2021 ANNUAL PROGRESS REPORT SWMU 14 – OILY WATER SEWER PHILLIPS 66 – FERNDALE REFINERY FERNDALE, WASHINGTON 98248

prepared for:

Phillips 66 Company 3901 Unick Road Ferndale, Washington 98248

March 28, 2022

Twhatcom ENVIRONMENTAL

soil • water • air compliance solutions

228 East Champion Street, Suite 101, Bellingham, WA 98225 360.752.9571 | www.whatcom-es.com

2021 ANNUAL PROGRESS REPORT SWMU 14 – OILY WATER SEWER PHILLIPS 66 FERNDALE REFINERY

Prepared for:

Phillips 66 Ferndale Refinery 3901 Unick Rd Ferndale, Washington 98248

Prepared by:

Whatcom Environmental Services 228 East Champion Street #101 Bellingham, Washington 98225

March 28, 2022

TABLE OF CONTENTS

Page

1.0	INTRO 1.1	DDUCTION
2.0	OILY 2.1	WATER SEWER INSPECTIONS
3.0	PHAS 3.1 3.2 3.3 3.4 3.5	E I SITE CHARACTERIZATION
4.0	CLEA	NUP STANDARDS9
5.0	PHAS 5.1 5.2	E I AOC-1 SITE GEOLOGY10Site Geology105.1.1AOC-1 Geology10Site Hydrogeology12
6.0	INACE	ESSIBLE CONTAMINATION14
7.0	DEVIA	ATIONS FROM THE IRP15
8.0	CONC	CLUSIONS
9.0	REFE	RENCES

LIST OF FIGURES

Figure 1.	Site Location Map
Figure 2.	Phase I OWS Inspection Segments and Environmental Rated Defects 3 & 4 Locations
Figure 3.	Soil Sample Location Map
Figure 4.	Cross Section Location Map
Figure 5.	Geologic Cross Section A-A'
Figure 6.	Geologic Cross Section B-B'

LIST OF TABLES

Table 1.	Phase I Manhole Inspection Schedule
Table 2.	Phase I Sewer Line Segment Inspection Schedule
Table 3.	Soil Sample Descriptions
Table 4.	Soil Sample MTCA TPH Hazard Index and Risk Results
Table 5.	Soil Sample BTEX Analytical Results
Table 6.	Soil Sample Metal Analytical Results
Table 7.	Soil Sample cPAH Analytical Results

APPENDICES

Appendix A.	TRC Report - Phase I Oily Water Sewer Inspections and Repair Recommendations
Appendix B.	Soil Laboratory Analytical Data Reports
Appendix C.	Data Quality Assurance Review
A 11 D	

Appendix D. MTCATPH Worksheets

ACRONYMS AND ABBREVIATIONS

AO	-	Agreed Order
AOC	-	Area of Concern
bgs	-	below ground surface
BTEX	-	Benzene, Toluene, Ethylbenzene, and Xylenes
COC	-	Contaminant/Chemical of Concern
CUL	-	Clean-up levels
Ecology	-	Washington State Department of Ecology
EPH	-	Extractable Petroleum Hydrocarbons
FOC	-	Fraction of Organic Carbon
IRP	-	Investigation and Response Plan
LEL	-	Lower Explosive Limits
MTCA	-	Model Toxics Control Act
NASSCO	-	National Association of Sewer Service Companies
OWS	-	Oily Water Sewer
PAH	-	Polycyclic Aromatic Hydrocarbons
PID	-	Photoionization Detector
PCS	-	Petroleum Contaminated Soil
QA/QC	-	Quality Assurance/Quality Control
RCW	-	Revised Code of Washington
SAP	-	Sampling and Analysis Plan
TPH	-	Total Petroleum Hydrocarbons
VOC	-	Volatile Organic Compounds
VPH	-	Volatile Petroleum Hydrocarbons
WAC	-	Washington State Administrative Code
WWTP	-	Waste Water Treatment Plant

1.0 INTRODUCTION

This annual progress report has been prepared in accordance with the requirements in Section VII.C. of Agreed Order No DE 16297 (AO). The AO was entered into by the Washington State Department of Ecology (Ecology) and Phillips 66 Ferndale Refinery. The objective of the AO is to investigate and conduct remedial actions to the Phillips 66 Ferndale Refinery's oily water sewer (OWS) system, also referred to as Solid Waste Management Unit 14 (SWMU-14).

Per the AO, an Investigation and Response Plan (IRP) was prepared to provide a framework to investigate the integrity of the OWS and respond to any potential releases of contamination to soil and/or groundwater. The IRP outlined four Phases of major OWS trunk line inspections to be completed by December 31, 2029. The inspections required for Phase I of the IRP investigation schedule were completed in 2021.

Per the IRP, if a potential release is discovered during the sewer inspections, the first step is to initiate site characterization at the potential release location(s). A potential release includes a sewer defect which indicates that the sewer has failed and there is the potential for contaminants from the oily sewer to impact soil or groundwater.

Site characterization has been initiated at all potential release locations identified during Phase I of the OWS inspections. Two release locations have been confirmed as a result of the Phase I site characterization. Further site characterization is needed at the confirmed release locations to delineate the horizontal and vertical extent of soil contamination and investigate the potential impacts to groundwater.

This annual progress report has been prepared in accordance with the requirements in the AO. This report describes the Phase I sewer inspection findings and ongoing site characterization efforts and sewer repair.

1.1 GENERAL SITE INFORMATION

The Phillips 66 Ferndale Refinery is located at 3901 Unick Road in Ferndale, Washington (parcel 390133197340). The refinery is in Section 32 in township 39 North, Range 1 East. The refinery is situated on the Strait of Georgia, and approximately 6.03

1

miles west of I-5. The refinery has a median elevation of approximately 200 feet above mean sea level and the site topography generally slopes from the east/northeast to the west/southwest. A site location map is provided as Figure 1.

Contact information for the Ecology site manager, project consultant and property owner/facility operator are included below.

- Ecology Site Manager: Liem Nguyen
 - o Address: 300 Desmond Drive SE, Lacey, WA 98503
 - o Phone: (360) 407-6955
 - o Email: lngu461@ecy.wa.gov
- Project Consultant: Whatcom Environmental Services, Inc.
 - o Address: 228 E Champion St #101, Bellingham, WA 98225
 - Contact: Eric Libolt
 - o Phone: (360) 752-9571
 - Email: elibolt@whatcom-es.com
- Property Owner/Facility Operator: Phillips 66
 - o Address: 3901 Unick Road, Ferndale, WA 98248
 - Contact: Megan Everson
 - o Phone: (360) 384-8377
 - Email: megan.everson@p66.com

2.0 OILY WATER SEWER INSPECTIONS

Phase I OWS inspections were completed in the spring and summer of 2021. The sewer inspections were conducted to assess the general conditions of all sewer components and identify potential release locations where the sewer has failed and there is the potential for contaminants from the oily sewer to impact soil or groundwater.

2.1 OWS PHASE I INSPECTION FINDINGS

A map of the OWS segments inspected during Phase I is provided as Figure 2. Table 1 lists manholes that were inspected and Table 2 lists the sewer line segments that were inspected during Phase I.

OWS inspections were completed by Industrial Inspection Analysis (formerly Atlas Inspections) using CCTV equipment. All inspection videos were provided to TRC Environmental Corporation (TRC) for assessment using the National Association of Sewer Service Companies (NASSCO) rating system. The videos were reviewed for quality and completeness. TRC identified defects (e.g., cracking, fractures, offset joints, etc.) using NASSCO's Pipeline Assessment Certification Program (PACP) and Manhole Assessment Certification Program (MACP) structural rating system.

TRC presented Phase I OWS inspection findings in a report titled "*Phase I Oily Water Sewer Inspections and Repair Recommendations*" dated February 11, 2022. The report includes the assessment of all OWS system components, the location and description of any problems identified and repair recommendations. The TRC Phase I OWS Inspection report is included in Appendix A.

Following NASSCO rating, TRC assigned each defect an environmental rating (ER) based on the potential for a release. The ER system is based on a 1-5 scale. The scale indicates the level of prioritization for follow-up actions. For example, an ER=5 would indicate a significant structural defect with a confirmed release, whereas an ER=1 would be a minor structural defect with no potential for a release. The definition of each ER category can be found in the TRC report in Appendix A.

3

Per the rating system used by TRC, defects rated ER=4 were considered significant structural defects with potential for release. Locations rated ER=4 included:

- Segment 1-1, 190 ft south of MH 4C-1
- Segment 1-2, 39.1 ft south of MH 4C-FS (X-3)
- Segment 1-3, approximately 5 ft west of MH 2-4-1
- Segment 1-3, approximately 10 ft east of MH 3-4-1
- Segment 1-4, approximately 10 ft west of MH 3-4-1
- Segment 1-5, approximately 5 ft east of MH 7-4-1

3.0 PHASE I SITE CHARACTERIZATION

Per the IRP, Phase I site characterization of potential release locations was initiated in 2021 and followed all procedures stated in the Phase I sampling and analysis plan (SAP). Potential release locations occur where an ER=4 sewer defect was observed and there is the potential for contaminants to impact soil or groundwater.

3.1 SOIL SAMPLE COLLECTION

Soil samples were collected from all reported ER=4 rated locations to evaluate potential leaks from the OWS. The soil boring locations are shown on Figure 3. The soil sample descriptions, depths of collection and field screening results are included in Table 3.

One soil sample was collected from each soil boring location via EPA Method 5035A in sample containers provided by the lab. Soil samples were stored on ice in a cooler immediately after collection. Standard industry protocols regarding sample collection, preservation, chain-of-custody, and shipping were followed. The samples were identified by both the boring number from which they originated, the year the sample was collected, and the depth from which they were collected (i.e. B-1-21 5ft, B-2-21 3ft).

Soil samples were sent to Pace Analytical Laboratory in Minneapolis, Minnesota, Pace National Analytical Laboratory in Mount Juliet, Tennessee, and Fremont Analytical in Seattle, Washington in order to analyze all requested analyses. All laboratories are accredited by the Washington State Department of Ecology. Strict chain-of custody and QA/QC protocols were followed for each sample. The following laboratory methods were used to analyze the soil samples:

<u>EPA Method 8260:</u> Benzene, toluene, ethylbenzene, and total xylenes (BTEX) <u>EPA Method 8270 SIM:</u> Naphthalenes and Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAH) <u>EPA Method 7471:</u> Arsenic, Cadmium, Chromium VI, Chromium III, Lead, Nickel, and Mercury <u>EPA Method 9045:</u> pH <u>NWTPH-EPH:</u> Extractable Petroleum Hydrocarbons <u>NWTPH-VPH:</u> Volatile Petroleum Hydrocarbons

It should be noted that fuel additives, methyl tert-butyl ether (MTBE), polychlorinated biphenyl (PCB), and PFAS were not analyzed per Table 7.2 of Ecology's Guidance for Remediation of Petroleum Contaminated Sites because the contaminants are not suspected to be in the Phase I ER=4 sewer segments.

3.2 SOIL SAMPLE RESULTS

Six soil samples were collected in September and October 2021 (B-1-21 through B-6-21 at various depths). The hazard index, risk, and TPH results are shown on Table 4. The BTEX results are provided on Table 5. The soil metal results are provided in Table 6. The cPAH results are provided in Table 7. The original laboratory analytical data reports are provided in Appendix B.

Two soil samples exceeded the target cleanup level for the protection of groundwater (vadose zone). Soil sample B-4-21 exceeded the cleanup level for naphthalene with a concentration of 5.52 mg/kg. Soil sample B-5-21 exceeded the cleanup level for benzene with a concentration of 0.03 mg/kg. Ecology was notified on February 9, 2022, concerning the two confirmed release locations.

Soil samples B-4-21 and B-5-21 were collected on either side of Manhole MH-3-4-1 (Figure 3). The release location associated with MH 3-4-1 will be identified as Area of Concern-1 (AOC-1).

3.2.1 Quality Assurance Review

A quality assurance review has been performed on all soil data generated during this investigation. The data set is 100% complete. The data review included an evaluation of:

- Field collection and handling
- Completeness
- Reporting limits
- Acceptability of test results for:

- o Method blanks
- o Analytical replicates
- o Laboratory control samples (blank spikes)
- o Surrogate recoveries
- o Matrix spikes and matrix spike duplicates

The quality assurance review has established confidence that accepted project data are of known and appropriate quality and sufficient to support their intended use. Data qualifiers were added where appropriate. No data were rejected. A summary of the quality assurance review is provided in Appendix C.

3.3 SOIL GAS

A preliminary vapor intrusion assessment was conducted to assess if the site contamination could pose or is posing, a threat to indoor air quality. Volatile compounds in the soil have the potential to volatilize into the soil pore space beneath the nearby buildings. Buildings of concern for vapor intrusion from contamination at the site include the two small sheds approximately 15 feet north of B-2-21 and the Puget Sound Energy, Cogeneration facility warehouse located approximately 70 feet southwest of AOC-1.

The two small sheds are unoccupied and the B-2-21 concentrations for volatile contaminants of concern are below the MTCA method A soil cleanup levels, vapor intrusion is unlikely to occur. Further site characterization is needed to fully delineate AOC-1 before the preliminary vapor intrusion assessment can be completed for the Cogeneration warehouse.

3.4 ADDITIONAL SITE CHARACTERIZATION

Further site characterization is needed to fully delineate the AOC-1 site before remedial actions can be completed. Next steps in site characterization are to adequately characterize the horizontal and vertical extent of soil contamination and assess potential impacts to groundwater at the confirmed release locations.

3.5 OWS REPAIRS

TRC provided Phillips 66 with repair recommendations for all ER=3 and ER=4 sewer segment and manhole defects found during the Phase I sewer investigation. The repair recommendations can be found in the TRC report in Appendix A. OWS repair activities are scheduled to begin in spring or summer of 2022.

4.0 CLEANUP STANDARDS

Per the IRP, the soil cleanup standards were set using the MTCA Method C methodology as specified in WAC 173-340-745. MTCA Method C cleanup levels are based on the reasonable maximum exposure expected to occur at the site and were developed to evaluate direct contact, leaching, and vapor pathways using equations provided in WAC 173-340.

Direct contact cleanup levels for individual compounds are listed in CLARC and shown on Tables 4-7. The MTCATPH Workbook for Calculating Cleanup Levels for a Petroleum Mixture (available at https://ecology.wa.gov/) was used to calculate the site risk (under current conditions) and to calculate the Method C direct contact TPH cleanup level for the site. The MTCATPH workbook uses pre-established chemical and toxicity data, risk-based exposure assumptions, and user-defined site-specific information to calculate the site risk under current conditions. The risk and hazard index calculated by MTCATPH are shown for each sample (B-1-21 through B-6-21) in Table 4. The MTCATPH output worksheets for all samples are included in Appendix D.

The soil cleanup levels used for groundwater protection were obtained from the CLARC tables. The values in CLARC were calculated using the fixed parameter three-phase partitioning model for the vadose (unsaturated) zone as described in WAC 173-340-747(4) and based on Equation 747-1. However, the following analytes use the MTCA Method A Soil Cleanup Levels for protection of groundwater because they are applicable and relevant and appropriate requirements (ARARs) and are already adjusted for leaching and natural background concentrations:

- Benzene
- Arsenic
- Chromium IV
- Naphthalenes

5.0 PHASE I AOC-1 SITE GEOLOGY

5.1 SITE GEOLOGY

The Phillips 66 Ferndale Refinery is in the northern portion of the Puget Sound Basin. The region is characterized by thick sequences of Pleistocene glacial advance outwash and melt-water deposits that settled on a basement of tectonically deformed sedimentary and ancient metamorphic bedrock. The glacial deposits have been reworked by more recent fluvial, lacustrine, and aeolian actions into the landforms present today.

The stratigraphic sequence of major geologic units at the Ferndale Refinery has been described in reports previously submitted to Washington Department of Ecology (Ecology). The geologic units mapped beneath the Ferndale Refinery were summarized in Appendix B of the approved IRP.

5.1.1 AOC-1 Geology

Geologic cross sections were prepared to show the geologic units in the 2021 ER=4 study area. The cross section locations are shown on Figure 4.

The geologic units of importance at AOC-1 are described below in stratigraphically descending order and are shown in cross section A-A' (Figure 5) and cross section B-B' (Figure 6). The cross sections show the sewer profile, geologic units, and soil sample locations. Geologic units of importance at AOC-1 include:

- Unit I Fill material consisting of silty clays with varying amounts of sand and gravel, resembling Unit III-type material.
- Unit II Consists of native soils and thin surficial deposits which overlie the regional stratigraphic units. The unit is divided into two lithologic subunits:
 - IIA (Native soil) Silty/sandy clay, silty clay, and clayey silt; dark brown; some gravel; firm; decomposed roots locally; slightly moist to wet; locally very wet. (thickness: 5 - <1 foot)
 - IIB (Surficial deposits) Clayey/silty sand and clayey silt; light gray to greenish gray; some gravel; slightly firm; slightly wet to wet. (thickness: 5 - <1 foot)</p>

Typically, the subunits are distinguishable based on color and textural differences; however, disturbances made during refinery construction often make this distinction difficult.

- Unit III Glaciomarine drift (diamicton) represents the uppermost regionally continuous stratigraphic unit. The diamicton consists of brown silty clay, clayey silt, and clayey sand with minor to moderate amounts of sand, gravel, and matrix-supported pebbles, cobbles, and boulders. Occasionally the angular to rounded clasts are striated. The unit is consistently firm to very hard, depending on moisture content. Some orange and gray mottles are seen locally, as are thin (< 1 mm) vertical fractures in the uppermost portions. The unit is predominantly dry to slightly moist (thickness: 16 <1 foot). As discussed below, this unit is the uppermost weathered portion of Unit IV.
- Unit IV The deeper unweathered drift consists of light to dark gray silty clay with traces of sand, gravel, and matrix-supported pebbles, cobbles, and boulders. Occasionally the angular to rounded clasts are striated. The upper portions are firm to slightly plastic, and generally wet. With depth, the unit shows an increase in sand and often a significant increase in moisture content and plasticity (i.e., the material becomes very plastic, sticky, and very wet). Shells and shell fragments are common, confirming a marine origin (thickness: >40 - <1 foot).
- Unit V The Mountain View sand and gravel underlies the younger Bellingham drift and overlies the Cherry Point silt. The deposit consists of well sorted silt, silty sand, and fine to medium grained sand, interlayered with poorly sorted sand and sand-gravel mixtures. The sands and gravels vary from light brown to gray, with their color influenced by the lithology of the mineral grains. The sands and gravels are loose and dry to slightly wet. The sediments are well stratified, with rounded pebbles, cross-bedding, and other features typical of fluvial deposition. The upper surface of the unit is irregular. Bodies of silt, representing low energy areas within the fluvial outwash environment during Mountain View time, are fairly widespread over most of the refinery site. The fine grained interbeds consist of tan clavey silt and lean clay. The silt bodies vary in thickness and stratigraphic position over short distances and are absent in places, indicating that the silt deposits are lensaic in nature. The silt lenses consist of thinly-bedded, micaceous silt, sandy silt, and silty very fine sand which is well sorted. They exhibit a floury texture and low shear strength when dry. The silts are dark gray where fresh, but are oxidized to orange and brown near the contact with adjacent materials (thickness: 25-100 feet).
- Unit VI The top of the Cherry Point Silt lies at approximately 60 feet above mean sea level (approximately 130 feet below grade). The Cherry Point Silt consists of brown to gray interbedded clay, silt, silty sand, and fine to medium grained well-sorted sand. The regional water table occurs within the unit at approximately 160 feet below ground surface. The regional water table aquifer in the Cherry Point Silt is not used as a water supply downgradient of the facility. The direction of flow in the Cherry Point Silt is toward the west, where flowing groundwater discharges to the Strait of Georgia. The maximum thickness of the Cherry Point Silt is unknown and is estimated at approximately 300 feet thick.

The diamicton (Units III and IV) acts as an aquitard impeding the vertical migration of residual hydrocarbons.

5.2 SITE HYDROGEOLOGY

The hydrogeology of the Ferndale Refinery site has been characterized through the installation of numerous soil borings and monitoring wells, as well as the completion of bail tests, laboratory permeability tests, and grain size distribution tests.

The Ferndale Refinery area is underlain by a regionally continuous stratigraphic unit known as glaciomarine drift, or diamicton. The diamicton unit consists of moderately sorted to unsorted diamicton with lenses and discontinuous beds of moderately to wellsorted gravel, sand, silt, and clay. Bedding is massive to poorly stratified. Color is bluegray to olive-gray depending on oxidation state. Thickness ranges to as much as 90 meters. Permeability is low and infiltration of precipitation is very poor.

Geotechnical samples have been collected in the diamicton. The data revealed that a fining-downward sequence is evident in the stratigraphic column. The average percentage of sand decreases with depth and the average percentage of silt and clay increases with depth. The bulk density of the samples increases with depth. The average vertical hydraulic conductivity decreases with depth from $1.26 \times 10-07$ cm/s in the upper weathered portion of the diamicton to $7.86 \times 10-08$ cm/s in the deeper portion of the unit. The average horizontal saturated hydraulic conductivity in the deeper portion of the unit is $1.70 \times 10-06$ cm/s. The fining-downward grain-size distribution, the increasing bulk density with depth, and the decreasing vertical conductivity with depth all support the conclusion that the diamicton acts as a sufficient aquitard to inhibit the downward migration of precipitation and accidentally spilled petroleum products.

The uppermost zone of saturation consists of saturated portions of native deposits and fill material located above the diamicton. The diamicton at the site is known to be firm and dry and consists of brown silty clay with minor gravel. The unit acts as an aquitard impeding the vertical migration of contaminants and occurs at approximately 6-10 feet below grade at the site.

Groundwater contained in the shallow surficial deposits is perched atop the relatively impermeable silt and clay of the diamicton (Units III and IV). The unconfined perched water is contained in the fill material, Unit IIA soil layer, and Unit IIB sand layer.

12

Water percolates downward and becomes perched above Unit III as a result of the textural disconformity between the diamicton and the overlying surficial units. The flow direction of the perched water atop the diamicton follows the structural contours of the upper surface of the diamicton.

The perched water above the diamicton would not be classified as potable per the definition in WAC 173-340-720 (2). The perched water at the site does not serve as a current source of drinking water and is not a potential future source of drinking water because the groundwater is likely present in insufficient quantity to yield greater than 0.5 gallons per minute on a sustainable basis.

The regional water table occurs within the Cherry Point Silt (Unit VI) at approximately 160 feet below ground surface. The direction of flow in the Cherry Point Silt is toward the west-northwest, where flowing groundwater discharges to the Strait of Georgia. The Cherry Point aquifer is not believed to be used as a water supply downgradient of the Ferndale Refinery as the flow direction is to the west-northwest toward the Strait of Georgia.

Based on the Phase I site characterization findings, the release documented at AOC-1 has occurred in the surficial deposits located above the diamicton.

6.0 INACESSIBLE CONTAMINATION

Inaccessible contamination will be determined after completion of the site characterization before initiating remedial actions and sewer repairs at AOC-1.

7.0 DEVIATIONS FROM THE IRP

The following are Phase I deviations from the proposed inspection schedule and methods presented in the IRP:

- The Phase I OWS inspections occurred prior to approval of the IRP. However, the inspections were conducted in accordance with the IRP requirements.
- Segment 1-28 was originally scheduled to be inspected as part of the Phase I inspection schedule. Due to high lower explosive limits (LELs) that created unsafe conditions for the inspection, segment 1-28 was not inspected and will be moved to the Phase IV inspection schedule.
- Manhole 4-6-1 was originally scheduled to be inspected during Phase IV, however, manhole 4-6-1 was inspected during Phase I.

The Phase I site characterization was initiated prior to approval of the IRP. Zinc and chlorinated VOCs were not analyzed in the soil samples during the initial sampling event. All future site characterization soil analyses will include zinc and chlorinated VOCs.

8.0 CONCLUSIONS

As part of the Phase I OWS investigation, sewer inspections have been completed and site characterization is ongoing at the Phillips 66 Ferndale Refinery. The OWS inspections revealed six sewer defects that could potentially result in a release to soil and groundwater. Site characterization has been initiated at all six potential release locations. Soil samples were collected in close proximity (as allowed by site conditions) to the identified potential release locations. Two releases have been confirmed as a result of ongoing Phase I characterization efforts. B-4-21 exceeded the protection of groundwater for naphthalenes at a concentration of 5.52 mg/kg. B-5-21 exceeded the protection of groundwater for benzene at a concentration of 0.03 mg/kg. Soil samples B-4-21 and B-5-21 were collected on either side of Manhole MH-3-4-1 (Figure 3). The release location associated with MH 3-4-1 will be identified as Area of Concern-1 (AOC-1).

Further site characterization is needed at AOC-1 before initiating remedial actions and sewer repairs. Further site characterization will attempt to determine the horizontal and vertical extent of soil contamination and assess potential impacts to groundwater. Site characterization activities will be conducted in accordance with WAC 173-340 and Ecology's Guidance for Remediation of Petroleum Contaminated Sites (Publication 10-09-057) (Guidance).

9.0 REFERENCES

- EPA, 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA-540-R-20-006. U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation. Washington, D.C. November.
- EPA, 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA-540-R-20-005. U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation. Washington, D.C. November.
- Phillips 66 Ferndale Refinery. July 2021. Investigation and Response Plan SWMU 14 Oily Water Sewer.
- TRC. February 2022. Phase I Oily Water Sewer Inspections and Repair Recommendations.
- Washington State Department of Ecology (Ecology). Agreed Order for Interim Action Oily Water Sewer (SWMU-14). No. DE 16297.
- Washington State Department of Ecology (Ecology). December 2007. Workbook Tools for Calculating Soil and Groundwater Cleanup Levels under the Model Toxics Control Act Cleanup Regulation, User's Guidance for MTCATPH 11.1 & MTCASGL 11.0. Publication No. 01-09-073.
- Washington State Department of Ecology (Ecology). October 2009. Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047.
- Washington State Department of Ecology (Ecology). 2013. Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication No. 94-06.
- Washington State Department of Ecology (Ecology). March 2016. Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion. Publication No. 16-09-046.
- Washington State Department of Ecology (Ecology). June 2016. Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057.

Manhole ID	Associated Sewer	Location Description	Plant Coordinates (x)	Plant Coordinates (y)	Reference Map	Rim Elevation	Invert Elevation (in)	Invert Elevation (out)
Phase I - Completed in 2021	1							
MH 4C-1	OWS	In field south of Crude Hill	165	1205	27-AS-167	NS	208.17	208.17
MH 4C-FS/MH X-3	OWS	In field south of Crude Hill	165	1585	27-AS-167	197.67	193.57	193.52
MH 2-4-1	OWS	East of 4th and A St.	165	1670	27-AS-168	195.50	191.58	191.48
MH 3-4-1	OWS	4th St., N of PSE Cogen	556	1670	27-AS-169	192.81	188.72	188.72
MH 6-4-1	OWS	4th St., N of PSE Cogen	956	1670	27-AS-169	191.00	186.81	186.71
MH 7-4-1	OWS	4th and D St intersection	1338	1670	27-AS-170	188.50	185.20	185.10
MH 9-4 FS	OWS	4th and E St. intersection	1695	1670	27-AS-170	190.25	183.88	183.78
MH X-1	OWS	In field south of Crude Hill	152.5	1248	27-AS-167	NS	NS	NS
MH X-2	OWS	In field south of Crude Hill	152.5	1400	27-AS-167	NS	NS	NS
MH STA. 36+62/MH X-7	OWS	East of 4th and A St.	152.5	1682	27-AS-168	196.00	190.77	190.55
MH STA. 33+68/MH X-8	OWS	4th St., N of PSE Cogen	447	1682	27-AS-168	194.00	188.43	188.43
MH STA. 30+74/MH X-9	OWS	4th St., N of PSE Cogen	744	1682	27-AS-169	192.00	186.32	186.32
MH STA. 27+90/MH X-10	OWS	4th St., N of PSE Cogen	1025	1682	27-AS-169	191.00	184.27	184.27
MH STA. 24+97/MH X-11	OWS	4th and D St intersection	1318	1682	27-AS-170	190.00	182.16	182.16
MH STA. 21+55/MH X-12	OWS	N. of 5th and D St. intersection	1318	2024	27-AS-170	187.00	179.91	179.91
New MH X-12.2	OWS	East of 5th and D	1318	2149.5	27-AS-170	NS	179.19	179.19
MH STA. 18+15/MH X-13	OWS	South of Switchhouse #1	1318	2364	27-AS-192	182.00	177.87	177.87
MH STA. 14+83/MH X-14	OWS	In field south of Switchhouse #1	1318	2696	27-AS-197	181.00	175.45	175.43
MH STA. 11+45/MH X-15	OWS	In field south of Bunkers	1658	2696	27-AS-197	180.00	175.02	175.02
MH STA. 8+08/MH X-16	OWS	In field south of SFOC	1993	2696	27-AS-198	183.00	174.62	174.62
MH STA. 3+08/MH X-17	OWS	South of 6th and G St.	2493	2696	27-AS-199	186.00	174.02	174.02
MH 4-6-1	OWS	6th and H St. intersection, S side	2779	2696	27-AS-199	177.45	172.25	172.25
MH 9 FS	OWS	6th St., between J and H Streets	3070	2696	27-AS-199	175.98	170.98	170.98
MH 10-FS	OWS	6th and J St. intersection, SE side	3345	2696	27-AS-200	177.87	169.71	169.71
MH 11-FS	OWS	6th St., between J and K Streets	3630	2696	27-AS-200	179.82	168.98	168.98
MH 12-FS	OWS	6th and K St. intersection, SE side	3950	2696	27-AS-201	183.00	168.19	168.19
MH 13-FS	OWS	6th St., between L and K Streets	4246	2696	27-AS-201	181.45	167.45	167.45
MH G/MH X-22	OWS	South of 6th St., east of OPL	4311	2880	27-AS-201	185.34	166.96	166.96
MH F/MH X-23	OWS	South of 6th St., SW corner of OPL	4750	2880	27-AS-202	NS	160.50	163.00

Table 1. P66 Oily Water Sewer - Phase I Manhole Inspection Schedule

Manhole ID	Associated Sewer	Location Description	Plant Coordinates (x)	Plant Coordinates (y)	Reference Map	Rim Elevation	Invert Elevation (in)	Invert Elevation (out)
Phase I - Completed in 2021								
MH E/MH X-24	OWS	South of 6th St., west of OPL	4828	2740	27-AS-202	NS	162.50	159.00

Table 1. P66 Oily Water Sewer - Phase I Manhole Inspection Schedule

NS - Not Shown on Phillips 66 Facility Drawings OWS - Oily Water Sewer

Segment ID	Sewer Trunk Segment (MH to MH)	Associated Sewer	Location Description	Plant Coordinates ((x) MH to MH)	Plant Coordinates ((y) MH to MH)	Sewer Segment Type	Sewer Diameter (in)
Phase I -	Completed in 2021						
1-1	MH 4C-1 to MH 4C-FS/MH X-3	OWS	In field south of Crude Hill	165	1205 to 1585	Vitrified Clay	8
1-2	MH 4C-FS/MH X-3 to MH 2-4-1	OWS	In field south of Crude Hill	165	1585 to 1670	Vitrified Clay	8
1-3	MH 2-4-1 to MH 3-4-1	OWS	East of 4th and A St.	165 to 556	1670	Vitrified Clay	8
1-4	MH 3-4-1 to MH 6-4-1	OWS	4th St., N of PSE Cogen	556 to 956	1670	Vitrified Clay	8
1-5	MH 6-4-1 to MH 7-4-1	OWS	4th St., N of PSE Cogen	956 to 1338	1670	Vitrified Clay	8
1-6	MH 7-4-1 to MH 9-4 FS	OWS	4th and D St. intersection	1338 to 1695	1670	Vitrified Clay	8
1-7	MH X-1 to MH X-2	OWS	North of 4th St, near A St.	152.5	1248 to1400	Vitrified Clay	12
1-8	MH X-2 to MH STA. 36+62/MH X-7	OWS	North of 4th St, near A St.	152.5	1400 to 1682	Vitrified Clay	15
1-9	MH STA. 36+62/MH X-7 to MH STA. 33+68/MH X-8	OWS	East of 4th and A St.	153 to 447	1682	Vitrified Clay	18
1-10	MH STA. 33+68/MH X-8 to MH STA. 30+74/MH X-9	OWS	4th St., N of PSE Cogen	447 to 744	1682	Vitrified Clay	18
1-11	MH STA. 30+74/MH X-9 to MH STA. 27+90/MH X-10	OWS	4th St., N of PSE Cogen	744 to 1025	1682	Vitrified Clay	18
1-12	MH STA. 27+90/ MH X-10 to MH STA. 24+97/MH X-11	OWS	4th St., N of PSE Cogen	1025 to 1318	1682	Vitrified Clay	18
1-13	MH STA. 24+97/MF X-11 to MH STA. 21+ 55/MH X-12	OWS	4th and D St intersection	1318	1682 to 2024	Vitrified Clay	18
1-14	MH STA. 21+5/MH X-125 to NEW MH X- 12.2	OWS	N. of 5th and D St. intersection	1318	2024 to 2149.5	Vitrified Clay	18
1-15	NEW MH X 12.2 to MH STA. 18+15/MH X- 13	OWS	N. of 5th and D St. intersection	1318	2149.5 to 2364	Vitrified Clay	18
1-16	MH STA. 18+15/MH X-13 to MH STA. 14+ 83/MH X-14	OWS	South of Switchhouse #1	1318	2364 to 2696	Vitrified Clay	24
1-17	MH STA. 14+83/MH X-14 to MH STA. 11+45/MH X-15	OWS	In field south of Switchhouse #1	1318 to 1658	2696	Vitrified Clay	24
1-18	MH STA. 11+45 /MH X-15 to MH STA. 8+08/MH X-16	OWS	In field south of Bunkers	1658 to 1993	2696	Vitrified Clay	24
1-19	MH STA. 8+08/MH X-16 to MH STA. 3+08/MH X-17	OWS	In field south of SFOC	1993 to 2493	2696	Vitrified Clay	24
1-20	MH STA 3+08/MH X-17 to MH 4-6-1	OWS	South of 6th St., between H and G St.	2493 to 2779	2696	Vitrified Clay	24
1-21	MH 9 FS to MH 10-FS	OWS	6th St., between J and H Streets	3070 to 3345	2696	Vitrified Clay	24
1-22	MH 10-FS to MH 11-FS	OWS	6th and J St. intersection	3345 to 3630	2696	Vitrified Clay	24
1-23	MH 11-FS to MH 12-FS	OWS	6th St., between J and K Streets	3630 to 3950	2696	Vitrified Clay	24
1-24	MH 12-FS to MH 13-FS	OWS	West of 6th and K St. intersection	3950 to 4246	2696	Vitrified Clay	24
1-25	MH 13-FS to MH G/MH X-22	OWS	South of 6th St., east of OPL	4246 to 4311	2696 to 2880	Vitrified Clay	24
1-26	MH G/MH X-22 to MH F/MH X-23	OWS	South of 6th St., SW corner of OPL	4311 to 4750	2880	Ductile Iron	24
1-27	MH F/MH X-23 to MH E/MH X-24	OWS	South of 6th St., west of OPL	4750 to 4828	2880 to 2740	Ductile Iron	24

Table 2. P66 Oily Water Sewer - Phase I Sewer Line Segment Inspection Schedule

Sample ID	Date	Depth (feet)	Soil Sample Description	PID (ppm)	Sheen Test ^a
B-1-21	10/14/2021	4	Silt with trace sand and gravel, brown, loose, moist.	0.0	NS
B-2-21	9/30/2021	3	Sandy silt with gravel, gray, loose, moist.	257.2	MS
B-3-21	9/30/2021	3.5	Sandy silt with gravel, gray, loose, wet.	106.7	HS
B-4-21	9/30/2021	3	Sandy silt with gravel, gray, loose, wet.	140.4	HS
B-5-21	9/30/2021	5	Sandy silt with gravel, gray, loose, wet.	40.8	HS
B-6-21	9/30/2021	4	Sandy silt with gravel, brown, loose, wet.	20.2	SS

Table 3. Soil Sample Descriptions

a - NS = No Sheen; VSS = Very Slight Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Sample ID	Date	Depth (feet)	Measured Soil TPH Concentration (mg/kg)	Hazard Index Soil Direct Contact	Hazard Index Groundwater Protection	Risk Protection of Soil Direct Contact	Risk Potable GW Human Health Protection
MTCA Method	C Protection of	Soil Direct Contact:	53,062ª	1	-	1.00E-05	-
Po	table GW Humai	n Health Protection:	-	-	1	-	1.00E-05
B-1-21	10/14/2021	4	51	1.15E-03	4.82E-01	6.96E-09	7.76E-07
B-2-21	9/30/2021	3	507	8.13E-03	2.04E-01	2.10E-09	2.46E-06
B-3-21	9/30/2021	3.5	3,958	7.33E-02	1.64E-01	8.57E-09	1.28E-06
B-4-21	9/30/2021	3	3,964	7.63E-02	2.86E-01	1.09E-08	8.45E-07
B-5-21	9/30/2021	5	598	1.09E-02	3.93E-01	8.36E-09	6.92E-06
B-6-21	9/30/2021	4	48	9.39E-04	4.82E-01	4.48E-10	3.67E-06

Table 4. Soil Sample MTCA TPH Hazard Index and Risk Results

BOLD & shaded - indicates that the concentration in the sample exceeds the most stringent cleanup level.

a - All Method C cleanup levels for all samples (B-1-21 through B-6-21) were averaged to be used as the cleanup level for the site.

Sample ID	Date	Depth (feet)	EPA-8260 Benzene (mg/kg)	EPA-8260 Toluene (mg/kg)	EPA-8260 Ethylbenzene (mg/kg)	EPA-8260 Xylenes (mg/kg)	EPA-8260 n-Hexane (mg/kg)
MTCA Method	1 C Direct Conta	nt Cleanup Level ^a :	2,400	280,000	350,000	700,000	210,000
Pro	otection of Grou	ndwater (Vadose) ^b :	0.03 ^c	4.5	5.9	14	72
B-1-21	10/14/2021	4	0.003	(ND<0.007)	(ND<0.001)	(ND<0.004)	(ND<0.001)
B-2-21	9/30/2021	3	(ND<0.01)	(ND<0.04)	(ND<0.01)	(ND<0.02)	(ND<0.03)
B-3-21	9/30/2021	3.5	(ND<0.02)	(ND<0.1)	0.0371 J	0.27	(ND<0.05)
B-4-21	9/30/2021	3	(ND<0.01)	(ND<0.04)	(ND<0.01)	(ND<0.02)	(ND<0.04)
B-5-21	9/30/2021	5	0.033 J	0.103 J	0.0534 J	0.57	(ND<0.08)
B-6-21	9/30/2021	4	(ND<0.016)	(ND<0.054)	(ND<0.013)	(ND<0.022)	(ND<0.046) C3

Table 5. Soil Sample BTEX Analytical Results

a - Method C cleanup levels obtained from CLARC tables calculated from WAC 173-370-745, Equation 745-2 (carcinogens) based on soil direct contact. If no carcinogenic value was listed then the non-carcinogenic value was applied.

b - Protection of groundwater values obtained from CLARC tables unless otherwise noted.

c - MTCA A cleanup level for industrial properties was chosen because it is an ARAR. MTCA A cleanup levels are already adjusted for leaching and natural background concentrations.

BOLD & shaded - indicates that the concentration in the sample exceeds the most stringent cleanup level.

C3 - The reported concentration is an estimate. The continuing calibration standard associated with the data responded low. Method sensitivity check is acceptable.

J - Analyte detected below the reporting limit, therefore result is an estimate.

ND - indicates analyte was not detected at level above reporting limit (shown in parentheses)

Table 6. Soil Sample Metal Analytical Results

			EPA-7471B	EPA-7471B	EPA-7199	-	EPA-7471B	EPA-7471B	EPA-7471B
Sample ID	Date	Depth	Arsenic	Cadmium	Chromium (VI)	Chromium (III)	Lead	Nickel	Mercury
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method C Direct Contant Cleanup Level ^a :		88	3,500	260	5,300,000	1000 ^c	70,000	$2^{\rm c}$	
Protection of Groundwater (Vadose) ^b :			$20^{\rm c}$	0.69	19 ^c	480,000	3,000	130	2.1
B-1-21	10/14/2021	4	4.79	(ND<0.1)	(ND<1.5)	38	14.8	38.5	0.07
B-2-21	9/30/2021	3	4.63	(ND<0.1)	0.66 J	36.7	2.8	33.7	0.03
B-3-21	9/30/2021	3.5	5.95	(ND<0.1)	ND(<0.4)	37.4	4.9	34.3	0.01
B-4-21	9/30/2021	3	3.76	0.115 J	0.997 J	33.5	2.8	34.4	0.02
B-5-21	9/30/2021	5	8.36	(ND<0.2)	ND(<0.5)	44.5	5.8	45.6	0.03
B-6-21	9/30/2021	4	3.54	(ND<0.1)	0.62 J	25.7	2.24 J	25.8	0.02

a - Method C cleanup levels obtained from CLARC tables calculated from WAC 173-370-745, Equation 745-2 (carcinogens) based on soil direct contact. If no carcinogenic value was listed then the non-carcinogenic

value was applied.

b - Protection of groundwater values obtained from CLARC tables unless otherwise noted.

c - MTCA A cleanup level for industrial properties was chosen because it is an ARAR. MTCA A cleanup levels are already adjusted for leaching and natural background concentrations. **BOLD** & shaded - indicates that the concentration in the sample exceeds the most stringent cleanup level.

J - Analyte detected below the reporting limit, therefore result is an estimate.

ND - indicates analyte was not detected at level above reporting limit (shown in parentheses)

Table 7. Soli Sample Crait Analytical Results	Table	7.	Soil	Sample	cPAH	Analy	ytical	Results
---	-------	----	------	--------	------	-------	--------	---------

Sample ID		MTCA Method C Direct Contant Cleanup Level ^a :	Protection of Groundwater (Vadose) ^b :	Toxicity Equivalency Factor (TEF):	B-1-21	B-2-21	B-3-21	B-4-21	B-5-21	B-6-21		
Depth					4	3	3.5	3	5	4		
Date					10/14/2021	9/30/2021	9/30/2021	9/30/2021	9/30/2021	9/30/2021		
Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) (EPA-8270 SIM)												
Benzo[A]Anthracene	mg/kg	-	$0.72^{\rm c}$	0.1	(ND<0.015)	0.0051	0.0254	0.194	0.0063	(ND<0.00051)		
Benzo[A]Pyrene	mg/kg	130	3.9	1	(ND<0.015)	(ND<0.00064)	(ND<0.0035)	(ND<0.0069)	(ND<0.0036)	(ND<0.0007)		
Benzo[B]Fluoranthene	mg/kg	-	2.46°	0.1	(ND<0.015)	0.0044	0.0208	0.0394 J	0.0052	(ND<0.00058)		
Benzo[K]fluoranthene	mg/kg	-	2.46°	0.1	(ND<0.015)	(ND<0.00055)	(ND<0.003)	(ND<0.0059)	(ND<0.0031)	(ND<0.0006)		
Chrysene	mg/kg	-	0.8°	0.01	(ND<0.015)	0.0457	0.218	0.208	0.042	0.00073		
Dibenz[A,H]Anthracene	mg/kg	-	3.57°	0.1	(ND<0.015)	0.0016	(ND<0.004)	0.0166 J	(ND<0.0042)	(ND<0.00081)		
Indeno[1,2,3-Cd]Pyrene	mg/kg	-	6.94 ^c	0.1	(ND<0.015)	(ND<0.00061)	(ND<0.0033)	(ND<0.0066)	(ND<0.0034)	(ND<0.00066)		
Total cPAH Equivalent (TEq) ^d	mg/kg	130	-	-	0.011	0.002	0.009	0.026	0.004	0.001		
Polycyclic Aromatic Hydrocarbons (PAHs) (EPA-8270 SIM)												
Acenaphthene	mg/kg	210,000	49	-	(ND<0.015)	0.016	(ND<0.0027)	0.177	0.101	(ND<0.00055)		
Anthracene	mg/kg	1,100,000	1,100	-	(ND<0.015)	(ND<0.00036)	(ND<0.0019)	(ND<0.0039)	(ND<0.002)	(ND<0.00039)		
Biphenyl	mg/kg	16,000	0.58	-	(ND<0.49)	(ND<0.012)	(ND<0.015)	(ND<0.013)	(ND<0.021)	(ND<0.015)		
Dibenzofuran	mg/kg	3,500	1.5	-	(ND<0.015)	0.018	(ND<0.0026)	0.222	0.0391	(ND<0.00052)		
Fluoranthene	mg/kg	140,000	630	-	(ND<0.015)	0.0025	(ND<0.0037)	(ND<0.0074)	0.0097	(ND<0.00075)		
Fluorene	mg/kg	140,000	51	-	(ND<0.015)	0.087	0.319	0.999	0.116	(ND<0.00075)		
Naphthalenes ^e	mg/kg	70,000	5^{f}	-	(ND<0.015)	0.16	0.60	5.52 E	1.61	0.0035 J		
Pyrene	mg/kg	110,000	330	-	(ND<0.015)	0.02	0.0841	0.183	0.0513	0.00085		

a - Method C cleanup levels obtained from CLARC tables calculated from WAC 173-370-745, Equation 745-2 (carcinogens) based on soil direct contact. If no carcinogenic value was listed then the non-carcinogenic value was applied.

b - Protection of groundwater values obtained from CLARC tables unless otherwise noted.

c - Values calculated from WAC 173-340-747, Equation 747-1. cPAHs were calculated using the MTCA Method A groundwater cleanup level for benzo[a]pyrene.

d - cPAH level calculated using Toxicity equivalency methodology provided in WAC 173-340-708(8)

e - Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

f - MTCA A cleanup level for industrial properties was chosen because it is an ARAR. MTCA A cleanup levels are already adjusted for leaching and natural background concentrations.

BOLD & shaded - indicates that the concentration in the sample exceeds the most stringent cleanup level.

E - Analyte concentration exceeded the calibration range. The reported result is estimated.

J - Analyte detected below the reporting limit, therefore result is an estimate.

ND - indicates analyte was not detected at level above reporting limit (shown in parentheses)

For ND values, the TEF was multiplied by one half the reporting limit

TEF - Toxicity Equivalency Factor (WAC 173-340-900 table 708.2)

TEq - Toxicity Equivalency to benzo(a)pyrene, calculated by multiplying result by appropriate TEF.
APPENDIX A

TRC Report - Phase I Oily Water Sewer Inspections and Repair Recommendations

Phase I Oily Water Sewer Inspections and Repair Recommendations

Date: February 11, 2022 Prepared For: Phillips 66 Ferndale Refinery Prepared By: TRC

Contents

1.	Phase I Field Inspections	1
	1.1. Background	1
	1.2. Oily Water Sewer Field Inspections	1
2.	Phase I Field Data Review	4
	2.1. Video Review	4
	2.2. Repair Recommendations	4

Figures

Figure 1	Phase I Oily Water Sewer Inspections Overview
Figure 2A	Phase I Sewer Inspection Repair Areas and Environmental Rated Defects 3 & 4
Figure 2B	Phase I Sewer Inspection Repair Areas and Environmental Rated Defects 3 & 4
Figure 2C	Phase I Sewer Inspection Repair Areas and Environmental Rated Defects 3 & 4

Tables

Table 1	Phase I Inspected Segments
Table 2	Phase I Inspected Manholes

Attachments

Attachment 1	Phillips 66 Ferndale OWS Environmental Rating System
Attachment 2	OWS Segment Inspection Summary Reports
Attachment 3	OWS Structure Inspection Summary Reports

1. Phase I Field Inspections

1.1. Background

The Phillips 66 (P66) Ferndale Refinery's ("Refinery") Oily Water Sewer (OWS), also referred to as Solid Waste Management Unit (SWMU) 14, has been in operation since constructed in 1953. The OWS is the underground piping system that consists of drain hubs, manholes, hatches, and other access points, which conveys process wastewater, stormwater runoff from process areas, and fire water to the Refinery's wastewater treatment system.

An Investigation and Response Plan (Plan), dated January 26, 2021, was prepared for the Refinery in accordance with the requirements in the Agreed Order No. DE 16297 (AO). The specific requirements for Plan are listed in Section VII.A of the AO. The Plan describes measures that will be taken to investigate the OWS and respond to releases or threatened releases, if any, that are discovered during the investigation. This report describes sections of the OWS that were inspected during Phase I, in accordance with the Plan, and findings from those inspections.

1.2. Oily Water Sewer Field Inspections

The OWS inspection process was divided into four (4) phases covering a 10-year cycle. During Phase I, approximately 7,474 linear feet of sewer line segments and 30 manholes were inspected. Field inspections were completed by Atlas Inspection (a subsidiary or Industrial Inspection & Analysis, Inc.) ("Atlas"). Data was processed and segment IDs and locations confirmed in the field by Whatcom Environmental Services Inc ("Whatcom"). Visual overview of Phase I inspections can be found in **Figure 1**. The following **Table 1** and **Table 2** present segments and manholes inspected during Phase I.

Setup ID	Segment ID	Pipe Dia. (in.)	Inspected Footage (LF)	Comments
1-1	4C-1:X-3	8	338.4	
1-2	2-4-1:X-3	8	40.1	Survey abandoned due to impassable patch repair and fractured pipe.
1-2R	X-3:2-4-1	8	39.1	Reverse inspection segment complete. Survey abandoned due to impassable patch repair and fractured pipe.
1-3	2-4-1:3-4-1	8	383.4	Survey abandoned due to impassable water level and offset joint.
1-3R	3-4-1:2-4-1	8	5.6	Reverse inspection segment complete. Survey abandoned due to impassable water level and offset joint.
1-4	6-4-1:3-4-1	8	351.1	Survey abandoned due to impassable water level and offset joint. Segment inspection considered complete since survey abandoned directly adjacent to manhole.

 Table 1. Phase I Inspected Segments

Setup ID	Segment ID	Pipe Dia. (in.)	Inspected Footage (LF)	Comments	
1-5	7-4-1:6-4-1	8	346.9	Survey abandoned due to impassable water level.	
1-5R	6-4-1:7-4-1	8	44	Reverse inspection segment complete.	
1-6	7-4-1:9-4FS	8	320.8	Survey abandoned due to impassable pipe with material change. Reverse inspection not completed during Phase I due to presence of fire stop.	
1-7	X-1:X-2	12	131.5		
1-8	X-2:X-7	15	278.2		
1-9	X-7:X-8	15	254	Survey abandoned due to poor traction. Segment inspection considered complete since survey abandoned directly adjacent to manhole.	
1-10	X-8:X-9	18	283.5		
1-11	X-9:X-10	18	280.7		
1-12	X-10:X-11	18	284.3		
1-13	X-11:X-12	18	334.5		
1-14	X-12.2:X-12	18	119.6		
1-15	X-12.2:X-13	18	184		
1-16	X-13:X-14	18	321.6		
1-17	X-14:X-15	18	305.7		
1-18	X-15:X-16	18	303		
1-19	X-16:X-17	18	493		
1-20	X-17:4-6-1	18	228		
1-21	9-FS:10-FS	24	244.2		
1-22	10-FS:11-FS	24	251.7		
1-23	11-FS:12-FS	24	266.1		
1-24	12-FS:13-FS	24	286		
1-25	13-FS:X-22	24	170.6		
1-26	X-23:X-22	24	431		
1-27	X-23:X-24	24	153.7		

Table 2. Phase I Inspected Manholes

Setup ID	Manhole ID
1-ST-1	X-1
1-ST-2	4C-1
1-ST-3	X-2
1-ST-4	X-3
1-ST-5	2-4-1
1-ST-6	3-4-1
1-ST-7	6-4-1
1-ST-8	X-7
1-ST-9	X-8
1-ST-10	X-9
1-ST-11	X-10
1-ST-12	7-4-1
1-ST-13	9-4FS
1-ST-14	X-11
1-ST-15	9-FS
1-ST-16	10-FS
1-ST-17	11-FS
1-ST-18	12-FS
1-ST-19	13-FS
1-ST-20	X-22
1-ST-21	X-12.2
1-ST-22	X-23
1-ST-23	X-24
1-ST-24	4-6-1
1-ST-25	X-16
1-ST-26	X-17
1-ST-27	X-12
1-ST-28	X-15
1-ST-29	X-13

Setup ID	Manhole ID
1-ST-30	X-14

2. Phase I Field Data Review

2.1. Video Review

Sewer line segment and manhole inspection videos for the listed segments and manholes in **Table 1** and **Table 2** were provided to TRC by Atlas and Whatcom between May 12, 2021 and July 22, 2021. Following receipt of sewer inspection videos, TRC's team of certified National Association of Sewer Service Companies (NASSCO) staff reviewed each video for completeness and quality and then provided initial identification of each defect using NASSCO certified software. Sewer line segments and manholes were reviewed using NASSCO's Pipeline Assessment Certification Program (PACP) and Manhole Assessment Certification Program (MACP) structural rating (SR) system to identify sewer defects (e.g., cracking, deformities, etc.).

Following structural rating, TRC assigned each defect a separate environmental rating (ER) primarily considering the potential for a release. This rating system was made specific for the Refinery and can be found in **Attachment 1**. Each ER category is based on defect characteristics and the prioritization for follow-up actions and documentation.

Summary inspection reports, including ER identifiers and photos of defects, for segments and manholes, can be found in **Attachment 2** and **Attachment 3**, respectively.

2.2. Repair Recommendations

Defects rated with an ER of 3 or 4 are grouped together in numbered "Repair Areas" and are shown on **Figure 2A through Figure 2C.**

Repair Area 1 (1-1, 1-2)

- 1-1
 - Dig and replace sewer segments for ER=3 fractures and ER=4 broken pipe between approximately 160 ft and 190 ft south of MH 4C-1.
 - Continue monitoring, or scope for future repair, sewer segments for ER=3 fractures between approximately 240 ft and 335 ft south of MH 4C-1.
- 1-2
 - Dig and replace patch repair and adjacent ER=4 fractures at 39.1 ft south of X-3.

Alternatively

- 1-1 and 1-2
 - Line entire 1-1 segment with cured in place pipe (CIPP).
 - Line entire 1-2 segment with CIPP.

Repair Area 2 (1-3, 1-4)

• 1-3

- Dig and replace sewer segments for ER=4 broken pipe between approximately 0 ft and 5 ft west of MH 2-4-1.
- Continue monitoring, or scope for future repair, ER=3 fractures approximately 47.5 ft west of MH 2-4-1.
- Dig and replace sewer segments for ER=4 large offset joint and ER=4 hole between approximately 0 ft and 10 ft east of MH 3-4-1.
- 1-4
 - Dig and replace sewer segments for ER=4 large offset joint between approximately 0 ft and 10 ft west of MH 3-4-1.

Recommended

- MH 3-4-1
 - Assess condition surrounding MH 3-4-1. Large offset joints on either side of manhole could be sign of sinkhole formation or unsettling in area.

Repair Area 3 (1-5)

- 1-5
 - Dig and replace sewer segments for ER=4 fractured pipe between approximately 0 ft and 5 ft east of MH 7-4-1.
 - Continue monitoring, or scope for future repair, ER=3 fractures approximately 0.2 ft west of MH 6-4-1.

Repair Area 4 (1-15)

- 1-15
 - Continue monitoring, or scope for future repair, ER=3 angular joint approximately 1.4 feet south of MH X-12.2.

Repair Area 5 (MH X-16)

- MH X-16
 - Patch the interior section of manhole X-16 that appears to have groundwater infiltration ER=3. Not considered high potential for release but should be mitigated to keep defect from expanding.

Repair Area 6 (1-23)

- 1-23
 - Continue monitoring, or scope for future repair, ER=3 fractures approximately 112.8 feet west of MH 11-FS.

Figures

Sewer Inspection Route

- Phenolic Sewer Major Trunk Lines
- —— Oily Water Sewer Major Trunk Lines

1-A-X Phenolic Manholes

Oily and Phenolic Sewer Manholes

- Phase I
- Phase II
- Phase III
- Phase IV

BASE MAP: ESRI "WORLD IMAGERY" ONLINE SERVICE LAYER. DATA SOURCES: TRC

1:6,000 1" = 500' 0

250

500 FEET

PROJECT: PHILLIPS 66 PHASE I OILY WATER SEWER INSPECTIONS AND REPAIR RECOMMENDATIONS			
TITLE: PHASE I OILY INSPECTION	WATER SEWER S OVERVIEW		
DRAWN BY: B. LEE	PROJ. NO.: 423514.0000.0000		
CHECKED BY: M. HORN			
APPROVED BY: J. ALLEN	FIGURE 1		
DATE: FEBRUARY 2022			
	505 EAST HUNTLAND DRIVE SUITE #250 AUSTIN, TX 78752 PHONE: 512.329.6080		

FILE:

Attachment 1: Phillips 66 Ferndale OWS Environmental Rating System

Phillips 66 - Ferndale Refinery Sewer Environmental Ratings

Environmental Rating (ER)	Characteristic / Examples	Actions and Documentation
5	Significant structural defect with confirmed release. Examples: Large holes at or below the segment/manhole flow line and above groundwater table; completely separated joints with exposed surrounding soil above groundwater table; collapsed pipe sections.	Initial investigation confirmed soil or groundwater exceedance of cleanup levels specified in Section 3.1 of IRP. Confirmed release from OWS will be reported to Ecology 90 days after discovery. Conduct site characterization and schedule for high priority mitigation effort (repair, ongoing monitoring for inaccessible sewers, etc.) If soil surrounding significant defect appears impacted due to a potential release from the OWS, then immediate response actions will be initiated to stop the source of the potential release and begin clean-up activities.
4	Significant structural defect with potential for release. Examples: Same as ER = 5.	Conduct initial release investigation involving the collection of soil and/or shallow groundwater sample(s). Groundwater samples will be collected only if the potential release occurred at or below the shallow groundwater table elevation. Increase to ER=5 if soil or groundwater concentrations exceed cleanup levels specified in Section 3.1 of IRP. Schedule for moderate priority mitigation effort (primarily repair based on Refinery operational needs and accessibility or reinspection to monitor defect condition).
3	Moderate structural defect. Examples: Significant fractures/cracks at or below the pipe/manhole flow line; groundwater infiltration at defect; significant corrosion. Defects that both higher risk for future potential release or structural failure.	Document in the Refinery record. Schedule for low priority mitigation effort (primarily repair based on Refinery operational needs and accessibility or reinspection to monitor defect condition).
2	Small to moderate structural defect. Examples: Moderate fractures/cracks above the pipe/manhole flow line; joint improperly seated; pipe reinforcement visible, moderate corrosion in pipe.	Document in the Refinery record.
1	Small structural defect. Examples: Hairline cracks; minor corrosion/deterioration of pipe/manhole material; visible aggregate; small offset joint; missing sealing rings.	Document in the Refinery record.

Notes:

1. ER = Environmental Rating.

2. IRP = Investigation and Response Plan dated January 26, 2021.

3. OWS = Oily Water Sewer

Attachment 2: OWS Segment Inspection Summary Reports

Available Upon Request

Attachment 3: OWS Structure Inspection Summary Reports

Available Upon Request

APPENDIX B

Soil Laboratory Analytical Data Reports

December 10, 2021

Amie Blystone Phillips 66 P.O. Box 8 Ferndale, WA 98248

RE: Project: P66: Oily Water Sewer-Revised Report Pace Project No.: 10581546

Dear Amie Blystone:

Enclosed are the analytical results for sample(s) received by the laboratory on October 02, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace National Mt. Juliet
- Pace Analytical Services Minneapolis

This report was revised on December 10, 2021 to include a project narrative for method 8270E PAH by SIM.

To report 1-Methylnaphthalene by method 8270E PAH by SIM on Pace sample 10581546003.

Additionally per client request, Pace sample 10581546005 was re-analyzed using the methanol vials provided for method 8260D and both sets of data have been reported.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (JROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Ashley Yamaura, Whatcom Environmental Services

CERTIFICATIONS

Project: P66: Oily Water Sewer-Revised Report Pace Project No.: 10581546

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab A2LA Certification #: 2926.01* Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

Pace Analytical Services National

12065 Lebanon Road, Mt. Juliet, TN 37122 Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197 DOD Certification: #1461.01 EPA# TN00003 Florida Certification #: E87487 Georgia DW Certification #: 923 Georgia Certification: NELAP Idaho Certification #: TN00003 Illinois Certification #: 200008

Indiana Certification #: C-TN-01 Iowa Certification #: 364 Kansas Certification #: E-10277 Kentucky UST Certification #: 16 Kentucky Certification #: 90010 Louisiana Certification #: AI30792 Louisiana DW Certification #: LA180010 Maine Certification #: TN0002 Maryland Certification #: 324 Massachusetts Certification #: M-TN003 Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project:P66: Oily Water Sewer-Revised ReportPace Project No.:10581546

Pace Analytical Services National

Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742 North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375 North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004 South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006 Texas Certification #: T 104704245-17-14 Texas Mold Certification #: LAB0152 USDA Soil Permit #: P330-15-00234 Utah Certification #: TN00003 Vermont Dept. of Health: ID# VT-2006 Virginia Certification #: VT2006 Virginia Certification #: VT2006 Virginia Certification #: C847 West Virginia Certification #: 233 Wisconsin Certification #: 298093910 Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

SAMPLE SUMMARY

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10581546001	B-2-21 (3 FT)	Solid	09/30/21 10:15	10/02/21 09:00
10581546002	B-3-21 (3.5 FT)	Solid	09/30/21 11:15	10/02/21 09:00
10581546003	B-4-21 (3 FT)	Solid	09/30/21 11:45	10/02/21 09:00
10581546004	B-5-21 (5 FT)	Solid	09/30/21 01:15	10/02/21 09:00
10581546005	B-6-21 (4 FT)	Solid	09/30/21 02:15	10/02/21 09:00

SAMPLE ANALYTE COUNT

Project:	P66: Oily Water Sewer-Revised Report
Pace Project No .:	10581546

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10581546001	B-2-21 (3 FT)	EPA 6020B	JPD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	JNJ	7	PAN
		EPA 8270E by SIM	JLR	21	PASI-M
		EPA 8260D	DWR	10	PAN
		SM 2540G	KDW	1	PAN
		EPA 7199	MCG	1	PAN
		Calculated	MCG	1	PAN
		EPA 9045D	AR3	1	PASI-M
10581546002	B-3-21 (3.5 FT)	EPA 6020B	JPD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	JNJ	7	PAN
		EPA 8270E by SIM	JLR	21	PASI-M
		EPA 8260D	DWR	10	PAN
		SM 2540G	KDW	1	PAN
		EPA 7199	MCG	1	PAN
		Calculated	MCG	1	PAN
		EPA 9045D	AR3	1	PASI-M
10581546003	B-4-21 (3 FT)	EPA 6020B	JPD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	JNJ	7	PAN
		EPA 8270E by SIM	JLR	21	PASI-M
		EPA 8260D	DWR	10	PAN
		SM 2540G	KDW	1	PAN
		EPA 7199	MCG	1	PAN
		Calculated	MCG	1	PAN
		EPA 9045D	AR3	1	PASI-M
10581546004	B-5-21 (5 FT)	EPA 6020B	JPD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	JNJ	7	PAN
		EPA 8270E by SIM	KJ3	21	PASI-M
		EPA 8260D	DWR	10	PAN
		SM 2540G	KDW	1	PAN

SAMPLE ANALYTE COUNT

Project:	P66: Oily Water Sewer-Revised Report
Pace Project No .:	10581546

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	-	EPA 7199	MCG	1	PAN
		Calculated	MCG	1	PAN
		EPA 9045D	AR3	1	PASI-M
10581546005	B-6-21 (4 FT)	EPA 6020B	JPD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	JNJ	7	PAN
		EPA 8270E by SIM	JLR	21	PASI-M
		EPA 8260D	ACG, JHH	10	PAN
		SM 2540G	KDW	1	PAN
		EPA 7199	MCG	1	PAN
		Calculated	MCG	1	PAN
		EPA 9045D	AR3	1	PASI-M

PAN = Pace National - Mt. Juliet

PASI-M = Pace Analytical Services - Minneapolis

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Date: December 10, 2021

The original analysis for method 8270E PAH by SIM on Pace sample 10581546003 and associated MS/MSD were performed at a 10x dilution due to the physical (dark) appearance of the sample. Subsequently, due to the amount of matrix present in the chromatogram greater than 5 times the internal standards, re-analysis at a lower dilution was not performed.

Upon client request, associated samples were re-analyzed and reviewed by the Department Manager. After review, it was found that some analytes were missed being integrated by the instrument software due to sample matrix and subsequent retention time shifts of both the internal standards and associated analytes. As a result of the re-analysis, results for samples -001 and -004 have changed to include previously missing j-flag detections.

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Date: December 10, 2021

B-3-21 (3.5 FT) (Lab ID: 10581546002)

• Volatile Organic Compounds (GC/MS) by Method 8260D - Surrogate failure due to matrix interference

B-4-21 (3 FT) (Lab ID: 10581546003)

• Volatile Organic Compounds (GC/MS) by Method 8260D - Surrogate failure due to matrix interference

B-6-21 (4 FT) (Lab ID: 10581546005)

• Volatile Organic Compounds (GC/MS) by Method 8260D - No stir bars remain for further analysis.

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 6020B

Description:Metals (ICPMS) 6020BClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 6020B by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 7471B

Description:7471B MercuryClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 7471B by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method:EPA 8270EDescription:SVOA (GC/MS) 8270EClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 8270E by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 8270E by SIM

Description:8270E MSSV PAH by SIMClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 8270E by SIM by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3550C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 775548

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10581546003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 4131157)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - · Benzo(a)anthracene
 - Benzo(a)pyrene
 - Benzo(g,h,i)perylene
 - Fluoranthene

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 8270E by SIM

Description:8270E MSSV PAH by SIMClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

QC Batch: 775548

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10581546003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- Indeno(1,2,3-cd)pyrene
- Naphthalene
- MSD (Lab ID: 4131158)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Anthracene
 - Benzo(a)pyrene
 - Benzo(g,h,i)perylene
 - Chrysene
 - Dibenzofuran
 - Fluoranthene
 - Naphthalene

P6: Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

- MS (Lab ID: 4131157)
 - 1-Methylnaphthalene
 - Fluorene
 - Phenanthrene
- MSD (Lab ID: 4131158)
 - 1-Methylnaphthalene
 - Fluorene
 - Phenanthrene

R1: RPD value was outside control limits.

- MSD (Lab ID: 4131158)
 - Acenaphthylene
 - Naphthalene

Additional Comments:

Analyte Comments:

QC Batch: 775548

D4: Sample was diluted due to the presence of high levels of target analytes.

- B-3-21 (3.5 FT) (Lab ID: 10581546002)
 - 2-Fluorobiphenyl (S)
- B-4-21 (3 FT) (Lab ID: 10581546003)
 - 2-Fluorobiphenyl (S)
- B-5-21 (5 FT) (Lab ID: 10581546004)
 - 2-Fluorobiphenyl (S)
- MS (Lab ID: 4131157)
- 2-Fluorobiphenyl (S)
- MSD (Lab ID: 4131158)
 - 2-Fluorobiphenyl (S)

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method:EPA 8270E by SIMDescription:8270E MSSV PAH by SIMClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

Analyte Comments:

QC Batch: 775548

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• B-4-21 (3 FT) (Lab ID: 10581546003)

• 1-Methylnaphthalene

• MS (Lab ID: 4131157)

1-Methylnaphthalene

• MSD (Lab ID: 4131158)

• 1-Methylnaphthalene

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 8260D

Description:VOA (GC/MS) 8260DClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 8260D by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 1756421

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): L1414955-03

- R1: RPD value was outside control limits.
 - MSD (Lab ID: R3716450-5)
 - Ethylbenzene
 - Xylene (Total)
 - m&p-Xylene

Additional Comments:

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 8260D

Description:VOA (GC/MS) 8260DClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

Analyte Comments:

QC Batch: 1763708

C3: The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.

• B-6-21 (4 FT) (Lab ID: 10581546005)

• n-Hexane

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: SM 2540G

Description:Total Solids 2540 G-2011Client:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for SM 2540G by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 7199

Description:Wet Chemistry 7199Client:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 7199 by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 1754567

D8: The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.

• DUP (Lab ID: R3717096-3)

Chromium, Hexavalent

Additional Comments:

PROJECT NARRATIVE

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: Calculated

Description:Calculated ResultsClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for Calculated by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Method: EPA 9045D

Description:9045D pHClient:Phillips66_Whatcom EnvironmentalDate:December 10, 2021

General Information:

5 samples were analyzed for EPA 9045D by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

 Sample:
 B-2-21 (3 FT)
 Lab ID:
 10581546001
 Collected:
 09/30/21 10:15
 Received:
 10/02/21 09:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Solid Soli

Matals (ICPMS) 6020B Analytical Method: EPA 6020B Preparation Method: 3050B Acsanic Massiki Nilki 1.14 0.0979 10.142 10.1321 20.37 7440-39-2 Cadmium 3.74 mg/kg 5.14 0.0979 5 10/1321 0.01321 20.37 7440-47-3 Lead 3.37 mg/kg 2.28 0.13 5 10/1321 0.01321 7439-87-2 Nickal 3.37 mg/kg 2.28 0.026 5 10/1321 0.01321 10.1321 20.37 7439-87-2 Artip Bercoury Analytical Method: EFA/T71B Preparation <method: efa="" t71b<="" td=""> Preparation 10.0121 10.1321 0.0237 7439-97-6 Proves halytical Services - Minneapolic SVTT Preparation 10.0122 1 10.0121 10.0121 7439-97-6 N2 Proves halytical Method: EFA 827DE Freparation No 1 10.0121 1 10.0121 12.51 10.1421 15.19 165-62-2 SVCA (GC/MS) 8270E 52</method:>	Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Asenic 4.63 mg/kg 1.14 0.114 5 10/13/21 0.321 10/13/21 2.0.37 7440-38-2 Cadmium 30.0979 mg/kg 2.28 0.0979 5 10/13/21 0.321 10/13/21 0.37 7440-43-9 Chromium 37.4 mg/kg 2.28 0.118 5 10/13/21 0.321 10/13/21 0.37 7440-47-3 Lead 3.37 mg/kg 2.28 0.118 5 10/13/21 0.321 10/13/21 0.37 7440-47-3 Nickel 3.37 mg/kg 2.28 0.118 7 10/13/21 0.321 10/13/21 0.37 7440-47-3 Nickel 3.37 mg/kg 2.28 0.107 1 10/03/21 0.31 10/03/21 0.37 7440-47-3 Mercury 0.026 mg/kg 0.207 1 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.41 10/03/21 0.	Metals (ICPMS) 6020B	Analytical Pace Nation	Method: EP onal - Mt. Ju	A 6020B Prep Iliet	aration Met	hod: 3	050B			
Cadmium c0.0979 mg/kg 1.14 0.0979 5 101/321 20.31 7440-43-9 Chromium 3.74 mg/kg 2.29 0.13 5 101/321 0.31 101/321 0.37 7440-43-9 Nickel 3.7 mg/kg 2.28 0.13 5 101/321 0.31 101/321 0.37 7440-02-0 TATIB Mercury Analytical Method: EFX FXTB Preservice Winneapolic EVA Vickel 100/021 08:21 0.0021 11:27 7439-92-1 Mercury 0.026 mg/kg 0.02 0.0087 1 000621 08:41 000821 11:27 7439-97-6 Dry Weight / Mb y ASTM D2970 Analytical Method: EVX	Arsenic	4.63	mg/kg	1.14	0.114	5	10/13/21 03:21	10/13/21 20:37	7440-38-2	
Chromium 77.4 mg/kg 5.72 0.33 5 1013/21 03.21 1013/21 20.37 740-47.3 Lead 33.7 mg/kg 2.86 0.22 5 1013/21 03.21 1013/21 20.37 7439-92-1 Nickel 33.7 mg/kg 2.86 0.226 5 1013/21 03.21 1013/21 20.37 7439-92-1 7471 B Mercury Analytical Method: EPA 7471B Preparation and the preparation and	Cadmium	<0.0979	mg/kg	1.14	0.0979	5	10/13/21 03:21	10/13/21 20:37	7440-43-9	
Lead 2.33 mg/kg 2.29 0.113 5 10/13/21 03.21 10/13/21 20.37 7439-92-1 Nickel 33.7 mg/kg 2.28 0.213 5 10/13/21 03.21 10/13/21 20.37 7439-92-1 7471 B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Preparation 10/13/21 20.37 7439-92-1 Mercury 0.026 mg/kg 0.020 0.087 1 10/06/21 08.41 10/08/21 11:27 7439-97-6 Dry Weight /%M by ASTM D2974 Analytical Method: EPA 8270E Preparation 10/05/21 12:05 10/10/21 12:05 10/10/21 12:05 10/10/21 12:07 V3 SVOA (GCMS) 8270E Analytical Method: EPA 8270E Preparation 10/13/21 21:58 10/14/21 15:19 92-52-4 Preparation Surrogates 40.012 1 10/13/21 21:58 10/14/21 15:19 92-52-4 Preparation P	Chromium	37.4	ma/ka	5.72	0.339	5	10/13/21 03:21	10/13/21 20:37	7440-47-3	
Nickel 33.7 mg/kg 2.86 0.226 5 10/13/21 03.21 10/13/21 20.37 7440-02-0 7471 B Mercury Analytical Method: EPA 7471B Preace Analytical Services - Minneapolis Vervices - Minneapolis Verv	Lead	2.83	ma/ka	2.29	0.113	5	10/13/21 03:21	10/13/21 20:37	7439-92-1	
7471 B Mercury Analytical Wetroit: EPA 7471B Preparation Method: EVA 7471B Mercury 0.02 mg/kg 0.02 0.020 1 10/06/21 08:41 10/08/21 11:27 7439-97- Dry Weight /%M by ASTM D2974 Prace Analytical Services - Minneapolis Services - Minneapolis Services - Minneapolis Percent Moisture 12.4 % 0.10 0.10 1 I////////////////////////////////////	Nickel	33.7	mg/kg	2.86	0.226	5	10/13/21 03:21	10/13/21 20:37	7440-02-0	
Proce Analytical Services - Minneapolis Mercury 0.026 mg/kg 0.020 0.0087 1 10/06/21 08.41 10/08/21 11:27 7439-97-6 Dry Weight / %M by ASTM D2974 Analytical Method: ASTM D2974 Proce Analytical Services - Minneapolis Version N2 Percent Moisture 12.4 % 0.10 0.10 1 10/05/21 12:05 N2 SVOA (GC/MS) 8270E Analytical Method: EPA 8270E Preparation Method: 334 0.1021 1 10/13/21 21:58 10/14/21 15:19 92-52-4 Surrogates - - 10/13/21 21:58 10/14/21 15:19 9367-12-4 Phenol-65 (S) 52.9 % 12.0-120 1 10/13/21 21:58 10/14/21 15:19 9465-60-0 2-Fluorophenol (S) 52.9 % 12.0-120 1 10/13/21 21:58 10/14/21 15:19 9465-60-0 2-Fluorophenol (S) 53.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 1465-60-0 2-Florophenol (S) 55.1 % 10.0-120 1 10/13/21 21:58	7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B			
Mercury 0.026 mg/kg 0.027 0.0267 1 0/06/21 08:41 0/08/21 11:27 7439-97-6 Pry Weight / %M by ASTM D2974 Analytical Wettor: STW D2974 Nalytical Wettor: ST		Pace Anal	ytical Servic	es - Minneapo	lis					
Dry Weight / %M by ASTM D2974 Pace Analytical Method: SATM D2974 Pace Analytical Services - Minneapolis No 10/05/21 12:05 N2 Percent Moisture 12.4 % 0.10 0.10 1 10/05/21 12:05 N2 SVA (GC/MS) 8270E Analytical Method: EPA 8270E Preparation Method: Pace National - Mt. Juliet Survegates 0.0121 1 10/13/21 21:58 10/14/21 15:19 92-52-4 Surrogates 40.0121 mg/k 0.381 0.0121 1 10/13/21 21:58 10/14/21 15:19 367-12-4 Phenol-d5 (S) 52.9 % 12.0-120 1 10/13/21 21:58 10/14/21 15:19 367-12-4 Phenol-d5 (S) 39.8 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 316-6-2-2 2-Fluorobiphenol (S) 95.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 316-79-6 2-Fluorobiphenol (S) 95.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 316-79-6 2-Fluorobiphenol (S) 95.1 % 10.0-120 1 10	Mercury	0.026	mg/kg	0.020	0.0087	1	10/06/21 08:41	10/08/21 11:27	7439-97-6	
Percent Moisture 12.4 % 0.10 0.10 1 10/05/21 12:05 N2 SVOA (GC/MS) 8270E Analytical Method: EPA 8270E Preparation Method: 354 Biphenyl (Diphenyl) <0.0121 mg/kg 0.381 0.0121 1 10/13/21 21:8 0/14/21 15:19 92-52-4 2-Fluorophenol (S) 52.9 % 12.0-120 1 10/13/21 21:8 10/14/21 15:19 4165-62-2 2-Fluorophenol (S) 54.6 % 10.0-120 1 10/13/21 21:8 10/14/21 15:19 4165-62-2 2-Fluorophenol (S) 54.6 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 4165-62-2 2-Fluorophenol (S) 54.6 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 115-0 115-0 2-Floorophenol (S) 55.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 115-0 11-0 2-Floorophenol (S) 55.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 11-0 <td>Dry Weight / %M by ASTM D2974</td> <td>Analytical Pace Anal</td> <td>Method: AS ytical Servic</td> <td>TM D2974 es - Minneapo</td> <td>lis</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dry Weight / %M by ASTM D2974	Analytical Pace Anal	Method: AS ytical Servic	TM D2974 es - Minneapo	lis					
SVOA (GC/MS) 8270E Analytical Method: EPA 8270E Preparation Method: S34 Biphenyl (Diphenyl) <0.0121	Percent Moisture	12.4	%	0.10	0.10	1		10/05/21 12:05		N2
Biphenyl (Diphenyl) -0.0121 mg/kg 0.381 0.0121 1 10/13/21 21:58 10/14/21 15:19 92-52-4 Surrogates 2-Fluorophenol (S) 52.9 % 12.0-120 1 10/13/21 21:58 10/14/21 15:19 367-12-4 Phenol-dS (S) 39.8 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 4165-62-2 Nitrobenzene-d5 (S) 39.8 % 10.0-122 1 10/13/21 21:58 10/14/21 15:19 4165-60-0 2-Fluorobiphenyl (S) 54.6 % 10.0-122 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2.4.6-Tibromphenol (S) 95.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2.4.6-Tibromphenol (S) 95.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 118-79-6 p-Terphenyl-d14 (S) 57.1 % 10.0-120 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2.4.6-Tibromphenol (S) 90.J ug/kg 11.4 0.62	SVOA (GC/MS) 8270E	Analytical Pace Nation	Method: EP onal - Mt. Ju	A 8270E Prep Iliet	aration Met	hod: 3	546			
2-Fluorophenol (S) 52.9 % 12.0-120 1 10/13/21 21:58 10/14/21 15:19 367-12-4 Phenol-d5 (S) 46.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 4165-60-2 Nitrobenzene-d5 (S) 39.8 % 10.0-122 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2.Fluorobiphenyl (S) 54.6 % 15.0-120 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2.4,6-Tribromophenol (S) 95.1 % 10.0-127 1 10/13/21 21:58 10/14/21 15:19 178-51-0 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 10/13/21 16:16 10/11/21 14:34 90-12-0 1-Methylnaphthalene 40.6 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 91-57-6 Acenaphthylene 9.0J ug/kg 11.4 0.51 1 10/08/21 16:16 10/11/21 14:34 83-32-9 Acenaphthylene 9.0J ug/kg 11.4 0.51 1 10/08/21 16:16 10/11/21 14:34 83-32-9<	Biphenyl (Diphenyl)	<0.0121	mg/kg	0.381	0.0121	1	10/13/21 21:58	10/14/21 15:19	92-52-4	
Phenol-d5 (S) 46.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 4165-62-2 Nitrobenzene-d5 (S) 39.8 % 10.0-122 1 10/13/21 21:58 10/14/21 15:19 4165-60-0 2-Fluorobiphenyl (S) 54.6 % 15.0-120 1 10/13/21 21:58 10/14/21 15:19 316-68 2,4,6-Tribromophenol (S) 95.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 1718-51-0 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 15.9 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Anthracene 9.0.J ug/kg 11.4 0.78 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Anthracene 5.1.J ug/kg 11.4 0.47 <td>2-Fluorophenol (S)</td> <td>52.9</td> <td>%</td> <td>12.0-120</td> <td></td> <td>1</td> <td>10/13/21 21:58</td> <td>10/14/21 15:19</td> <td>367-12-4</td> <td></td>	2-Fluorophenol (S)	52.9	%	12.0-120		1	10/13/21 21:58	10/14/21 15:19	367-12-4	
Nitrobenzer-d5 (S) 39.8 % 10.0-122 1 10/13/21 21:58 10/14/21 15:19 4165-60-0 2-Fluorobiphenyl (S) 54.6 % 15.0-120 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2,4,6-Tribromophenol (S) 95.1 % 10.0-127 1 10/13/21 21:58 10/14/21 15:19 118-79-6 P-Terphenyl-d14 (S) 57.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 1718-51-0 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1-Methylnaphthalene 40.6 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 9.0.0 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 83-32-9 Acenaphthylene 9.0.J ug/kg 11.4 0.61 1 10/08/21 16:16 10/11/21 14:34 83-32-9 Actenaphthylene 9.0.J ug/kg 11.4 0.76 1	Phenol-d5 (S)	46.1	%	10.0-120		1	10/13/21 21:58	10/14/21 15:19	4165-62-2	
2-Fluorobiphenyl (S) 54.6 % 15.0-120 1 10/13/21 21:58 10/14/21 15:19 321-60-8 2,4,6-Tribromophenol (S) 95.1 % 10.0-127 1 10/13/21 21:58 10/14/21 15:19 118-79-6 p-Terphenyl-d14 (S) 57.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 1718-51-0 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 Acenaphthene 4.0.62 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 Acenaphthylene 9.0.0 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Anthracene 9.0.1 ug/kg 11.4 0.76 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Anthracene 9.0.1 ug/kg 11.4 <	Nitrobenzene-d5 (S)	39.8	%	10.0-122		1	10/13/21 21:58	10/14/21 15:19	4165-60-0	
2,4,6-Tifbromophenol (S) 95.1 % 10.0-127 1 10/13/21 21:58 10/14/21 15:19 118-79-6 p-Terphenyl-d14 (S) 57.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 118-79-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 40.62 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 40.62 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 9.0J ug/kg 11.4 0.78 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Anthracene 9.0J ug/kg 11.4 0.76 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Benzo(a)pyrene <0.64	2-Fluorobiphenyl (S)	54.6	%	15.0-120		1	10/13/21 21:58	10/14/21 15:19	321-60-8	
p-Terphenyl-d14 (S) 57.1 % 10.0-120 1 10/13/21 21:58 10/14/21 15:19 1718-51-0 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 40.62 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene 40.62 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 Acenaphthene 15.9 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Actinatracene 9.0J ug/kg 11.4 0.36 1 10/08/21 16:16 10/11/21 14:34 120-12-7 Benzo(a)apyrene <0.64 ug/kg 11.4 0.36 1 10/08/21 16:16 10/11/21 14:34 208-96-8 Benzo(g),hi)perylene 2.9J ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34	2.4.6-Tribromophenol (S)	95.1	%	10.0-127		1	10/13/21 21:58	10/14/21 15:19	118-79-6	
8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3550C Pace Analytical Services - Minneapolis 1-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene <0.62	p-Terphenyl-d14 (S)	57.1	%	10.0-120		1	10/13/21 21:58	10/14/21 15:19	1718-51-0	
Pace Analytical Services - Minneapolis 1-Methylnaphthalene 146 ug/kg 11.4 0.62 1 10/08/21 16:16 10/11/21 14:34 90-12-0 2-Methylnaphthalene <0.62	8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SII	M Preparat	ion Me	ethod: EPA 3550C			
1-Methylnaphthalene146ug/kg11.40.62110/08/21 16:1610/11/21 14:3490-12-02-Methylnaphthalene<0.62	-	Pace Anal	ytical Servic	es - Minneapo	lis					
2-Methylaphthalene<0.62ug/kg11.40.62110/08/21 16:1610/11/21 14:3491-57-6Acenaphthene15.9ug/kg11.40.51110/08/21 16:1610/11/21 14:3483-32-9Acenaphthylene9.0Jug/kg11.40.78110/08/21 16:1610/11/21 14:3483-32-9Anthracene<0.36	1-Methylnaphthalene	146	ug/kg	11.4	0.62	1	10/08/21 16:16	10/11/21 14:34	90-12-0	
Acenaphthene15.9ug/kg11.40.51110/08/21 16:1610/11/21 14:3483-32-9Acenaphthylene9.0Jug/kg11.40.78110/08/21 16:1610/11/21 14:34208-96-8Anthracene<0.36	2-Methylnaphthalene	<0.62	ua/ka	11.4	0.62	1	10/08/21 16:16	10/11/21 14:34	91-57-6	
Acenaphthylene9.0Jug/kg11.40.78110/08/21 16:1610/11/21 14:34208-96-8Anthracene<0.36	Acenaphthene	15.9	ug/kg	11.4	0.51	1	10/08/21 16:16	10/11/21 14:34	83-32-9	
Anthracene<0.36ug/kg11.40.36110/08/21 16:1610/11/21 14:34120-12-7Benzo(a)anthracene5.1Jug/kg11.40.47110/08/21 16:1610/11/21 14:3456-55-3Benzo(a)pyrene<0.64	Acenaphthylene	9.0J	ug/kg	11.4	0.78	1	10/08/21 16:16	10/11/21 14:34	208-96-8	
Benzo(a)anthracene5.1Jug/kg11.40.47110/08/21 16:1610/11/21 14:3456-55-3Benzo(a)pyrene<0.64	Anthracene	<0.36	ug/kg	11.4	0.36	1	10/08/21 16:16	10/11/21 14:34	120-12-7	
Benzo(a)pyrene <0.64 ug/kg 11.4 0.64 1 10/08/21 16:16 10/11/21 14:34 50-32-8 Benzo(b)fluoranthene 4.4J ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34 205-99-2 Benzo(g,h,i)perylene 2.9J ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34 191-24-2 Benzo(k)fluoranthene <0.55	Benzo(a)anthracene	5.1J	ug/kg	11.4	0.47	1	10/08/21 16:16	10/11/21 14:34	56-55-3	
Benzo(b)fluoranthene 4.4J ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34 205-99-2 Benzo(g,h,i)perylene 2.9J ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34 191-24-2 Benzo(k)fluoranthene <0.55 ug/kg 11.4 0.53 1 10/08/21 16:16 10/11/21 14:34 191-24-2 Benzo(k)fluoranthene <0.55 ug/kg 11.4 0.55 1 10/08/21 16:16 10/11/21 14:34 207-08-9 Chrysene 45.7 ug/kg 11.4 0.46 1 10/08/21 16:16 10/11/21 14:34 218-01-9 Dibenz(a,h)anthracene 1.6J ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Dibenzofuran 18.4 ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16	Benzo(a)pvrene	<0.64	ua/ka	11.4	0.64	1	10/08/21 16:16	10/11/21 14:34	50-32-8	
Benzo(g,h,i)perylene2.9Jug/kg11.40.53110/08/21 16:1610/11/21 14:34191-24-2Benzo(k)fluoranthene<0.55	Benzo(b)fluoranthene	4.4J	ug/kg	11.4	0.53	1	10/08/21 16:16	10/11/21 14:34	205-99-2	
Benzo(k)fluoranthene <0.55 ug/kg 11.4 0.55 1 10/08/21 16:16 10/11/21 14:34 207-08-9 Chrysene 45.7 ug/kg 11.4 0.46 1 10/08/21 16:16 10/11/21 14:34 218-01-9 Dibenz(a,h)anthracene 1.6J ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Dibenz(a,h)anthracene 1.6J ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Dibenzofuran 18.4 ug/kg 11.4 0.48 1 10/08/21 16:16 10/11/21 14:34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 86-73-7 Indeno(1,2,3-cd)pyrene <0.61 ug/kg 11.4 0.61 1 10/08/21 16:16 10/1	Benzo(g.h.i)pervlene	2.9J	ua/ka	11.4	0.53	1	10/08/21 16:16	10/11/21 14:34	191-24-2	
Chrysene 45.7 ug/kg 11.4 0.46 1 10/08/21 16:16 10/11/21 14:34 218-01-9 Dibenz(a,h)anthracene 1.6J ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Dibenzofuran 18.4 ug/kg 11.4 0.48 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Fluoranthene 2.5J ug/kg 11.4 0.48 1 10/08/21 16:16 10/11/21 14:34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 86-73-7 Indeno(1,2,3-cd)pyrene <0.61	Benzo(k)fluoranthene	<0.55	ua/ka	11.4	0.55	1	10/08/21 16:16	10/11/21 14:34	207-08-9	
Dibenz(a,h)anthracene 1.6J ug/kg 11.4 0.75 1 10/08/21 16:16 10/11/21 14:34 53-70-3 Dibenzofuran 18.4 ug/kg 11.4 0.48 1 10/08/21 16:16 10/11/21 14:34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 86-73-7 Indeno(1,2,3-cd)pyrene <0.61	Chrysene	45.7	ua/ka	11.4	0.46	1	10/08/21 16:16	10/11/21 14:34	218-01-9	
Dibenzofuran 18.4 ug/kg 11.4 0.48 1 10/08/21 16.16 10/11/21 14.34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16.16 10/11/21 14.34 132-64-9 Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16.16 10/11/21 14.34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16.16 10/11/21 14.34 86-73-7 Indeno(1,2,3-cd)pyrene <0.61 ug/kg 11.4 0.61 1 10/08/21 16.16 10/11/21 14.34 193-39-5 Naphthalene 10.7J ug/kg 11.4 0.51 1 10/08/21 16.16 10/11/21 14.34 91-20-3	Dibenz(a,h)anthracene	1.6J	ug/ka	11.4	0.75	1	10/08/21 16:16	10/11/21 14:34	53-70-3	
Fluoranthene 2.5J ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 206-44-0 Indeno(1,2,3-cd)pyrene	Dibenzofuran	18.4	ug/ka	11.4	0.48	1	10/08/21 16:16	10/11/21 14:34	132-64-9	
Fluorene 87.0 ug/kg 11.4 0.69 1 10/08/21 16:16 10/11/21 14:34 86-73-7 Indeno(1,2,3-cd)pyrene <0.61	Fluoranthene	2.5J	ug/ka	11.4	0.69	1	10/08/21 16:16	10/11/21 14:34	206-44-0	
Indeno(1,2,3-cd)pyrene <0.61 ug/kg 11.4 0.61 1 10/08/21 16:16 10/11/21 14:34 193-39-5 Naphthalene 10.7J ug/kg 11.4 0.51 1 10/08/21 16:16 10/11/21 14:34 193-39-5	Fluorene	87.0	ug/ka	11.4	0.69	1	10/08/21 16:16	10/11/21 14:34	86-73-7	
Naphthalene 10.7J ug/kg 11.4 0.51 1 10/08/21 16:16 10/11/21 14:34 91-20-3	Indeno(1,2,3-cd)pyrene	<0.61	ua/ka	11.4	0.61	1	10/08/21 16:16	10/11/21 14:34	193-39-5	
	Naphthalene	10.7J	ua/ka	11.4	0.51	1	10/08/21 16:16	10/11/21 14:34	91-20-3	

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-2-21 (3 FT)	Lab ID:	Lab ID: 10581546001 Collected: 09/30/21 10:15 Received: 10/02/21 09:00 Matrix: Solid										
Results reported on a "dry wei	ight" basis and ar	e adjusted fo	or percent m	oisture, saı	nple s	ize and any diluti	ions.					
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
8270E MSSV PAH by SIM	Analytical	Method: EP/	A 8270E by S	IM Prepara	tion Me	ethod: EPA 3550C						
	Pace Ana	lytical Service	es - Minneapo	olis								
Phenanthrene	177	ug/kg	11.4	0.80	1	10/08/21 16:16	10/11/21 14:34	85-01-8				
Pyrene	20.0	ug/kg	11.4	0.74	1	10/08/21 16:16	10/11/21 14:34	129-00-0				
Surrogates												
2-Fluorobiphenyl (S)	72	%.	50-125		1	10/08/21 16:16	10/11/21 14:34	321-60-8				
p-Terphenyl-d14 (S)	11	%.	51-125		1	10/08/21 16:16	10/11/21 14:34	1718-51-0				
VOA (GC/MS) 8260D	Analytical	Method: EPA	A 8260D Prej	paration Met	thod: 5	035A						
	Pace Nat	ional - Mt. Jul	iet									
Benzene	<0.0121	ma/ka	0.0322	0.0121	25	10/12/21 11:04	10/14/21 20:00	71-43-2				
Ethylbenzene	<0.00967	ma/ka	0.0322	0.00967	25	10/12/21 11:04	10/14/21 20:00	100-41-4				
n-Hexane	< 0.0339	mg/kg	0.322	0.0339	25	10/12/21 11:04	10/14/21 20:00	110-54-3				
Toluene	<0.0397	mg/kg	0.161	0.0397	25	10/12/21 11:04	10/14/21 20:00	108-88-3				
o-Xylene	<0.0161	mg/kg	0.0322	0.0161	25	10/12/21 11:04	10/14/21 20:00	95-47-6				
m&p-Xylene	<0.0107	mg/kg	0.0645	0.0107	25	10/12/21 11:04	10/14/21 20:00	179601-23-1				
Xylene (Total)	<0.0161	mg/kg	0.0967	0.0161	25	10/12/21 11:04	10/14/21 20:00	1330-20-7				
1.2-Dichloroethane-d4 (S)	99.3	%	70.0-130		25	10/12/21 11:04	10/14/21 20:00	17060-07-0				
Toluene-d8 (S)	105	%	75.0-131		25	10/12/21 11:04	10/14/21 20:00	2037-26-5				
4-Bromofluorobenzene (S)	148	%	67.0-138		25	10/12/21 11:04	10/14/21 20:00	460-00-4	ST			
Total Solids 2540 G-2011	Analytical	Method: SM	2540G Prep	aration Meth	nod: SI	M 2540 G						
	Pace Nat	ional - Mt. Jul	iet									
Total Solids	87.4	%			1	10/08/21 10:17	10/08/21 10:25					
Wet Chemistry 7199	Analytical	Method: EP/	A7199 Prepa	aration Meth	od: 30	60A						
·	Pace Nat	ional - Mt. Jul	iet									
Chromium, Hexavalent	0.660J	mg/kg	1.14	0.292	1	10/10/21 18:00	10/15/21 10:57		J			
Calculated Results	Analytical Pace Nati	Method: Cal ional - Mt. Jul	culated Prep liet	aration Meth	nod: Ca	alc.						
Chromium, Trivalent	36.7	mg/kg	1.14	0.292	1	10/13/21 03:21	10/15/21 10:57					
9045D pH	Analytical Pace Ana	Method: EPA	A 9045D es - Minneapo	olis								
pH at 25 Degrees C	7.5	Std. Units	0.10	0.10	1		10/15/21 19:41					

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

 Sample: B-3-21 (3.5 FT)
 Lab ID: 10581546002
 Collected: 09/30/21 11:15
 Received: 10/02/21 09:00
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Metals (ICPMS) 6020B	Analytical Pace Natio	Method: EP onal - Mt. Ju	A 6020B Prep Iliet	aration Met	hod: 3	050B			
Arsenic	5.95	mg/kg	1.40	0.140	5	10/13/21 03:21	10/13/21 20:40	7440-38-2	
Cadmium	<0.120	mg/kg	1.40	0.120	5	10/13/21 03:21	10/13/21 20:40	7440-43-9	
Chromium	37.4	mg/kg	7.01	0.415	5	10/13/21 03:21	10/13/21 20:40	7440-47-3	
Lead	4.91	mg/kg	2.81	0.139	5	10/13/21 03:21	10/13/21 20:40	7439-92-1	
Nickel	34.3	mg/kg	3.51	0.276	5	10/13/21 03:21	10/13/21 20:40	7440-02-0	
7471B Mercury	Analytical Pace Anal	Method: EP ytical Servic	PA 7471B Prep ces - Minneapo	aration Met lis	hod: E	PA 7471B			
Mercury	0.014J	mg/kg	0.024	0.010	1	10/06/21 08:41	10/08/21 11:29	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Pace Anal	Method: AS ytical Servic	TM D2974 ces - Minneapo	lis					
Percent Moisture	18.7	%	0.10	0.10	1		10/05/21 12:05		N2
SVOA (GC/MS) 8270E	Analytical Pace Natio	Method: EP onal - Mt. Ju	A 8270E Prep Iliet	aration Met	hod: 3	546			
Biphenyl (Diphenyl) Surrogates	<0.0149	mg/kg	0.467	0.0149	1	10/13/21 21:58	10/14/21 16:20	92-52-4	
2-Fluorophenol (S)	34.0	%	12.0-120		1	10/13/21 21:58	10/14/21 16:20	367-12-4	
Phenol-d5 (S)	33.2	%	10.0-120		1	10/13/21 21:58	10/14/21 16:20	4165-62-2	
Nitrobenzene-d5 (S)	28.3	%	10.0-122		1	10/13/21 21:58	10/14/21 16:20	4165-60-0	
2-Fluorobiphenyl (S)	47.2	%	15.0-120		1	10/13/21 21:58	10/14/21 16:20	321-60-8	
2,4,6-Tribromophenol (S)	96.4	%	10.0-127		1	10/13/21 21:58	10/14/21 16:20	118-79-6	
p-Terphenyl-d14 (S)	51.6	%	10.0-120		1	10/13/21 21:58	10/14/21 16:20	1718-51-0	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Preparat	ion Me	ethod: EPA 3550C			
	Pace Anal	ytical Servic	ces - Minneapo	lis					
1-Methylnaphthalene	559	ug/kg	61.4	3.4	5	10/08/21 16:16	10/11/21 12:53	90-12-0	
2-Methylnaphthalene	<3.3	ug/kg	61.4	3.3	5	10/08/21 16:16	10/11/21 12:53	91-57-6	
Acenaphthene	<2.7	ug/kg	61.4	2.7	5	10/08/21 16:16	10/11/21 12:53	83-32-9	
Acenaphthylene	39.3J	ug/kg	61.4	4.2	5	10/08/21 16:16	10/11/21 12:53	208-96-8	
Anthracene	<1.9	ug/kg	61.4	1.9	5	10/08/21 16:16	10/11/21 12:53	120-12-7	
Benzo(a)anthracene	25.4J	ug/kg	61.4	2.5	5	10/08/21 16:16	10/11/21 12:53	56-55-3	
Benzo(a)pyrene	<3.5	ug/kg	61.4	3.5	5	10/08/21 16:16	10/11/21 12:53	50-32-8	
Benzo(b)fluoranthene	20.8J	ug/kg	61.4	2.9	5	10/08/21 16:16	10/11/21 12:53	205-99-2	
Benzo(g,h,i)perylene	16.0J	ug/kg	61.4	2.9	5	10/08/21 16:16	10/11/21 12:53	191-24-2	
Benzo(k)fluoranthene	<3.0	ug/kg	61.4	3.0	5	10/08/21 16:16	10/11/21 12:53	207-08-9	
Chrysene	218	ug/kg	61.4	2.5	5	10/08/21 16:16	10/11/21 12:53	218-01-9	
Dibenz(a,h)anthracene	<4.0	ug/kg	61.4	4.0	5	10/08/21 16:16	10/11/21 12:53	53-70-3	
Dibenzofuran	<2.6	ug/kg	61.4	2.6	5	10/08/21 16:16	10/11/21 12:53	132-64-9	
Fluoranthene	<3.7	ug/kg	61.4	3.7	5	10/08/21 16:16	10/11/21 12:53	206-44-0	
Fluorene	319	ug/kg	61.4	3.7	5	10/08/21 16:16	10/11/21 12:53	86-73-7	
Indeno(1,2,3-cd)pyrene	<3.3	ug/kg	61.4	3.3	5	10/08/21 16:16	10/11/21 12:53	193-39-5	
Naphthalene	45.2J	ug/kg	61.4	2.8	5	10/08/21 16:16	10/11/21 12:53	91-20-3	

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-3-21 (3.5 FT)	Lab ID:	105815460	02 Collecte	d: 09/30/2 ⁻	1 11:15	Received: 10/	02/21 09:00 Ma	atrix: Solid	
Results reported on a "dry wei	ght" basis and ar	e adjusted i	or percent mo	oisture, sai	nple s	ize and any diluti	ons.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Prepara	tion Me	ethod: EPA 3550C			
	Pace Ana	lytical Servic	es - Minneapo	lis					
Phenanthrene	425	ug/kg	61.4	4.3	5	10/08/21 16:16	10/11/21 12:53	85-01-8	
Pyrene	84.1	ug/kg	61.4	4.0	5	10/08/21 16:16	10/11/21 12:53	129-00-0	
Surrogates		0/	50 405		_		10/11/01 10 50		5.4
2-Fluorobiphenyl (S)	//	%.	50-125		5	10/08/21 16:16	10/11/21 12:53	321-60-8	D4
p-Terphenyl-d14 (S)	78	%.	51-125		5	10/08/21 16:16	10/11/21 12:53	1718-51-0	
VOA (GC/MS) 8260D	Analytical	Method: EP	A 8260D Prep	aration Met	thod: 5	035A			
	Pace Nati	ional - Mt. Ju	liet						
Benzene	<0.0170	ma/ka	0.0452	0.0170	25	10/12/21 11:04	10/14/21 20:20	71-43-2	
Ethvlbenzene	0.0371J	ma/ka	0.0452	0.0136	25	10/12/21 11:04	10/14/21 20:20	100-41-4	J
n-Hexane	<0.0475	mg/kg	0.452	0.0475	25	10/12/21 11:04	10/14/21 20:20	110-54-3	-
Toluene	<0.0557	mg/kg	0.226	0.0557	25	10/12/21 11:04	10/14/21 20:20	108-88-3	
o-Xylene	0.110	mg/kg	0.0452	0.0226	25	10/12/21 11:04	10/14/21 20:20	95-47-6	
m&p-Xylene	0.158	mg/kg	0.0904	0.0150	25	10/12/21 11:04	10/14/21 20:20	179601-23-1	
Xylene (Total)	0.268	mg/kg	0.136	0.0226	25	10/12/21 11:04	10/14/21 20:20	1330-20-7	
Surrogates									
1,2-Dichloroethane-d4 (S)	101	%	70.0-130		25	10/12/21 11:04	10/14/21 20:20	17060-07-0	
Toluene-d8 (S)	143	%	75.0-131		25	10/12/21 11:04	10/14/21 20:20	2037-26-5	ST
4-Bromofluorobenzene (S)	450	%	67.0-138		25	10/12/21 11:04	10/14/21 20:20	460-00-4	ST
Total Solids 2540 G-2011	Analytical	Method: SM	12540G Prepa	aration Meth	nod: SN	VI 2540 G			
	Pace Nati	ional - Mt. Ju	liet						
Total Solids	71.3	%			1	10/09/21 19:03	10/09/21 19:23		
Wet Chemistry 7199	Analytical	Method: FP	A 7199 Prena	ration Meth	od: 306	50A			
Wet offerniously 1100	Pace Nati	ional - Mt. Ju	lliet		00.000				
Chromium, Hexavalent	<0.358	mg/kg	1.40	0.358	1	10/10/21 18:00	10/15/21 11:02		
Calculated Results	Analytical Pace Nati	Method: Ca ional - Mt. Ju	lculated Prepa Iliet	aration Meth	nod: Ca	alc.			
Chromium, Trivalent	37.4	mg/kg	1.40	0.358	1	10/13/21 03:21	10/15/21 11:02		
9045D pH	Analytical Pace Ana	Method: EP lytical Servic	A 9045D es - Minneapo	lis					
pH at 25 Degrees C	7.4	Std. Units	0.10	0.10	1		10/15/21 19:47		

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

 Sample:
 B-4-21 (3 FT)
 Lab ID:
 10581546003
 Collected:
 09/30/21 11:45
 Received:
 10/02/21 09:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Solid Soli

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Metals (ICPMS) 6020B	Analytical Pace Nation	Method: EP onal - Mt. Ju	A 6020B Prep Iliet	aration Met	hod: 30	050B			
Arsenic	3.76	mg/kg	1.22	0.122	5	10/13/21 03:21	10/13/21 20:44	7440-38-2	
Cadmium	0.115J	mg/kg	1.22	0.105	5	10/13/21 03:21	10/13/21 20:44	7440-43-9	J
Chromium	34.5	mg/kg	6.12	0.362	5	10/13/21 03:21	10/13/21 20:44	7440-47-3	
Lead	2.82	mg/kg	2.45	0.121	5	10/13/21 03:21	10/13/21 20:44	7439-92-1	
Nickel	34.4	mg/kg	3.06	0.241	5	10/13/21 03:21	10/13/21 20:44	7440-02-0	
7471B Mercury	Analytical Pace Anal	Method: EP ytical Servic	A 7471B Prep ces - Minneapo	aration Met lis	hod: E	PA 7471B			
Mercury	0.022	mg/kg	0.022	0.0094	1	10/06/21 08:41	10/08/21 11:30	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Pace Anal	Method: AS ytical Servic	TM D2974 :es - Minneapo	lis					
Percent Moisture	18.6	%	0.10	0.10	1		10/05/21 12:05		N2
SVOA (GC/MS) 8270E	Analytical Pace Nation	Method: EP onal - Mt. Ju	A 8270E Prep Iliet	aration Met	hod: 3	546			
Biphenyl (Diphenyl) <i>Surrogates</i>	<0.0130	mg/kg	0.407	0.0130	1	10/13/21 21:58	10/14/21 16:41	92-52-4	
2-Fluorophenol (S)	39.9	%	12.0-120		1	10/13/21 21:58	10/14/21 16:41	367-12-4	
Phenol-d5 (S)	38.7	%	10.0-120		1	10/13/21 21:58	10/14/21 16:41	4165-62-2	
Nitrobenzene-d5 (S)	32.1	%	10.0-122		1	10/13/21 21:58	10/14/21 16:41	4165-60-0	
2-Fluorobiphenyl (S)	50.5	%	15.0-120		1	10/13/21 21:58	10/14/21 16:41	321-60-8	
2,4,6-Tribromophenol (S)	98.8	%	10.0-127		1	10/13/21 21:58	10/14/21 16:41	118-79-6	
p-Terphenyl-d14 (S)	53.8	%	10.0-120		1	10/13/21 21:58	10/14/21 16:41	1718-51-0	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Preparat	ion Me	thod: EPA 3550C			
	Pace Anal	ytical Servic	es - Minneapo	lis					
1-Methylnaphthalene	5250	ug/kg	122	6.7	10	10/08/21 16:16	10/11/21 11:37	90-12-0	E,P6
2-Methylnaphthalene	<6.6	ug/kg	122	6.6	10	10/08/21 16:16	10/11/21 11:37	91-57-6	M1
Acenaphthene	177	ug/kg	122	5.5	10	10/08/21 16:16	10/11/21 11:37	83-32-9	M1
Acenaphthylene	84.7J	ug/kg	122	8.4	10	10/08/21 16:16	10/11/21 11:37	208-96-8	M1,R1
Anthracene	<3.9	ug/kg	122	3.9	10	10/08/21 16:16	10/11/21 11:37	120-12-7	M1
Benzo(a)anthracene	194	ug/kg	122	5.0	10	10/08/21 16:16	10/11/21 11:37	56-55-3	M1
Benzo(a)pyrene	<6.9	ug/kg	122	6.9	10	10/08/21 16:16	10/11/21 11:37	50-32-8	M1
Benzo(b)fluoranthene	39.4J	ug/kg	122	5.7	10	10/08/21 16:16	10/11/21 11:37	205-99-2	
Benzo(g,h,i)perylene	<5.7	ug/kg	122	5.7	10	10/08/21 16:16	10/11/21 11:37	191-24-2	M1
Benzo(k)fluoranthene	<5.9	ug/kg	122	5.9	10	10/08/21 16:16	10/11/21 11:37	207-08-9	
Chrysene	208	ug/kg	122	4.9	10	10/08/21 16:16	10/11/21 11:37	218-01-9	M1
Dibenz(a,h)anthracene	16.6J	ug/kg	122	8.0	10	10/08/21 16:16	10/11/21 11:37	53-70-3	
Dibenzofuran	222	ug/kg	122	5.1	10	10/08/21 16:16	10/11/21 11:37	132-64-9	M1
Fluoranthene	<7.4	ug/kg	122	7.4	10	10/08/21 16:16	10/11/21 11:37	206-44-0	M1
Fluorene	999	ug/kg	122	7.4	10	10/08/21 16:16	10/11/21 11:37	86-73-7	P6
Indeno(1,2,3-cd)pyrene	<6.6	ug/kg	122	6.6	10	10/08/21 16:16	10/11/21 11:37	193-39-5	M1
Naphthalene	273	ug/kg	122	5.5	10	10/08/21 16:16	10/11/21 11:37	91-20-3	M1,R1

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-4-21 (3 FT)	Lab ID:	1058154600	03 Collecte	d: 09/30/21	1 11:45	6 Received: 10/	02/21 09:00 Ma	atrix: Solid	
Results reported on a "dry wei	ght" basis and ar	e adjusted fo	or percent m	oisture, sar	nple s	ize and any diluti	ons.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical Pace Ana	Method: EPA	A 8270E by SI es - Minneapo	M Preparat	tion Me	ethod: EPA 3550C			
Phenanthrene	2030	ug/kg	122	8.6	10	10/08/21 16:16	10/11/21 11:37	85-01-8	P6
Pyrene	183	ug/kg	122	7.9	10	10/08/21 16:16	10/11/21 11:37	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	80	%.	50-125		10	10/08/21 16:16	10/11/21 11:37	321-60-8	D4
p-Terphenyl-d14 (S)	78	%.	51-125		10	10/08/21 16:16	10/11/21 11:37	1718-51-0	
VOA (GC/MS) 8260D	Analytical	Method: EP/	A 8260D Prep	aration Met	hod: 5	035A			
	Pace Nati	onal - Mt. Jul	iet						
Benzene	<0.0136	mg/kg	0.0362	0.0136	25	10/12/21 11:04	10/14/21 20:40	71-43-2	
Ethylbenzene	<0.0108	mg/kg	0.0362	0.0108	25	10/12/21 11:04	10/14/21 20:40	100-41-4	
n-Hexane	<0.0380	mg/kg	0.362	0.0380	25	10/12/21 11:04	10/14/21 20:40	110-54-3	
Toluene	<0.0445	mg/kg	0.181	0.0445	25	10/12/21 11:04	10/14/21 20:40	108-88-3	
o-Xylene	<0.0181	mg/kg	0.0362	0.0181	25	10/12/21 11:04	10/14/21 20:40	95-47-6	
m&p-Xylene	0.0166J	mg/kg	0.0723	0.0120	25	10/12/21 11:04	10/14/21 20:40	179601-23-1	J
Xylene (Total) <i>Surrogates</i>	<0.0181	mg/kg	0.108	0.0181	25	10/12/21 11:04	10/14/21 20:40	1330-20-7	
1,2-Dichloroethane-d4 (S)	110	%	70.0-130		25	10/12/21 11:04	10/14/21 20:40	17060-07-0	
Toluene-d8 (S)	84.7	%	75.0-131		25	10/12/21 11:04	10/14/21 20:40	2037-26-5	
4-Bromofluorobenzene (S)	278	%	67.0-138		25	10/12/21 11:04	10/14/21 20:40	460-00-4	ST
Total Solids 2540 G-2011	Analytical	Method: SM	2540G Prepa	aration Meth	nod: SI	M 2540 G			
	Pace Nati	onai - Ivit. Jui	let						
Total Solids	81.8	%			1	10/09/21 19:03	10/09/21 19:23		
Wet Chemistry 7199	Analytical	Method: EP/	A 7199 Prepa	ration Meth	od: 30	60A			
Chromium Hovovolant	0.0071		4 00	0.242	4	10/10/21 18:00	10/15/01 11:00		
Chromium, nexavalent	0.9975	mg/kg	1.22	0.312		10/10/21 16.00	10/15/21 11.06		J
Calculated Results	Analytical Pace Nati	Method: Cal onal - Mt. Jul	culated Prepa liet	aration Meth	nod: Ca	alc.			
Chromium, Trivalent	33.5	mg/kg	1.22	0.312	1	10/13/21 03:21	10/15/21 11:08		
9045D pH	Analytical Pace Ana	Method: EPA	A 9045D es - Minneapc	lis					
pH at 25 Degrees C	6.2	Std. Units	0.10	0.10	1		10/15/21 19:49		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

 Sample:
 B-5-21 (5 FT)
 Lab ID:
 10581546004
 Collected:
 09/30/21 01:15
 Received:
 10/02/21 09:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Solid Soli

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Metals (ICPMS) 6020B	Analytical Pace Nati	Method: EP onal - Mt. Ju	A 6020B Prep Iliet	aration Met	hod: 3	050B			
Arsenic	8.36	mg/kg	2.02	0.202	5	10/13/21 03:21	10/13/21 20:47	7440-38-2	
Cadmium	<0.172	mg/kg	2.02	0.172	5	10/13/21 03:21	10/13/21 20:47	7440-43-9	
Chromium	44.5	mg/kg	10.1	0.597	5	10/13/21 03:21	10/13/21 20:47	7440-47-3	
Lead	5.78	mg/kg	4.03	0.200	5	10/13/21 03:21	10/13/21 20:47	7439-92-1	
Nickel	45.6	mg/kg	5.04	0.397	5	10/13/21 03:21	10/13/21 20:47	7440-02-0	
7471B Mercury	Analytical Pace Anal	Method: EP	A 7471B Prep ces - Minneapo	aration Met	hod: E	PA 7471B			
Mercury	0.027	mg/kg	0.023	0.010	1	10/06/21 08:41	10/08/21 11:32	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Pace Anal	Method: AS lytical Servic	TM D2974 ces - Minneapo	lis					
Percent Moisture	22.4	%	0.10	0.10	1		10/05/21 12:05		N2
SVOA (GC/MS) 8270E	Analytical Pace Nati	Method: EP onal - Mt. Ju	A 8270E Prep Iliet	aration Met	hod: 3	546			
Biphenyl (Diphenyl) Surrogates	<0.0214	mg/kg	0.671	0.0214	1	10/13/21 21:58	10/14/21 17:01	92-52-4	
2-Fluorophenol (S)	48.3	%	12.0-120		1	10/13/21 21:58	10/14/21 17:01	367-12-4	
Phenol-d5 (S)	43.9	%	10.0-120		1	10/13/21 21:58	10/14/21 17:01	4165-62-2	
Nitrobenzene-d5 (S)	39.6	%	10.0-122		1	10/13/21 21:58	10/14/21 17:01	4165-60-0	
2-Fluorobiphenvl (S)	54.4	%	15.0-120		1	10/13/21 21:58	10/14/21 17:01	321-60-8	
2.4.6-Tribromophenol (S)	112	%	10.0-127		1	10/13/21 21:58	10/14/21 17:01	118-79-6	
p-Terphenyl-d14 (S)	63.8	%	10.0-120		1	10/13/21 21:58	10/14/21 17:01	1718-51-0	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Preparat	ion Me	ethod: EPA 3550C			
-	Pace Anal	ytical Servic	es - Minneapo	lis					
1-Methylnaphthalene	698	ug/kg	64.4	3.5	5	10/08/21 16:16	10/14/21 16:37	90-12-0	
2-Methylnaphthalene	892	ug/kg	64.4	3.5	5	10/08/21 16:16	10/14/21 16:37	91-57-6	
Acenaphthene	101	ug/kg	64.4	2.9	5	10/08/21 16:16	10/14/21 16:37	83-32-9	
Acenaphthylene	24.5J	ug/kg	64.4	4.4	5	10/08/21 16:16	10/14/21 16:37	208-96-8	
Anthracene	<2.0	ug/kg	64.4	2.0	5	10/08/21 16:16	10/14/21 16:37	120-12-7	
Benzo(a)anthracene	6.3J	ug/kg	64.4	2.7	5	10/08/21 16:16	10/14/21 16:37	56-55-3	
Benzo(a)pyrene	<3.6	ug/kg	64.4	3.6	5	10/08/21 16:16	10/14/21 16:37	50-32-8	
Benzo(b)fluoranthene	5.2J	ug/kg	64.4	3.0	5	10/08/21 16:16	10/14/21 16:37	205-99-2	
Benzo(g,h,i)perylene	4.3J	ug/kg	64.4	3.0	5	10/08/21 16:16	10/14/21 16:37	191-24-2	
Benzo(k)fluoranthene	<3.1	ug/kg	64.4	3.1	5	10/08/21 16:16	10/14/21 16:37	207-08-9	
Chrysene	42.0J	ug/kg	64.4	2.6	5	10/08/21 16:16	10/14/21 16:37	218-01-9	
Dibenz(a,h)anthracene	<4.2	ug/kg	64.4	4.2	5	10/08/21 16:16	10/14/21 16:37	53-70-3	
Dibenzofuran	39.1J	ug/kg	64.4	2.7	5	10/08/21 16:16	10/14/21 16:37	132-64-9	
Fluoranthene	9.7J	ug/kg	64.4	3.9	5	10/08/21 16:16	10/14/21 16:37	206-44-0	
Fluorene	116	ug/kg	64.4	3.9	5	10/08/21 16:16	10/14/21 16:37	86-73-7	
Indeno(1,2,3-cd)pyrene	<3.4	ug/ka	64.4	3.4	5	10/08/21 16:16	10/14/21 16:37	193-39-5	
Naphthalene	21.7J	ug/kg	64.4	2.9	5	10/08/21 16:16	10/14/21 16:37	91-20-3	

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-5-21 (5 FT)	Lab ID:	1058154600	04 Collecte	d: 09/30/21	1 01:15	5 Received: 10/	02/21 09:00 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and ar	e adjusted fo	or percent m	oisture, saı	nple s	ize and any diluti	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical Pace Ana	Method: EPA	A 8270E by SI es - Minneapo	M Preparat	tion Me	ethod: EPA 3550C			
Phenanthrene	338	ug/kg	64.4	4.5	5	10/08/21 16:16	10/14/21 16:37	85-01-8	
Pyrene	51.3J	ug/kg	64.4	4.2	5	10/08/21 16:16	10/14/21 16:37	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	72	%.	50-125		5	10/08/21 16:16	10/14/21 16:37	321-60-8	D4
p-Terphenyl-d14 (S)	69	%.	51-125		5	10/08/21 16:16	10/14/21 16:37	1718-51-0	
VOA (GC/MS) 8260D	Analytical Pace Nati	Method: EP/	A 8260D Prep liet	paration Met	hod: 5	035A			
Benzene	0.0331.1	ma/ka	0.0758	0 0284	25	10/12/21 11:04	10/14/21 20:59	71-43-2	
Ethylbenzene	0.0534.1	ma/ka	0.0758	0.0204	25	10/12/21 11:04	10/14/21 20:59	100-41-4	.1
n-Hexane	<0.0798	mg/kg	0.758	0.0227	25	10/12/21 11:04	10/14/21 20:59	110-54-3	0
Toluene	0.103J	ma/ka	0.379	0.0934	25	10/12/21 11:04	10/14/21 20:59	108-88-3	J
o-Xvlene	0.182	ma/ka	0.0758	0.0379	25	10/12/21 11:04	10/14/21 20:59	95-47-6	•
m&p-Xylene	0.391	mg/kg	0.152	0.0252	25	10/12/21 11:04	10/14/21 20:59	179601-23-1	
Xylene (Total)	0.573	mg/kg	0.227	0.0379	25	10/12/21 11:04	10/14/21 20:59	1330-20-7	
1,2-Dichloroethane-d4 (S)	101	%	70.0-130		25	10/12/21 11:04	10/14/21 20:59	17060-07-0	
Toluene-d8 (S)	114	%	75.0-131		25	10/12/21 11:04	10/14/21 20:59	2037-26-5	
4-Bromofluorobenzene (S)	167	%	67.0-138		25	10/12/21 11:04	10/14/21 20:59	460-00-4	ST
Total Solids 2540 G-2011	Analytical Pace Nati	Method: SM	2540G Prepa	aration Meth	nod: SI	M 2540 G			
Total Solids	49.6	%			1	10/09/21 19:03	10/09/21 19:23		
Wet Chemistry 7199	Analytical Pace Nati	Method: EPA onal - Mt. Jul	A 7199 Prepa iet	ration Meth	od: 306	60A			
Chromium, Hexavalent	<0.514	mg/kg	2.02	0.514	1	10/10/21 18:00	10/15/21 11:35		
Calculated Results	Analytical Pace Nati	Method: Cal onal - Mt. Jul	culated Prepa liet	aration Meth	nod: Ca	alc.			
Chromium, Trivalent	44.5	mg/kg	2.02	0.514	1	10/13/21 03:21	10/15/21 11:35		
9045D pH	Analytical Pace Ana	Method: EP/ lytical Service	A 9045D es - Minneapo	olis					
pH at 25 Degrees C	6.9	Std. Units	0.10	0.10	1		10/15/21 19:20		

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

 Sample:
 B-6-21 (4 FT)
 Lab ID:
 10581546005
 Collected:
 09/30/21 02:15
 Received:
 10/02/21 09:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Metals (ICPMS) 6020B	Analytical Pace Natio	Method: EP onal - Mt. Ju	A 6020B Prep Iliet	aration Met	hod: 3	050B			
Arsenic	3.54	mg/kg	1.37	0.137	5	10/13/21 03:21	10/13/21 20:50	7440-38-2	
Cadmium	<0.117	mg/kg	1.37	0.117	5	10/13/21 03:21	10/13/21 20:50	7440-43-9	
Chromium	26.3	mg/kg	6.85	0.406	5	10/13/21 03:21	10/13/21 20:50	7440-47-3	
Lead	2.24J	mg/kg	2.74	0.136	5	10/13/21 03:21	10/13/21 20:50	7439-92-1	J
Nickel	25.8	mg/kg	3.43	0.270	5	10/13/21 03:21	10/13/21 20:50	7440-02-0	
7471B Mercury	Analytical Pace Anal	Method: EP vtical Servic	A 7471B Prep ces - Minneapo	aration Met	hod: E	PA 7471B			
Mercury	0.019J	mg/kg	0.023	0.010	1	10/06/21 08:41	10/08/21 11:33	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Pace Anal	Method: AS ytical Servic	TM D2974 ces - Minneapo	lis					
Percent Moisture	19.5	%	0.10	0.10	1		10/05/21 12:06		N2
SVOA (GC/MS) 8270E	Analytical Pace Natio	Method: EP onal - Mt. Ju	A 8270E Prep Iliet	aration Met	hod: 3	546			
Biphenyl (Diphenyl) <i>Surrogates</i>	<0.0145	mg/kg	0.456	0.0145	1	10/13/21 21:58	10/14/21 15:39	92-52-4	
2-Fluorophenol (S)	58.7	%	12.0-120		1	10/13/21 21:58	10/14/21 15:39	367-12-4	
Phenol-d5 (S)	51.4	%	10.0-120		1	10/13/21 21:58	10/14/21 15:39	4165-62-2	
Nitrobenzene-d5 (S)	41.8	%	10.0-122		1	10/13/21 21:58	10/14/21 15:39	4165-60-0	
2-Fluorobiphenyl (S)	58.2	%	15.0-120		1	10/13/21 21:58	10/14/21 15:39	321-60-8	
2,4,6-Tribromophenol (S)	101	%	10.0-127		1	10/13/21 21:58	10/14/21 15:39	118-79-6	
p-Terphenyl-d14 (S)	65.5	%	10.0-120		1	10/13/21 21:58	10/14/21 15:39	1718-51-0	
8270E MSSV PAH by SIM	Analytical	Method: EP	A 8270E by SI	M Preparat	ion Me	ethod: EPA 3550C			
	Pace Anal	ytical Servic	es - Minneapo	lis					
1-Methylnaphthalene	1.7J	ug/kg	12.4	0.68	1	10/08/21 16:16	10/11/21 15:24	90-12-0	
2-Methylnaphthalene	1.8J	ug/kg	12.4	0.67	1	10/08/21 16:16	10/11/21 15:24	91-57-6	
Acenaphthene	<0.55	ug/kg	12.4	0.55	1	10/08/21 16:16	10/11/21 15:24	83-32-9	
Acenaphthylene	<0.85	ug/kg	12.4	0.85	1	10/08/21 16:16	10/11/21 15:24	208-96-8	
Anthracene	<0.39	ug/kg	12.4	0.39	1	10/08/21 16:16	10/11/21 15:24	120-12-7	
Benzo(a)anthracene	<0.51	ug/kg	12.4	0.51	1	10/08/21 16:16	10/11/21 15:24	56-55-3	
Benzo(a)pyrene	<0.70	ug/kg	12.4	0.70	1	10/08/21 16:16	10/11/21 15:24	50-32-8	
Benzo(b)fluoranthene	<0.58	ug/kg	12.4	0.58	1	10/08/21 16:16	10/11/21 15:24	205-99-2	
Benzo(g,h,i)perylene	0.70J	ug/kg	12.4	0.58	1	10/08/21 16:16	10/11/21 15:24	191-24-2	
Benzo(k)fluoranthene	<0.60	ua/ka	12.4	0.60	1	10/08/21 16:16	10/11/21 15:24	207-08-9	
Chrysene	0.73J	ua/ka	12.4	0.50	1	10/08/21 16:16	10/11/21 15:24	218-01-9	
Dibenz(a,h)anthracene	<0.81	ug/ka	12.4	0.81	1	10/08/21 16:16	10/11/21 15:24	53-70-3	
Dibenzofuran	<0.52	ug/ka	12.4	0.52	1	10/08/21 16:16	10/11/21 15:24	132-64-9	
Fluoranthene	<0.75	ua/ka	12.4	0.75	1	10/08/21 16:16	10/11/21 15:24	206-44-0	
Fluorene	<0.75	ug/ka	12.4	0.75	1	10/08/21 16:16	10/11/21 15:24	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.66	ug/kg	12.7	0.66	1	10/08/21 16:16	10/11/21 15:24	193-39-5	
Naphthalene	<0.56	ug/ka	12.4	0.56	1	10/08/21 16:16	10/11/21 15:24	91-20-3	

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-6-21 (4 FT)	Lab ID:	105815460	05 Collecte	ed: 09/30/21	1 02:15	5 Received: 10/	02/21 09:00 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	e adjusted i	for percent m	oisture, sar	nple s	ize and any diluti	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EP	PA 8270E by S	IM Preparat	tion Me	ethod: EPA 3550C			
	Pace Anal	ytical Servic	ces - Minneap	olis					
Phenanthrene	2.2J	ua/ka	12.4	0.87	1	10/08/21 16:16	10/11/21 15:24	85-01-8	
Pyrene	0.85J	ug/kg	12.4	0.80	1	10/08/21 16:16	10/11/21 15:24	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	72	%.	50-125		1	10/08/21 16:16	10/11/21 15:24	321-60-8	
p-Terphenyl-d14 (S)	83	%.	51-125		1	10/08/21 16:16	10/11/21 15:24	1718-51-0	
VOA (GC/MS) 8260D	Analytical	Method: EP	A 8260D Pre	paration Met	thod: 5	035A			
	Pace Nati	onai - Ivit. Ju	lliet						
Benzene	<0.000514	mg/kg	0.00137	0.000514	1	09/30/21 02:15	10/13/21 17:48	71-43-2	
Benzene	<0.0163	mg/kg	0.0436	0.0163	25	10/12/21 11:04	10/26/21 16:44	71-43-2	
Ethylbenzene	0.00141	mg/kg	0.00137	0.000411	1	09/30/21 02:15	10/13/21 17:48	100-41-4	
Ethylbenzene	<0.0131	mg/kg	0.0436	0.0131	25	10/12/21 11:04	10/26/21 16:44	100-41-4	
n-Hexane	0.00648J	mg/kg	0.0137	0.00144	1	09/30/21 02:15	10/13/21 17:48	110-54-3	J
n-Hexane	<0.0458	mg/kg	0.436	0.0458	25	10/12/21 11:04	10/26/21 16:44	110-54-3	C3
Toluene	<0.00169	mg/kg	0.00685	0.00169	1	09/30/21 02:15	10/13/21 17:48	108-88-3	
Toluene	<0.0537	mg/kg	0.218	0.0537	25	10/12/21 11:04	10/26/21 16:44	108-88-3	
o-Xylene	0.00571	mg/kg	0.00137	0.000685	1	09/30/21 02:15	10/13/21 17:48	95-47-6	
o-Xylene	0.0368J	mg/kg	0.0436	0.0218	25	10/12/21 11:04	10/26/21 16:44	95-47-6	J
m&p-Xylene	0.00332	mg/kg	0.00274	0.000455	1	09/30/21 02:15	10/13/21 17:48	179601-23-1	
m&p-Xylene	0.0385J	mg/kg	0.0871	0.0145	25	10/12/21 11:04	10/26/21 16:44	179601-23-1	J
Xylene (Total)	<0.000685	mg/kg	0.00411	0.000685	1	09/30/21 02:15	10/13/21 17:48	1330-20-7	
Xylene (Total)	<0.0218	mg/kg	0.131	0.0218	25	10/12/21 11:04	10/26/21 16:44	1330-20-7	
Surrogates	400	0/	70 0 400			00/00/04 00 45	10/10/01 17 10	17000 07 0	
1,2-Dichloroethane-d4 (S)	109	%	70.0-130		1	09/30/21 02:15	10/13/21 17:48	17060-07-0	
1,2-Dichloroethane-d4 (S)	92.4	%	70.0-130		25	10/12/21 11:04	10/26/21 16:44	17060-07-0	0T
Ioluene-d8 (S)	133	%	75.0-131		1	09/30/21 02:15	10/13/21 17:48	2037-26-5	SI
Ioluene-d8 (S)	108	%	75.0-131		25	10/12/21 11:04	10/26/21 16:44	2037-26-5	
4-Bromofluorobenzene (S)	122	%	67.0-138		1	09/30/21 02:15	10/13/21 17:48	460-00-4	
4-Bromofluorobenzene (S)	95.8	%	67.0-138		25	10/12/21 11:04	10/26/21 16:44	460-00-4	
Total Solids 2540 G-2011	Analytical	Method: SM	1 2540G Prep	paration Meth	nod: SI	M 2540 G			
	Pace Nati	onai - ivit. Ju	mer						
Total Solids	73.0	%			1	10/09/21 19:03	10/09/21 19:23		
Wet Chemistry 7199	Analytical	Method: EP	A 7199 Prepa	aration Meth	od: 306	60A			
	Pace Nati	onal - Mt. Ju	ıliet						
Chromium, Hexavalent	0.620J	mg/kg	1.37	0.349	1	10/14/21 18:00	10/15/21 12:24		D8,J
Calculated Results	Analytical	Method: Ca	lculated Prep	aration Meth	nod: Ca	alc.			
	Pace Nati	onal - Mt. Ju	ıliet						
Chromium, Trivalent	25.7	mg/kg	1.37	0.349	1	10/13/21 03:21	10/15/21 12:24		

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Sample: B-6-21 (4 FT)	Lab ID:	10581546005	Collected	d: 09/30/2 [,]	1 02:15	Received: 10	/02/21 09:00 Ma	atrix: Solid	
Results reported on a "dry w	eight" basis and ar	re adjusted for	percent mo	oisture, sai	nple siz	ze and any dilut	tions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
9045D pH	Analytica	I Method: EPA 9	045D						
	Pace Ana	lytical Services	- Minneapo	lis					
pH at 25 Degrees C	7.4	Std. Units	0.10	0.10	1		10/15/21 19:39		

Project:	P66: Oily Wa	ater Sewe	r-Revised Repo	ort									
Pace Project No.:	10581546												
QC Batch:	1755398			Analy	sis Metho	od:	EPA 6020B						
QC Batch Method:	3050B			Analy	sis Descr	iption:	Metals (ICP	MS) 6020	В				
				Labo	ratory:		Pace Nation	nal - Mt. Ju	ıliet				
Associated Lab San	nples: 1058	31546001	, 10581546002	, 1058154	6003, 105	581546004,	105815460	05					
METHOD BLANK:	R3716093-1				Matrix: S	Solid							
Associated Lab San	nples: 1058	31546001	10581546002	, 1058154	6003, 105	581546004,	105815460	05					
				Blar	nk	Reporting							
Paran	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qu	alifiers		
Arsenic			mg/kg		<0.100	1.0	00	0.100 1	0/13/21 19:	49		_	
Cadmium			mg/kg	<(0.0855	1.0	00 0).0855 1	0/13/21 19:	49			
Chromium			mg/kg		<0.297	5.0	00	0.297 1	0/13/21 19:	49			
Lead			mg/kg	<(0.0990	2.0	00 0	0.0990 1	0/13/21 19:	49			
Nickel			mg/kg	•	<0.197	2.5	50	0.197 1	0/13/21 19:	49			
LABORATORY COM	NTROL SAMP	LE: R3	716093-2										
				Spike	L	CS	LCS	% F	lec				
Paran	neter		Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers			
Arsenic			mg/kg	10	0	96.6	96.	6 8).0-120				
Cadmium			mg/kg	10	0	105	10	5 80).0-120				
Chromium			mg/kg	10	0	101	10	1 80	0.0-120				
Lead			mg/kg	10	0	98.3	98.	3 80	0.0-120				
Nickel			mg/kg	10	0	104	104	4 80).0-120				
MATRIX SPIKE & M	IATRIX SPIKE	DUPLIC	ATE: R3716	093-5		R37160	93-6						
				MS	MSD								
		L	1409499-03	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic		mg/kg	1.12	100	100	102	111	101	110	75.0-125	7.80	20	
Cadmium		mg/kg	ND	100	100	101	106	101	106	75.0-125	5.01	20	
Chromium		mg/kg	3.85	100	100	108	116	104	112	75.0-125	6.99	20	
Lead		mg/kg	6.75	100	100	1300	1420	1290	1410	75.0-125	8.87	20	MH
Nickel		mg/kg	0.917	100	100	126	140	126	139	75.0-125	9.93	20	MH

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water S	ewer-Revised Rep	ort									
Pace Project No.:	10581546											
QC Batch:	774492		Anal	ysis Metho	d:	EPA 7471B						
QC Batch Method: EPA 7471B		Anal	ysis Descri	ption:	7471B Merc	ury Solids						
			Labo	oratory:		Pace Analyt	ical Servic	es - Minnea	apolis			
Associated Lab San	nples: 10581546	001, 10581546002	2, 1058154	16003, 105	81546004,	105815460	05					
METHOD BLANK:	4125289			Matrix: So	olid							
Associated Lab San	nples: 10581546	001, 10581546002	2, 1058154	16003, 105	81546004,	105815460	05					
			Blai	nk	Reporting							
Paran	neter	Units	Res	ult	Limit	MD	L	Analyzed	Q	ualifiers		
Mercury		mg/kg	<	0.0077	0.01	8 0	0.0077 10	0/08/21 11:	11			
LABORATORY COM	NTROL SAMPLE:	4125290										
			Spike	LC	S	LCS	% R	ес				
Paran	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Mercury		mg/kg	0.4	15	0.46	100	3 C	30-120				
MATRIX SPIKE & M	IATRIX SPIKE DUF	LICATE: 41252	291		4125292	2						
			MS	MSD								
Demonster		10581540001	Spike	Spike	MS	MSD	MS	MSD	% Rec	000	Max	0
Parameter		Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/kg	g ND	0.46	0.49	0.46	0.48	99	98	80-120	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	P66: Oily Water Se	ewer-Revised Repo	ort						
Pace Project No.:	10581546								
QC Batch:	774477		Analysis Meth	iod:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight / %	M by A	STM D297	4	
			Laboratory:		Pace Analytical Services - Minneapolis				
Associated Lab Sar	nples: 10581546	001, 10581546002,	10581546003, 10	581546004,	10581546005				
SAMPLE DUPLICA	TE: 4125574								
			10581507001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	5.4	5.	3	1	3	0 N2	
SAMPLE DUPLICA	TE: 4125650								
			10581482007	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	18.1	18.	5	2	3	0 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	P66: Oily Water Sewer-Revised Report

Pace Project No.:	10581546
-------------------	----------

QC Batch:	17564	27	Analysis Method:	EPA 8270E	
QC Batch Method:	3546		Analysis Description:	SVOA (GC/MS) 8270E	
			Laboratory:	Pace National - Mt. Juliet	
Associated Lab Samp	oles:	10581546001, 10581546002	2, 10581546003, 10581546004	4, 10581546005	

Matrix: Solid

METHOD BLANK: R3716963-2

Associated Lab Samples: 10581546001, 10581546002, 10581546003, 10581546004, 10581546005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Biphenyl (Diphenyl)	mg/kg	<0.0106	0.333	0.0106	10/14/21 08:30	
Nitrobenzene-d5 (S)	%	46.8	10.0-122		10/14/21 08:30	
2-Fluorobiphenyl (S)	%	59.5	15.0-120		10/14/21 08:30	
p-Terphenyl-d14 (S)	%	73.3	10.0-120		10/14/21 08:30	
Phenol-d5 (S)	%	55	10.0-120		10/14/21 08:30	
2-Fluorophenol (S)	%	65	12.0-120		10/14/21 08:30	
2,4,6-Tribromophenol (S)	%	95.2	10.0-127		10/14/21 08:30	

LABORATORY CONTROL SAMPLE: R3716963-1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Biphenyl (Diphenyl)	mg/kg	0.666	0.382	57.4	39.0-120	
Nitrobenzene-d5 (S)	%			36.9	10.0-122	
2-Fluorobiphenyl (S)	%			60.1	15.0-120	
p-Terphenyl-d14 (S)	%			70.9	10.0-120	
Phenol-d5 (S)	%			55.0	10.0-120	
2-Fluorophenol (S)	%			62.6	12.0-120	
2,4,6-Tribromophenol (S)	%			102	10.0-127	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: R37	16963-3 MS	MSD	R371696	63-4						
Parameter	Units	L1412415-01 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Biphenyl (Diphenyl)	mg/kg	ND	0.796	0.796	0.333	0.357	41.8	44.9	15.0-120	7.14	33	
Nitrobenzene-d5 (S)	%						28.3	28.4	10.0-122			
2-Fluorobiphenyl (S)	%						47.7	47.4	15.0-120			
p-Terphenyl-d14 (S)	%						54.8	55.4	10.0-120			
Phenol-d5 (S)	%						42.7	42.4	10.0-120			
2-Fluorophenol (S)	%						47.1	46.9	12.0-120			
2,4,6-Tribromophenol (S)	%						84.2	90.2	10.0-127			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Proiect:	P66: Oilv Water Sewer-R	evised Report

Pace Project No.:	10581546
-------------------	----------

QC Batch:	1756421		Analysis Method:		EPA 8260D			
QC Batch Method:	5035A		Analysis Description:		VOA (GC/MS) 8260	D		
			Laboratory:		Pace National - Mt.	Juliet		
Associated Lab Sampl	es: 10581546005	5						
METHOD BLANK: R	3716450-3		Matrix:	Solid				
Associated Lab Sampl	es: 10581546005	5						
			Blank	Reporting				
Paramet	er	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Benzene		mg/kg	<0.000375	0.0010	0 0.000375	10/13/21 15:42		
Ethylbenzene		mg/kg	<0.000300	0.0010	0 0.000300	10/13/21 15:42		
n-Hexane		mg/kg	<0.00105	0.010	0 0.00105	10/13/21 15:42		
Toluene		mg/kg	<0.00123	0.0050	0 0.00123	10/13/21 15:42		
Xylene (Total)		mg/kg	<0.000500	0.0030	0 0.000500	10/13/21 15:42		
o-Xylene		mg/kg	<0.000500	0.0010	0 0.000500	10/13/21 15:42		
m&p-Xylene		mg/kg	<0.000332	0.0020	0 0.000332	10/13/21 15:42		
Toluene-d8 (S)		%	116	75.0-13	1	10/13/21 15:42		
4-Bromofluorobenzene	e (S)	%	97.2	67.0-13	8	10/13/21 15:42		
1,2-Dichloroethane-d4	(S)	%	109	70.0-13	0	10/13/21 15:42		

LABORATORY CONTROL SAMPLE:	R3716450-1					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	mg/kg	0.0250	0.0243	97.2	70.0-123	
Ethylbenzene	mg/kg	0.0250	0.0241	96.4	74.0-126	
n-Hexane	mg/kg	0.0250	0.0268	107	55.0-137	
Toluene	mg/kg	0.0250	0.0239	95.6	75.0-121	
Xylene (Total)	mg/kg	0.0750	0.0717	95.6	72.0-127	
o-Xylene	mg/kg	0.0250	0.0233	93.2	79.0-124	
m&p-Xylene	mg/kg	0.0500	0.0484	96.8	76.0-126	
Toluene-d8 (S)	%			110	75.0-131	
4-Bromofluorobenzene (S)	%			103	67.0-138	
1,2-Dichloroethane-d4 (S)	%			116	70.0-130	

MATRIX SPIKE & MATRIX	SPIKE DUPLICA	TE: R371	6450-4		R371645	0-5						
			MS	MSD								
	L14	414955-03	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	mg/kg	ND	0.0228	0.0222	0.0163	0.0163	71.6	73.5	10.0-149	0.00	37	
Ethylbenzene	mg/kg	ND	0.0228	0.0222	0.0142	0.00947	62.1	42.6	10.0-160	39.8	38	R1
n-Hexane	mg/kg	ND	0.0228	0.0222	0.0151	0.0162	66.3	73.0	10.0-157	6.90	37	
Toluene	mg/kg	ND	0.0228	0.0222	0.0155	0.0130	67.9	58.4	10.0-156	17.7	38	
o-Xylene	mg/kg	ND	0.0228	0.0222	0.0137	0.00937	60.0	42.2	10.0-156	37.5	40	
m&p-Xylene	mg/kg	ND	0.0457	0.0445	0.0268	0.0174	58.7	39.2	10.0-156	42.4	40	R1
Xylene (Total)	mg/kg	ND	0.0685	0.0667	0.0405	0.0268	59.1	40.2	10.0-160	40.7	38	R1
Toluene-d8 (S)	%						115	113	75.0-131			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:P66: Oily Water Sewer-Revised ReportPace Project No.:10581546

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: R371	6450-4		R37164	50-5						
			MS	MSD								
		L1414955-03	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4-Bromofluorobenzene (S)	%						102	104	67.0-138			
1,2-Dichloroethane-d4 (S)	%						118	117	70.0-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	P66: Oilv Water Sewer-Revised Report

Pace Pro	iect No.:	10581546
	,	

QC Batch: 1757232		Analysis Method:		PA 8260D			
QC Batch Method: 5035A		Analysis Description:		DA (GC/MS) 8260)D		
		Laboratory:	Pa	ice National - Mt.	Juliet		
Associated Lab Samples: 1058154	46001, 10581546002	, 10581546003, 10	0581546004				
METHOD BLANK: R3717122-4		Matrix:	Solid				
Associated Lab Samples: 1058154	46001, 10581546002	, 10581546003, 10	0581546004				
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Benzene	mg/kg	<0.000375	0.00100	0.000375	10/14/21 18:41		
Ethylbenzene	mg/kg	<0.000300	0.00100	0.000300	10/14/21 18:41		
n-Hexane	mg/kg	<0.00105	0.0100	0.00105	10/14/21 18:41		
Toluene	mg/kg	<0.00123	0.00500	0.00123	10/14/21 18:41		
Xylene (Total)	mg/kg	<0.000500	0.00300	0.000500	10/14/21 18:41		
o-Xylene	mg/kg	<0.000500	0.00100	0.000500	10/14/21 18:41		
m&p-Xylene	mg/kg	<0.000332	0.00200	0.000332	10/14/21 18:41		
Toluene-d8 (S)	%	110	75.0-131		10/14/21 18:41		
4-Bromofluorobenzene (S)	%	108	67.0-138		10/14/21 18:41		
1,2-Dichloroethane-d4 (S)	%	103	70.0-130		10/14/21 18:41		

LABORATORY CONTROL SAMPLE:	R3717122-1					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	mg/kg	0.00500	0.00499	99.8	70.0-123	
Ethylbenzene	mg/kg	0.00500	0.00512	102	74.0-126	
n-Hexane	mg/kg	0.00500	0.00557	111	55.0-137	
Toluene	mg/kg	0.00500	0.00472	94.4	75.0-121	
Xylene (Total)	mg/kg	0.0150	0.0141	94.0	72.0-127	
o-Xylene	mg/kg	0.00500	0.00459	91.8	79.0-124	
m&p-Xylene	mg/kg	0.0100	0.00946	94.6	76.0-126	
Toluene-d8 (S)	%			104	75.0-131	
4-Bromofluorobenzene (S)	%			91.1	67.0-138	
1,2-Dichloroethane-d4 (S)	%			97.0	70.0-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project.	P66. Oily Water Sewer-Revised	Report
FIUJECI.	FUU. Olly Waler Sewer-Revised	report

%

%

Pace Proje	t No.:	105815
------------	--------	--------

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Pace Project No.: 10581546							
QC Batch: 1763708		Analysis Met	hod: E	PA 8260D			
QC Batch Method: 5035A		Analysis Des	cription: V	OA (GC/MS) 8260	D		
		Laboratory:	P	ace National - Mt.	Juliet		
Associated Lab Samples: 1058154	6005						
METHOD BLANK: R3722326-3		Matrix:	Solid				
Associated Lab Samples: 1058154	6005						
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Benzene	 mg/kg	<0.00938	0.0250	0.00938	10/26/21 15:04		
Ethylbenzene	mg/kg	<0.00750	0.0250	0.00750	10/26/21 15:04		
n-Hexane	mg/kg	<0.0263	0.250	0.0263	10/26/21 15:04		
Toluene	mg/kg	<0.0308	0.125	0.0308	10/26/21 15:04		
Xylene (Total)	mg/kg	<0.0125	0.0750	0.0125	10/26/21 15:04		
o-Xylene	mg/kg	<0.0125	0.0250	0.0125	10/26/21 15:04		
m&p-Xylene	mg/kg	<0.00830	0.0500	0.00830	10/26/21 15:04		
Toluene-d8 (S)	%	110	75.0-131		10/26/21 15:04		

LABORATORY CONTROL SAMPLE &	326-1	R	3722326-2							
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	mg/kg	0.00500	0.00490	0.00512	98.0	102	70.0-123	4.39	20	
Ethylbenzene	mg/kg	0.00500	0.00494	0.00548	98.8	110	74.0-126	10.4	20	
n-Hexane	mg/kg	0.00500	0.00397	0.00439	79.4	87.8	55.0-137	10.0	20	
Toluene	mg/kg	0.00500	0.00492	0.00505	98.4	101	75.0-121	2.61	20	
Xylene (Total)	mg/kg	0.0150	0.0149	0.0158	99.3	105	72.0-127	5.86	20	
o-Xylene	mg/kg	0.00500	0.00496	0.00506	99.2	101	79.0-124	2.00	20	
m&p-Xylene	mg/kg	0.0100	0.00996	0.0107	99.6	107	76.0-126	7.16	20	
Toluene-d8 (S)	%				108	107	75.0-131			
4-Bromofluorobenzene (S)	%				94.8	95.6	67.0-138			
1,2-Dichloroethane-d4 (S)	%				97.8	97.2	70.0-130			

97.8

93.6

67.0-138

70.0-130

10/26/21 15:04

10/26/21 15:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Proiect:	P66: Oilv Water Sewer-Revised Report

QC Batch:	775548	Analysis Method:	EPA 8270E by SIM
QC Batch Method:	EPA 3550C	Analysis Description:	8270E Solid PAH by SIM MSSV
		Laboratory:	Pace Analytical Services - Minneapolis

Matrix: Solid

Associated Lab Samples: 10581546001, 10581546002, 10581546003, 10581546004, 10581546005

METHOD BLANK: 413	80776
-------------------	-------

Associated Lab Samples: 10581546001, 10581546002, 10581546003, 10581546004, 10581546005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<0.55	10.0	0.55	10/11/21 10:47	
2-Methylnaphthalene	ug/kg	<0.54	10.0	0.54	10/11/21 10:47	
Acenaphthene	ug/kg	<0.45	10.0	0.45	10/11/21 10:47	
Acenaphthylene	ug/kg	<0.68	10.0	0.68	10/11/21 10:47	
Anthracene	ug/kg	<0.32	10.0	0.32	10/11/21 10:47	
Benzo(a)anthracene	ug/kg	<0.41	10.0	0.41	10/11/21 10:47	
Benzo(a)pyrene	ug/kg	<0.56	10.0	0.56	10/11/21 10:47	
Benzo(b)fluoranthene	ug/kg	<0.47	10.0	0.47	10/11/21 10:47	
Benzo(g,h,i)perylene	ug/kg	<0.46	10.0	0.46	10/11/21 10:47	
Benzo(k)fluoranthene	ug/kg	<0.48	10.0	0.48	10/11/21 10:47	
Chrysene	ug/kg	<0.40	10.0	0.40	10/11/21 10:47	
Dibenz(a,h)anthracene	ug/kg	<0.66	10.0	0.66	10/11/21 10:47	
Dibenzofuran	ug/kg	<0.42	10.0	0.42	10/11/21 10:47	
Fluoranthene	ug/kg	0.66J	10.0	0.60	10/11/21 10:47	
Fluorene	ug/kg	<0.60	10.0	0.60	10/11/21 10:47	
Indeno(1,2,3-cd)pyrene	ug/kg	<0.54	10.0	0.54	10/11/21 10:47	
Naphthalene	ug/kg	<0.45	10.0	0.45	10/11/21 10:47	
Phenanthrene	ug/kg	<0.70	10.0	0.70	10/11/21 10:47	
Pyrene	ug/kg	<0.65	10.0	0.65	10/11/21 10:47	
2-Fluorobiphenyl (S)	%.	96	50-125		10/11/21 10:47	
p-Terphenyl-d14 (S)	%.	93	51-125		10/11/21 10:47	

LABORATORY CONTROL SAMPLE: 4130777

Parameter	Lipito	Spike	LCS Rocult	LCS	% Rec	Qualifiers
Falailletei				70 Kec		Quaimers
1-Methylnaphthalene	ug/kg	33.3	24.7	74	47-125	
2-Methylnaphthalene	ug/kg	33.3	24.5	74	47-125	
Acenaphthene	ug/kg	33.3	26.2	79	56-125	
Acenaphthylene	ug/kg	33.3	25.0	75	47-125	
Anthracene	ug/kg	33.3	28.7	86	60-125	
Benzo(a)anthracene	ug/kg	33.3	29.1	87	69-125	
Benzo(a)pyrene	ug/kg	33.3	29.5	89	63-125	
Benzo(b)fluoranthene	ug/kg	33.3	32.0	96	67-125	
Benzo(g,h,i)perylene	ug/kg	33.3	34.4	103	67-125	
Benzo(k)fluoranthene	ug/kg	33.3	30.3	91	67-125	
Chrysene	ug/kg	33.3	29.2	88	71-125	
Dibenz(a,h)anthracene	ug/kg	33.3	35.6	107	65-125	
Dibenzofuran	ug/kg	33.3	28.6	86	52-125	
Fluoranthene	ug/kg	33.3	30.2	91	65-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

LABORATORY CONTROL SAMPLE: 4130777

			Spike	LCS	LCS	% Rec	
	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Fluorene		ug/kg	33.3	29.6	89	63-125	
Indeno(1,2,3-	-cd)pyrene	ug/kg	33.3	35.5	106	69-125	
Naphthalene		ug/kg	33.3	24.0	72	51-125	
Phenanthren	e	ug/kg	33.3	29.7	89	66-125	
Pyrene		ug/kg	33.3	28.1	84	68-125	
2-Fluorobiph	enyl (S)	%.			77	50-125	
p-Terphenyl-o	d14 (S)	%.			87	51-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4131157				4131158								
Parameter	Units	10581546003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1-Methylnaphthalene	ug/kg	5250	40.9	40.8	5080	6410	-410	2840	37-125	23	30	E,P6
2-Methylnaphthalene	ug/kg	<6.6	40.9	40.8	<6.6	<6.6	0	0	30-135		30) M1
Acenaphthene	ug/kg	177	40.9	40.8	318	243	344	161	30-140	27	30) M1
Acenaphthylene	ug/kg	84.7J	40.9	40.8	192	137	262	129	30-136	33	30) M1,R1
Anthracene	ug/kg	<3.9	40.9	40.8	<3.9	<3.9	0	0	46-125		30) M1
Benzo(a)anthracene	ug/kg	194	40.9	40.8	185	243	-21	122	30-150	27	30) M1
Benzo(a)pyrene	ug/kg	<6.9	40.9	40.8	64.3J	64.9J	157	159	30-150		30) M1
Benzo(b)fluoranthene	ug/kg	39.4J	40.9	40.8	72.4J	80.2J	81	100	30-150		30)
Benzo(g,h,i)perylene	ug/kg	<5.7	40.9	40.8	65.1J	68.9J	159	169	30-150		30) M1
Benzo(k)fluoranthene	ug/kg	<5.9	40.9	40.8	35.9J	35.5J	88	87	30-150		30)
Chrysene	ug/kg	208	40.9	40.8	229	269	51	150	36-126	16	30) M1
Dibenz(a,h)anthracene	ug/kg	16.6J	40.9	40.8	50.9J	54.1J	84	92	30-147		30)
Dibenzofuran	ug/kg	222	40.9	40.8	252	286	72	157	30-150	13	30) M1
Fluoranthene	ug/kg	<7.4	40.9	40.8	77.9J	91.6J	190	224	30-150		30) M1
Fluorene	ug/kg	999	40.9	40.8	1010	1150	27	381	30-140	13	30) P6
Indeno(1,2,3-cd)pyrene	ug/kg	<6.6	40.9	40.8	<6.6	43.8J	0	107	30-150		30) M1
Naphthalene	ug/kg	273	40.9	40.8	254	362	-47	219	30-138	35	30) M1,R1
Phenanthrene	ug/kg	2030	40.9	40.8	2020	2360	-25	798	30-150	15	30) P6
Pyrene	ug/kg	183	40.9	40.8	210	245	66	150	30-150	15	30)
2-Fluorobiphenyl (S)	%.						81	102	50-125			D4
p-Terphenyl-d14 (S)	%.						80	80	51-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water Se	ewer-Revised Repo	rt					
Pace Project No.:	10581546							
QC Batch:	1753338		Analysis M	ethod:	SM 2540G			
QC Batch Method:	SM 2540 G		Analysis D	escription:	Total Solids 2	540 G-2011		
			Laboratory	:	Pace National	- Mt. Juliet		
Associated Lab Sar	nples: 10581546	001						
METHOD BLANK:	R3714289-1		Matri	x: Solid				
Associated Lab Sar	nples: 10581546	001						
			Blank	Reporting				
Parar	neter	Units	Result	Limit	MDL	Analyz	ed	Qualifiers
Total Solids %		%	0.00100)		10/08/21	10:25	
LABORATORY CO	NTROL SAMPLE:	R3714289-2						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualif	iers
Total Solids		%	50.0	50.0	100	85.0-115		
SAMPLE DUPLICA	TE: R3714289-3							
			L1412630-02	Dup		Max		
Parameter Units		Result	Result	RPD	RPD	(Jualifiers	
Total Solids		%	82.4	4 83	3.6	1.49	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	P66: Oily Water Se 10581546	ewer-Revised Repor	rt					
QC Batch:	1753344		Analysis Me	ethod:	SM 2540G			
QC Batch Method:	SM 2540 G		Analysis De	escription:	Total Solids 2	540 G-2011		
			Laboratory:		Pace Nationa	I - Mt. Juliet		
Associated Lab San	nples: 10581546	002, 10581546003,	10581546004,	10581546005				
METHOD BLANK:	R3714652-1		Matrix	:: Solid				
Associated Lab San	nples: 10581546	002, 10581546003,	10581546004,	10581546005				
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analyz	ed Qua	alifiers
Total Solids %			0.00100			10/09/21	19:23	
LABORATORY COM	NTROL SAMPLE:	R3714652-2						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	_
Total Solids		%	50.0	50.0	100	85.0-115		
SAMPLE DUPLICA	TE: R3714652-3							
			L1414263-01	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifie	ers
Total Solids		%	98.5	99	9.8	1.29	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: P66: C	ily Water Se	wer-Revised Rep	ort									
Pace Project No.: 10581	546											
QC Batch: 1754	566		Analy	sis Metho	d: E	EPA 7199						
QC Batch Method: 3060	A		Analysis Description:			Net Chemis	stry 7199					
			Labo	ratory:	F	Pace Nation	nal - Mt. J	uliet				
Associated Lab Samples:	105815460	001, 10581546002	2, 1058154	6003, 105	81546004							
METHOD BLANK: R3717	097-1			Matrix: So	olid							
Associated Lab Samples:	105815460	01, 10581546002	2, 1058154	6003, 105	81546004							
Parameter		Linite	Blar	nk	Reporting	MD		Analyzed	0	alifiors		
Chromium Hexavalent		ma/ka			1.0		0 255	10/15/21 08	 53	annero		
		ing/itg		<0.200	1.0		0.200	10/10/21 00.	00			
LABORATORY CONTROL	SAMPLE:	R3717097-2										
-			Spike	LC	S	LCS	%	Rec	o			
Parameter		Units	Conc.	Res	sult	% Rec	Lir	nits	Qualifiers	_		
Chromium, Hexavalent		mg/kg	10.	.0	10.2	102	2 8	30.0-120				
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: R3717	7097-4 MS	MSD	R371709)7-5						
Parameter	Units	L1413587-03 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chromium, Hexavalent	mg/kg	1.06	23.5	23.5	19.8	22.2	93.	5 106	75.0-125	11.6	20	
MATRIX SPIKE SAMPLE:		R3717097-6										
_			L1413	3587-03	Spike	MS		MS	% Rec			
Parameter		Units	Re	sult	Conc.	Result		% Rec	Limits		Qualif	iers
Chromium, Hexavalent		mg/kg		1.06	747		649	102	75.0-	-125		
SAMPLE DUPLICATE: R	3717097-3											
Parameter		Units	L14134 Res	83-01 ult	Dup Result	RPE)	Max RPD	Qualifi	iers		
Chromium, Hexavalent		mg/kg		ND	<0.32	7	0.00	20	0			
SAMPLE DUPLICATE: R	3717097-8											
Parameter		Units	L14142 Res	80-01 ult	Dup Result	RPE)	Max RPD	Qualifi	iers		
Chromium, Hexavalent		mg/kg		ND	<0.25	5	0.00	20	 D			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project No.: 10581546 QC Batch: 1754567 QC Batch Method: 3060A Analysis Method:: EPA 7199 Analysis Description: Wet Chemistry 7199 Laboratory: Pace National - ML Juliet Associated Lab Samples: 10581546005 METHOD BLANK: R3717096-1 Associated Lab Samples: 10581546005 METHOD BLANK: R3717096-1 Associated Lab Samples: 10581546005 Blank Reporting Parameter Units Result Chemistry 7199 Laboratory: Pace National - ML Juliet Associated Lab Samples: 10581546005 Blank Reporting Parameter Units Result Chemistry 7199 Laboratory: Pace National - ML Juliet Associated Lab Samples: 10581546005 Blank Reporting Parameter Units Result Conc. Result % Rec LCS WRC Limits Qualifiers Chromium, Hexavalent mg/kg 10.0 8.92 89.2 80.0-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 MS MSD Parameter Units Result Conc. Conc. Result Res	Project:	P66: C	oily Water Se	ewer-Revised Re	port									
QC Batch: 1754567 Analysis Method: EPA 7199 QC Batch: 3060A Analysis Description: Wet Chemistry 7199 Associated Lab Samples: 10581546005 Pace National - Mt. Juliet METHOD BLANK: R3717096-1 Matrix: Solid Associated Lab Samples: 10581546005 Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers LABORATORY CONTROL SAMPLE: R3717096-2 Parameter Units Conc. Result % Rec Limits Qualifiers MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-2 MS MSD MSD MSD % Rec Limits RPD Qualifiers Parameter Units Conc. Conc. Conc. Result % Rec Limits RPD Qualifiers MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 MS MSD MSD MSD % SD % Rec Limits RPD Qualifiers MATRIX SPIKE SAMPLE: R3717096-9 L1414808-01 Spike MS MSD % Rec Limits Q	Pace Project No.:	10581	546											
QC Batch Method: 3060A Analysis Description: Wet Chemistry 7199 Associated Lab Samples: 10581546005 Pace National - Mt. Juliet METHOD BLANK: R3717096-1 Matrix: Solid Associated Lab Samples: 10581546005 Blank Reporting Parameter Units Blank Reporting Oualifiers Chromium, Hexavalent mg/kg <0.255 1.00 0.255 10/15/21 12:03 LABORATORY CONTROL SAMPLE: R3717096-2 Spike LCS VR Rec Limits Qualifiers Chromium, Hexavalent mg/kg 10.0 8.92 89.2 80.0-120 Max MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 R3717096-5 MS MSD MSD MSD % Rec Limits RPD Qualifiers Parameter Units Result Conc. Conc. Result % Rec Limits RPD Qual MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 MS MSD MSD MSD % Rec Limits Qual MATRIX SPIKE SAMPLE: R3717096-9 L1414808-	QC Batch:	1754	567	Analysis Method:			d: I	EPA 7199						
Laboratory: Pace National - Mt. Juliet Associated Lab Samples: 10581546005 METHOD BLANK: R3717096-1 Associated Lab Samples: 10581546005 Parameter Units MgRg <0.255 1.00 0.255 100 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 101 0.255 102 0.0120 MARKINS PIKE AMATRIX SPIKE DUPLICATE: R3717096-4 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-5 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units Result Conc. Chromium, Hexavalent mg/kg ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 <t< th=""><th>QC Batch Method:</th><th>3060</th><th>A</th><th colspan="2">Analysis Descri</th><th>ption: \</th><th>Net Chemis</th><th>stry 7199</th><th></th><th></th><th></th><th></th><th></th></t<>	QC Batch Method:	3060	A	Analysis Descri		ption: \	Net Chemis	stry 7199						
Associated Lab Samples: 10581546005 METHOD BLANK: R3717096-1 Associated Lab Samples: 10581546005 Parameter Units Mg/g Matrix: Solid Associated Lab Samples: 10581546005 Parameter Units R3717096-2 Parameter Units Conc. Result % Rec Limits Qualifiers Chromium, Hexavalent mg/g 10.0 8.92 89.2 80.0-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 Parameter Units Result Conc. Conc. Result % Rec Limits RPD RPD Qual Chromium, Hexavalent mg/g ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 2.47 20 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units R3717096-9 MATRIX SPIKE SAMPLE: R3717096-9 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 SAMPLE DUPLICATE: R3717096-3 SAMPLE DUPLICATE: R3717096-3 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 Parameter Units R3717096-9 SAMPLE DUPLICATE: R3717096-3 SAMPLE DUPLICATE: R3717096-3 SAMPLE DUPLICATE: R3717096-3 Parameter Units R30 50 64 627 97.3 75.0-125 SAMPLE DUPLICATE: R3717096-3 SAMPLE DUPLICATE: R3717096-3 SAMPLE DUPLICATE: R3717096-3 Parameter Units R50 50 000 Result Result Result R20 000 Result Result R20 000 Result R20 000 Result R20 000 Result R20 000 Result R20 000 Result R20 000 Result R20 000 R20 0					Labo	oratory:	I	Pace Natior	nal - Mt. Ju	uliet				
METHOD BLANK: R3171096-1 Matrix: Solid Associated Lab Samples: 10581546005 Blank Reporting Limit MDL Analyzed Qualifiers Chromium, Hexavalent mg/kg <0.255 1.00 0.255 10/15/21 12:03 Qualifiers LABORATORY CONTROL SAMPLE: R3717096-2 Spike LCS LCS % Rec Qualifiers Parameter Units Conc. Result % Rec Limits Qualifiers Chromium, Hexavalent mg/kg 10.0 8.92 89.2 80.0-120 Max MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-5 MS MSD MSD % Rec Limits RPD Qualifiers MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-7 MS MSD MS MSD % Rec % Rec Max Parameter Units Conc. Conc. Conc. Conc. Result % Rec % Rec Max Result 2.47 20 Qualifiers MATRIX SPIKE SAMPLE: R3717096-9 L1414808-01 Spike MS MS %	Associated Lab Sam	nples:	10581546	005										
Associated Lab Samples: 10581546005 Parameter Units Blank Result Reporting Limit MDL Analyzed 0.255 Qualifiers Chromium, Hexavalent mg/kg <0.255	METHOD BLANK:	R3717	096-1			Matrix: So	olid							
Blank ResultReporting LimitMDLAnalyzedQualifiersChromium, Hexavalentmg/kg<0.255	Associated Lab Sam	nples:	10581546	005										
Chromium, Hexavalent mg/kg <0.255 1.00 0.255 10/15/21 12:03 LABORATORY CONTROL SAMPLE: R3717096-2 Spike LCS LCS % Rec Limits Qualifiers Parameter Units Conc. Result % Rec Limits Qualifiers MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 R3717096-5 R3717096-5 MSD MSD MSD MSD % Rec Limits RPD Max Parameter Units Result Conc. Conc. Conc. R3717096-5 MSD MSD MSD % Rec Limits RPD Qual Chromium, Hexavalent mg/kg ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 2.47 20 MATRIX SPIKE SAMPLE: R3717096-9 L1414808-01 Spike MS MS MS % Rec Limits Qualifiers Chromium, Hexavalent mg/kg ND 644 627 97.3 75.0-125 Qu	Param	neter		Units	Bla Res	nk sult	Reporting Limit	MD	L	Analyzed	Qı	ualifiers		
LABORATORY CONTROL SAMPLE: R3717096-2 Parameter Units Conc. Result CS LCS LCS Units Qualifiers Matrix SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 Parameter Units Result Conc. Conc. Result Result % Rec MS % Rec Limits RPD % Rec Max Chromium, Hexavalent mg/kg ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 2.47 20 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units R3717096-9 Parameter Units mg/kg ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 2.47 20 MATRIX SPIKE SAMPLE: R3717096-9 Parameter Units R3717096-9 Parameter Units mg/kg ND 20.0 20.0 19.4 19.8 96.8 99.2 75.0-125 2.47 20 MATRIX SPIKE SAMPLE: R3717096-9 SAMPLE DUPLICATE: R3717096-3 Parameter Units mg/kg ND 20.0 20.0 19.4 19.8 96.8 MS	Chromium, Hexaval	ent		mg/kg		<0.255	1.0	0	0.255 1	0/15/21 12:	03			
Spike Chromium, HexavalentLCS mg/kgLCS % Rec LimitsQualifiers QualifiersMATRIX SPIKE & MATRIX SPIKE DUPLICATE: ParameterR3717096-4 UnitsR3717096-5 MS MSDR3717096-5 MS MSDR3717096-5 MS MSDMSD MSD MSDMSD MSD MSD MSDMSD MSD MSD MSDMSD MSD MSD MSD MSD MSD MSDMSD <b< td=""><td>LABORATORY CON</td><td>NTROL</td><td>SAMPLE:</td><td>R3717096-2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>	LABORATORY CON	NTROL	SAMPLE:	R3717096-2										
Induction One Note Note Inductor Inducto	Param	neter		Units	Spike	LC	:S sult	LCS % Rec	%F Lim	Rec nits	Qualifiers			
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: R3717096-4 MS R3717096-5 MS R3717096-5 MS Parameter Units Result Conc. MS MSD Max	Chromium Hexaval	ont		mg/kg			8 92	80	2 80	1 0-120	Quamero	_		
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:R3717096-4 MSR3717096-5ParameterUnitsL1414808-01 ResultSpike Conc.Spike Conc.MS Conc.MSD ResultMSD ResultMSD % RecMSD % RecMSD % RecMATRIX % RecMAX MSD % RecMAX MSD % RecMAX % RecMAX % RecMAX % RecMAX % RecMAX % RecMAX % RecMAX 	Chromium, Hexavar	on		ing/kg	10	.0	0.52	00.	2 00	5.0 120				
ParameterUnitsL1414808-01 ResultSpike Conc.MS Conc.MSD ResultMSD ResultMSD % RecMax % RecMax Max RPD 2.47QualMATRIX SPIKE SAMPLE:R3717096-9 UnitsL1414808-01 ResultSpike ResultMS ResultMS % RecMS % RecMS % RecMax % RecQualifiersMATRIX SPIKE SAMPLE:R3717096-9 UnitsL1414808-01 ResultSpike ResultMS Conc.MS ResultMS % Rec% Rec LimitsQualifiersChromium, Hexavalentmg/kgND64462797.375.0-125QualifiersSAMPLE DUPLICATE:R3717096-3 mg/kg10581546005 ResultDup ResultRPD ResultMax RPD RPDQualifiersSAMPLE DUPLICATE:R3717096-8L1414808-01 ResultDup ResultRPD ResultMax RPD ResultQualifiersSAMPLE DUPLICATE:R3717096-8L141500-04 ResultDup ResultRPD ResultMax RPD ResultQualifiersSAMPLE DUPLICATE:R3717096-8L141500-04 ResultDup ResultRPD ResultMax RPD ResultQualifiers	MATRIX SPIKE & M	IATRIX	SPIKE DUP	LICATE: R371	7096-4 MS	MSD	R371709	96-5						
Chromium, Hexavalentmg/kgND20.020.019.419.896.899.275.0-1252.4720MATRIX SPIKE SAMPLE:R3717096-9ParameterUnitsL1414808-01 ResultSpike Conc.MS ResultMS 	Parameter		Units	L1414808-01 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
MATRIX SPIKE SAMPLE:R3717096-9L1414808-01 ResultSpike Conc.MS ResultMS % Rec LimitsQualifiersChromium, Hexavalentmg/kgND64462797.375.0-125SAMPLE DUPLICATE:R3717096-310581546005 ResultDup ResultMax RPDQualifiersChromium, HexavalentUnits10581546005 ResultDup ResultMax RPDQualifiersSAMPLE DUPLICATE:R3717096-30.4530.983J73.920D8,JSAMPLE DUPLICATE:R3717096-80.4530.983J73.920D8,J	Chromium, Hexavale	ent	mg/kg	, ND	20.0	20.0	19.4	19.8	96.8	99.2	75.0-125	2.47	20	
ParameterUnitsL1414808-01SpikeMSMS% RecChromium, Hexavalentmg/kgND64462797.375.0-125SAMPLE DUPLICATE:R3717096-310581546005Dup ResultMax ResultRPDMax RPDChromium, Hexavalentmg/kg0.4530.983J73.920D8,JSAMPLE DUPLICATE:R3717096-8Max ResultRPDMax RPDQualifiers	MATRIX SPIKE SAM	MPLE:		R3717096-9										
Chromium, Hexavalentmg/kgND64462797.375.0-125SAMPLE DUPLICATE:R3717096-310581546005DupMax ResultRPDQualifiersChromium, Hexavalentmg/kg0.4530.983J73.920D8,JSAMPLE DUPLICATE:R3717096-814445000.01DupMax ResultRPDQualifiers	Param	neter		Units	L1414 Re	4808-01 Sult	Spike Conc	MS Result	c	MS % Rec	% Rec	;	Qualif	iers
SAMPLE DUPLICATE:R3717096-3ParameterUnits10581546005 ResultDup ResultMax RPDChromium, Hexavalentmg/kg0.4530.983J73.920D8,JSAMPLE DUPLICATE:R3717096-8H444500.04DupNax ResultNax RPDNax RPD	Chromium, Hexaval	ent		mg/kg		ND	644	roour	627	97.3	75.0	-125	Quain	
SAMPLE DUPLICATE:R3717096-3ParameterUnits10581546005 ResultDup ResultMax RPDChromium, Hexavalentmg/kg0.4530.983J73.920D8,JSAMPLE DUPLICATE:R3717096-8														
Parameter Units Result Result RPD Qualifiers Chromium, Hexavalent mg/kg 0.453 0.983J 73.9 20 D8,J	SAMPLE DUPLICAT	TE: R	3717096-3				_							
Chromium, Hexavalent mg/kg 0.453 0.983J 73.9 20 D8,J SAMPLE DUPLICATE: R3717096-8 Iddates of the second s	Param	neter		Units	105815 Res	46005 sult	Dup Result	RPE	D	Max RPD	Qualif	iers		
SAMPLE DUPLICATE: R3717096-8	Chromium, Hexaval	ent		mg/kg		0.453	0.983	J	73.9	20	D8,J			
	SAMPLE DUPLICAT	TE: R	3717096-8											
L1415068-01 Dup Max Parameter Units Result Result RPD RPD Qualifiers	Param	neter		Units	L14150 Res	68-01 sult	Dup Result	RPE)	Max RPD	Qualif	iers		
Chromium, Hexavalent mg/kg ND <0.294 0.00 20	Chromium, Hexaval	ent		mg/kg		ND	<0.29	4	0.00	20	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	P66: Oily Water Se	ewer-Revised Repo					
Pace Project No.:	10581546						
QC Batch:	777321		Analysis M	ethod:	EPA 9045D		
QC Batch Method: EPA 9045D			Analysis D	escription:	9045D pH		
			Laboratory	neapolis			
Associated Lab Sar	mples: 10581546	001, 10581546002,	, 10581546003,	10581546004	, 10581546005		
LABORATORY CO	NTROL SAMPLE:	4140747					
Parar	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
pH at 25 Degrees C		Std. Units	5	5.0	101	98-102	
SAMPLE DUPLICA	TE: 4140748						
			10582597001	Dup		Max	
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	;	Std. Units	5.1	1 :	5.2	1	3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 10581546

[1]

SAMPLE QUALIFIERS

Sample: 10581546002

[1] Volatile Organic Compounds (GC/MS) by Method 8260D - Surrogate failure due to matrix interference Sample: 10581546003

[1] Volatile Organic Compounds (GC/MS) by Method 8260D - Surrogate failure due to matrix interference Sample: 10581546005

[1] Volatile Organic Compounds (GC/MS) by Method 8260D - No stir bars remain for further analysis.

ANALYTE QUALIFIERS

- C3 The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- D8 The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- J Analyte detected below the reporting limit, therefore result is an estimate. This qualifier is also used for all TICs.

QUALIFIERS

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

ANALYTE QUALIFIERS

M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
MH	Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.
N2	The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
P6	Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
R1	RPD value was outside control limits.
ST	Surrogate recovery was above laboratory control limits. Results may be biased high.

METHOD CROSS REFERENCE TABLE

Project: P66: Oily Water Sewer-Revised Report							
Pace Project No.: 10581546							
Parameter		Matrix	Analytical Method	Preparation Method			
9045D pH		Solid	SW-846 9045D	N/A			

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66: Oily Water Sewer-Revised Report

Pace Project No.: 10581546

Analytical QC Batch QC Batch Method Lab ID Sample ID **Analytical Method** Batch 10581546001 3050B 1755398 EPA 6020B 1755398 B-2-21 (3 FT) 10581546002 B-3-21 (3.5 FT) 3050B 1755398 EPA 6020B 1755398 10581546003 B-4-21 (3 FT) 3050B 1755398 EPA 6020B 1755398 10581546004 B-5-21 (5 FT) 3050B 1755398 EPA 6020B 1755398 10581546005 B-6-21 (4 FT) 3050B 1755398 EPA 6020B 1755398 10581546001 B-2-21 (3 FT) EPA 7471B 774492 EPA 7471B 775057 10581546002 B-3-21 (3.5 FT) EPA 7471B 774492 EPA 7471B 775057 10581546003 B-4-21 (3 FT) EPA 7471B 774492 EPA 7471B 775057 10581546004 B-5-21 (5 FT) EPA 7471B 774492 EPA 7471B 775057 10581546005 B-6-21 (4 FT) EPA 7471B 774492 EPA 7471B 775057 10581546001 B-2-21 (3 FT) **ASTM D2974** 774477 10581546002 B-3-21 (3.5 FT) **ASTM D2974** 774477 10581546003 B-4-21 (3 FT) **ASTM D2974** 774477 10581546004 B-5-21 (5 FT) **ASTM D2974** 774477 10581546005 B-6-21 (4 FT) **ASTM D2974** 774477 10581546001 B-2-21 (3 FT) 3546 1756427 EPA 8270E 1756427 10581546002 B-3-21 (3.5 FT) 3546 1756427 EPA 8270E 1756427 10581546003 B-4-21 (3 FT) 3546 1756427 EPA 8270E 1756427 10581546004 B-5-21 (5 FT) 3546 1756427 EPA 8270E 1756427 10581546005 B-6-21 (4 FT) 3546 1756427 EPA 8270E 1756427 10581546001 B-2-21 (3 FT) EPA 3550C 775548 EPA 8270E by SIM 775880 10581546002 B-3-21 (3.5 FT) EPA 3550C 775548 EPA 8270E by SIM 775880 10581546003 B-4-21 (3 FT) EPA 3550C 775548 EPA 8270E by SIM 775880 10581546004 B-5-21 (5 FT) EPA 3550C 775548 EPA 8270E by SIM 775880 10581546005 B-6-21 (4 FT) EPA 3550C 775548 EPA 8270E by SIM 775880 1757232 10581546001 B-2-21 (3 FT) 5035A EPA 8260D 1757232 10581546002 B-3-21 (3.5 FT) 5035A 1757232 EPA 8260D 1757232 10581546003 B-4-21 (3 FT) 5035A 1757232 EPA 8260D 1757232 10581546004 B-5-21 (5 FT) 5035A EPA 8260D 1757232 1757232 10581546005 5035A 1756421 EPA 8260D 1756421 B-6-21 (4 FT) 10581546005 B-6-21 (4 FT) 5035A 1763708 EPA 8260D 1763708 10581546001 B-2-21 (3 FT) SM 2540 G 1753338 SM 2540G 1753338 10581546002 SM 2540 G 1753344 SM 2540G B-3-21 (3.5 FT) 1753344 10581546003 SM 2540G B-4-21 (3 FT) SM 2540 G 1753344 1753344 10581546004 B-5-21 (5 FT) SM 2540 G 1753344 SM 2540G 1753344 10581546005 B-6-21 (4 FT) SM 2540 G 1753344 SM 2540G 1753344 10581546001 B-2-21 (3 FT) 3060A 1754566 EPA 7199 1754566 10581546002 B-3-21 (3.5 FT) 3060A 1754566 EPA 7199 1754566 10581546003 B-4-21 (3 FT) 3060A 1754566 EPA 7199 1754566 10581546004 B-5-21 (5 FT) 3060A 1754566 EPA 7199 1754566 3060A EPA 7199 10581546005 B-6-21 (4 FT) 1754567 1754567 10581546001 B-2-21 (3 FT) Calc. 1755398 Calculated 1755398 10581546002 B-3-21 (3.5 FT) Calc. 1755398 Calculated 1755398

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:P66: Oily Water Sewer-Revised ReportPace Project No.:10581546

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10581546003	B-4-21 (3 FT)	Calc.	1755398	Calculated	1755398
10581546004	B-5-21 (5 FT)	Calc.	1755398	Calculated	1755398
10581546005	B-6-21 (4 FT)	Calc.	1755398	Calculated	1755398
10581546001	B-2-21 (3 FT)	EPA 9045D	777321		
10581546002	B-3-21 (3.5 FT)	EPA 9045D	777321		
10581546003	B-4-21 (3 FT)	EPA 9045D	777321		
10581546004	B-5-21 (5 FT)	EPA 9045D	777321		
10581546005	B-6-21 (4 FT)	EPA 9045D	777321		

Answert Endent Request Statement Immone	
multi Entropy FUNCTION For Entropy Construct Construction (Construction of Construction of Constructin on Construction of Construction of Construction of Constructi	
Image: Inclusion Consistence control Part and control Part and control Presentation SaMPLE ID Witting Presentation Presentation The control of contro control of control of control of control of control of control of	ale, WA 98248 1000 1000 1000 1000 1000 1000 1000 10
Sandard TAT Contract TAT Preservatives Advector SAMPLE ID water with a contract tart and a cont a contract tart and	
SAMPLE ID writer (x, 2, 6, 9, 1, 3) Writer make writer write	
SAMPLE ID metrics metrics metrics collected metrics Preservatives metrics Preservatives metrics Preservatives metrics Preservatives metrics AMPLE ID metrics metrics metrics <td></td>	
SAMPLE ID MATRING Contraction Contrenteries Con	
EI DATE TIME DATE DATE TIME DATE TIME DATE D	الالالالالالالالالالالالالالالالالالال
1 b-2-21 (3 F T) 5L (6 930021 11:15 - - VONS, 2-802. Jars, 81-402. Jar. 2 B-3-21 (3 F T) SL (6 930021 11:15 - - VONS, 2-802. Jars, 81-402. Jar. 3 B-4-21 (3 F T) SL (6 930021 11:15 - - VONS, 2-802. Jars, 81-402. Jar. 4 B-5-21 (5 F T) SL (6 930021 11:15 - - VONS, 2-802. Jars, 81-402. Jar. 6 B-6-21 (4 F T) SL (6 930021 11:15 - - VONS, 2-802. Jars, 81-402. Jar. 7 B-6-21 (4 F T) SL (6 930021 2-15 - VONS, 2-802. Jars, 81-402. Jar. 1 B B-6-21 (4 F T) SL (6 930021 2-16 VONS, 2-802. Jars, 81-402. Jar. 6 P P P P P VONS, 2-802. Jars, 81-402. Jar. 1 P P P P P P VONS, 2-802. Jars, 81-402. Jar. 6 P P P P P P P P P P P P P P P P P P P </td <td>Image: Contract of the second of the seco</td>	Image: Contract of the second of the seco
3 B-4-21 (3 FT) SL G 930021 11.45 . . TerraCore 5035A kit wir 2 extra Methan 4 B-5-21 (5 FT) SL G 930021 11.15 . . TerraCore 5035A kit wir 2 extra Methan 6 B-5-21 (5 FT) SL G 930021 11.15 . . . 2 extra Methan 7 B-5-21 (4 FT) SL G 930021 2.15 2 extra Methan 7 B-5-21 (4 FT) SL G 930021 2.15 2 extra Methan 7 B B . <td< td=""><td>ar. <u> </u></td></td<>	ar. <u> </u>
4 B-5-21 (5 FT) SL G 9:0021 1:15 . Terracore 5035A kit wit 2 extra Methan 5 B-6-21 (4 FT) SL G 9:0021 2:15 . Terracore 5035A kit wit 2 extra Methan 6 B-6-21 (4 FT) SL G 9:0021 2:15 . Terracore 5035A kit wit 2 extra Methan 7 B-6-21 (4 FT) SL G 9:0021 2:15 . C NOAS, 2 Boz Jars, & 1-4oz Jar. 6 9:0021 2:15 2:15 . C NOAS, 2 Boz Jars, & 1-4oz Jar. 7 9:0021 10 11 12 12 12 1402.2.000.000.000.000.000.000.000.000.00	thanol X X X X X X X X X X X X X X X X X X X
5 B-6-21 (4 FT) SL G 930021 2:15 - Teracore 5035 kit w. 2 exta Methan 7 NOAS, 2 B-3, Jars, 8 1-402, Jar. H H H H 8 H H H H H H 9 H H H H H H 10 H	
6 - - - - - - 8 - - - - - - 9 - - - - - - 10 - - - - - - 11 - - - - - - 12 - - - - - - 11 - - - - - - 11 - - - - - - 11 - - - - - - 12 - - - - - - 13 - - - - - - 14 - - - - - - 12 - - - - - - 14 - - - - - - 12 - - - - - - 14 - - - - - - 15 - - - - - <tr< td=""><td></td></tr<>	
8 9 10 11 12 12 22 22 20 20 20 20 20 20 20 2	
10 1	
11 12 ADDTIONAL COMMENTS - RELNOUSHED BY (AFFILATION DATE 7 TIME ACCEPTED	
12 ADDITIONAL COMMENTS RELINQUISHED BY VAFILIATION DATE 11ME ACCEPTED	
	EDBY/AFFILIATION
lease email results to both Phillips 66, and Whatcom Environmental WWHWWW / Whatcom Environmental	Z/Phee [01-241 90] 3.5 Y Y Y
See attached page for requested reporting limits.	5.8
Page	
SAMPLER NAME AND SIGNATURE	Ashey Yamau Toler (Y/N) Story Sealed (Y/N) MP in C DATT Sinner:

	67	Document	Name:	Document Revised: 14A	pr2021		
	Pace Analytical [®]	Sample Condition Upon Receipt (SCUR) - MN		Page 1 of 1			
		Documen ENV-FRM-MIN4	nt No.: - 0150 Rev.02	Pace Analytical Services - Minneapolis			
Sample Co Upon Ro	ondition Client Name:	Projec		+ 1059151	8		
	P66		WUt	1.1020124			
Courier:	Fed,Ex UPS	USPS Client	CLIENT	IG Due Date: : COP	10/18/21		
Tracking I	Number:	See Except ENV-FRM-N	/inv4-0142				
Custody S	Seal on Cooler/Box Present?	No Seals Intac	t? Yes No	Biological Tissue Frozen?	Yes No 🔥		
Packing N	Material: 🗌 Bubble Wrap 🖉 Bub	ble Bags 🗌 None 🗍 Ot	:her:	Temp Blank?	ZYes □No		
Thermom	eter: T1(0461) T2(1336) T3(T1(0254) T5(0489)	0459) OS418-LS Type	Wet Blue	None Dry Melted			
Did Sample	es Originate in West Virginia? 🗌 Yes 🎾	Were All Container	Temps Taken? Yes				
Temp should Correction	be above freezing to 6°C Cooler Tem Factor: Image: Cooler Temp Cool	p Read w/temp blank:	<u>3.5,2.8</u> J.5,2.8	_off Average Corrected Temp (no temp bland of only): of C	See Exceptions ENV-FRM-MIN4-014		
USDA Regu Did samples ID, LA. MS, I	Ilated Soil: ([] N/A, water sample/Othe s originate in a quarantine zone within the NC, NM, NY, OK, OR, SC, TN, TX or VA (che If Yes to either question, fill o	er:) = United States: AL, AR, CA, FL, G eck maps)? Yes No put a Regulated Soil Checklist	Date/Initials of Pers GA, Did samples originat Hawaii and Puerto Ri (F-MN-Q-338) and includ	on Examining Contents: e from a foreign source (internatio ico)?YesNo e with SCUR/COC paperwork	KB 10/4/2 phally, including		
				COMMENTS:			
Chain of Cust	tody Present and Filled Out?	Yes No	1.	d	• •		
Chain of Cust	tody Relinquished?	Yes No	2.	.,			
Sampler Nam	ne and/or Signature on COC?		3.				
Short Hold Ti	ime Analysis (<72 hr)?	YesNo Yes ZNo	4. 5. Fecal Coliform	HPC Total Coliform/E coli	/cBOD Hex Chrome		
Rush Turn Ar	round Time Requested?	Yes No	6.	teNitriteOrthophosOther_			
Sufficient Vo	lume?	Yes No	7.				
Correct Conta	ainers Used?	Yes No	8.				
-Pace Con	tainers Used?	Yes No		······································			
<u>Containers in</u>	ltact?	No	9.				
Field Filtered	Volume Received for Dissolved Tests?	Yes No N/A	10. Is sediment visibl	e in the dissolved container?	Yes 🗌 No		
to the COC?		ples	11. If no, write ID/ Date/	Time on Container Below:	See Exception		
All containers	s needing acid/base preservation have be	en 🛛 Yes 🗋 No 🖉 N/A	12. Sample #				
All containers compliance w (HNO ₃ , H ₂ SO ₄	s needing preservation are found to be in /ith EPA recommendation? ,, <2pH, NaOH >9 Sulfide, NaOH>10 Cyan	□Yes □No □N/A	🛄 №ОН	HNO ₃ H ₂ SO ₄	Zinc Acetate		
Exceptions: V	OA, Coliform, TOC/DOC Oil and Grease, atter) and Dioxin/PFAS	Yes No N/A	Positive for Res. Yes Chlorine? No Res. Chlorine 0-6	pH Paper Lot# Roll 0-6 Strip	See Exception ENV-FRM-MIN4-014 0-14 Strip		
0RO/8015 (w			1				
oRO/8015 (w	resent on soil VOA or WIDRO containers?	Yes No N/A	13.		Soc Even-stand		
DRO/8015 (W Extra labels pi Headspace in Trip Blank Pre	resent on soil VOA or WIDRO containers? VOA Vials (greater than 6mm)? esent?	Yes No N/A Yes No N/A	13.		See Exception		
DRO/8015 (W Extra labels pi Headspace in Trip Blank Pre Frip Blank Cus	resent on soil VOA or WIDRO containers? VOA Vials (greater than 6mm)? esent? stody Seals Present?	Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A	13. 14. Pace Trip Blank Lo	ot # (if purchased):	See Exception		
Extra labels p leadspace in Trip Blank Pre Trip Blank Cus CLI 'erson Conta	resent on soil VOA or WIDRO containers? VOA Vials (greater than 6mm)? esent? stody Seals Present? IENT NOTIFICATION/RESOLUTION acted:	Yes No N/A Yes No N/A	13. 14. Pace Trip Blank Lo Date/Time:	ot # (if purchased): Field Data Required?	See Exception _ ENV-FRM-MIN4-014 YesNo		
SRO/8015 (w Extra labels p Headspace in Frip Blank Pre Trip Blank Cus CLI Person Conta Comments/R	resent on soil VOA or WIDRO containers? VOA Vials (greater than 6mm)? sent? stody Seals Present? IENT NOTIFICATION/RESOLUTION acted: Resolution:	Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A	13. 14. Pace Trip Blank Lo Date/Time:	ot # (if purchased): Field Data Required?	See Exception ENV-FRM-MIN4-014		
DRO/8015 (w Extra labels pi Headspace in Trip Blank Pre Frip Blank Cus CLI Person Conta Comments/R	resent on soil VOA or WIDRO containers? VOA Vials (greater than 6mm)? esent? stody Seals Present? IENT NOTIFICATION/RESOLUTION acted: tesolution: biect Manager Review:	Yes No N/A Yes No N/A Yes No N/A Yes No N/A Yes No N/A	13. 14. Pace Trip Blank Lo Date/Time:	Field Data Required?	See Exception L ENV-FRM-MIN4-014 Yes No		

Labeled	bv:	
	~,.	

1.) KB (199 53 of 70

Pace Analytical [®]	Document Name: Sample Condition Upon Receipt (SCUR) Exception Form	Document Revised: 04Jun2020 Page 1 of 1		
	Document No.: ENV-FRM-MIN4-0142 Rev.01	Pace Analytical Services - Minneapolis		

SCUR Exceptions:

Workorder #:

Out of Temp Sample IDs	Container Type	# of Containers		No			
			If yes, indicate who was contacted/date/time. If no, indicate reason why.				
			Mult If you	res No to the left.			
				No Temp Blank			
			Read Temp	Corrected Temp	Average Temp		

Tracking Number/Temperature	
77486338 NA	3.5
7748 6338 8276	7.8
	20

Issue Ty	/pe:	Container	# of
	Sample ID	Түре	Containers
		·····	
			······································

pH Adjustment Log for Preserved Samples

			1		· · · · · · · · · · · · · · · · · · ·	T	r	·····	
Sample ID	Type of Preserv.	pH Upon Receipt	Date Adjusted	Time Adjusted	Amoun t Added (mL)	Lot # Added	pH After	In Compliance after addition?	Initials
								Yes No	
								Yes No	
								L	

Comments:
Main Main Main Main Main Main VUBB Main VUB
Matrix Matrix 6020 As.(Cd 7199 H 6020 As.(Cd 7199 H 711 Asle 6020 As.(Cd 7199 H 711 Asle 7199 H 711 Asle 7199 H 711 Asle 7199 H 711 Asle 711 Asle
6001 Solid 2 1 1 1 X X X X X X X 0 0
6002 Solid 2 1 1 X X X X X X X Y Y X X X X X X X X X
6004 Solid 2 1 1 1 X X X X X X X X X X X X X X X X
6005 Solid 2 1 1 X X X X X X X X X X X X X X X X X
Comments
ed By Date/Time *8260D BTEX, hexane - run stir bars first.
w// totetan quu
I(Y or N Received on Ice Y or N Samples Intact Y or N

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Pace Analytical Minnesota Julie Bowser 1700 Elm Street, Ste. 200 Minneapolis, MN 55414

RE: P66: Oily Water Sewer Work Order Number: 2110086

October 19, 2021

Attention Julie Bowser:

Fremont Analytical, Inc. received 5 sample(s) on 10/6/2021 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Pace Analytical Minnesota P66: Oily Water Sewer 2110086	Work Order Sample Sumn							
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received						
2110086-001	B-2-21 (3 FT)	09/30/2021 10:15 AM	10/06/2021 12:08 PM						
2110086-002	B-3-21 (3.5 FT)	09/30/2021 11:15 AM	10/06/2021 12:08 PM						
2110086-003	B-4-21 (3 FT)	09/30/2021 11:45 AM	10/06/2021 12:08 PM						
2110086-004	B-5-21 (5 FT)	09/30/2021 1:15 AM	10/06/2021 12:08 PM						
2110086-005	B-6-21 (4 FT)	09/30/2021 2:15 AM	10/06/2021 12:08 PM						

Case Narrative

WO#: **2110086** Date: **10/19/2021**

CLIENT:Pace Analytical MinnesotaProject:P66: Oily Water Sewer

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2110086** Date Reported: **10/19/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank **CCV - Continued Calibration Verification DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment

- SPK Spike
- Surr Surrogate

 Work Order:
 2110086

 Date Reported:
 10/19/2021

CLIENT: Pace Analytical Minnesota

Lab ID: 2110086-001 Client Sample ID: B-2-21 (3 FT		Collection Date: 9/30/2021 10:15:00 Al Matrix: Solid					
Analyses	Result	MDL	Qual	Units	D	F Dat	e Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	ID:	33968	Analyst: MM
Aliphatic Hydrocarbon (C10-C12)	28.5	5.09		mg/Kg-dry	1	10/1	4/2021 10:14:26 PM
Aliphatic Hydrocarbon (C12-C16)	78.4	2.17		mg/Kg-dry	1	10/1	4/2021 10:14:26 PM
Aliphatic Hydrocarbon (C16-C21)	96.4	4.33		mg/Kg-dry	1	10/1	4/2021 10:14:26 PM
Aliphatic Hydrocarbon (C21-C34)	173	6.96		mg/Kg-dry	1	10/1	4/2021 10:14:26 PM
Aromatic Hydrocarbon (C10-C12)	4.84	3.61	J	mg/Kg-dry	1	10/1	5/2021 7:58:18 AM
Aromatic Hydrocarbon (C12-C16)	25.0	2.49		mg/Kg-dry	1	10/1	5/2021 7:58:18 AM
Aromatic Hydrocarbon (C16-C21)	ND	5.74		mg/Kg-dry	1	10/1	5/2021 7:58:18 AM
Aromatic Hydrocarbon (C21-C34)	88.7	8.49		mg/Kg-dry	1	10/1	5/2021 7:58:18 AM
Surr: 1-Chlorooctadecane	83.3	60 - 140		%Rec	1	10/1	4/2021 10:14:26 PM
Surr: o-Terphenyl	85.6	60 - 140		%Rec	1	10/1	5/2021 7:58:18 AM
Volatile Petroleum Hydrocarbo	<u>ns by NWVPH</u>			Batch	ID:	33976	Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	1.33	1.14	J	mg/Kg-dry	1	10/7	7/2021 4:11:03 PM
Aliphatic Hydrocarbon (C6-C8)	ND	0.384		mg/Kg-dry	1	10/7	/2021 4:11:03 PM
Aliphatic Hydrocarbon (C8-C10)	2.93	1.12		mg/Kg-dry	1	10/7	/2021 4:11:03 PM
Aromatic Hydrocarbon (C8-C10)	ND	1.45		mg/Kg-dry	1	10/7	/2021 4:11:03 PM
Surr: 1,4-Difluorobenzene	75.1	65 - 140		%Rec	1	10/7	/2021 4:11:03 PM
Surr: Bromofluorobenzene	98.4	65 - 140		%Rec	1	10/7	/2021 4:11:03 PM
Sample Moisture (Percent Mois	ture)			Batch	ID:	R70427	Analyst: OK
Percent Moisture	14.6	0.100		wt%	1	10/8	3/2021 10:30:06 AM

 Work Order:
 2110086

 Date Reported:
 10/19/2021

Lab ID: 2110086-002 Client Sample ID: B-3-21 (3.5 I	Collection Date: 9/30/2021 11:15:00 AM Matrix: Solid							
Analyses	Result	MDL	Qual	Units	D	F Date Analyzed		
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	ID:	33968 Analyst: MM		
Aliphatic Hydrocarbon (C10-C12)	186	5.03		mg/Kg-dry	1	10/14/2021 11:07:45 PM		
Aliphatic Hydrocarbon (C12-C16)	652	2.14		mg/Kg-dry	1	10/14/2021 11:07:45 PM		
Aliphatic Hydrocarbon (C16-C21)	658	4.28		mg/Kg-dry	1	10/14/2021 11:07:45 PM		
Aliphatic Hydrocarbon (C21-C34)	1,200	6.87		mg/Kg-dry	1	10/14/2021 11:07:45 PM		
Aromatic Hydrocarbon (C10-C12)	16.1	3.57		mg/Kg-dry	1	10/15/2021 8:51:44 AM		
Aromatic Hydrocarbon (C12-C16)	129	2.46		mg/Kg-dry	1	10/15/2021 8:51:44 AM		
Aromatic Hydrocarbon (C16-C21)	325	5.68		mg/Kg-dry	1	10/15/2021 8:51:44 AM		
Aromatic Hydrocarbon (C21-C34)	735	8.39		mg/Kg-dry	1	10/15/2021 8:51:44 AM		
Surr: 1-Chlorooctadecane	99.9	60 - 140		%Rec	1	10/14/2021 11:07:45 PM		
Surr: o-Terphenyl	85.3	60 - 140		%Rec	1	10/15/2021 8:51:44 AM		
Volatile Petroleum Hydrocarbor	ns by NWVPH			Batch	ID:	33976 Analyst: SLL		
Aliphatic Hydrocarbon (C5-C6)	1.47	1.26	J	mg/Kg-dry	1	10/7/2021 5:29:44 PM		
Aliphatic Hydrocarbon (C6-C8)	5.68	0.426		mg/Kg-dry	1	10/7/2021 5:29:44 PM		
Aliphatic Hydrocarbon (C8-C10)	21.6	1.25		mg/Kg-dry	1	10/7/2021 5:29:44 PM		
Aromatic Hydrocarbon (C8-C10)	28.4	1.60		mg/Kg-dry	1	10/7/2021 5:29:44 PM		
Surr: 1,4-Difluorobenzene	75.4	65 - 140		%Rec	1	10/7/2021 5:29:44 PM		
Surr: Bromofluorobenzene	132	65 - 140		%Rec	1	10/7/2021 5:29:44 PM		
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ID:	R70427 Analyst: OK		
Percent Moisture	21.7	0.100		wt%	1	10/8/2021 10:30:06 AM		

 Work Order:
 2110086

 Date Reported:
 10/19/2021

CLIENT: Pace Analytical Minnesota

Lab ID: 2110086-003 Client Sample ID: B-4-21 (3 FT	Collection Date: 9/30/2021 11:45:00 AM Matrix: Solid							
Analyses	Result	MDL	Qual	Units	DF	Date	e Analyzed	
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	ID: 3	33968	Analyst: MM	
Aliphatic Hydrocarbon (C10-C12)	206	5.63		mg/Kg-dry	1	10/1	5/2021 12:00:35 AM	
Aliphatic Hydrocarbon (C12-C16)	618	2.40		mg/Kg-dry	1	10/18	5/2021 12:00:35 AM	
Aliphatic Hydrocarbon (C16-C21)	594	4.79		mg/Kg-dry	1	10/18	5/2021 12:00:35 AM	
Aliphatic Hydrocarbon (C21-C34)	1,140	7.69		mg/Kg-dry	1	10/18	5/2021 12:00:35 AM	
Aromatic Hydrocarbon (C10-C12)	40.9	4.00		mg/Kg-dry	1	10/18	5/2021 10:39:09 AM	
Aromatic Hydrocarbon (C12-C16)	155	2.75		mg/Kg-dry	1	10/15	5/2021 10:39:09 AM	
Aromatic Hydrocarbon (C16-C21)	419	6.35		mg/Kg-dry	1	10/15	5/2021 10:39:09 AM	
Aromatic Hydrocarbon (C21-C34)	705	9.39		mg/Kg-dry	1	10/15	5/2021 10:39:09 AM	
Surr: 1-Chlorooctadecane	88.5	60 - 140		%Rec	1	10/15	5/2021 12:00:35 AM	
Surr: o-Terphenyl	85.1	60 - 140		%Rec	1	10/18	5/2021 10:39:09 AM	
Volatile Petroleum Hydrocarbor	<u>ns by NWVPH</u>			Batch	ID: 3	33976	Analyst: SLL	
Aliphatic Hydrocarbon (C5-C6)	1.27	1.11	J	mg/Kg-dry	1	10/7/	/2021 8:44:27 PM	
Aliphatic Hydrocarbon (C6-C8)	4.25	0.374		mg/Kg-dry	1	10/7/	/2021 8:44:27 PM	
Aliphatic Hydrocarbon (C8-C10)	31.6	1.09		mg/Kg-dry	1	10/7/	/2021 8:44:27 PM	
Aromatic Hydrocarbon (C8-C10)	49.3	1.41		mg/Kg-dry	1	10/7/	/2021 8:44:27 PM	
Surr: 1,4-Difluorobenzene	78.5	65 - 140		%Rec	1	10/7/	/2021 8:44:27 PM	
Surr: Bromofluorobenzene	176	65 - 140	S	%Rec	1	10/7/	/2021 8:44:27 PM	
NOTES:								
S - Outlying surrogate recovery(ies) obser	rved.							
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ID: F	270427	Analyst: OK	
Percent Moisture	22.8	0.100		wt%	1	10/8/	/2021 10:30:06 AM	

 Work Order:
 2110086

 Date Reported:
 10/19/2021

CLIENT: Pace Analytical Minnesota

Lab ID: 2110086-004 Client Sample ID: B-5-21 (5 FT	-)			Collection Matrix: So	Da tolid	te: 9/30/2021 1:15:00 AM
Analyses	Result	MDL	Qual	Units	D	F Date Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>PH</u>		Batch	ID:	33968 Analyst: MM
Aliphatic Hydrocarbon (C10-C12)	29.1	5.98		mg/Kg-dry	1	10/15/2021 12:53:50 AM
Aliphatic Hydrocarbon (C12-C16)	74.2	2.55		mg/Kg-dry	1	10/15/2021 12:53:50 AM
Aliphatic Hydrocarbon (C16-C21)	78.8	5.09		mg/Kg-dry	1	10/15/2021 12:53:50 AM
Aliphatic Hydrocarbon (C21-C34)	199	8.18		mg/Kg-dry	1	10/15/2021 12:53:50 AM
Aromatic Hydrocarbon (C10-C12)	ND	4.25		mg/Kg-dry	1	10/15/2021 12:26:50 PM
Aromatic Hydrocarbon (C12-C16)	25.6	2.92		mg/Kg-dry	1	10/15/2021 12:26:50 PM
Aromatic Hydrocarbon (C16-C21)	79.6	6.75		mg/Kg-dry	1	10/15/2021 12:26:50 PM
Aromatic Hydrocarbon (C21-C34)	98.0	9.98		mg/Kg-dry	1	10/15/2021 12:26:50 PM
Surr: 1-Chlorooctadecane	80.3	60 - 140		%Rec	1	10/15/2021 12:53:50 AM
Surr: o-Terphenyl	79.0	60 - 140		%Rec	1	10/15/2021 12:26:50 PM
Volatile Petroleum Hydrocarbo	ns by NWVPH			Batch	ID:	33976 Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	1.29	1.12	J	mg/Kg-dry	1	10/7/2021 6:47:41 PM
Aliphatic Hydrocarbon (C6-C8)	1.15	0.378	J	mg/Kg-dry	1	10/7/2021 6:47:41 PM
Aliphatic Hydrocarbon (C8-C10)	3.20	1.10		mg/Kg-dry	1	10/7/2021 6:47:41 PM
Aromatic Hydrocarbon (C8-C10)	3.85	1.42		mg/Kg-dry	1	10/7/2021 6:47:41 PM
Surr: 1,4-Difluorobenzene	75.9	65 - 140		%Rec	1	10/7/2021 6:47:41 PM
Surr: Bromofluorobenzene	102	65 - 140		%Rec	1	10/7/2021 6:47:41 PM
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ID:	R70427 Analyst: OK
Percent Moisture	24.1	0.100		wt%	1	10/8/2021 10:30:06 AM

 Work Order:
 2110086

 Date Reported:
 10/19/2021

CLIENT: Pace Analytical Minnesota

Lab ID: 2110086-005 Client Sample ID: B-6-21 (4 FT	.)			Collection Matrix: So	Dat olid	: e: 9/30/2	2021 2:15:00 AM
Analyses	Result	MDL	Qual	Units	D	- Date	e Analyzed
Extractable Petroleum Hydroca	rbons by NWE	<u>РН</u>		Batch	ID:	33968	Analyst: MM
Aliphatic Hydrocarbon (C10-C12)	ND	4.92		mg/Kg-dry	1	10/1	8/2021 9:51:57 AM
Aliphatic Hydrocarbon (C12-C16)	ND	2.10		mg/Kg-dry	1	10/1	8/2021 9:51:57 AM
Aliphatic Hydrocarbon (C16-C21)	ND	4.19		mg/Kg-dry	1	10/1	8/2021 9:51:57 AM
Aliphatic Hydrocarbon (C21-C34)	10.0	6.73	J	mg/Kg-dry	1	10/1	8/2021 9:51:57 AM
Aromatic Hydrocarbon (C10-C12)	ND	3.50		mg/Kg-dry	1	10/1	5/2021 1:20:34 PM
Aromatic Hydrocarbon (C12-C16)	ND	2.41		mg/Kg-dry	1	10/1	5/2021 1:20:34 PM
Aromatic Hydrocarbon (C16-C21)	5.66	5.56	J	mg/Kg-dry	1	10/1	5/2021 1:20:34 PM
Aromatic Hydrocarbon (C21-C34)	9.72	8.22	J	mg/Kg-dry	1	10/1	5/2021 1:20:34 PM
Surr: 1-Chlorooctadecane	140	60 - 140		%Rec	1	10/1	8/2021 9:51:57 AM
Surr: o-Terphenyl	91.9	60 - 140		%Rec	1	10/1	5/2021 1:20:34 PM
Volatile Petroleum Hydrocarbor	<u>ns by NWVPH</u>			Batch	ID:	33976	Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	1.20	0.990	J	mg/Kg-dry	1	10/7	/2021 8:05:34 PM
Aliphatic Hydrocarbon (C6-C8)	1.67	0.335		mg/Kg-dry	1	10/7	/2021 8:05:34 PM
Aliphatic Hydrocarbon (C8-C10)	ND	0.979		mg/Kg-dry	1	10/7	/2021 8:05:34 PM
Aromatic Hydrocarbon (C8-C10)	ND	1.26		mg/Kg-dry	1	10/7	/2021 8:05:34 PM
Surr: 1,4-Difluorobenzene	77.4	65 - 140		%Rec	1	10/7	/2021 8:05:34 PM
Surr: Bromofluorobenzene	95.9	65 - 140		%Rec	1	10/7	/2021 8:05:34 PM
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ID:	R70427	Analyst: OK
Percent Moisture	22.2	0.100		wt%	1	10/8	/2021 10:30:06 AM

Work Order: CLIENT: Project:	2110086 Pace Analyti P66: Oily Wa	cal Minnes ater Sewer	sota					Extra	ctable F	QC S Petroleum H	SUMMAI Hydrocarb	RY REF ons by N	PORT WEPH
Sample ID: MB-33	968	SampType	e: MBLK			Units: mg/Kg		Prep Date	e: 10/6/20	21	RunNo: 706	601	
Client ID: MBLK	S	Batch ID:	33968					Analysis Date	e: 10/14/2	2021	SeqNo: 143	5121	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C10-C12)		ND	10.0									
Aliphatic Hydrocar	bon (C12-C16)		ND	10.0									
Aliphatic Hydrocar	bon (C16-C21)		ND	10.0									
Aliphatic Hydrocar	bon (C21-C34)		ND	10.0									
Surr: 1-Chlorood	ctadecane		84.0		100.0		84.0	60	140				
Sample ID: LCS-3	3968	SampType	e: LCS			Units: mg/Kg		Prep Date	e: 10/6/20	21	RunNo: 706	601	
Client ID: LCSS		Batch ID:	33968					Analysis Date	e: 10/14/2	2021	SeqNo: 143	5122	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C10-C12)		89.2	10.0	125.0	0	71.4	70	130				
Aliphatic Hydrocar	bon (C12-C16)		115	10.0	125.0	0	92.1	70	130				
Aliphatic Hydrocar	bon (C16-C21)		116	10.0	125.0	0	93.0	70	130				
Aliphatic Hydrocar	bon (C21-C34)		137	10.0	125.0	0	110	70	130				
Surr: 1-Chlorood	ctadecane		101		100.0		101	60	140				
Sample ID: LCSD	-33968	SampType	e: LCSD			Units: mg/Kg		Prep Date	e: 10/6/20	21	RunNo: 706	601	
Client ID: LCSS	02	Batch ID:	33968					Analysis Date	e: 10/14/2	2021	SeqNo: 143	5130	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C10-C12)		79.7	10.0	125.0	0	63.7	70	130	0	200	20	S
Aliphatic Hydrocar	bon (C12-C16)		101	10.0	125.0	0	81.2	70	130	0	200	20	
Aliphatic Hydrocar	bon (C16-C21)		105	10.0	125.0	0	83.7	70	130	0	200	20	
Aliphatic Hydrocar	bon (C21-C34)		136	10.0	125.0	0	109	70	130	0	200	20	
Surr: 1-Chlorood NOTES:	ctadecane		91.5		100.0		91.5	60	140		0		

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Fremont

Analytical

Work Order:	2110086									00.5			ORT
CLIENT:	Pace Analyti	cal Minnes	ota										
Project:	P66: Oily Wa	ater Sewer						Extrac	ctable F	Petroleum I	Hydrocarb	ons by N	WEPH
Sample ID: MB-33	3968	SampType	e: MBLK			Units: mg/Kg		Prep Date:	: 10/6/20	21	RunNo: 706	600	
Client ID: MBLK	S	Batch ID:	33968					Analysis Date:	: 10/15/2	021	SeqNo: 143	34924	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydroca	rbon (C10-C12)		ND	10.0									
Aromatic Hydroca	rbon (C12-C16)		ND	10.0									
Aromatic Hydroca	rbon (C16-C21)		ND	10.0									
Aromatic Hydroca	rbon (C21-C34)		8.76	10.0									J
Surr: o-Terphen	yl		87.7		100.0		87.7	60	140				
Sample ID: LCS-3	3968	SampType	e: LCS			Units: mg/Kg		Prep Date:	10/6/20	21	RunNo: 706	500	
Client ID: LCSS		Batch ID:	33968					Analysis Date:	: 10/15/2	021	SeqNo: 143	34925	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydroca	rbon (C10-C12)		99.4	10.0	125.0	0	79.5	70	130				
Aromatic Hydroca	rbon (C12-C16)		110	10.0	125.0	0	88.1	70	130				
Aromatic Hydroca	rbon (C16-C21)		120	10.0	125.0	0	96.2	70	130				
Aromatic Hydroca	rbon (C21-C34)		132	10.0	125.0	0	105	70	130				
Surr: o-Terphen	yl		105		100.0		105	60	140				
Sample ID: LCSD	-33968	SampType	e: LCSD			Units: mg/Kg		Prep Date:	10/6/20	21	RunNo: 706	500	
Client ID: LCSS	02	Batch ID:	33968					Analysis Date:	: 10/15/2	021	SeqNo: 143	34937	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydroca	rbon (C10-C12)		87.6	10.0	125.0	0	70.1	70	130	99.38	12.5	20	
Aromatic Hydroca	rbon (C12-C16)		93.5	10.0	125.0	0	74.8	70	130	110.1	16.3	20	
Aromatic Hydroca	rbon (C16-C21)		99.3	10.0	125.0	0	79.5	70	130	120.3	19.1	20	
Aromatic Hydroca	rbon (C21-C34)		116	10.0	125.0	0	92.9	70	130	131.8	12.6	20	
Surr: o-Terphen	yl		85.8		100.0		85.8	60	140		0		

Work Order: 2110086							2.00	SUMMARY RE	PORT
CLIENT: Pace Analyt	tical Minnesota								
Project: P66: Oily W	ater Sewer					Volati	le Petroleum	Hydrocarbons by I	NWVPH
Sample ID: LCS-33976	SampType: LCS			Units: mg/Kg		Prep Date: 10	7/2021	RunNo: 70527	
Client ID: LCSS	Batch ID: 33976					Analysis Date: 10	7/2021	SeqNo: 1435042	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighL	mit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	28.2	2.50	30.00	0	93.9	70	130		
Aliphatic Hydrocarbon (C6-C8)	10.3	1.50	10.00	0	103	70	130		
Aliphatic Hydrocarbon (C8-C10)	10.1	2.50	10.00	0	101	70	130		
Aromatic Hydrocarbon (C8-C10)	35.0	3.00	40.00	0	87.6	70	130		
Surr: 1,4-Difluorobenzene	2.27		2.500		90.7	65	140		
Surr: Bromofluorobenzene	2.40		2.500		96.0	65	140		
Sample ID: MB-33976	SampType: MBLK			Units: mg/Kg		Prep Date: 10	7/2021	RunNo: 70527	
Client ID: MBLKS	Batch ID: 33976					Analysis Date: 10	7/2021	SeqNo: 1435043	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighL	mit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	1.28	2.50		0	0				J
Aliphatic Hydrocarbon (C6-C8)	ND	1.50		0	0				
Aliphatic Hydrocarbon (C8-C10)	ND	2.50		0	0				
Aromatic Hydrocarbon (C8-C10)	ND	3.00		0	0				
Surr: 1,4-Difluorobenzene	1.92		2.500		76.8	65	140		
Surr: Bromofluorobenzene	2.43		2.500		97.1	65	140		
Sample ID: 2110086-001BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date: 10	7/2021	RunNo: 70527	
Client ID: B-2-21 (3 FT)	Batch ID: 33976					Analysis Date: 10	7/2021	SeqNo: 1435029	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighL	mit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	29.4	2.35	28.23	1.333	99.3	70	130		
Aliphatic Hydrocarbon (C6-C8)	10.0	1.41	9.408	0	106	70	130		
Aliphatic Hydrocarbon (C8-C10)	10.7	2.35	9.408	2.928	82.8	70	130		
Aromatic Hydrocarbon (C8-C10)	42.4	2.82	37.63	0	113	70	130		
Surr: 1,4-Difluorobenzene	2.06		2.352		87.6	65	140		
Surr: Bromofluorobenzene	2.36		2.352		100	65	140		

Work Order: 2110086

CLIENT:Pace Analytical MinnesotaProject:P66: Oily Water Sewer

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 2110086-004BDUP	SampType: DUP			Units: mg/l	۶g-dry	Prep Da	te: 10/7/20	21	RunNo: 705	527	
Client ID: B-5-21 (5 FT)	Batch ID: 33976					Analysis Da	te: 10/7/20	21	SeqNo: 143	35034	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	1.38	2.31		0	0			1.290	6.54	25	J
Aliphatic Hydrocarbon (C6-C8)	1.80	1.39		0	0			1.154	43.8	25	
Aliphatic Hydrocarbon (C8-C10)	2.95	2.31		0	0			3.198	7.93	25	
Aromatic Hydrocarbon (C8-C10)	4.02	2.77		0	0			3.854	4.26	25	
Surr: 1,4-Difluorobenzene	1.80		2.311		77.9	65	140		0		
Surr: Bromofluorobenzene	2.36		2.311		102	65	140		0		

Sample Log-In Check List

Clie	ent Name:	PACEMI	Work Order Number: 2110086						
Log	iged by:	Gabrielle Coeuille	Date Re	ceived:	10/6/2021	12:08:33 PM			
Chai	n of Cust	ody							
1. ^I	s Chain of C	ustody complete?	Yes	✓	No 🗌	Not Present			
2. ⊦	low was the	sample delivered?	<u>FedE</u>	x					
Log I	<u>In</u>								
3. 0	Coolers are p	present?	Yes	✓	No 🗌	NA 🗌			
4. ^S	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌				
5. (Custody Sea Refer to con	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	✓	No 🗌	Not Present			
6. V	Vas an atter	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌			
7. V	Vere all item	as received at a temperature of >2°C to 6°C *	Yes	✓	No 🗌				
8. 5	Sample(s) in	proper container(s)?	Yes	✓	No 🗌				
9. 5	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌				
10. ^A	Are samples	properly preserved?	Yes	✓	No 🗌				
11. V	Vas preserv	ative added to bottles?	Yes		No 🔽	NA 🗌			
12.	s there head	lspace in the VOA vials?	Yes		No 🗌	NA 🗹			
13. 🛙	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌				
14. [Does paperw	ork match bottle labels?	Yes	✓	No 🗌				
15. ⁴	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌				
16. ^I	s it clear what	at analyses were requested?	Yes	✓	No 🗌				
17. V	Vere all hold	ling times able to be met?	Yes	✓	No 🗌				
<u>Spec</u>	ial Handl	ing (if applicable)							
18. 🗸	Vas client no	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗸			
	Person	Notified: Date:							
	By Who	vm: Via:	eMa	I 🗌 Ph	one 🗌 Fax 🛛	In Person			
	Regardi	ng:							
	Client Ir	nstructions:							

Item Information

Item #	Temp °C
Sample 1	0.9

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	NWEPH NWEPH NWEPH NWEPH NWEPH		natics natics matics matics	-C10-C12 Alig -C12-C16 Alig -C21-C34 Alig -C21-C34 Alig -C10-C12 Alig -C10-C12 Alig -C16-C21 Alig -C16-C21 Alig		NWVPH NWVPH		inatics Aliphatics Aromatics	C5-C6 Alt >C5-C8 A >C5-C10 >C5-C10
		100 011 100	110001	2	louy seal	Cus		perature on Keceip	ooler Tem
Samples Intact	Y or N	ved on Ice	Receiv	or N	Indv Spal V		°°	Donoin	-
		016124 1205	6	(an or	10/5/21	Parce	× hle/	9
	Report to MDL.	Date/Time		зу	Received E	Date/Time	6	Released By	ransfers
Comments									
	××	×		Solid 2	581546005 S	1 02:15 10:	9/30/202	4 FT)	B-6-21 (
	×	×		iolid 2	581546004 S	1 01:15 10	9/30/202	5 FT)	B-5-21 (
	×	×	-	olid 2	81546003 S	1 11:45 108	9/30/202	3 FT)	B-4-21 (
	×	×		olid 2	;81546002 S	1 11:15 105	9/30/202	3.5 FT)	B-3-21 (
	×	×		olid 2	81546001 S	1 10:15 105	9/30/202	S FT)	B-2-21 (
	Dry W	EPH -	JECOved	latrix VC39NJ	200	ne	Collect Date/Tin	Ð	em Sample
	eight	Frem	served Contai	Pro				ole Origin: WA	ate of Sam
		ont Analytical	0581546	P.O1	Ave N. 103	Fremont Analy 3600 Fremont Seattle VVA 98 206-352-3790		il Minnesota et 07-1700 gross@pacelabs.com	nnifer Gross ace Analytic 00 Elm Stre inneapolis, I none (612)6 nail: jennife
Analysis	Requested A				To	Subcontract		To	port / Invoic
10/18/2021 2.110	Its Requested By:	Resu		r Sewer	36: Oily Wate	ame: P	lorkorder N	ota Laboratory 10581546	ASI Minnes

Monday, October 04, 2021 8:07:45 PM

age i v

November 09, 2021

Amie Blystone Phillips 66 P.O. Box 8 Ferndale, WA 98248

RE: Project: P66: Oily Water Sewer Pace Project No.: 10583611

Dear Amie Blystone:

Enclosed are the analytical results for sample(s) received by the laboratory on October 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Ashley Yamaura, Whatcom Environmental Services

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: P66: Oily Water Sewer Pace Project No.: 10583611

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab A2LA Certification #: 2926.01* Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

Pace Analytical Services National

12065 Lebanon Road, Mt. Juliet, TN 37122 Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197 DOD Certification: #1461.01 EPA# TN00003 Florida Certification #: E87487 Georgia DW Certification #: 923 Georgia Certification: NELAP Idaho Certification #: TN00003 Illinois Certification #: 200008

Indiana Certification #: C-TN-01 Iowa Certification #: 364 Kansas Certification #: E-10277 Kentucky UST Certification #: 16 Kentucky Certification #: 90010 Louisiana Certification #: AI30792 Louisiana DW Certification #: LA180010 Maine Certification #: TN0002 Maryland Certification #: 324 Massachusetts Certification #: M-TN003 Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: P66: Oily Water Sewer Pace Project No.: 10583611

Pace Analytical Services National

Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742 North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375 North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004 South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006 Texas Mold Certification #: LAB0152 Texas Certification #: T 104704245-17-14 USDA Soil Permit #: P330-15-00234 Utah Certification #: TN00003 Vermont Dept. of Health: ID# VT-2006 Virginia Certification #: VT2006 Virginia Certification #: VT2006 Virginia Certification #: C847 West Virginia Certification #: 233 Wisconsin Certification #: 298093910 Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #: 100789

SAMPLE SUMMARY

Project:P66: Oily Water SewerPace Project No.:10583611

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10583611001	B-1-21 (4 FT)	Solid	10/14/21 03:00	10/16/21 09:50

SAMPLE ANALYTE COUNT

Project:P66: Oily Water SewerPace Project No.:10583611

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10583611001	B-1-21 (4 FT)	EPA 6020B	LD	5	PAN
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270E	AMG	7	PAN
		EPA 8270E by SIM	KJ3	21	PASI-M
		EPA 8260D	DWR	10	PAN
		SM 2540G	JAV	1	PAN
		EPA 7199	JER	1	PAN
		Calculated	LD	1	PAN
		EPA 9045D	AR3	1	PASI-M

PAN = Pace National - Mt. Juliet

PASI-M = Pace Analytical Services - Minneapolis

ANALYTICAL RESULTS

Project: P66: Oily Water Sewer

Pace Project No.: 10583611

Sample: B-1-21 (4 FT)	Lab ID: 105	83611001	Collected: 10/14/2	1 03:0	0 Received: 10	/16/21 09:50 N	latrix: Solid	
Results reported on a "dry weight"	basis and are ad	justed for p	percent moisture, sa	mple s	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Metals (ICPMS) 6020B	Analytical Met	hod: EPA 60	020B Preparation Me	thod: 3	3050B			
	Pace National	- Mt. Juliet						
Arsenic	4.79	ma/ka	1.48	5	10/26/21 17:34	10/27/21 19:07	7440-38-2	
Cadmium	ND	ma/ka	1.48	5	10/26/21 17:34	10/27/21 19:07	7440-43-9	
Chromium	38.6	mg/kg	7.42	5	10/26/21 17:34	10/27/21 19:07	7440-47-3	
Lead	14.8	mg/kg	2.97	5	10/26/21 17:34	10/27/21 19:07	7439-92-1	
Nickel	38.5	mg/kg	3.71	5	10/26/21 17:34	10/27/21 19:07	7440-02-0	
7471B Mercury	Analytical Met	hod: EPA 74	171B Preparation Me	thod: E	EPA 7471B			
	Pace Analytica	al Services -	Minneapolis					
Mercury	0.070	mg/kg	0.025	1	10/21/21 14:29	10/27/21 13:28	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Met	hod: ASTM	D2974					
	Pace Analytica	al Services -	Minneapolis					
Percent Moisture	32.1	%	0.10	1		10/25/21 17:24		N2
SVOA (GC/MS) 8270E	Analytical Met	hod: EPA 82	270E Preparation Me	thod: 3	3546			
	Pace National	- Mt. Juliet						
Biphenyl (Diphenyl)	ND	mg/kg	0.494	1	10/25/21 18:51	10/26/21 14:20	92-52-4	
2-Fluorophenol (S)	69.4	%	12.0-120	1	10/25/21 18:51	10/26/21 14:20	367-12-4	
Phenol-d5 (S)	67.4	%	10.0-120	1	10/25/21 18:51	10/26/21 14:20	4165-62-2	
Nitrobenzene-d5 (S)	58.3	%	10.0-122	1	10/25/21 18:51	10/26/21 14:20	4165-60-0	
2-Fluorobiphenyl (S)	69.4	%	15.0-120	1	10/25/21 18:51	10/26/21 14:20	321-60-8	
2,4,6-Tribromophenol (S)	81.1	%	10.0-127	1	10/25/21 18:51	10/26/21 14:20	118-79-6	
p-Terphenyl-d14 (S)	68.5	%	10.0-120	1	10/25/21 18:51	10/26/21 14:20	1718-51-0	
8270E MSSV PAH by SIM	Analytical Met	hod: EPA 82	270E by SIM Prepara	tion M	ethod: EPA 3550C	;		
	Pace Analytica	al Services -	Minneapolis					
1-Methylnaphthalene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	90-12-0	
2-Methylnaphthalene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	91-57-6	
Acenaphthene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	83-32-9	
Acenaphthylene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	208-96-8	
Anthracene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	120-12-7	
Benzo(a)anthracene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	56-55-3	
Benzo(a)pyrene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	207-08-9	
Chrysene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	53-70-3	
Dibenzofuran	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	132-64-9	
Fluoranthene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	206-44-0	
Fluorene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	193-39-5	
Naphthalene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	91-20-3	

ANALYTICAL RESULTS

Project: P66: Oily Water Sewer

Pace Project No.: 10583611

Sample: B-1-21 (4 FT)	Lab ID: 105	83611001	Collected: 10/14/2	1 03:0	0 Received: 10	/16/21 09:50 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are ad	justed for p	ercent moisture, sa	mple :	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical Met	hod: EPA 82	70E by SIM Prepara	ition M	lethod: EPA 3550C	, ,		
	Pace Analytic	al Services -	Minneapolis					
Phenanthrene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	85-01-8	
Pyrene	ND	ug/kg	14.7	1	10/20/21 14:55	10/25/21 23:24	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	65	%.	50-125	1	10/20/21 14:55	10/25/21 23:24	321-60-8	
p-Terphenyl-d14 (S)	53	%.	51-125	1	10/20/21 14:55	10/25/21 23:24	1718-51-0	
VOA (GC/MS) 8260D	Analytical Met	hod: EPA 82	60D Preparation Me	thod:	5035A			
	Pace National	- Mt. Juliet						
Benzene	0.00288	mg/kg	0.00148	1	10/14/21 03:00	10/25/21 22:00	71-43-2	
Ethylbenzene	ND	mg/kg	0.00148	1	10/14/21 03:00	10/25/21 22:00	100-41-4	
n-Hexane	ND	mg/kg	0.0148	1	10/14/21 03:00	10/25/21 22:00	110-54-3	
Toluene	ND	mg/kg	0.00742	1	10/14/21 03:00	10/25/21 22:00	108-88-3	
o-Xylene	ND	mg/kg	0.00148	1	10/14/21 03:00	10/25/21 22:00	95-47-6	
m&p-Xylene	ND	mg/kg	0.00297	1	10/14/21 03:00	10/25/21 22:00	179601-23-1	
Xylene (Total)	ND	mg/kg	0.00445	1	10/14/21 03:00	10/25/21 22:00	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	70.0-130	1	10/14/21 03:00	10/25/21 22:00	17060-07-0	
Toluene-d8 (S)	121	%	75.0-131	1	10/14/21 03:00	10/25/21 22:00	2037-26-5	
4-Bromofluorobenzene (S)	86.1	%	67.0-138	1	10/14/21 03:00	10/25/21 22:00	460-00-4	
Total Solids 2540 G-2011	Analytical Met	hod: SM 254	10G Preparation Met	hod: S	SM 2540 G			
	Pace National	- Mt. Juliet						
Total Solids	67.4	%		1	10/23/21 17:21	10/23/21 17:29		
Wet Chemistry 7199	Analytical Met	hod: EPA 71	99 Preparation Meth	nod: 30	060A			
	Pace National	- Mt. Juliet	·					
Chromium, Hexavalent	ND	mg/kg	1.48	1	10/25/21 18:00	10/26/21 14:13		D8
Calculated Results	Analytical Met	hod: Calcula	ted Preparation Met	hod: C	Calc.			
	Pace National	- Mt. Juliet						
Chromium, Trivalent	38.0	mg/kg	1.48	1	10/26/21 17:34	10/27/21 19:07		
9045D pH	Analytical Met	hod: EPA 90	45D					
	Pace Analytic	al Services -	Minneapolis					
pH at 25 Degrees C	6.9	Std. Units	0.10	1		11/03/21 15:08		

Project:	P66: Oily Water	Sewer										
Pace Project No.:	10583611											
QC Batch:	1763566		Analys	sis Metho	od: E	PA 6020B						
QC Batch Method:	3050B		Analys	sis Descr	ription: N	Aetals (ICPI	MS) 6020E	3				
			Labora	atory:	F	Pace Nation	al - Mt. Jul	iet				
Associated Lab San	nples: 1058361	1001		-								
METHOD BLANK:	R3722219-1		Ν	Matrix: S	olid							
Associated Lab San	nples: 1058361	1001										
			Blank	k	Reporting							
Paran	neter	Units	Resu	lt	Limit	Analy	zed	Qualifier	S			
Arsenic		ma/ka		ND	1.00) 10/27/21	18:18					
Cadmium		mg/kg		ND	1.00) 10/27/21	18:18					
Chromium		mg/kg		ND	5.00) 10/27/21	18:18					
Lead		mg/kg		ND	2.00) 10/27/21	18:18					
Nickel		mg/kg		ND	2.50) 10/27/21	18:18					
LABORATORY CON	NTROL SAMPLE:	R3722219-2	Spike	L	CS	LCS	% R	ec	Qualifiara			
Falan	neter					% Rec			Juaimers	_		
Arsenic		mg/kg	100)	94.6	94.6	§ 80	.0-120				
Cadmium		mg/kg	100)	98.9	98.9	9 80	.0-120				
Lood		mg/kg	100)	95.0	95.0	00 00 0 80	.0-120				
Nickel		mg/kg	100)	99.0 101	101	l 80	.0-120 .0-120				
MATRIX SPIKE & M	IATRIX SPIKE DU	JPLICATE: R37	22219-5		R372221	9-6						
			MS	MSD								
		L1421071-10	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/	′kg 3.30	128	128	117	116	89.0	88.0	75.0-125	1.12	20	
Cadmium	mg/	′kg ND	128	128	128	126	99.6	98.0	75.0-125	1.68	20	
Chromium	mg/	′kg 21.9	128	128	139	140	91.2	92.0	75.0-125	0.757	20	
Lead	mg/	′kg 5.86	128	128	133	125	99.0	92.9	75.0-125	6.07	20	
Nickel	mg/	′kg 17.2	128	128	140	136	95.5	92.9	75.0-125	2.44	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water Se	ewer										
Pace Project No.:	10583611											
QC Batch:	778449		Analy	ysis Metho	d:	EPA 7471B						
QC Batch Method:	EPA 7471B		Analy	ysis Descri	ption:	7471B Mero	cury Solids					
			Labo	ratory:		Pace Analy	ical Servic	es - Minnea	apolis			
Associated Lab Sar	nples: 105836110	001										
METHOD BLANK:	4145921			Matrix: So	olid							
Associated Lab Sar	nples: 105836110	001										
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Mercury		mg/kg		ND	0.01	7 10/27/2	1 13:13					
LABORATORY CO	NTROL SAMPLE:	4145922										
_			Spike	LC	S	LCS	% R	ec	o			
Parar	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Jualifiers	_		
Mercury		mg/kg	0.4	4	0.41	9	4 8	30-120				
MATRIX SPIKE & N	IATRIX SPIKE DUP	LICATE: 4145	923		4145924							
			MS	MSD								
Descente		10584043001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	0
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	LIMITS	RPD	RPD	Qual
Mercury	mg/kg	0.096	0.49	0.54	0.51	0.61	85	96	80-120	18	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	P66: Oily Water Sewer								
Pace Project No.:	10583611								
QC Batch:	779012		Analysis Meth	od:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight / 9	%M by A	ASTM D29	974	
			Laboratory:		Pace Analytic	al Servi	ces - Minr	neapolis	
Associated Lab Sar	nples: 10583611001								
SAMPLE DUPLICA	TE: 4149125								
			30445726013	Dup			Max		
Parar	neter	Units	Result	Result			RPD	Qualifiers	
Percent Moisture		%	25.9	30).1	15		30 N2	
SAMPLE DUPLICA	TE: 4149126								
			10584506003	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	34.7	35	5.0	1		30 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water Sewer

Pace Pro	iect No.:	10583611
1 400 1 10		10000011

QC Batch:	1762922	Analysis Method:	EPA 8270E
QC Batch Method:	3546	Analysis Description:	SVOA (GC/MS) 8270E
		Laboratory:	Pace National - Mt. Juliet
Associated Lab Samp	bles: 10583611001		
METHOD BLANK:	R3721400-2	Matrix: Solid	

Associated Lab Samples: 10583611001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Biphenyl (Diphenyl)	mg/kg	ND	0.333	10/26/21 10:50	
Nitrobenzene-d5 (S)	%	65.2	10.0-122	10/26/21 10:50	
2-Fluorobiphenyl (S)	%	75.1	15.0-120	10/26/21 10:50	
p-Terphenyl-d14 (S)	%	78.4	10.0-120	10/26/21 10:50	
Phenol-d5 (S)	%	72.8	10.0-120	10/26/21 10:50	
2-Fluorophenol (S)	%	76.3	12.0-120	10/26/21 10:50	
2,4,6-Tribromophenol (S)	%	76.9	10.0-127	10/26/21 10:50	

LABORATORY CONTROL SAMPLE: R3721400-1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Biphenyl (Diphenyl)	mg/kg	0.666	0.446	67.0	39.0-120	
Nitrobenzene-d5 (S)	%			48.6	10.0-122	
2-Fluorobiphenyl (S)	%			68.8	15.0-120	
p-Terphenyl-d14 (S)	%			67.9	10.0-120	
Phenol-d5 (S)	%			66.5	10.0-120	
2-Fluorophenol (S)	%			72.1	12.0-120	
2,4,6-Tribromophenol (S)	%			83.2	10.0-127	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: R372	22643-1	MOD	R372264	13-2						
Parameter	Units	L1420708-01 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Biphenyl (Diphenyl)	mg/kg	ND	0.648	0.652	0.473	0.548	73.0	84.0	15.0-120	14.7	33	
Nitrobenzene-d5 (S)	%						67.0	57.4	10.0-122			
2-Fluorobiphenyl (S)	%						78.7	85.3	15.0-120			
p-Terphenyl-d14 (S)	%						80.2	71.2	10.0-120			
Phenol-d5 (S)	%						85.8	71.9	10.0-120			
2-Fluorophenol (S)	%						97.7	86.8	12.0-120			
2,4,6-Tribromophenol (S)	%						95.7	103	10.0-127			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Proiect:	P66: Oilv Water Sewe

Pace	Pro	ject	No.:	10	058361
------	-----	------	------	----	--------

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Pace Project No.: 10583611					
QC Batch: 1763045		Analysis Metl	hod: El	PA 8260D	
QC Batch Method: 5035A		Analysis Des	Analysis Description: VOA (GC/MS) 8260D)
		Laboratory:	Pa	ace National - Mt. J	uliet
Associated Lab Samples: 105836	11001	-			
METHOD BLANK: R3723687-4		Matrix:	Solid		
Associated Lab Samples: 105836	11001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	mg/kg	ND	0.00100	10/25/21 13:01	
Ethylbenzene	mg/kg	ND	0.00100	10/25/21 13:01	
n-Hexane	mg/kg	ND	0.0100	10/25/21 13:01	
Toluene	mg/kg	ND	0.00500	10/25/21 13:01	
Xylene (Total)	mg/kg	ND	0.00300	10/25/21 13:01	
o-Xylene	mg/kg	ND	0.00100	10/25/21 13:01	
m&p-Xylene	mg/kg	ND	0.00200	10/25/21 13:01	
Toluene-d8 (S)	%	118	75.0-131	10/25/21 13:01	

105

117

67.0-138

10/25/21 13:01

70.0-130 10/25/21 13:01

R3723687-1 LABORATORY CONTROL SAMPLE: Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Benzene mg/kg 0.0250 0.0239 95.6 70.0-123 Ethylbenzene mg/kg 0.0250 0.0252 101 74.0-126 n-Hexane mg/kg 0.0250 0.0240 96.0 55.0-137 Toluene mg/kg 0.0250 0.0254 102 75.0-121 0.0750 0.0740 Xylene (Total) mg/kg 98.7 72.0-127 0.0250 0.0243 97.2 79.0-124 o-Xylene mg/kg 0.0500 0.0497 99.4 76.0-126 m&p-Xylene mg/kg Toluene-d8 (S) % 75.0-131 114 % 4-Bromofluorobenzene (S) 106 67.0-138 % 1,2-Dichloroethane-d4 (S) 118 70.0-130

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: P66: Oily Water Sewer

Pace Project No.: 10583611

QC Batch:	778000	Analysis Method:	EPA 8270E by SIM
QC Batch Method:	EPA 3550C	Analysis Description:	8270E Solid PAH by SIM MSSV
		Laboratory:	Pace Analytical Services - Minneapolis
Associated Lab Samp	les: 10583611001		

Matrix: Solid

METHOD BLANK: 4144101

Associated Lab Samples: 10583611001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	10.0	10/25/21 12:29	
2-Methylnaphthalene	ug/kg	ND	10.0	10/25/21 12:29	
Acenaphthene	ug/kg	ND	10.0	10/25/21 12:29	
Acenaphthylene	ug/kg	ND	10.0	10/25/21 12:29	
Anthracene	ug/kg	ND	10.0	10/25/21 12:29	
Benzo(a)anthracene	ug/kg	ND	10.0	10/25/21 12:29	
Benzo(a)pyrene	ug/kg	ND	10.0	10/25/21 12:29	
Benzo(b)fluoranthene	ug/kg	ND	10.0	10/25/21 12:29	
Benzo(g,h,i)perylene	ug/kg	ND	10.0	10/25/21 12:29	
Benzo(k)fluoranthene	ug/kg	ND	10.0	10/25/21 12:29	
Chrysene	ug/kg	ND	10.0	10/25/21 12:29	
Dibenz(a,h)anthracene	ug/kg	ND	10.0	10/25/21 12:29	
Dibenzofuran	ug/kg	ND	10.0	10/25/21 12:29	
Fluoranthene	ug/kg	ND	10.0	10/25/21 12:29	
Fluorene	ug/kg	ND	10.0	10/25/21 12:29	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	10.0	10/25/21 12:29	
Naphthalene	ug/kg	ND	10.0	10/25/21 12:29	
Phenanthrene	ug/kg	ND	10.0	10/25/21 12:29	
Pyrene	ug/kg	ND	10.0	10/25/21 12:29	
2-Fluorobiphenyl (S)	%.	79	50-125	10/25/21 12:29	
p-Terphenyl-d14 (S)	%.	83	51-125	10/25/21 12:29	

LABORATORY CONTROL SAMPLE: 4144102

Parameter	Linits	Spike Conc	LCS Result	LCS % Rec	% Rec	Qualifiers
i didineter						Quainero
1-Methylnaphthalene	ug/kg	33.3	26.2	79	47-125	
2-Methylnaphthalene	ug/kg	33.3	26.5	80	47-125	
Acenaphthene	ug/kg	33.3	26.6	80	56-125	
Acenaphthylene	ug/kg	33.3	27.8	83	47-125	
Anthracene	ug/kg	33.3	27.4	82	60-125	
Benzo(a)anthracene	ug/kg	33.3	27.1	81	69-125	
Benzo(a)pyrene	ug/kg	33.3	29.1	87	63-125	
Benzo(b)fluoranthene	ug/kg	33.3	29.4	88	67-125	
Benzo(g,h,i)perylene	ug/kg	33.3	27.9	84	67-125	
Benzo(k)fluoranthene	ug/kg	33.3	29.1	87	67-125	
Chrysene	ug/kg	33.3	28.7	86	71-125	
Dibenz(a,h)anthracene	ug/kg	33.3	26.0	78	65-125	
Dibenzofuran	ug/kg	33.3	29.0	87	52-125	
Fluoranthene	ug/kg	33.3	28.3	85	65-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: P66: Oily Water Sewer

Pace Project No.: 10583611

LABORATORY CONTROL SAMPLE: 4144102

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Fluorene	ug/kg	33.3	28.0	84	63-125	
Indeno(1,2,3-cd)pyrene	ug/kg	33.3	26.6	80	69-125	
Naphthalene	ug/kg	33.3	26.5	80	51-125	
Phenanthrene	ug/kg	33.3	27.2	82	66-125	
Pyrene	ug/kg	33.3	28.2	84	68-125	
2-Fluorobiphenyl (S)	%.			81	50-125	
p-Terphenyl-d14 (S)	%.			82	51-125	

MATRIX SPIKE & MATRIX	SPIKE DUPL	LICATE: 4144	103		4144104							
			MS	MSD								
		10583339014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	36.6	36.6	26.6	31.1	73	85	37-125	16	30	
2-Methylnaphthalene	ug/kg	ND	36.6	36.6	26.6	31.1	73	85	30-135	16	30	
Acenaphthene	ug/kg	ND	36.6	36.6	29.8	35.4	81	97	30-140	17	30	
Acenaphthylene	ug/kg	ND	36.6	36.6	29.6	32.1	81	88	30-136	8	30	
Anthracene	ug/kg	ND	36.6	36.6	30.8	52.8	84	144	46-125	53	30	M1,R1
Benzo(a)anthracene	ug/kg	0.014 mg/kg	36.6	36.6	44.8	76.0	86	171	30-150	52	30	M1,R1
Benzo(a)pyrene	ug/kg	0.018 mg/kg	36.6	36.6	46.2	69.1	78	140	30-150	40	30	R1
Benzo(b)fluoranthene	ug/kg	0.025 mg/kg	36.6	36.6	54.1	86.5	80	169	30-150	46	30	M1,R1
Benzo(g,h,i)perylene	ug/kg	0.014 mg/kg	36.6	36.6	39.4	51.3	69	101	30-150	26	30	
Benzo(k)fluoranthene	ug/kg	ND	36.6	36.6	37.7	49.3	103	135	30-150	27	30	
Chrysene	ug/kg	0.016 mg/kg	36.6	36.6	46.5	76.6	84	166	36-126	49	30	M1,R1
Dibenz(a,h)anthracene	ug/kg	ND	36.6	36.6	30.0	35.5	82	97	30-147	17	30	
Dibenzofuran	ug/kg	ND	36.6	36.6	30.4	38.8	83	106	30-150	24	30	
Fluoranthene	ug/kg	0.024 mg/kg	36.6	36.6	58.8	132	96	296	30-150	77	30	M1,R1
Fluorene	ug/kg	ND	36.6	36.6	30.2	39.7	83	108	30-140	27	30	
Indeno(1,2,3-cd)pyrene	ug/kg	0.014 mg/kg	36.6	36.6	39.8	53.6	69	107	30-150	30	30	
Naphthalene	ug/kg	ND	36.6	36.6	27.6	37.8	75	103	30-138	31	30	R1
Phenanthrene	ug/kg	ND	36.6	36.6	43.2	116	118	317	30-150	92	30	M1,R1
Pyrene	ug/kg	0.024 mg/kg	36.6	36.6	57.1	110	91	235	30-150	63	30	M1,R1
2-Fluorobiphenyl (S)	%.						79	85	50-125			
p-Terphenyl-d14 (S)	%.						76	82	51-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water Se	ewer						
Pace Project No.:	10583611							
QC Batch:	1762066		Analysis M	Nethod:	SM 2540G			
QC Batch Method:	SM 2540 G		Analysis [Analysis Description:		40 G-2011		
			Laborator	y:	Pace National -	- Mt. Juliet		
Associated Lab Sam	ples: 105836110	001						
METHOD BLANK:	R3720713-1		Mati	rix: Solid				
Associated Lab Sam	ples: 105836110	001						
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Solids		%	0.0010	00	10/23/21 17	7:29		
LABORATORY CON	ITROL SAMPLE:	R3720713-2						
			Spike	LCS	LCS	% Rec		
Param	eter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Solids		%	50.0	50.0	100	85.0-115		
SAMPLE DUPLICAT	E: R3720713-3							
			L1420657-42	2 Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	_
Total Solids		%	88	.4 88	3.2 0.2	244	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: P66: Oily Water So Pace Project No.: 10583611	ewer										
QC Batch:1762656QC Batch Method:3060A	004	Analy: Analy: Labor	sis Metho sis Descri atory:	d: E ption: V F	EPA 7199 Vet Chemist Pace Nationa	ry 7199 al - Mt. Ju	liet				
Associated Lab Samples: 10583611	001										
METHOD BLANK: R3721492-1 Associated Lab Samples: 10583611	001	I	Matrix: So	olid							
Parameter	Units	Blan Resu	k Ilt	Reporting Limit	Analy	zed	Qualifier	S			
Chromium, Hexavalent	mg/kg		ND	1.00	10/26/21	12:27					
LABORATORY CONTROL SAMPLE:	R3721492-2	Cailes				0/ D					
Parameter	Units	Spike Conc.	Res	sult	% Rec	% R Lim	its (Qualifiers			
Chromium, Hexavalent	mg/kg	10.0)	11.5	115	80	0.0-120		-		
MATRIX SPIKE & MATRIX SPIKE DUP	PLICATE: R372	21492-4 MS Spike	MSD Spike	R372149	2-5 MSD	MS	MSD	% Rec		Max	
Parameter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium, Hexavalent mg/kg	g ND	20.0	20.0	14.7	20.5	73.7	102	75.0-125	32.5	20	ML,R1
MATRIX SPIKE SAMPLE:	R3721492-6			0				0(D			
Parameter	Units	Res	543-02 Sult	Spike Conc.	Result	9	MS 6 Rec	% Rec Limits		Qualif	iers
Chromium, Hexavalent	mg/kg		ND	659	6	693	105	75.0-	125		
SAMPLE DUPLICATE: R3721492-3											
Parameter	Units	L141864 Resu	13-01 Ilt	Dup Result	RPD		Max RPD	Qualifie	ers		
Chromium, Hexavalent	mg/kg		ND	NE)	0.00	20)			
SAMPLE DUPLICATE: R3721492-8											
Parameter	Units	1058361 Resu	1001 llt	Dup Result	RPD		Max RPD	Qualifie	ers		
Chromium, Hexavalent	mg/kg		0.442	NE)	52.0	20	D8			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	P66: Oily Water S	ewer								
Pace Project No.:	10583611									
QC Batch:	781128		Analysis N	/lethod:	EPA 904	5D				
QC Batch Method:	EPA 9045D		Analysis D	Description:	9045D p	н				
			Laborator	y:	Pace An	alytical S	Services - Mir	ineap	olis	
Associated Lab Sar	nples: 10583611	001								
LABORATORY CO	NTROL SAMPLE:	4160121								
			Spike	LCS	LCS		% Rec			
Parar	neter	Units	Conc.	Result	% Rec		Limits	Qı	ualifiers	
pH at 25 Degrees C	;	Std. Units	5	5.1		101	98-102			
SAMPLE DUPLICA	TE: 4160122									
			1058466700	1 Dup			Max			
Parar	neter	Units	Result	Result	F	RPD	RPD		Qualifiers	
pH at 25 Degrees C	;	Std. Units	11.	.8 1	1.8		0	3		
SAMPLE DUPLICA	TE: 4160123									
_			1058450600	1 Dup	-		Max		o	
Parar	neter	Units	Result	Result	F	RPD			Qualifiers	
pH at 25 Degrees C		Std. Units	11.	.6 1	1.6		1	3		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: P66: Oily Water Sewer

Pace Project No.: 10583611

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D8 The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- R1 RPD value was outside control limits.

METHOD CROSS REFERENCE TABLE

Project:	P66: Oily Water Se	wer			
Pace Project No.:	10583611				
Parameter		Matrix	Analytical Method	Preparation Method	
9045D pH		Solid	SW-846 9045D		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:P66: Oily Water SewerPace Project No.:10583611

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10583611001	B-1-21 (4 FT)	3050B	1763566	EPA 6020B	1763566
10583611001	B-1-21 (4 FT)	EPA 7471B	778449	EPA 7471B	778753
10583611001	B-1-21 (4 FT)	ASTM D2974	779012		
10583611001	B-1-21 (4 FT)	3546	1762922	EPA 8270E	1762922
10583611001	B-1-21 (4 FT)	EPA 3550C	778000	EPA 8270E by SIM	779147
10583611001	B-1-21 (4 FT)	5035A	1763045	EPA 8260D	1763045
10583611001	B-1-21 (4 FT)	SM 2540 G	1762066	SM 2540G	1762066
10583611001	B-1-21 (4 FT)	3060A	1762656	EPA 7199	1762656
10583611001	B-1-21 (4 FT)	Calc.	1763566	Calculated	1763566
10583611001	B-1-21 (4 FT)	EPA 9045D	781128		
Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

х 4

÷-		There is a state of the state o		のないのないないが							oler	erial to	nmental.					SN .	Σ	-		lact	V/V)) 3
٥											return co	ckina mat	om Enviro					CONDITION	$\left \right\rangle$	•) sled	eventer (X/X)	>
÷-		Condition of the state	Gency	ation							Please	and pa	Whatco					SAMPLE	>	•		u	Seceived o (Y/N) eo	1
age :		1.4.0.V	Harolych	te / Loc				_	sidual Chlorine (Y/N)	Вe	•								い				C ni 9MBT	L
	l		Rati	Sta						_								TIME.	S.C]
		STATUS AND A	などできたい			W para				Hq	×								6				15/2021	
						/sis Filt		0700		'eM				·				DATE	11 61				6	
		19-19-19-19-19-19-19-19-19-19-19-19-19-1	10,100,000			d Analy		9030	MIS 0728 senelshird	¦sN ≥A	×								Ĕ	-	+			
						uestei		(teil bench	stts 992) MIZ 0728 - ≥HAq⊃\≥H	AЧ	×												gned:	
						Req.			ИРН - ЕРН		×							NOL	5			A dia t National National National	naura TE Si	
		824							EPA 8260	T8	×								H				ey Yar DA	
		MA 6			the second second		٧X		jz9T sesylsnA									(AFI	0				Ashle	1
		9	2						Jer	14O	4oz.							6	١				5	
	e	90					es		1000 22203	N N N	s, & 1							CEPT	0				Ň	
	3lystc						vativ		HO	kit w	z. Jar							AC.						\wedge
tion:	nie	28	erence	nager			reser	·		35A HC	, 2- 8c Jar.												AAA	0
forma	Ā	P	te Ref	ect Ma	le #:		Ē		103		VOAS								5	_		-	1	
ion C ice Int	tion:	pany ess:	Quot	s Proje	Profi				рәләсәл		anol							IME	N.				R	\$
Sect	Atte	b P	Pac	Pace	Pace				SPENDERS	C#	Meth							E.S.	2			RE		
						┝		<u> </u>	MPLE TEMP AT COLLECTION	∀S						+		Ľ	2			NATL		
		4						۵		TIME	'							A	0			ND SIC	SAMI	
		29-95					e	EN		빌									tai			MEA	IRE of	
		60-75	5146	ever	1		ECT			ă								NOL	onmen			ERINA		1
		m / 3	0035	ater S			S	러		TIME	3:00							FFILIA	1 Envin			AMPL	R IN	
ü	one	es.co	# 43(ΝŇ				STAI		Щ	4/21		_		<u> </u>			8Y./.A	atcon			3 03 S		1
ormati	Blvst		B	Ö igi	per:					PA	10/1		—		_			HED	ACW1					
sct Inf	mie	what	Š	ä	mnN L	-				4S	ں ب		_		_	┿╋		NQUIS	V Ü	\geq				
Broje	≪!<	na@	Orde	ject IC	orde	F					0 N		_	1	-	┽┼		BEL.	N.M.					
ction	port To	amat	Irchase	ent Pro	Intaine			CODE	VV SL AR AR AR TS TS										Ŵ					
S. Re	r R	a a	Pu	t-8422 Cli	AT 0			MATRIX Drinking Water	Water Waste Water Product Oil Oil Vige Air Coll Coll Coll Coll Coll Coll Coll Col				836						Environmental	limits.				
	Refinery		COM	w (360) 38₄	tandard T			-	en b				105					MENTS	nd Whatcom E	ted reporting				
	ndaie	8248	@p66	7 15	"			ЕС	per bo (, -) : be uni				•••		11			NL CON	s 66, a	sanba				
ij	6 Fer	VA 9	stone	-837				JPL	racter 5 0-9 . 5 must				Ħ		336		1. P. 1.	TION	Phillip	ge for				
rmatic		ale, V	2.Blys) 384	TAT			ă N	e Cha (A-: ple Ids		E				056		and the Market	ADDI	o both	ğ b				
nt Info		end	Amik	(360	e Date			Ø	Sam		21 (4				- -1				sults t	Itach				
d Clier	<u>اخ</u>	ľ			led Du						B-1-;		\						mail re	See				
Section	Compar		Email To	Phone:	Kequest				#WBJ			2	°.	4	20	<mark>، ح</mark>	<u>ه</u> ه		lease	1	Pa	gie 21	of 36	

106

	\sim	_	Doc	ument N	lame:	Doc	ument Revised: 14	Apr2021
	Pace Analytical [®]	Sample Co	ndition	Upon R	eceipt (SCUR) - I	MN	Page 1 of 1	
	/-		Do	ocument	No.:	P	ace Analytical Servi	ces -
	}	EN	V-FRM	-MIN4-0	150 Rev.02		Minneapolis	
Sample Co Upon Re	ecceipt Client Name:	66		Project	#: WO	#:1	058361	1
Courier:	Fed Ex UPS	USPS Commerce	cial	Client	PM: CLIE	JMG NT: Cop	Due Date:	11/01/21
Tracking f	Number: 2849 6232	6466	S€ E№	ee Exceptio NV-FRM-MII	ns 🔲 N4-0142	··· - · · · ·	·····	
Custody S	ieal on Cooler/Box Present?	No	Sea	als intact	Yes 🗆 🛛	lo Biolo	gical Tissue Frozen?	
Packing N	Material: Bubble Wrap Bubb	le Bags]None	Oth	er:		Temp Blank?	Ves No
Thermom	eter: T1(0461) T2(1336) T3(0 T4(0254) T5(0489)	1459) 🔲 OS418- 160285	LS 5052	Type of Ice: 🖌	Wet Blue	None	Dry Melter	k
Did Sample	es Originate in West Virginia? Ves	No Wei	re All Co	ontainer T	emps Taken?]N/A	
Temp should	be above freezing to 6°C Cooler Temp	p Read w/tem	np blank	«	21	°C	Average Corrected Temp (no temp bla	See Exceptions nk ENV-FRM-MIN4-0142
USDA Regu	Ilated Soil: (🗌 N/A, water sample/Other	r:	p blank	•)	Date/Initials of	Person Exa	mining Contents:	218/211
Did samples	s originate in a quarantine zone within the	United States:	AL, AR,	CA, FL, GA	, Did samples or	iginate from a	foreign source (internat	ionally, including
10, LA. 1913,	If Yes to either question, fill ou	ut a Regulated	l Soil Ch	ecklist (F	-MN-Q-338) and i	nclude with	SCUR/COC paperwor	k.
	· · · · · · · · · · · · · · · · · · ·						COMMENTS:	
Chain of Cus	tody Present and Filled Out?	ZY95	□No		1.			
Chain of Cus	tody Relinquished?	Zyes			· 2.			
Sampler Nar	ne and/or Signature on COC?	Ves			3.	-8-10		
Short Hold T	ime Analysis (<72 hr)?	Yes			4. 5. Erecal Colifo		Fotal Coliform/E coli 🔲 BC)D/cBOD Hex Chrome
Rush Turn A	round Time Requested?				Turbidity	Nitrate Nit	rite Orthophos Othe	<u>۲</u>
Sufficient Vo	lume?	Yes			7.			
Correct Cont	ainers Used?	Z Yes	 No		8.			
-Pace Con	tainers Used?	Zyes						
Containers Ir	htact?	Yes		1	9.			
Field Filterec	Volume Received for Dissolved Tests?	Yes	No	N/A	10. Is sediment	visible in the	dissolved container? [
to the COC?	niormation available to reconcile the samp	Yes	□No			Date/ Time on	Container Below:	See Exception
All container	s needing acid/base preservation have bee	en 🗍Yes	ΠΝο		12. Sample #			
checked?				₹				
All container	s needing preservation are found to be in	Yes	□No		🗌 NaOH	. 🗌 н	NO ₃ H ₂ SO ₄	Zinc Acetate
(HNO ₃ , H ₂ SO	vith EPA recommendation? 4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyani	ide)						
Excontions	(OA Coliform TOC/DOC Oil and Grosse	[]]Yes			Positive for Res.	Yes		
DRO/8015 (v	vater) and Dioxin/PFAS				Res. Chlorine	No 0-6 Roll	pH Paper Lot# 0-6 Strip	0-14 Strip
Extra lab - l-						<u> </u>	3,6	!
Extra labels p Headspace ir	vesent on soil VOA or WIDRO containers? NVOA Vials (greater than 6mm)?	☐Yes ☐Yes			13.			
Trip Blank Pr	esent?	Yes		N/A	14.			
Trip Blank Cu	stody Seals Present?	Yes	No	N /A	Pace Trip Bla	ank Lot # (if p	ourchased):	
CL Person Cont	IENT NOTIFICATION/RESOLUTION				Date /Time	Fiel	d Data Required?	_YesNo
Comments/	Resolution:				Date/ Ilme:			
		a			······		· · · · ·	
Pr	niect Manager Review:	ini Ann			Date	10/2	0/21	

 Project Ivianager Review:
 Date:
 10/20/21

 Note:
 Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

6	Pace Analytical	sults Requested By: 11/4/2021	lysis		LUHZOBLO7 LAB USE ONLY	201				Comments	stir bars first.		this COC document. 3, 9, 4023, 9 M3M		24March2009 Page 1 of 1
	WA X Yes	i Date: 10/16/2021 Re	Requested Ana	Hex Cr - Pace National Biphenyl - Pace National Solids - Pace National Ient Cr - Pace National	A CO028 A CO028 1 30728 I 500T I 500T	X X X X X					*3260D BTEX, hexane - run		e may not be provided on on.		FMT-ALL-C-002rev.00
	State Of Origin: Cert. Needed:	Owner Received		Served Contraine Salar S	50°5°9°0° JWD JWD 2,24.0208	1 1 X					Date/Time	· 	er's name and signature in the owner laborat	et Applicable o Headspace:N rrect/Check:YN	1 1 1 1
	-Logged into eCOC.	ater Sewer		nal anon Rd 5) 758-5858 5) 758-5858	D Matrix	83611001 Solid 2					Received By		he sampling site, sample is information is availab	Sample Repeipt Checkli Intact: N VoA Zer ate: N VoA Zer used: N Pres.Cc mR/hr: Y N	
of Custody	Samples Pre	Name: P66: Oily W	Subcontract To	Pace Natio 12065 Leb Mt. Juliet, ¹ Phone (61	ie Collect Date/Time Lab	10/14/2021 03:00 105					Date/Time		lity, location/name of t	COC Seal Present COC Signed/Accur Bottles arrive J Correct bottles Sufficient volum RAD Screen <0.5	
Internal Transfer Chain		Workorder: 10583611 Workorder	Report To	Jennifer Gross Pace Analytical Minnesota 1700 Elm Street Minneapolis, MN 55414 Phone (612)607-1700	Samp Item Sample ID Type	1 B-1-21 (4 FT) PS	2	3	5		Transfers Released By 11 Aug		***In order to maintain client confidentia This chain of custody is considered o	K00X	95 by October 20, 2021 11:06:14 AM

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Pace Analytical Minnesota Julie Bowser 1700 Elm Street, Ste. 200 Minneapolis, MN 55414

RE: P66: Oily Water Sewer Work Order Number: 2110319

November 09, 2021

Attention Julie Bowser:

Fremont Analytical, Inc. received 1 sample(s) on 10/22/2021 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Pace Analytical Minnesota P66: Oily Water Sewer 2110319	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2110319-001	B-1-21 (4 FT)	10/14/2021 3:00 AM	10/22/2021 10:24 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2110319** Date: **11/9/2021**

CLIENT:Pace Analytical MinnesotaProject:P66: Oily Water Sewer

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2110319

 Date Reported:
 11/9/2021

Qualifiers:

- * Associated LCS is outside of control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Method Detection Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2110319

 Date Reported:
 11/9/2021

Client: Pace Analytical Minnesota			Co	ollection Date: 10/	/14/2	2021 3:00:00 AM
Project: P66: Oily Water Sewer						
Lab ID: 2110319-001			Ma	atrix: Solid		
Client Sample ID: B-1-21 (4 FT)						
Analyses	Result	RL	MDL	Qual Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbons	s by NWEF	<u>۲H</u>		Batch ID: 34217		Analyst: MM
Aliphatic Hydrocarbon (C10-C12)	ND	13.0	5.90	* mg/Kg-dry	1	11/05/21 15:40:37
Aliphatic Hydrocarbon (C12-C16)	ND	13.0	2.51	mg/Kg-dry	1	11/05/21 15:40:37
Aliphatic Hydrocarbon (C16-C21)	ND	13.0	5.02	mg/Kg-dry	1	11/05/21 15:40:37
Aliphatic Hydrocarbon (C21-C34)	ND	13.0	8.07	mg/Kg-dry	1	11/05/21 15:40:37
Aromatic Hydrocarbon (C10-C12)	ND	13.0	4.19	mg/Kg-dry	1	11/06/21 11:16:41
Aromatic Hydrocarbon (C12-C16)	ND	13.0	2.89	mg/Kg-dry	1	11/06/21 11:16:41
Aromatic Hydrocarbon (C16-C21)	ND	13.0	6.66	mg/Kg-dry	1	11/06/21 11:16:41
Aromatic Hydrocarbon (C21-C34)	ND	13.0	9.85	mg/Kg-dry	1	11/06/21 11:16:41
Surr: 1-Chlorooctadecane	80.3	60 - 140	0	%Rec	1	11/05/21 15:40:37
Surr: o-Terphenyl	73.4	60 - 140	0	%Rec	1	11/06/21 11:16:41
NOTES: * - Associated LCS does not meet acceptance c	riteria; refer to	QC summary.				
Volatile Petroleum Hydrocarbons by	NWVPH			Batch ID: 34218		Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	1.89	3.33	1.61	J mg/Kg-dry	1	10/28/21 20:59:23
Aliphatic Hydrocarbon (C6-C8)	ND	2.00	0.544	mg/Kg-dry	1	10/28/21 20:59:23
Aliphatic Hydrocarbon (C8-C10)	ND	3.33	1.59	mg/Kg-dry	1	10/28/21 20:59:23
Aromatic Hydrocarbon (C8-C10)	ND	4.00	2.05	mg/Kg-dry	1	10/28/21 20:59:23
Surr: 1,4-Difluorobenzene	73.2	65 - 140	0	%Rec	1	10/28/21 20:59:23
Surr: Bromofluorobenzene	91.5	65 - 140	0	%Rec	1	10/28/21 20:59:23
Sample Moisture (Percent Moisture)				Batch ID: R7083	9	Analyst: ALB
Percent Moisture	27.8	0.500	0.100	wt%	1	10/28/21 9:39:47

Fremont Analytical

Work Order: 2110319

Project:

CLIENT: Pace Analytical Minnesota

P66: Oily Water Sewer

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: MB-34217	SampType: MBLK			Units: mg/Kg		Prep Da	te: 10/28/2	2021	RunNo: 710	95	
Client ID: MBLKS	Batch ID: 34217					Analysis Da	te: 11/5/20	21	SeqNo: 144	6944	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	ND	10.0									*
Aliphatic Hydrocarbon (C12-C16)	ND	10.0									
Aliphatic Hydrocarbon (C16-C21)	ND	10.0									
Aliphatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: 1-Chlorooctadecane	89.6		100.0		89.6	60	140				
NOTES:											

* - Associated LCS does not meet acceptance criteria; refer to QC summary.

Sample ID: LCS-34217	SampType: LCS			Units: mg/Kg		Prep Dat	te: 10/28/2021	RunNo: 71095	5	
Client ID: LCSS	Batch ID: 34217					Analysis Da	te: 11/5/2021	SeqNo: 14469	945	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD F	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	78.6	10.0	125.0	0	62.9	70	130			S
Aliphatic Hydrocarbon (C12-C16)	103	10.0	125.0	0	82.0	70	130			
Aliphatic Hydrocarbon (C16-C21)	104	10.0	125.0	0	83.6	70	130			
Aliphatic Hydrocarbon (C21-C34)	89.5	10.0	125.0	0	71.6	70	130			
Surr: 1-Chlorooctadecane	101		100.0		101	60	140			

NOTES:

S - Outlying spike recovery observed (low bias). Samples will be qualified with a $^{\star}.$

Sample ID: 2110444-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 10/28/2	021	RunNo: 710	95	
Client ID: BATCH	Batch ID: 34217					Analysis Da	te: 11/5/20	21	SeqNo: 144	6952	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	212	11.8	147.0	93.87	80.5	70	130				
Aliphatic Hydrocarbon (C12-C16)	295	11.8	147.0	178.2	79.2	70	130				
Aliphatic Hydrocarbon (C16-C21)	1,240	11.8	147.0	1,149	59.1	70	130				S
Aliphatic Hydrocarbon (C21-C34)	10,400	11.8	147.0	10,790	-267	70	130				S
Surr: 1-Chlorooctadecane	110		117.6		93.9	60	140				

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

QC SUMMARY REPORT

0

30

30

30

30

S

S

2110319

Work Order:

CLIENT:

Project:

Analyte

NOTES:

Pace Analytical Minnesota **Extractable Petroleum Hydrocarbons by NWEPH** P66: Oily Water Sewer Sample ID: 2110444-001AMSD SampType: MSD Prep Date: 10/28/2021 RunNo: 71095 Units: mg/Kg-dry Client ID: BATCH Batch ID: 34217 Analysis Date: 11/5/2021 SeqNo: 1446953 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Aliphatic Hydrocarbon (C10-C12) 197 10.4 129.7 93.87 79.2 70 130 212.2 7.63 Aliphatic Hydrocarbon (C12-C16) 271 129.7 178.2 71.2 70 294.7 8.54 10.4 130 Aliphatic Hydrocarbon (C16-C21) 1,100 10.4 129.7 1,149 -37.5 70 130 1,236 11.6 Aliphatic Hydrocarbon (C21-C34) 10,400 129.7 10,790 -311 70 10,400 0.100 10.4 130 Surr: 1-Chlorooctadecane 102 103.7 98.4 60 140 S - Analyte concentration was too high for accurate spike recovery(ies). Sample ID: MB-34217 SampType: MBLK Units: mg/Kg Prep Date: 10/28/2021 RunNo: 71096 Datab ID: 24247 Analysia Datas 11/0/2021 Cochlos 4440000

Client ID: MBLKS	Batch ID: 34217				Analysis Da	ite: 11/6/20	021	Seqino: 144	6963	
Analyte	Result	RL	SPK value SPK Ref V	al %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	ND	10.0								
Aromatic Hydrocarbon (C12-C16)	ND	10.0								
Aromatic Hydrocarbon (C16-C21)	ND	10.0								
Aromatic Hydrocarbon (C21-C34)	ND	10.0								
Surr: o-Terphenyl	76.9		100.0	76.9	60	140				

Sample ID: LCS-34217	SampType: LCS			Units: mg/Kg		Prep Dat	te: 10/28/2	021	RunNo: 710	96	
Client ID: LCSS	Batch ID: 34217					Analysis Dat	te: 11/6/20	21	SeqNo: 144	7572	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	88.2	10.0	125.0	0	70.5	70	130				
Aromatic Hydrocarbon (C12-C16)	88.7	10.0	125.0	0	71.0	70	130				
Aromatic Hydrocarbon (C16-C21)	94.9	10.0	125.0	0	75.9	70	130				
Aromatic Hydrocarbon (C21-C34)	120	10.0	125.0	0	96.2	70	130				
Surr: o-Terphenyl	92.8		100.0		92.8	60	140				

Work Order: 2110319

Aromatic Hydrocarbon (C12-C16)

Aromatic Hydrocarbon (C16-C21)

Aromatic Hydrocarbon (C21-C34)

Surr: o-Terphenyl

Project:

CLIENT:	Pace Analytical Minnesota
---------	---------------------------

P66: Oilv Water Sewer

245

320

118

1,070

10.4

10.4

10.4

129.7

129.7

129.7

103.7

QC SUMMARY REPORT

0

0

0

0

30

30

30

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: 2110444-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 10/28/2	2021	RunNo: 710)96	
Client ID: BATCH	Batch ID: 34217					Analysis Da	te: 11/8/20	21	SeqNo: 144	7585	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	428	11.8	147.0	307.1	82.1	70	130				
Aromatic Hydrocarbon (C12-C16)	252	11.8	147.0	122.0	88.6	70	130				
Aromatic Hydrocarbon (C16-C21)	319	11.8	147.0	159.7	109	70	130				
Aromatic Hydrocarbon (C21-C34)	1,010	11.8	147.0	906.1	73.8	70	130				
Surr: o-Terphenyl	128		117.6		109	60	140				
Sample ID: 2110444-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 10/28/2	2021	RunNo: 710)96	
Client ID: BATCH	Batch ID: 34217					Analysis Da	te: 11/8/20	21	SeqNo: 144	17586	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	434	10.4	129.7	307.1	98.1	70	130	434.2	0	30	

122.0

159.7

906.1

95.1

124

126

113

70

70

70

60

130

130

130

140

245.3

320.1

1,070

Fremont
Analytical

Work Order: 2110319

Original

Work Order:	2110319									2.00	SUMMA		PORT
CLIENT:	Pace Analyti	ical Minnes	ota					_					
Project:	P66: Oily Wa	ater Sewer						\ \	/olatile	Petroleum I	Hydrocark	ons by N	IWVPH
Sample ID: LCS-34	4218	SampType	: LCS			Units: mg/Kg		Prep Dat	te: 10/28/2	2021	RunNo: 70	935	
Client ID: LCSS		Batch ID:	34218					Analysis Dat	te: 10/28/2	2021	SeqNo: 14	43180	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarb	oon (C5-C6)		32.6	2.50	30.00	0	109	70	130				
Aliphatic Hydrocarb	oon (C6-C8)		10.9	1.50	10.00	0	109	70	130				
Aliphatic Hydrocarb	oon (C8-C10)		10.3	2.50	10.00	0	103	70	130				
Aromatic Hydrocart	oon (C8-C10)		47.7	3.00	40.00	0	119	70	130				
Surr: 1,4-Difluoro	obenzene		2.33		2.500		93.2	65	140				
Surr: Bromofluor	obenzene		2.39		2.500		95.5	65	140				
Sample ID: LCS-34	4218	SampType	LCS			Units: mg/Kg		Prep Dat	te: 10/28/2	2021	RunNo: 71	018	
Client ID: LCSS		Batch ID:	34218					Analysis Dat	te: 10/28/2	2021	SeqNo: 14	45003	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarb	oon (C5-C6)		32.6	2.50	30.00	0	109	70	130				
Aliphatic Hydrocarb	oon (C6-C8)		10.9	1.50	10.00	0	109	70	130				
Aliphatic Hydrocarb	oon (C8-C10)		10.3	2.50	10.00	0	103	70	130				
Aromatic Hydrocart	oon (C8-C10)		47.7	3.00	40.00	0	119	70	130				
Surr: 1,4-Difluoro	obenzene		2.33		2.500		93.2	65	140				
Surr: Bromofluor	obenzene		2.39		2.500		95.5	65	140				
Sample ID: MB-342	218	SampType	: MBLK			Units: mg/Kg		Prep Dat	te: 10/28/2	2021	RunNo: 70	935	
Client ID: MBLKS	S	Batch ID:	34218					Analysis Dat	te: 10/28/2	2021	SeqNo: 14	43181	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarb	oon (C5-C6)		1.41	2.50		0	0						J
Aliphatic Hydrocarb	oon (C6-C8)		ND	1.50		0	0						
Aliphatic Hydrocarb	oon (C8-C10)		ND	2.50		0	0						
Aromatic Hydrocart	bon (C8-C10)		ND	3.00		0	0						
Surr: 1,4-Difluoro	benzene		1.84		2.500		73.6	65	140				
Surr: Bromofluor	obenzene		2.27		2.500		91.0	65	140				

Fremont Analytical

Work Order: 2110319								00.9			PORT
CLIENT: Pace Analy	tical Minnesota										
Project: P66: Oily V	Vater Sewer					V	olatile	Petroleum I	Hydrocarb	ons by N	IWVPF
Sample ID: MB-34218	SampType: MBLK			Units: mg/Kg		Prep Date	: 10/28/ 2	2021	RunNo: 710)18	
Client ID: MBLKS	Batch ID: 34218					Analysis Date	: 1 0/28/ 2	2021	SeqNo: 144	15004	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	1.41	2.50		0	0						J
Aliphatic Hydrocarbon (C6-C8)	ND	1.50		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.50		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	3.00		0	0						
Surr: 1,4-Difluorobenzene	1.84		2.500		73.6	65	140				
Surr: Bromofluorobenzene	2.27		2.500		91.0	65	140				
Sample ID: 2110294-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 10/28/ 2	2021	RunNo: 709	935	
Client ID: BATCH	Batch ID: 34218					Analysis Date	e: 10/28/2	2021	SeqNo: 144	3173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	1.76	3.00		0	0			1.704	3.05	25	JH
Aliphatic Hydrocarbon (C6-C8)	0.837	1.80		0	0			0	200	25	JH
Aliphatic Hydrocarbon (C8-C10)	ND	3.00		0	0			0	0	25	н
Aromatic Hydrocarbon (C8-C10)	ND	3.60		0	0			0	0	25	Н
Surr: 1,4-Difluorobenzene	2.29		3.003		76.4	65	140		0		Н
Surr: Bromofluorobenzene	2.81		3.003		93.4	65	140		0		Н
Sample ID: 2110294-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 10/28/ 2	2021	RunNo: 710)18	
Client ID: BATCH	Batch ID: 34218					Analysis Date	e: 10/28/2	2021	SeqNo: 144	14988	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	1.76	3.00		0	0			1.704	3.05	25	JH
Aliphatic Hydrocarbon (C6-C8)	0.837	1.80		0	0			0	200	25	JH
Aliphatic Hydrocarbon (C8-C10)	ND	3.00		0	0			0	0	25	Н
Aromatic Hydrocarbon (C8-C10)	ND	3.60		0	0			0	0	25	Н
Surr: 1,4-Difluorobenzene	2.29		3.003		76.4	65	140		0		Н
Surr: Bromofluorobenzene	2.81		3.003		93.4	65	140		0		Н

Work Order: 2110319

Project:

CLIENT: Pace Analytical Minnesota

P66: Oily Water Sewer

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 2110294-003BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 10/28/2	021	RunNo: 709	35	
Client ID: BATCH	Batch ID: 34218					Analysis Da	te: 10/29/2	:021	SeqNo: 144	3175	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	51.1	4.20	50.38	2.393	96.7	70	130				Н
Aliphatic Hydrocarbon (C6-C8)	16.1	2.52	16.79	4.298	70.5	70	130				Н
Aliphatic Hydrocarbon (C8-C10)	17.8	4.20	16.79	6.606	66.8	70	130				SH
Aromatic Hydrocarbon (C8-C10)	82.3	5.04	67.17	0	123	70	130				Н
Surr: 1,4-Difluorobenzene	3.84		4.198		91.6	65	140				н
Surr: Bromofluorobenzene NOTES:	4.02		4.198		95.7	65	140				Н

S - Analyte concentration was too high for accurate spike recovery(ies).

Sample ID: 2110294-003BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 10/28/2	021	RunNo: 710	18	
Client ID: BATCH	Batch ID: 34218					Analysis Da	te: 10/29/2	021	SeqNo: 144	4990	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	51.1	4.20	50.38	2.393	96.7	70	130				Н
Aliphatic Hydrocarbon (C6-C8)	16.1	2.52	16.79	4.298	70.5	70	130				Н
Aliphatic Hydrocarbon (C8-C10)	17.8	4.20	16.79	6.606	66.8	70	130				SH
Aromatic Hydrocarbon (C8-C10)	82.3	5.04	67.17	0	123	70	130				н
Surr: 1,4-Difluorobenzene	3.84		4.198		91.6	65	140				н
Surr: Bromofluorobenzene NOTES:	4.02		4.198		95.7	65	140				Н

S - Outlying spike recoveries were associated with this sample.

С	lient Name:	PACEMI	Work O	der Numb	per: 2110319	
L	ogged by:	Gabrielle Coeuille	Date Re	ceived:	10/22/2021	1 10:24:00 AM
Cha	nin of Cust	ody				
1.	Is Chain of C	sustody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Clier</u>	<u>t</u>		
Log	<u>. In</u>					
3.	Coolers are p	present?	Yes	✓	No	NA 🗌
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.	Custody Sea (Refer to con	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	✓	No 🗌	Not Present
6.	Was an atter	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌
7.	Were all item	as received at a temperature of >2°C to 6°C *	Yes	✓	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes	✓	No 🗌	
10	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserv	ative added to bottles?	Yes		No 🗹	NA 🗌
12	Is there head	Ispace in the VOA vials?	Yes		No 🗌	NA 🗹
13	Did all sampl	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14	Does paperw	vork match bottle labels?	Yes	✓	No 🗌	
15	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16	Is it clear what	at analyses were requested?	Yes	✓	No 🗌	
17	Were all hold	ling times able to be met?	Yes	✓	No 🗌	
<u>Spe</u>	ecial Handl	ing (if applicable)				
18	Was client no	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date				
	By Who	om: Via:	🗌 eMa	il 🗌 Ph	one 🗌 Fax 🛛	In Person
	Regard	ing:				
	Client Ir	nstructions:				
19	Additional re	marks:				

....

Item Information Item # Temp °C Sample 1 4.3 Temp Blank 1 1.8

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	τ
,	ğ
1	ē
	_
	0

FMT-ALL-C-002rev.00 24March2009

				×C8-C10 Aromatics	×C8-C10 Alphatics	C6-C8 Alighatics	CS-C6 Aliphatics	Cooler Temperature on R	3	,
				NWVPH	NWVPH	NWVPH	NWVPH	eceipt °C Cust		
+C21-C34 Aromatica	×C16-C21 Aromatics	>C12-C16 Aromatics	>C10-C12 Aromatics	>C21-C34 Aliphatics	×C16-C21 Aliphatics	×C12-C16 Alighatics	>C10-C12 Aliphatics	tody Seal Y or N		
NWEPH	NWEPH	NWEPH	NWEPH	NWEPH	NWEPH	NWEPH	NWEPH	Received on Ice Y or N		
								Samples Intact Y or N		

YorN	Samples Intact	z	≺ [Ice	ed on	Receiv		z	Y or	dy Seal	Custo	റ്	ceipt	perature on Rec	ler Tem	Coo
							d			0						3 N
			Richor	5	and a	54	2	JUL .	when	2	<i>bC</i> 1 <i>R</i> 1	42 10/20	el Pe	t h	1	-
		t to MDI	Repor	e	ate/Tim	D	4		d By	Receive	ïme	Date/T		Released By	sfers F	Trans
	Comments						and a second		and the second						and the second se	
															-	5
																4
																ω
																2
			× ×	×	_			2	Solid	3611001	10583	0/14/2021 03:00		4 FT)	B-1-21 (-
LAB USE ON			VPH - F Dry We	EPH - F			Unpreserved JGCU	√ G 9M	Matrix	•	Lab II	Collect Date/Time		eID	Sample	Item
			emont ght	remon	Suet	Contai	reserved	-					A	ple Origin: W	te of Sam	Stat
			Analytical	t Analytical					14		52-3790	206-3	.com	507-1700 sr.gross@pacelabs	ine (612)6 ail: jennife	Pho Ema
				1						8103	WA 9	Seattle		eet MN 55414	0 Elm Stre	1700 Minr
						-	058361	.0.	P	vtical	nt Analy	Fremo		ss xal Minnesota	e Analytic	Jenr Pac
A STATE OF STATE	nalysis	Requested A				Statute of		and the second		0	ontract Ti	Subc		ce To	ort / Invoid	Rep
	11/4/2021	quested By:	ults Re	Res				/er	ater Sew	5: Oily W	P6	rder Name:	Worko	10583611	rkorder:	No
ICE Analytic	Pa												Y	sota Laborator	SI Minne	PAS
	0														Idin (5
J	2110319															2
	2															

APPENDIX C

Data Quality Assurance Review

This evaluation provides the results of verification and validation checks of analytical data for six soil samples collected during the sampling events which occurred on September 30, 2021, and October 14, 2021, at the Phillips 66 Ferndale Refinery. The samples were collected and analyzed as part of the Oily Water Sewer site investigation. All sample analyses were conducted at Pace Analytical Services, Pace National, and Fremont Analytical. This data quality evaluation covers Pace Project No: 10581546 & 10583611.

Laboratory quality control procedures have been verified using the applicable National Functional Guidelines (EPA, 2020a; EPA, 2020b). The verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; explanation of any significant corrective actions taken by the laboratory during the analytical process; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Evaluation of sample holding times.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.
- Evaluation of overall data quality and completeness of analytical data.

Based on the verification and validation check, data qualifiers have been added to the sample results tables provided in the Report as needed. Data qualifier definitions are provided in the table footnotes. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

Laboratory Data Package Completeness

The Pace Analytical laboratory data reports (10581546 & 10583611) contained a signed chain-of-custody, a cooler receipt form documenting the condition and temperature of the

samples upon receipt at the laboratory, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, and replicate sample results). Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

Sample Conditions and Analysis

The laboratories received the samples in good condition and all analyses were performed as requested. Preservation of samples, as specified by the analytical method, was verified by the laboratory.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within analytical method and project-specified holding times.

Initial and Continuing Calibrations

Appropriate calibration standard methods were followed as required. All initial and continuing calibration results were within acceptable range with the following exceptions:

- n-Hexane continuing calibration did not meet established acceptance criteria during low level volatile organic compounds analysis (8260D). The continuing calibration standard associated with the data responded low. Method sensitivity check is acceptable. Associated data have been qualified as estimated concentration (C3) as indicated in Table 5.
- 1-Methylnapthalene initial or continuing calibration did not meet established acceptance criteria during low level semivolatile organic compounds analysis (8270E). The concentration exceeded the calibration range. Associated data have been qualified as estimated concentration (E) as indicated in Table 7.

Lab Method Blanks

Several method blanks were analyzed with each batch of samples. No contamination of the selected analytes was detected in any of the method blanks, with the following exceptions:

- Aliphatic Hydrocarbon (C5-C6) was detected in the method blank associated with volatile petroleum hydrocarbons analysis (NWVPH). The detected concentration was below the required reporting limit. Associated data have been qualified as estimated concentrations (J) as indicated in Table 4.
- Aromatic Hydrocarbon (C21-C34) was detected in the method blank associated with extractable petroleum hydrocarbons analysis (NWEPH). The detected concentration was below the required reporting limit. Associated data have been qualified as estimated concentrations (J) as indicated in Table 5.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for low level semivolatile (8270E) and volatile (8260D) organic compound analyses. Surrogate spikes were added to all samples including Matrix Spikes, Matrix Spike Duplicates, Laboratory Control Samples, and blanks. Recovery values for the surrogate spikes were within the required control limits for all samples with the following exceptions:

- 4-Bromofluorobenzene surrogate recovery results for samples B-2-21 through B-5-21 for low level volatile organic compounds analysis (8260D) were above laboratory control limits. Results may be biased high under qualifier (ST).
- Toluene surrogate recovery results for sample B-3-21 for low level volatile organic compounds analysis (8260D) was above laboratory control limits. Results may be biased high under qualifier (ST).
- 2-Fluorobiphenyl surrogate recovery results for samples B-3-21 through B-5-21 and Matrix Spike/Matrix Spike Duplicate for method (8270E) were diluted due to the presence of high levels of target analytes under qualifier (D4). All recovery values for 2-Fluorobiphenyl were within the required control limits.

Laboratory Control Sample Results

At least one laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) was analyzed with each batch of samples. Recoveries for each LCS and/or LCSD were within the laboratory-specified control limits with the following exceptions:

• Aliphatic C10-C12 LCSD results associated with Extractable Petroleum Hydrocarbon analysis (NWEPH) were below the laboratory reported RPD limit. Associated data have been qualified as estimated concentrations (J) as indicated in Table 4.

Sample Duplicate and Matrix Spike/Matrix Spike Duplicate Results and Laboratory Duplicate Results

A sample duplicate and/or Matrix Spike/Matrix Spike Duplicate (MS/MSD) was analyzed with each batch of samples. The recovery values and relative percent difference (RPD) values for associated analyses were within the laboratory-specified control limits for all samples with the following exceptions:

- Lead MS/MSD recovery is ten times above the laboratory specified recommended limits. The laboratory confirmed that the results are accurate and the high recovery did not occur from a mis-spike. All other laboratory quality control data associated with Lead and analysis meets specified requirements. No data qualifier is deemed necessary.
- Nickel MS/MSD recovery was above the laboratory specified recommended limits. All other laboratory quality control data associated with Nickel analysis meets specified requirements. No data qualifier is deemed necessary.
- Acenaphthylene and Naphthalene associated with low level semivolatile organic compounds analysis (8270DE) were outside of the laboratory specified recommended RPD limits. Batch accepted based on laboratory control sample (LCS) recovery. No data qualifier is deemed necessary.
- Ethylbenzene and Xylenes associated with low level volatile organic compounds analysis (8260D) were slightly above the recommended RPD limits. All other laboratory quality control data associated with Ethylbenzene and Xylenes analysis meets specified requirements. No data qualifier deemed necessary.
- 1-Methylnaphthalene MS/MSD results associated with low level volatile semivolatile organic compounds analysis (8270E) exceeded the calibration range. The reported result is estimated. No data qualifier deemed necessary.
- Several parameters associated with low level semivolatile organic compound analysis
- (8270E) exceeded QC limits for MS/MSD recovery. Batch accepted based on LCS recovery. No data qualifier deemed necessary.
- Several parameters associated with low level semivolatile organic compound analysis (8270E) was outside laboratory control limits for MS/MSD recovery due to a parent sample concentration notably higher than the spike level. All other laboratory quality control data associated with the various parameters meets specified requirements. No data qualifier deemed necessary.

Sample Collection Methods

All sample collection and handling methods were followed as described in the approved Sampling and Analysis Plan (SAP) and laboratory methods.

Overall Assessment of the Data

This data set is 100% complete. Data precision was evaluated through sample duplicates, laboratory surrogate duplicates, and matrix spike duplicates. Data accuracy was evaluated through laboratory method blanks, surrogate spikes, and matrix spikes. Based on this data quality verification and validation, all of the data presented were determined to be acceptable.

APPENDIX D

MTCA TPH Worksheets

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 10/14/21

Date	10/14/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-1-21 (4 FT)

2. Enter Soil Concentrat	tion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentr	ation Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Concentrati	ion Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	1.88	3.67%		
AL_EC >6-8	0.544	1.06%	REMARK:	
AL_EC >8-10	1.59	3.11%	Enter site-specific information	on here
AL_EC >10-12	5.9	11.53%		
AL_EC >12-16	2.51	4.90%		
AL_EC >16-21	5.02	9.81%		
AL_EC >21-34	8.07	15.77%		
AR_EC >8-10	2.045	4.00%		
AR_EC >10-12	4.1753	8.16%		
AR_EC >12-16	2.8606	5.59%		
AR_EC >16-21	6.66	13.01%		
AR_EC >21-34	9.7471	19.05%		
Benzene	0.00288	0.01%		
Toluene	0.007	0.01%		
Ethylbenzene	0.001	0.00%		
Total Xylenes	0.004	0.01%		
Naphthalene	0.0147	0.03%		
1-Methyl Naphthalene	0.0147	0.03%		
2-Methyl Naphthalene	0.0147	0.03%		
n-Hexane	0.01	0.02%		
MTBE		0.00%		
Ethylene Dibromide (EDB)		0.00%		
1,2 Dichloroethane (EDC)		0.00%		
Benzo(a)anthracene	0.0147	0.03%		
Benzo(b)fluoranthene	0.0147	0.03%		
Benzo(k)fluoranthene	0.0147	0.03%		
Benzo(a)pyrene	0.0147	0.03%		
Chrysene	0.0147	0.03%		
Dibenz(a,h)anthracene	0.0147	0.03%		
Indeno(1,2,3-cd)pyrene	0.0147	0.03%	÷	
Sum	51.17388	100.00%	4	
3. Enter Site-Snecific Hy	vdragealagical Da	ıta		
Total soil porosity	0.42	Unitlass		
Volumetric water content:	0.43	Unitless		
Volumetric air content:	0.3	Unitlass		
Soil bulk density measured:	1.5	ba/I		
Fraction Organic Carbon:	0.001	Kg/L Unitlass		
Dilution Easter	20	Unitiess		
A Target TDH Crown J W	20 aton Concentration (Unitiess	4	
4. 1 argei 1r fi Ground Wa	<u>uer Concentation (</u> ound water	<u>ij aajustea)</u>		
concentration enter adjusted	500	ug/I		
value here:	500	ug/L		
value liele.				

9:25 AM 3/11/2022 B-1-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>10/14/2021</u> Site Name: <u>Phillips 66 Ferndale Refinery</u> Sample Name: <u>B-1-21 (4 FT)</u> Measured Soil TPH Concentration, mg/kg: **51.174**

1. Summary of Calculation Results

Eurogung Dathway	Mathad/Caal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Fainway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	1,793	2.93E-08	2.35E-02	Pass
Contact: Human Health	Method C	44,485	6.96E-09	1.15E-03	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	229	7.76E-07	4.82E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	1,365	NA	NA	Pass

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	1,792.72	44,485.37
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	HI =1

	Pro	tective Soil Concent	Protective Soil Concentration @Method C					
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @
HI =1	NO	2.18E+03	1.25E-06	1.00E+00	YES	4.45E+04	6.05E-06	1.00E+00
Total Risk=1E-5	NO	1.75E+04	1.00E-05	8.03E+00	NO	7.35E+04	1.00E-05	1.65E+00
Risk of Benzene= 1E-6	NO	3.23E+05	1.85E-04	1.48E+02				
Risk of cPAHs mixture= 1E-6	YES	1.79E+03	1.02E-06	8.23E-01		NI A		
EDB	NA	NA	NA	NA	- INA			
EDC	NA	NA	NA	NA				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection			
Most Stringent Criterion	HI=1		
Protective Ground Water Concentration, ug/L 344.59			
Protective Soil Concentration, mg/kg 229.31			

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	YES	3.45E+02	2.80E-06	1.00E+00	2.29E+02	
Total Risk = 1E-5	NO	5.17E+02	1.00E-05	1.44E+00	2.05E+03	
Total Risk = 1E-6	YES	1.85E+02	1.00E-06	5.76E-01	6.77E+01	
Risk of cPAHs mixture= 1E-5	NO	5.53E+02	1.49E-05	1.60E+00	100% NAPL	
Benzene MCL = 5 ug/L	NO	4.70E+02	6.59E-06	1.30E+00	8.07E+02	
MTBE = 20 ug/L	NA	NA	NA	NA	NA	

Note: 100% NAPL is 78000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentrat	ion previously adjusted and entered
	1 2 3

Cround Water Criteria	Protectiv	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	8.55E-06	1.39E+00	1.37E+03

9:25 AM 3/11/2022 B-1-21 new ecology workbook

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 09/30/21

Date.	09/30/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-2-21 (3 FT)

2. Enter Soil Concentrat	tion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concent	ration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		Tution Dutu Entry Cons
	mg/kg	%	Restore All Soil Concentrat	tion Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	1.2961	0.26%		
AL_EC >6-8	0.384	0.08%	REMARK:	
AL_EC >8-10	2.93	0.58%	Enter site-specific informati	on here
AL_EC >10-12	28.5	5.62%		
AL_EC >12-16	78.4	15.47%		
AL_EC >16-21	96.4	19.02%		
AL_EC >21-34	173	34.14%		
AR_EC >8-10	1.42423	0.28%		
AR_EC >10-12	4.83949	0.96%		
AR_EC >12-16	24.85338	4.90%		
AR_EC >16-21	5.74	1.13%		
AR_EC >21-34	88.6414	17.49%		
Benzene	0.0121	0.00%		
Toluene	0.0397	0.01%		
Ethylbenzene	0.00967	0.00%		
Total Xylenes	0.0161	0.00%		
Naphthalene	0.0107	0.00%		
1-Methyl Naphthalene	0.146	0.03%		
2-Methyl Naphthalene	0.00062	0.00%		
n-Hexane	0.0339	0.01%		
MTBE		0.00%		
Ethylene Dibromide (EDB)		0.00%		
1,2 Dichloroethane (EDC)		0.00%		
Benzo(a)anthracene	0.0051	0.00%		
Benzo(b)fluoranthene	0.0044	0.00%		
Benzo(k)fluoranthene	0.00055	0.00%		
Benzo(a)pyrene	0.00064	0.00%		
Unrysene	0.0457	0.01%		
Indono(1,2,2, ad)	0.0016	0.00%		
nideno(1,2,3-cd)pyrene	0.00061	0.00%		
Sum	506.73599	100.00%		
3. Enter Site-Specific Hy	vdrogeological Da	ıta		
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
4. Target TPH Ground Wa	ter Concentation (if adjusted)		
If you adjusted the target TPH gro	ound water			
concentration, enter adjusted	500	ug/L		
value here:			·····	••••••

2:36 PM 12/28/2021 B-2-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

 Date:
 <u>9/30/2021</u>

 Site Name:
 <u>Phillips 66 Ferndale Refinery</u>

 Sample Name:
 <u>B-2-21 (3 FT)</u>

 Measured Soil TPH Concentration, mg/kg:
 506.736

1. Summary of Calculation Results

Experime Dethway	Mathad/Caal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil	
Exposure Fattiway	Wiethou/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?	
Protection of Soil Direct	Method B	2,828	9.10E-09	1.79E-01	Pass	
Contact: Human Health	Method C	62,337	2.10E-09	8.13E-03	Pass	
Protection of Method B Ground	Potable GW: Human Health Protection	4,413	2.46E-06	2.04E-01	Pass	
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	100% NAPL	NA	NA	Pass	

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,827.60	62,337.29
Most Stringent Criterion	HI =1	HI =1

	Pro	Protective Soil Concentration @Method B					Protective Soil Concentration @Method			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @		
HI =1	YES	2.83E+03	5.08E-08	1.00E+00	YES	6.23E+04	2.58E-07	1.00E+00		
Total Risk=1E-5	NO	5.57E+05	1.00E-05	1.97E+02	NO	2.41E+06	1.00E-05	3.87E+01		
Risk of Benzene= 1E-6	NO	7.61E+05	1.37E-05	2.69E+02						
Risk of cPAHs mixture= 1E-6	NO	1.70E+05	3.05E-06	6.00E+01		NI A				
EDB	NA	NA	NA	NA	INA INA					
EDC	NA	NA	NA	NA]					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection				
Most Stringent Criterion Benzene MCL = 5 ug/L				
Protective Ground Water Concentration, ug/L 90.51				
Protective Soil Concentration, mg/kg 4412.57				

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
Ground water Criteria	Most Stringent?	Most Stringent? TPH Conc, ug/L RISK @		HI @	Conc, mg/kg	
HI=1	NO	9.54E+01	8.72E-06	3.98E-01	100% NAPL	
Total Risk = 1E-5	NO	9.54E+01	8.72E-06	3.98E-01	100% NAPL	
Total Risk = 1E-6	YES	4.67E+01	1.00E-06	1.22E-01	1.49E+02	
Risk of cPAHs mixture= 1E-5	NO	9.54E+01	8.72E-06	3.98E-01	100% NAPL	
Benzene MCL = 5 ug/L	YES	9.05E+01	6.71E-06	3.42E-01	4.41E+03	
MTBE = 20 ug/L	NA	NA	NA	NA	NA	

Note: 100% NAPL is 73000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Con-	ncentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Soil		
	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	9.54E+01	8.72E-06	3.98E-01	100% NAPL

2:36 PM 12/28/2021 B-2-21 new ecology workbook

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 09/30/21

Date.	09/30/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-3-21 (3.5 FT)

2. Enter Soil Concentra	tion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concent	ration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Concentra	tion Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	1.4225	0.04%		
AL_EC >6-8	5.68	0.14%	REMARK:	
AL_EC >8-10	21.6	0.55%	Enter site-specific informat	ion here
AL_EC >10-12	186	4.70%		
AL_EC >12-16	652	16.47%		
AL_EC >16-21	658	16.62%		
AL_EC >21-34	1200	30.32%		
AR_EC >8-10	28.0949	0.71%		
AR_EC >10-12	16.0972	0.41%		
AR_EC >12-16	128.4377	3.24%		
AR_EC >16-21	325	8.21%		
AR_EC >21-34	734.722	18.56%		
Benzene	0.017	0.00%		
Toluene	0.0557	0.00%		
Ethylbenzene	0.0371	0.00%		
Total Xylenes	0.268	0.01%		
Naphthalene	0.0452	0.00%		
1-Methyl Naphthalene	0.559	0.01%		
2-Methyl Naphthalene	0.0033	0.00%		
n-Hexane	0.0475	0.00%		
MTBE		0.00%		
Ethylene Dibromide (EDB)		0.00%		
1,2 Dichloroethane (EDC)		0.00%		
Benzo(a)anthracene	0.0254	0.00%		
Benzo(b)fluoranthene	0.0208	0.00%		
Benzo(k)fluoranthene	0.003	0.00%		
Benzo(a)pyrene	0.0035	0.00%		
Chrysene	0.218	0.01%		
Dibenz(a,h)anthracene	0.004	0.00%		
Indeno(1,2,3-cd)pyrene	0.0033	0.00%	4	
Sum	3958.3651	100.00%	┨ ┊	
3. Enter Site-Specific H	ydrogeological Da	<u>ta</u>		
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
4. Target TPH Ground We	ater Concentation (if adjusted)	1	
If you adjusted the target TPH gr	ound water			
concentration, enter adjusted	500	ug/L		
value here:			i	••••••

2:38 PM 12/28/2021 B-3-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>9/30/2021</u> Site Name: <u>Phillips 66 Ferndale Refinery</u> Sample Name: <u>B-3-21 (3.5 FT)</u> Measured Soil TPH Concentration, mg/kg: **3,958,365**

1. Summary of Calculation Results

European Dotherory	Mathad/Caal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	wichiod/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,561	3.64E-08	1.55E+00	Fail
Contact: Human Health	Method C	53,988	8.57E-09	7.33E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	100% NAPL	1.28E-06	1.64E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,561.23	53,988.22
Most Stringent Criterion	HI =1	HI =1

	Pro	tective Soil Concent	ration @Method	В	Protective Soil Concentration @Method C				
Soil Criteria	Most Stringent?	TPH Conc. mg/kg	RISK @	HI @	Most Stringent?	TPH Conc,	RISK @	HI @	
	8						mg/kg		
HI =1	YES	2.56E+03	2.35E-08	1.00E+00	YES	5.40E+04	1.17E-07	1.00E+00	
Total Risk=1E-5	NO	1.09E+06	1.00E-05	4.25E+02	NO	4.62E+06	1.00E-05	8.55E+01	
Risk of Benzene= 1E-6	NO	4.23E+06	3.89E-05	1.65E+03					
Risk of cPAHs mixture= 1E-6	NO	2.72E+05	2.49E-06	1.06E+02		NI A			
EDB	NA	NA	NA	NA	- INA				
EDC	NA	NA	NA	NA					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection					
Most Stringent Criterion NA					
Protective Ground Water Concentration, ug/L	NA				
Protective Soil Concentration, mg/kg Soil-to-Ground Water is not a critical pathway!					

Ground Water Criteria	Protective	Protective Soil			
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	YES	8.22E+01	1.67E-06	1.78E-01	100% NAPL
Total Risk = 1E-5	YES	8.22E+01	1.67E-06	1.78E-01	100% NAPL
Total Risk = 1E-6	YES	7.47E+01	1.00E-06	1.51E-01	1.75E+03
Risk of cPAHs mixture= 1E-5	YES	8.22E+01	1.67E-06	1.78E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	8.22E+01	1.67E-06	1.78E-01	100% NAPL
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 75000 mg/kg TPH.

3.2 Protection of Ground Water Quality for	TPH Ground Water Concentration	previously adjusted and entered
		1 2 3

Ground Water Criteria	Protective	Protective Soil		
	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	8.22E+01	1.67E-06	1.78E-01	100% NAPL

2:38 PM 12/28/2021 B-3-21 new ecology workbook

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 09/30/21

Date.	03/30/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-4-21 (3 FT)

2. Enter Soil Concentrat	tion Measured		Notes for Data Entry Se	et Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentrati	on Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Concentration	Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	1.232	0.03%		
AL_EC >6-8	4.25	0.11%	REMARK:	
AL_EC >8-10	31.6	0.80%	Enter site-specific information	here
AL_EC >10-12	206	5.20%		
AL_EC >12-16	618	15.59%		
AL_EC >16-21	594	14.98%		
AL_EC >21-34	1140	28.76%		
AR_EC >8-10	49.2711	1.24%		
AR_EC >10-12	40.627	1.02%		
AR_EC >12-16	154.9934	3.91%		
AR_EC >16-21	419	10.57%		
AR_EC >21-34	704.5226	17.77%		
Benzene	0.0136	0.00%		
Toluene	0.0445	0.00%		
Ethylbenzene	0.0108	0.00%		
Total Xylenes	0.0181	0.00%		
Naphthalene	0.273	0.01%		
1-Methyl Naphthalene		0.00%		
2-Methyl Naphthalene	0.0066	0.00%		
n-Hexane	0.038	0.00%		
MTBE		0.00%		
Ethylene Dibromide (EDB)		0.00%		
1,2 Dichloroethane (EDC)		0.00%		
Benzo(a)anthracene	0.194	0.00%		
Benzo(b)fluoranthene	0.0394	0.00%		
Benzo(k)fluoranthene	0.0059	0.00%		
Benzo(a)pyrene	0.0069	0.00%		
Chrysene	0.208	0.01%		
Dibenz(a,h)anthracene	0.0166	0.00%		
Indeno(1,2,3-cd)pyrene	0.0066	0.00%		
Sum	3964.3781	100.00%		
3. Enter Site-Specific H	vdrogeological Da	ta		
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
4. Target TPH Ground Wa	ater Concentation (if adjusted)		
If you adjusted the target TPH gr	ound water			
concentration, enter adjusted	500	ug/L		
value here:			·····	

2:27 PM 12/28/2021 B-4-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>9/30/2021</u> Site Name: <u>Phillips 66 Ferndale Refinery</u> Sample Name: <u>B-4-21 (3 FT)</u> Measured Soil TPH Concentration, mg/kg: **3,964.378**

1. Summary of Calculation Results

Europune Dethauer	Mathad/Caal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Miethod/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,485	4.61E-08	1.60E+00	Fail
Contact: Human Health	Method C	51,980	1.09E-08	7.63E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	100% NAPL	8.45E-07	2.86E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,485.08	51,980.13
Most Stringent Criterion	HI =1	HI =1

	Pro	l B	Protective S	oil Concentra	ation @Me	thod C		
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @
HI =1	YES	2.49E+03	2.89E-08	1.00E+00	YES	5.20E+04	1.43E-07	1.00E+00
Total Risk=1E-5	NO	8.61E+05	1.00E-05	3.46E+02	NO	3.64E+06	1.00E-05	6.99E+01
Risk of Benzene= 1E-6	NO	5.30E+06	6.16E-05	2.13E+03				
Risk of cPAHs mixture= 1E-6	NO	8.75E+04	1.02E-06	3.52E+01	-	NI A		
EDB	NA	NA	NA	NA				
EDC	NA	NA	NA	NA				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection				
Most Stringent Criterion	NA			
Protective Ground Water Concentration, ug/L	NA			
Protective Soil Concentration, mg/kg Soil-to-Ground Water is not a critical pathway!				

Ground Water Criteria	Protective	Protective Soil			
Glound Water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	YES	1.30E+02	1.13E-06	3.02E-01	100% NAPL
Total Risk = 1E-5	YES	1.30E+02	1.13E-06	3.02E-01	100% NAPL
Total Risk = 1E-6	YES	1.28E+02	1.00E-06	2.95E-01	9.39E+03
Risk of cPAHs mixture= 1E-5	YES	1.30E+02	1.13E-06	3.02E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	1.30E+02	1.13E-06	3.02E-01	100% NAPL
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 76000 mg/kg TPH.

3.2 Protection of Ground Water Quality for	TPH Ground Water Concentration	previously adjusted and entered
		1 2 3

Cround Water Criteria	Protective	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	1.30E+02	1.13E-06	3.02E-01	100% NAPL

2:27 PM 12/28/2021 B-4-21 new ecology workbook

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 09/30/21

Date.	09/30/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-5-21 (5 FT)

2. Enter Soil Concentra	tion Measured		Notes for Data Entry	Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentr	ation Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio		
	mg/kg	%	Restore All Soil Concentrati	on Data cleared previously
Petroleum EC Fraction				
AL_EC >5-6	1.2102	0.20%		
AL_EC >6-8	1.15	0.19%	REMARK:	
AL_EC >8-10	3.2	0.53%	Enter site-specific informatic	on here
AL_EC >10-12	29.1	4.86%		
AL_EC >12-16	74.2	12.40%		
AL_EC >16-21	78.8	13.17%		
AL_EC >21-34	199	33.27%		
AR_EC >8-10	3.2236	0.54%		
AR_EC >10-12	4.2471	0.71%		
AR_EC >12-16	24.01	4.01%		
AR_EC >16-21	79.6	13.31%		
AR_EC >21-34	97.9322	16.37%		
Benzene	0.0331	0.01%		
Toluene	0.103	0.02%		
Ethylbenzene	0.0534	0.01%		
Total Xylenes	0.573	0.10%		
Naphthalene	0.0217	0.00%		
1-Methyl Naphthalene	0.698	0.12%		
2-Methyl Naphthalene	0.892	0.15%		
n-Hexane	0.0798	0.01%		
MTBE		0.00%		
Ethylene Dibromide (EDB)		0.00%		
1,2 Dichloroethane (EDC)		0.00%		
Benzo(a)anthracene	0.0063	0.00%		
Benzo(b)fluoranthene	0.0052	0.00%		
Benzo(k)fluoranthene	0.0031	0.00%		
Benzo(a)pyrene	0.0036	0.00%		
Chrysene	0.042	0.01%		
Dibenz(a,h)anthracene	0.0042	0.00%		
Indeno(1,2,3-cd)pyrene	0.0034	0.00%		
Sum	598.1949	100.00%		
3. Enter Site-Specific H	<u>ydrogeological</u> Da	<u>ta</u>		
Total soil porosity:	0.43	Unitless		
Volumetric water content:	0.3	Unitless		
Volumetric air content:	0.13	Unitless		
Soil bulk density measured:	1.5	kg/L		
Fraction Organic Carbon:	0.001	Unitless		
Dilution Factor:	20	Unitless		
4. Target TPH Ground Wo	ater Concentation (if adjusted)		
If you adjusted the target TPH gr	ound water	1		
concentration, enter adjusted	500	ug/L		
value here:			•••••••••••••••••••••••••••••••••••••••	••••••

2:41 PM 12/28/2021 B-5-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

 Date:
 <u>9/30/2021</u>

 Site Name:
 <u>Phillips 66 Ferndale Refinery</u>

 Sample Name:
 <u>B-5-21 (5 FT)</u>

 Measured Soil TPH Concentration, mg/kg:
 598,195

1. Summary of Calculation Results

Even aguna Dathayay	Mothed/Gool	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Miethod/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,719	3.59E-08	2.20E-01	Pass
Contact: Human Health	Method C	54,716	8.36E-09	1.09E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	732	6.92E-06	3.93E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,719.09	54,716.48
Most Stringent Criterion	HI =1	HI =1

	Pro	Protective Soil Concentration @Method B				Method B Protective Soil Concentration @Metho			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI =1	YES	2.72E+03	1.63E-07	1.00E+00	YES	5.47E+04	7.65E-07	1.00E+00	
Total Risk=1E-5	NO	1.67E+05	1.00E-05	6.13E+01	NO	7.15E+05	1.00E-05	1.31E+01	
Risk of Benzene= 1E-6	NO	3.29E+05	1.97E-05	1.21E+02					
Risk of cPAHs mixture= 1E-6	NO	7.45E+04	4.47E-06	2.74E+01		NIΛ			
EDB	NA	NA	NA	NA	INA				
EDC	NA	NA	NA	NA					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection			
Most Stringent Criterion Benzene MCL = 5 ug/L			
Protective Ground Water Concentration, ug/L 106.90			
Protective Soil Concentration, mg/kg 731.72			

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B			
Ground water Criteria	Most Stringent?	Iost Stringent? TPH Conc, ug/L RISK @		HI @	Conc, mg/kg
HI=1	NO	1.41E+02	2.03E-05	7.74E-01	100% NAPL
Total Risk = 1E-5	NO	1.16E+02	1.00E-05	4.90E-01	1.18E+03
Total Risk = 1E-6	YES	3.27E+01	1.00E-06	1.05E-01	4.27E+01
Risk of cPAHs mixture= 1E-5	NO	1.41E+02	2.03E-05	7.74E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	1.07E+02	7.78E-06	4.21E-01	7.32E+02
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 76000 mg/kg TPH.

3.2 Protection of Ground Water Ouality for TPH Ground Water Concentrati	on previously adjusted and entered
······································	

Cround Water Criteria	Protective	entration	Protective Soil	
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	1.41E+02	2.03E-05	7.74E-01	100% NAPL

2:41 PM 12/28/2021 B-5-21 new ecology workbook

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u> Date: 09/30/21

Date.	09/30/21
Site Name:	Phillips 66 Ferndale Refinery
Sample Name:	B-6-21 (4 FT)

Chemical of Concern or Equivalent Carbon Group dy basis Ratio mg/kg % Perioleum EC Fraction AL, EC >6-8 AL, EC >6-8 AL, EC >10-12 AL, EC >10-12	2. Enter Soil Concentrat	tion Measured		Notes for Data Entry	Set Default Hydrogeology
or Equivalent Carbon Group dy basis Ratio mg/kg % Petroleum EC Fraction Restore All Soil Concentration Data cleared previously AL_EC >5-6 1.0352 2.50% AL_EC >10-12 4.92 10.30% AL_EC >16-12 4.92 10.30% AL_EC >16-21 4.19 8.78% AL_EC >10-12 3.49944 7.33% AR_EC >10-12 3.49944 7.33% AR_EC >10-12 3.49944 7.33% AR_EC >16-21 5.66 11.85% Benzene 0.0163 0.03% Totalene 0.00163 0.03% Follower 0.00357 0.11% Enthylene 0.0005 0.00% Petroleumhene 0.00051 0.00% Petroleumhene 0.00051 0.00% Benzo(a)prene 0.00051 0.00% Benzo(a)fultoranthene 0.0006 0.00% Benzo(a)fultoranthene 0.0006 0.00% Benzo(a)prene 0.0006 0.00% Sum 47.74737 100.00% Sum	Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concent	ration Data Entry Cells
mg/kg % Perroleum EC Fraction	or Equivalent Carbon Group	dry basis	Ratio		
Perotema RC Fraction AL, EC > 5-8 1.19322 2.50% AL, EC > 6-8 1.67 3.50% AL, EC > 10 0.979 2.05% AL, EC > 10-12 4.92 10.30% AL, EC > 16 2.1 4.40% AL, EC > 16-21 4.19 8.78% AL, EC > 16-21 4.19 8.78% AL, EC > 10-12 3.49944 7.33% AR, EC > 10-12 3.49944 7.33% AR, EC > 21-34 9.72 20.36% Benzene 0.0163 0.03% NAR, EC > 21-34 9.72 20.36% Benzene 0.0131 0.03% Naphthalene 0.0017 0.00% I-Methyl Naphthalene 0.0018 0.00% MTBE 0.00056 0.00% Benzo(a)mtracene 0.00058 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene <td< td=""><td></td><td>mg/kg</td><td>%</td><td>Restore All Soil Concentrat</td><td>tion Data cleared previously</td></td<>		mg/kg	%	Restore All Soil Concentrat	tion Data cleared previously
AL_EC >5-6 1.19252 2.50% AL_EC >8-10 0.979 2.05% AL_EC >10-12 4.92 10.30% AL_EC >12-16 2.1 4.40% AL_EC >12-16 1.1 4.40% AL_EC >12-16 2.1 4.40% AL_EC >10-12 3.49944 7.33% AL_EC >16-21 5.66 11.85% AR_EC >16-21 5.66 11.85% AR_EC >16-21 5.66 11.85% AR_EC >16-21 5.66 11.85% REMARK: 0.0131 0.03% Total xylenes 0.0218 0.05% Naphthalene 0.00057 0.00% 2-Methyl Naphthalene 0.00051 0.00% 2-Methyl Naphthalene 0.00051 0.00% 2.1 Dichloroethane (EDC) 0.0006 0.00% Benzo(h)fluoranthene 0.00051 0.00% Benzo(h)fluoranthene 0.00060 0.00% Stam 47.74737 100.00% Stam 47.74737 100.00% Stam 47.74737 100.00% Stam <t< td=""><td>Petroleum EC Fraction</td><td></td><td></td><td></td><td></td></t<>	Petroleum EC Fraction				
AL_EC > 6-8 1.67 3.50% AL_EC > 101 0.979 2.05% AL_EC > 10-12 4.92 10.30% AL_EC > 10-12 3.49944 7.33% RE BC > 10-12 3.49944 7.33% AR_EC > 12-16 2.4065 5.04% Benzene 0.0163 0.03% Foluene 0.0537 0.11% Ethylenezene 0.0131 0.03% Tolat Stylenes 0.0218 0.00% LAgethyl Naphthalene 0.0005 0.00% Parzo(k)fluoranthene 0.00058 0.00% Enter Stite-Specific Hydrogeological Data 0.00% Benzo(a)ginucrathene 0.00058 0.00% Benzo(k)fluoranthene 0.00066 0.00% Sum 47.74737 100.00% <td< td=""><td>AL_EC >5-6</td><td>1.19352</td><td>2.50%</td><td></td><td></td></td<>	AL_EC >5-6	1.19352	2.50%		
AL_EC >8-10 0.979 2.05% AL_EC >10-12 4.92 10.30% AL_EC >12-16 2.1 4.40% AL_EC >16-21 4.19 8.78% AL_EC >21-34 10 20.94% AR_EC >10-12 3.49944 7.33% AR_EC >10-12 3.49944 7.33% AR_EC >10-12 3.49944 7.33% AR_EC >21-34 9.72 20.36% Benzene 0.0163 0.03% Toluene 0.00537 0.11% Ethylbenzene 0.0163 0.03% Total Xylenes 0.0218 0.00% Naphthalene 0.00017 0.00% Packet Dibromide (EDB) 0.00% 0.00% Enzo(h)luoranthene 0.00051 0.00% Benzo(h)luoranthene 0.00066 0.00% Sum 47.74737 100.00% Stam 47.74737 100.00% Stam 4.5 Unitless Volumetrix water content: 0.13 Unitless Volumetrix water content: 0.13 Unitless Volumetrix water	AL_EC >6-8	1.67	3.50%	REMARK:	
AL, EC > 10-12 4.92 10.30% AL, EC > 16-21 4.19 8.78% AL, EC > 16-21 4.19 8.78% AL, EC > 10-12 3.49944 7.33% AR, EC > 10-12 3.49944 7.33% AR, EC > 10-12 3.49944 7.33% AR, EC > 12-16 2.065 5.04% AR, EC > 21-34 9.72 20.36% Benzene 0.0163 0.03% Tolatene 0.0537 0.11% Ethylbenzene 0.00131 0.03% Total Xylenes 0.0017 0.00% P-Methyl Naphthalene 0.0017 0.00% 1.4 Methyl Naphthalene 0.00056 0.00% Paczo(h)fluoranthene 0.00051 0.00% Benzo(a)anthracene 0.000058 0.00% Benzo(h)fluoranthene 0.000058 0.00% Benzo(h)fluoranthene 0.000051 0.00% Benzo(a)pyrene 0.000058 0.00% Diberz(a,h)anthracene 0.000051 0.00% Benzo(h)fluoranthene 0.000056 0.00% Sum 47.74737 100.00% <td>AL_EC >8-10</td> <td>0.979</td> <td>2.05%</td> <td>Enter site-specific informati</td> <td>ion here</td>	AL_EC >8-10	0.979	2.05%	Enter site-specific informati	ion here
AL_EC > 12-16 2.1 4.0% AL_EC > 21-34 10 20.94% AR_EC > 10-12 3.49944 7.33% AR_EC > 12-16 2.4055 5.04% AR_EC > 12-16 2.4065 5.04% AR_EC > 21-34 9.72 20.36% Benzene 0.0163 0.03% Toluene 0.0537 0.11% Ethylbonzene 0.0113 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.00051 0.00% Benzo(b)fluoranthene 0.00051 0.00% Benzo(b)fluoranthene 0.00073 0.00% Benzo(b)fluoranthene 0.00073 0.00% Chrysene 0.00073 0.00% Benzo(b)fluoranthene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Subluk density	AL_EC >10-12	4.92	10.30%		
AL_EC >1-34 10 20.94% AL_E C> >1-34 10 20.94% AR_EC >8-10 1.24956 2.62% AR_EC >1-12 3.49944 7.33% AR_EC >1-16 2.4065 5.04% AR_EC >1-16 2.4065 5.04% AR_EC >1-16 2.4065 5.04% AR_EC >1-16 2.4065 5.04% AR_EC >1-16 2.03% 0.03% Toluene 0.0163 0.03% Toluene 0.0131 0.03% Tolal Xylenes 0.0017 0.00% Achtly Naphthalene 0.0017 0.00% Pathyl Naphthalene 0.0018 0.00% Pathyl Naphthalene 0.00051 0.00% Benzo(a)anthracene 0.00058 0.00% Benzo(a)anthracene 0.00058 0.00% Benzo(a)induranthene 0.00066 0.00% Benzo(a)induranthene 0.00073 0.00% Benzo(a)induranthene 0.00066 0.00% Benzo(a)induranthene 0.00066 0.00% Sum 47.74737 100.00%	AL_EC >12-16	2.1	4.40%		
AL_EC >21-34 10 20.94% AR_EC >8-10 1.24956 2.62% AR_EC >10-12 3.49944 7.33% AR_EC >16-21 5.66 11.85% AR_EC >16-21 5.66 11.85% Benzene 0.0163 0.03% Toluene 0.0537 0.11% Eluylbenzene 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 1-Methyl Naphthalene 0.0018 0.00% 1-2 Dichloroethane (EDD) 0.00% 0.00% 1.2 Dichloroethane (EDC) 0.00% 0.00% Benzo(a)nthracene 0.00051 0.00% Benzo(b)fluoranthene 0.00060 0.00% Benzo(b)fluoranthene 0.00060 0.00% Dibenz(a,h)anthracene 0.00061 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene 0.00066 0.00% Benzo(b)fluoranthene	AL_EC >16-21	4.19	8.78%		
AR_EC >8-10 1.24956 2.62% AR_EC >10-12 3.49944 7.33% AR_EC >16-21 5.66 11.85% AR_EC >21-34 9.72 20.36% Benzene 0.0163 0.03% Tolucne 0.0357 0.11% Ethylbenzene 0.0131 0.03% Tolux Yelnes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0018 0.00% Polester 0.0018 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(a)anthracene 0.00005 0.00% Benzo(a)pyrene 0.0007 0.00% Benzo(a)pyrene 0.00073 0.00% Chrysene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Soll bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Soll bulk density measured: 1.5 kg/L	AL_EC >21-34	10	20.94%		
AR_ EC > 10-12 3.49944 7.33% AR_ EC > 12-16 2.4065 5.04% AR_ EC > 16-21 5.66 11.85% Benzene 0.0163 0.03% Toluene 0.0137 0.11% Ethylbenzene 0.0131 0.03% Tolary System 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 1-Methyl Naphthalene 0.0018 0.00% 1-Methyl Naphthalene 0.00458 0.10% 1.2 Dichloroethane (EDC) 0.00% 0.00% Benzo(h)fuoranthene 0.00051 0.00% Benzo(h)fuoranthene 0.000051 0.00% Benzo(h)fuoranthene 0.000051 0.00% Benzo(h)fuoranthene 0.00006 0.00% Bonzo(h)fuoranthene	AR_EC >8-10	1.24956	2.62%		
AR_EC>12-16 2.4065 5.04% AR_EC>21-31 5.66 11.85% AR_EC>21.34 9.72 20.36% Benzene 0.0163 0.03% Toluene 0.0337 0.11% Ethylbenzene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.00051 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(h)fuoranthene 0.0007 0.00% Benzo(k)fuoranthene 0.00073 0.00% Benzo(k)fuoranthene 0.00073 0.00% Dibenz(a,h)anthracene 0.00073 0.00% Benzo(b)fuoranthene 0.00066 0.00% Sum 47.74737 100.00%	AR_EC >10-12	3.49944	7.33%		
AR_EC > 16-21 5.66 11.85% AR_EC > 21-34 9.72 20.36% Benzene 0.0163 0.03% Toluene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 1-Methyl Naphthalene 0.0018 0.00% 1-Methyl Naphthalene 0.0018 0.00% 1-Methyl Naphthalene 0.0018 0.00% 1-Methyl Naphthalene 0.0018 0.00% Ethylene Dibromide (EDB) 0.00% 0.00% Benzo(h)fluoranthene 0.00051 0.00% Benzo(h)fluoranthene 0.0007 0.00% Benzo(h)fluoranthene 0.00073 0.00% Chrysene 0.00073 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sold porosity: 0.43 Unitless Volumetric air content: 0.3 Unitless Soll bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.00	AR_EC >12-16	2.4065	5.04%		
AR_EC >21-34 9.72 20.36% Benzene 0.0163 0.03% Toluene 0.0537 0.11% Ethylbenzene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% 1.2 Dichloroethane (EDC) 0.00% 0.00% Benzo(a)nthracene 0.00071 0.00% Benzo(b)fluoranthene 0.00073 0.00% Benzo(a)pyrene 0.00073 0.00% Dibenz(a,b)anthracene 0.00073 0.00% Dibenz(a,b)anthracene 0.00073 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.013 Unitless Soil bulk density measured: 1.5 kg/L Fraction Orga	AR_EC >16-21	5.66	11.85%		
Benzene 0.0163 0.03% Toluene 0.0537 0.11% Ethylbenzene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0458 0.10% MTBE 0.000% 0.00% Ethylene Dibromide (EDB) 0.00% 0.00% 1.2 Dichloroethane (EDC) 0.00% 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(k)fluoranthene 0.00006 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(a)pyrene 0.0007 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data 1 Unitless Volumetric w	AR_EC >21-34	9.72	20.36%	J	
Toluene 0.0537 0.11% Ethylbenzene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0458 0.10% MTBE 0.00% 0.00% Ethylene Dibromide (EDB) 0.00% 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(k)fluoranthene 0.00073 0.00% Benzo(k)fluoranthene 0.00073 0.00% Dibenz(a,h)anthracene 0.00073 0.00% Benzo(a)pyrene 0.00066 0.00% Ibenz(a,h)anthracene 0.00066 0.00% Sum 47.74737 100.00% Sol bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Solludion Factor: 20 Unitless Jolution Factor: 20	Benzene	0.0163	0.03%		
Ethylbenzene 0.0131 0.03% Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.00458 0.10% THE 0.0056 0.00% Ethylene Dibromide (EDB) 0.00% 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.00073 0.00% Benzo(k)fluoranthene 0.00066 0.00% Sthat Sci Poscific Hydrogeological Data 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Unitless Volumetric water content: 0.3 Unitless Volumetric water content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L <td>Toluene</td> <td>0.0537</td> <td>0.11%</td> <td></td> <td></td>	Toluene	0.0537	0.11%		
Total Xylenes 0.0218 0.05% Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% 2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0458 0.10% MTBE 0.00% 0.00% Ethylene Dibromide (EDB) 0.00% 0.00% 1.2 Dichloroethane (EDC) 0.00% 0.00% Benzo(a)anthracene 0.00071 0.00% Benzo(a)anthracene 0.00073 0.00% Benzo(a)pyrene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Unitless Yolumetric water content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless <t< td=""><td>Ethylbenzene</td><td>0.0131</td><td>0.03%</td><td></td><td></td></t<>	Ethylbenzene	0.0131	0.03%		
Naphthalene 0.00056 0.00% 1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0188 0.10% MTBE 0.00% 0.00% Ethylene Dibromide (EDB) 0.00% $1,2$ Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(b)fluoranthene 0.00058 0.00% Benzo(b)fluoranthene 0.00058 0.00% Benzo(b)fluoranthene 0.00060 0.00% Benzo(a)pyrene 0.00077 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological DataTotal soil porosity: 0.43 UnitlessVolumetric air content: 0.3 UnitlessVolumetric air content: 0.13 UnitlessSoil bulk density measured: 1.5 kg/LFraction Organic Carbon: 0.001 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 ug/L Hydra dipusted the target TPH ground water 500 ug/L	Total Xylenes	0.0218	0.05%		
1-Methyl Naphthalene 0.0017 0.00% 2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0458 0.10% MTBE 0.00% Ethylene Dibromide (EDB) 0.00% 1.2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(a)fluoranthene 0.00058 0.00% Benzo(b)fluoranthene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Dibenz(a,h)anthracene 0.00073 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological DataTotal soil porosity: 0.43 UnitlessVolumetric water content: 0.13 UnitlessSoil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 UnitlessVolumetric air content: 0.001 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 UnitlessDilution Factor: 20 ug/L value here: 500 ug/L	Naphthalene	0.00056	0.00%		
2-Methyl Naphthalene 0.0018 0.00% n-Hexane 0.0458 0.10% MTBE 0.00% Ethylene Dibromide (EDB) 0.00% J.2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(a)anthracene 0.00058 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(a)apyrene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Unitless Volumetric water content: 0.13 Unitless Volumetric water content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless Dilution Factor: 20 Unitless Dilution Factor: 20	1-Methyl Naphthalene	0.0017	0.00%		
n-Hexane 0.0458 0.10% MTBE 0.00% Ethylene Dibromide (EDB) 0.00% 1.2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.00073 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Stater Site-Specific Hydrogeological Data Unitless Volumetric water content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless Dilution Factor: 20 Unitless Mathemetic 500	2-Methyl Naphthalene	0.0018	0.00%		
MTBE 0.00% Ethylene Dibromide (EDB) 0.00% 1,2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(k)fluoranthene 0.0007 0.00% Benzo(k)fluoranthene 0.00073 0.00% Benzo(a)pyrene 0.00066 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Enters Site-Specific Hydrogeological Data Yolumetric water content: 0.13 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.0001 Unitless Dilution Factor: 20 Unitless Dilution Factor: 20 Unitless Mathemetic 500 ug/L Walue here:	n-Hexane	0.0458	0.10%		
Ethylene Dibromide (EDB) 0.00% 1,2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(b)fluoranthene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Benzo(a)pyrene 0.0007 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Stenter Site-Specific Hydrogeological Data Unitless Volumetric water content: 0.13 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless Pittorie TrPH ground water 500 ug/L concentration, enter adjusted 500 ug/L	MTBE		0.00%		
1.2 Dichloroethane (EDC) 0.00% Benzo(a)anthracene 0.00051 0.00% Benzo(b)fluoranthene 0.00058 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Stenter Site-Specific Hydrogeological DataTotal soil porosity: 0.43 Volumetric water content: 0.13 Volumetric air content: 0.13 Soil bulk density measured: 1.5 kg/LFraction Organic Carbon: 0.001 Dilution Factor: 20 UnitlessDilution Factor: 20 UnitlessMutagingti the target TPH ground water concentration, enter adjusted Mutagingti the target TPH ground water concentration, enter adjusted500 ug/L	Ethylene Dibromide (EDB)		0.00%		
Benzo(a)anthracene 0.00051 0.00% Benzo(b)fluoranthene 0.00058 0.00% Benzo(a)pyrene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Benzo(a)pyrene 0.0007 0.00% Benzo(a)pyrene 0.0007 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Starter Site-Specific Hydrogeological Data Unitless Volumetric water content: 0.3 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless Dilution Factor: 20 Unitless concentration, enter adjusted 500 ug/L	1,2 Dichloroethane (EDC)		0.00%		
Benzo(b)fluoranthene 0.00058 0.00% Benzo(k)fluoranthene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00066 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Total soil porosity: 0.43 Volumetric water content: 0.3 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.0001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted). ff you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L	Benzo(a)anthracene	0.00051	0.00%		
Benzo(k)fluoranthene 0.0006 0.00% Benzo(a)pyrene 0.0007 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Attriation of the second	Benzo(b)fluoranthene	0.00058	0.00%		
Benzo(a)pyrene 0.0007 0.00% Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Sum 0.43 Unitless Volumetric water content: 0.3 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) ug/L if you adjusted the target TPH ground water 500 ug/L	Benzo(k)fluoranthene	0.0006	0.00%		
Chrysene 0.00073 0.00% Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% Sum 47.74737 100.00% Attract Site-Specific Hydrogeological Data 0.3 Total soil porosity: 0.43 Unitless Volumetric water content: 0.13 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless Mitter Structure 0.001 Unitless Dilution Factor: 20 Unitless Majusted the target TPH ground water 500 ug/L value here: 500 ug/L	Benzo(a)pyrene	0.0007	0.00%		
Dibenz(a,h)anthracene 0.00081 0.00% Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological DataTotal soil porosity: 0.43 UnitlessVolumetric water content: 0.3 UnitlessVolumetric air content: 0.13 UnitlessSoil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 UnitlessDilution Factor: 20 UnitlessMathematical distribution for the target TPH ground water concentration, enter adjusted 500 ug/L value here: 500 ug/L	Chrysene	0.00073	0.00%		
Indeno(1,2,3-cd)pyrene 0.00066 0.00% Sum 47.74737 100.00% 3. Enter Site-Specific Hydrogeological Data Initless Total soil porosity: 0.43 Unitless Volumetric water content: 0.3 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here: 500 ug/L	Dibenz(a,h)anthracene	0.00081	0.00%		
Sum47.74737100.00%3. Enter Site-Specific Hydrogeological DataTotal soil porosity:0.43UnitlessVolumetric water content:0.3UnitlessVolumetric air content:0.13UnitlessSoil bulk density measured:1.5Kg/LFraction Organic Carbon:0.001UnitlessDilution Factor:20Unitless4. Target TPH Ground Water Concentation (if adjusted)If you adjusted the target TPH ground waterconcentration, enter adjusted500ug/Lvalue here:	Indeno(1,2,3-cd)pyrene	0.00066	0.00%	4	
3. Enter Site-Specific Hydrogeological Data Total soil porosity: 0.43 Volumetric water content: 0.3 Volumetric air content: 0.13 Volumetric air content: 0.001 Unitless Unitless Soil bulk density measured: 1.5 kg/L Kg/L Fraction Organic Carbon: 0.001 Unitless Unitless Dilution Factor: 20 Unitless Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 value here: 500	Sum	47.74737	100.00%	4	
Total soil porosity: 0.43 Unitless Volumetric water content: 0.3 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here: 100 100	3. Enter Site-Specific H	vdrogeological Da	ıta		
Volumetric water content: 0.3 Unitless Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L	Total soil porosity	0.43	Unitless		
Volumetric air content: 0.13 Unitless Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here: 0.00 ug/L	Volumetric water content:	0.3	Unitless		
Soil bulk density measured: 1.5 kg/L Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L	Volumetric air content	0.13	Unitless		
Fraction Organic Carbon: 0.001 Unitless Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here:	Soil bulk density measured	1.5	kg/L		
Dilution Factor: 20 Unitless 4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here: 500 ug/L	Fraction Organic Carbon:	0.001	Unitless		
4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water concentration, enter adjusted 500 value here:	Dilution Factor:	20	Unitless		
If you adjusted the target TPH ground water concentration, enter adjusted 500 ug/L value here:	4. Target TPH Ground W	ter Concentation	if adjusted)	1	
concentration, enter adjusted 500 ug/L value here:	If you adjusted the target TPH or	ound water	., aujustou/		
value here:	concentration, enter adjusted	500	ug/L		
	value here:				

9:52 AM 12/29/2021 B-6-21 new ecology workbook

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

 Date:
 <u>9/30/2021</u>

 Site Name:
 <u>Phillips 66 Ferndale Refinery</u>

 Sample Name:
 <u>B-6-21 (4 FT)</u>

 Measured Soil TPH Concentration, mg/kg:
 47.747

1. Summary of Calculation Results

Environment Bethannen Metheol/Cool		Protective Soil	With Measu	red Soil Conc	Does Measured Soil	
Exposure Failway	Miethod/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?	
Protection of Soil Direct	Method B	2,490	2.28E-09	1.92E-02	Pass	
Contact: Human Health	Method C	50,867	4.48E-10	9.39E-04	Pass	
Protection of Method B Ground	Potable GW: Human Health Protection	84	3.67E-06	4.82E-01	Pass	
Water Quality (Leaching)	Target TPH GW Conc. @ 500 ug/L	1,654	NA	NA	Pass	

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,490.09	50,867.36
Most Stringent Criterion	HI =1	HI =1

	Pro	Protective Soil Concentration @Method B				oil Concentra	ntion @Me	thod C
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @
HI =1	YES	2.49E+03	1.19E-07	1.00E+00	YES	5.09E+04	4.78E-07	1.00E+00
Total Risk=1E-5	NO	2.10E+05	1.00E-05	8.43E+01	NO	1.06E+06	1.00E-05	2.09E+01
Risk of Benzene= 1E-6	NO	5.33E+04	2.54E-06	2.14E+01				
Risk of cPAHs mixture= 1E-6	NO	3.63E+04	1.73E-06	1.46E+01		NIΛ		
EDB	NA	NA	NA	NA	INA			
EDC	NA	NA	NA	NA				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection				
Most Stringent Criterion	Benzene MCL = 5 ug/L			
Protective Ground Water Concentration, ug/L 192.78				
Protective Soil Concentration, mg/kg 84.26				

Ground Water Criteria	Protective Potable Ground Water Concentration @Method B				Protective Soil
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	NO	2.65E+02	1.08E-05	1.00E+00	1.52E+02
Total Risk = $1E-5$	NO	2.54E+02	1.00E-05	9.54E-01	1.39E+02
Total Risk = 1E-6	YES	4.46E+01	1.00E-06	1.62E-01	1.27E+01
Risk of cPAHs mixture= 1E-5	NO	5.71E+02	9.21E-05	3.45E+00	100% NAPL
Benzene MCL = 5 ug/L	YES	1.93E+02	6.31E-06	7.12E-01	8.43E+01
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 77000 mg/kg TPH.

Cround Water Criteria	Protective	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 500 ug/L	5.00E+02	5.53E-05	2.48E+00	1.65E+03

9:52 AM 12/29/2021 B-6-21 new ecology workbook