APPENDIX E
Laboratory Reports and Data Validation Memoranda

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 7, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on April 29, 2020 from the Precision Engineering 1803.01.01, F&BI 004344 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0507R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 29, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 004344 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u> Maul Foster Alongi</u>
004344 -01	MW4-W-20.0
004344 -02	MW1-W-35.0
004344 -03	MW5-W-15.0
004344 -04	MWDUP-W-15.0
004344 -05	Trip Blank

Samples MW4-W-20.0, MW1-W-35.0, MW5-W-15.0, and MWDUP-W-15.0 were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

Date Extracted: 04/30/20 Date Analyzed: 04/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 41-152)
MW4-W-20.0 004344-01	<50	<250	114
MW1-W-35.0 004344-02	<50	<250	128
MW5-W-15.0 004344-03	130 х	<250	135
MWDUP-W-15.0 004344-04	97 x	<250	137
Method Blank 00-980 MB2	<50	<250	113

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: 004344-01 Date Analyzed: 04/30/20 Data File: 004344-01.111 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 10.6
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: 004344-02 Date Analyzed: 04/30/20 Data File: 004344-02.114 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 27.7

 Chromium
 <1</td>

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & 5.37 \\ \text{Chromium} & 47,000 \text{ ve} \\ \text{Copper} & <25 \\ \text{Selenium} & <5 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Date Extracted: 04/30/20 Lab ID: 004344-03 x100 Date Analyzed: 04/30/20 Data File: 004344-03 x100.128

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium 44,600

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004344-04 x5

 Date Analyzed:
 05/01/20
 Data File:
 004344-04 x5.077

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & 5.17 \\ \text{Chromium} & 50,300 \text{ ve} \\ \text{Copper} & <25 \\ \text{Selenium} & <5 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004344-04 x100

 Date Analyzed:
 04/30/20
 Data File:
 004344-04 x100.129

 $\begin{array}{ccccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium 48,000

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: I0-249 mbDate Analyzed: 04/30/20 Data File: I0-249 mb.109 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

Annania ug/I (pps)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW4-W-20.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004344-01 1/2

Date Extracted: 04/30/20 Lab ID: 004344-01 In Date Analyzed: 04/30/20 Data File: 043027.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW1-W-35.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01 Date Extracted: 04/30/20 Lab ID: 004344-02 1/2

 Date Extracted:
 04/30/20
 Lab ID:
 004/344-02 I/

 Date Analyzed:
 04/30/20
 Data File:
 04/3028.D

 Matrix:
 Water
 Instrument:
 GCMS6

 Units:
 ug/L (ppb)
 Operator:
 VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	0.061
Pyrene	0.041
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	<0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW5-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004344-03 1/2

Date Extracted: 04/30/20 Lab ID: 004344-03 I/
Date Analyzed: 05/01/20 Data File: 043029.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MWDUP-W-15.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004344-04 1/2

Date Extracted: 04/30/20 Lab ID: 004344-04 I
Date Analyzed: 05/01/20 Data File: 043030.D
Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

$\begin{array}{c} \text{Concentration} \\ \text{Compounds:} \\ \text{ug/L (ppb)} \end{array}$

•	0 41 /
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01
Date Extracted: 04/30/20 Lab ID: 00-982 mb

Date Extracted:04/30/20Lab ID:00-982 mbDate Analyzed:04/30/20Data File:043021.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004344-01 Date Extracted: Date Analyzed: 05/01/20 Data File: $050137.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	100	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: Date Extracted: 004344-02 Date Analyzed: 05/01/20 Data File: $050138.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004344-03 Date Extracted: Date Analyzed: 05/01/20 Data File: $050139.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	3.3	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004344-04 Date Extracted: Date Analyzed: 05/01/20 Data File: $050140.\mathrm{D}$ GCMS4Matrix: Water Instrument: Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	3.4	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Trip Blank	Client:	Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 004344-0505/01/20 Date Analyzed: 05/01/20 Data File: $050134.\mathrm{D}$ Matrix: GCMS4Water Instrument: Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 00-950 mbDate Extracted: Date Analyzed: 05/01/20 Data File: $050116.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 004344-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.6	97	93	75-125	4
Chromium	ug/L (ppb)	20	<1	101	99	75 - 125	2
Copper	ug/L (ppb)	20	<5	93	92	75 - 125	1
Selenium	ug/L (ppb)	5	<1	99	98	75 - 125	1

			Percent	
	Reporting	$_{ m Spike}$	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	97	80-120
Copper	ug/L (ppb)	20	97	80-120
Selenium	ug/L (ppb)	5	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	79	76	57-114	4
Acenaphthylene	ug/L (ppb)	1	77	75	65-119	3
Acenaphthene	ug/L (ppb)	1	77	76	66-118	1
Fluorene	ug/L (ppb)	1	77	77	64 - 125	0
Phenanthrene	ug/L (ppb)	1	85	84	67-120	1
Anthracene	ug/L (ppb)	1	86	84	65 - 122	2
Fluoranthene	ug/L (ppb)	1	86	87	65 - 127	1
Pyrene	ug/L (ppb)	1	87	84	62-130	4
Benz(a)anthracene	ug/L (ppb)	1	92	91	60-118	1
Chrysene	ug/L (ppb)	1	91	91	66 - 125	0
Benzo(b)fluoranthene	ug/L (ppb)	1	81	81	55-135	0
Benzo(k)fluoranthene	ug/L (ppb)	1	81	79	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	81	81	58-127	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	83	77	36 - 142	7
Dibenz(a,h)anthracene	ug/L (ppb)	1	83	79	37-133	5
Benzo(g,h,i)perylene	ug/L (ppb)	1	81	77	34 - 135	5

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004342-01 (Matrix Spike)

Laboratory Code. 004542-01 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	$_{ m MS}$	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	106	10-172
Chloromethane	ug/L (ppb)	50	<10	99	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	101	36-166
Bromomethane	ug/L (ppb)	50	<1	121	47-169
Chloroethane	ug/L (ppb)	50	<1	105	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	110	44-165
Acetone	ug/L (ppb)	250	<50	89	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	111	60-136
Hexane	ug/L (ppb)	50	<1	108	52-150
Methylene chloride	ug/L (ppb)	50	<5	106	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	104	74-127
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	$\frac{106}{105}$	72-129 70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	111	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	105	71-127
Chloroform	ug/L (ppb)	50	<1	106	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	99	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	110	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	104	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	114	56-152
Benzene	ug/L (ppb)	50	< 0.35	104	76-125
Trichloroethene	ug/L (ppb)	50	<1	100	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	111	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	111	61-150
Dibromomethane	ug/L (ppb)	50	<1	111	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	111	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	112	72-132
Toluene	ug/L (ppb)	50	<1	102	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1 <1	112 107	76-130
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb)	$\frac{50}{250}$	<10	107	68-131 10-185
1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	107	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	106	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	117	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	110	69-134
Chlorobenzene	ug/L (ppb)	50	<1	106	77-122
Ethylbenzene	ug/L (ppb)	50	<1	104	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	113	73-137
m,p-Xylene	ug/L (ppb)	100	<2	107	69-135
o-Xylene	ug/L (ppb)	50	<1	105	60-140
Styrene	ug/L (ppb)	50	<1	108	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	103	65-142
Bromoform	ug/L (ppb)	50	<1	117	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	106	58-144
Bromobenzene	ug/L (ppb)	50	<1	104	75-124
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1 <1	107 111	66-137 51-154
1,1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	106	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	105	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	106	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	104	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	106	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	106	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	108	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	104	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	104	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	104	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	111	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	102	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	99	60-143
Naphthalene	ug/L (ppb)	50	<1	105	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	103	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004344

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Edward Code. Edward C	oneror samp.		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	104	103	25-158	1
Chloromethane	ug/L (ppb)	50	104	103	45-156	1
Vinyl chloride	ug/L (ppb)	50	105	106	50-154	1
Bromomethane	ug/L (ppb)	50	126	127	55-143	1
Chloroethane	ug/L (ppb)	50	109	108	58-146	1
Trichlorofluoromethane	ug/L (ppb)	250	111	111	50-150	0 2
Acetone 1,1-Dichloroethene	ug/L (ppb)	250 50	88 111	90 110	22-155 $67-136$	2 1
Hexane	ug/L (ppb) ug/L (ppb)	50 50	97	99	57-137	2
Methylene chloride	ug/L (ppb)	50	106	105	39-148	1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	104	105	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	106	107	68-128	1
1,1-Dichloroethane	ug/L (ppb)	50	105	105	74-135	0
2,2-Dichloropropane	ug/L (ppb)	50	116	114	55-143	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	105	106	74-136	1
Chloroform	ug/L (ppb)	50	105	105	74-134	0
2-Butanone (MEK)	ug/L (ppb)	250	94	95	37-150	1 3
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	96 110	99 110	66-129 74-142	0
1,1-Dichloropropene	ug/L (ppb)	50	101	102	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	115	116	75-158	1
Benzene	ug/L (ppb)	50	100	101	69-134	1
Trichloroethene	ug/L (ppb)	50	97	99	67-133	$\overline{2}$
1,2-Dichloropropane	ug/L (ppb)	50	104	107	71-134	3
Bromodichloromethane	ug/L (ppb)	50	105	108	76-132	3
Dibromomethane	ug/L (ppb)	50	105	107	68-132	2
4-Methyl-2-pentanone	ug/L (ppb)	250	106	110	65-138	4
cis-1,3-Dichloropropene Toluene	ug/L (ppb) ug/L (ppb)	50 50	103 96	108 98	74-140 72-122	5 2
trans-1,3-Dichloropropene	ug/L (ppb)	50	104	108	80-136	4
1,1,2-Trichloroethane	ug/L (ppb)	50	100	103	75-124	3
2-Hexanone	ug/L (ppb)	250	99	101	60-136	2
1,3-Dichloropropane	ug/L (ppb)	50	99	102	76-126	3
Tetrachloroethene	ug/L (ppb)	50	102	101	76-121	1
Dibromochloromethane	ug/L (ppb)	50	112	114	84-133	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	103	106	82-115	3
Chlorobenzene	ug/L (ppb)	50 50	102	103 101	83-114	1 1
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	100 112	101	77-124 84-127	0
m,p-Xylene	ug/L (ppb) ug/L (ppb)	100	104	104	81-112	0
o-Xylene	ug/L (ppb)	50	104	105	81-121	1
Styrene	ug/L (ppb)	50	105	106	84-119	1
Isopropylbenzene	ug/L (ppb)	50	103	103	80-117	0
Bromoform	ug/L (ppb)	50	117	119	74-136	2
n-Propylbenzene	ug/L (ppb)	50	99	102	74-126	3
Bromobenzene	ug/L (ppb)	50	97	101	80-121	4
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	101 104	104 107	78-123 66-126	3 3
1,1,2,2-1 etrachioroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	104	107	67-124	2
2-Chlorotoluene	ug/L (ppb)	50	99	101	77-127	2
4-Chlorotoluene	ug/L (ppb)	50	99	102	78-128	3
tert-Butylbenzene	ug/L (ppb)	50	100	102	80-123	$\overline{2}$
1,2,4-Trimethylbenzene	ug/L (ppb)	50	102	105	79-122	3
sec-Butylbenzene	ug/L (ppb)	50	101	103	80-116	2
p-Isopropyltoluene	ug/L (ppb)	50	104	105	81-123	1
1,3-Dichlorobenzene	ug/L (ppb)	50	99	102	83-113	3
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb)	50 50	99 101	101 103	81-112 84-112	$\frac{2}{2}$
1,2-Dichloropenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	113	117	57-141	3
1,2,4-Trichlorobenzene	ug/L (ppb)	50	100	104	72-130	4
Hexachlorobutadiene	ug/L (ppb)	50	97	99	53-141	2
Naphthalene	ug/L (ppb)	50	104	108	64-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	50	102	105	65-136	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 004344

Work Order Number: 2004406

May 06, 2020

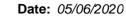
Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 4/29/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 004344 **Work Order:** 2004406

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2004406-001	MW4-W-20.0	04/29/2020 9:40 AM	04/29/2020 2:20 PM
2004406-002	MW1-W-35.0	04/29/2020 10:15 AM	04/29/2020 2:20 PM
2004406-003	MW5-W-15.0	04/29/2020 11:50 AM	04/29/2020 2:20 PM
2004406-004	MWDUP-W-15.0	04/29/2020 11:50 AM	04/29/2020 2:20 PM

Case Narrative

WO#: **2004406**Date: **5/6/2020**

CLIENT: Friedman & Bruya

Project: 004344

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2004406**

Date Reported: **5/6/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2004406

Date Reported:

Batch ID: R58995

Batch ID: R58995

5/6/2020

Analyst: WF

Analyst: WF

CLIENT: Friedman & Bruya

Project: 004344

Lab ID: 2004406-001 **Collection Date:** 4/29/2020 9:40:00 AM

Client Sample ID: MW4-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 5:21:00 PM

Lab ID: 2004406-002 **Collection Date:** 4/29/2020 10:15:00 AM

Client Sample ID: MW1-W-35.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 5:25:00 PM

Lab ID: 2004406-003 Collection Date: 4/29/2020 11:50:00 AM

Client Sample ID: MW5-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995 Analyst: WF

Chromium, Hexavalent 38.5 4.50 D mg/L 100 4/29/2020 5:30:00 PM

Lab ID: 2004406-004 **Collection Date:** 4/29/2020 11:50:00 AM

Client Sample ID: MWDUP-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995 Analyst: WF

Chromium, Hexavalent 41.5 4.50 D mg/L 100 4/29/2020 5:35:00 PM

Date: 5/6/2020

Work Order: 2004406

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 004344	•				Hexavalent Cl	nromium by SM 3500 Cr E
Sample ID: MB-58995	SampType: MBLK			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID: MBLKW	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178582
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450				
Sample ID: LCS-58995	SampType: LCS			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID: LCSW	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178583
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.240	0.0450	0.2500	0	96.1 85 115	
Sample ID: 2004400-002ADUP	SampType: DUP			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID: BATCH	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178585
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450			0	20
Sample ID: 2004400-002AMS	SampType: MS			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID: BATCH	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178586
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.243	0.0450	0.2500	0	97.3 70 130	
Sample ID: 2004400-002AMSD	SampType: MSD			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID: BATCH	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178587
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.242	0.0450	0.2500	0	96.7 70 130 0.2432	0.577 20

Page 6 of 8 Original

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	er: 2004406	
Lo	ogged by:	Clare Griggs	Date Received:	4/29/2020	2:20:00 PM
Cha	in of Cust	odv			
		ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	ı In				
	Coolers are p	present?	Yes 🗸	No 🗌	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No 🗌	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA \square
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No 🗆	NA 🗌
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No \square	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🔽	No 🗌	
14.	Does paperw	rork match bottle labels?	Yes 🗸	No \square	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No \square	
17.	Were all hold	ling times able to be met?	Yes 🗸	No \square	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person	Notified: Date:			
	By Who	m: Via:	eMail Pho	one 🗌 Fax [☐ In Person
	Regardi	ng:			
	Client Ir	nstructions:			
19.	Additional rer	marks:			

Item Information

Item #	Temp ^o C
Cooler	2.5
Sample	2.8

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

E CHAIN OF CHOMODY

			1	Admy V dunivo at its	TINO DO	TA CAT	a					W.	OHO	000	Page #	()	-	
Send Report To M	ichael	Michael Erdahl		50	SOBCONIMACIEN	TOUNT		Lmont .	7					TI	RNA	TURNAROUND TIME	IME	ıf 8
100	iedma	Friedman and Bruya, Inc.	Inc.	PRO	PROJECT NAME/NO.	NAME				١ ـ	PO#			Standard TAT	ard TA	H		1 <u>8 0</u>
	12 16	3012 16th Ave W			00	HASHO O	7			7	8-148		R	ish cha	rges a	Rush charges authorized by:	by:	Par
te, ZIP	attle.	Seattle, WA 98119		REI	REMARKS									S. Dispos	AMPL e after	SAMPLE DISPOSAL Dispose after 30 days	AL	
100	282 1	nerdahl@frie	dmanandbruy	a.com				ED	EDD: EOUIS	Sing			00	Return samples Will call with in	ll with	☐ Return samples ☐ Will call with instructions	ons	
									ANAI	LYSES REQUESTED	REQ	JEST	ED		Ц			Ш
	7	Data	Time		# of	Furans	Н		t mirm				-					
Sample ID	ID	Sampled	Sampled	Matrix	jars	Dioxins/I	EPI	VPI	Hexmoden							Notes	tes	
MW4 - W-20.0		102/22/h	0940	weter	-		7		×						L			
MWI-W-35.0			1015		-				bo					L	L			
0.32 M-SMW			0511		-				x					L	_			
WMDUP-W-15.0		1	1150	-	-				*			-	-	-	-			
												4			+	4		
												1	+		1	à		
														Н	Н			
															4			
													-					
Friedman & Bruya, Inc.			SIGNATURE	7			PRINT NAME	NAM	H		Dui	COM	COMPANY	Y			TIME	(4)
3012 16th Avenue West Seattle, WA 98119-2029		Received by:		1	Mich	Wichael Broan	Lani	~			THE	Friedman & Druya	or DIC	- ya	=	29/20	1470	
Ph. (206) 285-8282		Relinquished by:	y:	9				1										
Fax (206) 283-5044		Received by:														1		

Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282 MWDUP-W-150 MW5-W-15.0 MW1-W-35.0 Phone 360-927-1309 Email hagood & man Hestaricon City, State, ZIP Bellinghum, WA 98225 Address 1329 N State St, Suite 301 Friedman & Bruya, Inc. MW4-W-20.0 Company Maul Foster & Alongi Report To Heather Good rip Blank Sample ID Relinquished by Received by: Relinquished by: Received by: OSAR 02 9 OI A-G Lab ID SIGNATURE 4129/20 Sampled SAMPLE CHAIN OF CUSTODY ME 04/29/20 VW3/AZ2 0440 Sampled 5/0 Kinctals include As, Cr, Cu, Recounting & Se & are field Hered mantfester. co 1150 250 SAMPLERS (signature) Time Precision Engineering PROJECT NAME <u>ک</u> ج Sample ٤ 1 munda # of N PRINT NAME NWTPH-Dx P3 19 NWTPH-Gx now tester com 1803.01.01 BTEX EPA 8021 NWTPH-HCID ANALYSES REQUESTED VOCs EPA 8260**C 22700 SiM** PAHs EPA 8270 PCBs EPA 8082: Hex Chion by SM 3500 CR B Dis. Metals by EPA 6020B スアス COMPANY T で Samples received at Rush charges authorized by: O RUSH X Standard turnaround □ Archive samples Default: Dispose after 30 days TURNAROUND TIME SAMPLE DISPOSAL 4/19/120 see matals not above DATE 120 100 120 S Notes TIME ြ ဂိ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 7, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on April 29, 2020 from the Precision Engineering 1803.01.01, F&BI 004323 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0507R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 29, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 004323 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
004323 -01	MW2-W-15.0
004323 -02	MW7-W-27.5
004323 -03	MW6-W-15.0
004323 -04	MW11-W-15.0
004323 -05	MW3-W-15.0
004323 -06	Trip Blank

Samples MW2-W-15.0, MW7-W-27.5, MW6-W-15.0, MW11-W-15.0, and MW3-W-15.0 were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

A 6020B internal standard failed the acceptance criteria for sample MW7-W-27.5. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

The 8260D samples MW2-W-15.0 and MW6-W-15.0 were diluted due to matrix effect (foamy). The reporting limits were raised accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

Date Extracted: 04/29/20 Date Analyzed: 04/29/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
MW2-W-15.0 004323-01	470 x	660 x	96
MW7-W-27.5 004323-02	170 x	<250	121
MW6-W-15.0 004323-03	590 x	550 x	62
MW11-W-15.0 004323-04	260 x	<250	128
MW3-W-15.0 004323-05	92 x	<250	126
Method Blank 00-980 MB	<50	<250	125

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 04/30/20 004323-01 Date Analyzed: 05/01/20 Data File: 004323-01.060 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

 Arsenic
 5.90

 Chromium
 8.18

 Copper
 <5</td>

 Selenium
 3.53

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW7-W-27.5 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: 004323-02 Date Extracted: Date Analyzed: 04/30/20 Data File: $004323 \hbox{-} 02.145$ Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 8.62

 Chromium
 1.64 J

 Copper
 5.12 J

 Selenium
 3.58 ca

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW7-W-27.5 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{ll} \text{Chromium} & <5 \\ \text{Copper} & <25 \\ \text{Selenium} & <5 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 48.1

 Chromium
 25.9

 Copper
 <25</td>

 Selenium
 6.15

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: 004323-04 Date Extracted: Date Analyzed: 05/01/20 Data File: 004323-04.063 Matrix: Water Instrument: ICPMS2 ug/L (ppb) Units: SPOperator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 4.10

 Chromium
 3.10

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: 004323-05 Date Extracted: Date Analyzed: 05/01/20 Data File: 004323-05.064 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic 7.33
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: I0-249 mbDate Analyzed: 04/30/20 Data File: I0-249 mb.109 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

Annania ug/I (pps)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW2-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004323-01 1/2

Date Extracted: 04/30/20 Lab ID: 004323-01 I

Concentration

Q 1	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	0.057
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW7-W-27.5	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004323-02 1/2

 Date Extracted:
 04/30/20
 Lab ID:
 004323-02 In

 Date Analyzed:
 04/30/20
 Data File:
 043023.D

 Matrix:
 Water
 Instrument:
 GCMS6

 Units:
 ug/L (ppb)
 Operator:
 VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW6-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 04/30/20 004323-03 1/2

Date Analyzed: 04/30/20 Data File: 043024.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Upper Limit: 160 Lower Surrogates: Limit: 31 % Recovery: 82 100 Anthracene-d10 Benzo(a)anthracene-d12 $\overline{25}$ 165

	Concentration	
Compounds:	ug/L (ppb)	
Naphthalene	< 0.4	
Acenaphthylene	< 0.04	
Acenaphthene	< 0.04	
Fluorene	< 0.04	
Phenanthrene	< 0.04	
Anthracene	< 0.04	
Fluoranthene	< 0.04	
Pyrene	< 0.04	
Benz(a)anthracene	< 0.04	
Chrysene	< 0.04	
Benzo(a)pyrene	< 0.04	
Benzo(b)fluoranthene	< 0.04	
Benzo(k)fluoranthene	< 0.04	
Indeno(1,2,3-cd)pyrene	< 0.04	
Dibenz(a,h)anthracene	< 0.04	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW11-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004323-04 1/2

 Date Extracted:
 04/20/20
 Date Extracted:
 04/20/20

Date Analyzed: 04/30/20 Data File: 043025.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
<u>=</u>	
Acenaphthylene	< 0.04
Acenaphthene	1.3
Fluorene	0.10
Phenanthrene	0.048
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW3-W-15.0	Client:	Maul Foster Alongi

 Date Received:
 04/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/30/20
 Lab ID:
 004323-05 1/2

Date Analyzed: 04/30/20 Data File: 043026.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Concentration

0 1	T (1)
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 04/30/20 Date Extracted: 00-982 mbDate Analyzed: 04/30/20 Data File: 043021.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW2-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Lab ID: 004323-01 1/10 Date Extracted: 05/01/20 Date Analyzed: 05/02/20 Data File: $050185.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW7-W-27.5 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004323-02 Date Extracted: Date Analyzed: 05/01/20 Data File: $050142.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	100	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004323-03 1/10 Date Extracted: Date Analyzed: 05/02/20 Data File: $050186.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	100	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004323-04 Date Extracted: Date Analyzed: 05/01/20 Data File: 050143.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004323 - 05Date Extracted: Date Analyzed: 05/01/20 Data File: 050144.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Tr	rip Blank	Client:	Maul Foster Alongi
----------------------	-----------	---------	--------------------

Date Received: 04/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 004323-0605/01/20 Date Analyzed: 05/01/20 Data File: $050135.\mathrm{D}$ Matrix: Instrument: GCMS4Water Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	101	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 00-941 mbDate Extracted: Date Analyzed: 05/01/20 Data File: $050115.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 004344-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.6	97	93	75-125	4
Chromium	ug/L (ppb)	20	<1	101	99	75 - 125	2
Copper	ug/L (ppb)	20	<5	93	92	75 - 125	1
Selenium	ug/L (ppb)	5	<1	99	98	75 - 125	1

			Percent	
	Reporting	$_{ m Spike}$	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	97	80-120
Copper	ug/L (ppb)	20	97	80-120
Selenium	ug/L (ppb)	5	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	79	76	57-114	4
Acenaphthylene	ug/L (ppb)	1	77	75	65-119	3
Acenaphthene	ug/L (ppb)	1	77	76	66-118	1
Fluorene	ug/L (ppb)	1	77	77	64 - 125	0
Phenanthrene	ug/L (ppb)	1	85	84	67-120	1
Anthracene	ug/L (ppb)	1	86	84	65 - 122	2
Fluoranthene	ug/L (ppb)	1	86	87	65 - 127	1
Pyrene	ug/L (ppb)	1	87	84	62-130	4
Benz(a)anthracene	ug/L (ppb)	1	92	91	60-118	1
Chrysene	ug/L (ppb)	1	91	91	66 - 125	0
Benzo(b)fluoranthene	ug/L (ppb)	1	81	81	55-135	0
Benzo(k)fluoranthene	ug/L (ppb)	1	81	79	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	81	81	58-127	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	83	77	36 - 142	7
Dibenz(a,h)anthracene	ug/L (ppb)	1	83	79	37-133	5
Benzo(g,h,i)perylene	ug/L (ppb)	1	81	77	34 - 135	5

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004314-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	$^{ m MS}$	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	106	10-172
Chloromethane	ug/L (ppb)	50	<10	102	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	103	36-166
Bromomethane	ug/L (ppb)	50	<1	121	47-169
Chloroethane	ug/L (ppb)	50	<1	104	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	109	44-165
Acetone	ug/L (ppb)	250	<50	86	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	108	60-136
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	<1 <5	102 102	52-150 67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	102	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	103	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	102	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	110	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	71-127
Chloroform	ug/L (ppb)	50	<1	102	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	97	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	97	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	107	60-146
1,1-Dichloropropene	ug/L (ppb)	50 50	<1	100	69-133
Carbon tetrachloride Benzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <0.35	110 100	56-152 76-125
Trichloroethene	ug/L (ppb)	50	<1	96	66-135
1.2-Dichloropropane	ug/L (ppb)	50	<1	107	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	106	61-150
Dibromomethane	ug/L (ppb)	50	<1	105	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	108	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	108	72-132
Toluene	ug/L (ppb)	50	<1	97	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	108	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	103	68-131
2-Hexanone	ug/L (ppb)	250 50	<10 <1	100 103	10-185 71-128
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	103	10-226
Dibromochloromethane	ug/L (ppb)	50 50	<1	113	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	104	69-134
Chlorobenzene	ug/L (ppb)	50	<1	101	77-122
Ethylbenzene	ug/L (ppb)	50	<1	99	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	109	73-137
m,p-Xylene	ug/L (ppb)	100	<2	102	69-135
o-Xylene	ug/L (ppb)	50	<1	101	60-140
Styrene	ug/L (ppb)	50	<1	103	71-133
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	100 114	65-142 65-142
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	100	58-144
Bromobenzene	ug/L (ppb)	50	<1	100	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	101	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	101	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	99	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	100	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	98	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	99	64-140
p-Isopropyltoluene	ug/L (ppb)	50 50	<1 <1	103 99	65-141
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	99 98	72-123 69-126
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	98 99	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	110	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	96	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	85	60-143
Naphthalene	ug/L (ppb)	50	<1	102	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	98	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 05/07/20 Date Received: 04/29/20

Project: Precision Engineering 1803.01.01, F&BI 004323

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Edward Code. Edward C	oneror samp.		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	102	101	25-158	1
Chloromethane	ug/L (ppb)	50	100	95	45-156	5
Vinyl chloride	ug/L (ppb)	50	101	98	50-154	3
Bromomethane	ug/L (ppb)	50	121	117	55-143	3
Chloroethane	ug/L (ppb)	50	105	106	58-146	1
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	$\frac{250}{250}$	108 86	107 84	50-150 $22-155$	$\frac{1}{2}$
1,1-Dichloroethene	ug/L (ppb)	50	109	105	67-136	4
Hexane	ug/L (ppb)	50	95	101	57-137	6
Methylene chloride	ug/L (ppb)	50	105	104	39-148	ĩ
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	102	96	64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	102	68-128	2
1,1-Dichloroethane	ug/L (ppb)	50	102	101	74-135	1
2,2-Dichloropropane	ug/L (ppb)	50	113	112	55-143	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	102	101	74-136	$\frac{1}{2}$
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	102 89	100 91	74-134 37-150	$\frac{2}{2}$
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	92	92	66-129	0
1.1.1-Trichloroethane	ug/L (ppb)	50	107	107	74-142	0
1,1-Dichloropropene	ug/L (ppb)	50	97	98	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	109	112	75-158	3
Benzene	ug/L (ppb)	50	97	96	69-134	1
Trichloroethene	ug/L (ppb)	50	94	93	67-133	1
1,2-Dichloropropane	ug/L (ppb)	50	100	99	71-134	1
Bromodichloromethane	ug/L (ppb)	50	100	101	76-132	1
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb)	50 250	100 101	100 99	68-132 65-138	$0 \\ 2$
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	98	99	74-140	1
Toluene	ug/L (ppb)	50	92	95	72-122	3
trans-1,3-Dichloropropene	ug/L (ppb)	50	97	101	80-136	4
1,1,2-Trichloroethane	ug/L (ppb)	50	96	94	75-124	2
2-Hexanone	ug/L (ppb)	250	93	91	60-136	2
1,3-Dichloropropane	ug/L (ppb)	50	94	95	76-126	1
Tetrachloroethene	ug/L (ppb)	50	96	100	76-121	4
Dibromochloromethane	ug/L (ppb)	50	106	109	84-133	3
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98 97	97 98	82-115 83-114	1 1
Ethylbenzene	ug/L (ppb)	50	97	97	77-124	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	107	111	84-127	4
m,p-Xylene	ug/L (ppb)	100	100	101	81-112	i
o-Xylene	ug/L (ppb)	50	101	101	81-121	0
Styrene	ug/L (ppb)	50	100	98	84-119	2
Isopropylbenzene	ug/L (ppb)	50	100	101	80-117	1
Bromoform	ug/L (ppb)	50	110	112	74-136	2
n-Propylbenzene	ug/L (ppb)	50 50	96	101	74-126	5 1
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	94 97	95 103	80-121 78-123	6
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	100	101	66-126	1
1,2,3-Trichloropropane	ug/L (ppb)	50	95	96	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	95	99	77-127	4
4-Chlorotoluene	ug/L (ppb)	50	95	98	78-128	3
tert-Butylbenzene	ug/L (ppb)	50	96	101	80-123	5
1,2,4-Trimethylbenzene	ug/L (ppb)	50	98	102	79-122	4
sec-Butylbenzene	ug/L (ppb)	50	98	103	80-116	5
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	100 96	104 97	81-123 83-113	4 1
1.4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	95	96	81-112	1
1,2-Dichlorobenzene	ug/L (ppb)	50	98	98	84-112	0
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	110	115	57-141	4
1,2,4-Trichlorobenzene	ug/L (ppb)	50	97	99	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50	94	99	53-141	5
Naphthalene	ug/L (ppb)	50	101	101	64-133	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	98	99	65-136	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 004323

Work Order Number: 2004400

May 06, 2020

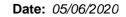
Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 4/29/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 004323 **Work Order:** 2004400

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2004400-001	MW2-W-15.0	04/28/2020 1:00 PM	04/29/2020 10:23 AM
2004400-002	MW7-W-27.5	04/28/2020 1:30 PM	04/29/2020 10:23 AM
2004400-003	MW6-W-15.0	04/28/2020 3:00 PM	04/29/2020 10:23 AM
2004400-004	MW11-W-15.0	04/28/2020 3:40 PM	04/29/2020 10:23 AM
2004400-005	MW3-W-15.0	04/28/2020 4:35 PM	04/29/2020 10:23 AM

Case Narrative

WO#: **2004400**Date: **5/6/2020**

CLIENT: Friedman & Bruya

Project: 004323

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2004400**

Date Reported: 5/6/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2004400

Date Reported:

5/6/2020

Analyst: WF

4/29/2020 12:10:00 PM

CLIENT: Friedman & Bruya

Project: 004323

Lab ID: 2004400-001 **Collection Date:** 4/28/2020 1:00:00 PM

Client Sample ID: MW2-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 12:05:00 PM

Lab ID: 2004400-002 **Collection Date:** 4/28/2020 1:30:00 PM

Client Sample ID: MW7-W-27.5 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Batch ID: R58995

Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 11:46:00 AM

Lab ID: 2004400-003 **Collection Date:** 4/28/2020 3:00:00 PM

Client Sample ID: MW6-W-15.0 Matrix: Water

ND

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995 Analyst: WF

0.225

D

Chromium, Hexavalent **NOTES**:

Diluted due to matrix.

Lab ID: 2004400-004 **Collection Date:** 4/28/2020 3:40:00 PM

Client Sample ID: MW11-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 12:16:00 PM

Original

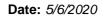
Analytical Report

Work Order: **2004400**

Date Reported: 5/6/2020

CLIENT: Friedman & Bruya

Project: 004323


Lab ID: 2004400-005 **Collection Date:** 4/28/2020 4:35:00 PM

Client Sample ID: MW3-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58995 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 12:20:00 PM

Work Order: 2004400

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project:	004323	•				Hexavalent Cl	nromium by SM 3500 Cr B
Sample ID:	MB-58995	SampType: MBLK			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID:	MBLKW	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178582
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, I	Hexavalent	ND	0.0450				
Sample ID:	LCS-58995	SampType: LCS			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID:	LCSW	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178583
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, I	Hexavalent	0.240	0.0450	0.2500	0	96.1 85 115	
Sample ID:	2004400-002ADUP	SampType: DUP			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID:	MW7-W-27.5	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178585
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, I	Hexavalent	ND	0.0450			0	20
Sample ID:	2004400-002AMS	SampType: MS			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID:	MW7-W-27.5	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178586
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, I	Hexavalent	0.243	0.0450	0.2500	0	97.3 70 130	
Sample ID:	2004400-002AMSD	SampType: MSD			Units: mg/L	Prep Date: 4/29/2020	RunNo: 58995
Client ID:	MW7-W-27.5	Batch ID: R58995				Analysis Date: 4/29/2020	SeqNo: 1178587
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, I	Hexavalent	0.242	0.0450	0.2500	0	96.7 70 130 0.2432	0.577 20

Page 7 of 9 Original

Sample Log-In Check List

С	lient Name:	FB	Work Order Nur	mber: 2004400		
Lo	ogged by:	Clare Griggs	Date Received:	4/29/2020	10:23:00 AM	
<u>Cha</u>	nin of Custo	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes 🗹	No 🗌	Not Present	
2.	How was the	sample delivered?	<u>Client</u>			
Log	ıln					
	Coolers are p	present?	Yes 🗸	No 🗌	NA \square	
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No 🗌		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA \square	
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No 🗆	NA \square	
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗆		
9.	Sufficient san	mple volume for indicated test(s)?	Yes 🗸	No 🗆		
10.	Are samples	properly preserved?	Yes 🗸	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗸	na 🗆	
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14.	Does paperw	rork match bottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square		
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌		
Spe	cial Handli	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes 🗸	No \square	NA \square	
	Person	Notified: Michael Erdahl Date:		4/29/2020		
	By Who	m: Clare Griggs Via:	✓ eMail ☐ F	Phone Fax] In Person	
	Regardi	ng: Confirming TAT				
	Client In	nstructions: Standard TAT				
19	Additional rer	marks:				•

Item Information

Item #	Temp ^o C
Cooler	4.4
Sample	3.8

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY 7 MILLIAN

Priodman and Bruva. Inc. BODECT NAMENO. PO# CONTANY DATE TIME Responsible PRINT NAME PRINT												Received by:		Fax (206) 283-5044
## PROJECT NAME/NO. ## PO# ZEUSH ZEUSH Ave W ## CO4323 ## PO# ZEUSH ZEUSH ZEUSH Rush charges authorized by: ## SAMPLE DISPOSAL Dispose after 30 days Rush charges authorized by: ## SAMPLE DISPOSAL Dispose after 30 days Rush charges authorized by: ## SAMPLE DISPOSAL Dispose after 30 days Rush charges authorized by: ## AMALYSES REQUESTED Sampled Sampled with instructions	10:23	29	1	H		Son	3	mma	-		2	Relinquished by:		Ph. (206) 285-8282
Date Time Sampled	@ 1004AM.		Bruya	Friedman &			TURD	тает Бл	- IN	1	1	Received by:		Seattle, WA 98119-2029
16th Ave W PROJECT NAMENO. PO# ZREMARKS CO4323 Co48 Reshort Nameno. Co4323 Co48 Reshort Nameno. PO# ZREMARKS Co48 Reshort Nameno. PO# ZREMARKS Co48 Reshort Nameno. Co48 Reshort Name	TIME	DATE	PANY	COMI		NAME	PRINT	had b	<u> </u>		MATURE	celinquished by	-	3012 16th Avenue West
PROJECT NAME/NO. PO# GRUISH GRUISH GRUISH COC4323 REMARKS EDV: E OUIS ANALYSES REQUESTED ANALYSES REQUESTED Notes ** Notes ** ** ** ** ** ** ** ** **						L			T					6.7
PROJECT NAMENO. PO# ARUSH SAMPLE DISPOSAL Rush charges authorized by: SAMPLE DISPOSAL SAMPLE DISPOSAL Dispose after 30 days Return samples Return samples Will call with instructions Notes X X Notes														
PROJECT NAMENO. PO# ARUSH ANALYSES REQUESTED Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Will call with instructions Notes X X X Y Notes	-1													
PROJECT NAME/NO. PO# C 4323														
PROJECT NAME/NO. PO# Standard TAT														
PROJECT NAME/NO. PO# ZRUSH ZRUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples Return samples Will call with instructions Notes ** ** ** ** ** ** ** ** **														
PROJECT NAME/NO. PO# ZRUSH ZRUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples Return samples Will call with instructions Notes ** ** ** ** ** ** ** ** **		*												
PROJECT NAME/NO. PO# ZRUSH ZRUSH REMARKS EDD: EQUIS ANALYSES REQUESTED ANALYSES REQUESTED Notes ** ** ** ** ** ** ** ** **														
PROJECT NAME/NO. PO# ZRUSH ZRUSH REMARKS EDD: E QUIS ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes					×						1635	-		WM3-M-120
PROJECT NAME/NO. PO# Cand Cand					×						1840			MW11-W-15.0
PROJECT NAME/NO. PO# Standard TAT					×						1500			MW6-W-15.0
PROJECT NAME/NO. PO# GN4323 REMARKS EDD: E QUIS ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED Notes					×					_	1330			MW7-W-27.5
PROJECT NAME/NO. PO# Standard TAT ZRUSH RUSH CHUSH Rush charges authorized by: SAMPLE DISPOSAL SAMPLE DISPOSAL Greturn samples Will call with instructions Notes					X					Water	11,000	4/28/20		MW2-W-15.0
PROJECT NAME/NO. PO# ZRUSH ZRUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples ANALYSES REQUESTED	otes	Ž			C. VI	VPH		10000	jar	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
PROJECT NAME/NO. PO# ZRUSH ZRUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions			Œ	S REQUESTE	NALYSE	A		H						
Friedman and Bruya, Inc. PROJECT NAME/NO. PO# ZRUSH ZRUSH Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days	ions	samples Il with instruct	□ Return □ Will cal			ouis	EDD: 1			a.com	dmanandbruy	nerdahl@frie	8282 1	Phone # (206) 285-
Inc. PROJECT NAME/NO. PO# © 54323 Rush charges authorized by:	SAL	AMPLE DISPO	Dispo					KS	EMAR	RJ		WA 98119	eattle,	City, State, ZIP_S
Inc. PROJECT NAME/NO. PO# Standard TAT		rges authorize	Rush cha	861-	R		23	SHOC	0	_	4	th Ave W	012 16	Address 3
		urd TAT	□ Standa	PO#			Œ/NO.	CT NAM	ROJE	P		n and Bruya	riedma	Company F
Michael Erdahl Frage# of TURNAROUND TIME		JRNAROUND	TC		+	Tim	VIEW.	WILLIAM	0.000	0		Erdahl	Michael	Send Report To 1

Phone (360) City, State, ZIPBellingham, WA 98225 Address 1329 N State Street, Site 301 Company Maul Foster & Alongi Report To Heather Good MW11-W-15.0 MW7-W-27.5 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Ph. (206) 285-8282 MW6-W-15.0x MW2-W-15.0 Trip blank MW3-W-15.0 004323 $_{_{\sharp}}$ Sample ID Email hagas Consultostercon Received by: Relinquished by: Relinquished by: Received by: 9 9 8 \mathbb{C} 01 ACH4128120 06AB|4128120 Lab ID SIGNATURE Sampled Date SAMPLE CHAIN OF CUSTODY ME 04/29/20 1300 Sampled Project specific RLs? - Yes / No man foster. com 0 0) 10 | Precision Engineering 1803.01.01 1635 Time REMARKS Indude As, Cr, Cujaccounting@ SAMPLERS (signature) 1540 1330 PROJECT NAME 2/A Sample Type ٤ Amenda Birby <- Jars # of PRINT NAME N 4 1 had kylin NWTPH-Gx BTEX EPA 8021 INVOICE TO ANALYSES REQUESTED PO# 3 $\widehat{\mathscr{S}}$ 3 **多** (8) PAHs EPA 8270 PCBs EPA 8082 Hex chron by SM3500 CR B Dis. Metals by EPA GOZOB Samples received at COMPANY シアメ X Standard turnaround SAMPLE DISPOSAL

[] Archive samples O RUSH Rush charges authorized by: Default: Dispose after 30 days □ Other してまるこ TURNAROUND TIME bu AB 4/25/20 AE 20°C 4/20/249:20 Voks C See metals note 06.6 oz/162/h (x) -pe AB u/m/r above. DATE Notes rinsed. 25 HMIT

d

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on April 28, 2020 from the Precision Engineering 1803.01.01, F&BI 004316 project. There are 21 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0506R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 28, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 004316 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
004316 -01	MW10-W-15.0
004316 -02	MW9-W-32.5
004316 -03	MW8-W-15.0
004316 -04	Trip Blank

Samples MW10-W-15.0, MW9-W-32.5, and MW8-W-15.0 were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

Sample MW10-W-15.0 was diluted for the 8260D analysis due to matrix effect (foamy). The reporting limits were raised accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

Date Extracted: 04/29/20 Date Analyzed: 04/29/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
MW10-W-15.0 004316-01	650 x	640 x	115
MW9-W-32.5 004316-02	140 x	<250	119
MW8-W-15.0 004316-03	340 x	<250	128
Method Blank	<50	<250	110

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

ster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 04/30/20 004316-01Date Analyzed: 04/30/20 Data File: 004316-01.131 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

3.68

Analyte:	Concentration ug/L (ppb)
Arsenic	14.9
Chromium	11.5
Copper	<5

Selenium

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW9-W-32.5 Client: Maul Foster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: 004316-02 Date Analyzed: 04/30/20 Data File: 004316-02.133 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 8.24

 Chromium
 2.02

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 04/30/20 004316-03 Date Analyzed: 04/30/20 Data File: 004316-03.134 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

 Arsenic
 6.38

 Chromium
 6.30

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

04/30/20 Lab ID: Date Extracted: I0-249 mbDate Analyzed: 04/30/20 Data File: I0-249 mb.109 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

Arsenic <1 Chromium <1 Copper <5 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW10-W-15.0 Client: Maul Foster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004316-01 1/10 Date Extracted: Date Analyzed: 05/02/20 Data File: $050187.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW9-W-32.5 Client: Maul Foster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004316-02 Date Extracted: Date Analyzed: 05/01/20 Data File: $050145.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004316-03 Date Extracted: Date Analyzed: 05/01/20 Data File: $050146.\mathrm{D}$ GCMS4Matrix: Water Instrument: Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Trip Blank Client: Maul Foster Alongi

Date Received: 04/28/20 Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 004316-04 Date Extracted: Date Analyzed: 05/01/20 Data File: $050136.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

05/01/20 Lab ID: 00-941 mbDate Extracted: Date Analyzed: 05/01/20 Data File: $050115.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: MSug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW10-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 04/28/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/29/20
 Lab ID:
 004316-01 1/2

 Date Analyzed:
 04/29/20
 Date File:
 04/29/4 D

Date Analyzed: 04/29/20 Data File: 042904.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW9-W-32.5	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 04/28/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/29/20
 Lab ID:
 004316-02 1/2

Date Analyzed: 04/29/20 Data File: 042905.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
NT 1.1 1	-0.4
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW8-W-15.0	Client:	Maul Foster Alongi

 Date Received:
 04/28/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 04/29/20
 Lab ID:
 004316-03 1/2

 Date Analyzed:
 04/29/20
 Date File:
 042906 D

Date Analyzed:04/29/20Data File:042906.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01
Date Extracted: 04/29/20 Lab ID: 00-972 mb2

Date Extracted: 04/29/20 Lab ID: 00-972 mb2
Date Analyzed: 04/29/20 Data File: 042903.D
Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	107	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 004344-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.6	97	93	75-125	4
Chromium	ug/L (ppb)	20	<1	101	99	75 - 125	2
Copper	ug/L (ppb)	20	<5	93	92	75 - 125	1
Selenium	ug/L (ppb)	5	<1	99	98	75 - 125	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	97	80-120
Copper	ug/L (ppb)	20	97	80-120
Selenium	ug/L (ppb)	5	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004314-01 (Matrix Spike)

Laboratory Code. 004514-01 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	$_{ m MS}$	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	106	10-172
Chloromethane	ug/L (ppb)	50	<10	102	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	103	36-166
Bromomethane	ug/L (ppb)	50	<1	121	47-169
Chloroethane	ug/L (ppb)	50	<1	104	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	109	44-165
Acetone	ug/L (ppb)	250	<50	86	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	108	60-136
Hexane	ug/L (ppb)	50	<1	102	52-150
Methylene chloride	ug/L (ppb)	50	<5	102 102	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1		74-127
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	103 102	72-129 70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	110	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	102	71-127
Chloroform	ug/L (ppb)	50	<1	102	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	97	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	97	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	107	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	100	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	110	56-152
Benzene	ug/L (ppb)	50	< 0.35	100	76-125
Trichloroethene	ug/L (ppb)	50	<1	96	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	107	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	106	61-150
Dibromomethane	ug/L (ppb)	50	<1	105	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	108	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	108	72-132
Toluene	ug/L (ppb)	50	<1	97	76-122
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb)	50 50	<1 <1	108 103	76-130 68-131
2-Hexanone	ug/L (ppb) ug/L (ppb)	250	<10	100	10-185
1.3-Dichloropropane	ug/L (ppb)	50	<10	103	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	101	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	113	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	104	69-134
Chlorobenzene	ug/L (ppb)	50	<1	101	77-122
Ethylbenzene	ug/L (ppb)	50	<1	99	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	109	73-137
m,p-Xylene	ug/L (ppb)	100	<2	102	69-135
o-Xylene	ug/L (ppb)	50	<1	101	60-140
Styrene	ug/L (ppb)	50	<1	103	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	100	65-142
Bromoform	ug/L (ppb)	50	<1	114	65-142
n-Propylbenzene	ug/L (ppb)	50 50	<1 <1	100	58-144
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	<1	100 101	75-124 66-137
1.1.2.2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50	<1	106	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	101	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	99	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	100	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	98	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	99	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	103	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	99	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	99	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	110	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	96	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	85	60-143
Naphthalene	ug/L (ppb)	50	<1	102	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	98	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Co	muoi Sampie	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Aggontongo	RPD
A 1.		-	•		Acceptance	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	102	101	25-158	1
Chloromethane Vinyl chloride	ug/L (ppb) ug/L (ppb)	50 50	100 101	95 98	45-156 50-154	5 3
Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	121	98 117	55-143	э 3
Chloroethane	ug/L (ppb)	50	105	106	58-146	1
Trichlorofluoromethane	ug/L (ppb)	250	108	107	50-150	1
Acetone	ug/L (ppb)	250	86	84	22-155	2
1,1-Dichloroethene	ug/L (ppb)	50	109	105	67-136	4
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	95 105	101 104	57-137 39-148	6 1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	102	96	64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	102	68-128	2
1,1-Dichloroethane	ug/L (ppb)	50	102	101	74-135	1
2,2-Dichloropropane	ug/L (ppb)	50	113	112	55-143	1
cis-1,2-Dichloroethene	ug/L (ppb)	50 50	102 102	101	74-136 74-134	$\frac{1}{2}$
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	89	100 91	74-134 37-150	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	92	92	66-129	0
1,1,1-Trichloroethane	ug/L (ppb)	50	107	107	74-142	ő
1,1-Dichloropropene	ug/L (ppb)	50	97	98	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	109	112	75-158	3
Benzene	ug/L (ppb)	50	97	96	69-134	1
Trichloroethene 1.2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	94 100	93 99	67-133 71-134	1 1
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	100	101	76-132	1
Dibromomethane	ug/L (ppb)	50	100	100	68-132	0
4-Methyl-2-pentanone	ug/L (ppb)	250	101	99	65-138	2
cis-1,3-Dichloropropene	ug/L (ppb)	50	98	99	74-140	1
Toluene	ug/L (ppb)	50	92	95	72-122	3
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	97 96	101 94	80-136 75-124	$\frac{4}{2}$
2-Hexanone	ug/L (ppb) ug/L (ppb)	250	93	94 91	60-136	2
1,3-Dichloropropane	ug/L (ppb)	50	94	95	76-126	1
Tetrachloroethene	ug/L (ppb)	50	96	100	76-121	4
Dibromochloromethane	ug/L (ppb)	50	106	109	84-133	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	97	82-115	1
Chlorobenzene Ethylbenzene	ug/L (ppb)	50 50	97 97	98 97	83-114 77-124	$\frac{1}{0}$
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	107	111	84-127	4
m,p-Xylene	ug/L (ppb)	100	100	101	81-112	1
o-Xylene	ug/L (ppb)	50	101	101	81-121	0
Styrene	ug/L (ppb)	50	100	98	84-119	2
Isopropylbenzene	ug/L (ppb)	50	100	101	80-117	1
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	110 96	112 101	74-136 74-126	2 5
Bromobenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	94	95	80-121	3 1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	97	103	78-123	6
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	100	101	66-126	1
1,2,3-Trichloropropane	ug/L (ppb)	50	95	96	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	95	99	77-127	4
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	95 96	98 101	78-128 80-123	3 5
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	98	102	79-122	4
sec-Butylbenzene	ug/L (ppb)	50	98	103	80-116	5
p-Isopropyltoluene	ug/L (ppb)	50	100	104	81-123	4
1,3-Dichlorobenzene	ug/L (ppb)	50	96	97	83-113	1
1,4-Dichlorobenzene	ug/L (ppb)	50 50	95	96	81-112	1
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	98 110	98 115	84-112 57-141	0 4
1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97	99	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50 50	94	99	53-141	5
Naphthalene	ug/L (ppb)	50	101	101	64-133	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	98	99	65-136	1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 04/28/20

Project: Precision Engineering 1803.01.01, F&BI 004316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: Laboratory Control Sample 1/0.5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.5	78	80	57-114	3
Acenaphthylene	ug/L (ppb)	0.5	79	81	65-119	2
Acenaphthene	ug/L (ppb)	0.5	77	78	66-118	1
Fluorene	ug/L (ppb)	0.5	83	82	64 - 125	1
Phenanthrene	ug/L (ppb)	0.5	87	87	67 - 120	0
Anthracene	ug/L (ppb)	0.5	92	93	65 - 122	1
Fluoranthene	ug/L (ppb)	0.5	94	93	65 - 127	1
Pyrene	ug/L (ppb)	0.5	98	91	62-130	7
Benz(a)anthracene	ug/L (ppb)	0.5	101	94	60-118	7
Chrysene	ug/L (ppb)	0.5	93	91	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	0.5	87	84	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	0.5	84	85	62 - 125	1
Benzo(a)pyrene	ug/L (ppb)	0.5	89	87	58 - 127	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.5	91	93	36 - 142	2
Dibenz(a,h)anthracene	ug/L (ppb)	0.5	85	87	37 - 133	2
Benzo(g,h,i)perylene	ug/L (ppb)	0.5	85	88	34 - 135	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 004316

Work Order Number: 2004387

May 05, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 4/28/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 05/05/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 004316 **Work Order:** 2004387

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2004387-001	MW10-W-15.0	04/28/2020 10:05 AM	04/28/2020 2:25 PM
2004387-002	MW9-W-32.5	04/28/2020 11:00 AM	04/28/2020 2:25 PM
2004387-003	MW8-W-15.0	04/28/2020 11:50 AM	04/28/2020 2:25 PM

Case Narrative

WO#: **2004387**Date: **5/5/2020**

CLIENT: Friedman & Bruya

Project: 004316

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2004387**

Date Reported: 5/5/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2004387

Date Reported: 5/5/2020

Analyst: TN

CLIENT: Friedman & Bruya

Project: 004316

Lab ID: 2004387-001 **Collection Date:** 4/28/2020 10:05:00 AM

Client Sample ID: MW10-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58849

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 8:51:00 AM

Lab ID: 2004387-002 **Collection Date:** 4/28/2020 11:00:00 AM

Client Sample ID: MW9-W-32.5 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Batch ID: R58849

Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 8:56:00 AM

Lab ID: 2004387-003 Collection Date: 4/28/2020 11:50:00 AM

Client Sample ID: MW8-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R58849 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 4/29/2020 9:01:00 AM

Date: 5/5/2020

Work Order: 2004387

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr

Project:	004316	-							He	exavalent C	hromium I	by SM 35	00 Cr E
Sample ID: MB-R	58849	SampType	: MBLK			Units: mg/L		Prep Date	e: 4/29/2 0	020	RunNo: 588	349	
Client ID: MBLK	XW .	Batch ID:	R58849					Analysis Date	e: 4/29/2 0	020	SeqNo: 117	75749	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexav	alent		ND	0.0450									
Sample ID: LCS-F	258849	SampType	: LCS			Units: mg/L		Prep Date	e: 4/29/2 0	020	RunNo: 588	349	
Client ID: LCSW	1	Batch ID:	R58849					Analysis Date	e: 4/29/2 0	020	SeqNo: 117	75750	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexav	alent		0.245	0.0450	0.2500	0	98.0	80.9	115				
Sample ID: 20043	87-002ADUP	SampType	: DUP			Units: mg/L		Prep Date	e: 4/29/2 0	020	RunNo: 588	349	
Client ID: MW9-	W-32.5	Batch ID:	R58849					Analysis Date	e: 4/29/2 0	020	SeqNo: 117	75754	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexav	alent		ND	0.0450						0		30	
Sample ID: 20043	87-002AMS	SampType	: MS			Units: mg/L		Prep Date	e: 4/29/2 0	020	RunNo: 588	349	
Client ID: MW9-	W-32.5	Batch ID:	R58849					Analysis Date	e: 4/29/2 0	020	SeqNo: 117	75755	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexav	alent		0.213	0.0450	0.2500	0	85.2	46.2	138				
Sample ID: 20043	87-002AMSD	SampType	: MSD			Units: mg/L		Prep Date	e: 4/29/2 0	020	RunNo: 588	349	
Client ID: MW9-	W-32.5	Batch ID:	R58849					Analysis Date	e: 4/29/2 0	020	SeqNo: 117	75756	
Analyte		i	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexav	alent		0.224	0.0450	0.2500	0	89.5	46.2	138	0.2130	4.95	20	

Original Page 6 of 8

Sample Log-In Check List

С	lient Name: F	В	Work Ord	der Numb	per: 2004387		
L	ogged by:	Clare Griggs	Date Red	eived:	4/28/2020	2:25:00 PM	
Cha	nin of Custoc	dy					
	Is Chain of Cus		Yes	✓	No \square	Not Present	
2.	How was the sa	ample delivered?	Client				
Log	ı In						
	Coolers are pre	esent?	Yes	✓	No 🗌	NA 🗆	
4.	Shipping contai	ner/cooler in good condition?	Yes	✓	No 🗌		
5.		present on shipping container/cooler? ents for Custody Seals not intact)	Yes		No 🗌	Not Required ✓	
6.	Was an attemp	t made to cool the samples?	Yes	✓	No 🗌	NA \square	
7.	Were all items	received at a temperature of >2°C to 6°C	Yes	✓	No 🗌	NA 🗆	
8.	Sample(s) in pr	oper container(s)?	Yes	✓	No 🗌		
9.	Sufficient samp	ele volume for indicated test(s)?	Yes	✓	No \square		
10	Are samples pr	operly preserved?	Yes	✓	No 🗌		
11	Was preservati	ve added to bottles?	Yes		No 🗸	NA \square	
12	Is there headsp	pace in the VOA vials?	Yes		No 🗌	NA 🗸	
13	Did all samples	containers arrive in good condition(unbroken)? Yes	✓	No \square		
14	Does paperwor	k match bottle labels?	Yes	✓	No 🗌		
15	Are matrices co	orrectly identified on Chain of Custody?	Yes	✓	No 🗌		
_		analyses were requested?		✓	No 🗌		
17	Were all holding	g times able to be met?	Yes	✓	No 🗌		
Spe	cial Handlin	g (if applicable)					
_		fied of all discrepancies with this order?	Yes		No 🗌	NA 🗹	
	Person No		Date:				
	By Whom		/ia: eMail	☐ Pho	one Fax	☐ In Person	
	Regarding						
		ructions:					

Item #	Temp ⁰C
Cooler	0.9
Sample	4.6

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone 360-927-1309 Email hogod www.com Company May Foster & Alongi Note: Per E. Young, some vols were righted City, State, ZIP Bellingham, WA 98225 Address 1329 N State Street, Svite 301 Report To Heather Good MW 8-W-15-0 MW9-W-32.5 MWIO-WIS.O rie Blank Sample ID 004316 Received by: Relinquished by Relinquished by: Received by <u>0</u> S ट् 01 A-G-14128120 1005 Lab ID SIGNATURE Sampled Date SAMPLE CHAIN OF CUSTODY Sampled **8** 1150 とシメ *metals include As, Cr, Cu, accounting @ Precision Engineering REMARKS PROJECT NAME SAMPLERS (signature) Project specific RLs? - Yes / No SAB are Red Altered de to GW (continue) HO Sample ٤ ٤ 3 ٤ Type FC + SKO by NWTPH-Dx PRINT NAME 4 Bix by NWTPH-Gx 1803.01.01 master, con BTEX EPA 8021 VOCs EPA 82600 32700 SW J Z ANALYSES REQUESTED Samples redeived MFA PCBs EPA 8082 COMPANY Hex chem by SM 3500 CR Dis. Metalsh T EPA 60708 ☐ Archive samples Default: Dispose after 30 days Rush charges authorized by: Standard turnaround Page # TURNAROUND TIME ŧ ‡ SAMPLE DISPOSAL а # 12/ Dy/ 4128/20 See metals note above voks riv DATE کن څ Notes 1300 HME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 10, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on January 30, 2020 from the Precision Engineering 1803.01.01, F&BI 001446 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0210R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 30, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 001446 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
001446 -01	MW4-W-50.0
001446 -02	MW1-W-35.0
001446 -03	MW5-W-15.0
001446 -04	MWDUP-W-15.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The NWTPH-Dx surrogate in sample MW1-W-35.0 exceeded the control limits. The sample was non-detect, therefore the data were reported.

Copper in the 6020B matrix spike failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

Several 8260D compounds exceeded the acceptance criteria in the matrix spike sample. The compounds were not detected in the samples, therefore the data were acceptable.

The 8270E laboratory control sample and laboratory control sample duplicate failed the relative percent difference for benzo(g,h,i)perylene. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

Date Extracted: 01/30/20 Date Analyzed: 01/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-134)
MW4-W-50.0 001446-01	<50	<200	109
MW1-W-35.0 001446-02	<50	<250	136 vo
MW5-W-15.0 001446-03	94 x	<250	131
MWDUP-W-15.0 001446-04	75 x	<250	128
M (1 1 D1 1	.×0	40 F 0	110
Method Blank 00-282 MB	<50	<250	110

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW4-W-50.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 001446-01 Date Analyzed: 02/04/20 Data File: 001446-01.045 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

Arsenic 12.0
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 001446-02 Date Analyzed: 02/04/20 Data File: 001446-02.046 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 30.8

 Chromium
 <1</td>

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & <10 \\ \text{Chromium} & 42,200 \text{ ve} \\ \text{Copper} & <50 \\ \text{Selenium} & <10 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium 42,200

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

 Date Extracted:
 02/03/20
 Lab ID:
 001446-04 x10

 Date Analyzed:
 02/04/20
 Data File:
 001446-04 x10.049

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & <10 \\ \text{Chromium} & 47,300 \text{ ve} \\ \text{Copper} & <50 \\ \text{Selenium} & <10 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

 Date Extracted:
 02/03/20
 Lab ID:
 001446-04 x50

 Date Analyzed:
 02/03/20
 Data File:
 001446-04 x50.118

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium 45,200

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 I0-075 mbDate Analyzed: 02/03/20 Data File: I0-075 mb. 100Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW4-W-50.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 01/30/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001446-01 1/2

 Date Analyzed:
 01/31/20
 Date File:
 013104 D

Date Analyzed: 01/31/20 Data File: 013104.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Concentration

	Concentration	
Compounds:	ug/L (ppb)	
Naphthalene	< 0.4	
Acenaphthylene	< 0.04	
Acenaphthene	< 0.04	
Fluorene	< 0.04	
Phenanthrene	< 0.04	
Anthracene	< 0.04	
Fluoranthene	0.042	
Pyrene	< 0.04	
Benz(a)anthracene	< 0.04	
Chrysene	< 0.04	
Benzo(a)pyrene	< 0.04	
Benzo(b)fluoranthene	< 0.04	
Benzo(k)fluoranthene	< 0.04	
Indeno(1,2,3-cd)pyrene	< 0.04	
Dibenz(a,h)anthracene	< 0.04	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW1-W-35.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received:01/30/20Project:Precision Engineering 1803.01.01Date Extracted:01/30/20Lab ID:001446-02 1/2Date Analyzed:01/31/20Data File:013105.DMatrix:WaterInstrument:GCMS6

Matrix: Water Instrument: GCN Units: ug/L (ppb) Operator: VM

Concentration Compounds: ug/L (ppb) Naphthalene <0.4 Acenaphthylene <0.04 Acenaphthene <0.04 Fluorene <0.04

< 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 < 0.04 Chrysene Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW5-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 01/30/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001446-03 1/2

Date Analyzed: 01/30/20 Data File: 013106.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MWDUP-W-15.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

 Date Received:
 01/30/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001446-04 1/2

Date Extracted: 01/30/20 Lab ID: 001446-04 In Date Analyzed: 01/31/20 Data File: 013107.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 01/30/20 Date Extracted: 00-278 mbDate Analyzed: 01/30/20 Data File: 013008.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW4-W-50.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001446-01 Date Extracted: 02/03/20 Date Analyzed: 02/04/20 Data File: 020434.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001446-02 Date Extracted: 02/03/20 Date Analyzed: 02/04/20 Data File: 020435.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	96	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001446-03 Date Extracted: 02/05/20 Date Analyzed: 02/06/20 Data File: $020620.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	92	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	3.3	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001446-04 Date Extracted: 02/03/20 Date Analyzed: 02/04/20 Data File: 020437.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	94	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	3.2	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: Date Extracted: 00-295 mbDate Analyzed: 02/04/20 Data File: 020430.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

02/05/20 Lab ID: 00-296 mbDate Extracted: Date Analyzed: 02/06/20 Data File: $020612.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	108	58-134	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 001436-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.7	98	89	75-125	10
Chromium	ug/L (ppb)	20	1.03	75	75	75 - 125	0
Copper	ug/L (ppb)	20	<5	74 vo	75	75 - 125	1
Selenium	ug/L (ppb)	5	<1	97	90	75 - 125	7

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	101	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	90	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	72	82	57-114	13
Acenaphthylene	ug/L (ppb)	1	76	84	65-119	10
Acenaphthene	ug/L (ppb)	1	77	85	66-118	10
Fluorene	ug/L (ppb)	1	77	82	64 - 125	6
Phenanthrene	ug/L (ppb)	1	78	87	67-120	11
Anthracene	ug/L (ppb)	1	80	90	65 - 122	12
Fluoranthene	ug/L (ppb)	1	78	84	65 - 127	7
Pyrene	ug/L (ppb)	1	77	87	62-130	12
Benz(a)anthracene	ug/L (ppb)	1	82	90	60-118	9
Chrysene	ug/L (ppb)	1	80	89	66 - 125	11
Benzo(b)fluoranthene	ug/L (ppb)	1	73	79	55-135	8
Benzo(k)fluoranthene	ug/L (ppb)	1	72	79	62 - 125	9
Benzo(a)pyrene	ug/L (ppb)	1	70	77	58-127	10
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	67	77	36 - 142	14
Dibenz(a,h)anthracene	ug/L (ppb)	1	61	73	37-133	18
Benzo(g,h,i)perylene	ug/L (ppb)	1	61	75	34 - 135	21 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 001446-01 (Matrix Spike)

Laboratory Code. 001446-01 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	120	10-172
Chloromethane	ug/L (ppb)	50	<10	104	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	108	36-166
Bromomethane	ug/L (ppb)	50	<1	112	47-169
Chloroethane	ug/L (ppb)	50	<1	116	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	114	44-165
Acetone	ug/L (ppb)	250	< 50	100	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	116	60-136
Hexane	ug/L (ppb)	50	<1	100	52-150
Methylene chloride	ug/L (ppb)	50	<5	112	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	116	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	106	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	108	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	116	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	110	71-127
Chloroform	ug/L (ppb)	50	<1	110	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	100	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	94	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	116	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	106	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	124	56-152
Benzene	ug/L (ppb)	50	< 0.35	108	76-125
Trichloroethene	ug/L (ppb)	50	<1	108	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	106	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	116	61-150
Dibromomethane	ug/L (ppb)	50	<1	98	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	112	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	108	72-132
Toluene	ug/L (ppb)	50	<1	100	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	104	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	100	68-131
2-Hexanone	ug/L (ppb)	250	<10	100	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	98	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	98	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	114 96	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1 <1	96 98	69-134 77-122
Chlorobenzene Ethylbenzene	ug/L (ppb)	50 50	<1	98 104	
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50 50	<1	104	69-135 73-137
n,p-Xylene	ug/L (ppb) ug/L (ppb)	100	<1 <2	100	69-135
o-Xylene	ug/L (ppb) ug/L (ppb)	50	<1	102	60-140
Styrene	ug/L (ppb)	50	<1	104	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	110	65-142
Bromoform	ug/L (ppb)	50	<1	106	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	100	58-144
Bromobenzene	ug/L (ppb)	50	<1	96	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	104	66-137
1.1.2.2-Tetrachloroethane	ug/L (ppb)	50	<1	102	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	96	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	98	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	98	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	104	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	102	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	104	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	102	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	94	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	92	69-126
1.2-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	104	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	104	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	102	60-143
Naphthalene	ug/L (ppb)	50	<1	108	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	69-148
, ,-		30			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

·			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	133	132	25-158	1
Chloromethane	ug/L (ppb)	50	114	107	45-156	6
Vinyl chloride	ug/L (ppb)	50	115	111	50-154	4
Bromomethane	ug/L (ppb)	50	123	117	55-143	5
Chloroethane	ug/L (ppb)	50	126	120	58-146	5
Trichlorofluoromethane	ug/L (ppb)	$\frac{250}{250}$	$\frac{125}{104}$	118 101	50-150	6
Acetone 1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	104	115	53-131 67-136	3 7
Hexane	ug/L (ppb)	50	102	94	57-137	8
Methylene chloride	ug/L (ppb)	50	115	109	39-148	5
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	124	122	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	115	110	68-128	4
1,1-Dichloroethane	ug/L (ppb)	50	116	107	79-121	8
2,2-Dichloropropane	ug/L (ppb)	50	125	118	55-143	6
cis-1,2-Dichloroethene	ug/L (ppb)	50	117	110	80-123	6
Chloroform	ug/L (ppb)	50	115	108	80-121	6
2-Butanone (MEK)	ug/L (ppb)	250	103	99	57-149	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50 50	100 121	95 115	73-132 81-125	5
1,1,1-Trichloroethane 1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	113	116	81-125 77-129	5 6
Carbon tetrachloride	ug/L (ppb) ug/L (ppb)	50 50	125	120	77-129 75-158	4
Benzene	ug/L (ppb)	50	112	107	69-134	5
Trichloroethene	ug/L (ppb)	50	115 vo	108	79-113	6
1,2-Dichloropropane	ug/L (ppb)	50	111	105	77-123	6
Bromodichloromethane	ug/L (ppb)	50	117	113	81-133	3
Dibromomethane	ug/L (ppb)	50	103	99	82-125	4
4-Methyl-2-pentanone	ug/L (ppb)	250	118	114	65-138	3
cis-1,3-Dichloropropene	ug/L (ppb)	50	108	106	82-132	2
Toluene	ug/L (ppb)	50	106	99	72-122	7
trans-1,3-Dichloropropene	ug/L (ppb)	50	103	101	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	50 250	105	101 100	75-124 60-136	4 1
2-Hexanone 1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	101 101	97	76-126	4
Tetrachloroethene	ug/L (ppb)	50 50	105	98	76-120	7
Dibromochloromethane	ug/L (ppb)	50	113	110	84-133	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	101	97	82-115	4
Chlorobenzene	ug/L (ppb)	50	103	98	83-114	5
Ethylbenzene	ug/L (ppb)	50	108	101	77-124	7
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	123	117	84-127	5
m,p-Xylene	ug/L (ppb)	100	108	102	81-112	6
o-Xylene	ug/L (ppb)	50	110	104	81-121	6
Styrene	ug/L (ppb)	50 50	109	104 109	84-119	5
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	115 108	105	80-117 74-136	5 3
n-Propylbenzene	ug/L (ppb)	50 50	100	97	74-136	3
Bromobenzene	ug/L (ppb)	50	97	95	80-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	106	102	78-123	4
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	105	102	66-126	3
1,2,3-Trichloropropane	ug/L (ppb)	50	98	96	67-124	2
2-Chlorotoluene	ug/L (ppb)	50	100	97	77-127	3
4-Chlorotoluene	ug/L (ppb)	50	98	95	78-128	3
tert-Butylbenzene	ug/L (ppb)	50	106	102	80-123	4
1,2,4-Trimethylbenzene	ug/L (ppb)	50	104	101	79-122	3
sec-Butylbenzene	ug/L (ppb)	50	104	101	80-116	3
p-Isopropyltoluene	ug/L (ppb)	50 50	103 97	101	81-123	2 3
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97 95	94 93	83-113 83-107	3 2
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	95 101	99 99	83-107 84-112	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	105	105	57-141	0
1.2.4-Trichlorobenzene	ug/L (ppb)	50	102	100	72-130	2
Hexachlorobutadiene	ug/L (ppb)	50	101	98	53-141	3
Naphthalene	ug/L (ppb)	50	106	104	64-133	2
1,2,3-Trichlorobenzene	ug/L (ppb)	50	102	98	65-136	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 002023-01 (Matrix Spike)

•	, - ,			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	143	10-172
Chloromethane	ug/L (ppb)	50	<10	114	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	113	36-166
Bromomethane	ug/L (ppb)	50	<1	118	47-169
Chloroethane	ug/L (ppb)	50	<1	124	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	127	44-165
Acetone	ug/L (ppb)	250	<50	101	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	127	60-136
Hexane	ug/L (ppb)	50	<1	114	52-150
Methylene chloride	ug/L (ppb)	50	<5	120	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	122	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	<1 <1	121	72-129
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb)	50 50	<1	119 129	70-128 36-154
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50	<1	129	71-127
Chloroform	ug/L (ppb) ug/L (ppb)	50 50	<1	119	65-132
2-Butanone (MEK)		250	<10	105	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 50	<10	103	48-149
1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50	<1	123	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	118	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	128	56-152
Benzene	ug/L (ppb)	50	< 0.35	117	76-125
Trichloroethene	ug/L (ppb)	50	<1	119	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	116	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	124	61-150
Dibromomethane	ug/L (ppb)	50	<1	108	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	122	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	120	72-132
Toluene	ug/L (ppb)	50	<1	105	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	107	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	105	68-131
2-Hexanone	ug/L (ppb)	250	<10	105	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	102	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	104	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	117	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	102	69-134
Chlorobenzene	ug/L (ppb)	50	<1	102	77-122
Ethylbenzene	ug/L (ppb)	50	<1	104	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	117	73-137
m,p-Xylene	ug/L (ppb)	100	<2	105	69-135
o-Xylene	ug/L (ppb)	50	<1	105	60-140
Styrene	ug/L (ppb)	50	<1	107	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	108	65-142
Bromoform	ug/L (ppb)	50	<1	108	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	101	58-144
Bromobenzene	ug/L (ppb)	50	<1	101	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	103	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	99	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	100	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	99	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	103	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	102	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	102	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	101	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	98	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	96	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	100	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	102	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	98	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	96	60-143
Naphthalene	ug/L (ppb)	50	<1	101	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	97	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Education, Code. Education,	, control earnpr		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	148	125	25-158	17
Chloromethane	ug/L (ppb)	50	114	101	45-156	12
Vinyl chloride	ug/L (ppb)	50	116	103	50-154	12
Bromomethane	ug/L (ppb)	50	122	108	55-143	12
Chloroethane	ug/L (ppb)	50	123	109	58-146	12
Trichlorofluoromethane	ug/L (ppb)	250	126	115	50-150	9
Acetone	ug/L (ppb)	250	95	94	53-131	1
1,1-Dichloroethene	ug/L (ppb)	50	122	113	67-136	8
Hexane Methylene chloride	ug/L (ppb)	50 50	112	106 109	57-137	6 2
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	111 118	111	39-148 64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	112	106	68-128	6
1,1-Dichloroethane	ug/L (ppb)	50	112	108	79-121	4
2,2-Dichloropropane	ug/L (ppb)	50	124	114	55-143	8
cis-1.2-Dichloroethene	ug/L (ppb)	50	114	109	80-123	4
Chloroform	ug/L (ppb)	50	112	110	80-121	2
2-Butanone (MEK)	ug/L (ppb)	250	95	102	57-149	7
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	100	73-132	4
1,1,1-Trichloroethane	ug/L (ppb)	50	117	111	81-125	5
1,1-Dichloropropene	ug/L (ppb)	50	110	109	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	121	118	75-158	3
Benzene	ug/L (ppb)	50	108	109	69-134	1
Trichloroethene	ug/L (ppb)	50 50	111 107	112 110	79-113	1 3
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	113	120	77-123 81-133	6
Dibromomethane	ug/L (ppb)	50 50	102	105	82-125	3
4-Methyl-2-pentanone	ug/L (ppb)	250	113	115	65-138	2
cis-1,3-Dichloropropene	ug/L (ppb)	50	106	118	82-132	11
Toluene	ug/L (ppb)	50	98	98	72-122	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	95	107	80-136	12
1,1,2-Trichloroethane	ug/L (ppb)	50	97	102	75-124	5
2-Hexanone	ug/L (ppb)	250	96	101	60-136	5
1,3-Dichloropropane	ug/L (ppb)	50	96	101	76-126	5
Tetrachloroethene	ug/L (ppb)	50	99	98	76-121	1
Dibromochloromethane	ug/L (ppb)	50	104	114	84-133	9
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	95 95	102 97	82-115 83-114	$\frac{7}{2}$
Ethylbenzene	ug/L (ppb)	50 50	98 98	99	77-124	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	111	110	84-127	1
m,p-Xylene	ug/L (ppb)	100	99	100	81-112	1
o-Xylene	ug/L (ppb)	50	100	98	81-121	2
Styrene	ug/L (ppb)	50	100	102	84-119	2
Isopropylbenzene	ug/L (ppb)	50	104	100	80-117	4
Bromoform	ug/L (ppb)	50	95	105	74-136	10
n-Propylbenzene	ug/L (ppb)	50	93	97	74-126	4
Bromobenzene	ug/L (ppb)	50	92	97	80-121	5
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	98 97	98 102	78-123 66-126	0
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	97 91	102 96	67-126 67-124	5 5
2-Chlorotoluene	ug/L (ppb)	50	93	96	77-127	3
4-Chlorotoluene	ug/L (ppb)	50	91	95	78-128	4
tert-Butylbenzene	ug/L (ppb)	50	99	99	80-123	0
1,2,4-Trimethylbenzene	ug/L (ppb)	50	96	97	79-122	1
sec-Butylbenzene	ug/L (ppb)	50	97	97	80-116	0
p-Isopropyltoluene	ug/L (ppb)	50	97	96	81-123	1
1,3-Dichlorobenzene	ug/L (ppb)	50	91	93	83-113	2
1,4-Dichlorobenzene	ug/L (ppb)	50	89	92	83-107	3
1,2-Dichlorobenzene	ug/L (ppb)	50	94	95	84-112	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	94	98	57-141	4
1,2,4-Trichlorobenzene	ug/L (ppb)	50	96 95	93 93	72-130	3 2
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	95 98	93 96	53-141 64-133	2 2
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98 94	93	65-136	1
1,2,0 111011010001120110	agin (pps)	90	0.1	00	00 100	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 001446

Work Order Number: 2001509

February 06, 2020

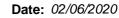
Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 1/30/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 001446 **Work Order:** 2001509

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2001509-001	MW4-W-20.0	01/30/2020 9:40 AM	01/30/2020 2:18 PM
2001509-002	MW1-W-35.0	01/30/2020 10:01 AM	01/30/2020 2:18 PM
2001509-003	MW5-W-15.0	01/30/2020 11:30 AM	01/30/2020 2:18 PM
2001509-004	MWDUP-W-15.0	01/30/2020 11:30 AM	01/30/2020 2:18 PM

Case Narrative

WO#: **2001509**Date: **2/6/2020**

CLIENT: Friedman & Bruya

Project: 001446

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2001509

Date Reported: 2/6/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2001509

Batch ID: R57080

Batch ID: R57080

Batch ID: R57080

Date Reported: 2/6/2020

Analyst: WF

Analyst: WF

Analyst: WF

CLIENT: Friedman & Bruya

Project: 001446

Lab ID: 2001509-001 **Collection Date:** 1/30/2020 9:40:00 AM

Client Sample ID: MW4-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0450 mg/L 1 1/30/2020 3:04:00 PM

Lab ID: 2001509-002 **Collection Date:** 1/30/2020 10:01:00 AM

Client Sample ID: MW1-W-35.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0450 mg/L 1 1/30/2020 2:59:00 PM

Lab ID: 2001509-003 Collection Date: 1/30/2020 11:30:00 AM

Client Sample ID: MW5-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent 36.2 4.50 D mg/L 100 1/30/2020 3:08:00 PM

Lab ID: 2001509-004 **Collection Date:** 1/30/2020 11:30:00 AM

Client Sample ID: MWDUP-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R57080 Analyst: WF

Chromium, Hexavalent 37.6 4.50 D mg/L 100 1/30/2020 3:13:00 PM

Date: 2/6/2020

Work Order: 2001509

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 001446	C. 2. a.y a.				Hexavalent Chromium by SM 3500 Ci
Sample ID: MB-57080	SampType: MBLK			Units: mg/L	Prep Date: 1/30/2020 RunNo: 57080
Client ID: MBLKW	Batch ID: R57080				Analysis Date: 1/30/2020 SeqNo: 1138115
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450			
Sample ID: LCS-57080	SampType: LCS			Units: mg/L	Prep Date: 1/30/2020 RunNo: 57080
Client ID: LCSW	Batch ID: R57080				Analysis Date: 1/30/2020 SeqNo: 1138116
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Chromium, Hexavalent	0.244	0.0450	0.2500	0	97.4 80.9 115
Sample ID: 2001501-001ADUP	SampType: DUP			Units: mg/L	Prep Date: 1/30/2020 RunNo: 57080
Client ID: BATCH	Batch ID: R57080				Analysis Date: 1/30/2020 SeqNo: 1138118
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450			0 30
Sample ID: 2001501-001AMS	SampType: MS			Units: mg/L	Prep Date: 1/30/2020 RunNo: 57080
Client ID: BATCH	Batch ID: R57080				Analysis Date: 1/30/2020 SeqNo: 1138119
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Chromium, Hexavalent NOTES:	ND	0.0450	0.2500	0	0 46.2 138 S
S - Outlying spike recovery(ies) observed. A duplicate ana	lysis was pe	erformed with s	similar results indica	ating a possible matrix effect.
Sample ID: 2001501-001AMSD	SampType: MSD			Units: mg/L	Prep Date: 1/30/2020 RunNo: 57080
Client ID: BATCH	Batch ID: R57080				Analysis Date: 1/30/2020 SeqNo: 1138120
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450	0.2500	0	2.68 46.2 138 0 20 S

NOTES:

Page 6 of 8 Original

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

С	lient Name:	FB		Work O	rder Numl	ber: 2001509		
Lo	ogged by:	Clare Griggs		Date Re	ceived:	1/30/2020	2:18:00 PM	
<u>Cha</u>	in of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?		FedE	<u>x</u>			
Log	ı İn							
_	Coolers are p	present?		Yes	✓	No 🗆	NA 🗌	
4.	Shipping con	tainer/cooler in good conditior	?	Yes	✓	No 🗌		
5.		s present on shipping contain ments for Custody Seals not		Yes		No 🗌	Not Required 🗹	
6.	Was an atten	npt made to cool the samples	?	Yes	✓	No 🗌	na 🗆	
7.	Were all item	s received at a temperature o	f >2°C to 6°C *	Yes		No 🗸	na 🗆	
•	Comple(s) in	nroner container(e)?		Refer to ite				
_		proper container(s)?	(0)2	Yes	✓	No L		
		nple volume for indicated test	(8)?	Yes	✓	No □ No □		
		properly preserved? ative added to bottles?		Yes Yes		No ✓	NA 🗌	
11.	was preserve	alive added to bottles:		163		NO 🛂	IVA 🗆	
12.	Is there head	space in the VOA vials?		Yes		No \square	NA 🗸	
13.	Did all sample	es containers arrive in good c	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain of	of Custody?	Yes	✓	No 🗌		
_		at analyses were requested?		Yes	✓	No \square		
17.	Were all hold	ing times able to be met?		Yes	✓	No 🗌		
Spe	cial Handli	ing (if applicable)						
_		otified of all discrepancies with	this order?	Yes		No 🗌	NA 🗸	
		Notified:		te:				
	By Who		Via	je.	il \square Ph	ione Fax [In Person	
	Regardi							
	Client In	structions:						
19.	Additional rer	marks:						_
ltem	<u>Information</u>							
		Item #	Temp °C					
	Cooler		9.6					

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

11.8

Sample

Send Report To	Michae	Michael Erdahl		IS	SUBCONTRACTER	TRACT		+	-			7	7	Pa	Page#	of /
Company F	riedm	Friedman and Bruya, Inc.	a, Inc.	PR	PROJECT NAME/NO.	NAM	ONV.				PO#		中	tanda	#Standard (2 Weeks) Wee (1 well
Address 3	3012 16	3012 16th Ave W				00	944100	0 -	_	A	A-55C		Ru	Rush char	Rush charges authorized by:	zed by:
City, State, ZIP_S	eattle,	Seattle, WA 98119		RE	REMARKS	S			-					SA	SAMPLE DISPOSAL	POSAL
Phone # (206) 285-8282	-8282	Fax # (2	(206) 283-5044		P	Please Email Results	mail R	esults		EQUIS	7		ON	eturn : Vill call	Return samples Will call with instructions	ctions
									ANALYSES REQUESTED	SES	REQU	JESTH	D	¥		
						cans				1.				-		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Fu	EPH	VPH	CIVI				-	ī		Notes
MW4 - W-20.0		1/30/20	040	H,0	-			м	×	-	-	+	+	+	1	
MW1-W-35.0			1001	-	-				x :	-	-	+	+	+	1	
MW5-W-15.0			. (130)	,	-				Υ .	+	+	+	+	+	+	
MWDUP-W-150		←	1150		~				X	-	-	-	+	+		
															7	
															1	
							-		-	+	-		-			
							+	-	+	-	-	+	-	1		
										-		-	+			
												H				
						ij	+	-	+	-			+	1.		= 1
Friedman & Bruya, Inc.			SIGNATURE)		Į.	PRINT NAME	VAME	-	-	+	COMPANY	ANY	1	DATE	TIME
South With Avenue West		Relinquished by:	A A	(Micha	Michael Erdahl	ahl			7.4	Fried	Friedman & Bruya	Bruya		1/30/10	13:21
Ph. (206) 285-8282	-1-	Relinquished by:	there		EZ	MMW	H0/1	SAM		1		P			1/30/20	14:20
Far (206) 282 5011	7															

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. MWDUP-W-15.0 Phone 360-394-626 Email hoord maul to struct Project specific RLs? Yes / No City, State, ZIP Bellingham, WA 78225 Address 1329 N State Street #201 Company Man Foto & Aborsi Report To . Heather Good MW5-W-15.0 28-m-1mW Trip Blank MW4-W-20 Sample ID Relinquished by: Received by: Relinquished by: Received by: 2 $^{\circ}$ 01 A-CP 04 A-G Lab ID SIGNATURE 1150120 Sampled 8 ~ 0940 SAMPLE CHAIN OF CUSTODY ME 01-30-20 1001 Sampled 1130 Z Z Time SAMPLERS (signature) REMARKS PROJECT NAME Prevision Engineering Sample ~ Sean Malanay 石七 PRINT NAME B X NWTPH-Gx BTEX EPA 8021 accounting @ 1803 01.01 man toster, com INVOICE TO ANALYSES REQUESTED \times VOCs EPA 8260 **3270 5.1** PAHs EPA 8270 PO# × アンマ Samples received at PCBs EPA 8082 COMPANY X DIS. AS, OF, CU, SE by EPA GUTOR Default: Dispose after 30 days XStandard turnaround ☐ Archive samples Rush charges authorized by: RUSH Page # of TURNAROUND TIME SAMPLE DISPOSAL 1/20/25 Hoc. DATE 01-30-20 Notes

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on January 30, 2020 from the Precision Engineering 1803.01.01, F&BI 001436 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 30, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
001436 -01	MW3-W-15.0
001436 -02	MW11-W-15.0
001436 -03	Trip Blank

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

Copper in the 6020B matrix spike failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

Several 8260D compounds exceeded the acceptance criteria in the laboratory control sample. The compounds were not detected in the samples, therefore the data were acceptable.

The 8270E laboratory control sample and laboratory control sample duplicate failed the relative percent difference for benzo(g,h,i)perylene. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

Date Extracted: 01/30/20 Date Analyzed: 01/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 51-134)
MW3-W-15.0 001436-01	<50	<250	101
MW11-W-15.0 001436-02	150 x	<250	110
Method Blank	<50	<250	113

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001436-01 Date Extracted: 02/03/20 Date Analyzed: 02/04/20 Data File: 001436-01.041 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 10.7

 Chromium
 1.03

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Lab ID: 001436-02 Date Extracted: 02/03/20 Date Analyzed: 02/04/20 Data File: 001436-02.044 Matrix: Water Instrument: ICPMS2 SP

Units: ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

7.16 Arsenic Chromium 3.42 Copper <5 Selenium 1.76

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 I0-075 mbDate Analyzed: 02/03/20 Data File: I0-075 mb. 100Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: 001436-01 Date Extracted: Date Analyzed: 02/03/20 Data File: 020324.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	89	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Date Extracted: 02/03/20 Lab ID: 001436-02 Date Analyzed: 02/03/20 Data File: $020325.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Trip Blank Client: Maul Foster Alongi

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: 001436-03 Date Extracted: Date Analyzed: 02/03/20 Data File: $020326.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	93	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: 00-232 mbDate Extracted: Date Analyzed: 02/03/20 Data File: 020310.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW3-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 01/30/20 Project: Precision Engineering 1803.01.01

Date Extracted: 01/30/20 Lab ID: 001436-01 1/2

Date Applying disconnection of the project of the projec

Date Analyzed: 01/31/20 Data File: 013109.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Compoundo	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW11-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 01/30/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001436-02 1/2

 Date Analyzed:
 01/31/20
 Data File:
 013110.D

Date Analyzed: 01/31/20 Data File: 013110.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Concentration Ug/L (ppb) Naphthalana

< 0.4 Naphthalene Acenaphthylene < 0.04 Acenaphthene 2.0 Fluorene 0.23 Phenanthrene 0.079 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 01/30/20 Date Extracted: 00-278 mbDate Analyzed: 01/30/20 Data File: 013008.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	108	63-142	8

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 001436-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.7	98	89	75-125	10
Chromium	ug/L (ppb)	20	1.03	75	75	75 - 125	0
Copper	ug/L (ppb)	20	<5	74 vo	75	75 - 125	1
Selenium	ug/L (ppb)	5	<1	97	90	75 - 125	7

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	101	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	90	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 001436-02 (Matrix Spike)

Laboratory Code. 001450-02 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	130	10-172
Chloromethane	ug/L (ppb)	50	<10	107	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	112	36-166
Bromomethane	ug/L (ppb)	50	<1	120	47-169
Chloroethane	ug/L (ppb)	50	<1	134	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	128	44-165
Acetone	ug/L (ppb)	250	<50	81	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	133	60-136
Hexane	ug/L (ppb)	50	<1	107	52-150
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb)	50 50	<5 <1	122 125	67-132 74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	<1	125	74-127 72-129
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1	117	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	140	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	119	71-127
Chloroform	ug/L (ppb)	50	<1	115	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	70	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	88	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	127	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	106	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	130	56-152
Benzene	ug/L (ppb)	50	< 0.35	106	76-125
Trichloroethene	ug/L (ppb)	50	<1	106	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	101	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	104	61-150
Dibromomethane	ug/L (ppb)	50	<1	89	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	94	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	89	72-132
Toluene	ug/L (ppb)	50 50	<1 <1	100 83	76-122 76-130
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	83 90	76-130 68-131
2-Hexanone	ug/L (ppb) ug/L (ppb)	250	<10	77	10-185
1.3-Dichloropropane	ug/L (ppb)	50	<10	85	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	100	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	98	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	84	69-134
Chlorobenzene	ug/L (ppb)	50	<1	96	77-122
Ethylbenzene	ug/L (ppb)	50	<1	104	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	121	73-137
m,p-Xylene	ug/L (ppb)	100	<2	104	69-135
o-Xylene	ug/L (ppb)	50	<1	109	60-140
Styrene	ug/L (ppb)	50	<1	103	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	114	65-142
Bromoform	ug/L (ppb)	50	<1	92	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	96	58-144
Bromobenzene	ug/L (ppb)	50 50	<1 <1	91 103	75-124
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1	93	66-137 51-154
1,1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	85	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	97	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	93	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	102	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	102	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	102	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	93	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	91	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	92	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	103	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	102	60-143
Naphthalene	ug/L (ppb)	50	<1	105	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Education Code: Education	.y control campi		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	156	136	25-158	14
Chloromethane	ug/L (ppb)	50	122	106	45-156	14
Vinyl chloride	ug/L (ppb)	50	124	108	50-154	14
Bromomethane	ug/L (ppb)	50	124	110	55-143	12
Chloroethane	ug/L (ppb)	50	132	114	58-146	15
Trichlorofluoromethane	ug/L (ppb)	250	125	111	50-150	12
Acetone 1,1-Dichloroethene	ug/L (ppb)	250 50	101 127	89 110	53-131 67-136	13 14
Hexane	ug/L (ppb) ug/L (ppb)	50 50	111	105	57-137	6
Methylene chloride	ug/L (ppb)	50	121	105	39-148	14
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	128	112	64-147	13
trans-1,2-Dichloroethene	ug/L (ppb)	50	117	105	68-128	11
1,1-Dichloroethane	ug/L (ppb)	50	116	106	79-121	9
2,2-Dichloropropane	ug/L (ppb)	50	137	119	55-143	14
cis-1,2-Dichloroethene	ug/L (ppb)	50	118	106	80-123	11
Chloroform	ug/L (ppb)	50	116	105	80-121	10
2-Butanone (MEK)	ug/L (ppb)	250	89	93 91	57-149	4
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	95 126 vo	91 112	73-132 81-125	4 12
1,1-Dichloropropene	ug/L (ppb)	50 50	109	102	77-129	7
Carbon tetrachloride	ug/L (ppb)	50	133	120	75-158	10
Benzene	ug/L (ppb)	50	108	102	69-134	6
Trichloroethene	ug/L (ppb)	50	109	103	79-113	6
1,2-Dichloropropane	ug/L (ppb)	50	106	101	77-123	5
Bromodichloromethane	ug/L (ppb)	50	116	110	81-133	5
Dibromomethane	ug/L (ppb)	50	98	94	82-125	4
4-Methyl-2-pentanone	ug/L (ppb)	250	108	105	65-138	3
cis-1,3-Dichloropropene Toluene	ug/L (ppb)	50 50	103 107	103 99	82-132 $72-122$	0 8
trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	107	99 105	72-122 80-136	8
1,1,2-Trichloroethane	ug/L (ppb)	50 50	101	101	75-124	0
2-Hexanone	ug/L (ppb)	250	93	100	60-136	7
1,3-Dichloropropane	ug/L (ppb)	50	96	97	76-126	1
Tetrachloroethene	ug/L (ppb)	50	107	99	76-121	8
Dibromochloromethane	ug/L (ppb)	50	118	115	84-133	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	96	98	82-115	2
Chlorobenzene	ug/L (ppb)	50	103	97	83-114	6
Ethylbenzene	ug/L (ppb)	50	110	102	77-124	8
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb) ug/L (ppb)	50 100	137 vo 109	119 103	84-127 81-112	14 6
o-Xylene	ug/L (ppb)	50	114	103	81-121	10
Styrene	ug/L (ppb)	50	108	104	84-119	4
Isopropylbenzene	ug/L (ppb)	50	121 vo	109	80-117	10
Bromoform	ug/L (ppb)	50	114	112	74-136	2
n-Propylbenzene	ug/L (ppb)	50	106	100	74-126	6
Bromobenzene	ug/L (ppb)	50	99	97	80-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	115	104	78-123	10
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	107 98	105 97	66-126 67-124	$\frac{2}{1}$
2-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	108	100	77-127	8
4-Chlorotoluene	ug/L (ppb)	50 50	101	98	78-128	3
tert-Butylbenzene	ug/L (ppb)	50	114	105	80-123	8
1,2,4-Trimethylbenzene	ug/L (ppb)	50	113	102	79-122	10
sec-Butylbenzene	ug/L (ppb)	50	115	105	80-116	9
p-Isopropyltoluene	ug/L (ppb)	50	114	104	81-123	9
1,3-Dichlorobenzene	ug/L (ppb)	50	100	97	83-113	3
1,4-Dichlorobenzene	ug/L (ppb)	50	99	95	83-107	4
1,2-Dichlorobenzene	ug/L (ppb)	50	108	100	84-112	8
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	ug/L (ppb)	50 50	121 121	110 105	57-141 72-130	10 14
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	121 122	105 103	72-130 53-141	14 17
Naphthalene	ug/L (ppb)	50 50	125	109	64-133	14
1,2,3-Trichlorobenzene	ug/L (ppb)	50	120	104	65-136	14

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/30/20

Project: Precision Engineering 1803.01.01, F&BI 001436

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: Laboratory Control Sample

·		•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	72	82	57-114	13
Acenaphthylene	ug/L (ppb)	1	76	84	65-119	10
Acenaphthene	ug/L (ppb)	1	77	85	66-118	10
Fluorene	ug/L (ppb)	1	77	82	64 - 125	6
Phenanthrene	ug/L (ppb)	1	78	87	67-120	11
Anthracene	ug/L (ppb)	1	80	90	65 - 122	12
Fluoranthene	ug/L (ppb)	1	78	84	65 - 127	7
Pyrene	ug/L (ppb)	1	77	87	62-130	12
Benz(a)anthracene	ug/L (ppb)	1	82	90	60-118	9
Chrysene	ug/L (ppb)	1	80	89	66 - 125	11
Benzo(b)fluoranthene	ug/L (ppb)	1	73	79	55-135	8
Benzo(k)fluoranthene	ug/L (ppb)	1	72	79	62 - 125	9
Benzo(a)pyrene	ug/L (ppb)	1	70	77	58-127	10
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	67	77	36 - 142	14
Dibenz(a,h)anthracene	ug/L (ppb)	1	61	73	37-133	18
Benzo(g,h,i)perylene	ug/L (ppb)	1	61	75	34 - 135	21 vo

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 001436

Work Order Number: 2001501

February 06, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 1/30/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 02/06/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 001436 **Work Order:** 2001501

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2001501-001
 MW3-W-15.0
 01/29/2020 3:25 PM
 01/30/2020 11:40 AM

 2001501-002
 MW11-W-15.0
 01/29/2020 3:55 PM
 01/30/2020 11:40 AM

Case Narrative

WO#: **2001501**Date: **2/6/2020**

CLIENT: Friedman & Bruya

Project: 001436

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2001501**

Date Reported: 2/6/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order:

2001501

Date Reported:

Batch ID: R57080

2/6/2020

Analyst: WF

Analyst: WF

CLIENT: Friedman & Bruya

Project: 001436

Lab ID: 2001501-001 **Collection Date:** 1/29/2020 3:25:00 PM

Client Sample ID: MW3-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0450 mg/L 1 1/30/2020 12:44:00 PM

Lab ID: 2001501-002 **Collection Date:** 1/29/2020 3:55:00 PM

Client Sample ID: MW11-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R57080

Chromium, Hexavalent ND 0.0450 mg/L 1 1/30/2020 1:04:00 PM

Date: 2/6/2020

Work Order: 2001501

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Project: 001436							Hexavalent C	Chromium by SM 350	00 Cr
Sample ID: MB-57080	SampType: MBLK			Units: mg/L		Prep Date:	1/30/2020	RunNo: 57080	
Client ID: MBLKW	Batch ID: R57080				A	Analysis Date:	1/30/2020	SeqNo: 1138115	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450							
Sample ID: LCS-57080	SampType: LCS			Units: mg/L		Prep Date:	1/30/2020	RunNo: 57080	
Client ID: LCSW	Batch ID: R57080				A	Analysis Date:	1/30/2020	SeqNo: 1138116	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.244	0.0450	0.2500	0	97.4	80.9	115		
Sample ID: 2001501-001ADUP	SampType: DUP			Units: mg/L		Prep Date:	1/30/2020	RunNo: 57080	
Client ID: MW3-W-15.0	Batch ID: R57080				A	Analysis Date:	1/30/2020	SeqNo: 1138118	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450					0	30	
Sample ID: 2001501-001AMS	SampType: MS			Units: mg/L		Prep Date:	1/30/2020	RunNo: 57080	
Client ID: MW3-W-15.0	Batch ID: R57080				A	Analysis Date:	1/30/2020	SeqNo: 1138119	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent NOTES:	ND	0.0450	0.2500	0	0	46.2	138		S
S - Outlying spike recovery(ies)	observed. A duplicate anal	ysis was pe	erformed with s	similar results indicat	ting a possi	ble matrix effe	ct.		
Sample ID: 2001501-001AMSD	SampType: MSD			Units: mg/L		Prep Date:	1/30/2020	RunNo: 57080	
Client ID: MW3-W-15.0	Batch ID: R57080				A	Analysis Date:	1/30/2020	SeqNo: 1138120	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450	0.2500	0	2.68	46.2	138 0	20	S

NOTES:

Page 6 of 8 Original

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample Log-In Check List

CI	ient Name:	FB	Work Or	der Num	ber: 2001501	
Lo	gged by:	Carissa True	Date Re	ceived:	1/30/2020	11:40:00 AM
<u>Cha</u>	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	Cour	<u>ier</u>		
Log	<u>In</u>					
3.	Coolers are p	present?	Yes	✓	No 🗆	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗹	Not Required
6.	Was an atten	npt made to cool the samples?	Yes	✓	No 🗌	na 🗆
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	✓	No 🗆	na 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗆
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗸
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌	
Spe	cial Handl	ing (if applicable)				
_		otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date				
	By Who	m: Via:	eMa	il 🗌 Ph	none 🗌 Fax [In Person
	Regardi	ng:				
	Client Ir	nstructions:				
19	Additional rer	marks:				
	nformation					

Item #	Temp ºC
Cooler 1	5.4
Sample 1	2.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page #_

Page 8 of 8

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	1.	O. W. C. INOI	130	- Sam				3	-	K		1		OOTS TONE TROCKES MESS
10:37 Ar	1/25/20	E Bruya	Friedman & Bruya	1,1			Erdahl	Michael Erdahl	Z/	1		Relinquished by		2019 16th Amenice West
TIME	DATE	COMPANY	COM		ME	PRINT NAME	PRIN	7	+		SIGNATURE		Inc	Friedman & Brusa
		/ V	,											
1.														
		4						+	1					
									1					
						,								•
														1
	-													9
				-			-	-		27				
					7			-	-	-	1553	1		MW11-W-150
					< ;	1	+	1.	-	Eater	1825	1/20/10		0.51-M-5mm
					×		-	1	1	7		,		
S	Notes				CI	VPH	EPH	Dioxins/Furans	# of	Matrix	Time Sampled	Date Sampled	Lab D	Sample ID
1			ANALYSES REQUESTED	YSES	ANA			-						
as	☐ Will call with instructions					1	-	T Todoc			(206) 283-5044	Fax # (20	-8282	Phone # (206) 285-8282
Ė	SAMPLE DISPOSAL ose after 30 days rn samples	☐ Dispose after 30 days ☐ Return samples			ń	Result	KS Please Fmail Results	KS	REMARKS	RI		Seattle, WA 98119	eattle, V	te, ZIP_
	, .		00	I			0	001100				3012 16th Ave W	012 16t	Address 30
y.	Rush charges authorized by:	Rush charge	57/2	1.52/g			PROJECT NAME/NO.	TNAM	COJEC	PI	Inc.	Friedman and Bruya, Inc.	riedma	1
E A	TURNAROUND TIME	TURN		1	07-+	Lmor	, ien	SUBCONIRACIER	TOOR	0		Michael Erdahl	fichael	Send Report To N
	TO OI	Fage #			_		dam	א מווחי	3	Tar.				

Fax (206) 283-5044 Ph. (206) 285-8282

Received by:

Relinquished by:

Report To___ City, State, Address___ Company_ 001436

SAMPLE CHAIN OF CUSTODY

ME 01/30/20 ma/AZ2/805

	SAMPLERS (signature)		age# of
Report To Meather Chang	By May	Mary	TURNAROUND TIME
Company Man Fater & Alonei	PROJECT NAME	P0#	⊮Standard turnaround □ RUSH
#301	Pracision Engineering	iyas.01.01	Rush charges authorized by:
City, State, ZIP Bellingham, W.A. 98225	REMARKS Dissolved	INVOICE TO	SAMPLE DISPOSAL
5 6011/100	ounted are told tetrain in	Transful Co	Other
Phone 560 31 auchmail Myood (e) Manifortes com Project specific RLs? - Yes / No	Project specific RLs? - Yes / No	The state of the s	Default: Dispose after 30 days

			Т	T	T /	·	7		T	,		
- materials		-						LipBlank	MW11-W-15 6	MW3-W-15.0	Sample ID	# # # # # # # # # # # # # # # # # # #
								03 AB	02 A-G 1/29/10	01 A.G 1/12/120	Lab ID	
											Date Sampled	
								1	1555	i825	Time Sampled	
		-						3	8	۳	Sample Type	
								b	(2)	E E	# of Jars	
									\times	×.	NWTPH-Dx	
											NWTPH-Gx	
											BTEX EPA 8021	
											NWTPH-HCID]_
***************************************	-							8	\times	×	VOCs EPA 82600	NA
									×	\times	PAHs E PA 82-10	SS
											PCBs EPA 8082	SE
		Sa							×	×	Her curson by	ANALYSES REQUESTED
	,	nple							X	×	Her Chrom by 3500 CRB DIS. AS, Er, Cy Se by EFA GUZOR	EST
		s rec									<u> </u>	B
		eived									-	
		Samples received at 3 °C			**************************************		(NP)01/30/20	Added at life	on 506 001446	@-logidia	Notes	

Seattle, WA 98119-2029

Relinquished by:

3012 16th Avenue West

Received by: WW/

Friedman & Bruya, Inc.

Relinquished by:

SIGNATURE

he May

5000

18 -

五万

1/30/20

920

DATE

TIME

1/3/w

02:0

COMPANY

PRINT NAME Malone

Ph. (206) 285-8282

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 7, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on January 29, 2020 from the Precision Engineering 1803.01.01, F&BI 001419 project. There are 31 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 29, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 001419 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
001419 -01	MW8-W-15.0
001419 -02	MW10-W-15.0
001419 -03	MW9-W-33.5
001419 -04	MW2-W-15.0
001419 -05	MW6-W-15.0
001419 -06	MW7-W-28.5

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The 8260D water samples MW10-W-15.0, MW2-W-15.0, and MW6-W-15.0 were diluted due to matrix effect (foamy). The reporting limits were raised accordingly.

Copper in the 6020B matrix spike failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

Several 8260D compounds exceeded the acceptance criteria in the matrix spike sample. The compounds were not detected in the samples, therefore the data were acceptable.

The 8270E laboratory control sample and laboratory control sample duplicate failed the relative percent difference for benzo(g,h,i)perylene. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

Date Extracted: 01/30/20 Date Analyzed: 01/30/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-134)
MW8-W-15.0 001419-01	300 x	<250	128
MW10-W-15.0 001419-02	410 x	690 x	114
MW9-W-33.5 001419-03	100 x	<250	132
MW2-W-15.0 001419-04	240 x	460 x	88
MW6-W-15.0 001419-05	370 х	810 x	70
MW7-W-28.5 001419-06	88 x	<250	121
Method Blank	<50	<250	113

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 18.6 Copper <5 Selenium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium <10

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW10-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 001419-02 Date Analyzed: 02/04/20 Data File: $001419 \hbox{-} 02.055$ Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 25.5

 Chromium
 10.5

 Copper
 <5</td>

 Selenium
 <5</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW9-W-33.5 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 001419-03 Date Analyzed: 02/04/20 Data File: 001419-03.056 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 10.9

 Chromium
 2.20

 Copper
 <5</td>

 Selenium
 <5</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW2-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: Date Extracted: 001419-04 Date Analyzed: 02/04/20 Data File: $001419 \hbox{-} 04.057$ Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 6.46

 Chromium
 7.82

 Copper
 <5</td>

 Selenium
 <5</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

02/03/20 Lab ID: Date Extracted: 001419-05 Date Analyzed: 02/04/20 Data File: $001419 \hbox{-} 05.058$ Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Chromium 20.3 Copper <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 48.7 Selenium 14.3

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW7-W-28.5 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 001419-06 Date Analyzed: 02/04/20 Data File: 001419-06.059 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 8.51

 Chromium
 1.73

 Copper
 5.87

 Selenium
 <5</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 02/03/20 I0-075 mbDate Analyzed: 02/03/20 Data File: I0-075 mb. 100Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

Arsenic <1

Chromium <1
Copper <5
Selenium <5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 01/31/20 001419-01 Date Analyzed: 02/03/20 Data File: $020327.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

Surrogates: 1,2-Dichloroethane-d4	% Recovery: 99	Lower Limit: 57	Upper Limit: 121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW10-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: 001419-02 1/10 Date Extracted: 01/31/20 Date Analyzed: 02/03/20 Data File: 020331.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	95	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW9-W-33.5 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

01/31/20 Lab ID: Date Extracted: 001419-03 Date Analyzed: 02/03/20 Data File: $020328.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	93	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW2-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 01/31/20 001419-04 1/10 Date Analyzed: 02/03/20 Data File: 020332.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

Lab ID: 001419-05 1/10 Date Extracted: 01/31/20 Date Analyzed: 02/03/20 Data File: 020336.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	94	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW7-W-28.5 Client: Maul Foster Alongi

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01

01/31/20 Lab ID: Date Extracted: 001419-06 Date Analyzed: 02/03/20 Data File: 020329.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

01/31/20 Lab ID: 00-230 mbDate Extracted: Date Analyzed: 01/31/20 Data File: $013107.\mathrm{D}$ GCMS9Matrix: Water Instrument: Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	104	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW8-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 01/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001419-01 1/2

 Date Analyzed:
 01/30/20
 Data File:
 013009.D

Date Analyzed:01/30/20Data File:013009.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	77	31	160
Benzo(a)anthracene-d12	84	25	165

< 0.04

Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04

 Anthracene
 <0.04</td>

 Fluoranthene
 <0.04</td>

 Pyrene
 <0.04</td>

 Benz(a)anthracene
 <0.04</td>

 Chrysene
 <0.04</td>

 Benzo(a)pyrene
 <0.04</td>

 Benzo(b)fluoranthene
 <0.04</td>

 Benzo(k)fluoranthene
 <0.04</td>

 Indeno(1,2,3-cd)pyrene
 <0.04</td>

 Dibenz(a,h)anthracene
 <0.04</td>

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW10-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 01/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001419-02 1/2

 Date Analyzed:
 01/30/20
 Data File:
 013010 D

Date Analyzed: 01/30/20 Data File: 013010.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW9-W-33.5	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01 Date Extracted: 01/30/20 Lab ID: 001419-03 1/2

Date Extracted: 01/30/20 Lab ID: 001419-03 In Date Analyzed: 01/30/20 Data File: 013011.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW2-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 01/29/20
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 01/30/20
 Lab ID:
 001419-04 1/2

 Date Analyzed:
 01/30/20
 Data File:
 013012.D

Date Analyzed:01/30/20Data File:013012.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	83	31	160
Benzo(a)anthracene-d12	97	25	165

< 0.04

Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04

Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW6-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01 Date Extracted: 01/30/20 Lab ID: 001419-05 1/2

Date Extracted: 01/30/20 Lab ID: 001419-05 In Date Analyzed: 01/30/20 Data File: 013013.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	MW7-W-28.5	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 01/29/20 Project: Precision Engineering 1803.01.01
Date Extracted: 01/30/20 Lab ID: 001419-06 1/2
Date Analysis of the Project Project: Precision Engineering 1803.01.01

Date Analyzed: 01/30/20 Data File: 013014.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 83 31 160
Benzo(a)anthracene-d12 91 25 165

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 01/30/20 00-278 mbDate Extracted: Date Analyzed: 01/30/20 Data File: 013008.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	108	63-142	8

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 001436-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.7	98	89	75-125	10
Chromium	ug/L (ppb)	20	1.03	75	75	75 - 125	0
Copper	ug/L (ppb)	20	<5	74 vo	75	75 - 125	1
Selenium	ug/L (ppb)	5	<1	97	90	75 - 125	7

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	90	80-120
Chromium	ug/L (ppb)	20	101	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	90	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 001469-01 (Matrix Spike)

Laboratory Code. 001409-01 (MS	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	103	55-137
Chloromethane	ug/L (ppb)	50	<10	106	57-129
Vinyl chloride	ug/L (ppb)	50	< 0.2	139	61-139
Bromomethane	ug/L (ppb)	50	<1	94	20-265
Chloroethane	ug/L (ppb)	50	<1	107	55-149
Trichlorofluoromethane	ug/L (ppb)	50	<1	106	65-137
Acetone	ug/L (ppb)	250	<50	74	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	127 vo	71-123
Hexane	ug/L (ppb)	50	<1	106	44-139
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	<5 <1	121 122	61-126 68-125
trans-1,2-Dichloroethene		50	<1	120	72-122
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1	118 vo	79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	123	48-157
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	118	63-126
Chloroform	ug/L (ppb)	50	<1	120 vo	77-117
2-Butanone (MEK)	ug/L (ppb)	250	<10	84	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	96	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	117	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	105	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	111	70-132
Benzene	ug/L (ppb)	50	< 0.35	95	75-114
Trichloroethene	ug/L (ppb)	50	<1	106	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	116 vo	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	114	78-117
Dibromomethane	ug/L (ppb)	50	<1	107	73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	106	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	102	76-120
Toluene	ug/L (ppb)	50	<1	91	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	96	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	90 79	81-116
2-Hexanone 1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	250 50	<10 <1	79 96	74-127 80-113
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50	<1	91	40-155
Dibromochloromethane	ug/L (ppb)	50	<1	97	69-129
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	95	79-120
Chlorobenzene	ug/L (ppb)	50	<1	99	75-115
Ethylbenzene	ug/L (ppb)	50	<1	103	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	115	76-130
m,p-Xylene	ug/L (ppb)	100	<2	91	63-128
o-Xylene	ug/L (ppb)	50	<1	101	64-129
Styrene	ug/L (ppb)	50	<1	107	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	110	74-122
Bromoform	ug/L (ppb)	50	<1	112	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	86	65-129
Bromobenzene	ug/L (ppb)	50	<1	82	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	88	60-138
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	88 90	77-120
1,2,3-Trichloropropane 2-Chlorotoluene	ug/L (ppb)	50 50	<1 <1	90	62-125 40-159
4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<1	90 87	40-159 76-122
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	83	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	77	59-136
sec-Butylbenzene	ug/L (ppb)	50	<1	79	69-127
p-Isopropyltoluene	ug/L (ppb)	50	<1	88	64-132
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	86	77-113
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	84	75-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	88	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	103	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	73	66-123
Hexachlorobutadiene	ug/L (ppb)	50	<1	69	53-136
Naphthalene	ug/L (ppb)	50	<1	76	60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	69	59-130

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Education Code. Education	control campi		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	105	117	25-158	11
Chloromethane	ug/L (ppb)	50	94	99	45-156	5
Vinyl chloride	ug/L (ppb)	50	96	102	50-154	6
Bromomethane	ug/L (ppb)	50	98	104	55-143	6
Chloroethane	ug/L (ppb)	50	101	109	58-146	8
Trichlorofluoromethane Acetone	ug/L (ppb)	$\frac{250}{250}$	100 87	107 92	50-150	7 6
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	87 99	92 108	53-131 67-136	9
Hexane	ug/L (ppb)	50 50	87	96	57-137	10
Methylene chloride	ug/L (ppb)	50	92	102	39-148	10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	103	110	64-147	7
trans-1,2-Dichloroethene	ug/L (ppb)	50	93	102	68-128	9
1,1-Dichloroethane	ug/L (ppb)	50	96	105	79-121	9
2,2-Dichloropropane	ug/L (ppb)	50	96	102	55-143	6
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	105	80-123	9
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	96 87	105 96	80-121 57-149	9 10
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 50	86	94	73-132	9
1.1.1-Trichloroethane	ug/L (ppb)	50	100	109	81-125	9
1,1-Dichloropropene	ug/L (ppb)	50	94	103	77-129	9
Carbon tetrachloride	ug/L (ppb)	50	104	115	75-158	10
Benzene	ug/L (ppb)	50	93	103	69-134	10
Trichloroethene	ug/L (ppb)	50	96	105	79-113	9
1,2-Dichloropropane	ug/L (ppb)	50	95	104	77-123	9
Bromodichloromethane	ug/L (ppb)	50	101	112 98	81-133	10
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	89 100	98 106	82-125 65-138	10 6
cis-1,3-Dichloropropene	ug/L (ppb)	50 50	97	105	82-132	8
Toluene	ug/L (ppb)	50	90	102	72-122	12
trans-1,3-Dichloropropene	ug/L (ppb)	50	93	106	80-136	13
1,1,2-Trichloroethane	ug/L (ppb)	50	91	105	75-124	14
2-Hexanone	ug/L (ppb)	250	90	103	60-136	13
1,3-Dichloropropane	ug/L (ppb)	50	90	102	76-126	12
Tetrachloroethene	ug/L (ppb)	50	87	100	76-121	14
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50 50	100 89	112 101	84-133 82-115	11 13
Chlorobenzene	ug/L (ppb)	50 50	91	100	83-114	9
Ethylbenzene	ug/L (ppb)	50	93	103	77-124	10
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	105	117	84-127	11
m,p-Xylene	ug/L (ppb)	100	94	103	81-112	9
o-Xylene	ug/L (ppb)	50	94	103	81-121	9
Styrene	ug/L (ppb)	50	95	106	84-119	11
Isopropylbenzene	ug/L (ppb)	50	96	107	80-117	11
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	94 92	108 101	74-136 74-126	14 9
Bromobenzene	ug/L (ppb)	50 50	90	100	80-121	11
1,3,5-Trimethylbenzene	ug/L (ppb)	50	96	104	78-123	8
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	98	107	66-126	9
1,2,3-Trichloropropane	ug/L (ppb)	50	92	102	67-124	10
2-Chlorotoluene	ug/L (ppb)	50	92	101	77-127	9
4-Chlorotoluene	ug/L (ppb)	50	90	99	78-128	10
tert-Butylbenzene	ug/L (ppb)	50 50	97 96	105 104	80-123 79-122	8 8
1,2,4-Trimethylbenzene sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	96 95	104	80-116	8
p-Isopropyltoluene	ug/L (ppb)	50 50	95 95	103	81-123	8
1,3-Dichlorobenzene	ug/L (ppb)	50	90	97	83-113	7
1,4-Dichlorobenzene	ug/L (ppb)	50	88	95	83-107	8
1,2-Dichlorobenzene	ug/L (ppb)	50	93	101	84-112	8
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	99	107	57-141	8
1,2,4-Trichlorobenzene	ug/L (ppb)	50	95	103	72-130	8
Hexachlorobutadiene	ug/L (ppb)	50 50	95	100	53-141	5
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb)	50 50	103 96	108 104	64-133	5 8
1,2,5-1 Fichioropenzene	ug/L (ppb)	90	96	104	65-136	8

ENVIRONMENTAL CHEMISTS

Date of Report: 02/07/20 Date Received: 01/29/20

Project: Precision Engineering 1803.01.01, F&BI 001419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	72	82	57-114	13
Acenaphthylene	ug/L (ppb)	1	76	84	65-119	10
Acenaphthene	ug/L (ppb)	1	77	85	66-118	10
Fluorene	ug/L (ppb)	1	77	82	64 - 125	6
Phenanthrene	ug/L (ppb)	1	78	87	67-120	11
Anthracene	ug/L (ppb)	1	80	90	65 - 122	12
Fluoranthene	ug/L (ppb)	1	78	84	65 - 127	7
Pyrene	ug/L (ppb)	1	77	87	62-130	12
Benz(a)anthracene	ug/L (ppb)	1	82	90	60-118	9
Chrysene	ug/L (ppb)	1	80	89	66 - 125	11
Benzo(b)fluoranthene	ug/L (ppb)	1	73	79	55-135	8
Benzo(k)fluoranthene	ug/L (ppb)	1	72	79	62 - 125	9
Benzo(a)pyrene	ug/L (ppb)	1	70	77	58-127	10
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	67	77	36 - 142	14
Dibenz(a,h)anthracene	ug/L (ppb)	1	61	73	37-133	18
Benzo(g,h,i)perylene	ug/L (ppb)	1	61	75	34 - 135	21 vo

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 001419

Work Order Number: 2001487

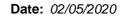
February 05, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 6 sample(s) on 1/29/2020 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 001419 **Work Order:** 2001487

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2001487-001	MW8-W-15.0	01/29/2020 9:35 AM	01/29/2020 3:43 PM
2001487-002	MW10-W-15.0	01/29/2020 11:15 AM	01/29/2020 3:43 PM
2001487-003	MW9-W-33.5	01/29/2020 11:20 AM	01/29/2020 3:43 PM
2001487-004	MW2-W-15.0	01/29/2020 12:40 PM	01/29/2020 3:43 PM
2001487-005	MW6-W-15.0	01/29/2020 1:55 PM	01/29/2020 3:43 PM
2001487-006	MW7-W-28.5	01/29/2020 1:40 PM	01/29/2020 3:43 PM

Case Narrative

WO#: **2001487**Date: **2/5/2020**

CLIENT: Friedman & Bruya

Project: 001419

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2001487**

Date Reported: 2/5/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 9:35:00 AM

Project: 001419

Lab ID: 2001487-001 **Matrix:** Water

Client Sample ID: MW8-W-15.0

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Hexavalent Chromium by SM 3500 Cr B
 Batch ID: R57062
 Analyst: WF

 Chromium, Hexavalent
 ND
 0.0450
 mg/L
 1
 1/29/2020 6:19:00 PM

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 11:15:00 AM

Project: 001419

Lab ID: 2001487-002 **Matrix:** Water

Client Sample ID: MW10-W-15.0

Analyses RL Qual **Units** DF **Date Analyzed** Result **Hexavalent Chromium by SM 3500 Cr B** Batch ID: R57062 Analyst: WF Chromium, Hexavalent ND 0.0900 2 1/29/2020 5:37:00 PM D mg/L

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 11:20:00 AM

Project: 001419

Lab ID: 2001487-003 **Matrix:** Water

Client Sample ID: MW9-W-33.5

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Hexavalent Chromium by SM 3500 Cr B
 Batch ID: R57062
 Analyst: WF

 Chromium, Hexavalent
 ND
 0.0450
 mg/L
 1
 1/29/2020 5:42:00 PM

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 12:40:00 PM

Project: 001419

Lab ID: 2001487-004 **Matrix:** Water

Client Sample ID: MW2-W-15.0

Analyses RLQual **Units** DF **Date Analyzed** Result **Hexavalent Chromium by SM 3500 Cr B** Batch ID: R57062 Analyst: WF Chromium, Hexavalent ND 0.0900 2 1/29/2020 5:47:00 PM D mg/L

Original

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 1:55:00 PM

Project: 001419

Lab ID: 2001487-005 **Matrix:** Water

Client Sample ID: MW6-W-15.0

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Hexavalent Chromium by SM 3500 Cr B
 Batch ID: R57062
 Analyst: WF

 Chromium, Hexavalent
 ND
 0.0450
 mg/L
 1
 1/29/2020 5:52:00 PM

Work Order: **2001487**Date Reported: **2/5/2020**

Client: Friedman & Bruya Collection Date: 1/29/2020 1:40:00 PM

Project: 001419

Lab ID: 2001487-006 **Matrix:** Water

Client Sample ID: MW7-W-28.5

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Hexavalent Chromium by SM 3500 Cr B
 Batch ID: R57062
 Analyst: WF

 Chromium, Hexavalent
 ND
 0.0450
 mg/L
 1
 1/29/2020 5:18:00 PM

Date: 2/5/2020

Work Order: 2001487

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 001419						Hexavalent	Chromium by Sivi 3500 Ci
Sample ID: MB-57062	SampType: MBLK			Units: mg/L		Prep Date: 1/29/2020	RunNo: 57062
Client ID: MBLKW	Batch ID: R57062					Analysis Date: 1/29/2020	SeqNo: 1137760
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450					
Sample ID: LCS-57062	SampType: LCS			Units: mg/L		Prep Date: 1/29/2020	RunNo: 57062
Client ID: LCSW	Batch ID: R57062					Analysis Date: 1/29/2020	SeqNo: 1137761
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Chromium, Hexavalent	0.238	0.0450	0.2500	0	95.1	80.9 115	
Sample ID: 2001487-006ADUP	SampType: DUP			Units: mg/L		Prep Date: 1/29/2020	RunNo: 57062
Client ID: MW7-W-28.5	Batch ID: R57062					Analysis Date: 1/29/2020	SeqNo: 1137763
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450					0 30
Sample ID: 2001487-006AMS	SampType: MS			Units: mg/L		Prep Date: 1/29/2020	RunNo: 57062
Client ID: MW7-W-28.5	Batch ID: R57062					Analysis Date: 1/29/2020	SeqNo: 1137764
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Chromium, Hexavalent	0.230	0.0450	0.2500	0	92.2	46.2 138	
Sample ID: 2001487-006AMSD	SampType: MSD			Units: mg/L		Prep Date: 1/29/2020	RunNo: 57062
Client ID: MW7-W-28.5	Batch ID: R57062					Analysis Date: 1/29/2020	SeqNo: 1137765
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Chromium, Hexavalent	0.238	0.0450	0.2500	0	95.2	46.2 138 0.230	04 3.25 20

Original Page 11 of 13

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	oer: 2001487		
Lo	ogged by:	Carissa True	Date Received:	1/29/2020	3:43:00 PM	
Cha	nin of Custo	ody				
		ustody complete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	ıIn					
_	Coolers are p	present?	Yes 🗸	No 🗌	NA \square	
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No \square		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No \square	Not Required ✓	
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗆	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🗸	No \square		
10.	Are samples	properly preserved?	Yes 🗹	No \square		
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗆	
12.	Is there head	space in the VOA vials?	Yes	No \square	NA 🗸	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🔽	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square		
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square		
17.	Were all hold	ing times able to be met?	Yes 🗹	No 🗌		
Spe	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹	
	Person	Notified: Date:				
	By Who	m: Via:	eMail Pho	one 🗌 Fax [☐ In Person	
	Regardi	ng:				
	Client In	nstructions:				
19.	Additional rer	marks:				

Item Information

Item #	Temp ⁰C
Cooler 1	6.9
Sample 1	6.2

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Report To. Michael Erdah SUBCONTRACIEST PO# TURKATON PO# PO# TURKATON PO# PO		1/29/20		1-19-7		-	Ŕ	(to/mes		Emma		Much	Received by:	129	Seattle, WA 98119-2029
Report To Michael Erdah SUSCONTRACTES Fragment		1/2/]	Bruya	iedman & I		1		Н	l Erda	Michae	0	p	Relinguished by	tse	3012 16th Avenue West
Report To Michael Erdah SUSCONTRACTER Freedman and Bruva Inc. PO# Saup Freedman and Bruva Inc. PO# PO	-	,DA3	ANY	COMP.			AME	TNI	PR)	SIGNATURE		Inc.	Friedman & Bruya, Inc.
Report To Michael Erdahl SUBCONTRACTER Frame				-				-							
Report To Michael Erdahl SUBCONTRACTER Friedman and Bruva Inc. PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# Rush. PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# Rush. PROJECT NAME/NO. PO# Rush. PROJECT NAME/NO. PO# Rush. PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# Rush. PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO#		•				7	+	+	-						
Report To Michael Erdah SUBCONTRACTER SUBCONTRACTER Subcontraction Po# Project Name Project Na							+	+	+						
Report To Michael Erdah SUBCONTRACTER Franch PO# PO# PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PROJECT NA					+	+	+	+	+						
Report To Michael Erdahl SUBCONTRACTER Franch PO# PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PO						-	+	-	-						
Report To Michael Erdahl SUBCONTRACTIER Freedman and Bruya. Inc. PO# PROJECT NAME/NO. PO# PROJECT NAME/NA					Ť	-		-					-		
Michael Erdah Friedman and Bruya, Inc. PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PROJECT NAME/						^				-	3	1340	1/29/20		NW-7-W-28.5
SUBCONTRACTER Freedman and Bruya_Inc. PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO#	7					_		_		-	Z	1355	+		MW G- N-15.0
SUBCONTRACTER Friedman and Bruya, Inc. PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# P						×				-	٤	1240			MW 2-W-15.0
Michael Erdahl SUBCONTRACTER Friedman and Bruya, Inc. PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO#						X		-		-	K	1120			MW9-W-33.5
SUBCONTRACTER Friedman and Bruya, Inc. PO# PROJECT NAME/NO. P						X				-	3	KIS	-		MW 10-W-15.0
port To Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave W 206) 285-8282 Fax # (206) 283-5044 Lab Date Inc. Time Matrix jars in SUBCONTRACTER PO# PROJECT NAME/NO. PO# PROJECT NAME/NO. PO# PO# PROJECT NAME/NO. PO# PROJECT NAME/						X				-	2	0935	1/29/20		MW 8- W. 15.0
port To Michael Erdahl Friedman and Bruya, Inc. 9	Notes					Cr6+		EPH	Dioxins/Fu	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sámple ID
port To Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave W te, ZIP Seattle, WA 98119 (206) 285-8282 Fax # (206) 283-5044 SUBCONTRACTER PROJECT NAME/NO. PO # REMARKS COI 4 1 9 REMARKS Please Email Results NALLYSES REQUESTED	÷			13	1,				rans						
port To Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave W te, ZIP Seattle, WA 98119 (206) 285-8282 Fax # (206) 283-5044 SUBCONTRACTER FROJECT NAME/NO. PROJECT NAME/NO. PO# COI 4 1 9 Rush of Disp. College Email Results O Return the Name of Disp. College Email Results O Will	7			QUESTEL	ES RE	NALYS	A								
port To Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave W te, ZIP Seattle, WA 98119 SUBCONTRACTER PROJECT NAME/NO. PO# OO! 4! 9 REMARKS	structions	n samples all with in	O Return				sults	ıail Re	ase En	Plea		06) 283-5044		-8282	Phone # (206) 285
Friedman and Bruya, Inc. 9 Friedman and Bruya, Inc. 3012 16th Ave W SUBCONTRACTER Friedman Friedman PROJECT NAME/NO. PO# OCITIO SUBCONTRACTER Friedman PO# Rush of	DISPOSAL days	AMPLE I se after 30	Dispos							MARKS	RE		WA 98119	eattle,	te, ZIP_
ort To Michael Erdahl Friedman and Bruya, Inc. SUBCONTRACTER France PROJECT NAME/NO. PO# GRUS	horized by	arges auth	Rush ch	956	AS				1110	00			th Ave W	012 16	Address 3
Michael Erdahl SUBCONTRACTER Frame	eks)	ard (2 We	D Stand	#	PO				IAME/	OJECT N	PR	Inc.	an and Bruya	riedm	
17000 44	MIT GNU	URNARO	T			4	CW0		CACTE	BCONT	SC		l Erdahl	Michae	Send Report To

Fax (206) 283-5044 Ph. (206) 285-8282

Received by:

Relinquished by:

2001487 Page#

Page 13 of 13

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Mw6-W-15-0 Friedman & Bruya, Inc. MW7-W-28.5 Phone 360-594-6218 Email hypod @ nastroter comproject specific RLs? . Yes / MW2-W-15,0. MW9-W-33.5 MW10-W-15.0 MW8-W-15.0 City, State, ZIP Bellingham, WA 98225 Address 1329 N State St, #301 Company Maul Foster & Along. aportion lead her Good Sample ID Received by July Relinquished by: Received by: Relinquished by: 2 05 800 S W $\overline{\mathcal{S}}$ B/AG Lab ID SIGNATURE 1/29/20 0935 Sampled Date SAMPLE CHAIN OF CUSTODY ME 1/29/20 AI3/BOD/ 075 Sampled 1240 三5 1120 1355 Time REMARKS
Dissolved Somples were
Field filtered PROJECT NAME SAMPLERS (signature) Precision Engineering Amurden Bixby Sample A MIN ٤ Z PRINT NAME S Jars # of 4 Diesel+Materoi NWTPH-Dx ď NWTPH-Gx raulfoster.com 1803.0101 NWTPH-HCID INVOICE TO PCBs EPA 8082
PCBs EPA 8082
PCBs EPA 8082
PCCAPON by
3500 CRB
Dis. As, Cr, Cu, Se
by EPA 60208 PO# R <u>(3</u>) **®** 8 <u>8</u> T PCBs EPA 8082 Hexchrom by 3500 CRB Dis. As,Cr, Cu, Se by EPA 6020B COMPANY Samples received at Default: Dispose after 30 days □ Archive samples Rush charges authorized by: O RUSH I Standard turnaround TURNAROUND TIME SAMPLE DISPOSAL Page# 1129120 1430 1/21/20/143₀ DATE 34/8 K 多ので Notes HMIL

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 2, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on December 18, 2019 from the Precision Engineering 1803.01.01, F&BI 912322 project. There are 30 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0102R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 18, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 912322 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
912322 -01	MW10-W-15.0
912322 -02	MW8-W-15.0
912322 -03	Trip Blank
912322 -04	MW1-W-32.0
912322 -05	MW5-W-15.0
912322 -06	MWDUP-W-15.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

A 6020B internal standard failed the acceptance criteria for sample MW8-W-15.0. In addition, chromium concentration for samples MW5-W-15.0 and MWDUP-W-15.0 exceeded the calibration range. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

Several compounds in the 8260C laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analytes were not detected in the samples, therefore the data were acceptable.

The 8260C samples MW10-W-15.0, MW8-W-15.0, MW5-W-15.0, and MWDUP-W-15.0 were were diluted due to matrix effect (foamy). The reporting limits were raised accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

Date Extracted: 12/19/19 Date Analyzed: 12/19/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
MW10-W-15.0 912322-01	440 x	360 x	97
MW8-W-15.0 912322-02	430 x	260 x	86
MW1-W-32.0 912322-04	<50	<250	93
MW5-W-15.0 912322-05	58 x	<250	103
MWDUP-W-15.0 912322-06	67 x	<250	104
Method Blank 09-3072 MB	<50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: 912322-01 Date Extracted: 12/19/19 Date Analyzed: 12/24/19 Data File: 912322-01.126 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

 Arsenic
 13.2

 Chromium
 7.67

 Copper
 <5</td>

 Selenium
 10.4

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912322-02

 Date Analyzed:
 12/24/19
 Data File:
 912322-02.127

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic 22.2
Chromium 4.97 J
Copper <5 J
Selenium 3.44

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912322-02 x10

 Date Analyzed:
 12/26/19
 Data File:
 912322-02 x10.072

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <10 Copper <50

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW1-W-32.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 912322-04 Date Analyzed: 12/24/19 Data File: 912322-04.119 Matrix: Water Instrument: ICPMS2 SP

Units: ug/L (ppb) Operator:

Concentration Analyte: ug/L (ppb)

29.7 Arsenic Chromium <1 Copper <5 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 912322-05 Date Analyzed: 12/24/19 Data File: 912322-05.120 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 Arsenic
 6.19

 Chromium
 35,000 ve

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912322-05 x500

 Date Analyzed:
 12/23/19
 Data File:
 912322-05 x500.169

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium 38,900

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 912322-06 Date Analyzed: 12/24/19 Data File: 912322-06.121 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & 6.47 \\ \text{Chromium} & 36,800 \text{ ve} \\ \text{Copper} & <5 \\ \text{Selenium} & <1 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Date Extracted: 12/19/19 Lab ID: 912322-06 x500
Date Analyzed: 12/23/19 Data File: 912322-06 x500.170

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium 35,500

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 I9-816 mb Date Analyzed: 12/19/19 Data File: I9-816 mb.065 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

Arsenic <1 Chromium <1 Copper <5 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW10-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 12/18/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912322-01 1/2

 Date Analyzed:
 12/19/19
 Data File:
 121909.D

Date Analyzed: 12/19/19 Data File: 121909.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	102	31	160
Benzo(a)anthracene-d12	110	25	165

Concentration ug/L (ppb)

Naphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

Compounds:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW8-W-15.0	Client:	Maul Foster Alongi

 Date Received:
 12/18/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912322-02 1/2

 Date Analyzed:
 12/19/19
 Data File:
 121910.D

Date Analyzed: 12/19/19 Data File: 121910.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	99	31	160
Benzo(a)anthracene-d12	104	25	165

•	0 41 /
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW1-W-32.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01 Lab ID: 912322-04 1/2 Date Extracted: 12/19/19 Date Analyzed: 12/19/19 Data File: 121911.DWater Matrix: Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	0.040
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW5-W-15.0	Client:	Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 12/19/19 912322-05 1/2 Date Analyzed: 12/19/19 Data File: 121912.D Water Matrix: Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MWDUP-W-15.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 12/19/19 912322-06 1/2 Date Analyzed: 12/19/19 Data File: 121913.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: YA

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01
Date Extracted: 12/19/19 Lab ID: 09-3060 mb2

Date Extracted: 12/19/19 Lab ID: 09-3060 mb2
Date Analyzed: 12/19/19 Data File: 121907.D
Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: YA

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW10-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	108	50	150
4-Bromofluorobenzene	106	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW8-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/24/19 912322-02 1/10 Date Analyzed: 12/25/19 Data File: 122460.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	104	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Trip Blank Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

12/24/19 Lab ID: 912322-03 Date Extracted: Date Analyzed: 12/24/19 Data File: 122436.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW1-W-32.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

912322-04 Lab ID: Date Extracted: 12/24/19 Date Analyzed: 12/24/19 Data File: 122437.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: 912322-05 1/5 Date Extracted: 12/24/19 Date Analyzed: 12/27/19 Data File: 122661.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	95	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<5	1,3-Dichloropropane	<5
Chloromethane	< 50	Tetrachloroethene	<5
Vinyl chloride	<1	Dibromochloromethane	<5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<5
Chloroethane	<5	Chlorobenzene	<5
Trichlorofluoromethane	<5	Ethylbenzene	<5
Acetone	<250	1,1,1,2-Tetrachloroethane	<5
1,1-Dichloroethene	<5	m,p-Xylene	<10
Hexane	<5	o-Xylene	<5
Methylene chloride	<25	Styrene	<5
Methyl t-butyl ether (MTBE)	<5	Isopropylbenzene	<5
trans-1,2-Dichloroethene	<5	Bromoform	<5
1,1-Dichloroethane	<5	n-Propylbenzene	<5
2,2-Dichloropropane	<5	Bromobenzene	<5
cis-1,2-Dichloroethene	<5	1,3,5-Trimethylbenzene	<5
Chloroform	<5	1,1,2,2-Tetrachloroethane	<5
2-Butanone (MEK)	< 50	1,2,3-Trichloropropane	<5
1,2-Dichloroethane (EDC)	<5	2-Chlorotoluene	<5
1,1,1-Trichloroethane	<5	4-Chlorotoluene	<5
1,1-Dichloropropene	<5	tert-Butylbenzene	<5
Carbon tetrachloride	<5	1,2,4-Trimethylbenzene	<5
Benzene	<1.7	sec-Butylbenzene	<5
Trichloroethene	<5	p-Isopropyltoluene	<5
1,2-Dichloropropane	<5	1,3-Dichlorobenzene	<5
Bromodichloromethane	<5	1,4-Dichlorobenzene	<5
Dibromomethane	<5	1,2-Dichlorobenzene	<5
4-Methyl-2-pentanone	< 50	1,2-Dibromo-3-chloropropane	< 50
cis-1,3-Dichloropropene	<5	1,2,4-Trichlorobenzene	<5
Toluene	<5	Hexachlorobutadiene	<5
trans-1,3-Dichloropropene	<5	Naphthalene	<5
1,1,2-Trichloroethane	<5	1,2,3-Trichlorobenzene	<5
2-Hexanone	< 50		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MWDUP-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: 912322-06 1/5 Date Extracted: 12/24/19 Date Analyzed: 12/27/19 Data File: 122662.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<5	1,3-Dichloropropane	<5
Chloromethane	< 50	Tetrachloroethene	<5
Vinyl chloride	<1	Dibromochloromethane	<5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<5
Chloroethane	<5	Chlorobenzene	<5
Trichlorofluoromethane	<5	Ethylbenzene	<5
Acetone	<250	1,1,1,2-Tetrachloroethane	<5
1,1-Dichloroethene	<5	m,p-Xylene	<10
Hexane	<5	o-Xylene	<5
Methylene chloride	<25	Styrene	<5
Methyl t-butyl ether (MTBE)	<5	Isopropylbenzene	<5
trans-1,2-Dichloroethene	<5	Bromoform	<5
1,1-Dichloroethane	<5	n-Propylbenzene	<5
2,2-Dichloropropane	<5	Bromobenzene	<5
cis-1,2-Dichloroethene	<5	1,3,5-Trimethylbenzene	<5
Chloroform	<5	1,1,2,2-Tetrachloroethane	<5
2-Butanone (MEK)	< 50	1,2,3-Trichloropropane	<5
1,2-Dichloroethane (EDC)	<5	2-Chlorotoluene	<5
1,1,1-Trichloroethane	<5	4-Chlorotoluene	<5
1,1-Dichloropropene	<5	tert-Butylbenzene	<5
Carbon tetrachloride	<5	1,2,4-Trimethylbenzene	<5
Benzene	<1.7	sec-Butylbenzene	<5
Trichloroethene	<5	p-Isopropyltoluene	<5
1,2-Dichloropropane	<5	1,3-Dichlorobenzene	<5
Bromodichloromethane	<5	1,4-Dichlorobenzene	<5
Dibromomethane	<5	1,2-Dichlorobenzene	<5
4-Methyl-2-pentanone	< 50	1,2-Dibromo-3-chloropropane	< 50
cis-1,3-Dichloropropene	<5	1,2,4-Trichlorobenzene	<5
Toluene	<5	Hexachlorobutadiene	<5
trans-1,3-Dichloropropene	<5	Naphthalene	<5
1,1,2-Trichloroethane	<5	1,2,3-Trichlorobenzene	<5
2-Hexanone	< 50		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

12/24/19 Lab ID: 09-3080 mb2 Date Extracted: Date Analyzed: 12/24/19 Data File: 122411.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	110	50	150
4-Bromofluorobenzene	105	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	116	112	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 912238-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.25	91	89	75-125	2
Chromium	ug/L (ppb)	20	<1	94	92	75 - 125	2
Copper	ug/L (ppb)	20	<5	90	88	75 - 125	2
Selenium	ug/L (ppb)	5	<1	86	85	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	98	80-120
Chromium	ug/L (ppb)	20	100	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	78	80	57-114	3
Acenaphthylene	ug/L (ppb)	1	85	86	65-119	1
Acenaphthene	ug/L (ppb)	1	84	86	66-118	2
Fluorene	ug/L (ppb)	1	87	86	64 - 125	1
Phenanthrene	ug/L (ppb)	1	85	87	67 - 120	2
Anthracene	ug/L (ppb)	1	89	89	65 - 122	0
Fluoranthene	ug/L (ppb)	1	95	89	65 - 127	7
Pyrene	ug/L (ppb)	1	89	88	62-130	1
Benz(a)anthracene	ug/L (ppb)	1	92	94	60-118	2
Chrysene	ug/L (ppb)	1	88	90	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	84	88	55-135	5
Benzo(k)fluoranthene	ug/L (ppb)	1	77	80	62 - 125	4
Benzo(a)pyrene	ug/L (ppb)	1	81	82	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	74	71	36 - 142	4
Dibenz(a,h)anthracene	ug/L (ppb)	1	65	65	37-133	0
Benzo(g,h,i)perylene	ug/L (ppb)	1	67	67	34 - 135	0

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 912315-02 (Matrix Spike)

Laboratory Code. 912319-02 (M.	atrix Spike)		Percent			
	Reporting	Spike	Sample		Acceptance	
Analyte	Units	Level	Result	$_{ m MS}$	Criteria	
Dichlorodifluoromethane	ug/L (ppb)	50	<1	89	10-172	
Chloromethane	ug/L (ppb)	50	<10	98	25-166	
Vinyl chloride	ug/L (ppb)	50	< 0.2	98	36-166	
Bromomethane	ug/L (ppb)	50	<1	113	47-169	
Chloroethane	ug/L (ppb)	50	<1	102	46-160	
Trichlorofluoromethane	ug/L (ppb)	50	<1	101	44-165	
Acetone	ug/L (ppb)	250	<50	72	10-182	
1,1-Dichloroethene	ug/L (ppb)	50	<1	99	60-136	
Hexane	ug/L (ppb)	50	<1	90	52-150	
Methylene chloride	ug/L (ppb)	50	<5	103 107	67-132	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1		74-127	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	97 99	72-129 70-128	
2,2-Dichloropropane	ug/L (ppb)	50	<1	95	36-154	
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	71-127	
Chloroform	ug/L (ppb)	50	<1	99	65-132	
2-Butanone (MEK)	ug/L (ppb)	250	<10	88	10-129	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	48-149	
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	100	60-146	
1,1-Dichloropropene	ug/L (ppb)	50	<1	99	69-133	
Carbon tetrachloride	ug/L (ppb)	50	<1	101	56-152	
Benzene	ug/L (ppb)	50	< 0.35	98	76-125	
Trichloroethene	ug/L (ppb)	50	<1	100	66-135	
1,2-Dichloropropane	ug/L (ppb)	50	<1	99	78-125	
Bromodichloromethane	ug/L (ppb)	50	<1	101	61-150	
Dibromomethane	ug/L (ppb)	50	<1	93	66-141	
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	101	10-185	
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	98	72-132	
Toluene	ug/L (ppb)	50	<1	96	76-122	
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1 <1	97 96	76-130	
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb)	$\frac{50}{250}$	<10	93	68-131 10-185	
1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	95 95	71-128	
Tetrachloroethene	ug/L (ppb)	50	<1	100	10-226	
Dibromochloromethane	ug/L (ppb)	50	<1	106	70-139	
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	96	69-134	
Chlorobenzene	ug/L (ppb)	50	<1	94	77-122	
Ethylbenzene	ug/L (ppb)	50	<1	98	69-135	
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	108	73-137	
m,p-Xylene	ug/L (ppb)	100	<2	97	69-135	
o-Xylene	ug/L (ppb)	50	<1	99	60-140	
Styrene	ug/L (ppb)	50	<1	98	71-133	
Isopropylbenzene	ug/L (ppb)	50	<1	101	65-142	
Bromoform	ug/L (ppb)	50	<1	107	65-142	
n-Propylbenzene	ug/L (ppb)	50	<1	96	58-144	
Bromobenzene	ug/L (ppb)	50	<1	93	75-124	
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1 <1	100 101	66-137 51-154	
1,1,2,3-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	95	53-150	
2-Chlorotoluene	ug/L (ppb)	50	<1	96	66-127	
4-Chlorotoluene	ug/L (ppb)	50	<1	95	65-130	
tert-Butylbenzene	ug/L (ppb)	50	<1	102	65-137	
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	97	59-146	
sec-Butylbenzene	ug/L (ppb)	50	<1	99	64-140	
p-Isopropyltoluene	ug/L (ppb)	50	<1	98	65-141	
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	96	72-123	
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	94	69-126	
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-128	
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	105	32-164	
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	96	66-136	
Hexachlorobutadiene	ug/L (ppb)	50	<1	88	60-143	
Naphthalene	ug/L (ppb)	50	<1	104	44-164	
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	100	69-148	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/20 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912322

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Edward Code. Edward C	oneror samp.		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	126	127	50-157	1
Chloromethane	ug/L (ppb)	50	127	126	62-130	1
Vinyl chloride	ug/L (ppb)	50	115	115	70-128	0
Bromomethane	ug/L (ppb)	50	105 104	106 100	60-143	1 4
Chloroethane Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 250	93	91	66-149 65-138	$\frac{4}{2}$
Acetone	ug/L (ppb)	250	134	126	44-145	6
1,1-Dichloroethene	ug/L (ppb)	50	95	88	72-121	8
Hexane	ug/L (ppb)	50	116	113	51-153	3
Methylene chloride	ug/L (ppb)	50	128	123	63-132	4
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	121	119	70-122	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	118	115	76-118	3
1,1-Dichloroethane	ug/L (ppb)	50	125 vo	125 vo	77-119	0
2,2-Dichloropropane cis-1.2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	117 117	114 113	62-141 76-119	3
Chloroform	ug/L (ppb) ug/L (ppb)	50 50	117 119 vo	119 vo	78-119 78-117	0
2-Butanone (MEK)	ug/L (ppb)	250	151 vo	148	48-150	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	124 vo	123 vo	75-116	1
1,1,1-Trichloroethane	ug/L (ppb)	50	118 vo	117 vo	80-116	1
1,1-Dichloropropene	ug/L (ppb)	50	117	115	78-119	2
Carbon tetrachloride	ug/L (ppb)	50	116	114	72-128	2
Benzene	ug/L (ppb)	50	114	112	75-116	2
Trichloroethene	ug/L (ppb)	50	108	107	72-119	1
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	122 vo 120	121 121 vo	79-121 76-120	1 1
Dibromomethane	ug/L (ppb)	50	108	108	79-121	0
4-Methyl-2-pentanone	ug/L (ppb)	250	137	138	54-153	1
cis-1,3-Dichloropropene	ug/L (ppb)	50	112	115	76-128	3
Toluene	ug/L (ppb)	50	104	103	79-115	1
trans-1,3-Dichloropropene	ug/L (ppb)	50	104	107	76-128	3
1,1,2-Trichloroethane	ug/L (ppb)	50	110	111	78-120	1
2-Hexanone	ug/L (ppb)	250 50	136 106	136 107	49-147 81-111	0 1
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	106 97	107 95	81-111 78-109	1 2
Dibromochloromethane	ug/L (ppb)	50	99	100	63-140	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	106	108	82-118	2
Chlorobenzene	ug/L (ppb)	50	101	102	80-113	1
Ethylbenzene	ug/L (ppb)	50	110	109	83-111	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	111	108	76-125	3
m,p-Xylene	ug/L (ppb)	100	107	106	81-112	1 2
o-Xylene Styrene	ug/L (ppb)	50 50	111 111	109 110	81-117 83-121	2 1
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50	113	110	78-118	3
Bromoform	ug/L (ppb)	50	107	108	40-161	1
n-Propylbenzene	ug/L (ppb)	50	105	107	81-115	2
Bromobenzene	ug/L (ppb)	50	94	97	80-113	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50	105	106	83-117	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	120 vo	123 vo	79-118	2
1,2,3-Trichloropropane	ug/L (ppb)	50	116	120 vo	74-116	3 2
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	104 102	106 105	79-112 80-116	3
tert-Butylbenzene	ug/L (ppb)	50	103	104	81-119	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	104	104	81-121	0
sec-Butylbenzene	ug/L (ppb)	50	106	107	83-123	1
p-Isopropyltoluene	ug/L (ppb)	50	102	101	81-117	1
1,3-Dichlorobenzene	ug/L (ppb)	50	99	101	80-115	2
1,4-Dichlorobenzene	ug/L (ppb)	50	99	99	77-112	0
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb)	50 50	103 128	100 116	79-115 62-133	3 10
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	128 104	104	62-133 75-119	0
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	104	104	70-116	0
Naphthalene	ug/L (ppb)	50	108	112	72-131	4
1,2,3-Trichlorobenzene	ug/L (ppb)	50	101	104	74-122	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W.

Seattle, WA 98119

RE: 912322

Work Order Number: 1912318

December 26, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 12/18/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager CC: Eric Young

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 912322 **Work Order:** 1912318

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1912318-001	MW10-W-15.0	12/18/2019 10:15 AM	12/18/2019 4:40 PM
1912318-002	MW8-W-15.0	12/18/2019 10:20 AM	12/18/2019 4:40 PM
1912318-003	MW1-W-32.0	12/18/2019 1:35 PM	12/18/2019 4:40 PM
1912318-004	MW5-W-15.0	12/18/2019 12:25 PM	12/18/2019 4:40 PM
1912318-005	MWDup-W-15.0	12/18/2019 12:25 PM	12/18/2019 4:40 PM

Case Narrative

WO#: **1912318**Date: **12/26/2019**

CLIENT: Friedman & Bruya

Project: 912322

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1912318

Date Reported: 12/26/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1912318

Analyst: WF

Date Reported: 12/26/2019

Batch ID: R56144

CLIENT: Friedman & Bruya

Project: 912322

Lab ID: 1912318-001 Collection Date: 12/18/2019 10:15:00 AM

Client Sample ID: MW10-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.135 D mg/L 3 12/18/2019 6:47:00 PM

NOTES:

Diluted due to matrix.

Lab ID: 1912318-002 **Collection Date:** 12/18/2019 10:20:00 AM

Client Sample ID: MW8-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Batch ID: R56144

Analyst: WF

Chromium, Hexavalent ND 0.135 D mg/L 3 12/18/2019 6:51:00 PM

NOTES:

Diluted due to matrix.

Lab ID: 1912318-003 Collection Date: 12/18/2019 1:35:00 PM

Client Sample ID: MW1-W-32.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56144 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 12/18/2019 6:27:00 PM

Hexavalent Chromium by SM 3500 Cr B

Analytical Report

Work Order: 1912318

Date Reported: 12/26/2019

Analyst: WF

Batch ID: R56144

CLIENT: Friedman & Bruya

Project: 912322

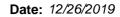
Lab ID: 1912318-004 Collection Date: 12/18/2019 12:25:00 PM

Client Sample ID: MW5-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56144 Analyst: WF

Chromium, Hexavalent 31.6 4.50 D mg/L 100 12/18/2019 7:06:00 PM


Lab ID: 1912318-005 **Collection Date:** 12/18/2019 12:25:00 PM

Client Sample ID: MWDup-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Chromium, Hexavalent 32.2 4.50 D mg/L 100 12/18/2019 7:11:00 PM

Original

Work Order: 1912318

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project:	912322	•						Hexa	valent Ch	romium b	y SM 350	0 Cr B
Sample ID:	: MB-56144	SampType: MBLK			Units: mg/L		Prep Date:	12/18/20	19	RunNo: 56	144	
Client ID:	MBLKW	Batch ID: R56144					Analysis Date:	12/18/20	19	SeqNo: 11	18489	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium,	, Hexavalent	ND	0.0450									
Sample ID:	: LCS-56144	SampType: LCS			Units: mg/L		Prep Date:	12/18/20	19	RunNo: 56	144	
Client ID:	LCSW	Batch ID: R56144					Analysis Date:	12/18/20	19	SeqNo: 11	18490	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium,	, Hexavalent	0.236	0.0450	0.2500	0	94.4	80.9	115				
Sample ID:	: 1912318-003ADUP	SampType: DUP			Units: mg/L		Prep Date:	12/18/20 ⁻	19	RunNo: 56 °	144	
Client ID:	MW1-W-32.0	Batch ID: R56144					Analysis Date:	12/18/20	19	SeqNo: 11	18492	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium,	, Hexavalent	ND	0.0450						0		30	
Sample ID:	: 1912318-003AMS	SampType: MS			Units: mg/L		Prep Date:	12/18/20 ⁻	19	RunNo: 56 °	144	
Client ID:	MW1-W-32.0	Batch ID: R56144					Analysis Date:	12/18/20	19	SeqNo: 11	18493	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium,	, Hexavalent	0.243	0.0450	0.2500	0	97.3	46.2	138				
Sample ID:	: 1912318-003AMSD	SampType: MSD			Units: mg/L		Prep Date:	12/18/20 ⁻	19	RunNo: 56 °	144	
Client ID:	MW1-W-32.0	Batch ID: R56144					Analysis Date:	12/18/20	19	SeqNo: 11	18494	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium,	, Hexavalent	0.246	0.0450	0.2500	0	98.3	46.2	138	0.2432	1.02	20	

Page 7 of 9 Original

Sample Log-In Check List

CI	ient Name:	FB	Work O	rder Num	nber: 1912318	
Lo	gged by:	Carissa True	Date Re	eceived:	12/18/2019	4:40:00 PM
Cha	in of Custo	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	Clier	<u>nt</u>		
<u>Log</u>	In					
_	Coolers are p	resent?	Yes	✓	No 🗌	NA \square
4.	Shipping cont	ainer/cooler in good condition?	Yes	✓	No 🗀	
5.		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes		No 📙	Not Required ✓
6.	Was an atten	npt made to cool the samples?	Yes	✓	No 🗌	NA \square
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	•	No 🗆	NA \square
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗌
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗸
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌	
<u>Spe</u>	cial Handli	ng (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes		No 🗌	NA 🗸
	Person I	Notified: Date	e: 			
	By Who	m: Via:	eMa	ıil 🗌 Pl	hone Fax	In Person
	Regardi	ng:				
	Client In	structions:				
19.	Additional rer	narks:				
_	nformation					

Item #	Temp ⁰C
Cooler 1	6.8
Sample 1	6.1

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			SUBC	SUBCUNTRACT SAMPLE CHAIN OF CUSTODY	T SAIN	IPLE	CHA	INC	T C	COLCO	X		2	912510
Send Report To	Michae	Michael Erdahl		JS	SUBCONTRACTER	RACTE	1R					7	Page #	Page #of
	riedma	Friedman and Bruva. Inc	a Inc	PR	PROJECT NAME/NO.	NAME.	NO.		\dashv	PO#	#	0	Standard	Standard (2 Weeks)
	012 16	3012 16th Ave W			۵.	912322	12			A-612		स्र	ush charg	Rush charges authorized by:
e, ZIP_	eattle,	Seattle, WA 98119		RE	REMARKS	02			-			0 1	SAN Dispose a	SAMPLE DISPOSAL □ Dispose after 30 days
Phone # (206) 285-8282	-8282	Fax # (2	Fax # (206) 283-5044		PI	Please Email Results	ail Re	sults					☐ Return samples ☐ Will call with in	☐ Return samples ☐ Will call with instructions
								A	ANAL	LYSES REQUESTED	QUEST	ED		
Sample ID	Lab	Date	Time	Matrix	# of	s/Furans	PH .	PH	+	\$5			ı	Notes
	1		- Constitution		Joseph	Dioxi	1		Cr					
NW10-W-15.0		12/18/19	5101	Water	-				X					
WM8-M-18.0			11020		-		_	k	×					
MWI - W-32.0			1335		-				×					
MWS - W15.0			1225		-				×					
MWDUP-W-15.0			1225		-			30	×					
7.5														7.7
•										,,,,,,		.8		
	0					-						_		

112318

Page 9 of 9

Fax (206) 283-5044

Received by:

Ph. (206) 285-8282

Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc.

Received by

Relinquished by:

Relinquished by:

M-V

Michael Erdahl Liz Webber - Brown

Friedman & Bruya COMPANY

12/18/19 DATE

TIME

PRINT NAME

SOR VENCET ROLLS

SIGNATURE

SAMPLE CHAIN OF CUSTODY ME 1 2-18-19

	UATE TIME	ANY	COMPANY				ME	NA	PRINT NAME				SIGNATURE	SI	
	-						-	-							
•		1000	No.					_		_					
	red at 4°C	complex received at	က ဒီ		·····			•		,					OF RO COLONS
															AR State
					1		<u> </u>	_							
			\downarrow	×	⋾	+	-	+	1		2	1225	\	06	MW DUP-W-15.0
Ú	The Lake I the		< ×	<>				\	1		1	1225		87	MWS-W-15.0
-	W at lated so		***************************************	4	朩	-	+	42		_	<u> </u>	1335		D4 46	MW1-W-32.0
2.0	labelled MWI-W-32.0	<u>X</u> ,	<u> </u>	X.	く			<u> </u>	7	\dashv					
					\times				2		٤	ح		02AQ	Trid Alank
			X	X	\times	1			7		3	1020		02	
			$\stackrel{\downarrow}{\times}$	\nearrow	\ \				7		Z	\$ 1018	12/18/19	0(A-6	MW10-W-15-0
	Notes	EPA GOZOB*	PCBs EPA 8082 Hexchrom by SM 3500 CR B Diss. netals by EPA 6020 B*	PAHs EPA	VOCs EPA 8260	NWTPH-HCID	BTEX EPA 8021	NWTPH-Dx NWTPH-Gx	Diesel/Mobro		Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
		TED	ANALYSES REQUESTED	LYSES	N A			1	I				7,007,		
	Default: Dispose after 30 days	Default: D	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	maultoster. com	Sos t	3		N.	Yes	RLs?	Se specific	Project specific RLs? - Yes / No	aul foster	good @m	Phone 360-927-1369 Email hagood @ woul foster
	nive samples	☐ Archive samples		OCCONTINUOUS	3	, 00 H		3	As,	clude	AL IN	*Metals include As, Cr.	225	WA 98	City, State, ZIP Bellingham, WA 9822S
·ř.	Rush charges authorized by:	Rush charge	'	803.01.01	S	08		N. S.	ines	3	21,012	Precision Engineering	e 301	St St	Company Mass Coster & Mary Address 1329 N. State St. Ste 30
	N Standard turnaround po 4	Standard		PO#	ر اوا					Æ	TNAN	PROJECT NAME	HILDOORIA MININA	ο, Δ Ι	Report 10 11 Control of the Re
	TURNAROUND TIME 414	rugn.		1	12/	10	1	July 1	9	gnatur	ERS (si	SAMPLERS (signature)		Ž	Heather Good
	of JUWZ	Page #	()			,	5	10	ן כר	IN	CHA	SAMPLE CHAIN OF CUSTOD'S	7.0		912322

Ph. (206) 285-8282

Seattle, WA 98119-2029

Relinquished by:

Received by:

Received by:

3012 16th Avenue West

Friedman & Bruya, Inc.

Relinquished by:

Amarda Bixby

MFA

12/18/19

53

SIGNATURE

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 30, 2019

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on December 18, 2019 from the Precision Engineering 1803.01.01, F&BI 912298 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA1230R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 18, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 912298 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID Maul Foster Alongi

912298 -01 MW3-W-15.0 912298 -02 MW4-W-20.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The 8260C method blank showed the presence of methylene chloride due to laboratory contamination. The data were qualified accordingly.

Several 8260C compounds exceeded the acceptance criteria in the matrix spike sample. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

Date Extracted: 12/18/19 Date Analyzed: 12/18/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW3-W-15.0 912298-01	65 x	<250	138
MW4-W-20.0 912298-02	<50	<250	127
Method Blank 09-3058 MB	<50	<250	123

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 12/23/19
 Lab ID:
 912298-01

 Date Analyzed:
 12/23/19
 Data File:
 912298-01.159

 Matrix:
 Water
 Instrument:
 ICPMS2

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic 8.81
Chromium <1
Copper <5
Selenium <2

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

12/23/19 Lab ID: 912298-02 Date Extracted: Date Analyzed: 12/23/19 Data File: 912298-02.160 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 13.5

 Chromium
 <1</td>

 Copper
 <5</td>

 Selenium
 <2</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <2

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW3-W-15.0	Client:	Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 12/18/19 912298-01 1/2 Date Analyzed: 12/18/19 Data File: 121814.D Water Matrix: Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW4-W-20.0	Client:	Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 12/18/19 912298-02 1/2 Date Analyzed: 12/18/19 Data File: 121815.DWater Matrix: Instrument: GCMS6

Units: water instrument: GC.
Units: ug/L (ppb) Operator: YA

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01
Date Extracted: 12/18/19 Lab ID: 09-3060 mb

Concentration

Concentration
ug/L (ppb)
< 0.2
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 912298-01 12/19/19 Date Analyzed: 12/19/19 Data File: 121915.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	107	50	150
4-Bromofluorobenzene	111	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 12/18/19 Project: Precision Engineering 1803.01.01

Lab ID: 912298-02 Date Extracted: 12/19/19 Date Analyzed: 12/19/19 Data File: 121916.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	110	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 09-3067 mbDate Extracted: 12/19/19 Date Analyzed: 12/19/19 Data File: 121937.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	110	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	$6.0 \ lc$	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	108	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 912395-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.72	84	79	75-125	6
Chromium	ug/L (ppb)	20	2.85	91	87	75 - 125	4
Copper	ug/L (ppb)	20	20.7	87	81	75 - 125	7
Selenium	ug/L (ppb)	5	<2	79	74	75 - 125	7

			Percent	
	Reporting	$_{ m Spike}$	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	99	80-120
Chromium	ug/L (ppb)	20	98	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	78	80	57-114	3
Acenaphthylene	ug/L (ppb)	1	85	86	65-119	1
Acenaphthene	ug/L (ppb)	1	84	86	66-118	2
Fluorene	ug/L (ppb)	1	87	86	64 - 125	1
Phenanthrene	ug/L (ppb)	1	85	87	67 - 120	2
Anthracene	ug/L (ppb)	1	89	89	65 - 122	0
Fluoranthene	ug/L (ppb)	1	95	89	65 - 127	7
Pyrene	ug/L (ppb)	1	89	88	62-130	1
Benz(a)anthracene	ug/L (ppb)	1	92	94	60-118	2
Chrysene	ug/L (ppb)	1	88	90	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	84	88	55-135	5
Benzo(k)fluoranthene	ug/L (ppb)	1	77	80	62 - 125	4
Benzo(a)pyrene	ug/L (ppb)	1	81	82	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	74	71	36 - 142	4
Dibenz(a,h)anthracene	ug/L (ppb)	1	65	65	37-133	0
Benzo(g,h,i)perylene	ug/L (ppb)	1	67	67	34 - 135	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 912298-01 (Matrix Spike)

Laboratory Code: 912298-01 (Ma	itrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	110	55-137
Chloromethane	ug/L (ppb)	50	<10	112	57-129
Vinyl chloride	ug/L (ppb)	50	< 0.2	107	61-139
Bromomethane	ug/L (ppb)	50	<1	104	20-265
Chloroethane	ug/L (ppb)	50	<1	97	55-149
Trichlorofluoromethane	ug/L (ppb)	50	<1	86	65-137
Acetone	ug/L (ppb)	250	< 50	98	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	86	71-123
Hexane	ug/L (ppb)	50	<1	88	44-139
Methylene chloride	ug/L (ppb)	50	<5	107	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	105	68-125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72-122
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb)	50 50	<1 <1	114 vo 69	79-113 48-157
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	103	63-126
Chloroform	ug/L (ppb) ug/L (ppb)	50 50	<1	110	77-117
2-Butanone (MEK)	ug/L (ppb)	250	<10	135	70-135
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	126 vo	70-139
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	104	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	117	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	102	70-132
Benzene	ug/L (ppb)	50	< 0.35	112	75-114
Trichloroethene	ug/L (ppb)	50	<1	112	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	123 vo	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	125 vo	78-117
Dibromomethane	ug/L (ppb)	50	<1	113	73-125
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	139	79-140
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	122 vo	76-120
Toluene	ug/L (ppb)	50	<1	107	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	116	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	120 vo	81-116
2-Hexanone 1.3-Dichloropropane	ug/L (ppb)	250	<10 <1	146 vo	74-127
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	118 vo 94	80-113 40-155
Dibromochloromethane	ug/L (ppb)	50 50	<1	104	69-129
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	120	79-120
Chlorobenzene	ug/L (ppb)	50	<1	105	75-115
Ethylbenzene	ug/L (ppb)	50	<1	107	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	76-130
m,p-Xylene	ug/L (ppb)	100	<2	104	63-128
o-Xylene	ug/L (ppb)	50	<1	104	64-129
Styrene	ug/L (ppb)	50	<1	109	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	104	74-122
Bromoform	ug/L (ppb)	50	<1	109	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	107	65-129
Bromobenzene	ug/L (ppb)	50	<1	103	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	106	60-138
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1 <1	132 vo 130 vo	77-120
1,2,3-Trichloropropane 2-Chlorotoluene	ug/L (ppb)	50 50	<1	107	62-125 40-159
4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<1	107	76-122
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	107	74-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	105	59-136
sec-Butylbenzene	ug/L (ppb)	50	<1	108	69-127
p-Isopropyltoluene	ug/L (ppb)	50	<1	103	64-132
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	102	77-113
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	100	75-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	104	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	136 vo	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	98	66-123
Hexachlorobutadiene	ug/L (ppb)	50	<1	92	53-136
Naphthalene	ug/L (ppb)	50	<1	115	60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	106	59-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/18/19

Project: Precision Engineering 1803.01.01, F&BI 912298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

· ·	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	109	130	50-157	18
Chloromethane	ug/L (ppb)	50	109	118	62-130	8
Vinyl chloride	ug/L (ppb)	50	107	112	70-128	5
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	119 115	126 122	60-143 66-149	6 6
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 50	109	114	65-138	4
Acetone	ug/L (ppb)	250	95	97	44-145	2
1.1-Dichloroethene	ug/L (ppb)	50	107	115	72-121	7
Hexane	ug/L (ppb)	50	109	115	51-153	5
Methylene chloride	ug/L (ppb)	50	105	116	63-132	10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	107	115	70-122	7
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	112	76-118	7
1,1-Dichloroethane 2.2-Dichloropropane	ug/L (ppb)	50 50	103 106	111 111	77-119 62-141	7 5
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	105	111	76-119	ə 7
Chloroform	ug/L (ppb)	50 50	100	108	78-117	8
2-Butanone (MEK)	ug/L (ppb)	250	94	100	48-150	6
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	109	75-116	6
1,1,1-Trichloroethane	ug/L (ppb)	50	108	115	80-116	6
1,1-Dichloropropene	ug/L (ppb)	50	102	108	78-119	6
Carbon tetrachloride	ug/L (ppb)	50	111	117	72-128	5
Benzene	ug/L (ppb)	50	103	109	75-116	6
Trichloroethene	ug/L (ppb)	50	99	105	72-119	6
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	104 104	109 110	79-121 76-120	5 6
Dibromomethane	ug/L (ppb) ug/L (ppb)	50 50	101	106	79-121	5
4-Methyl-2-pentanone	ug/L (ppb)	250	104	109	54-153	5
cis-1,3-Dichloropropene	ug/L (ppb)	50	110	116	76-128	5
Toluene	ug/L (ppb)	50	96	102	79-115	6
trans-1,3-Dichloropropene	ug/L (ppb)	50	102	110	76-128	8
1,1,2-Trichloroethane	ug/L (ppb)	50	94	101	78-120	7
2-Hexanone	ug/L (ppb)	250	95	101	49-147	6
1,3-Dichloropropane	ug/L (ppb)	50	95	101	81-111	6
Tetrachloroethene Dibromochloromethane	ug/L (ppb)	50 50	98 103	104 110	78-109 63-140	6 7
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50 50	95	101	82-118	6
Chlorobenzene	ug/L (ppb)	50	97	103	80-113	6
Ethylbenzene	ug/L (ppb)	50	99	105	83-111	6
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	104	111	76-125	7
m,p-Xylene	ug/L (ppb)	100	98	104	81-112	6
o-Xylene	ug/L (ppb)	50	99	104	81-117	5
Styrene	ug/L (ppb)	50	98	104	83-121	6
Isopropylbenzene	ug/L (ppb)	50	100	105	78-118	5 6
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	108 97	115 103	40-161 81-115	6
Bromobenzene	ug/L (ppb)	50	95	103	80-113	8
1,3,5-Trimethylbenzene	ug/L (ppb)	50	100	106	83-117	6
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	96	104	79-118	8
1,2,3-Trichloropropane	ug/L (ppb)	50	95	103	74-116	8
2-Chlorotoluene	ug/L (ppb)	50	97	104	79-112	7
4-Chlorotoluene	ug/L (ppb)	50	97	103	80-116	6
tert-Butylbenzene	ug/L (ppb)	50	100	106	81-119	6
1,2,4-Trimethylbenzene	ug/L (ppb)	50 50	98 98	104 103	81-121 83-123	6
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	98 98	103	83-123 81-117	5 4
1,3-Dichlorobenzene	ug/L (ppb)	50 50	98	104	80-115	6
1,4-Dichlorobenzene	ug/L (ppb)	50	95	101	77-112	6
1,2-Dichlorobenzene	ug/L (ppb)	50	99	104	79-115	5
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	101	108	62-133	7
1,2,4-Trichlorobenzene	ug/L (ppb)	50	101	106	75-119	5
Hexachlorobutadiene	ug/L (ppb)	50	95	97	70-116	2
Naphthalene	ug/L (ppb)	50 50	100 98	107 105	72-131 74-122	7 7
1,2,3-Trichlorobenzene	ug/L (ppb)	อบ	98	601	/4-1ZZ	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 912298

Work Order Number: 1912306

December 26, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 12/18/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager CC: Eric Young

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 12/26/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 912298 **Work Order:** 1912306

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1912306-001
 MW3-W-15.0
 12/17/2019 4:16 PM
 12/18/2019 11:34 AM

 1912306-002
 MW4-W-20.0
 12/17/2019 4:20 PM
 12/18/2019 11:34 AM

Case Narrative

WO#: **1912306**Date: **12/26/2019**

CLIENT: Friedman & Bruya

Project: 912298

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1912306

Date Reported: 12/26/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1912306

Date Reported: 12/26/2019

Analyst: WF

Batch ID: R56144

CLIENT: Friedman & Bruya

Project: 912298

Lab ID: 1912306-001 Collection Date: 12/17/2019 4:16:00 PM

Client Sample ID: MW3-W-15.0 Matrix: Water

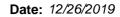
Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.0900 DH mg/L 2 12/18/2019 7:16:00 PM

NOTES:

Diluted due to matrix.


Lab ID: 1912306-002 **Collection Date:** 12/17/2019 4:20:00 PM

Client Sample ID: MW4-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56144 Analyst: WF

Original

Work Order: 1912306

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 912298							пехача	alent Cn	romium b	y Sivi 350	U Cr E
Sample ID: MB-56144	SampType: MBLK			Units: mg/L		Prep Date:	12/18/2019		RunNo: 56 1	144	
Client ID: MBLKW	Batch ID: R56144					Analysis Date:	12/18/2019		SeqNo: 11 1	8489	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450									
Sample ID: LCS-56144	SampType: LCS			Units: mg/L		Prep Date:	12/18/2019		RunNo: 56 1	144	
Client ID: LCSW	Batch ID: R56144					Analysis Date:	12/18/2019		SeqNo: 111	8490	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.236	0.0450	0.2500	0	94.4	80.9	115				
Sample ID: 1912318-003ADUP	SampType: DUP			Units: mg/L		Prep Date:	12/18/2019		RunNo: 56 1	44	
Client ID: BATCH	Batch ID: R56144					Analysis Date	12/18/2019		SeqNo: 111	8492	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450						0		30	
Sample ID: 1912318-003AMS	SampType: MS			Units: mg/L		Prep Date:	12/18/2019		RunNo: 56 1	44	
Client ID: BATCH	Batch ID: R56144					Analysis Date:	12/18/2019		SeqNo: 111	8493	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.243	0.0450	0.2500	0	97.3	46.2	138				
Sample ID: 1912318-003AMSD	SampType: MSD			Units: mg/L		Prep Date:	12/18/2019		RunNo: 56 1	144	
Client ID: BATCH	Batch ID: R56144					Analysis Date	12/18/2019		SeqNo: 11 1	8494	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPI	O Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.246	0.0450	0.2500	0	98.3	46.2	138	0.2432	1.02	20	

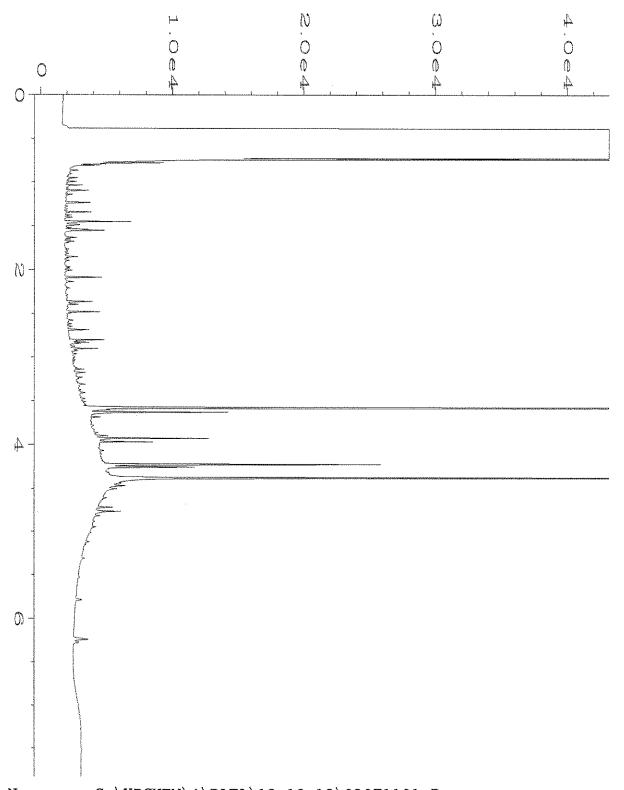
Original Page 6 of 8

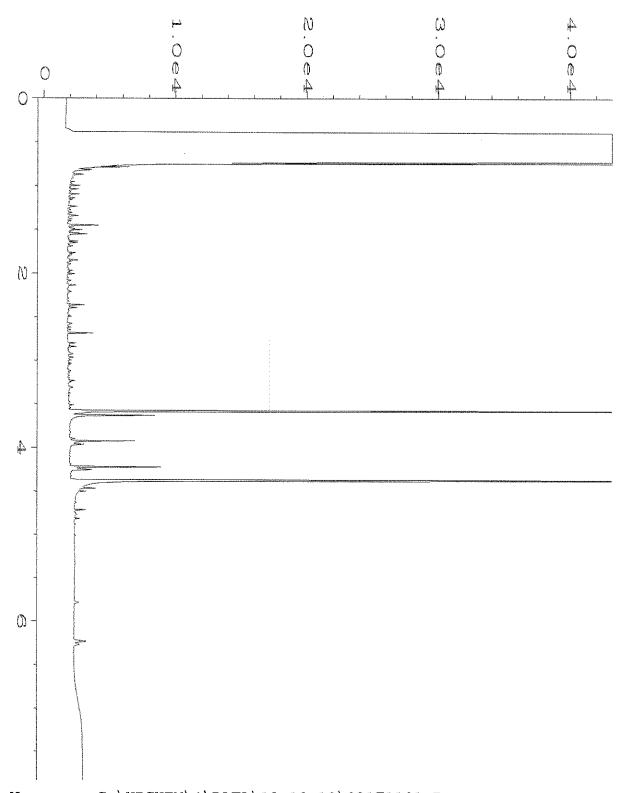
Sample Log-In Check List

С	ient Name:	FB		Work O	rder Num	ber: 1912306		
Lo	ogged by:	Carissa True		Date Re	eceived:	12/18/201	9 11:34:00 AM	
<u>Cha</u>	in of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	•	No \square	Not Present	
2.	How was the	sample delivered?		<u>FedI</u>	<u> </u>			
<u>Log</u>	ı İn							
	Coolers are p	vresent?		Yes		No 🗸	NA 🗆	
٥.	000.0.0 a.o p		Samples			iate temperatur		
4.	Shipping conf	tainer/cooler in good condition		Yes		No 🗌		
5.		s present on shipping contain		Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples'	>	Yes	✓	No \square	NA \square	
7.	Were all item	s received at a temperature of	>0°C to 10.0°C*	Yes	•	No 🗆	NA \square	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆		
10.	Are samples	properly preserved?		Yes	✓	No \square		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗹	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No \square		
14.	Does paperw	ork match bottle labels?		Yes	✓	No \square		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes		No 🗸		
Sne	cial Handli	ing (if applicable)						
		otified of all discrepancies with	this order?	Yes		No 🗆	NA 🗹	
	Person	Notified:	Da	te:				
	By Who	m:	Via	a: eMa	ail 🗌 Ph	none 🗌 Fax [In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	marks:						-
ltem	<u>Information</u>							
	_	Item #	Temp °C					
	Sample 1		6.8					

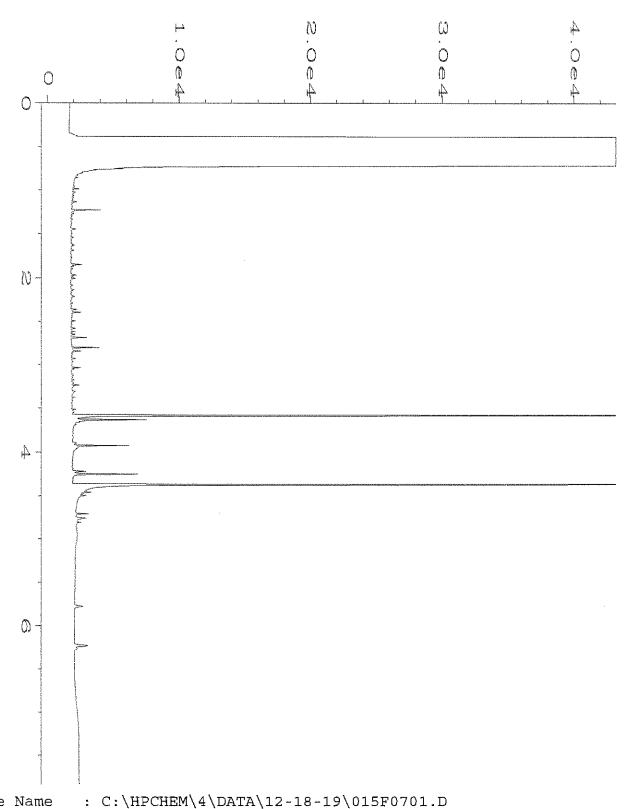
^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

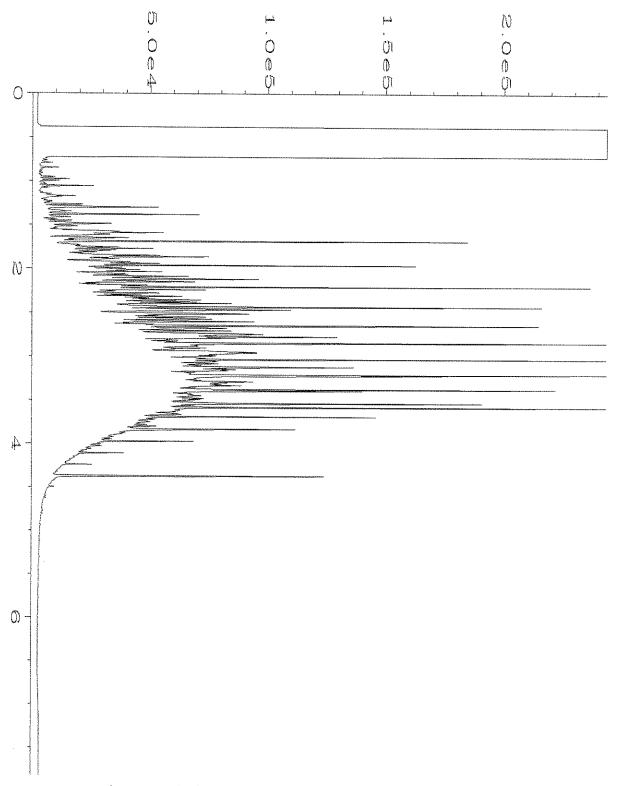

Send Report To	Send Report To Michael Erdahl	SUBCONTRACTER Frament	
)	10.1	PROJECT NAME/NO.	PO#
Company	Friedman and Bruya, Inc.	@ 1020 @	117
Address	3012 16th Ave W	21100	A-515
City State ZIP	City State ZIP Seattle WA 98119	REMARKS	
Phone # (206) 2	Phone # (206) 285-8282 Fax # (206) 283-5044	Please Email Results	


184	14/18/19			RA)).	laye	1-1	Becupi-		Son		7	Received by:	-2029	Seattle, WA 98119-2029 Ph. (206) 285-8282
10008	12/18/19	ıya	a & Bru	Friedman & Bruya	ت			dahl	Michael Erdahl	Mich	1	No No	Relinquished by	West	3012 16th Avenue West
TIME	DATE	Y	COMPANY	CO		(4)	PRINT NAME	PRINT				SIGNATURE		, Inc.	Friedman & Bruya, Inc.
				`											
		-													
			-			-									
	3														
															,
					_										-1
							se.				•				
					-	×					<u></u>	: 1620	*		MW4-W-20.0
					-	×					くった	1616	12/12/15		MW3-W-15.0
Notes	No	i.	**			Chome #	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
			CED	ANALYSES REQUESTED	SES R	NALY	A								

Fax (206) 283-5044


Received by:

SAMPLE DISPOSAL □ Dispose after 30 days □ Return samples □ Will call with instructions	TURNAROUND TIME B. Standard (2-Weeks) Nek RUSH Rush charges authorized by:
	Page 8 o




```
Data File Name
                 : C:\HPCHEM\4\DATA\12-18-19\031F1101.D
Operator
                  : TL
                                                  Page Number
                                                                    : 1
                                                  Vial Number
Instrument
                  : GC#4
                                                  Injection Number: 1
Sequence Line: 11
Sample Name
                  : 912298-02
Run Time Bar Code:
Acquired on
                 : 18 Dec 19 05:20 PM
                                                  Instrument Method: DX.MTH
Report Created on: 19 Dec 19 09:00 AM
                                                  Analysis Method : DEFAULT.MTH
```



```
Data File Name
                                                 Page Number
Operator
                 : TL
                                                 Vial Number : 1!
Injection Number : 1
Instrument
                 : GC#4
Sample Name
                 : 09-3058 mb
                                                 Sequence Line : 7
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on
             : 18 Dec 19
                              12:54 PM
Report Created on: 19 Dec 19 08:58 AM
                                                 Analysis Method : DEFAULT.MTH
```


City, State, ZIP Bellingham, WA 98225 Phone 360-927-1309 Email hagod amoultoster Company Maul Foster & Alongi Report To Heather Address 1329 N State St, Ste 301 8897

SAMPLE
CHAIN
\mathbf{H}
CUSTOD

•	>
	1.5
	9
1 Sec. 1	72
A CONTRACTOR	, 00
Page#	۵

00	INVOICE TO	*metals include As,
Bu.	1803.01.01	Precision Engineering 1803.01.01
×	/ P0#	PROJECT NAME
	1 Rify	SAMPLERS (signature) Church Rife

	_	
1	I	Θ
	1	-2
	_	١,
The state of the state of	The second	00
The second second	Pag	, ت
,	*	
77.		
	-	Marie .
1		

1 my 2

Port H

Project specific RLs? - Yes / No Want cster, com Default: Dispose after 30 days Standard turnaround Archive samples ish charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL

3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282	Friedman & Rring Inc				Frip Blank	WWH-W-20.0	MW3-W-15.0	Sample ID	
Received by: UM Relinquished by: Received by:	SIC					02	DI A-G	Lab ID	
My Site	SIGNATURE					(12/17/19	Date Sampled	
					A-A-	1620	1616	Time Sampled	
Amarda Birby					\$	٤	٤	Sample Type	
VINH	PRINT NAME				4	7	1	# of Jars	
H H	N.T.	<u> </u>				\times	\times	NWTPH-Dx	
ixb	ME							NWTPH-Gx	
		<u> </u>						BTEX EPA 8021	
		<u> </u>				~ 7.		NWTPH-HCID	A
	+							VOCs EPA 8260 C	VAL
				 			\triangle	PAHS EPA	SES
MFA	COJ	 			,			Hexchrom by	REQ
#	COMPANY	ÇO.				\Leftrightarrow	$\langle \rangle$	Hexchron by SM 3500 CRB Dissuretals by EPA Gozob*	UES
	3		à.				\triangle	VOCs EPA 82600 82700 SIM PAHS EPA PCBs EPA 8082 Hexchrom by SM 3500 CRB Dismetals by EPA Go208*	TED
		28							
12/18/19 0830	DATE TIME	Samples received at 4 oc	-					Notes	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 30, 2019

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on December 17, 2019 from the Precision Engineering 1803.01.01, F&BI 912292 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA1230R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 17, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 912292 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
912292 -01	MW9-W-33.5
912292 -02	MW2-W-15.0
912292 -03	MW7-W-27.5
912292 -04	MW6-W-15.0
912292 -05	Trip Blank
912292 -06	MW11-W-15.0

Samples MW9-W-33.5, MW2-W-15.0, MW7-W-27.5, MW6-W-15.0, and MW11-W-15.0 were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The 8260C sample Trip Blank showed the presence of methylene chloride due to laboratory contamination. The data were qualified accordingly. In addition, the 8260C samples MW2-W-15.0 and MW6-W-15.0 were performed at a dilution due to the sample matrix (foamy).

The 6020B calibration standard failed the acceptance criteria for arsenic and selenium for sample MW6-W-15.0. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/17/19

Project: Precision Engineering 1803.01.01, F&BI 912292

Date Extracted: 12/18/19 Date Analyzed: 12/18/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW9-W-33.5 912292-01	200 x	330 х	122
MW2-W-15.0 912292-02	450 x	790 x	115
MW7-W-27.5 912292-03	99 x	<250	122
MW6-W-15.0 912292-04	410 x	700 x	ip
MW11-W-15.0 912292-06	250 x	430 x	135
Method Blank 09-3058 MB	<50	<250	123

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 912292-01 12/19/19 Date Analyzed: 12/24/19 Data File: 912292-01.122 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Arsenic
 11.5

 Chromium
 21.6

 Copper
 <5</td>

 Selenium
 4.66

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client:	Maul Foster Alongi
	Client:

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 912292-02 12/19/19 Date Analyzed: 12/24/19 Data File: 912292-02.123 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Arsenic
 9.05

 Chromium
 8.42

 Copper
 <5</td>

 Selenium
 10.8

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 912292-03 12/19/19 Date Analyzed: 12/24/19 Data File: 912292-03.128 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Arsenic
 9.03

 Chromium
 1.75

 Copper
 <5</td>

 Selenium
 8.21

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 912292-04 Date Analyzed: 12/24/19 Data File: 912292-04.197 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{ccc} \text{Arsenic} & 41.2 \text{ ca} \\ \text{Chromium} & 17.4 \\ \text{Copper} & <5 \\ \text{Selenium} & 11.7 \text{ ca} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 12/19/19
 Lab ID:
 912292-04 x10

 Date Analyzed:
 12/26/19
 Data File:
 912292-04 x10.071

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 46.4 Selenium 13.5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 912292-06 12/19/19 Date Analyzed: 12/24/19 Data File: $912292 \hbox{-} 06.125$ Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Arsenic
 6.16

 Chromium
 2.48

 Copper
 <5</td>

 Selenium
 2.66

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/19/19 I9-816 mb Date Analyzed: 12/19/19 Data File: I9-816 mb.065 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW9-W-33.5	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 12/17/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/18/19
 Lab ID:
 912292-01 1/2

 Date Analyzed:
 12/18/19
 Data File:
 121809.D

Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: YA

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW2-W-15.0	Client:	Maul Foster Alongi

 Date Received:
 12/17/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/18/19
 Lab ID:
 912292-02 1/2

 Date Analyzed:
 12/18/19
 Data File:
 121810.D

Date Analyzed:12/18/19Data File:121810.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	101	31	160
Benzo(a)anthracene-d12	108	25	165

< 0.04

Concentration ug/L (ppb) Naphthalene <0.4 Acenaphthylene <0.04 Acenaphthene <0.04 Fluorene <0.04 Phenanthrene <0.04

Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW7-W-27.5	Client:	Maul Foster Alongi

 Date Received:
 12/17/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/18/19
 Lab ID:
 912292-03 1/2

 Date Analyzed:
 12/18/19
 Data File:
 121811.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: YA

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW6-W-15.0	Client:	Maul Foster Alongi

Date Received: 12/17/19Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 12/18/19 912292-04 1/2 Date Analyzed: 12/18/19 Data File: 121812.D Water Matrix: Instrument: GCMS6

Units: ug/L (ppb) Operator: YA

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 103 31 160 Benzo(a)anthracene-d12 113 25 165

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW11-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 12/17/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 12/18/19
 Lab ID:
 912292-06 1/2

 Date Analyzed:
 12/18/19
 Data File:
 121813.D

Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	98	31	160
Benzo(a)anthracene-d12	105	25	165

Concentration Ug/L (ppb) Naphthalene Acenaphthylene Acenaphthene 1 7

Acenaphthylene Acenaphthene 1.7 Fluorene 0.15Phenanthrene 0.061 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/18/19 09-3060 mb Date Analyzed: 12/18/19 Data File: 121808.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: YA

Concentration

ug/L (ppb)
< 0.2
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW9-W-33.5 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/23/19 912292-01Date Analyzed: 12/23/19 Data File: 122324.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	109	50	150
4-Bromofluorobenzene	107	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW2-W-15.0 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/23/19 912292-02 1/10 Date Analyzed: 12/24/19 Data File: 122419.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	107	50	150
4-Bromofluorobenzene	100	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW7-W-27.5 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 12/23/19 912292-03 Date Analyzed: 12/23/19 Data File: 122321.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	109	50	150
4-Bromofluorobenzene	108	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW6-W-15.0 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

Lab ID: 912292-04 1/10 Date Extracted: 12/23/19Date Analyzed: 12/24/19 Data File: 122420.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	108	50	150
4-Bromofluorobenzene	102	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Trip Blank Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

12/23/19 Lab ID: Date Extracted: 912292-05Date Analyzed: 12/23/19 Data File: 122322.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	110	50	150
4-Bromofluorobenzene	106	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	$6.6 \mathrm{\ lc}$	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 12/17/19 Project: Precision Engineering 1803.01.01

12/23/19 Lab ID: 912292-06 Date Extracted: Date Analyzed: 12/23/19 Data File: 122323.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	109	50	150
4-Bromofluorobenzene	105	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

12/23/19 Lab ID: 09-3081 mb Date Extracted: Date Analyzed: 12/23/19 Data File: 122314.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	104	63	127
4-Bromofluorobenzene	93	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/17/19

Project: Precision Engineering 1803.01.01, F&BI 912292

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	108	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/17/19

Project: Precision Engineering 1803.01.01, F&BI 912292

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 912238-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.25	91	89	75-125	2
Chromium	ug/L (ppb)	20	<1	94	92	75 - 125	2
Copper	ug/L (ppb)	20	<5	90	88	75 - 125	2
Selenium	ug/L (ppb)	5	<1	86	85	75 - 125	1

			Percent	
	Reporting	$_{ m Spike}$	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	98	80-120
Chromium	ug/L (ppb)	20	100	80-120
Copper	ug/L (ppb)	20	100	80-120
Selenium	ug/L (ppb)	5	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/17/19

Project: Precision Engineering 1803.01.01, F&BI 912292

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	78	80	57-114	3
Acenaphthylene	ug/L (ppb)	1	85	86	65-119	1
Acenaphthene	ug/L (ppb)	1	84	86	66-118	2
Fluorene	ug/L (ppb)	1	87	86	64 - 125	1
Phenanthrene	ug/L (ppb)	1	85	87	67 - 120	2
Anthracene	ug/L (ppb)	1	89	89	65 - 122	0
Fluoranthene	ug/L (ppb)	1	95	89	65 - 127	7
Pyrene	ug/L (ppb)	1	89	88	62-130	1
Benz(a)anthracene	ug/L (ppb)	1	92	94	60-118	2
Chrysene	ug/L (ppb)	1	88	90	66 - 125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	84	88	55-135	5
Benzo(k)fluoranthene	ug/L (ppb)	1	77	80	62 - 125	4
Benzo(a)pyrene	ug/L (ppb)	1	81	82	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	74	71	36 - 142	4
Dibenz(a,h)anthracene	ug/L (ppb)	1	65	65	37-133	0
Benzo(g,h,i)perylene	ug/L (ppb)	1	67	67	34 - 135	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/19 Date Received: 12/17/19

Project: Precision Engineering 1803.01.01, F&BI 912292

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Eastratory Court Eastratory	control campi		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	122	140	25-158	14
Chloromethane	ug/L (ppb)	50	122	127	45-156	4
Vinyl chloride	ug/L (ppb)	50	116	123	50-154	6
Bromomethane	ug/L (ppb)	50	127	137	55-143	8
Chloroethane	ug/L (ppb)	50	121	129	58-146	6
Trichlorofluoromethane	ug/L (ppb)	250	117	123	50-150	5
Acetone 1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	250 50	99 118	98 121	53-131 67-136	1 3
Hexane	ug/L (ppb) ug/L (ppb)	50 50	109	108	57-137	3 1
Methylene chloride	ug/L (ppb)	50	118	122	39-148	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	118	121	64-147	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	116	117	68-128	1
1,1-Dichloroethane	ug/L (ppb)	50	114	116	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	105	112	55-143	6
cis-1,2-Dichloroethene	ug/L (ppb)	50	116	119	80-123	3
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	$\frac{50}{250}$	111 106	113 107	80-121 57-149	2 1
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	114	107	57-149 73-132	3
1.1.1-Trichloroethane	ug/L (ppb)	50 50	117	121	81-125	3
1,1-Dichloropropene	ug/L (ppb)	50	112	114	77-129	2
Carbon tetrachloride	ug/L (ppb)	50	120	124	75-158	3
Benzene	ug/L (ppb)	50	114	117	69-134	3
Trichloroethene	ug/L (ppb)	50	109	112	79-113	3
1,2-Dichloropropane	ug/L (ppb)	50	114	117	77-123	3
Bromodichloromethane	ug/L (ppb)	50	115	119	81-133	3
Dibromomethane	ug/L (ppb)	50	112	113	82-125	$\frac{1}{2}$
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	114 123	$\frac{116}{125}$	65-138 82-132	2 2
Toluene	ug/L (ppb)	50	99	102	72-122	3
trans-1,3-Dichloropropene	ug/L (ppb)	50	109	111	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	50	100	101	75-124	1
2-Hexanone	ug/L (ppb)	250	98	101	60-136	3
1,3-Dichloropropane	ug/L (ppb)	50	101	104	76-126	3
Tetrachloroethene	ug/L (ppb)	50	99	103	76-121	4
Dibromochloromethane	ug/L (ppb)	50	110	113	84-133	3
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	101 100	103 104	82-115 83-114	$\frac{2}{4}$
Ethylbenzene	ug/L (ppb)	50 50	102	104	77-124	4
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	107	112	84-127	5
m,p-Xylene	ug/L (ppb)	100	101	104	81-112	3
o-Xylene	ug/L (ppb)	50	101	105	81-121	4
Styrene	ug/L (ppb)	50	101	106	84-119	5
Isopropylbenzene	ug/L (ppb)	50	101	106	80-117	5
Bromoform	ug/L (ppb)	50	117	120	74-136	3
n-Propylbenzene Bromobenzene	ug/L (ppb)	50 50	98 100	101 102	74-126 80-121	3 2
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	101	102	78-123	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	100	102	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	50	98	100	67-124	$\frac{-}{2}$
2-Chlorotoluene	ug/L (ppb)	50	99	102	77-127	3
4-Chlorotoluene	ug/L (ppb)	50	99	102	78-128	3
tert-Butylbenzene	ug/L (ppb)	50	101	105	80-123	4
1,2,4-Trimethylbenzene	ug/L (ppb)	50	99	103	79-122	4
sec-Butylbenzene	ug/L (ppb)	50 50	98	102	80-116	4
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97 99	101 102	81-123 83-113	4 3
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	99 97	102	83-113	3 3
1,2-Dichlorobenzene	ug/L (ppb)	50	100	104	84-112	4
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	100	107	57-141	7
1,2,4-Trichlorobenzene	ug/L (ppb)	50	101	106	72-130	5
Hexachlorobutadiene	ug/L (ppb)	50	94	98	53-141	4
Naphthalene	ug/L (ppb)	50	102	107	64-133	5
1,2,3-Trichlorobenzene	ug/L (ppb)	50	100	106	65-136	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 912292

Work Order Number: 1912289

December 23, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 12/17/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager CC: Eric Young

Date: 12/23/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 912292 **Work Order:** 1912289

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1912289-001	MW9-W-33.5	12/17/2019 10:55 AM	12/17/2019 4:55 PM
1912289-002	MW2-W-15.0	12/17/2019 11:45 AM	12/17/2019 4:55 PM
1912289-003	MW7-W-27.5	12/17/2019 12:56 PM	12/17/2019 4:55 PM
1912289-004	MW6-W-15.0	12/17/2019 1:50 PM	12/17/2019 4:55 PM
1912289-005	MW11-W-15.0	12/17/2019 2:40 PM	12/17/2019 4:55 PM

Case Narrative

WO#: **1912289**Date: **12/23/2019**

CLIENT: Friedman & Bruya

Project: 912292

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1912289**

Date Reported: 12/23/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1912289

Date Reported: 12/23/2019

CLIENT: Friedman & Bruya

Project: 912292

Lab ID: 1912289-001 **Collection Date:** 12/17/2019 10:55:00 AM

Client Sample ID: MW9-W-33.5 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56084 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 12/17/2019 6:46:00 PM

Lab ID: 1912289-002 **Collection Date:** 12/17/2019 11:45:00 AM

Client Sample ID: MW2-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Batch ID: R56084

Analyst: WF

Chromium, Hexavalent ND 0.135 D mg/L 3 12/17/2019 6:51:00 PM

NOTES:

Diluted due to matrix.

Lab ID: 1912289-003 Collection Date: 12/17/2019 12:56:00 PM

Client Sample ID: MW7-W-27.5 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56084 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 12/17/2019 6:56:00 PM

Analytical Report

Work Order: 1912289

Analyst: WF

Date Reported: 12/23/2019

Batch ID: R56084

CLIENT: Friedman & Bruya

Project: 912292

Lab ID: 1912289-004 **Collection Date:** 12/17/2019 1:50:00 PM

Client Sample ID: MW6-W-15.0 Matrix: Water

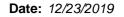
Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B

Chromium, Hexavalent ND 0.450 D mg/L 10 12/17/2019 7:01:00 PM

NOTES:

Diluted due to matrix.


Lab ID: 1912289-005 **Collection Date:** 12/17/2019 2:40:00 PM

Client Sample ID: MW11-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R56084 Analyst: WF

Chromium, Hexavalent ND 0.0450 mg/L 1 12/17/2019 7:06:00 PM

Work Order: 1912289

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 912292						Hexavalent Cn	romium by SM 3500 Cr
Sample ID: MB-R56084	SampType: MBLK			Units: mg/L		Prep Date: 12/17/2019	RunNo: 56084
Client ID: MBLKW	Batch ID: R56084				Α	analysis Date: 12/17/2019	SeqNo: 1116789
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450					
Sample ID: LCS-R56084	SampType: LCS			Units: mg/L		Prep Date: 12/17/2019	RunNo: 56084
Client ID: LCSW	Batch ID: R56084				Д	analysis Date: 12/17/2019	SeqNo: 1116790
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.232	0.0450	0.2500	0	92.8	80.9 115	
Sample ID: 1912270-002ADUP	SampType: DUP			Units: mg/L		Prep Date: 12/17/2019	RunNo: 56084
Client ID: BATCH	Batch ID: R56084				Д	analysis Date: 12/17/2019	SeqNo: 1116792
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0450				0	30
Sample ID: 1912270-002AMS	SampType: MS			Units: mg/L		Prep Date: 12/17/2019	RunNo: 56084
Client ID: BATCH	Batch ID: R56084				Α	analysis Date: 12/17/2019	SeqNo: 1116793
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.242	0.0450	0.2500	0	96.8	46.2 138	
Sample ID: 1912270-002AMSD	SampType: MSD			Units: mg/L		Prep Date: 12/17/2019	RunNo: 56084
Client ID: BATCH	Batch ID: R56084				Α	nalysis Date: 12/17/2019	SeqNo: 1116794
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.244	0.0450	0.2500	0	97.5	46.2 138 0.2419	0.741 20

Original Page 7 of 9

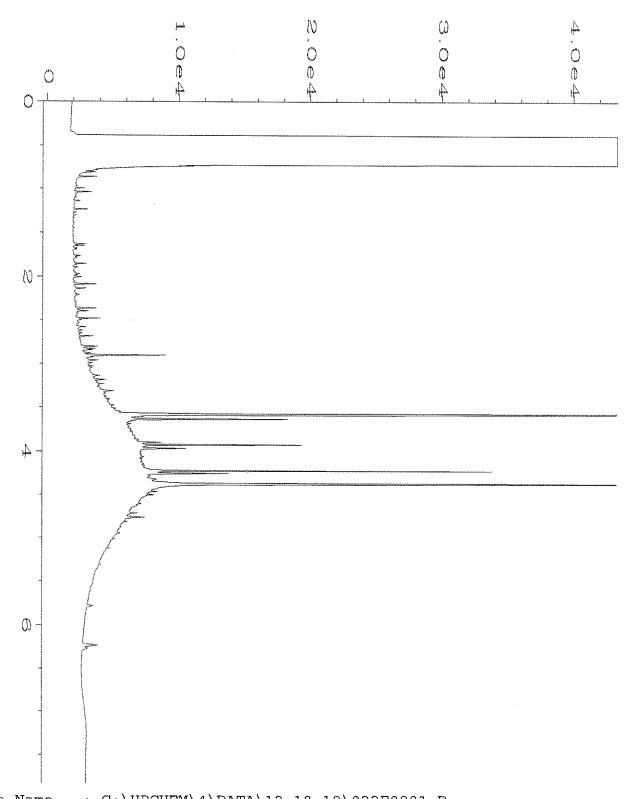
Sample Log-In Check List

С	lient Name:	FB	Work O	rder Numb	oer: 1912289	
Lo	ogged by:	Clare Griggs	Date Re	eceived:	12/17/2019	9 4:55:00 PM
<u>Cha</u>	in of Custo	<u>ody</u>				
1.	Is Chain of Co	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the	sample delivered?	Clier	<u>nt</u>		
Log	<u>In</u>					
_	Coolers are p	resent?	Yes	✓	No 🗌	NA 🗆
4.	Shipping cont	tainer/cooler in good condition?	Yes	•	No \square	
5.	Custody Seal (Refer to com	s present on shipping container/cooler? Iments for Custody Seals not intact)	Yes		No 🗆	Not Required ✓
6.	Was an attem	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	✓	No 🗆	na 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square	
10.	Are samples	properly preserved?	Yes	✓	No \square	
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA 🗆
12.	Is there head	space in the VOA vials?	Yes		No 🔲	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 📙	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No \square	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No \square	
17.	Were all hold	ing times able to be met?	Yes	✓	No \square	
Spe	cial Handli	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No \square	NA 🗸
	Person I	Notified: Date:				
	By Who	m: Via:	еМа	iil 🗌 Pho	one 🗌 Fax [In Person
	Regardii	ng:				
	Client In	structions:				
19.	Additional ren	narks:				

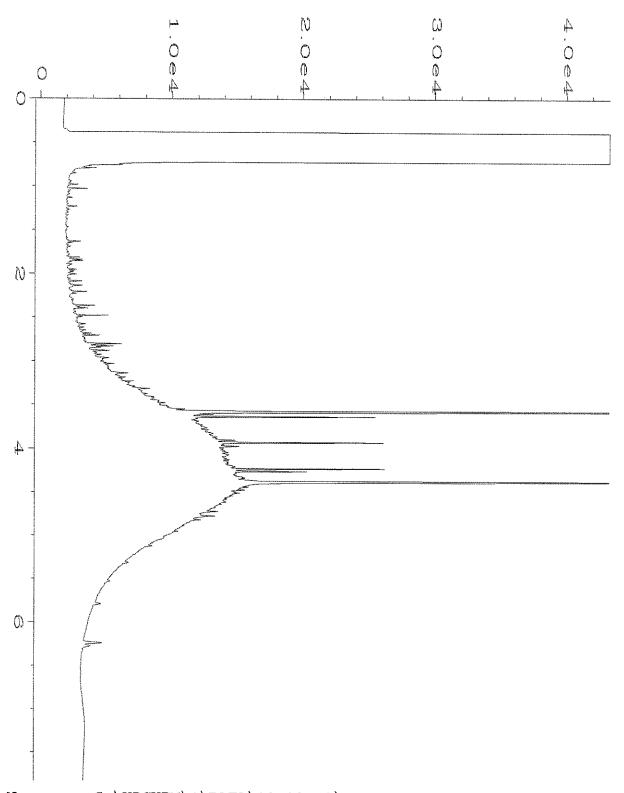
Item Information

Item #	Temp ºC
Cooler	5.8
Sample	7.9

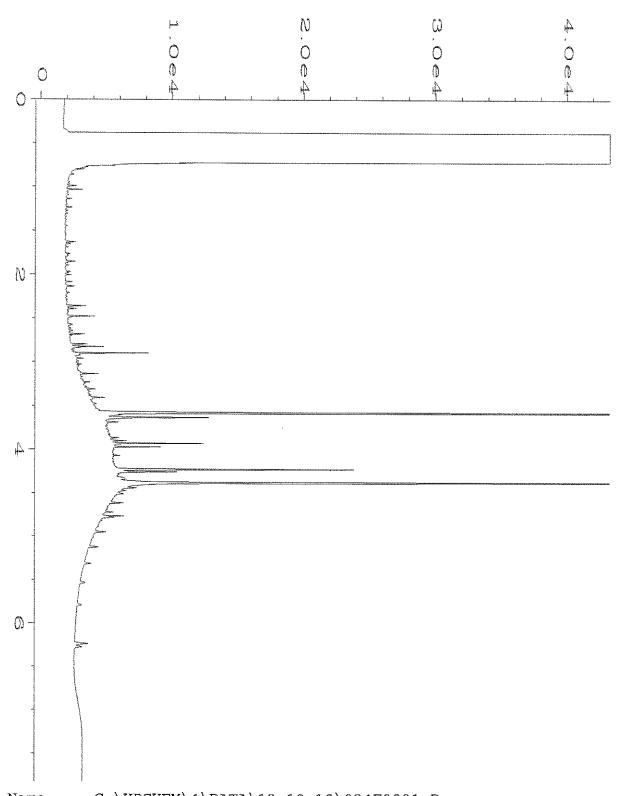
* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

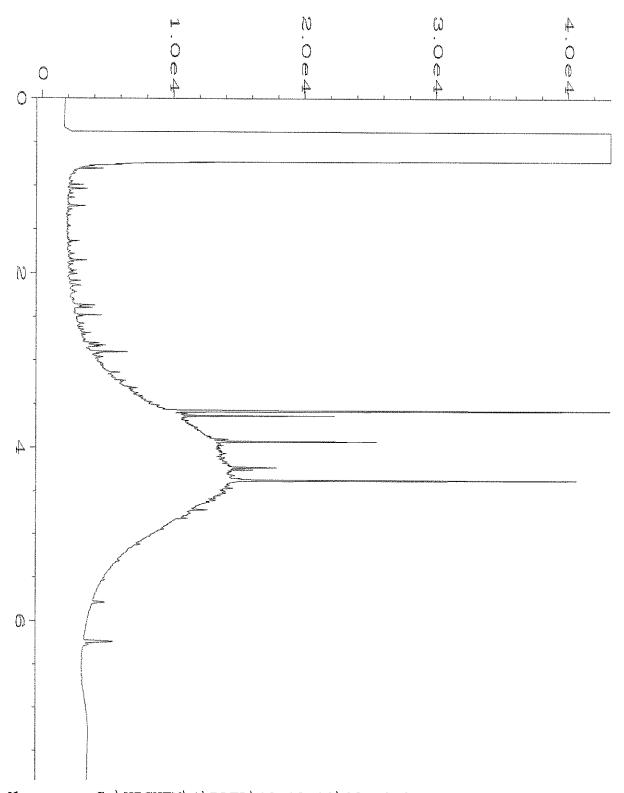

SUBCONTRACT SAMPLE CHAIN OF CUSTODY 191728

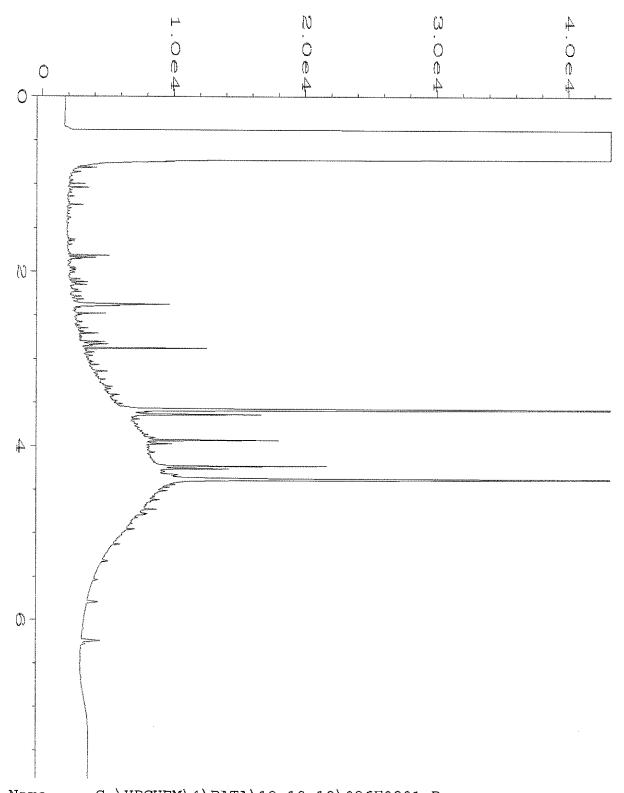
SUBCONTRACTER

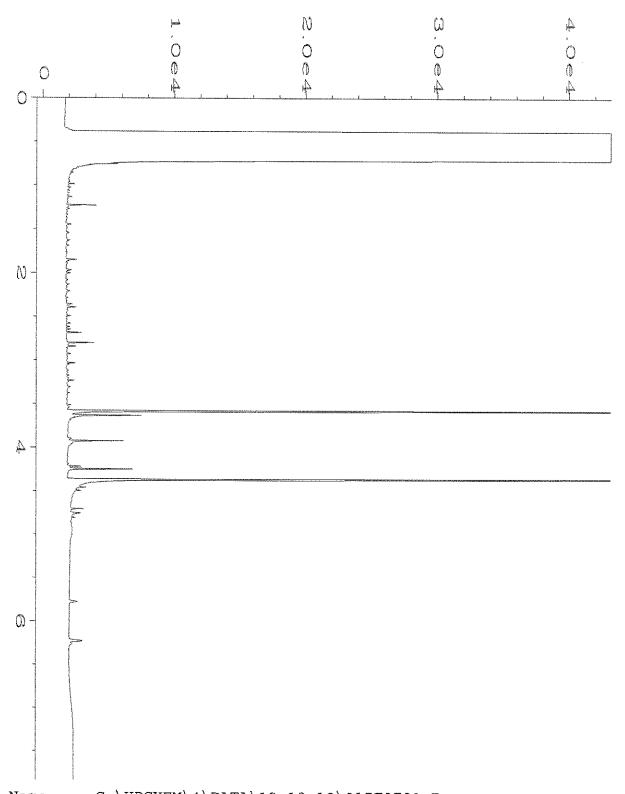

Page #____of___
TURNAROUND TIME

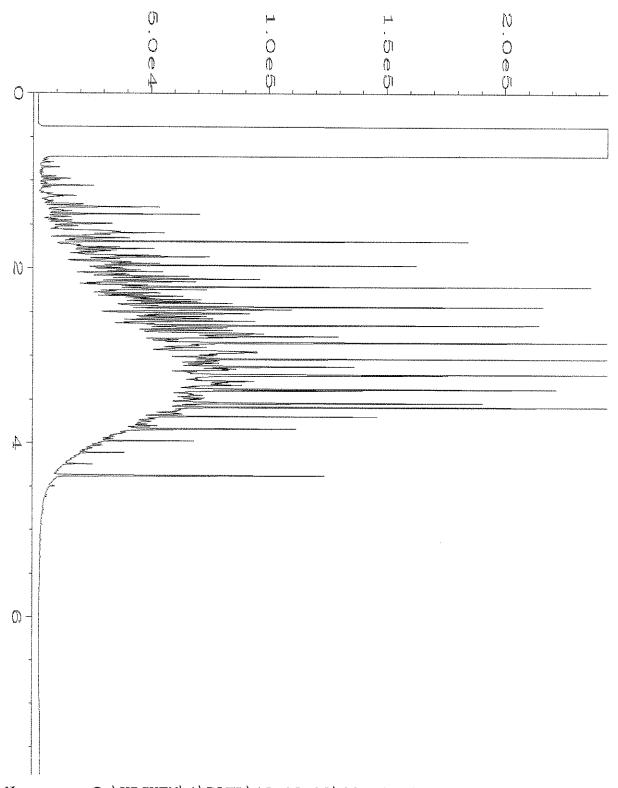
Send Report To Michael Erdahl


	niodm;	Friedman and Bruva Inc	Inc	PR	PROJECT NAME/NO.	NAME	NO.			P	PO#		N Stan	dard (2	X Standard (2 Weeks)	
Address 3	012 16	3012 16th Ave W			912292	292				A-513	W	-	Rush c	harges	Rush charges authorized by:	by:
te. ZIP	eattle.	Seattle, WA 98119		RE	REMARKS	02			-				□ Disp	SAMP ose afte	SAMPLE DISPOSAL □ Dispose after 30 days	AL
100	-8282	Fax # (2)	Fax # (206) 283-5044		Pl	Please Email Results	mail R	esults					□ Return samples □ Will call with in	rn sam call wi	☐ Return samples ☐ Will call with instructions	ns
									ANAL	ANALYSES REQUESTED	REQU	ESTE		,		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH	Cr6+						Notes	ie s
MW9-W-33.5		12/17/19	SSOI	Water	-			Į.	×							
MW2-W-15.0			SHI		-				×							
MW7-W-27.5			1256		_				X		-					
MW6-W-15.0			1350						×			-				
MW11 - W-15.0			1440	-	-				×	-		+				
								, j								
Friedman & Bruya, Inc.	Inc.	SIGNATU	SIGNATURE		*	PRIN Michael Erdahl	PRINT NAME	NAM			Fried	COMPANY man & Bruy	COMPANY Friedman & Bruya	\perp	DATE	TIME
Seattle, WA 98119-2029	029	Received by:	h	4	d	Or Com	Beener-		day	W. O	7	A		_	4/7/19	8331
Ph. (206) 285-8282		Relinquished by:	y:												,	
Fax (206) 283-5044		Received by:													Ą	ş


```
Data File Name
                  : C:\HPCHEM\4\DATA\12-18-19\022F0901.D
                                                    Page Number : 1
Vial Number : 22
Operator
                  : TL
Instrument
                  : GC#4
                                                    Injection Number : 1
Sequence Line : 9
Sample Name
                  : 912292-01
Run Time Bar Code:
                                                                     : 9
Acquired on
                 : 18 Dec 19 02:55 PM
                                                    Instrument Method: DX.MTH
Report Created on: 19 Dec 19 08:59 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
                   : C:\HPCHEM\4\DATA\12-18-19\023F0901.D
                                                     Page Number
Vial Number
Operator
                   : TL
Instrument
                   : GC#4
                                                                        : 23
                                                     Injection Number : 1
Sequence Line : 9
Sample Name
                   : 912292-02
Run Time Bar Code:
                                                     Instrument Method: DX.MTH
Acquired on
                  : 18 Dec 19 03:06 PM
Report Created on: 19 Dec 19 08:59 AM
                                                     Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\12-18-19\024F0901.D
Data File Name
                                                     Page Number : 1
Vial Number : 24
Operator
                   : TL
Instrument
                   : GC#4
                                                     Injection Number : 1
Sequence Line : 9
Sample Name
                   : 912292-03
Run Time Bar Code:
Acquired on
                  : 18 Dec 19 03:18 PM
                                                     Instrument Method: DX.MTH
Report Created on: 19 Dec 19 08:59 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\12-18-19\025F0901.D
Data File Name
Operator
                                                    Page Number
Vial Number
                   : TL
Instrument
                   : GC#4
                                                                       : 25
                                                    Injection Number: 1
Sequence Line: 9
Sample Name
                  : 912292-04
Run Time Bar Code:
Acquired on
                                                    Instrument Method: DX.MTH
                  : 18 Dec 19 03:30 PM
Report Created on: 19 Dec 19 08:59 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
                  : C:\HPCHEM\4\DATA\12-18-19\026F0901.D
Operator
                  : TL
                                                  Page Number
                                                                    : 1
                                                  Vial Number
Instrument
                  : GC#4
                                                                    : 26
                                                  Injection Number: 1
Sequence Line: 9
Sample Name
                  : 912292-06
Run Time Bar Code:
Acquired on
                 : 18 Dec 19 03:42 PM
                                                  Instrument Method: DX.MTH
Report Created on: 19 Dec 19 08:59 AM
                                                  Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\12-18-19\015F0701.D
Data File Name
Operator
                                               Page Number
                 : TL
                                                                : 1
                                               Vial Number
Instrument
                 : GC#4
                                                                : 15
Sample Name
                 : 09-3058 mb
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                              : 7
Acquired on
                : 18 Dec 19 12:54 PM
                                               Instrument Method: DX.MTH
Report Created on: 19 Dec 19 08:58 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\12-18-19\005F1501.D
Operator
                                              Page Number
                : TL
Instrument
                : GC#4
                                              Vial Number
                                                               : 5
Sample Name
                                              Injection Number: 1
                : 1000 Dx 58-146C
                                              Sequence Line : 15
Run Time Bar Code:
Acquired on
                                              Instrument Method: DX.MTH
            : 18 Dec 19 09:00 PM
Report Created on: 19 Dec 19 08:58 AM
                                              Analysis Method : DEFAULT.MTH
```

Report To Heather Good

Company May Foster Along

City, State, ZIP Bellingham, WA 98225 Address 1329 N State 4

SAMPLE CHAIN OF CUSTODY

3 9

SAMPLERS (signature)

PROJECT NAME

REMARKS + AS, Cr, Co, accounting of mand Precision Engineering Fostar.com 1803.01.01 PO#

Rush charges authorized by:

SAMPLE DISPOSAL

M. Standard turnaround

TURNAROUND TIME

Page#

VW.W

O RUSH

Phone 360-927-1309 Email happed @ multoster Project specific RLs? - Yes / No ANALYSES REQUESTED Default: Dispose after 30 days □ Other_ ☐ Archive samples

<i>Ph. (206) 285-8282</i>	2029		•	Friedman & Bruva Inc Re						And the second s	MW11-W-15.0	Trip Blank	MW6-W-15.0	MW7-W-27.5	MW2-W-15.0	MW9-W-33.5	Sample ID
Received by:	Reinquished by:	Thereatyen by:	7	Relinguished by:							D6A-R	87 Aid	8	8	8	OI A-F	Lab ID
,			Church Kit	SIGNATURE												12/17/19 1055	Date Sampled
			K								1440	NA	1350	1255	Still	1055	Time Sampled
	,		Amanda Bixby								٤	٤	٤	٤	٤	٤	Sample Type
		シラグキ	2	PRINT NAME					,		7	N	7	1	7	7	# of Jars
		丰	Q.	N.				_			\geq		\times	\geq	\geq	X	NWTPH-Dx
		ć	29.	ME		~~~	<u> </u>	-							<u> </u>	ļ	NWTPH-Gx
					-	····	<u> </u>	╄			-		ļ			<u> </u>	BTEX EPA 8021
				1				-				Į ,					NWTPH-HCID
					-			ŀ				<u> </u>					VOCs EPA 8260 C
	4	T †			-			<u> </u>									PAHs EPA
	¢	タ	3	S	-			╁									PCBs EPA 8082 Hex chrom by
	Ī		MFA	COMPANY	-		<u> </u>	-	_					X	X	\geq	5M 3500CRB
.				NY.	-		<u> </u>	_	_				\times	\geq	\times	\geq	Dissolved metals by EPA GOZO B*
>						······································	les			www.x,							
<u> </u>		_			L	٠,	cece										
	1	12/17/19	12/17/19 1500	DATE		k.	Samples received at										Ž
	1	7	<u></u>				M				-						Notes
	i	32	ò	TIME			ကြီ										

- 11

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 6, 2019

Merideth D'Andrea, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms D'Andrea:

Included are the results from the testing of material submitted on July 25, 2019 from the Precision Engineering, PO 1803.01.01, F&BI 907445 project. There are 21 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Ryan Lewis MFA0806R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 25, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering, PO 1803.01.01, F&BI 907445 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
907445 -01	MW5-W-15.0
907445 -02	MW7-W-20.0
907445 -03	MW2-W-19.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

A 6020A internal standard failed the acceptance criteria for sample MW5-W-15.0 and the calibration standard for chromium, copper, and selenium. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

Acetone in the 8260C laboratory control sample failed the acceptance criteria. The data were flagged accordingly.

The 8260C samples MW5-W-15.0 and MW2-W-19.0 were analyzed at a dilution due to matrix effect (foamy). The reporting limits were raised accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

Date Extracted: 07/25/19 Date Analyzed: 07/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 51-134)
MW5-W-15.0 907445-01	93 х	<250	86
MW7-W-20.0 907445-02	80 x	<250	91
MW2-W-19.0 907445-03	250 x	<250	62
Method Blank 09-1784 MB2	<50	<250	86

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

Date Extracted: 07/29/19 Lab ID: 907445-01 x10
Date Analyzed: 07/30/19 Data File: 907445-01 x10.156

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & <10 \\ \text{Chromium} & 82,700 \text{ J ca ve} \\ \text{Copper} & <50 \text{ J ca} \\ \text{Selenium} & 11.3 \text{ ca} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907445-01 x200

 Date Analyzed:
 08/01/19
 Data File:
 907445-01 x200.093

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Chromium
 132,000

 Copper
 <1000</td>

 Selenium
 <200</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907445-02 x2

 Date Analyzed:
 08/01/19
 Data File:
 907445-02 x2.095

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Arsenic
 8.59

 Chromium
 3.01

 Copper
 <10</td>

 Selenium
 6.24

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW2-W-19.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907445-03 x2

 Date Analyzed:
 08/01/19
 Data File:
 907445-03 x2.096

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 7.54

 Chromium
 9.19

 Copper
 <10</td>

 Selenium
 9.02

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering, PO 1803.01.01

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW5-W-15.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 07/25/19
 Project:
 Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/30/19
 Lab ID:
 907445-01 1/2

 Date Extracted:
 07/20/19
 Date Files
 07/20/19

Date Analyzed: 07/30/19 Data File: 073025.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

$\begin{array}{c} \text{Concentration} \\ \text{Compounds:} & \text{ug/L (ppb)} \end{array}$

< 0.4 Naphthalene Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 < 0.04 Chrysene Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW7-W-20.0	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

 Date Received:
 07/25/19
 Project:
 Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/30/19
 Lab ID:
 907445-02 1/2

 Date Analyzed:
 07/30/19
 Data File:
 073026 D

Date Analyzed:07/30/19Data File:073026.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Concentration

0 1	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: N	MW2-W-19.0	Client:	Maul Foster Alongi
---------------------	------------	---------	--------------------

 Date Received:
 07/25/19
 Project:
 Precision Engineering, PO 1803.01.01

 Date Extracted:
 07/30/19
 Lab ID:
 907445-03 1/2

 Date Extracted:
 07/30/19
 Lab ID:
 907445-03 I/:

 Date Analyzed:
 07/30/19
 Data File:
 073027.D

 Matrix:
 Water
 Instrument:
 GCMS6

 Units:
 ug/L (ppb)
 Operator:
 VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 87 31 160 Benzo(a)anthracene-d12 98 25 165

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	0.050
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering, PO 1803.01.01

Lab ID: 07/30/19 Date Extracted: 09-1816 mb Date Analyzed: 07/30/19 Data File: 073019.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

Concentration
ug/L (ppb)
< 0.2
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW5-W-15.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

07/29/19 Lab ID: 907445-01 1/10 Date Extracted: Date Analyzed: 07/29/19 Data File: 072946.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	<500 jl	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW7-W-20.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

07/29/19 Lab ID: 907445-02 Date Extracted: Date Analyzed: 07/29/19 Data File: 072941.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 jl	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW2-W-19.0 Client: Maul Foster Alongi

Date Received: 07/25/19 Project: Precision Engineering, PO 1803.01.01

07/29/19 Lab ID: 907445-03 1/10 Date Extracted: Date Analyzed: 07/29/19 Data File: 072945.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	<500 jl	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering, PO 1803.01.01

07/29/19 Lab ID: 09-1703 mb Date Extracted: Date Analyzed: 07/29/19 Data File: 072926.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MS/AEN Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 jl	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	72	68	58-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 907486-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.72	107	106	75-125	1
Chromium	ug/L (ppb)	20	<1	102	103	75 - 125	1
Copper	ug/L (ppb)	20	<5	92	92	75 - 125	0
Selenium	ug/L (ppb)	5	<1	108	107	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	106	80-120
Chromium	ug/L (ppb)	20	96	80-120
Copper	ug/L (ppb)	20	95	80-120
Selenium	ug/L (ppb)	5	107	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

·		•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	71	76	57-114	7
Acenaphthylene	ug/L (ppb)	1	81	84	65-119	4
Acenaphthene	ug/L (ppb)	1	80	84	66-118	5
Fluorene	ug/L (ppb)	1	84	88	64 - 125	5
Phenanthrene	ug/L (ppb)	1	84	87	67-120	4
Anthracene	ug/L (ppb)	1	84	87	65 - 122	4
Fluoranthene	ug/L (ppb)	1	95	97	65 - 127	2
Pyrene	ug/L (ppb)	1	93	96	62-130	3
Benz(a)anthracene	ug/L (ppb)	1	92	95	60-118	3
Chrysene	ug/L (ppb)	1	90	93	66 - 125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	94	98	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	92	94	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	92	93	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	77	82	36 - 142	6
Dibenz(a,h)anthracene	ug/L (ppb)	1	78	85	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	1	68	75	34 - 135	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 907506-01 (Matrix Spike)

Laboratory Code. 907500-01 (M.	atrix spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	$_{ m MS}$	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	80	10-172
Chloromethane	ug/L (ppb)	50	<10	94	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	107	36-166
Bromomethane	ug/L (ppb)	50	<1	92	47-169
Chloroethane	ug/L (ppb)	50	<1	93	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	106	44-165
Acetone	ug/L (ppb)	250	<50	57	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	103	60-136
Hexane	ug/L (ppb)	50	<1	96	52-150
Methylene chloride	ug/L (ppb)	50	5.2	102	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	104	74-127
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	$\frac{102}{102}$	72-129 70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	78	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	4.7	106	71-127
Chloroform	ug/L (ppb)	50	<1	102	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	80	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	104	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	104	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	103	56-152
Benzene	ug/L (ppb)	50	< 0.35	103	76-125
Trichloroethene	ug/L (ppb)	50	<1	101	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	105	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	105	61-150
Dibromomethane	ug/L (ppb)	50	<1	107	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	112	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	105	72-132
Toluene	ug/L (ppb)	50	<1	94	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1 <1	98	76-130
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb)	50 250	<10	104 98	68-131 10-185
1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	103	71-128
Tetrachloroethene	ug/L (ppb)	50	3.7	100	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	104	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	103	69-134
Chlorobenzene	ug/L (ppb)	50	<1	101	77-122
Ethylbenzene	ug/L (ppb)	50	<1	98	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	73-137
m,p-Xylene	ug/L (ppb)	100	<2	99	69-135
o-Xylene	ug/L (ppb)	50	<1	99	60-140
Styrene	ug/L (ppb)	50	<1	102	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	101	65-142
Bromoform	ug/L (ppb)	50	<1	106	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	100	58-144
Bromobenzene	ug/L (ppb)	50	<1	101	75-124
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1 <1	101 108	66-137 51-154
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	103	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	101	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	100	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	102	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	102	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	100	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	102	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	100	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	104	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	103	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	96	60-143
Naphthalene	ug/L (ppb)	50	<1	104	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/19 Date Received: 07/25/19

Project: Precision Engineering, PO 1803.01.01, F&BI 907445

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Education Court Education			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	93	76	25-158	20
Chloromethane	ug/L (ppb)	50	95	87	45-156	9
Vinyl chloride	ug/L (ppb)	50	101	92	50-154	9
Bromomethane	ug/L (ppb)	50	95	88	55-143	8
Chloroethane	ug/L (ppb)	50	98	92	58-146	6
Trichlorofluoromethane	ug/L (ppb)	250	108	101	50-150	7
Acetone	ug/L (ppb)	250	51 vo 102	53	53-131	4 2
1,1-Dichloroethene Hexane	ug/L (ppb) ug/L (ppb)	50 50	102 106	100 108	67-136 57-137	2 2
Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	108	100	39-148	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	107	101	64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	108	102	68-128	6
1,1-Dichloroethane	ug/L (ppb)	50	106	101	79-121	5
2,2-Dichloropropane	ug/L (ppb)	50	120	112	55-143	7
cis-1,2-Dichloroethene	ug/L (ppb)	50	110	106	80-123	4
Chloroform	ug/L (ppb)	50	106	102	80-121	4
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	73 100	81 101	57-149 73-132	10 1
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	100	101	81-125	6
1,1-Dichloropropene	ug/L (ppb)	50	106	104	77-129	2
Carbon tetrachloride	ug/L (ppb)	50	107	102	75-158	5
Benzene	ug/L (ppb)	50	103	102	69-134	1
Trichloroethene	ug/L (ppb)	50	102	100	79-113	2
1,2-Dichloropropane	ug/L (ppb)	50	102	105	77-123	3
Bromodichloromethane	ug/L (ppb)	50	105	105	81-133	0
Dibromomethane	ug/L (ppb)	50	106	109	82-125	3
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	101 107	$\frac{110}{112}$	65-138 82-132	9 5
Toluene	ug/L (ppb)	50	97	95	72-122	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	103	107	80-136	4
1,1,2-Trichloroethane	ug/L (ppb)	50	102	106	75-124	4
2-Hexanone	ug/L (ppb)	250	87	101	60-136	15
1,3-Dichloropropane	ug/L (ppb)	50	99	105	76-126	6
Tetrachloroethene	ug/L (ppb)	50	105	102	76-121	3
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	105 99	107 104	84-133 82-115	2 5
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50	103	104	83-114	5 1
Ethylbenzene	ug/L (ppb)	50	101	100	77-124	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	114	107	84-127	6
m,p-Xylene	ug/L (ppb)	100	103	101	81-112	2
o-Xylene	ug/L (ppb)	50	105	100	81-121	5
Styrene	ug/L (ppb)	50	103	104	84-119	1
Isopropylbenzene	ug/L (ppb)	50	108	102	80-117	6
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	105 108	108 103	74-136 74-126	3 5
Bromobenzene	ug/L (ppb) ug/L (ppb)	50	105	103	80-121	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50	111	103	78-123	7
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	109	109	66-126	0
1,2,3-Trichloropropane	ug/L (ppb)	50	103	103	67-124	0
2-Chlorotoluene	ug/L (ppb)	50	108	102	77-127	6
4-Chlorotoluene	ug/L (ppb)	50	105	102	78-128	3
tert-Butylbenzene 1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	111 110	102 103	80-123 79-122	8 7
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50	110	103	80-116	8
p-Isopropyltoluene	ug/L (ppb)	50	112	103	81-123	8
1,3-Dichlorobenzene	ug/L (ppb)	50	106	103	83-113	3
1,4-Dichlorobenzene	ug/L (ppb)	50	101	98	83-107	3
1,2-Dichlorobenzene	ug/L (ppb)	50	108	101	84-112	7
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	112	106	57-141	6
1,2,4-Trichlorobenzene	ug/L (ppb)	50	120	106	72-130	12
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	115 120	101 104	53-141 64-133	13 14
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	123	104	65-136	16
1,2,0 11101101011110110	agin (ppo)	90	120	100	00 100	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 907445

Work Order Number: 1907337

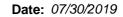
July 30, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 7/25/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 907445 **Work Order:** 1907337

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1907337-001	MW5-W-15.0	07/24/2019 1:45 PM	07/25/2019 10:20 AM
1907337-002	MW7-W-20.0	07/24/2019 4:00 PM	07/25/2019 10:20 AM
1907337-003	MW2-W-19.0	07/24/2019 4:40 PM	07/25/2019 10:20 AM

Case Narrative

WO#: **1907337**Date: **7/30/2019**

CLIENT: Friedman & Bruya

Project: 907445

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1907337**

Date Reported: **7/30/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1907337

Date Reported: **7/30/2019**

CLIENT: Friedman & Bruya

Project: 907445

Lab ID: 1907337-001 **Collection Date:** 7/24/2019 1:45:00 PM

Client Sample ID: MW5-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52886 Analyst: TN

Chromium, Hexavalent 117 45.0 D mg/L 1000 7/25/2019 1:38:00 PM

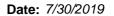
Lab ID: 1907337-002 **Collection Date:** 7/24/2019 4:00:00 PM

Client Sample ID: MW7-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52886 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/25/2019 12:42:00 PM


Lab ID: 1907337-003 **Collection Date:** 7/24/2019 4:40:00 PM

Client Sample ID: MW2-W-19.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52886 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/25/2019 1:01:00 PM

Work Order: 1907337

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 907445							неха	ivalent Ch	romium b	y 51VI 350	O Cr B
Sample ID: MB-R52886	SampType: MBLK			Units: mg/L		Prep Date:	7/25/2019)	RunNo: 528	386	
Client ID: MBLKW	Batch ID: R52886					Analysis Date:	7/25/2019	9	SeqNo: 104	15145	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450									
Sample ID: LCS-R52886	SampType: LCS			Units: mg/L		Prep Date:	7/25/2019	9	RunNo: 528	386	
Client ID: LCSW	Batch ID: R52886					Analysis Date:	7/25/2019	9	SeqNo: 104	15146	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.242	0.0450	0.2500	0	97.0	90	110				
Sample ID: 1907337-002ADUP	SampType: DUP			Units: mg/L		Prep Date:	7/25/2019	9	RunNo: 528	386	
Client ID: MW7-W-20.0	Batch ID: R52886					Analysis Date:	7/25/2019	9	SeqNo: 104	15149	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450						0		30	
Sample ID: 1907337-002AMS	SampType: MS			Units: mg/L		Prep Date:	7/25/2019	9	RunNo: 52 8	386	
Client ID: MW7-W-20.0	Batch ID: R52886					Analysis Date:	7/25/2019	9	SeqNo: 104	15150	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.253	0.0450	0.2500	0	101	65	135				
Sample ID: 1907337-002AMSD	SampType: MSD			Units: mg/L		Prep Date:	7/25/2019	9	RunNo: 52 8	386	
Client ID: MW7-W-20.0	Batch ID: R52886					Analysis Date:	7/25/2019	9	SeqNo: 104	15151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.244	0.0450	0.2500	0	97.5	65	135	0.2530	3.74	30	

Original Page 6 of 8

Sample Log-In Check List

CI	ient Name:	FB		Work Order Nur	mber: 1907337		
Lo	gged by:	Clare Griggs		Date Received:	7/25/2019	10:20:00 AM	
<u>Cha</u>	in of Custo	<u>ody</u>					
1.	Is Chain of C	ustody complete?		Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>FedEx</u>			
<u>Log</u>	<u>In</u>						
_	Coolers are p	present?		Yes	No 🗸	na 🗆	
				No cooler pres	ent.		
4.	Shipping con	tainer/cooler in good condition	?	Yes 🗸	No \square		
		ls present on shipping containe nments for Custody Seals not i		Yes	No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples?	•	Yes 🗸	No 🗌	NA \square	
7.	Were all item	s received at a temperature of		Yes	No 🗸	NA \square	
	0		<u> </u>	Refer to item infor			
_		proper container(s)?	- \ 0	Yes 🗹	No 🗆		
		nple volume for indicated test(S)?	Yes 🗸	No L		
		properly preserved?		Yes ✓	No □	NIA 🖂	
11.	was preserva	ative added to bottles?		Yes □	No 🗸	NA 🗌	
12.	Is there head	space in the VOA vials?		Yes	No 🗌	NA 🗹	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes 🗸	No 🗌		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes 🗹	No 🗌		
		at analyses were requested?	•	Yes 🗸	No 🗌		
17.	Were all hold	ing times able to be met?		Yes 🗸	No 🗌		
Sno	cial Handl	ing (if applicable)					
		otified of all discrepancies with	this order?	Yes	No 🗆	NA 🗹	
10.						IVA 🖭	
		Notified:	Date			7. 5	
	By Who		Via:	eMail F	Phone Fax [In Person	
	Regardi	ng: nstructions:					
		,					
19.	Additional rer	narks:					
<u>ltem l</u>	<u>nformation</u>						
	Commit	Item #	Temp °C				
	Sample		11.6				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

PROJECT NAME/NO.

Shakob

A-331

Rush charges authorized by:

SAMPLE DISPOSAL

XStandard (2 Weeks)

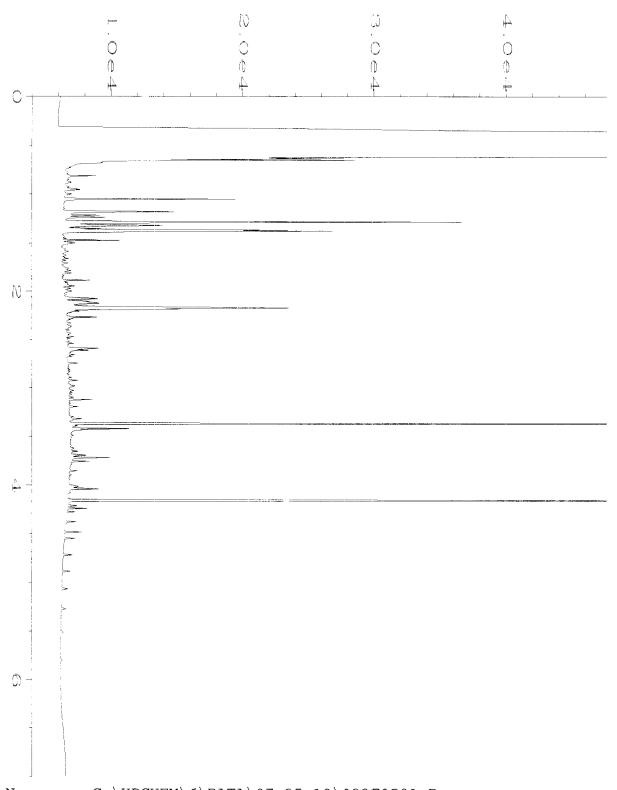
Page 8 of 8

TURNAROUND TIME

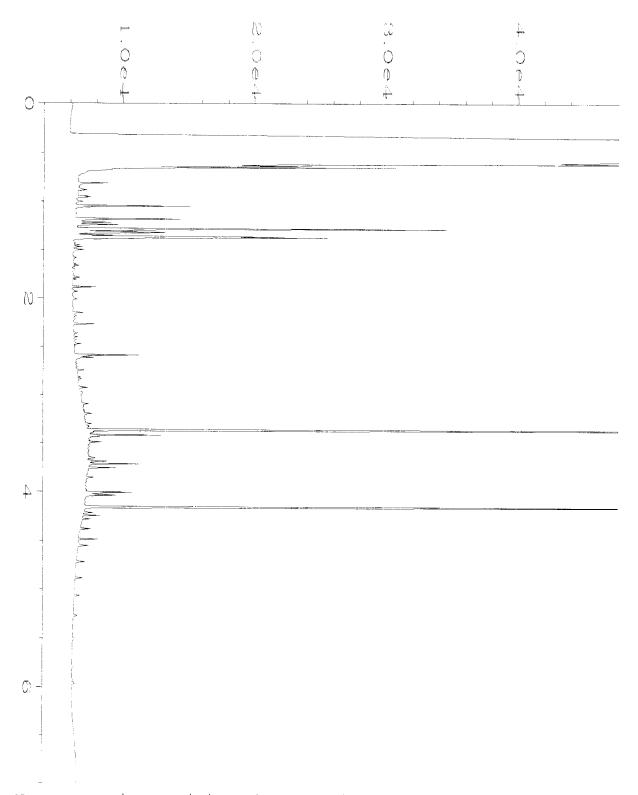
PO#

Address

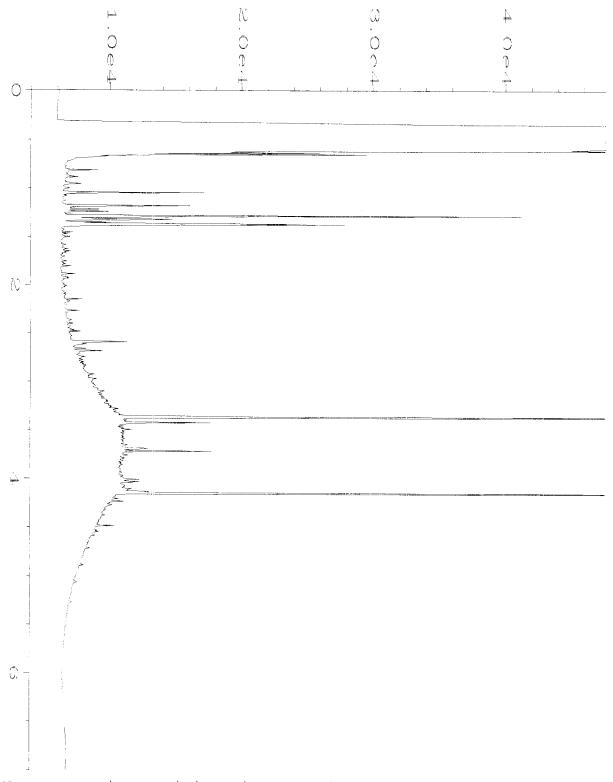
3012 16th Ave W

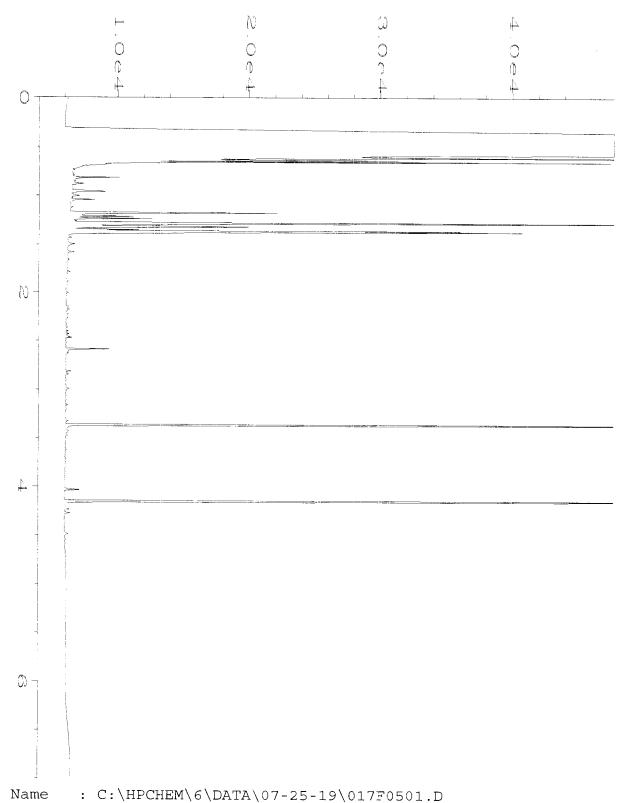

REMARKS

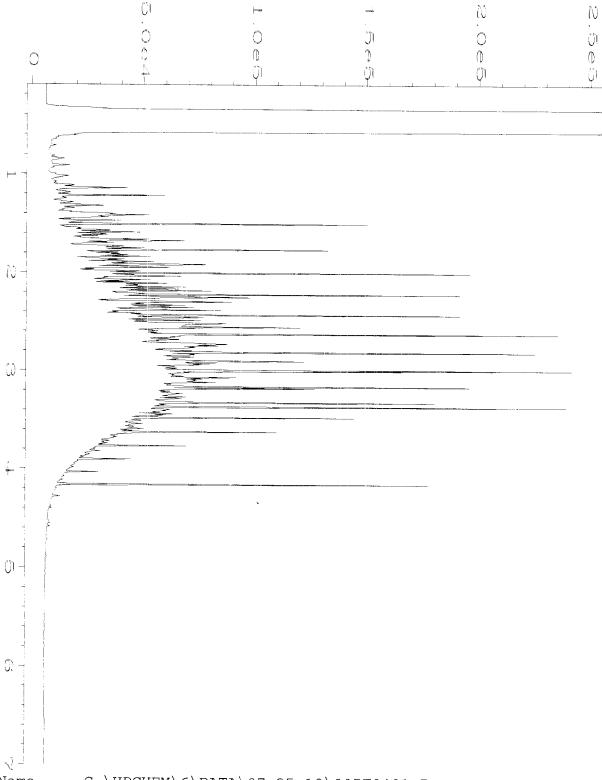
Friedman and Bruya, Inc.


Company_

Send Report To Michael Erdahl


	<i>a</i> 4		e collection		(4	Relinquished by: Received by:		Ph. (206) 285-8282 Fax (206) 283-5044
Hoi	21819	147	Alcaular	Edvando	in	1	The state of the s	Received by:	2029	Seattle, WA 98119-2029
MAIS: FB	1/x/t	Friedman & Bruya		Michael Erdahl	Micha	0	A	Relinquished by:	West	3012 16th Avenue West
TIME	DATE	COMPANY	PRINT NAME	PRINT		9	SIGNATURE		Inc	Friedman & Bruva Inc
	9									
	7									
. 4										
		•					olol	+		WM7-W-1-110
			· ×		-		C'un's			TWA W. Co.
			×		-		1600			MW7. W-70.0
			×		-	witer	1345	7/24/19		MW5-W-15.0
Notes	No		VPH Cr.MI	Dioxins/Furans EPH	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
		ANALYSES REQUESTED	ANALYSES							
ons	☐ Return samples ☐ Will call with instructions		esults	Please Email Results	Ple		Fax # (206) 283-5044	Fax #_ (20	-8282	Phone # (206) 285-8282 Fax # (
	☐ Dispose after 30 days	☐ Dispose	FOUL EDD		-	-		117A AQ110	-141-	an or or or


```
Data File Name
               : C:\HPCHEM\6\DATA\07-25-19\023F0501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
                                               Vial Number
Instrument
                 : GC6
                                                                : 23
Sample Name
                 : 907445-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                : 25 Jul 19 05:44 PM
Acquired on
                                               Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:30 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-25-19\024F0501.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC6
                                                                  : 24
Sample Name
                 : 907445-02
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
                                                Instrument Method: DX.MTH
Acquired on
             : 25 Jul 19 05:55 PM
Report Created on: 26 Jul 19 11:30 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\6\DATA\07-25-19\025F0501.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC6
                                               Vial Number
                                                            : 25
Sample Name
                : 907445-03
                                               Injection Number: 1
Run Time Bar Code: Acquired on :
                                               Sequence Line : 5
             : 25 Jul 19 06:06 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:30 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
Operator
                : TL
                                             Page Number
                                                         : 1
: 17
Instrument
                                             Vial Number
                : GC6
Sample Name
               : 09-1784 mb2
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 5
Acquired on
            : 25 Jul 19 04:36 PM
                                             Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:29 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-25-19\005F0401.D
Operator
                 : TL
                                                 Page Number
Instrument
                                                 Vial Number
                 : GC6
Sample Name
                 : 1000 Dx 57-78B
                                                 Injection Number: 1
Sequence Line: 4
Run Time Bar Code:
Acquired on
             : 25 Jul 19 04:00 PM
                                                 Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:29 AM
                                                 Analysis Method : DEFAULT.MTH
```

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. City, State, ZIP Seathe, WA 98121 Address 2815 2nd Amone, Suite 540 Company May Foster Along MW5-W-150 Report To Marideth O'hadra/Rysin Lewis MW7-W-200 Sample ID Email Ind andres Received by: Relinquished by: Received by: Relinquished by: 03 A.F. OBA-G 01 A-G Lab ID SIGNATURE 72416 D11 12/11 Sampled SAMPLE CHAIN OF CUSTODY Time Sampled 049 24S 000 PRECISION Engineery SAMPLERS (signature) PROJECT NAME Sample Type NAMA # of Jars PRINT NAME Q TPH-HCID TPH-Gasoline BTEX by 8021B ANALYSES REQUESTED 103,01,01 VOCs by 8260C INVOICE TO 多 Samples received ME 07/88/19 SVOCs by 8270D PO# PAHs 8270D SIM COMPANY Heres Clovene Obsidues Metals Christian, Ci. As, Sc □ Dispose after 30 days □ Archive Samples 0ther XStandard Turnaround Rush charges authorized by: 2 TURNAROUND TIME SAMPLE DISPOSAL DATE ကိ Notes TIME

+ 辦

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 5, 2019

Merideth D'Andrea, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms D'Andrea:

Included are the results from the testing of material submitted on July 24, 2019 from the Precision Engineering 1803.01.01, F&BI 907430 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Ryan Lewis MFA0805R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 24, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 907430 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u> Maul Foster Alongi</u>
907430 -01	MW4-W-20.0
907430 -02	MWDUP-W-20.0
907430 -03	MW1-W-35.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The $8260\mathrm{C}$ calibration standard failed the acceptance criteria for 2,2-dichloropropane. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907430

Date Extracted: 07/25/19 Date Analyzed: 07/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 51-134)
MW4-W-20.0 907430-01	<50	<250	80
MWDUP-W-20.0 907430-02	<50	<250	77
MW1-W-35.0 907430-03	<50	<250	104
Method Blank 09-1784 MB2	<50	<250	86

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/29/19 Lab ID: 907430-01 Date Extracted: Date Analyzed: 08/01/19 Data File: 907430-01.090 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

Arsenic 12.6
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MWDUP-W-20.0	Client:	Maul Foster Alongi
-------------------------	---------	--------------------

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 907430-02 07/29/19 Date Analyzed: 08/01/19 Data File: 907430-02.091 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

Arsenic 13.3
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/29/19 Lab ID: 907430-03 Date Extracted: Date Analyzed: 08/01/19 Data File: 907430-03.092 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Analyte: Concentration ug/L (ppb)

 Arsenic
 33.3

 Chromium
 <1</td>

 Copper
 <5</td>

 Selenium
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

07/29/19 Lab ID: Date Extracted: I9-457 mb Date Analyzed: 07/30/19 Data File: I9-457 mb.040 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration ug/L (ppb)

Arsenic <1 Chromium <1 Copper <5 Selenium <1

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW4-W-20.0	Client:	Maul Foster Alongi

Date Received: 07/24/19Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 07/30/19 907430-01 1/2 Date Analyzed: 07/30/19 Data File: 073022.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MWDUP-W-20.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: 07/24/19Project: Precision Engineering 1803.01.01 Lab ID: Date Extracted: 07/30/19 907430-02 1/2

Date Analyzed: 07/30/19 Data File: 073023.DWater Matrix: Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Upper Limit: 160 Lower Surrogates: Limit: 31 % Recovery: Anthracene-d10 84 Benzo(a)anthracene-d12 89 $\overline{25}$ 165

	Concentration
Compounds:	ug/L (ppb)
Northalana	< 0.4
Naphthalene	
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW1-W-35.0	Client:	Maul Foster Alongi

 Date Received:
 07/24/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/30/19
 Lab ID:
 907430-03 1/2

 Date Analyzed:
 07/30/19
 Data File:
 073024.D

 Matrix:
 Western
 Instrument:
 CCMS6

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

	Concentration	
Compounds:	ug/L (ppb)	
Naphthalene	< 0.4	
Acenaphthylene	< 0.04	
Acenaphthene	< 0.04	
Fluorene	< 0.04	
Phenanthrene	< 0.04	
Anthracene	< 0.04	
Fluoranthene	< 0.04	
Pyrene	< 0.04	
Benz(a)anthracene	< 0.04	
Chrysene	< 0.04	
Benzo(a)pyrene	< 0.04	
Benzo(b)fluoranthene	< 0.04	
Benzo(k)fluoranthene	< 0.04	
Indeno(1,2,3-cd)pyrene	< 0.04	
Dibenz(a,h)anthracene	< 0.04	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 07/30/19 Date Extracted: 09-1816 mb Date Analyzed: 07/30/19 Data File: 073019.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW4-W-20.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1 ca	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MWDUP-W-20.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 907430-0207/25/19 Date Analyzed: 07/25/19 Data File: $072552.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1 ca	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW1-W-35.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/25/19 Lab ID: 907430-03 Date Extracted: Date Analyzed: 07/25/19 Data File: 072553.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1 ca	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

07/25/19 Lab ID: Date Extracted: 09-1694 mb Date Analyzed: 07/25/19 Data File: 072513.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1 ca	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	72	68	58-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 907486-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.72	107	106	75-125	1
Chromium	ug/L (ppb)	20	<1	102	103	75 - 125	1
Copper	ug/L (ppb)	20	<5	92	92	75 - 125	0
Selenium	ug/L (ppb)	5	<1	108	107	75-125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	106	80-120
Chromium	ug/L (ppb)	20	96	80-120
Copper	ug/L (ppb)	20	95	80-120
Selenium	ug/L (ppb)	5	107	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

·		•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	71	76	57-114	7
Acenaphthylene	ug/L (ppb)	1	81	84	65-119	4
Acenaphthene	ug/L (ppb)	1	80	84	66-118	5
Fluorene	ug/L (ppb)	1	84	88	64 - 125	5
Phenanthrene	ug/L (ppb)	1	84	87	67-120	4
Anthracene	ug/L (ppb)	1	84	87	65 - 122	4
Fluoranthene	ug/L (ppb)	1	95	97	65 - 127	2
Pyrene	ug/L (ppb)	1	93	96	62-130	3
Benz(a)anthracene	ug/L (ppb)	1	92	95	60-118	3
Chrysene	ug/L (ppb)	1	90	93	66 - 125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	94	98	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	92	94	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	92	93	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	77	82	36 - 142	6
Dibenz(a,h)anthracene	ug/L (ppb)	1	78	85	37-133	9
Benzo(g,h,i)perylene	ug/L (ppb)	1	68	75	34 - 135	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907430

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

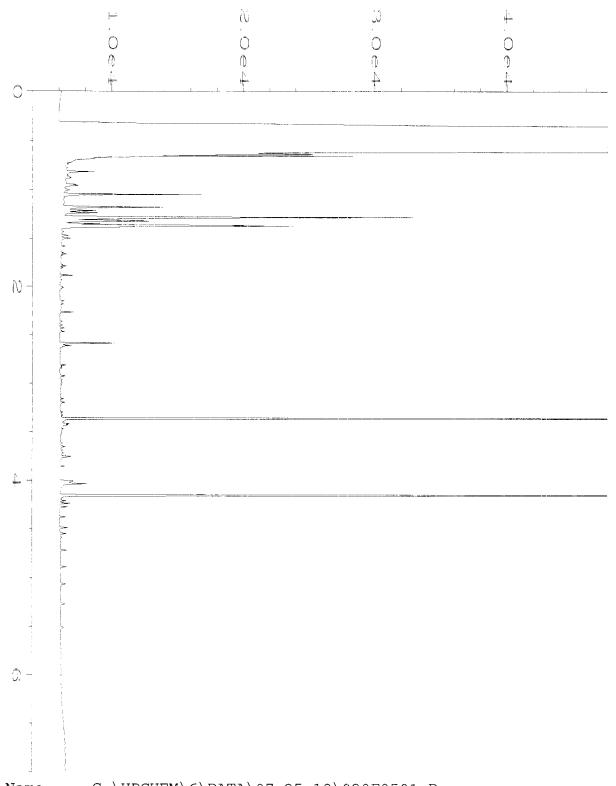
Laboratory Code: 907431-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	103	10-172
Chloromethane	ug/L (ppb)	50	<10	94	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	102	36-166
Bromomethane	ug/L (ppb)	50	<1	94	47-169
Chloroethane	ug/L (ppb)	50	<1	96	46-160
Trichlorofluoromethane Acetone	ug/L (ppb)	$\frac{50}{250}$	<1 <50	103 55	44-165 10-182
1.1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	98	60-136
Hexane	ug/L (ppb)	50 50	<1	96 89	52-150
Methylene chloride	ug/L (ppb)	50	<5	96	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	100	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	99	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	73	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	2.6	102	71-127
Chloroform	ug/L (ppb)	50	<1	100	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	80	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	100	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	101	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	101	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	101	56-152
Benzene	ug/L (ppb)	50	< 0.35	100	76-125
Trichloroethene	ug/L (ppb)	50 50	15 <1	99 b 102	66-135
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1	102	78-125 61-150
Dibromomethane	ug/L (ppb)	50	<1	106	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	110	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	102	72-132
Toluene	ug/L (ppb)	50	<1	95	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	99	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	105	68-131
2-Hexanone	ug/L (ppb)	250	<10	101	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	104	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	99	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	106	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	104	69-134
Chlorobenzene	ug/L (ppb)	50	<1	102	77-122
Ethylbenzene	ug/L (ppb)	50	<1	98	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50 100	<1 <2	107	73-137
m,p-Xylene	ug/L (ppb)	50	<2 <1	100 99	69-135 60-140
o-Xylene Styrene	ug/L (ppb) ug/L (ppb)	50 50	<1	98	71-133
Isopropylbenzene	ug/L (ppb)	50 50	<1	101	65-142
Bromoform	ug/L (ppb)	50	<1	107	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	101	58-144
Bromobenzene	ug/L (ppb)	50	<1	103	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	102	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	110	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	105	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	101	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	101	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	102	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50 50	<1 <1	102 101	64-140 65-141
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/L (ppb)	50 50	<1 <1	101	65-141 72-123
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	98	69-126
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	98 102	69-126
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	105	32-164
1.2.4-Trichlorobenzene	ug/L (ppb)	50	<1	103	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	96	60-143
Naphthalene	ug/L (ppb)	50	<1	103	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	103	69-148
* * * * * * * * * * * * * * * * * * * *	o (1.F=)				

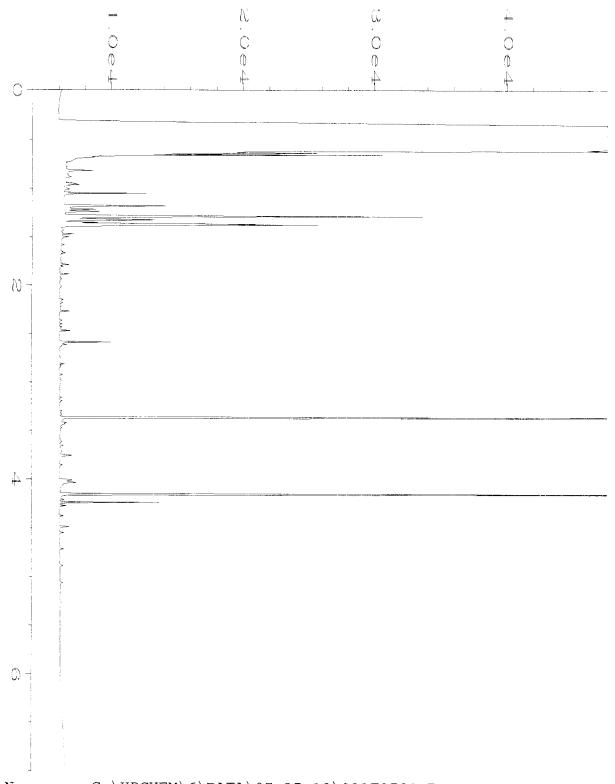
ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

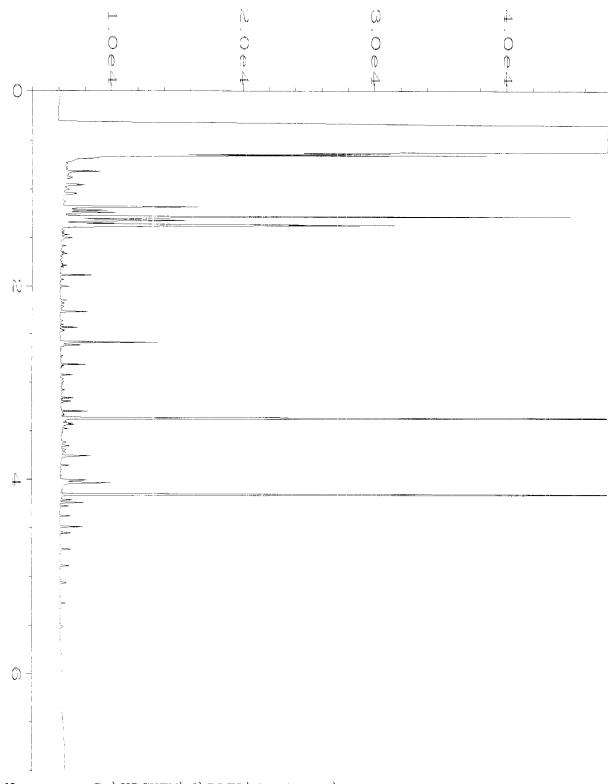
Project: Precision Engineering 1803.01.01, F&BI 907430

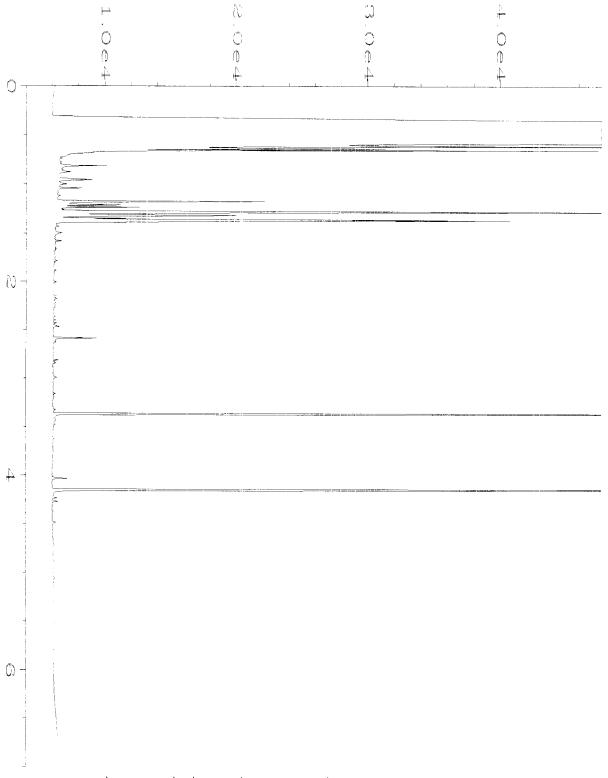

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

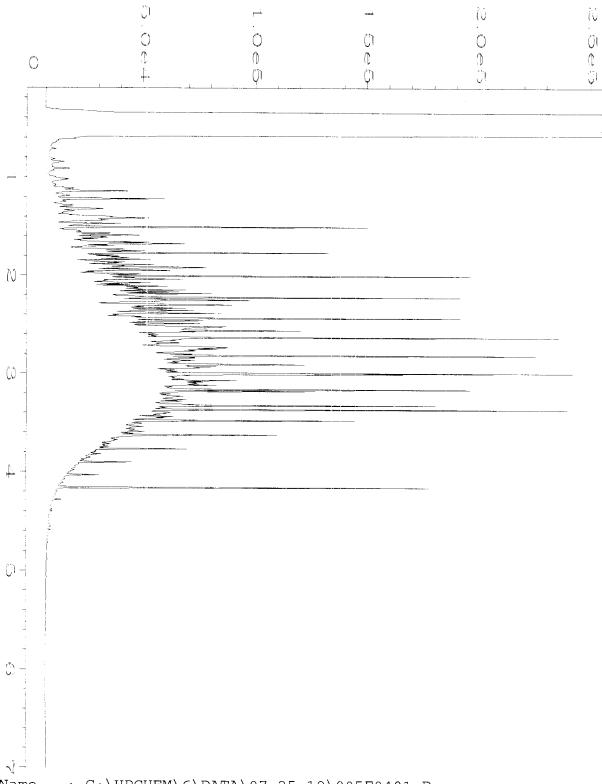
Zazoratory coue. Zazoratory c	one of wantpro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	101	102	25-158	1
Chloromethane	ug/L (ppb)	50	98	98	45-156	0
Vinyl chloride	ug/L (ppb)	50	105	107	50-154	2
Bromomethane	ug/L (ppb)	50	100	102	55-143	2
Chloroethane	ug/L (ppb)	50	98	100	58-146	2
Trichlorofluoromethane	ug/L (ppb)	250	107	108	50-150	1
Acetone	ug/L (ppb)	250	61	61	53-131	0
1,1-Dichloroethene Hexane	ug/L (ppb) ug/L (ppb)	50 50	99 98	102 98	67-136 57-137	3
Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	93	105	39-148	12
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	103	105	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	101	104	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	100	102	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	114	114	55-143	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	105	106	80-123	1
Chloroform	ug/L (ppb)	50	102	102	80-121	0
2-Butanone (MEK)	ug/L (ppb)	250	83	83	57-149	0
1,2-Dichloroethane (EDC) 1,1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	100 103	100 106	73-132 81-125	0
1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	50	103	103	77-129	0
Carbon tetrachloride	ug/L (ppb)	50	104	104	75-158	0
Benzene	ug/L (ppb)	50	100	100	69-134	ő
Trichloroethene	ug/L (ppb)	50	100	99	79-113	1
1,2-Dichloropropane	ug/L (ppb)	50	101	101	77-123	0
Bromodichloromethane	ug/L (ppb)	50	103	103	81-133	0
Dibromomethane	ug/L (ppb)	50	106	106	82-125	0
4-Methyl-2-pentanone	ug/L (ppb)	250	111	109	65-138	2 1
cis-1,3-Dichloropropene Toluene	ug/L (ppb) ug/L (ppb)	50 50	108 94	107 94	82-132 $72-122$	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	104	102	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	50	104	103	75-124	1
2-Hexanone	ug/L (ppb)	250	101	99	60-136	2
1,3-Dichloropropane	ug/L (ppb)	50	102	101	76-126	1
Tetrachloroethene	ug/L (ppb)	50	100	101	76-121	1
Dibromochloromethane	ug/L (ppb)	50	106	105	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	104	103	82-115	1
Chlorobenzene Ethylbenzene	ug/L (ppb)	50 50	101 99	101 99	83-114 77-124	0
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	99 107	99 107	84-127	0
m,p-Xylene	ug/L (ppb)	100	100	100	81-112	0
o-Xylene	ug/L (ppb)	50	100	100	81-121	0
Styrene	ug/L (ppb)	50	103	103	84-119	0
Isopropylbenzene	ug/L (ppb)	50	102	103	80-117	1
Bromoform	ug/L (ppb)	50	109	108	74-136	1
n-Propylbenzene	ug/L (ppb)	50	103	103	74-126	0
Bromobenzene	ug/L (ppb)	50	103	102	80-121	1 0
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	103 110	103 109	78-123 66-126	0 1
1,2,3-Trichloropropane	ug/L (ppb)	50	105	103	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	102	102	77-127	0
4-Chlorotoluene	ug/L (ppb)	50	102	101	78-128	1
tert-Butylbenzene	ug/L (ppb)	50	103	102	80-123	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	103	103	79-122	0
sec-Butylbenzene	ug/L (ppb)	50	103	103	80-116	0
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/L (ppb)	50 50	104 104	103 103	81-123 83-113	1 1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	104 98	103 98	83-113 83-107	0
1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	103	103	84-112	0
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	110	109	57-141	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	106	107	72-130	1
Hexachlorobutadiene	ug/L (ppb)	50	101	102	53-141	1
Naphthalene	ug/L (ppb)	50	106	106	64-133	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	104	105	65-136	1


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                : C:\HPCHEM\6\DATA\07-25-19\020F0501.D
Operator
                : TL
                                              Page Number
                                                               : 1
Instrument
                                              Vial Number : 20
                : GC6
Sample Name
                : 907430-01
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on
                : 25 Jul 19 05:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:30 AM
                                              Analysis Method : DEFAULT.MTH
```




```
Data File Name
                 : C:\HPCHEM\6\DATA\07-25-19\021F0501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                                               Vial Number
                 : GC6
                                                                : 21
Sample Name
                                               Injection Number: 1
                 : 907430-02
                                               Sequence Line
Run Time Bar Code:
Acquired on
                : 25 Jul 19 05:21 PM
                                               Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:30 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\07-25-19\022F0501.D
Data File Name
Operator
                : TL
                                              Page Number
                                                              : 1
                                              Vial Number
Instrument
                : GC6
                                                              : 22
Sample Name
                : 907430-03
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on
                : 25 Jul 19 05:32 PM
                                              Instrument Method: DX.MTH
Report Created on: 26 Jul 19 11:30 AM
                                              Analysis Method : DEFAULT.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 907430

Work Order Number: 1907331

July 30, 2019

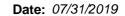
Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 7/24/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 907430 **Work Order:** 1907331

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1907331-001	MW4-W-20.0	07/24/2019 9:05 AM	07/24/2019 3:19 PM
1907331-002	MWDUP-W-20.0	07/24/2019 9:10 AM	07/24/2019 3:19 PM
1907331-003	MW1-W-35.0	07/24/2019 11:40 AM	07/24/2019 3:19 PM

Case Narrative

WO#: **1907331**Date: **7/30/2019**

CLIENT: Friedman & Bruya

Project: 907430

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1907331

Date Reported: **7/30/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1907331

Date Reported: **7/30/2019**

CLIENT: Friedman & Bruya

Project: 907430

Lab ID: 1907331-001 **Collection Date:** 7/24/2019 9:05:00 AM

Client Sample ID: MW4-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 4:24:00 PM

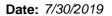
Lab ID: 1907331-002 **Collection Date:** 7/24/2019 9:10:00 AM

Client Sample ID: MWDUP-W-20.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 4:29:00 PM


Lab ID: 1907331-003 **Collection Date:** 7/24/2019 11:40:00 AM

Client Sample ID: MW1-W-35.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 4:34:00 PM

Work Order: 1907331

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 907430							nexavalent Cr	nromium by Sivi 350	iu Cr E
Sample ID: MB-R52853	SampType: MBLK			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: MBLKW	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044492	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450							
Sample ID: LCS-R52853	SampType: LCS			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: LCSW	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044493	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.248	0.0450	0.2500	0	99.1	90	110		
Sample ID: 1907319-002ADUP	SampType: DUP			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: BATCH	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044495	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450					0	30	
Sample ID: 1907319-002AMS	SampType: MS			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: BATCH	Batch ID: R52853				į	Analysis Date:	7/24/2019	SeqNo: 1044496	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.308	0.0450	0.2500	0	123	65	135		
Sample ID: 1907319-002AMSD	SampType: MSD			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: BATCH	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044497	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.262	0.0450	0.2500	0	105	65	135 0.3085	16.2 30	

Original Page 6 of 8

Sample Log-In Check List

С	lient Name:	FB		Work O	rder Num	nber: 1907331		
Lo	ogged by:	Clare Griggs		Date Re	eceived:	7/24/2019	3:19:00 PM	
<u>Cha</u>	in of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?		<u>FedE</u>	<u> </u>			
<u>Log</u>	ıIn							
	Coolers are p	resent?		Yes	✓	No 🗌	NA \square	
						_		
4.	Shipping conf	ainer/cooler in good condition	?	Yes	✓	No 🗌		
5.		s present on shipping contain ments for Custody Seals not		Yes		No 🗸	Not Required	
6.	Was an atten	npt made to cool the samples'	•	Yes	✓	No 🗌	na 🗆	
7.	Were all item	s received at a temperature of	>0°C to 10.0°C*	Yes	✓	No 🗆	NA \square	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square		
10.	Are samples	properly preserved?		Yes	✓	No \square		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗸	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes	✓	No \square		
Spe	cial Handli	ing (if applicable)						
18.	Was client no	stified of all discrepancies with	this order?	Yes		No \square	NA 🗹	
	Person	Notified:	Da	nte:				
	By Who	m:	Via	a: eMa	iil 🗌 Pl	hone Fax [In Person	
	Regardi	ng:						
	Client In	structions:						
19.	Additional rer	narks:						
ltem	<u>Information</u>							
		Item #	Temp °C					
	Cooler		9.3					

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

8.3

Sample

SUBCONTRACT SAMPLE CHAIN OF CUSTODY SUBCONTRACTER Fame

Page #_

Seattle Ph. (20 Fax (20	30121	Friedm					I		MW)-	MW	3	S		City, Stat	Address	Company	Send		
Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044	3012 16th Avenue West	Friedman & Bruya, Inc.							- W-35.0	MWDUP-W-20	MW4-W-29C	Sample ID		e, ZIP_(206) 2		any	Send Report To		
2029	Vest	Inc.								0	0	Lab ID		Seattle, 5-8282	3012 16	Friedm	Michae		
Received by: Relinquished by: Received by:	Relinquished by:								7/24/19	7/24/19	7/24/19	Date Sampled		Seattle, WA 98119 85-8282 Fax #_ (2	3012 16th Ave W	Friedman and Bruya, Inc.	Michael Erdahl		
The state of the s	Si A	SIGNATURE					,		= 8	910	gos	Time Sampled		(206) 283-5044		a, Inc.			
	1)							Water	water	Water	Matrix		RE		PR	USU		
	Mich									-	1	# of jars		REMARKS Ple	90	PROJECT NAME/NO.	SUBCONTRACTER		
Edva	el Erdahl	el Erdahl	Michael Erdahl	P.										Dioxins/Furan	s	ease E	907430	NAME	TRACT
Edvardo Alcautar				RINT										EPH		mail R	0	NO.	ER f
logy		NAME.						Ш				VPH		esults			7		
tar Sot	7	-	+		+				×	×	×	CrVI	ANALYSES REQUESTED	RS Please Email Results €0015 €010			7		
6		-	+			- 7	-		+	-			SES R	12 5	A-331	P(
FAI	Friedman & Bruya		+				-	H		+			EQUI	00	_	PO#			
	lan &]	COMPANY		\forall				H	•	+		11.90	STEI						
	Bruya	ANY										÷ .		□ Disp □ Retu □ Will	Rush c	Standa RUSH			
- 0														SAMPLE I Dispose after 30 Return samples Will call with in	charges	ndard (TURNA		
Ma	T	DATE			8							Z		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by:	EStandard (2 Weeks) □ RUSH	TURNAROUND TIME		
6781		TIME						÷				Notes		OSAL ; tions	d by:		TIME		
		_}		ــــــــــــــــــــــــــــــــــــــ											Pa	age 8	 3 of 8		

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Company Maul Fester Along City, State, ZIP Sextle, WA Address 2815 2nd Ave Sufe 540 Report To Mendelly Dandrea / Hun MWDUP-W-200 MW4-W-20.0 MW1-10-35,0 907430 Sample ID Email m dandes @ man fosterion Relinquished by: Received by: Relinquished by: Received by: 02 0,20 014-617/24/19 Lab ID SIGNATURE 78121 7/24/19 Sampled 1/24/19/1285 206 B SAMPLE CHAIN OF CUSTODY Time Sampled Mecish the means SAMPLERS (signature) REMARKS PROJECT NAME Sample \sum Type ح I'VE WORDEN-BOWL # of Jars PRINT NAME TPH-HCID 乂. ሄ TPH-Diesel Pe, TPH-Gasoline ANALYSES REQUESTED (0,10.Ed) ME 07-24-19 VOCs by 8260C INVOICE TO SVOCs by 8270D PO# <u>ス</u> 名 可以内 COMPANY Samples received at ☐ Archive Samples☐ Other_____ ☐ Dispose after 30 days KStandard Turnaround Rush charges authorized by: Page # ______of ____ SAMPLE DISPOSAL 805/ り下の行 1124/14 DATE Notes 1.237 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 5, 2019

Merideth D'Andrea, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms D'Andrea:

Included are the results from the testing of material submitted on July 24, 2019 from the Precision Engineering 1803.01.01, F&BI 907410 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Ryan Lewis MFA0805R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 24, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 907410 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
907410 -01	MW-8-W-19.0
907410 -02	MW-9-W-33.0
907410 -03	MW-10-W-15.0
907410 -04	MW-6-W-15.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

A 6020B internal standard failed the acceptance criteria for sample MW-8-W-19.0. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

The 8260C sample MW-6-W-15.0 was analyzed at a dilution due to matrix effect (foamy). The reporting limits were raised accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907410

Date Extracted: 07/24/19 Date Analyzed: 07/24/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-134)
MW-8-W-19.0 907410-01	370 x	<250	88
MW-9-W-33.0 907410-02	110 x	<250	85
MW-10-W-15.0 907410-03	370 x	<250	91
MW-6-W-15.0 907410-04	550 x	580 x	54
Method Blank	<50	<250	75

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW-8-W-19.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907410-01 x2

 Date Analyzed:
 08/01/19
 Data File:
 907410-01 x2.034

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

 Arsenic
 20.4

 Chromium
 7.55 J

 Copper
 44.7

 Selenium
 2.99

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW-8-W-19.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium 8.82

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-9-W-33.0	Client:	Maul Foster Alongi
		-	

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 907410-0207/29/19Date Analyzed: 08/01/19 Data File: 907410-02.035 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

	Concentration
Analyte:	ug/L (ppb)

Arsenic	9.26
Chromium	1.56
Copper	5.87
Selenium	2.70

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 907410-03 07/29/19 Date Analyzed: 08/01/19 Data File: 907410-03.084 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

 Arsenic
 16.2

 Chromium
 7.96

 Copper
 <5</td>

 Selenium
 4.34

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client:	Maul Foster Alongi
(Client:

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907410-04 x10

 Date Analyzed:
 08/01/19
 Data File:
 907410-04 x10.085

	Concentration
Analyte:	ug/L (ppb)

Arsenic 42.8
Chromium 34.5
Copper 210
Selenium 11.8

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

Arsenic <1
Chromium <1
Copper <5
Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-8-W-19.0	Client:	Maul Foster Alongi

 Date Received:
 07/24/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907410-01 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072505.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	74	31	160
Benzo(a)anthracene-d12	88	25	165

< 0.04

< 0.04

< 0.04

< 0.04

Concentration Compounds: ug/L (ppb) Naphthalene < 0.4 Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-9-W-33.0	Client:	Maul Foster Alongi

 Date Received:
 07/24/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907410-02 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072506.D

 Matrix
 Water
 COMSC

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 94 31 160 Benzo(a)anthracene-d12 112 25 165

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW-10-W-15.0	Client:	Maul Foster Alongi
-------------------	--------------	---------	--------------------

 Date Received:
 07/24/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907410-03 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072507 D

Date Analyzed:07/25/19Data File:072507.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Concentration ug/L (ppb) Nonhthologo

< 0.4 Naphthalene Acenaphthylene < 0.04 Acenaphthene < 0.04 Fluorene < 0.04 Phenanthrene < 0.04 Anthracene < 0.04 Fluoranthene < 0.04 Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04 Benzo(g,h,i)perylene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: MW-6-W-15.0 C.	lient: Maul Foster Alongi
----------------------------------	---------------------------

 Date Received:
 07/24/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907410-04 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072508.D

Date Analyzed: 07/25/19 Data File: 072508.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.4
Acenaphthylene	< 0.04
Acenaphthene	< 0.04
Fluorene	< 0.04
Phenanthrene	< 0.04
Anthracene	< 0.04
Fluoranthene	< 0.04
Pyrene	< 0.04
Benz(a)anthracene	< 0.04
Chrysene	< 0.04
Benzo(a)pyrene	< 0.04
Benzo(b)fluoranthene	< 0.04
Benzo(k)fluoranthene	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.04
Dibenz(a,h)anthracene	< 0.04
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: 07/24/19 Date Extracted: 09-1772 mb2Date Analyzed: 07/25/19 Data File: 072437.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-8-W-19.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/25/19 Lab ID: 907410-01 Date Extracted: Date Analyzed: 07/25/19 Data File: $072515.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-9-W-33.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/25/19 Lab ID: 907410-02Date Extracted: Date Analyzed: 07/25/19 Data File: $072516.\mathrm{D}$ Matrix: Water Instrument: GCMS4Units: ug/L (ppb) MS/AEN Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-W-15.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8 4-Bromofluorobenzene	100 96	63 60	127 133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1 ca	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-6-W-15.0 Client: Maul Foster Alongi

Date Received: 07/24/19 Project: Precision Engineering 1803.01.01

07/25/19 Lab ID: 907410-04 1/10 Date Extracted: Date Analyzed: 07/25/19 Data File: 072514.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<10
Chloromethane	<100	Tetrachloroethene	<10
Vinyl chloride	<2	Dibromochloromethane	<10
Bromomethane	<10	1,2-Dibromoethane (EDB)	<10
Chloroethane	<10	Chlorobenzene	<10
Trichlorofluoromethane	<10	Ethylbenzene	<10
Acetone	< 500	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	<20
Hexane	<10	o-Xylene	<10
Methylene chloride	< 50	Styrene	<10
Methyl t-butyl ether (MTBE)	<10	Isopropylbenzene	<10
trans-1,2-Dichloroethene	<10	Bromoform	<10
1,1-Dichloroethane	<10	n-Propylbenzene	<10
2,2-Dichloropropane	<10	Bromobenzene	<10
cis-1,2-Dichloroethene	<10	1,3,5-Trimethylbenzene	<10
Chloroform	<10	1,1,2,2-Tetrachloroethane	<10
2-Butanone (MEK)	<100	1,2,3-Trichloropropane	<10
1,2-Dichloroethane (EDC)	<10	2-Chlorotoluene	<10
1,1,1-Trichloroethane	<10	4-Chlorotoluene	<10
1,1-Dichloropropene	<10	tert-Butylbenzene	<10
Carbon tetrachloride	<10	1,2,4-Trimethylbenzene	<10
Benzene	< 3.5	sec-Butylbenzene	<10
Trichloroethene	<10	p-Isopropyltoluene	<10
1,2-Dichloropropane	<10	1,3-Dichlorobenzene	<10
Bromodichloromethane	<10	1,4-Dichlorobenzene	<10
Dibromomethane	<10	1,2-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dibromo-3-chloropropane	<100
cis-1,3-Dichloropropene	<10	1,2,4-Trichlorobenzene	<10
Toluene	<10	Hexachlorobutadiene	<10
trans-1,3-Dichloropropene	<10	Naphthalene	<10
1,1,2-Trichloroethane	<10	1,2,3-Trichlorobenzene	<10
2-Hexanone	<100		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 07/25/19 09-1694 mb Date Analyzed: 07/25/19 Data File: 072513.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907410

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	72	68	58-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907410

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 907486-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.72	107	106	75-125	1
Chromium	ug/L (ppb)	20	<1	102	103	75 - 125	1
Copper	ug/L (ppb)	20	<5	92	92	75 - 125	0
Selenium	ug/L (ppb)	5	<1	108	107	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	106	80-120
Chromium	ug/L (ppb)	20	96	80-120
Copper	ug/L (ppb)	20	95	80-120
Selenium	ug/L (ppb)	5	107	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907410

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	85	83	57-114	2
Acenaphthylene	ug/L (ppb)	1	87	87	65-119	0
Acenaphthene	ug/L (ppb)	1	88	88	66-118	0
Fluorene	ug/L (ppb)	1	87	88	64 - 125	1
Phenanthrene	ug/L (ppb)	1	90	90	67-120	0
Anthracene	ug/L (ppb)	1	90	88	65 - 122	2
Fluoranthene	ug/L (ppb)	1	93	91	65 - 127	2
Pyrene	ug/L (ppb)	1	88	83	62-130	6
Benz(a)anthracene	ug/L (ppb)	1	96	92	60-118	4
Chrysene	ug/L (ppb)	1	95	92	66 - 125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	87	89	55-135	2
Benzo(k)fluoranthene	ug/L (ppb)	1	89	91	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	87	88	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	81	79	36 - 142	2
Dibenz(a,h)anthracene	ug/L (ppb)	1	81	79	37-133	2
Benzo(g,h,i)perylene	ug/L (ppb)	1	79	76	34 - 135	4

ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

Project: Precision Engineering 1803.01.01, F&BI 907410

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

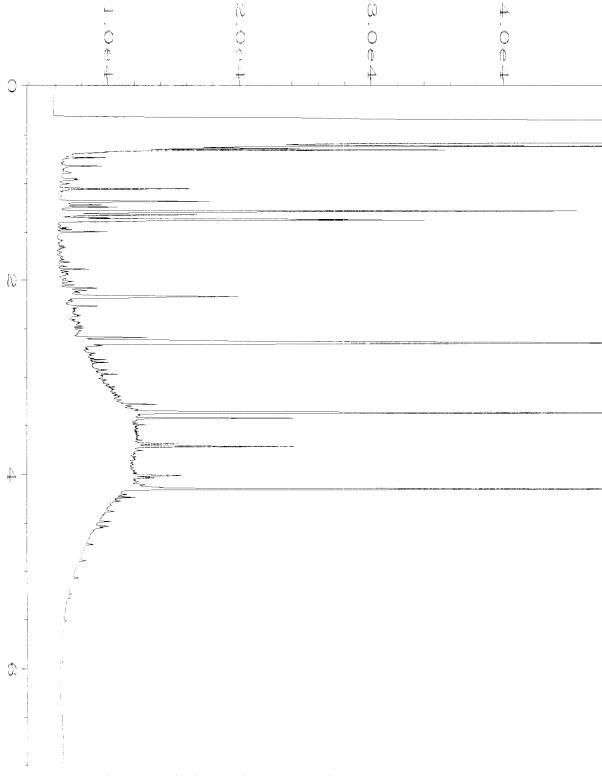
Laboratory Code: 907431-01 (Matrix Spike)

Laboratory Code. 907451-01 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	$_{ m MS}$	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	103	10-172
Chloromethane	ug/L (ppb)	50	<10	94	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	102	36-166
Bromomethane	ug/L (ppb)	50	<1	94	47-169
Chloroethane	ug/L (ppb)	50	<1	96	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	103	44-165
Acetone	ug/L (ppb)	250	<50	55	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	98	60-136
Hexane	ug/L (ppb)	50	<1	89	52-150
Methylene chloride	ug/L (ppb)	50	<5	96	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	100	74-127
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	99 99	72-129 70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	73	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	2.6	102	71-127
Chloroform	ug/L (ppb)	50	<1	100	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	80	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	100	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	101	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	101	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	101	56-152
Benzene	ug/L (ppb)	50	< 0.35	100	76-125
Trichloroethene	ug/L (ppb)	50	15	99 b	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	102	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	103	61-150
Dibromomethane	ug/L (ppb)	50	<1	106	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	110	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	102	72-132
Toluene	ug/L (ppb)	50	<1	95	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1 <1	99	76-130
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb)	$\frac{50}{250}$	<10	105 101	68-131 10-185
1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	101	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	99	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	106	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	104	69-134
Chlorobenzene	ug/L (ppb)	50	<1	102	77-122
Ethylbenzene	ug/L (ppb)	50	<1	98	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	107	73-137
m,p-Xylene	ug/L (ppb)	100	<2	100	69-135
o-Xylene	ug/L (ppb)	50	<1	99	60-140
Styrene	ug/L (ppb)	50	<1	98	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	101	65-142
Bromoform	ug/L (ppb)	50	<1	107	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	101	58-144
Bromobenzene	ug/L (ppb)	50	<1	103	75-124
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1 <1	102 110	66-137 51-154
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	105	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	101	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	101	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	102	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	101	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	102	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	101	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	102	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	102	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	105	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	103	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	96	60-143
Naphthalene	ug/L (ppb)	50	<1	103	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	103	69-148

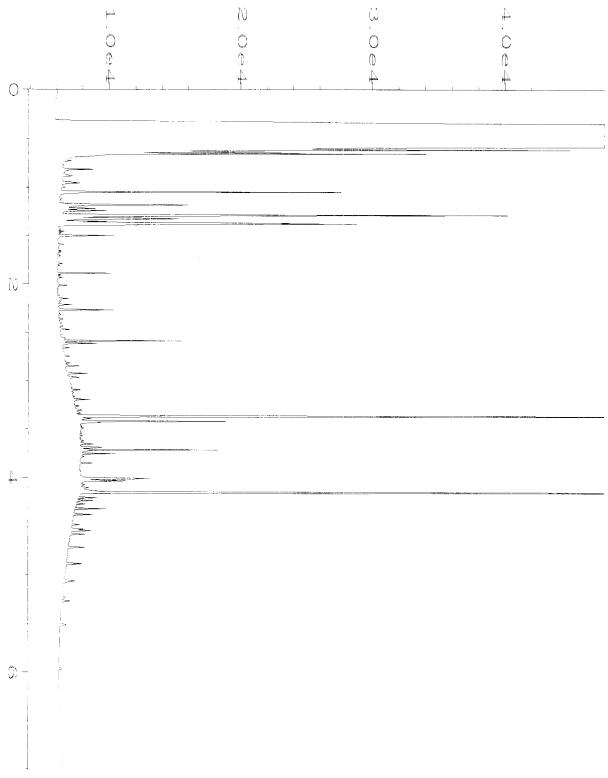
ENVIRONMENTAL CHEMISTS

Date of Report: 08/05/19 Date Received: 07/24/19

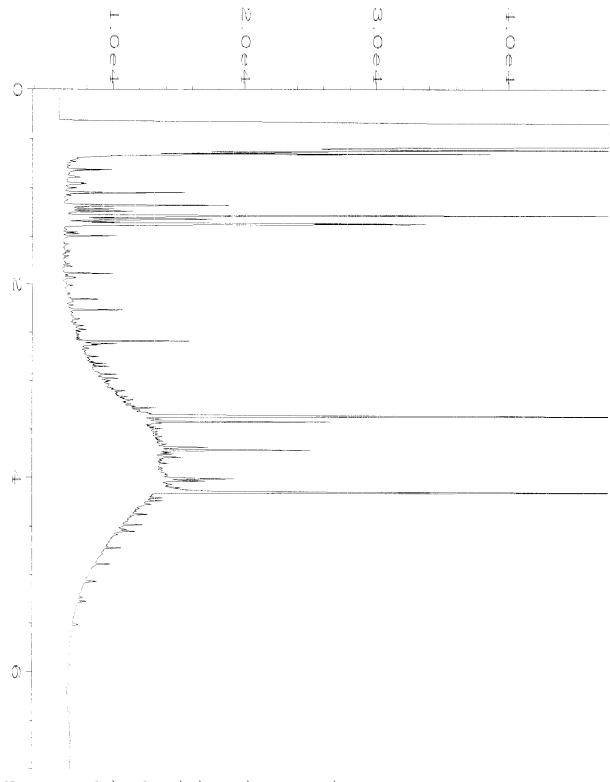
Project: Precision Engineering 1803.01.01, F&BI 907410

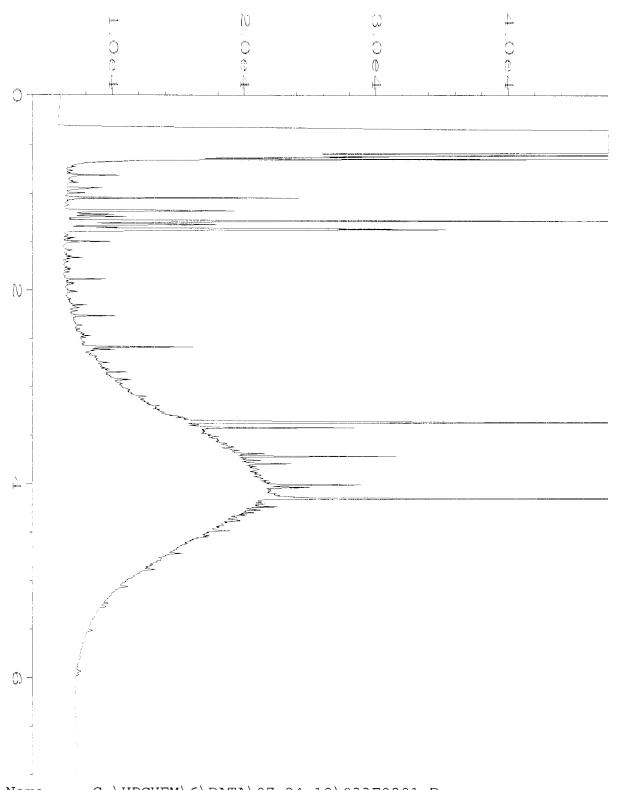

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

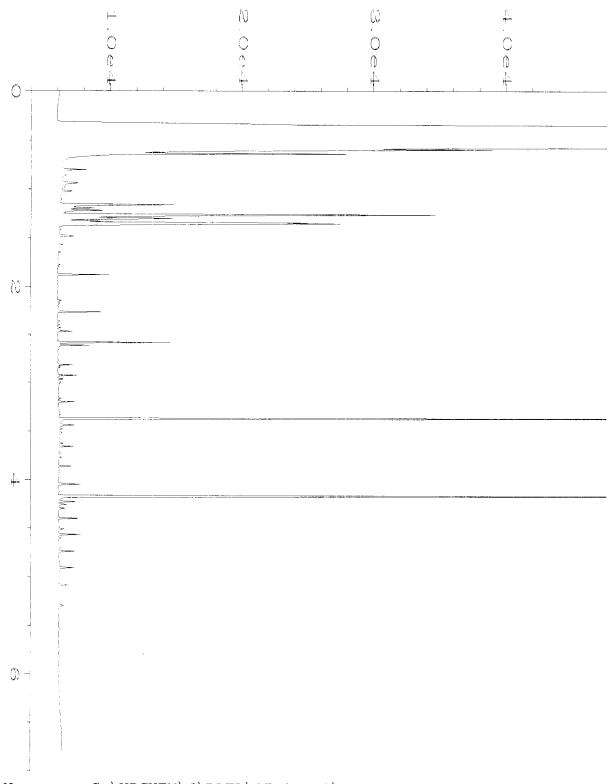
Zazoratory coue. Zazoratory c	one of wantpro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	101	102	25-158	1
Chloromethane	ug/L (ppb)	50	98	98	45-156	0
Vinyl chloride	ug/L (ppb)	50	105	107	50-154	2
Bromomethane	ug/L (ppb)	50	100	102	55-143	2
Chloroethane	ug/L (ppb)	50	98	100	58-146	2
Trichlorofluoromethane	ug/L (ppb)	250	107	108	50-150	1
Acetone	ug/L (ppb)	250	61	61	53-131	0
1,1-Dichloroethene Hexane	ug/L (ppb) ug/L (ppb)	50 50	99 98	102 98	67-136 57-137	3
Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	93	105	39-148	12
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	103	105	64-147	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	101	104	68-128	3
1,1-Dichloroethane	ug/L (ppb)	50	100	102	79-121	2
2,2-Dichloropropane	ug/L (ppb)	50	114	114	55-143	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	105	106	80-123	1
Chloroform	ug/L (ppb)	50	102	102	80-121	0
2-Butanone (MEK)	ug/L (ppb)	250	83	83	57-149	0
1,2-Dichloroethane (EDC) 1,1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	100 103	100 106	73-132 81-125	0
1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	50	103	103	77-129	0
Carbon tetrachloride	ug/L (ppb)	50	104	104	75-158	0
Benzene	ug/L (ppb)	50	100	100	69-134	ő
Trichloroethene	ug/L (ppb)	50	100	99	79-113	1
1,2-Dichloropropane	ug/L (ppb)	50	101	101	77-123	0
Bromodichloromethane	ug/L (ppb)	50	103	103	81-133	0
Dibromomethane	ug/L (ppb)	50	106	106	82-125	0
4-Methyl-2-pentanone	ug/L (ppb)	250	111	109	65-138	2 1
cis-1,3-Dichloropropene Toluene	ug/L (ppb) ug/L (ppb)	50 50	108 94	107 94	82-132 $72-122$	0
trans-1,3-Dichloropropene	ug/L (ppb)	50	104	102	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	50	104	103	75-124	1
2-Hexanone	ug/L (ppb)	250	101	99	60-136	2
1,3-Dichloropropane	ug/L (ppb)	50	102	101	76-126	1
Tetrachloroethene	ug/L (ppb)	50	100	101	76-121	1
Dibromochloromethane	ug/L (ppb)	50	106	105	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	104	103	82-115	1
Chlorobenzene Ethylbenzene	ug/L (ppb)	50 50	101 99	101 99	83-114 77-124	0
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	99 107	99 107	84-127	0
m,p-Xylene	ug/L (ppb)	100	100	100	81-112	0
o-Xylene	ug/L (ppb)	50	100	100	81-121	0
Styrene	ug/L (ppb)	50	103	103	84-119	0
Isopropylbenzene	ug/L (ppb)	50	102	103	80-117	1
Bromoform	ug/L (ppb)	50	109	108	74-136	1
n-Propylbenzene	ug/L (ppb)	50	103	103	74-126	0
Bromobenzene	ug/L (ppb)	50	103	102	80-121	1 0
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	103 110	103 109	78-123 66-126	0 1
1,2,3-Trichloropropane	ug/L (ppb)	50	105	103	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	102	102	77-127	0
4-Chlorotoluene	ug/L (ppb)	50	102	101	78-128	1
tert-Butylbenzene	ug/L (ppb)	50	103	102	80-123	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	103	103	79-122	0
sec-Butylbenzene	ug/L (ppb)	50	103	103	80-116	0
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/L (ppb)	50 50	104 104	103 103	81-123 83-113	1 1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	104 98	103 98	83-113 83-107	0
1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	103	103	84-112	0
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	110	109	57-141	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	106	107	72-130	1
Hexachlorobutadiene	ug/L (ppb)	50	101	102	53-141	1
Naphthalene	ug/L (ppb)	50	106	106	64-133	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	104	105	65-136	1

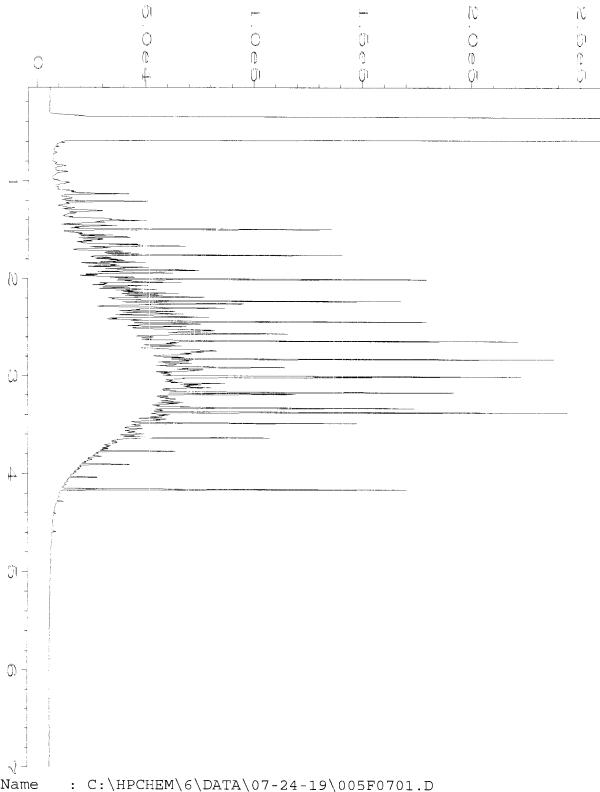

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                 : C:\HPCHEM\6\DATA\07-24-19\030F0801.D
                                               Page Number
Operator
                 : TL
                                                                : 1
                                               Vial Number
Instrument
                                                                : 30
                 : GC6
                                               Injection Number: 1
Sample Name
                : 907410-01
                                               Sequence Line
Run Time Bar Code:
Acquired on
                : 24 Jul 19 04:08 PM
                                               Instrument Method: DX.MTH
Report Created on: 25 Jul 19 10:41 AM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-24-19\031F0801.D
Data File Name
Operator
                                              Page Number
                : TL
                                                              : 1
                                              Vial Number : 31
Instrument
                : GC6
Sample Name
                                              Injection Number: 1
                : 907410-02
                                              Sequence Line
Run Time Bar Code:
Acquired on
                : 24 Jul 19 04:19 PM
                                              Instrument Method: DX.MTH
Report Created on: 25 Jul 19 10:41 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-24-19\032F0801.D
Data File Name
Operator
                 : TL
                                                Page Number
                                                                 : 1
                                                Vial Number
Instrument
                 : GC6
                                                                 : 32
Sample Name
                                                Injection Number : 1
                 : 907410-03
                                                Sequence Line
Run Time Bar Code:
Acquired on
                : 24 Jul 19 04:31 PM
                                                Instrument Method: DX.MTH
Report Created on: 25 Jul 19 10:41 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-24-19\033F0801.D
Operator
                 : TL
                                               Page Number
                                               Vial Number
Instrument
                 : GC6
                                                                : 33
Sample Name
                : 907410-04
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on
                : 24 Jul 19 04:42 PM
                                               Instrument Method: DX.MTH
Report Created on: 25 Jul 19 10:53 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\6\DATA\07-24-19\020F0501.D
Operator
                 : TL
                                                Page Number
                                                                : 1
                                                Vial Number : 20
Instrument
                 : GC6
Sample Name
                : 09-1784 mb
                                                Injection Number: 1
Run Time Bar Code: Acquired on :
                                                Sequence Line : 5
                : 24 Jul 19 01:41 PM
                                                Instrument Method: DX.MTH
Report Created on: 25 Jul 19 10:40 AM
                                                Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\6\DATA\07-24-19\005F0701.D

Operator : TL Page Number : 1

Instrument : GC6 Vial Number : 5

Sample Name : 1000 Dx 57-78B Injection Number : 1

Run Time Bar Code: Sequence Line : 7

Acquired on : 24 Jul 19 03:32 PM Instrument Method: DX.MTH

Report Created on: 25 Jul 19 10:40 AM Analysis Method : DX.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 907410

Work Order Number: 1907319

July 31, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 4 sample(s) on 7/24/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 07/31/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 907410 **Work Order:** 1907319

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1907319-001	MW8-W-19.0	07/23/2019 1:30 PM	07/24/2019 10:11 AM
1907319-002	MW9-W-33.0	07/23/2019 2:55 PM	07/24/2019 10:11 AM
1907319-003	MW10-W-15.0	07/23/2019 4:10 PM	07/24/2019 10:11 AM
1907319-004	MW6-W-15.0	07/23/2019 6:10 PM	07/24/2019 10:11 AM

Case Narrative

WO#: **1907319**Date: **7/31/2019**

CLIENT: Friedman & Bruya

Project: 907410

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1907319

Date Reported: **7/31/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1907319

Date Reported: **7/31/2019**

CLIENT: Friedman & Bruya

Project: 907410

Lab ID: 1907319-001 **Collection Date:** 7/23/2019 1:30:00 PM

Client Sample ID: MW8-W-19.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 11:37:00 AM

Lab ID: 1907319-002 **Collection Date:** 7/23/2019 2:55:00 PM

Client Sample ID: MW9-W-33.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 11:17:00 AM

Lab ID: 1907319-003 **Collection Date:** 7/23/2019 4:10:00 PM

Client Sample ID: MW10-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 11:41:00 AM

Analytical Report

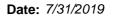
Work Order: 1907319

Date Reported: 7/31/2019

CLIENT: Friedman & Bruya

Project: 907410

Lab ID: 1907319-004 **Collection Date:** 7/23/2019 6:10:00 PM


Client Sample ID: MW6-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52853 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/24/2019 11:47:00 AM

Original

Work Order: 1907319

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by SM 3500 Cr B

Project: 907410							nexavalent Ci	nromium by SW 350	io Cr E
Sample ID: MB-R52853	SampType: MBLK			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: MBLKW	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044492	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450							
Sample ID: LCS-R52853	SampType: LCS			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: LCSW	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044493	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.248	0.0450	0.2500	0	99.1	90	110		
Sample ID: 1907319-002ADUP	SampType: DUP			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: MW9-W-33.0	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044495	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450					0	30	
Sample ID: 1907319-002AMS	SampType: MS			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: MW9-W-33.0	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044496	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.308	0.0450	0.2500	0	123	65	135		
Sample ID: 1907319-002AMSD	SampType: MSD			Units: mg/L		Prep Date:	7/24/2019	RunNo: 52853	
Client ID: MW9-W-33.0	Batch ID: R52853					Analysis Date:	7/24/2019	SeqNo: 1044497	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chromium, Hexavalent	0.262	0.0450	0.2500	0	105	65	135 0.3085	16.2 30	

Original Page 7 of 9

Sample Log-In Check List

C	lient Name:	FB	Work Or	der Num	ber: 1907319		
Lo	ogged by:	Clare Griggs	Date Red	ceived:	7/24/2019	10:11:00 AM	
<u>Cha</u>	in of Cust	<u>ody</u>					
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?	<u>FedE</u>	<u>x</u>			
Log	<u>In</u>						
3.	Coolers are p	resent?	Yes	✓	No \square	NA \square	
4.	Shipping con	ainer/cooler in good condition?	Yes	✓	No 🗌		
5.		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes		No 🗸	Not Required	
6.	Was an atten	npt made to cool the samples?	Yes	✓	No \square	NA \square	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	✓	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗆		
10.	Are samples	properly preserved?	Yes	✓	No \square		
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?	Yes		No \square	NA 🗸	
		es containers arrive in good condition(unbroken)?	Yes	✓	No \square		
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes	✓	No \square		
17.	Were all hold	ing times able to be met?	Yes	✓	No \square		
Spe	cial Handl	ing (if applicable)					
		otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹	
	Person		e: 				
	By Who	<u>'</u>		l 🗌 Pł	none Fax [☐ In Person	
	Regardi						
		structions:					
19.	Additional rer	narks:					
Item	Information						
		Item # Temp °C					

 Cooler
 4.3

 Sample
 5.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Famel

Page # 1 of 1

Page 9 of 9

Send Report To Michael Erdahl

			4							Received hv-	7	Fax (206) 283-5044
1101 112	42	7	ha,	Acan	nd.	Edward	6		The state of the s	Relinquished by:		Ph. (206) 285-8282
Thuis OTHAN	Friedman & Bruya	Friedma			ahl	Erd:	Michael Erdahl	10	h	Rosained him		Senttle WA 99110 9090
DATE TIME	COMPANY	00		VAME	PRINT NAME	Į.		3	SIGNATURE	S.	-	Friedman & Bruya, Inc.
					-	\perp						
				+	4							
				+	1							
				-							,	
				_								4
	•		×				1	4	0/81	-		MW6W-15.0
	Y		()			18			1610			MW10-W-15.0
			<)		1422	-		MW9-W-33.0
			×				-	water	1330	7/23/15		MW8-W-19.0
Notes			C. VI	VPH	EPH	Dioxins/Furans	#of jars	Matrix	Time Sampled	Date Sampled	II lab	Sample ID
	STED	ANALYSES REQUESTED	NALYS	A								
☐ Return samples ☐ Will call with instructions	□ Retuil □ Will			Please Email Results	mail F	ease E	Id.		(206) 283-5044	Fax #_ (20	-8282	Phone # (206) 285-8282
SAMPLE DISPOSAL	n Dist						REMARKS	REI		Seattle, WA 98119	eattle,	City, State, ZIP_S
Rush charges authorized by:	Rush	A.331			0	OIHEOD	90			3012 16th Ave W	012 16	
FStandard (2-Weeks) 1 Wal	₽Standa	PO#			E/NO.	NAM	PROJECT NAME/NO.	PK	Inc.	Friedman and Bruya, Inc.	riedma	Company F

SAMPLE CHAIN OF CUSTODY

N.C.
6.6
-24
4-19

ر الاسلام

1903,01	Precisar Engineering
PO;	PROJECT NAME
١	SAMPLERS (signature)

Company Man foster

Address 2815 2nd Avenue Site 540

City, State, ZIP Sentle, WA 98121

REMARKS

Phone (206)402-3919 Email molander (1) Mail foster-cin

Report To Medideth

Ò Rush charges authorized by:

₹7Standard Turnaround TURNAROUND TIME AT

SAMPLE DISPOSAL

☐ Dispose after 30 days
☐ Archive Samples

HAM

INVOICE TO

9
[Ĕ
er
l
l
II
II .

0
ther
er
h -
l
l
ll.

Friedman & Bruya, Inc. Rel			,		•	MW6-W-15.0	C'SFM-OIMM	MW9-W-33.0	0.P]-W-8MM	Sample ID	
Relinquished by:	SI					04 C	23	02	011	Lab ID	
hus	SIGNATURE					15	L	W	01A-6 7/23/14 (330	Date Sampled	
M	7					1810	्।भ <u>ी</u>	1455	(330	Time Sampled	
Kyan Laus						3	ک	W	W	Sample Type	
Law	PRINT NAME					7	7	7	7	# of Jars	
	TN									TPH-HCID	
	AME			ļ		*	X .	⋖	⊀,	TPH-Diesel	P
										TPH-Gasoline	
										BTEX by 8021B	A
				ļ		 *	 ×	1	×	VOCs by 8260C	NAI
_		 				 _				SVOCs by 8270D	YSE,
ME				ļ		 X	×	×	×	PAHs 8270D SIM	SRE
8	OM			3		\times	7	×	X	Hex. (from	QUI
	COMPANY					X	×	イ	\prec	Disso hed Chronim, As, Cyse	ANALYSES REQUESTED
				<u> </u>	ļ						D
7/24	DATE			•	•					N	
650	TIME									Notes	

Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West

Relinquished by:

Received by:

Received by:

1 4 D

650

Samples received at 3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 2, 2019

Merideth D'Andrea, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms D'Andrea:

Included are the results from the testing of material submitted on July 23, 2019 from the Precision Engineering 1803.01.01, F&BI 907397 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Ryan Lewis MFA0802R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 23, 2019 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.01, F&BI 907397 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
907397 -01	MW11-W-15.0
907397 -02	MW3-W-15.0

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

The 6020B internal standards failed the acceptance criteria for the samples. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

The 6020B arsenic and selenium calibration standard did not pass the acceptance criteria for the full strength analysis due to intereferences from the field samples. The samples were reanalyzed with similar results. The samples were diluted to minimize the intereference. Both data sets were reported.

Dibromochloromethane in the 8260C laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

Date Extracted: 07/24/19 Date Analyzed: 07/24/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-134)
MW11-W-15.0 907397-01	200 x	<250	95
MW3-W-15.0 907397-02	82 x	<250	93
Method Blank _{09-1784 MB}	<50	<250	75

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

Lab ID: 907397-01 Date Extracted: 07/29/19 Date Analyzed: 07/30/19 Data File: 907397-01.066 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & 6.98 \text{ ca} \\ \text{Chromium} & 2.60 \text{ J} \\ \text{Copper} & <5 \text{ J} \\ \text{Selenium} & 2.56 \text{ ca} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907397-01 x10

 Date Analyzed:
 08/01/19
 Data File:
 907397-01 x10.032

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Arsenic <10
Chromium <10
Copper <50
Selenium <10

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

07/29/19 Lab ID: 907397-02 Date Extracted: Date Analyzed: 07/30/19 Data File: 907397-02.067 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{lll} \text{Arsenic} & 13.3 \text{ ca} \\ \text{Chromium} & <1 \text{ J} \\ \text{Copper} & <5 \text{ J} \\ \text{Selenium} & <1 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

 Date Extracted:
 07/29/19
 Lab ID:
 907397-02 x10

 Date Analyzed:
 08/01/19
 Data File:
 907397-02 x10.033

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

	Concentration
Analyte:	ug/L (ppb)

 Arsenic
 13.6

 Chromium
 <10</td>

 Copper
 <50</td>

 Selenium
 <10</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi

Date Received: NA Project: Precision Engineering 1803.01.01

07/29/19 Lab ID: I9-457 mbDate Extracted: Date Analyzed: 07/30/19 Data File: I9-457 mb.040 Matrix: Water Instrument: ICPMS2 ug/L (ppb) Units: SPOperator:

Analyte: Concentration ug/L (ppb)

Arsenic <1 Chromium <1 Copper <5 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW11-W-15.0	Client:	Maul Foster Alongi
-------------------	-------------	---------	--------------------

 Date Received:
 07/23/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907397-01 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072438.D

Date Analyzed: 07/25/19 Data File: 072438.1

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	83	31	160
Benzo(a)anthracene-d12	103	25	165

< 0.04

Concentration Compounds: ug/L (ppb) < 0.4 Naphthalene Acenaphthylene < 0.04 Acenaphthene 1.9 Fluorene 0.23 Phenanthrene 0.10 Anthracene < 0.04 Fluoranthene < 0.04

Pyrene < 0.04 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW3-W-15.0	Client:	Maul Foster Alongi

 Date Received:
 07/23/19
 Project:
 Precision Engineering 1803.01.01

 Date Extracted:
 07/24/19
 Lab ID:
 907397-02 1/2

 Date Analyzed:
 07/25/19
 Data File:
 072439.D

Date Analyzed: 07/25/19 Data File: 072439.D

Matrix: Water Instrument: GCMS6

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	81	31	160
Benzo(a)anthracene-d12	92	25	165

< 0.04

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

Lab ID: Date Extracted: 07/24/19 09-1772 mb2Date Analyzed: 07/25/19 Data File: 072437.DMatrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Concentration

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW11-W-15.0 Client: Maul Foster Alongi

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

07/23/19 Lab ID: 907397-01 Date Extracted: Date Analyzed: 07/23/19 Data File: 072335.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW3-W-15.0 Client: Maul Foster Alongi

Date Received: 07/23/19 Project: Precision Engineering 1803.01.01

07/23/19 Lab ID: 907397-02 Date Extracted: Date Analyzed: 07/23/19 Data File: 072336.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.01

07/23/19 Lab ID: 09-1690 mb Date Extracted: Date Analyzed: 07/23/19 Data File: 072315.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	96	50	150
4-Bromofluorobenzene	95	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	72	68	58-134	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 907486-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.72	107	106	75-125	1
Chromium	ug/L (ppb)	20	<1	102	103	75 - 125	1
Copper	ug/L (ppb)	20	<5	92	92	75 - 125	0
Selenium	ug/L (ppb)	5	<1	108	107	75-125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	106	80-120
Chromium	ug/L (ppb)	20	96	80-120
Copper	ug/L (ppb)	20	95	80-120
Selenium	ug/L (ppb)	5	107	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	85	83	57-114	2
Acenaphthylene	ug/L (ppb)	1	87	87	65-119	0
Acenaphthene	ug/L (ppb)	1	88	88	66-118	0
Fluorene	ug/L (ppb)	1	87	88	64 - 125	1
Phenanthrene	ug/L (ppb)	1	90	90	67 - 120	0
Anthracene	ug/L (ppb)	1	90	88	65 - 122	2
Fluoranthene	ug/L (ppb)	1	93	91	65 - 127	2
Pyrene	ug/L (ppb)	1	88	83	62-130	6
Benz(a)anthracene	ug/L (ppb)	1	96	92	60-118	4
Chrysene	ug/L (ppb)	1	95	92	66 - 125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	87	89	55-135	2
Benzo(k)fluoranthene	ug/L (ppb)	1	89	91	62 - 125	2
Benzo(a)pyrene	ug/L (ppb)	1	87	88	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	81	79	36 - 142	2
Dibenz(a,h)anthracene	ug/L (ppb)	1	81	79	37-133	2
Benzo(g,h,i)perylene	ug/L (ppb)	1	79	76	34 - 135	4

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 907380-16 (Matrix Spike)

Laboratory Code. 907300-10 (M.	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	117	10-172
Chloromethane	ug/L (ppb)	50	<10	100	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	110	36-166
Bromomethane	ug/L (ppb)	50	<1	104	47-169
Chloroethane	ug/L (ppb)	50	<1	102	46-160
Trichlorofluoromethane	ug/L (ppb)	50	<1	110	44-165
Acetone	ug/L (ppb)	250	<50	56	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	101	60-136
Hexane	ug/L (ppb)	50	<1	94	52-150
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb)	50 50	<5 <1	101 105	67-132 74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	<1	103	74-127 72-129
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1	103	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	97	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	107	71-127
Chloroform	ug/L (ppb)	50	<1	103	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	79	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	105	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	103	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	103	56-152
Benzene	ug/L (ppb)	50	< 0.35	102	76-125
Trichloroethene	ug/L (ppb)	50	<1	101	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	103	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	104	61-150
Dibromomethane	ug/L (ppb)	50	<1	108	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	110	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	106	72-132
Toluene	ug/L (ppb)	50 50	<1 <1	95 102	76-122 76-130
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	102	76-130 68-131
2-Hexanone	ug/L (ppb) ug/L (ppb)	250	<10	99	10-185
1.3-Dichloropropane	ug/L (ppb)	50	<10	104	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	102	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	108	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	105	69-134
Chlorobenzene	ug/L (ppb)	50	<1	103	77-122
Ethylbenzene	ug/L (ppb)	50	<1	100	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	109	73-137
m,p-Xylene	ug/L (ppb)	100	<2	102	69-135
o-Xylene	ug/L (ppb)	50	<1	101	60-140
Styrene	ug/L (ppb)	50	<1	104	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	104	65-142
Bromoform	ug/L (ppb)	50	<1	108	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	102	58-144
Bromobenzene	ug/L (ppb)	50 50	<1 <1	104 102	75-124
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50	<1	102	66-137 51-154
1,1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1	104	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	102	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	102	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	103	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	102	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	103	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	103	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	103	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	99	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	103	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	105	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	103	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	97	60-143
Naphthalene	ug/L (ppb)	50	<1	103	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/19 Date Received: 07/23/19

Project: Precision Engineering 1803.01.01, F&BI 907397

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Education Code. Education	control sampl		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	94	90	25-158	4
Chloromethane	ug/L (ppb)	50	104	100	45-156	4
Vinyl chloride	ug/L (ppb)	50	108	103	50-154	5
Bromomethane	ug/L (ppb)	50	124	119	55-143	4
Chloroethane	ug/L (ppb)	50	113	108	58-146	5
Trichlorofluoromethane	ug/L (ppb)	250	115	110	50-150	4
Acetone	ug/L (ppb)	250	64	63	53-131	2
1,1-Dichloroethene	ug/L (ppb)	50	112	106	67-136	6
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	82 93	82 88	57-137 39-148	0 6
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	101	96	64-147	5
trans-1,2-Dichloroethene	ug/L (ppb)	50 50	104	100	68-128	4
1,1-Dichloroethane	ug/L (ppb)	50	102	99	79-121	3
2,2-Dichloropropane	ug/L (ppb)	50	105	98	55-143	7
cis-1.2-Dichloroethene	ug/L (ppb)	50	101	97	80-123	4
Chloroform	ug/L (ppb)	50	107	103	80-121	4
2-Butanone (MEK)	ug/L (ppb)	250	78	81	57-149	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	102	101	73-132	1
1,1,1-Trichloroethane	ug/L (ppb)	50	112	108	81-125	4
1,1-Dichloropropene	ug/L (ppb)	50	103	102	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	120	116	75-158	3
Benzene	ug/L (ppb)	50	99	98	69-134	1
Trichloroethene	ug/L (ppb)	50	101	101	79-113	0
1,2-Dichloropropane	ug/L (ppb)	50	100	103	77-123	3
Bromodichloromethane	ug/L (ppb)	50	117	116	81-133	1
Dibromomethane	ug/L (ppb)	50	106	107	82-125	1
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	107 111	112 115	65-138 82-132	5 4
Toluene	ug/L (ppb) ug/L (ppb)	50 50	104	104	72-122	0
trans-1,3-Dichloropropene	ug/L (ppb)	50 50	117	121	80-136	3
1,1,2-Trichloroethane	ug/L (ppb)	50	102	104	75-124	2
2-Hexanone	ug/L (ppb)	250	95	103	60-136	8
1,3-Dichloropropane	ug/L (ppb)	50	103	107	76-126	4
Tetrachloroethene	ug/L (ppb)	50	103	101	76-121	2
Dibromochloromethane	ug/L (ppb)	50	136 vo	136 vo	84-133	0
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	107	110	82-115	3
Chlorobenzene	ug/L (ppb)	50	103	103	83-114	0
Ethylbenzene	ug/L (ppb)	50	103	104	77-124	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	127	121	84-127	5
m,p-Xylene	ug/L (ppb)	100	106	107	81-112	1
o-Xylene	ug/L (ppb)	50	106	104	81-121	2
Styrene	ug/L (ppb)	50 50	107	108	84-119	1 3
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	107 126	104 129	80-117 74-136	2
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	107	104	74-136	3
Bromobenzene	ug/L (ppb)	50 50	107	105	80-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	50	111	105	78-123	6
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	112	111	66-126	í
1,2,3-Trichloropropane	ug/L (ppb)	50	105	105	67-124	0
2-Chlorotoluene	ug/L (ppb)	50	106	102	77-127	4
4-Chlorotoluene	ug/L (ppb)	50	105	103	78-128	2
tert-Butylbenzene	ug/L (ppb)	50	110	105	80-123	5
1,2,4-Trimethylbenzene	ug/L (ppb)	50	108	104	79-122	4
sec-Butylbenzene	ug/L (ppb)	50	110	104	80-116	6
p-Isopropyltoluene	ug/L (ppb)	50	109	104	81-123	5
1,3-Dichlorobenzene	ug/L (ppb)	50	107	105	83-113	2
1,4-Dichlorobenzene	ug/L (ppb)	50 50	101	100	83-107	1
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	108 127	104 124	84-112 57-141	4 2
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	109	100	72-130	9
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	103	98	53-141	5
Naphthalene	ug/L (ppb)	50	113	105	64-133	7
1,2,3-Trichlorobenzene	ug/L (ppb)	50	110	101	65-136	9
	C G.L					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 907397

Work Order Number: 1907308

July 29, 2019

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 7/23/2019 for the analyses presented in the following report.

Hexavalent Chromium by SM 3500 Cr B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 07/29/2019

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 907397 **Work Order:** 1907308

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1907308-001
 MW11-W-15.0
 07/23/2019 9:00 AM
 07/23/2019 3:49 PM

 1907308-002
 MW3-W-15.0
 07/23/2019 11:30 AM
 07/23/2019 3:49 PM

Case Narrative

WO#: **1907308**Date: **7/29/2019**

CLIENT: Friedman & Bruya

Project: 907397

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1907308**

Date Reported: 7/29/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 1907308

Date Reported: 7/29/2019

CLIENT: Friedman & Bruya

Project: 907397

Lab ID: 1907308-001 **Collection Date:** 7/23/2019 9:00:00 AM

Client Sample ID: MW11-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52852 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/23/2019 6:56:00 PM

Lab ID: 1907308-002 **Collection Date:** 7/23/2019 11:30:00 AM

Client Sample ID: MW3-W-15.0 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Hexavalent Chromium by SM 3500 Cr B Batch ID: R52852 Analyst: TN

Chromium, Hexavalent ND 0.0450 mg/L 1 7/23/2019 7:15:00 PM

Original

Date: 7/29/2019

Work Order: 1907308

QC SUMMARY REPORT

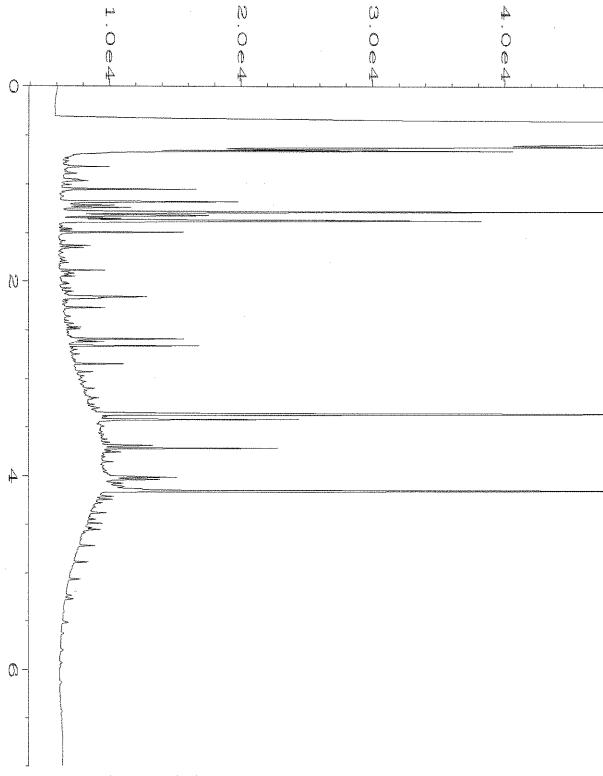
CLIENT: Friedman & Bruya

Project: 907397	& Bruya						Hexa	valent Ch	romium b	y SM 350	0 Cr E
Sample ID: MB-R52852	SampType: MBLK			Units: mg/L		Prep Date	: 7/23/2019)	RunNo: 528	352	
Client ID: MBLKW	Batch ID: R52852					Analysis Date	: 7/23/2019)	SeqNo: 104	14477	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450									
Sample ID: LCS-R52852	SampType: LCS			Units: mg/L		Prep Date	: 7/23/2019)	RunNo: 528	352	
Client ID: LCSW	Batch ID: R52852					Analysis Date	7/23/2019)	SeqNo: 104	14478	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	0.233	0.0450	0.2500	0	93.1	90	110				
Sample ID: 1907308-001ADUP	SampType: DUP			Units: mg/L		Prep Date	: 7/23/2019)	RunNo: 528	352	
Client ID: MW11-W-15.0	Batch ID: R52852					Analysis Date	7/23/2019)	SeqNo: 104	14480	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.0450						0		30	
Sample ID: 1907308-001AMS	SampType: MS			Units: mg/L		Prep Date	: 7/23/2019)	RunNo: 52 8	352	
Client ID: MW11-W-15.0	Batch ID: R52852					Analysis Date	7/23/2019)	SeqNo: 104	14481	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent NOTES:	ND	0.0450	0.2500	0	0	65	135				S
S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.											
Sample ID: 1907308-001AMSD	SampType: MSD			Units: mg/L		Prep Date	: 7/23/2019)	RunNo: 528	352	
Client ID: MW11-W-15.0	Batch ID: R52852					Analysis Date	7/23/2019)	SeqNo: 104	14482	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent NOTES:	ND	0.0450	0.2500	0	0	65	135	0		30	S

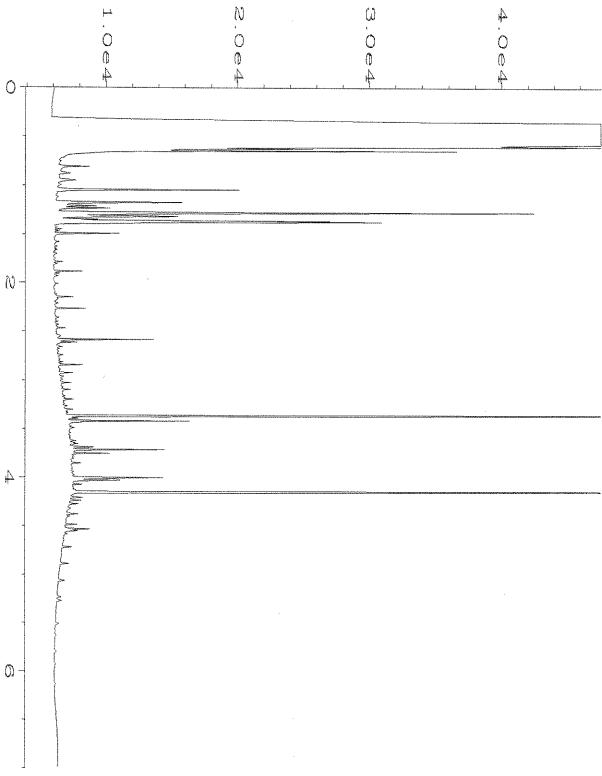
Original Page 6 of 8

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

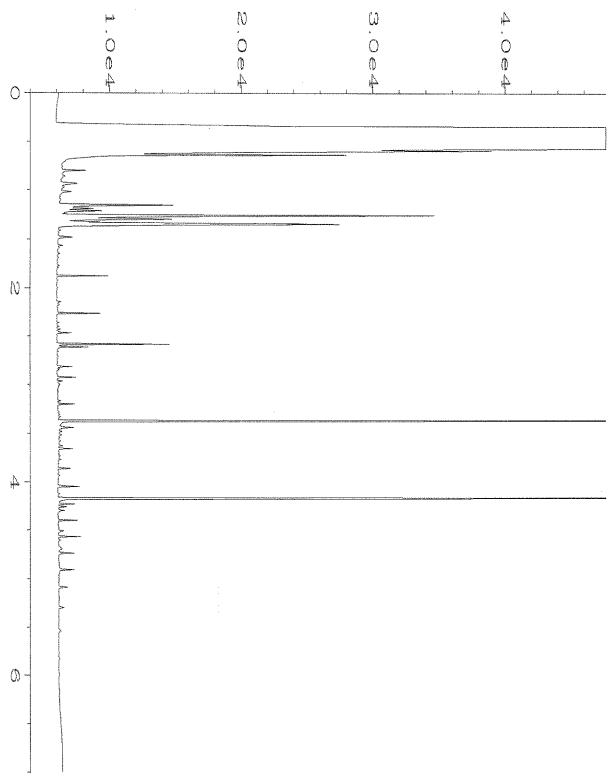
Sample Log-In Check List

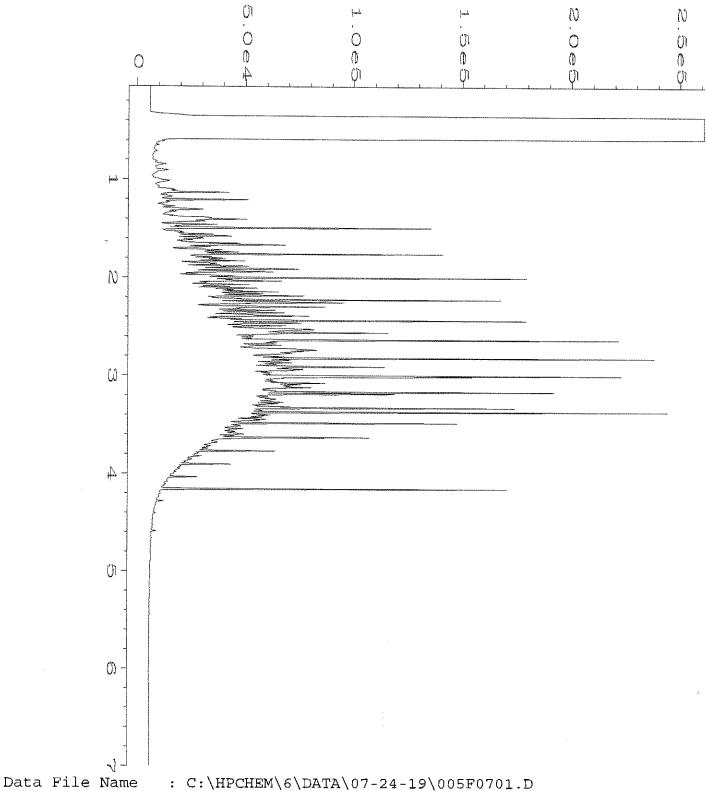

CI	ient Name:	FB				Work O	rder Num	ber: 1907308		
Lo	ogged by:	Carissa Tru	ıe			Date Re	ceived:	7/23/2019	3:49:00 PM	
Cha	in of Custo	od <u>y</u>								
	Is Chain of C	-	lete?			Yes	✓	No \square	Not Present	
	How was the					<u>FedE</u>	<u>x</u>			
<u>Log</u>										
3.	Coolers are p	resent?				Yes	✓	No 🗌	na 🗆	
4.	Shipping con	tainer/cooler	in good condition	?		Yes	✓	No 🗆		
			shipping contain			Yes		No 🗸	Not Required	
0.			ustody Seals not i						•	
6.	Was an atten	npt made to	cool the samples?	?		Yes	✓	No \square	NA \square	
7.	Were all item	s received at	a temperature of	f >0°C to 10).0°C *	Yes	✓	No 🗌	NA 📙	
8.	Sample(s) in	proper conta	iner(s)?			Yes	✓	No 🗌		
_			for indicated test((s)?		Yes	✓	No \square		
-	Are samples			3).		Yes	✓	No \square		
_	Was preserva					Yes		No 🗹	NA 🗌	
11.	was preserve	alive added to	o bottles:			163		NO 🖳	INA L	
12.	Is there head	space in the	VOA vials?			Yes		No 🗌	NA 🗹	
13.	Did all sample	es containers	s arrive in good co	ondition(unb	roken)?	Yes	✓	No \square		
14. Does paperwork match bottle labels?					Yes	✓	No 🗌			
								\Box		
_			ntified on Chain o	r Custody?		Yes		No □		
16. Is it clear what analyses were requested?17. Were all holding times able to be met?				Yes	✓	No □				
17.	Were all hold	ing times abi	e to be met?			Yes	✓	No 🗀		
Special Handling (if applicable)										
_			iscrepancies with	this order?		Yes		No 🗌	NA 🗹	
	Person	Notified:			Date:					
	By Who				Via:	eMa	il 🗌 Ph	none Fax	n Person	
	Regardi									
	_	structions:								
19	Additional rer	marks:								
	Information									
itelli	inionniation	Item #		Temp ⁰C						
	Cooler 1	ILGIII #		6.3						
	Sample 1			3.5						

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C


Page 8 of 8

7	•
	14
- (
-	_
,	∾
(\supset
1	
	Ų,
- 5	Z
- 2	3
	3
- 6	Q
1	-
- 2	
DOBOOM INTO TOTAL	5
-	3
,	_
9	2
- 0	>
- 5	1
F	\Rightarrow
- 2	d
TI TITE	=
- 5	-
- 6	ŋ
C	つ
-	d
CILC	7
- 14	>
-	۲
- 2	7
	_
C	2
-	H
7	-1
-	-
-	4
C	4
COSTO	2
-	7
-	₹
-	ر
-	-


	1										Received by:	74	Fax (206) 283-5044
123/19/1549	7/23		FAI	-		leterson		Kayla	-	Pato	Relinquished by:		Ph. (206) 285-8282
1/4	1/23/K	bruya	Friedman & Bruya	S. X.	1		H	Muchael Proant	1	M	eceived by:		Seattle, WA 98119-2029
E TIME	DATE	ANY	COMPANY		ME	PRINT NAME	PRIN	(Sahaal		SIGNATURE	Retinauished by:	-	3012 16th Avenue West
•						П							
	1	1											
	+	4						+					
						T	-						
												ť	
													•
								-					
	-						-		- 1				
	+							+					
	+						+	_					
					X				+	1130	*		MW3-W-15.0
					×				N.K	0900	7/13/16		MW1-W-15.0
Notes		**			C/VL	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
X	H	D	REQUESTED	ANALYSES	ANA	1	$\ \cdot\ $	Н					
☐ Return samples ☐ Will call with instructions	☐ Return samples ☐ Will call with in	Return Will ca			ılts	il Resu	Please Email Results	Plea		(206) 283-5044	Fax # (20	-8282	Phone #(206) 285-8282
SAMPLE DISPOSAL ose after 30 days	SAMPLE DISPO Dispose after 30 days	S. Dispos	r	HSIND 3:	EDD:			REMARKS	REM	9	Seattle, WA 98119	eattle,	City, State, ZIP_S
Rush charges authorized by:	urges aut	Rush cha	A-331	A		1	467397	90.	_		3012 16th Ave W	3012 16	Address
eks)	XStandard (2 Weeks) □ RUSH	Standa	PO#			.0	AME/N	PROJECT NAME/NO.	PRO	, Inc.	Friedman and Bruya, Inc	riedma	
Page # of t	Page #	TI P.			7	Them	ACTER	SUBCONTRACTER	SUB		Michael Erdahl	Michae	Send Report To


```
Data File Name
                : C:\HPCHEM\6\DATA\07-24-19\028F0801.D
Operator
                                               Page Number
                : TL
Instrument
                                              Vial Number
                : GC6
                                                               : 28
Sample Name
                                               Injection Number: 1
                : 907397-01
Run Time Bar Code:
                                               Sequence Line : 8
Acquired on
                                               Instrument Method: DX.MTH
            : 24 Jul 19 03:46 PM
Report Created on: 25 Jul 19 10:40 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\6\DATA\07-24-19\029F0801.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC6
                                                                  : 29
Sample Name
                                                Injection Number: 1
                 : 907397-02
Run Time Bar Code:
                                                Sequence Line
                                                Instrument Method: DX.MTH
Acquired on : 24 Jul 19 03:57 PM
Report Created on: 25 Jul 19 10:41 AM
                                                Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-24-19\020F0501.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
                                                               : 20
                : 09-1784 mb
                                              Injection Number: 1
Sample Name
Run Time Bar Code:
                                              Sequence Line
                                                             : 5
                                              Instrument Method: DX.MTH
Acquired on : 24 Jul 19 01:41 PM
Report Created on: 25 Jul 19 10:40 AM
                                              Analysis Method : DX.MTH
```



```
Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC6
                                                                  : 5
Sample Name
                                                 Injection Number: 1
                 : 1000 Dx 57-78B
Run Time Bar Code:
                                                 Sequence Line : 7
Acquired on : 24 Jul 19
                                                 Instrument Method: DX.MTH
                              03:32 PM
Report Created on: 25 Jul 19 10:40 AM
                                                Analysis Method : DX.MTH
```

Seattle, WA 98119-2029 Ph. (206) 285-8282	 1					MW3-W-150	MW-150	Sample ID			City, State, ZIP Sex HU	Address 2815 2nd Avenue, Suite 540	Company May fos	Report To Merideth 1	£68£9b
Received by: Received by: Relinquished by: Received by:	SIG					02	OI A-G	Lab ID		Email molandrea man hoster	1, W/ 9	Avenue, Su	a Alonsi	Andrea/Ryan Lewis	79
O. W.	SIGNATURE				•	7/23/19 1130	7/23/19/0900	Date Sampled		9 man Hoste	812	The SHO		in Lewis	70
Par				-		130	900	Time Sampled		e î	REMARKS		PROJECT NAME	SAMPLEI	AMPLE
Ryan W	PI					ω 7	W	Sample # of Type Jars			S	Mecisan Engineering	NAME	SAMPLERS (signature)	CHAIN O
yan Lewis	PRINT NAME					7 ×	7 ×	TPH-HCID	- %			E S	I my		SAMPLE CHAIN OF CUSTODY
Dho					-	X	X	BTEX by 8021B VOCs by 8260C				103	3		DY
MIA	СОМ	San				Χ	X	SVOCs by 8270D SIM	ANALYSES REGI	MFA	INVOICE TO	803,01,0)	PO#		ME 07.
	COMPANY	Samples received at				X	X	Hex's Chame Disabel metals Chromium As, Cu, Se	RECHESTED	□ Archiv	SA	Rush cha	Standa	195	07-23-19
7/25/9	DATE	nel at 4						N		☐ Archive Samples ☐ Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	X Standard Turnaround □ RUSH	AROUND	
1250	TIME	°C						Notes)SAL	ed by:	A D	of	٧ سا2 ر

Ms. Heather Good Maul Foster and Alongi Inc.

1329 North State Street

Suite 301

2/19/2020

Bellingham WA 98225

Project Name: Precision Engineering

Project #: 1803.01.02-03 Workorder #: 2002351

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 2/14/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

July Butte

WORK ORDER #: 2002351

Work Order Summary

CLIENT: Ms. Heather Good BILL TO: Accounts Payable

Maul Foster and Alongi Inc.
Maul Foster and Alongi Inc.
1329 North State Street
400 E. Mill Plain Blvd

Suite 301 Suite 400

Bellingham, WA 98225 Vancouver, WA 98660

PHONE: 360-594-6262 **P.O.** #

FAX: 360-594-6270 **PROJECT** # 1803.01.02-03 Precision Engineering

DATE RECEIVED: 02/14/2020 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 02/19/2020

FRACTION #	NAME	<u>TEST</u>
01A	RAD1	Passive S.E. RAD130/SKC
02A	RAD2	Passive S.E. RAD130/SKC
03A	RAD3	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

	The	cide /	Rayes		
CERTIFIED BY:			0	DATE:	02/19/20
	•			_	

Technical Director

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2002351

Four Radiello 130 (Solvent) samples were received on February 14, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 17120 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated concentration due to calculated sampling rate
 - CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD1 Lab ID#: 2002351-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	130	110

Client Sample ID: RAD2

Lab ID#: 2002351-02A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	130	110

Client Sample ID: RAD3 Lab ID#: 2002351-03A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	200	170

Client Sample ID: Trip Blank

Lab ID#: 2002351-04A
No Detections Were Found.

Client Sample ID: RAD1 Lab ID#: 2002351-01A

VOCS BY PASSIVE SAMPLER - GC/MS

 File Name:
 18021722sim
 Date of Collection: 2/13/20 1:50:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 2/17/20 04:43 PM

Date of Extraction: 2/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	130	110

Temperature = 77.0F, duration time = 17095 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130

Client Sample ID: RAD2 Lab ID#: 2002351-02A

VOCS BY PASSIVE SAMPLER - GC/MS

 File Name:
 18021723sim
 Date of Collection: 2/13/20 2:12:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 2/17/20 05:08 PM

Date of Extraction: 2/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.085	130	110

Temperature = 77.0F, duration time = 17120 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130

Client Sample ID: RAD3 Lab ID#: 2002351-03A

VOCS BY PASSIVE SAMPLER - GC/MS

 File Name:
 18021724sim
 Date of Collection: 2/13/20 2:16:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 2/17/20 05:33 PM

 Date of Extraction: 2/17/20

 Rpt. Limit Compound
 Rpt. Limit (ug)
 Rpt. Limit (ug/m3)
 Amount (ug)
 Amount (ug/m3)

 Trichloroethene
 0.10
 0.085
 200
 170

Temperature = 77.0F, duration time = 17118 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	81	70-130

Client Sample ID: Trip Blank Lab ID#: 2002351-04A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18021725sim Date of Collection: 2/13/20

Dil. Factor: 1.00 Date of Analysis: 2/17/20 05:58 PM

Date of Extraction: 2/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.085	Not Detected	Not Detected	

Temperature = 77.0F, duration time = 17120 minutes.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	84	70-130	

Client Sample ID: Lab Blank Lab ID#: 2002351-05A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18021705sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/17/20 09:32 AM

Date of Extraction: 2/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.085	Not Detected	Not Detected	

Temperature = 77.0F, duration time = 17120 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	83	70-130

Client Sample ID: LCS Lab ID#: 2002351-06A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18021703sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/17/20 08:39 AM

Date of Extraction: 2/17/20

Compound%RecoveryMethod LimitsTrichloroethene9570-130

Container Type: Radiello 130 (Solvent)

Surrogates%RecoveryMethod LimitsToluene-d88570-130

Client Sample ID: LCSD Lab ID#: 2002351-06AA

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: 18021704sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/17/20 09:07 AM

Date of Extraction: 2/17/20

Compound%RecoveryLimitsTrichloroethene9470-130

Container Type: Radiello 130 (Solvent)

Surrogates%RecoveryMethod LimitsToluene-d88470-130

Air Toxics

Passive Sorbent Chain of Custody

Page / of /

						Lab Use Only					2
Resinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.	ances of any kind. Relin	s, and ordin llection, har	, regulation ed to the co	onal laws	ral, and internation	le local, State, Fede ny claim, demand, o	ince with all applicab Air Toxics against a	are shipped in compliand indemnify Eurofins	this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishi agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.	ishing signature on this documer agreement to	Keiingu
wo/m	アルリ	6	174	2	J		T q				Dalina
V = 0/3+	Time Color		Date	<u> </u>	7	Received by:	2.55pg	2/13/20		Emily Hendrickson	m \$
IRI READER	0. 10071	07.76	1/20		LICKSON.	CMING HEND	0.00	02/61/7		ished hv.	Relina
Notes to Lab:	Time T		Date ン <u>/</u> 、こ		sick on	Received by:	3.400 3	2 /12 /		Michael Tarkart	*
										lished by:	Reling

	4101			X		02/13/20		02/01/20	4929X	Trip Blank	0 P
	41-01			\times	11:16	امه (13/ هم	6:58	02/01/20	X685H	RAD3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
TOT US	41-07			\times	14:12	ea)13/20	16:52	02/01/20	X684H	RADA	23
	41-97			×	13150	02/13/20	10:55	62/01/20	+C80×	KAD1	OIA
Sample Comments:	Analysis Requested	Other(Soil Ga Workpl	ndoor	Retrieval (hr:min)	Retrieval (mm/dd/yy)	Deployment (hr:min)	(mm/dd/yy)	odilpiei D	Identification	ō
	ug ng				Time of		Time of	Date of	Samuel and ID	Sample	
Rush 3 Day	ppmv mg/m3	TVI CITI	Moni		hidre Taylor	1 Good/w	Heather board	Collected by:	60 - 544 - 6368 Collected by:	Contact phone/email: 360	Cont
Normal	ppbv (ug/m3)	COFFINE	toring		Engineering	1	Precision	Project Name:	New Good	Project Manager: Iteather	Proje
Turn Around Time:	Reporting Units (circle)	(check	Sample Matrix one)				03,01,02-0	Project #: 187	Maul Fostor Along Project #: 1803,01,02-03.0.#		Company:
2002351	WO#:			Case Seal #:	Cas						

Shipper Name: Air bill #:

Eurofins Air Toxics, Inc. 180 Blue Ravine Rd. Suite B

Folsom, CA 95630 (916) 985-1000 Fax: (916) 351-8279

Sample Condition Upon Receipt: (circle)

Good

SDR

Custody Seals Intact? Temperature (°C)

Yes

Z O

None

3/18/2020 Ms. Heather Good

Maul Foster and Alongi Inc. 1329 North State Street

Suite 301

Bellingham WA 98225

Project Name: Precision Engineering

Project #: 1803.01.02 Workorder #: 2003371

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 3/13/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

July Butte

WORK ORDER #: 2003371

Work Order Summary

CLIENT:	Ms. Heather Good	BILL TO:	Accounts Payable
---------	------------------	----------	------------------

Maul Foster and Alongi Inc.

Maul Foster and Alongi Inc.

Maul Foster and Alongi Inc.

400 E. Mill Plain Blvd

Suite 301 Suite 400

Bellingham, WA 98225 Vancouver, WA 98660

PHONE: 360-594-6262 P.O.#

FAX: 360-594-6270 **PROJECT** # 1803.01.02 Precision Engineering

DATE RECEIVED: 03/13/2020 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 03/18/2020

FRACTION #	NAME	<u>TEST</u>
01A	RAD5	Passive S.E. RAD130/SKC
02A	RAD1-022020	Passive S.E. RAD130/SKC
03A	RAD4	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

	fleide flages	
CERTIFIED BY:		DATE: $\frac{03/18/20}{}$
		· · · · · · · · · · · · · · · · · · ·

Technical Director

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2003371

Four Radiello 130 (Solvent) samples were received on March 13, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 30475 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated concentration due to calculated sampling rate
 - CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD5 Lab ID#: 2003371-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.048	4.9	2.3	

Client Sample ID: RAD1-022020

Lab ID#: 2003371-02A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.048	2.8	1.3	

Client Sample ID: RAD4 Lab ID#: 2003371-03A

 Compound
 Rpt. Limit (ug)
 Rpt. Limit (ug/m3)
 Amount (ug)
 Amount (ug/m3)

 Trichloroethene
 0.10
 0.048
 5.4
 2.6

Client Sample ID: Trip Blank

Lab ID#: 2003371-04A
No Detections Were Found.

Client Sample ID: RAD5 Lab ID#: 2003371-01A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031706sim Date of Collection: 3/12/20 12:21:00 PM
Dil. Factor: 1.00 Date of Analysis: 3/17/20 11:11 AM

Date of Extraction: 3/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	4.9	2.3

Temperature = 77.0F, duration time = 30456 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	81	70-130

Client Sample ID: RAD1-022020 Lab ID#: 2003371-02A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031707sim Date of Collection: 3/12/20 12:24:00 PM
Dil. Factor: 1.00 Date of Analysis: 3/17/20 11:36 AM

Date of Extraction: 3/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	2.8	1.3

Temperature = 77.0F, duration time = 30474 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	80	70-130

Client Sample ID: RAD4 Lab ID#: 2003371-03A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031708sim Date of Collection: 3/12/20 12:30:00 PM
Dil. Factor: 1.00 Date of Analysis: 3/17/20 12:02 PM

Date of Extraction: 3/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	5.4	2.6

Temperature = 77.0F, duration time = 30475 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	80	70-130

Client Sample ID: Trip Blank Lab ID#: 2003371-04A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031709sim Date of Collection: 3/12/20

Dil. Factor: 1.00 Date of Analysis: 3/17/20 12:28 PM

Date of Extraction: 3/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.048	Not Detected	Not Detected	

Temperature = 77.0F, duration time = 30475 minutes.

		Wethod		
Surrogates	%Recovery	Limits		
Toluene-d8	82	70-130		

Client Sample ID: Lab Blank Lab ID#: 2003371-05A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031705sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/17/20 10:27 AM

Date of Extraction: 3/17/20

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.048	Not Detected	Not Detected	

Temperature = 77.0F, duration time = 30475 minutes.

,,	,		Method
Surrogates		%Recovery	Limits
Toluene-d8		80	70-130

Client Sample ID: LCS Lab ID#: 2003371-06A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c031703sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/17/20 09:31 AM

Date of Extraction: 3/17/20

Compound%RecoveryMethod LimitsTrichloroethene10070-130

Container Type: NA - Not Applicable

Surrogates%RecoveryMethod LimitsToluene-d88270-130

Client Sample ID: LCSD Lab ID#: 2003371-06AA

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	c031704sim	Date of Collection: NA
------------	------------	------------------------

Dil. Factor: 1.00 Date of Analysis: 3/17/20 09:57 AM

Date of Extraction: 3/17/20

Compound	%Recovery	Method Limits
Trichloroethene	94	70-130

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	80	70-130

Passive Sorbent Chain of Custody

Case Seal #

2003371

Corr	Company: May Fo	Maul Foster of Alama	Project #: 1863, 61, 62 P.O.#	53.01.62	P.O.#		Sample Matrix one)	Matrix one)	(check	ck Reporting Units (circle)	ts Turn Around Time:
Proj	Project Manager: Heathar	Coot)	Project Name:	Precusion	n Englingerneg	S NA	4ir		oring	ppbv (ug/m³)	n3) Normal
Con	Contact phone/email: 1920-1594- Collected by: Fyelup	0-594-	Collected by:	typhan			loor A		Monit	ppmv mg/m3	n3 Rush 3 - Da J
Lab	Sample		Date of	Time of	Date of	Time of			ace	gn gu	Specify
6	Identification	Sampler ID	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	indoor/	Soil Ga	Workpl Other(_	Analysis Requested	Sample Comments:
ol 4	RAJ5	X951 Z	2/20/20	845	03/12/20	1221	\times			T)-17	ン
074	RAD1-022020	N836X	2/20/20	836	05/12/120	1224	\times			3	7 000
#20	RADI	X952 N	02/20170	25.00 0.000	02/12/1990	1230	\leq			7	TAR
or y	Trip Black	None *	02/16/10	Amazidis -	Dr 1711/20	* TONGER TONGE	\times			T0 - 17	
Relin	Evely Linder)	Date 3/12/2カ	Time /5 /5	Received by:	25.2 1	<i>1</i> □	ひate ー	/) [Time	Notes to Lab:
Relin	Relinquished by:		Date	Time	Received by:		0(Date		Time	for trip blank
Relin	quishing signature on this docume agreement t	this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquish agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.	are shipped in compl and indemnify Eurofin	iance with all applica	ible local, State, Fede any claim, demand, c	aral, and internation or action, of any kind	ał laws, d, relateo	egulation	ollectic	ordinances of any kind n, handling, or shipping	Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.
2	, ,			-	Lab Us						
Shipper Air bill #:	Shipper Name: (C)	×	Custody Seals Intact? Temperature (°C)	ntact? Yes	No No	Mone	Samp	e Cor	dition	Sample Condition Upon Receipt:	Good SDR
3			Temperature (°C)) 	2	-			(circle)		

Eurofins Air Toxics, Inc. 180 Blue Ravine Rd. Suite B

Folsom, CA 95630 (916) 985-1000 Fax: (916) 351-8279

6/12/2020 Ms. Heather Good Maul Foster and Alongi Inc. 1329 North State Street Suite 301

Project Name: Precision Engineering

Project #: 1803.01.02 Workorder #: 2006201

Bellingham WA 98225

Dear Ms. Heather Good

The following report includes the data for the above referenced project for sample(s) received on 6/9/2020 at Air Toxics Ltd.

The data and associated QC analyzed by Passive S.E. RAD130/SKC are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Alexandra Winslow at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Alexandra Winslow

Project Manager

WORK ORDER #: 2006201

Work Order Summary

CLIENT: Ms. Heather Good BILL TO: Accounts Payable

Maul Foster and Alongi Inc.

Maul Foster and Alongi Inc.

Maul Foster and Alongi Inc.

400 E. Mill Plain Blvd

Suite 301 Suite 400

Bellingham, WA 98225 Vancouver, WA 98660

PHONE: 360-594-6262 P.O.#

FAX: 360-594-6270 **PROJECT** # 1803.01.02 Precision Engineering

DATE RECEIVED: 06/09/2020 **CONTACT:** Alexandra Winslow **DATE COMPLETED:** 06/12/2020

FRACTION #	<u>NAME</u>	TEST
01A	RAD1-051520	Passive S.E. RAD130/SKC
02A	RAD4-051520	Passive S.E. RAD130/SKC
03A	RAD5-051520	Passive S.E. RAD130/SKC
04A	Trip Blank	Passive S.E. RAD130/SKC
05A	Lab Blank	Passive S.E. RAD130/SKC
06A	LCS	Passive S.E. RAD130/SKC
06AA	LCSD	Passive S.E. RAD130/SKC

	1	eide Tlayer		
CERTIFIED BY:	0	00	DATE: $\frac{06/12/20}{}$	

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209219, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-19-14, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-013, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE RAD130 Passive SE by Mod EPA TO-17 Maul Foster and Alongi Inc. Workorder# 2006201

Four Radiello 130 (Solvent) samples were received on June 09, 2020. The laboratory analyzed the charcoal sorbent bed of the passive sampler following modified method EPA TO-17. The VOCs were chemically extracted using carbon disulfide and an aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value. Results are not corrected for desorption efficiency.

The reference method used for this procedure is EPA TO-17, which describes the collection of VOCs in ambient air using sorbents and analysis by GC/MS. Because TO-17 describes active sample collection using a pump and thermal desorption as the preparation step, several modifications are required. Modifications to TO-17 are listed in the table below:

Requirement	TO-17	ATL Modifications
Sample Collection	Pump pulls measured air volume through sorbent tube	VOCs in air adsorbed onto sorbent bed passively through diffusion
Sample Preparation	Thermal extraction	Solvent extraction
Sorbent tube conditioning	Condition newly packed tubes prior to use	Charcoal-based sorbent is a single use media and conditioning is conducted by vendor.
Instrumentation	Thermal desorption introduction system	Liquid injection introduction system
Internal Standard	Gas-phase internal standard introduced on the tube or focusing trap during analysis	Liquid-phase internal standard introduced on the tube at the time of extraction
Media and sample storage	<4 deg C, 30 days	Media shelf life is determined by vendor; sample hold-time is 6 months for the RAD130 and WMS. Sample preservation requirements are storage in a cool, solvent-free refrigerator and optional use of ice during shipping.
Internal Standard Recovery	+/-40% of daily CCV area	-50% to +100% of daily CCV area

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

A revised Chain of Custody (COC) was provided by the client on 06/09/20.

Analytical Notes

The uptake rates were corrected based on average field temperatures if provided. In the absence of field temperatures, the uptake rates determined at 25 deg C were used.

To calculate ug/m3 concentrations in the Lab Blank and Trip Blank, a sampling duration of 30238 minutes was applied. The assumed temperature used for the uptake rate is listed on the data page. If the field temperatures were provided, the rate was adjusted in the same manner as the field samples.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - C Estimated concentration due to calculated sampling rate
 - CN See case narrative explanation.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds VOCS BY PASSIVE SAMPLER - GC/MS

Client Sample ID: RAD1-051520

Lab ID#: 2006201-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.048	2.8	1 4	

Client Sample ID: RAD4-051520

Lab ID#: 2006201-02A

Compound	Rpt. Limit (ug)	(ug/m3)	(ug)	(ug/m3)	
Trichloroethene	0.10	0.048	5.5	2.6	

Client Sample ID: RAD5-051520

Lab ID#: 2006201-03A

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)	
Trichloroethene	0.10	0.048	3.6	1.7	

Client Sample ID: Trip Blank

Lab ID#: 2006201-04A
No Detections Were Found.

Client Sample ID: RAD1-051520 Lab ID#: 2006201-01A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c061010sim Date of Collection: 6/5/20 3:11:00 PM
Dil. Factor: 1.00 Date of Analysis: 6/10/20 11:01 AM
Date of Extraction: 6/10/20

 Compound
 Rpt. Limit (ug)
 Rpt. Limit (ug/m3)
 Amount (ug)
 Amount (ug/m3)

 Trichloroethene
 0.10
 0.048
 2.8
 1.4

Temperature = 77.0F, duration time = 30238 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	79	70-130

Client Sample ID: RAD4-051520 Lab ID#: 2006201-02A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c061011sim Date of Collection: 6/5/20 3:15:00 PM Dil. Factor: 1.00 Date of Analysis: 6/10/20 11:28 AM

Date of Extraction: 6/10/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	5.5	2.6

Temperature = 77.0F, duration time = 30235 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	80	70-130

Client Sample ID: RAD5-051520 Lab ID#: 2006201-03A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	c061012sim	Date of Collection: 6/5/20 3:18:00 PM
Dil. Factor:	1.00	Date of Analysis: 6/10/20 11:55 AM
		Date of Extraction: 6/10/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	3.6	1.7

Temperature = 77.0F, duration time = 30234 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	77	70-130

Client Sample ID: Trip Blank Lab ID#: 2006201-04A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c061013sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/10/20 12:22 PM

Date of Extraction: 6/10/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	Not Detected	Not Detected

Temperature = 77.0F, duration time = 30238 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	80	70-130

Client Sample ID: Lab Blank Lab ID#: 2006201-05A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c061005sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/10/20 08:47 AM

Date of Extraction: 6/10/20

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
Trichloroethene	0.10	0.048	Not Detected	Not Detected

Temperature = 77.0F, duration time = 30238 minutes.

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	79	70-130

Client Sample ID: LCS Lab ID#: 2006201-06A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: c061003sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/10/20 07:54 AM

Date of Extraction: 6/10/20

Compound%RecoveryMethod LimitsTrichloroethene9870-130

Container Type: NA - Not Applicable

Surrogates%RecoveryMethod LimitsToluene-d88070-130

Client Sample ID: LCSD Lab ID#: 2006201-06AA

VOCS BY PASSIVE SAMPLER - GC/MS

File Name:	c061004sim	Date of Collection: NA
------------	------------	------------------------

Dil. Factor: 1.00 Date of Analysis: 6/10/20 08:20 AM

Date of Extraction: 6/10/20

Compound	%Recovery	Method Limits
Trichloroethene	94	70-130

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	79	70-130

eurofins :

Air Toxics

ReMSED COC 6/09/20 Page 1 of 1

Case Seal #:

2006201

Air bill #: Shipper Name Relinquished by: Relinquished by: 450 40 014 Company: Ę Contact phone/emailhgood@maulfoster.com Project Manager: Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agriculture and indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, or any kind, related to the collection, handling, or shipping of samples. Evelyn Lundeen RAD5-051520 RAD1-051520 Trip Blank RAD4-051520 Identification Sample Maul Foster & Alongi 360.594.6268 Heather Good Y712B Sampler ID Y713B X907U Y714B Collected by: Custody Seals Intact? Date Date Project Name: Project #: 1803.01.02 Temperature (°C) 06/08/20 Deployment (mm/dd/yy) 05/15/20 05/15/20 Z 05/15/20 Date of Time 13:40 Deployment (hr:min) me 15:20 15:13 15:24 X Time of Precision Engineering Evelyn Lundeen Yes Received by: FedEx P.O.# Received by: Lab Use Only Date of Retrieval 06/05/20 (mm/dd/yy) 06/05/20 06/05/20 Z Š S O Retrieval (hr:min) Time of None Z. 15:11 15:15 15:18 Sample Matrix one) Sample Condition Upon Receipt × × Indoor/Outdoor Air Date Date Soil Gas Workplace Monitoring (check Other Time Time TO-17 TCE ONLY TO-17 TCE ONLY TO-17 TCE ONLY TO-17 TCE ONLY Reporting Units ppmv mg/m3 ppbv (ug/m3) Analysis Requested 20 Good Notes to Lab: X Rush 3-day TAT Normal MRL needed </= 0.37 ug/m3 Turn Around Time: Sample Comments: Specify SDR

Eurofins Air Toxics, Inc. 180 Blue Ravine Rd. Suite B

Folsom, CA 95630

(916) 985-1000 Fax: (916) 351-8279

Passive Sorbent Chain of Cus

Page of

Air Toxics

Case Seal #:

- 596

200620

1											
Com	Company: Monition	Mani Forst + Alang Project #: 1203 01,02 P.O.#	Project #: 196	13.01.02	P.O.#		Sample Matrix one)	fatrix one)	(check	Reporting Units (circle)	Turn Around Time:
Proje	Project Manager: ************************************	1000	Project Name:	P.C.S.S.S.	Training		Air	torina		ppbv (ug/m3	Normal Normal
Cont	Contact phone/email:	SCHOOL BOOK CO	Collected by: Evelyn Lunden	welmy L	industry	<u> </u>	door A	Monit		ppmv mg/m3	Rush 3 as
Lab	Sample	i	Date of	Time of	Date of	Time of	······································			gn gu	Specify
ē	Identification	Sampler ID	Deployment (mm/dd/yy)	Deployment (hr:min)	Retrieval (mm/dd/yy)	Retrieval (hr:min)	Indoor/ Soil Ga	 Workpi	Other(_	Analysis Requested	Sample Comments:
	245150 TONE	Y7148	05/18/120	1553	at 11.21.30	11:51	×			L1~0L	J
	FAD4-05:520	X907U	05/15/2D	15:20	cz/1.2100	টুর জ	×			70-17	3
	アクログーのかってんか	Y7128	05/15/120	15:24	221/20102	15.16 15.16	×			70-17	4
	Trip Blank	47136	ZA	AN	NΑ	ND				10-17	
1000	W. T.										
n Res	Relinquished by:		Date T	Time 1340	Received by:		Date	2	Ŋ	Time / ,	Notes to Lab:
Relin	Relinquished by:		Date	Time	Received by:		Date	\	-	Time	1/20,37
	V					2 EAS	200	6/09	The) (03E	ue/m 3
Relino	luishing signature on this docume agreement t	this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquish agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples	are shipped in complic and indemnify Eurofins	ance with all applica s Air Toxics against	able locat, State, Feder any claim, demand, or	ral, and internation r action, of any kind	ał laws, re d, related	gulation to the co	s, and or llection, l	dinances of any kind. Re randling, or shipping of s	Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local, State, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples.
					Lab Use Only						
Shipp Air bii	Name: +	20 Company	Custody Seals Intact?	itact? Yes		None	Sample	Cond	ition U	Sample Condition Upon Receipt:	Good SDR
All DIII #	# .		Temperature (°C))	77	Í			(circle)		_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the additional results from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: jwetmore@maulfoster.com

MFA0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 2, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.02, F&BI 002001 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
002001 -01	A10
002001 -02	A9
002001 -03	A8
002001 -04	A11
002001 -05	IA8-020120
002001 -06	IA10
002001 -07	IA9
002001 -08	IA11
002001 -09	IA12
002001 -10	IA13
002001 -11	IA14
002001 -12	IA15
002001 -13	AA1
002001 -14	AA2
002001 -15	AA3
002001 -16	AA4
002001 -17	AA5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA8-020120 Client: Maul Foster Alongi

Project: Precision Engineering 1803.01.02 Date Received: 02/02/20

Lab ID: Date Collected: 02/01/20 002001-05 1/10 Date Analyzed: 02/11/20 Data File: $021030.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 270 51

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA10 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-06 1/10 Date Analyzed: 02/11/20 Data File: 021031.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 340 62

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA9 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-07 1/10 Date Analyzed: 02/11/20 Data File: $021032.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 330 61

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA11 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-08 1/10 Date Analyzed: 02/11/20 Data File: $021033.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 170 32

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA12 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-09 1/10 Date Analyzed: 02/11/20 Data File: $021034.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 93 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 200 37

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA13 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-10 1/10 Date Analyzed: 02/11/20 Data File: $021035.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 210 39

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA15 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 02/01/20 002001-12 1/10 Date Analyzed: 02/11/20 Data File: $021036.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

 $\begin{tabular}{lll} 4-Bromofluor obenzene & 87 & 70 & 130 \\ \end{tabular}$

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 170 32

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: Not Applicable 00-0332 mb02/10/20 Date Analyzed: Data File: 021018.DMatrix: Air GCMS7Instrument: ug/m3 Units: Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene <0.27 <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/02/20

Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Trichloroethene	ppbv	5	86	70-130	_

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1002001

Report To Heather Good

Company Maul Foster & Alongi

Address 1329 N. State Street, Suite 301

City, State, ZIP Bellingham, WA 98225

Phone (360) 594-6268 Email hgood@maulfoster.com

SAMPLE CHAIN OF CUSTODY

D X 02-02-20 Page #

SAMPLERS (signature) REPORTING LEVEL Precision Engineering PROJECT NAME 1803.01.02 INVOICE TO PO#

· Sub Slab/Soil Gas Indoor Air Deep Soil Gas

SVE/Grab accounting@ maulfoster.com Dispose after 30 days

Rush charges authorized by: Standard RUSH_ TURNAROUND TIME SAMPLE DISPOSAL 3 DAY

· Other Archive Samples

Sample Name Lab Canister Contr. Date Press. Initial Field Fie	Indoor air in cansacr of is		X	X	[547	-0	1554		2/1/20	NA			
Lab Canister Contr. Date Press Initial Field Final Field F	Indoor air		\times	X	<u>15</u>	8		-30		AN	21453		lA9
Lab Canister Contr. Date Press. Initial Field	Indoor air	20	X	X	1848			-29		NA	20550		
Lab Canister Contr. DD Date DD Field DD	Indoor air Sample TO 1/18020120 BB		ľ	X	1451	-6	1546	-30		NA	23229		1/18-020120 Per Ha 2/6/20
Lab Canister Flow Date Frield	Subslab	×	X	X	1312		1306	-30		17	2434	` '	A12 A11
Flow Field	Subslab	×	\times	X	1312		1336	-30		111	3230		
Sample Name O ₁ 2299 12 2/1/20 -30 1128 -5 1135 X X Sut			X	X	1214		1208	-30	L	18	2304		
Lab Canister Contr. Date Press. Initial Press. Final Oul E TO ASTM TO ID Sampled (Hg) Time (Hg) Time To by He To ID ID Sampled (Hg) Time To ID ID ID ID ID ID ID ID ID ID ID ID ID			\succeq	×	1135		1128	-30		12	2299		
	Samples received at		TCE by Mod. TO-17	TO-15 Modified SIM Full Scan*			Field Initial Time		Date Sampled	Flow Contr. ID	Canister D	Lab D	Sample Name

3012 16th	Friedman
i Avenue	ı & Bruya
West	a, Inc

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

Received by: Relinquished by: Relinguished by: SIGNATURE Evelyn Lundeen PRINT NAME DE LOCAL COMPANY MFA 222 2/2/20 DATE アル 1742 TIME

FORMS\COC\COCTO-15.DOC

*Note: TO-15 Modified SIM full scan to include the following;, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

Report To Heather Good

Company Maul Foster & Alongi

Address 1329 N. State Street, Suite 301

City, State, ZIP Bellingham, WA 98225

Phone (360) 594-6268_{Email} hgood@maulfoster.com

· Sub Slab/Soil Gas

SAMPLE CHAIN OF CUSTODY

3 02-02-20 of 3

REPORTING LEVEL Precision Engineering SAMPLERS (signature) PROJECT NAME Indoor Air PO# 1803,01.02 INVOICE TO RUSH Standard TURNAROUND TIME

Deep Soil Gas SVE/Grab ANALYSIS REQUESTED accounting@ maulfoster.com Rush charges authorized by: Archive Samples Dispose after 30 days THE PROPERTY SAMPLE DISPOSAL 3 DAY

	***					1 2 2 2	07200140		ANALYSIS REQUESTED	SIS7	EQUI	STED CA
									ified SIM	d. TO-17	VOCs M D-1946	
Sample Name	Lab D	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press. (Hg)	Field Initial Time	Field Final Press. (Hg)	Field Final Time	TO-15 Modif Full Scan*	TCE by Mod.	TO-15 cV He by ASTM	
IA12	20	18564	NA	2/1/20	1 i 1	1556	-6	1556		$\frac{\lambda}{2}$		
IA13	10	20546	NA	2/1/20	-30	1557	-7	1227	$X \mid$			
IA14	~	18571	NA	2/1/20	-30	1559	-7	1559	X	\exists		- 1
IA15	Z	20545	NA	2/1/20	-30	1605	역	luss	X			1
AA1	13	18569	NA A	2/1/20	-30	1630	-6	1630	X			- 1
AA2	154	18580	NA	2/1/20 -30		1641	5	11-21	X	<u></u>		
AA3	15	20552	NA	2/1/20	-30	1640	-12	1640	X	12/2	•	
AA4	16	18579	NA	2/1/20	-30	1637	-7	1637)	X	50		
												ĺ

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044

Received by: Relinquished by: Relinquished by: SIGNATURE Evelyn Lundeen PRINT NAME Total COMPANY MFA 2/2/20 DATE

> 1747 TIME

^{*}Note: TO-15 Modified SIM full scan to include the following:, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

THIMAG

	CHAIN
	Ç
	CUSTODI

02-02-20

B	Ā.	· ·
REPORTING LEVEL	PROJECT NAME Precision Engineering	SAMPLERS (signature)
INVOICE TO	PO# 1803.01.02	

Deep Soil Gas
 SVE/Grab

Phone (360) 594-6268 Email hgood@maulfoster.com

Indoor AirSub Slab/Soil Gas

City, State, ZIP Bellingham, WA 98225

Address 1329 N. State Street, Suite 301

Company Maul Foster & Alongi

Report To Heather Good

002001

accounting@ maulfoster.com INVOICE TO Archive Samples Dispose after 30 days · Other SAMPLE DISPOSAL

Rush charges authorized by:

3 DAY

 Standard · RUSH

TURNAROUND TIME

ANALYSIS REQUESTED

1	 ,	·	·				
			÷			AA5	Sample Name
					<u> </u>	17	Lab ID
						17 20547	Canister ID
						NA	Flow Contr. ID
						2/1/20 -30	Field Initial Date Press. Sampled (Hg)
						-30	Field Initial Press. (Hg)
						1632	Field Initia Time
						-6 7632	Field Final Field Press. Final (Hg) Time
						1632	Field Final Time
						X	TO-15 Modified SIM Full Scan*
				- c ()	<u> </u>	<u> </u>	TCE by Mod. TO-17
				}	2/2/	20	TO-15 cVOCs
							He by ASTM D-1946
						Outdoor air	Notes

Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc

FORMS\COC\COCTO-15.DOC

		é	77.	7.
Received by:	Relinquished by:	Received by:	Relinquished by:	SIGNATURE
		Car Chuin	Evelyn Lundeen	PRINT NAME
		TRR	MFA	COMPANY
		phlo	2/2/20	DATE
		1742	1742	TIME

^{*}Note: TO-15 Modified SIM full scan to include the following;, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included is the amended report from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. Per your request, sample IDs were amended.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0206R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 2, 2020 from the Precision Engineering 1803.01.02, F&BI 002001 project. There are 23 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0206R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 2, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.02, F&BI 002001 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
002001 -01	A10
002001 -02	A9
002001 -03	A8
002001 -04	A11
002001 -05	IA8-020120
002001 -06	IA10
002001 -07	IA9
002001 -08	IA11
002001 -09	IA12
002001 -10	IA13
002001 -11	IA14
002001 -12	IA15
002001 -13	AA1
002001 -14	AA2
002001 -15	AA3
002001 -16	AA4
002001 -17	AA5

The trichloroethene concentration in samples IA8-020120, IA10, IA9, IA11, IA12, IA13, and IA15 exceeded the calibration range of the instrument. The data were flagged accordingly. The overrange samples will be diluted and reanalyzed and the results issued in a separate report.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

	Client Sample ID:	A10	Client:	Maul Foster Alongi
--	-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-01 1/44 02/01/20 Date Analyzed: 02/04/20 Data File: $020337.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	<11	<4.4
Chloroethane	<120	<44
1,1-Dichloroethene	<17	<4.4
trans-1,2-Dichloroethene	<17	<4.4
1,1-Dichloroethane	<18	<4.4
cis-1,2-Dichloroethene	40	10
1,2-Dichloroethane (EDC)	<1.8	< 0.44
Trichloroethene	29	5.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	A9	Client:	Maul Foster Alongi
-------------------	----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-02 1/16 02/01/20 Date Analyzed: 02/04/20 Data File: $020336.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
37: 1 11 :1		.1.0
Vinyl chloride	<4.1	<1.6
Chloroethane	<42	<16
1,1-Dichloroethene	<6.3	<1.6
trans-1,2-Dichloroethene	<6.3	<1.6
1,1-Dichloroethane	< 6.5	<1.6
cis-1,2-Dichloroethene	21	5.3
1,2-Dichloroethane (EDC)	< 0.65	< 0.16
Trichloroethene	1,100	210

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	A8	Client:	Maul Foster Alongi
-------------------	----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-03 1/8.2 02/01/20 Date Analyzed: 02/04/20 Data File: $020335.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	107	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Vinyl chloride	<2.1	< 0.82
Chloroethane	<22	<8.2
1,1-Dichloroethene	<3.3	< 0.82
trans-1,2-Dichloroethene	<3.3	< 0.82
1,1-Dichloroethane	<3.3	< 0.82
cis-1,2-Dichloroethene	<3.3	< 0.82
1,2-Dichloroethane (EDC)	< 0.33	< 0.082
Trichloroethene	160	29

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: A11 Client: Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

 Date Collected:
 02/01/20
 Lab ID:
 002001-04 1/8.2

 Date Analyzed:
 02/04/20
 Data File:
 020333.D

 Matrix:
 Air
 Instrument:
 GCMS7

Matrix: Air Instrument: GCN Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

Compounds:	Concentug/m3	tration ppbv
Vinyl chloride	<2.1	< 0.82
Chloroethane	<2.1 <22	<8.2
1,1-Dichloroethene	<3.3	< 0.82
trans-1,2-Dichloroethene	<3.3	< 0.82
1,1-Dichloroethane	14	3.4
cis-1,2-Dichloroethene	<3.3	< 0.82
1,2-Dichloroethane (EDC)	< 0.33	< 0.082
Trichloroethene	82	15

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IA8-020120	Client:	Maul Foster Alongi
-------------------	------------	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-05 02/01/20 Date Analyzed: Data File: $020320.\mathrm{D}$ 02/03/20 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.093	0.023
Trichloroethene	210 ve	40 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IA10	Client:	Maul Foster Alongi
-------------------	------	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Date Collected: Lab ID: 002001-06 02/01/20 Date Analyzed: 02/04/20 Data File: 020321.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.089	0.022
Trichloroethene	$260 \mathrm{\ ve}$	49 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Cheff Dallible 1D. 1A3 Cheff. Maul Tostel Along	Client Sample ID:	IA9	Client:	Maul Foster Alongi
---	-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-07 02/01/20 Date Analyzed: 02/04/20 Data File: 020322.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	78	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.085	0.021
Trichloroethene	250 ve	$47 \mathrm{\ ve}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA11 Client:	Maul Foster Alongi
--------------------------------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-08 02/01/20 Date Analyzed: 02/04/20 Data File: 020323.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	95	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.097	0.024
Trichloroethene	140 ve	26 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA12 Client:	Maul Foster Alongi
--------------------------------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-09 02/01/20 Date Analyzed: 02/04/20 Data File: $020324.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130

	Concentration	
Compounds:	ug/m3	ppbv
77:1 -1-1:-1-	<0.9C	-0.1
Vinyl chloride	< 0.26	< 0.1
Chloroethane	<2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.093	0.023
Trichloroethene	160 ve	30 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-10 02/01/20 Date Analyzed: Data File: $020325.\mathrm{D}$ 02/04/20 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Vinyl chloride	< 0.26	< 0.1	
Chloroethane	< 2.6	<1	
1,1-Dichloroethene	< 0.4	< 0.1	
trans-1,2-Dichloroethene	< 0.4	< 0.1	
1,1-Dichloroethane	< 0.4	< 0.1	
cis-1,2-Dichloroethene	< 0.4	< 0.1	
1,2-Dichloroethane (EDC)	0.089	0.022	
Trichloroethene	180 ve	34 ve	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-11 02/01/20 Date Analyzed: 02/04/20 Data File: $020326.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

Con		centration	
Compounds:	ug/m3	ppbv	
Vinyl chloride	< 0.26	< 0.1	
•			
Chloroethane	<2.6	<1	
1,1-Dichloroethene	< 0.4	< 0.1	
trans-1,2-Dichloroethene	< 0.4	< 0.1	
1,1-Dichloroethane	< 0.4	< 0.1	
cis-1,2-Dichloroethene	< 0.4	< 0.1	
1,2-Dichloroethane (EDC)	0.085	0.021	
Trichloroethene	110	21	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Chent Sample ID: IA19 Chent: Maul Foster Alo	Client Sample ID:	IA15	Client:	Maul Foster Alongi
--	-------------------	------	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-12 02/01/20 Date Analyzed: 02/04/20 Data File: $020327.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Vincel ablanida	< 0.26	< 0.1	
Vinyl chloride			
Chloroethane	< 2.6	<1	
1,1-Dichloroethene	< 0.4	< 0.1	
trans-1,2-Dichloroethene	< 0.4	< 0.1	
1,1-Dichloroethane	< 0.4	< 0.1	
cis-1,2-Dichloroethene	< 0.4	< 0.1	
1,2-Dichloroethane (EDC)	0.093	0.023	
Trichloroethene	150 ve	28 ve	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA1	Client:	Maul Foster Alongi

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-13 02/01/20 Date Analyzed: Data File: $020328.\mathrm{D}$ 02/04/20 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	105	70	130

Conce		ntration	
Compounds:	ug/m3	ppbv	
Wined ship side	<0.00	-0.1	
Vinyl chloride	< 0.26	< 0.1	
Chloroethane	< 2.6	<1	
1,1-Dichloroethene	< 0.4	< 0.1	
trans-1,2-Dichloroethene	< 0.4	< 0.1	
1,1-Dichloroethane	< 0.4	< 0.1	
cis-1,2-Dichloroethene	< 0.4	< 0.1	
1,2-Dichloroethane (EDC)	0.065	0.016	
Trichloroethene	< 0.16	< 0.03	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA2	Client:	Maul Foster Alongi
-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-14 02/01/20 Date Analyzed: 02/04/20 Data File: $020329.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.065	0.016
Trichloroethene	< 0.16	< 0.03

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA3	Client:	Maul Foster Alongi
-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-15 1/1.6 02/01/20 Date Analyzed: 02/04/20 Data File: $020330.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	109	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.41	< 0.16
Chloroethane	<4.2	<1.6
1,1-Dichloroethene	< 0.63	< 0.16
trans-1,2-Dichloroethene	< 0.63	< 0.16
1,1-Dichloroethane	< 0.65	< 0.16
cis-1,2-Dichloroethene	< 0.63	< 0.16
1,2-Dichloroethane (EDC)	0.065	0.016
Trichloroethene	< 0.27	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA4	Client:	Maul Foster Alongi
-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: 002001-16 02/01/20 Date Analyzed: 02/04/20 Data File: 020331.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concentrati	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.065	0.016
Trichloroethene	< 0.16	< 0.03

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA5	Client:	Maul Foster Alongi
-------------------	-----	---------	--------------------

Date Received: 02/02/20 Project: Precision Engineering 1803.01.02

Date Collected: Lab ID: 002001-17 02/01/20 Date Analyzed: 02/04/20 Data File: 020332.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.065	0.016
Trichloroethene	< 0.16	< 0.03

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.02

Lab ID: Date Collected: Not Applicable 00-0297 mb 02/03/20 Date Analyzed: Data File: $020319.\mathrm{D}$ GCMS7 Matrix: Air Instrument: ug/m3 Operator: Units: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

Concent	ration
ug/m3	ppbv
< 0.26	< 0.1
< 2.6	<1
< 0.4	< 0.1
< 0.4	< 0.1
< 0.4	< 0.1
< 0.4	< 0.1
< 0.04	< 0.01
< 0.16	< 0.03
	ug/m3 <0.26 <2.6 <0.4 <0.4 <0.4 <0.4 <0.4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20

Project: Precision Engineering 1803.01.02, F&BI 002001

Date Extracted: 02/05/20 Date Analyzed: 02/05/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
A10 002001-01	<0.6
A9 002001-02	<0.6
A8 002001-03	<0.6
A11 002001-04	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20

Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ppbv	5	80	70-130
Chloroethane	ppbv	5	83	70-130
1,1-Dichloroethene	ppbv	5	85	70-130
trans-1,2-Dichloroethene	ppbv	5	82	70-130
1,1-Dichloroethane	ppbv	5	78	70-130
cis-1,2-Dichloroethene	ppbv	5	83	70-130
1,2-Dichloroethane (EDC)	ppbv	5	80	70-130
Trichloroethene	ppbv	5	81	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 02/06/20 Date Received: 02/02/20

Project: Precision Engineering 1803.01.02, F&BI 002001

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 002001-04 (Duplicate)

	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1002001

Report To Heather Good

Company Maul Foster & Alongi

Address 1329 N. State Street, Suite 301

City, State, ZIP Bellingham, WA 98225

Phone (360) 594-6268 Email hgood@maulfoster.com

SAMPLE CHAIN OF CUSTODY

D X 02-02-20 Page #

SAMPLERS (signature) REPORTING LEVEL Precision Engineering PROJECT NAME 1803.01.02 INVOICE TO PO#

· Sub Slab/Soil Gas Indoor Air Deep Soil Gas

SVE/Grab accounting@ maulfoster.com Dispose after 30 days

Rush charges authorized by: Standard RUSH_ TURNAROUND TIME SAMPLE DISPOSAL 3 DAY

· Other Archive Samples

Sample Name Lab Canister Contr. Date Press. Initial Field Fie	Indoor air in cansacr of is		X	X	[547	-0	1554		2/1/20	NA			
Lab Canister Contr. Date Press Initial Field Final Field F	Indoor air		\times	X	<u>15</u>	8		-30		AN	21453		lA9
Lab Canister Contr. Date Press. Initial Field	Indoor air	20	X	X	1848			-29		NA	20550		
Lab Canister Contr. DD Date DD Field DD	Indoor air Sample TO 1/18020120 BB		ľ	X	1451	-6	1546	-30		NA	23229		1/18-020120 Per Ha 2/6/20
Lab Canister Flow Date Frield	Subslab	×	X	X	1312		1306	-30		17	2434	` '	A12 A11
Flow Field	Subslab	×	\times	X	1312		1336	-30		111	3230		
Sample Name O ₁ 2299 12 2/1/20 -30 1128 -5 1135 X X Sut			X	X	1214		1208	-30	L	18	2304		
Lab Canister Contr. Date Press. Initial Press. Final Oul E TO ASTM TO ID Sampled (Hg) Time (Hg) Time To by He To ID ID Sampled (Hg) Time To ID ID ID ID ID ID ID ID ID ID ID ID ID			\succeq	×	1135		1128	-30		12	2299		
	Samples received at		TCE by Mod. TO-17	TO-15 Modified SIM Full Scan*			Field Initial Time		Date Sampled	Flow Contr. ID	Canister D	Lab D	Sample Name

3012 16th	Friedman
i Avenue	ı & Bruya
West	a, Inc

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

Received by: Relinquished by: Relinguished by: SIGNATURE Evelyn Lundeen PRINT NAME STANCE OF T. R COMPANY MFA 222 2/2/20 DATE アル 1742 TIME

FORMS\COC\COCTO-15.DOC

*Note: TO-15 Modified SIM full scan to include the following;, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

Report To Heather Good

Company Maul Foster & Alongi

Address 1329 N. State Street, Suite 301

City, State, ZIP Bellingham, WA 98225

Phone (360) 594-6268_{Email} hgood@maulfoster.com

· Sub Slab/Soil Gas

SAMPLE CHAIN OF CUSTODY

3 02-02-20 of 3

REPORTING LEVEL Precision Engineering SAMPLERS (signature) PROJECT NAME Indoor Air PO# 1803,01.02 INVOICE TO RUSH Standard TURNAROUND TIME

Deep Soil Gas SVE/Grab ANALYSIS REQUESTED accounting@ maulfoster.com Rush charges authorized by: Archive Samples Dispose after 30 days THE PROPERTY SAMPLE DISPOSAL 3 DAY

	***					1 2 2 2	07200140		ANALYSIS REQUESTED	SIS7	EQUI	STED CA
									ified SIM	d. TO-17	VOCs M D-1946	
Sample Name	Lab ID	Canister ID	Flow Contr. ID	Date Sampled	Field Initial Press. (Hg)	Field Initial Time	Field Final Press. (Hg)	Field Final Time	TO-15 Modif Full Scan*	TCE by Mod.	TO-15 cV He by ASTM	
IA12	20	18564	NA	2/1/20	1 i 1	1556	-6	1556		$\frac{\lambda}{2}$		
IA13	10	20546	NA	2/1/20	-30	1557	-7	1227	$X \mid$	$\stackrel{\frown}{}$		
IA14	~	18571	NA	2/1/20	-30	1559	-7	1559	X	\exists		- 1
IA15	Z	20545	NA	2/1/20	-30	1605	역	luss	X			1
AA1	13	18569	NA A	2/1/20	-30	1630	-6	1630	X			- 1
AA2	154	18580	NA	2/1/20 -30		1641	5	11-21	X	<u></u>		
AA3	15	20552	NA	2/1/20	-30	1640	-12	1640	X	12/2	•	
AA4	16	18579	NA	2/1/20	-30	1637	-7	1637)	X	50		
												ĺ

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044

Received by: Relinquished by: Relinquished by: SIGNATURE Evelyn Lundeen PRINT NAME Total COMPANY MFA 2/2/20 DATE

> 1747 TIME

^{*}Note: TO-15 Modified SIM full scan to include the following:, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

THIMAG

	CHAIN
	Ç
	CUSTODI

02-02-20

B	Ā.	· ·
REPORTING LEVEL	PROJECT NAME Precision Engineering	SAMPLERS (signature)
INVOICE TO	PO# 1803.01.02	

Deep Soil Gas
 SVE/Grab

Phone (360) 594-6268 Email hgood@maulfoster.com

Indoor AirSub Slab/Soil Gas

City, State, ZIP Bellingham, WA 98225

Address 1329 N. State Street, Suite 301

Company Maul Foster & Alongi

Report To Heather Good

002001

accounting@ maulfoster.com INVOICE TO Archive Samples Dispose after 30 days · Other SAMPLE DISPOSAL

Rush charges authorized by:

3 DAY

 Standard · RUSH

TURNAROUND TIME

ANALYSIS REQUESTED

1	 ,	·	·				
			÷			AA5	Sample Name
					<u> </u>	17	Lab ID
						17 20547	Canister ID
						NA	Flow Contr. ID
						2/1/20 -30	Field Initial Date Press. Sampled (Hg)
				-		-30	Field Initial Press. (Hg)
						1632	Field Initia Time
						-6 7632	Field Final Field Press. Final (Hg) Time
						1632	Field Final Time
						X	TO-15 Modified SIM Full Scan*
				- c ()	<u> </u>	<u> </u>	TCE by Mod. TO-17
				}	2/2/	20	TO-15 cVOCs
							He by ASTM D-1946
						Outdoor air	Notes

Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc

FORMS\COC\COCTO-15.DOC

		é	77.	7.
Received by:	Relinquished by:	Received by:	Relinquished by:	SIGNATURE
		Car Chuin	Evelyn Lundeen	PRINT NAME
		TRR	MFA	COMPANY
		phlo	2/2/20	DATE
		1742	1742	TIME

^{*}Note: TO-15 Modified SIM full scan to include the following;, as specified by email: TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, chloroethane, and vinyl chloride.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on May 4, 2020 from the Precision Engineering 1803.01.03, F&BI 005024 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0506R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 4, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering 1803.01.03, F&BI 005024 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
005024 -01	IA16050220
005024 -02	IA17050220
005024 -03	IA18050220
005024 -04	IA19050220

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA16050220 Client: Maul Foster Alongi

Date Received: 05/04/20 Project: Precision Engineering 1803.01.03

Lab ID: Date Collected: 05/02/20 005024-01 Date Analyzed: 05/04/20 Data File: $050416.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 101 70 130

Concentration

Compounds: ug/m3 ppbv

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA17050220 Client: Maul Foster Alongi

Date Received: 05/04/20 Project: Precision Engineering 1803.01.03

Lab ID: Date Collected: 05/02/20 005024-02 Date Analyzed: 05/04/20 Data File: 050413.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3 ppbv

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA18050220 Client: Maul Foster Alongi

Date Received: 05/04/20 Project: Precision Engineering 1803.01.03

Lab ID: Date Collected: 05/02/20 005024-03 Date Analyzed: 05/04/20 Data File: 050414.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA19050220 Client: Maul Foster Alongi

Date Received: 05/04/20 Project: Precision Engineering 1803.01.03

Lab ID: Date Collected: 05/02/20 005024-04 Date Analyzed: 05/04/20 Data File: 050415.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 83 70 130

Concentration

Compounds: ug/m3 ppbv

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering 1803.01.03

Lab ID: Date Collected: Not Applicable 00-0991 mb 05/04/20 Date Analyzed: Data File: 050411.DMatrix: Air GCMS7Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 108 70 130

Concentration

Compounds: ug/m3 ppbv

ENVIRONMENTAL CHEMISTS

Date of Report: 05/06/20 Date Received: 05/04/20

Project: Precision Engineering 1803.01.03, F&BI 005024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Trichloroethene	ug/m3	73	80	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Company Maul Foster + Alongi 1329 North State St., #301 Report To Heather Good City, State, ZIP_Bellingham, wA 98225 005024

Phone MANY TO A PANA Email hypoda martostrian
340 - 929 - 1309

SAMPLE INFORMATION

ĺ	È
	E CHAIN OF CUSTODY
	Ę
	COS
	TOL
	Y
	ME
	,
	05/
	~

	fosterican	
1 [accounting Small	
	INVOICE TO	NOTES:
1	0.2	1231 S Director St., Seath, WA 98/08
w >>	1803.01.03	Precision Engineering
	PO#	PROJECT NAME & ADDRESS
		de ha
ı		SAMPLERS (signature)

forter, con	accountingsmall	INVOICE TO	K, WA 78/08	00.00.000	102 C 02	S PO#	
☐ Archive (Fee may apply)	∦ □ Default: Clean after 3 days	SAMPLE DISPOSAL	Heather Gard	Rush charges authorized by:	RUSH 1 DWWWS duy	□ Standard	TURNAROUND TIME

				IA19050220	1A18050220	1A17050220	1A16050220	Sample Name	SAMPLE INFORMATION
				04	23	02	0/	Lab ID	
				18 563	20544 00603	26554	36333 8	Canister ID	
				05347	06603	07870	05351	Flow Cont.	
IA / SG	IA / SG	IA / SG	IA / SG	18 563 05347 (A) / SG	Ø/sc	20554 07870 (A) / SG	3533809381 (A)/ sc	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	
				SILIE	5/2/20-30 1515 -7	5/420 -29 1511 -6	5/2/20 -29/5/507	Initial Field Date Vac Initial Sampled ("Hg) Time	
				-30	-30	1.25	515E	Initial Vac. ("Hg)	
				-30 1519	1515	1511		1 '	
			š	-9	-7	-6	å	Final Vac.	
				1513	15 15	1511	1507	Field Final	
								TO15 Full Scan	ANALYSIS REQUESTED
			_					TO15 BTEXN	SISK
-	<u>k</u> 2		<u> </u>	<u> </u>				TO15 cVOCs	RE
-	<u>.</u>							APH Helium	Sang
	87 14		<u> </u>	~	X	X	X	TCE by TOIS	TED
	mples received at 16 °C						7	Notes	

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.
	Received by:	Relinquished by:	Recently 1	Relinquished by:	SIGNATURE
			tac (hist	Evelyn Landeen	PRINT NAME
				ATA	COMPANY
*		•	N N	5/4	DATE
			202	903	TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 21, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 20, 2020 from the Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0221R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 20, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
002298 -01	IA16-022020
002298 -02	IA17-022020
002298 -03	IA19-022020

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA16-022020 Client: Maul Foster Alongi

Date Received: 02/20/20 Project: Precision Engineering Indoor Air 1803.01.02

Lab ID: Date Collected: 02/20/20 002298-01 Date Analyzed: 02/21/20 Data File: $022021.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 83 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 1.9 0.35

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA17-022020 Client: Maul Foster Alongi

Date Received: 02/20/20 Project: Precision Engineering Indoor Air 1803.01.02

Lab ID: Date Collected: 02/20/20 002298-02 Date Analyzed: 02/21/20 Data File: $022022.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 106 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 4.5 0.83

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA19-022020 Client: Maul Foster Alongi

Date Received: 02/20/20 Project: Precision Engineering Indoor Air 1803.01.02

Lab ID: Date Collected: 02/20/20 002298-03 Date Analyzed: 02/21/20 Data File: $022023.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 2.3 0.42

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Maul Foster Alongi

Date Received: Not Applicable Project: Precision Engineering Indoor Air 1803.01.02

Lab ID: Date Collected: Not Applicable 00-0419 mb 02/20/20 Date Analyzed: Data File: 022014.DMatrix: Air GCMS7Instrument: ug/m3 Units: Operator: bat

4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3 ppbv

Trichloroethene <0.27 <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 02/21/20 Date Received: 02/20/20

Project: Precision Engineering Indoor Air Sampling 1803.01.02, F&BI 002298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	ug/m3	73	85	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Heather (700 d

Company Maul Foster Alongi Address 1329 N State St.

City, State, ZIP BCHINGham, WA 98225

Phone 200 927-1309 Email hyord & mautisturium

SAMPLE CHAIN OF CUSTODY

		**
		3
		ME
	ı	_
I	4	02/
1	ı	Sp.
		C
	ľ	w
	ľ	

SAMPLERS (signature) our sampling PROJECT NAME & ADDRESS 1903,01.02 P0# Page#

かる NOTES: Mulforen con Standard (WY) MUSH L bus down (WY) Heahw good
SAMPLE DISPOSAL
Default: Clean after 3 days □ Archive (Fee may apply) Rush charges authorized by: TURNAROUND TIME

ם. ביי	Z 27.	Frie							A	133	A	1	· · ·		SAIN
DL (906) 995 9999	South All 08110 9090	Friedman & Bruya, Inc.							1A19-022020	1/A17-022020	1A16-022020	Sample Name	,		SAMPLE INFORMATION
Poline iched	Pagaing	Dalia							03	02	2	a §	-	4	
1 2	Persing the N	SIG		-					23234	23235	8999j	ID			
5	1	SIGNATURE							07847	06607	07854	ID.	Flow		
THE PROPERTY OF THE PROPERTY O		Ī		IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	(IA) / SG	(IA) / sg	(IA)/ sg	(Circle One)	Reporting Level: LA=Indoor Air		
Wiese 1	Evelyn								<		02/20/20 -30	Sampled			
1		PRIN	<u>~</u>	2 . 3					-30 811	- - 20	30	Vac. ("Hg)	Initial	-	
Aravain	wodow	PRINT NAME							811	803	755	lnıtıal Time			
Mi	Ş	E	^						9-	اهـ	46	Vac. ("Hg)			
ع									1611	1603	555/	Final Time	Field	****	
FJ.	エヤカ											тс	015 Full Scan		IANA
12	A	COM										Т	O15 BTEXN		ANALYSIS REQUESTED
		COMPANY			<u></u>						-13 2	Ţ	O15 cVOCs		S RE
			ŀ	· · · · · ·									APH		
										$\overline{}$	_	·	Helium	- {	
2/2	2/2	DA								싁	<u> </u>	100	by Tois	\dashv	7
0	120	DATE													
a	165											Notes			
7	3	TIME										w			
			L												

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044		Ph. (206) 285-8282	Securite, W.A. 30113-2023	Conttle WA 09110 9090 Parawal har	3012 16th Avenue West	•
T CONTROLLE CONT	Received by:	The second secon	Relinquished by:	Amount by	Paramed by M.	Relinquished by:	SIGNATURE
- Indicate the second of the s		The state of the s	The state of the s	Klera Aravan	ENGWY LINDOW		PRINT NAME
	Samples received at 20 °C			アプロ	スヤナ	- 11×	COMPANY
	10 °C			2/20 16:	720 105	>	DATE
			-	7:1	1000 1000	77	TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 19, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the additional results from the testing of material submitted on February 11, 2020 from the Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0219R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 11, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
002154 -01	IA16
002154 -02	IA17
002154 -03	IA18
002154 -04	IA19
002154 -05	IA20
002154 -06	EvapPit-W-021120

The arsenic concentration in sample EvapPit-W-021120 was reported between the method detection limit and the standard reporting limit. The sample could not be analyzed at a greater concentration due to matrix interferences.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20

Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

Date Extracted: 02/12/20 Date Analyzed: 02/12/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
EvapPit-W-021120 002154-06	3,900 x	2,500 x	68
Method Blank _{00-365 MB}	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EvapPit-W-021120 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154

 Date Extracted:
 02/18/20
 Lab ID:
 002154-06 x40

 Date Analyzed:
 02/18/20
 Data File:
 002154-06 x40.052

Concentration

Analyte: ug/L (ppb)

Arsenic 6.08 j

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EvapPit-W-021120 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154

Date Extracted: 02/18/20 Lab ID: 002154-06 x2000
Date Analyzed: 02/18/20 Data File: 002154-06 x2000.049

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium 994,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Maul Foster Alongi
Date Received: NA Project: 1803.01.02, F&BI 002154

Lab ID: I0-097 mbDate Extracted: 02/18/20 Date Analyzed: 02/18/20 Data File: I0-097 mb.033 ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

 $\begin{array}{ll} {\rm Arsenic} & <\!0.12\,{\rm j} \\ {\rm Chromium} & <\!1 \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20

Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	96	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/19/20 Date Received: 02/11/20

Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 002219-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	1.60	94	93	75-125	1
Chromium	ug/L (ppb)	20	<1	99	98	75 - 125	1

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Chromium	ug/L (ppb)	20	101	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

002154

Report To Heather Good

Company Maul Foster Alungi

Address 1329 N State St. #201

City, State, ZIP Belling havn, WA 98225

Phone 360-927-1309 Email h good @ maul fister. Un

SAMPLE CHAIN OF CUSTODY

PROJECT NAME

PROJECT NAME

PROJECT NAME

PO #

TURNAROUND TIME

Standard as fast as poss, by
Rush charges authorized by:

Rush charges authorized by:

SAMPLE DISPOSAL

Archive Samples

ANALYSIS REQUESTED

	Γ			Ĺ									
										ē.			
Three received at	Va ve	 											
Samples received at 19 of	3										,		
		\parallel	-	1		1	1						
		·	, .										
	>	l	-	١	1								
	<			120	-12 1726	:30	X 9:30		06606 2111720	84581	20	20	LA20
	~	· · · · · · · · · · · · · · · · · · ·		177)0	10-	7:15		01/11/12	01/11/7 1 98 40	1 .an 10	704		
	下	\dagger	-	1	1			4	7070) -	۰	I A I G
	×	····		[707]	-6	9:07	-0	17 m/20	02/11/20	23235	03	र्ड	TA IS
	K	\vdash	-	L	-		1					3	<u>-</u> } ►
	<u> </u>			<u>\$</u>	<u>ا</u> کــ	83:8	<u></u>	7/11/20	06605 2/11/20	23234	ς 0		1 A 1 7
	ŀ	-	1	ļ	1	1	-			·			†
	×		·········	[65]	<u> </u>		30 8	2/11/20	07851 2/11/20 -30 8:51	20552	0)	LAIO	Į-
Notes	7	-		Time	(Hg). 1	Time	(BH)	Sampled			Ę	A L L	}
. /				inal	ress.	Initial		Date .		Cammer	<u>ا</u> ا	Sample Name	
	15	····		Tield	Final Field	Field			MOLT	Cariata	, ,		
					Field	!		****	3		,		
							! :						
		XX OC:	Sca										
	7				···		****						
TOT OH OF STATE		70	- 1										

Friedman & Bruya, Inc. 3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282
Forms\coc\coc\socoto.1500c

					029		est	-
	Received by:		Relinquished hy:	V			Relinquished by:	DIGNATURE
		***		25年一十一份 1000年		Trans in wal.		PRINT NAME
			-	th a	1	コロタ	TATIVITACO	COMPANY
*			f		11111	しくことと	DALB	יי אחש מיני
			-9-		200	3 7 9	TIMIL	

SAMPLE CHAIN OF CUSTODY

Report To Heather Good

Company Maul Foster Alongi

Address 1329 N State St. #301

City, State, ZIP Bellingham, WA 98225

Phone 360-927-1309Email hogood Drawl-foster Company

Proje

	SAMPI _f ERS (signatyre)	AROV/E/NO WE
Total Control of the	an the	
	PROJEČT NAME	PO#
	Precision engineering	1203.01 71
	vapor assessment	
Л	REMARKS	INVOICE TO
		accounting@manfoster
X Con	Project specific RLs? - Yes / No	

SAMPLE DISPOSAL

Archive samples

Other

Default: Dispose after 30 days

Standard turnaround

KRUSH Sec 1965 below

TURNAROUND TIME

Rush charges authorized by:

16: (200) 200-0202	<u> </u>	Seattle, WA 98119-2029 R		ئ	, ,		marketine and a state of the st	Annual agovernment			**************************************			E VAP PIT-W -021120	Sample ID	
SOCIATION OF	Received have	Relinquished by:	Received by:	Relinquished by:	SIC	÷								06 A-E	Lab ID	
			416	7	SIGNATURE									2/11/2020	Date Sampled	
														1015	Time Sampled	
			TOISPAT TADES	Evely a Lundern					4					٤	Sample Type	
			PAT.	3 ~	PRINT NAME									7	# of Jars	
			_	7	N I									\geq	NWTPH-Dx	
			<i>₹</i>	2	ME						 				NWTPH-Gx	
				₹,		 							ļ		BTEX EPA 8021	
			X	,		 									NWTPH-HCID	Þ
<u></u>									'	···········			ļ	ļ	VOCs EPA 8260	NAL
			,,	7			Ø								PAHs EPA 8270	YSE
		1	4	MFA	S	 	Iae	<u> </u>							PCBs EPA 8082	SRE
			<u>V</u>	حد	MP		les							X	TOE EPA8260D	aug
					COMPANY		rece							X	total chronium EPA 6020B	ANALYSES REQUESTED
							ive				٠			X	. arsenic EPA 6020B]
	-	4					Samples received at			-				,	<i>s</i>	
			(2/11/20/1	DATE :		3°°C			fundabut	Can be an Standar 1	chamin and	fastics+ turnarand	needed on t	Notes	
			(1808	TIME						tunder 1	9 m	(Arona	ي د ک		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 12, 2020

Heather Good, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Good:

Included are the results from the testing of material submitted on February 11, 2020 from the Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. There are 12 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures MFA0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 11, 2020 by Friedman & Bruya, Inc. from the Maul Foster Alongi Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Maul Foster Alongi
002154 -01	IA16
002154 -02	IA17
002154 -03	IA18
002154 -04	IA19
002154 -05	IA20
002154 -06	EvapPit-W-021120

The NWTPH-Dx and metals requested for sample EvapPit-W-021120 will be sent as an additional report.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: EvapPit-W-021120 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154 Lab ID: Date Extracted: 02/12/20 002154-06 1/10 Date Analyzed: 02/12/20 Data File: 021218.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 57 121 Toluene-d8 96 63 127 4-Bromofluorobenzene 60 96 133

Concentration

Compounds: ug/L (ppb)

Trichloroethene 1.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Maul Foster Alongi Date Received: Not Applicable Project: 1803.01.02, F&BI 002154 Lab ID: Date Extracted: 02/12/20 00-334 mbDate Analyzed: 02/12/20 Data File: 021217.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 57 121 Toluene-d8 94 63 127 4-Bromofluorobenzene 92 60 133

Concentration

Compounds: ug/L (ppb)

Trichloroethene <0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA16 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154

Date Collected: 02/11/20 Lab ID: 002154-01 021111.DDate Analyzed: 02/11/20 Data File: GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 2.8 0.52

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA17 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154

Date Collected: 02/11/20 Lab ID: 002154-02 Date Analyzed: 02/11/20 Data File: 021112.DGCMS7Matrix: Air Instrument: Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 93 17

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Collected: 02/11/20 Lab ID: 002154-03 Date Analyzed: 02/12/20Data File: 021113.DGCMS7 Matrix: Instrument: Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 45 8.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA19 Client: Maul Foster Alongi Date Received: 02/11/20 Project: 1803.01.02, F&BI 002154

Date Collected: 02/11/20 Lab ID: 002154-04 Date Analyzed: 02/12/20Data File: 021114.DGCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 110 21

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Collected: 02/11/20 Lab ID: $002154-05\ 1/1.4$

Date Analyzed: 02/12/20 Data File: 021115.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene 73 14

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Maul Foster Alongi
Date Received: Not Applicable Project: 1803.01.02, F&BI 002154

Date Collected: 02/11/20 Lab ID: 00-0337 mbDate Analyzed: 02/11/20 Data File: 021110.DGCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3 ppbv

Trichloroethene <0.27 <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/11/20

Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 002158-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Trichloroethene	ug/L (ppb)	50	<1	105	66-135

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Trichloroethene	ug/L (ppb)	50	100	103	79-113	3

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/20 Date Received: 02/11/20

Project: Precision Engineering Vapor Assessment 1803.01.02, F&BI 002154

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	vdqq	5	84	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

002154

Report To Heather Good

Company Maul Foster Alungi

Address 1329 N State St. #201

City, State, ZIP Belling havn, WA 98225

Phone 360-927-1309 Email h good @ maul fister. Un

SAMPLE CHAIN OF CUSTODY

PROJECT NAME

PROJECT NAME

PROJECT NAME

PO #

TURNAROUND TIME

Standard as fast as poss, by
Rush charges authorized by:

Rush charges authorized by:

SAMPLE DISPOSAL

Archive Samples

ANALYSIS REQUESTED

	Γ			Ĺ									
										ē.			
Three received at	Va ve	 											
Samples received at 19 of	3										,		
		\parallel	-	1		1	1						
		·	, .										
	>	l	-	١	1								
	<			120	-12 1726	:30	X 9:30		06606 2111720	84581	20	20	LA20
	~	· · · · · · · · · · · · · · · · · · ·		177)0	10-	7:15		01/11/12	01/11/7 1 98 40	1 .an 10	704		
	下	\dagger	-	1	1			4	7070) -	۰	I A I G
	×	····		[707]	-6	9:07	-0	17 m/20	02/11/20	23235	03	र्ड	TA IS
	K	\vdash	-	L	-		1					3	<u>-</u> } ►
	<u> </u>			<u>\$</u>	<u>ا</u> کــ	83:8	<u></u>	7/11/20	06605 2/11/20	23234	ς 0		1 A 1 7
	ŀ	-	1	ļ	1	1	-			·			†
	×		·········	[65]	<u> </u>		30 8	2/11/20	07851 2/11/20 -30 8:51	20552	0)	LAIO	Į-
Notes	7	-		Time	(Hg). 1	Time	(BH)	Sampled		111)	Ę	A L L	}
. /				inal	ress.	Initial		Date .		Cammer	<u>ا</u> ا	Sample Name	
	15	····		Tield	Final Field	Field			MOLT	Cariata	, ,		
					Field	!		****	3		,		
							! :						
		XX OC:	Sca										
	7				···		****						
TOT OH OF STATE		70	- 1										

Friedman & Bruya, Inc. 3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282
Forms\coc\coc\socoto.1500c

					029		est	-
	Received by:		Relinquished hy:	V			Relinquished by:	DIGNATURE
		***		25年一十一份 1000年		Trans in wal.		PRINT NAME
			-	th a	1	コロタ	TATIVITACO	COMPANY
*			f		11111	しくことと	DALB	יי אחש מיני
			-9-		200	3 7 9	TIMIL	

SAMPLE CHAIN OF CUSTODY

Report To Heather Good

Company Maul Foster Alongi

Address 1329 N State St. #301

City, State, ZIP Bellingham, WA 98225

Phone 360-927-1309Email hogood Drawl-foster Company

Proje

	SAMPI _f ERS (signatyre)	AROV/E/NO WE
Total Control of the	an the	
	PROJEČT NAME	PO#
	Precision engineering	1203.01 71
	vapor assessment	
Л	REMARKS	INVOICE TO
		accounting@manfoster
X Con	Project specific RLs? - Yes / No	

SAMPLE DISPOSAL

Archive samples

Other

Default: Dispose after 30 days

Standard turnaround

KRUSH Sec 1965 below

TURNAROUND TIME

Rush charges authorized by:

16: (200) 200-0202	<u> </u>	Seattle, WA 98119-2029 R		ئ	, ,		marketine and a state of the st	Annual agovernment			**************************************			E VAP PIT-W -021120	Sample ID	
SOCIATION OF	Received have	Relinquished by:	Received by:	Relinquished by:	SIC	÷								06 A-E	Lab ID	
			416	7	SIGNATURE									2/11/2020	Date Sampled	
														1015	Time Sampled	
			TOISPAT TADES	Evely a Lundern					4					٤	Sample Type	
			PAT.	3 ~	PRINT NAME									7	# of Jars	
			_	7	N I									\geq	NWTPH-Dx	
			<i>₹</i>	2	ME						 				NWTPH-Gx	
				₹,		 							ļ		BTEX EPA 8021	
			X	,		 									NWTPH-HCID	Þ
<u></u>									'	···········			ļ	ļ	VOCs EPA 8260	NAL
			,,	7			Ø								PAHs EPA 8270	YSE
		1	4	MFA	S	 	Iae	<u> </u>							PCBs EPA 8082	SRE
			<u>V</u>	حد	MP		les							X	TOE EPA8260D	aug
					COMPANY		rece							X	total chronium EPA 6020B	ANALYSES REQUESTED
							ive				٠			X	. arsenic EPA 6020B]
	-	4					Samples received at			-				,	<i>s</i>	
			(2/11/20/1	DATE :		3°°C			fundabut	Can be an Standar 1	chamin and	fastics+ turnarand	needed on t	Notes	
			(1808	TIME						tunder 1	9 m/	(Arona	ي د ک		

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. Choose an item.

		Document Preparation
Name <u>Author(s)</u>	Date	Comments
Mary Benzinger	8/7/2019	Prepare DVM for validation of 907397.
Julianna Wetmore	8/7/2019	Prepare DVM for validation of 907410, 907430, and 907445
Mary Benzinger	2/18/2020	Edit hexavalent chromium validation.
J. Wetmore	2/19/2020	Review hexavalent chromium validation
M. Benzinger	3/27/2020	Address VO'Daniel copy edit redlines and comments.

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Schedu	uled	Complet	ed	Comments
Responsibilities	Name	Date	Name	Date	Comments
Copy Edit			V. O'Daniel	3/27/2020	
Peer Review (may be conducted by senior reviewer)			Mary Benzinger	8/8/2019/ 8/30/2019	Perform QA review of DVM. Review DVM comment.
Senior Review**			H. Good	2/23/21	
Production			S. Larson	3/16/2021	Produce PDF
Production Deadline					

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

IF HARD COPY PRODUCTION IS REQUESTED, PLEASE FILL IN THE FOLLOWING:

Type of binding: Choose an item.

Would you like to include a CD? Choose an item.

• If yes, what would you like to include on the CD? (Attachment X, Text Only, Etc.) Click here to enter text.

Distribution List:

First and Last Name	Company Name/Address	No. of Copies	Shipping Method (Mail/UPS/Courier/Electronic)

Comments/Additional Instructions: Click here to enter text.							
Signature for Review of Final Production:							

DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.04 | AUGUST 7, 2019 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for groundwater samples collected at the Precision Engineering property. The samples were collected in July 2019.

Friedman & Bruya, Inc. (FBI) performed the analyses. FBI report numbers 907397, 907410, 907430, and 907445 were reviewed. Hexavalent chromium analysis was subcontracted by FBI to Fremont Analytical (FA), with FA results appended to the FBI reports. The analyses performed and samples analyzed are listed below.

Analysis Reference

Diesel- and Motor Oil-Range Hydrocarbons	NWTPH-Dx	
Dissolved Metals	EPA Method 6020B	
Hexavalent Chromium	SM 3500-Cr-B	
Polycyclic Aromatic Hydrocarbons	EPA Method 8270D SIM	
Volatile Organic Compounds	EPA Method 8260C	

NOTES:

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selected ion monitoring.

EPA = U.S. Environmental Protection Agency.

Samples Analyzed						
Report 907397	Report 907410	Report 907430	Report 907445			
MW11-W-15.0	MW-8-W-19.0	MW4-W-20.0	MW5-W-15.0			
MW3-W-15.0	MW-9-W-33.0	MWDUP-W-20.0	MW7-W-20.0			
	MW-10-W-15.0	MW1-W-35.0	MW2-W-19.0			
	MW-6-W-15.0					

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (FA, 2018; FBI, 2016; EPA, 1986).

In reports 907397, 907410, and 907445, FBI indicated that NWTPH-Dx diesel-range hydrocarbon results for samples MW11-W-15.0, MW3-W-15.0, MW-8-W-19.0, MW-9-W-33.0, MW-10-W-15.0, MW-6-W-15.0, MW5-W-15.0, MW7-W-20.0, and MW2-W-19.0 had chromatographic patterns that did not resemble the diesel fuel standard used for quantitation. The results were reported as diesel-range hydrocarbons; thus, qualification was not required.

In reports 907397, 907410, and 907445, FBI reported the dissolved metal results twice: both undiluted and diluted, due to internal standard exceedances associated with the undiluted analyses. Some undiluted results were also flagged due to continuing calibration standard exceedances caused by carryover from the project samples. Results flagged by FBI for internal standard and/or calibration control limit exceedances have been qualified by the reviewer as "not reported." The associated diluted sample results, or undiluted sample results with no exceedance flagging, will be the results of record.

		_	Not Rep	Not Reported		Result of Record	
Report	Sample	Component	Result (ug/L)	Dilution Factor	Result (ug/L)	Dilution Factor	
		Arsenic	6.98	1	< 10	10	
	NAVA/11 VA/ 15 O	Chromium	2.60	1	< 10	10	
	MW11-W-15.0	Copper	< 5	1	< 50	10	
907397		Selenium	2.56	1	< 10	10	
		Arsenic	13.3	1	13.6	10	
	NAVA/2 VA/ 1E O	Chromium	< 1	1	< 10	10	
	MW3-W-15.0	Copper	< 5	1	< 50	10	
		Selenium	<10	10	< 1	1	
907410	MW-8-W-19.0	Chromium	7.55	2	8.82	5	
		Chromium	82,700	10	132,000	200	
907445	MW5-W-15.0	Copper	< 50	10	<1000	200	
		Selenium	11.3	10	<200	200	

NOTES:

< = less than.

ug/L = micrograms per liter.

In report 907430, FBI indicated that the EPA Method 8260C 2,2-dichloropropane results for samples MW4-W-20.0, MWDUP-W-20.0, and MW1-W-35.0 were estimated due to calibration results for the analyte being outside of acceptance criteria. The associated sample results were non-detect and have been qualified by the reviewer with "J" as estimated, with a final qualification of "UJ" as non-detect and estimated.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	MW4-W-20.0	2,2-Dichloropropane	1 U	1 UJ
907430	MWDUP-W-20.0	2,2-Dichloropropane	1 U	1 UJ
	MW1-W-35.0	2,2-Dichloropropane	1 U	1 UJ

NOTES:

U = result is non-detect.

ug/L = micrograms per liter.

UJ = result is non-detect and estimated.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

In report 907445, samples MW5-W-15.0, MW7-W-20.0, and MW2-W-19.0 were received by FA without a cooler and above the acceptable temperature. The associated sample results were qualified by the reviewer with "J" as estimated.

Report	Sample	Component	Original Result (mg/L)	Qualified Result (mg/L)
	MW5-W-15.0	Hexavalent Chromium	117	117 J
907445	MW7-W-20.0	Hexavalent Chromium	0.0450 U	0.0450 UJ
	MW2-W-19.0	Hexavalent Chromium	0.0450 U	0.0450 UJ

NOTES:

J = result is estimated.

mg/L = milligrams per liter.

U = result is non-detect.

UJ = result is non-detect and estimated.

The remaining samples were preserved and stored appropriately.

BI ANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

Trip Blanks

Trip blanks were not required for this sampling event.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

The laboratory appropriately documented and qualified surrogate outliers. Associated batch quality assurance/quality control for samples with surrogate outliers was within acceptance limits. All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

In report 907397, SM 3500-Cr-B batch R52852 MS and MSD (1907308-001AMS/MSD) recoveries were below the lower control acceptable limit of 65 percent, both at 0 percent. FA noted that a duplicate analysis was performed with similar results, which indicated matrix interference.

EPA national functional guidelines for inorganic data review (EPA, 2017a) recommend qualification of associated non-detect sample results with "R" as rejected when MS recoveries are below 30 percent. However, aqueous matrices are known to reduce hexavalent chromium to trivalent chromium under reactive conditions. The field parameters potential hydrogen (pH) and oxidation reduction potential (ORP) recorded for MW11-W-15.0 are summarized below. Aqueous samples with negative ORP and acidic pH are assumed by the reviewer to be moderately reducing, but additional parameters, such as sulfide and ferrous iron, may be required to conclusively determine if the samples are reactive and/or if the matrices convert hexavalent chromium to trivalent chromium. Since additional reducing agent characterization was not performed, but available field parameters indicate that sample MW11-W-15.0 may reduce spiked hexavalent chromium in the MS to trivalent chromium, all associated sample results were qualified by the reviewer with "UJ" as estimated.

Report	Sample	Final Field pH (S.U.)	Final Field ORP (mV)
907397	MW11-W-15.0	5.22	-6.4

NOTES:

mV = millivolts.

ORP = oxidation reduction potential.

pH = potential hydrogen.

S.U. = standard pH units.

Report	Sample	Component	Original Result (mg/L)	Qualified Result (mg/L)
907397	MW11-W-15.0	Hexavalent Chromium	0.0450 U	0.0450 UJ

NOTES:

mg/L = milligrams per liter.

U = result is non-detect.

UJ = result is non-detect and estimated.

All remaining MS/MSD results were within acceptance limits for percent recovery and relative percent differences (RPDs).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the method reporting limit were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In report 907397, EPA Method 8260C both batch LCS and LCSD dibromochloromethane recoveries exceeded the upper control acceptance limit of 133 percent, both at 136 percent. Dibromochloromethane was not detected in the associated samples; thus, no qualifications are necessary.

In report 907445, the EPA Method 8260C LCS acetone recovery exceeded the lower percent recovery acceptance limit of 53 percent, at 51 percent. The LCSD acetone percent recovery and the LCS/LCSD RPD were within control limits; thus, no further qualification was necessary.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Field duplicate samples were not submitted for analysis.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by FBI or FA. Analytical results with CCV exceedances were flagged by the laboratory.

REPORTING LIMITS

FBI and FA used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

The reviewer confirmed that EPA Method 6020B sample results were reported at dilutions due to internal standard or CCV percent recovery exceedance.

The reviewer confirmed that EPA Method 8260C sample results were reported from dilutions due to a foamy matrix effect from samples MW5-W-15.0, MW2-W-19.0, and MW-6-W-15.0 in reports 907445 and 907410.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FA. 2018. Quality assurance. Version 3.2. Fremont Analytical, Seattle, Washington. April 23.

FBI. 2019. Quality assurance manual. Revision 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. Choose an item.

	Document Preparation				
Name Author(s)	Date	Comments			
J. Wetmore	1/13/2020	Created DVM for 912292, 912298, and 912322			
J. Wetmore	1/14/2020	Updated DVM after peer review			
M. Benzinger	3/27/2020	Address copy edit remarks and redlines made by VO'Daniel.			

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments	
Responsibilities	Name	Date	Name	Date	Comments	
Copy Edit			V. O'Daniel	3/27/2020		
Peer Review (may be conducted by senior reviewer)			N Bruneel	1/14/2020	Peer review report for 912292, 912298, and 912322	
Senior Review**			H. Good	2/23/21		
Production			S. Larson	3/16/2021	Produce PDF	
Production Deadline						

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

IF HARD COPY PRODUCTION IS REQUESTED, PLEASE FILL IN THE FOLLOWING:

Type of binding: Choose an item.

Would you like to include a CD? Choose an item.

• If yes, what would you like to include on the CD? (Attachment X, Text Only, Etc.) Click here to enter text.

Distribution List:

First and Last Name	Company Name/Address	No. of Copies	Shipping Method (Mail/UPS/Courier/Electronic)

Comments/Additional Instructions: Click here to enter text.							
Signature for Review of	f Final Production:						

DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.04 | JANUARY 13, 2020 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the Precision Engineering property. The samples were collected in December 2019.

Friedman & Bruya, Inc. (FBI) performed the analyses. FBI report numbers 912292, 912298, and 912322 were reviewed. Hexavalent chromium analysis was subcontracted by FBI to Fremont Analytical (FA), with FA results appended to the FBI reports. The analyses performed and samples analyzed are listed below.

Analysis Reference

Diesel- and Motor Oil-Range Hydrocarbons	NWTPH-Dx
Dissolved Metals	EPA 6020B
Hexavalent Chromium	SM 3500-Cr-B
Polycyclic Aromatic Hydrocarbons	EPA 8270D SIM
Volatile Organic Compounds	EPA 8260C

NOTES:

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selected ion monitoring.

EPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Report 912292	Report 912298	Report 912322			
MW9-W-33.5	MW3-W-15.0	MW10-W-15.0			
MW2-W-15.0	MW4-W-20.0	MW8-W-15.0			
MW7-W-27.5		Trip Blank			
MW6-W-15.0		MW1-W-32.0			
Trip Blank		MW5-W-15.0			
MW11-W-15.0		MWDUP-W-15.0			

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (FA, 2018; FBI, 2019; EPA, 1986).

In reports 912292, 912298, and 912322, FBI indicated that NWTPH-Dx diesel-range hydrocarbon results for samples MW9-W-33.5, MW2-W-15.0, MW7-W-27.5, MW6-W-15.0,

MW11-W-15.0, MW3-W-15.0, MW10-W-15.0, MW8-W-15.0, MW5-W-15.0, and MWDUP-W-15.0 had chromatographic patterns that did not resemble the diesel fuel standard used for quantitation. The results were reported as diesel-range hydrocarbons; thus, qualification was not required.

In report 912292, FBI reported the dissolved metals results twice: both diluted, due to calibration standard failure for sample MW6-W-15.0. Results flagged by FBI for calibration control limit exceedances have been qualified by the reviewer as "not reported." The associated sample results with no exceedance flagging will be the results of record.

Report	Sample	Component	Not Reported	Result of Record
. Kopon		o o p o o	Result (ug/L)	Result (ug/L)
012202	NAVA// NA/ 1E O	Arsenic	41.2	46.4
912292	MW6-W-15.0	Selenium	11.7	13.5

NOTES:

ug/L = micrograms per liter.

In report 912322, FBI reported the dissolved metals results twice: undiluted and diluted, due to internal standard exceedances associated with the undiluted analysis for sample MW8-W-15.0. Some undiluted results were also flagged due to continuing calibration standard exceedances in samples MW5-W-15.0 and MWDUP-W-15.0. Results flagged by FBI for internal standard and/or calibration control limit exceedances have been qualified by the reviewer as "not reported." The associated diluted sample results, or undiluted sample results with no exceedance flagging, will be the results of record.

			Not Rep	oorted	Result of F	Record
Report	Sample	Component	Result (ug/L)	Dilution Factor	Result (ug/L)	Dilution Factor
	MW8-W-15.0 -	Chromium	4.97	1	< 10	10
01222		Copper	5 U	1	< 50	10
912322		Chromium	35,000	1	38,900	500
	MWDUP-W-15.0	Chromium	36,800	1	35,500	500

NOTES:

< = less than.

ug/L = micrograms per liter.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria, except for the EPA 3500-CR-B results from samples MW3-W-15.0 and MW4-W-20.0. The samples were analyzed 3 hours outside of the recommended 24-hour hold time. The samples were qualified as estimated with a "J" qualifier, for a final qualification of "UJ" as non-detect and estimated in the table below.

Report	Sample	Component	Original Result (mg/L)	Qualified Result (mg/L)
912298	MW3-W-15.0	Hexavalent Chromium	0.0900 U	0.0900 UJ
912298	MW4-W-20.0	Hexavalent Chromium	0.0450 U	0.0450 UJ

NOTES:

mg/L = milligrams per liter.

U = result is non-detect.

UJ = result is non-detect and estimated.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

In report 912298, the EPA 8260C laboratory method blank had a methylene chloride detection of 6.0 ug/L. The lab flagged the methylene chloride as likely due to laboratory contamination. The associated samples were non-detect; thus, no qualifications were necessary.

All remaining method blank results were non-detect to method reporting limits (MRLs).

Trip Blanks

One trip blank was submitted with reports 912322 (Trip Blank) and 912292 (Trip Blank) for EPA 8260C analysis.

In report 912292, the trip blank had a methylene chloride detection of 6.6 ug/L. The lab flagged the methylene chloride as likely due to laboratory contamination. The associated samples were non-detect; thus, no qualifications were necessary.

All remaining trip blank results were non-detect to MRLs.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

In report 912298, the EPA 8260C matrix spike recoveries had multiple exceedances of the upper control limits. The source sample was non-detect for all analytes, and the associated laboratory control sample (LCS) was within acceptable limits; thus, no qualifications were necessary.

All remaining MS/MSD results were within acceptance limits for percent recovery and relative percent differences (RPDs).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCS duplicate (LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In report 912322, the EPA 8260C LCS recoveries had multiple exceedances of the upper control limits. The associated sample results were non-detect for all affected analytes; thus, no qualifications were necessary.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis with lab report 912322 (MW5-W-15.0/MWDUP-W-15.0). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by FBI or FA. Analytical results with CCV exceedances were flagged by the laboratory.

REPORTING LIMITS

FBI and FA used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

The reviewer confirmed that EPA Method 6020B sample results were reported at dilutions due to internal standard or CCV percent recovery exceedance.

The reviewer confirmed that EPA Method 8260C and EPA 3500 Cr-B sample results were reported from dilutions due to a foamy matrix effect from samples MW2-W-15.0, MW6-W-15.0, MW10-W-15.0, MW8-W-15.0, MW5-W-15.0, and MWDUP-W-15.0 in reports 912292 and 912322.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FA. 2018. Quality assurance; quality assurance and quality control programs. Version 3.2. Fremont Analytical. Seattle, Washington. April 23.

FBI. 2019. Quality assurance manual. Revision 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. Choose an item.

Document Preparation					
Name Author(s)	Date	Comments			
Mary Benzinger	2/11/2020	Prepare DVM for validation of report 001419, 001436, and 001446.			
Mary Benzinger	2/18/2020	Review JW comments and edit DVM.			
Mary Benzinger	2/27/2020	Edit DVM per ELH copy edit redlines and comments.			
Mary Benzinger 7/30/2020		Correct sample name for MW4-W-20.0 (from MW4-W-50.0).			
•		-			

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments
Responsibilities	Name	Date	Name	Date	Comments
Copy Edit			ELH	2/26/2020	
Peer Review (may be conducted by senior reviewer)			J. Wetmore	2/18/2020	Peer Review DVM with reports 001419, 001436, and 001446
Senior Review**			H. Good	2/23/21	
Production			S. Larson	3/16/2021	Produce PDF
Production Deadline					

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

IF HARD COPY PRODUCTION IS REQUESTED, PLEASE FILL IN THE FOLLOWING:

Type of binding: Choose an item.

Would you like to include a CD? Choose an item.

• If yes, what would you like to include on the CD? (Attachment X, Text Only, Etc.) Click here to enter text.

Distribution List:

First and Last Name	Company Name/Address	No. of Copies	Shipping Method (Mail/UPS/Courier/Electronic)

Comments/Additional Instructions: Click here to enter text.							
Signature for Review of	Signature for Review of Final Production:						

DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.04 | JANUARY 13, 2020 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the Precision Engineering property. The samples were collected in January 2020.

Friedman & Bruya, Inc. (FBI) and Fremont Analytical (FA) performed the analyses. FBI report numbers 001419, 001436, and 001446 were reviewed. FBI subcontracted hexavalent chromium analysis to FA and results are appended to the associated FBI reports. The analyses performed and samples analyzed are listed below.

Analysis Reference

Diesel- and Motor-Oil-Range Hydrocarbons	NWTPH-Dx	
Dissolved Metals	EPA 6020B	
Dissolved Hexavalent Chromium	SM3500 Cr B	
Polycyclic Aromatic Hydrocarbons	EPA 8270E-SIM	
Volatile Organic Compounds	EPA 8260D	

NOTES:

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selected ion monitoring.

EPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Report 001419	Report 001419 Report 001436				
MW8-W-15.0	MW3-W-15.0	MW4-W-20.0			
MW10-W-15.0	MW11-W-15.0	MW1-W-35.0			
MW9-W-33.5	Trip Blank	MW5-W-15.0			
MW2-W-15.0	-	MWDUP-W-15.0			
MW6-W-15.0	-	-			
MW7-W-28.5	-	-			

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (FA, 2018; FBI, 2019; EPA, 1986).

In reports 001419, 001436, and 001446 FBI indicated that all detected NWTPH-Dx dieseland motor-oil-range hydrocarbon results had chromatographic patterns that did not resemble

the diesel fuel standard used for quantitation. The results were reported as diesel- or motoroil-range hydrocarbons; thus, qualification was not required.

In report 001446, FBI reported dissolved chromium results twice for samples MW5-W-15.0 and MWDUP-W-15.0 due to the results exceeding the upper instrument calibration range. The original results (1:10 dilution analyses) were flagged by FBI and have been qualified by the reviewer as "not reported." The dissolved chromium results from the 1:50 dilution analyses were within instrument calibration range and are the results of record.

Report	Sample	Component	Dilution Factor	Original Result Reported (ug/L)	Qualified Record (ug/L)
	MW5-W-15.0		10	42,200	42,200 NR
001446	101003-00-13.0	D: 1 101 :	50	42,200	42,200
001446	MWDID W 15 O	Dissolved Chromium	10	47,300	47,300 NR
	MWDUP-W-15.0		50	45,200	45,200

NOTES:

NR = not reported.

ug/L = micrograms per liter.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All method blank results were non-detect to laboratory reporting limits.

Trip Blanks

One trip blank was submitted with report 001436 (sample name Trip Blank) for EPA Method 8260D analysis. The trip blank results were non-detect to laboratory reporting limits.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

In report 001446, the NWTPH-Dx surrogate percent recovery for sample MW1-W-35.0 exceeded the upper percent recovery limit of 134 percent, at 136 percent. The associated sample results were non-detect; thus, qualification was not required.

All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

In reports 001419, 001436, and 001446 the EPA Method 6020B MS (001436-01) result for dissolved copper was below the lower percent recovery acceptance limit of 75 percent, at 74 percent. The associated MSD percent recovery and the MS/MSD relative percent difference (RPD) met acceptance criteria; thus, qualification was not required.

In report 001419, the EPA Method 8260D MS (001469-01) results for 1,1-dichloroethene, 1,1-dichloroethane, chloroform, and 1,2-dichloropropane exceeded upper percent recovery acceptance limits, with recoveries ranging from 116 percent to 127 percent. The sample used to prepare the MS was from an unrelated project sample; thus, qualification was not required.

In reports 001436 and 001446, the SM 3500-Cr-B batch R57080 MS/MSD results were below the lower percent recovery acceptance limit of 46.2 percent, at 0 percent (no recovery) and 2.638 percent, respectively. The associated batch laboratory control sample (LCS) had acceptable recovery, and FA noted that the results indicated a possible matrix effect. EPA national functional guidelines for inorganic data review (EPA, 2017a) recommend qualification of associated non-detect sample results with "R" as rejected when MS recoveries are below 30 percent. However, aqueous matrices are known to reduce hexavalent chromium to trivalent chromium under reactive conditions. The field parameters pH and oxidation reduction potential (ORP) recorded for MW3-W-15.0 are summarized below. Aqueous samples with negative ORP and acidic pH are assumed by the reviewer to be moderately reducing, but

additional parameters, such as sulfide and ferrous iron, may be required to conclusively determine if the samples are reactive and/or if the matrices convert hexavalent chromium to trivalent chromium. Because additional reducing agent characterization was not performed but available field parameters indicate that sample MW3-W-15.0 may reduce spiked hexavalent chromium in the MS to trivalent chromium, all associated sample results were qualified by the reviewer with "U]" as estimated.

Report	Sample	Final Field pH (s.u.)	Final Field ORP (mV)
001436	MW3-W-15.0	6.70	-89.0

NOTES:

mV = millivolts.

ORP = oxidation reduction potential.

s.u. = standard pH units.

Repo	rt	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
00143	6	MW3-W-15.0	Hexavalent Chromium	0.0450 U	0.0450 UJ

NOTES:

U = Result is non-detect.

ug/L = micrograms per liter.

UJ = Result is non-detect and estimated.

All remaining MS/MSD results were within acceptance limits for percent recovery and RPDs.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the method reporting limit (MRL) were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/laboratory control sample duplicate (LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In reports 001419, 001436, and 001446, the EPA 8270E LCS/LCSD exceeded the RPD control limit of 20 percent for benzo(g,h,i)perylene, at 21 percent. The associated sample results were non-detect; thus, qualification was not required.

In report 001436, the EPA 8260D LCS exceeded upper percent recovery acceptance limits for 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, and isopropylbenzene, with percent recoveries ranging from 121 percent to 137 percent. The associated sample results were non-detect; thus, qualification was not required.

In report 001446, the EPA Method 8260D LCS exceeded the upper percent recovery acceptance limit of 113 percent for trichloroethane, at 115 percent. The associated sample results were non-detect; thus, qualification was not required.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis with lab report 001446 (MW5-W-15.0/MWDUP-W-15.0). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by FBI or FA.

REPORTING LIMITS

FBI and FA used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

According to the case narrative in report 001419, EPA Method 8260C analysis of samples MW10-W-15.0, MW2-W-15.0, and MW6-W-15.0 was performed with a dilution due to a foamy sample matrix. The associated results were reported with raised reporting limits due to the sample dilutions. No action was required.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

FBI noted on the chain of custody (COC) for report 001419 that EPA Method 8270E-SIM analysis was added to all samples after receipt by FBI. No action was required by the reviewer.

FBI noted on the COC for report 001436 that EPA Method 8260D analysis was added to the trip blank sample after samples were received by FBI. No action was required by the reviewer.

A collection date was not provided on the COC for the trip blank sample in report 001436. The project manager was notified.

No additional issues were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FA. 2018. Quality Assurance. Version 3.2. Fremont Analytical. Seattle, Washington. April 23.

FBI. 2019. Quality assurance manual. Revision 16 Friedman & Bruya, Inc., Seattle, Washington. October 2.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. 1329 N State Street, Suite 301, Bellingham, WA 98225

Document Preparation						
Name Author(s)	Date	Comments				
Mary Benzinger	5/11/2020	Prepare DVM for validation of report 004316, 004323, and 004344.				
M.Benzinger	5/15/2020	Edit DVM per JW review comments.				
A. Bixby	2/8/21	Incorporate copy edits.				

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments
Responsibilities	Name	Date	Name	Date	Comments
Copy Edit			P. Collins	2/8/21	
Peer Review (may be conducted by senior reviewer)			J. Wetmore	5/13/2020	Peer Review reports 004316, 004323, and 004344
Senior Review**			H. Good	2/23/21	
Production			S. Larson	3/16/2021	Produce PDF
Production Deadline					

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

IF HARD COPY PRODUCTION IS REQUESTED, PLEASE FILL IN THE FOLLOWING:

Type of binding: Choose an item.

Would you like to include a CD? Choose an item.

• If yes, what would you like to include on the CD? (Attachment X, Text Only, Etc.) Click here to enter text.

Distribution List:

First and Last Name	Company Name/Address	No. of Copies	Shipping Method (Mail/UPS/Courier/Electronic)

Comments/Additional Instructions: Click here to enter text.									
Signature for Review of	f Final Production:								

DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.04 | MAY 8, 2020 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the Precision Engineering property. The samples were collected in April 2020.

Friedman & Bruya, Inc. (FBI) and Fremont Analytical, Inc. (FA) performed the analyses. FBI report numbers 004316, 004323, and 004344 were reviewed. FBI subcontracted hexavalent chromium analysis to FA and results are appended to the associated FBI reports. The analyses performed and samples analyzed are listed below.

Analysis	Reference	
Diesel- and Motor-Oil-Range Hydrocarbons	NWTPH-Dx	
Dissolved Metals	EPA 6020B	
Dissolved Hexavalent Chromium	SM3500 Cr B	
Polycyclic Aromatic Hydrocarbons	EPA 8270E-SIM	
Volatile Organic Compounds	EPA 8260D	

NOTES:

NWTPH = Northwest Total Petroleum Hydrocarbons. SIM = selected ion monitoring.

EPA = U.S. Environmental Protection Agency.

Samples Analyzed						
Report 004316	Report 004323	Report 004344				
MW10-W-15.0	MW2-W-15.0	MW4-W-20.0				
MW9-W-32.5	MW7-W-27.5	MW1-W-35.0				
MW8-W-15.0	MW6-W-15.0	MW5-W-15.0				
Trip Blank	MW11-W-15.0	MWDUP-W-15.0				
	MW3-W-15.0	Trip Blank				
	Trip Blank					

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (FA, 2018; FBI, 2019; EPA, 1986).

In reports 004316, 004344, and 004323 FBI indicated that all detected NWTPH-Dx dieseland motor-oil-range hydrocarbon results had chromatographic patterns that did not resemble

the diesel fuel standard used for quantitation. The results were reported as diesel- or motoroil-range hydrocarbons; thus, qualification was not required.

In report 004323, FBI reported two sets of EPA Method 6020B dissolved chromium, copper, and selenium results for sample MW7-W-27.5. The reviewer confirmed that undiluted chromium, copper, and selenium results were associated with internal standard criteria exceedances. These results have been qualified by the reviewer as "not reported." The 1:5 diluted results were associated with acceptable internal standard results and are the results of record. Qualification of the 1:5-diluted results was not required.

Report	Sample (dilution)	Component	Original Result Reported (ug/L)	Qualified Record (ug/L)
	MW7-W-27.5 MW7-W-27.5 (1:5)	Dissolved Chromium	1.64	1.64 NR
		Dissolved Copper	5.12	5.12 NR
004323		Dissolved Selenium	3.58	3.58 NR
004323		Dissolved Chromium	5 U	
		Dissolved Copper	25 U	
		Dissolved Selenium	5 U	

NOTES:

-- = qualification not required.

NR = not reported.

ug/L = micrograms per liter.

In report 004344, FBI reported two sets of EPA Method 6020B dissolved chromium, results for sample MW5-W-15.0 and the associated field duplicate sample MWDUP-W-15.0. The reviewer confirmed that the chromium results associated with the 1:5 analyses performed on May 1, 2020 exceeded the upper instrument calibration range. These results have been qualified by the reviewer as "not reported." The samples were analyzed at 1:100 dilutions on April 30, 2020 and the associated dissolved chromium results are the result of record. Qualification of the 1:100-diluted results was not required.

Report	Sample (dilution)	Component	Original Result Reported (ug/L)	Qualified Record (ug/L)
004344	MW5-W-15.0 (1:5)		47,000	47,000 NR
	MW5-W-15.0 (1:100)		44,600	
	MWDUP-W-15.0 (1:5)	Dissolved Chromium	50,300	50,300 NR
	MWDUP-W-15.0 (1:100)		48,000	

NOTES:

-- = qualification not required.

NR = not reported.

ug/L = micrograms per liter.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by EPA procedures (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

According to the chain of custody in reports 004316 and 004323, volatile organic analysis containers for samples MW10-W-15.0 and MW6-W-15.0 were pre-rinsed with sample prior to filling to avoid excessive effervescence by removing the hydrochloric acid preservative. The associated EPA Method 8260D analyses were performed within the recommended 7 day holding time for unpreserved samples. No action by the reviewer was required.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All method blank results were non-detect to laboratory reporting limits.

Trip Blanks

Trip blank samples were submitted with reports 004316, 004323, and 004344 for EPA Method 8260D analysis. The trip blank results were non-detect to laboratory reporting limits.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

All MS/MSD results were within acceptance limits for percent recovery and relative percent differences (RPDs).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the method reporting limit (MRL) were not evaluated for precision. All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

All LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis with lab report 004344 (MW5-W-15.0/MWDUP-W-15.0). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by FBI or FA.

REPORTING LIMITS

FBI and FA used routine reporting limits for non-detect results except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

According to the case narrative in reports 004316 and 004323, EPA Method 8260D analysis of samples MW10-W-15.0, MW2-W-15.0, and MW6-W-15.0 were performed with dilutions

due to foamy sample matrices. The associated results were reported with raised reporting limits due to the sample dilutions. No action was required.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

FBI noted on the chain of custody (COC) for report 004323 that EPA Method 8270E-SIM analysis was added to all samples after receipt by FBI. No action was required by the reviewer.

FBI noted on the COC for report 004323 that EPA Method 6020B and SM3500CR B analyses was removed from the trip blank sample after samples were received by FBI. No action was required by the reviewer.

No additional issues were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FA. 2018. Quality Assurance. Version 3.2. Fremont Analytical. Seattle, Washington. April 23.

FBI. 2019. Quality assurance manual. Revision 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. 1329 N State Street, Suite 301, Bellingham, WA 98225

Document Preparation							
Name <u>Author(s)</u>	Date	Comments					
M.Benzinger	1/15/2021	Prepare DVM for validation of 2101109.					

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be

issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments
Responsibilities	Name	Date	Name	Date	Comments
Copy Edit			P. Collins	1/20/21	Please request copy edit at time of DVM creation.
Peer Review (may be conducted			J. Wetmore A. Bixby	1/20/2021 1/20/21	Peer review 2101109 Peer review.
by senior reviewer)			H. C. 1	1/20/21	
Senior Review** Production			H. Good Matyas	1/20/21 1/20/2021	Produce pdf
Production			S. Larson	3/16/2021	Produce PDF

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.04 | JANUARY 15, 2021 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for indoor air samples collected at the Precision Engineering, Inc., site located at 1231 S Director Street in Seattle, Washington. The samples were collected from December 17, 2020 to January 7, 2021.

Eurofins Air Toxics (Eurofins) performed the analyses. Eurofins report number 2101109 was reviewed. Analyses performed and samples analyzed are listed in the tables below.

Analysis	Reference
TCE—Radiello 130	EPA TO-17 Modified

NOTES:

EPA = U.S. Environmental Protection Agency.

TCE = trichloroethene.

Report 2101109				
Samples Analyzed				
RAD1-121720				
RAD4-121720				
RAD5-121720				
Trip Blank				

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (Eurofins, 2019; EPA, 1986).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blanks were non-detect.

Trip Blanks

According to report 2101109, a trip blank sample was submitted to Eurofins for EPA Method TO-17 modified analysis. Eurofins noted that the trip blank sample volume was calculated based on a sampling duration of 30,245 minutes, or three weeks and five minutes, which was the sampling duration used for all associated project samples.

The trip blank was non-detect.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Laboratory duplicate results were not reported.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS and LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were submitted for analysis.

REPORTING LIMITS

Eurofins used routine reporting limits for non-detect results.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

No issues were found.

REFERENCES

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

Eurofins. 2019. Laboratory quality assurance manual. Revision 13. Eurofins Air Toxics. Folsom, California. September 9.

NEEDED SIGN-OFFS

Document Preparation				
First Initial/ Last Name <u>Author(s)</u>	Date	Comments		
	Please request co	py edit at time of DVM creation.		
F. Bellows	10/18/21	Prepare DVM of report 2110248R1.		
F. Bellows	10/19/21	Accept changes from peer review.		
F. Bellows	10/27/21	Accept changes from copy edit.		

QA/QC Review

QA/QC Completion: The <u>reviewers</u> should fill in their names and the date, indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

All documents must be reviewed for technical accuracy by a peer reviewer. All documents, including all tables, figures, and attachments, must be reviewed by a senior reviewer. A copy edit must be completed on all documents. Note that the senior reviewer has the authority to complete the peer review and copy edit.

	<i>j</i> 1		
Reviewer and	Completed		Comments
Responsibilities	First Initial/	Date	
	Last Name		
Peer Review	B. Fauth	10/19/2021	Review DVM (Report 2110248R1)
Senior Review*	H. Good	11/12/2021	
Copy Edit	P. Collins	10/27/21	
Production	E. Fix	12/01/21	

Electronic Signature and Stamp Authorization

Fill in your name and the date to indicate your approval for use on this document.

Approval authorizes issuance without further review.

Electronic
Signature
Approval
(First Initial/
Last Name)

Electronic
Stamp Approval
(First Initial/
Last Name)

Indicate Needed
State Stamp
(Idaho, Oregon,
Washington)

Date

Comments

^{*}For approved document and plan reviewers, see approved reviewer list.

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.05 | DECEMBER 1, 2021 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc. (MFA), conducted an independent stage 2A review of the quality of analytical results for indoor air samples and associated quality control samples collected at the Precision Engineering, Inc., property at 1231 S Director Street, Seattle, Washington. Samples were collected from September 20 to October 11, 2021.

Eurofins Air Toxics, LLC (Eurofins), performed the analyses. Eurofins report number 2110248R1 was reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
TCE—Radiello 130	EPA TO-17 Modified
NOTES: EPA = U.S. Environmental Protection Agency. TCE = trichloroethene.	

Samples Analyzed
Report 2110248R1
RAD4-092021 (Sewing Room)
RAD1-092021 (Office)
RAD5-092021 (Warehouse 1)
TRIP BLANK

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA, 2020) and appropriate laboratory-and method-specific guidelines (EPA, 1986; Eurofins, 2021).

Based on the results of the data quality review procedures described below, the data are considered acceptable for their intended use, with the appropriate final data qualifiers assigned. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, as well as any data qualifiers assigned by the reviewer during validation.

- Final data qualifier:
 - "U" = result is non-detect at the method reporting limit (MRL).

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analysis was performed at the required frequency. For purposes of data qualification, the laboratory method blank was associated with all samples prepared in the analytical batch.

The laboratory method blank result was non-detect to the MRL.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and shipment between the sampling location and the laboratory.

A trip blank was submitted with the sample delivery group 2110248R1 for EPA method TO-17 analysis. Eurofins noted that the trip blank sample volume was calculated based on a sampling duration of 30,240 minutes (three weeks).

The trip blank result was non-detect to the MRL.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

All LCS/LCSD results were within acceptance limits for percent recovery and relative percent difference.

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. Laboratory duplicate analysis was not required for EPA method TO-17. Batch precision was evaluated using LCS/LCSD results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy as well as the effect of the sample matrix on sample preparation and analysis. MS/MSD analysis was not required for EPA method TO-17. Batch precision and accuracy were evaluated using LCS/LCSD results.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples.

All surrogate results were within percent recovery acceptance limits.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not required for validation but were reviewed when provided.

The CCV result was within percent recovery acceptance limits.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicate samples were submitted for analysis.

REPORTING LIMITS

Eurofins used routine MRLs for non-detect results. According to the chain of custody accompanying report 2110248R1, MFA requested an MRL of equal to or less than 0.37 micrograms per cubic meter. Eurofins reported trichloroethene at an MRL of 0.048 micrograms per cubic meter for all samples.

DATA PACKAGE

The data package was reviewed for transcription errors, omissions, and anomalies.

According to report 2110248R1, the report was reissued on October 15, 2021, to update several sample names. Samples were listed on the chain of custody form accompanying report

2110248R1 as "Sewing Room," "Office," and "Warehouse 1." These sample names were updated and reported as "RAD4-092021," "RAD1-092021," and "RAD5-092021," respectively, at the request of MFA.

No other issues were found.

REFERENCES

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019).

EPA. 2020. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. November.

Eurofins. 2021. Laboratory quality assurance manual. Revision 32. Eurofins Air Toxics, LLC. Folsom, California. January 4.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. 1329 N State Street, Suite 301, Bellingham, WA 98225

Document Preparation				
Name Author(s)	Date	Comments		
M.Benzinger	7/15/2021	Prepare DVM for validation of report 2107237.		
M.Benzinger	7/15/2021	Edit DVM per JW peer review comments.		
E. Lundeen	7/30/2021	Incorporate copy edit comments		

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments	
Responsibilities	Name	Date	Name	Date	Comments	
Copy Edit			Afleming	7/29/2021		
Peer Review			J. Wetmore	7/15/2021	Peer review DVM (2107237)	
(may be conducted					, , ,	
by senior reviewer)						
Senior Review**			Steve T.	8/3/21		
Production			Matyas	8/3/2021	Produce pdf	
	•					
Production Deadline						

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.05 | JULY 15, 2021 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for indoor air samples collected at the Precision Engineering, Inc., site located at 1231 S Director Street in Seattle, Washington. The samples were collected from June 21 to July 12, 2021.

Eurofins Air Toxics (Eurofins) performed the analyses. Eurofins report number 2107237 was reviewed. The analyses performed and samples analyzed are listed in the tables below.

Analysis Reference	
TCE—Radiello 130	EPA TO-17 Modified
NOTES: EPA = U.S. Environmental Protection Agen TCE = trichloroethene.	су.

Report 2107237
Samples Analyzed
RAD1-062121
RAD4-062121
RAD5-062121
TRIP BLANK

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (EPA, 1986; Eurofins, 2021).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

The laboratory method blank was non-detect to the laboratory reporting limit for trichloroethene.

Trip Blanks

According to report 2107237, a trip blank sample was submitted to Eurofins for EPA Method TO-17 modified analysis. Eurofins noted that the trip blank sample volume was calculated based on a sampling duration of 30,240 minutes (three weeks).

The trip blank was non-detect to the method reporting limit.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Laboratory duplicate results were not reported.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

All LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were submitted for analysis.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch.

The CCV result was within percent recovery acceptance limits.

REPORTING LIMITS

Eurofins used routine reporting limits for non-detect results.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. No issues were found.

REFERENCES

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

Eurofins. 2021. Laboratory quality assurance manual. Rev. 32. Eurofins Air Toxics, Folsom, California. January 4.

NOTE: Please choose the **office letterhead** you would like to use below. Administrative staff will add it when finalizing the document for delivery. 1329 N State Street, Suite 301, Bellingham, WA 98225

		Document Preparation
Name Author(s)	Date	Comments
M.Benzinger	4/15/2021	Prepare DVM for validation of 2104244.
M.Benzinger	4/16/2021	Edit DVM per BF peer review comments.
M.Benzinger	4/16/2021	Edit DVM per AFleming copy edit note.

QA/QC Review

QA/QC Scheduling: After coordinating with each reviewer to schedule a time for their review, the <u>author</u> will indicate the review schedule.

QA/QC Completion: The <u>reviewer</u> should fill in their name and date indicating that the review is complete and that the document can be issued. Never enter someone else's name in this section. Use comments to explain special circumstances.

Reviewer and	Scheduled		Completed		Comments	
Responsibilities	Name	Date	Name	Date	Comments	
Copy Edit			Afleming	4/16/2021	I left one question—re singular or plural RPD(s).	
Peer Review			B Fauth	4/15/2021	Review DVM (report 2104244).	
(may be conducted by senior reviewer)			A. Bixby	4/19/21	Peer review.	
Senior Review**			H. Good	4/28/21		
Production			L.Jensen	5/7/21	Produce PDF	
			L.Jensen	5/14/21	Re-produce PDF with new date.	
Production Deadline						

Electronic Signature and Stamp Authorization

Fill in your name and date indicating your approval for use on this document.

Approval authorizes issuance without further review.

Electronic Signature Approval	Electronic Stamp Approval	Indicate "State" of Stamp Needed	Date	Comments

^{**}For senior reviewer selection, see approved reviewer list.

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1803.01.05 | APRIL 15, 2021 | PRECISION ENGINEERING, INC.

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for indoor air samples collected at the Precision Engineering, Inc., site located at 1231 S Director Street in Seattle, Washington. The samples were collected from March 22 to April 12, 2021.

Eurofins Air Toxics (Eurofins) performed the analyses. Eurofins report number 2104244 was reviewed. The analyses performed and samples analyzed are listed in the tables below.

Analysis Reference	
TCE—Radiello 130	EPA TO-17 Modified
NOTES: EPA = U.S. Environmental Protection Agen TCE = trichloroethene.	су.

Report 2104244
Samples Analyzed
RAD1-032221
RAD4-032221
RAD5-032221
Trip Blank

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (EPA, 1986; Eurofins, 2021).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

The laboratory method blank was non-detect to the laboratory reporting limit for trichloroethene.

Trip Blanks

According to report 2104244, a trip blank sample was submitted to Eurofins for EPA Method TO-17 modified analysis. Eurofins noted that the trip blank sample volume was calculated based on a sampling duration of 30,240 minutes (3 weeks).

The trip blank was non-detect to the method reporting limit.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Laboratory duplicate results were not reported.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

All LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were submitted for analysis.

REPORTING LIMITS

Eurofins used routine reporting limits for non-detect results.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. No issues were found.

REFERENCES

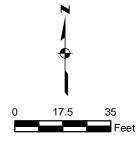
EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

Eurofins. 2021. Laboratory quality assurance manual. Rev. 32. Eurofins Air Toxics, Folsom, California. January 4.

APPENDIX FFormer Kaspac/Chiyoda Property Documents

Legend


- Seattle Limousine Monitoring Well
- Seattle Limousine Soil Boring
- Seattle Limousine Excavation Soil Sample
- Precision Engineering Deep Monitoring Well
- Precision Engineering Shallow Monitoring Well
 - Seattle Limousine Excavations

Parcel Boundary

Notes:

1. All locations are approximate.

Imagery Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.
Seattle Limousine Map Sources: EMCON, Independent Remedial Action Report, Chiyoda International Property.
14 November 1995. and EMCON, Addendum to Independent Remedial Action Report, Chiyoda International Corporation Property. 9 September 1996.

Kennedy/ Jenks Consultants

Former Precision Engineering Property Seattle, Washington

Seattle Limousine Property Sampling Locations

Figure 8

K/J Project Number 1396024.00 August 2015

Table A9: Historical Offsite Soil Analytical Results

				H	ydrocarboi	ns						Metals										VOCs			
				,	(mg/kg)							(mg/kg)										(mg/kg)			
Sample Location	Sample Depth	Data	Diesel-	Oil-range	Gasoline-	Total Petroleum Hydrocarbons (undifferentiated)	Antimony	Arconic	Rondlium	Cadmium	Total Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silvor	Zinc	Acotono	Benzene	Bromo- dichloro- methane	Bromo- form	Bromo- methane	2- Butanone	Carbon Disulfide
	(ft bgs)	Date		Oil-railige		(unumerentiateu)	Anumony	Arsenic	Beryllium	Caumum	Chronilani	Copper	Leau	Wercury	NICKEI	Selemum	Silvei	ZIIIC	Acetone		memane	101111	memane	Dutanone	Distillide
2	6.0 6.0	9/19/1989	57 <5		20 <5															<0.025 0.079					
3	11.0	9/19/1989	26		<5 <5															0.079					
4	6.0	9/19/1989	214		<5															<0.025					
5	5.0	9/19/1989	<5		<5															<0.025					
B10-2	4.0	12/6/1994				27	<4.78	<4.78	<2.39	<2.39	20.6	14.4	7.66	<1.0	25.4	<4.78	<0.96	29.7		<0.50					
B10-4	6.0	12/6/1994				60														<0.50					
B10-8	11.0	12/6/1994				19														<0.50					
B11-1	2.0	12/6/1994				77	<4.78	<4.32	<2.16	<2.16	37.2	28.5	7.35	<1.0	47.5	<4.32	<0.86	43.2		<0.50					
B11-2	5.0	12/6/1994				17														<0.50					
B11-5	12.0	12/6/1994				19														<0.50					
B12-1	20	12/7/1994				120	<4.88	<4.89	<2.44	<2.44	15.6	24.4	9.77	<1.0	14.7	<4.88	<0.98	45.9		<0.50					
B12-4	7.0	12/7/1994				65														<0.50					
B12-7	12.0	12/7/1994				48													-1100	<0.50	45.0	-05	-50	-50	45.0
B7	0.5	8/28/1990																	<100	<5.0	<5.0 <5.0	<25	<50 <50	<50 <50	<5.0 <5.0
D 7 COMP	1.5	8/28/1990																	<100	<5.0 <0.036	<0.014	<25 <0.014	<50 <0.036	<50	<5.0
B-7 COMP B-8 COMP	NA NA	4/18/1991 4/18/1991																		<0.036	<0.014	<0.014	<0.036		
B-9 COMP	NA NA	4/18/1991																		<0.036	<0.014	<0.014	<0.050		
GB-1	1.5	6/6/1996	130	420	<20														2.90	0.074	-0.010	-0.010	10.000	1.00	
	3.0	6/6/1996	30	<100	<5														0.74	<0.005				0.28	
GB-2	1.5	6/6/1996	50	200	<5														0.25	<0.005				<0.10	
	3.0	6/6/1996	26	<100	<5														<0.10	<0.005				<0.10	
GB-3	1.5	6/6/1996	50	160	<5														0.38	<0.005				<0.10	
	3.0	6/6/1996	<25	<100	<5														0.26	<0.005				<0.10	
GB-4	1.5	6/6/1996						3		<1	10	10	<20					72	<0.10	<0.005				<0.10	
	3.0	6/6/1996	60	140				2		<1	7	8	<20					32	<0.10	<0.005				<0.10	
GB-5	3.0	6/6/1996	60	140	<5								25							<0.05					
GB-6	4.0	6/6/1996	60	120	<5								26							<0.05					
GB-7	4.0	6/6/1996	<25	<100	<5								17							<0.05					
GB-8	4.0	6/6/1996	100	100 180	237 <5								16							0.12 <0.05					
GB-9 LD-EW-1	4.0 1.0	6/6/1996 8/22/1996	50 262	1,162	\ 5								<10							<0.05					
LD-EW-1	1.0	8/26/1996	152	850																					
LD-EW2-1	1.0	1/2/1997	107	207 ^(a)																<0.05					
LD-EW3-1	1.0	1/4/1997		179																					
LD-FS-2	2.0	8/22/1996	31	131																					
LD-NW-1	1.0	8/22/1996	103	631																					
LD-NW-2	1.0	8/26/1996	54	190														_							
LD-SW-1	1.0	8/22/1996	230	1,046																					
LD-SW-2	1.0	8/26/1996	172	558																					
LD-SW2-1	1.0	1/2/1997	97	194 ^(a)																0.32					
LD-WW-1	1.0	8/22/1996	148	505 178																					
MW-3	1.0 8.5	8/236/1996	40	1/6	12																				
SP1	NA	1/26/1990 4/17/1991	9 ^(b)		12															<0.025					
SP1	NA NA	4/17/1991	8 ^(b)		5															<0.025					
T1	NA NA	8/27/1990	<5		10															<0.025					
T2	NA	8/27/1990	<5		<5															<0.025					
T3	NA	8/27/1990	<5		<5															0.036					
T-NW-3.5	3.5	8/22/1996			<5															<0.05					
T-WW-3.5	3.5	8/22/1996			<5															<0.05					
T-EW-3.5	3.5	8/22/1996			<5															<0.05					
T-SW-3.5	3.5	8/22/1996			<5															<0.05					
B1-S1-D9	9.0	1/26/1990	<5		<5																				
B2-S1-D6	6.0	1/26/1990	<5		<5																				
B2-S2-D9	9.0	1/26/1990	<5 <5		<5 12																<0.010	<0.010	<0.025		
B3-S1-D8.5	8.5	1/26/1990	<5		12																<0.010	\U.U1U	~ 0.025		

Table A9: Historical Offsite Soil Analytical Results

																/OCs ng/kg)												
Sample Location	Sample Depth (ft bgs)	Date	Carbon Tetra Chloride	Chloro- benzene	Chloro- ethane	Chloro- form	Chloro-		1,2- Dichloro- benzene	1,3- Dichloro- benzene		1,1- Dichloro- ethane	1,1- Dichloro- ethylene	trans-1,2- Dichloro- ethylene		1,2- Dichloro- ethane		trans-1,3- Dichloro- propene	Dichloro-	Ethyl- benzene		4-Methyl-2- Pentanone		Styrene	Toluene	1,1,2,2-Tetra chloro- ethane	Tetra- chloro- ethylene	1,1,1- Trichloro- ethane
1	6.0	9/19/1989	Gilloriao	BOILEGIIG	otilalio	101111	mounano	mounano	DOTIZOTIO	DOTIZOTIO	BOILEONG	otilalio	caryione	caryione	canyione		propuno	propone	propone	<0.025	Gillorido	Tontanono	tilaiono	Ctyrone	<0.025	otilano	caryione	Other
2	6.0	9/19/1989																		0.072					<0.025			
3	11.0	9/19/1989																		0.094					0.12			
4	6.0	9/19/1989																		<0.025 <0.025					<0.025 <0.025			
5 B10-2	5.0 4.0	9/19/1989		<0.50					<1.0	<1.0	<1.0									<0.025					<0.025			
B10-2	6.0	12/6/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
B10-8	11.0	12/6/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
B11-1	2.0	12/6/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
B11-2 B11-5	5.0 12.0	12/6/1994 12/6/1994		<0.50 <0.50					<1.0 <1.0	<1.0 <1.0	<1.0 <1.0									<0.50 <0.50					<0.50 <0.50			
B11-5	20	12/0/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
B12-4	7.0	12/7/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
B12-7	12.0	12/7/1994		<0.50					<1.0	<1.0	<1.0									<0.50					<0.50			
В7	0.5	8/28/1990	<5.0	<5.0	<5.0	<5.0	<50	<5.0				<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25	<50	22.5	<5.0	4700 E	<5.0	<5.0	<5.0
B-7 COMP	1.5 NA	8/28/1990 4/18/1991	<5.0 <0.014	<5.0 <0.036	<5.0 <0.036	<5.0 <0.014	<50 <0.14	<5.0 <0.014	<0.036	<0.036	<0.036	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014	<5.0 <0.036	<25 <0.14	<50	30 E	<5.0	820 E <0.036	<5.0 <0.014	<5.0 <0.014	<5.0 <0.014
B-8 COMP	NA NA	4/18/1991	<0.014	<0.036	<0.036	<0.014	<0.14	<0.014	<0.036	<0.036	<0.036	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014	<0.036	<0.14				0.053	<0.014	<0.014	<0.014
B-9 COMP	NA	4/18/1991	<0.010	<0.025	<0.040	<0.010	<0.10	<0.010	<0.025	<0.025	<0.025	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.025	<0.10				0.26	<0.010	<0.010	<0.010
GB-1	1.5	6/6/1996													0.074					1.40					980		1.90	
	3.0	6/6/1996													<0.005					0.031					9.20		0.017	
GB-2	1.5	6/6/1996													<0.005 <0.005					<0.005 <0.005					0.08		<0.005 <0.005	
GB-3	3.0 1.5	6/6/1996 6/6/1996													<0.005					<0.005					0.008		<0.005	
	3.0	6/6/1996													<0.005					<0.005					0.014		<0.005	
GB-4	1.5	6/6/1996													<0.005					<0.005					<0.005		<0.005	
	3.0	6/6/1996													<0.005					<0.005					<0.005		<0.005	
GB-5 GB-6	3.0	6/6/1996																		<0.1 <0.1					<0.1 <0.1			
GB-6 GB-7	4.0 4.0	6/6/1996 6/6/1996																		<0.1					<0.1			
GB-8	4.0	6/6/1996																		0.2					0.3			
GB-9	4.0	6/6/1996																		<0.1					<0.1			
LD-EW-1	1.0	8/22/1996																										
LD-EW-2 LD-EW2-1	1.0	8/26/1996 1/2/1997																		<0.1					1.0			
LD-EW2-1	1.0	1/4/1997																		~ 0.1					1.0			
LD-FS-2	2.0	8/22/1996																										
LD-NW-1	1.0	8/22/1996																										
LD-NW-2	1.0	8/26/1996																										
LD-SW-1 LD-SW-2	1.0	8/22/1996 8/26/1996																										
LD-SW2-1	1.0	1/2/1997																		3.2					6000			
LD-WW-1	1.0	8/22/1996																										
LD-WW-2	1.0	8/236/1996																										
MW-3	8.5	1/26/1990																		0.040					<0.005			
SP1 SP2	NA NA	4/17/1991 4/17/1991																		0.046 0.046					<0.025 <0.025			
T1	NA NA	8/27/1990		<0.025					<0.025	<0.025	<0.025									0.068					0.027			
T2	NA	8/27/1990		<0.025					<0.025	<0.025	<0.025									<0.025					0.13			
Т3	NA	8/27/1990		<0.025					<0.025	<0.025	<0.025									1.1					0.35			
T-NW-3.5	3.5	8/22/1996																		<0.01					<0.01			
T-WW-3.5	3.5	8/22/1996																		<0.01 <0.01					<0.01 <0.01			
T-EW-3.5 T-SW-3.5	3.5 3.5	8/22/1996 8/22/1996																		<0.01					<0.01			
B1-S1-D9	9.0	1/26/1990																										
B2-S1-D6	6.0	1/26/1990																										
B2-S2-D9	9.0	1/26/1990	40.040	40.005	40.00=	40.010	10.10	40.040				40.040	40.010	40.010	40.040	10.010	40.010	40.010	40.010		-0.40					40.040	40.040	40.040
B3-S1-D8.5	8.5	1/26/1990	<0.010	<0.025	<0.025	<0.010	<0.10	<0.010				<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010		<0.10					<0.010	<0.010	<0.010

Table A9: Historical Offsite Soil Analytical Results

					VO((mg/				
Sample Location	Sample Depth (ft bgs)	Date	1,1,2- Trichloro- ethane	Trichloro- ethylene	Trichloro- fluoro- methane	Vinyl Acetate	Vinyl Chloride	Total Xylenes	DATA SOURCE
1	6.0	9/19/1989						0.10	GeoEngineers 1989b
2	6.0	9/19/1989						1.62	GeoEngineers 1989b
3	11.0	9/19/1989						0.57	GeoEngineers 1989b
4	6.0	9/19/1989						<0.025	GeoEngineers 1989b
5	5.0	9/19/1989						<0.025	GeoEngineers 1989b
B10-2	4.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B10-4	6.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B10-8	11.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B11-1	2.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B11-2	5.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B11-5	12.0	12/6/1994						<0.50	Pacific Testing Labs 1995
B12-1	20	12/7/1994						<0.50	Pacific Testing Labs 1995
B12-4	7.0	12/7/1994						<0.50	Pacific Testing Labs 1995
B12-7	12.0	12/7/1994						<0.50	Pacific Testing Labs 1995
B7	0.5	8/28/1990	<5.0	<5.0		<50	<5.0	30	Applied Consultants 1990b
	1.5	8/28/1990	<5.0	<5.0	0.000	<50	<5.0	<5.0	Applied Consultants 1990b
B-7 COMP	NA	4/18/1991	<0.014	<0.014	<0.036		<0.036	<0.036	Applied Consultants 1991
B-8 COMP	NA	4/18/1991	<0.014	<0.014	<0.036		<0.036	<0.036	Applied Consultants 1991
B-9 COMP GB-1	NA	4/18/1991	<0.010	<0.010	<0.025		<0.050	0.49	Applied Consultants 1991
GD-1	1.5	6/6/1996						10.0	EMCON 1996
GB-2	3.0	6/6/1996						0.110	EMCON 1996
GB-2	1.5	6/6/1996						<0.005 0.017	EMCON 1996
GB-3	3.0	6/6/1996						0.017	EMCON 1996
GD-3	1.5	6/6/1996						0.006	EMCON 1996
GB-4	3.0 1.5	6/6/1996 6/6/1996						<0.005	EMCON 1996 EMCON 1996
05 1	3.0	6/6/1996						<0.005	EMCON 1996
GB-5	3.0	6/6/1996						<0.1	EMCON 1996
GB-6	4.0	6/6/1996						<0.1	EMCON 1996
GB-7	4.0	6/6/1996						<0.1	EMCON 1996
GB-8	4.0	6/6/1996						1.4	EMCON 1996
GB-9	4.0	6/6/1996						<0.1	EMCON 1996
LD-EW-1	1.0	8/22/1996							EMCON 1996
LD-EW-2	1.0	8/26/1996							EMCON 1996
LD-EW2-1	1.0	1/2/1997						0.1	EMCON 1997
LD-EW3-1	1.0	1/4/1997							EMCON 1997
LD-FS-2	2.0	8/22/1996							EMCON 1996
LD-NW-1	1.0	8/22/1996							EMCON 1996
LD-NW-2	1.0	8/26/1996							EMCON 1996
LD-SW-1	1.0	8/22/1996							EMCON 1996
LD-SW-2	1.0	8/26/1996							EMCON 1996
LD-SW2-1	1.0	1/2/1997						9.7	EMCON 1997
LD-WW-1	1.0	8/22/1996							EMCON 1996
LD-WW-2	1.0	8/236/1996							EMCON 1996
MW-3	8.5	1/26/1990							Applied Consultants 1990a
SP1	NA	4/17/1991						0.41	Applied Consultants 1991
SP2	NA	4/17/1991						0.12	Applied Consultants 1991
T1	NA	8/27/1990						1.5	Applied Consultants 1990b
T2	NA	8/27/1990						0.14	Applied Consultants 1990b
Т3	NA	8/27/1990						3.3	Applied Consultants 1990b
T-NW-3.5	3.5	8/22/1996						<0.01	EMCON 1996
T-WW-3.5	3.5	8/22/1996						<0.01	EMCON 1996
T-EW-3.5	3.5	8/22/1996						<0.01	EMCON 1996
T-SW-3.5	3.5	8/22/1996						<0.01	EMCON 1996
B1-S1-D9	9.0	1/26/1990							Applied Consultants 1990a
B2-S1-D6	6.0	1/26/1990							Applied Consultants 1990a
B2-S2-D9	9.0	1/26/1990	.0.015	40.040	40.00=		-0.00=		Applied Consultants 1990a
B3-S1-D8.5	8.5	1/26/1990	<0.010	<0.010	<0.025		<0.025		Applied Consultants 1990a

Notes:

- (a) Sample contained components that eluted in oil range, but the chromatogram did not match the typical oil fingerprint.
- (b) Sample contained components that eluted in diesel range, but the chromatogram did not match the typical diesel fingerprint.
- "<" indicates analyte was not detected above the specified laboratory reporting limit.
- Q qualifier indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria.
- B qualifier indicates analyte detected in an associated method blank at a concentration greater than 1/2 the laboratory reporting limit or 5 percent of either the regulatory limit or analyte concentration in the sample.
- E qualifier indicates an estimated value.
- Indicates analysis not performed/reported.
- VOCs = volatile organic compounds
- ft bgs = feet below ground surface
- mg/kg = milligrams per kilogram

Table A10: Historical Offsite Groundwater Analytical Results

-				Hydrocarbo	ons					Т	otal Metals	S							VOCs		
Sample ID	Date	Diesel- range	Oil- range	(μg/L) Gasoline- range	Total Petroleum Hydrocarbons (undifferentiated)	Arsenic	Beryllium	Cadmium	Total Chromium	Copper	(μg/L) Lead	Mercury	Nickel	Selenium	Silver	Zinc	Acetone	Benzene	(μg/L) Bromo- dichloro- methane	Bromoform	Bromo- methane
MW-1	1/31/1990						-											<0.5	<0.2	<0.2	<0.5
MW-2	2/1/1990																	<0.5	<0.2	<0.2	<0.5
MW-3	2/1/1990																	46	<1.0	<1.0	<2.5
	3/29/1990																	75			
MW-4	8/28/1990	<1,000		<1,000														0.7	<0.2	<0.2	<0.5
	8/16/1995	280	<750	<50		22											<100	<0.5	<5	<5	<10
MW-5	8/28/1990	<1,000		<1,000														<0.5	<0.2	<0.2	<0.5
MW-6	8/28/1990	<1,000		26000 ^(a)														7.0	<1.0	<1.0	<2.5
	4/19/1991								440		400							<2,500	<1,000	<1,000	<5,000
	12/2/1994	<250			6,900	41	4.5	5.0	118	280	126	<1.0	113	<2.5	9.5	450		9.0			
	12/15/1994																	8.1 13/			
	5/9/1995	2080 ^(b)	1300 ^(c)			23		<3	24	40	20					116		<25			
	7/31/1995	890 ^(b)	<750	640		23											<100	20	<5	<5	<10
MW-7	4/19/1991																	<0.5	<0.2	<0.2	<1.0
	12/2/1994	<250			4,630	273	9.5	9.4	345	936	289	<1.0	165	<2.5	<2.5	10,000		<1.0			
	12/15/1994																	<0.5			
	5/9/1995	400 ^(b)	<750			104		<3	94	168	76					1,240		<5			
	7/31/1995	340 ^(b)	<750	<50		43											<100	<5	<5	<5	<10
	1/2/1997	360	<750	<50														<0.5			
MW-8	4/19/1991																	<0.5	<0.2	<0.2	<1.0
	12/2/1994	<250			3,180	50	5.7	5.6	257	574	128	<1.0	242	<2.5	51	602		<1.0			
	12/15/1994	4.5																<0.5			
	5/9/1995	650 ^(b)	840 ^(a)			38		<3	62	86	14					99		<5			
	7/31/1995	<250	<750	<50		45											<100	<5	<5	<5	<10
MW-9	1/2/1997	340	<750	330														9.9			
10100-9	4/19/1991	.050			0.400	07	0.0	0.0	00	070	07	-14.0	400	00	4.7	050		1.4	<0.2	<0.2	<1.0
	12/2/1994 12/15/1994	<250			3,180	27	2.3	2.9	96	276	87	<1.0	100	28	4.7	350		<1.0 <0.5			
	5/9/1995	1470 ^(b)	980 ^(a)			9		<3	16	39	9					53		<0.5 <5			
	7/31/1995	730 ^(b)	<750	<50		<5		٦	10	- 55	3					33	<100	<5	<5	<5	<10
	1/2/1997	920	<750	3,930													1100	1.8	0	.0	-10
	4/8/1997			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														1.8			
	6/23/1997																	1.0			
	9/30/1997																	8.9			
MW-10	12/15/1994																	<0.5			
	5/9/1995	850 ^(b)	940 ^(a)			22		<3	77	142	40					138		<5			
	7/31/1995	<250	<750	<50		6											<100	<5	<5	<5	<10
	1/2/1997	340	<750	<50														<0.5			
	4/8/1997																	<0.5			
	6/23/1997																	<0.5			
MW-11	9/30/1997																	<0.5			
14144-11	12/15/1994	700 ^(b)	-750			52		-0	70	0.5	22					100		5.1			
	5/9/1995 7/31/1995	430 ^(b)	<750 <750	<50		52		<3	70	85	32					108	<100	<5 <5	<5	<5	<10
	4/14/1997	730	~130	100		30											100	6.0	70		110
	6/23/1997																	4.3			
	9/30/1997																	<0.5			
MW-12	12/15/1994																	<0.5			
	5/9/1995	<250	<750			42		<3	27	47	8					55		<5			
	7/31/1995	310 ^(b)	<750	<50		29											<100	<5	<5	<5	<10
- <u></u> -	1/2/1997	<250	<750	<50														<0.5			
GB-4-WS	6/6/1996	690	<750	<50		<5		<4	11	12	<2					23		<5			
GB-5-WS	6/6/1996	990	<750	70														<5			
OB-1	4/19/1991																	14	<0.2	<0.2	<1.0
RW-1	8/28/1990	<1,000		3,000														1.9	<0.2	<0.2	<0.5
	4/19/1991	<1,000		<1,000														4.8			

Table A10: Historical Offsite Groundwater Analytical Results

											VOCs (µg/L)								
Sample ID	Date	2-Butanone	Carbon Disulfide		Chloro- benzene	Chloro- ethane	2-Chloroethyl Vinyl Ether	Chloroform		Dibromo- chloro- methane	1,2-Dichloro- benzene	1,3-Dichloro- benzene	benzene	1,1-Dichloro- ethane	ethane	ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	cis-1,3- Dichloro- propene
MW-1	1/31/1990			<0.2	<0.5	<0.5		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW-2	2/1/1990			<0.2	<0.5	<0.5		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW-3	2/1/1990			<1.0	<2.5	<2.5		<1.0	<10	<1.0	<2.5	<2.5	<2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
100//	3/29/1990																		4
MW-4	8/28/1990	.100	:100	<0.2	<0.5	<0.5	.10	<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
NAVA / 5	8/16/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MW-5	8/28/1990			<0.2	<0.5	<0.5		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW-6	8/28/1990			<1.0	<2.5	<2.5		<1.0	<10	<1.0	<2.5	<2.5	<2.5	<1.0	<1.0	<1.0	1.0	<1.0	<1.0
ļ	4/19/1991			<1,000	<2,500	<5,000		<1,000	<10,000	<1,000	<2,500	<2,500	<2,500	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000
ļ	12/2/1994														_			_	_
ļ	12/15/1994																		
ļ	5/9/1995											l '				1			A
ļ	7/31/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MW-7	4/19/1991			<0.2	<0.5	<1.0		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ŀ	12/2/1994									7.=			3.5						
ŀ	12/15/1994																		
ŀ	5/9/1995																		
ļ	7/31/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ľ	1/2/1997																		
MW-8	4/19/1991			<0.2	<0.5	<1.0		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ſ	12/2/1994																		
ļ	12/15/1994																		
ļ	5/9/1995																		<u> </u>
ļ	7/31/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	1/2/1997																		
MW-9	4/19/1991			<0.2	<0.5	<1.0		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	1.2	<0.2	<0.2
ļ	12/2/1994																		
ļ	12/15/1994																		4
ļ	5/9/1995	.100	.100			.40	.10		.40										
ļ	7/31/1995 1/2/1997	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ļ	4/8/1997																		4
ļ	6/23/1997																		1
ļ	9/30/1997																		
MW-10	12/15/1994																		
ļ	5/9/1995																		
ļ	7/31/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ŀ	1/2/1997																		
ļ	4/8/1997																		
ľ	6/23/1997																		
	9/30/1997																		
MW-11	12/15/1994																		
ļ	5/9/1995																		
ļ	7/31/1995	<100	<100	<5	<5	<10	<10	<5	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ļ	4/14/1997																		
ļ	6/23/1997																		
MW-12	9/30/1997																		
1VIVV-1∠	12/15/1994																		
ļ	5/9/1995	<100	<100	-5	<5	-10	-10	<5	<10	7 E	<5	<5	<5	-E	-E	-5	<5	-E	<5
ļ	7/31/1995 1/2/1997	<100	×100	<5	<-b	<10	<10	C 2	<10	<5	<5	<0	<5	<5	<5	<5	<0	<5	<2
GB-4-WS	6/6/1996																		
GB-5-WS	6/6/1996																		
OB-1	4/19/1991			<0.2	<0.5	<1.0		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
· .									· i · · · · · · · · · · · · · · · · · ·										
RW-1	8/28/1990			<0.2	<0.5	<0.5		<0.2	<2.0	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Table A10: Historical Offsite Groundwater Analytical Results

									OCs ig/L)						
Sample ID	Date	trans-1.3- Dichloro- propene	1,2-Dichloro- propane	Ethylbenzene	2-Hexanone	Methylene Chloride	4-Methyl-2- pentanone	Styrene	Tetrachloro- ethylene	1,1,2,2- Tetrochloro- ethane	Toluene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethylene	Trichloro- fluoro- methane
MW-1	1/31/1990	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
MW-2	2/1/1990	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
MW-3	2/1/1990	<1.0	<1.0	11		<10			<1.0	<1.0	<2.5	<1.0	<1.0	6.2	<2.5
	3/29/1990			11							490				
MW-4	8/28/1990	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
	8/16/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
MW-5	8/28/1990	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
MW-6	8/28/1990	<1.0	<1.0	29		<10			10.0	<1.0	15,000	<1.0	<1.0	<1.0	<2.5
	4/19/1991	<1,000	1,200	<2,500		<10,000			<1,000	<1,000	430,000	<1,000	<1,000	<1,000	<2,500
	12/2/1994			<50							15,036				
	12/15/1994			57							10,000				
				76/							4,400/				
	5/9/1995			63							4,300				
	7/31/1995	<5	<5	22	<50	<5	<50	<5	<5	<5	630	<5	<5	<5	<10
MW-7	4/19/1991	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
	12/2/1994			3.0							215				3.0
	12/15/1994			<0.5							<0.5				
	5/9/1995			<5							<5				
	7/31/1995	<5	<5	<5 <5	<50	<5	<50	<5	<5	<5	<5 <5	<5	<5	<5	<10
	1/2/1997			<1	\50		\ 50			75	<1	~5		75	~10
MW-8	4/19/1991	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	0.9	<0.2	<0.2	<0.2	<0.5
10100-0		<0.2	<0.2			<2.0			<0.2	<0.2		<0.2	<0.2	<0.2	<0.5
	12/2/1994			<1.0							8.0				
	12/15/1994			<0.5							10				
	5/9/1995			<5							<5				
	7/31/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
	1/2/1997			4							36				
MW-9	4/19/1991	<0.2	<0.2	1.9		<2.0			1.6	<0.2	560	<0.2	<0.2	0.3	<0.5
	12/2/1994			<1.0							31				
	12/15/1994			<0.5							0.61				
	5/9/1995			<5							<5				
	7/31/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
	1/2/1997			240							14,000				
	4/8/1997			75							27,000				
	6/23/1997			25							3,950				
	9/30/1997			<1.0							3.0				
MW-10	12/15/1994			<0.5							1.4				
	5/9/1995			<5							<5				
	7/31/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
	1/2/1997	Ů,		<1			55	Ţ,		, in the second	<1			Ŭ.	
	4/8/1997			<1.0							<1.0				
	6/23/1997			<1.0							<1.0				
	9/30/1997			<1.0							<1.0				
MW-11	12/15/1994			1.6							560				
	5/9/1995	-	-	<5	-50		.50		-		<5	-		-	
	7/31/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
	4/14/1997			1.0							121				
	6/23/1997			<1.0							<1.0				
1 41 A ' . ' O	9/30/1997			1.0							53				
MW-12	12/15/1994			<0.5							<0.5				
	5/9/1995			<5							<5				
	7/31/1995	<5	<5	<5	<50	<5	<50	<5	<5	<5	<5	<5	<5	<5	<10
	1/2/1997			<1							<1				
GB-4-WS	6/6/1996			<5							<5				
GB-5-WS	6/6/1996			<5							<5				
OB-1	4/19/1991	<0.2	<0.2	45		<2.0			<0.2	<0.2	170	<0.2	<0.2	<0.2	<0.5
RW-1	8/28/1990	<0.2	<0.2	<0.5		<2.0			<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5
	4/19/1991	5.2		14		,			V.=	Ų. <u> </u>	<0.5	Ŭ. <u>=</u>	U		0.0

Table A10: Historical Offsite Groundwater Analytical Results

			VOCs		
			(µg/L)	<u> </u>	
Sample ID	Date	Total Xylenes	Vinyl Acetate	Vinyl Chloride	DATA SOURCE
MW-1	1/31/1990	<0.5		<0.5	Applied Consultants 1990
MW-2	2/1/1990	<0.5		<0.5	Applied Consultants 1990
MW-3	2/1/1990	390		<2.5	Applied Consultants 1990
100/	3/29/1990	490			Chiyoda 1992b
MW-4	8/28/1990	<0.5	-50	<0.5	Applied Consultants 1990
NA)A/ E	8/16/1995	<5	<50	<10	EMCON 1995b
MW-5 MW-6	8/28/1990	<0.5		<0.5	Applied Consultants 1990
IVIVV-O	8/28/1990	130		<2.5	Applied Consultants 1990
	4/19/1991	<2,500		<5,000	Applied Consultants 199
	12/2/1994	<50			Pacific Testing Labs 199
	12/15/1994	430			Pacific Testing Labs 199
	5/9/1995	510/ 570			EMCON 1995a
	7/31/1995	160	<50	<10	EMCON 1995b
MW-7	4/19/1991	<0.5		<1.0	Pacific Testing Labs 199
	12/2/1994	9.0			Pacific Testing Labs 199
	12/15/1994	<1.0			Pacific Testing Labs 199
	5/9/1995	<5			EMCON 1995a
	7/31/1995	<5	<50	<10	EMCON 1995b
	1/2/1997	<1			EMCON 1997
MW-8	4/19/1991	1.5		<1.0	Applied Consultants 199
	12/2/1994	<1.0			Pacific Testing Labs 199
	12/15/1994	<1.0			Pacific Testing Labs 199
	5/9/1995	<5			EMCON 1995a
	7/31/1995	<5	<50	<10	EMCON 1995b
	1/2/1997	30			EMCON 1997
MW-9	4/19/1991	14		<1.0	Applied Consultants 199
	12/2/1994	<1.0			Pacific Testing Labs 199
	12/15/1994	<1.0			Pacific Testing Labs 199
	5/9/1995	<5			EMCON 1995a
	7/31/1995	<5	<50	<10	EMCON 1995b
	1/2/1997	1,100			EMCON 1997
	4/8/1997	344			EMCON 1998
	6/23/1997	122			EMCON 1998
101/10	9/30/1997	6.0			EMCON 1998
MW-10	12/15/1994	<0.5			Pacific Testing Labs 199
	5/9/1995	<5			Pacific Testing Labs 199
	7/31/1995	<5	<50	<10	EMCON 1995b
	1/2/1997	<1			EMCON 1997
	4/8/1997	<1.0			EMCON 1998
	6/23/1997 9/30/1997	<1.0 <1.0			EMCON 1998 EMCON 1998
MW-11					
	12/15/1994	13			Pacific Testing Labs 199
	5/9/1995 7/31/1995	<5 <5	<50	<10	Pacific Testing Labs 199 EMCON 1995b
	4/14/1997	9.0	~500	10	EMCON 1998
	6/23/1997	3.0			EMCON 1998
	9/30/1997	50			EMCON 1998
MW-12	12/15/1994	<1.0			Pacific Testing Labs 199
	5/9/1995	<5			Pacific Testing Labs 199
	7/31/1995	<5 <5	<50	<10	EMCON 1995b
	1/2/1997	<1		.,	EMCON 1997
GB-4-WS	6/6/1996	<5			EMCON 1996
GB-5-WS	6/6/1996	9			EMCON 1996
OB-1	4/19/1991	330		<1.0	Applied Consultants 199
RW-1	8/28/1990	180		<0.5	Applied Consultants 1990
	4/19/1991	180			Applied Consultants 199

Notes:

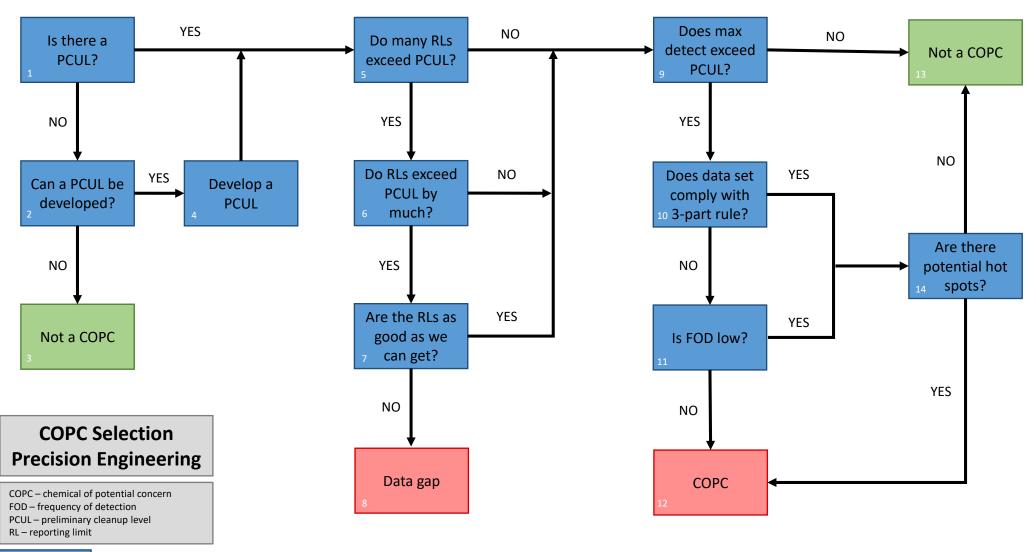
- (a) Sample contained components that eluted in oil range, but the chromatogram did not match the typical oil fingerprint.
- (b) Sample contained components that eluted in diesel range, but the chromatogram did not match the typical diesel fingerprint.
- (c) Sample contained components that eluted in gasoline range, but the chromatogram did not match the typical gasoline fingerprint.
- "<" indicates analyte was not detected above the specified laboratory reporting limit.
- Indicates analysis not performed/reported.
- VOCs = volatile organic compounds
- μg/L = micrograms per liter

APPENDIX G Terrestrial Ecological Evaluation

Table Simplified TEE Scoresheet Precision Engineering, Inc., Site Seattle, Washington

Line Number	Scoring Parameters	Score	Rationale
1	Estimate the area of contiguous (connected) undeveloped land on the site or within 500 feet of any area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre). From the table below, find the number of points corresponding to the area and enter this number in the field to the right. Area (acres) Points 0.25 or less 4 0.5 5 1.0 6 1.5 7 2.0 8 2.5 9 3.0 10 3.5 11 4.0 or more 12	8	The approximately 3.5-acre Property associated with the Site is entirely developed (i.e., paved and/or covered by buildings). Approximately 2 acres of grassy land is present along the eastern, southern, and western borders of the property. About 500 feet northwest of the Site, undeveloped areas associated with the Sea Mar Community Center, an adult care facility, are present. However, these areas are not contiguous with the Site and were not included in this evaluation.
2	Is this an industrial or commercial property? If yes, enter a score of 3. If no, enter a score of 1.	3	The Property is zoned for industrial use and is currently an active industrial supply store.
3	Enter a score in the box to the right for the habitat quality of the site, using the following rating system: High=1, Intermediate=2, Low=3.	3	The Site is entirely paved and/or covered by buildings and is located in industrial south Seattle, near the Highway 99 on-ramp.
4	Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2.	2	The Site is entirely developed, in close proximity to Highway 99, and surrounded by industrial operations; therefore, it is unlikely to attract wildlife. Other undeveloped areas in the vicinity of the Site (over 500 feet away) would be more attractive wildlife habitat, such as the Lower Duwamish River, forested corridors near Highway 509 to the west, and golf courses to the south.
5	Are any of the following soil contaminants present: chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4.	4	None of the listed soil contaminants have been detected at the Site.

Table Simplified TEE Scoresheet Precision Engineering, Inc., Site Seattle, Washington


Line Number	Scoring Parameters	Score	Rationale
	mbers in the boxes on lines 2–5 and enter this number in the box to the right. If is larger than the number in the box on line 1, the simplified evaluation may	12	Simplified evaluation ended. Total score exceeds 8.

NOTES:

Table adapted from Model Toxics Control Act Table 749-1.

TEE = terrestrial ecological evaluation.

APPENDIX H COPC Selection Documents

Question/action

Conclusion

Conclusion

Flowchart for Selection of Chemicals of Potential Concern (COPCs) Precision Engineering

Abbreviations

95UCL – upper 95 percent confidence limit on the mean concentration

COPC – chemical of potential concern

FOD – frequency of detection

PCUL – preliminary cleanup level

RL – reporting limit

	Flowchart Box	Answer Yes If	Answer No If	Discussion
1	Is there a PCUL?	The PCUL Workbook contains a PCUL.	The PCUL Workbook does not contain a PCUL.	Use this flowchart for all analytes regardless of whether they are detected.
2	Can a PCUL be developed?	The Ecology site manager determines that a PCUL can be developed.	The Ecology site manager determines that a PCUL cannot be developed.	Ecology site manager may decide not to develop a PCUL for chemicals of low concern or chemicals not associated with site operations.
3	Not a COPC			No PCUL available.
4	Develop a PCUL			Obtain PCUL from Ecology site manager.
5	Do many RLs exceed PCUL?	Frequency of exceedance for RLs > 10%	Frequency of exceedance for RLs < 10%	
6	Do RLs exceed PCUL by much?	Maximum exceedance ratio for RLs > 5	Maximum exceedance ratio for RLs \leq 5	
7	Are the RLs as good as we can get?	Maximum RL ≤ 5 times achievable RL.	Maximum RL > 5 times achievable RL.	Obtain achievable RLs from Ecology site manager.
8	Data gap			RLs are poor and better RLs are possible. This data gap is most important for chemicals known to be associated with site operations. After identifying this

	Flowchart Box	Answer Yes If	Answer No If	Discussion
				data gap, the Ecology site manager may decide to evaluate the detected results using the remainder of the flowchart.
9	Does max detect exceed PCUL?	Maximum detected concentration > PCUL.	Maximum detected concentration ≤ PCUL or analyte was never detected.	
10	Does data set comply with 3-part rule?	Complete data set, including detected results and RLs for nondetected results, meets all three of the following criteria: 1. Maximum concentration ≤ 2xPCUL 2. Not more than 10% of results > PCUL 3. 95UCL ≤ PCUL.	Any one of the following is true: 1. One or more results > 2xPCUL 2. More than 10% of results > PCUL 3. 95UCL > PCUL.	Evaluate criteria 1 and 2 first. If the data set fails one of these criteria it is not necessary to calculate the 95UCL. ProUCL is recommended for calculating the 95UCL. Consult with Ecology site manager on how to handle non-detected results.
11	Is FOD low?	FOD <u><</u> 5%.	FOD > 5%.	
12	COPC			Sufficient results exceeding PCUL and/or evidence of a hot spot.
13	Not a COPC			Insufficient results exceeding PCUL and no evidence of a hot spot.
14	Are there potential hot spots?	Spatial pattern indicates localized detections and/or exceedances.	Spatial pattern does not indicate localized detections or exceedances.	Ecology site manager will determine the answer based on maps of detections and exceedances.

The Ecology site manager may adjust any of the decisions in the flow chart on a chemical-specific basis using professional judgement.

If historical RLs are higher than recent RLs, a data set composed of only recent RLs may be evaluated for flowchart boxes 5 through 7 and 10. However, before a chemical is eliminated on this basis, the spatial coverage of the data set must be evaluated. It may be necessary to fill spatial data gaps by conducting additional sampling with lower RLs.

To assist Ecology in evaluating the COPC selection process, provide a spreadsheet with the following columns:

- 1. Analyte name
- 2. PCUL (provided by Ecology)
- 3. Number of samples analyzed
- 4. Number of detected results
- 5. Frequency of detection
- 6. Number of RLs exceeding PCUL
- 7. Frequency of exceedance for RLs
- 8. Maximum RL
- 9. Ratio of maximum RL to PCUL
- 10. Achievable RL (provided by Ecology)
- 11. Ratio of maximum RL to achievable RL
- 12. Maximum detected concentration
- 13. Ratio of maximum detect to PCUL
- 14. Frequency of exceedance for detected concentrations
- 15. Frequency of exceedance for entire data set (detected results and RLs)
- 16. 95UCL (calculate only if needed)
- 17. Ratio of 95UCL to PCUL.

			alculated Value	·c				COPC Selection		
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)?(b)	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?
1,1,1,2-Tetrachloroethane	0	0	0	0	0	Yes	No	No	NA	No
1.1.1-Trichloroethane	0	0	0	0	0	Yes	No	No	NA	No
1,1,2,2-Tetrachloroethane	0	0	87	0	87	Yes	Yes	Yes	No	No
1,1,2-Trichloroethane	0	0	60	0	60	Yes	Yes	Yes	No	No
1,1-Dichloroethane	0	0	40	0	40	Yes	Yes	No	NA	No
1,1-Dichloroethene	0	7	0	0	0	Yes	No	No	NA	No
1,1-Dichloropropene	0	0	0	0	0	No	No	No	NA	No
1,2,3-Trichlorobenzene	0	0	0	0	0	No	No	No	NA	No
1,2,3-Trichloropropane	0	0	73	0	73	Yes	Yes	No	NA	No
1,2,4-Trichlorobenzene	0	0	60	0	60	Yes	Yes	No	NA	No
1,2,4-Trimethylbenzene	0	0	0	0	0	Yes	No	No	NA	No
1,2-Dibromo-3-chloropropane	0	0	0	0	0	Yes	No	No	NA	No
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes	Yes	No	No
1,2-Dichlorobenzene	0	0	53	0	53	Yes	Yes	No	NA	No
1,2-Dichloroethane	0	0	0	0	0	Yes	No	No	NA	No
1,2-Dichloropropane	0	0	7	0	7	Yes	No	No	NA NA	No
1,3,5-Trichlorobenzene	0	0	0	0	0	No	No	No	NA NA	No
1,3,5-Trimethylbenzene	0	0	0	0	0	Yes	No	No	NA NA	No
1,3-Dichlorobenzene	0	0	0	0	0	No	No	No	NA NA	No
1,3-Dichloropropane	0	0	0	0	0	No	No	No	NA NA	No
1,4-Dichlorobenzene	0	0	0	0	0	Yes	No	No	NA NA	No
1-Methylnaphthalene	0	10	0	0	0	Yes	No	No	NA NA	No
2,2-Dichloropropane	0	0	0	0	0	No	No	No	NA NA	No
2-Butanone	0	23	0	0	0	Yes	No	No	NA NA	No
2-Chlorotoluene	0	0	0	0	0	Yes	No	No	NA NA	No
2-Hexanone	0	0	0	0	0	Yes	No	No	NA NA	No
2-Methylnaphthalene	0	10	0	0	0	Yes	No	No	NA NA	No
4-Chlorotoluene	0	0	0	0	0	No	No	No	NA NA	No
	0	0	0	0	0	No	No	No	NA NA	No
4-Isopropyltoluene 4-Methyl-2-pentanone	0	0	0	0	0	Yes	No	No	NA NA	No
Acenaphthene	0	0	0	0	0	Yes	No	No	NA NA	No
Acenaphthylene	0	0	0	0	0	Yes	No	No	NA NA	No
Acetone	0	0	0	0	0	Yes	No	No	NA NA	No
Anthracene	0	10	0	0	0	Yes	No	No	NA NA	
Antimony	0	0	0	0	0	Yes	No	No	NA NA	No No
	28	95	0	47	45	Yes	No	No	NA NA	Yes
Arsenic						Yes	Yes	No	NA NA	No
Benzene Penze(a) anthracene	0	0	31	0	31		•			
Benzo(a) anthracene	0	20 10	0	0	0	Yes Yes	No No	No No	NA NA	No No
Benzo(a)pyrene Benzo(b)fluoranthene	0	40	0	0	0	No Yes	No	No	NA NA	No No
Benzo(b):iluoranthene Benzo(b,k):fluoranthene										
	0	50	0	0	0	No	No	No	NA NA	No
Benzo(ghi)perylene	0	10	0	0	0	Yes	No	No	NA NA	No
Benzo(k)fluoranthene	0	40	0	0	0	No	No No	No	NA	No N-
Beryllium Bromahamana	0	0	0	0	0	Yes	No No	No	NA	No N-
Bromobenzene Bromodichloromethane	0	0	0 60	0	0 60	Yes Yes	No Yes	No Yes	NA No	No No

			alculated Value	c		COPC Selection					
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)?(b)	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	
Bromoform	0	0	7	0	7	Yes	No	No	NA	No	
Bromomethane	0	0	20	0	20	Yes	Yes	No	NA	No	
C10-C12 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C10-C12 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C12-C16 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C12-C16 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C16-C21 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C16-C21 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C21-C34 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C21-C34 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C8-C10 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
C8-C10 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No	NA	No	
Cadmium	2	27	0	50	13	Yes	No	No	NA	Yes	
Carbon disulfide	0	0	0	0	0	Yes	No	No	NA	No	
Carbon tetrachloride	0	0	87	0	87	Yes	Yes	Yes	No	No	
Chlorobenzene	0	0	0	0	0	Yes	No	No	NA NA	No	
Chlorobromomethane	0	0	0	0	0	No	No	No	NA NA	No	
Chloroethane	0	0	0	0	0	No	No	No	NA NA	No	
Chloroform	0	0	7	0	7	Yes	No	No	NA NA	No	
Chloromethane	0	0	0	0	0	No	No	No	NA NA	No	
Chromium, Hexavalent	8	51	0	36	19	Yes	No	No	NA NA	Yes	
Chromium, Total	6	100	0	16	16	Yes	Yes	No	NA NA	Yes	
Chromium, Trivalent	6	100	0	16	16	Yes	Yes	No	NA NA	Yes	
Chrysene	0	60	0	0	0	Yes	No	No	NA NA	No	
cis-1,2-Dichloroethene	0	3	3	0	3	Yes	No	No	NA NA	No	
cis-1,2-Dichloropropene	0	0	87	0	87	Yes	Yes	Yes	No	No	
	4	100	0	27	27	Yes	Yes	No No	NA	Yes	
COPPER CPAH TEQ	<u> </u>		100	100	100	Yes	Yes	Yes			
	6	60	1		0	Yes	No No	No Yes	Yes NA	Yes No	
Dibenzo(a,h)anthracene Dibromochloromethane	0	10	60	0	60	Yes	Yes	Yes	No	No	
Dibromomethane		0			0	Yes	No No	No Yes	NA NA		
	0		0	0	0	Yes	No	No	NA NA	No	
Dichlorodifluoromethane (Freon 12)	1	0		7						No	
Diesel Range Hydrocarbons	1	67	0	,	5	Yes	No No	No No	NA	Yes	
Ethylbenzene	0	0	0	0	0	Yes	No No	No No	NA	No No	
Fluoranthene	0	70	0	0	0	Yes	No	No	NA	No	
Fluorene	0	0	0	0	0	Yes	No	No	NA	No	
Gasoline Range Hydrocarbons	0	20	0	0	0	Yes	No	No	NA	No	
Hexachlorobutadiene	0	0	60	0	60	Yes	Yes	Yes	No	No	
Indeno(1,2,3-cd)pyrene	0	10	0	0	0	Yes	No	No	NA	No	
Isopropylbenzene	0	0	0	0	0	Yes	No	No	NA	No	
Lead	7	98	0	11	11	Yes	No	No	NA	Yes	
m,p-Xylene	0	0	0	0	0	Yes	No	No	NA	No	
Mercury	4	29	100	100	100	Yes	Yes	No	NA	Yes	
Methyl tert-butyl ether	0	0	0	0	0	Yes	No	No	NA	No	
Methylene chloride	0	7	0	0	0	Yes	No	No	NA	No	
Naphthalene	0	5	35	0	33	Yes	Yes	No	NA	No	

Table G2-1 Vadose Soil COPC Selection Precision Engineering, Inc. Seattle, Washington

Analyte Name	Calculated Values					COPC Selection						
	No. Detect Exceedances	Detection	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)?(b)	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?		
n-Butylbenzene	0	0	0	0	0	Yes	No	No	NA	No		
Nickel	0	100	0	0	0	Yes	Yes	No	NA	No		
n-Propylbenzene	0	0	0	0	0	Yes	No	No	NA	No		
Oil Range Hydrocarbons	2	67	0	14	10	Yes	No	No	NA	Yes		
o-Xylene	0	0	0	0	0	Yes	No	No	NA	No		
Phenanthrene	0	50	0	0	0	Yes	No	No	NA	No		
Pyrene	0	60	0	0	0	Yes	No	No	NA	No		
sec-Butylbenzene	0	0	0	0	0	Yes	No	No	NA	No		
Selenium	0	0	0	0	0	Yes	No	No	NA	No		
Silver	0	0	100	0	100	Yes	Yes	No	NA	No		
Styrene	0	0	0	0	0	Yes	No	No	NA	No		
tert-Butylbenzene	0	0	0	0	0	Yes	No	No	NA	No		
Tetrachloroethene	0	0	0	0	0	Yes	No	No	NA	No		
Thallium	0	0	100	0	100	Yes	Yes	Yes	No	No		
Toluene	0	0	0	0	0	Yes	No	No	NA	No		
Total benzofluoranthenes	0	40	0	0	0	Yes	No	No	NA	No		
Total Diesel + Oil	2	67	0	14	10	Yes	No	No	NA	Yes		
Total Extractable Hydrocarbons	0	0	0	0	0	No	No	No	NA	No		
Total HPAHs	0	70	0	0	0	Yes	No	No	NA	No		
Total LPAHs	0	50	0	0	0	Yes	No	No	NA	No		
Total naphthalenes	1	10	0	100	10	Yes	No	No	NA	Yes		
trans-1,2-Dichloroethene	0	0	0	0	0	Yes	No	No	NA	No		
trans-1,3-Dichloropropene	0	0	60	0	60	Yes	Yes	Yes	No	No		
Trichloroethene	3	14	25	60	30	Yes	Yes	No	NA	Yes		
Trichlorofluoromethane (Freon 11)	0	0	0	0	0	Yes	No	No	NA	No		
Vinyl chloride	0	0	95	0	95	Yes	Yes	Yes	No	No		
Xylenes, total	0	0	0	0	0	Yes	No	No	NA	No		
Zinc	3	100	0	21	21	Yes	Yes	No	NA	Yes		
Gasoline Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No	NA	No		
Diesel Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No	NA	No		
Oil Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No	NA	No		

1803.01.04, 3/18/2021, 2_Td_G-1 to G-6 COPC Selection_REV6

		COPC Selection (Continued)										
Analyte Name		10. Does dat				T .						
	1. Maximum concentration = 2xPCUL?</th <th>2. Not more than 10% of results > PCUL?</th> <th>Need to calculate a 95UCL?^(c)</th> <th>3. 95 UCL <= PCUL^(d)</th> <th>Does data set comply with 3- part rule?</th> <th>11. Is FOD low (Frequency of detection <= 5%)?</th> <th>3. Not a COPC (Preliminary, see note)</th> <th>8. Data Gap</th> <th>13. Not a COPC</th> <th>12. COPC (Preliminary, see notes)</th>	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95 UCL <= PCUL ^(d)	Does data set comply with 3- part rule?	11. Is FOD low (Frequency of detection <= 5%)?	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)		
1,1,1,2-Tetrachloroethane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1.1.1-Trichloroethane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,1,2,2-Tetrachloroethane	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap		
1,1,2-Trichloroethane	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap		
1,1-Dichloroethane	Yes	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,1-Dichloroethene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
1,1-Dichloropropene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
1,2,3-Trichlorobenzene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
1,2,3-Trichloropropane	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2,4-Trichlorobenzene	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2,4-Trimethylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2-Dibromo-3-chloropropane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2-Dibromoethane	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap		
1,2-Dichlorobenzene	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2-Dichloroethane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,2-Dichloropropane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,3,5-Trichlorobenzene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
1,3,5-Trimethylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1,3-Dichlorobenzene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
1,3-Dichloropropane	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
1,4-Dichlorobenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
1-Methylnaphthalene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
2,2-Dichloropropane	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
2-Butanone	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
2-Chlorotoluene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
2-Hexanone	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
2-Methylnaphthalene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
4-Chlorotoluene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
4-Isopropyltoluene	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
4-Methyl-2-pentanone	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Acenaphthene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Acenaphthylene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Acetone	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Anthracene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
Antimony	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Arsenic	No	No	No	NA	No	No	Retain	Retain	Retain	COPC		
Benzene	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC		
Benzo(a)anthracene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
Benzo(a)pyrene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
Benzo(b)fluoranthene	Yes	Yes	No	NA	Yes	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
Benzo(b,k)fluoranthene	Yes	Yes	No	NA	Yes	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
Benzo(ghi)perylene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC		
Benzo(k)fluoranthene	Yes	Yes	No	NA	Yes	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC		
Beryllium	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Bromobenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC		
Bromodichloromethane	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap		

					COPC Selection	on (Continued)				
		10. Does dat	a set comply with	n 3-Part Rule?						
Analyte Name	1. Maximum concentration = 2xPCUL?</th <th>2. Not more than 10% of results > PCUL?</th> <th>Need to calculate a 95UCL?^(c)</th> <th>3. 95 UCL <= PCUL^(d)</th> <th>Does data set comply with 3-part rule?</th> <th>11. Is FOD low (Frequency of detection <= 5%)?</th> <th>3. Not a COPC (Preliminary, see note)</th> <th>8. Data Gap</th> <th>13. Not a COPC</th> <th>12. COPC (Preliminary, see notes)</th>	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95 UCL <= PCUL ^(d)	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)
Bromoform	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Bromomethane	Yes	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC
C10-C12 Aliphatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C10-C12 Aromatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C12-C16 Aliphatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C12-C16 Aromatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C16-C21 Aliphatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C16-C21 Aromatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C21-C34 Aliphatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C21-C34 Aromatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C8-C10 Aliphatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
C8-C10 Aromatic Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Cadmium	Yes	No	No	NA	No	No	Retain	Retain	Retain	COPC
Carbon disulfide	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Carbon tetrachloride	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Chlorobenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Chlorobromomethane	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Chloroethane	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Chloroform	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Chloromethane	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Chromium, Hexavalent	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Chromium, Total	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Chromium, Trivalent	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Chrysene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
cis-1,2-Dichloroethene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
cis-1,3-Dichloropropene	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Copper	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
cPAH TEQ	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Dibenzo(a,h)anthracene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Dibromochloromethane	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Dibromomethane	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Dichlorodifluoromethane (Freon 12)	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Diesel Range Hydrocarbons	No	Yes	No	NA	No	No	Retain	Retain	Retain	COPC
Ethylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Fluoranthene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Fluorene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Gasoline Range Hydrocarbons	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Hexachlorobutadiene	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Indeno(1,2,3-cd)pyrene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Isopropylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Lead	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
m,p-Xylene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Mercury	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Methyl tert-butyl ether	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Methylene chloride	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Naphthalene	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC

					COPC Selection	on (Continued)				
		10. Does data	a set comply with	n 3-Part Rule?						
Analyte Name	1. Maximum concentration = 2xPCUL?</th <th>2. Not more than 10% of results > PCUL?</th> <th>Need to calculate a 95UCL?^(c)</th> <th>3. 95 UCL <= PCUL^(d)</th> <th>Does data set comply with 3- part rule?</th> <th>11. Is FOD low (Frequency of detection <= 5%)?</th> <th>3. Not a COPC (Preliminary, see note)</th> <th>8. Data Gap</th> <th>13. Not a COPC</th> <th>12. COPC (Preliminary, see notes)</th>	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95 UCL <= PCUL ^(d)	Does data set comply with 3- part rule?	11. Is FOD low (Frequency of detection <= 5%)?	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)
n-Butylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Nickel	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
n-Propylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Oil Range Hydrocarbons	No	Yes	No	NA	No	No	Retain	Retain	Retain	COPC
o-Xylene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Phenanthrene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Pyrene	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
sec-Butylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Selenium	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Silver	No	No	No	NA	No	Yes	Retain	Retain	Not a COPC	Not a COPC
Styrene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
tert-Butylbenzene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Tetrachloroethene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Thallium	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Toluene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Total benzofluoranthenes	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Total Diesel + Oil	No	Yes	No	NA	No	No	Retain	Retain	Retain	COPC
Total Extractable Hydrocarbons	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Total HPAHs	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Total LPAHs	Yes	Yes	No	NA	Yes	No	Retain	Retain	Not a COPC	Not a COPC
Total naphthalenes	Yes	Yes	Yes	No	No	No	Retain	Retain	Retain	COPC
trans-1,2-Dichloroethene	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
trans-1,3-Dichloropropene	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Trichloroethene	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Trichlorofluoromethane (Freon 11)	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Vinyl chloride	No	No	No	NA	No	Yes	Retain	Data Gap	Data Gap	Data Gap
Xylenes, total	Yes	Yes	No	NA	Yes	Yes	Retain	Retain	Not a COPC	Not a COPC
Zinc	No	No	No	NA	No	No	Retain	Retain	Retain	COPC
Gasoline Range Hydrocarbons (HCID)	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Diesel Range Hydrocarbons (HCID)	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC
Oil Range Hydrocarbons (HCID)	Yes	Yes	No	NA	Yes	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC

		COPC Selection	on (Continued)	
	14. Are	there potential ho	t spots?	
Analyte Name	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
1,1,1,2-Tetrachloroethane	No	NA	NA	Not a COPC
1,1,1-Trichloroethane	No	NA	NA	Not a COPC
1,1,2,2-Tetrachloroethane	No	NA	NA	Data Gap
1,1,2-Trichloroethane	No	NA	NA	Data Gap
1,1-Dichloroethane	No	NA	NA	Not a COPC
1,1-Dichloroethene	No	NA	NA	Not a COPC
1,1-Dichloropropene	No	NA	NA	Not a COPC
1,2,3-Trichlorobenzene	No	NA	NA	Not a COPC
1,2,3-Trichloropropane	No	NA	NA	Not a COPC
1,2,4-Trichlorobenzene	No	NA	NA	Not a COPC
1,2,4-Trimethylbenzene	No	NA	NA	Not a COPC
1,2-Dibromo-3-chloropropane	No	NA	NA	Not a COPC
1,2-Dibromoethane	No	NA	NA	Data Gap
1,2-Dichlorobenzene	No	NA	NA	Not a COPC
1,2-Dichloroethane	No	NA	NA	Not a COPC
1,2-Dichloropropane	No	NA	NA	Not a COPC
1,3,5-Trichlorobenzene	No	NA	NA	Not a COPC
1,3,5-Trimethylbenzene	No	NA	NA	Not a COPC
1,3-Dichlorobenzene	No	NA	NA	Not a COPC
1,3-Dichloropropane	No	NA	NA	Not a COPC
1,4-Dichlorobenzene	No	NA	NA	Not a COPC
1-Methylnaphthalene	No	NA	NA	Not a COPC
2,2-Dichloropropane	No	NA	NA	Not a COPC
2-Butanone	No	NA	NA	Not a COPC
2-Chlorotoluene	No	NA	NA	Not a COPC
2-Hexanone	No	NA	NA	Not a COPC
2-Methylnaphthalene	No	NA	NA	Not a COPC
4-Chlorotoluene	No	NA	NA	Not a COPC
4-Isopropyltoluene	No	NA	NA	Not a COPC
4-Methyl-2-pentanone	No	NA	NA	Not a COPC
Acenaphthene	No	NA	NA	Not a COPC
Acenaphthylene	No	NA	NA	Not a COPC
Acetone	No	NA	NA	Not a COPC
Anthracene	No	NA	NA	Not a COPC
Antimony	No	NA	NA	Not a COPC
Arsenic	No	NA	NA	COPC
Benzene	No	NA	NA	Not a COPC
Benzo(a)anthracene	No	NA	NA	Not a COPC
Benzo(a)pyrene	No	NA	NA	Not a COPC
Benzo(b)fluoranthene	No	NA	NA	Not a COPC
Benzo(b,k)fluoranthene	No	NA	NA	Not a COPC
Benzo(ghi)perylene	No	NA	NA	Not a COPC
Benzo(k)fluoranthene	No	NA	NA	Not a COPC
Beryllium	No	NA	NA	Not a COPC
Bromobenzene	No	NA	NA	Not a COPC
Bromodichloromethane	No	NA	NA	Data Gap

	<u> </u>	COPC Selection	on (Continued)	
	14. Are	there potential ho	t spots?	
Analyte Name	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
Bromoform	No	NA	NA	Not a COPC
Bromomethane	No	NA	NA	Not a COPC
C10-C12 Aliphatic Hydrocarbons	No	NA	NA	Not a COPC
C10-C12 Aromatic Hydrocarbons	No	NA	NA	Not a COPC
C12-C16 Aliphatic Hydrocarbons	No	NA	NA	Not a COPC
C12-C16 Aromatic Hydrocarbons	No	NA	NA	Not a COPC
C16-C21 Aliphatic Hydrocarbons	No	NA	NA	Not a COPC
C16-C21 Aromatic Hydrocarbons	No	NA	NA	Not a COPC
C21-C34 Aliphatic Hydrocarbons	No	NA	NA	Not a COPC
C21-C34 Aromatic Hydrocarbons	No	NA	NA	Not a COPC
C8-C10 Aliphatic Hydrocarbons	No	NA	NA	Not a COPC
C8-C10 Aromatic Hydrocarbons	No	NA	NA	Not a COPC
Cadmium	No	NA	NA	COPC
Carbon disulfide	No	NA	NA	Not a COPC
Carbon tetrachloride	No	NA	NA	Data Gap
Chlorobenzene	No	NA	NA	Not a COPC
Chlorobromomethane	No	NA	NA	Not a COPC
Chloroethane	No	NA	NA	Not a COPC
Chloroform	No	NA	NA	Not a COPC
Chloromethane	No	NA	NA	Not a COPC
Chromium, Hexavalent	No	NA	NA	COPC
Chromium, Total	No	NA	NA	COPC
Chromium, Trivalent	No	NA	NA	COPC
Chrysene	No	NA	NA	Not a COPC
cis-1,2-Dichloroethene	No	NA	NA	Not a COPC
cis-1,3-Dichloropropene	No	NA	NA	Data Gap
Copper	No	NA	NA	COPC
cPAH TEQ	No	NA	NA	COPC
Dibenzo(a,h)anthracene	No	NA	NA	Not a COPC
Dibromochloromethane	No	NA	NA	Data Gap
Dibromomethane	No	NA	NA	Not a COPC
Dichlorodifluoromethane (Freon 12)	No	NA	NA	Not a COPC
Diesel Range Hydrocarbons	No	NA	NA	COPC
Ethylbenzene	No	NA	NA	Not a COPC
Fluoranthene	No	NA	NA	Not a COPC
Fluorene	No	NA	NA	Not a COPC
Gasoline Range Hydrocarbons	No	NA	NA	Not a COPC
Hexachlorobutadiene	No	NA	NA	Data Gap
Indeno(1,2,3-cd)pyrene	No	NA	NA	Not a COPC
Isopropylbenzene	No	NA	NA	Not a COPC
Lead	No	NA	NA	COPC
m,p-Xylene	No	NA	NA	Not a COPC
Mercury	No	NA	NA	COPC
Methyl tert-butyl ether	No	NA	NA	Not a COPC
Methylene chloride	No	NA	NA	Not a COPC
Naphthalene	No	NA	NA	Not a COPC

		COPC Selection	on (Continued)	
	14. Are	there potential ho	t spots?	
Analyte Name	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
n-Butylbenzene	No	NA	NA	Not a COPC
Nickel	No	NA	NA	Not a COPC
n-Propylbenzene	No	NA	NA	Not a COPC
Oil Range Hydrocarbons	No	NA	NA	COPC
o-Xylene	No	NA	NA	Not a COPC
Phenanthrene	No	NA	NA	Not a COPC
Pyrene	No	NA	NA	Not a COPC
sec-Butylbenzene	No	NA	NA	Not a COPC
Selenium	No	NA	NA	Not a COPC
Silver	No	NA	NA	Not a COPC
Styrene	No	NA	NA	Not a COPC
tert-Butylbenzene	No	NA	NA	Not a COPC
Tetrachloroethene	No	NA	NA	Not a COPC
Thallium	No	NA	NA	Data Gap
Toluene	No	NA	NA	Not a COPC
Total benzofluoranthenes	No	NA	NA	Not a COPC
Total Diesel + Oil	No	NA	NA	COPC
Total Extractable Hydrocarbons	No	NA	NA	Not a COPC
Total HPAHs	No	NA	NA	Not a COPC
Total LPAHs	No	NA	NA	Not a COPC
Total naphthalenes	No	NA	NA	COPC
trans-1,2-Dichloroethene	No	NA	NA	Not a COPC
trans-1,3-Dichloropropene	No	NA	NA	Data Gap
Trichloroethene	No	NA	NA	COPC
Trichlorofluoromethane (Freon 11)	No	NA	NA	Not a COPC
Vinyl chloride	No	NA	NA	Data Gap
Xylenes, total	No	NA	NA	Not a COPC
Zinc	No	NA	NA	COPC
Gasoline Range Hydrocarbons (HCID)	No	NA	NA	Not a COPC
Diesel Range Hydrocarbons (HCID)	No	NA	NA	Not a COPC
Oil Range Hydrocarbons (HCID)	No	NA	NA	Not a COPC

NOTES:

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

HCID = hydrocarbon identification.

HPAHs = high molecular weight PAHs.

LPAHs = low molecular weight PAHs.

NA = not applicable.

MTCA = Model Toxics Control Act.

No. = number.

PAHs = polycyclic aromatic hydrocarbons.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

(a) If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

 $^{(b)}$ If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

(d) Due to small sample size, no 95 UCL was calculated for total naphthalenes. The maximum detected concentration was used instead, per MTCA guidance.

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
1,1,1,2-Tetrachloroethane	0	0	0	0	0	Yes	No	No
1,1,1-Trichloroethane	0	0	0	0	0	Yes	No	No
1,1,2,2-Tetrachloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1,2-Trichloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1-Dichloroethane	0	0	24	0	24	Yes	Yes	Yes
1,1-Dichloroethene	0	0	24	0	24	Yes	Yes	No
1,1-Dichloropropene	0	0	0	0	0	No	No	No
1,2,3-Trichlorobenzene	0	0	0	0	0	No	No	No
1,2,3-Trichloropropane	0	0	24	0	24	Yes	Yes	No
1,2,4-Trichlorobenzene	0	0	98	0	98	Yes	Yes	Yes
1,2,4-Trimethylbenzene	0	2	0	0	0	Yes	No	No
1,2-Dibromo-3-chloropropane	0	0	0	0	0	Yes	No	No
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes	Yes
1,2-Dichlorobenzene	0	0	24	0	24	Yes	Yes	Yes
1,2-Dichloroethane	0	0	29	0	29	Yes	Yes	Yes
1,2-Dichloropropane	0	0	73	0	73	Yes	Yes	Yes
1,3,5-Trichlorobenzene	0	0	0	0	0	No No	No	No
1,3,5-Trimethylbenzene	0	2	0	0	0	Yes	No	No
·			0					
1,3-Dichlorobenzene	0	0	<u> </u>	0	0	No No	No No	No
1,3-Dichloropropane	0	0	0	0	0	No	No	No
1,4-Dichlorobenzene	0	0	24	0	24	Yes	Yes	Yes
1-Methylnaphthalene	0	0	0	0	0	Yes	No No	No
2,2-Dichloropropane	0	0	0	0	0	No	No	No
2-Butanone	0	15	0	0	0	Yes	No	No
2-Chloroethylvinyl ether	0	0	0	0	0	No	No	No
2-Chlorotoluene	0	0	0	0	0	Yes	No	No
2-Hexanone	0	0	0	0	0	Yes	No	No
2-Methylnaphthalene	0	0	0	0	0	Yes	No	No
4-Chlorotoluene	0	0	0	0	0	No	No	No
4-Isopropyltoluene	0	2	0	0	0	No	No	No
4-Methyl-2-pentanone	0	0	0	0	0	Yes	No	No
Acenaphthene	0	0	0	0	0	Yes	No	No
Acenaphthylene	0	0	0	0	0	Yes	No	No
Acetone	0	77	0	0	0	Yes	No	No
Acrolein	0	0	0	0	0	Yes	No	No
Acrylonitrile	0	0	0	0	0	Yes	No	No
Anthracene	0	0	0	0	0	Yes	No	No
Arsenic	2	51	6	11	9	Yes	No	No
Benzene	2	5	100	100	100	Yes	Yes	Yes
Benzo(a)anthracene	0	50	0	0	0	Yes	No	No
Benzo(a)pyrene	0	25	0	0	0	Yes	No	No

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
Benzo(b)fluoranthene	0	25	0	0	0	No	No	No
Benzo(b,k)fluoranthene	0	50	0	0	0	No	No	No
Benzo(ghi)perylene	0	0	0	0	0	Yes	No	No
Benzo(k)fluoranthene	0	25	0	0	0	No	No	No
Bromobenzene	0	0	24	0	24	Yes	Yes	No
Bromodichloromethane	0	0	85	0	85	Yes	Yes	Yes
Bromoethane	0	0	0	0	0	No	No	No
Bromoform	0	0	24	0	24	Yes	Yes	Yes
Bromomethane	0	0	24	0	24	Yes	Yes	Yes
C10-C12 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C10-C12 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No
C12-C16 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C12-C16 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No
C16-C21 Aliphatic Hydrocarbons	0	100	0	0	0	No	Yes	No
C16-C21 Aromatic Hydrocarbons	0	100	0	0	0	No	Yes	No
C21-C34 Aliphatic Hydrocarbons	0	100	0	0	0	No	Yes	No
C21-C34 Aromatic Hydrocarbons	0	100	0	0	0	No	Yes	No
C8-C10 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C8-C10 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No
Cadmium	0	0	0	0	0	Yes	No	No
Carbon disulfide	0	70	0	0	0	Yes	No	No
Carbon tetrachloride	0	0	100	0	100	Yes	Yes	Yes
Chlorobenzene	0	0	0	0	0	Yes	No	No
Chlorobromomethane	0	0	0	0	0	No	No	No
Chloroethane	0	0	0	0	0	No	No	No
Chloroform	0	0	24	0	24	Yes	Yes	Yes
Chloromethane	0	7	0	0	0	No	No	No
Chromium, Hexavalent	7	15	30	78	37	Yes	Yes	No
Chromium, Total	4	100	0	6	6	Yes	Yes	No
Chromium, Trivalent	23	100	0	37	37	Yes	Yes	No
Chrysene	0	50	0	0	0	Yes	No	No
cis-1,2-Dichloroethene	3	5	18	100	22	Yes	Yes	Yes
cis-1,3-Dichloropropene	0	0	100	0	100	Yes	Yes	Yes
cPAH TEQ	2	50	100	100	100	Yes	Yes	Yes
Dibenzo(a,h)anthracene	0	0	100	0	100	Yes	Yes	No
Dibromochloromethane	0	0	95	0	95	Yes	Yes	Yes
Dibromomethane	0	0	0	0	0	Yes	No	No
Dichlorodifluoromethane (Freon 12)	0	0	0	0	0	Yes	No	No
Diesel Range Hydrocarbons	1	33	0	7	2	Yes	No	No
Ethylbenzene	1	2	25	100	27	Yes	Yes	No
Fluoranthene	0	50	0	0	0	Yes	No	No

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
Fluorene	0	0	0	0	0	Yes	No	No
Freon 113	0	0	0	0	0	Yes	No	No
Gasoline Range Hydrocarbons	0	0	0	0	0	Yes	No	No
Hexachlorobutadiene	0	0	100	0	100	Yes	Yes	Yes
Indeno(1,2,3-cd)pyrene	0	0	0	0	0	Yes	No	No
Isopropylbenzene	0	2	0	0	0	Yes	No	No
Lead	0	58	0	0	0	Yes	No	No
m,p-Xylene	0	2	0	0	0	Yes	No	No
Methyl iodide	0	0	0	0	0	No	No	No
Methylene chloride	23	56	94	100	98	Yes	Yes	Yes
Naphthalene	1	2	98	100	98	Yes	Yes	Yes
n-Butylbenzene	0	5	0	0	0	Yes	No	No
n-Propylbenzene	0	2	0	0	0	Yes	No	No
Oil Range Hydrocarbons	1	45	0	5	2	Yes	No	No
o-Xylene	0	0	0	0	0	Yes	No	No
Phenanthrene	0	50	0	0	0	Yes	No	No
Pyrene	0	50	0	0	0	Yes	No	No
sec-Butylbenzene	0	5	0	0	0	Yes	No	No
Selenium	1	3	100	100	100	Yes	Yes	Yes
Styrene	0	0	0	0	0	Yes	No	No
tert-Butylbenzene	0	0	0	0	0	Yes	No	No
Tetrachloroethene	0	0	29	0	29	Yes	Yes	Yes
Toluene	0	5	0	0	0	Yes	No	No
Total benzofluoranthenes	0	25	0	0	0	Yes	No	No
Total Diesel + Oil	2	48	0	10	5	Yes	No	No
Total Extractable Hydrocarbons	0	100	0	0	0	No	Yes	No
Total HPAHs	0	50	0	0	0	Yes	No	No
Total LPAHs	0	50	0	0	0	Yes	No	No
Total naphthalenes	0	0	100	0	100	Yes	Yes	Yes
trans-1,2-Dichloroethene	0	0	17	0	17	Yes	Yes	No
trans-1,3-Dichloropropene	0	0	100	0	100	Yes	Yes	Yes
trans-1,4-Dichloro-2-butene	0	0	0	0	0	No	No	No
Trichloroethene	2	3	100	100	100	Yes	Yes	Yes
Trichlorofluoromethane (Freon 11)	0	0	0	0	0	Yes	No	No
Vinyl Acetate	0	0	0	0	0	Yes	No	No
Vinyl chloride	0	0	100	0	100	Yes	Yes	Yes
Xylenes, total	0	2	0	0	0	Yes	No	No
Gasoline Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No
Diesel Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No
Oil Range Hydrocarbons (HCID)	0	0	0	0	0	No	No	No

	COPC Selection (Continued)										
				10. Does	data set comply with 3-P	art Rule?					
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detectio <= 5%)?			
1,1,1,2-Tetrachloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes			
1,1,1-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes			
1,1,2,2-Tetrachloroethane	Yes	No	No	No	No	NA	No	Yes			
1.1.2-Trichloroethane	No	No	No	No	No	NA	No	Yes			
1,1-Dichloroethane	No	No	No	No	No	NA	No	Yes			
1,1-Dichloroethene	NA	No	No	No	No	NA	No	Yes			
1,1-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes	Yes			
1,2,3-Trichlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes			
1,2,3-Trichloropropane	NA NA	No	Yes	No	No	NA	No	Yes			
1,2,4-Trichlorobenzene	No	No	No	No	No	NA	No	Yes			
1,2,4-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,2-Dibromo-3-chloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,2-Dibromoethane	Yes	No	No	No	No	NA	No	Yes			
1,2-Dichlorobenzene	No	No	No	No	No	NA	No	Yes			
1,2-Dichloroethane	No	No	No	No	No	NA	No	Yes			
1,2-Dichloropropane	No	No	No	No	No	NA	No	Yes			
1,3,5-Trichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,3,5-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,3-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,3-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
1,4-Dichlorobenzene	No	No	No	No	No	NA	No	Yes			
1-Methylnaphthalene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
2,2-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
2-Butanone	NA NA	No	Yes	Yes	No	NA	Yes	No			
2-Chloroethylvinyl ether	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
2-Chlorotoluene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
2-Hexanone	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
2-Methylnaphthalene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
4-Chlorotoluene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
4-Isopropyltoluene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
4-Methyl-2-pentanone	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
Acenaphthene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
Acenaphthylene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
Acetone	NA NA	No	Yes	Yes	No	NA NA	Yes	No			
Acrolein	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes			
Acrylonitrile	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes			
Anthracene	NA NA	No	Yes	Yes	No	NA	Yes	Yes			
Arsenic	NA	Yes	Yes	Yes	Yes	Yes	Yes	No			
Benzene	No	Yes	No	No	No	NA	No	Yes			
Benzo(a)anthracene	NA NA	No No	Yes Yes	Yes Yes	No No	NA NA	Yes Yes	No No			

				COPC Selection	(Continued)			
				10. Does	data set comply with 3-P	art Rule?		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detectio <= 5%)?
Benzo(b)fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No
Benzo(b,k)fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No
Benzo(ghi)perylene	NA	No	Yes	Yes	No	NA	Yes	Yes
Benzo(k)fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No
Bromobenzene	NA	No	Yes	No	No	NA	No	Yes
Bromodichloromethane	No	No	No	No	No	NA	No	Yes
Bromoethane	NA	No	Yes	Yes	No	NA	Yes	Yes
Bromoform	No	No	No	No	No	NA	No	Yes
Bromomethane	No	No	No	No	No	NA	No	Yes
C10-C12 Aliphatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA	Yes	Yes
C10-C12 Aromatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C12-C16 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C12-C16 Aromatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA	Yes	Yes
C16-C21 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No
C16-C21 Aromatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA	Yes	No
C21-C34 Aliphatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA	Yes	No
C21-C34 Aromatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA	Yes	No
C8-C10 Aliphatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
C8-C10 Aromatic Hydrocarbons	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Cadmium	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Carbon disulfide	NA NA	No	Yes	Yes	No	NA NA	Yes	No
Carbon tetrachloride	No	No	No	No	No	NA NA	No	Yes
Chlorobenzene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Chlorobromomethane	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Chloroethane	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Chloroform	NO	No	No	No	No	NA NA	No	Yes
Chloromethane	NA NA	No	Yes	Yes	No	NA NA	Yes	No
Chromium, Hexavalent	NA NA	Yes	No	No No	No	NA NA	No	No
Chromium, Total	NA NA	Yes	No	Yes	No	NA NA	No	No
Chromium, Trivalent	NA NA	Yes	No	No	No	NA NA	No	No
·				1				
Chrysene cis-1,2-Dichloroethene	NA No	No Yes	Yes No	Yes No	No No	NA NA	Yes No	No No
cis-1,3-Dichloropropene	No		No			NA NA		Yes
		No		No	No		No	
cPAH TEQ Dibenzo(a,h)anthracene	Yes NA	Yes No	No Yes	No No	No No	NA NA	No No	No Yes
· · /								
Dibromochloromethane	No NA	No	No	No	No	NA NA	No	Yes
Dibromomethane		No	Yes	Yes	No N -		Yes	Yes
Dichlorodifluoromethane (Freon 12) Diesel Range Hydrocarbons	NA NA	No Yes	Yes No	Yes Yes	No No	NA NA	Yes No	Yes No
Ethylbenzene	NA	Yes	No	No	No	NA	No	Yes
Fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No

				COPC Selection	(Continued)			
				10. Does	data set comply with 3-P	art Rule?		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?
Fluorene	NA	No	Yes	Yes	No	NA	Yes	Yes
Freon 113	NA	No	Yes	Yes	No	NA	Yes	Yes
Gasoline Range Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
Hexachlorobutadiene	No	No	No	No	No	NA	No	Yes
Indeno(1,2,3-cd)pyrene	NA	No	Yes	Yes	No	NA	Yes	Yes
Isopropylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Lead	NA	No	Yes	Yes	No	NA	Yes	No
m,p-Xylene	NA	No	Yes	Yes	No	NA	Yes	Yes
Methyl iodide	NA	No	Yes	Yes	No	NA	Yes	Yes
Methylene chloride	Yes	Yes	No	No	No	NA	No	No
Naphthalene	No	Yes	No	No	No	NA	No	Yes
n-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
n-Propylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Oil Range Hydrocarbons	NA	Yes	No	Yes	No	NA	No	No
o-Xylene	NA	No	Yes	Yes	No	NA	Yes	Yes
Phenanthrene	NA	No	Yes	Yes	No	NA	Yes	No
Pyrene	NA	No	Yes	Yes	No	NA	Yes	No
sec-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Selenium	No	Yes	No	No	No	NA	No	Yes
Styrene	NA	No	Yes	Yes	No	NA	Yes	Yes
tert-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Tetrachloroethene	No	No	No	No	No	NA	No	Yes
Toluene	NA	No	Yes	Yes	No	NA	Yes	Yes
Total benzofluoranthenes	NA	No	Yes	Yes	No	NA	Yes	No
Total Diesel + Oil	NA	Yes	No	Yes	No	NA	No	No
Total Extractable Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No
Total HPAHs	NA	No	Yes	Yes	No	NA	Yes	No
Total LPAHs	NA	No	Yes	Yes	No	NA	Yes	No
Total naphthalenes	Yes	No	No	No	No	NA	No	Yes
trans-1,2-Dichloroethene	NA	No	Yes	No	No	NA	No	Yes
trans-1,3-Dichloropropene	No	No	No	No	No	NA	No	Yes
trans-1,4-Dichloro-2-butene	NA	No	Yes	Yes	No	NA	Yes	Yes
Trichloroethene	No	Yes	No	No	No	NA	No	Yes
Trichlorofluoromethane (Freon 11)	NA	No	Yes	Yes	No	NA	Yes	Yes
Vinyl Acetate	NA	No	Yes	Yes	No	NA	Yes	Yes
Vinyl chloride	No	No	No	No	No	NA	No	Yes
Xylenes, total	NA	No	Yes	Yes	No	NA	Yes	Yes
Gasoline Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	Yes
Diesel Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	Yes
Oil Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	Yes

				COPC Selection	on (Continued)			
					14.	Are there potential hot sp	oots?	
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
1,1,1,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,1-Trichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,2,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,2-Trichloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
1,1-Dichloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
1,1-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC
1,1-Dichloropropene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC
1,2,3-Trichlorobenzene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC
1,2,3-Trichloropropane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
1,2,4-Trichlorobenzene	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap
1,2,4-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
1,2-Dibromo-3-chloropropane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
1,2-Dibromoethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
1,2-Dishornoemane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap
1,2-Dichloroethane	Retain	Data Gap Data Gap	Data Gap	Data Gap Data Gap	No	NA NA	NA NA	Data Gap Data Gap
1,2-Dichloropropane	Retain				No	NA NA	NA NA	Data Gap Data Gap
1,3,5-Trichlorobenzene	Not a COPC	Data Gap Not a COPC	Data Gap	Data Gap Not a COPC	No	NA NA	NA NA	Not a COPC
			Not a COPC					
1,3,5-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No No	NA	NA	Not a COPC
1,3-Dichlorobenzene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,3-Dichloropropane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No No	NA	NA	Not a COPC
1,4-Dichlorobenzene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
1-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2,2-Dichloropropane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Butanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Chloroethylvinyl ether	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Chlorotoluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Hexanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
4-Chlorotoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
4-Isopropyltoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
4-Methyl-2-pentanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acenaphthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acenaphthylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acetone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acrolein	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acrylonitrile	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Anthracene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Arsenic	Retain	Retain	Retain	Retain	Yes	No	Only one exceedance, off-Property (SB13); on- Property data sufficient and of sufficient quality.	Not a COPC
Benzene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
Benzene Benzo(a)anthracene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Benzo(a)pyrene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC

				COPC Selection	on (Continued)			
					14.	Are there potential hot sp	ots?	
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
Benzo(b)fluoranthene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzo(b,k)fluoranthene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzo(ghi)perylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzo(k)fluoranthene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromodichloromethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Bromoethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromoform	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Bromomethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
C10-C12 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C10-C12 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C12-C16 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C12-C16 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C16-C21 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C16-C21 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C21-C34 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
C21-C34 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
C8-C10 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
C8-C10 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Cadmium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Carbon disulfide	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
Carbon tetrachloride	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Chlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chlorobromomethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
Chloroethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Chloroform	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Chloromethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
Chromium, Hexavalent	Retain	Retain	Retain	COPC	No	NA NA	NA	COPC
Chromium, Total	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Chromium, Trivalent	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC
Chrysene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
cis-1,2-Dichloroethene	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	COPC
cis-1,3-Dichloropropene	Retain	Data Gap	Data Gap	Data Gap Data Gap	No	NA NA	NA NA	Data Gap
сРАН ТЕО	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC
Dibenzo(a,h)anthracene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Dibromochloromethane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap
Dibromomethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Dichlorodifluoromethane (Freon 12)	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Diesel Range Hydrocarbons	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC
Ethylbenzene	Retain	Retain	Retain	Retain	Yes	No	Only one exceedance, off-Property (SB14); on- Property data sufficient and of sufficient quality	Not a COPC
Fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC

				COPC Selection	on (Continued)			
					14	Are there potential hot sp	ots?	
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	(Feirmary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
Fluorene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Freon 113	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Gasoline Range Hydrocarbons	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Hexachlorobutadiene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Indeno(1,2,3-cd)pyrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Isopropylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Lead	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
m,p-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Methyl iodide	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Methylene chloride	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Naphthalene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
n-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
n-Propylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Oil Range Hydrocarbons	Retain	Retain	Retain	COPC	No	NA	NA	COPC
o-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Phenanthrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Pyrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
sec-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Selenium	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
Styrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
tert-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Tetrachloroethene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Toluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Total benzofluoranthenes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Total Diesel + Oil	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Total Extractable Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Total HPAHs	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Total LPAHs	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Total naphthalenes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
trans-1,2-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
trans-1,3-Dichloropropene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
trans-1,4-Dichloro-2-butene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Trichloroethene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
Trichlorofluoromethane (Freon 11)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Vinyl Acetate	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Vinyl chloride	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Xylenes, total	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Gasoline Range Hydrocarbons (HCID)	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Diesel Range Hydrocarbons (HCID)	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Oil Range Hydrocarbons (HCID)	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC

NOTES:

Gray highlighting indicates a hand-entered column.

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

HCID = hydrocarbon identification.

HPAHs = high molecular weight PAHs.

LPAHs = low molecular weight PAHs.

NA = not applicable.

No. = number.

PAHs = polycyclic aromatic hydrocarbons.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

 $^{(a)}$ If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(b) If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
1,1,1,2-Tetrachloroethane	0	0	31	0	31	Yes	Yes	Yes
1,1,1-Trichloroethane	0	0	0	0	0	Yes	No	No
1,1,2,2-Tetrachloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1,2-Trichloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1-Dichloroethane	0	0	17	0	17	Yes	Yes	No
1,1-Dichloroethane	0	0	17	0	17	Yes	Yes	No
1,1-Dichloropropene	0	0	0	0	0	No	No	No
1,2,3-Trichlorobenzene	0	0	0	0	0	No	No	No
1,2,3-Trichloropenzerie 1,2,3-Trichloropropane	0	0	100	0	100	Yes	Yes	Yes
1,2,4-Trichlorobenzene	0	0	100	0	100	Yes	Yes	Yes
1,2,4-Irichlorobenzene 1,2,4-Trimethylbenzene	0	1	0	0	0	Yes	No Yes	No
1,2,4-mmetryibenzene 1,2-Dibromo-3-chloropropane		'	100		100	Yes		
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes Yes	Yes Yes
1,2-Diblomoethane 1,2-Dichlorobenzene								
·	0	0	31	0	31	Yes	Yes	No No
1,2-Dichloroethane	0	0	31	0	31	Yes	Yes	No
1,2-Dichloropropane	0	0	31	0	31	Yes	Yes	Yes
1,3,5-Trimethylbenzene	0	1	0	0	0	Yes	No	No
1,3-Dichlorobenzene	0	0	31	0	31	Yes	Yes	Yes
1,3-Dichloropropane	0	0	0	0	0	No	No	No
1,4-Dichlorobenzene	0	0	31	0	31	Yes	Yes	No
1-Methylnaphthalene	0	28	0	0	0	Yes	No	No
2,2-Dichloropropane	0	0	0	0	0	No	No	No
2-Butanone	0	6	0	0	0	Yes	No	No
2-Chloroethylvinyl ether	0	0	0	0	0	No	No	No
2-Chloronaphthalene	0	0	0	0	0	Yes	No	No
2-Chlorotoluene	0	0	0	0	0	Yes	No	No
2-Hexanone	0	0	20	0	20	Yes	Yes	No
2-Methylnaphthalene	0	29	0	0	0	Yes	No	No
4-Chlorotoluene	0	0	0	0	0	No	No	No
4-Isopropyltoluene	0	0	0	0	0	No	No	No
4-Methyl-2-pentanone	0	0	0	0	0	Yes	No	No
Acenaphthene	0	17	0	0	0	Yes	No	No
Acenaphthylene	0	3	0	0	0	No	No	No
Acetone	0	0	0	0	0	Yes	No	No
Acrolein	0	0	100	0	100	Yes	Yes	Yes
Acrylonitrile	0	0	100	0	100	Yes	Yes	Yes
Anthracene	0	5	0	0	0	Yes	No	No
Antimony	0	0	0	0	0	Yes	No	No
Aroclor 1016	0	0	0	0	0	No	No	No
Aroclor 1221	0	0	0	0	0	No	No	No
Aroclor 1232	0	0	0	0	0	No	No	No
Aroclor 1242	0	0	0	0	0	No	No	No
Aroclor 1248	0	0	0	0	0	No	No	No
Aroclor 1254	0	0	0	0	0	No	No	No
Aroclor 1260	0	0	0	0	0	No	No	No
Arsenic	45	70	97	64	74	Yes	Yes	Yes

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
Benzene	0	0	31	0	31	Yes	Yes	Yes
Benzo(a)anthracene	1	2	100	100	100	Yes	Yes	Yes
Benzo(a)pyrene	0	0	100	0	100	Yes	Yes	Yes
Benzo(b)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Benzo(b,k)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Benzo(ghi)perylene	0	0	0	0	0	No	No	No
Benzo(k)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Beryllium	0	0	0	0	0	Yes	No	No
Bromobenzene	0	0	0	0	0	Yes	No	No
Bromodichloromethane	0	0	31	0	31	Yes	Yes	Yes
Bromoethane	0	0	0	0	0	No	No	No
Bromoform	0	0	1	0	1 1	Yes	No	No
Bromomethane	0	0	1	0	1 1	Yes	No	No
C10-C12 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C10-C12 Aightatic Hydrocarbons	0	0	0	0	0	No	No	No
C12-C16 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C12-C16 Aiphatic Hydrocarbons	0	0	0	0	0	No	No	No
C16-C21 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
C16-C21 Aniphatic Hydrocarbons C16-C21 Aromatic Hydrocarbons	0	0	0	0	0	No	No	No
				-				
C21-C34 Aliphatic Hydrocarbons	0	0	0	0	0	No	No No	No
C21-C34 Aromatic Hydrocarbons	0	0	0	0	0	No	No No	No No
C8-C10 Aliphatic Hydrocarbons	0	0	0	0	0	No	No	No
Cadmium	0	0	0	0	0	Yes	No	No
Carbon disulfide	0	0	0	0	0	Yes	No	No
Carbon tetrachloride	0	0	100	0	100	Yes	Yes	Yes
Chlorobenzene	0	0	0	0	0	Yes	No	No
Chlorobromomethane	0	0	0	0	0	No	No	No
Chloroethane	0	0	0	0	0	Yes	No	No
Chloroform	0	0	31	0	31	Yes	Yes	Yes
Chloromethane	0	0	0	0	0	Yes	No	No
Chromium, Hexavalent	23	32	16	66	32	Yes	Yes	Yes
Chromium, Total	26	75	0	31	24	Yes	No	No
Chromium, Trivalent	28	63	0	41	25	Yes	No	No
Chrysene	0	0	67	0	67	Yes	Yes	Yes
cis-1,2-Dichloroethene	2	8	1	22	3	Yes	No	No
cis-1,3-Dichloropropene	0	0	100	0	100	Yes	Yes	Yes
Copper	5	16	74	56	71	Yes	Yes	Yes
CPAH TEQ	0	2	100	0	98	Yes	Yes	Yes
Dibenzo(a,h)anthracene	0	0	100	0	100	Yes	Yes	Yes
Dibromochloromethane	0	0	31	0	31	Yes	Yes	Yes
Dibromomethane	0	0	0	0	0	Yes	No	No
Dichlorodifluoromethane (Freon 12)	0	0	33	0	33	Yes	Yes	No
Diesel Range Hydrocarbons	16	74	0	21	16	Yes	No	No
Ethylbenzene	0	1	0	0	0	Yes	No	No
Fluoranthene	0	9	0	0	0	Yes	No	No
Fluorene	0	9	0	0	0	Yes	No	No

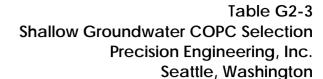
			Calculated Values				COPC Selection	T
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
Freon 113	0	0	0	0	0	Yes	No	No
Gasoline Range Hydrocarbons	0	33	0	0	0	Yes	No	No
Hexachlorobutadiene	0	0	100	0	100	Yes	Yes	Yes
Indeno(1,2,3-cd)pyrene	0	0	100	0	100	Yes	Yes	Yes
Isopropylbenzene	0	1	0	0	0	Yes	No	No
Lead	9	18	53	75	57	Yes	Yes	No
m,p-Xylene	0	1	0	0	0	Yes	No	No
Mercury	0	0	100	0	100	Yes	Yes	Yes
Methyl iodide	0	0	0	0	0	No	No	No
Methyl tert-butyl ether	0	0	0	0	0	Yes	No	No
Methylene chloride	0	0	30	0	30	Yes	Yes	Yes
Naphthalene	4	15	47	25	44	Yes	Yes	Yes
n-Butylbenzene	0	0	0	0	0	Yes	No	No
n-Hexane	0	0	0	0	0	No	No	No
Nickel	2	100	0	29	29	Yes	Yes	No
n-Propylbenzene	0	1	0	0	0	Yes	No	No
Oil Range Hydrocarbons	19	41	10	46	25	Yes	No	No
o-Xylene	0	1	0	0	0	Yes	No	No
Phenanthrene	0	9	0	0	0	No	No	No
Pyrene	0	0	0	0	0	Yes	No	No
sec-Butylbenzene	0	0	0	0	0	Yes	No	No
Selenium	0	28	6	0	4	Yes	No	Yes
Silver	0	0	0	0	0	Yes	No	No
Styrene	0	0	0	0	0	Yes	No	No
tert-Butylbenzene	0	0	0	0	0	Yes	No	No
Tetrachloroethene	0	0	31	0	31	Yes	Yes	Yes
Thallium	0	0	100	0	100	Yes	Yes	Yes
Toluene Toluene	0	1	0	0	0	Yes	No	No
Total Diesel + Oil	44	74	12	59	47	Yes	Yes	No
Total naphthalenes	2	71	0	13	10	Yes	No	No
Total PCBs	0	0	100	0	100	Yes	Yes	Yes
rans-1,2-Dichloroethene	0	2	0	0	0	Yes	No	No
rans-1,3-Dichloropropene	0	0	100	0	100	Yes	Yes	Yes
rans-1,4-Dichloro-2-butene	0	0	0	0	0	No	No	No
richloroethene	14	14	84	93	85	Yes	Yes	Yes
Frichlorofluoromethane (Freon 11)	0	0	0	0	0	Yes	No	No
Vinyl Acetate	0	0	0	0	0	Yes	No	No
Vinyl chloride	4	4	95	100	95	Yes	Yes	Yes
Xylenes, total	0	1	0	0	0	Yes	No	No
Zinc	0	14	0	0	0	Yes	No	No
Gasoline Range Hydrocarbons (HCID)	0	29	0	0	0	No	No	No
Diesel Range Hydrocarbons (HCID)	0	43	0	0	0	No	No	No
Oil Range Hydrocarbons (HCID)	0	29	0	0	0	No	No	No

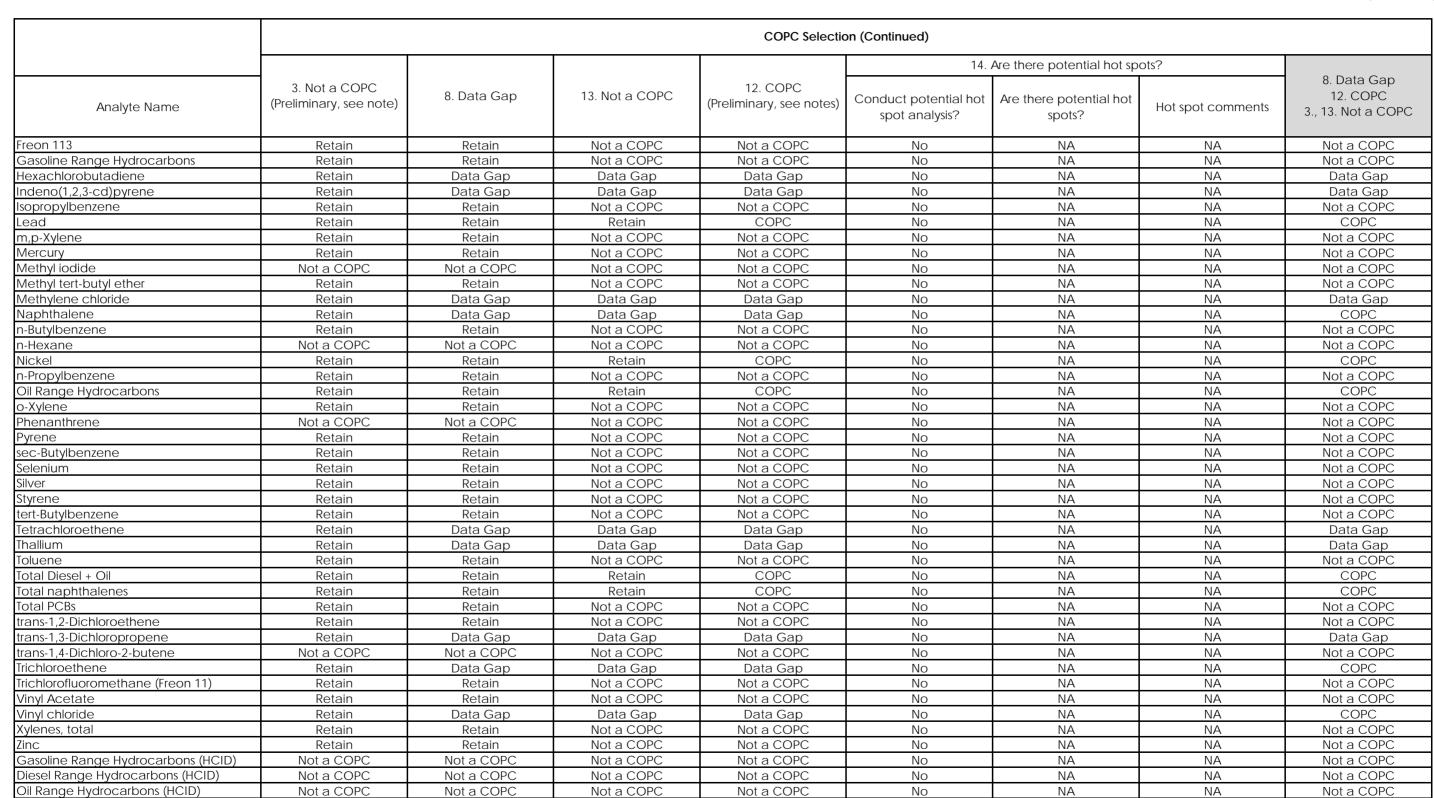
				COPC Selection	(Continued)			
				10. Does	data set comply with 3-P	art Rule?		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?
1,1,1,2-Tetrachloroethane	No	No	No	No	No	NA	No	Yes
1,1,1-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes
1,1,2,2-Tetrachloroethane	No	No	No	No	No	NA	No	Yes
1,1,2-Trichloroethane	No	No	No	No	No	NA	No	Yes
1,1-Dichloroethane	NA	No	No	No	No	NA	No	Yes
1,1-Dichloroethene	NA	No	No	No	No	NA	No	Yes
1,1-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes	Yes
1,2,3-Trichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
1,2,3-Trichloropropane	No	No	No	No	No	NA	No	Yes
1,2,4-Trichlorobenzene	No	No	No	No	No	NA	No	Yes
1,2,4-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
1,2-Dibromo-3-chloropropane	No	No	No	No	No	NA	No	Yes
1,2-Dibromoethane	No	No	No	No	No	NA	No	Yes
1,2-Dichlorobenzene	NA NA	No	No	No	No	NA	No	Yes
1,2-Dichloroethane	NA NA	No	No	No	No	NA	No	Yes
1,2-Dichloropropane	No	No	No	No	No	NA	No	Yes
1,3,5-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
1,3-Dichlorobenzene	No	No				NA NA		
1,3-Dichloropenzene 1,3-Dichloropropane	NA	No	No	No Yes	No No		No Yes	Yes
1,4-Dichlorobenzene			Yes			NA		Yes
	NA NA	No No	No	No	No No	NA	No	Yes
1-Methylnaphthalene	NA NA	No	Yes	Yes	No	NA	Yes	No
2,2-Dichloropropane	NA	No	Yes	Yes	No	NA	Yes	Yes
2-Butanone	NA	No	Yes	Yes	No	NA	Yes	No
2-Chloroethylvinyl ether	NA	No	Yes	Yes	No	NA	Yes	Yes
2-Chloronaphthalene	NA	No	Yes	Yes	No	NA	Yes	Yes
2-Chlorotoluene	NA	No	Yes	Yes	No	NA	Yes	Yes
2-Hexanone	NA	No	No	No	No	NA	No	Yes
2-Methylnaphthalene	NA	No	Yes	Yes	No	NA	Yes	No
4-Chlorotoluene	NA	No	Yes	Yes	No	NA	Yes	Yes
4-Isopropyltoluene	NA	No	Yes	Yes	No	NA	Yes	Yes
4-Methyl-2-pentanone	NA	No	Yes	Yes	No	NA	Yes	Yes
Acenaphthene	NA	No	Yes	Yes	No	NA	Yes	No
Acenaphthylene	NA	No	Yes	Yes	No	NA	Yes	Yes
Acetone	NA	No	Yes	Yes	No	NA	Yes	Yes
Acrolein	No	No	No	No	No	NA	No	Yes
Acrylonitrile	No	No	No	No	No	NA	No	Yes
Anthracene	NA	No	Yes	Yes	No	NA	Yes	No
Antimony	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1016	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1221	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1232	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1242	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1248	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1254	NA	No	Yes	Yes	No	NA	Yes	Yes
Aroclor 1260	NA	No	Yes	Yes	No	NA	Yes	Yes

				COPC Selection	(Continued)			
				10. Does	data set comply with 3-P	art Rule?		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?
Benzene	No	No	No	No	No	NA	No	Yes
Benzo(a)anthracene	No	Yes	No	No	No	NA	No	Yes
Benzo(a)pyrene	No	No	No	No	No	NA	No	Yes
Benzo(b)fluoranthene	Yes	No	No	No	No	NA	No	Yes
Benzo(b,k)fluoranthene	No	No	No	No	No	NA	No	Yes
Benzo(ghi)perylene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Benzo(k)fluoranthene	Yes	No	No	No	No	NA	No	Yes
Beryllium	NA	No	Yes	Yes		NA NA	Yes	Yes
Bromobenzene	NA NA	No	Yes	Yes	No No	NA NA	Yes	Yes
						NA NA		
Bromodichloromethane	No	No No	No	No	No		No	Yes
Bromoethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Bromoform	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Bromomethane	NA	No	Yes	Yes	No	NA	Yes	Yes
C10-C12 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C10-C12 Aromatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C12-C16 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C12-C16 Aromatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C16-C21 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C16-C21 Aromatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C21-C34 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C21-C34 Aromatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
C8-C10 Aliphatic Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	Yes
Cadmium	NA	No	Yes	Yes	No	NA	Yes	Yes
Carbon disulfide	NA	No	Yes	Yes	No	NA	Yes	Yes
Carbon tetrachloride	No	No	No	No	No	NA	No	Yes
Chlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Chlorobromomethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Chloroethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Chloroform	No	No	No	No	No	NA	No	Yes
Chloromethane	NA	No	Yes	Yes	No	NA NA	Yes	Yes
Chromium, Hexavalent	No	Yes	No	No	No	NA NA	No	No
Chromium, Total	NA NA	Yes	No	No	No	NA NA	No	No
Chronium, Trivalent	NA N-	Yes	No No	No No	No	NA	No	No
Chrysene	No	No	No	No	No	NA	No	Yes
cis-1,2-Dichloroethene	NA NA	Yes	No	Yes	No	NA	No	No
cis-1,3-Dichloropropene	No	No	No	No	No	NA	No	Yes
Copper	No	Yes	No	No	No	NA	No	No
CPAH TEQ	No	No	No	No	No	NA	No	Yes
Dibenzo(a,h)anthracene	No	No	No	No	No	NA	No	Yes
Dibromochloromethane	No	No	No	No	No	NA	No	Yes
Dibromomethane	NA	No	Yes	Yes	No	NA	Yes	Yes
Dichlorodifluoromethane (Freon 12)	NA	No	No	No	No	NA	No	Yes
Diesel Range Hydrocarbons	NA	Yes	No	No	No	NA	No	No
Ethylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No
Fluorene	NA	No	Yes	Yes	No	NA	Yes	No

				000001 1	(O !' N			
				COPC Selection	(Continued)			
				10. Does	data set comply with 3-Pa	art Rule?		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?
Freon 113	NA	No	Yes	Yes	No	NA	Yes	Yes
Gasoline Range Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No
Hexachlorobutadiene	No	No	No	No	No	NA	No	Yes
Indeno(1,2,3-cd)pyrene	No	No	No	No	No	NA	No	Yes
Isopropylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes
Lead	NA	Yes	No	No	No	NA	No	No
m,p-Xylene	NA	No	Yes	Yes	No	NA	Yes	Yes
Mercury	Yes	No	No	No	No	NA	No	Yes
Methyl iodide	NA	No	Yes	Yes	No	NA	Yes	Yes
Methyl tert-butyl ether	NA	No	Yes	Yes	No	NA	Yes	Yes
Methylene chloride	No	No	No	No	No	NA	No	Yes
Naphthalene	No	Yes	No	No	No	NA	No	No
n-Butylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
n-Hexane	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Nickel	NA NA	Yes	No	No	No	NA	No	No
n-Propylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Oil Range Hydrocarbons	NA NA	Yes	No	No	No	NA	No	No
o-Xylene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Phenanthrene	NA NA	No	Yes	Yes	No	NA	Yes	No
Pyrene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
sec-Butylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes
Selenium	NA NA	No	No	Yes	No	NA	No	No
Silver	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Styrene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
tert-Butylbenzene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Tetrachloroethene	No	No	No	No	No	NA NA	No	Yes
Thallium	No	No	No	No	No	NA NA	No	Yes
Toluene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes
Total Diesel + Oil	NA NA	Yes	No	No No	No	NA NA	No	No
	NA NA	i i		Yes	No	NA NA	No	No
Total naphthalenes Total PCBs	Yes	Yes No	No No	No Yes	No	NA NA	No	Yes
trans-1,2-Dichloroethene	NA NA					NA NA		
·		No No	Yes	Yes	No		Yes	Yes
trans-1,3-Dichloropropene	No	No No	No	No	No N -	NA	No	Yes
trans-1,4-Dichloro-2-butene	NA Na	No Vac	Yes	Yes	No No	NA	Yes	Yes
Trichloroethene	No	Yes	No	No	No N-	NA	No	No
Trichlorofluoromethane (Freon 11)	NA	No No	Yes	Yes	No No	NA	Yes	Yes
Vinyl Acetate	NA	No	Yes	Yes	No	NA	Yes	Yes
Vinyl chloride	No	Yes	No	No	No	NA	No	Yes
Kylenes, total	NA	No	Yes	Yes	No	NA	Yes	Yes
Zinc	NA	No	Yes	Yes	No	NA	Yes	No
Gasoline Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	No
Diesel Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	No
Oil Range Hydrocarbons (HCID)	NA	No	Yes	Yes	No	NA	Yes	No

				COPC Selection	on (Continued)			
			T	Toric selection	· · · · · · · · · · · · · · · · · · ·	Are there potential hot sp	ots?	
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
1,1,1,2-Tetrachloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
1,1,1-Trichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,1,2,2-Tetrachloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
,1,2-Trichloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
,1-Dichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,1-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,1-Dichloropropene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,2,3-Trichlorobenzene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,2,3-Trichloropropane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap
,2,4-Trichlorobenzene	Retain	Data Gap Data Gap	Data Gap Data Gap	Data Gap	No	NA NA	NA	Data Gap
,2,4-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
,2-Dibromo-3-chloropropane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap
,2-Dibromoethane	Retain	Data Gap Data Gap	Data Gap Data Gap	Data Gap	No	NA NA	NA NA	Data Gap Data Gap
,2-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
,2-Dichlorobenzene ,2-Dichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
				•	No	NA NA	NA NA	
2-Dichloropropane	Retain	Data Gap	Data Gap	Data Gap Not a COPC		NA NA		Data Gap
,3,5-Trimethylbenzene	Retain	Retain	Not a COPC		No No		NA	Not a COPC
,3-Dichlorobenzene	Retain	Data Gap	Data Gap	Data Gap	No No	NA	NA	Data Gap
,3-Dichloropropane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,4-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
,2-Dichloropropane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Butanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Chloroethylvinyl ether	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Chloronaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Chlorotoluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Hexanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Chlorotoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Isopropyltoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
-Methyl-2-pentanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
cenaphthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
cenaphthylene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
cetone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
crolein	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
crylonitrile	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
nthracene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
ntimony	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
roclor 1016	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
vroclor 1221	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
voclor 1232	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Aroclor 1242	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Aroclor 1248	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
vocior 1254	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
roclor 1260	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
Arsenic	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	COPC




				COPC Selection	on (Continued)			
					14	Are there potential hot sp	ots?	
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
Benzene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Benzo(a)anthracene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
Benzo(a)pyrene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Benzo(b)fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzo(b,k)fluoranthene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Benzo(ghi)perylene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzo(k)fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Beryllium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromodichloromethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Bromoethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromoform	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
Bromomethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
C10-C12 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC
C10-C12 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
C12-C16 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
C12-C16 Aromatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
C16-C21 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
C16-C21 Aniphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
C21-C34 Aliphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC		NA NA	NA NA	Not a COPC
C21-C34 Aniphatic Hydrocarbons	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC
<u> </u>	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No		NA NA	Not a COPC
C8-C10 Aliphatic Hydrocarbons	<u> </u>				No	NA		
Cadmium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC
Carbon disulfide	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC
Carbon tetrachloride	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Chlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chlorobromomethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chloroform	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Chloromethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chromium, Hexavalent	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
Chromium, Total	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Chromium, Trivalent	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Chrysene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
cis-1,2-Dichloroethene	Retain	Retain	Retain	COPC	No	NA	NA	COPC
cis-1,3-Dichloropropene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Copper	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC
PAH TEQ	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Not a COPC
Dibenzo(a,h)anthracene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Dibromochloromethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
Dibromomethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Dichlorodifluoromethane (Freon 12)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Diesel Range Hydrocarbons	Retain	Retain	Retain	COPC	No	NA	NA	COPC
thylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
luoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
luorene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC

MAUL FOSTER ALONGI

Page 9 of 10

NOTES:

Gray highlighting indicates a hand-entered column.

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

HCID = hydrocarbon identification.

NA = not applicable.

No. = number.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

^(a)If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(b) If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
1,1,1,2-Tetrachloroethane	0	0	0	0	0	Yes	No	No
1,1,1-Trichloroethane	0	0	0	0	0	Yes	No	No
1,1,2,2-Tetrachloroethane	0	0	89	0	89	Yes	Yes	No
1,1,2-Trichloroethane	0	0	82	0	82	Yes	Yes	No
1,1-Dichloroethane	0	0	0	0	0	Yes	No	No
1,1-Dichloroethene	0	0	0	0	0	Yes	No	No
1,1-Dichloropropene	0	0	0	0	0	No	No	No
1,2,3-Trichlorobenzene	0	0	0	0	0	No	No	No
1,2,3-Trichloropropane	0	0	100	0	100	Yes	Yes	Yes
1,2,4-Trichlorobenzene	0	0	89	0	89	Yes	Yes	Yes
1,2,4-Trimethylbenzene	0	4	0	0	0	Yes	No No	No
1,2-Dibromo-3-chloropropane	0	0	100	0	100	Yes	Yes	Yes
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes	Yes
1,2-Dichlorobenzene	0	0	0	0	0	Yes	No No	No
1,2-Dichloroethane	0	0	0	0	0	Yes	No	No
1,2-Dichloropropane			<u> </u>			Yes	No No	
	0	0	0	0	0			No
1,3,5-Trimethylbenzene	0	4	0	0	0	Yes	No	No
1,3-Dichlorobenzene	0	0	0	0	0	Yes	No	No
1,3-Dichloropropane	0	4	0	0	0	No	No	No
1,4-Dichlorobenzene	0	0	0	0	0	Yes	No	No
1-Methylnaphthalene	0	0	0	0	0	Yes	No	No
2,2-Dichloropropane	0	0	0	0	0	No	No	No
2-Butanone	0	0	0	0	0	Yes	No	No
2-Chloroethylvinyl ether	0	0	0	0	0	No	No	No
2-Chlorotoluene	0	4	0	0	0	Yes	No	No
2-Hexanone	0	0	0	0	0	Yes	No	No
2-Methylnaphthalene	0	17	0	0	0	Yes	No	No
4-Chlorotoluene	0	0	0	0	0	No	No	No
4-Isopropyltoluene	0	0	0	0	0	No	No	No
4-Methyl-2-pentanone	0	0	0	0	0	Yes	No	No
Acenaphthene	0	15	0	0	0	Yes	No	No
Acenaphthylene	0	10	0	0	0	No	No	No
Acetone	0	11	0	0	0	Yes	No	No
Acrolein	0	0	100	0	100	Yes	Yes	Yes
Acrylonitrile	0	0	100	0	100	Yes	Yes	Yes
Anthracene	0	15	0	0	0	Yes	No	No
Antimony	0	0	0	0	0	Yes	No	No
Arsenic	25	82	100	78	82	Yes	Yes	Yes
Benzene	0	0	0	0	0	Yes	No	No
Benzo(a)anthracene	2	10	100	100	100	Yes	Yes	Yes
Benzo(a)pyrene	0	0	100	0	100	Yes	Yes	Yes
Benzo(b)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Benzo(b,k)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Benzo(ghi)perylene	0	0	0	0	0	No	No	No
Benzo(k)fluoranthene	0	0	100	0	100	Yes	Yes	Yes
Beryllium	0	0	0	0	0	Yes	No	No

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
Bromobenzene	0	0	0	0	0	Yes	No	No
Bromodichloromethane	0	0	0	0	0	Yes	No	No
Bromoethane	0	0	0	0	0	No	No	No
Bromoform	0	4	0	0	0	Yes	No	No
Bromomethane	0	0	0	0	0	Yes	No	No
Cadmium	0	0	0	0	0	Yes	No	No
Carbon disulfide	0	0	0	0	0	Yes	No	No
Carbon tetrachloride	0	0	89	0	89	Yes	Yes	No
Chlorobenzene	0	0	0	0	0	Yes	No	No
Chlorobromomethane	0	0	0	0	0	No	No	No
Chloroethane	0	0	0	0	0	Yes	No	No
Chloroform	0	7	0	0	0	Yes	No	No
Chloromethane	0	0	0	0	0	Yes	No	No
Chromium, Hexavalent	1			50				
	<u>'</u>	6	0		3	Yes	No No	No No
Chromium, Total	5	58	0	22	13	Yes	No	No
Chromium, Trivalent	5	53	0	28	15	Yes	No	No
Chrysene	0	10	67	0	60	Yes	Yes	No
cis-1,2-Dichloroethene	0	0	0	0	0	Yes	No	No
cis-1,3-Dichloropropene	0	0	82	0	82	Yes	Yes	No
Copper	2	37	83	29	63	Yes	Yes	Yes
CPAH TEQ	2	10	100	100	100	Yes	Yes	Yes
Dibenzo(a,h)anthracene	1	5	100	100	100	Yes	Yes	Yes
Dibromochloromethane	0	0	0	0	0	Yes	No	No
Dibromomethane	0	0	0	0	0	Yes	No	No
Dichlorodifluoromethane (Freon 12)	0	0	0	0	0	Yes	No	No
Diesel Range Hydrocarbons	0	49	0	0	0	Yes	No	No
Ethylbenzene	0	4	0	0	0	Yes	No	No
Fluoranthene	0	20	0	0	0	Yes	No	No
Fluorene	0	5	0	0	0	Yes	No	No
Freon 113	0	0	0	0	0	Yes	No	No
Gasoline Range Hydrocarbons	0	20	0	0	0	Yes	No	No
Hexachlorobutadiene	0	0	100	0	100	Yes	Yes	Yes
Indeno(1,2,3-cd)pyrene	2	10	100	100	100	Yes	Yes	Yes
Isopropylbenzene	0	4	0	0	0	Yes	No No	No
Lead	5	41	44	45	44	Yes	Yes	No
m,p-Xylene	0	4	0	0	0	Yes	No No	No
				U			•	
Mercury	0	0	100	0	100	Yes	Yes	Yes

			Calculated Values			COPC Selection				
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)		
Methyl tert-butyl ether	0	0	0	0	0	Yes	No	No		
Methylene chloride	0	0	0	0	0	Yes	No	No		
Naphthalene	0	17	33	0	28	Yes	Yes	No		
n-Butylbenzene	0	6	0	0	0	Yes	No	No		
n-Hexane	0	0	0	0	0	No	No	No		
Nickel	1	50	0	100	50	Yes	No	No		
n-Propylbenzene	0	4	0	0	0	Yes	No	No		
Oil Range Hydrocarbons	0	6	9	0	9	Yes	No	No		
o-Xylene	0	0	0	0	0	Yes	No	No		
Phenanthrene	0	15	0	0	0	No	No	No		
Pyrene	0	10	0	0	0	Yes	No	No		
sec-Butylbenzene	0	0	0	0	0	Yes	No	No		
Selenium	0	28	0	0	0	Yes	No	No		
Silver	0	0	0	0	0	Yes	No	No		
Styrene	0	0	0	0	0	Yes	No	No		
tert-Butylbenzene	0	0	0	0	0	Yes	No	No		
Tetrachloroethene	0	0	0	0	0	Yes	No	No		
Thallium	0	0	100	0	100	Yes	Yes	Yes		
Toluene	0	0	0	0	0	Yes	No	No		
Total Diesel + Oil	2	49	17	12	14	Yes	Yes	No		
Total naphthalenes	0	67	0	0	0	Yes	No	No		
trans-1,2-Dichloroethene	0	0	0	0	0	Yes	No	No		
trans-1,3-Dichloropropene	0	0	82	0	82	Yes	Yes	No		
trans-1,4-Dichloro-2-butene	0	0	0	0	0	No	No	No		
Trichloroethene	0	0	64	0	64	Yes	Yes	No		
Trichlorofluoromethane (Freon 11)	0	0	0	0	0	Yes	No	No		
Vinyl Acetate	0	0	0	0	0	Yes	No	No		
Vinyl chloride	0	0	92	0	92	Yes	Yes	Yes		
Xylenes, total	0	4	0	0	0	Yes	No	No		
Zinc	0	50	0	0	0	Yes	No	No		

				COPC Selection	(Continued)				
		10. Does data set comply with 3-Part Rule?							
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?	
1,1,1,2-Tetrachloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,1,1-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,1,2,2-Tetrachloroethane	NA	No	No	No	No	NA	No	Yes	
1,1,2-Trichloroethane	NA	No	Yes	No	No	NA	No	Yes	
1,1-Dichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,1-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,1-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,2,3-Trichlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,2,3-Trichloropropane	Yes	No	No	No	No	NA	No	Yes	
1,2,4-Trichlorobenzene	Yes	No	No	No	No	NA	No	Yes	
1,2,4-Trimethylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,2-Dibromo-3-chloropropane	No	No	No	No	No	NA	No	Yes	
1,2-Dibromoethane	Yes	No	No	No	No	NA	No	Yes	
1,2-Dichlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,2-Dichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes	
1,2-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
1,3,5-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
1,3-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
1,3-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
1,4-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
1-Methylnaphthalene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
2,2-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
2-Butanone	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
2-Chloroethylvinyl ether	NA NA	No	Yes	Yes	No	NA	Yes	Yes	
2-Chlorotoluene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
2-Hexanone	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
2-Methylnaphthalene	NA NA	No	Yes	Yes	No	NA NA	Yes	No	
4-Chlorotoluene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
4-Isopropyltoluene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes	
4-isopropyrioidene 4-Methyl-2-pentanone	NA NA	No No	Yes	Yes	No	NA NA	Yes	Yes	
Acenaphthene	NA NA	No			No	NA NA	Yes	No No	
Acenaphthylene	NA NA	No	Yes Yes	Yes Yes	No	NA NA	Yes	No	
	NA NA					NA NA			
Acetone Acrolein		No No	Yes	Yes	No No	NA NA	Yes	No	
	Yes	No No	No	No	No No		No	Yes	
Acrylonitrile	Yes NA	No No	No	No Yes	No No	NA NA	No	Yes	
Antimony		No No	Yes		No No		Yes	No	
Antimony	NA N-	No	Yes	Yes	No No	NA	Yes	Yes	
Arsenic	No No	Yes	No	No	No No	NA	No	No	
Benzene Benze(a) anthropona	NA Vaa	No Yee	Yes	Yes	No No	NA	Yes	Yes	
Benzo(a)anthracene	Yes	Yes	No No	No No	No N-	NA	No	No	
Benzo(a)pyrene	Yes	No	No	No	No	NA	No	Yes	
Benzo(b)fluoranthene	Yes	No	No	No	No	NA	No	Yes	
Benzo(b,k)fluoranthene	Yes	No	No	No	No	NA	No	Yes	
Benzo(ghi)perylene	NA	No	Yes	Yes	No	NA	Yes	Yes	
Benzo(k)fluoranthene	Yes	No	No	No	No	NA NA	No	Yes	

	COPC Selection (Continued)									
					<u> </u>			T		
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL?(c)	art Rule? 3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?		
Bromobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Bromodichloromethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Bromoethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Bromoform	NA	No	Yes	Yes	No	NA	Yes	Yes		
Bromomethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Cadmium	NA	No	Yes	Yes	No	NA	Yes	Yes		
Carbon disulfide	NA	No	Yes	Yes	No	NA	Yes	Yes		
Carbon tetrachloride	NA	No	No	No	No	NA	No	Yes		
Chlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes		
Chlorobromomethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes		
Chloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Chloroform	NA	No	Yes	Yes	No	NA	Yes	No		
Chloromethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes		
Chromium, Hexavalent	NA NA	Yes	No	Yes	No	NA	No	No		
Chromium, Total	NA NA	Yes	No	No	No	NA	No	No		
Chromium, Trivalent	NA NA	Yes	No	No	No	NA NA	No	No		
Chrysene	NA NA	No No	No	No	No	NA NA	No	No		
cis-1,2-Dichloroethene	NA NA	No	Yes	Yes	No	NA NA	Yes	Yes		
cis-1,3-Dichloropropene	NA NA	No	No	No No	No	NA NA	No	Yes		
Copper	No	Yes	No	No	No	NA NA	No	No No		
сРАН ТЕО	Yes	Yes	No	No	No	NA NA	No	No		
Dibenzo(a,h)anthracene	Yes	Yes	No	No	No	NA	No	Yes		
Dibromochloromethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Dibromomethane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Dichlorodifluoromethane (Freon 12)	NA	No	Yes	Yes	No	NA	Yes	Yes		
Diesel Range Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No		
Ethylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Fluoranthene	NA	No	Yes	Yes	No	NA	Yes	No		
Fluorene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Freon 113	NA	No	Yes	Yes	No	NA	Yes	Yes		
Gasoline Range Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No		
Hexachlorobutadiene	Yes	No	No	No	No	NA	No	Yes		
Indeno(1,2,3-cd)pyrene	Yes	Yes	No	No	No	NA	No	No		
Isopropylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Lead	NA NA	Yes	No	No	No	NA	No	No		
m,p-Xylene	NA NA	No No	Yes	Yes	No	NA	Yes	Yes		
Mercury	Yes	No	No Yes	No No	No	NA NA	No No	Yes		
Methyl iodide	NA Yes	No No	Yes	Yes	No	NA NA	Yes	Yes		

	COPC Selection (Continued)									
				10. Does	data set comply with 3-P	art Rule?				
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?		1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?		
Methyl tert-butyl ether	NA	No	Yes	Yes	No	NA	Yes	Yes		
Methylene chloride	NA	No	Yes	Yes	No	NA	Yes	Yes		
Naphthalene	NA	No	No	No	No	NA	No	No		
n-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	No		
n-Hexane	NA	No	Yes	Yes	No	NA	Yes	Yes		
Nickel	NA	Yes	Yes	No	No	NA	No	No		
n-Propylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Oil Range Hydrocarbons	NA	No	Yes	Yes	No	NA	Yes	No		
o-Xylene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Phenanthrene	NA	No	Yes	Yes	No	NA	Yes	No		
Pyrene	NA	No	Yes	Yes	No	NA	Yes	No		
sec-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Selenium	NA	No	Yes	Yes	No	NA	Yes	No		
Silver	NA	No	Yes	Yes	No	NA	Yes	Yes		
Styrene	NA	No	Yes	Yes	No	NA	Yes	Yes		
tert-Butylbenzene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Tetrachloroethene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Thallium	No	No	No	No	No	NA	No	Yes		
Toluene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Total Diesel + Oil	NA	Yes	Yes	No	No	NA	No	No		
Total naphthalenes	NA	No	Yes	Yes	No	NA	Yes	No		
trans-1,2-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes	Yes		
trans-1,3-Dichloropropene	NA	No	No	No	No	NA	No	Yes		
trans-1,4-Dichloro-2-butene	NA	No	Yes	Yes	No	NA	Yes	Yes		
Trichloroethene	NA	No	Yes	No	No	NA	No	Yes		
Trichlorofluoromethane (Freon 11)	NA	No	Yes	Yes	No	NA	Yes	Yes		
Vinyl Acetate	NA	No	Yes	Yes	No	NA	Yes	Yes		
Vinyl chloride	Yes	No	No	No	No	NA	No	Yes		
Xylenes, total	NA	No	Yes	Yes	No	NA	Yes	Yes		
Zinc	NA	No	Yes	Yes	No	NA	Yes	No		

		COPC Selecti	on (Continued)		COPC Selection (Continued)					
					14					
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC		
1,1,1,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1,1-Trichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1,2,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1,2-Trichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1-Dichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
1,1-Dichloropropene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC		
1,2,3-Trichlorobenzene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC		
1,2,3-Trichloropropane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2,4-Trichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2,4-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2-Dibromo-3-chloropropane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap		
1,2-Dibromoethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2-Dichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,2-Dichloropropane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,3,5-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,3-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,3-Dichloropropane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1,4-Dichlorobenzene			Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
1-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC		
2,2-Dichloropropane	Retain	Retain								
	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No No	NA NA	NA	Not a COPC		
2-Butanone	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC		
2-Chloroethylvinyl ether	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC		
2-Chlorotoluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC		
2-Hexanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
2-Methylnaphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
4-Chlorotoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
4-Isopropyltoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
4-Methyl-2-pentanone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Acenaphthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Acenaphthylene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Acetone	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Acrolein	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Acrylonitrile	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Anthracene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Antimony	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Arsenic	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	COPC		
Benzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Benzo(a)anthracene	Retain	Retain	Retain	COPC	No	NA	NA	Not a COPC		
Benzo(a)pyrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Benzo(b)fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Benzo(b,k)fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Benzo(ghi)perylene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Benzo(k)fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Beryllium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		

		COPC Selecti	on (Continued)		COPC Selection (Continued)				
					14	1. Are there potential hot	spots?		
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC	
Bromobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Bromodichloromethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Bromoethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Bromoform	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Bromomethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Cadmium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Carbon disulfide	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Carbon tetrachloride	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC	
Chlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC	
Chlorobromomethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC	
Chloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC	
Chloroform	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC	
Chloromethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC	
Chromium, Hexavalent	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC	
Chromium, Total	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC	
Chromium, Trivalent		Retain	Retain	COPC	No	NA NA	NA NA	COPC	
	Retain		Not a COPC	Not a COPC	•	NA NA	NA NA	Not a COPC	
Chrysene cis-1,2-Dichloroethene	Retain	Retain			No No	NA NA	NA NA		
	Retain	Retain	Not a COPC	Not a COPC	No No			Not a COPC	
cis-1,3-Dichloropropene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Copper CPAH TEQ	Retain Retain	Data Gap Retain	Data Gap Retain	Data Gap COPC	No No	NA NA	NA NA	COPC Not a COPC	
Dibenzo(a,h)anthracene	Retain	Retain	Retain	Retain	Yes	No	Only one detection, in MW7 in 2006. Non-detect in recent monitoring data. Based on last four quarters of results, not a COPC based on max detected does not exceed PCUL; therefore, no hot spot evaluation needed.	Not a COPC	
Dibromochloromethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Dibromomethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Dichlorodifluoromethane (Freon 12)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Diesel Range Hydrocarbons	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Ethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Fluoranthene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Fluorene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Freon 113	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Gasoline Range Hydrocarbons	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Hexachlorobutadiene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Indeno(1,2,3-cd)pyrene	Retain	Retain	Retain	COPC	No	NA	NA	Not a COPC	
Isopropylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Lead	Retain	Retain	Retain	COPC	No	NA	NA	Not a COPC	
m,p-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Mercury	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC	
Methyl iodide	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA NA	Not a COPC	

		COPC Select	ion (Continued)		COPC Selection (Continued)					
					1.	4. Are there potential hot s	pots?			
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	8. Data Gap 13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC		
Methyl tert-butyl ether	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Methylene chloride	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Naphthalene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
n-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
n-Hexane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Nickel	Retain	Retain	Retain	COPC	No	NA	NA	COPC		
n-Propylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Oil Range Hydrocarbons	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
o-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Phenanthrene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Pyrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
sec-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Selenium	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Silver	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Styrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
tert-Butylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Tetrachloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Thallium	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap		
Toluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Total Diesel + Oil	Retain	Retain	Retain	COPC	No	NA	NA	COPC		
Total naphthalenes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
trans-1,2-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
trans-1,3-Dichloropropene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
trans-1,4-Dichloro-2-butene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Trichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Trichlorofluoromethane (Freon 11)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Vinyl Acetate	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Vinyl chloride	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Xylenes, total	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		
Zinc	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC		

NOTES:

Gray highlighting indicates a hand-entered column.

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

NA = not applicable.

No. = number.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

^(a)If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(b) If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

			<u> </u>				COPC Selection	
Analyte Name	No. Detect	Detection	RL Exceedance	Detections Exceedance	Exceedance Frequency (Total)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)?	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs
3,11	Exceedances	Frequency (%)	Frequency (%)	Frequency (%)	(%)		exceedance for RLS > 10%)?	>5)?
1,1,1,2-Tetrachloroethane	0	0	0	0	0	Yes	No	No
1,1,1-Trichloroethane	0	100	0	0	0	Yes	Yes	No
1,1,2,2-Tetrachloroethane	0	0	100	0	100	Yes	Yes	No
1,1,2-Trichloroethane	0	0	0	0	0	Yes	No	No
1,1-Dichloroethane	0	20	0	0	0	Yes	No	No
1,1-Dichloroethene	0	0	0	0	0	Yes	No	No
1,2,4-Trichlorobenzene	0	0	0	0	0	Yes	No	No
1,2,4-Trimethylbenzene	0	100	0	0	0	Yes	Yes	No
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes	Yes
1,2-Dichlorobenzene	0	0	0	0	0	Yes	No	No
1,2-Dichloroethane	0	0	0	0	0	Yes	No	No
1,2-Dichloropropane	0	0	0	0	0	Yes	No	No
1,3,5-Trimethylbenzene	0	0	0	0	0	No	No	No
1,3-Dichlorobenzene	0	0	0	0	0	No	No	No
1,4-Dichlorobenzene	0	0	0	0	0	Yes	No	No
2-Butanone	0	100	0	0	0	Yes	Yes	No
2-Hexanone	0	0	0	0	0	No	No	No
4-Ethyltoluene	0	0	0	0	0	No	No	No
4-Methyl-2-pentanone	0	100	0	0	0	Yes	Yes	No
Acetone	0	100	0	0	0	No	Yes	No
Benzene	0	100	0	0	0	Yes	Yes	No
Bromodichloromethane	0	0	100	0	100	Yes	Yes	No
Bromoform	0	0	0	0	0	Yes	No	No
Bromomethane	0	0	0	0	0	Yes	No	No
Butane	0	67	0	0	0	No	No	No
Carbon disulfide	0	100	0	0	0	Yes	Yes	No
Carbon tetrachloride	0	0	0	0	0	Yes	No	No
Chlorobenzene	0	0	0	0	0	Yes	No	No
Chloroethane	0	0	0	0	0	Yes	No	No
Chloroform	0	0	0	0	0	Yes	No	No
Chloromethane	0	0	0	0	0	Yes	No	No
cis-1,2-Dichloroethene	0	36	0	0	0	No	No	No
cis-1,3-Dichloropropene	0	0	0	0	0	No	No	No
Dibromochloromethane	0	0	0	0	0	No	No	No
Dichlorodifluoromethane (Freon 12)	0	0	0	0	0	Yes	No	No
Ethylbenzene	0	100	0	0	0	Yes	Yes	No
Freon 113	0	0	0	0	0	Yes	No	No
Freon 114	0	0	0	0	0	No	No	No
Hexachlorobutadiene	0	0	100	0	100	Yes	Yes	No
Isobutane	0	83	0	0	0	No	No	No
m,p-Xylene	0	100	0	0	0	Yes	Yes	No
Methylene chloride	0	0	0	0	0	Yes	No	No
o-Xylene	0	100	0	0	0	Yes	Yes	No
Styrene	0	100	0	0	0	Yes	Yes	No
Tetrachloroethene	0	100	0	0	0	Yes	Yes	No
Toluene	0	100	0	0	0	Yes	Yes	No
trans-1,2-Dichloroethene	0	0	0	0	0	No	No	No
trans-1,3-Dichloropropene	0	0	0	0	0	No	No	No
Trichloroethene	7	64	0	100	64	Yes	No	No
Trichlorofluoromethane (Freon 11)	0	0	0	0	0	Yes	No	No
Vinyl chloride	1	9	10	100	18	Yes	No	No
Xylenes, total	0	100	0	0	0	Yes	Yes	No

				COPC Selection	(Continued)		
					data set comply with 3-P	art Rule?	
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL?	3. 95UCL <= PCUL	Does data set comply with 3-part rule?
1,1,1,2-Tetrachloroethane	NA	No	Yes	Yes	No	NA	Yes
1,1,1-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes
1,1,2,2-Tetrachloroethane	NA	No	Yes	No	No	NA	No
1,1,2-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes
1,1-Dichloroethane	NA	No	Yes	Yes	No	NA	Yes
1,1-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes
1,2,4-Trichlorobenzene	NA	No	Yes	Yes	No	NA	Yes
1,2,4-Trimethylbenzene	NA	No	Yes	Yes	No	NA	Yes
1,2-Dibromoethane	No	No	No	No	No	NA	No
1,2-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes
1,2-Dichloroethane	NA NA	No	Yes	Yes	No	NA	Yes
1,2-Dichloropropane	NA NA	No	Yes	Yes	No	NA	Yes
1,3,5-Trimethylbenzene	NA NA	No	Yes	Yes	No	NA NA	Yes
1,3-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes
1,4-Dichlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes
2-Butanone	NA NA	No	Yes	Yes	No	NA NA	Yes
2-Hexanone	NA NA	No	Yes	Yes	No	NA NA	Yes
4-Ethyltoluene	NA NA	No	Yes	Yes	No	NA NA	Yes
4-Etryttolderie 4-Methyl-2-pentanone	NA NA	No	Yes	Yes	No	NA NA	Yes
Acetone		-					
	NA NA	No N-	Yes	Yes	No N-	NA	Yes
Benzene Drama adiablarama athan a	NA NA	No N-	Yes	Yes	No N-	NA	Yes
Bromodichloromethane	NA NA	No	Yes	No	No	NA	No
Bromoform Brown and the second	NA NA	No	Yes	Yes	No	NA	Yes
Bromomethane	NA	No	Yes	Yes	No	NA	Yes
Butane	NA	No	Yes	Yes	No	NA	Yes
Carbon disulfide	NA	No	Yes	Yes	No	NA	Yes
Carbon tetrachloride	NA	No	Yes	Yes	No	NA	Yes
Chlorobenzene	NA	No	Yes	Yes	No	NA	Yes
Chloroethane	NA	No	Yes	Yes	No	NA	Yes
Chloroform	NA	No	Yes	Yes	No	NA	Yes
Chloromethane	NA	No	Yes	Yes	No	NA	Yes
cis-1,2-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes
cis-1,3-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes
Dibromochloromethane	NA	No	Yes	Yes	No	NA	Yes
Dichlorodifluoromethane (Freon 12)	NA	No	Yes	Yes	No	NA	Yes
Ethylbenzene	NA	No	Yes	Yes	No	NA	Yes
Freon 113	NA	No	Yes	Yes	No	NA	Yes
Freon 114	NA	No	Yes	Yes	No	NA	Yes
Hexachlorobutadiene	NA	No	No	No	No	NA	No
Isobutane	NA	No	Yes	Yes	No	NA	Yes
m,p-Xylene	NA	No	Yes	Yes	No	NA	Yes
Methylene chloride	NA	No	Yes	Yes	No	NA	Yes
o-Xylene	NA	No	Yes	Yes	No	NA	Yes
Styrene	NA	No	Yes	Yes	No	NA	Yes
Tetrachloroethene	NA	No	Yes	Yes	No	NA	Yes
Toluene	NA	No	Yes	Yes	No	NA	Yes
trans-1,2-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes
trans-1,3-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes
Trichloroethene	NA	Yes	No	No	No	NA	No
Trichlorofluoromethane (Freon 11)	NA	No	Yes	Yes	No	NA	Yes
Vinyl chloride	NA	Yes	No	No	No	NA	No
Xylenes, total	NA	No	Yes	Yes	No	NA	Yes
-					_		

					COPC Selection	on (Continued)			
							Are there potential hot spe	ots?	
Analyte Name	11. Is FOD low (Frequency of detection <= 5%)?	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC
1,1,1,2-Tetrachloroethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,1-Trichloroethane	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,2,2-Tetrachloroethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1,2-Trichloroethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1-Dichloroethane	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,1-Dichloroethene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,2,4-Trichlorobenzene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,2,4-Trimethylbenzene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,2-Dibromoethane	Yes	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap
1,2-Dichlorobenzene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,2-Dichloroethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,2-Dichloropropane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,3,5-Trimethylbenzene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,3-Dichlorobenzene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
1,4-Dichlorobenzene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Butanone	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
2-Hexanone	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
4-Ethyltoluene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
4-Methyl-2-pentanone	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Acetone	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Benzene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromodichloromethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromoform	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Bromomethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Butane	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Carbon disulfide	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Carbon tetrachloride	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chlorobenzene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chloroethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chloroform	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Chloromethane	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
cis-1,2-Dichloroethene	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
cis-1,3-Dichloropropene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Dibromochloromethane	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Dichlorodifluoromethane (Freon 12)	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Ethylbenzene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Freon 113	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Freon 114	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Hexachlorobutadiene	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Isobutane	No	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
m,p-Xylene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Methylene chloride	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
o-Xylene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Styrene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Tetrachloroethene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Toluene	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
trans-1,2-Dichloroethene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
trans-1,3-Dichloropropene	Yes	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Trichloroethene	No	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Trichlorofluoromethane (Freon 11)	Yes	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC
Vinyl chloride	No	Retain	Retain	Retain	COPC	No	NA	NA	COPC
Xylenes, total	No	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC

NOTES:

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

HCID = hydrocarbon identification.

HPAHs = high molecular weight PAHs.

LPAHs = low molecular weight PAHs.

NA = not applicable.

MTCA = Model Toxics Control Act.

No. = number.

PAHs = polycyclic aromatic hydrocarbons.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

 $^{(a)}$ If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(b) If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

			Calculated Values				COPC Selection	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	5. Do many RLs exceed PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	6. Do RLs exceed PCUL by much (Maximum exceedance ratio for RLs >5)? ^(b)
1,1,1,2-Tetrachloroethane	0	0	100	0	100	Yes	Yes	No
1,1,1-Trichloroethane	0	0	0	0	0	Yes	No	No
1,1,2,2-Tetrachloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1,2-Trichloroethane	0	0	100	0	100	Yes	Yes	Yes
1,1-Dichloroethane	0	0	0	0	0	Yes	No	No
1,1-Dichloroethene	0	0	0	0	0	Yes	No	No
1,2,4-Trichlorobenzene	0	0	100	0	100	Yes	Yes	No
1,2,4-Trimethylbenzene	0	50	0	0	0	Yes	No	No
1,2-Dibromoethane	0	0	100	0	100	Yes	Yes	Yes
1,2-Dichlorobenzene	0	0	0	0	0	Yes	No	No
1,2-Dichloroethane	1	87	100	8	20	Yes	Yes	No
1,2-Dichloropropane	0	0	0	0	0	Yes	No	No
1,3,5-Trimethylbenzene	0	50	0	0	0	Yes	No	No
1,3-Dichlorobenzene	0	0	0	0	0	No	No	No
1,4-Dichlorobenzene	0	0	100	0	100	Yes	Yes	No
2-Butanone	0	100	0	0	0	Yes	Yes	No
2-Hexanone	0	0	0	0	0	Yes	No	No
4-Ethyltoluene	0	50	0	0	0	No	No	No
4-Methyl-2-pentanone	0	50	0	0	0	Yes	No	No
Acetone	0	100	0	0	0	Yes	Yes	No
Benzene	2	100	0	100	100	Yes	Yes	No
Bromodichloromethane	0	0	100	0	100	Yes	Yes	Yes
Bromoform	0	0	0	0	0	Yes	No	No
Bromomethane	0	50	0	0	0	Yes	No	No
Carbon disulfide	0	50	0	0	0	Yes	No	No
Carbon tetrachloride	1	100	0	50	50	Yes	Yes	No
Chlorobenzene	0	0	0	0	0	Yes	No	No
Chloroethane	0	0	0	0	0	Yes	No	No
Chloroform	0	0	100	0	100	Yes	Yes	No
Chloromethane	0	100	0	0	0	Yes	Yes	No
cis-1,2-Dichloroethene	0	0	0	0	0	No	No	No
cis-1,3-Dichloropropene	0	0	0	0	0	No	No	No
Dibromochloromethane	0	0	0	0	0	No	No	No
Dichlorodifluoromethane (Freon 12)	0	100	0	0	0	Yes	Yes	No
Ethylbenzene	0	50	0	0	0	Yes	No No	No
Freon 113	0	0	0	0	0	Yes	No	No
Freon 114	0	0	0	0	0	No	No	No
Hexachlorobutadiene	0	0	100	0	100	Yes	Yes	Yes
m,p-Xylene	0	100	0	0	0	Yes	Yes	No No
Methylene chloride	0	50	0	0	0	Yes	No No	No
o-Xylene	0	50	0	0	0	Yes	No	No
Styrene	0	50	0	0	0	Yes	No	No
Tetrachloroethene	0	50	0	0	0	Yes	No	No
Toluene	0	100	0	0	0	Yes	Yes	No
trans-1,2-Dichloroethene	0	0	0	0	0	No	No Yes	No
trans-1,3-Dichloropropene	0	0	0	0	0	No No	No	No
Trichloroethene	27	80	0	77	61	Yes	No	No

			Calculated Values			COPC Selection			
							5. Do many RLs exceed	6. Do RLs exceed PCUL by	
Analyte Name	No. Detect Exceedances	Detection Frequency (%)	RL Exceedance Frequency (%)	Detections Exceedance Frequency (%)	Exceedance Frequency (Total) (%)	1. Is there a PCUL?	PCUL? (Frequency of exceedance for RLs > 10%)? ^(a)	much (Maximum exceedance ratio for RLs >5)? ^(b)	
Trichlorofluoromethane (Freon 11)	0	100	0	0	0	Yes	Yes	No	
Vinyl chloride	0	4	5	0	4	Yes	No	No	
Xylenes, total	0	100	0	0	0	Yes	Yes	No	

	COPC Selection (Continued)												
				10. Does	data set comply with 3-P	art Rule?							
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration =<br 2xPCUL?	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?					
1,1,1,2-Tetrachloroethane	NA	No	No	No	No	NA	No	Yes					
1,1,1-Trichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,1,2,2-Tetrachloroethane	Yes	No	No	No	No	NA	No	Yes					
1,1,2-Trichloroethane	No	No	No	No	No	NA	No	Yes					
1,1-Dichloroethane	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,1-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,2,4-Trichlorobenzene	NA	No	No	No	No	NA	No	Yes					
1,2,4-Trimethylbenzene	NA	No	Yes	Yes	No	NA	Yes	No					
1,2-Dibromoethane	No	No	No	No	No	NA	No	Yes					
1,2-Dichlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,2-Dichloroethane	NA	Yes	No	No	No	NA	No	No					
1,2-Dichloropropane	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,3,5-Trimethylbenzene	NA	No	Yes	Yes	No	NA	Yes	No					
1,3-Dichlorobenzene	NA	No	Yes	Yes	No	NA	Yes	Yes					
1,4-Dichlorobenzene	NA	No	No	No	No	NA	No	Yes					
2-Butanone	NA	No	Yes	Yes	No	NA	Yes	No					
2-Hexanone	NA	No	Yes	Yes	No	NA	Yes	Yes					
4-Ethyltoluene	NA	No	Yes	Yes	No	NA	Yes	No					
4-Methyl-2-pentanone	NA NA	No	Yes	Yes	No	NA	Yes	No					
Acetone	NA NA	No	Yes	Yes	No	NA	Yes	No					
Benzene	NA NA	Yes	No	No	No	NA	No	No					
Bromodichloromethane	No	No	No	No	No	NA	No	Yes					
Bromoform	NA NA	No	Yes	Yes	No	NA	Yes	Yes					
Bromomethane	NA NA	No	Yes	Yes	No	NA	Yes	No					
Carbon disulfide	NA NA	No	Yes	Yes	No	NA	Yes	No					
Carbon tetrachloride	NA NA	Yes	Yes	No	No	NA	No	No					
Chlorobenzene	NA NA	No	Yes	Yes	No	NA	Yes	Yes					
Chloroethane	NA NA	No	Yes	Yes	No	NA	Yes	Yes					
Chloroform	NA NA	No	No	No	No	NA	No	Yes					
Chloromethane	NA NA	No	Yes	Yes	No	NA	Yes	No					
cis-1,2-Dichloroethene	NA	No	Yes	Yes	No	NA	Yes	Yes					
cis-1,3-Dichloropropene	NA	No	Yes	Yes	No	NA	Yes	Yes					
Dibromochloromethane	NA	No	Yes	Yes	No	NA	Yes	Yes					
Dichlorodifluoromethane (Freon 12)	NA	No	Yes	Yes	No	NA	Yes	No					
Ethylbenzene	NA	No	Yes	Yes	No	NA	Yes	No					
Freon 113	NA	No	Yes	Yes	No	NA	Yes	Yes					
Freon 114	NA NA	No	Yes	Yes	No	NA	Yes	Yes					
Hexachlorobutadiene	No	No	No	No	No	NA NA	No	Yes					
m,p-Xylene	NA NA	No	Yes	Yes	No	NA NA	Yes	No					
Methylene chloride	NA NA	No	Yes	Yes	No	NA	Yes	No					
o-Xylene	NA NA	No	Yes	Yes	No	NA	Yes	No					
Styrene	NA NA	No	Yes	Yes	No	NA NA	Yes	No					
Tetrachloroethene	NA NA	No	Yes	Yes	No	NA	Yes	No					
Toluene	NA NA	No	Yes	Yes	No	NA NA	Yes	No					
trans-1,2-Dichloroethene	NA	No	Yes	Yes	No	NA NA	Yes	Yes					
trans-1,3-Dichloropropene	NA	No	Yes	Yes	No	NA NA	Yes	Yes					
Trichloroethene	NA	Yes	No	No	No	NA NA	No	No					

		COPC Selection (Continued)											
Analyte Name	7. Are the RLs as good as we can get (Maximum RL <= 5 times achievable RL)?	9. Maximum detected concentration > PCUL?	1. Maximum concentration = 2xPCUL?</th <th>2. Not more than 10% of results > PCUL?</th> <th>Need to calculate a 95UCL?^(c)</th> <th>3. 95UCL <= PCUL</th> <th>Does data set comply with 3-part rule?</th> <th>11. Is FOD low (Frequency of detection <= 5%)?</th>	2. Not more than 10% of results > PCUL?	Need to calculate a 95UCL? ^(c)	3. 95UCL <= PCUL	Does data set comply with 3-part rule?	11. Is FOD low (Frequency of detection <= 5%)?					
Trichlorofluoromethane (Freon 11)	NA	No	Yes	Yes	No	NA	Yes	No					
Vinyl chloride	NA	No	Yes	Yes	No	NA	Yes	Yes					
Xylenes, total	NA	No	Yes	Yes	No	NA	Yes	No					

	COPC Selection (Continued)												
					14.	Are there potential hot sp	ots?						
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots?	Hot spot comments	8. Data Gap 12. COPC 3., 13. Not a COPC					
1,1,1,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,1,1-Trichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,1,2,2-Tetrachloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,1,2-Trichloroethane	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap					
1,1-Dichloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,1-Dichloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,2,4-Trichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
1,2,4-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
1,2-Dibromoethane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA	Data Gap					
1,2-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC					
1,2-Dichloroethane	Retain	Retain	Retain	COPC	No	NA NA	NA	COPC					
1,2-Dichloropropane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
1,3,5-Trimethylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
1,3-Dichlorobenzene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
1,4-Dichlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC					
2-Butanone	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
2-Hexanone	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
I-Ethyltoluene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
1-Methyl-2-pentanone			Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
Acetone	Retain Retain	Retain Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
Benzene	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC					
Bromodichloromethane	Retain	Data Gap	Data Gap	Data Gap	No	NA NA	NA NA	Data Gap					
Bromoform			•	Not a COPC	No	NA NA		•					
	Retain	Retain	Not a COPC Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC Not a COPC					
Bromomethane	Retain	Retain			1	NA NA							
Carbon disulfide Carbon tetrachloride	Retain	Retain	Not a COPC	Not a COPC	No		NA NA	Not a COPC					
	Retain	Retain	Retain	COPC	No	NA NA	NA NA	COPC					
Chlorobenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA NA	Not a COPC					
Chloroethane	Retain	Retain	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC					
Chloroform	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Chloromethane	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
cis-1,2-Dichloroethene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
cis-1,3-Dichloropropene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Dibromochloromethane	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA NA	NA	Not a COPC					
Dichlorodifluoromethane (Freon 12)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
thylbenzene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Freon 113	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
reon 114	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
lexachlorobutadiene	Retain	Data Gap	Data Gap	Data Gap	No	NA	NA	Data Gap					
n,p-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Methylene chloride	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
o-Xylene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Styrene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
etrachloroethene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
oluene	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
rans-1,2-Dichloroethene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
rans-1,3-Dichloropropene	Not a COPC	Not a COPC	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Trichloroethene	Retain	Retain	Retain	COPC	No	NA	NA	COPC					

		COPC Selection (Continued)											
					14. /	Are there potential hot sp	ots?						
Analyte Name	3. Not a COPC (Preliminary, see note)	8. Data Gap	13. Not a COPC	12. COPC (Preliminary, see notes)	Conduct potential hot spot analysis?	Are there potential hot spots? Hot spot comments		8. Data Gap 12. COPC 3., 13. Not a COPC					
Trichlorofluoromethane (Freon 11)	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Vinyl chloride	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					
Xylenes, total	Retain	Retain	Not a COPC	Not a COPC	No	NA	NA	Not a COPC					

NOTES:

% = percent.

COPC = chemical of potential concern.

cPAH TEQ = carcinogenic PAH toxic equivalency quotient.

FOD = frequency of detection.

NA = not applicable.

MTCA = Model Toxics Control Act.

No. = number.

PCUL = preliminary cleanup level.

RL = reporting limit.

UCL = upper confidence limit.

^(a)If no. 1 is "No," this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(b) If no. 5 is "No", this column displays as "No" rather than "NA" to simplify the COPC selection formulas.

(c) A UCL is calculated if the chemical has not already been eliminated from consideration as a COPC or a data gap and no. 1 and 2 are both "Yes."

STATISTICAL ANALYSIS

PROJECT NO. 1803.01.04 | MARCH 18, 2021 | DICK MORGAN

Maul Foster & Alongi, Inc. calculated upper confidence limit (UCL) values for select chemicals for the Precision Engineering, Inc. site (Site) in Seattle, Washington. UCLs were calculated for use in the preliminary chemical of potential concern (COPC) selection process in the remedial investigation (RI) work plan for comparison with preliminary cleanup levels (PCULs). The UCL calculation process described in this memorandum was conducted in accordance with Washington State Department of Ecology (Ecology) draft ProUCL guidelines.¹

COPC SELECTION

To assess if a chemical should be considered a preliminary COPC, step 10 of the COPC flowchart (included as Appendix G-1) requires evaluating the three-part rule. A chemical is not a preliminary COPC if it meets the three-part rule criteria below:

- The maximum concentration is less than or equal to two times the PCUL
- Not more than 10 percent of results exceed the PCUL
- The 95 UCL is less than or equal to the PCUL

An initial COPC selection evaluation was performed on historical data in all media to identify locations where maximum detected concentrations or 95 UCLs were needed to determine compliance with PCULs. Based on the initial COPC selection process, the following chemicals/media required further evaluation:

- Arsenic in saturated soil
- Total naphthalenes in vadose soil

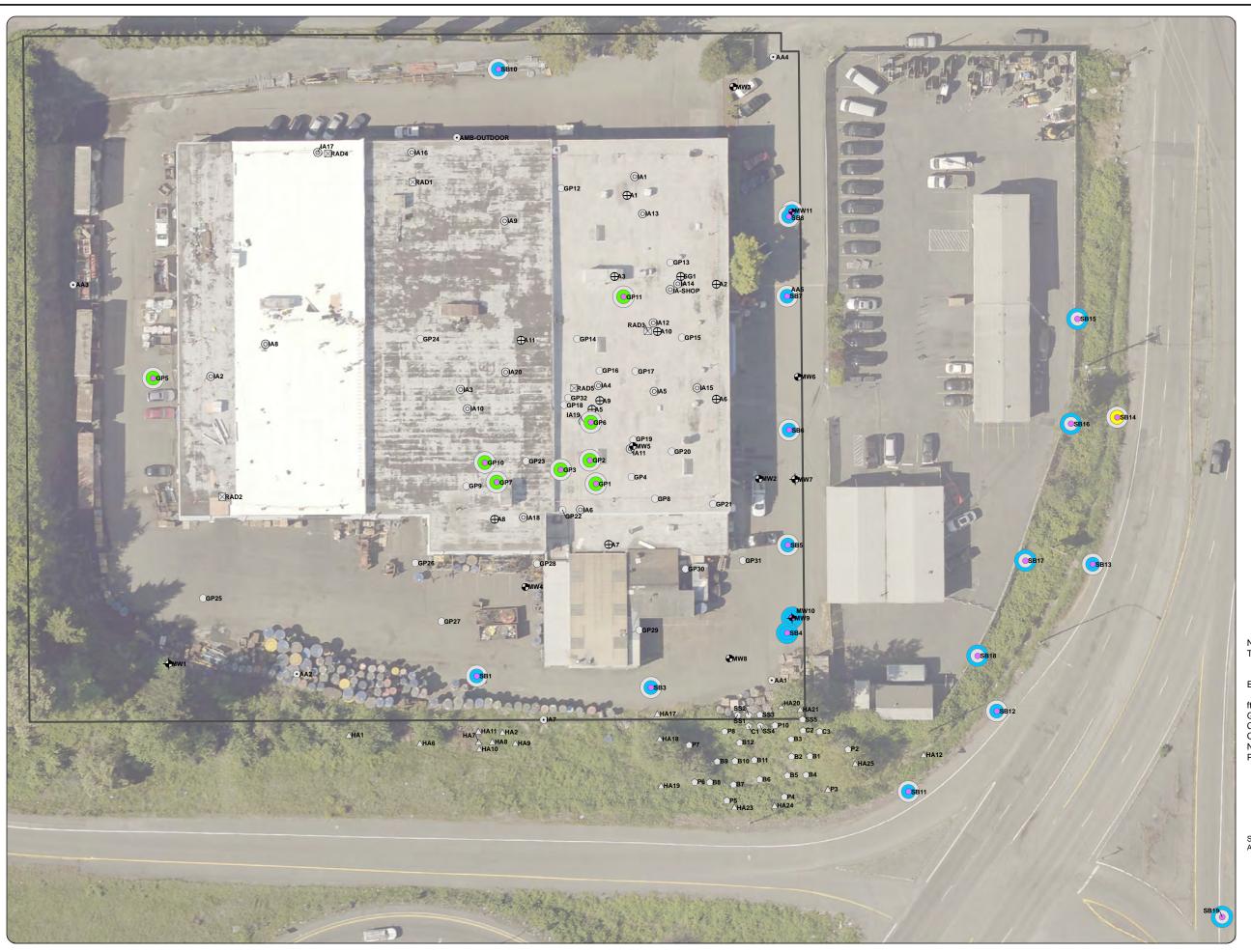
The sample size for total naphthalenes in vadose soil was insufficient for a 95 UCL calculation; therefore, the maximum detected value was used for comparison to the PCUL. The 95 UCL for arsenic in saturated soil was calculated consistent with Ecology guidance, as described in the next section.

UPPER CONFIDENCE LIMIT CALCULATION

A 95 UCL was calculated for arsenic in saturated soil using the U.S. Environmental Protection Agency's ProUCL program, in accordance with Ecology's ProUCL guidelines. Full method detection limits were used in ProUCL calculations in all cases where concentrations were below detection limits. A goodness-of-fit test was performed using ProUCL to determine whether the dataset fit a normal, gamma, lognormal, or nonparametric distribution. The dataset fit a normal distribution (see ProUCL goodness-of-fit outputs, attached). Using Ecology guidance, the 95% Kaplan-Meier t(UCL) of 4.97 milligrams per kilogram (mg/kg) was selected as the 95 UCL for arsenic in saturated soil at the Site (see ProUCL UCL statistics outputs, attached). The 95 UCL is below the arsenic saturated soil PCUL

¹ Ecology. 2017. ProUCL draft guidelines. Washington State Department of Ecology, Olympia, Washington. January 17. R:\1803.01 Dick Morgan\Document\04_2021.03.18 Draft RI Work Plan\Appendices\G - COPCs\3_Statistical Analysis\Mf_Statistical Analysis.docx

of 7.3 mg/kg. Please note that the 95 UCL presented here is subject to change with the collection of additional data during the RI or if additional guidance is received from Ecology. Attachment: ProUCL Outputs


	Α	В	С	D	E	F	G	Н	I	J	K	L
1			-11-01	Goodness-o	f-Fit Test Sta	atistics for Da	ata Sets with	Non-Detects	3			
2	2		cted Options	DrollOL 5 10	0/11/0001 1	EE.1E DNA						
3	Da	ie/ i ime of C	Computation	ProUCL 5.12								
4			From File	Input_Satura	ileu Soll Ars	enic.XIS						
5			Ill Precision Coefficient	OFF 0.95								
6		Confidence	Coemicient	0.95								
7												
8	۸۵											
9	As											
10					Num Obs	Num Miss	Num Valid	Detects	NDs	% NDs		
11			D	aw Statistics	35	0	35	18	17	48.57%		
12			D.	aw Statistics	33	U	33	10	17	40.57 //		
13					Number	Minimum	Maximum	Mean	Median	SD		
14		Cto	tiotics (Non D	Actacta Only)	17	4.99	8					
15			tistics (Non-D	- 1	17	4.99 2.1	10	5.999 5.022	6 5.25	1.001	 	
16	C		NDs treated	• /	35	2.1	10	5.022	5.25	1.785	 	
17		•	IDs treated as	•	35	2.1	10	4.04	3.5	1.785		
18		`	ormal ROS In	1	35	1.474	10	4.04	4.064	1.907	 	
19		•	ormai ROS in amma ROS in		35 35	1.474	10	4.332	3.825	1.905	 	
20		,	ormal ROS In		35	2.1	10	4.264	3.825	1.855	 	
21	Sidi	isucs (LOGN	omiai NOS III	าหนเ ด น เวสเส)	JU	۷.۱	10	4.204	3./11	1.000	 	
22					K hat	K Star	Theta hat	Log Mean	Log Stdv	Log CV	+	
23		C+~	tistics (Non-D	letects Only)	5.251	4.413	0.956	1.516	0.467	0.308	+	-
24		518	•	(NDs = DL)	8.4	7.699	0.956	1.643	0.467	0.308	 	
25				NDs = DL/2)	5.754	5.28	0.654	1.643	0.374	0.227	 	
26		Statistics /	Gamma ROS		6.06	5.28	0.702	1.307	0.411	0.315	 	
27	c	,	gnormal ROS	,	6.06	5.56	0.707	1.368	0.413	0.302	+	-
28		riausuus (LO	gnomiai NOS	Louinales)				1.500	0.402	0.234	+	
29				h.	lormal COE	Test Results	•				+	-
30				N	ioiniai GUF	resurtesuits	,				+	-
31					No NDs	NDs - DI	NDs = DL/2	Normal BOS			 	
32			Correlation (Coefficient R	0.971	0.977	0.907	0.968			+	
33			OUTE IN THE	Soemoetil K	0.9/1	0.377	0.307	0.300			+	
34					Test value	Crit. (0.05)	_	onclusion wi	th Alpha(0 0	15)	 	
35		C1	napiro-Wilk (D	etects Only)	0.938	0.897	Data Appea		ui Aiþila(U.U	· · · · · · · · · · · · · · · · · · ·	+	
36		31	Shapiro-Wilk	37	0.954	0.897	Data Appea				+	
37		c	Shapiro-Wilk (` '	0.934	0.934	Data Not No					
38	c		(Normal RO	1	0.823	0.934	Data Not No					
39		παριιυ-ννιίκ	•	etects Only)	0.936	0.934	Data Appea					
40			•	s (NDs = DL)	0.14	0.202	Data Not No					
41				NDs = DL/2)	0.148	0.148	Data Not No					
42		illiefore	(Normal RO	•	0.0977	0.148	Data Not No				+	+
43		Lilliciois	, (140/mai 110)	c Louinates)	0.0077	0.140	Data Appea				+	-
44				<u> </u>	amma GOF	Test Result	<u> </u>				 	
45						. Joe i tooulu					+	
46					No NDs	NDs = DL	NDs = DL/2	Gamma ROS			+	
47			Correlation (Coefficient R	0.983	0.967	0.964	0.989			+	+
48			Jonolation	Commont IX	0.000	0.007	0.004	0.000			+	
49					Test value	Crit. (0.05)		onclusion wi	th Alnha(0 0	15)	+	
50		Anderson-Darling (Detects Only)				0.743		CITCIAGIOIT WI	,pria(0.0		+	
51		Anderson-Darling (Detects Only) Kolmogorov-Smirnov (Detects Only)			0.442 0.155	0.743						
52		_	lerson-Darling		1.167	0.204						
53			jorov-Smirnov		0.194	0.749	Data Not Co	amma Distrib	uted		 	
54		_	rson-Darling (` '	1.584	0.149	Data NOI Ga	שוווום טואוווט	uleu		 	
55		Ailuel	יייספוווווא (1109 - DL/Z)	1.304	0.70						

	Α	В	С	D	E	F	G	Н	I	J	K	L
56		Kolmogoro	ov-Smirnov (NDs = DL/2)	0.206	0.149	Data Not Ga	amma Distrib	uted			
57	Anders	on-Darling (Gamma ROS	S Estimates)	0.37	0.749						
58	Kolm	nogorov-Smi	irnov (Gamm	a ROS Est.)	0.103	0.149	Data Appea	r Gamma Di	stributed			
59												
60				Lo	gnormal GO	F Test Resu	lts					
61												
62					No NDs	NDs = DL	NDs = DL/2	Log ROS				
63			Correlation (Coefficient R	0.976	0.949	0.955	0.987				
64												
65					Test value	Crit. (0.05)	С	onclusion w	ith Alpha(0.0)5)		
66		Sha	apiro-Wilk (D	etects Only)	0.942	0.897	Data Appea	r Lognormal				
67		;	Shapiro-Wilk	(NDs = DL)	0.898	0.934	Data Not Lo	gnormal				
68		Sł	napiro-Wilk (NDs = DL/2)	0.901	0.934	Data Not Lo	gnormal				
69	Shap	oiro-Wilk (Lo	gnormal ROS	S Estimates)	0.963	0.934	Data Appea	r Lognormal				
70			Lilliefors (D	etects Only)	0.171	0.202	Data Appea	r Lognormal				
71			Lilliefors	(NDs = DL)	0.221	0.148	Data Not Lo	gnormal				
72			Lilliefors (NDs = DL/2)	0.181	0.148	Data Not Lo	gnormal				
73	I	Lilliefors (Lo	gnormal ROS	S Estimates)	0.0971	0.148	Data Appea	r Lognormal				
74									·	·		
75	Note: Substi	tution metho	ods such as [DL or DL/2 a	re not recom	mended.						

		A B	С	D E		F	G H I J K	L
Moder Mode Mode Mode Mode Section Mode Section Mode Section Mode Section Mode Mode Section Mode			OOL	Jiausi	ICS IOI Data	Sets with Nort-Detects		
Dates Time of Computation Prof. L.S. 1928/2020 1-32-20 PM Filt Prof. L.S. 1928/2020 1-32-20 PM Pr		User Selected	Ontions					
Firm File			•		20 1:3	32:20 PM		
Full Precision		•						
Confidence Coefficient				. –				
Number of Bootstrap Operations	-	Confidence Coef	fficient	95%				
100 No	\vdash	Number of Bootstrap Opera	rations	2000				
10 No.				<u> </u>				
13 13 14 14 15		As						
Total Number of Observations 35	11							
Number of Detects	12					General S	Statistics	
Number of Distinct Detects	13		Total	Number of Observa	tions	35	Number of Distinct Observations	19
	14							17
Maximum Detect 10	15		Nı	umber of Distinct De	tects	_	Number of Distinct Non-Detects	5
18	16							
19	17							_
19	18							
Skewness Detects 0.534	19							
Mean of Logged Detects 1.516 SD of Logged Detects 0.467	20			Median De	tects			_
Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.938 Shapiro Wilk GOF Test	21							
Shapiro Wilk Test Statistic 0.938 Shapiro Wilk GOF Test	22			Mean of Logged De	tects	1.516	SD of Logged Detects	0.467
Shapiro Wilk Test Statistic 0.938	23							
26	24						•	
Color	25			•			•	
28 5% Lilliefors Critical Value 0.202 Detected Data appear Normal at 5% Significance Level	26		5% SI					əl
Standard Statistics Stati			5					3I
Staplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs				Detected L	Jata a	ppear Norm	al at 5% Significance Level	
XM Mean XM Mean XM Mean XM Mean XM Standard Error of Mean XM Standard Err	30	1	Vonlon I	Major (KM) Statistics	oinc	. Normal Cri	tical Values and other Nonnersmetric LICLs	
32 38 SKM SD 1.925 95% KM (PCA) UCL 4.936 34 95% KM (t) UCL 4.972 95% KM (Percentile Bootstrap) UCL 4.961 35 95% KM (2) UCL 4.954 95% KM Bootstrap t UCL 5.03 36 90% KM Chebyshev UCL 5.491 95% KM Chebyshev UCL 6.03 37 97.5% KM Chebyshev UCL 6.778 99% KM Chebyshev UCL 8.248 38 S Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.442 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.155 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level 45 Gamma Statistics on Detected Data Only 4.413 4.413 48 Material Miller 5.251 k star (bias corrected MLE) 4.413 48 Theta star (MILE) 0.956 Theta star (bias corrected MLE) 1.138 </td <td></td> <td>,</td> <td>Napian-i</td> <td></td> <td></td> <td></td> <td></td> <td>0.207</td>		,	Napian-i					0.207
Section								
Section Sec							* * *	
Solid 90% KM Chebyshev UCL 5.491 95% KM Chebyshev UCL 6.03				* *				
37 97.5% KM Chebyshev UCL 6.778 99% KM Chebyshev UCL 8.248			C	` '			•	
38 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.442 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.155 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45 Detected data appear Gamma Distributed at 5% Significance Level 46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 5.251 k star (bias corrected MLE) 4.413 48 Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 1.138 49 nu hat (MLE) 189 nu star (bias corrected MLE) 1.138 50 Mean (detects) 5.022 The Statistics using Imputed Non-Detects 51 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 52 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				•				
39 Gamma GOF Tests on Detected Observations Only 40 A-D Test Statistic 0.442 Anderson-Darling GOF Test 41 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 42 K-S Test Statistic 0.155 Kolmogorov-Smirnov GOF 43 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level 45 Detected data appear Gamma Distributed at 5% Significance Level 47 Gamma Statistics on Detected Data Only 48 Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 4.413 49 nu hat (MLE) 189 nu star (bias corrected MLE) 158.9 50 Mean (detects) 5.022 nu star (bias corrected) 158.9 51 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 54 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				.070 raw Griebyonev	OOL	0.770	33 % TAM Ghabyshev 332	
A-D Test Statistic				Gamma	GOF	Tests on Det	ected Observations Only	
41 5% A-D Critical Value							-	
K-S Test Statistic 0.155 Kolmogorov-Smirnov GOF 3 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level 44 Detected data appear Gamma Distributed at 5% Significance Level 45 46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 5.251 k star (bias corrected MLE) 4.413 48 Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 1.138 49 nu hat (MLE) 189 nu star (bias corrected) 158.9 50 Mean (detects) 5.022 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 54 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)							~	e Level
243 5% K-S Critical Value 5% K-S Critical Value 0.204 Detected data appear Gamma Distributed at 5% Significance Level 444 Detected data appear Gamma Distributed at 5% Significance Level 455 46 Gamma Statistics on Detected Data Only 47 A k hat (MLE) 5.251 k star (bias corrected MLE) 4.413 48 Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 1.138 49 nu hat (MLE) 189 nu star (bias corrected) 158.9 50 Mean (detects) 5.022 nu star (bias corrected) 158.9 51 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 53 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)							-	
Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only K hat (MLE) 5.251	-							e Level
45 46 Gamma Statistics on Detected Data Only 47 k hat (MLE) 5.251 k star (bias corrected MLE) 4.413 48 Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 1.138 49 nu hat (MLE) 189 nu star (bias corrected) 158.9 50 Mean (detects) 5.022 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 54 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				Detected data ap	pear			
Gamma Statistics on Detected Data Only				•				
47k hat (MLE)5.251k star (bias corrected MLE)4.41348Theta hat (MLE)0.956Theta star (bias corrected MLE)1.13849nu hat (MLE)189nu star (bias corrected)158.950Mean (detects)5.02251Gamma ROS Statistics using Imputed Non-Detects53GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs54GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				Gai	mma S	Statistics on	Detected Data Only	
Theta hat (MLE) 0.956 Theta star (bias corrected MLE) 1.138 49 nu hat (MLE) 189 nu star (bias corrected) 158.9 50 Mean (detects) 5.022 51 52 Gamma ROS Statistics using Imputed Non-Detects 53 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 54 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)	-			k hat (N	MLE)	5.251	k star (bias corrected MLE)	4.413
nu hat (MLE) 189 nu star (bias corrected) 158.9 Mean (detects) 5.022 Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				Theta hat (N	MLE)	0.956	Theta star (bias corrected MLE)	1.138
Mean (detects) 5.022 51 52 Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				nu hat (f	MLE)	189	nu star (bias corrected)	158.9
Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				Mean (det	ects)	5.022		
Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)								
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)				Gamma	ROS	Statistics us	ing Imputed Non-Detects	
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)	-	GRO	OS may	not be used when d	lata se	et has > 50%	NDs with many tied observations at multiple DLs	
For such situations, GROS method may yield incorrect values of UCLs and BTVs		GROS may not	be used	when kstar of detec	ts is s	mall such as	s <1.0, especially when the sample size is small (e.g., <15-20)	
<u></u>	55		Fo	r such situations, GF	ROS n	nethod may	yield incorrect values of UCLs and BTVs	

56	Α	В	С	D -	E This is espec	F ally true whe	G en the sample	H size is sr	mall.	I	J		K		L
57	For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates														
58	Minimum 1.928 Mean 4.286									4.286					
59	Maximum						Med				Media	an	3.825		
60					1.871	CV					CV	0.437			
61	k hat (MLE)						k star (bias corrected MLE)					E)	5.56		
62	Theta hat (MLE)						Theta star (bias corrected MLE)					.E)	0.771		
63											nu sta	ar (bias	correcte	d)	389.2
64			Adjusted	Level of Sig	0.0425										
65		Аррі	roximate Chi	Square Valu	ιе (389.19, α)	344.5			Adjuste	ed Chi	Square	Value	(389.19,	β)	342.5
66		95% Gamma	a Approximat	e UCL (use	when n>=50)	4.842		95% (Gamma	Adjust	ed UCL	(use v	vhen n<5	i0)	4.87
67															
68	Estimates of Gamma Parameters using KM Estimates														
69	Mean (KM)					4.301	SD (KM)							M)	1.925
70				V	ariance (KM)	3.704	SE of Mean (KN						M)	0.397	
71					k hat (KM)	4.994	k star (K						M)	4.585	
72					nu hat (KM)	349.6	nu star (KM						M)	321	
73				th	neta hat (KM)	0.861	theta star (KM)						M)	0.938	
74			80%	6 gamma pe	rcentile (KM)	5.838	90% gamma percentile (KM)						M)	6.992	
75			95%	6 gamma pe	rcentile (KM)	8.047				99%	6 gamn	na perc	entile (K	M)	10.29
76							i.								
77					Gamm	na Kaplan-Me	eier (KM) Stat	tistics							
78		Approximate Chi Square Value (320.96, α)				280.5	Adjusted Chi Square Value (320.9				(320.96,	β)	278.7		
79	95%	6 Gamma Ap	proximate KN	M-UCL (use	when n>=50)	4.922	9	95% Gam	ıma Adjı	usted K	(M-UCL	_ (use \	vhen n<5	50)	4.954
80						•									
81				L	ognormal GC	F Test on De	etected Obser	rvations C	Only						
82			S	hapiro Wilk	Test Statistic	0.942			•		k GOF				
83			5% SI	hapiro Wilk (Critical Value	0.897	Dete	cted Data		_			gnificanc	e Lev	vel
84		Lilliefors Test Statistic 0.171 Lilliefors GOF Test													
85		5% Lilliefors Critical Value 0.202 Detected Data appear Lognormal at 5% Significance Level									vel				
86				Dete	ected Data ap	pear Lognor	mal at 5% Sig	gnificance	Level						
87															
88					_		Jsing Imputed	Non-Det	ects						
89					Original Scale						N		Log Sca		1.368
90					Original Scale								Log Sca		0.402
91		95% t	UCL (assume	•	•					95% I			tstrap U(4.778
92					ootstrap UCL						95%	% Boots	strap t U(JL	4.922
93				95% H-UC	L (Log ROS)	4.847								\perp	
94			O: ::							.					
95			Statis	•			ata and Assu	ming Logi	normai L	Distribu	ition	1714	0 11		0.045
96					lean (logged)					OE9/ 1	ا ا الماس		Geo Me		3.915
97			IVM Otorad		SD (logged)					95% (e (KM-Lo		1.89
98			Kivi Standai		lean (logged)					050/ 1			. (KM -Lo		4.938
99			KW C+c		SD (logged)					95% (ritical	n valu	e (KM-Lo	yg)	1.89
100			Kivi Standal	ıu ⊏if0f 0f M	lean (logged)	0.0958								\perp	
101						DI 10 0	totiotics								
102			DI 10 F	lormal		DL/2 St	tatistics		D1 10) a= T	ronof-	mod			
103			טטע ויי	Normal	Original Scale	4.04			DL/2	. Log-I	ransfor		Log Sca	alc	1.307
104					Original Scale Original Scale						IN.		Log Sca		0.411
105			QE0/ +1		es normality)								H-Stat U		4.59
106				•	• ,		od for some	rioona and	d biotari	ool res	none	უე% I	า-อเสเ ป(JL	4.59
107		DL/2 is not a recommended method, provided for comparisons and historical reasons													
108	Nonparametric Distribution Free UCL Statistics														
109		·													
110		Detected Data appear Normal Distributed at 5% Significance Level													

	Α	В	С	D	E	F	G	Н	I	J	K	L
111												
112	Suggested UCL to Use											
113	95% KM (t) UCL 4.972											
114												
115	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
116	Recommendations are based upon data size, data distribution, and skewness.											
117	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
118	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
119												
ı —												

Figure G4-1 **Ethylbenzene in Saturated Soil**

Precision Engineering, Inc. Seattle, Washington

Legend

Previous Sample Locations

- Ambient
- Boring
- Deep Monitoring Well
- Hand
- Indoor
- Passive Indoor
- Shallow Monitoring Well
- Sub-Slab Soil Gas
- Surface Soil

Sample Results

Media

Saturated Soil (<=20 ft-bgs)

Saturated Soil (>20 ft-bgs)

Result

Detected Exceedance

ND Exceedance

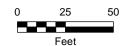
ND Non-Exceedance

Not Sampled

This figure includes ethylbenzene results for saturated soil for use in the hot spot analysis step of the COPC selection process.

Exceedances are relative to the PCULs for each COI included

in the analyte group.


It bgs = feet below ground surface.

Gray symbols represent locations that were not sampled.

COI = chemical of interest.

COPC = chemical of potential concern.

ND = non-detect.
PCUL = preliminary cleanup level.

Source: Aerial photograph obtained from King County (2019).

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

APPENDIX I

Sampling and Analysis Plan & Quality
Assurance Project Plan

1.0 INTRODUCTION

GeoEngineers has prepared this sampling and analysis plan and quality assurance project plan (SAP/QAPP) consistent with the requirements of Washington Administrative Code (WAC) 173-340-820 on behalf of Dick Morgan (the Client) to guide aspects of the remedial investigation (RI) field and laboratory analytical activities associated sample collection at the Precision Engineering, Inc. (Precision) site (the Site). The Site is defined by the extent of hazardous substance releases associated with Precision's historical operations. The Site includes the property located at 1231 S Director Street in Seattle, Washington (the Property) and may include portions of adjoining properties. This document meets the requirements of Agreed Order No. DE 18079 between the Washington State Department of Ecology (Ecology) and the potentially liable parties, including the Client, CL Frazier Properties, LLC, and Precision. Mr. Lee Frazier is the owner of CL Frazier Properties, LLC, the Property owner, and the owner of Pacific Industrial Supply, Inc., which currently runs an industrial supply store on the Property.

This SAP/QAPP has been prepared consistent with the requirements of Ecology's Guidance on Sampling and Data Analysis Methods (Ecology, 1995), Guidance for Preparing Quality Assurance Project Plans for Environmental Studies (Ecology, 2004), and the 1993 Model Toxics Control Act (MTCA) (WAC Chapter 173-340). This SAP/QAPP provides details on analytical methods and associated laboratory reporting- and detection-limit needs and defines field and laboratory quality assurance and quality control (QA/QC) requirements and procedures.

Property history is included in Section 2.2 of the RI work plan. This SAP/QAPP is an appendix to the RI work plan. Extensive site characterization activities have been conducted at the Site beginning in 1986 and are summarized in Section 2.5 of the RI work plan.

1.1. Investigation Objectives

The primary objective of the RI is to address data gaps to further characterize the nature and extent of environmental impacts at the Site. The RI work plan references relevant procedures and protocols from this SAP/QAPP, specifies media to be sampled, and identifies the proposed sample locations. This SAP/QAPP is meant to ensure that data collected during the RI are of sufficient quality to support of the Site characterization and development of remedial actions protective of human health and the environment.

An addendum describing the specific revision(s) may be prepared if a phase of work or an otherwise unforeseen change in methodology requires modification to this SAP/QAPP, or the alternative procedures used will be documented in the RI report. Procedures described in this SAP/QAPP will be used to direct the investigation process so that the following conditions are met:

- Data collected are of high quality, representative, and verifiable.
- Use of resources is cost effective.
- Data can be used to support the Site characterization and selection and implementation of remedial actions if such actions are necessary.

This SAP/QAPP describes methods and procedures for sampling environmental media, decontaminating equipment, managing investigation-derived waste (IDW), and collecting, analyzing, and evaluating useful

data. This SAP/QAPP includes quality assurance (QA) procedures for field activities, laboratory quality control (QC) procedures, and data validation.

2.0 ORGANIZATION AND SCHEDULE

The RI work plan provides the project management plan, including key project personnel and a schedule of deliverables. Additional key project personnel are included in the RI work plan that include the GeoEngineers communications lead, human health toxicity lead, and supporting field personnel.

2.1. Project Team Organization

This section provides the organizational structure, lines of authority, and responsibilities of key project roles. Project activities will be performed within the framework of the organization and functions presented in this section. The organizational structure will provide clear lines of responsibility and authority with the following objectives:

- Identify appropriate lines of communication and coordination.
- Monitor project schedules and performance of subcontractors.
- Coordinate support functions such as laboratory analysis and data management.

Contact information for key project individuals is provided in Table 2-1. The GeoEngineers project manager is responsible for distributing copies of the final SAP/QAPP to individuals on the distribution list.

2.1.1. Ecology Site Manager Responsibilities

Ecology is the lead regulatory agency for the Site with Priscilla Tomlinson as the lead Ecology site manager. Ecology will oversee activities associated with the RI fieldwork and data collection, as described in the RI work plan. Ecology will provide recommendations and guidance to the GeoEngineers project manager on conducting the RI in accordance with MTCA requirements. Ecology will review and approve the RI work plan and associated appendices including this SAP/QAPP.

2.1.2. GeoEngineers Personnel

GeoEngineers personnel include Terry McPhetridge as the principal in charge of the project and Garrett Leque as the project manager. The principal will assist the project manager with overall programmatic planning for the technical components of the RI and oversee the development of scopes, schedules, and budgets.

2.1.3. GeoEngineers Project Manager Responsibilities

The investigation project manager is Mr. Leque. Mr. Leque will provide direction to GeoEngineers staff and subcontractors to complete the investigation in accordance with this SAP/QAPP. He will be responsible for the aspects of project implementation and is the primary GeoEngineers point of contact with Ecology and the Ecology-identified potentially liable parties.

2.1.4. Field Coordinator/On-Site Safety Officer Responsibilities

The field coordinator and on-site safety officer will be Paul Robinette. The field coordinator is responsible for leading field investigation activities, including verifying that procedures for field activities are executed in the proper manner, activities are properly documented, the prescribed scope of work is completed, and communication protocols are met. The field coordinator will report directly to the project manager. Additionally, as the on-site safety officer, Mr. Robinette will ensure that the appropriate health and safety requirements associated with physical and chemical hazards and COVID-19 are in place during the field investigation, as outlined in the health and safety plan (Appendix J of the RI work plan). The Property owner, Mr. Lee Frazier, will grant the field coordinator, field staff, and subcontractors access to the Property to conduct sample collection described in this SAP/QAPP.

2.1.5. Quality Assurance Manager Responsibilities

The GeoEngineers quality assurance managers include Mr. Leque and Denell Warren. The managers will provide QA oversight for both the field sampling and laboratory programs, confirming that samples are collected and documented appropriately; coordinating with analytical laboratories; reviewing data quality; conducting data validation; and supervising project QA coordination. The managers oversee the management of analytics, field logs, spatial data, and other data transferred to or managed by GeoEngineers and is responsible for the performing independent reviews of the laboratory data packages for the data verification and validation criteria. Mr. Leque will report directly to the principal, and Mr. Leque will have a direct line of communication with the Ecology project manager.

2.1.6. Analytical Laboratory Responsibilities

The contracted laboratories are responsible for the following.

- Performing analyses based on methods described in this SAP/QAPP, including the methods referenced for each procedure.
- Following documentation, custody, and sample logbook procedures.
- Meeting reporting and QA/QC requirements.
- Providing electronic data files as specified.

The laboratory subcontractors are responsible for notifying Mr. Leque about issues relating to laboratory analysis. The analytical laboratories will provide applicable analytical data to the database administrator at the conclusion of work. Laboratories shall be certified to provide analytical laboratory services for the project-specific methods and matrices under the Washington branch of the National Environmental Laboratory Accreditation Program (including the Washington Environmental Laboratory Accreditation Program). Specific analytical methods, performance criteria, and reporting and detection limits that analytical laboratories are required to meet are described in this SAP. The primary analytical laboratory responsible for sample analysis will be Analytical Resources in Tukwila, Washington.

2.2. Schedule

Tier 1 fieldwork is anticipated to be completed by April 22, 2022, as required under the Site Agreed Order and as modified in communications between the Client (via GeoEngineers) and Ecology.

3.0 ACCESS AND SITE PREPARATION

3.1. Access

The current Property owner, Mr. Lee Frazier, has agreed to grant reasonable access for performing fieldwork on the Property. GeoEngineers will coordinate fieldwork logistics with Mr. Frazier prior to finalizing a field schedule and will notify Mr. Frazier of the final field schedule at least one week prior to beginning work on the Property. Permits and access authorization for monitoring well installation and sampling activities conducted near public rights-of-way will be obtained as needed.

3.2. Site Preparation

Abundant inventory associated with the industrial supply store is present in the building and may impede access to areas of the warehouses. GeoEngineers will work with Pacific Industrial Supply, Inc. staff to clear proposed sample locations of inventory and other obstructions prior to fieldwork whenever feasible. If sample locations are inaccessible due to Pacific Industrial Supply, Inc.'s operations, GeoEngineers will work with Mr. Frazier and the Client to identify potential solutions. GeoEngineers will notify Ecology in writing of the change as soon as practicable and no longer than two business days later if no solutions are identified and sample locations need to be moved.

Site preparation activities will also include utility locates to identify the presence of subsurface utilities prior to drilling (as discussed below), electromagnetic and ground-penetrating radar surveys to assess the potential presence of underground storage tanks in the former boiler room, and a ground-penetrating radar survey to evaluate the concrete slab thicknesses and potential presence of rebar in the slab to identify locations where concrete cutting may be infeasible to gain access for drilling beneath the slab.

Public and private utility-locating services will check for underground utilities and features (e.g., pipelines) near the proposed sample locations (see standard operating procedure [SOP] 18 in Appendix A) before drilling activities begin at the Site. Additionally, GeoEngineers has identified possible on-site utilities, piping, and other subsurface obstructions from historical plan sets and publicly available information (see Figure 2-3 of the RI work plan).

4.0 SCOPE OF WORK

The RI work plan identifies data gaps to be addressed during the RI. Sample locations proposed to address data gaps are summarized in Tables 9-1 and 9-2 of the RI work plan. Section 9 of the RI work plan identifies the scope of work that will include the following RI activities:

- Stormwater system cleanout and inspection.
- Soil sampling of the vadose soil and saturated soil at a minimum from shallow and deep borings and proposed monitoring wells.
- Installation of shallow and deep monitoring wells.
- Groundwater sampling of existing and proposed monitoring wells.

The proposed sample locations and a summary of sampling details and proposed analyses are provided in Figure 9-1 and Tables 9-1 and 9-2 of the RI work plan. The sample depths may be altered and/or additional

samples added to collect samples in and/or beneath the potentially impacted areas if field screening evidence of contamination is observed in the field. Additional analyses may be recommended based on field observations.

5.0 SOIL ASSESSMENT

5.1. Soil Borings

Concrete coring will be necessary prior to advancing soil borings in the building. A ground-penetrating radar survey will be conducted to evaluate the concrete slab thicknesses within the building that was reported to be approximately 6 inches thick in "GP" boring logs performed in 2005. Subsurface soil samples will be collected from borings inside and outside the building using a direct-push drill rig (i.e., SB20, SB21 etc.). Hollow-stem auger (HSA) or sonic drilling methods may be used at boring locations if target depths (generally 15 feet to 40 feet below ground surface [bgs]) cannot be achieved using the direct-push rig. The drilling equipment will be operated by a Washington State-certified driller using industry-standard techniques.

Soil sampling equipment used by the specific drilling methods generally include the following:

- <u>Direct Push</u>. Split spoon (e.g. "Macrocore" sampler with disposable plastic liners)
- HSA. Split spoon (e.g. SPT, "California")
- Sonic. Core barrel with sample extruded into plastic sleeve

The workspace will be ventilated with portable fans and the air will be monitored using a PID as described in the HASP. Trichloroethene (TCE) was detected in sub-slab soil gas at concentrations up to 37,000 micrograms per cubic meter (6.9 ppm) during previous environmental investigations (MFA, 2008). The boreholes will be covered with a temporary solid cover when not being actively worked and the borings will be backfilled as soon as practicable following completion of each boring to protect human health. The HASP contains additional discussion regarding procedures to protect human health.

Two water-bearing zones (WBZs) have been identified beneath the Site. A confining glacial till unit hydraulically separates the WBZs. Drillers must take care to ensure boreholes do not act as preferential pathways for cross- contamination between WBZs when drilling into the deep WBZ. The potential hydraulic connection from the shallow WBZ to the deep WBZ will be sealed off to help prevent cross-contamination when advancing borings for the deep monitoring wells. This will be accomplished by drilling into the top of the aquitard with larger diameter tooling, provide a seal into the aquitard, and "telescoping" through and beneath the aquitard using smaller diameter tooling. Additionally, the downhole drilling equipment will be steam-cleaned or pressure-washed after use in each boring or monitoring well. Decontamination fluids will be transferred to drums approved by the Washington State Department of Transportation and will be managed according to the procedures outlined in Section 7. Each boring that is no longer needed following drilling will be decommissioned with bentonite chips or bentonite grout in accordance with the WAC for Minimum Standards for Construction and Maintenance of Wells (WAC 173-160, 1998) and SOP 11 (see Appendix A).

Soil conditions observed in borings will be logged in accordance with SOP 2 and recorded on boring log forms. The locations of the borings and other features of interest will be recorded by measuring from existing

Site features or surveying the locations using a global positioning unit (e.g., Trimble™) capable of submeter accuracy. The newly installed monitoring wells will be surveyed by a licensed surveyor.

5.2. Soil Sampling Procedure

Soil samples will be collected for lithologic description, field screening, and chemical analyses. The anticipated sampling intervals, depths, and sample analysis schedule are specified Table 9-1 of the RI work plan. Soil sample material will be collected, screened for visual indications of contamination, and headspace vapor analysis will be conducted using a photoionization detector (PID) in accordance with SOP 3 (see Appendix A). Additional soil samples may be collected if soil exhibits visual and/or olfactory indications of impacts (i.e., high PID readings, staining, sheen, odor). Any additional samples collected will be submitted to and preserved at the laboratory pending potential analysis.

Samples will be prepared, handled, and documented in accordance with SOP 4. Soil sampling requiring the use of a 5035 kit will be conducted in accordance with SOP 5 (see Appendix A). Non-disposable sampling equipment and reusable materials that contact the soil will be decontaminated before and after each sample and sampling location. Decontamination methods are described in SOP 1 (see Appendix A). IDW (soil cuttings and decontamination fluids) will be transferred to drums and managed in accordance with Section 7.

5.3. Nomenclature

Soil samples will be labeled with a prefix to refer to the location identification number, an "S" to indicate a soil sample matrix, and the sample depth in feet bgs. The depth interval will be specified as follows: a soil sample collected from soil boring location SB20 with a sampling interval from 2 to 3 feet bgs will have the sample nomenclature of SB20-S-2-3.

Duplicate soil samples will not be collected because VOCs are to be analyzed. Duplicate groundwater samples will be collected as described below.

6.0 GROUNDWATER ASSESSMENT

Groundwater samples will be collected from new and existing monitoring wells at the Site.

6.1. Grab Sampling

Field staff will collect a "grab" groundwater sample from the vault if groundwater seepage is observed in the hydraulic cylinder test vault. The grab sample may be collected with either a peristaltic pump and weighted tubing or disposable bailers depending on access restraints and depth of water in the vault.

6.2. Monitoring Well Installation

The monitoring wells proposed in the RI work plan will be constructed in accordance with the Washington well construction standards (WAC Chapter 173-160). Monitoring wells will be installed as flush-mount installations using IHSA or sonic drilling methods. Monitoring well installation procedures are described in SOP 11 (see Appendix A). Monitoring well locations will be surveyed by a licensed surveyor to obtain the 0.01-foot vertical accuracy needed for measuring groundwater elevations. The surveyor will obtain the elevation of the water level measuring point (i.e., the north side of the PVC casing) and the top of the monument.

6.3. Monitoring Well Development

Each new well will be developed following installation by surging, bailing, or pumping to remove sediment that may have accumulated during installation and to improve the hydraulic connection with the WBZ. Monitoring well development procedures are described in SOP 12 (see Appendix A). The well will be allowed to set at least 24 hours following development and prior to sampling.

6.4. Monitoring Well Groundwater Sampling

Low-flow groundwater sampling and water level measurements will be conducted in accordance with SOPs 9 and 13, respectively (see Appendix A). Groundwater samples will be collected from monitoring wells using a peristaltic pump and disposable polyethylene tubing. A submersible pump will be used if a peristaltic pump is unable to extract groundwater (typically at depths of 30 feet bgs or deeper).

The water level will be measured (see SOP 13 in Appendix A) and the monitoring well will be purged before collection of groundwater samples. The well will be purged at a low flow rate (e.g., 0.1 to 0.5 liter per minute). A minimum of one well volume will be purged before sample collection or purging will continue until selected water quality field parameters (e.g., temperature, specific conductance, pH, turbidity) have stabilized. A sample may be collected if the well goes dry during purging once recharge occurs providing enough water in the well for sampling. The flow rates, water levels, and water quality parameters will be recorded during purging on an appropriate field form or in the field notes. Groundwater samples to be analyzed for dissolved metals will be filtered using a disposable 0.45-micron filter before being transferred into a laboratory-supplied container. The other groundwater samples will be transferred directly into laboratory-supplied containers specific to the analysis required.

Non-disposable sampling equipment and reusable materials that contact the water will be decontaminated before and after each sample and sampling location. Decontamination methods are described in SOP 1 (see Appendix A). IDW that includes purge water and decontamination fluids will be transferred to drums and managed in accordance with Section 7.

6.5. Nomenclature

Groundwater samples will be labeled with a prefix to describe the type of location, a location identification number, a "W" to indicate a groundwater sample matrix, and the date. For example, a groundwater sample collected from monitoring well MW12 on April 11, 2022 will have the sample number MW12-W-20220411.

Duplicate groundwater samples will replace the location number with "DUP," and the sample will have the same sample time as the primary sample. A duplicate sample of the abovementioned sample would appear as MWDUP-W-20220411.

Relevant sample information will be documented on a water field sampling data sheet. Documentation may include items such as the screened interval or open space, equipment used, water quality field parameters, and the volume of water purged before sampling.

7.0 MANAGEMENT OF INVESTIGATION-DERIVED WASTE

IDW generated during the RI may include items such as soil cuttings, purge water, decontamination fluids, sampling debris, and personal protective equipment. The IDW will be separated into solids, liquids, and

sampling debris (e.g., personal protective equipment). IDW will be stored in a designated area on the Property in secure drums. Drums will be labeled with their contents, the approximate volume of material, the date of collection, and the origin of the material as described in SOP1.

The drums will be sealed, secured, and transferred to a designated area on the Property pending characterization. Analytical data from the soil and groundwater sampling activities may be used to characterize the soil cuttings, purge water, sampling debris, and decontamination fluids generated during the investigation. Historically, high levels of chromium in soil and groundwater have resulted in a hazardous waste characterization. Hazardous waste will be stored, managed, and disposed appropriately as required under WAC 173-303-141. Hazardous waste generated at the Site will be documented in the annual dangerous waste report through TurboWaste.

8.0 ANALYTICAL METHODS

8.1. Chemicals of Interest

The contaminants of interest (COIs) for the Site are generally grouped into the following categories based on the results of the historical characterization activities.

- Metals (primarily chromium).
- TCE and breakdown products.
- Petroleum hydrocarbons.

Soil and groundwater samples will be analyzed for the COIs referenced above. Selected samples will also be analyzed for polychlorinated biphenyls (PCBs), full-suite volatile organic compounds (VOCs), full-suite semivolatile organic compounds (SVOCs), and perfluoroalkyl substances (PFAS). Special PFAS protocols will be followed in SOP 14.

Groundwater samples from select monitoring wells will be analyzed for geochemical parameters in addition to COI analysis as specified in Table 9-2 of the RI work plan. Field testing will also be conducted using a field test kit to measure ferrous iron concentrations and a water quality meter to measure dissolved oxygen, pH, and oxidation reduction potential in addition to laboratory analysis for total organic carbon, nitrate as nitrogen, sulfate, and dissolved manganese. Soil and/or groundwater samples from select locations will also be analyzed for extractable petroleum hydrocarbons and volatile petroleum hydrocarbons as specified in Tables 9-1 and 9-2 of the RI work plan.

8.2. Laboratory Analytical Methods and Reporting Limits

An accredited laboratory will perform the soil and groundwater analyses in accordance with the laboratory analytical methods and QA/QC requirements set forth in this SAP/QAPP as summarized in Tables 8-1 through 8-3. Tables 8-1 through 8-3 identify preferred analytical methods and QA/QC requirements for the COIs and PFAS. Compounds included in the laboratory standard reports for each laboratory method will be analyzed and reported in addition to those compounds listed. Actual methods used may deviate from those provided as long as the selected method meets the requirements of this SAP/QAPP. Laboratory methods were selected with the goal of providing sample results at reporting limits less than or equal to preliminary

cleanup levels. Where this is not feasible, reporting limits are within the range of target practical quantitation limits (PQLs) in Ecology's PQL Compendium.

8.3. Quality Assurance and Quality Control Samples Generated in Field

Sample collection and measurement methods will follow procedures documented in Section 8.9 to ensure that field samples and quantitative field measurements are representative of the media collected and conditions being measured. QC samples collected in the field include trip blanks, field duplicates, equipment rinsate blanks, and filter blanks as outlined in Table 8-4. Field QC samples will be identified in the field notebook. Trip blanks, equipment rinsate blanks, and filter blanks assess the potential for contamination introduced by field procedures. Field duplicates indicate precision in both field and laboratory procedures.

8.4. Laboratory Operations

QC samples in the laboratory may include matrix spike and matrix spike duplicate (MS/MSD) samples, laboratory control samples (LCSs), surrogate spike samples, and method blanks, as well as other QC samples and procedures as required by the individual methods as outlined in Table 8-5.

8.5. Sample Containers, Preservations, and Handling

8.5.1. Preservation

Samples will be collected in laboratory-supplied containers with method-specific preservatives as generally specified in Tables 8-6 and 8-7. Soil and groundwater samples will be stored in iced coolers at approximately 4 degrees Celsius.

8.5.2. Sample Packaging and Shipping

Soil and groundwater samples will be packed to avoid cross-contamination and/or breakage of containers and shipped in coolers packed with ice to the analytical laboratory.

8.6. Sample Custody

Sample custody will be tracked from point of origin through analysis and disposal using a chain-of- custody (COC) form filled out with the appropriate sample and analytical information after samples are collected.

The following items will be recorded on the COC form:

- Project name
- Project number
- GeoEngineers project manager
- Sampler name(s)
- Sample identification, date and time collected, media, number of bottles submitted
- Requested analyses for each sample
- Turnaround requirements

- Signature, printed name, and organization name of persons having custody of samples, and date and time of transfer
- Additional instructions or considerations that would affect analysis (e.g., archiving)

Persons in possession of the samples will be required to sign and date the COC form whenever samples are transferred between individuals or organizations. The COC will be included in the shipping containers. The laboratory will implement its in-house custody procedures that will begin when sample custody is transferred to laboratory personnel.

The signed COC(s) will be packed in shipping containers with the samples if samples are shipped via air or ground transportation (by a third party) and a custody seal will be placed on the container. A designated sample custodian at the analytical laboratory will accept custody of the samples and will verify that the COC form matches the samples received. The shipping container or set of containers is given a laboratory identification number, and each sample is assigned a unique sequential identification number.

8.7. Instrumentation

8.7.1. Field Instrumentation

Field instruments may be used during the investigations. The following field equipment may require calibration before use and periodically during sampling activities:

- Water quality meter
- Turbidimeter
- PID

Field-instrument calibration and preventive maintenance will follow the manufacturers' guidelines. Deviations from the established guidelines will be documented.

8.7.1.1. Field Calibration

Generally, field instruments will be calibrated daily before work begins. Field personnel may decide to calibrate more than once a day if inconsistent or unusual readings occur, or if conditions warrant more frequent calibration. Calibration activities will be recorded in logbooks or field notebooks. The following procedures will be used to ensure that field instruments are properly calibrated and remain operable.

- Operation, maintenance, and calibration will be performed in accordance with the instrument manufacturers' specifications.
- Standards used to calibrate field instruments will meet the minimum requirements for source and purity recommended in the equipment operation manual. Standards will be checked for expiration dates that may be printed on the bottle. Standards that have expired will not be used.
- Acceptable criteria for calibration will be based on the limits set in the operations manual. A schedule of preventive maintenance activities will be followed to minimize downtime and ensure the accuracy of measurement systems. Maintenance will be documented in the field notebook.
- Users of the equipment will be trained in the proper calibration and operation of the instrument.

- Operation and maintenance manuals for each field instrument will be available to persons using the equipment.
- Field instruments will be inspected before they are taken to the site.
- Calibration procedures (including items such as time, standards used, and calibration results) will be recorded in a field notebook. The information will be available if problems are encountered.

8.7.2. Laboratory Instrumentation

Specific laboratory instrument calibration procedures, frequency of calibration, and preparation of calibration standards will be according to the method requirements as developed by the U.S. Environmental Protection Agency (EPA) following procedures presented in SW-846 (EPA, 1986).

Preventive maintenance of laboratory equipment will be the responsibility of the laboratory personnel and analysts. This maintenance includes routine care and cleaning of instruments and inspection and monitoring of carrier gases, solvents, and glassware used in analyses. The preventive-maintenance approach for specific equipment will follow the manufacturers' specifications, good laboratory practices, and industry standard techniques.

Precision and accuracy data will be examined for trends and excursions beyond control limits to determine evidence of instrument malfunction. Maintenance will be performed when an instrument begins to change, as indicated by the degradation of peak resolution, shift in calibration curves, decrease in sensitivity, or failure to meet any QC criterion.

8.8. Laboratory Quality Assurance and Quality Control Samples

The laboratory QC samples will be used to assess the accuracy and precision of the laboratory analysis (see Table 8-5). Each category of laboratory QA/QC will be performed by the laboratory as required by method-specific guidelines. The acceptance criteria presented in the guidelines will be adhered to and samples that do not meet the criteria will be reanalyzed or qualified as appropriate.

8.8.1. Calibration Verification

Instruments will initially be calibrated at the start of the project or sample run, as required, and when any ongoing calibration does not meet control criteria. The number of points used in the initial calibration is defined in the analytical method. Calibration will be continued as specified in the analytical method to track instrument performance. Analysis of project samples will be suspended if a continuing calibration does not meet control limits until the source of the control failure is either eliminated or reduced to within control specifications.

8.8.2. Matrix Spike/Matrix Spike Duplicate

MS samples are analyzed to assess the matrix effects on the accuracy of analytical measurements. MS/MSD samples will be prepared by spiking investigative samples with known amounts of analytes before extraction and preparation and analysis. The recoveries for the MS/MSD samples will be used to assess the accuracy and precision in the analytical method by measuring how well the analytical method recovers the target compounds in the investigative matrices. For each matrix type, at least one set of MS/MSD samples will be analyzed for each batch of samples for every 20 (or fewer) samples received.

8.8.3. Method Blanks

Method blanks are prepared using analyte-free (reagent) water and are processed with the same methodology (e.g., extraction, digestion) as the associated investigative samples. Method blanks are used to document contamination resulting in the laboratory from the analytical process. A method blank shall be prepared and analyzed in every analytical batch. The method blank results are used to verify that reagents and preparation do not impart unacceptable bias to the investigative sample results. The presence of analytes in the method blank sample will be evaluated against method-specific thresholds. Corrective action will be taken to eliminate the source of contamination before proceeding with analysis if analytes are present in the method blank above the method-specific threshold.

Investigative samples of an analytical batch associated with method blank results outside acceptance limits will be qualified as appropriate by the data validation contractor.

8.8.4. Laboratory Control Samples

LCSs are prepared by spiking laboratory-certified, reagent-grade water with the analytes of interest or a certified reference material that has been prepared and analyzed. The result for percent recovery of the LCS is a data quality indicator of the accuracy of the analytical method and laboratory performance.

8.8.4.1. Laboratory Duplicate Samples

Laboratory duplicate samples (LDSs) are prepared by the laboratory by splitting an investigative sample into two separate aliquots and performing separate sample preparation and analysis on each aliquot. The results for relative percent difference of the primary investigative sample and the respective LDSs are used to measure precision in the analytical method and laboratory performance. For nonaqueous matrices, sample heterogeneity may affect the measured precision for the LDSs.

8.9. Field QC

The following samples will be prepared by the sampling personnel in the field and submitted to the laboratory (see Table 8-3):

- **Trip Blanks**—Trip blanks monitor the potential for sample contamination during sample collection and transport. A trip blank consists of reagent-grade water in a new sample container prepared at the same time as the samples. The trip blank will accompany the samples throughout collection, shipment, and storage. At least one trip blank will be included with each cooler in which samples for volatile organic compound analyses are stored. Trip blanks will be labeled as "TB" to indicate a trip blank sample matrix, an identification number, and the date (MMDDYY). For example, the second trip blank collected on April 11, 2022, would be named TB2-041122.
- **Field Duplicates**—Field duplicates are collected to measure sampling and laboratory precision. One duplicate groundwater sample will be collected per 20 primary samples.
- Equipment Rinsate Blanks—Equipment rinsate blanks will help to assess the efficiency of equipment decontamination procedures. Equipment blanks will be collected by pouring laboratory-certified distilled water over or through reusable decontaminated sampling equipment. Equipment rinsate blanks will be labeled with an "EB" to indicate an equipment blank sample matrix, an identification number, and the date (MMDDYY). For example, the second equipment rinsate blank collected on April 11, 2022, would be named EB2-041122.

■ **Filter Blanks**—Aqueous filter blanks are collected to assess the potential for contamination of aqueous samples via the filters used for dissolved analyses.

Aqueous filter blanks will be collected by laboratory-certified distilled water into a sample container through a filter. Filter blanks will be labeled with an "FB" to indicate a filter blank sample matrix, an identification number, and the date (MMDDYY). For example, the second filter blank collected on July 2, 2022, would be named FB2-070222.

8.10. Data Reduction, Validation, and Reporting

The analytical laboratory will submit analytical data packages that include laboratory QA/QC results to permit independent and conclusive determination of data quality. GeoEngineers will determine data quality, using the data evaluation procedures described in this section. The results of the GeoEngineers evaluation will be used to determine if the project data quality objectives are met.

8.10.1. Field Data Reduction

Daily internal QC checks will be performed for field activities. Checks will consist of reviewing field notes and field activity memoranda to confirm that the specified measurements, calibrations, and procedures are being followed. The need for corrective action will be assessed on an ongoing basis, in consultation with the project manager.

8.10.2. Laboratory Evaluation

Initial data reduction, evaluation, and reporting at the analytical laboratory will be carried out as described in EPA SW-846 manuals for analyses (EPA, 1986), as appropriate. Additional laboratory data qualifiers may be defined and reported to further explain the laboratory's QC concerns about a particular sample result. Additional data qualifiers will be defined in the laboratory's case narrative reports.

8.10.3. Data Deliverables

Laboratory data deliverables are listed below. Electronic deliverables will contain the same data that are presented in the hardcopy report.

- Transmittal cover letter
- Case narrative
- Analytical results
- COC
- Surrogate recoveries
- Method blank results
- MS/MSD results
- Laboratory duplicate results

8.10.4. Data Evaluation

8.10.4.1. Data QA/QC Review

GeoEngineers will evaluate the laboratory data for precision, completeness, accuracy, and compliance with the analytical method. GeoEngineers will review data according to applicable sections of EPA inorganics and organics procedures (EPA, 2020a, b), as well as appropriate laboratory-method-specific guidelines (EPA, 1986).

Data qualifiers, as defined by the EPA, are used to classify sample data according to their conformance to QC requirements. Common qualifiers are listed below:

- J—Estimate, qualitatively correct but quantitatively suspect.
- R—Reject, data not suitable for any purpose.
- U—Not detected at a specified reporting limit.

Poor surrogate recovery, blank contamination, or calibration problems, among other things, can require qualification of the sample data. The reasons for sample qualification will be stated in the data evaluation report.

QC criteria not defined in the guidelines for evaluating analytical data are adopted, where appropriate, from the analytical method.

The following information will be reviewed during data evaluation, as applicable:

- Sampling locations and blind sample numbers
- Sampling dates
- Requested analysis
- COC documentation
- Sample preservation
- Holding times
- Method blanks
- Surrogate recoveries
- MS/MSD results
- Laboratory duplicates (if analyzed)
- Field duplicates
- Field blanks
- LCSs
- Method reporting limits above requested levels
- Additional comments or difficulties reported by the laboratory
- Overall assessment

The results of the data evaluation review will be summarized for each data package. Data qualifiers will be assigned to sample results based on EPA guidelines (EPA 2020a, b; 1986), as applicable.

8.10.4.2. Data Management and Reduction

The data management system EQuISTM will be used to manage laboratory data in a project-specific database. The laboratory will provide the analytical results in electronic, EQuIS-compatible format. Following data evaluation, data qualifiers will be entered into the database.

Data may be reduced to prepare summary data sets and to aid interpretation of the results. Statistical analyses may also be applied to results. Data reduction QC checks will be performed on hand-entered data, calculations, and data graphically displayed. Data may be further reduced and managed using one or more of the following computer software applications:

- Microsoft excel (spreadsheet)
- EQuIS (database)
- Microsoft Access (database)
- AutoCAD and/or ArcGIS (graphics)
- EPA ProUCL (statistical software)

9.0 REPORTING

GeoEngineers will summarize and screen the data against applicable criteria for inclusion in a RI report after the data are received. This RI report will be transmitted to Ecology, the Client, and the distribution list within 90 days of receiving final laboratory data as required under the Agreed Order. Analytical results will be uploaded to Ecology's Environmental Information Management database within 45 days from completion of data validation as required under the Agreed Order.

Table 2-1

Contact List

Precision Engineering Site Dick Morgan Seattle, Washington

Name	Title	Affiliation	Telephone	Email		
Terry McPhetridge	Terry McPhetridge Principal		(253) 383-4940	tmcphetridge@geoengineers.com		
Garrett Leque	Garrett Leque Project Manager		(360) 647-1510	gleque@geoengineers.com		
Garrett Leque	Quality Assurance Manager	GeoEngineers, Inc.	(360) 647-1510	gleque@geoengineers.com		
Paul Robinette	Field Coordinator/ On-Site Safety Officer	GeoEngineers, Inc.	(253) 383-4940	probinette@geoengineers.com		
Sue Dunnihoo	Laboratory Project Manager	Analytical Resources Inc.	(206) 695-6207	limsadm@arilabs.com		
Priscilla Tomlinson	Site Manager	Washington State Department of Ecology	(425) 649-7135	ptom461@ecy.wa.gov		
Lee Frazier Property Owner		Pacific Industrial Supply, Inc.	(206) 910-4554	lee@pacificindustrial.com		

Soil Reporting Limits, PCULs, Performance Criteria, and Analytical Method

Precision Engineering Site
Dick Morgan
Seattle, Washington

	Detection	Reporting		Matrix Spike			Blank	Spike]	
Analyte	Limit (mg/kg)	Limit (mg/kg)	Soil PCUL1	Duplicate RPD	%R	RPD	%R	RPD	Analytical Method	
Metals (mg/kg)	(1116/ 116)	(1116/ 116)	3011 002	III D		5	7011	5	Analytical Method	
Arsenic	0.0380	0.200	7.30	20	75-125	20	80-120	20	EPA 6020B UCT-KED	
Cadmium	0.0300	0.100	0.77	20	75-125	20	80-120	20	EPA 6020B UCT-KED	
Chromium	0.260	0.500	48.15	20	75-125	20	80-120	20	EPA 6020B	
Hexavalent Chromium	0.400	0.400	0.00089	30	75-125	30	80-120	20	EPA 7196A	
Copper	0.216	0.500	36.38	20	75-125	20	80-120	20	EPA 6020B	
Lead	0.0520	0.100	50	20	75-125	20	80-120	20	EPA 6020B	
Mercury Nickel	0.00525 0.220	0.0250 0.500	0.07 48	20 20	75-125 75-125	20	80-120 80-120	20 20	EPA 7471B EPA 6020B UCT-KED	
Selenium	0.220	0.500	0.264	20	75-125 75-125	20	80-120	20	EPA 6020B UCT-KED	
Thallium	0.180	0.500	0.00441	20	75-125	20	80-120	20	EPA 6020B	
Zinc	2.92	6.00	85.06	20	75-125	20	80-120	20	EPA 6020B UCT-KED	
CID (mg/kg)	.1	I.								
Gasoline range organics	10.0	10.0	NA	NA	NA	NA	NA	NA	NWTPH-HCID	
Oil range organics	50.0	50.0	NA	NA	NA	NA	NA	NA	NWTPH-HCID	
otal Petroleum Hydrocarbons (mg/kg)									_	
Gasoline-range petroleum hydrocarbons	2.5	5	30/100	30	28-162	30	70-121	30	NWTPH-G	
Diesel-range petroleum hydrocarbons	2.50	5.00	260	30	30-160	30	30-160	30	NWTPH-Dx	
Oil-range petroleum hydrocarbons	5.00	10.0	260	30	30-160	30	30-160	30	NWTPH-Dx	
PH/EPH (mg/kg)	T 45		NA	20	F0 400	20	50.400	20	NWTDIIVDII	
VPH	4.5	9	NA NA	30	52-120	30	52-120	30 30	NWTPH-VPH	
EPH OCe (mg /kg)	1	2	NA	30	20-130	30	20-130	30	NWTPH-EPH	
1,1,1,2-Tetrachloroethane	0.000354	0.001	0.000627	30	80-120	30	80-120	30	EPA 8260D	
1,1,1-Trichloroethane	0.000598	0.001	0.000627	30	78-133	30	78-133	30	EPA 8260D	
1,1,2,2-Tetrachloroethane	0.000398	0.001	0.0000800	30	74-120	30	74-120	30	EPA 8260D	
1,1,2-Trichloroethane	0.000274	0.001	0.000326	30	79-120	30	79-120	30	EPA 8260D	
1,1-Dichloroethane	0.000283	0.001	0.00261	30	80-126	30	80-126	30	EPA 8260D	
1,1-Dichloropropene	0.000282	0.001	NA	30	63-145	30	63-145	30	EPA 8260D	
1,2,3-Trichlorobenzene	0.00232	0.005	0.011	30	68-132	30	68-132	30	EPA 8260D	
1,2,3-Trichloropropane	0.0015	0.002	0.00000153	30	73-120	30	73-120	30	EPA 8260D	
1,2,4-Trichlorobenzene	0.00182	0.005	0.0000720	30	66-140	30	66-140	30	EPA 8260D	
1,2,4-Trimethylbenzene	0.000265	0.001	0.0721	30	75-121	30	75-121	30	EPA 8260D	
1,2-Dibromo-3-chloropropane	0.00236	0.005	0.0000560	30	72-136	30	72-136	30	EPA 8260D	
1,2-Dichlorobenzene	0.000653	0.001	0.00299	30	76-120	30	76-120	30	EPA 8260D	
1,2-Dichloroethane	0.000234	0.001	0.0016	30	76-120	30	76-120	30	EPA 8260D	
1,2-Dichloropropane	0.000332	0.001	0.00103	30	79-120	30	79-120	30	EPA 8260D	
1,3,5-Trimethylbenzene	0.000253	0.001	0.0711	30	74-122	30	74-122	30	EPA 8260D	
1,3-Dichlorobenzene	0.000244	0.001	0.00132	30	75-120	30	75-120	30	EPA 8260D	
1,3-Dichloropropane	0.000234	0.001	0.0574	30	78-120	30	78-120	30	EPA 8260D	
1,4-Dichlorobenzene	0.000431	0.001	0.00807	30	73-120	30	73-120	30	EPA 8260D	
2,2-Dichloropropane 2-Chloroethyl vinyl ether	0.000307 0.00302	0.001 0.005	NA NA	30 30	77-138 51-129	30 30	77-138 51-129	30 30	EPA 8260D EPA 8260D	
2-Chlorotoluene	0.00302	0.003	0.107	30	75-120	30	75-120	30	EPA 8260D	
2-Hexanone	0.000210	0.001	0.0121	30	68-122	30	68-122	30	EPA 8260D	
2-Pentanone	0.00215	0.005	NA NA	30	77-120	30	77-120	30	EPA 8260D	
4-Chlorotoluene	0.000292	0.001	NA	30	69-124	30	69-124	30	EPA 8260D	
4-Isopropyl Toluene	0.00029	0.001	NA	30	75-125	30	75-125	30	EPA 8260D	
Acetone	0.00634	0.01	2.1	30	48-137	30	48-137	30	EPA 8260D	
Acrolein	0.00175	0.005	0.00032	30	59-140	30	59-140	30	EPA 8260D	
Acrylonitrile	0.00198	0.005	0.00000826	30	69-134	30	69-134	30	EPA 8260D	
Benzene	0.000165	0.001	0.00056	30	80-120	30	80-120	30	EPA 8260D	
Bromobenzene	0.000247	0.001	0.0333	30	76-120	30	76-120	30	EPA 8260D	
Bromochloromethane	0.000395	0.001	NA	30	80-129	30	80-129	30	EPA 8260D	
Bromoform	0.000462	0.001	0.0050	30	64-128	30	64-128	30	EPA 8260D	
Bromomethane	0.000389	0.001	0.00331	30	53-144	30	53-144	30	EPA 8260D	
Carbon Disulfide	0.000331	0.001	0.250	30	71-137	30	71-137	30	EPA 8260D	
Carbon tetrachloride	0.000312	0.001	0.000154	30	71-129	30	71-129	30	EPA 8260D	
Chloroethane	0.000207	0.001	0.0511 NA	30 30	78-120 55-149	30 30	78-120 55-149	30 30	EPA 8260D	
Chloroethane	0.00124 0.000288	0.002 0.001	NA 0.0048	30 30	55-149 80-126	30	55-149 80-126	30	EPA 8260D EPA 8260D	
cis-1,2-Dichloroethene	0.000288	0.001	0.0048	30	80-126	30	80-126	30	EPA 8260D EPA 8260D	
cis-1,3-Dichloropropene	0.000257	0.001	0.0032	30	80-120	30	80-120	30	EPA 8260D	
Dibromochloromethane	0.000262	0.001	0.00014	30	74-125	30	74-125	30	EPA 8260D	
Dibromomethane	0.000356	0.001	0.0280	30	80-120	30	80-120	30	EPA 8260D	
Dichlorodifluoromethane	0.000403	0.001	0.53	30	67-142	30	67-142	30	EPA 8260D	
Ethylbenzene	0.000227	0.001	0.01	30	80-125	30	80-125	30	EPA 8260D	
Hexachlorobutadiene	0.00481	0.02	0.000540	30	37-120	30	37-120	30	EPA 8260D	
Isopropyl Benzene	0.000262	0.001	0.79	30	74-121	30	74-121	30	EPA 8260D	
2-Butanone	0.00244	0.005	1.40	30	70-132	30	70-132	30	EPA 8260D	
4-Methyl-2-Pentanone	0.00136	0.005	0.192	30	73-121	30	73-121	30	EPA 8260D	
Methylene Chloride	0.00436	0.005	0.0015	30	69-129	30	69-129	30	EPA 8260D	
Methyl tert-butyl Ether	0.000254	0.001	0.00723	30	79-127	30	79-127	30	EPA 8260D	
Naphthalene	0.00246	0.005	0.0021	30	69-125	30	69-125	30	EPA 8260D	
n-Butylbenzene	0.00028	0.001	0.71	30	73-130	30	73-130	30	EPA 8260D	
n-Hexane	0.001	0.001	1.8	30	30-160	30	30-160	30	EPA 8260D	
n-Propylbenzene	0.000236	0.001	0.88	30	72-124	30	72-124	30	EPA 8260D	
s-Butylbenzene Styrene	0.000241	0.001	1.3	30 30	70-128 80-120	30	70-128 80-120	30	EPA 8260D	
Styrene t-Butylbenzene	0.000246 0.000251	0.001 0.001	0.120 1.0	30 30	80-120 72-122	30 30	80-120 72-122	30 30	EPA 8260D EPA 8260D	
	0.000251	0.001	0.00160	30	72-122	30	72-122 74-124	30	EPA 8260D EPA 8260D	
		0.001	0.00160	30	74-124 75-120	30	75-120	30	EPA 8260D EPA 8260D	
Tetrachloroethene	() ()()()()()()		0.044	30	75-120 67-132	30	75-120 67-132	30	EPA 8260D EPA 8260D	
Tetrachloroethene Toluene	0.000247	0 000		ა∪	01-132		01-132	JU		
Tetrachloroethene Toluene Xylenes, total	0.000697	0.002		30	79-130	3∩	79-130	30	FDV 836UD	
Tetrachloroethene Toluene Xylenes, total trans-1,2-Dichloroethene	0.000697 0.000525	0.001	0.032	30 30	79-130 80-124	30 30	79-130 80-124	30 30	EPA 8260D	
Tetrachloroethene Toluene Xylenes, total trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.000697 0.000525 0.00041	0.001 0.001	0.032 0.00014	30	80-124	30	80-124	30	EPA 8260D	
Tetrachloroethene Toluene Xylenes, total trans-1,2-Dichloroethene	0.000697 0.000525 0.00041 0.00275	0.001 0.001 0.005	0.032 0.00014 NA	30 30	80-124 65-125	30 30	80-124 65-125	30 30	EPA 8260D EPA 8260D	
Tetrachloroethene Toluene Xylenes, total trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,4-Dichloro 2-Butene	0.000697 0.000525 0.00041	0.001 0.001	0.032 0.00014	30	80-124	30	80-124	30	EPA 8260D	

	Detection	Reporting		Dunlianto	Matrix	Spike	Blank	Spike	
Analyte	Limit (mg/kg)	Limit (mg/kg)	Soil PCUL1	Duplicate RPD	%R	RPD	%R	RPD	Analytical Method
SVOCs - SIM (mg/kg)	<u> </u>		-						
1-Methylnaphthalene	0.000401	0.005	0.00425	30	39-120	30	39-120	30	EPA 8270E-SIM
2-Methylnaphthalene	0.0011	0.005	0.0388	30	35-120	30	35-120	30	EPA 8270E-SIM
Acenaphthene	0.000571	0.005	0.028	30	39-120	30	39-120	30	EPA 8270E-SIM
Acenaphthylene Anthracene	0.00108	0.005 0.005	1.3 0.0511	30 30	35-120 36-120	30 30	35-120 36-120	30 30	EPA 8270E-SIM EPA 8270E-SIM
Benzo(a)anthracene	0.000871	0.005	0.0511 NA	30	42-120	30	42-120	30	EPA 8270E-SIM
Benzo(a)pyrene	0.000614	0.005	0.000016	30	36-120	30	36-120	30	EPA 8270E-SIM
Benzo(b)fluoranthene	0.00137	0.005	NA	30	52-137	30	52-137	30	EPA 8270E-SIM
Benzo(g,h,i)perylene	0.00106	0.005	0.67	30	51-153	30	51-153	30	EPA 8270E-SIM
Benzo(k)fluoranthene	0.00076	0.005	NA	30	37-129	30	37-129	30	EPA 8270E-SIM
Benzofluoranthenes, Total	0.00301	0.010	3.2	30	46-120	30	46-120	30	EPA 8270E-SIM
Chrysene	0.00105	0.005	NA	30	48-120	30	48-120	30	EPA 8270E-SIM
Dibenzo(a,h)anthracene Fluoranthene	0.000891 0.00047	0.005 0.005	NA 0.09	30 30	66-139 46-120	30 30	66-139 46-120	30 30	EPA 8270E-SIM EPA 8270E-SIM
Fluorene	0.00047	0.005	0.0294	30	41-120	30	41-120	30	EPA 8270E-SIM EPA 8270E-SIM
Indeno(1,2,3-cd)pyrene	0.00105	0.005	NA	30	67-132	30	67-132	30	EPA 8270E-SIM
Naphthalene	0.00128	0.005	0.0021	30	36-120	30	36-120	30	EPA 8270E-SIM
Phenanthrene	0.000718	0.005	1.5	30	46-120	30	46-120	30	EPA 8270E-SIM
Pyrene	0.000626	0.005	0.14	30	49-120	30	49-120	30	EPA 8270E-SIM
SVOCs (mg/kg)									
4-Nitroaniline	0.0294	0.1	0.0013	30	24-168	30	24-168	30	EPA 8270E
4-Nitrophenol	0.0326	0.1	7 0.0174	30 30	15-138 19-120	30	15-138 19-120	30	EPA 8270E
Benzyl Alcohol	0.0163 0.017	0.02 0.02	0.0174 NA	30	19-120 39-120	30 30	19-120 39-120	30 30	EPA 8270E EPA 8270E
4-Bromophenyl phenyl ether Azobenzene (1,2-DP-Hydrazine)	0.017	0.02	9.1	30	35-120	30	39-120 35-120	30	EPA 8270E EPA 8270E
2,4-Dimethylphenol	0.00378	0.1	0.00230	30	10-120	30	10-120	30	EPA 8270E
4-Methylphenol	0.00739	0.02	0.0624	30	29-120	30	29-120	30	EPA 8270E
4-Chloroaniline	0.00838	0.1	0.0000772	30	11-120	30	11-120	30	EPA 8270E
Phenol	0.00439	0.02	0.115	30	34-120	30	34-120	30	EPA 8270E
Pyridine	0.0866	0.1	0.00287	30	10-147	30	10-147	30	EPA 8270E
bis(2-chloroethyl) ether	0.0193	0.05	0.0000144	30	36-120	30	36-120	30	EPA 8270E
Bis(2-Chloroethoxy)methane	0.00431	0.02	NA	30	39-120	30	39-120	30	EPA 8270E
bis(2-Ethylhexyl)phthalate	0.00546	0.05 0.02	0.00512	30 30	34-130 28-124	30 30	34-130	30 30	EPA 8270E EPA 8270E
Di-n-Octylphthalate Hexachlorobenzene	0.00439 0.0135	0.02	0.326 0.00000040	30	33-120	30	28-124 33-120	30	EPA 8270E EPA 8270E
2,4-Dichlorophenol	0.0153	0.1	0.00434	30	28-120	30	28-120	30	EPA 8270E
2,4-Dinitrotoluene	0.0162	0.1	0.00016	30	44-150	30	44-150	30	EPA 8270E
1,4-Dioxane	0.017	0.335	0.00013	30	20.3-120	30	24.8-120	30	EPA 8270E
Dimethylphthalate	0.00439	0.02	0.0188	30	43-120	30	43-120	30	EPA 8270E
Dibenzofuran	0.0141	0.02	0.029	30	43-120	30	43-120	30	EPA 8270E
2,4-Dinitrophenol	0.0338	0.2	0.0092	30	10-120	30	10-120	30	EPA 8270E
4,6-Dinitro-2-methylphenol	0.038	0.2	0.00728	30	33-144	30	33-144	30	EPA 8270E
2,3,4,6-Tetrachlorophenol 4-Chloro-3-Methylphenol	0.00537	0.02	2400 0.0280	30 30	30-160	30 30	30-160	30	EPA 8270E
2.6-Dinitrotoluene	0.0124 0.0205	0.1 0.1	0.0280	30	32-120 31-156	30	32-120 31-156	30 30	EPA 8270E EPA 8270E
N-Nitroso-di-n-Propylamine	0.00745	0.02	0.0000388	30	34-120	30	34-120	30	EPA 8270E
Aniline	0.0169	0.1	0.00274	30	10-134	30	10-134	30	EPA 8270E
N-Nitrosodimethylamine	0.0224	0.04	0.000000265	30	17-120	30	17-120	30	EPA 8270E
Benzoic acid	0.039	0.2	0.17	30	10-120	30	10-120	30	EPA 8270E
Hexachloroethane	0.00345	0.02	0.0000097	30	38-120	30	38-120	30	EPA 8270E
4-Chlorophenylphenyl ether	0.0192	0.05	NA	30	36-141	30	36-141	30	EPA 8270E
Hexachlorocyclopentadiene	0.0245	0.1	0.00170	30	10-120	30	10-120	30	EPA 8270E
Isophorone Diethyl phthalate	0.00393 0.0197	0.02 0.05	0.0032 0.0341	30 30	37-120 50-120	30 30	37-120 50-120	30 30	EPA 8270E EPA 8270E
Butylbenzylphthalate	0.00941	0.02	0.000182	30	45-132	30	45-132	30	EPA 8270E
N-Nitrosodiphenylamine	0.00532	0.02	0.000000071	30	70-154	30	70-154	30	EPA 8270E
Carbazole	0.00429	0.02	NA	30	43-135	30	43-135	30	EPA 8270E
Pentachlorophenol	0.0312	0.1	0.0000018	30	16-120	30	16-120	30	EPA 8270E
2,4,6-Trichlorophenol	0.00898	0.1	0.0053	30	44.6-132	30	44.6-132	30	EPA 8270E
2-Nitroaniline	0.0164	0.1	0.064	30	40-152	30	40-152	30	EPA 8270E
2-Nitrophenol	0.00486	0.02	NA	30	30-120	30	30-120	30	EPA 8270E
2-Chloronaphthalene	0.00796	0.02	0.28	30	40-120	30	40-120	30	EPA 8270E
3,3'-Dichlorobenzidine	0.00709	0.1	0.000002	30 30	10-120 57-120	30	10-120 57-120	30 30	EPA 8270E
Benzidine 2-Methylphenol	0.1 0.00666	0.2 0.02	0.0000000340 0.0064	30 30	57-120 28-120	30 30	57-120 28-120	30	EPA 8270E EPA 8270E
2-Chlorophenol	0.0138	0.02	0.0115	30	39-120	30	39-120	30	EPA 8270E
2,4,5-Trichlorophenol	0.0158	0.1	0.00007	30	51.5-129	30	51.5-129	30	EPA 8270E
Nitrobenzene	0.00724	0.02	0.0065	30	36-120	30	36-120	30	EPA 8270E
3-Nitroaniline	0.0223	0.1	NA	30	22-120	30	22-120	30	EPA 8270E
PCBs									
Total PCB Aroclors	0.00928	0.02	0.0000055	30	57-120	30	57-120	30	EPA 8082
Total PCB TEQ	-		3.50E-10						
Notes:									

Notes:

 $^{\rm 1}$ Preliminary cleanup levels from Ecology's PCUL spreadsheet emailed to GeoEngineers on January 18, 2022.

SVOCs = Full suite Semivolatile Organic Compounds mg/kg = milligram per kilogram

RPD = Relative Percent Difference VOCs = Volatile Organic Compounds PFAS = Perfluoroalkyl substances %R = Percent recovery PCBs = Polychlorinated biphynels HCID = Hydrocarbon Identification

NA = Not Applicable EPA = United States Environmental Protection Agency

PAHs- SIM = Polycyclic aromatic hydrocarbons - selected ion mode

VPH/EPH = Volatile petroleum hydrocarbons and extractable petroleum hydrocarbons analyzed in at least 3 samples if TPH detected in groundwater

PCUL = The saturated soil preliminary cleanup level as shown in Ecology's PCUL spreadsheet emailed to GeoEngineers on January 18, 2022.

Groundwater Reporting Limits, PCULs, Performance Criteria, and Analytical Methods

Precision Engineering, Inc.
Dick Morgan
Seattle, Washington

Seattle, Washington									
			Groundwater		Matrix Sp	ike	Blank Sp	ike	
Anglido	Detection Limit	Reporting Limit	PCUL ¹	Duplicate	%R	RPD	%R	RPD	Analytical Mothed
Analyte Metals (μg/L)	(μg/L)	(μg/L)	(μg/L)	RPD	7011	RPD	%K	RPD	Analytical Method
Arsenic	0.0373	0.200	8.0	20	75-125	20	80-120	20	EPA 6020B UCT-KED
Cadmium	0.0400	0.100	1.2	20	75-125	20	80-120	20	EPA 6020B UCT-KED
Chromium	0.260	0.500	100	20	75-125	20	80-120	20	EPA 6020B
Hexavalent Chromium	0.0125	0.0125	0.046	20	85-115	20	85-115	20	EPA 7196A
Copper	0.216 0.0513	0.500 0.100	3.1 5.6	20 20	75-125 75-125	20	80-120 80-120	20 20	EPA 6020B EPA 6020B
Mercury	0.000130	0.0004	0.025	20	75-125	20	80-120	20	EPA 7471B
Nickel	0.220	0.500	8.2	20	75-125	20	80-120	20	EPA 6020B UCT-KED
Selenium	0.179	0.500	50	20	75-125	20	80-120	20	EPA 6020B UCT-KED
Thallium	0.0240	0.200	0.062	20	75-125	20	80-120	20	EPA 6020B EPA 6020B UCT-KED
Zinc HCID (µg/L)	2.92	6.00	81	20	75-125	20	80-120	20	EPA 6020B UCT-KED
Gasoline Range Organics	0.250	0.250	800/1,000	NA	NA	NA	NA	NA	NWTPH-HCID
Diesel Range Organics	0.500	0.500	500	NA	NA	NA	NA	NA	NWTPH-HCID
Oil Range Organics	1.00	1.00	500	NA	NA	NA	NA	NA	NWTPH-HCID
Total Petroleum Hydrocarbons (μg/L)	15.0	100	000/4000	20	74.407	1 00	74.407		NIMETRIA
Gasoline-range petroleum hydrocarbons Diesel-range petroleum hydrocarbons	15.8 50	100 100	800/1000 500	30 30	71-127 30-160	30 30	71-127 30-160	30 30	NWTPH-G NWTPH-Dx
Oil-range petroleum hydrocarbons	100	200	500	30	30-160	30	30-160	30	NWTPH-Dx
VPH/EPH (µg/L)		<u> </u>							
VPH	25.0	50.0	NA	30	70-130	30	70-130	30	NWTPH-VPH
EPH VOCe (vg (1)	20.0	40.0	NA	30	10-130	30	10-130	30	NWTPH-EPH
VOCs (µg/L)	1 00000		. –		22 12 -		00 : 5 :		ED1 63335
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.0898 0.0773	0.200 0.200	1.7 200	30 30	80-120 79-123	30 30	80-120 79-123	30 30	EPA 8260D EPA 8260D
1,1,2,2-Tetrachloroethane	0.0773	0.200	0.22	30	79-123 77-123	30	79-123	30	EPA 8260D EPA 8260D
1,1,2-Trichloroethane	0.104	0.200	0.90	30	80-121	30	80-121	30	EPA 8260D
1,1-Dichloroethane	0.0898	0.200	7.7	30	76-124	30	76-124	30	EPA 8260D
1,1-Dichloropropene	0.0948	0.200	NA	30	80-127	30	80-127	30	EPA 8260D
1,2,3-Trichlorobenzene	0.252	0.500	6.4	30	49-133	30	49-133	30	EPA 8260D
1,2,3-Trichloropropane	0.161	0.500	0.00038	30	76-125	30	76-125	30	EPA 8260D
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	0.208 0.0997	0.500 0.200	NA 80	30 30	64-124 80-127	30 30	64-124 80-127	30 30	EPA 8260D EPA 8260D
1,2-Dibromo-3-chloropropane	0.394	0.500	0.042	30	62-123	30	62-123	30	EPA 8260D
1,2-Dichlorobenzene	0.0846	0.200	NA	30	80-120	30	80-120	30	EPA 8260D
1,2-Dichloroethane	0.0756	0.200	3.5	30	75-123	30	75-123	30	EPA 8260D
1,2-Dichloropropane	0.0656	0.200	3.1	30	80-120	30	80-120	30	EPA 8260D
1,3,5-Trimethylbenzene	0.0701	0.200	80	30	80-129	30	80-129	30	EPA 8260D
1,3-Dichlorobenzene 1,3-Dichloropropane	0.0751 0.0661	0.200 0.200	NA 160	30 30	80-120 80-120	30 30	80-120 80-120	30 30	EPA 8260D EPA 8260D
1,4-Dichlorobenzene	0.104	0.200	NA NA	30	80-120	30	80-120	30	EPA 8260D
2,2-Dichloropropane	0.115	0.200	NA	30	66-147	30	66-147	30	EPA 8260D
2-Butanone	1.77	5.00	4800	30	61-140	30	61-140	30	EPA 8260D
2-Chloroethyl vinyl ether	0.545	1.00	NA	30	64-120	30	64-120	30	EPA 8260D
2-Chlorotoluene	0.0627	0.200	160	30	78-122	30	78-122	30	EPA 8260D
2-Hexanone 2-Pentanone	2.06 2.34	5.00 5.00	40 NA	30 30	69-133 69-134	30 30	69-133 69-134	30 30	EPA 8260D EPA 8260D
4-Chlorotoluene	0.0610	0.200	NA NA	30	80-121	30	80-121	30	EPA 8260D
4-Isopropyl Toluene	0.0753	0.200	NA	30	79-130	30	79-130	30	EPA 8260D
4-Methyl-2-Pentanone	1.90	5.00	640	30	67-133	30	67-133	30	EPA 8260D
Acetone	4.33	5.00	7200	30	58-142	30	58-142	30	EPA 8260D
Acrolein	2.70	5.00	1.1	30	52-190	30 30	52-190	30 30	EPA 8260D
Acrylonitrile Benzene	0.398 0.0531	1.00 0.200	0.028 1.6	30 30	64-134 80-120	30	64-134 80-120	30	EPA 8260D EPA 8260D
Bromobenzene	0.0661	0.200	64	30	80-120	30	80-120	30	EPA 8260D
Bromochloromethane	0.0868	0.200	NA	30	80-121	30	80-121	30	EPA 8260D
Bromoform	0.154	0.200	12	30	51-134	30	51-134	30	EPA 8260D
Bromomethane	0.738	1.00	11.2	30	72-131	30	72-131	30	EPA 8260D
Carbon Disulfide Carbon tetrachloride	0.117 0.0868	0.200 0.200	800 0.35	30 30	78-125 53-137	30 30	78-125 53-137	30 30	EPA 8260D EPA 8260D
Chlorobenzene	0.0578	0.200	100	30	80-120	30	80-120	30	EPA 8260D
Chloroethane	0.176	0.200	14667	30	60-155	30	60-155	30	EPA 8260D
Chloroform	0.0548	0.200	1.2	30	80-122	30	80-122	30	EPA 8260D
cis-1,2-Dichloroethene	0.0811	0.200	16	30	80-121	30	80-121	30	EPA 8260D
cis-1,3-Dichloropropene	0.0890	0.200	0.44	30	80-124	30	80-124	30	EPA 8260D
Dibromochloromethane Dibromomethane	0.0945 0.0641	0.200 0.200	2.2 80	30 30	65-135 80-120	30 30	65-135 80-120	30 30	EPA 8260D EPA 8260D
Dichlorodifluoromethane	0.128	0.200	4.24	30	48-147	30	48-147	30	EPA 8260D EPA 8260D
Ethylbenzene	0.0509	0.200	21	30	80-120	30	80-120	30	EPA 8260D
Hexachlorobutadiene	1.00	2.00	0.010	30	58-123	30	58-123	30	EPA 8260D
Isopropyl Benzene	0.0741	0.200	800	30	80-128	30	80-128	30	EPA 8260D
Methyl tert-butyl Ether	0.140	0.500	24.31	30	71-132	30	71-132	30	EPA 8260D
Methylene Chloride	0.531	1.00	5.0	30	65-135	30	65-135	30	EPA 8260D
Naphthalene n-Butylbenzene	0.274 0.180	0.500 0.200	1.4 400	30 30	50-134 74-129	30 30	50-134 74-129	30 30	EPA 8260D EPA 8260D
n-Hexane	0.100	0.200	4.1	30	70-130	30	70-130	30	EPA 8260D
n-Propylbenzene	0.0684	0.200	800	30	78-130	30	78-130	30	EPA 8260D
s-Butylbenzene	0.0632	0.200	800	30	78-129	30	78-129	30	EPA 8260D
Styrene	0.0876	0.200	100	30	80-124	30	80-124	30	EPA 8260D
t-Butylbenzene	0.0714	0.200	800	30	78-125	30	78-125	30	EPA 8260D
Tetrachloroethene	0.0911	0.200	2.9	30	80-120	30	80-120	30	EPA 8260D

			Groundwater		Matrix Sp	ike	Blank Sp	ike	
Analys	Detection Limit	Reporting Limit	PCUL ¹	Duplicate	%R	RPD	%R	RPD	Amaliation Mathed
Analyte	(μg/L)	(μg/L)	(μg/L)	RPD					Analytical Method
Toluene trans-1,2-Dichloroethene	0.0485 0.0692	0.200 0.200	102 77	30 30	80-120 78-128	30 30	80-120 78-128	30 30	EPA 8260D EPA 8260D
trans-1,3-Dichloropropene	0.0891	0.200	0.44	30	71-127	30	71-127	30	EPA 8260D
trans-1.4-Dichloro 2-Butene	0.603	1.00	NA	30	55-129	30	55-129	30	EPA 8260D
Trichloroethene	0.0698	0.200	0.70	30	80-120	30	80-120	30	EPA 8260D
Trichlorofluoromethane	0.125	0.200	120	30	62-141	30	62-141	30	EPA 8260D
Vinyl Acetate	0.116	0.200	7800	30	55-138	30	55-138	30	EPA 8260D
Vinyl Chloride	0.0817	0.200	0.18	30	66-133	30	66-133	30	EPA 8260D
Xylenes, total	0.219	0.600	110	30	76-127	30	76-127	30	EPA 8260D
SVOCs - SIM (µg/L)									
1-Methylnaphthalene	0.0196	0.100	1.51	30	37-120	30	37-120	30	EPA 8270E-SIM
2-Methylnaphthalene	0.0259	0.100	14.04	30	29-120	30	29-120	30	EPA 8270E-SIM
Acenaphthene	0.0203	0.100	5.34	30	38-120	30	38-120	30	EPA 8270E-SIM
Acenaphthylene	0.0232	0.100	NA	30	32-120	30	32-120	30	EPA 8270E-SIM
Anthracene	0.0228	0.100	2.15	30	39-120	30	39-120	30	EPA 8270E-SIM
Benzo(a)anthracene	0.0458	0.100	0.00016	30	37-120	30	37-120	30	EPA 8270E-SIM
Benzo(a)pyrene	0.0559	0.100	0.000016	30	25-120	30	25-120	30	EPA 8270E-SIM
Benzo(b)fluoranthene	0.0854	0.100	0.00016	30	38-128	30	38-128	30	EPA 8270E-SIM
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.0721 0.0864	0.100 0.100	0.0016	30	28-120 36-130	30 30	28-120 36-130	30 30	EPA 8270E-SIM EPA 8270E-SIM
Benzo(k)fluorantnene Benzofluoranthenes, Total	0.0864	0.100	0.0016 NA	30	46-120	30	46-120	30	EPA 8270E-SIM EPA 8270E-SIM
Chrysene	0.191	0.200	0.016	30	48-120	30	48-120	30	EPA 8270E-SIM
Dibenzo(a,h)anthracene	0.0900	0.100	0.000016	30	21-120	30	21-120	30	EPA 8270E-SIM
Fluoranthene	0.0161	0.100	1.82	30	48-120	30	48-120	30	EPA 8270E-SIM
Fluorene	0.0161	0.100	3.7	30	41-120	30	41-120	30	EPA 8270E-SIM
Indeno(1,2,3-cd)pyrene	0.0840	0.100	0.00016	30	32-120	30	32-120	30	EPA 8270E-SIM
Naphthalene	0.0169	0.100	1.4	30	33-120	30	33-120	30	EPA 8270E-SIM
Phenanthrene	0.0243	0.100	NA	30	49-120	30	49-120	30	EPA 8270E-SIM
Pyrene	0.0254	0.100	2.011	30	48-120	30	48-120	30	EPA 8270E-SIM
SVOCs (µg/L)									
1,4-Dioxane	0.211	2.00	0.44	30	0-200	30	0-200	30	EPA 8270E
2,3,4,6-Tetrachlorophenol	0.134	1.00	480	30	60.9-120	30	60.9-120	30	EPA 8270E
2,4,5-Trichlorophenol	0.999	5.00	0.037	30	58.2-120	30	58.2-120	30	EPA 8270E
2,4,6-Trichlorophenol	1.15	3.00	8.0	30	58.5-120	30	58.5-120	30	EPA 8270E
2,4-Dichlorophenol	0.870	3.00	10	30	56.6-120	30	56.6-120	30	EPA 8270E
2,4-Dimethylphenol	1.00	3.00	2.90	30	50.4-120	30	50.4-120	30	EPA 8270E
2,4-Dinitrophenol	1.66	20.0	32.0	30	10-168	30 30	10-168	30	EPA 8270E EPA 8270E
2,4-Dinitrotoluene 2,6-Dinitrotoluene	1.02	3.00 3.00	0.180	30 30	72.7-138 61-141	30	72.7-138 78.2-141	30 30	EPA 8270E EPA 8270E
2-Chloronaphthalene	0.195	1.00	100	30	56-120	30	56-120	30	EPA 8270E
2-Chlorophenol	0.185	1.00	17	30	55.2-120	30	55.2-120	30	EPA 8270E
2-Methylphenol	0.215	1.00	11	30	48.5-120	30	48.5-120	30	EPA 8270E
2-Nitroaniline	1.18	3.00	160	30	61.8-120	30	61.8-120	30	EPA 8270E
2-Nitrophenol	0.189	3.00	NA	30	68-120	30	68-120	30	EPA 8270E
3,3'-Dichlorobenzidine	2.52	5.00	0.0033	30	41-171	30	41-171	30	EPA 8270E
3-Nitroaniline	1.03	3.00	NA	30	41.2-123	30	41.2-120	30	EPA 8270E
4,6-Dinitro-2-methylphenol	2.36	10.0	7	30	32.6-159	30	32.6-159	30	EPA 8270E
4-Bromophenyl phenyl ether	0.274	1.00	NA	30	66.2-120	30	66.2-120	30	EPA 8270E
4-Chloro-3-Methylphenol	0.899	3.00	36	30	54.6-120	30	54.6-120	30	EPA 8270E
4-Chloroaniline	0.915	5.00	0.440	30	10-120	30	10-120	30	EPA 8270E
4-Chlorophenylphenyl ether	0.214	1.00	NA 110.0	30	66.2-120	30	66.2-120	30	EPA 8270E
4-Methylphenol	0.263	2.00	110.0	30	46.6-120	30	46.6-120	30	EPA 8270E
4-Nitrophonel	1.15 0.692	3.00 10.0	4.40 NA	30 30	50-135 12.1-120	30 30	50-135 12.1-120	30 30	EPA 8270E EPA 8270E
4-Nitrophenol Aniline	0.692	1.00	15	30	22.1-125	30	22.1-120	30	EPA 8270E
Azobenzene (1,2-DP-Hydrazine)	0.269	1.00	0.4	30	55.9-120	30	55.9-120	30	EPA 8270E
Benzidine	5.00	10.0	0.000023	30	10-160	30	10-120	30	EPA 8270E
Benzoic acid	1.50	20.0	590	30	10-120	30	10-120	30	EPA 8270E
Benzyl Alcohol	0.500	2.00	56.4	30	20-120	30	20-120	30	EPA 8270E
Bis(2-Chloroethoxy)methane	0.254	1.00	NA	30	65.2-120	30	65.2-120	30	EPA 8270E
bis(2-chloroethyl) ether	0.265	1.00	0.040	30	57.3-120	30	57.3-120	30	EPA 8270E
bis(2-Ethylhexyl)phthalate	0.328	3.00	0.046	30	67.2-123	30	67.2-123	30	EPA 8270E
Butylbenzylphthalate	0.361	1.00	0.013	30	71-139	30	71-139	30	EPA 8270E
Carbazole	0.269	1.00	NA	30	42-177	30	42-177	30	EPA 8270E
Dibenzofuran	0.193	1.00	3.092	30	61.9-120	30	61.9-120	30	EPA 8270E
Diethyl phthalate	0.256	1.00	93	30	62-120	30	62-120	30	EPA 8270E
Dimethylphthalate	0.199	1.00	59.0	30	65-120	30	65-120	30	EPA 8270E
Di-n-Octylphthalate	0.266	1.00	2.3	30	60.9-120	30	60.9-120	30	EPA 8270E
Hexachlorobenzene	0.228	1.00	0.000005	30	62.2-120	30	62.2-120	30	EPA 8270E
Hexachlorocyclopentadiene	0.990	5.00	1.0	30	29.3-120	30	29.3-120	30	EPA 8270E
Hexachloroethane	0.227	2.00	0.020	30	40.3-120 77-146	30	40.3-120	30	EPA 8270E
Isophorone	0.756	1.00	92	30	11-146	30	77-146	30	EPA 8270E

			Groundwater		Matrix Sp	ike	Blank Sp	ike	
Analyte	Detection Limit (μg/L)	Reporting Limit (µg/L)	PCUL ¹ (µg/L)	Duplicate RPD	%R	RPD	%R	RPD	Analytical Method
Nitrobenzene	0.269	1.00	16.0	30	60.8-120	30	60.8-120	30	EPA 8270E
N-Nitrosodimethylamine	0.935	3.00	0.00023	30	17.7-120	30	17.7-120	30	EPA 8270E
N-Nitroso-di-n-Propylamine	0.239	1.00	0.013	30	59.3-120	30	59.3-120	30	EPA 8270E
N-Nitrosodiphenylamine	0.231	1.00	0.550	30	66-120	30	66-120	30	EPA 8270E
Pentachlorophenol	1.21	10.0	0.0020	30	40.7-124	30	40.7-124	30	EPA 8270E
Phenol	0.232	1.00	100	30	10-120	30	10-120	30	EPA 8270E
Pyridine	1.31	5.00	8.0	30	33.6-120	30	33.6-120	30	EPA 8270E
PCBs			•		•				
Total PCB Aroclors	0.0175	0.100	0.0000076	30	51-120	30	51-120	30	EPA 8082
Total PCB TEQ	-	_	4.4E-09	-			-		-

Notes:

 1 Preliminary cleanup levels from Ecology's PCUL spreadsheet emailed to GeoEngineers on January 18, 2022.

TPH = Total petroleum hydrocarbons

PCBs = Polychlorinated biphenyls

VOCs = Volatile organic compounds

SVOCs = Semivolatile organic compounds

 ${\tt SVOCs\text{-}SIM} = {\tt Semivolatile} \ {\tt organic} \ {\tt compounds\text{-}selected} \ {\tt ion} \ {\tt monitoring}$

 $\label{eq:VPH} \textit{VPH/EPH} = \textit{Volatile petroleum hydrocarbons/extractable petroleum hydrocarbons}$

NA = Not applicable

 μ g/L = Microgram per liter

PCUL = Preliminary cleanup level

%R = Percent recovery

RPD = Relative percent difference
EPA = United States Environmental Protection Agency

Soil and Groundwater Reporting Limits, Performance Criteria, and Analytical Method for PFAS

Precision Engineering Site Dick Morgan Seattle, Washington

		Seattle, w	asimigron				-		-
Analyte		Matrix	MDL	Accuracy (LCS %Rec)	Precision (RPD)	LODb	LOQ	Units	Method
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	Water	0.16	70-130	30	0.4	5.0	ng/L	537 Mod
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	Water	0.32	70-130	30	0.74	5.0	ng/L	537 Mod
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	Water	1.50	70-130	30	4.8	5.0	ng/L	537 Mod
N-Methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	2355-31-9	Water	0.88	70-130	30	2	5.0	ng/L	537 Mod
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	Water	0.49	70-130	30	1.6	5.0	ng/L	537 Mod
Perfluoropentanoiic Acid (PFPeA)	2706-90-3	Water	1.6	70-130	30	4.8	5.0	ng/L	537 Mod
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	Water	0.46	70-130	30	1.5	5.0	ng/L	537 Mod
N-Ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	2991-50-6	Water	0.94	70-130	30	2.0	5.0	ng/L	537 Mod
Perfluorohexanoic acid (PFHxA)	307-24-4	Water	8.9	70-130	30	18	20	ng/L	537 Mod
Perfluorododecanoic acid (PFDoDA)	307-55-1	Water	1.2	70-130	30	4.8	5.0	ng/L	537 Mod
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	Water	0.39	70-130	30	0.8	5.0	ng/L	537 Mod
Perfluorooctanoic acid (PFOA)	335-67-1	Water	0.38	70-130	30	0.8	5.0	ng/L	537 Mod
Perfluorodecanoic acid (PFDA)	335-76-2	Water	1.2	70-130	30	4.8	5.0	ng/L	537 Mod
Perfluorodecane sulfonic acid (PFDS)	335-77-3	Water	0.87	70-130	30	1.9	5.0	ng/L	537 Mod
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	Water	0.77	70-130	30	1.8	5.0	ng/L	537 Mod
Perfluorobutane sulfonic acid (PFBS)	375-73-5	Water	0.27	70-130	30	0.71	5.0	ng/L	537 Mod
Perfluoroheptanoic acid (PFHpA)	375-85-9	Water	0.68	70-130	30	1.6	5.0	ng/L	537 Mod
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	Water	0.46	70-130	30	1.5	5.0	ng/L	537 Mod
Perfluorononanoic acid (PFNA)	375-95-1	Water	1.4	70-130	30	4.8	5.0	ng/L	537 Mod
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	Water	2.4	70-130	30	4.8	5.0	ng/L	537 Mod
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	Water	0.25	70-130	30	0.77	5.0	ng/L	537 Mod
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	Water	0.38	70-130	30	0.8	5.0	ng/L	537 Mod
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	Water	1.9	70-130	30	4.8	5.0	ng/L	537 Mod
Perfluorooctane sulfonamide (FOSA)	754-91-6	Water	0.59	70-130	30	0.59	5.0	ng/L	537 Mod
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	Soil	0.088	63-133	50	0.20	1.0	ng/g	537 Mod
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	Soil	0.13	66-130	50	0.37	1.0	ng/g	537 Mod
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	Soil	0.18	61-136	50	0.40	1.0	ng/g	537 Mod
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	Soil	0.27	48-161	50	0.80	1.0	ng/g	537 Mod
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	Soil	0.054	68-126	50	0.20	1.0	ng/g	537 Mod
Perfluoropentanoic acid (PFPeA)	2706-90-3	Soil	0.21	66-121	50	0.80	1.0	ng/g	537 Mod 537 Mod
6:2 Fluorotelomersulfonic acid (6:2 FTS)	27619-97-2	Soil	0.15	69-143	50	0.38	1.0	ng/g	537 Mod
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	Soil	0.20	50-151	50	0.40	1.0	ng/g	537 Mod 537 Mod
Perfluorohexanoic acid (PFHxA)	307-24-4	Soil	0.31	62-138	50	0.80	1.0	ng/g	537 Mod
Perfluorododecanoic acid (PFDoDA)	307-55-1	Soil	0.27	62-138	50	0.80	1.0	ng/g	537 Mod
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	Soil	0.073	58-147	50	0.20	1.0	ng/g	537 Mod
Perfluorooctanoic acid (PFOA)	335-67-1	Soil	0.13	63-141	50	0.40	1.0	ng/g	537 Mod 537 Mod
Perfluorodecanoic acid (PFDA)	335-76-2	Soil	0.26	65-132	50	0.80	1.0	ng/g	537 Mod
Perfluorodecane sulfonic acid (PFDS)	335-77-3	Soil	0.20	71-153	50	0.39	1.0	ng/g	537 Mod 537 Mod
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	Soil	0.30	66-139	50	0.73	1.0	ng/g	537 Mod 537 Mod
Perfluorobutane sulfonic acid (PFBS)	375-73-5	Soil	0.22	44-139	50	0.71	1.0	ng/g	537 Mod
Perfluoroheptanoic acid (PFHpA)	375-85-9	Soil	0.19	68-127	50	0.40	1.0	1 .	537 Mod
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	Soil	0.062	52-186	50	0.40	1.0	ng/g ng/g	537 Mod 537 Mod
Perfluorononanoic acid (PFNA)	375-92-8	Soil	0.002	62-137	50	0.19	1.0		537 Mod 537 Mod
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	Soil	0.33	73-131	50	0.40	1.0	ng/g ng/g	537 Mod 537 Mod
8:2 Fluorotelomersulfonic acid (8:2 FTS)	39108-34-4	Soil	0.029	73-131	50	0.40	1.0	ng/g	537 Mod 537 Mod
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	Soil	0.029	60-147	50	0.10	1.0	ng/g	537 Mod 537 Mod
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	Soil	0.11	64-125	50	0.40	1.0	ng/g ng/g	537 Mod 537 Mod
Perfluoroctane sulfonamide (FOSA)	754-91-6	Soil	0.067	68-126	50	0.80	1.0	ng/g	537 Mod 537 Mod
i cinadioodane sundhamide (1 00A)	104-31-0	3011	0.007	00-120	30	0.20	1.0	ng/g	JJ1 WIOU

Notes:

MDL = Method Detection Limit

LCS %Rec = Laboratory Control Sample Percent Recovery

RPD = Relative Percent Difference

LODb = Limit of Detection

LOQ = Limit of Quantitation

ng/L = Nanogram per Liter ng/g = Nanogram per Gram

Field Quality Control Sample Frequency

Precision Engineering Site Dick Morgan Seattle, Washington

QC Check Sample	Frequency	Acceptance Criteria
Soil		
Equipment Rinsate Blank	One per every 20 samples (or fewer) collected with reusable equipment	Below MRL ¹
Temperature Blank	One per sample cooler	4°C (±2°C)
Groundwater		
Equipment Rinsate Blank	One per every 20 samples (or fewer) collected with reusable equipment	Below MRL ²
Filter Blank	One per every 20 filtered sample (or fewer).	Below MRL ²
Trip Blank	One per sample cooler (for VOC analysis only)	Below MRL ²
Field Duplicate Sample	Field Duplicate Sample One per every 20 samples (or fewer)	
Temperature Blank	One per sample cooler	4°C (±2°C)

Notes:

- ¹ Not all QC samples are applicable to every sampling event or analytical method.
- ² Criteria may change based on data validation.
- $^{\rm 3}$ RPD not evaluated for sample results less than five times the MRL.
- °C = Degrees Celsius
- MRL = Method reporting limit
- QC = Quality control
- RPD = Relative percent difference
- VOC = Volatile organic compound

Laboratory Quality Control Sample Frequency

Precision Engineering Site Dick Morgan Seattle, Washington

QC check sample	QC Parameter	Frequency	Acceptance Criteria	Corrective Action	
	CRM or LCS	1 per prep batch (20 samples or less)	+/- 20% or listed control limits	Rerun to confirm. Correct problem and if necessary reprep and reanalyze batch.	
	Laboratory Replicate	1 per prep batch (20 samples or less)	+/- 20%	Review data for errors. Matrix QC control limits are advisory as an indication of sample characteristics.	
Metals, CR+6	Matrix Spike	1 per prep batch (20 samples or less)	+/- 30%	Review data for errors. Matrix QC control limits are advisory as an indication of sample characteristics.	
	Method Blank	1 per prep batch (20 samples or less)	Less than $1/2$ the RL or greater than $1/10^{th}$ the amount measured in any sample or $1/10^{th}$ the regulatory limit, whichever is greater	Reprocess the batch. If insufficient sample volume remains for reprocessing or if holding times have been exceeded, report with the appropriate data qualifiers.	
	LCS	1 per prep batch (20 samples or less). Run in duplicate if no sample available for MS/MSD.	Method control limits	Rerun to confirm and evaluate outliers. Correct problem and if necessary reprep and reanalyze batch.	
	Matrix Spike	1 per prep batch (20 samples or less)	Laboratory listed control limits	Review data for errors. Matrix QC control limits are advisory as an indication of sample characteristics.	
Organic Parameters (SVOA, VOA, TPHg, TPHDx, VPH, EPH)	Matrix Spike Duplicate	1 per prep batch (20 samples or less)	Laboratory listed control limits for recovery and RPD	Review data for errors. Matrix QC control limits are advisory as an indication of sample characteristics.	
vrn, crn)	Surrogates	Every Sample	Method limits	Evaluate the sample for matrix effect. Rerun at dilution if needed, or reprocess sample as needed.	
	Method Blank	1 per prep batch (20 samples or less)	Less than ½ the RL or greater than 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater, with the exception of known laboratory contaminants	Reprocess the batch if necessary. If insufficient sample volume remains for reprocessing or if holding times have been exceeded, report with the appropriate data qualifiers.	

Notes:

¹ Not all quality control samples are applicable to every sampling event or analytical method.

² Criteria may change based on data validation.

³ RPD not evaluated for samples less than five times the MRL.

Laboratory duplicate samples and laboratory control samples will be used when required by the method.

TPHg = Northwest total petroleum hydrocarbons - gasoline-range

TPHDx = Northwest total petroleum hydrocarbons - diesel extended

MS/MSD = Matrix spike and matrix spike duplicate

MRL = Method reporting limit

% = Percent

QC = Quality control

RPD = Relative percent difference

CRM = Certified Reference Material

LCS = Laboratory control sample

SVOA = Semivolatile organic analysis

VOA = Volatile organic analysis

EPH = Extractable petroleum hydrocarbon

VPH = Volatile petroleum hydrocarbon

Soil Sample Handling Summary

Precision Engineering Site Dick Morgan Seattle, Washington

Analysis	Container	Containers Per Sample	Preservation ¹	Maximum Hold Time To Lab Prep	Maximum Hold Time To Analysis
Metals including hexavalent chromium and mercury, HCID, EPH, TPHDx	8 oz WMG	1	None	Extract/analyze within 14 days	Extract/analyze within 14 days
voc	SoBi Vial	4	Sodium Bisulfate	Analyze within 14 days	Analyze within 14 days
VOC, VPH, TPHg	MeOH Vial	3	Methanol	Analyze within 14 days	Analyze within 14 days
SVOC, PAH, PCBs	8 oz WMG	1	Freeze at laboratory	Extract within 14 days; freeze	40 days
PFAS	125 ml HDPE	1	None	14 days	14 days

Notes:

¹ All samples cooled to approximately 4 degrees Celsius.

HCID = Hydrocarbon identification

EPH = Extractable petroleum hydrocarbon

VPH = Volatile petroleum hydrocarbon

TPHDx = Northwest total petroleum hydrocarbons – diesel extended

TPHg = Northwest total petroleum hydrocarbons - gasoline-range

ml = milliliter

VOC = Volatile organic compound

SVOC = Semivolatile organic compound

PAH = Polycyclic aromatic hydrocarbon

PCBs = Polychlorinated biphenyls

PFAS = Perfluoralkyl substance

WMG = Wide mouth glass jar

Oz = ounce

SoBi = Sodium bisulfate

MeOH = methanol

HDPE = High density polyethylene

Groundwater Sample Handling Summary

Precision Engineering Site Dick Morgan Seattle, Washington

Analysis	Bottle Size And Type	Bottle Per Sample	Maximum Hold Time To Lab Prep	Maximum Hold Time To Analysis
Metals (total)	1-L HDPE w/HN03	1	180 days	180 days
Hexavalent Chromium (total)	250 ml AG	1	Analyze within 24 hours	Analyze within 24 hours
Low level mercury (total+dissolved*)	500 mL AG BrCl	2	To lab within 48 hours for filtration/preservation	28 days
Metals (dissolved – field filtered)	1-L HDPE w/HNO3	1	180 days	180 days
Hexavalent Chromium (dissolved – field filtered)	250 ml AG	1	Analyze within 24 hours	Analyze within 24 hours
VOCs, TPHg, VPH	40-mL VOC w/HCl	5	14 days	14 days
HCID/TPHDx	500 ml AG w/HCl	3	14 days	40 days
EPH	500 ml AG w/HCl	1	14 days	40 days after prep
PAH SIM	500 ml AG	1	7 days	40 days after prep
PCBs	500 ml AG	2	NA	NA
SVOC	500 ml AG	2	7 days	40 days after prep
PFAS	250 ml HDPE	2	14 days**	14 days**
тос	250 ml AG w/H2S04	1	28 days	28 days
Nitrate, sulfate	250 ml plastic	1	Analyze within 48 hours for nitrate	Analyze within 48 hours for nitrate
Diss Mn (ff)	500 ml HDPE w/HN03	1	180 days	180 days

Notes:

*Filtered at the laboratory

**Ecology has indicated hold time exceedances may be allowed due to the stability of PFAS

HCID = Hydrocarbon identification

EPH = Extractable petroleum hydrocarbon

VPH = Volatile petroleum hydrocarbon

TPHDx = Northwest total petroleum hydrocarbons – diesel extended

TPHg = Northwest total petroleum hydrocarbons - gasoline-range

VOC = Volatile organic compound

SVOC = Semivolatile organic compound

HCI = hydrochloric acid

PAH = Polycyclic aromatic hydrocarbon

PCBs = Polychlorinated biphenyls

PFAS = Perfluoralkyl substance

WMG = Wide mouth glass jar

HDPE = High density polyethylene

HN03 = Nitric Acid

H2SO4 = Sulfuric acid

ml = milliliter

AG = Amber glass

BrCl = Bromium Chloride

NA = Not applicable

APPENDIX A Standard Operating Procedures(SOPs)

This standard operating procedure (SOP) describes the decontamination procedure for field equipment that may come in contact with contaminated media and that GeoEngineers staff may reuse at multiple sample locations or sites. Decontamination is performed to reduce the potential for cross- contamination of samples that will be collected with multiuse equipment and that will undergo physical or chemical analyses. Other equipment that is multiuse—not used specifically for sample collection (e.g., water level meter, pump used for well development)—also requires decontamination. Finally, decontamination is necessary to minimize the potential for GeoEngineers staff's exposure to chemicals.

Typically, decontamination is not necessary for field equipment that is disposable and intended to be used only once (e.g., disposable bailer). Additionally, this SOP does not apply to equipment used by subcontractors, such as drilling equipment. However, GeoEngineers staff should confirm that subcontractors are implementing appropriate decontamination procedures to minimize the potential for cross-contamination of samples or GeoEngineers staff's exposure to chemicals.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Nonphosphate detergent solution (e.g., Alconox, Liquinox)
- Distilled and potable water
- Personal protective equipment (as specified in the site-specific health and safety plan)
- Buckets to contain rinsate, brushes, paper towels

Depending on the site conditions and the types of contaminants that may be present, the use of other decontamination materials, such as deionized water, methanol, hexane, or isopropyl alcohol, may be necessary. The need for other materials should be determined prior to fieldwork. The decontamination procedures using other materials should be described in a site-specific sampling and analysis plan (SAP).

METHODOLOGY

When the site-specific SAP specifies additional or different requirements for decontamination, it takes precedence over this SOP. In the absence of a SAP, the following procedures shall be used.

General Sampling Procedure

- 1. Rinse the equipment with potable water to remove visible soil, petroleum sheen, or contamination.
- 2. Scrub the equipment with a brush and solution of distilled water and nonphosphate detergent.
- 3. Rinse the equipment with distilled water.
- 4. Allow equipment to air dry, or dry it with paper towels.

5. At all times, ensure that the decontaminated equipment is stored to prevent it from becoming contaminated while not in use. Depending on the size of the equipment, it can be wrapped with new aluminum foil or placed in a new plastic bag.

Rinsate Storage

Fluids resulting from equipment decontamination shall initially be contained in a bucket and then transferred to a Department of Transportation-approved container (e.g., 55-gallon drum) stored on site at a location that does not interfere with on-site activities (e.g., vehicle traffic, pedestrian areas). Place a label on each container and include the following information:

- Contents (e.g., decontamination fluids)
- Origin of materials (i.e., site address)
- Client contact

Note that labels on containers exposed to sunlight or precipitation are prone to fading. Use a waterproof, indelible ink pen (e.g., Sharpie®) whenever possible. In the field notebook, keep a detailed inventory of all containers, including the number of containers, the approximate quantity of liquids generated, and a description of the source of the fluids. Provide this information to the GeoEngineers project manager. Take photographs of the drum labels and drum location on site.

Some clients and site owners have specific requirements for labeling and storing containers. Discuss potential site-specific requirements with the GeoEngineers project manager or site contact to prior to fieldwork. If the site is known to contain concentrations of contaminants that will classify investigation-derived waste as hazardous, a special label should be used and the waste generator number should be included.

This standard operating procedure (SOP) describes the methods for observing and documenting the physical characteristics of unconsolidated geologic materials (soil and sediment) encountered during field investigations. If a GeoEngineers project requires hard rock drilling and description of rock core or cuttings, procedures for describing rock should be specified in a project-specific sampling and analysis plan (SAP).

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be used for this procedure:

- Boring logs
- Dry-erase board
- Camera

METHODOLOGY

When the project-specific SAP specifies additional or different requirements for lithologic logging, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used. GeoEngineers uses a combination of the Unified Soil Classification System (USCS) and the ASTM International method D2487 for describing and classifying soil and sediment by visual and manual examination. Before beginning fieldwork, verify with the project manager the logging standard to be used.

Logging Process

The objective of lithologic logging is to document the physical characteristics of soil and sediment encountered and the changes in characteristics with depth. Typically, changes with depth will define the strata encountered. Therefore, each stratum encountered should be described and the following characteristics should be included in the description, in the order given:

- Depth interval of each stratum to the nearest tenth of a foot below ground surface
- USCS classification group name and symbol
- Color (if required, use Munsell colorchart)
- Grain-size distribution, as percentages of fines (silt and clay combined), sand, and gravel
- Percentages of larger clasts (cobbles and boulders) if present
- Consistency, when the content of fines is 50 percent or greater
- Density, when the combined percentage of sand and gravel is 50 percent orgreater
- Sand and gravel grain angularity
- Visual and/or olfactory evidence of contamination, including staining, odors, and/or sheen, if wet

- Structures, if present (e.g., laminae)
- Presence of organic matter (e.g., roots, leaves, twigs, woodfragments)
- Moisture content as "dry," "moist," or "wet"
- Optional geologic interpretation of each stratum (e.g., fill, alluvium)

This standard operating procedure (SOP) describes the use of a photoionization detector (PID) to field screen soil for evidence of organic vapors. The PID measures the organic vapor concentration in parts per million, is not compound-specific, and provides a qualitative indication of the presence of organic vapors.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be used for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- PID
- Calibration gas
- Sealable plastic bags
- Field forms or notebook for documenting PID readings

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or different requirements for organic vapor field screening, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

The electron volt (eV) rating for the PID lamp (i.e., 9.8, 10.6, or 11.7) must be greater than the ionization potential (in eV) of a compound in order for the PID to detect the compound. A lamp of at least 9.8 eV should be used for petroleum hydrocarbons. A lamp of at least 10.6 eV should be used for typical chlorinated alkenes (e.g., dry cleaning solvents). Before beginning field activities, verify the compatibility of the lamp size with the compounds expected to be present in soil.

General Procedure

Calibration:

- The PID should be calibrated daily, or as needed.
- Calibrate the PID according to the manufacturer's instructions.
- Document the calibration activities and results in the field notebook. Measuring organic vapor content:
 - Place a representative volume (generally, a handful) of freshly exposed soil into a sealable plastic bag.
 - Seal the bag and gently agitate the soil.
 - Let the bag sit for several minutes to allow any organic vapors to volatilize from the soil.
 - Partially open the bag so that the tip of the PID intake tube can be inserted into the bag but is not in contact with the soil, then close the bag seal around the intake tube.
 - Record the PID measurement and document results in the field notes or boring log.

This standard operating procedure (SOP) describes the process of obtaining surface and subsurface soil samples for physical and/or chemical analysis. In instances where mechanical equipment is used (e.g., drill rig or excavator), soil samples may be obtained sample manually by grabbing soil directly from a drilled soil core or excavator bucket, thereby precluding the need for hand tools.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be used for this procedure:

- Personal protective equipment (as specified in the site-specific health and safety pan)
- Tools appropriate for the conditions that may be encountered (e.g., spoon, trowel, shovel, hand auger); stainless steel tools are preferred
- Stainless steel bowls
- Tape measure with increments in feet and tenths of a foot
- Laboratory-supplied sample containers, labels, and chain-of-custody form
- Cooler with ice
- Decontamination supplies if using reusable sampling equipment (see SOP 1 for decontamination procedures)
- Field forms or notebook for documenting sample information

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or other requirements for soil sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Procedure:

- Don gloves as specified in the health and safety plan; don new gloves prior to collecting each sample.
- Clear the ground surface of grass, leaves, and other debris.
- Access soil at the targeted sample depth. Use a measuring tape to verify the sample depth and record the depth in the field notebook or boring log.
- Describe and document the soil lithology in accordance with SOP 2.
- If the sample volume requirement is small (generally one or two 8-ounce jars), the soil can be placed directly into the sample container. This can be done manually; however, if the gloves have become soiled, don new gloves before collecting the sample.

- If the sample volume requirement is large, or composite sample collection is required, collect and homogenize the soil in a decontaminated stainless-steel bowl or a dedicated Ziploc® bag, then transfer the sample to the sample container. If the gloves have become soiled during excavation, don new gloves before collecting the sample.
- Before sample collection, and to the extent possible, remove organic debris, anthropogenic material (e.g., brick, metal, glass), and gravels larger than 4 millimeters, unless a project-specific SAP directs otherwise.
- When sampling for gasoline-range total petroleum hydrocarbons (gasoline) or volatile organic compounds (VOCs), a subsample will be obtained from a discrete portion of the collected sample. To minimize the potential loss of volatiles during sampling, the subsample shall not be composited or homogenized. The sample container for gasoline and/or VOC analysis will be filled first if additional containers are necessary for other analysis. Specific procedures for collecting samples for gasoline and/or VOC analysis using the U.S. Environmental Protection Agency Method 5035 are specified in SOP 5.
- If using reusable sampling equipment, the equipment will be decontaminated between sample locations in accordance with SOP 1. Alternatively, new, disposable equipment can be used to collect each sample to preclude the need for equipment decontamination.

Backfilling Sample Locations:

Manual excavations can be backfilled with excess soil, unless the project-specific SAP requires a different backfill procedure.

This standard operating procedure (SOP) describes the methods for obtaining soil samples for chemical analysis for gasoline-range petroleum hydrocarbons (gasoline) and volatile organic compounds (VOCs) by U.S. Environmental Protection Agency Method 5035.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be used for this procedure:

- Sampling equipment (i.e., tubular soil sampler or syringe capable of collecting a 5-gram soil sample)
- Laboratory-supplied sample containers, including:
 - Pre-weighed and -labeled 40-milliliter volatile organic analysis (VOA) vials, including preservative (typically methanol)
 - Two-ounce jar for percent total solids/moisture, if needed
- Laboratory chain-of-custody form and cooler with ice
- VOA packing cubes
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for decontamination procedures)
- Field forms or notebook for documenting the sampling procedures

METHODOLOGY

When the site-specific sampling and analysis plan (SAP) specifies additional or different requirements for soil sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Laboratory Analytical Considerations:

- VOCs must be analyzed within 14 days of sample collection.
- Samples must be maintained at a temperature less than 4°C, ±2°C.
- Discrete VOC samples may be composited at the laboratory.

General Procedure

- When using the tubular sampler, seat the plunger in the handle.
- Collect the sample by pushing the sampler into the soil until the soil has filled the sampler.
- Remove the sampler and confirm that the soil in it is flush with the mouth of the sampler.
- Wipe all debris from the outside of the sampler. Remove any soil that extends beyond the mouth of the sampler.

- Rotate the plunger handle 90 degrees until it is aligned with the slots in the body of the sampler. Place the mouth of the sampler into the sample container and extrude the sample into the sample container by pushing the plunger down. Hold the sample at an angle when extruding to minimize splashing of the preservative.
- Immediately remove any soil or debris from the threads of the vial and place the lid on the vial.
- Gently swirl the vial (do not shake) to allow the preservative to uniformly penetrate and wet the soil.
- Store the vials in an upright position in the sample cooler to avoid preservative leakage. Use VOA packing cubes if available.
- Repeat process for each additional sample container.
- If required by the laboratory, fill a 2-ounce container to capacity for percent total solids determination.

This standard operating procedure (SOP) describes the use of a push probe (i.e., Geoprobe[™]) to observe subsurface conditions and collect samples of various environmental media (e.g., soil, sediment, groundwater, soil vapor) for laboratory analysis. Push-probe drilling is generally not suitable for soils with gravel/rock clast larger than about 4 inches in diameter. If gravelly/rocky soils are expected at the project site, consider use of the sonic drilling method described in SOP 8.

Push-probe drilling can be used for a variety of activities, including:

- Retrieving cores to document subsurface soil or sediment conditions and to obtain samples for physical and/or chemical evaluation
- Sampling soil vapors, using temporary well points
- Collecting reconnaissance groundwater samples from temporary well screens
- Installing permanent monitoring wells

EQUIPMENT AND MATERIALS REQUIRED

The following equipment and materials may be used for this procedure:

- Subcontractor push-probe drill rig and licensed operator
- Media-specific sampling equipment (e.g., water level meter, pumps, tubing)
- Laboratory-supplied sample containers, labels, and chain-of-custody forms.
- Traffic cones, measuring tape, and buckets
- Department of Transportation (DOT)-approved containers (e.g., 55-gallon drum) for storing excess soil and decontamination water; drums are typically provided by the drilling subcontractor
- Field forms and notebook
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for decontamination procedures)
- Personal protective equipment, as required by the site-specific health and safety plan.

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for push-probe drilling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Utility Locate

- Before beginning the fieldwork, review the proposed drilling location(s) and identify the potential presence of overhead and underground utilities. Adjust the locations or have an air knife clear sample locations to avoid identified utilities.
- See SOP 18 for the utility locating procedures.

Push-Probe Drilling Process

- Ensure that the drilling subcontractor decontaminates all subsurface equipment before and after each boring. Document the decontamination procedures in the field notebook. Store decontamination water in DOT-approved containers for later off-site disposal.
- The push-probe drilling rig is equipped with a soil sampling device that retrieves a continuous soil core. A combination of static force and percussion is used to drive the soil sampler into unconsolidated geologic material. A plastic liner placed inside the sampler contains the soil core and permits its removal from the sampler for examination. The sampler is driven into the subsurface, typically in 4- or 5-foot intervals, depending on the length of the sampling device. When each interval depth is reached, the soil sampler is removed from the ground, and the liner is removed to facilitate soil observation and sampling.
- This process is repeated for each soil sample interval until the targeted boring depth is reached.

Logging and Soil Sampling Process

- Remove the soil core from the sampler for field screening, description, and sampling.
- Describe the lithology in accordance with SOP 2.
- Confirm the required depth interval(s) for soil sample collection and field screening with the GeoEngineers project manager, or conduct the work in accordance with the SAP. The sample interval may require adjustment based on core recovery, soil stratigraphy and characteristics, and evidence of contamination. Confirm any adjustments to the sample intervals with the project manager.
- If the project requires organic vapor screening, conduct screening in accordance with SOP 3.
- If the project requires laboratory analyses for gasoline-range petroleum hydrocarbons or volatile organic compounds, conduct the sampling in accordance with SOP 5.
- Contain all soil remaining after sample collection in DOT-approved containers for off-site disposal. See SOP 1 for drum storage, labeling, and documentation procedures.

Reconnaissance Groundwater Sampling Process

- Typically, reconnaissance groundwater samples are collected at the first occurrence of groundwater in a boring. Confirm the required depth and procedures for groundwater sample collection with the GeoEngineers project manager, or conduct the work in accordance with the SAP. If the project requires use of the low-flow sampling method, refer to SOP 9 for the low-flow sampling procedures.
- Reconnaissance groundwater samples are collected using a decontaminated stainless steel or disposable, temporary polyvinyl chloride well screen placed in the boring. If the soils in the boring are fine-grained and may cause excessive turbidity in groundwater, consider using a filter pack around

- the screen to reduce turbidity. Alternatively, purging the well screen of groundwater prior to sample collection may also reduce the turbidity. See SOP 9 for purging procedures.
- Purging and sampling will be conducted using a peristaltic pump unless otherwise specified in the SAP. New tubing will be used for each boring. Field parameters (e.g., temperature, conductivity, and pH) will be recorded in accordance with SOP 9 during purging and sampling.

Monitoring Well Installation

If the project requires installation of a monitoring well in the boring, refer to SOP 11 for the well installation procedures. Confirm the procedures with the GeoEngineers project manager.

Borehole Abandonment Process

- Abandon each borehole in accordance with local and state regulations/procedures. The abandonment will be performed by the drilling subcontractor.
- The abandonment procedure typically consists of backfilling the boring with granular bentonite and hydrating the bentonite with potable water.
- If the boring was advanced through concrete or asphalt, backfill the boring to about 6 inches below grade to allow for placement of asphalt or concrete in the remaining 6 inches to match the surface conditions.

This standard operating procedure (SOP) describes use of the low-flow sampling method for collection of reconnaissance groundwater samples from borings and groundwater samples from monitoring wells. The method uses low pumping rates during purging and sample collection to minimize water-level drawdown and hydraulic stress at the well-aquifer interface.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be used for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Water quality meter
 - For monitoring well sampling, use a water quality meter capable of measuring pH, temperature, specific conductance, dissolved oxygen, and oxygen-reduction potential (e.g., YSI Professional Plus)
 - For reconnaissance groundwater sampling, use a multiparameter meter capable of measuring pH, specific conductance, and temperature (e.g., Oakton)
- Turbidity meter
- Water-level meter and/or interface probe
- Peristaltic pump and tubing
- Laboratory-supplied sample containers, labels, and chain-of-custody form
- Cooler with ice
- 0.45µ groundwater filters, if analyzing for dissolved metals
- Well construction logs documenting the screen depth and interval for all wells to be sampled
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures)
- Groundwater field sampling datasheet and notebook

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for low-flow groundwater sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure

Water Level Measurement

- Water-level measurement procedures are described in detail in SOP 13.
- Open the well cap to allow the water level to equilibrate for approximately ten minutes.

- Use an electronic water-level meter or interface probe, if light nonaqueous-phase liquid (LNAPL) is suspected, to measure the water level in the well to the nearest 0.01 foot.
- If LNAPL is measured with the interface probe or observed on the water level probe (typically indicated by a dark, viscous, or clear, spotty material on the tip of the probe), discuss with the GeoEngineers project manager how to proceed.

Purging

- If the water level is above the top of the well screen, place the end of the sample tubing in the middle of the well screen interval. If the water level is below the top of the screen, place the end of the sample tubing at the midpoint between the water level and the bottom of the well screen.
- Typical low-flow sampling pumping rates range from 0.1 to 0.5 liters per minute, depending on the hydrogeologic characteristics at the site. The objective of the rate selected is to minimize excessive drawdown (<0.3 feet) of the waterlevel.</p>
- Measure water quality parameters (pH, temperature, specific conductance, dissolved oxygen, and oxygen-reduction potential) using a flow-through cell connected to the discharge end of the peristaltic pump tubing. Purging will be considered complete when the water quality parameters from three consecutive readings taken over three- to five-minute intervals have stabilized according to the U.S. Environmental Protection Agency criteria (see table below).

Parameter	Stabilization Criteria
Turbidity	For values > 5 NTUs, 10% For values < 5 NTUs, stabilized
Dissolved oxygen	For values > 0.5 mg/L, 10% For values < 0.5 mg/L, stabilized
Specific conductance	3%
Temperature	3%
рН	±0.1
ORP	±10 mV

Notes:

mg/L = milligrams per liter. mV = millivolts

NTU = Nephelometric turbidity units. ORP = oxygen reduction potential.

- Document the purging procedures, including pumping rates, purge volumes, and water quality parameter measurements, on the field sampling datasheets.
- Place purge water in Department of Transportation-approved containers (e.g., 55-gallon drum) stored on site. See SOP 1 for drum storage, labeling, and documentation procedures.

Sample Collection

- One water quality parameters have successfully stabilized, disconnect the water quality meter and collect groundwater samples in laboratory-supplied containers.
- Confirm the laboratory analytical methods with the GeoEngineers project manager and sample container requirement with the analytical laboratory. If analysis for gasoline-range petroleum

hydrocarbons or volatile organic compounds (VOCs) is proposed, fill the sample containers for gasoline and VOC analysis before filling sample containers for other analyses.

Low Yield (Alternate Method)

- If drawdown of the water table cannot be avoided by reducing the pumping rate and the well goes dry during purging, discontinue pumping, and collect water quality parameter measurements.
- Collect the groundwater sample after the water level above the well bottom recovers to 90 percent of the pre-purge water level. For example, if the water level was 10 feet above the well bottom before purging, begin sampling when the water level has recovered to 9 feet or more above the well bottom.
- If the water column volume is insufficient to meet the sample volume requirement, allow the water level to again recover to 90 percent before continuing sampling. Repeat this procedure until all sample containers are filled.

This standard operating procedure (SOP) describes the methods for installing monitoring wells using conventional machine-slotted polyvinyl chloride (PVC) or prepacked well screens. The well screen permits water to enter the well from the saturated aquifer, prevents soil from entering the well, and serves structurally to support the aquifer material. The slot size of the well screen is typically based on selection of the filter pack material. Monitoring wells must be designed and installed to allow low-turbidity groundwater samples, groundwater levels, and hydraulic conductivity data that are representative of conditions in the aquifer to be obtained.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be necessary for this procedure:

- Subcontractor drill rig and licensed operator.
- Personal protective equipment (as specified in the health and safety plan).
- Water-level meter.
- Boring logs, monitoring well construction logs, and notebook.

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for well installation, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

The drilling contractor will be responsible for conforming to all applicable local and state regulations for well construction.

The proposed well construction should be provided to the driller in advance so that (1) the driller can confirm that the proposed construction is consistent with state regulations, and (2) the driller brings sufficient materials for the well construction.

General Procedure

Drilling and Well Construction. This SOP assumes that a boring has already been drilled and is ready for well installation. See SOPs 7 and 8 for drilling procedures. If the boring was advanced to a depth below the targeted well screen interval, backfill the boring with a cement-bentonite slurry or bentonite chips so that the boring bottom is at a depth about 1 foot below the lower screen interval depth. Well construction will include flush-threaded schedule 40 PVC casing and conventional PVC well screen or stainless-steel mesh prepacked well screen, placed at the bottom of the boring.

Filter Pack. Clean silica sand pack will be placed between the boring wall and the PVC screen/riser (i.e., the annulus) from the bottom of the well to approximately 1 to 2 feet above the screened interval. The filter pack should have greater hydraulic conductivity than the surrounding formation so that water is

drawn into the well. Before installation of the seal, the well may be surged using a surge block or similar technique to consolidate the filter pack and eliminate void space. Measure and document the depth to the sand filter pack before setting the seal.

Seal. A bentonite seal 1 to 2 feet thick will be placed above the sand. The bentonite will be hydrated and allowed to sit for a minimum of 30 minutes for proper hydration and sealing. Measure and document the depth to the top of the seal before placing grout.

Grout. A cement-bentonite slurry or bentonite chips (hydrated after installation) will be placed above the bentonite seal following proper hydration of the seal. The cement-bentonite slurry will be placed to within 1 foot of the ground surface.

Surface Seal and Monument. A concrete surface seal will secure a flush-mounted, traffic-rated monument, or a bollard-protected stickup monument. Flush-mounted surface monuments will be completed slightly above grade to prevent ponding of water on the monument lid. A locking cap and lock will secure the top of the well casing in a surface monument. Tamper-resistant bolts (e.g., pentagonal) may be used to secure the lid of a flush- mounted monument. The lid of an aboveground well monument will be secured with a lock.

The well constructor shall permanently affix a well identification label to the wellhead. A small v-notch or mark with permanent marker should be placed on the north rim of the PVC riser for use as a survey point and measuring point for water level measurements.

Documentation. The field representative will produce the following documentation during the well installation:

- Length of well components, including blank casing and wellscreen.
- Boring depth prior to well installation, in feet below ground surface (bgs).
- Depth in feet bgs to the top and bottom of screen.
- Depth in feet bgs to the top of filter pack and seal.
- Types of well materials (e.g., sand, bentonite, grout) used.
- If potable water was placed into the boring or well during installation, document the total volume of water placed; this information will be needed for well development (see SOP 12).
- Any deviation from standard procedures or any problems encountered during the installation activities (e.g., sand heaving).

This standard operating procedure (SOP) describes the methods for developing newly installed monitoring well. New wells should be developed no sooner than 24 hours after the seal has been placed; longer periods of 48 to 72 hours may be necessary, depending on applicable local or state regulations. The objective of well development is to allow low-turbidity groundwater samples, groundwater levels, and hydraulic conductivity data representative of conditions in the aquifer to be obtained from the well. This SOP is also applicable to the redevelopment of existing monitoring wells, which may be necessary if long periods of time elapse between groundwater sampling events.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Purging equipment (e.g., Waterra pump, bailer, and peristaltic pump)
- Water-quality meter (e.g., Oakton and turbidity meter)
- Water-level meter
- Well construction logs
- Equipment decontamination supplies if sampling equipment will be reused between locations (see SOP 1 for decontamination procedures)
- Buckets
- Department of Transportation-approved storage containers (e.g., 55-gallon drums, totes)
- Well development log and field notebook

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for well development, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Owing to the potential for hazardous substances in groundwater, well development requires consideration of the work area and equipment setup, health and safety procedures, use of appropriate personal protective equipment, procedures for equipment decontamination, and disposal of expendable development supplies. Confirm all procedures in advance with the GeoEngineers project manager and the GeoEngineers health and safety professional.

Measure the depth to water and the total depth of the well before development. Confirm that the
entire screen length is below the water level. Contact the GeoEngineers project manager if it is not to
discuss potential modification of the well-development procedures.

Subtract the depth to water from the total well depth to evaluate the water column present in the well
casing. Multiply the height by the gallon-per-foot value in the table below, corresponding to the
diameter of the well being developed, to calculate the volume of water in the well casing. Record the
readings and casing volume on the well development log.

Casing Diameter (inches)	Volume (gallons per foot)
0.75	0.023
1	0.041
1.5	0.092
2	0.163
4	0.653

- 3. Surge groundwater through the entire well screen interval with a weighted bailer or a surge block. Surge with the bailer or begin surging at the top of the well screen with a surge block in approximately 1-foot vertical increments. If using a surge block, gradually increase the surge depth until the entire screen interval has been surged. The surge time for each 1-foot increment will depend on type of drilling, lithology, and well completion details. Generally, there should be at least one minute of surging across each increment.
- 4. After surging the well screen, purge groundwater from the well into buckets at a higher purging rate than the expected purging rate of groundwater sampling. Ideally, purging will be completed using a method that does not continue to surge the well (i.e., peristaltic or submersible pump). If a Waterra pump is used, remove the surge block from the tubing and set the tubing intake above the well screen for purging. Measure the water level during the purging process and adjust the pumping rate to maintain a water level above the top of the screen interval if possible. Document the volume of water removed.
- 5. When the turbidity decreases and the water begins to clear up, use a multiparameter water-quality meter (e.g., Oakton) to measure the temperature, pH, and conductivity of the purge water. Use a turbidimeter to measure turbidity. Note that a YSI water-quality meter or similar meters should not be used in highly turbid water, per the manufacturers' recommendation.
- 6. After the removal of five casing volumes, review the stability of the water-quality meter readings. Water quality parameters will be considered stable when the measurement from three consecutive readings taken over three- to five-minute intervals have stabilized according to the U.S. Environmental Protection Agency criteria (see table below).

Parameter	Stabilization Criteria
Turbidity	For values > 5 NTUs, 10% For values < 5 NTUs, stabilized
Dissolved oxygen	For values > 0.5 mg/L, 10% For values < 0.5 mg/L, stabilized
Specific conductance	3%
Temperature	3%

Parameter	Stabilization Criteria
рН	±0.1
ORP	±10 mV

Notes:

mg/L = milligrams per liter. mV = millivolts

NTU = Nephelometric turbidity units. ORP = oxygen reduction potential.

- 7. If the water-quality readings stabilize before a total of ten casing volumes are removed, development is complete. If the water-quality readings do not stabilize, well development will be considered complete after ten casing volumes have been removed.
- 8. If the water level cannot be maintained above the well screen or the well pumps dry during purging, contact the GeoEngineers project manager for further instructions.
- 9. If potable water was placed into the boring during drilling or into the well during installation, remove that volume of water and then begin purging as described in step 5.

This standard operating procedure (SOP) describes the methods for obtaining groundwater level measurements and light nonaqueous-phase liquid (LNAPL) measurements from monitoring wells. Water level measurements may be collected as an independent event or in conjunction with a sampling event.

EQUIPMENT AND MATERIALS REQUIRED

The following materials may be necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Equipment decontamination supplies if equipment will be reused between well locations (see SOP 1 for equipment decontamination procedures)
- Field sampling datasheets or field notebook
- Water-level meter or oil/water interface probe if LNAPL is expected
- Bailers or tape/paste to confirm LNAPL detections if required; see SOP 10 for procedures for managing LNAPL

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for water-level and LNAPL measurements, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure

Review well construction details and historical groundwater and LNAPL levels and thicknesses, if available.

During groundwater sampling events, measurements should be collected before purging and sampling. During purging and low-flow sampling, water-level measurements may be collected to ensure that drawdown is not occurring. Low-flow sampling methods are described in SOP 9. The following procedures should be followed when collecting groundwater-level and LNAPL measurements.

Water Level Measurement

- 1. Test the water-level meter to ensure proper instrument response. This can be accomplished by immersing the probe tip in a small container of water.
- Open the well cover and cap and allow the water level to equilibrate with atmospheric pressure for approximately 10 minutes so that a static water level is attained. Audible air movement into or out of the well upon loosening of the well cap is an indication that the water level is not in equilibrium with atmospheric pressure.

- 3. Locate the measurement reference point at the top of the well casing. Typically, this is a small notch in the casing or a point marked with a permanent marker. If no measurement point is present, measure the water level from the north side of the casing and mark measurement point with a permanent marker.
- 4. Lower the water-level meter probe into the well casing until the probe signal indicates that water has been contacted.
- 5. Observe the depth to water (DTW) reading from the measurement reference point at the top of the well casing to the nearest 0.01 foot. Over the course of about a minute, raise and re-lower the probe and observe the resulting DTW reading. If the reading remains unchanged to within 0.01 foot, this is an indication that the water level has equilibrated with atmospheric pressure; the reading can then be recorded in the field notebook as the static water level reading. If the reading changes, allow more time for the water level to become static.
- Measure the depth to bottom (DTB) by lowering the probe to the bottom of the well and recording the reading to the nearest 0.01 foot. Note if the bottom feels soft, as this is an indication of sediment accumulation at the base of the well.
- 7. Remove and decontaminate the probe and the portion of the probe tape inserted into the wellcasing.

Water Level and LNAPL Measurement

- 1. Repeat above steps 1 through 3.
- 2. Lower the interface probe into the well casing until the probe signal indicates that LNAPL has been contacted. Typically, the interface probe will signal by a repeating beep when LNAPL is present. A steady signal indicates that LNAPL is absent and that the probe is recording the DTW.
- 3. Observe the LNAPL reading as described in step 5 above until a static reading to the nearest 0.01 foot is achieved. Record the reading in the field notebook.
- 4. Lower the probe until a steady signal indicates that water has been contacted. Observe the water-level reading as described in step 5 above to confirm a static water level, and record the reading in the field notebook.
- Optional: if LNAPL is detected in a well with no prior history of LNAPL presence, or the LNAPL thickness is greater than in prior observations, verify the presence and thickness using an alternative technique (e.g., bailer, tape, and water/petroleum colorimetric paste). See SOP 10 for procedures for managing LNAPL.
- 6. Remove the interface probe and decontaminate the probe and the portion of the probe tape inserted into the well casing.

OBJECTIVE

The objective of this technical standard operating procedure (SOP) is to define the techniques and requirements for PFAS sampling. Techniques discussed in this SOP include field sampling and preservation methods using the protocols intended to be analyzed for per- and polyfluoroalkyl substances (PFAS) by Modified (Low Level) Test Method 537.

BACKGROUND

Discussion

Specialized techniques and procedures are used for collecting and analyzing samples for PFAS. The field procedures are outlined in the following sections showing restricted equipment and materials that can be used when sampling for PFAS. The Modified (Low Level) Test Method 537 provides PFAS results with reporting limits of approximately 2 nanograms per liter. Acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE) and polypropylene.

Additional materials may be acceptable if proven not to contain PFAS. NOTE: Grundfos pumps and bladder pumps are known to contain PFC materials (e.g. Teflon™ washers for Grundfos pumps and low-density polyethylene (LDPE) bladders for bladder pumps). Selection of sampling devices must be carefully researched. All sampling equipment components and sample containers should not come in contact with aluminum foil, LDPE, glass or polytetrafluoroethylene (PTFE, Teflon™) materials including sample bottle cap liners with a PTFE layer. Standard two step decontamination using detergent and clean water rinse should be considered for equipment that does come in contact with polyfluorinated materials. Clothing that contains PTFE material (including GORE-TEX®) or that have been waterproofed with polyfluorinated materials must be avoided. Many food and drink packaging materials and "plumbers thread seal tape" contain PFAS. All clothing worn by sampling personnel must have been laundered multiple times and dried without using dryer sheets of any type. The sampler must wear nitrile gloves while filling and sealing the sample bottles.

Pre-cleaned sample bottles with closures, coolers, ice, sample labels and a chain of custody form will be provided by the laboratory.

There are special laboratory requirements and sample coolers are clearly identified for PFAS sampling. This SOP outlines the sampling procedure typically used to collect PFAS samples for analysis.

GENERAL RESPONSIBILITIES

Site Manager – The site manager is responsible for ensuring that field personnel are trained in the use of this procedure and the required equipment, and for ensuring that PFAS samples are collected in accordance with this procedure and any other SOPs pertaining to specific media sampling. The site manager must also ensure that the quantity and location of PFAS samples collected meet the requirements of the site-specific sampling and/or work plans.

Field Team Leader – The field team leader is responsible for ensuring that field personnel collect PFAS samples inaccordance with this SOP and other relevant procedures.

Note: All field team member responsibilities are defined in the project-specific quality assurance project plan (QAPP).

RECOMMENDED AND PROHIBITED FIELD EQUIPMENT

Recommended

- Site-specific plans (e.g., sampling, work, health and safety)
- HDPE and Silicon materials including tubing, bailers, tape, plumbing paste
- Loose paper
- Masonite or Aluminum Clipboard
- pens
- Insulated cooler(s) provided by lab with sample containers
- Cotton construction is recommended for field clothing and should be laundered a minimum of 6 times from time of purchase due to possible PFAS related treatments. Fabric softener and dryer sheets must be avoided. Rain gear should be made from polyurethane and wax-coated materials
- Plastic zip-top bags
- Decontamination supplies -Alconox®/Liquinox®
- Sample chain-of-custody forms
- Custody seals
- Nitrile or appropriate gloves
- Lab supplied and verified "PFAS Free" water to be used for trip and decontamination blanks and decontamination procedures
- Bags of ice
- Labels and appropriate forms/documentation for sample shipment provided by Laboratory

Prohibited

- Teflon®-containing materials, when possible, should be avoided (e.g., tubing, bailers, tape, and plumbing paste). In cases where Teflon® -containing materials are unavoidable, ensure adequate purging is performed prior to sampling (e.g., in-well pumps) and/or rinse blanks are collected prior to sampling.
- Paper products such as waterproof field books, plastic clipboards, binders, spiral hard cover notebooks, sticky notes or glue materials
- Water resistant, waterproof, stain-treated clothing or shoes including Gore-Tex[™] and Tyvek® materials
- LDPE or polypropylene containing materials (e.g., bags or containers used to transport samples)
- Markers
- Chemical (blue) ice packs
- Decontamination soaps containing fluorosurfactants such as Decon 90
- Water that is not verified to be "PFAS-free" to be used for trip and decontamination blanks and decontamination processes
- Aluminum foil

Soil Sampling Equipment

Acceptable materials for sampling include: stainless steel, HDPE and polypropylene. Additional materials may be acceptable if proven not to contain PFAS. All sampling equipment components and sample containers **should not** come in contact with aluminum foil, LDPE, glass or PTFE, Teflon™ materials including sample bottle cap liners with a PTFE layer. A list of acceptable equipment is provided below, but other equipment may be considered appropriate at a later date.

- Stainless steel spoon
- Stainless steel bowl

PROCEDURES

Preparation

- 1. Review site-specific health and safety plan and project plans before initiating sampling activity.
- 2. Don the appropriate personal protective clothing as indicated in the site-specific health and safety plan.
- 3. Locate sampling location(s) in accordance with project documents (e.g., work plan) and document pertinent information in the appropriate field logbook. When possible, reference locations back to existing site features such as buildings, roads, intersections, monitoring wells, etc.
- 4. Verify sampling depths in as specified in the site-specific plans.
- 5. If decontamination of equipment and/or personnel is required, set up a decontamination zone.
- 6. Prepare an area near the sampling location to perform sample collection activities.

Groundwater Sample Collection

The following steps must be followed when collecting PFAS samples for environmental purposes.

- Wear clean Nitrile gloves during handling of all sample containers and sampling devices.
- All clothing worn by sampling personnel must have been laundered multiple times and dried without using dryer sheets of any type. The sampler must wear nitrile gloves while filling and sealing the sample bottles.
- Acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE) and polypropylene. Sampling with a Watera pump and tubing with check valve is the preferred method.
- Purge the well.
- Pre-cleaned sample bottles with closures, coolers, sample labels and a chain of custody form will be provided by the laboratory.
- Fill the laboratory-supplied bottle(s) with the sample.
- Cap the bottles with an acceptable cap and liner closure system.
- Label the sample bottles.
- Fill out the chain of custody.
- Place in a cooler maintained at 4 ± 2° Celsius.
- Decontaminate reusable sampling equipment according using PFAS Free water provided by lab and Alconox/Liquinox before proceeding to other sampling locations.
- Complete the field sampling form, being sure to record all relevant information before leaving the site. All sampling information, including well ID, sample depth, sample volume, and requisite analyses should be recorded in the field form as specified in the site-specific sampling/work plans. Field Log books shall not be used.
- Properly package all samples for shipment to laboratories and complete all necessary sample shipment documentation. Remand custody of the samples to appropriate personnel.

Soil Sample Collection

- The sampler must wear nitrile gloves while conducting field work and handling sample containers
- Sampling is often conducted in areas where a vegetative turf has been established. In these cases, a clean stainless- steel spoon should be used to carefully remove the turf so that it may be replaced at the conclusion of sampling. Surface soil samples (e.g. 0 to 6 inches below surface) shall then be collected using a pre-cleaned, stainless steel spoon.
- Shallow subsurface soil samples (e.g. 6 to ~36 inches below surface) may be collected by digging a hole using a stainless-steel hand auger.
- When the desired subsurface depth is reached, a pre-cleaned hand auger shall be used to obtain the sample.

Sample Shipment

Place the samples in a cooler with wet ice. The ice should be double bagged. The samples should be shipped for next day delivery. Always include enough ice to keep samples around 4°C, especially during summer months. The cooler drain spout should be closed and taped so that water does not flow out of the cooler.

- Always package samples securely to prevent breakage/spillage.
- Check with laboratory if Saturday delivery of samples is required.
- Be sure to include a completed chain of custody (COC) form in each shipment with all necessary information for both reporting and invoicing.
- Double check to make sure all samples are labeled correctly and correspond with the COC form.

RESTRICTIONS/LIMITATIONS

Acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE) and polypropylene. Additional materials may be acceptable if proven not to contain PFAS. NOTE: Grundfos pumps and bladder pumps are known to contain PFC materials (e.g. Teflon™ washers for Grundfos pumps and low-density polyethylene (LDPE) bladders for bladder pumps). Selection of sampling devices must be carefully researched. All sampling equipment components and sample containers should not come in contact with aluminum foil, LDPE, glass or polytetrafluoroethylene (PTFE, Teflon™) materials including sample bottle cap liners with a PTFE layer. Standard two step decontamination using detergent and clean water rinse should be considered for equipment that does come in contact with polyfluorinated materials. Clothing that contains PTFE material (including GORE-TEX®) or that have been waterproofed with polyfluorinated materials must be avoided. Many food and drink packaging materials and "plumbers thread seal tape" contain PFAS.

All clothing worn by sampling personnel must have been laundered multiple times and dried without using dryer sheets of any type. The sampler must wear nitrile gloves while filling and sealing the sample bottles.

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the practices for locating underground utilities. Refer to the site-specific health and safety plan (HASP) for additional information regarding communication procedures to be followed when an inadvertent utility strike occurs, as well as methods for mitigating hazards during a utility strike.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the HASP)
- Marking materials (e.g., white marking paint, stakes, flags)
- Utility as-builts, if available
- Map of proposed excavation/boringlocations

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or different requirements for underground utility locates, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Before Conducting Utility Locates

- Ensure that the locate will be conducted reasonably soon before the excavation work begins, e.g., within 48 hours. There may be project-specific conditions, e.g., weather and/or ground features that could cause markings to fade, which would require scheduling of the locate sooner than 48 hours before the excavation work.
- Clearly mark the boundary of the work and the locations of all proposed excavations and/or borings with survey flags, stakes, and/or white survey paint.
- Interview site managers/property owners and obtain plans or drawings showing on-site utilities.
- For project work that will not take place in the public right-of-way, ensure that the public rights-of-way nearest to the project are identified and communicated during the one-call notification.
- Identify the township and range of the project area.
- If feasible, conduct a site visit to mark proposed locations and identify site conditions that could cause fading or disruption of marking paint (e.g., gravel, high traffic).
- Check the weather forecast to assess the potential for snow or rain, which may impede marking utilities or cause the markings to fade.

One-Call Utility Notification

If possible, initiate the one-call utility notification at least one week before the proposed work begins.

- Include a map and a physical description of sample locations when submitting the notification.
- Before conducting any excavation activities, confirm with each public utility that the utility locate has been completed.
- On remote or complicated sites, consider meeting public locators on site.
- Document the one-call ticket number and results in the project files.
- Provide the one-call ticket number to subcontractors who will be doing the excavations.

Private Utility Locate

- Conduct the private utility locate only after confirmation that the public utility locate has been completed and all public utilities have been marked and the results reviewed by GeoEngineers staff who will be overseeing the excavations.
- Meet the private locator on site and participate in the entire private utility locate. Be engaged in the process, ask questions, and take time to walk the site thoroughly with the locator.
- Bring a copy of the one-call utility ticket and results of the one-call utility locater to check against the utility markings on the ground.
- If possible, have a site/property representative knowledgeable of on-site utilities participate in the private utility locate.
- If paint alone may not suffice to ensure clear marking of utilities, add vertical markers such as stakes or flags.
- Visually assess the area of the proposed excavation(s) to identify features potentially indicative of buried utilities. Have the private utility locator examine each feature identified below to assess the presence of buried utilities.
 - Examine adjacent public rights-of-way where public utilities have been marked for evidence of utilities that may extend onto the project site.
 - Identify nearby light poles, telephone poles, electrical utility poles, or other overhead utility poles with wires or conductors that run from the overhead utility, down the pole, and into the ground.
 - Identify the location of gas meters, water meters, or other aboveground junction boxes for evidence of utilities extending from these features into the ground.
 - Examine asphalt and concrete ground surfaces for discontinuities in the surface indicative of utility installations. Discontinuities may include recent patches of asphalt or concrete inlaid within older concrete or asphalt surfaces.
 - Identify manholes and catch basins indicative of buried storm or sanitary sewer pipes. Open manholes to examine the orientation of associated pipes to assess whether the utilities may be present near proposed excavations.
 - Identify tank ports and vent pipes.
 - Identify irrigation systems and associated features such as valve boxes and controllers.
 - Identify any other signs indicating the presence of buriedutilities.
 - Be wary of utility marks that suddenly begin or dead end.

Preparing to Perform Subsurface Activities after a Locate

- Ensure that the markings are still visible when the work begins.
- Adjust locations, as needed, to avoid identified utilities, or use alternative methods such as nonmechanical excavation means (i.e., manual excavation or air-knifing) to a minimum depth of 5 feet.

American Public Works Association Utility Color Code		
	WHITE—Proposed Excavation	
	PINK—Temporary Survey Markings	
	RED—Electric Power Lines, Cables, Conduit and Lighting Cables	
	YELLOW—Gas, Oil, Steam, Petroleum or Gaseous Materials	
	ORANGE—Communication, Alarm or Signal Lines, Cables or Conduit	
	BLUE—Potable Water	
	PURPLE—Reclaimed Water, Irrigation and Slurry Lines	
	GREEN—Sewers and Drain Lines	
Source: Uniform Color Codes, ANSI Standard Z535.1. American Public Works Association. Revised 1999.		

APPENDIX J Inadvertent Discovery Plan

INADVERTENT DISCOVERY PLAN PLAN AND PROCEDURES FOR THE DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS

To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6000 or visit https://ecology.wa.gov/accessibility. People with impaired hearing may call Washington Relay Service at 711. People with a speech disability may call TTY at 877-833-6341.

Site Name(s):	Location:	
Project Lead/Organization:	County:	

If this Inadvertent Discovery Plan (IDP) is for multiple (batched) projects, ensure the location information covers all project areas.

1. INTRODUCTION

The IDP outlines procedures to perform in the event of a discovery of archaeological materials or human remains, in accordance with applicable state and federal laws. An IDP is required, as part of Agency Terms and Conditions for all grants and loans, for any project that creates disturbance above or below the ground. An IDP is not a substitute for a formal cultural resource review (Executive 05-05 or Section 106).

Once completed, **the IDP should always be kept at the project site** during all project activities. All staff, contractors, and volunteers should be familiar with its contents and know where to find it.

2. CULTURAL RESOURCE DISCOVERIES

A cultural resource discovery could be prehistoric or historic. Examples include (see images for further examples):

- An accumulation of shell, burned rocks, or other food related materials.
- Bones, intact or in small pieces.
- An area of charcoal or very dark stained soil with artifacts.
- Stone tools or waste flakes (for example, an arrowhead or stone chips).
- Modified or stripped trees, often cedar or aspen, or other modified natural features, such as rock drawings.
- Agricultural or logging materials that appear older than 50 years. These could include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, and many other items.
- Clusters of tin cans or bottles, or other debris that appear older than 50 years.
- Old munitions casings. Always assume these are live and never touch or move.
- Buried railroad tracks, decking, foundations, or other industrial materials.
- Remnants of homesteading. These could include bricks, nails, household items, toys, food containers, and other items associated with homes or farming sites.

The above list does not cover every possible cultural resource. When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

If any employee, contractor, or subcontractor believes that they have uncovered cultural resources or human remains at any point in the project, take the following steps to *Stop-Protect-Notify*. If you suspect that the discovery includes human remains, also follow Sections 5 and 6.

STEP A: Stop Work.

All work must stop immediately in the vicinity of the discovery.

STEP B: Protect the Discovery.

Leave the discovery and the surrounding area untouched and create a clear, identifiable, and wide boundary (30 feet or larger) with temporary fencing, flagging, stakes, or other clear markings. Provide protection and ensure integrity of the discovery until cleared by the Department of Archaeological and Historical Preservation (DAHP) or a licensed, professional archaeologist.

Do not permit vehicles, equipment, or unauthorized personnel to traverse the discovery site. Do not allow work to resume within the boundary until the requirements of this IDP are met.

STEP C: Notify Project Archaeologist (if applicable).

If the project has an archaeologist, notify that person. If there is a monitoring plan in place, the archaeologist will follow the outlined procedure.

STEP D: Notify Project and Washington Department of Ecology (Ecology) contacts.

Project Lead Contacts

Primary Contact

Name:	Name:
Phone:	Phone:
Email:	Email:
Ecology Contacts (complet	ed by Ecology Project Manager)
Ecology Project Manager	Alternate or Cultural Resource Contact
Name:	Name:
Program:	Program:
Phone:	Phone:
Email:	Email:

Alternate Contact

STEP E: Ecology will notify DAHP.

Once notified, the Ecology Cultural Resource Contact or the Ecology Project Manager will contact DAHP to report and confirm the discovery. To avoid delay, the Project Lead/Organization will contact DAHP if they are not able to reach Ecology.

DAHP will provide the steps to assist with identification. DAHP, Ecology, and Tribal representatives may coordinate a site visit following any necessary safety protocols. DAHP may also inform the Project Lead/Organization and Ecology of additional steps to further protect the site.

Do not continue work until DAHP has issued an approval for work to proceed in the area of, or near, the discovery.

DAHP Contacts:

Name: Rob Whitlam, PhD
Title: State Archaeologist
Cell: 360-890-2615
Email: Rob.Whitlam@dahp.wa.gov

Human Remains/Bones:
Name: Guy Tasa, PhD
Title: State Anthropologist
Cell: 360-790-1633 (24/7)

Main Office: 360-586-3065 Email: Guy.Tasa@dahp.wa.gov

4. TRIBAL CONTACTS

In the event cultural resources are discovered, the following tribes will be contacted. See Section 10 for Additional Resources.

I ribe:	Tribe:
Name:	Name:
Title:	Title:
Phone:	Phone:
Email:	Email:
Tribe:	Tribe:
Tribe: Name:	Tribe: Name:
Name:	Name:

Please provide contact information for additional tribes within your project area, if needed, in Section 11.

5. FURTHER CONTACTS (if applicable)

If the discovery is confirmed by DAHP as a cultural or archaeological resource, or as human remains, and there is a partnering federal or state agency, Ecology or the Project Lead/Organization will ensure the partnering agency is immediately notified.

3

Federal Agency: State Agency:

Agency: Agency
Name: Name:
Title: Title:
Phone: Phone:
Email: Email:

6. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL MATERIAL

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Follow the steps under **Stop-Protect-Notify**. For specific instructions on how to handle a human remains discovery, see: <u>RCW 68.50.645</u>: <u>Skeletal human remains—Duty to notify—Ground disturbing activities—Coroner determination—Definitions</u>.

Suggestion: If you are unsure whether the discovery is human bone or not, contact Guy Tasa with DAHP, for identification and next steps. Do not pick up the discovery.

Guy Tasa, PhD State Physical Anthropologist Guy.Tasa@dahp.wa.gov (360) 790-1633 (Cell/Office)

For discoveries that are confirmed or suspected human remains, follow these steps:

1. Notify law enforcement and the Medical Examiner/Coroner using the contacts below. **Do not call 911** unless it is the only number available to you.

Enter contact information below (required):

- Local Medical Examiner or Coroner name and phone:
- Local Law Enforcement main name and phone:
- Local Non-Emergency phone number (911 if without a non-emergency number):
- 2. The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human or if the discovery site constitutes a crime scene and will notify DAHP.
- 3. DO NOT speak with the media, allow photography or disturbance of the remains, or release any information about the discovery on social media.
- 4. If the remains are determined to be non-forensic, Cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed by others or disturbed.

IDP Form

Further activities:

- Per <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation. Organizations may also participate in consultation.
- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>.
- When consultation and documentation activities are complete, work in the discovery area may resume as described in Section 8.

If the project occurs on federal lands (such as a national forest or park or a military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 (NAGPRA) apply and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Lead/Organization will comply with applicable state and federal laws, and the above protocol.

7. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological resources discovered during construction are protected by state law RCW 27.56 and assumed eligible for inclusion in the National Register of Historic Places under Criterion D until a formal Determination of Eligibility is made.

The Project Lead/Organization must ensure that proper documentation and field assessment are made of all discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and the archaeologist.

The archaeologist will record all prehistoric and historic cultural material discovered during project construction on a standard DAHP archaeological site or isolate inventory form. They will photograph site overviews, features, and artifacts and prepare stratigraphic profiles and soil/sediment descriptions for minimal subsurface exposures. They will document discovery locations on scaled site plans and site location maps.

Cultural features, horizons, and artifacts detected in buried sediments may require the archaeologist to conduct further evaluation using hand-dug test units. They will excavate units in a controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. They may also use a test unit or trench excavation to determine if an intact occupation surface is present. They will only use test units when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. They will conduct excavations using standard archaeological techniques to precisely document the location of cultural deposits, artifacts, and features.

The archaeologist will record spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock for each unit on a standard form. They will complete test excavation unit level forms, which will include plan maps for each excavation level and artifact counts and material types, number, and vertical provenience (depth below

surface and stratum association where applicable) for all recovered artifacts. They will draw a stratigraphic profile for at least one wall of each test excavation unit.

The archaeologist will screen sediments excavated for purposes of cultural resources investigation through 1/8-inch mesh, unless soil conditions warrant 1/4-inch mesh.

The archaeologist will analyze, catalogue, and temporarily curate all prehistoric and historic artifacts collected from the surface and from probes and excavation units. The ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology, and the affected tribe(s).

Within 90 days of concluding fieldwork, the archaeologist will provide a technical report describing any and all monitoring and resultant archaeological excavations to the Project Lead/Organization, who will forward the report to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s) for review and comment.

If assessment activities expose human remains (burials, isolated teeth, or bones), the archaeologist and Project Lead/Organization will follow the process described in **Section 6**.

8. PROCEEDING WITH WORK

The Project Lead/Organization shall work with the archaeologist, DAHP, and affected tribe(s) to determine the appropriate discovery boundary and where work can continue.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Lead/Organization, DAHP, any affected tribe(s), Ecology, and the federal agencies (if any) determine that compliance with state and federal laws is complete.

9. ORGANIZATION RESPONSIBILITY

The Project Lead/Organization is responsible for ensuring:

- This IDP has complete and accurate information.
- This IDP is immediately available to all field staff at the sites and available by request to any party.
- This IDP is implemented to address any discovery at the site.
- That all field staff, contractors, and volunteers are instructed on how to implement this IDP.

10. ADDITIONAL RESOURCES

Informative Video

Ecology recommends that all project staff, contractors, and volunteers view this informative video explaining the value of IDP protocol and what to do in the event of a discovery. The target audience is anyone working on the project who could unexpectedly find cultural resources or human remains while excavating or digging. The video is also posted on DAHP's inadvertent discovery language website.

Ecology's IDP Video (https://www.youtube.com/watch?v=ioX-4cXfbDY)

Informational Resources

DAHP (https://dahp.wa.gov)

Washington State Archeology (DAHP 2003)

(https://dahp.wa.gov/sites/default/files/Field%20Guide%20to%20WA%20Arch 0.pdf)

Association of Washington Archaeologists (https://www.archaeologyinwashington.com)

Potentially Interested Tribes

Interactive Map of Tribes by Area

(https://dahp.wa.gov/archaeology/tribal-consultation-information)

WSDOT Tribal Contact Website

(https://wsdot.wa.gov/tribal/TribalContacts.htm)

11. ADDITIONAL INFORMATION

Please add any additional contact information or other information needed within this IDP.

Chipped stone artifacts.

Examples are:

- Glass-like material.
- Angular material.
- "Unusual" material or shape for the area.
- Regularity of flaking.
- Variability of size.

Stone artifacts from Washington.

Stone artifacts from Oregon.

Biface-knife, scraper, or pre-form found in NE Washington. Thought to be a well knapped object of great antiquity. Courtesy of Methow Salmon Rec. Foundation.

Ground stone artifacts.

Examples are:

- Unusual or unnatural shapes or unusual stone.
- · Striations or scratching.
- Etching, perforations, or pecking.
- Regularity in modifications.
- Variability of size, function, or complexity.

Above: Fishing Weight - credit CRITFC Treaty Fishing Rights website.

Artifacts from unknown locations (left and right images).

Bone or shell artifacts, tools, or beads.

Examples are:

- Smooth or carved materials.
- Unusual shape.
- Pointed as if used as a tool.
- · Wedge shaped like a "shoehorn".
- Variability of size.
- Beads from shell (-'---' or tusk.

Upper Left: Bone Awls from Oregon.

Upper Center: Bone Wedge from California.

Upper Right: Plateau dentalium choker and bracelet, from <u>Nez Perce National Historical Park</u>, 19th century, made using <u>Antalis pretiosa</u> shells Credit: Nez Perce - Nez Perce National Historical Park, NEPE 8762, <u>Public Domain</u>.

Above: Tooth Pendants. Right: Bone Pendants. Both from Oregon and Washington.

Culturally modified trees, fiber, or wood artifacts.

Examples are:

- Trees with bark stripped or peeled, carvings, axe cuts, de-limbing, wood removal, and other human modifications.
- Fiber or wood artifacts in a wet environment.
- Variability of size, function, and complexity.

Left and Below: Culturally modified tree and an old carving on an aspen (Courtesy of DAHP).

Right, Top to Bottom: *Artifacts from Mud Bay, Olympia: Toy war club, two strand cedar rope, wet basketry.*

Strange, different, or interesting looking dirt, rocks, or shells.

Human activities leave traces in the ground that may or may not have artifacts associated with them. Examples are:

- "Unusual" accumulations of rock (especially fire-cracked rock).
- "Unusual" shaped accumulations of rock (such as a shape similar to a fire ring).
- Charcoal or charcoal-stained soils, burnt-looking soils, or soil that has a "layer cake" appearance.
- Accumulations of shell, bones, or artifacts. Shells may be crushed.
- Look for the "unusual" or out of place (for example, rock piles in areas with otherwise few rocks).

Shell Midden pocket in modern fill discovered in sewer trench.

Underground oven. Courtesy of DAHP.

Shell midden with fire cracked rock.

The state of the s

Hearth excavated near Hamilton, WA.

ECY 070-560 (rev. 12/20) 12 IDP Form

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Agricultural or logging equipment. May include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, etc.
- Domestic items including square or wire nails, amethyst colored glass, or painted stoneware.

Left: Top to Bottom: Willow pattern serving bowl and slip joint pocket knife discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

Right: Collections of historic artifacts discovered during excavations in eastern Washington cities.

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Railway tokens, coins, and buttons.
- Spectacles, toys, clothing, and personal items.
- Items helping to understand a culture or identity.
- Food containers and dishware.

Main Image: Dishes, bottles, workboot found at the North Shore Japanese bath house (ofuro) site, Courtesy Bob Muckle, Archaeologist, Capilano University, B.C. This is an example of an above ground resource.

Right, from Top to Bottom: Coins, token, spectacles and Montgomery Ward pitchfork toy discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

- Old munition casings if you see ammunition of any type *always assume they are live and never touch or move!*
- Tin cans or glass bottles with an older manufacturer's technique maker's mark, distinct colors such as turquoise, or an older method of opening the container.

Far Left: .303 British cartridge found by a WCC planting crew on Skagit River. Don't ever touch something like this!
Left: Maker's mark on bottom of old bottle.

Right: Old beer can found in Oregon. ACME was owned by Olympia Brewery. Courtesy of Heather Simmons.

Logo employed by Whithall Tatum & Co. between 1924 to 1938 (Lockhart et al. 2016).

Can opening dates, courtesy of W.M. Schroeder.

You see historic foundations or buried structures.

Examples are:

- Foundations.
- Railroad and trolley tracks.
- Remnants of structures.

Counter Clockwise, Left to Right: Historic structure 45Kl924, in WSDOT right of way for SR99 tunnel. Remnants of Smith Cove shantytown (45-Kl-1200) discovered during Ecology CSO excavation, City of Spokane historic trolley tracks uncovered during stormwater project, intact foundation of historic home that survived the Great Ellensburg Fire of July 4, 1889, uncovered beneath parking lot in Ellensburg.

Potential human remains.

Examples are:

- Grave headstones that appear to be older than 50 years.
- Bones or bone tools--intact or in small pieces. It can be difficult to differentiate animal from human so they must be identified by an expert.
- These are all examples of animal bones and are not human.

Center: Bone wedge tool, courtesy of Smith Cove Shantytown excavation (45KI1200).

Other images (Top Right, Bottom Left, and Bottom) Center: Courtesy of DAHP.

Directly Above: This is a real discovery at an Ecology sewer project site.

What would you do if you found these items at a site? Who would be the first person you would call?

Hint: Read the plan!

APPENDIX KHealth and Safety Plan

Site Health & Safety Plan

Precision Engineering 1231 S Director St Seattle, WA

February 2022

2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Table of Contents

1.0	GENERAL PROJECT INFORMATION	1
1.1.	Functional Responsibility	1
	1.1.1. Health and Safety Manager (HSM)	1
	1.1.2. Project Manager (PM)	2
	1.1.3. Site Safety Officer (SSO)	2
	1.1.4. Field Employees	3
	1.1.5. Contractors Under GeoEngineers Supervision	3
	List of Site Personnel and Training	
1.3.	Site Description	4
	Site Map (Attached)	
1.5.	Site History	4
2.0	WORK PLAN	5
2.1.	List of Field Activities	5
3.0	EMERGENCY INFORMATION	6
3.1.	Standard Emergency Procedures	6
4.0	HAZARD ANALYSIS	
	Physical Hazards	
	Biological Hazards and Procedures	
	Ergonomic Hazard Mitigation Measures and Procedures	
	4.3.1. Avoiding Lifting Injuries	
	4.3.2. Proper Lifting Techniques	
	Engineering Controls	
	Chemical Hazards	
	4.5.1. Chemical Hazards (Potentially Present at Site)	9
4.6.	Summary of Selected Chemical Hazards	. 10
	4.6.1 Trichloroethylene	. 10
	4.6.2 Chromium	. 11
	4.6.3 Diesel Fuels	. 11
4.7.	Additional Hazards	. 11
5.0	AIR MONITORING PLAN	. 11
5.1.	Air Monitoring Instrumentation, Frequency, and Locations	. 12
5.2.	Air Monitoring Activities	. 12
5.3.	Air Monitoring Action Levels	. 13
6.0	SITE CONTROL PLAN	. 13
6.1.	Traffic or Vehicle Access Control Plans	. 13
6.2.	Exclusion, Contamination Reduction, and Support Zones	. 13
6.3.	Buddy System	. 14
6.4.	Site Communication Plan	. 14
6.5	Emergency Action	. 14

	Decontamination Procedures	
7.0	PERSONAL PROTECTIVE EQUIPMENT	
7.2. 7.3. 7.4.	Personal Protective Clothing Inspections Respirator Selection, Use and Maintenance	16 16 17
8.2.	ADDITIONAL ELEMENTS Cold Stress Prevention Heat Stress Prevention Emergency Response	17 18
9.0	MISCELLANEOUS	19
9.2. 9.3.	Sampling, Managing, and Handling Drums and Containers Entry Procedures for Confined Spaces Sanitation Lighting	19 19
10.0	DOCUMENTATION FOR HAZWOPER PROJECTS	19
11.0	APPROVALS	20
_	M 1 HEALTH AND SAFETY PRE-ENTRY BRIEFING AND ACKNOWLEDGEMENT OF THE SITE HEALT AFETY PLAN FOR GEOENGINEERS EMPLOYEES, SUBCONTRACTORS AND VISITORS	
	M 2 SAFETY MEETING RECORD	
FORI	M 3 JOB HAZARD ANALYSIS (JHA) COVID-19 SUPPLEMENTAL JHA	2 3
FOR	M 4 ACCIDENT/EXPOSURE REPORT FORM	26
LIST	OF FIGURES	

Figure 1. Site Plan

ATTACHMENT

Hospital Route Map

GEOENGINEERS, INC. SITE HEALTH AND SAFETY PLAN PRECISION ENGINEERING RI FILE NO. 25806-001-00

This Health and Safety Plan (HASP) is to be used in conjunction with the GeoEngineers, Inc. (GeoEngineers) Safety Programs. Together, the written safety programs and this HASP constitute the site safety plan for this site. This plan is to be used by GeoEngineers personnel on this site and must be available on site. If the work entails potential exposures to other substances or unusual situations, additional safety and health information will be included, and the plan will need to be approved by the GeoEngineers Health and Safety Manager. All plans are to be used in conjunction with current standards and policies outlined in the GeoEngineers Health and Safety Programs.

Liability Clause: If requested by subcontractors, this site HASP may be provided for informational purposes only. In this case, Form 1 shall be signed by the subcontractor. Please be advised that this site-specific HASP is intended for use by GeoEngineers employees only. Nothing herein shall be construed as granting rights to GeoEngineers' subcontractors or any other contractors working on this site to use or legally rely on this HASP. GeoEngineers specifically disclaims any responsibility for the health and safety of any person not employed by the company.

1.0 GENERAL PROJECT INFORMATION

Project Name:	Precision Engineering
Project Number:	25806-001-00
Type of Project:	Remedial Investigation
Start/Completion:	March 2022 - TBD
Subcontractors:	Holt Services

Chain of Command	Title	Name	Telephone Numbers
1	Project Manager (PM)	Garrett Leque	253.312.7958
2	Site Safety Officer (SS0)	Paul Robinette	253.278.0273
3	Health and Safety Manager (HSM)	Mary Lou Sullivan	360.633.9821
4	Site Personnel	Dexter Chan	206.849.0644
		Paul Robinette	253.278.0273
5	Client Assigned Site Supervisor	NA	<u> </u>
6	Subcontractor(s)	Holt Services	253.604.4878
7	Current Owner	Dick Morgan	

1.1. Functional Responsibility

1.1.1. Health and Safety Manager (HSM)

GeoEngineers' Health and Safety Manager (HSM) is responsible for implementing and promoting employee participation in the program. The HSM issues directives, advisories and information regarding health and

safety to the technical staff. Additionally, the HSM has the authority to audit on-site compliance with HASPs, suspend work or modify work practices for safety reasons, and dismiss from the site any GeoEngineers or subcontractor employees whose conduct on the site endangers the health and safety of themselves or others.

1.1.2. Project Manager (PM)

A PM is assigned to manage the activities of various projects and is responsible to the principal-in-charge of the project. The PM is responsible for assessing the hazards present at a job site and incorporating the appropriate safety measures for field staff protection into the field briefing and/or HASP. He or she is also responsible for ensuring that appropriate HASPs are developed. The PM will provide a summary of chemical analyses to personnel preparing the HASP. The PM shall keep the HSM informed of the project's health-and safety-related matters as necessary. The PM shall designate the project Site Safety Officer (SSO) and help the SSO implement the specifications of the HASP. The PM is responsible for communicating information in HASPs and checklists to appropriate site personnel. The PM is responsible for transmitting health and safety information to the SSO when appropriate.

1.1.3. Site Safety Officer (SSO)

The SSO will have the on-site responsibility and authority to modify and stop work or remove GeoEngineers personnel from the site if working conditions change that may affect on-site and off-site health and safety. The SSO will be the main contact for any on-site emergency. The SSO is first aid and cardiopulmonary resuscitation (CPR) qualified and has current Hazardous Waste Operations and Emergency Response (HAZWOPER) training. The SSO is responsible for implementing and enforcing the GeoEngineers HASP and safe work practices during site activities. The SSO shall conduct daily safety meetings, perform air monitoring as required, conduct site safety inspections as required, coordinate emergency medical care, and ensure personnel are wearing the appropriate personal protective equipment (PPE). The SSO shall have advanced field work experience and shall be familiar with health and safety requirements specific to the project. The SSO has the authority to suspend site activities if unsafe conditions are reported or observed.

Duties of the SSO include the following:

- Implementing the HASP in the field and monitoring compliance with its guidelines by staff.
- Being sure that all GeoEngineers site personnel have met the appropriate training requirements. Advising other contractor employees of these requirements.
- Maintaining adequate and functioning safety supplies and equipment at the site.
- Setting up work zones, markers, signs and security systems, if necessary.
- Performing or supervising air quality measurements. Communicating information on these measurements to GeoEngineers field staff and subcontractor personnel.
- Communicating health and safety requirements and site hazards to site personnel, subcontractors and contractor employees, and site visitors.
- Directing personnel to wear PPE and guiding compliance with health and safety practices in the field.

- Consulting with the PM regarding new or unanticipated site conditions, including emergency response activities. If monitoring detects concentrations of potentially hazardous substances at or above the established exposure limits, notify/consult with the PM. Consult with the PM and the HSM regarding new or unanticipated site conditions, including emergency response activities. If field monitoring indicates concentrations of potentially hazardous substances at or above the established exposure limits, the HSM must be notified and corrective action taken.
- Documenting all site accidents, illnesses and unsafe activities or conditions, and reporting them to the PM and the HSM.
- Directing decontamination operations of equipment and personnel.

Several GeoEngineers employees will be performing field work during this project. When working alone, the employee will be the SSO. When working in groups of two or more, the group will designate an SSO.

1.1.4. Field Employees

Employees working on site that have the potential to encounter hazardous substances or physical hazards are responsible for participating in the health and safety program and complying with the site-specific HASP. These employees are required to:

- Participate and be familiar with the health and safety program.
- Notify the SSO when there is a need to stop work to address an unsafe situation.
- Comply with the HASP and acknowledge understanding of the plan.
- Report to the SSO, PM or HSM any unsafe conditions and all facts pertaining to incidents or accidents that could result in physical injury or unsafe exposure to hazardous materials.
- Participate in health and safety training, including initial 40-hour Occupational Safety and Health Administration (OSHA) HAZWOPER course, annual 8-hour HAZWOPER refresher, and first aid/CPR training.
- Schedule and take a respirator fit test annually.
- Any field employee working on-site may stop work if the employee believes the work is unsafe.

1.1.5. Contractors Under GeoEngineers Supervision

Contractors working on the site under GeoEngineers supervision or direct control that have the potential of coming in contact with hazardous substances or physical hazards shall have their own health and safety program that is in line with the site-specific HASP.

1.2. List of Site Personnel and Training

Name of Employee on Site	Level of HAZWOPER Training (24-/40-hr)	8-Hr Refresher Training within last 12 mo?	First Aid/CPR Training within last 12 mo?	Respirator Fit Test within last 12 mo?
Dexter Chan	40-hr	Yes	Yes	Yes
Paul Robinette	40-hr	Yes	Yes	Yes

1.3. Site Description

The Property is in section 32, township 24 north, range 4 east of the Willamette Meridian, on King County tax parcel 000160-0055. The approximately 3.5-acre Property is zoned for industrial use. One 62,000-square-foot building comprising three warehouse bays is currently located on the Property. The east side of the building was constructed in 1968, and the west side was added in 1979. The building is surrounded by an asphalt-paved parking lot (see Figure 9-4 that is part of the field brief documents).

The surrounding area is a mix of industrial operations and residential properties. Since 1997, a towing and limousine service business has operated on the adjacent property to the east, which was formerly the Kaspac/Chiyoda property (also known as the "Carey Limousine" property), referred to herein as the former Kaspac/Chiyoda property, and is an Ecology cleanup site (CSID 2540). The former Kaspac/Chiyoda property was used for agriculture and agricultural-equipment storage before 1960; a car lot and gas station between 1960 and 1972; a road-striping paint company between 1972 and 1988; and a transmission repair shop, construction contracting company, and roofing contractor between 1988 and 1997. West of the Property is a business that repairs and sells refrigerators, and north of the Property are residential homes located across S Director Street.

1.4. Site Map (Attached)

See Figure 9-4 that is part of the field brief documents.

1.5. Site History

Precision operated an industrial manufacturing business on the Property from 1968 to March 1, 2005. The operation included manufacturing and repair of large hydraulic cylinders, large rolls used in the manufacturing of paper and sheet metal products, and other equipment. Services included grinding and polishing, honing, hard-chrome plating, milling, welding, and application of flame- and arc-applied metal coating, much of which involved the use of chromic acid. From 1985 to 2003, approximately 10,000 square feet of the west side of the building was leased to Baszile Metals Service, an aluminum distributorship.

Former operational areas and other historical features of interest associated with Precision's operations, including former tanks used to contain process chemicals and wastes, are shown on Figure 2-2 of the RI Work Plan and are summarized below:

- Drainage ditch. Metals (e.g., chromium, arsenic, and lead) impacts to shallow soil and surface water from impacted surface water runoff into the ditch and potential groundwater intrusion through cracks in storm system piping.
- Former plating tanks. Trichloroethene (TCE), chromium, and hexavalent chromium impacts to shallow soil, shallow groundwater, and vapor due to leaking aboveground storage tanks, underground storage tanks (USTs), and temporary tanks.
- **Tank vaults**. Hexavalent chromium impacts to shallow soil and shallow groundwater from cracks and seams in former tank vault 7 and the hydraulic cylinder test vault.
- **Trenches and drains**. TCE, chromium, and hexavalent chromium impacts to shallow soil and shallow groundwater from chrome-plating rinse water, which was discharged to the METRO's sanitary sewer prior to 1986, when it was routed to containment vaults.

- **Scrubber room**. Hexavalent chromium impacts to shallow soil and shallow groundwater from a chromic acid evaporator, chromic acid purification unit, and chromic acid holding tank in the scrubber room.
- Parts washing. TCE, TCE degradation products, methyl ethyl ketone, and Stoddard solvent impacts to shallow soil and shallow groundwater from parts washing and degreasing operations.
- Steam cleaning area. Petroleum hydrocarbons and metals (copper, lead, nickel, zinc, and chromium) impacts to shallow soil and shallow groundwater from steam cleaning and the use of a sodium hydroxide tank. In 1986, steam cleaning operations were moved from outside and southeast of the building to inside the building. Fluids were discharged to an oil/water separator.
- **Solid waste dumpster**. Petroleum hydrocarbons, benzo(a)pyrene, and metals (arsenic, copper, lead, nickel, and zinc) impacts to shallow soil and shallow groundwater from surface water runoff near the solid waste dumpster into the drainage ditch.

The Property was sold on March 29, 2007, to CL Frazier Properties, LLC, and is currently occupied by Pacific Industrial Supply, a wire rope and marine/industrial supply distributor (MFA, 2011).

Between 1986 and 2003, Precision completed several corrective actions at the Site in response to a February 1986 compliance order issued by Municipality of Metropolitan Seattle and as required by Ecology in response to National Pollutant Discharge Elimination System (NPDES) permit and hazardous waste regulation violations identified during Ecology inspections (SAIC, 2013). Corrective actions included measures to address sanitary sewer and stormwater discharge and hazardous waste storage violations. Precision also conducted several environmental investigations and cleanup actions at the Site between 1988 and 1993. Between 1988 and 1990, investigations were performed under the 1986 Ecology Administrative Order No. DE 86-307, an amendment to that order, and a 1987 Ecology compliance letter (SAIC, 2013). Precision conducted an independent remedial action in 1993. Between 2005 and 2011, Precision conducted additional environmental investigation and cleanup actions at the Site, including an RI, risk assessment, and feasibility study under Ecology's Voluntary Cleanup Program (VCP). Between 2013 and 2015, Ecology conducted additional environmental investigation of the Site, including an RI. Based on its review of this work, Ecology issued VCP opinion letters in 2009, 2011, and 2015 (Ecology, 2009, 2011, 2015) requesting further action.

2.0 WORK PLAN

The remedial investigation field work is described in the Remedial Investigation Work Plan, and generally consists of:

- Direct push and sonic drilling and soil sampling inside and outside the building
- Installation of monitoring wells, well development, and sampling
- Other tasks such as collecting one water sample from a former hydraulic cylinder test vault.

2.1. List of Field Activities

The following activities will (or may) be completed during the project:

☐ Vapor Measurements	☐ Product Sample collection
\square Site Reconnaissance	\square Soil Stockpile Testing
	\square Remedial Excavation (consolidation)
\square Construction Monitoring	\square Recovery of Free Product
☐ Surveying	☐ Monitoring Well Installation
☐ Test Pit Exploration	
	$\hfill\square$ Underground Storage Tank (UST) Removal Monitoring
□ Groundwater Sampling	☑ Other: Water Sampling
☐ Groundwater Depth Measurement	☐ Other:

3.0 EMERGENCY INFORMATION

A hospital route map is attached at end of HASP.

Hospital Name and Address: Harborview Hospital 325 9th Ave Seattle

Distance: 6.7 miles

Phone Numbers

Hospital ER: 206.520.5000

 Ambulance:
 911

 Police:
 911

 Fire:
 911

Poison Control: Seattle (206) 253-2121; Other (800) 732-6985

Location of Nearest Telephone: Cell phones are carried by site personnel.

Nearest Fire Extinguisher:GeoEngineers vehicle on-site.Nearest First-Aid Kit:GeoEngineers vehicle on-site.

3.1. Standard Emergency Procedures

Get help

- Send another worker to phone 911 (if necessary)
- As soon as feasible, notify the GeoEngineers Project Manager

Reduce risk to injured person

- Turn off equipment
- Move person from injury location (if in life-threatening situation only)
- Keep person warm
- Perform CPR (if necessary)

Transport injured person to medical treatment facility (if necessary)

By ambulance (if necessary) or GeoEngineers vehicle

- Stay with person at medical facility
- Keep GeoEngineers Project Manager apprised of situation and notify Human Resources Manager of situation

4.0 HAZARD ANALYSIS

4.1. Physical Hazards

A hazard analysis has been completed as part of preparation of this HASP. The hazard analysis was performed considering the known and potential hazards at the site and surrounding areas, as well as the planned work activities. The results of the hazard analysis are presented in this section. The hazard analysis will be reviewed each day before beginning work. Updates will be made as necessary and documented in the Daily Field Report.

Anticipated site hazards are identified below and include equipment for drilling wells, as well as general equipment known to be used at the construction site as site development proceeds.

☑ Drill rigs
☐ Backhoe
☐ Trackhoe
□ Crane
☐ Front end loader
□ Dozer
☐ Open excavation/trenching
☐ Shored/braced excavation
☐ Overhead hazards/power lines
\square Tripping/puncture hazards (debris on-site, steep slopes or pits)
☐ Unusual traffic hazard – street traffic
□ Underground utilities
Noise ■ Noise
☐ Other: Click here to enter text.

- A utility locate will be completed as required to prevent drilling or digging into underground utilities.
- Work areas will be marked with reflective cones, barricades and/or caution tap. High-visibility vests will be worn by on-site personnel to ensure they can be seen by vehicle and equipment operators.
- Site personnel will be aware at all times of the location and motion of heavy equipment in the area of work to ensure a safe distance between personnel and the equipment. Personnel will be visible to the operator at all times and will remain out of the swing radius or travel path while the equipment is operating. Personnel will approach heavy equipment only when they are certain the operator has indicated that it is safe to do so through hand signals or other acceptable means.

- Heavy equipment and/or vehicles used on this site will not work within 20 feet of overhead utility lines (if present) without first ensuring that the lines are not energized. This distance may be reduced to 10 feet depending on the client and the use of a safety watch. Note: If it is later determined that overhead lines are a hazard on this job site, a copy of the overhead lines safety section from the HASP Supplemental document shall be attached.
- Personnel entry into unshored or unsloped excavations deeper than 4 feet is generally not allowed. If a worker must enter an excavation deeper than 4 feet, the contractor must follow trenching and shoring requirements established in Washington Administrative Code (WAC) 296-155, the Washington State Construction Standards or OSHA 1926.651 Excavation Requirements. A trench box or other acceptable shoring should be used or the sidewalls of the excavation should be sloped according to the soil type and guidelines as outlined in OSHA and Washington State Department of Labor and Industries Division of Occupational Safety and Health (DOSH) regulations. If the shoring/sloping deviates from requirements outlined in the WAC, it must be designed and stamped by a professional engineer. Prior to entry, personnel will conduct air monitoring as described later in this plan. Hazardous encumbrances and excavated material will be stockpiled at least 2 feet from the edge of a trench or open excavation. If volatile gases accumulate within an open trench or excavation, the means of entering shall adhere to confined space entry and air monitoring procedures outlined under the air monitoring recommendations in this Plan and/or the GeoEngineers Health and Safety Program.
- Personnel will use extra caution for hazards such as slips, trips, and falls, steep slopes, deep excavations, and other hazardous encumbrances. If it becomes necessary to work within 6 feet of the edge of a steep slope, deep excavation, or other potentially hazardous area, appropriate fall protection measures will be implemented by the SSO in accordance with OSHA/DOSH regulations and the GeoEngineers Health and Safety Program.
- Cold stress control measures will be implemented according to the GeoEngineers Health and Safety Program to prevent frost nip (superficial freezing of the skin), frost bite (deep tissue freezing), or hypothermia (lowering of the core body temperature). Heated cars and warm beverages are a resource if necessary during periods of cold weather.
- Heat stress control measures required for this site will be implemented according to GeoEngineers Health and Safety Program with water carried in staff vehicles or with staff on-site.

4.2. Biological Hazards and Procedures

\square Poison Ivy or other vegetation	Click here to enter text.
☐ Insects or snakes	Not known to be present
\square Hypodermic needles or other infectious hazards	Not known to be present
☐ Wildlife	Not known to be present
○ Other: COVID-19; see Form 3	

4.3. Ergonomic Hazard Mitigation Measures and Procedures

4.3.1. Avoiding Lifting Injuries

Back injuries often result from lifting objects that are too heavy or from using the wrong lifting technique. Keep your back healthy and pain free by following common-sense safety precautions.

- Minimize reaching by keeping frequently used items within arm's reach, moving your whole body as close as possible to the object.
- Avoid overextending by standing up when retrieving objects on shelves.
- Keep your back in shape with regular stretching exercises.
- Get help from a coworker or use a hand truck if the load is too heavy or bulky to lift alone.

4.3.2. Proper Lifting Techniques

- Face the load; don't twist your body. Stand in a wide stance with your feet close to the object.
- Bend at the knees, keeping your back straight. Wrap your arms around the object.
- Let your legs do the lifting.
- Hold the object close to your body as you stand up straight. To set the load down, bend at the knees, not from the waist.

4.4. Engineering Controls

☐ Trench shoring (1:1 slope for Type B Soils)
oxtimes Stay upwind of excavation work zones whenever possible/wind direction monitoring
\square Other: soil covers as needed (e.g., plastic sheeting)
☐ Other (specify):

4.5. Chemical Hazards

4.5.1. Chemical Hazards (Potentially Present at Site)

The table below summarizes information on the constituents that have been detected in samples at levels exceeding MTCA concentrations protective of direct contact exposures or that may pose an inhalation hazard.

CHEMICAL HAZARDS (POTENTIALLY PRESENT AT SITE)

Compound/ Description	OSHA PEL Exposure Limit	WA-DOSH PEL Exposure Limit	ACGIH TLV Exposure Limits	NIOSH REL Exposure Limits	Exposure Routes	Toxic Characteristics	Hazard Type
Trichloroethene (trichloroethylene,TCE) Colorless liquid (unless dyed blue) with a chloroform-like odor	100 ppm (TWA) 200 ppm (C)	50 ppm (TWA) 200 ppm (STEL)	10 ppm (TWA) 25 ppm (STEL)	25 ppm (TWA) 1000 ppm (IDLH)	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]	Volatile Organic Compounds / Solvents

Compound/ Description	OSHA PEL Exposure Limit	WA-DOSH PEL Exposure Limit	ACGIH TLV Exposure Limits	NIOSH REL Exposure Limits	Exposure Routes	Toxic Characteristics	Hazard Type
Chromium (chromium metal) Blue-white to steel-gray, lustrous, brittle, hard, odorless solid.	1 mg/m³ (TWA)	0.5 mg/m³ (TWA)	0.5 mg/m³ (TWA)	0.5 mg/m³ (TWA) 250 mg/m³ (IDLH)	Inhalation, ingestion, skin and/or eye contact	Chromium III is an essential nutrient, Chromium VI can cause irritation to nose, skin ulcers, linked to cancer.	Metals
Diesel Fuel liquid with a characteristic odor	None established	None established	100 mg/m³ (as total hydrocarbons)	None established	Ingestion, inhalation, skin absorption, skin a eye contact	· · · · · · · · · · · · · · · · · · ·	Petroleum

Note: If a State has established a PEL more restrictive than the OSHA limits, then the applicable State limit becomes the legal limit.

PAHs = polycyclic aromatic hydrocarbons

TLV = threshold limit value (over 10 hours)

STEL = short-term exposure limit (over 15 minutes)

PEL = permissible exposure limit

REL = recommended exposure limit

EL = excursion limit (over 30 minutes)

ppm = parts per million

Additional Notes:

IDLH = immediately dangerous to life or health

OSHA = Occupational Safety and Health Administration

ACGIH = American Conference of Governmental Industrial Hygienists

NIOSH = National Institute for Occupational Safety and Health

 $mg/m^3 = milligrams per cubic meter (in air)$

fibers/cm³ = fibers per cubic centimeter (in air)

TWA = time-weighted average (8 hours averaging time)

CL = ceiling limit - limit that cannot be exceeded

AL = action level – TWA limit which, if exceeded, invokes ancillary requirements in standard WA DOSH = Washington Department of Labor and Industries Division of Safety and Health

4.6. Summary of Selected Chemical Hazards

4.6.1 Trichloroethylene

The PEL is 100 ppm for an 8-hour average, or 200 ppm for a Ceiling limit(OSHA) and the ACGIH TLV is 10 ppm for an 8-hour average or 25 ppm for a 15 minute STEL (ACGIH). The PID will detect TCE. Central nervous system effects are the primary effects noted from acute inhalation exposure to trichloroethylene in humans, with symptoms including sleepiness, confusion, and feelings of euphoria. Effects on the gastrointestinal system, liver, kidneys and skin have also been noted. Trichloroethylene absorption by inhalation, dermal, and oral exposure is very rapid. Trichloroethylene is metabolized in humans and animals to a number of substances which themselves are known to be toxic: chloral hydrate, trichloroacetic acid, dichloroacetic acid and trichloroethanol. TCE is very lipophilic; hence, all routes of exposure can contribute to TCE absorption. Inhalation is the most important route of TCE uptake by which absorption is very rapid. The initial rate of uptake of inhaled TCE is quite high, leveling off after a few hours of exposure.

TCE defats the skin and disrupts the stratum corneum, thereby enhancing its own absorption. The rate of absorption probably increases with greater dermal disruption. However, dermal route is generally not a significant route of exposure. TCE is carcinogenic to animals, but there is limited evidence of carcinogenicity in humans. Trichloroethylene is a nonflammable colorless liquid with an odor similar to ether or chloroform. The odor threshold for trichloroethylene is 28 ppm.

4.6.2 Chromium

The summary below is for hexavalent chromium.

Hexavalent chromium [Cr(VI)] is one of the valence states (+6) of the element chromium. It is usually produced by an industrial process. Cr(VI) is known to cause cancer. In addition, it targets the respiratory system, kidneys, liver, skin and eyes. Chromium metal is added to alloy steel to increase hardenability and corrosion resistance. A major source of worker exposure to Cr(VI) occurs during "hot work" such as welding on stainless steel and other alloy steels containing chromium metal. Cr(VI) compounds may be used as pigments in dyes, paints, inks, and plastics. It also may be used as an anticorrosive agent added to paints, primers, and other surface coatings. The Cr(VI) compound chromic acid is used to electroplate chromium onto metal parts to provide a decorative or protective coating

4.6.3 Diesel Fuels

Diesel fuels are similar to fuel oils used for heating (fuel oils no. 1, no. 2, and no. 4). All fuel oils consist of complex mixtures of aliphatic and aromatic hydrocarbons. Diesel fuels predominantly contain a mixture of C10 through C19 hydrocarbons, which include approximately 64% aliphatic hydrocarbons, I-2% olefinic hydrocarbons, and 35% aromatic hydrocarbons. Workers may be exposed to fuel oils through their skin without adequate protection, such as gloves, boots, coveralls, or other protective clothing. Breathing diesel fuel vapors for a long time may damage your kidneys, increase your blood pressure, or lower your blood's ability to clot. Constant skin contact (for example, washing) with diesel fuel may also damage your kidneys. The International Agency for Research on Cancer (IARC) has determined that residual (heavy) fuel oils and marine diesel fuel are possibly carcinogenic to humans (Group 2B classification)

4.7. Additional Hazards

Daily Field Reports should include any site-specific notes or observations related to:

- Physical Hazards (e.g., excavations and shoring, equipment, traffic, trips/falls, heat stress, cold stress)
- Biological Hazards (e.g., snakes, spiders, bees/wasps, animals, discarded needles, poison ivy, pollen)
- Ergonomic Hazards (e.g., lifting heavy loads, tight workspaces, etc.)
- Chemical Hazards (e.g., odors, spills, airborne particulates)

Additional hazards, if identified during site work, should be identified in the Daily Field Reports.

5.0 AIR MONITORING PLAN

An air monitoring plan has been prepared as part of development of this HASP. The air monitoring plan is based on the results of the chemical exposure assessment and addresses steps necessary to limit worker exposure and health and safety risks related to potential vapor and gas hazards. Non-occupational exposures are not addressed in this HASP.

As discussed in Section 1.5, numerous investigations have occurred at the site, and multiple soil, groundwater, indoor air, and soil gas samples have been collected and analyzed. Taken together, the data indicate TCE is the primary contaminant of concern for air monitoring. TCE has been detected in all media, including at elevated concentrations in soil gas samples (up to 37,000 ug/m³). Other VOCs were generally not detected, or were detected at low concentrations in only a few samples.

The remainder of this section discusses the air monitoring plan.

5.1. Air Monitoring Instrumentation, Frequency, and Locations

Work upwind if possible.

Check instrumentation to be used
\square Multi-Gas Detector (includes methane/% LEL, oxygen, hydrogen sulfide)
☑ Photoionization Detector (PID)
☐ Dust Monitor
\Box Other (i.e., detector tubes or badges) Please specify: Click here to enter text.
Check monitoring frequency and locations (specify: works zone, borehole, breathing zone, etc.):
oximes Continuous during soil material disturbance and soil sampling activities.
☐ 15 minutes
☐ 30 minutes
□ Hourly

5.2. Air Monitoring Activities

- The workspace will be monitored using a PID capable of monitoring organic vapors. These instruments must be properly maintained, calibrated and charged (refer to the instrument manuals for details). Zero the instruments in the same relative humidity as the area in which they will be used and allow at least a 10-minute warm-up prior to zeroing. Do not zero instruments in a contaminated area.
- An initial vapor measurement survey should be conducted to detect potential "hot spots" in work areas where vapor hazards may exist. Note that the site is an active industrial manufacturing facility that makes wire rope and other hardware. Activities include welding etc. indoors. Therefore "background" vapors could exist independent of soil contamination below the concrete floor of the building. Vapor measurement surveys of work areas should be conducted at least hourly, and more often if persistent odors are detected. Vapor measurements will be made continuously during soil sampling activities. Continuously monitor the work zone and in areas where sampling is conducted.
- Standard industrial hygiene/safety procedure is to require that action be taken to reduce worker exposure to organic vapors when vapor concentrations exceed one-half the TLV. Of the inhalation hazards at the site, TCE is the greatest risk driver based on past data. The TLV for TCE is 10 ppm. If the use of respirators becomes necessary based on air monitoring results, then employees shall use respirators with organic vapor cartridges and will contact the HSM to assess the need for other monitoring options.

5.3. Air Monitoring Action Levels

AIR MONITORING ACTION LEVELS

Parameter	Monitoring Device	Frequency of Monitoring Work Area	Action Level	Action
Organic Vapors (TCE is the primary concern at this site)	PID	Continuous	Background to 5 ppm 5 to 10 ppm for 5+ minutes >10 ppm for 5+ minutes	Use Level D or Modified Level D PPE. Upgrade to Level C PPE including airpurifying respirator with organic vapor cartridges. Stop work, cover borehole, and move people at least 50 feet away from the area. Run fans directed at work area and monitor air at distance of 50 feet. Contact PM for additional guidance.

6.0 SITE CONTROL PLAN

Work zones are defined as areas within 15 feet of operating drill rigs or other heavy equipment. Site personnel should work upwind of work zones whenever possible. To the extent practicable, use the buddy system. Do not approach heavy equipment unless you are sure the operator sees you and has indicated it is safe to approach. GeoEngineers and subcontractor personnel should be made aware of key safety items during tailgate safety meetings (e.g., location of equipment shutoff switches, location of fire extinguishers, cell phone numbers, etc.).

6.1. Traffic or Vehicle Access Control Plans

Use cones/caution tape for borings outside the building. Leave room for trucks / vehicles to drive around the work area. Work (i.e. place your body/drilling table) in an area protected from truck and vehicle traffic to extent practicable.

6.2. Exclusion, Contamination Reduction, and Support Zones

An exclusion zone, contamination reduction zone, and support zone should be established in work areas. Personnel leaving the site or on break should exit the exclusion zone through the contamination reduction zone. The contamination reduction zone, at a minimum, should consist of garbage bags into which used, disposable PPE should be disposed. Personnel should wash hands at the site before eating or leaving the site.

Exclusion zone: Work zones and other areas within 15 feet of operating machinery

Method of delineation
☐ Fencing
Survey/Caution Tape
☐ Other: Click here to enter text.

6.3. Buddy System

Personnel on site should use the buddy system (pairs), particularly when communication is restricted. If only one GeoEngineers employee is present on site, a buddy system should be arranged with subcontractor or contractor personnel if possible.

6.4. Site Communication Plan

Positive communications (within sight and hearing distance or via radio) should be maintained between pairs on site, with the pair remaining in proximity to assist each other in case of emergencies. The team should prearrange hand signals or other emergency signals for communication when voice communication becomes impaired (including cases of lack of radios or radio breakdown) and an agreed-upon location for an emergency assembly area.

In instances where communication cannot be maintained, site personnel should consider suspending work until communication can be restored. If this is not an option, the following are some examples of hand signals that can be used:

- Hand gripping throat: Out of air, I can't breathe.
- Gripping partner's wrist or placing both hands around waist: Leave area immediately, no debate.
- Hands on top of head: Need assistance.
- Thumbs up: Okay, I'm all right; or, I understand.
- Thumbs down: No, negative.

6.5. Emergency Action

In the event of an emergency, employees will convene in a designated emergency assembly area. Employees should communicate with others working on site and the PM to determine the assembly area for each workday. GeoEngineers and subcontractor personnel should be made aware of the emergency plan for the site at tailgate safety meetings (e.g., location of equipment shutoff switches, location of fire extinguishers, cell phone numbers, etc.). See also Section 8.3 – Emergency Response.

6.6. Decontamination Procedures

Decontamination, at a minimum, should include removing and disposing of used, disposable PPE when exiting the exclusion zone, and washing hands. Decontamination may also consist of removing outer protective gloves and washing soiled boots and gloves using a bucket and brush provided on site in the contamination reduction zone. If applicable, inner gloves will then be removed, and respirator (if used), hands, and face will be washed in either a portable wash station or a bathroom facility at the site. Employees will perform decontamination procedures and should wash hands before eating, drinking, or leaving the site.

6.7. Waste Disposal or Storage

Used, disposable PPE is to be placed in waste receptacles.

Drill cuttings/excavated soil disposal or storage:
oxtimes On site, pending analysis and further action (store drill cuttings and decon water in separate drums)
☐ Secured (list method):
\square Other (describe destination, responsible parties): Click here to enter text.

7.0 PERSONAL PROTECTIVE EQUIPMENT

Obselvennijsekje DDE to be weed on needed.

After the initial and/or daily hazard assessment has been completed, the appropriate PPE will be selected to ensure worker safety. Task-specific levels of PPE should be reviewed with site personnel during the daily pre-work safety briefing.

Site activities include handling and sampling solid subsurface material (material may potentially be saturated with contaminated materials or groundwater). Depth-to-groundwater measurements may also be performed. Site hazards include potential exposure to hazardous materials, and physical hazards such as trips/falls and working around heavy equipment and open excavations.

Level D PPE will be worn at all times on site unless a higher level of protection is required.

Air monitoring will be conducted to determine the level of respiratory protection. Half-face, air-purifying respirators with organic vapor, acid gas, and HEPA (P100) cartridges will be available on site to be used as necessary. HEPA cartridges are to be used alone only if PID and 4-gas meter measurements are below action limits for upgrading to Level C PPE. HEPA cartridges are used to protect against dust and other airborne particulates, while a combination of HEPA and organic vapor cartridges is used to protect against both dust and vapor.

Personnel and equipment decontamination procedures will be used as necessary, including washing hands and/or face prior to hand-to-mouth activities such as eating, smoking, etc., to decrease potential ingestion and inhalation exposures.

check applicable FFE to be used as needed.
⊠ Hardhat
oxtimes Steel-toed boots (if crushing hazards are a potential or if client requests)
⊠ Safety glasses
□ Reflective vest
oxtimes Hearing protection (if it is difficult to carry on a conversation 3 feet away)
\square Rubber boots (if wet/muddy conditions)
Gloves (specify):

Liners
□ Leather
☐ Other (specify) Click here to enter text.
Protective clothing:
☑ Tyvek (for modified Level D or Level C)
\square Saranex (for modified Level D or Level C; use if liquids are handled or splash may be an issue)
☑ Cotton work pants/shirt (Level D)
⊠ Rain gear (as needed) (Level D)
□ Layered warm clothing (as needed) (Level D)
Inhalation hazard protection:
□ Level D (no respirator)
oxtimes Level C (half-face, air-purifying respirator with organic vapor, acid gas, and/or HEPA cartridges as necessary).
☐ Level B (Self Contained Breathing Apparatus — STOP, consult the HSM)

7.1. Personal Protective Clothing Inspections

PPE clothing ensembles designated for use during site activities shall be selected to provide protection against known or anticipated hazards. However, no protective garment, glove or boot is entirely chemical-resistant, nor does any PPE provide protection against all types of hazards. To obtain optimum performance from PPE, site personnel should:

- Inspect PPE before and during use for imperfect seams, non-uniform coatings, tears, poorly functioning closures, or other defects. If the integrity of the PPE is compromised in any manner, proceed to the contamination reduction zone and replace the PPE.
- Inspect PPE during use for visible signs of chemical permeation such as swelling, discoloration, stiffness, brittleness, cracks, tears, or other signs of punctures. If the integrity of the PPE is compromised in any manner, proceed to the contamination reduction zone and replace the PPE.
- Disposable PPE should not be reused after work breaks unless it has been properly decontaminated.

7.2. Respirator Selection, Use and Maintenance

If respirators are required, site personnel shall be trained before use on the proper use, maintenance, and limitations of respirators. Additionally, they must be medically qualified to wear respiratory protection in accordance with 29 CFR 1910.134. Site personnel who will use a tight-fitting respirator must have passed a qualitative or quantitative fit test conducted in accordance with an OSHA-accepted fit test protocol. Fit testing must be repeated annually or whenever a new type of respirator is used. Respirators will be stored in a protective container.

7.3. Respirator Cartridges

If the action levels identified in the Air Monitoring Action Levels table in Section 5.3 are exceeded, site personnel should don respiratory protection appropriate for the known or suspected chemicals of concern.

For this site, a half-face or full-face air purifying respirator with National Institute for Occupational Safety and Health (NIOSH)-approved organic vapor/acid gas/HEPA P100 cartridges (Level C) is expected to provide protection against the potential chemicals of concern.

Air monitoring should be performed continuously while using Level C respiratory protection. The SSO should closely monitor personnel using respiratory protection, including observing for signs of fatigue or respiratory distress; the potential for cartridge breakthrough or increased resistance to inhalation; and the need for changes in the level of respiratory protection based on air monitoring. The frequency and duration of work breaks should be increased for personnel working in respiratory protection. If at any time air monitoring indicates Level B respiratory protection is warranted, personnel should stop work, leave the exclusion zone, and consult with the HSM.

If site personnel are required to wear air-purifying respirators, the appropriate cartridges shall be selected to protect personnel from known or anticipated site contaminants. The respirator/cartridge combination shall be NIOSH-certified. A cartridge change-out schedule shall be developed based on known site contaminants, anticipated contaminant concentrations, and data supplied by the cartridge manufacturer related to the absorption capacity of the cartridge for specific contaminants. Site personnel shall be made aware of the cartridge change-out schedule prior to the initiation of site activities requiring use of a respirator.

If organic vapor and/or acid gas cartridges are used for protection against hydrogen sulfide, site personnel should change cartridges after each shift, or more frequently if supported by 4-gas meter readings and the rated hydrogen sulfide absorption capacity of the cartridges.

Site personnel should also change respirator cartridges if they detect increased resistance during inhalation or if they detect vapor or gas breakthrough by smell, taste, or feel. Note, however, that vapor or gas breakthrough is not an acceptable method of determining the change-out schedule.

7.4. Respirator Inspection and Cleaning

The SSO shall periodically inspect respirators at the site. Site personnel shall inspect respirators prior to each use in accordance with the manufacturer's instructions. In addition, site personnel wearing a tight-fitting respirator shall perform a positive and negative pressure user seal check each time the respirator is donned, to ensure proper fit and function. User seal checks shall be performed in accordance with the GeoEngineers respiratory protection program or the respirator manufacturer's instructions.

8.0 ADDITIONAL ELEMENTS

8.1. Cold Stress Prevention

Working in cold environments presents health hazards to site personnel and can result in frost nip (superficial freezing of the skin), frost bite (deep tissue freezing), or hypothermia (lowering of the core body temperature).

The combination of wind and cold temperatures increases the degree of cold stress experienced by site personnel. Site personnel shall be trained on the signs and symptoms of cold-related illnesses, how the

human body adapts to cold environments, and how to prevent the onset of cold-related illnesses. Heated work break areas and warm beverages should be provided during periods of cold weather.

8.2. Heat Stress Prevention

In hot outdoor environments it is important to keep workers hydrated with plenty of water. When employee exposure is at or above applicable temperatures listed in the Heat Stress table below, the SSO and/or PM will ensure that:

- A sufficient quantity of drinking water is readily accessible to employees at all times; and
- Employees have the opportunity to drink at least 1 quart of drinking water per hour.
- A shaded rest area is available for employee work breaks as needed.

HEAT STRESS

Type of Clothing Worn by Worker	Outdoor Temperature Action Levels
Nonbreathing clothes including vapor barrier clothing or PPE such as chemical resistant suits	52°
Double-layer woven clothes including coveralls, jackets, and sweatshirts	77°
All other clothing	89°

8.3. Emergency Response

The following constitutes emergency response procedures:

- Personnel on site should use the "buddy system" (pairs) if possible.
- Visual contact should be maintained between "pairs" on site, with the team remaining in proximity to assist each other in case of emergencies.
- If any member of the field crew experiences any adverse exposure symptoms while on site, the entire field crew should immediately stop work and act according to the instructions provided by the SSO.
- Wind indicators visible to all on-site personnel should be provided by the SSO to indicate possible routes for upwind escape. Alternatively, the SSO may ask on-site personnel to observe the wind direction periodically during site activities.
- The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated should result in the evacuation of the field team to the designated emergency assembly area, contact of the PM, and reevaluation of the hazard and the level of protection required.
- If an accident occurs, the SSO and the injured person (if applicable) are to complete, within 24 hours, an Accident/Exposure Report Form (Form 4) for submittal to the PM, the HSM, and Human Resources. The PM should ensure that follow-up action is taken to correct the situation that caused the accident or exposure.

9.0 MISCELLANEOUS

9.1. Sampling, Managing, and Handling Drums and Containers

Any drums or containers used for waste storage during the project shall meet the appropriate Department of Transportation, OSHA, and EPA regulations for the waste they contain. Site operations shall be organized to minimize drum and container movement. When practicable, drums and containers shall be inspected, and their integrity shall be ensured before they are moved. Unlabeled drums and containers shall be considered to contain hazardous substances and handled accordingly until the contents are identified and labeled. Before drums or containers are moved, employees involved in the transfer operation shall be warned of the potential hazards associated with the contents.

9.2. Entry Procedures for Confined Spaces

GeoEngineers employees shall not enter confined spaces to perform work unless they have been properly trained, including hands-on experience in the use of retrieval equipment. Excavations greater than 4 feet in depth with the potential for buildup of a hazardous atmosphere are considered confined spaces.

Confined-space entry is not anticipated for this project.

9.3. Sanitation

Sanitary facilities are available at the site. Multiple service stations and other businesses are located within several miles of the site.

9.4. Lighting

Work is anticipated to be performed during daylight hours.

10.0 DOCUMENTATION FOR HAZWOPER PROJECTS

- Daily Field Report
- Field notes
- FORM 1 Health and Safety Pre-Entry Briefing and Acknowledgment of Site Health and Safety Plan for use by employees, subcontractors and visitors
- FORM 2 Safety Meeting Record
- FORM 3 Job Hazard Analyses (JHA)
- FORM 4 Accident/Exposure Report Form

NOTE: The Daily Field Report or field notes are to contain the following information:

- Updates on hazard assessments, field decisions, conversations with subcontractors, client or other parties, etc.
- Air monitoring/calibration check results, including personnel performing the monitoring/calibration check, locations monitored, work activity at the time of monitoring, etc.
- Health and safety-related actions taken, including PPE upgrades and rationale.
- Weather conditions (temperature, wind direction, wind speed, humidity, rain, snow, etc.).

11.0 APPROVALS

1. Plan Prepared	Mass.	February 2022
	Signature	Date
2. Plan Approval	Han	February 2022
	PM Signature	Date
3. Health and Safety Manager	Connor Jordan on HSM Signature	behalf of Mary Lou Sullivan Date 12APR2022

FORM 1 HEALTH AND SAFETY PRE-ENTRY BRIEFING AND ACKNOWLEDGEMENT OF THE SITE HEALTH AND SAFETY PLAN FOR GEOENGINEERS EMPLOYEES, SUBCONTRACTORS AND VISITORS

Inform employees, contractors and subcontractors, or their representatives about:

- The nature, level and degree of exposure to hazardous substances they are likely to encounter.
- Site-related emergency response procedures.
- Any identified potential fire, explosion, health, safety or other hazards.

Conduct safety meetings for employees, contractors and subcontractors, or their representatives as follows:

- A pre-entry briefing before site work is started.
- Additional tailgate safety meetings as needed.
- Safety meetings should include a discussion of emergency response, site communications and site hazards.
- Make sure employees working on the site are informed of known site hazards/health risks and informed on how to protect themselves and other workers against the Site hazards and risks.
- Update HASP information as needed to reflect current site activities and hazards.

GeoEngineers site workers shall sign this form, which should remain attached to the HASP and be filed with other project documentation. This HASP is intended for use by GeoEngineers employees only. Nothing herein shall be construed as granting rights to GeoEngineers' subcontractors or any other contractors working on this site to use or legally rely on this HASP. GeoEngineers specifically disclaims any responsibility for the health and safety of any person not employed by the company.

I hereby verify that a copy of the current HASP has been provided by GeoEngineers, Inc., for my review and personal use. I have read the document and acknowledge an understanding of the safety procedures and protocol for my responsibilities on site. I agree to comply with the specified safety requirements and procedures.

Print Name	Signature	Date

FORM 2 SAFETY MEETING RECORD

Safety meetings should include a discussion of emergency response, site communications and site hazards.

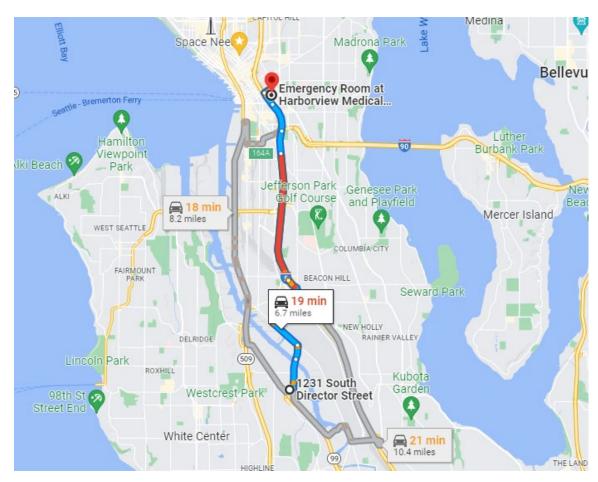
■ Use in conjunction with the HASP and Job Hazard Analyses (JHA) Form (Form 3) to help identify hazards. Date: ______ Site Safety Officer (SS0):_____ Topics: _____ Attendees: **Print Name Signature**

FORM 3 JOB HAZARD ANALYSIS (JHA) COVID-19 SUPPLEMENTAL JHA

Project Name: File No:				Date: March 2022	Site Location:			
Application								
This COVID-19 supplemental JHA is designed to meet the requirements of GeoEngineers' Field Safety During COVID-19 protocols and the COVID-19 Response Plan as well as the recommendations provided by the Centers for Disease Control and Prevention (CDC) and other applicable state or federal agencies								
PPE/Supplies/Ad								
PPE		Supplies		Tools		Actions		
⊠ Eye Protection		⊠ Hand Washing Soap		□ Cell Phone/Satellite				
⊠ Gloves				☐ Scanning Thermometer				
\square Cloth Face Cover	ing			☐ Water Basin		□ Hand Washing		
☐ N95 Mask		⊠ Sanitizing Wipes				oxtimes High Touch Surface Sanitation		
☐ Disposable Coveralls								
Job Steps	Pote	ential Hazard	Critical Act	tions to Mitigate Ha	zard			
Mobilization to worksite	_	smission of ID-19 Virus	 Assign Sanitize door had a Re-Fue pump a into the Intra-Sign skiffs 	ck hand sanitizer and/or wipes for use during all modes of siness travel. sign hand sanitizer to vehicle when able. nitize "high touch" areas: keys, steering wheels, dash controls, or handles, mirror adjustments, shifter, blinkers, head rests, etc. -Fueling: Use sampling gloves or wash hands after using the mp at a gas station. When possible, do this before you get back to the vehicle. ra-Site Transportation: Maintain social distancing on transport ffs or multi-passenger ATVs. Request multiple trips if ercrowded. Keep your field PPE on during travel.				
Pre-work Safety Meetings	_	smission of ID-19 Virus	presen Conduct ≥6 feet Keep goodepend Meetin a sin supplie Use ve five. Wear fa	t staffing or public de ct a tailgate safety me t social distancing. group sizes as smal ding on individual stat g attendance should gle representative es/equipment/compu- rbal greetings. Do no acce coverings if socia	nsity a eting I as p te guid be ver to ters/v t shal	as possible (≤10 people or smaller e guidance). De verbally announced and recorded by to avoid contact with shared		

Job Steps	Potential	Critical Actions to Mitigate Hazard		
	Hazard			
		Maximize social distances to the greatest extent feasible.		
Site Operations	Transmission of COVID-19 Virus	If tasks or locations require sharing workspaces in proximity to others with <6' separation, wear a face covering.		
		Sanitize shared tools or equipment.		
		Use own vehicle as site office rather than shared spaces.		
		Wash ungloved hands after contacting shared surfaces.		
		 Sanitize personal items regularly (cell phone, water bottle, clipboards, notebooks). 		
		 Set up exclusion zones surrounding public interface areas if <6' separation. 		
		Wear face covering if traveling off site for lunch/coffee/supplies and recommended social distances cannot be maintained.		
		Leave job site if experiencing onset of COVID-19 symptoms.		
Positive or Assumed Positive COVID-19 Result at Job Site	Transmission of COVID-19 Virus	Contact your manager as soon as information is received of a positive or assumed positive result on the jobsite.		
		Determine if you have had close and prolonged personal proximity to the individual.		
		Based on proximity, you may be asked to remove yourself from the worksite.		
		Your manager will provide guidance for how to proceed safely following worksite withdrawal.		
Additional Commo	ents:			

JHA RECORD OF SAFETY MEETINGS


Name of Attendees	Date		
Signature of Individual Verifying the Above	Date		

FORM 4 ACCIDENT/EXPOSURE REPORT FORM

To (Supervisor): From (Employee):								
Telephone (with area code):								
Name of injured or ill employ	/ee:		_					
Date of accident/exposure:	Time of accident/expo	osure: Location of accider	nt/exposure:					
Narrative description of accid	dent/exposure (circle or	ne):						
Medical attention given on s	ite:							
Nature of illness or injury and part of body involved:			Lost Time? Yes □ No □					
Probable Disability (check o	ne):							
Fatal Lost work	k day with days away from work	Lost work day with days of restricted activity	No lost work day	First Aid only				
Corrective action taken and	corrective action that re	mains to be taken (by whom	and when):					
Employee Signature:			Date:					
Name of Supervisor:								

ATTACHMENT Hospital Route:

Harborview Medical Center

Get on I-5 N in Seattle from 14th Ave S, E Marginal Way S and Corson Ave S

8 min (2.7 mi)

Take exit 164A from I-5 N

5 min (3.8 mi)

> Continue on James St. Drive to 9th Ave

2 min (0.2 mi)

Emergency Room at Harborview Medical Center | Seattle

325 9th Ave Main Hospital, Emergency Department, Seattle, WA 98104

APPENDIX LReport Limitations and Guidelines for Use

APPENDIX L

REPORT LIMITATIONS AND GUIDELINES FOR USE7

This appendix provides information to help you manage your risks with respect to the use of this report.

Report Use and Reliance

This report has been prepared for Dick Morgan. GeoEngineers structures its services to meet the specific needs of its clients. No party other than Dick Morgan may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed scope of services for the Project, and its schedule and budget, our services have been executed in accordance with our Agreement with the Client dated February 7, 2022 and generally accepted environmental practices in this area at the time this report was prepared. We do not authorize, and will not be responsible for, the use of this report for any purposes or Projects other than those identified in this report.

If changes to the Project or property occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity to review our interpretations and recommendations in the context of such changes. Based on that review, we can provide written modifications or confirmation, as appropriate.

Information Provided by Others

GeoEngineers has relied upon certain data or information provided or compiled by others in the performance of our services. Although we use sources that we reasonably believe to be trustworthy, GeoEngineers cannot warrant or guarantee the accuracy or completeness of information provided or compiled by others.

Conditions Can Change

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by events such as construction on or adjacent to the site, new information or technology that becomes available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. If more than a few months have passed since issuance of our report or work product, or if any of the described events may have occurred, please contact GeoEngineers before applying this report for its intended purpose so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Professional Judgment

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) rely on professional judgment and opinion to a greater extent than other engineering and natural science disciplines, where more precise and/or readily observable data may exist. To help clients better understand how this difference pertains to its services, GeoEngineers includes these explanatory "limitations" provisions in its reports. Please confer with GeoEngineers if you need to know how these "Report Limitations and Guidelines for Use" apply to your Project or site.

⁷ Developed based on material provided by GBA, GeoProfessional Business Association; www.geoprofessional.org.

