 73092
Client ID: BATC	н	Batch ID: 35273				Analysis Date: 2/7/2022	SeqNo: 1492423
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		ND	0.350			0	30
Sample ID: 22015	50-001BMS	SampType: MS			Units: µg/L	Prep Date: 2/7/2022	RunNo: 73092
Client ID: BATC	н	Batch ID: 35273				Analysis Date: 2/7/2022	SeqNo: 1492426
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		24.9	0.350	25.00	0	99.6 70 130	

Work Order:	2202030									2.00	SUMMAR	RY RFF	ORT	
CLIENT:	Libby Enviror	nmental												
Project:								Dis	solved Me	tals by EP	A Method	1 200.8		
Sample ID: 22015	50-001BMSD	SampType	: MSD			Units: µg/L		Prep Dat	te: 2/7/202	22	RunNo: 730)92		
Client ID: BATCH Batch ID: 35273							Analysis Date: 2/7/2022 SeqNo:					1492427		
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Silver			23.3	0.350	25.00	0	93.2	70	130	24.91	6.69	30		

Fremont
Analytical

Work Order:	2202030									2.00	SUMMAI	RY RFF	PORT
CLIENT:	Libby Enviro	nmental					_	_					
Project:	Hardel						Po	lyaromat	tic Hydro	ocarbons b	y EPA Met	thod 8270	0 (SIM)
Sample ID: MB-35	5281	SampType	BLK			Units: µg/L		Prep Dat	te: 2/7/202	2	RunNo: 731	156	
Client ID: MBLK	W	Batch ID:	35281					Analysis Dat	te: 2/8/202	2	SeqNo: 149) 4220	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			ND	0.100									
2-Methylnaphthale	ne		ND	0.100									
1-Methylnaphthale	ne		ND	0.100									
Acenaphthylene			ND	0.100									
Acenaphthene			ND	0.100									
Fluorene			ND	0.100									
Phenanthrene			ND	0.100									
Anthracene			ND	0.100									
Fluoranthene			ND	0.100									
Pyrene			ND	0.100									
Benz(a)anthracene	e		ND	0.100									
Chrysene			ND	0.100									
Benzo(b)fluoranthe	ene		ND	0.100									
Benzo(k)fluoranthe	ene		ND	0.100									
Benzo(a)pyrene			ND	0.100									
Indeno(1,2,3-cd)py	/rene		ND	0.100									
Dibenz(a,h)anthrac	cene		ND	0.100									
Benzo(g,h,i)peryle	ne		ND	0.100									
Surr: 2-Fluorobi	phenyl		1.54		2.000		76.9	49.6	128				
Surr: Terphenyl-	-d14		1.94		2.000		97.1	38.2	138				
Sample ID: LCS-3	5281	SampType	: LCS			Units: µg/L		Prep Dat	te: 2/7/202	2	RunNo: 73 1	156	
Client ID: LCSW	I	Batch ID:	35281					Analysis Dat	te: 2/8/202	2	SeqNo: 149) 4221	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene			2.69	0.100	4.000	0	67.1	52.2	104				
2-Methylnaphthale	ne		2.79	0.100	4.000	0	69.7	51.9	109				
1-Methylnaphthale	ne		2.81	0.100	4.000	0	70.2	54.3	107				
Acenaphthylene			2.62	0.100	4.000	0	65.4	55.5	110				
Acenaphthene			2.98	0.100	4.000	0	74.4	54.3	105				

Original

Work Order:	2202030
CLIENT:	Libby Environmental
Project:	Hardel

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-35281	SampType: LCS			Units: µg/L		Prep Da	te: 2/7/202	2	RunNo: 731	56	
Client ID: LCSW	Batch ID: 35281					Analysis Da	te: 2/8/202	2	SeqNo: 149	4221	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	3.24	0.100	4.000	0	81.0	60.5	110				
Phenanthrene	3.25	0.100	4.000	0	81.4	57.8	110				
Anthracene	3.19	0.100	4.000	0	79.7	56.4	109				
Fluoranthene	3.21	0.100	4.000	0	80.3	58.9	114				
Pyrene	3.13	0.100	4.000	0	78.1	56.7	115				
Benz(a)anthracene	2.93	0.100	4.000	0	73.2	53.4	115				
Chrysene	3.42	0.100	4.000	0	85.4	52	111				
Benzo(b)fluoranthene	3.44	0.100	4.000	0	86.0	45.3	109				
Benzo(k)fluoranthene	3.07	0.100	4.000	0	76.9	40	117				
Benzo(a)pyrene	2.79	0.100	4.000	0	69.7	49.1	115				
Indeno(1,2,3-cd)pyrene	3.07	0.100	4.000	0	76.9	35.7	108				
Dibenz(a,h)anthracene	3.11	0.100	4.000	0	77.8	36.9	111				
Benzo(g,h,i)perylene	3.06	0.100	4.000	0	76.4	35.5	110				
Surr: 2-Fluorobiphenyl	1.51		2.000		75.7	49.6	128				
Surr: Terphenyl-d14	1.69		2.000		84.5	38.2	138				
Sample ID: LCSD-35281	SampType: LCSD			Units: µg/L		Prep Da	te: 2/7/202	2	RunNo: 731	56	
Client ID: LCSW02	Batch ID: 35281					Analysis Da	te: 2/8/202	2	SeqNo: 149	4222	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.42	0.100	4.000	0	85.4	52.2	104	2.686	24.0	30	
2-Methylnaphthalene	3.72	0.100	4.000	0	93.1	51.9	109	2.790	28.7	30	
1-Methylnaphthalene	3.77	0.100	4.000	0	94.1	54.3	107	2.809	29.1	30	
Acenaphthylene	3.50	0.100	4.000	0	87.5	55.5	110	2.617	28.9	30	
Acenaphthene	3.64	0.100	4.000	0	90.9	54.3	105	2.977	20.0	30	
Fluorene	3.59	0.100	4.000	0	89.8	60.5	110	3.239	10.3	30	
Phenanthrene	3.65	0.100	4.000	0	91.3	57.8	110	3.254	11.5	30	
Anthracene	3.50	0.100	4.000	0	87.5	56.4	109	3.189	9.32	30	
Fluoranthene	3.63	0.100	4.000	0	90.8	58.9	114	3.210	12.4	30	
Pyrene	3.62	0.100	4.000	0	90.5	56.7	115	3.126	14.7	30	

QC SUMMARY REPORT

2202030

3.55

3.38

3.52

2.99

3.19

2.78

0.103

0.103

0.103

0.103

0.103

0.103

4.133

4.133

4.133

4.133

4.133

4.133

Work Order:

CLIENT: Libby Envir	onmental				Po	lvaroma	tic Hydr	ocarbons b			
Project: Hardel					10	nyaroma.					
Sample ID: LCSD-35281	SampType: LCSD			Units: µg/L		Prep Dat	te: 2/7/202	22	RunNo: 73	156	
Client ID: LCSW02	Batch ID: 35281					Analysis Da	te: 2/8/202	22	SeqNo: 14	94222	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	3.56	0.100	4.000	0	88.9	53.4	115	2.929	19.4	30	
Chrysene	3.91	0.100	4.000	0	97.7	52	111	3.416	13.4	30	
Benzo(b)fluoranthene	3.82	0.100	4.000	0	95.5	45.3	109	3.441	10.4	30	
Benzo(k)fluoranthene	3.13	0.100	4.000	0	78.2	40	117	3.074	1.73	30	
Benzo(a)pyrene	2.92	0.100	4.000	0	73.0	49.1	115	2.789	4.62	30	
Indeno(1,2,3-cd)pyrene	3.50	0.100	4.000	0	87.4	35.7	108	3.074	12.8	30	
Dibenz(a,h)anthracene	3.56	0.100	4.000	0	89.1	36.9	111	3.113	13.5	30	
Benzo(g,h,i)perylene	3.38	0.100	4.000	0	84.5	35.5	110	3.055	10.2	30	
Surr: 2-Fluorobiphenyl	1.95		2.000		97.7	49.6	128		0	0	
Surr: Terphenyl-d14	1.95		2.000		97.3	38.2	138		0	0	
Sample ID: 2202027-002AMS	SampType: MS			Units: µg/L		Prep Dat	te: 2/7/202	22	RunNo: 73	156	
Client ID: BATCH	Batch ID: 35281					Analysis Da	te: 2/8/202	22	SeqNo: 14	94225	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.89	0.103	4.133	0	69.9	40.8	115				
2-Methylnaphthalene	3.21	0.103	4.133	0	77.6	41.8	118				
1-Methylnaphthalene	3.26	0.103	4.133	0	78.9	44.9	116				
Acenaphthylene	3.29	0.103	4.133	0	79.6	46.9	115				
Acenaphthene	3.38	0.103	4.133	0	81.7	47.3	112				
Fluorene	3.60	0.103	4.133	0	87.0	54	113				
Phenanthrene	3.60	0.103	4.133	0	87.1	46.5	120				
Anthracene	3.58	0.103	4.133	0	86.7	42.3	118				
Fluoranthene	3.55	0.103	4.133	0	85.8	41.4	127				

0

0

0

0

0

0

85.9

81.8

85.2

72.3

77.2

67.3

34.1

35.4

36.1

24.3

20.5

22.3

128

124

120

119

134

130

Original

Benzo(a)pyrene

Pyrene

Chrysene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Work Order: 2202030

CLIENT: Libby Environmental Hardel

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Hardel					PO	Iyaroma	tic Hyard	ocarbons b	y EPA Met	nod 8270	J (SINI)	
Sample ID: 2202027-002AMS	SampType: MS			Units: µg/L Prep Date: 2/7/2022					RunNo: 731	56		
Client ID: BATCH	Batch ID: 35281					Analysis Da	te: 2/8/202	2	SeqNo: 1494225			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Indeno(1,2,3-cd)pyrene	2.59	0.103	4.133	0	62.6	19.3	118					
Dibenz(a,h)anthracene	2.66	0.103	4.133	0	64.4	19.5	122					
Benzo(g,h,i)perylene	2.51	0.103	4.133	0	60.8	9.14	124					
Surr: 2-Fluorobiphenyl	1.81		2.066		87.4	49.6	128					
Surr: Terphenyl-d14	1.80		2.066		86.9	38.2	138					

Sample Log-In Check List

Client Name: L	IBBY	Work Order Num	ber: 2202030	
Logged by:	Gabrielle Coeuille	Date Received:	2/2/2022 9):14:00 AM
Chain of Custod	dy			
1. Is Chain of Cus	stody complete?	Yes 🖌	No	Not Present
2. How was the sa	ample delivered?	UPS		
<u>Log In</u>				
3. Coolers are pre	esent?	Yes 🖌	No 🗌	NA 🗌
4. Shipping contai	iner/cooler in good condition?	Yes 🖌	No 🗌	
5. Custody Seals (Refer to comm	present on shipping container/cooler? ents for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
6. Was an attemp	t made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7. Were all items	received at a temperature of >2°C to 6°C *	Yes 🔽	No 🗌	
8. Sample(s) in pr	oper container(s)?	Yes 🖌	No 🗌	
9. Sufficient samp	ble volume for indicated test(s)?	Yes 🖌	No 🗌	
10. Are samples pr	operly preserved?	Yes 🗹	No 🗌	
11. Was preservati	ve added to bottles?	Yes	No 🔽	NA 🗌
12. Is there headsp	pace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples	containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwor	k match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices co	prrectly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what	analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding	g times able to be met?	Yes 🗹	No 🗌	
<u>Special Handlin</u>	<u>g (if applicable)</u>			
18. Was client notif	fied of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Person No	Date			
By Whom	: Via:	eMail Pr	none 🗌 Fax [In Person
Regarding	j:			
Client Inst	ructions:			

Item Information

Item #	Temp ⁰C
Sample 1	3.7

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	tel la			0	F			o els	. D.		l							22 March 1 11		
LIDBY Environmer	ital, ir	IC.		C	nain	OT C	ust	ody	/ ке	cor	ď					V	www.Lit	byEnvir	onmen	tal.com
3322 South Bay Road NE	Ph:	360-352-2	2110			Dat	0: 0	. 1 -	22					Dee		25	202	030	1	
Olightia, WA 98500	Fax.	300-352-2	• .			Dat		(-	20		0	1.1	1	Fay	je.	l		01	1	<u> </u>
Client: LIDRY Cru	ronme	VIIal, 1	-nc			Pro	Ject Ma	anage	er: Sh	ern	10	m	Rutt	-						13.0
Address: 0 (5e	e Ab	ove)				Pro	ject Na	ime:	tard	lel										
City:		State:	Zip:			Loc	ation:							City	, Sta	te: CI	ymp	ia, u	A	Pa
Phone:		Fax:				Col	lector:	HC						Dat	e of (Collect	tion: 2	-1-2	2	
Client Project # 122 Boo	4					Em	ail: 1;bl	oyer	neg	mail	.com									
Sample Number	Depth	Time	Sample Type	Container Type	100	26 2 86 2 80 2	MIPH-ST	ool in the second	RAN DA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 5 5 5 5 5 5 5 5	100 00 00 00 00 00 00 00 00 00 00 00 00	5415 10 5415 10	10 John Vo	8270	×	Fie	eld Note	es	
1 GW-MWIO7-OZOIZZ	3-18	1142	Grab	Amber/ping									\times	X						
2				0																
3																				
4																				
5								1						1						
6																				
7								\uparrow			$^{++}$									
8								-		1										
9								+		1				+						
10																				
11										1				+						
12														1						
13												1								
14														1	1					
15												1		+						
16														-	1					
17								+	-			+		+						
Relinquished by		2-1	Date / Time -22	Received by:					Date	/ Time	Good (Sam Condit	ple Re	ceipt Y	t N	Rema	arks: TD	TAT		
Relinquished by:			Date / Time	Received by:	ep	2-	2-2	9	Date		Cooler Sample	Temp e Tem	ip.		°C °C					
rteiinquisnea by:			Date / Time	Received by:	9				Date	Time	Total N Con	lumbe itainer	er of s			TAT:	24H	IR 48	HR 5	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

October 19, 2021

Joel Hecker Pioneer Technologies Corporation 5205 Corporate Center Ct SE, Suite A Lacey, WA 98503

Dear Mr. Hecker:

Please find enclosed the analytical data report for the Hardel Project located in Olympia, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

(FRAFD)			2600 Eron	nont Aug N		Air Ch	ain of	Custo	dy	Re	eco	ord	&	La	bo	ra	tor	y S	ervi	ces	Agree	ment
Fre	mo	IU	Seattle, Tel: 20	WA 98103 6-352-3790	Date: [C	0/13/2	21	Page	9:	1	of:	1	Lat	oratoi	y Proji	ect No	o (Interi	nal):				
	Anaiyt	cal	Fax: 20	6-352-7178	Project Name	Har	tel						Sp	ecial F	emar	ks:						
client: Libby Pion	Les les				Project No:																	
Sac Care	H ().	40/ 0	1 50	•		210 1	alest B	as Dr	1.0	~	11	mái										
Address: 5 205 CIP	and w	ite C	36.75		Location: V	2.0			146			44										
City, State, Zip: Lace					Collected by:	Fignee						*****	Air	ampi	es are	dispo	osed of	f one we	ek after	report is	submitted to	client unless
Telephone: 360-828-	- 3739				Reports to (P	M): Juel	Hecker	1					oth	erwise	requ	ested	l.	Ок	to Dispo	ose 🗋	Hold (fees r	nay apply)
Fax:	1		1	1	Email (PM):	Hucke	news	oneer		- (~ (- (~ (nalvsis						ut das statutes to containing			Internal
									5	*												
Sample Name	Canister / Flow Reg	Sample Type	Container	Expected Fill Time / Flow	Sample Start	Field Initial Sample Pressure	Sample End	Field Final Sample Pressure	list VOCs TO1	ect VOCs T015	H T015	xanes T015	or Gases 3C	ium 3C Mod	Cs 8260	BTEX 8260			C	mmente		Final Pressure
Sample Name	Senar#	(IVIatrix)	туре	Nale	Date & fime	(18)	Date & time	(ng)	Full	Sele	APF	Silo	inc Maj	Hel	2	GX				Jinnenis		(пд)
SVP 6	11409 Canister 1EE Flow Reg	SG	1L	~200ml/ min	IOLIS Date	-Ja Pressure	10/13 Date	۲ Pressure					X					со 07	itho 12 2	dn	all	
SVP 7	10376 Canister FF1 Flow Reg.	56-	1L	~200ml/ min	10(13 Jilo Time	-30 Pressure	10/13 Date	- 3 Pressure					Х									
svp 19	11026 Canister F11 Fiow Reg	SG	1L	~200ml/ min	10113 Date	- 3a Pressure	د المراج الموج Time	Q Pressure					X									
4	Canister Flow Reg.				Date	Pressure	Date	Pressure														
5	Canister				Date		Date															
* Matrix Codes: AA = Ambient Ai	r OA = Outdo	or Air	IA = Indoor	Air S =	Subslab / Soil	Gas SV	E = SVE	Pressure L = Landfill		D = Dig	geste	r r		-				Т		Turn-A	round Time:	
** Container Codes: BV = 1 Liter B	ottle Vac 6L =	6L Canister	1L = 1L C	Canister	CYL = High Pre	ssure Cylinde	er F = Filter	r S = Sor	bent	Tube	Т	B = Te	dlar Ba	g				Ź	Stand	dard	Next D	ay
*** Select one: BTEXN & APH	I PCE & B	reakdown	Othe	er, specify in	comments														3 Day	Y	Same	Day
I represent that I am authorized to enter backside of this Agreement.	r into this Agreeme	nt with Frem	ont Analytic	cal on behalf	of the Client n	amed above,	that I have ver	ified Client's	agre	ement	to eac	ch of th	ne term	s on t	he fro	ont ar	nd		2 Dav	Ý	specif	,
Relinquished (Signature)		Print Name			Date/Time	anna (Carlos da Andréa anna	Received (Signa	ture)						Prin	Name	2				Date/Tim	2	
× Lowle	Jos	245	ryus	101.	10 1	200	* 15	P-	1					Ko	y D	ino	in		ſĊ)/13	200	
x		Print Name			Date/ time		x x	ture)						PUL	. name	:				Date/Tim	ε	

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: Hardel Work Order Number: 2110199

October 19, 2021

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 3 sample(s) on 10/14/2021 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Libby Environmental Hardel 2110199	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2110199-001	SVP 6	10/13/2021 11:19 AM	10/14/2021 10:19 AM
2110199-002	SVP 7	10/13/2021 11:10 AM	10/14/2021 10:19 AM
2110199-003	SVP 19	10/13/2021 10:50 AM	10/14/2021 10:19 AM

Case Narrative

WO#: **2110199** Date: **10/19/2021**

CLIENT:Libby EnvironmentalProject:Hardel

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2110199** Date Reported: **10/19/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification DF - Dilution Factor DUP - Sample Duplicate HEM - Hexane Extractable Material ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- **REP Sample Replicate**
- RL Reporting Limit
- **RPD** Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

 Work Order:
 2110199

 Date Reported:
 10/19/2021

CLIENT:	Libby Environmental
Project:	Hardel

Lab ID: 2110199-001	Collection Date: 10/13/2021 11:19:00												
Analyses	Result	RL Qual	Units	DF	Date Analyzed								
Major Gases by EPA Method 3C			Batch	n ID: R7	0611 Analyst: SLL								
Carbon Dioxide	16.2	0.0500	%	1	10/15/2021 4:57:00 PM								
Methane	40.1	0.0500	%	1	10/15/2021 4:57:00 PM								
Nitrogen	42.2	0.0500	%	1	10/15/2021 4:57:00 PM								
Oxygen	1.53	0.0500	%	1	10/15/2021 4:57:00 PM								

Lab ID: 2110199-002	2
---------------------	---

Client Sample ID: SVP 7

Collection Date: 10/13/2021 11:10:00 AM Matrix: Soil Gas

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batc	h ID: R7	0611 Analyst: SLL
Carbon Dioxide	25.8	0.0500	%	1	10/15/2021 5:14:00 PM
Methane	60.4	0.0500	%	1	10/15/2021 5:14:00 PM
Nitrogen	12.4	0.0500	%	1	10/15/2021 5:14:00 PM
Oxygen	1.42	0.0500	%	1	10/15/2021 5:14:00 PM

Client Sample ID: SVP 19

Collection Date: 10/13/2021 10:50:00 AM **Matrix:** Soil Gas

Analyses	Result	RL Qual	Units	DF	Date Analyzed
<u>Major Gases by EPA Method 3C</u>			Batc	h ID: R7	70611 Analyst: SLL
Carbon Dioxide	5.64	0.0500	%	1	10/15/2021 5:35:00 PM
Methane	63.8	0.0500	%	1	10/15/2021 5:35:00 PM
Nitrogen	28.5	0.0500	%	1	10/15/2021 5:35:00 PM
Oxygen	2.03	0.0500	%	1	10/15/2021 5:35:00 PM

Work Order:	2110199									00.5	SUMMAR		ORT
CLIENT:	Libby Enviror	nmental											
Project:	Hardel									Major (Jases by I	PA Metr	NOD 3C
Sample ID: LCS-R	70611	SampType	LCS			Units: %		Prep Date	: 10/15/2	2021	RunNo: 706	511	
Client ID: LCSW	,	Batch ID:	R70611					Analysis Date	: 10/15/2	2021	SeqNo: 143	5214	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide			99.3	0.0500	100.0	0	99.3	70	130				
Methane			99.4	0.0500	100.0	0	99.4	70	130				
Nitrogen			103	0.0500	100.0	0	103	70	130				
Oxygen			103	0.0500	100.0	0	103	70	130				
Sample ID: 21101	99-002AREP	SampType	REP			Units: %		Prep Date	: 10/15/2	2021	RunNo: 706	511	
Client ID: SVP 7		Batch ID:	R70611					Analysis Date	: 10/15/2	2021	SeqNo: 143	5211	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide			25.8	0.0500						25.78	0.0146	30	
Methane			60.4	0.0500						60.44	0.0587	30	
Nitrogen			12.4	0.0500						12.36	0.0981	30	
Oxygen			1.43	0.0500						1.415	1.37	30	

Sample Log-In Check List

С	lient Name:	LIBBY	Work Order Numb	oer: 2110199	
L	ogged by:	Gabrielle Coeuille	Date Received:	10/14/2021	10:19:00 AM
<u>Cha</u>	nin of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>UPS</u>		
Log	<u>. In</u>				
3.	Coolers are p	present?	Yes 🗌	No 🗹	NA 🗌
			Air samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.	Custody Sea (Refer to con	Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗸
7.	Were all item	as received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserv	ative added to bottles?	Yes	No 🖌	NA 🗌
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗸
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	vork match bottle labels?	Yes 🖌	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗹	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date:			
	By Who	om: Via:	eMail Ph	one 🗌 Fax 🛛	In Person
	Regardi	ing:			
	Client Ir	nstructions:			

19. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			2000 5			Air Ch	ain of	Custo	ody	R	eco	ord	81	Lab	or	ato	ory	Serv	ices	Agre	ement	
Fre	mol	ΠT	Seattle, Tel: 20	WA 98103 6-352-3790	10	131	21	Page	0.	1	of:	1	Labo	oratory	Projec	t No (Ini	ternal):	21	101	199		8
	Analyti	<i>cal</i>	Fax: 20	6-352-7178	Project Name	Har	tel	Fag	ç.		01.		Spe	cial Re	marks	:						6 0
client: Libby PLON	cer				Project No:																	Pag
Address: 5205 Carp	orate a	te c	A. SE		Location: V	210 1	Nest B	an Dr	nine	. (Divic	npu	2									
City, State, Zip: Laces	WA				Collected by:	Pioneer	/									1	d of on 0	unal off			o client unless	
Telephone: 360-828.	- 3739				Reports to (P	M): Joel	Hecker	/					othe	rwise r	reque:	ited.		OK to Dis	pose	Hold (fee	s may apply)	
Fax:					Email (PM):	Hecke	rjevs	oloneer	; ca	~			Analycic								Internal	
Sample Name	Canister / Flow Reg Serial #	Sample Type (Matrix) *	Container Type **	Expected Fill Time / Flow Rate	Sample Start Date & Time	Field Initial Sample Pressure (" Hg)	Sample End Date & Time	Field Final Sample Pressure (" Hg)	Il list VOCs T015	fect VOCs T015 ***	PH TO15	loxanes TO15	ajor Gases 3C	elium 3C Mod	OCs 8260	X/BTEX 8260			Comment	s	Final Pressure (''Hg)	
SVP 6	11409 Canister 1EE Flow Reg	SG	1L	~200ml/ min	IOLIS Date	-Ja Pressure	10/13 Date	۲. H Pressure	Fu	Se	AF	SI	M N	T	>	0		meth coz 22 N	ane 2	n all	-3	
SVP 7	10376 Canister FF1 Flow Reg.	56-	1L	~200ml/ min	10(13) 110 Time	-30 Pressure	10/13 _{Date}	- 3 Pressure					X								-2	
svp 19	11026 Canister F11 Flow Reg	Sa	1L	~200ml/ min	10/13 Date	- 3a Pressure	19/13 Date	Y Pressure					X								-2	
4	Carister Flow Reg.				Date	Pressure	Date	Pressure														
5	Canister Flow Reg.				Date	Pressure	Date	Pressure														
* Matrix Codes: AA = Ambient A	ir OA = Outdo	oor Air	IA = Indoor	Air S =	Subslab / Soil	Gas S\	/E = SVE	L = Landfill	rhent	D = D	igeste T	r B – Te	adlar Ba	a				Sta	<i>Turn</i> andard	-Around Tin	ne: t Day	
*** Select one: BTEXN & AP		Breakdown	IL = IL (er, specify in	n comments	ssure cynnu	er r – riite	1 5 - 50	- Dent	Tube		0 - 11		.0				31	Day	San	ne Day	
I represent that I am authorized to enter backside of this Agreement.	er into this Agreeme	ent with Fren	nont Analyti	cal on behal	f of the Client n	amed above,	, that I have ver	ified Client'	s agre	emen	t to ea	ch of	the term	is on th	he fro	nt and		21	Day	sp	ecify	
Relinquished (Signature)		Print Name			Date/Time		Received (Signa	ature)						Print	Name				Date/T	me		1
Relinquished (Signature)	Jor	Print Name	silve	101	Date/Time	205	x A	jure) —	/		0			Ros	Y D Name	ikon	<u> </u>		Date/T	1200 me		
200	A	Lory Di	<i>™</i>	18/	13 163	õ	· al	ep	J	re	7	/	46	22	Tr	yc	2	10/1	4/21	10:	19 Par	e 1 of

Attachment 3

Memo

5205 Corporate Ctr. Ct. SE, Ste. A Olympia, WA 98503-5901 Phone: 360.570.1700 Fax: 360.570.1777 www.uspioneer.com

То:	Brandon Smith (West Bay Development Group, LLC)
From:	Troy Bussey, P.E., L.G., L.HG. and Joel Hecker, L.G., L.HG. (PIONEER Technologies Corporation [PIONEER])
cc:	Heather Burgess (Phillips Burgess Law), Kim Seely (Coastline Law Group)
Date:	February 14, 2022
Subject:	Summary of Recent Methane Investigation Hardel Mutual Plywood Corporation Site 1210 West Bay Drive NW, Olympia, Washington Voluntary Cleanup Program (VCP) Project ID SW1757, Cleanup Site ID 3704

This memo summarizes (1) subsurface methane results obtained during October and November 2021 remedial investigation (RI) data gap activities conducted at the Hardel Mutual Plywood Corporation (Hardel) Site (Site) in support of the planned West Bay Yards brownfield redevelopment project, and (2) the recommended path forward based on these results. PIONEER and Coastline Law Group are working closely with the Washington State Department of Ecology (Ecology) under the VCP to ensure that all Model Toxics Control Act (MTCA) requirements for the Site, including any requirements related to the presence of subsurface methane, are satisfactorily addressed (Ecology 2021). Methane soil gas and pressure differential measurements collected from two soil vapor probes (SVPs) in June 2020 indicated that no further action was necessary regarding a potential methane hazard in accordance with ASTM International Designation E2993-16 (Standard Guide for Evaluating Potential Methane Hazards as a Result of Methane in the Vadose Zone). However, additional methane investigation activities were conducted in October and November 2021 because of the amount of subsurface wood debris at the Site, the relatively high methane concentration in one of the June 2020 SVPs (23%), and the limited nature of the June 2020 methane investigation activities (PIONEER 2020, 2021a, 2021b, 2021c).

Investigation Activities

In accordance with the amended work plan (PIONEER 2021a, 2021c), 18 additional SVPs were installed in October 2021, and methane sampling events were conducted in October and November 2021.¹ Field measurements of the pressure differentials and methane, oxygen, and carbon dioxide soil gas concentrations were obtained from all 18 installed SVPs during at least two different sampling events. In addition, soil gas samples were collected from the three SVPs with the highest field methane concentrations and submitted to Fremont Analytical for analysis of methane, oxygen, carbon dioxide, and nitrogen by USEPA Method 3C.² Supporting details for the 2021 methane investigation activities and results will be presented in a forthcoming report prepared for the USEPA brownfield assessment grant.

¹ In accordance with the amended work plan, three of the 21 proposed SVPs were not installed because the depths to groundwater at these proposed locations were less than three feet below ground surface.

² Apart from the laboratory analyses of these three soil gas samples, the 2021 investigation activities were funded by the City of Olympia's United States Environmental Protection Agency (USEPA) brownfield assessment grant.

Investigation Results

At most SVP locations, the October and November 2021 methane investigation results replicated the June 2020 methane investigation results. In accordance with ASTM International Designation E2993-16, no further action is necessary at 14 of the 18 SVPs sampled in 2021 based on the maximum methane soil gas concentrations and measured pressure differentials at those 14 locations. However, further investigation activities and methane mitigation measures are recommended for the other four SVP locations since the maximum methane soil gas concentrations exceeded 30%. The methane soil gas concentrations at these four locations (and the methane soil gas detections throughout the Site) are most likely caused by bacteria decomposing subsurface wood debris. The presence of elevated methane soil gas concentrations.

Project Implications and Recommendations

The potential for subsurface methane to cause an indoor air hazard at this Site is low for several key reasons. First, there are no current buildings on the Site. Second, the proposed development includes the addition of clean soil fill material, which will raise the ground surface of the upland area from the current elevations of 13 to 16 feet North American Vertical Datum of 1988 (NAVD88) to a final elevation of 17 feet NAVD88 (PIONEER 2021b). For instance, approximately two feet of clean fill will be added during the planned development in the vicinity of the four SVPs with maximum methane soil gas concentrations exceeding 30% (PIONEER 2021b). This added soil will provide additional attenuation of methane between subsurface soil gas and indoor air. Third, the only indoor air space in the proposed development below an elevation of 26 feet NAVD88 will be a large subsurface parking garage underneath the buildings. In other words, there is a limited indoor air space for potential methane transport. Finally, in accordance with building, mechanical, and fire code requirements, the subsurface parking garage will have a mechanical ventilation system that satisfies code-required air exchange requirements for an enclosed structure and satisfies code-required vertical and horizontal separation distances between the exhaust and fresh air intakes.³ In other words, the ventilation system will prevent methane from accumulating within indoor air.

Although the potential for an indoor air methane hazard is low, additional methane investigation activities and methane mitigation measures are recommended to eliminate this potential pathway. Additional methane soil gas investigation activities are recommended to (1) define the extent of the four locations where maximum methane soil gas concentrations exceed 30%, and (2) confirm that methane concentrations at three SVPs remain less than 30% (since methane concentrations at these three SVPs increased over time as the amount of SVP purging increased, with a final concentration between 20% and 29%). The results from these additional methane investigation activities would define the areas where specific components of the MTCA methane remedy (e.g., long-term methane indoor air monitoring) would apply. The recommended methane mitigation measures are (1) implementing engineering controls for worker safety during all intrusive subsurface work, (2) installing a passive convertible venting system under the proposed parking garage, (3) installing an impervious vapor barrier under the parking garage between the passive convertible venting system and the garage slab, and (4) collecting indoor air samples following garage construction. Ecology was supportive of the recommended mitigation measures during an informal technical consultation call on January 11, 2022.

³ Personal correspondence between Josh Gobel of Thomas Architecture Studios and Troy Bussey of PIONEER.

References

- Ecology. 2021. Letter from Nicholas Acklam to Kimberly Seely with the subject of "Application Acceptance Voluntary Cleanup Program" for Hardel Mutual Plywood, 1210 West Bay Drive NW, Olympia, Thurston County, WA 98502. September 30.
- PIONEER. 2020. Phase II Environmental Site Assessment, Hardel Mutual Plywood Corporation, 1210 West Bay Drive NW, Olympia, Washington. October.
- PIONEER. 2021a. RI Data Gaps Investigation Work Plan, Hardel Mutual Plywood Corporation, 1210 West Bay Drive NW, Olympia, Washington. March.
- PIONEER. 2021b. Remedial Investigation Data Gap Report, Hardel Mutual Plywood Corporation Site, 1210 West Bay Drive NW, Olympia, Washington. August.
- PIONEER. 2021c. Minor Updates/Clarifications to the March 2021 RI Data Gaps Investigation Work Plan for Methane Soil Vapor Sampling at the Hardel Mutual Plywood Corporation Site, Olympia Washington USEPA Brownfield Assessment Grant (BF01J66201). September 28.

Professional Certification

This document was prepared under my direction. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that I was in responsible charge of the work performed for this document.

February 14, 2022

Date

Troy D. Bussey Jr. Principal Engineer PIONEER Technologies Corporation Washington P.E. Registration No. 38877 Washington L.G. and L.HG. Registration No. 1568