

GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

April 29, 2022

Project No. 104-21020

Mr. Duane Meszaros, Director of Development Russell Square Consulting 41428 Mackenzie Court Murrieta, CA 92562

RE: Groundwater Quarterly Monitoring – Fourth Quarter Summary Letter Lots 25 & 26 of the JSP Silverdale site NW Brian Lane Silverdale, Washington

Dear Mr. Meszaros:

This report summarizes the four quarters of groundwater monitoring activities conducted to date for the referenced site in Silverdale, Washington (see Figure 1, Vicinity Map). Data collected from these samples confirms whether contaminants of potential concern (COPC) originating from alleged solid waste disposal or other potential sources of contamination migrated from soil to groundwater at five locations of concern on the subject site (Figure 2, Site Map). This work is being conducted in response to a request for further groundwater characterization outlined in a letter sent from the Department of Ecology (DOE) to Mr. Andrew Seitz on March 9, 2021, and to determine if any remedial action is required to meet substantive requirements of the Model Toxics Control Act (MTCA), Chapter 70A.305 RCW. Monitoring results for the first and second quarters, collected on July 21, 2021, and October 6, 2021, respectively, were previously summarized in a Remedial Investigation Report, dated October 19, 2021. Third quarter monitoring results were summarized in a quarterly monitoring report dated February 22, 2022. The work was conducted in general accordance with Proposal No. E21042WAP, dated June 23, 2021, which was approved by Mr. Blaise Hilton on July 22, 2021.

Monitoring Well Installation

In response to DOE's Opinion, dated February 24, 2022, and subsequent meetings with the DOE project manager, Krazan installed an additional monitoring well adjacent to the former house and drum area for further groundwater monitoring as shown on Figure 2.

Representatives of Krazan collected subsurface soil samples and logged the installation of the monitoring well MW-6 on March 21, 2022. The monitoring well was drilled and installed using a track-mounted, hollow-stem auger drill rig to a maximum depth of 26.5 feet bgs. The monitoring well was located per conversations with Ecology to permit sampling of the soil and groundwater adjacent to the former house and drum area.

During drilling, soil samples were collected in 18-inch sections using a 2.0-inch or 3.0-inch diameter split-spoon sampler. The samples were visually described using the Unified Soils Classification System

(ASTM D2487). A lithologic log with well construction details is attached in Appendix A. The soil samples were screened n the field using a Photo-Ionization Detector (PID) for the presence of volatile organic compounds. Soil samples were collected every 5.0-feet from the boring.

On completion of drilling, the monitoring well was installed. The monitoring well was constructed with 2-inch diameter Schedule 40 PVC well screen and riser pipe. The well contains a 15-foot-long section of 10-slot (0.010-inch) PVC well screen. The well screen was placed to ensure that the top of the water table was below the top of the screen. The annular space between the well screen and borehole wall was backfilled with sand. A bentonite seal was placed above the sand pack to three-feet below the ground surface. The top of each well was completed with an above-ground steel monument, which was cemented in place with three steel bollards protecting each well.

Public and private underground utilities were located prior to the installation of the monitoring wells. Due to the nature of the site use, no utilities were located on the subject property. The horizontal sample locations were marked in the field and surveyed by a licensed surveyor (AES Consultants). The measuring point elevations of the monitoring wells were surveyed using the North American Vertical Datum of 1988 by a Washington-state licensed surveyor, in accordance with WAC 173-340-840(4)(e). Depths to groundwater were measured to the nearest 0.01 foot and elevations were contoured to determine the predominant groundwater flow direction at the site. The depth to groundwater is shown on the monitoring well boring log in Appendix A.

Soil Sampling Results

During the monitoring well installation, each soil sample collected was screened using a PID to assess for the presence of volatile organic constituents. No detectable measurements were recorded from the soil samples. Soil samples were collected from the borings according to the sampling outlined in the Sampling and Analysis Plan (SAP) dated April 2021. All samples were analyzed for Total Petroleum Hydrocarbons in the diesel and heavy oil range by Method NWTPH-Dx, Total Petroleum Hydrocarbons in the gasoline range by Method NWTPH-Gx, BTEX by Method 8021B, Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270E, Polychlorinated Biphenyls (PCBs) by Method 8082; and total metals (lead and arsenic) by Method 6020.

Subsurface soil analytical results for NWTPH-Dx, NWTPH-Gx, BTEX, PAHs, and PCBs were all nondetect. Analytical results for lead and arsenic are listed in Table 1. No COPCs were detected in concentrations greater than MTCA Method A cleanup levels in any sample.

JSP Sliverdale Lois 25 and 26								
Sample No.	Date Sampled			Arsenic				
2021-SB-53	3/30/22	2.5	<5	<1				
2021-SB-54	3/30/22	5.0	<5	<1				
2021-SB-55	3/30/22	10.0	<5	1.11				
2021-SB-56	3/30/22	15.0	<5	1.38				
2021-SB-57	3/30/22	20.0	<5	1.56				
2021-SB-58	3/30/22	25.0	<5	1.21				
MTCA Metho								

Table 1. Summary of Groundwater Total Metals ResultsJSP Silverdale Lots 25 and 26

Notes:

Concentrations listed in milligrams per kilograms (mg/kg), or parts per million (ppm).

MTCA = the Model Toxics Control Act regulation and the regulations promulgated thereunder (Washington Administrative Code, Chapter 173-340).

* Method A soil cleanup levels per Table 749-2 (Washington Administrative Code, 173-360-900) Bolded Results indicate concentrations above the cleanup levels

Groundwater Sampling Activities

For fourth quarter monitoring, groundwater samples were collected from the wells on April 8, 2022, and submitted for chemical analysis. Sampling was conducted according to the Sampling and Analysis Plan, dated June 10, 2021. The water sampling logs are attached in Appendix A. Prior to sampling, the static water level was measured in each well. Low-flow groundwater samples were collected using a peristaltic pump and dispensed into laboratory-supplied glass sample bottles with disposable, single-use tubing. Each sample bottle was labeled with the project name, number, and the sequential sample number. Following labeling, the samples were placed in an ice chest with synthetic ice and maintained at a temperature of approximately 4° Celsius.

All samples were transported to Friedman & Bruya Environmental Chemist Laboratories in Seattle, Washington, for analysis. As per direction of Ecology PM Jing Song, the groundwater samples from monitoring wells MW-1 to MW-5 were analyzed for Total Petroleum Hydrocarbons in the Diesel-extended range by Method NWTPH-Dx; Total Petroleum Hydrocarbons in the Gas-extended range by method NWTPH-Gx and additional associated volatile organic compounds (VOCs) by Method BTEX 8021B. The groundwater sample from monitoring well MW-6 was analyzed for the above parameters as well as Polycyclic Aromatic Hydrocarbons (PAHs) by Method 8270; Polychlorinated Biphenyls (PCBs) by Method 8082; and total metals (lead and arsenic) by Method 6020.

Groundwater Monitoring Results

The quarterly laboratory analytical results for the groundwater samples from the past four quarters are listed in Tables 2-4. The laboratory reports are provided in Appendix B. No BTEX VOCs, or Total Petroleum Hydrocarbons were detected in samples from MW-1 through MW-5. No PAHs, PCBs, and metals (As and Pb) were detected in the MW-6 groundwater sample.

		NWTPH-Gx and BTEX 8021B					
Well No.	Sample No.	Date Sampled	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (µg/l)	Gasoline (µg/l)
	2021-GW-101	7/21/21	<1	<1	<1	<3	<100
	2021-GW-201	10/6/2021	<1	<1	<1	<3	<100
MW-1	2021-GW-301	1/24/22	<1	<1	<1	<3	<100
	2021-GW-302	1/24/22	<1	<1	<1	<3	<100
	2022-GW-401	4/8/22	<1	<1	<1	<3	<100
	2021-GW-102	7/21/21	<1	<1	<1	<3	<100
	2021-GW-202	10/6/2021	<1	<1	<1	<3	<100
MW-2	2021-GW-303	1/24/22	<1	<1	<1	<3	<100
	2022-GW-402	4/8/22	<1	<1	<1	<3	<100
	2022-GW-403	4/8/22	<1	<1	<1	<3	<100
	2021-GW-103	7/21/21	<1	<1	<1	<3	<100
	2021-GW-203	10/6/2021	<1	<1	<1	<3	<100
MW-3	2021-GW-204	10/6/2021	<1	<1	<1	<3	<100
	2021-GW-304	1/24/22	<1	<1	<1	<3	<100
	2022-GW-404	4/8/22	<1	<1	<1	<3	<100
	2021-GW-104	7/21/21	<1	<1	<1	<3	<100
MW-4	2021-GW-205	10/6/2021	<1	<1	<1	<3	<100
	2021-GW-305	1/24/22	<1	<1	<1	<3	<100
	2022-GW-405	4/8/22	<1	<1	<1	<3	<100
	2021-GW-105	7/21/21	<1	<1	<1	3.3	370
	2021-GW-106	7/21/21	<1	<1	<1	3.1	380
MW-5	2021-GW-206	10/6/2021	<1	<1	<1	<3	<100
	2021-GW-306	1/24/22	<1	<1	<1	<3	<100
	2022-GW-406	4/8/22	<1	<1	<1	<3	<100
MW-6	2022-GW-407	4/8/22	<1	<1	<1	<3	<100
MTCA Method A Cleanup Levels		5	1,000	700	1,000	800/1,000	

Table 2. Summary of Groundwater Total Petroleum Hydrocarbons in the Gasoline Range and
BTEX Results
JSP Silverdale Lots 25 and 26

KRAZAN & ASSOCIATES, INC. With Offices Serving the Western United States

Notes:

Concentrations listed in micrograms per liter (µg/l), or parts per billion (ppb).

MTCA = the Model Toxics Control Act regulation and the regulations promulgated thereunder (Washington Administrative Code, Chapter 173-340).

Table 3. Summary of Groundwater Total Petroleum Hydrocarbon in the Diesel Extended Range Results

			NWT	PH-Dx
Well No. Sample No.		Date Sampled	Diesel (µg/l)	Lube Oil (µg/l)
	2021-GW-101	7/21/21	180x	<250
	2021-GW-201	10/6/2021	<60	<300
MW-1 2	2021-GW-301	1/24/22	<50	<250
	2021-GW-302	1/24/22	<50	<250
	2022-GW-401	4/8/22	<50	<250
	2021-GW-102	7/21/21	<50	<250
	2021-GW-202	10/6/2021	73x	<250
MW-2	2021-GW-303	1/24/22	<50	<250
	2022-GW-402	4/8/22	95x	<250
	2022-GW-403	4/8/22	71x	<250
	2021-GW-103	7/21/21	210x	<250
	2021-GW-203	10/6/2021	<60	<250
MW-3	2021-GW-204	10/6/2021	<50	`<250
	2021-GW-304	1/24/22	<50	<250
	2022-GW-404	4/8/22	67x	<250
	2021-GW-104	7/21/21	130x	<250
MW-4	2021-GW-205	10/6/2021	<50	<250
10100-4	2021-GW-305	1/24/22	<50	<250
	2022-GW-405	4/8/22	78x	<250
	2021-GW-105	7/21/21	420x	<250
	2021-GW-106	7/21/21	340x	<250
MW-5	2021-GW-206	10/6/2021	<50	<250
	2021-GW-306	1/24/22	<50	<250
	2022-GW-406	4/8/22	69x	<250
MW-6	2022-GW-407	4/8/22	<50	<250
МТС	A Method A Clear	nup Levels	500	500

JSP Silverdale Lots 25 and 26

Notes:

Concentrations listed in micrograms per liter (µg/l), or parts per billion (ppb).

x = the sample chromatographic pattern does not resemble the fuel standard used for quantitation MTCA = the Model Toxics Control Act regulation and the regulations promulgated thereunder (Washington

Administrative Code, Chapter 173-340).

NA = Not Analyzed

Well No.	Sample No.	Date Sampled	PAHs (µg/l)	PCBs (µg/l)	Lead (µg/l)	Arsenic (µg/l)
	2021-GW-101	7/21/21	ND	<0.1	<1	<1
MW-1	2021-GW-201	10/6/2021	ND	<0.1	<1	<1
10100-1	2021-GW-301	1/24/22	ND	<0.1	<1	<1
	2021-GW-302	1/24/22	ND	<0.1	<1	<1
	2021-GW-102	7/21/21	ND	<0.1	<1	<1
MW-2	2021-GW-202	10/6/2021	ND	<0.1	<1	<1
	2021-GW-303	1/24/22	ND	<0.1	<1	<1
	2021-GW-103	7/21/21	ND	<0.1	<1	<1
MW-3	2021-GW-203	10/6/2021	ND	<0.1	<1	<1
10100-3	2021-GW-204	10/6/2021	ND	<0.1	<1	<1
	2021-GW-304	1/24/22	ND	<0.1	<1	<1
	2021-GW-104	7/21/21	ND	<0.1	<1	<1
MW-4	2021-GW-205	10/6/2021	ND	<0.1	<1	<1
	2021-GW-305	1/24/22	ND	<0.1	<1	<1
	2021-GW-105	7/21/21	ND	<0.1	<1	<1
MW-5	2021-GW-106	7/21/21	ND	<0.1	<1	<1
C-VVIVI	2021-GW-206	10/6/2021	ND	<0.1	<1	<1
	2021-GW-306	1/24/22	ND	<0.1	<1	<1
MW-6	2022-GW-407	4/8/22	ND	<0.1	<1	<1
МТСА	Method A Cleanu	o Levels	0.1	0.1	15	5

Table 4. Summary of Groundwater PAH, PCB, Lead, and Arsenic ResultsJSP Silverdale Lots 25 and 26

Notes:

Concentrations listed in micrograms per liter ($\mu g/l$), or parts per billion (ppb).

MTCA = the Model Toxics Control Act regulation and the regulations promulgated thereunder (Washington Administrative Code, Chapter 173-340).

ND = Not Detected

Limitations

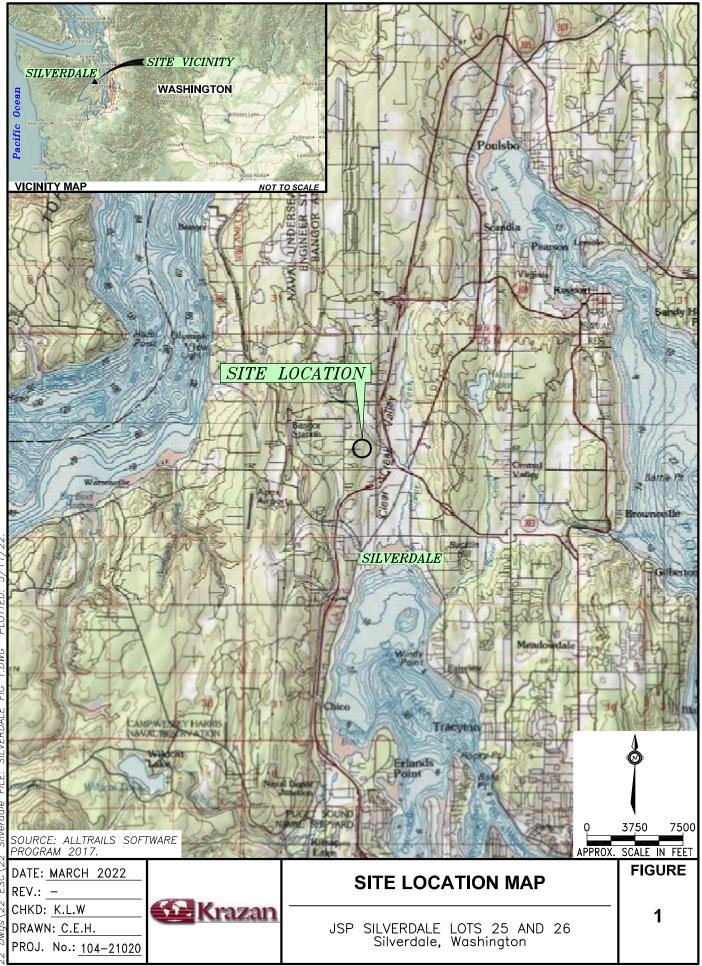
The findings of this report were based upon the results of field and laboratory investigations, coupled with the interpretation of surface and subsurface conditions associated with our water samples. Therefore, the data are accurate only to the degree implied by review of the data obtained and by professional interpretation.

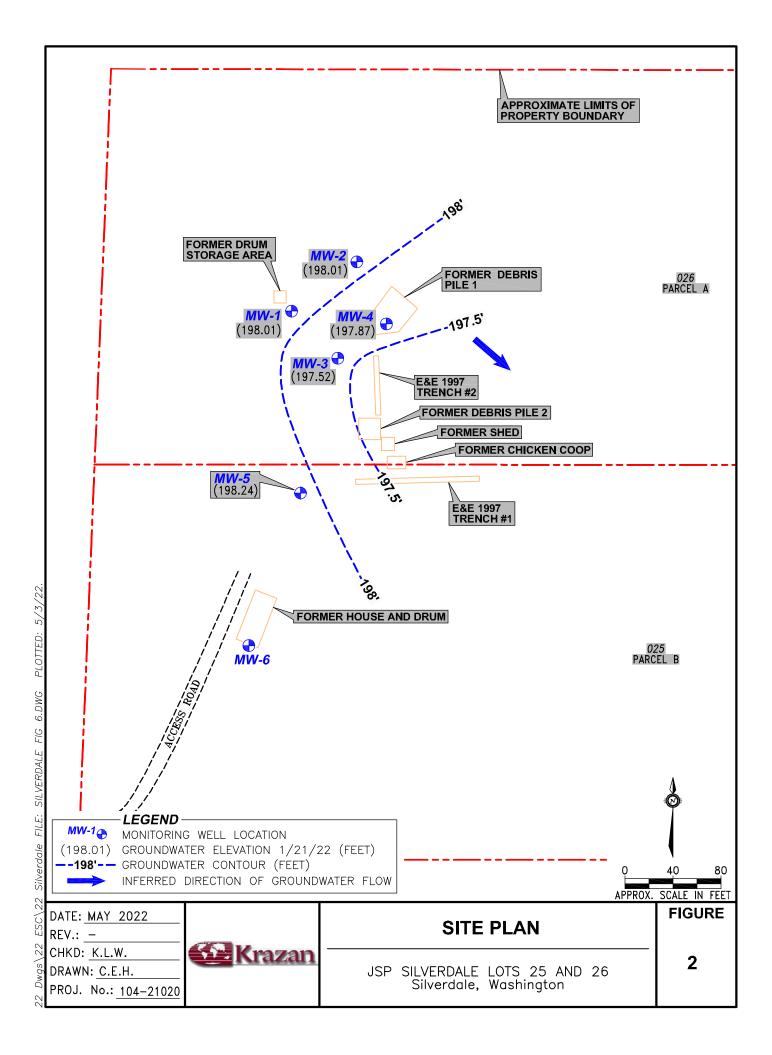
A laboratory certified by the State of Washington, Department of Ecology, did the analytical testing. The results of the chemical testing are accurate only to the degree of care of ensuring the testing accuracy and the representative nature of the water samples obtained.

The findings presented herewith are based on professional interpretation using state of the art methods and equipment and a degree of conservatism deemed proper as of this report date. It is not warranted that such data cannot be superseded by future geotechnical, environmental, or technical developments.

We appreciate the opportunity to be of service. If you have any questions, or if we can be of further assistance, please do not hesitate to contact our office.

Respectfully Submitted, Krazan & Associates, Inc.


Sha & Ville


Shawn E. Williams, L.G. Regional Environmental Manager

4/29/22

Attachments: Figure 1. Vicinity Map Figure 2. Site Map Appendix A. MW-6 Monitoring Well Log and Groundwater Sampling Logs Appendix B. Certified Analytical Results and Chain-of-Custody Record

Appendix A

-	Holocene Drilling			Dr		-	Hollow Stem Auger Date Installed:	
Well Tag No.:	BNZ367					Sampler		
							Fop of Casing Logged By:	
Surface Elev.:	213.5'			М	eas.	Pt. Elev.:	17.26' Reviewed by:	SEW
WELL COM	PLETION DETAILS	BLOW COUNT	% RECOVERY	DIA	SAMPLES	DEPTH (ft) GRAPHIC LOG	DESCRIPTION	NOTES
Concrete	ABoveground Monument	50+	18"	0.2			0-15.0' Dense, gray silty sand with gravel; moist Sample 2021-SB-53	Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND Lead: <5 Arsenic: <1 PAHs: ND PCBs: ND
 1/2" Bentonite Pellets 	2" Blank PVC -	50+	12"	0.1		- 5- 5 - 5- 5 6- 5 5 5 5 5 5 5 5 5 - 5	Sample 2021-SB-54	Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND Lead: <5 Arsenic: <1 PAHs: ND
* D	X	50+	8"	0.6			Sample 2021-SB-55	PCBs: ND Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND Lead: <5 Arsenic: 1.11 PAHs: ND PCBs: ND
2 3 4 40 Mell Slot Sand 5 4 6	Schedule 40 PVC Slot 10 Screen	44	18"	0		12 — 12 — 13 — 14 — 14 — 15 — 15 — 15 — 16 — 16 — 16 — 16 — 16	15.0'-26.5' Dense to very dense, brown-gray, med to coarse sand; moist to saturated. Sample 2021-SB-56	Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND Lead: <5 Arsenic: 1.38
7 B 9	2" Schee					 17- 18- 19- -		PAHs: ND PCBs: ND
0 👃	1===□ ♦			1		20	ologia Log and Wall Construction	- Dotoilo
					_		ologic Log and Well Construction	Details
Krazan	& Associates	6		Clien	t: Ru	ussell Squa	e Consulting	
			F	Droie	ot I a		verdale, WA Project No.: 1	

Drilling Co.: Holocene Drilling			Dr	illing	-		Hollow Stem Auger Date Installed: 3/30/2	
Well Tag No.:BNZ367			Door	f		pler: {		22
Surface Elev.: 213.5'							Top of CasingLogged By: CB17 26'Reviewed by: SFW	
Sunace Liev.: 213.5'	F		141	643.			17.26' Reviewed by: SEW	
WELL COMPLETION DETAILS	BLOW COUNT	% RECOVERY	OId	SAMPLES	DEPTH (ft)	GRAPHIC LOG	DESCRIPTION	NOTES
21	50+	18"	0.1		21-		15.0'-26.5' Dense to very dense, brown-gray, medium to coarse sand; moist to saturated. Sample 2021-SB-57	Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND
22					22			Lead: <5 Arsenic: 1.56 PAHs: ND PCBs: ND
24					_ 24 — _			Gasoline: ND Diesel: ND Motor Oil: ND BTEX: ND
25 ± 26	45	18"	0.0		25 — - 26 —		Sample 2021-SB-58	Lead: <5 Arsenic: 1.21 PAHs: ND PCBs: ND
27					27 —			PCBS: ND
28 29					28— _ 29—			
30								
31					31 — - 32 —			
33					- 33-			
34 35					34 — - 35 —			
36					36 —			
37					37 —			
38 39					38 — _ 39 —			
40					40	l ith	ologic Log and Well Construction Det	ails
Krazan & Associate	S		Clien	t: Ru	ıssell			uno
			Proje	ct Lo	ocatio	on: Silv	rerdale, WA Project No.: 104-210)20

Kraz	Zan
------	-----

WATER SAMPLING LUG							
ots 25 and 26	Project No.: 104-21020						
	Sample Location: MW-1						
C. Bartlett	Date/Time: 4-8-22 10:50						

WATER SAMPLING LOC

Inspector(s):	C. Bartlett	Date/Time:	4-8-22 10:50
Company:	Krazan		
Weather/Temperature	Sunny, 4500	52°	
	5	Well Data	
Diameter of Well Casing (i	nches): 2-inch	es	
Depth to Water Below Top	p of Casing (feet):7	47 Feet	
I otal Depth of Well Below	/ Top of Casing (feet);		
Product Thickness (feet)	Sampl	ing/Purge Method:	ristaltic pum
Calculate if well paramete	rs do not stabilize per the	work plan:	1
Length of Water Colum	n in Well (feet)		
Liters per Foot:		Liters in Well:	-
3 Times Casing Volume	(liters):	Liters Purged from W	ell:
	Ĭ	Water Sample Data	
Sample ID: 2022 - (5W-401	Time Sam	ple Collected: 11:05

Remarks (Color/Odor):	Clear	Sheen on purge water?	
Stabilized?	3 Casin	g Volumes Removed?	-

Purge Vol.	Time	рН	Cond.	Turbidity	DO	Temp	Salinity	Redox
(liters)	(min)	(pH units)	(mS/cm)	(VTN)	(mg/L)	(9)	(96)	(mm)
Criteria for three consecutive readings		±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	10:55	7.03	16.5	24		9.4		
						-		

Notes: 0.0 ppm

Project Name: Site Name:

> Well Casing Volumes Liters/Foot ½" = 0.04 1-1/4" = 0.24 2" = 0.62 3" = 1.39 4" = 2.47 1-1/2" = 0.35 2-1/2" = 0.97 3-1/2" = 1.89 6" = 5.56

Kra	zan
------------	-----

Project Name:		Lots 2	5 and	26 Pr	oject No.:	104-	21020	
Site Name:				Sai	mple Loca	tion: M	11-2	
Inspector(s):		C. Bart	lett-	Sau Date/	Time: Ч	-8-22	10:05	
Company:					-			
Weather/Tempera	iture: Sine	1 J.S.	6					
,		"I'J		Well Data				
				wen Data				
Diameter of Well (Casing (inches	s): <u>2-ir</u>	nches					
Depth to Water Be	low Top of C	asing (feet):	10.70	feet				
Total Depth of We	II Below Top	of Casing (fe	et):	-				
Product Thickness	(feet):	-	Sampling	/Purge Method:	Devi	staltic	C DUMI	2
Calculate if well pa					P.C.		14	
Length of Water								
Liters per Foot:				Liters in Well		-	5	
3 Times Casing V	olume (liters).	_	Liters Durged	from Woll			
5 miles easing 4	oranic (inters	/·		_LICEIS FUIGEU	nom wei	*		
			Wat	er Sample Data	1			
Sample ID: <u>102</u> Remarks (Color/Oc	2-GW.	- 402	403	Tir	ne Samole	• Collected	10:20	am
Remarks (Color/Or	lor) N	R,	1	Sheen or		tor?	114	
Stabilized?		2 Cacing V	olumos Do-	Sheen of	i huiße wa	~ ~	/µ'	
		_2 Casilia A	olumes ker					
Purge Vol.	Time	рH	Cond.	Turbidity	DO	Temp	Salinity	Redox
(liters)	(nies)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(0)	(96)	(mv)
Criteria for three conse	cutive readings	±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	10:15	7.1	95.2	5		7.2		

WATER SAMPLING LOG

Notes: 0.0ppm

Well Casing VolumesLiters/Foot $\frac{1}{2}$ " = 0.04 $1 \cdot 1/4$ " = 0.242" = 0.623" = 1.394" = 2.47 $1 \cdot 1/2$ " = 0.35 $2 \cdot 1/2$ " = 0.97 $3 \cdot 1/2$ " = 1.896" = 5.56

Krazan

WATER SAMPLING	LOG
----------------	-----

Project Name:	_	Lots 25	5 and	26Pr	oject No.	104-2	1020	
Site Name:		<u> </u>	_:	Sar	Sample Location $MN - 3$			
Inspector(s):	. <u></u>	C. Bart	lott	Date/	Time:	1-8-2	2 11:15	5
Company:		Crazar)			9•		
Company: Weather/Tempera	ature: Su	nny S	52°					
		J		Well Data				
Diameter of Well	Casing (inches	s): 2-ik	iches					
Depth to Water Be	elow Top of C	asing (feet):	13.9	3				
Total Depth of We			8 (O)					
Product Thickness	(feet)	Constanting of the local diversion of the local diversion of the local diversion of the local diversion of the	Sampling/	Purge Method:	nevist	altic	DUMP	
Calculate if well pa					po	1	1	
Length of Water	Column in W	/ell (feet):	-					
Liters per Foot:		-		Liters in Well:		-		
3 Times Casing \	/olume (liters):		Liters Purged	from Wel	. –		
Ch o	DAR-CAN	1-1104	Wate	er Sample Data			11.01	6
Sample ID:	DUL EIVI			Tir	ne Sample	e Collected	1.4	2
Remarks (Color/O	dor):CU	ear		Sheen on	purge wa	iter?/	VIA	
Stabilized?	5	_3 Casing Vo	olumes Rem	noved?^	JA_			
Purge Vol.	Time	pH	Cond.	Turbidity	DO	Temp	Salinity	Redox
(liters) Criteria for three conse	(min)	(pH units)	(mS/cm)	(MTU)	(mg/L)	(0)	(24)	(mm)
Criteria for three conse		±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	11.20	7.1	112.4	20-2		9.0		

Notes: 0. Dppm

Well Casing VolumesLiters/Foot $\frac{1}{2}$ " = 0.041-1/4" = 0.242" = 0.623" = 1.394" = 2.471-1/2" = 0.352-1/2" = 0.973-1/2" = 1.896" = 5.56

Krazan

WATEF	SAMP	LING L	.OG
-------	------	--------	-----

Project Name:		lots 25 and 26			Project No.: 104-21020			
Site Name:			57 77	Sa	mple Loca	tion: N	W-4	
Inspector(s):		C.Bara	1e#	SaSaDate/	Time: L	1-8-22	10:30	
Company:		Kraza	n					
Company: Weather/Temper	ature	Sunnu	57.0)				
· , F		2 of mig		Well Data				
Diameter of Well	Casing (inche	sh A-	Inclas					
Depth to Water B								
Total Depth of W		-						
Product Thicknes	s (feet):	-	_Sampling/	Purge Method	peri	stalti	C PUM	P
Calculate if well p	arameters do	not stabilize	per the wo	ork plan:	1		1	/
Length of Wate	r Column in V	Vell (feet):						
Liters per Foot:		đ		Liters in Well		-		_
3 Times Casing								
-								
			Wat	er Sample Data	1			
Sample ID:	2022-	GW-40	05	Tir	ne Samole	Collected	10145	
Remarks (Color/O	dor):	NIA		Sheen on		$ter 2 \Lambda$	/14	
Stabilized?	105	3 Casing W	alumas Ban	Sheen of	i puige wa		ч <i>µ</i>	
	10	_5 casing vt	Jumes Ken		N			
Purge Vol.	Time	pH	Cond.	Turbidity	DO	Temp	Salinity	Redox
(liters)	(min)	(pH units)	(mS/cm)	(MTU)	(mg/L)	(0)	(19)	(mv)
Criteria for three cons		±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	0.35	6.7	120,2	6.7		6.2		
						h	1	

Notes: 0.0ppm

Well Casing VolumesLiters/Foot $\frac{1}{2}$ " = 0.04 $1-\frac{1}{4}$ " = 0.242" = 0.623" = 1.394" = 2.47 $1-\frac{1}{2}$ " = 0.35 $2-\frac{1}{2}$ " = 0.97 $3-\frac{1}{2}$ " = 1.896" = 5.56

GEK	razan
A standard	I aza I

WATER SAMPLING	LOG	G
----------------	-----	---

Project Name:	L	ots 25	and 2	16 Pro	oject No.:	104-2	1020	
Site Name:				San	nple Locat	ion:	MW-5	_
Inspector(s):	С	Q II	. 16					
Company:	K	MAZAN						
Inspector(s): Company: Weather/Tempera	iture: Sol	nny 4	8°					
		J		Well Data				
Diameter of Well (Casing (inches): A	inches	2				
Depth to Water Be	elow Top of Ca	sing (feet):	15.7	2. feet				
Total Depth of We								
Product Thickness		-			Devis	tattic	DUMP	>
Calculate if well pa					T		1	
Length of Water								
Liters per Foot:				Liters in Well:		-	-	
3 Times Casing \								
0	607 - F		Wat	er Sample Data			1110	
Sample ID: 2	012-4	W-406	2	Tin	ne Sample	e Collected	: 1140	
Remarks (Color/O								-
Stabilized?	Yes	3 Casing Vo	olumes Ren	noved?				
Purge Vol.	Time	pH	Cond.	Turbidity	DO	Temp	Salinity	Redox
(liters)	(min)	(pH units)	(mS/cm)	(NITU)	(mg/L)	(0)	(19)	(mu)
Criteria for three const	1	±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	1135	6.7	75.2	A. 7		9.0		

Notes: 0.0ppm

Well Casing VolumesLiters/Foot $\frac{1}{2}$ " = 0.041-1/4" = 0.242" = 0.623" = 1.394" = 2.471-1/2" = 0.352-1/2" = 0.973-1/2" = 1.896" = 5.56

Krazan

Project Name:	-	Lots 2	5 and 2	Pro Pro	oject No.:	104 - 2	21020	
Site Name:				Sar				
Inspector(s):				Date/				
Company:	K	ratan						
Weather/Temper	ature: Si	innu e	52°					
		y		Well Data				
Diameter of Well	Casing (inches	s): 2-ir	ches					
Depth to Water B	elow Top of C	asing (feet):	19,0	90				
Total Depth of We								
Product Thickness	s (feet):	-	Sampling/	Purge Method:	Peris	staltic	pump)
Calculate if well p							1 1	
Length of Wate	r Column in W	/ell (feet)						
Liters per Foot:		_		Liters in Well:		-		_
3 Times Casing	Volume (liters	s):	-	Liters Purged	from Well		-	
	6			er Sample Data			_	
Sample ID: 20	22- GW	- 407		Tir	ne Sample	e Collected	12:05	
Remarks (Color/O								
Stabilized?	es	_3 Casing Vo	olumes Ren	noved?				
Purge Vol.	Time	pH	Cond.	Turbidity	DO	Temp	Salinity	Redo
(liters)	(min)	(pH units)	(mS/cm)	(UTIV)	(mg/L)	(0)	(%)	(mv)
Criteria for three cons	ecutive readings	±0.1 SU	±3%	±10% or <10 NTU	±10%	±10%	±10%	±10 mV
	11:55	7.2	115.2	25.6		9.2		

WATER SAMPLING LOG

0.0ppm Notes:

Well Casing VolumesLiters/Foot $\frac{1}{2}$ " = 0.041-1/4" = 0.242" = 0.623" = 1.394" = 2.471-1/2" = 0.352-1/2" = 0.973-1/2" = 1.896" = 5.56

Appendix B

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2022

Shawn Williams, Project Manager Krazan & Associates (Poulsbo) 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the results from the testing of material submitted on March 30, 2022 from the Lot 25 and 26 Project 104-21020, F&BI 203549 project. There are 30 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Chloe Bartlett, Andrew Glenn KZP0407R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 30, 2022 by Friedman & Bruya, Inc. from the Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020, F&BI 203549 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Krazan & Associates (Poulsbo)</u>
203549 -01	2021-SB-53
203549 -02	2021-SB-54
203549 -03	2021-SB-55
203549 -04	2021-SB-56
203549 -05	2021-SB-57
203549 -06	2021-SB-58

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549 Date Extracted: 04/04/22 Date Analyzed: 04/04/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
$2021\text{-}\text{SB-}53 \\ _{203549\text{-}01}$	< 0.02	< 0.02	< 0.02	<0.06	<5	106
2021-SB-54 $203549-02$	< 0.02	< 0.02	< 0.02	<0.06	<5	107
$\frac{2021\text{-}SB\text{-}55}{_{203549\text{-}03}}$	< 0.02	< 0.02	< 0.02	<0.06	<5	105
2021-SB-56 ²⁰³⁵⁴⁹⁻⁰⁴	< 0.02	< 0.02	< 0.02	< 0.06	<5	105
$2021\text{-}\text{SB-57} \\ _{203549\text{-}05}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	107
$\frac{2021\text{-}SB\text{-}58}{_{203549\text{-}06}}$	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank 02-811 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	106

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549 Date Extracted: 03/31/22 Date Analyzed: 03/31/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
2021-SB-53 ²⁰³⁵⁴⁹⁻⁰¹	<50	<250	97
$2021-SB-54 \\ _{203549-02}$	<50	<250	97
$2021 \text{-} \text{SB-55} \\ _{203549 \text{-} 03}$	<50	<250	96
$2021 \text{-} \text{SB-56} \\ _{203549\text{-}04}$	<50	<250	96
2021-SB-57 ²⁰³⁵⁴⁹⁻⁰⁵	<50	<250	97
2021-SB-58 ²⁰³⁵⁴⁹⁻⁰⁶	<50	<250	109
Method Blank 02-770 MB	<50	<250	96

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	2021-SB-53 03/30/22 04/01/22 04/01/22	Client: Project: Lab ID: Data File:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-01 203549-01.047
Matrix: Units:	Soil mailea (nom) Der Woight	Instrument:	ICPMS2 SP
Units:	mg/kg (ppm) Dry Weight	Operator:	Sr
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Lead	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-54 03/30/22 04/01/22 04/01/22 Soil	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-02 203549-02.050 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Lead	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-55 03/30/22 04/01/22 04/04/22 Soil	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-03 203549-03.067 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	1.11 <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-56 03/30/22 04/01/22 04/04/22 Soil	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-04 203549-04.068 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	1.38 <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	2021-SB-57 03/30/22 04/01/22 04/04/22	Client: Project: Lab ID: Data File:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-05 203549-05.069
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.56		
Lead	<5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-58 03/30/22 04/01/22 04/04/22 Soil	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-06 203549-06.086 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	1.21 <5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 04/01/22 04/01/22 Soil	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 I2-259 mb I2-259 mb.042 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Lead	<1 <5		

ENVIRONMENTAL CHEMISTS

	1 0		
Date Received:0Date Extracted:0Date Analyzed:0Matrix:S	2021-SB-53 03/30/22 03/31/22 03/31/22 Soil Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-01 1/5 033108.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14		Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrer Dibenz(a,h)anthracene	$\begin{array}{cccc} e & <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ e & <0.01 \\ e & <0.01 \\ e & <0.01 \\ e & <0.01 \\ \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-54 03/30/22 03/31/22 03/31/22 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-02 1/5 033109.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		% Recovery: 65 77 77 86 73 91		Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	< 0.01 < 0.		

ENVIRONMENTAL CHEMISTS

	-	U	
Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-55 03/30/22 03/31/22 03/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-03 1/5 033110.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14	% Recovery 74 82 83 91 ol 77 95	$\begin{array}{ccc} & \text{Lower} \\ \text{Limit:} \\ & 39 \\ & 48 \\ & 23 \\ & 50 \\ & 40 \\ & 50 \end{array}$	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentratio mg/kg (ppm		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace Benzo(g,h,i)perylene	$\begin{array}{rcl} & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & < 0.01 \\ & \\ & ene \\ & < 0.01 \\ & ene \\ & ene \\ & < 0.01 \\ & ene \\ & e$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-56 03/30/22 03/31/22 03/31/22 Soil mg/kg (ppm) I	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-04 1/5 033111.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		% Recovery: 67 77 76 82 74 87		Upper Limit: 103 109 138 150 127 150
Compounds:		oncentration ng/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene rene cene	< 0.01 < 0.		

ENVIRONMENTAL CHEMISTS

		- ·		
Client Sample ID:	2021-SB-57	,	Client:	Krazan & Associates (Poulsbo)
Date Received:	03/30/22		Project:	Lot 25 and 26 Project 104-21020
Date Extracted:	03/31/22		Lab ID:	203549-05 1/5
Date Analyzed:	03/31/22 Soil		Data File:	033112.D GCMS12
Matrix: Units:		n) Dry Weight	Instrument: Operator:	VM
Units:	mg/kg (ppn	i) Dry weight	Operator:	V IVI
a ,		0/ D	Lower	Upper
Surrogates: 2-Fluorophenol		% Recovery: 73	Limit: 39	Limit: 103
Phenol-d6		84	48	109
Nitrobenzene-d5		81	23	138
2-Fluorobiphenyl		89	50	150
2,4,6-Tribromopher	nol	79	40	127
Terphenyl-d14		92	50	150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
2-Methylnaphthale	no	< 0.01		
1-Methylnaphthale		< 0.01		
Acenaphthylene	me	<0.01		
Acenaphthene		<0.01		
Fluorene		<0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene Parada a station and a station of the second station of the		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe		< 0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)py		< 0.01		
Dibenz(a,h)anthrac		< 0.01		
Benzo(g,h,i)peryler	ne	< 0.01		

ENVIRONMENTAL CHEMISTS

-		- 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2021-SB-58 03/30/22 03/31/22 03/31/22 Soil		Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-06 1/5 033113.D GCMS12
Units:	mg/kg (ppm) Dry Weight	Operator:	VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 78 89 85 93 83 100	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		<0.01		
2-Methylnaphthalene		<0.01		
1-Methylnaphthalene		<0.01		
Acenaphthylene		<0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthene		< 0.01		
Benzo(k)fluoranthene		< 0.01		
Indeno(1,2,3-cd)pyrene		< 0.01		
Dibenz(a,h)anthracene		< 0.01		
Benzo(g,h,i)peryler	ne	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/31/22 03/31/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 02-767 mb 1/5 033110.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 82 95 102 89 nol 92 101	Lower Limit: 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace	$\begin{array}{rcr} \text{ne} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ \text{ne} & <0.01 \\ \text{rene} & <0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-53 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-01 1/6 040124.D GC9 MG
Surrogates: TCMX	% Recovery: 72	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-54 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-02 1/6 040125.D GC9 MG
Surrogates: TCMX	% Recovery: 68	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-55 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-03 1/6 040126.D GC9 MG
Surrogates: TCMX	% Recovery: 67	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-56 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-04 1/6 040127.D GC9 MG
Surrogates: TCMX	% Recovery: 61	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-57 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-05 1/6 040128.D GC9 MG
Surrogates: TCMX	% Recovery: 60	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2021-SB-58 03/30/22 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 203549-06 1/6 040129.D GC9 MG
Surrogates: TCMX	% Recovery: 72	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/01/22 04/01/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lot 25 and 26 Project 104-21020 02-826 mb 1/6 040117.D GC9 MG
Surrogates: TCMX	% Recovery: 93	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 203540-12 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	84	69-120
Toluene	mg/kg (ppm)	0.5	85	70-117
Ethylbenzene	mg/kg (ppm)	0.5	87	65 - 123
Xylenes	mg/kg (ppm)	1.5	87	66-120
Gasoline	mg/kg (ppm)	20	100	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

RPD

(Limit 20)

 $\mathbf{5}$

Laboratory Code: 203549-01 (Matrix Spike) Sample Percent Percent Reporting Spike Result Recovery Acceptance Recovery Analyte Units Level (Wet Wt) MSMSD Criteria Diesel Extended mg/kg (ppm) 73-135 5,000 <50 118 112Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	112	74 - 139

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 203549-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1	80	77	75 - 125	4
Lead	mg/kg (ppm)	50	<1	87	87	75 - 125	0

Lasoratory e	oue. Laboratory Com	lioi sampio	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	84	80-120
Lead	mg/kg (ppm)	50	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 203535-01 1/5 (Matrix Spike)

Laboratory Code: 203538 Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	79	84	34-118	6
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	89	29-130	5
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	83	87	37-119	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	91	94	45 - 128	3
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	86	89	36 - 125	3
Fluorene	mg/kg (ppm)	0.83	< 0.01	91	94	48-121	3
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	89	89	50 - 150	0
Anthracene	mg/kg (ppm)	0.83	< 0.01	89	92	50 - 150	3
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	97	101	50 - 150	4
Pyrene	mg/kg (ppm)	0.83	< 0.01	95	94	50 - 150	1
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	93	96	50 - 150	3
Chrysene	mg/kg (ppm)	0.83	< 0.01	89	92	50 - 150	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	97	100	50 - 150	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	100	99	50 - 150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	92	98	50 - 150	6
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	91	96	41-134	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	87	93	44-130	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	84	89	33-131	6

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	84	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	88	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	86	66-107
Acenaphthylene	mg/kg (ppm)	0.83	92	70-130
Acenaphthene	mg/kg (ppm)	0.83	88	66-112
Fluorene	mg/kg (ppm)	0.83	91	67-117
Phenanthrene	mg/kg (ppm)	0.83	90	70-130
Anthracene	mg/kg (ppm)	0.83	91	70-130
Fluoranthene	mg/kg (ppm)	0.83	96	70-130
Pyrene	mg/kg (ppm)	0.83	95	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	94	70-130
Chrysene	mg/kg (ppm)	0.83	92	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	98	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	102	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	96	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	96	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	96	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	94	64-127

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/22 Date Received: 03/30/22 Project: Lot 25 and 26 Project 104-21020, F&BI 203549

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 203549-01 1/6 (Matrix Spike) 1/6

	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	94	96	44-107	2
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	99	100	38 - 124	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	116	47-158
Aroclor 1260	mg/kg (ppm)	0.25	124	69-147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Priedman & Bruya, Inc. Keu Ph. (206) 285-8282 Rec Rec		2021-58-58	2021-5B-57	2021 - 5B-52	2021-58-55	2021-58-54	2021-58-53	Sample ID		Phone 360-598-2126 Email Shuwnwilliams@	City, State, ZIP LOUSDO, WA 98370	Report To Shawn Withams Company Krazan and Associates Address 1230 Finn Hill Road NW, SuiteA
Keimquished by: Received by: Relinquished by: Received by:	ANDIR ANDIR	06 1 1	50	64	03	02	01 A-E 3/30/22	Lab ID Date Sampled		il Shawawilliamse	WA 98370	and Associates
		9.53	9:42	9:32	9:25	9:10	9:05	Time Sampled		「	·····	SAMPLI PROJEC PROJEC PROJEC
Ablac Britai	PRINT NAME	4					Soil 5 X X	Type Sample Jars of NWTPH-Dx NWTPH-Gx		Project specific RLs? - Yes / No	23	SAMPLERS (signature)
the krazan Ch PB1	COMPANY						X X X X	BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED		INVOICE TO	Po#
	ANY DATE	<					*	Arsenic	ESTED	Default: Dispose after 30 days	SAMPLE DISPOSAL	2 Page #
000 2 10W	TIME							Notes		ter 30 days	⁹ OSAL	$- of \frac{\sqrt{2}}{2} \frac{1}{1}$

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 19, 2022

Shawn Williams, Project Manager Krazan & Associates (Poulsbo) 1230 Finn Hill Rd NW, Suite A Poulsbo, WA 98370

Dear Mr Williams:

Included are the results from the testing of material submitted on April 11, 2022 from the Lots 25 and 26 Project 104-21020, F&BI 204131 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures KZP0419R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2022 by Friedman & Bruya, Inc. from the Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020, F&BI 204131 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Krazan & Associates (Poulsbo)</u>
204131 -01	2022-GW-401
204131 -02	2022-GW-402
204131 -03	2022-GW-403
204131 -04	2022-GW-404
204131 -05	2022-GW-405
204131 -06	2022-GW-406
204131 -07	2022-GW-407
204131 -08	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131 Date Extracted: 04/11/22 Date Analyzed: 04/12/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
2022-GW-401 ²⁰⁴¹³¹⁻⁰¹	<1	<1	<1	<3	<100	71
2022-GW-402 204131-02	<1	<1	<1	<3	<100	75
2022-GW-403 204131-03	<1	<1	<1	<3	<100	72
2022-GW-404 204131-04	<1	<1	<1	<3	<100	74
2022-GW-405 ²⁰⁴¹³¹⁻⁰⁵	<1	<1	<1	<3	<100	73
2022-GW-406 204131-06	<1	<1	<1	<3	<100	72
2022-GW-407 ²⁰⁴¹³¹⁻⁰⁷	<1	<1	<1	<3	<100	74
Method Blank 02-819 MB	<1	<1	<1	<3	<100	79

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131 Date Extracted: 04/11/22 Date Analyzed: 04/11/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
2022-GW-401 ²⁰⁴¹³¹⁻⁰¹	<50	<250	113
2022-GW-402 ²⁰⁴¹³¹⁻⁰²	95 x	<250	118
2022-GW-403 ²⁰⁴¹³¹⁻⁰³	71 x	<250	117
2022-GW-404 ²⁰⁴¹³¹⁻⁰⁴	67 x	<250	143
$2022 \text{-} \text{GW-405}_{204131-05}$	78 x	<250	116
2022-GW-406 204131-06	69 x	<250	125
2022-GW-407 ²⁰⁴¹³¹⁻⁰⁷	<50	<250	117
Method Blank 02-861 MB	<50	<250	121

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	2022-GW-407 04/11/22 04/12/22 04/13/22 Water	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020 204131-07 204131-07.068 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Lead	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 04/12/22 04/12/22 Water	Client: Project: Lab ID: Data File: Instrument:	Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020 I2-277 mb I2-277 mb.042 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Lead	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2022-GW-40 04/11/22 04/14/22 04/14/22 Water ug/L (ppb)	07	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020 204131-07 1/2 041414.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 41 28 84 80 81 97	Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene ene ene cene cene	$<0.4 \\<0.4 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.04 \\<0.03$		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Krazan & Associates (Poulsbo)
Date Received:	Not Applicable	Project:	Lots 25 and 26 Project 104-21020
Date Extracted:	04/14/22	Lab ID:	02-915 mb
Date Analyzed:	04/14/22	Data File:	041411.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM
Surrogates:	ol 77 Recovery:	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 11 \\ 11 \\ 50 \\ 44 \\ 10 \\ 50 \end{array}$	Upper
2-Fluorophenol	23		Limit:
Phenol-d6	14		65
Nitrobenzene-d5	83		150
2-Fluorobiphenyl	85		108
2,4,6-Tribromophen	77		140
Terphenyl-d14	103		150
Compounds:	Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthaler 1-Methylnaphthaler Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Indeno(1,2,3-cd)pyre	$\begin{array}{rcrcrc} \text{he} & <0.2 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & <0.02 \\ & \\ & & <0.02 \\ & \\ & & & <0.02 \\ & \\ & & & & <0.02 \\ & & & \\ & & & & <0.02 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	2022-GW-407 04/11/22 04/15/22 04/15/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020 204131-07 041513.D GC9 MG
Surrogates: TCMX	% Recovery: 57	Lower Limit: 25	Upper Limit: 160
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/15/22 04/15/22 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Krazan & Associates (Poulsbo) Lots 25 and 26 Project 104-21020 02-954 mb 041512.D GC9 MG
Surrogates: TCMX	% Recovery: 54	Lower Limit: 25	Upper Limit: 160
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 2	204117-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	95	65-118
Toluene	ug/L (ppb)	50	92	72 - 122
Ethylbenzene	ug/L (ppb)	50	99	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	88	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	88	63-142	9

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 204136-01 ((Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic Lead	ug/L (ppb) ug/L (ppb)	10 10	<1 3.25	94 97	90 94	75-125 75-125	4 3

			Percent	
	Reporting	\mathbf{Spike}	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	89	80-120
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code. Laboratory C	_		Percent	Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
· ·		Level				(Limit 20)
Naphthalene	ug/L (ppb)	5	86	83	62-90	4
2-Methylnaphthalene	ug/L (ppb)	5	89	88	64-93	1
1-Methylnaphthalene	ug/L (ppb)	5	88	87	64-93	1
Acenaphthylene	ug/L (ppb)	5	96	96	70-130	0
Acenaphthene	ug/L (ppb)	5	93	94	70-130	1
Fluorene	ug/L (ppb)	5	97	98	70-130	1
Phenanthrene	ug/L (ppb)	5	97	97	70-130	0
Anthracene	ug/L (ppb)	5	100	102	70-130	2
Fluoranthene	ug/L (ppb)	5	104	108	70-130	4
Pyrene	ug/L (ppb)	5	103	101	70-130	2
Benz(a)anthracene	ug/L (ppb)	5	99	100	70-130	1
Chrysene	ug/L (ppb)	5	100	101	70-130	1
Benzo(a)pyrene	ug/L (ppb)	5	106	108	70-130	2
Benzo(b)fluoranthene	ug/L (ppb)	5	106	105	70-130	1
Benzo(k)fluoranthene	ug/L (ppb)	5	104	109	70-130	5
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	105	107	70-130	2
Dibenz(a,h)anthracene	ug/L (ppb)	5	104	109	70-130	5
Benzo(g,h,i)perylene	ug/L (ppb)	5	103	110	70-130	7

ENVIRONMENTAL CHEMISTS

Date of Report: 04/19/22 Date Received: 04/11/22 Project: Lots 25 and 26 Project 104-21020, F&BI 204131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.25	72	78	25 - 165	8
Aroclor 1260	ug/L (ppb)	0.25	71	84	25 - 163	17

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				·		÷	- 29	ţ											
	1	Ph. (206) 285-8282	Friedman & Roman Inc		TripBlank	2022 - CIW-407	2022- GIN-406	2022- GW-405	2022 - GW - 404	2072- GW-403	2022- GW-402	2022-GWI-401	Sample ID	r (~~~	Phone 30-598-2126 EmailShawnwilliams@La Zun Project specific RLs? -	City, State, ZIP <i>Poulsbo</i> , WA 98370	Address 12.30 NW Finn Hill Road, Suit A	Company Krazan and Associates	204131 Report To Shawn Williams
Received by:	Relinquished by:	Received by:	Ralinguished W.		2-4 80	07 A-6	06	50	. 04	80	20	01 A-0	Lab ID		mail <i>Shawousillia</i>	, WA 98370	n Hill Road, Su	t Associates	illiams
		MM	WYRE /		*	4						4/8/22	Date Sampled		uro). Barjon		KA -		
		2				12:05pm	11-40am	10:45am	14: 25um	10:20am	10:20 am	Il'105am	Time Sampled		an Project	- REMARKS	- Proj #		SAMPL SAMP
	DIOPH	chia			Mater	←						Water	Sample Type		specific RL	KKS .	0roj# 104-21020	PROJECT NAME	SAMPLE CHAIN OF CUST
	In	eb	PRIM		2	4	F	1	1	Ŧ	4	+	# of Jars				20	छ च	ature)
	6	Bartle	PRINT NAME			\times	\succ	\star	×	X	\mathbf{x}	\times	NWTPH-Dx		Yes /			(AD 3
	R	let	AME	ļ		×	×	*	×	\checkmark	×.	· *	NWTPH-Gx		/ No			i	AHSI
	1 k	T				\star	\times	\times	\times	×	\times	×	BTEX EPA 8021						
	12												NWTPH-HCID	-A		Ŗ			
						×							VOCs EPA 8260	NAL		INVOICE TO		Po	KAP
	-71	K				× ×					:		PAHs EPA 8270	YSES		CE 1		P O # ~	
	2	Siazan	S			<u>~</u>							PCBs EPA 8082	REC		õ			10
ŝ		M	COMPANY			X							3	UE					a
mples	-	-	AN										Lead Avsenic	NALYSES REQUESTED	□ Ot Defa		Rusl		
rece															Other	SAI	h chai	⊠ RUSH	2 2 Page # TURN
Samples received at 4	4/00/12		DATE		· · · · · · · · · · · · · · · · · · ·								N		□ Other	□ Archive samples	Rush charges authorized by:	XStandard turnaround	AROUND
°C	1400		TIME										Notes		er 30 day	OSAL	zed by:	Jd.	50
<u>I</u>		I	Ll.	LL		<u> </u>	l]					<u></u>				WE30