

EXCAVATION CLEANUP AND CLOSURE REPORT

North Star Casteel (Formerly Varicast Inc.)
1200 West 13th Street
Vancouver, Washington
VCP Identification: SW1712

May 20, 2022

MARTIN S. BURCK ASSOCIATES, INC.

200 North Wasco Court, Hood River, OR 97031 Phone 541.387.4422 855.387.4422 Fax 541.387.4813 MSBA@MSBAenvironmental.com

EXCAVATION CLEANUP AND CLOSURE REPORT

North Star Casteel (Formerly Varicast Inc.)
1200 West 13th Street
Vancouver, Washington
VCP Identification: SW1712

May 20, 2022

Prepared For:

North Star Casteel 1200 West 13th Street Vancouver, Washington

MARTIN S. BURCK ASSOCIATES, INC.

200 North Wasco Court, Hood River, OR 97031 Phone 541.387.4422 855.387.4422 Fax 541.387.4813 MSBA@MSBAenvironmental.com

Geologic and Environmental Consulting Services

TABLE OF CONTENTS

1.0		DDUCTION	
	1.1	General Site Information	Page 1
	1.3	Subsurface Conditions and Hydrogeology	Page 2
2.0	PREV	IOUS ENVIRONMENTAL SITE WORK - EPI	Page 3
	2.1	Phase I Environmental Site Assessment - EPI	Page 3
	2.2	Phase II Environmental Site Assessment and Additional Subsurface	
		nvestigations - EPI	-
	2.3	Excavation Cleanup Strategy - EPI	Page 6
3.0		RIM ACTION - 2018 EXCAVATION CLEANUP	_
		Cleanup Strategy and Areas Excavated	-
		Excavation Cleanup and Concrete Cleaning/Resealing	
		Confirmation Soil Sampling and Results	
	3.4	AEG Confirmation Sampling Report and Corrections	Page 8
4.0		CABLE CLEANUP LEVELS AND ANALYTICAL METHODS	_
	4.1	Applicable Cleanup Levels	Page 9
	4.2	Analytical Methods	Page 9
5.0			Page 10
		Geophysical Survey and Underground Utility Mapping	_
		ı v	Page 11
			Page 12
		1 0	Page 12
		2021 Soil Sample Quality Control Summary	Page 16
		Soil Disposal and Stockpiling	_
		Backfill and Site Restoration	_
	5.8	Post Cleanup Regulatory Status	Page 17
6.0		TORING WELL MW-2 INSTALLATION AND SAMPLING	C
	6.1	AOPC 5 Hollow Stem Auger Boring Location	
	6.2	Soil Boring and Soil Sampling	_
		Monitoring Well Construction.	
		Monitoring Well MW-2 Groundwater Sampling	
	6.5	MW-2 Groundwater Sample Quality Control Summary	Page 19
7.0	SUBSI	LAB VAPOR INVESTIGATION - AUGUST 2021	Page 20
	7.1	Subslab Vapor Point Locations	Page 20
	7.2	Floor Survey	_
	7.3	Subslab Vapor Point Installation	Page 21
	7.4	Subslab Vapor Sampling	Page 21

	7.5 Subslab Vapor Sampling Leak Test Results Pa	age 22
	7.6 Subslab Vapor Sample Quality Control Summary	age 22
8.0	CONCEPTUAL SITE MODEL INFORMATION	age 23
	8.1 Surface Water Assessment	age 23
	8.2 Beneficial Groundwater Use Evaluation Pa	age 23
	8.2.1 Water Resources Program Database Review Pa	age 23
	8.2.2 City of Vancouver Municipal Water Supply Pa	_
	8.3 Land Use Zoning	_
9.0	CONCEPTUAL SITE MODEL AND EXPOSURE PATHWAY EVALUATION	
	Pa	age 25
	9.1 SOURCES - Constituents/Media and COC Evaluation	age 25
	9.1.1 COC Evaluation - Soil	age 26
	9.1.2 COC Evaluation - Groundwater Pa	age 26
	9.1.3 COC Evaluation - Subslab Vapor Pa	age 27
	9.2 RECEPTORS - Potential Receptor Evaluation	_
	9.3 PATHWAYS - Potential Exposure Pathway Evaluation and Risk	
	Determination	age 27
	9.3.1 Dermal Contact and Ingestion	age 28
	9.3.2 Vapor Intrusion	age 28
	9.3.3 Ecological Risk	_
10.0	SUMMARY AND RECOMMENDATIONS	age 29
11.0	REMARKS AND SIGNATURES	age 30

DRAFT

TABLE OF CONTENTS (continued)

FIGURES

Figure 1a Site Location Map Figure 1b Area Layout Map Figure 2 Site Map Figure 3 **Previous Soil Data Map** Figure 4 **Groundwater Data Map** Figure 5 **Excavation and Soil Sample Location Map** Figure 6 **AOPC 1 Sample Location Map** Figure 7 **AOPC 5 Sample Location Map Remaining COCs in Soil Data Map** Figure 8 Figure 9 **Vapor Intrusion Assessment Map**

Table 1

TABLES

Soil Sample Analytical Data - PHCs and VOCs Table 2 Table 3 Soil Sample Analytical Data - SVOCs **Soil Sample Analytical Data - Metals** Table 4 Table 5 Soil Sample Analytical Data - PCBs **Wipe Sample Analytical Data - PCBs** Table 6 Water Sample Analytical Data - PHCs and VOCs Table 7 Water Sample Analytical Data - SVOCs Table 8 Water Sample Analytical Data - Metals Table 9 Table 10 Water Sample Analytical Data - PCBs Table 11 Subslab Vapor Sample Analytical Data Table 12 Subslab Vapor Total TPH Non-Carcinogenic Cleanup Levels

Soil Sample Analytical Data - Analytical Summary

APPENDICES

Appendix A	Previous Report Links
Appendix B	Field Methods and Procedures
Appendix C	GeoPotential Geophysical Survey Summary Report
Appendix D	Excavation Photographs
Appendix E	Soil Sample Laboratory Analytical Reports
Appendix F	Disposal Documentation
Appendix G	MW-2 Soil Boring Log and Resource Protection Well Report
Appendix H	Groundwater Purge and Sample Data
Appendix I	Water Sample Laboratory Analytical Reports
Appendix J	Soil Vapor Purge and Sample Data

TABLE OF CONTENTS (continued)

Appendix K Subslab Vapor Sample Laboratory Analytical Report and Modeling Subslab Vapor Sample Laboratory Analytical Report Leak Test Shroud Vapor Sample Laboratory Analytical Report BioVapor Modeling Inputs and Outputs

Appendix L CSM Investigation Documentation

Water Resources Program Well Search Results
Water Resources Program Well Log #237775
Vancouver Water Stations and Wellhead Protection Areas Map
Zoning Map
MTCA Table 749-2 Ecological Screening Values

ABBREVIATION AND ACRONYM LIST

AEG Associated Environmental Group, LLC

AOPC Area of potential concern AST Above ground storage tank BNSF Burlington Northern Santa Fe

bsg Below surface grade

BTEX Benzene, toluene, ethylbenzene, xylene

BTOC Below top of casing COCs Constituents of concern

COPCs Constituents of potential concern

cPAHs Carcinogenic polycyclic aromatic hydrocarbons

CSM Conceptual site model

CULs Cleanup levels

Ecology Washington State Department of Ecology

EDB Ethylene Dibromide EM Electromagnetic

EPI Environmental Partners, Inc.
GPR Ground penetrating radar

Magna Construction Services, Inc.
MDCs Maximum detected concentrations

mm Millimeters

MSBA Martin S. Burck Associates, Inc.

MTCA Model Toxics Control Act

NSC North Star Casteel Pace Pace Analytical

PAHs Polycyclic aromatic hydrocarbons

PCBs Polychlorinated biphenyls
PCE Tetrachloroethylene
PHCs Petroleum hydrocarbons

Phase I Phase I Environmental Site Assessment
Phase II Environmental Site Assessment

PID Photo-ionization detector

ppb Parts per billion ppm Parts per million PVC Polyvinyl chloride

RCRA Resource conservation recovery act
RECs Recognized environmental conditions

RL Reporting limit sq.ft. Square foot

TCLP Toxicity characteristic leaching procedure

TEFs Toxicity equivalent factors

TEQ Toxicity equivalent concentration
USFWS United States Fish and Wildlife Service

USGS United States Geologic Survey
UST Underground storage tank
VOC Volatile organic compound
WAC Washington administrative code
WRP Water Resources Program

EXCAVATION CLEANUP AND CLOSURE REPORT

North Star Casteel (Formerly Varicast Inc.)
1200 West 13th Street
Vancouver, Washington
VCP Identification: SW1712

1.0 INTRODUCTION

Martin S. Burck Associates, Inc. (MSBA) has prepared the following *Excavation Cleanup and Closure Report* on behalf of North Star Casteel (NSC) for the property referenced above. The site location is shown on Figure 1a. Previous sampling activities performed by others documented elevated concentrations of petroleum hydrocarbons (PHCs), PHC constituents, metals, and polychlorinated biphenyls (PCBs) in shallow soil attributed to the site's historic operation as an industrial cast steel. This report presents a summary of previous site investigation and cleanup activities, additional excavation cleanup and sampling activities by MSBA, a site specific conceptual site model, an evaluation of applicable exposure pathways, and a recommendation for a no further action determination.

1.1 General Site Information

The site has reportedly been operated as a cast steel foundry since the 1920s. Historic operations at the site may have included metal refining, smelting, alloying, and other related industrial processes. The site has been operated by several different owners and operators and was recently purchased by NSC in 2018, who continues to operate the cast steel foundry. The property was formerly operated as Swartz Steel Facility and Varicast Inc. The general site layout is illustrated on Figure 2.

In 2017 and 2018, site investigation activities were conducted as part of NSC's pre-purchase due diligence. Soil sampling and analyses at the time determined that PHCs, PHC constituents, metals, and PCBs were present in shallow soil at concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) for unrestricted land uses.

The site consists of 14 tax lots totaling 3.28 acres in Vancouver, Washington, northwest of the intersection of West 13th Street (W 13th St) and Lincoln Avenue (Lincoln Ave) (Figure 1b). The property is located within the southeast quarter of the northeast quarter of Section 28, Township 2 North, Range 1 East and the tax parcel identification number is 59810000. The site is relatively flat, sloping gently downward to the south and west. A steeper embankment is located along the western perimeter of the site. There are currently five primary structures at the property as shown on Figure 2: 1) a foundry building (~25,000 square foot (sq. ft.)), 2) a maintenance shop (~4,100 sq. ft.), 3) a welding building (~3,200 sq. ft.), 4) a residence (~450 sq. ft.), and an office (~950 sq. ft.).

NSC plans to remove the residence in the near future, however, it was occupied at the time this report was prepared. Two Quonset hut style storage buildings approximately 800 and 1,200 sq. ft. in size are located near the northwest portion of the property. The Quonset buildings are primarily used for storage. An underground storage tank (UST) was present adjacent to the foundry building and was reportedly installed for use as emergency overflow storage of transformer oil (Figure 2). The UST was reportedly never used and was decommissioned in-place in 2021 as discussed in Section 5.3. No additional known USTs or above ground storage tanks (ASTs) are located at the property. The previous owner, Dan Swartz, reported that USTs were previously located at the property, however, their former locations, contents, and decommissioning status are unknown.

Stormwater runoff from the foundry building roof is discharged to Grattix rain boxes prior to surface discharge and infiltration into the ground. The Grattix rain boxes are designed to remove zinc in stormwater from galvanized metal roofs. Based on a review of previous stormwater documentation, there appears to be two dry wells, one located in the parking area near the southwest corner of the property within area of potential concern (AOPC) 6 and the other within AOPC 1, near the eastern property boundary (Figure 2).

The site is located in an industrial area with mixed commercial and residential land use to the north and east (Figure 1b). The site is bounded to the south by a former bulk fuel facility that is now operated by Emerald Petroleum Services (Emerald) as a used oil collection, treatment, and resale facility with numerous ASTs (Facility ID: 47231541) (Figure 1b). Confirmed releases of PHCs and chlorinated solvents have impacted soil and groundwater at this adjacent property. The site is bounded to the west by a Burlington Northern Santa Fe (BNSF) railway and several associated buildings. The site is bounded to the north by the Erwin O. Rieger Memorial Highway (WA-501) and residential properties north of the highway. The site is bounded to the east by Lincoln Avenue and the Lincoln Place Apartments and a commercial building across the street.

1.3 Subsurface Conditions and Hydrogeology

Subsurface conditions at the site were observed and documented by Environmental Partners Inc. (EPI) during pre-purchase due diligence investigations to a maximum approximate depth of 60 feet below surface grade (bsg) and by MSBA to a depth of 65 feet bsg. Soil at the site is comprised of fine to coarse grain alluvial sediments. Poorly graded sand with gravel (United Soil Classification

System group symbol SP) was the most prevalent soil type encountered. Sandy silt and silty sand (ML) were also common. Groundwater was encountered at depths ranging from 34.5 feet bsg to 54 feet bsg. Soil encountered within the uppermost aquifer was primarily comprised of poorly graded sand and poorly graded sand with gravel (SP). The inferred groundwater flow direction is to the south to southwest based on the general downward slope of the surface topography and groundwater data from the adjacent Emerald site.

2.0 PREVIOUS ENVIRONMENTAL SITE WORK - EPI

The following sections present a summary of previous investigation activities conducted at the site by EPI.

2.1 Phase I Environmental Site Assessment - EPI

In October 2017, EPI completed a *Phase I Environmental Site Assessment* (Phase I) report, dated October 31, 2017. A link to an electronic copy of the Phase I is presented in Appendix A of this report. The Phase I was completed as pre-purchase due diligence on behalf of NSC. The Phase I identified the following three recognized environmental conditions (RECs):

REC 1: Historical Operation as a Foundry: Fifteen AOPCs related to the foundry operation were identified on the property. The approximate outlines of the the fifteen AOPCs are illustrated on Figure 2 and labeled as:

AOPC 1: Metal Receiving Area

AOPC 2: Electric Arc Furnace Area

AOPC 3: Foundry Building

AOPC 4: Stormwater Drain - Main Yard

AOPC 5: Southwest Compressor

AOPC 6: Southwest Drywell

AOPC 7: South Compressor

AOPC 8: Maintenance Shop Building

AOPC 9: Welding Station Building

AOPC 10: Stormwater Retention Structure

AOPC 11: Oil-Sand Storage and Baghouse

AOPC 12: Northwest Petroleum Storage

AOPC 13: Foundry Waste Material

AOPC 14: North Compressor

AOPC 15: Clark County Transformer

REC 2: Stormwater Compliance: EPI raised concerns regarding stormwater compliance at the property due to the potential for hazardous substances and petroleum products to enter the subsurface through the stormwater discharge system.

REC 3: Emerald Property South of Site: The bulk petroleum and storage facility was reportedly operated since 1958. As discussed in Section 1.2, the facility has had confirmed releases of solvents and PHCs to soil and groundwater.

2.2 Phase II Environmental Site Assessment and Additional Subsurface Investigations - EPI

In 2017, EPI performed soil and groundwater sampling activities at the site to further evaluate the three RECs, including the fifteen AOPCs related to the historic foundry operations. The investigation activities were summarized in a *Phase II Environmental Site Assessment* (Phase II) report dated October 31, 2017, and the *Updated Subsurface Investigation Letter Report*, dated May 3, 2018. Links to electronic copies of the reports are presented in Appendix A of this report.

The investigation activities were primarily related to REC 1, or AOPCs 1 through 15. EPI determined the constituents of potential concern (COPCs) were gasoline, diesel, oil, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), Resource Conservation Recovery Act (RCRA) 8 metals, and PCBs. The investigations identified several areas of impact, however, total delineation was not accomplished. Constituents of concern (COCs) were identified based on concentrations of COPCs exceeding the Method A CULs. Based on the sampling activities, EPI concluded that AOPCs 3, 4, 6, 10, 11, 12, and 15 were in compliance with the Method A CULs. The COCs in the remaining non-compliant AOPCs are listed below:

AOPC 1 Metal Receiving Area: Lead, diesel, oil, carcinogenic PAHs (cPAHs), and PCBs

AOPC 2 Electronic Arc Furnace Area: Arsenic

AOPC 5 Southwest Compressor: Diesel, oil, cPAHs, and PCBs

AOPC 7 South Compressor: Oil

AOPC 8 Maintenance Shop Building: Oil and cPAHs

AOPC 9 Welding Station Building: Arsenic and chromium

AOPC 13 Foundry Waste Material: cPAHs

AOPC 14 North Compressor: Oil

Although the vertical extent of COCs was not defined at all locations, EPI anticipated the COCs were limited to a depth of 5 feet bsg or less based on the surficial nature of the releases. Selected soil analytical data that reflect the regulatory status of the site are shown on Figure 3 and selected groundwater data are shown on Figure 4. Comprehensive soil sample analytical data are summarized in Tables 1 through 5. Concrete surface wipe sample analytical data are summarized in Table 6. Groundwater sample analytical data are summarized in Tables 7 through 10. The COCs present in soil were attributed to historic site use as a foundry since the 1920's. The impacts to shallow soil were likely the cumulative result of various industrial operations. The PHC impacts were primarily attributed to leaking compressor equipment and drum storage.

During the EPI investigations, hollow stem auger borings were advanced for the collection of groundwater samples. A total of nine groundwater samples were collected from AOPCs 1, 4, 5, 6, 7, 10, and 13. COPCs were not detected or were detected below the Method A CULs in all samples with the exception of cPAHs in sample SB-9:GW, located within AOPC 1, the metal receiving area. The cPAH concentration in SB-9:GW (0.2134 ppb) was attributed by EPI to high turbidity in the sample. Sample SB-10:GW was also located in AOPC 1 and cPAHs were an order of magnitude lower (0.02265 ppb). Based on the exceedance at boring SB-9, EPI subsequently directed the installation of groundwater monitoring well MW-1, approximately 15 feet to the east. Concentrations of cPAHs were significantly lower and below the Method A CUL in groundwater sample MW-1:W-

Although EPI did not discuss the UST reportedly installed for emergency transformer oil storage, soil samples *APOC1-05* and *SB-9:5* were collected in the vicinity of the tank. Sample *APOC1-05* was collected from near surface soil, which contained PHCs most likely due to leaking equipment. Sample *SB-9:5* was collected from a depth of 5 feet bsg and no constituents were detected above regulatory concentrations. Groundwater sample *SB-9:GW* was collected approximately 10 feet east of the UST location. No oil was detected. As discussed above, regulatory concentrations of cPAHs were detected and EPI attributed the detections to turbidity.

The on-site stormwater compliance (REC 2) was retained for further evaluation since EPI was unable to confirm the configuration of the stormwater conveyance system or a precise discharge location. Groundwater sample *SB-7:GW* was collected within AOPC 10 at the approximate location of the stormwater retention area and no COCs were identified (Figure 3).

The adjacent Emerald site, identified by EPI as REC 3 in the Phase I, was not retained for further evaluation. Based on soil and groundwater sampling completed near the Emerald site, EPI concluded there was no evidence that contamination from the adjacent site has impacted the subject property. Therefore, EPI considered REC 3 resolved.

2.3 Excavation Cleanup Strategy - EPI

EPI prepared a proposal to excavate and remove COCs from AOPCs 1, 2, 5, 7, 8, 9, 13, and 14. The anticipated excavation depths ranged from 3 to 5 feet bsg. EPI also proposed the collection of additional soil samples for waste profiling, confirmation sampling, and to document the cleanup.

3.0 INTERIM ACTION - 2018 EXCAVATION CLEANUP

The following presents a summary of excavation cleanup activities completed in 2018 as an interim action by Magna Construction Services, Inc. (Magna).

3.1 Cleanup Strategy and Areas Excavated

Based on direct input from the property owner at the time, Mr. Dan Swartz, the interim action (excavation cleanup) was limited to AOPCs 1, 5, and 7. The remaining AOPCs were not excavated. The concrete surface at AOPC 8 and AOPC 9 was cleaned and resealed as part of the interim action.

3.2 Excavation Cleanup and Concrete Cleaning/Resealing

In October and November 2018, at the direction of Mr. Swartz, Magna performed excavation cleanup activities at AOPCs 1, 5, and 7. Associated Environmental Group, LLC (AEG), of Olympia, Washington, inspected the excavation areas when complete and collected confirmation soil samples. The excavated soil was temporarily stockpiled at the north end of the property, within AOPC 13 pending off-site disposal. The approximate excavation areas are illustrated on Figure 3 and summarized below. The dimensions of the excavation areas, depths, and exact sample locations were not well documented and for the purpose of this report, were determined by MSBA based on a review of photographs and a site plan map provided by AEG. The actual excavation areas were verified by MSBA in 2021 using ground penetrating radar (GPR) and exploratory test pits as discussed in Section 5.1.

AOPC 1: Metal Receiving Area: The excavation area was approximately 800 sq. ft. and the estimated depths ranged from 1 to 1.5 feet bsg. MSBA estimates approximately 62 tons of soil were removed from this area (Figure 3).

AOPC 5: Southwest Compressor: The excavation area was approximately 1,580 sq. ft. and the estimated depths ranged from 1 to 3 feet bsg. MSBA estimates approximately 232 tons of soil were removed from this area (Figure 3).

AOPC 7: South Compressor: The excavation area was approximately 230 sq. ft. and the estimated depth was 1.5 feet bsg. MSBA estimates approximately 24 tons of soil were removed from this area (Figure 3).

In conjunction with the excavation cleanup activities, Magna removed overlying sediment/dirt from the surface of the concrete at areas AOPC 8 (Maintenance Shop Building) and AOPC 9 (Welding Station Building)(Figure 3). The sediment/dirt removed during the concrete cleaning was added to the stockpile for subsequent off-site disposal. After cleaning the surface of the concrete at these locations it was reportedly sealed.

The modified excavation cleanup plans included removal of soil surrounding the north compressor (AOPC 14) at the general location of EPI sample *AOPC14-01*. However, based on field observations at the time, AEG concluded it did not appear that excavation was warranted and collected soil sample *AOPC14-01* to confirm.

3.3 Confirmation Soil Sampling and Results

In October 29 and November 14, 2018, AEG collected confirmation soil samples from the bottom of the three excavation cleanup areas, AOPCs 1, 5, and 7. In addition, AEG collected a sample from area AOPC 14 (north compressor). AEG collected a total of fourteen soil samples (twelve confirmation samples and two stockpile samples). The samples were submitted to Pace Analytical, of Mount Juliet Tennessee (Pace) for laboratory analysis. The selected laboratory analyses were based on the COPCs for each AOPC, as determined by EPI during previous investigations. Several of the samples had identical or similar names to the previous EPI samples, however, the sample locations did not directly correlate. Based on the available documentation, MSBA estimated the excavation and confirmation sample locations as accurately as possible. The approximate sample locations as estimated by MSBA and selected analytical results are illustrated on Figure 3.

AOPC1-1 Metal Receiving Area: Five soil samples were collected from the bottom of the excavation within this area at estimated depths ranging from 1 to 1.5 feet bsg. The samples were labeled *AOPC1-1*, *AOPC1-2*, *AOPC1-3*, *AOPC1-4*, and *AOPC1-5*. The samples were analyzed for gasoline, diesel, oil, VOCs, PAHs, PCBs, and RCRA 8 metals. Sample *AOPC1-2* was analyzed for hexavalent chromium in addition to total chromium. Hexavalent chromium was detected in sample *AOPC1-2* at 19.2 ppm, slightly above the Method A CUL of 19.0 ppm (Table 4). The remaining analytes were below the Method A CULs (Tables 1-5).

AOPC 5 Southwest Compressor: Four soil samples were collected from the bottom of the excavation within this area at estimated depths ranging from 2 to 3 feet bsg. The samples were labeled *AOPC5-1*, *AOPC5-2*, *AOPC5-3*, and *AOPC5-4*. The samples were analyzed for diesel, oil, VOCs, and PCBs. Tetrachloroethylene (PCE) was detected in sample *AOPC5-3* at 0.091 ppm, above the Method A CUL of 0.05 ppm (Table 2). Oil was detected in sample *AOPC-5-4* at a concentration above the Method A CUL (5,460 ppm compared to the 2,000 ppm CUL)(Table 2). The remaining analytes were below the Method A CULs (Tables 1 and 5).

AOPC 7 South Compressor: Two soil samples were collected from the bottom of the excavation within this area at an estimated depth of 1.5 feet bsg. The samples were labeled *AOPC7-1* and *AOPC7-2*. The samples were analyzed for diesel, oil, and PCBs. All analytes were below the Method A CULs (Tables 1 and 5).

AOPC 14 North Compressor: The modified plan included removal of soil at AOPC 14. However, AEG and Magna were unable to visibly locate any soil that appeared to require removal based on field observations. AEG collected sample *AOPC14-1* from this location to document the absence of COCs. The sample was analyzed for diesel, oil, and PCBs. All analytes were below the Method A CULs (Tables 1 and 5).

Stockpile: Two composite samples were collected from the stockpile for landfill disposal authorization. The samples were labeled *Stockpile-1* and *Stockpile-2*. The samples were analyzed for gasoline, diesel, oil, VOCs, PAHs, PCBs, and RCRA 8 metals. Both samples were analyzed for hexavalent chromium in addition to total chromium. The stockpile sample results are summarized in Tables 1-5. Based on a review of the available documentation provided by Magna, approximately 317.58 tons of soil were disposed at the Wasco County Landfill in The Dalles, Oregon.

3.4 AEG Confirmation Sampling Report and Corrections

Following the confirmation sampling activities, AEG prepared a brief letter report summarizing the results. The report was titled *Summary of Selected Confirmational Soil Sampling*, dated December 5, 2018. The report stated that the analytical results indicated no COCs were present at concentrations above the Method A CULs. MSBA reviewed the report in August 2019 on behalf of NSC and determined that three confirmation soil samples, *AOPC1-2*, *AOPC5-3*, and *AOPC5-4*, did have results exceeding the Method A CULs. MSBA discussed this discrepancy with AEG in a phone call and an email. AEG corrected errors in the photo log and sample area map from the report and provided MSBA with revised copies. AEG also provided a lab report missing from the original summary report. AEG confirmed that no additional information was available including field measurements of the excavation areas, depths, and sample locations. A link to an electronic copy of the corrected version of the AEG report is presented in Appendix A. Supplemental soil disposal documentation is also included with the link.

4.0 APPLICABLE CLEANUP LEVELS AND ANALYTICAL METHODS

4.1 Applicable Cleanup Levels

MTCA Cleanup Regulations under Washington Administrative Code (WAC) 173-340 establish CULs that are protective of human health and safety and the environment. Various protective CULs for Methods A, B, and C have been established under MTCA based on the land use, constituents present, potential exposure pathways, and concentrations. MSBA evaluated the zoning to determine if the site qualifies for the use of Method C CULs for industrial land use. Based on the industrial zoning and the current and historic industrial use of the site and surrounding area, MSBA proposed the use of Method C CULs during phone conversations with the Washington State Department of Ecology (Ecology). However, due to residential use (Lincoln Place Apartments) east of Lincoln Ave, Ecology determined that the use of MTCA C CULs would not meet the requirements as presented in WAC 173-340-745(1)(a). Therefore, the applicable CULs for soil and groundwater at the site are limited to MCTA Method A CULs for unrestricted land uses. The Method A CULs are listed at the bottom of each data table. The Method B CULs were used for subslab vapor data.

MSBA evaluated cPAHs using Toxicity Equivalent Factors (TEFs) as presented in the Ecology *Implementation Memorandum #10*, dated April 20, 2015. The TEFs were used to evaluate the toxicity of a mixture of structurally similar chemicals. The individual concentrations of the cPAHs in the mixture were converted to equivalent concentrations of the reference chemical, benzo(a)pyrene. The equivalent concentrations were then used to determine the total toxicity equivalent concentration (TEQ) of the cPAH mixture. The total TEQ for the cPAH mixture were then compared to the MTCA Method A CUL of 0.1 ppm to determine if the sample was in regulatory compliance. A total TEQ of equal to or less than 0.1 ppm for soil and 0.1 ppb for groundwater were considered acceptable.

4.2 Analytical Methods

Soil and groundwater samples collected at the site were analyzed by Pace and Certified Environmental Consulting, LLC, of Vancouver, Washington (asbestos analysis). The analytical methods used during the investigation included the following:

- Gasoline Range Organics Method NWTPH-Gx
- Diesel and Oil-Range Organics Method NWTPH-Dx
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) Method 8260D
- VOCs Method 8260D
- Ethylene Dibromide (EDB) Method 8011
- PAHs Method 8270E SIM

- RCRA 8 Metals Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver -Methods 6010D and 7470A - Total (TCLP as needed)
- PCBs Method 8082A
- Asbestos Method 600/R-93/116, Quantitation Using 400 Point Count Procedure

Subslab vapor samples collected at the site were analyzed by Fremont Analytical of Seattle, Washington. The analytical methods used during the investigation included the following:

- Major Gases Method 3C
- Petroleum Fractionation Method TO-15
- VOCs Method TO-15

5.0 ADDITIONAL INVESTIGATION AND REMEDIAL ACTIONS

Following the interim action completed in 2018, residual COCs were present in soil at AOPCs 1, 5, 8, 9, 13, and 14. Based on the evaluation of remedial options and disproportionate cost analysis presented in the *Remedial Investigation/Feasibility Study* (RI/FS), dated March 3, 2021, MSBA determined that Remedial Option 1, Targeted Soil Removal and Capping, was the most appropriate for this site. In April 2021, Ecology approved the RI/FS with some minor modifications in email and verbal communication. The following presents a summary of the completed remedial actions and associated sampling activities completed in 2021. The sampling activities were performed in general accordance with the MSBA Field Methods and Procedures, presented in Appendix B.

5.1 Geophysical Survey and Underground Utility Mapping

On April 27, 2021, GeoPotential, of Fairview, Oregon, conducted subsurface mapping using GPR and electromagnetics (EM) as directed by MSBA. GPR can identify voids and disturbances in the subsurface that might represent tanks, vaults, or other features indicative of potential environmental concern. EM can identify the presence of buried metal objects such as USTs or similar buried metal components associated with UST systems by detecting minor fluctuations in the magnetic field. The primary objectives of the survey were:

- Evaluate proposed (RI/FS) removal areas for underground utilities
- Verify previous 2018 excavation cleanup dimensions and depths
- Evaluate possible former underground storage tank locations
- Evaluate the layout of the stormwater conveyance system and verify the location of dry wells
- Locate monitoring well MW-1 in AOPC 1

The survey area included planned removal areas, possible former UST locations, and the stormwater conveyance system. The survey identified an approximately 1,800 gallon underground storage tank that was connected to a floor drain in the transformer room. The tank was intended for use as emergency overflow storage of transformer oil. GeoPotential confirmed the locations for the dry wells associated with the stormwater conveyance system (Figure 2). Potential anomalies indicating soil may have been disturbed at greater than previously reported depths were identified at AOPC 1 and AOPC 5. The anomalies were further evaluated by advancing test pits as discussed below in Section 5.2. Monitoring well MW-1 could not be located based on the survey. MSBA anticipates that monitoring well MW-1 may have been inadvertently removed during the previous 2018 excavation cleanup activities, however, no record of its abandonment was identified. A summary of the survey results prepared by GeoPotential is presented in Appendix C.

5.2 Exploratory Test Pits

GeoPotential indicated, based on the GPR survey, that anomalies were present at AOPC 1 and AOPC 5 indicating deeper excavations may have occurred at the locations. MSBA directed the advancement of exploratory test pits at the locations. MSBA observed what appeared to be native, undisturbed soil at the approximate reported depths of the 2018 excavation. No staining, debris, or indication that a former UST had been present or historic releases had occurred, were observed at the anomaly locations. Soil was also field screened using a photo-ionization detector (PID) and no indications of PHCs were detected.

Geopotential identified a potential UST in AOPC 1 at the approximate location the owner reported a tank may be present for emergency overflow storage of transformer oil. Overburden soil was removed from the location and the UST was confirmed. The UST measured approximately 5 feet in diameter by 12 feet long and had an approximate capacity of 1,800 gallons. Concrete was present above the north and south ends of the tank. The decommissioning and sampling activities are summarized in Section 5.3.

MSBA observed water ponded in an approximately 5.5 feet diameter metal ring referred to on historic drawings as a "melting pot." The melting pot is no longer in use, but was reportedly used for melting metal. The bottom of the melting pot was approximately 7 feet bsg and an estimated 1,000 gallons of surface water had accumulated in it. The water was removed for disposal by a vacuum truck operated by Stratus. Disposal documentation is presented in Appendix F. The melting pot was covered with a steel plate to prevent future water infiltration. MSBA recommended that a more permanent cover be welded on in the future. MSBA directed the excavation of a test pit to a depth of approximately 9 feet bsg immediately adjacent to the melting pot. Field screening using a PID and visual observations did not identify any stained soil or PHCs while advancing the test pit. Soil sample *\$33-9* was collected from the test pit at a depth of 9 feet bsg and submitted for analysis of COCs, which were not detected.

5.3 UST Decommissioning and Sampling

Due to the proximity of the UST to the building and related structural concerns, an in-place decommissioning was completed after receiving feedback from Ecology. Prior to the decommissioning activities, water present in the tank was sampled and submitted for laboratory analysis and disposal authorization. The top of the tank was cut off and a vacuum truck operated by Stratus removed approximately 160 gallons of water. The UST was cleaned using a pressure washer. Tank and rinsate water disposal documentation is presented in Appendix F. After the tank was cleaned, it was filled with concrete. Gravel was placed from the top of the tank to near the surface. The tank had moderate corrosion, however, no holes were present.

Three test pits were excavated along the west side of the tank to collect decommissioning site assessment soil samples. One soil sample was collected adjacent to each end of the tank and one sample was collected from the middle. Soil samples could not be collected on the east side of the tank or due to the storm sewer system and accessibility. Soil removed from the test pits was observed and field screened using a PID. No indications of a release were noted. Soil samples *S20-9*, *S21-9*, and *S22-9* were collected at a depth of 9 feet bsg. The soil samples were submitted to Pace for laboratory analysis of diesel and oil, which were not detected.

5.4 Targeted Soil Removal and Confirmation Soil Sampling

On April 27, 2021, MSBA initiated targeted soil removal activities at AOPCs 1, 5, 8, 9, 13, and 14. MSBA also further evaluated the previous excavation and sampling at AOPC 7. Excavated soil was stockpiled on-site pending completion and off-site disposal.

The cleanup objective was to remove soil containing concentrations of the identified COCs to levels below the target Method A CULs (Section 4.1). The majority of the cleanup consisted of removing the upper 1 to 3 feet of soil from the surface. Deeper removal activities were necessary in AOPC 5 to a maximum depth of 6 feet bsg. Portions of the soil removal/sampling within AOPC 1, AOPC 8, and AOPC 9 required the use of a vacuum truck or air knife to access the soil due to utilities, buildings, low clearance, and/or concrete slabs. The remaining soil removal was completed using standard excavation equipment. The final removal areas and depths are illustrated on Figures 5, 6 and 7. Existing and additional laboratory data, as well as field screening using a PID and visual observations were utilized to identify any potential areas that required additional removal. Removal activities continued until observations, field screening, and confirmatory analyses verified that the target Method A CULs had been met. Photographs of the removal areas are presented in Appendix D.

During and following the removal activities, MSBA collected confirmation soil samples for laboratory analysis. The approximate sample locations are illustrated on Figure 5. The selected laboratory analyses were based on the COCs identified at each AOPC, as determined during previous investigations. The soil sample analytical results are presented in Tables 1 through 5. Copies of the laboratory analytical reports are presented in Appendix E. The following presents a summary of the removal and sampling activities at each AOPC.

AOPC 1 Metal Receiving Area (Photos 1-9): MSBA directed the removal of soil from the proposed (RI/FS) removal areas to depths ranging from 1 to 2.5 feet bsg (Figure 6). The removal areas were expanded based on field observations and laboratory analytical results to include areas of stained soil near the south end of the former 2018 excavation. MSBA estimates that 110 tons of soil were removed from AOPC 1. A small portion of one of the removal areas overlapped into what EPI had designated as AOPCs 2 and 3, however, these areas are considered AOPC 1 for the purpose of this report.

MSBA evaluated the former EPI soil sample location *AOPC1-01*, which was plotted on EPI site maps as beneath the baghouse in AOPC 1 (Figures 6). The approximate sample location and area beneath the baghouse was covered with competent concrete with no evidence of a recent core or saw cut. It appeared the sample may have been collected from sediment that had accumulated on the concrete pad or the location had been misplotted by EPI. The sediment was removed and the concrete pad was cleaned at the direction of MSBA and observed to be in good condition. MSBA directed the removal of soil surrounding the concrete pad to the north and east based on Method A CUL exceedances. Soil in this area was removed to an approximate depth of 1 foot bsg.

MSBA collected 30 confirmation soil samples (including field duplicates) from AOPC 1. The samples were primarily collected at depths ranging from surface grade to 2.5 feet bsg (Figure 6). Additional soil samples were collected at a depth of 9 feet bsg from test pits intended to evaluate subsurface soil beneath the UST and melting pot area (Sections 5.2 and 5.3). Several of the removal areas were expanded based on field observations and analytical results. The final confirmation soil sample results confirmed that all regulatory concentrations of COCs within the cleanup areas had been successfully removed.

AOPC 5 Southwest Compressor (Photos 10-14): MSBA directed the removal of soil from the proposed (RI/FS) cleanup areas to depths ranging from 1 to 6 feet bsg (Figure 7). Several of the removal areas were expanded based on CUL exceedances. MSBA estimates that 153 tons of soil were removed from AOPC 5.

MSBA collected 32 confirmation soil samples (including a field duplicate) from AOPC 5. The samples were collected at depths ranging from surface grade to 6 feet bsg (Figure 7). Based on the analytical results, additional cleanup was performed. The final confirmation soil sample results verified that all regulatory concentrations of COCs within the cleanup areas had been successfully removed. MSBA also collected samples of the previous sand used to backfill the excavation cleanup in 2018 for analysis. These analytical results confirmed that the sand used to backfill the 2018 excavation cleanup did not have any regulatory exceedances.

While removing soil near the western property boundary, MSBA encountered a gray material that resembled bentonite clay. The material appeared to extend to the west beyond the completed removal area. The material was analyzed for PAHs, RCRA 8 metals, and asbestos. PAHs and RCRA 8 metals were not present at concentrations exceeding the Method A CULs. The laboratory initially identified asbestos as present, however, when additional sample volume was submitted for follow-up analysis to quantify the results, it was not detected. NSC believes that the material may be bentonite clay that was historically used in the casting process. The material was temporarily stockpiled.

AOPC 7 South Compressor (Photo 15): Excavation cleanup activities were performed at AOPC 7 in 2018. Previous EPI sample *AOPC7-01* was plotted outside the excavation area and potentially misplotted. MSBA inspected this location and observed competent concrete with no evidence of a saw cut or sampling activities. MSBA anticipates that sample location *AOPC7-01* was either misplotted by EPI or was collected from sediment that had accumulated on the concrete. The previous excavation cleanup completed in 2018 appears to have successfully removed all COCs from AOPC 7.

AOPC 8 Maintenance Shop Building (Photo 16): MSBA directed the removal of soil from the proposed (RI/FS) cleanup area to an approximate depth of 1 foot bsg (Figure 5). The removal area was expanded slightly based on Method A CUL exceedances. MSBA estimates that approximately 11 tons of soil were removed from AOPC 8.

MSBA collected 5 confirmation soil samples from the removal area in AOPC 8. The samples were collected at depths ranging from surface grade to 1 foot bsg (Figure 5). The removal area was expanded based on the initial analytical results and additional confirmation soil sample **S50-0** was collected from the perimeter. Field duplicate sample **S50-0** DUP was also collected. The adjusted TEF total cPAHs results for sample **S50-0** were 0.0598 ppm, well below the 0.1 ppm Method A CUL. The total cPAH results for duplicate sample **S50-0** DUP were 0.1007 ppm. Although the duplicate sample results were greater than the Method A CUL by 0.0007 ppm, since the average of the two samples is well below the Method A CUL, this condition will not be considered a regulatory exceedance. The confirmation soil sample results verified that all regulatory concentrations of COCs had been successfully removed from the cleanup area.

MSBA inspected the former EPI soil sample location *HA-1:1.0* and it appeared that the sample was collected beneath the covered concrete slab north of the building (Figure 5). The concrete was re-cut and MSBA used a hand auger was used to evaluate the depth of COCs in soil at the location. The hand auger boring was advanced to a depth of 2.5 bsg and samples *S25-1.5*, *S25-2*, and *S25-2.5* were collected (Figure 5). Hand auger refusal occurred at 2.5 feet due to rocky conditions and regulatory concentrations of oil were present in these samples, including sample *S25-2.5* at 2.5 feet. Due to the oil concentration at 2.5 feet, a vacuum truck was used to assist in combination with the hand auger to reach a maximum depth of 4 feet bsg at this location. A drill rig could not be used due to the roof above the boring location. Samples *S25-3* and *S25-4* were collected using a hand auger. Soil removal activities were not completed in this area due to the proximity of the building and footings

for the roof of the covered area. The area containing regulatory concentrations of oil appears to be covered with concrete. Eliminating potential risks associated with the oil at this location by maintaining the concrete cap is proposed/discussed in Section 5.8.

AOPC 9 Welding Station Building (Photos 17-18): MSBA evaluated the former EPI soil sample locations *AOPC9-02* and *AOPC9-03* based on Method A CUL exceedances and it appears they were collected immediately beneath degraded and cracked concrete (Figure 5). Saw cuts, approximately 2 feet by 2 feet, were made at each location. MSBA directed the removal of approximately 0.5 ton of material from these former EPI sample locations and surrounding soil using a vacuum truck.

MSBA collected soil samples *S23-1.0* and *S24-1.0* at 1 foot bsg for laboratory analysis to define the vertical extent. Based on the sample results, the regulatory extent of COCs was 1 foot bsg at both locations. Following the vacuum removal activities, MSBA also collected soil samples *S67-0* and *S68-0* to evaluate if COCs were remaining beneath the concrete floor. COCs were not detected at regulatory concentrations with the exception of arsenic, which was detected in sidewall sample *S67-0* at a concentration of 42.3 ppm, exceeding the 20 ppm Method A CUL. Arsenic was detected in field duplicate sample *S67-0 DUP* at a significantly lower concentration of 11.1 ppm, indicating the soil is nonhomogenous. Since the concentration in sample *S67-0* is over double the Method A CUL and the average of the two samples also exceed, the result is considered a CUL exceedance. Based on the confirmation soil sampling, it appears that elevated levels of arsenic are present beneath the concrete at the *S67-0* location, but the remaining area is in compliance. Eliminating potential risks associated with the arsenic at this location by maintaining the concrete cap is proposed/discussed in Section 5.8.

AOPC 13 Foundry Waste Material (Photo 19): MSBA directed the removal of soil from the proposed (RI/FS) cleanup areas to a depth of 1 foot bsg (Figure 5). The planned removal area was consistent with the actual area. MSBA estimates that approximately 5 tons of soil were removed from AOPC 13.

MSBA collected two confirmation soil samples from AOPC 13. Soil sample *S11-1* was collected at 1 foot bsg from the bottom of the removal area and sample *S12-0* was collected from the surrounding surface. The confirmation soil sample results confirmed that all regulatory concentrations of COCs had been successfully removed.

AOPC 14 North Compressor (Photo 20): MSBA directed the removal of soil from the proposed (RI/FS) cleanup area to an approximate depth of 1 foot bsg (Figure 5). The planned removal area was expanded slightly based on field observations. MSBA estimates that approximately 4 tons of soil were removed from AOPC 14.

MSBA collected two soil samples from AOPC 14. Soil sample *S16-1* was collected at 1 foot bsg from the bottom of the removal area and sample *S17-0* was collected from the surrounding surface (Figure 5). The confirmation soil sample results verified that all regulatory concentrations of COCs had been successfully removed.

5.5 2021 Soil Sample Quality Control Summary

Pace Analytical provided trip blank samples that were placed in each cooler and transported to/from the field and back to the laboratory. The trip blank samples were submitted for laboratory analysis of VOCs. With the exception of acetone, a common laboratory contaminant, VOCs were not detected in the samples analyzed. The trip blank results are summarized in Table 7 and copies of the laboratory analytical reports are presented in Appendix E. Based on these results, MSBA determined that the soil sample container/results were not altered or adversely affected during transport.

Equipment blank (rinsate blank) samples *EB-1* through *EB-9* were collected by pouring distilled water over the sampling equipment and containing the water for analysis, prior to and during the sampling activities. The equipment blanks samples were submitted for laboratory analysis of the same constituents as the characterization samples during each sampling event. Acetone was the only constituent detected in the equipment blank samples. The remaining analytes were not detected in the samples (Tables 7 through 10). Since acetone was not detected in any of the soil samples collected during the sampling events, it appears that the sample results can be relied on for the intended purpose of this investigation.

Field duplicates were collected throughout the sampling activities to evaluate the precision in the sampling and analytical procedures. The relative percent differences for some of the duplicate samples were relatively high. MSBA attributes the differences to nonhomogeneous soil conditions and matrix interference. Although the field duplicate results varied, they did not typically vary to a degree that would alter the regulatory status of the site. Therefore, the sample results can be relied on for the intended purpose of this investigation.

MSBA performed a quality control review of the laboratory analytical reports. Several analytes and/or analyses were qualified by the laboratory noting that the results are estimated due to: 1) matrix interference, 2) surrogate recoveries outside control limits, 3) compounds detected in laboratory blanks, and/or 4) matrix spike and/or matrix spike duplicate results outside the acceptable limits. The individual qualifiers are presented in the laboratory reports included in Appendix E. MSBA reviewed each of the individual qualifiers and determined that the corresponding sample results were not likely affected to a degree that would substantively change or alter the reported results or current regulatory status of the site. Based on this review, MSBA concludes that these soil sample data can be relied on for the intended purpose of this investigation.

5.6 Soil Disposal and Stockpiling

Soil removed during the cleanup was stockpiled on-site near the northeastern property boundary within AOPC-13 for subsequent disposal. Small stockpiles of overburden soil were also located within the AOPC-5 removal area. The stockpiled soil was lined with 6 millimeter (mm) plastic

sheeting to prevent potential vertical migration of constituents into underlying soil or asphalt. The stockpiles were bermed and covered with plastic sheeting to prevent rain and/or surface water incursion. Approximately 1 to 2 inches of underlying soil was also disposed off-site to ensure that no COCs were present. The stockpiles were located within an area that is enclosed within security fencing and not accessible to the public.

The excavated soil was disposed at the Wasco County Landfill in The Dalles, Oregon. A total of 284.14 tons of soil were disposed at the landfill. Disposal documentation is presented in Appendix F.

5.7 Backfill and Site Restoration

Following cleanup and confirmation soil sampling activities, the site was backfilled with approximately 313 tons of clean, commercially obtained, imported 1-1/4 inch minus gravel backfill. The backfill material was compacted using a plate compactor and graded to match the approximate previous surface conditions.

5.8 Post Cleanup Regulatory Status

Following the soil removal activities, residual COCs are present beneath concrete in AOPCs 8 and 9 as summarized below.

AOPC 8 Maintenance Shop Building: Soil containing regulatory concentrations of oil is present beneath the covered concrete pad at the north end of the maintenance shop building, within AOPC 8 (Figure 8). Oil was detected at a maximum concentration of 8,500 ppm (*HA-1:1.0*). Combined diesel and oil range concentrations exceed the Method A CUL, however, the diesel detections are likely due to overlap from oil range hydrocarbons. The residual oil at this location has an estimated area of 80 sq. ft. and a maximum depth of 4 feet bsg (Figure 8).

AOPC 9 Welding Station Building: Soil containing a regulatory concentration of arsenic is present beneath the concrete floor of the welding station building, within AOPC 9 (Figure 8) at a maximum remaining concentration of 42.3 ppm (*S67-0*). The residual arsenic has an estimated area of 110 sq. ft. and a maximum depth of 1 foot bsg (Figure 8).

The concrete will be maintained to act as an engineering control intended to limit access to COCs in the underlying soil If future construction or development activities render the soil beneath the concrete accessible, it will be excavated and disposed. The requirements associated with future removal activities will be stipulated in the Environmental Covenant as a condition of the no further action determination.

6.0 MONITORING WELL MW-2 INSTALLATION AND SAMPLING

6.1 AOPC 5 Hollow Stem Auger Boring Location

In June 2021, MSBA notified Ecology that former monitoring well MW-1 could not be located and sampled as planned. Since the previous 2018 MW-1 sample results did not exceed the Method A CULs, Ecology requested a groundwater sample near the southeast corner of AOPC 5.

6.2 Soil Boring and Soil Sampling

On June 14, 2021, boring MW-2 was advanced to a depth of 63 feet bsg using a hollow-stem auger drill rig operated by Stratus. A GeoProbe attachment was used in combination to collect soil samples. Since the boring was installed within the soil removal area, the first 3.5 feet of material was the gravel used to backfill. The remaining soil beyond 3.5 feet primarily consisted of sand and silty sand. Groundwater was first encountered in the boring at a depth of 52 feet bsg. Shallow soil sample *MW2-52* and groundwater interface sample *MW2-52* were collected from the boring for laboratory analysis of selected COCs. COCs were not detected in either sample at concentrations exceeding the Method A CULs.

Soil cuttings and decontamination/purge water from the sampling activities were stored in 55-gallon drums and transported by Stratus for disposal at Patriot Environmental Services. Disposal documentation is presented in Appendix F.

6.3 Monitoring Well Construction

On June 14, 2021, monitoring well MW-2 was constructed using 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing. A fifteen foot section of 0.010 inch pre-pack slotted casing was placed at the bottom of boring (63 to 48 feet bsg). Solid PVC well casing was installed from the top of the screened interval (48 feet bsg) to near the ground surface.

The annulus adjacent to the pre-pack screen was backfilled with clean, imported 12/20 silica filter sand from the bottom of the boring to approximately 47 feet bsg, 1 foot above the top of the screen. The solid casing was sealed with hydrated bentonite chips from 47 to 3 foot bsg. The bentonite seal was covered with concrete and a steel, bolt down, traffic-rated well vault flush with the surface. The top of the well casing was secured with a water-tight, locking cap inside the well vault. MSBA documented the well construction on a Soil Boring Log presented in Appendix G. A copy of the Resource Protection Well Report filed by the driller is also presented in Appendix G.

Following installation, monitoring well MW-2 was developed to removed fines and reduce turbidity by purging with a submersible pump. Approximately 120 gallons were purged during well development. The purge water was temporarily stored in 55-gallon drums pending disposal.

6.4 Monitoring Well MW-2 Groundwater Sampling

On August 27, 2021, MSBA purged and sampled monitoring well MW-2. The static depth to water below the top of casing (BTOC) measured 53.26 feet. The previous static depth to water measured in June 2021 was slightly higher at 51.27 feet BTOC. MSBA purged approximately three well volumes and collected groundwater sample *MW-2* and field duplicate sample *MW-2 DUP*. A copy of the Groundwater Purge and Sample Data sheet is presented in Appendix H.

The groundwater samples were submitted to Pace for analysis of previous COPCs at AOPC 5. The analytes were either not detected or present at concentrations below the Method A CULs. The results are summarized in Tables 7 through 10 and a copy of the laboratory analytical report is presented in Appendix I.

6.5 MW-2 Groundwater Sample Quality Control Summary

Pace Analytical provided a trip blank sample that was placed in the cooler and transported to/from the field and back to the laboratory and analyzed for VOCs, which were not detected. The trip blank results are summarized in Table 7 and a copy of the laboratory analytical report is presented in Appendix H. Based on these results, MSBA determined that the groundwater sample containers/results were not altered or adversely affected during transport.

Equipment blank (rinsate blank) sample *EB-10* was collected by pumping distilled water through the submersible pump within a clean 5-gallon bucket and sampling the discharge. The equipment blank sample was submitted for laboratory analysis of the same constituents as the groundwater sample. Acetone was detected at a relatively low concentration in the equipment blank sample. The remaining analytes were not detected (Tables 7 through 10). Acetone was also detected in the MW-2 and field duplicate samples collected during the sampling event. MSBA does not use acetone for decontamination and the source or cause is unknown, however, it is a common laboratory contaminant. Since the condition did not result in regulatory concentrations of COCs in the MW-2 sample, the results can be relied on for the intended purpose of this investigation.

A field duplicate was collected to evaluate the precision in the sampling and analytical procedures. The duplicate results were relatively consistent with the original sample, therefore, the sample results can be relied on for the intended purpose of this investigation.

MSBA performed a quality control review of the laboratory analytical report. Several analytes and/or analyses were qualified by the laboratory noting that the results are estimated due to: 1) matrix interference, 2) surrogate recoveries outside control limits, and/or 3) matrix spike and/or matrix spike duplicate results outside the acceptable limits. The individual qualifiers are presented in the laboratory report included in Appendix I. MSBA reviewed each of the individual qualifiers and determined that the corresponding sample results were not likely affected to a degree that would substantively change or alter the reported results or current regulatory status of the site. Based on this review, MSBA concludes that these groundwater sample data can be relied on for the intended purpose of this investigation.

7.0 SUBSLAB VAPOR INVESTIGATION - AUGUST 2021

Following the soil removal activities, residual diesel concentrations were present in soil at concentrations ranging from 4.63 to 1,600 ppm. Cleanup regulation requires that the Vapor Intrusion exposure pathway be evaluated if concentrations of diesel in soil are greater than 250 ppm, which is below the Method A CUL of 2,000 ppm. The following section presents a summary of subslab vapor sampling activities completed to further evaluate the potential VI exposure pathway.

7.1 Subslab Vapor Point Locations

The locations where residual diesel concentrations exceed the 250 ppm threshold are shown on Figure 9. MSBA and Ecology agreed on one subslab vapor sample near the location with the highest residual diesel concentrations, AOPC 8 and one location near sample location **S45-0** at AOPC 5.

7.2 Floor Survey

Prior to installing the subslab vapor point, MSBA inspected the floor in the vicinity of the proposed sample location for significant cracks, holes, or other irregularities that could cause short circuiting, and/or otherwise interfere with the vapor sampling. Several moderate cracks were observed in the floors of both buildings. The proposed sample locations were modified slightly to avoid being within 2 or 3 feet of the cracks.

7.3 Subslab Vapor Point Installation

On August 27, 2021, MSBA installed subslab vapor points SV-1 and SV-2. A hammer drill was used to create a 1-inch diameter hole that penetrated the slab and approximately 1 to 2 inches of subslab material, creating a small cavity. A stainless steel sampling screen attached to Teflon tubing was inserted into the small cavity immediately beneath the bottom of the slab. Filter sand was placed adjacent to the screen from the bottom of the cavity to just above the bottom of the slab. A 0.5-inch layer of combined powdered and granular bentonite was placed above the sand but not hydrated. A slurry of Portland cement was used to seal the remainder of the hole to the surface. The cement slurry was allowed sufficient time to hydrate the bentonite and set up prior to sampling.

7.4 Subslab Vapor Sampling

On August 27, 2021, subslab vapor samples *SV-1* and *SV-2* were collected. Prior to purging and sampling, each laboratory certified sample collection manifold was vacuum tested to verify the tightness of all the fittings. Prior to sampling, approximately three volumes of air within the sampling point, sand pack, tubing, and manifold were purged using a dedicated syringe. The flow rate was 200 milliliters per minute (ml/min) or less during purging and sampling, as limited by the intake regulator, or critical orifice assembly on the manifold as calibrated by the laboratory. The purge volume calculation parameters are documented on a Soil Vapor Purge Volume Calculation Worksheet presented in Appendix J. Leak testing was performed during purging and sampling using a shroud enclosing the vapor point, Summa canister, manifold, and tubing filled with 2-propanol vapor. An approximate 2-propanol concentration of 20,000 to 60,000 micrograms per cubic meter (µg/m³) was maintained inside the shroud during the purging and sampling activities. The concentration of 2-propanol was field monitored using a PID. Samples *SV-1 Shroud* and *SV-2 Shroud* were collected from inside the shroud and submitted for laboratory analysis of 2-propanol to determine the actual concentrations.

Following the purging activities, samples *SV-1* and *SV-2* were collected using a laboratory certified Summa canister. MSBA continued sampling until the vacuum in the Summa canister decreased from the initial vacuum reading of approximately 30 inches of mercury to approximately 5 inches of mercury. MSBA documented the final canister vacuum and sample time on Soil Vapor Purge and Sample Data sheets presented in Appendix J. Following completion of the sample collection activities, the vapor points were over-drilled and patched with cement.

Subslab vapor samples *SV-1* and *SV-2* were submitted to Fremont Analytical for laboratory analysis of APH hydrocarbon fractions aliphatics EC5-8, aliphatics EC9-12, and aromatics EC9-10, and BTEX, naphthalene, and major gases, as requested by Ecology. In addition, samples *SV-1*, *SV-2*, and leak detection shroud samples *SV-1 Shroud* and *SV-2 Shroud* were analyzed for 2-propanol using EPA method TO-15. The laboratory analytical results are summarized in Table 11 and illustrated on Figure 9. Copies of the laboratory analytical reports are presented in Appendix K.

There were no Method B CUL exceedances in the welding station building sample *SV-2*, north of AOPC 5. The total petroleum fractions and naphthalene results exceeded the generic MTCA Method B CULs in sample *SV-1*, within the maintenance building at AOPC 8. The petroleum fraction results for *SV-1* were flagged by the laboratory as biased high (143% surrogate recovery) and therefore, are likely below the Method B CUL. MSBA calculated the site specific sub-slab vapor non-carcinogenic Method B CUL for total petroleum fractions in accordance with the Ecology Implementation Memorandum No. 18 (dated January 10, 2018). The total petroleum fraction results for *SV-1* are below the site specific sub-slab vapor Method B CUL, as shown in Table 12.

MSBA further evaluated the naphthalene exceedance with modeling using the EPA BioVapor program. The default values were used for most inputs. The BioVapor inputs and outputs are shown in Appendix K. Based on the modeling results, the naphthalene results appear to be protective of human health and safety. The ceilings in the maintenance building where *SV-1* was collected are relatively high and the door is typically open or partially open for more mixing with ambient outdoor air. In general, the building is very drafty, constructed with a single layer of corrugated steel siding and no insulation.

7.5 Subslab Vapor Sampling Leak Test Results

Leak test compound 2-propanol was detected in leak test shroud samples SV-1 Shroud and SV-2 Shroud at concentrations of 25,000 and 57,000 µg/m³, respectively. The leak test compound was detected in subslab vapor samples SV-1 and SV-2 at relatively low concentrations of 187 and 83.7 µg/m³, respectively. The estimated ambient air leak percentage was calculated using the following formula. The leak percentage is defined as the percent of ambient air that may have diluted the sample due to potential leaks in the sample train, fittings, manifold, and/or vapor point surface seal.

In general accordance with the Ecology guidance, a calculated leak of more than 5 percent ambient air indicates the sample results are likely compromised and re-sampling may be warranted. The calculated leak percentages for *SV-1* and *SV-2* were 0.75 and 0.15 percent, respectively. Since the leak test results are satisfactory, MSBA concludes that no significant contribution of ambient air occurred and the data can be relied upon.

7.6 Subslab Vapor Sample Quality Control Summary

MSBA performed a quality control review of the laboratory analytical reports. The spike recovery results were outside the accepted recovery limits for the petroleum fractionation results with respect to sample *SV-1*. As discussed in Section 7.4, this may have caused biased high results in the sample.

Since the potentially biased high petroleum fractionation results for SV-1 are below the site specific Method B CUL, the condition is considered acceptable. The laboratory also noted that internal standards were outside the acceptance criteria for VOCs. The laboratory indicates that matrix effect is a potential cause of the condition. The individual qualifiers are presented in the laboratory reports included in Appendix K. MSBA reviewed each of the individual qualifiers and determined that the corresponding sample results were not likely affected to a degree that would substantively change or alter the reported results or current regulatory status of the site. Based on this review, MSBA concludes that these subslab vapor sample data can be relied on for the intended purpose of this investigation.

8.0 CONCEPTUAL SITE MODEL INFORMATION

The following presents a summary of site information assembled to prepare a site-specific conceptual site model (CSM).

8.1 Surface Water Assessment

MSBA performed a surface water assessment by reviewing the United States Geologic Survey (USGS) 7.5-minute series, Vancouver, Washington Topographic Quadrangle Map (Figure 1a) and the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory. The closest body of surface water is the Columbia River, the nearest point being approximately 1,500 feet southwest of the site (Figure 1a). The USFWS National Wetland Inventory does not list any wetlands within a mile of the site, with the exception of the Columbia River, a riverine wetland.

8.2 Beneficial Groundwater Use Evaluation

The following presents a summary of beneficial water uses in the vicinity of the site. The evaluation included a review of well logs in the area as well as municipal water sources.

8.2.1 Water Resources Program Database Review

MSBA completed a review of well logs listed with the Ecology Water Resources Program (WRP) database to identify any potential drinking or irrigation wells within a one-half mile radius of the site. The review did not include monitoring wells or geotechnical holes. The search results listed one well log potentially within the search radius (Well Report ID 237775). A printout of the search results and copy of the well log are included in Appendix L. The well log represents three water

wells installed in 1947, 1948, and 1957 for the Columbia River Paper Mill. An address for the wells is not listed, however, they were likely installed at the historic paper mill property last operated by Boise Cascade, located along the Columbia River just west of the Interstate 5 bridge. This area is approximately 1,750 feet south of the site at its nearest point. The mill structures were removed and the area was recently developed to include a waterfront park, offices, retail stores and restaurants, hotels, and condominiums. MSBA reached out to the developer to confirm that the water wells are no longer in use, however, did not receive a response. The area is supplied with municipal water and MSBA assumes the wells are not in use or were decommissioned. However, based on the distance from the site, and the on-site groundwater sample results, the historic water wells, even if present, do not represent a concern with respect to the site.

8.2.2 City of Vancouver Municipal Water Supply

MSBA reviewed the City of Vancouver 2021 Water Quality Report (the most recent available report) and spoke with Mr. Tyler Clary, Water Engineering Program Manager for the City of Vancouver on January 7, 2021, to evaluate the source of municipal water service supplied to the site and surrounding properties. Municipal water is supplied by a network of approximately 40 water wells, which pump water from three aquifers: the Orchards, Troutdale, and Sand-and-Gravel aquifers. The nearest water supply well is approximately 1.5 miles north (upgradient) of the site and there are no downgradient water wells. MSBA also reviewed the Vancouver Water Stations and Wellhead Protection Areas map and determined the site is at least 1 mile outside of any water well protection buffer or special wellhead protection areas. The site is within the critical aquifer recharge area, which includes the entire Vancouver city limit. A copy of the water stations and well protection areas map is included in Appendix L. Based on the distances and locations of the municipal water wells with respect to the groundwater flow direction, it appears there are no municipal wells of concern with respect to the site.

8.3 Land Use Zoning

The zoning for the site, as well as properties to the south and west is Industrial, consistent with the current land uses. Properties to the east (across Lincoln Ave) and north (across Mill Plain Blvd) of the site are zoned Commercial and Mixed Use, also consistent with the current land uses. A copy of the City of Vancouver zoning map for this area is included in Appendix L. On December 4, 2020, MSBA contacted Sandy Wozny, Associate Planner with the City of Vancouver to confirm the zoning at and near the site and verified that there are no proposals or pending changes to the land use and zoning for properties in this area.

9.0 CONCEPTUAL SITE MODEL AND EXPOSURE PATHWAY EVALUATION

A CSM is prepared to evaluate the three primary elements of a site assessment that include sources, receptors, and pathways. Together, these three elements could potentially cause a risk to human health and safety. If any one of these three elements are absent, incomplete, or not applicable, there is no potential risk to human health and safety. A general explanation of the three primary elements of a CSM is presented below:

- 1) **Sources** represent the constituents and the media (soil, groundwater, and air) in which the constituents may be present. The constituents are independently evaluated as COPCs within each media they are present.
- 2) **Receptors** include the representative segments of the human population (residents, occupational workers, construction workers, and excavation workers) that occupy or work in the vicinity of the site based on zoning, current and permitted land uses, and potential likely future uses of the property.
- 3) **Pathways** represent the potential mechanisms of transport and routes of exposure (i.e. inhalation, ingestion, and dermal contact) that may provide a means of contact between the sources and the receptors.

The three primary elements of a CSM are discussed in greater detail in the following sections.

9.1 SOURCES - Constituents/Media and COC Evaluation

As discussed in Section 2.2, the majority of the constituents detected at the site are the result of various industrial operations, leaking compressor equipment, and drum storage. Industrial operations often result in multiple irregular point sources originating at or very near the surface. Therefore, the depth of COCs was limited to approximately 6 feet bsg. Following the soil removal activities, residual COCs are located beneath concrete and at a maximum depth of 4 feet bsg.

The remaining COPC concentrations were evaluated with respect to the applicable CULs, based on the following criteria, to determine whether individual COPCs should be further evaluated for risk as COCs:

- Individual COPCs will not be further evaluated as COCs if they are: 1) detected at a concentration below the respective CUL; 2) not detected and the laboratory reporting limit (RL), which was raised due to dilution required for analysis, is below the respective CULs; or, 3) not detected and the commonly achievable RL, which was not raised by sample dilution required for analysis, exceeds the respective CULs.
- Individual COPCs will be further evaluated as COCs if they are: 1) detected at a concentration exceeding the respective CUL; or 2) not detected and the RL, which was raised by sample dilution required for analysis, exceeds the CUL.

9.1.1 COC Evaluation - Soil

COPCs in residual soil were assessed for further evaluation as COCs by comparing the maximum detected concentrations (MDCs) to the Method A CULs based on the criteria presented above (Section 9.1). Soil data representing remaining soil were used for this evaluation. Soil data is summarized on Tables 1 through 5 and remaining soil results exceeding the Method A CULs are illustrated on Figure 8. The following constituents in soil were retained for further evaluation as COCs:

- Diesel
- Oil
- Arsenic

9.1.2 COC Evaluation - Groundwater

COPCs in the groundwater were assessed for further evaluation as COCs by comparing the MDCs to the screening levels based on the criteria presented above (Section 9.1). All groundwater data collected at the site were used for this evaluation. Groundwater data is summarized on Tables 7 through 10 and selected results are illustrated on Figure 4. As summarized in Section 2.2, COPCs were not detected at concentrations exceeding the Method A CULs in any samples with the exception of cPAHs in *SB-9:GW*, which was located within AOPC 1, the metal receiving area. EPI attributed the cPAH concentration in *SB-9:GW* (0.2134 ppb) to high turbidity in the sample. Concentrations of cPAHs were significantly lower and below the Method A CUL in the subsequent monitoring well sample *MW-1:water* (0.0453 ppb). Based on these results, it appears that groundwater containing concentrations exceeding the Method A CULs were the result of high turbidity in sample *SB-9:GW*. Therefore, no COPCs were retained for further evaluation as COCs in groundwater.

9.1.3 COC Evaluation - Subslab Vapor

COPCs in the subslab vapor were assessed for further evaluation as COCs by comparing the MDCs to the Method B CULs based on the criteria presented above (Section 9.1). The August 2021 subslab vapor data were used for this evaluation. Subslab vapor data is summarized on Table 11 and selected results are illustrated on Figure 9. The following constituents in subslab vapor were retained for further evaluation as COCs:

- TPH Fractions
- Naphthalene

9.2 RECEPTORS - Potential Receptor Evaluation

The potential receptors (residents, occupational workers, construction workers, and excavation workers) were evaluated by assessing the current and future land use and zoning (Section 8.3) and the potential future land use. The site has reportedly been operated as a foundry since the 1920s and based on the surrounding area it will most likely remain industrial in the foreseeable future. Although apartments are located east to the site across Lincoln Ave, the NSC facility is enclosed within security fencing and the nearby receptors will not be in contact with residual COCs on-site. Based on the above site conditions, potential receptors are identified as industrial workers, construction workers, and excavation workers. However, since unrestricted CULs are being utilized, the remedial action activities are also protective of residents. Ecological receptors were also retained for further evaluation.

9.3 PATHWAYS - Potential Exposure Pathway Evaluation and Risk Determination

The primary potential exposure pathways at the site consist of the following:

Dermal Contact and Ingestion: Dermal contact and/or ingestion of COCs in soil. **Vapor Intrusion:** Volatilization of COCs in soil into air and subsequent inhalation. **Ecological Risk:** Dermal contact and ingestion of COCs in soil by ecological receptors.

The potential exposure pathways were selected and evaluated with respect to the COCs and the receptors to determine the potential for risk to. An exposure pathway is considered "complete" when site information indicates that a receptor is likely to contact a COC. A potential exposure pathway is considered "incomplete" when site data and information indicates that a potential receptor will not contact a COC. If a potential exposure pathway is considered complete, it is selected and further evaluated for potential risk.

MSBA determined that based on the absence of COCs in groundwater and its depth, the Leaching to Groundwater and Ingestion and Inhalation of Groundwater exposure pathways are incomplete and do not require further evaluation. In addition, since the nearest body of surface water is approximately 1,500 feet away, raised railroad beds/tracks creating a berm are located between the two, and stormwater is contained on-site, the Soil Runoff to Surface Water exposure pathway is also incomplete. The following presents an evaluation of the remaining exposure pathways.

9.3.1 Dermal Contact and Ingestion

Concentrations of COCs in soil at two locations exceeding Method A CULs could potentially cause an unacceptable risk to on-site receptors if contacted or ingested. Following the soil removal activities, residual soil containing COCs is limited to relatively small areas at AOPC 8 and AOPC 9. Both areas are capped with concrete that will be maintained to prevent incidental contact. Therefore, based on current site data and concrete cap, there is no elevated risk to human health and safety with respect to the Dermal Contact and Ingestion exposure pathway.

9.3.2 Vapor Intrusion

Elevated concentrations of COCs in soil could potentially cause an unacceptable risk to on-site receptors if the constituents volatilize into air and are subsequently inhaled. Following the soil removal activities, subslab vapor samples *SV-1* and *SV-2* were collected to further evaluate this exposure pathway, as discussed in Section 7.0.

There were no Method B CUL exceedances in the welding station building sample *SV-2*, north of AOPC 5. The total petroleum fractions and naphthalene results exceeded the generic Method B CULs in sample *SV-1*, within the maintenance building at AOPC 8. MSBA calculated the site specific sub-slab vapor Method B CUL for total petroleum fractions and the *SV-1* results were below the CUL (Table 12). MSBA further evaluated the naphthalene exceedance using the EPA BioVapor model. Based on the modeling output, the naphthalene results are acceptable. Therefore, based on current site data and modeling results, there is no elevated risk to human health and safety with respect to the Vapor Intrusion exposure pathway.

9.3.3 Ecological Risk

MTCA WAC 173-340-7490 establishes terrestrial ecological evaluation procedures. Following the soil removal activities, all concentrations of COCs exceeding the commercial screening values provided in MTCA Table 749-2 (Appendix L) were either removed or are capped with concrete. Therefore, the site meets the requirements for exclusion from an ecological evaluation in accordance with WAC 173-340-7491 (1)(b) and no further assessment is needed.

10.0 SUMMARY AND RECOMMENDATIONS

Extensive soil, groundwater, and subslab vapor sampling have been completed at the site. Soil removal activities were performed in 2018 and 2021 to remove a combined total of 601.72 tons of soil containing COCs. The regulatory extent of COCs has been adequately defined. Residual COCs are present at AOPCs 8 and 9 in areas capped with concrete. The concrete caps will be maintained to act as an engineering control intended to limit access to COCs in the underlying soil. An Environmental Covenant will be recorded as an institutional control to ensure the concrete caps remain effective. No ecological concerns were identified at the site. Therefore, with the implementation of institutional controls governing the concrete caps, the site appears to be in compliance with the applicable Ecology regulations and MSBA recommends a no further action determination.

11.0 REMARKS AND SIGNATURES

The information/conclusions/recommendations contained in this report were arrived at in accordance with currently accepted professional geological and environmental practices at this time and location. No warranties are expressed or implied. This report was prepared solely for NSC. MSBA is not responsible for the independent conclusions or actions of others derived from the information presented herein.

Information and opinions presented in this report are based on the collection and review of data from limited portions of the site subsurface. MSBA is not responsible for conditions that may exist in portions of the site that were not investigated, for conditions that were not reported or properly presented to MSBA, and for future activities or investigations that may alter the current condition or understanding of the site.

Prepared By:			
Martin S. Burck Associates, Inc.			
	/		
Josh Owen		Date	
Project Manager			
Reviewed by:			
	/		
Martin S. Burck, LG/RG		Date	
Licensed/Registered Geologist; OR, WA, CA			

 $S:\label{lem:star} S:\label{lem:star} S:\label{lem:star} Project\ Files\ \ North\ Star\ Casteel\ \ MSBA\ Docs\ \ Closure\ Report\ \ \ Text. wpd$

DRAFT

Figures

- Figure 1a Site Location Map
- Figure 1b Area Layout Map
- Figure 2 Site Map
- Figure 3 Previous Soil Data Map
- Figure 4 Groundwater Data Map
- Figure 5 Excavation and Soil Sample Location Map
- Figure 6 AOPC 1 Sample Location Map
- Figure 7 AOPC 5 Sample Location Map
- Figure 8 Remaining COCs in Soil Data Map
- Figure 9 Vapor Intrusion Assessment Map

Adapted from: Google Earth Image (5/10/21)

Revised: 5/20/2022 3:52 PM

FIGURE 1b

AREA LAYOUT MAP

Revised: 5/20/2022 12:18 PM

Vancouver, WA 98660

nd

TEF Adjusted Carcinogenic PAHs (8270D) (ppb)

Revised: 5/20/2022 3:32 PM S:\Project Files\North Star Casteel\Figures\Closure-Excavation Cleanup\F 4 GW Data.vsd

1200 West 13th Street

Vancouver, WA 98660

Martin S. Burck Associates, Inc. Geologic and Environmental Consulting Services FIGURE 5

EXCAVATION AND SOIL SAMPLE LOCATION MAP

AEG/Magna Soil Removal Area and Depth Below Surface Grade

MSBA Soil Removal Area and Depth Below Surface Grade

Stormwater Utility Location Catch Basin Dry Well

Revised: 5/19/2022 11:36 AM

Martin S. Burck Associates, Inc. Geologic and Environmental Consulting Services

FIGURE 6

AOPC 1 SAMPLE LOCATION MAP

LEGEND

FIGURE 7

AOPC 5 SAMPLE LOCATION MAP

Area of Potential Concern (AOPC)

AEG/Magna Soil Removal Area

Sample depth (feet below surface grade) Diesel (NWTPH-Dx) (ppm) Oil (NWTPH-Dx) (ppm) As 11.1 Arsenic (6020A) (ppm) Cr 27.5 Chromium (6020A) (ppm) Red Text Indicates Concentration Exceeds Cleanup Level
Blue Text Indicates Combined Diesel and Oil Concentrations Exceed
the Cleanup Levels MSBA Soil Removal Area MSBA Soil Stockpile Area Stormwater Utility Location Catch Basin Dry Well Revised: 5

REMAINING COCs IN SOIL DATA MAP

DRAFT

Tables

Table	1	Soil Sample Analytical Data - Analytical Summary
Table	2	Soil Sample Analytical Data - PHCs and VOCs
Table	3	Soil Sample Analytical Data - SVOCs
Table	4	Soil Sample Analytical Data - Metals
Table	5	Soil Sample Analytical Data - PCBs
Table	6	Wipe Sample Analytical Data - PCBs
Table	7	Water Sample Analytical Data - PHCs and VOCs
Table	8	Water Sample Analytical Data - SVOCs
Table	9	Water Sample Analytical Data - Metals
Table	10	Water Sample Analytical Data - PCBs
Table	11	Subslab Vapor Sample Analytical Data
Table	12	Subslab Vapor Total TPH Non-Carcinogenic Cleanup Levels

TABLE 1

SOIL SAMPLE ANALYTICAL DATA - ANALYTICAL SUMMARY

		Sample	N	Metals ^b (ppm)	С		PHC	s d (ppm)				
Sample ID	Sample Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ⁱ
AOPC 1 - Metal F		Soil Samples										
AOPC1-01	4/5/17	< 1	23.9 k, l	1,350	1,360	N/A ^m	N/A	N/A	N/A	N/A	N/A	N/A
AOPC1-02	4/5/17	< 1	< 1.00 ⁿ	2.06	54.9	N/A	< 2.00	< 50.0	290	< CUL °	< CUL	< CUL
AOPC1-03	4/5/17	< 1	< 1.00	25.1	43.3	N/A	< 2.00	200	< 250	< CUL	< CUL	Exceeds
AOPC1-04	4/5/17	< 1	3.19	57.8	169	N/A	N/A	14,000	87,000	N/A	< CUL	< CUL
AOPC1-05	4/5/17	< 1	1.96	50.4	36.1	N/A	N/A	46,000	29,000	N/A	Exceeds	Exceeds
SB-9:5	6/15/17	5	< 1.00	19.7	11.4	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB-10:5	6/15/17	5	< 1.00	5.96	38.0	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB-15:<1	4/3/18	< 1	< 1.00	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
MW-1:10	4/4/18	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
HA-11:<1	4/4/18	< 1	< 1.00	57.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-12:<1	4/4/18	< 1	< 1.00	60.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-13:<1	4/4/18	< 1	< 1.00	40.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-14:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL
AOPC1-1	10/29/18	~ 1.5 ^q	< 0.569	5.69	13.5	N/A	1.27	11.6	63.7	< CUL	< CUL	< CUL
AOPC1-2	10/29/18	~ 1.5	< 0.0700	15.0	56.4	N/A	1.30	21.0	82.4	< CUL	< CUL	< CUL
AOPC1-3	11/14/18	~ 1	< 0.633	5.12	17.2	N/A	< 3.16	< 5.06	< 12.7	< CUL	< CUL	< CUL
AOPC1-4	11/14/18	~ 1.5	0.087	8.14	20.2	N/A	< 2.97	6.08	34.7	< CUL	< CUL	< CUL
AOPC1-5 S18-0	11/14/18 4/29/21	~ 1.5	0.447	128	60.4	N/A	< 2.93	26.2	126	< CUL	< CUL	< CUL
\$19-0	4/29/21	0	< 1.19	82.7	N/A N/A	D, O	N/A	39.0 N/A	247	N/A N/A	N/A N/A	N/A N/A
S19-1	5/26/21	1	4.58	366 163	27.5	N/A N/A	N/A N/A		N/A 124	N/A N/A	N/A N/A	N/A N/A
S20-9 Dup	4/29/21	9	1.04 N/A	N/A	N/A	N/A N/A	N/A N/A	26.9 < 4.80	< 12.0	N/A N/A	N/A N/A	N/A
S20-9 Dup	4/29/21	9	N/A	N/A	N/A	N/A	N/A	< 4.89	< 12.0	N/A N/A	N/A	N/A
S21-9	4/29/21	9	N/A	N/A	N/A	N/A	N/A	< 4.79	< 12.2	N/A	N/A	N/A
S22-9	4/29/21	9	N/A	N/A	N/A	N/A	N/A	< 4.91	< 12.3	N/A	N/A	N/A
S26-2.5	4/29/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S27-2.5	4/29/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S29-1	4/30/21	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL
S29-1 Dup	4/30/21	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL
S30-0.5	4/30/21	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL
S32-1.5	4/30/21	1.5	N/A	N/A	N/A	N/A	N/A	< 4.81	< 12.0	N/A	N/A	N/A
S33-9	4/30/21	9	N/A	N/A	N/A	N/A	N/A	< 4.40	< 11.0	< CUL	N/A	< CUL
S34-2	4/30/21	2	N/A	N/A	N/A	N/A	N/A	4.63	15.4	N/A	N/A	N/A
S35-0.5	4/30/21	0.5	N/A	N/A	N/A	N/A	N/A	22.8	119	N/A	N/A	N/A
S36-1	4/30/21	1	N/A	N/A	N/A	N/A	N/A	< 44.0	271	N/A	N/A	N/A
S37-1	4/30/21	1	N/A	N/A	N/A	N/A	N/A	< 5.04	< 12.6	N/A	N/A	N/A
S38-1.5	4/30/21	1.5	< 1.18	N/A	N/A	N/A	N/A	288	1,580	< CUL	< CUL	< CUL
S39-1.5	4/30/21	1.5	1.33	N/A	N/A	N/A	N/A	68.6	175	N/A	N/A	N/A
S39-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S40-1.5	5/26/21	1.5	0.827	N/A	N/A	N/A	N/A	538 ^r	1,950	N/A	< CUL	N/A

SOIL SAMPLE ANALYTICAL SUMMARY

				h	r		5110	d , ,				
	Comple	Sample	N	/letals ^b (ppm)			PHC	s ^d (ppm)		1		
Sample ID	Sample Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ¹
AOPC 1 - Metal Red	ceiving Area S	oil Samples (co	ont.)				<u> </u>			<u> </u>	l	
\$40-2.5	6/7/21	2.5	N/A	N/A	N/A	N/A	N/A	85.5	286	N/A	N/A	N/A
S41-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S42-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S43-0	5/26/21	0	3.03	389	84.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S44-0	5/26/21	0	0.560	126	16.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S54-0	6/7/21	0	1.21	253	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S55-0	6/7/21	0	1.20	261	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S61-0	6/7/21	0	1.21	324	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S62-0	6/7/21	0	0.901	102	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S63-0	6/7/21	0	6.69	176	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S64-0	6/7/21	0	1.40	133	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S65-0	6/8/21	0	0.456	51.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC 2 - EAF Area	Soil Samples	}										
AOPC2-01	4/5/17	< 1	1.08	165	379	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC2-02	4/5/17	< 1	< 1.00	2.91	64.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-15:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC 3 - Foundry I	Building - Sar	ds Soil Sample	es .									
AOPC3-01	4/5/17	< 1	< 1.00	4.53	4.37	N/A	N/A	81.0	< 250	N/A	N/A	N/A
	4/3/18	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
	4/3/18	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
AOPC3-02	4/5/17	< 1	< 1.00	4.15	8.81	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC3-03	4/5/17	< 1	< 1.00	3.08	352	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
	4/3/18	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
AOPC3-04	4/5/17	< 1	< 5.00	N/A	9.35	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC3-05	4/5/17	< 1	1.38	25.7	49.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SB:12-1	4/3/18	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB:13-1	4/3/18	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB:14-1	4/3/18	1	< 1.00	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
AOPC 4 - Stormwate		n Yard Soil San										
AOPC4-01	4/5/17	< 1	< 1.00	6.54	52.0	N/A	< 2.00	120 ^s	890	< CUL	< CUL	< CUL
AOPC4-02	4/5/17	< 1	< 1.00	20.9	76.2	N/A	< 2.00	87.0 ^s	980	< CUL	< CUL	< CUL
SB-5:15	6/13/17	15	< 1.00	2.42	2.89	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC 5 - Southwes			1		1					1		I _
AOPC5-01	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	2,800 ^s	38,000	N/A	< CUL	Exceeds
AOPC5-02	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	1,800 ^s	25,000	N/A	< CUL	Exceeds
AOPC5-03	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	300 ^s	2,000	N/A	Exceeds	Exceeds
SB-2:15	6/12/17	15	< 1.00	2.61	4.27	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB-3:5	6/13/17	5	< 1.00	31.3	11.3	N/A	N/A	< 50.0	< 250	N/A	< CUL	< CUL
SB-1:20	6/12/17	20	< 1.00	9.07	8.60	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SB-18:5	4/3/18	5	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	< CUL	N/A
HA-27:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	Exceeds	< CUL
HA-28:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
HA-29:<1	4/4/18 4/4/18	< 1 < 1	N/A	N/A	N/A	N/A	N/A	150 ^s	1,900	N/A	Exceeds	< CUL
HA-30:<1		- 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL

SOIL SAMPLE ANALYTICAL SUMMARY

	T			Metals ^b (ppm)				s ^d (ppm)		I	l	
	Sample	Sample	'	letais (ppiii)	1		TILL	s (ppiii)	ı	Į.		
Sample ID	Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline ^e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ¹
AOPC 5 - Southw	vest Compresso	r Soil Samples	(cont.)									
HA-31:<1	4/3/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	Exceeds	N/A
AOPC5-1	10/29/18	~ 3	N/A	N/A	N/A	N/A	N/A	29.0	221	< CUL	N/A	< CUL
AOPC5-2	10/29/18	~ 2	N/A	N/A	N/A	N/A	N/A	8.08	46.3	< CUL	N/A	< CUL
AOPC5-3	10/29/18	~ 2	N/A	N/A	N/A	N/A	N/A	22.7	113	Exceeds	N/A	< CUL
AOPC5-4	10/29/18	~ 3	N/A	N/A	N/A	N/A	N/A	1,660	5,460	< CUL	N/A	< CUL
S1-0	4/27/21	0	2.27	557	188	N/A	5.12	34,700	< 5,010	< CUL	Exceeds	< CUL
S1-0.5	4/28/21	0.5	N/A	N/A	N/A	N/A	N/A	15,100	1,940	N/A	N/A	N/A
S1-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	200	84.9	N/A	N/A	N/A
S2-1.5	4/27/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S2-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S3-0	4/27/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S4-0.5	4/27/21	0.5	< 1.64	3.72	< 8.20	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S5-0	4/27/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S6-1	4/27/21	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S7-0	4/27/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S8-3.5	4/27/21	3.5	N/A	N/A	N/A	N/A	N/A	5.97	11.8	< CUL	N/A	N/A
S9-3.5	4/27/21	3.5	N/A	N/A	N/A	N/A	N/A	< 4.28	< 10.7	< CUL	N/A	N/A
S10-3.5	4/27/21	3.5	N/A	N/A	N/A	N/A	N/A	< 4.23	< 10.6	< CUL	N/A	N/A
S13-0	4/28/21	0	2.54	365	N/A	N/A	N/A	165	< 233	N/A	Exceeds	N/A
S45-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	663	153	N/A	N/A	N/A
S46-0	5/26/21	0	1.83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S47-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S47-1.5	6/7/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S47-1.5 DUP	6/7/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S48-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S49-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S51-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S51-3	5/26/21	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S51-4	6/7/21	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S51-5	6/24/21	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S51-6	6/24/21	6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S52-3	5/26/21	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S53-2	5/26/21	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S56-1.5	6/7/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Exceeds	N/A
S57-1.5	6/7/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S58-0	6/7/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S59-0	6/7/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S66-1.5	6/24/21	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
MW2-5	6/14/21	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A	N/A
MW2-52	6/14/21	52	0.11	5.78	N/A	N/A	< 1.32	< 1.66	< 4.16	< CUL	< CUL	N/A
AOPC 6 - Southw					1					6: "	C: ::	6: "
SB-1:20	6/12/17	20	N/A	N/A	N/A	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC 7 - South (1		1 1		6			0
AOPC7-01	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	1,800 ^s	9,400 ^s	N/A	N/A	< CUL
					TABLE 1	(continued)						

SOIL SAMPLE ANALYTICAL SUMMARY

	1		<u> </u>		in Star Cas	steer i Topi				<u> </u>	ı	1
		Sample	N	Metals b (ppm)	С		PHC	s ^d (ppm)				
Sample ID	Sample Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline ^e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ^I
AOPC 7 - South C	compressor Soi	l Samples (con	t.)		_					_		
AOPC7-02	4/5/17	< 1	N/A	N/A	N/A	N/A	< 2.00	< 50.00	< 250	N/A	N/A	< CUL
SB-4:15	6/13/17	15	< 1.00	2.79	3.81	N/A	< 2.00	< 50.00	< 250	< CUL	< CUL	< CUL
SB-19:5	4/3/18	5	N/A	N/A	N/A	N/A	N/A	190 ^s	580	N/A	N/A	N/A
HA-25:<1	4/3/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
HA-26:<1	4/3/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	330	N/A	N/A	N/A
AOPC7-1	10/29/18	~ 1.5	N/A	N/A	N/A	N/A	N/A	97.6	338	N/A	N/A	< CUL
AOPC7-2	10/29/18	~ 1.5	N/A	N/A	N/A	N/A	N/A	69.5	522	N/A	N/A	< CUL
AOPC 8 - Mainten	ance Shop Bui	lding Soil Sam	ples									
HA-1:1.0 ^t	6/13/17	1	< 1.00	23.7	14.4	N/A	< 2.00	1,600 ^s	8,500	< CUL	N/A	< CUL
HA-2:1.5	6/13/17	1.5	< 1.00	15.6	8.11	N/A	5.30	78.0	< 250	< CUL	N/A	< CUL
HA-3:0.8	6/13/17	0.8	< 1.00	36.1	38.3	N/A	< 2.00	< 50.0	< 250	< CUL	N/A	< CUL
HA-4:0.5	6/13/17	0.5	< 1.00	11.5	23.2	N/A	< 2.00	230 ^s	3,400	< CUL	N/A	< CUL
SB-17:5	4/3/18	5	N/A	N/A	N/A	N/A	N/A	< 50.0	350	N/A	N/A	N/A
HA-21:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
HA-22:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
HA-23:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
HA-24:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
S14-1	4/28/21	1	N/A	N/A	N/A	N/A	N/A	< 171	752	N/A	N/A	N/A
S15-0	4/28/21	0	N/A	N/A	N/A	N/A	N/A	< 178	446	N/A	Exceeds	N/A
S15-1	5/26/21	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S25-1.5	4/29/21	1.5	N/A	N/A	N/A	N/A	N/A	667	3,350	N/A	N/A	N/A
S25-2	4/29/21	2	N/A	N/A	N/A	N/A	N/A	639	3,300	N/A	N/A	N/A
S25-2.5	5/26/21	2.5	N/A	N/A	N/A	N/A	N/A	847	4,830	N/A	N/A	N/A
S25-3.0	8/12/21	3	N/A	N/A	N/A	N/A	N/A	422	1,990	N/A	N/A	N/A
S25-4	8/12/21	4	N/A	N/A	N/A	N/A	N/A	5.71	30.8	N/A	N/A	N/A
S31-0	4/30/21	0	N/A	N/A	N/A	N/A	N/A	5.73	42.0	N/A	N/A	N/A
S50-0	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S50-0 DUP	5/26/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
AOPC 9 - Welding		· • • • • • • • • • • • • • • • • • • •										
AOPC9-01	4/5/17	< 1	< 1.00	4.58	306	N/A	< 2.00	130 ^s	910	< CUL	< CUL	N/A
AOPC9-02	4/5/17	< 1	< 1.00	< 1.00	2,360	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AOPC9-03	4/5/17	< 1	1.17	7.24	2,880	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SB-16:5	4/3/18	5	N/A	N/A	12.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-16:<1	4/4/18	< 1	N/A	N/A	8.66 ^u / 10.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-17:<1	4/4/18	< 1	N/A	N/A	8.93	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-18:<1	4/4/18	< 1	N/A	N/A	57.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-19:<1	4/4/18	< 1	N/A	N/A	39.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
HA-20:>1	4/4/18	< 1	N/A	N/A	23.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S23-1	4/29/21	1	N/A	N/A	31.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S24-0	6/8/21	0	N/A	N/A	235.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S24-1	4/29/21	1	N/A	N/A	22.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S67-0	8/12/21	0	N/A	N/A	73.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S67-0 DUP	8/12/21	0	N/A	N/A	27.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A
S68-0	8/12/21	0	N/A	N/A	51.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					TABLE 1 (continued)						

TABLE 1 (continued) SOIL SAMPLE ANALYTICAL SUMMARY

				INOI	ın Star Cas	steel Flop	erty					
	0 1	Sample	N	Metals ^b (ppm)	С		PHC	s ^d (ppm)				
Sample ID	Sample Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline ^e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ¹
AOPC 9 - Weldin	g Station Buildi	ing Soil Sample	s (cont.)									
SB-7:5	6/14/17	5	< 1.00	11.2	10.4	N/A	< 2.00	< 50.0	< 250	N/A	N/A	N/A
AOPC 10 - Storm	water Retention	n Structure Soil	Samples									
SB-7:5	6/14/17	5	< 1.00	11.2	< 1.00	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC 11 - Oil-Sa	nd Storage and	l Bag House So	il Samples									
AOPC11-01	4/5/17	< 1	< 1.00	1.75	10.7	N/A	N/A	91.0 ^s	< 250	N/A	N/A	< CUL
AOPC11-02	4/5/17	< 1	< 1.00	1.59	6.45	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
AOPC11-03	4/5/17	< 1	< 1.00	1.57	75.0	N/A	N/A	N/A	N/A	N/A	N/A	< CUL
AOPC 12 - North	west Petroleum	Storage Soil S	amples									
AOPC12-01	4/5/17	< 1	< 1.00	3.51	7.32	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC12-02	4/5/17	< 1	< 1.00	18.9	31.8	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC12-03	4/5/17	< 1	< 1.00	17.4	24.4	N/A	< 2.00	< 50.0	670	< CUL	< CUL	< CUL
AOPC 13 - Found	dry Waste Mater	rial Soil Sample	S									
AOPC13-01	4/5/17	< 1	< 1.00	4.38	107	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC13-02	4/5/17	< 1	< 1.00	2.99	21.0	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
AOPC13-03	4/5/17	< 1	< 1.00	115	92.9	N/A	< 2.00	< 50.0	< 250	< CUL	Exceeds	< CUL
AOPC13-04	4/5/17	< 1	< 1.00	36.6	76.4	N/A	8.60	< 50.0	< 250	< CUL	< CUL	< CUL
SB-6:10	6/14/17	10	< 1.00	4.63	13.8	N/A	< 2.00	< 50.0	< 250	< CUL	< CUL	< CUL
SB-11:5	4/3/18	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
HA-8:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
HA-9:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S11-1	4/28/21	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
S12-0	4/28/21	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< CUL	N/A
AOPC 14 - North	Compressor So	oil Samples										
AOPC14-01	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	120 ^s	7,100 ^s	N/A	N/A	N/A
AOPC14-02	4/5/17	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
SB-8:5	6/15/17	5	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
S16-1	4/28/21	1	N/A	N/A	N/A	N/A	N/A	< 89.2	268	N/A	N/A	N/A
S17-0	4/28/21	0	N/A	N/A	N/A	N/A	N/A	22.0	159	N/A	N/A	N/A
HA-10:<1	4/4/18	< 1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	N/A
AOPC14-1	10/29/18	0	N/A	N/A	N/A	N/A	N/A	21.2	155	N/A	N/A	< CUL
AOPC 15 - Clark		rmer Compoun	d Soil Sample	s	-			-				
HA-5:1.0	6/13/17	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
HA-6:1.0	6/13/17	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
HA-7:1.0	6/13/17	1	N/A	N/A	N/A	N/A	N/A	< 50.0	< 250	N/A	N/A	< CUL
					TABLE 1 (continued)						

SOIL SAMPLE ANALYTICAL SUMMARY

North Star Casteel Property

		Sample	N	Metals ^b (ppm)	С		PHC	s ^d (ppm)				
Sample ID	Sample Date	Depth (feet bsg) ^a	Cadmium	Lead	Chromium	HCID	Gasoline ^e	Diesel ^f	Oil ^f	VOCs ^g	cPAHs ^h	PCBs ¹
Stockpile Soil San	nples											
STOCKPILE 1	10/29/18	na ^v	0.596	128	41.1	N/A	0.973	213	1,130	< CUL	Exceeds	< CUL
STOCKPILE 2	10/29/18	na	< 0.0700	21.4	185	N/A	1.55	119	620	< CUL	Exceeds	< CUL
STOCKPILE 1-A	4/30/21	na	< 1.04	100	25.3	N/A	< 2.76	42.2	76.4	< CUL	< CUL	< CUL
STOCKPILE 1-B	4/30/21	na	< 1.05	7.14	98.0	N/A	< 2.75	17.4	63.2	< CUL	< CUL	N/A
STOCKPILE 1-C	4/30/21	na	< 1.20	16.0	17.6	N/A	< 3.59	9.38	27.5	< CUL	< CUL	N/A
STOCKPILE 2-ABC	4/30/21	na	1.14	198	155	N/A	< 2.98	1,110	864	< CUL	Exceeds	N/A
STOCKPILE 3-ABC	4/30/21	na	< 1.09	22.1	34.5	N/A	< 2.97	73.5	120	< CUL	< CUL	< CUL
				MTCA M	ethod A Soil (Cleanup Level	ls (ppm)					
For Unres	stricted Land l	Jses	2	250	2,000	See Table 1	30/100 w	2,000	2,000	See Ta	able 1, 4, 5, 6	, and 7

- a Depth of Sample, in feet below surface grade (bsg)
- b Total Metals analysis by EPA method 6020 (ICPMS) or EPA method 6010C. Mercury (Hg) by Method 7471A. Total hexavalent chromium analysis by EPA method 7196 A
- c Analytical results reported in parts per million (ppm)
- d Petroleum hydrocarbons (PHCs) analyzed using Northwest Total Petroleum Hydrocarbons (NWTPH) method HCID. "G" denotes gasoline hydrocarbon detection, "D" denotes diesel hydrocarbon detection, and "O" denotes heavy oil hydrocarbon detection
- e Gasoline analyzed using NWTPH method Gx
- f Diesel and Oil analyzed using NWTPH method Dx
- g Volatile Organic Compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX) analyzed using EPA method 8260B
- h Cacinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) analyzed using EPA method 8270D SIM
- i Polychlorinated biphenyls (PCBs) analyzed using EPA method 8082A
- Brown text indicates samples represent soil that was removed and disposed during excavation cleanup
- k Bold value indicates analyte concentration exceeded the laboratory reporting limit
- I Yellow Shading indicates analyte concentration, or one-half of the laboratory reporting limit, Exceeds the MTCA Method A Cleanup Level
- m (N/A) Not analyzed
- n (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- o (< CUL) One or more analyte concentration detected below the MTCA Method A Cleanup Level
- p One or more analyte concentration detected above the MTCA Method A Cleanup Level
- q (~) Sample depth estimated based on photographic log obtained from AEG Environmental Group, LLC
- r Green Shading indicates the combined diesel and oil concentrations exceeded the cleanup level
- s Laboratory Qualifier: The sample chromatographic pattern does not resemble the fuel standard used for quantitation
- t Green text indicates sample represents soil that is capped with concrete/asphalt
- u Laboratory Qualifier: The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- v Not applicable
- w MTCA Method A soil cleanup level is 100 ppm for gas mixture without BTEX and 30 ppm for all other gas mixtures

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T 1 Soil Summary (CN).xls]T 1

TABLE 2 SOIL SAMPLE ANALYTICAL DATA - PHCs and VOCs

					PHCs ^b (ppm)	С							VOCs ^d (ppm	,					
		a		Į.	поз (ррпі)	1		BTEX '	^e VOCs					Detect	ted Additiona	l VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	HCID (G, D, O) ^f	Gasoline	Diesel	ĪŌ	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
AOPC 1 - Metal Re	eceiving Area	a Soil Samp	oles																
AOPC1-02	4/5/17	< 1	_ g	< 2.00 h	< 50.0	290 ⁱ	< 0.0300	< 0.0500	< 0.0500	< 0.1500	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	_ i	< 0.0500
AOPC1-03 j	4/5/17	< 1	-	< 2.00	200	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.1500	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC1-04	4/5/17	< 1	-	-	14,000 kl	87,000	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC1-05	4/5/17	< 1	-	-	46,000 ¹	29,000	-	_	-	-	-	-	_	-	-	-	-	-	-
SB-9:5	6/15/17	5	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-10:5	6/15/17	5	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-15:<1	4/3/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC1-1	10/29/18	~ 1.5 ^m	-	1.27	11.6	63.7	< 0.00114	0.00143	< 0.00284	< 0.00740	< 0.0284	-	< 0.0284	0.0153	< 0.00114	< 0.00284	0.00282	< 0.00569	< 0.00569
AOPC1-2	10/29/18	~ 1.5	-	1.30	21.0	82.4	0.00194	0.0111	0.00281	0.0362	< 0.0315	-	< 0.0315	0.00858	< 0.00315	< 0.00315	0.00409	< 0.00630	< 0.00630
AOPC1-3	11/14/18	~ 1	-	< 3.16	< 5.06	< 12.7	0.000581	< 0.00158	< 0.00316	< 0.00823	< 0.0316	-	0.0194	< 0.0158	< 0.00316	< 0.00316	< 0.00633	< 0.00633	< 0.00633
AOPC1-4	11/14/18	~ 1.5	-	< 2.97	6.08	34.7	0.000576	< 0.00594	< 0.00297	< 0.00772	< 0.0297	-	0.0173	< 0.0148	< 0.00297	< 0.00297	< 0.00594	< 0.00594	< 0.00594
AOPC1-5	11/14/18	~ 1.5	-	< 2.93	26.2	126	0.000509	< 0.00585	< 0.00293	< 0.00761	< 0.0293	-	0.0170	< 0.0146	< 0.00293	< 0.00293	< 0.00585	< 0.00585	< 0.00585
S18-0	4/29/21	0	D, O	-	39.0	247	-	-	-	-	-	-	-	-	-	-	-	-	-
S19-0	4/29/21	0	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
S19-1	5/26/21	1	-	-	26.9	124	-	-	-	-	-	-	-	-	-	-	-	-	-
S20-9 Dup	4/29/21	9	-	-	< 4.80	< 12.0	-	-	-	-	-	-	-	-	-	-	-	-	-
S20-9	4/29/21	9	-	-	< 4.89	< 12.2	-	-	-	-	-	-	-	-	-	-	-	-	-
S21-9	4/29/21	9	-	-	< 4.79	< 12.0	-	-	-	-	-	-	-	-	-	-	-	-	-
S22-9	4/29/21	9	-	-	< 4.91	< 12.3	-	-	-	-	-	-	-	-	-	-	-	-	-
S28-8	4/29/21	8	-	< 4.87	< 4.87	< 4.87	-	-	-	-	-	-	-	-	-	-	-	-	-
S32-1.5	4/30/21	1.5	-	-	< 4.81	< 12.0	-	-	-	-	-	-	-	-	-	-	-	-	-
S33-9	4/30/21	9	-	-	< 4.40	< 11.0	< 0.00121	< 0.00605	< 0.00303	< 0.00787	< 0.0605	-	< 0.0303	< 0.0151	< 0.00303	< 0.00303	< 0.00605	< 0.00605	< 0.00605
S34-2	4/30/21	2	-	-	4.63	15.4	-	-	-	-	-	-	-	-	-	-	-	-	-
S35-0.5	4/30/21	0.5	-	-	22.8	119	-	-	-	-	-	-	-	-	-	-	-	-	-
S36-1	4/30/21	1	-	-	< 44.0	271	-	-	-	-	-	-	-	-	-	-	-	-	-
S37-1	4/30/21	1	-	-	< 5.04	< 12.6	-	-	-	-	-	-	-	-	-	-	-	-	-
								TA	ABLE 2 (Cor	ntinued)									

									otal Gaste	, c. 1 10pci	<u> </u>								
					PHCs ^b (ppm)	С						\	/OCs ^d (ppm)					
		æ		ľ	HCs (ppm)			BTI	EX ^e					Detect	ed Additiona	VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	HCID (G, D, O)	Gasoline	Diesel	ĪŌ	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
AOPC 1 - Metal Re	eceiving Area	a Soil Sam _l	ples (Cont.)															
S38-1.5	4/30/21	1.5	-	-	288	1,580	0.00321	0.0181	0.00627	0.0269	< 0.0692	< 0.00346	< 0.0346	< 0.0173	< 0.00346	< 0.00346	0.0106	< 0.00692	< 0.00692
S39-1.5	4/30/21	1.5	-	-	68.6	175	-	-	-	-	-	-	-	-	-	-	-	-	-
S40-1.5	5/26/21	1.5	-	-	538 ⁿ	1,950	-	-	-	-	-	-	-	-	-	-	-	-	-
S40-2.5	6/7/21	2.5	-	-	85.5	286	-	-	-	-	-	-	-	-	-	-	-	-	
AOPC 3 - Foundry			Samples	ı	ı	1	ı	T		1		ı		ı	ı	1	ı		
AOPC3-01	4/5/17	< 1	-	-	81.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC3-03	4/5/17	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC3-01	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC3-01	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC3-03	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB:12-1	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB:13-1	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB14-1	4/3/18	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC 4 - Stormwat	ter Drain - Ma	ain Yard Sc	oil Samples	3															
AOPC4-01	4/5/17	< 1	-	< 2.00	120 ¹	890	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC4-02	4/5/17	< 1	-	< 2.00	87.0 ¹	980	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
SB-5:15	6/13/17	15	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC 5 - Southwe		or Soil Sai	mples					1				,		,	,				
AOPC5-01	4/5/17	< 1	-	-	2,800 1	38,000	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC5-02	4/5/17	< 1	-	-	1,800	25,000	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC5-03	4/5/17	< 1	-	-	300 1	2,000	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-2:15	6/12/17	15	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-3:5	6/13/17	5	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-18:5	4/3/18	5	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-27:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-28:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-29:<1	4/4/18	< 1	<u> </u>	-	150 ¹	1,900	-	<u> </u>		-	-	-	-	-	-	-	-	-	-
								TA	ABLE 2 (Cor	ntinued)									

									iai Casic	or roper	· cy								
				-	PHCs ^b (ppm)	С							VOCs ^d (ppm						
		ro_		F	nos (ppiii)			BTI	EX ^e					Detect	ed Additiona	l VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	НСІD (G, D, O)	Gasoline	Diesel	ĪŌ	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
AOPC 5 - Southwe		1	mples (Cor	nt.)										1				1	
HA-30:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-31:<1	4/3/18	< 1	-	1_	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC5-1	10/29/18	~ 3	-	-	29.0	221	< 0.00221	< 0.0111	< 0.00553	< 0.0144	< 0.0553	-	< 0.0553	< 0.0276	0.0241	< 0.00553	0.00509	< 0.0111	< 0.0111
AOPC5-2	10/29/18	~ 2	-	-	8.08	46.3	< 0.00106	< 0.00532	< 0.00266	< 0.00692	< 0.0266	-	< 0.0266	0.00466	0.00993	< 0.00266	0.00327	< 0.00532	< 0.00532
AOPC5-3	10/29/18	~ 2	-	-	22.7	113	0.000918	0.00309	< 0.00553	< 0.0144	< 0.0553	-	< 0.0553	0.0213	0.0910	< 0.00553	0.00346	< 0.0111	< 0.0111
AOPC5-4	10/29/18	~ 3	-	_	1,660	5,460	< 0.00110	< 0.00550	< 0.00275	< 0.00716	< 0.0275	-	< 0.0275	< 0.0138	0.0292	< 0.00275	< 0.00550	< 0.00550	< 0.00550
S1-0	4/27/21	0	-	5.12	34,700	< 5,010	< 0.0323	< 0.162	< 0.0808	< 0.210	< 1.62	< 0.0808	< 0.808	< 0.404	< 0.0808	< 0.0808	< 0.162	< 0.162	< 0.162
S1-0.5	4/28/21	0.5	-	-	15,100	1,940	-	-	-	-	-	-	-	-	-	-	-	-	-
S1-2.5	5/26/21	2.5	-	1_	200	84.9	-	-	-	-	-	-	-	-	-	-	-	-	-
S8-3.5	4/27/21	3.5	-	-	5.97	11.8	< 0.00110	< 0.00551	< 0.00275	< 0.00716	< 0.0551	< 0.00275	< 0.0275	< 0.0138	< 0.00275	< 0.00275	< 0.00551	< 0.00551	< 0.00551
S9-3.5	4/27/21	3.5	-	-	< 4.28	< 10.7	< 0.00114	<0.00572	< 0.00286	<0.00744	< 0.0572	-	< 0.0286	< 0.0143	< 0.00286	< 0.00286	< 0.00572	< 0.00572	< 0.00572
S10-3.5	4/27/21	3.5	-	-	< 4.23	< 10.6	< 0.00112	< 0.00562	< 0.00281	< 0.00731	< 0.0562	-	< 0.0281	< 0.0141	< 0.00281	< 0.00281	< 0.00562	< 0.00562	< 0.00562
S13-0	4/28/21	0	-	-	165	< 233	-	-	-	-	-	-	-	-	-	-	-	-	-
S45-0	5/26/21	0	-	-	663	153	-	-	-	-	-	-	-	-	-	-	-	-	-
MW2-5	6/14/21	5	-	-	-	-	0.00119	0.0129	< 0.000921	0.0109	< 0.0457	< 0.000532	< 0.00831	0.0372	0.00457	< 0.00103	0.00678	0.00369	0.00385
MW2-52	6/14/21	52	-	< 1.32	< 1.66	< 4.16	< 0.000725	< 0.00202	< 0.00114	< 0.00137	< 0.0567	< 0.000660	< 0.0103	< 0.00758	0.00300	< 0.00128	< 0.00245	< 0.00245	< 0.00311
AOPC 6 - Southwe	est Drywell S	oil Sample:	s																
SB-1:20	6/12/17	20	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	=	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC 7 - South C	ompressor S	oil Sample	s																
AOPC7-01	4/5/17	< 1	-	-	1,800	9,400 1	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC7-02	4/5/17	< 1	-	< 2.00	< 50.00	< 250	-	-	-	-	=	-	-	-	-	-	-	-	-
SB-4:15	6/13/17	15	-	< 2.00	< 50.00	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	=	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
SB-19:5	4/3/18	5	-	-	190 ¹	580	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-25:<1	4/3/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-26:<1	4/3/18	< 1	-	-	< 50.0	330	-	-		-	-	-		-	-	-	-	-	-
AOPC7-1	10/29/18	~ 1.5	-	-	97.6	338	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC7-2	10/29/18	~ 1.5	-	-	69.5	522	-	-	-	-	-	-	-	-	-	-		-	_
AOPC 8 - Mainten	ance Shop B	uilding Soi	I Samples																
HA-1:1.0 °	6/13/17	1	-	< 2.00	1,600	8,500	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
HA-2:1.5	6/13/17	1.5	-	5.30	78.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500		< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
								TA	ABLE 2 (Cor	ntinued)									

									rai Gaote	——————————————————————————————————————									
					PHCs ^b (ppm)	С							VOCs ^d (ppm						
		a			i i o a (ppill)			ВТІ	EX ^e					Detect	ed Additional	VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	НСІD (G, D, O)	Gasoline	Diesel	liO	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
AOPC 8 - Maintena	ance Shop B	uilding Soi	l Samples	(Cont.)															
HA-3:0.8	6/13/17	0.8	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
HA-4:0.5	6/13/17	0.5	-	< 2.00	230 1	3,400	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
SB-17:5	4/3/18	5	-	-	< 50.0	350	-	-	-	-	-	-	-	-	•	-	-	-	-
HA-21:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-22:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-23:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-24:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
S14-1	4/28/21	1	-	-	< 171	752	-	-	-	-	-	-	-	-	-	-	-	-	-
S15-0	4/28/21	0	-	_	< 178	446	-	-	-	-	-	-	-	-	-	-	-	-	_
S25-1.5	4/29/21	1.5	-	-	667	3,350	-	-	-	-	-	-	-	-	-	-	-	-	-
S25-2	4/29/21	2	-	-	639	3,300	-	-	-	-	-	-	-	-	-	-	-	-	-
S25-2.5	5/26/21	2.5	-	-	847	4,830	-	-	-	-	-	-	-	-	-	-	-	-	-
S25-3.0	8/12/21	3	-	-	422	1,990	-	-	-	-	-	-	-	-	-	-	-	-	-
S25-4	8/12/21	4	-	-	5.71	30.8	-	-	-	-	-	-	-	-	-	-	-	-	-
S31-0	4/30/21	0	-	-	5.73	42.0	-	-	-	-	-	-	-	-	•	-	-	-	-
AOPC 9 - Welding	Station Build	ding Soil S	amples																
AOPC9-01	4/5/17	< 1	-	< 2.00	130 ¹	910	< 0.0300	< 0.0500	< 0.0500	< 0.1500	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC 10 - Stormw	ater Retention	on Structur	re Soil San	nples	•		-			•	-					•			
SB-7:5	6/14/17	5	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC 11 - Oil-San	d Storage an	d Bag Hou	ise Soil Sa	mples	•		-			•	-					•			
AOPC11-01	4/5/17	< 1	-	-	91.0 ¹	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC11-02	4/5/17	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC 12 - Northw	est Petroleur	n Storage	Soil Sampl	les	•		-			•	-					•			
AOPC12-01	4/5/17	< 1	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.5	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC12-02	4/5/17	< 1	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC12-03	4/5/17	< 1		< 2.00	< 50.0	670	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.50	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC 13 - Foundr	y Waste Mate	erial Soil S	amples																
AOPC13-01	4/5/17	< 1	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	0.140	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC13-02	4/5/17	< 1	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC13-03	4/5/17	< 1	-	< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500	-	< 0.0500
AOPC13-04	4/5/17	< 1	-	8.60	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500	-	< 0.500	0.0820	< 0.0250	< 0.500	0.210	-	0.0970
SB-6:10	6/14/17	10		< 2.00	< 50.0	< 250	< 0.0300	< 0.0500	< 0.0500	< 0.150	< 0.500		< 0.500	< 0.0500	< 0.0250	< 0.500	< 0.0500		< 0.0500
								TA	ABLE 2 (Cor	ntinued)									

										<u> </u>									
				г	PHCs ^b (ppm)	С							VOCs ^d (ppm)					
		æ			'nos (ppm)			BTI	EX e					Detect	ed Additional	VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	нсів (G, b, o)	Gasoline	Diesel	I!O	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
AOPC 14 - North C	ompressor S	oil Sample	es																
AOPC14-01	4/5/17	< 1	-	-	120 1	7,100 1	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC14-02	4/5/17	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
SB-8:5	6/15/17	5	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-10:<1	4/4/18	< 1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
AOPC14-1	10/29/18	0	-	-	21.2	155	-	-	-	-	-	-	-	-	-	-	-	-	-
S16-1	4/28/21	1	-	-	< 89.2	268	-	-	-	-	-	-	-	-	-	-	-	-	-
S17-0	4/28/21	0	-	-	22.0	159	-	-	-	-	-	-	-	•	-		-	-	-
AOPC 15 - Clark Co	ounty Transf	ormer Con	npound So	il Samples															
HA-5:1.0	6/13/17	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	=	-	-	-
HA-6:1.0	6/13/17	1	-	-	< 50.0	< 250	-	ı	-	ı	-	-	-	ı	-	•		-	-
HA-7:1.0	6/13/17	1	-	-	< 50.0	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
Stockpile Soil Sam	ples																		
STOCKPILE 1	10/29/18	na ^p	-	0.973	213	1,130	0.00333	0.0117	0.00353	0.0342	0.0218	-	< 0.0271	0.00673	< 0.00271	0.0753	0.00421	0.00231	0.00171
STOCKPILE 2	10/29/18	na	-	1.55	119	620	0.00215	0.00519	< 0.000585	< 0.00718	0.0240	-	< 0.0276	0.0137	0.00914	< 0.00276	0.00352	0.00186	0.00163
STOCKPILE 1-A	4/30/21	na	-	< 2.76	42.2	76.4	< 0.00110	0.035	< 0.00276	0.00782	< 0.0552	0.00384	< 0.0276	0.0468	0.00899	< 0.00276	0.00657	< 0.00552	< 0.00552
STOCKPILE 1-B	4/30/21	na	-	< 2.75	17.4	63.2	0.00190	0.00931	0.00283	0.0437	< 0.0550	< 0.00275	< 0.0275	0.0239	< 0.00275	< 0.00275	0.0161	0.00574	0.00802
STOCKPILE 1-C	4/30/21	na	-	< 3.59	9.38	27.5	< 0.00144	< 0.00719	< 0.00359	< 0.00934	< 0.0719	< 0.00359	< 0.0359	0.0436	< 0.00359	< 0.00359	< 0.00719	< 0.00719	< 0.00719
STOCKPILE 2-ABC	4/30/21	na	-	< 2.98	1,110	864	0.00283	0.015	0.00343	0.0251	< 0.0595	< 0.00298	< 0.0298	0.0612	0.111	< 0.00298	0.0258	0.0205	0.0133
								TA	ABLE 2 (Cor	ntinued)									

North Star Casteel Property

				Ь	HCs ^b (ppm)	С						\	/OCs ^d (ppm)					
		æ			nos (ppin)			BTE	EX ^e					Detect	ed Additional	VOCs			
Sample ID	Sample Date	Sample Depth (feet bsg)	HCID (G, D, O)	Gasoline	Diesel	Oil	Benzene	Toluene	Ethylbenzene	Total Xylenes	Acetone	Isopropylbenzne	Methylene Chloride	Naphthalene	Tetrachloroethylene	Trichlorofluromethane	1,2,4-Trimethylbenzene	1,2,3-Trimethylbenzene	1,3,5-Trimethylbenzene
Stockpile Soil Sam	ples (Cont.)																		
STOCKPILE 3-ABC	4/30/21	na	-	< 2.97	73.5	120	< 0.00119	0.0121	< 0.00297	0.0177	< 0.0595	< 0.00297	< 0.0297	0.0202	< 0.00297	< 0.00297	0.00762	< 0.00595	< 0.00595
			_	_				MTCA Met	thod A Soil (leanup Leve	els								
Unrestricte	Land Uses	•		30 / 100 ^q	2,000	2,000	0.03	7	6	9	r			5	0.05				

- a Depth of sample in feet below surface grade (bsg)
- b Petroleum hydrocarbons (PHCs) were analyzed using NWTPH methods Gx (gasoline) and Dx (diesel and oil)
- c Analytical results reported in parts per million (ppm)
- d Volatile organic compounds (VOCs) were analyzed using EPA method 8260C or 8260D. VOCs not listed in the table were not detected in any samples and are listed in the laboratory report
- e Benzene, toluene, ethylbenzene, and xylenes (BTEX)
- f Hydrocarbon Identification analyzed using NWTPH method HCID. "G" denotes gasoline hydrocarbon detection, "D" denotes diesel hydrocarbon detection, and "O" denotes heavy oil hydrocarbon detection
- g (-) Not analyzed
- h (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- i Bold value indicates analyte concentration exceeded laboratory reporting limit
- j Brown text indicates samples represent soil that was removed and disposed during excavation cleanup activities
- k Yellow shading indicates analyte concentration (or one-half the laboratory reporting limit) exceeds an RBC. The exceeded level is also shaded
- I Laboratory Qualifier: The sample chromatographic pattern does not resemble the fuel standard used for quantitation
- m (∼) Sample depth estimated based on photographic log obtained from AEG Environmental Group, LLC
- n Green Shading indicates the combined diesel and oil concentrations exceeded the cleanup level
- o Green text indicates sample represents soil that is capped with concrete/asphal
- p (na) Not applicable
- q MTCA Method A Soil Cleanup Level is 30 mg/kg when benzene is present in the sample and 100 mg/kg when benzene is not detected
- r (--) Not Available (Washington Department of Ecology has not established a Method A Soil Cleanup Level for the respective analyte)

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\(T2 Soil - PHCs & VOCs (CN).xlsx\)PHCs & VOCs

TABLE 3 SOIL SAMPLE ANALYTICAL DATA - SVOCs

	SVOCs ^b (ppm) ^c cPAHs ^d Detected Additional SVOCs																						
												SVOC	s ^b (ppm) ^c										
						cPA	.Hs ^d								[Detected A	dditional S	VOCs					
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs ^e	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzylbutyl phthalate	Bis(2-ethylhexyl)phthalate	Benzo(g,h,i)perylene	2-Methylnaphthalene	Phenol
AOPC 1 - Metal Rece	eiving Ar	ea Soil S	Samples																				
AOPC1-02 4	4/5/17	< 1	< 0.0100 ^f	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	0.031 ^g	< 0.0100	< 0.0100	< 0.0100	0.012	< 0.0100	< 0.0100	< 0.0100	< 0.500	< 0.800	< 0.0100	< 0.0500	< 0.500
AOPC1-03 h 4	4/5/17	< 1	0.0530	0.0700	0.0610	0.0200	0.0910	< 0.0100	0.0300	0.0725	0.0370	0.0180	< 0.0100	0.0380	0.230	0.0280	0.110	0.150	< 0.500	< 0.800	0.0340	< 0.0500	< 0.500
AOPC1-04 4	4/5/17	< 1	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 7.55 i	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 1,000	< 1,600	< 10.0	< 100	< 1,000
	4/5/17	< 1	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 7.55	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 500	< 800	< 10.0	< 50.0	< 500
SB-9:5 6/	6/15/17	5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.01 00	< 0.00755	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0100	0.0120	< 0.500	< 0.800	< 0.01 00	< 0.0500	< 0.500
	6/15/17	5	< 0.0100	< 0.0100	< 0.01 00	< 0.0100	< 0.0100	< 0.0100	< 0.01 00	< 0.00755	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.500	< 0.800	< 0.01 00	< 0.0500	< 0.500
	4/3/18	< 1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.01 00	< 0.00755	_ j	-	-	-	-	-	-	-	-	-	-	-	-
-	4/4/18	10	< 0.0100	< 0.0100	0.0120	< 0.0100	< 0.0100	< 0.0100	< 0.01 00	0.00825	-	-	-	-	-	-	-	-	-	-	-	-	-
	0/29/18	~ 1.5 ^k	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0286	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.0379	< 0.379	0.017	< 0.0379	-	< 0.379
	0/29/18	~ 1.5	< 0.0839	< 0.0839	0.0188	< 0.0839	< 0.0839	< 0.0839	< 0.0839	0.0610	< 0.0839	< 0.0839	< 0.0839	< 0.0839	< 0.0839	< 0.0839	0.0156	< 0.0839	< 0.839	< 0.839	< 0.0839	-	< 0.839
	1/14/18	~ 1	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0318	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.0421	< 0.421	< 0.421	< 0.0421	< 0.0418	< 0.0421
AOPC1-4 11	1/14/18	~ 1.5	< 0.0395	< 0.0395	0.0106	< 0.0395	< 0.0395	< 0.0395	< 0.0395	0.0289	0.0193	< 0.0395	< 0.0395	< 0.0395	0.00805	< 0.0395	0.0113	< 0.0395	< 0.395	0.031	< 0.0395	0.0109	0.0377
	1/14/18	~ 1.5	< 0.0779	< 0.0779	0.0172	< 0.0779	< 0.0779	< 0.0779	< 0.0779	0.0566	0.0286	< 0.0157	< 0.0157	< 0.0157	0.0268	< 0.0157	0.0233	< 0.0157	0.043	0.0500	< 0.0157	0.0254	0.0623
	/30/21	1.5	0.00747	0.00887	0.0160	< 0.00706	0.0100	< 0.00706	< 0.00706	0.0111	< 0.0235	< 0.00706	< 0.00706	< 0.00706	0.00963	< 0.00706	0.012	0.0196	-	-	0.0161	< 0.0235	-
S40-1.5 5/	5/26/21	1.5	0.0334	0.0507	0.0546	0.0181	0.0599	< 0.00639	0.0261	0.049297	< 0.0197	< 0.00251	< 0.00523	< 0.00479	0.0480	0.0104	0.0775	0.0662	-	-	0.0389	< 0.0115	-
AOPC 3 - Foundry Br	uilding -	Sands S	Soil Sample	es							_												
SB-12:1 4	4/3/18	1	0.0260	0.0160	0.0400	0.0120	0.0230	< 0.0100	< 0.0100	0.02509	-	-	-	-	-	-	-	-	-	-	-	-	
SB-13:1 4	4/3/18	1	0.0180	0.0140	0.0290	< 0.0100	0.0190	< 0.0100	0.0160	0.03553	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/3/18	1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	-	-		•	•	•	-	-	-	-	-	-	-
AOPC 4 - Stormwate	er Drain -	Main Ya	rd Soil Sa	mples																			
AOPC4-01 4	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 25.0	< 40.0	< 0.100	< 2.50	< 25.0
	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 25.0	< 40.0	< 0.100	< 2.50	< 25.0
SB-5:15 6/	6/13/17	15	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.100	< 0.160	< 0.0100	< 0.0100	< 0.100
										Table 3	(Continued	(t											

			I									SVOC	s ^b (ppm) ^c										
						cPA	λHs ^d						,			Detected A	dditional S	VOCs					
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs °	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzylbutyl phthalate	Bis(2ethylhexyl)phthalate	Benzo(g,h,i)perylene	2-Methylnaphthalene	Phenol
AOPC 5 - Southw			 	1	I	1	T	I		T	1		I		I								
AOPC5-01	4/5/17	< 1	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 7.55	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 500	< 800	< 10.0	< 50.0	< 500
AOPC5-02	4/5/17	< 1	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 7.55	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 500	< 800	< 10.0	< 50.0	< 500
AOPC5-03	4/5/17	< 1	0.120	0.120	0.210	< 0.100	0.180	< 0.100	0.140	0.179	< 0.100	< 0.100	< 0.100	< 0.100	0.170	< 0.100	0.230	0.230	< 120	< 200	0.210	< 12.0	< 120
SB-2:15	6/12/17	15	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	< 0.100	< 0.100	< 0.0100	< 0.100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.500	< 0.8 00	< 0.0100	< 0.0500	< 0.500
SB-3:5	6/13/17	5	0.0150	0.0140	0.0200	< 0.0100	0.0170	< 0.0100	0.0140	0.0210	< 0.100	< 0.100	< 0.100	< 0.100	0.0160	< 0.0100	0.0280	0.0270	< 0.500	< 0.8 00	0.0160	< 0.0500	< 0.500
SB-18:5	4/3/18	5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-27:<1	4/4/18	< 1	0.0910	0.0680	0.130	0.0490	0.0920	0.0110	0.0500	0.123	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-29:<1	4/4/18	< 1	0.110	0.0130 '	0.310	< 0.100	0.0240	< 0.100	< 0.100	0.171	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-31:<1	4/3/18	< 1	0.0990	0.0610	0.180	0.0560	0.110	0.0110	0.0400	0.135	-	- 0.450					-	-	-	-	-	-	
\$1-0	4/27/21	0	0.128	< 0.150	0.113	0.0308	0.161	0.0109	0.0487	0.157	0.0590	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150	0.220	0.402	-	-	0.0421	0.0433	-
S2-1.5	4/27/21	1.5	0.0508	0.0462	0.0564	0.0241	0.0462	0.00765	0.0457	0.0693	< 0.0247	< 0.00742	< 0.00742	< 0.00742	0.0323	< 0.00742	0.0647	0.0698	-	-	0.0430	< 0.0247	-
S2-2.5	5/26/21	2.5	0.0347	0.0242	0.0508	0.0166	0.0281	0.00690	0.0404	0.0488	0.0146	0.00373	< 0.000226	< 0.00221	0.0284	0.00444	0.0356	0.0379	-	-	0.0485	0.0836	-
S3-0	4/27/21	0	0.628	0.600	0.593	0.266	0.588	0.0992	0.546	0.844	0.0521	0.0523	0.0125	0.0274	0.611	0.156	0.982	0.884	-	-	0.461	0.0278	
S4-0.5	4/27/21	0.5	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00743	0.0471	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	< 0.00984	-	-	< 0.00984	< 0.0328	-
S5-0	4/27/21	0	0.322	0.502	0.538	0.211	0.594	0.0408	0.191	0.476	< 0.0214	< 0.00643	0.00885	0.0111	0.405	0.0559	1.26	1.10	-	-	0.166	< 0.0214	-
S6-1	4/27/21	1	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00508	< 0.0224	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	< 0.00673	-	-	< 0.00673	< 0.0224	-
S7-0	4/27/21	0	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00489	< 0.0216	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	< 0.00648	-	-	< 0.00648	< 0.0216	-
\$13-0	4/28/21	0	0.295	0.412	0.450	0.185	0.455	0.0519	0.285	0.438	0.0736	0.0707	0.0178	0.0450	0.842	0.104	0.899	0.766	-	-	0.236	0.0589	-
S46-0	5/26/21	0	0.0444	0.0555	0.0937	0.0285	0.0704	0.0108	0.0532	0.0692	0.0291	< 0.00238	< 0.00230	< 0.00226	< 0.00254	< 0.00253	0.119	0.113	-	-	0.0535	0.0198	-
S47-0	5/26/21	0	0.0494	0.0424	0.0642	0.0224	0.0525	0.00791	0.0453	0.0681	0.0341	0.0121	0.00887	0.00822	0.0743	0.0105	0.0754	0.0706	-	-	0.0429	0.0346	-
S47-1.5	6/7/21	1.5	0.0197	0.0165	0.0294	0.0102	0.0200	0.00304	0.0215	0.0280	0.0120	0.00464	< 0.00220	<0.00216	0.0139	0.00242	0.0250	0.0283	-	-	0.0230	0.0141	-
S47-1.5 DUP	6/7/21	1.5	0.0134	0.0107	0.0185	0.00636	0.0159	0.00196	0.0138	0.0187	0.00775	0.00365	< 0.00220	< 0.00216	0.0117	< 0.00242	0.0185	0.0207	-	-	0.0148	0.00550	-
S48-0	5/26/21	0	< 0.00186	< 0.00180	0.00240	< 0.00224	< 0.00241	< 0.00179	< 0.00188	0.00156	0.0212	< 0.00225	< 0.00217	< 0.00213	0.00852	< 0.00373	< 0.00403	< 0.00389	-	-	< 0.00184	< 0.00689	-
S49-0	5/26/21	0	0.328	0.317	0.344	0.128	0.318	0.0468	0.258	0.440	0.0604	0.0306	0.0154	0.0239	0.395	0.125	0.528	0.471	-	-	0.228	0.0457	-
S51-2.5	5/26/21	2.5	0.252	0.166	0.224	0.0758	0.196	0.0257	0.217	0.324	0.0261	0.0191	< 0.00220	0.00227	0.0719	0.0146	0.239	0.320	-	-	0.237	0.00891	-
S51-3	5/26/21	3	0.442	0.260	0.449	0.155	0.283	0.0448	0.397	0.575	0.0452	0.0313	< 0.00221	0.00379	0.109	0.0208	0.491	0.646		-	0.471	0.0121	
										Table 3	(Continue	d)											

SVOCs b (ppm) c CPAHs d CPAHs d Detected Additional SVOCs Sample ID Sample Date Date	alate											
Sample Sa	alate											
Sample s Sam	alate											
Sample ID Sample To go day To go go day To go d	alate											
Sample Depth (feet bsg aldways and benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Chrysene Acenaphthylene Acenaphthylene Fluorene Fluorene Fluoranthene Phenanthracene Fluoranthene	Bis(2ethylhexyl)phthalate Benzo(g,h,i)perylene	2-Methylnaphthalene Phenol										
AOPC 5 - Southwest Compressor Soil Samples (Cont.)	ш	() II										
	- 0.0952	0.0102 -										
	- 0.111	0.0218 -										
	- 0.0372	0.0106 -										
S52-3 5/26/21 3 0.00598 0.00709 0.00689 0.00259 0.00679 < 0.00189 0.00405 0.00405 0.00843 0.0227 < 0.00237 < 0.00229 < 0.00225 0.0120 0.00420 0.0123 0.0123 -	- 0.0038	0.00607 -										
\$53-2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- < 0.00195	0.00857 -										
S56-1.5 6/7/21 1.5 0.0952 0.0923 0.0989 0.0365 0.104 0.0107 0.0652 0.127 0.0168 0.0136 0.00369 0.00820 0.0943 0.00254 0.139 0.144 -	- 0.0596	0.00909 -										
S57-1.5 6/7/21 1.5 0.0260 0.0233 0.0350 0.0119 0.0307 0.00392 0.0243 0.0361 0.0133 0.00356 0.00301 0.00296 0.0326 0.00526 0.0409 0.0403 -	- 0.0248	0.0123 -										
S58-0 6/7/21 0 0.0178 0.0128 0.0180 0.00648 0.0131 < 0.00175 0.0154 0.0233 < 0.00416 0.00248 < 0.00213 < 0.00209 0.00754 < 0.00234 0.0197 0.0254 -	- 0.0163	< 0.00435 -										
S59-0 6/7/21 0 0.0162 0.0139 0.0185 0.00673 0.0183 0.00179 0.0143 0.0219 0.00547 0.00316 < 0.00212 < 0.00208 0.0117 < 0.00233 0.0245 0.0287 -	- 0.0152	< 0.00433 -										
000 10 0001 0001 0001 0001 0001 00010 00011 00010 00010 00010 00011	- 0.0557	0.00941 -										
MW2-52 6/14/21 52 <0.00224 <0.00261 <0.00191 <0.00269 <0.00290 <0.00215 <0.00226 <0.0034 <0.00510 <0.00270 <0.00261 <0.00266 <0.00289 <0.00289 <0.00288 <0.00284 <0.00250 -	- < 0.00221	< 0.00534 -										
AOPC 6 - Southwest Drywell Soil Samples	T											
	0.800 < 0.0100	< 0.0500 < 0.500										
AOPC 7 - South Compressor Soil Samples												
	0.800 < 0.0100	< 0.0500 < 0.500										
AOPC 8 - Maintenance Shop Building Soil Samples	0.00	.0.500										
	8.00 0.250 0.800 < 0.0100	< 0.500 < 5.00 < 0.0500 < 0.500										
	0.800 < 0.0100 0.800 0.0120	< 0.0500 < 0.500 < 0.0500 < 0.500										
	80.0 < 0.280	< 5.00 < 50.0										
SB-17:5												
		<u> </u>										
	- 0.0330	< 0.0214 -										
Table 3 (Continued)												
AOPC 8 - Maintenance Shop Building Soil Samples (Cont.)												

													s ^b (ppm) ^c										
				cPAHs ^d Detected Additional SVOCs																			
						cPA	.Hs ^d									Detected A	dditional S	VOCs					
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs *	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzylbutyl phthalate	Bis(2ethylhexyl)phthalate	Benzo(g,h,i)perylene	2-Methylnaphthalene	Phenol
S15-0	4/28/21	0	0.140	0.0971	0.185	0.0641	0.106	0.0212	0.101	0.188	< 0.0222	< 0.00666	< 0.00666	< 0.00666	0.0469	0.0120	0.158	0.133	-	-	0.0817	< 0.0222	-
S15-1	5/26/21	1	0.00384	< 0.0018	0.00587	< 0.00224	< 0.00242	< 0.00179	0.00549	0.00581	< 0.00425	< 0.00225	< 0.00218	< 0.00214	0.00250	< 0.00240	0.00589	0.00527	-	-	0.00606	< 0.00445	-
S50-0	5/26/21	0	0.0453	0.0334	0.0479	0.0132	0.0300	0.0107	0.0368	0.0598	0.00548	0.00278	< 0.00239	< 0.00235	0.0126	0.00372	0.0356	0.0428	-	-	0.0539	< 0.00489	-
S50-0 DUP	5/26/21	0	0.0765	0.0358	0.0892	0.0254	0.0407	< 0.0190	0.0779	0.1007	< 0.0450	< 0.0238	< 0.0230	< 0.0226	< 0.0255	< 0.0254	0.0595	0.0714	-	-	0.101	< 0.0471	-
AOPC 9 - Welding	Station B	uilding S	oil Sample	s																			
AOPC9-01	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	< 0.100	< 0.100	< 0.100	< 0.100	0.160	< 0.100	0.200	0.200	< 25.0	< 40.0	< 0.100	< 2.50	< 25.0
AOPC 10 - Stormy		ntion Str	ucture Soil	Samples	1			1	1	1		1		1	1	1							
SB-7:5	6/14/17	5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.500	< 0.800	< 0.0100	< 0.0500	< 0.500
AOPC 12 - Northw		eum Stor	age Soil S	amples																			
AOPC12-01	4/5/17	< 1	< 0.0100	< 0.0100	0.0140	< 0.0100	0.0110	< 0.0100	< 0.0100	0.00851	0.046	< 0.0100	< 0.0100	< 0.0100	0.0160	< 0.0100	0.0160	0.0190		0.900	< 0.0100	< 0.0500	< 0.500
AOPC12-02	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 5.00	< 8.00	< 0.100	< 0.500	< 5.00
AOPC12-03	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 5.00	< 8.00	< 0.100	< 0.500	< 5.00
AOPC 13 - Found			oil Sample	S	1	·		T	ı	•				ı	T	1		•					
AOPC13-01	4/5/17	< 1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	0.220	< 0.0100	< 0.100	0.0120	0.0480	0.0170	0.0250	0.0230	< 0.500	< 0.800	< 0.0100	< 0.0500	< 0.500
AOPC13-02	4/5/17	< 1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	0.0560	< 0.0100	< 0.0100	< 0.0100	0.0170	< 0.0100	< 0.0100	< 0.0100	< 0.500	< 0.800	< 0.0100	< 0.0500	< 0.500
AOPC13-03	4/5/17	< 1	0.120	< 0.100	0.180	< 0.100	0.110	< 0.100	< 0.100	0.159	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.150	0.160	< 5.00	< 8.00	0.120	< 0.500	< 5.00
AOPC13-04	4/5/17	< 1	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.0755	0.470	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 5.00	< 8.00	< 0.100	< 0.500	< 5.00
SB-6:10	6/14/17	10	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.100	< 0.160	< 0.0100	< 0.0100	< 0.100
SB-11:5	4/3/18	5	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-8:<1	4/4/18	< 1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.00755	-	-	-	-	-	-	-	-	-	-	-	-	-
HA-9:<1	4/4/18	< 1	0.0720	0.0540	0.140	0.0420	0.0790	< 0.0100	0.0270	0.0996	-	-	-	-	-	-	-	-	-	-	-	-	-
S11-1	4/28/21	1	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00532	< 0.0235	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	< 0.00704	-	-	< 0.00704	< 0.0235	-
S12-0	4/28/21	0	< 0.00631	< 0.00631	< 0.00631	< 0.00631	< 0.00631	< 0.00631	< 0.00631	< 0.00476	0.0271	<0.00631	<0.00631	<0.00631	0.00721	<0.00631	0.00645	0.00712	-	-	<0.00631	< 0.0210	-
										Table 3	(Continue	d)											

North Star Casteel Property

												SVOC:	s ^b (ppm) ^c										
						cPA	∖Hs ^d								[Detected A	dditional S	VOCs					
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs ^e	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzylbutyl phthalate	Bis(2ethylhexyl)phthalate	Benzo(g,h,i)perylene	2-Methylnaphthalene	Phenol
Stockpile Soil San	nples																						
STOCKPILE-1	10/29/18	na	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.273	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 0.361	< 3.61	< 3.61	< 0.361	-	< 3.61
STOCKPILE-2	10/29/18	na	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	< 0.278	< 0.368	< 0.368	< 0.0368	< 0.368	< 0.368	< 0.368	< 0.368	< 0.368	< 3.68	0.859	< 0.368	-	0.549
STOCKPILE 1-A	4/30/21	na	0.0194	0.0168	0.0369	0.0124	0.0229	< 0.00627	0.0250	0.0291	< 0.0209	< 0.00627	< 0.00627	< 0.00627	0.0221	< 0.00627	0.038	0.0373	-	-	0.0281	< 0.0209	-
STOCKPILE 1-B	4/30/21	na	< 0.00628	< 0.00628	< 0.00628	< 0.00628	< 0.00628	< 0.00628	< 0.00628	0.00474	0.0279	< 0.00628	< 0.00628	< 0.00628	0.00979	< 0.00628	0.00658	< 0.00628	-	-	< 0.00628	< 0.0209	-
STOCKPILE 1-C	4/30/21	na	0.0225	0.0243	0.0301	0.0110	0.0263	< 0.00720	0.0185	0.0315	< 0.0240	< 0.00720	< 0.00720	< 0.00720	0.0339	< 0.00720	0.0460	0.0492	-	-	0.0197	< 0.0240	-
STOCKPILE 2-ABC	4/30/21	na	0.104	0.0795	0.123	0.0406	0.0691	0.0163	0.107	0.141	0.0537	0.0142	0.00701	0.00939	0.109	0.0249	0.127	0.129	-	-	0.112	0.0331	-
STOCKPILE 3-ABC	4/30/21	na	0.0197	0.0219	0.0303	0.00945	0.0209	< 0.00657	0.0177	0.0282	< 0.0219	< 0.00657	< 0.00657	< 0.00657	0.0154	< 0.00657	0.0332	0.0297	-	-	0.0197	< 0.0219	_
		•							MTCA	Method A	Soil Clear	up Levels							•			-	
Unrestricted	Land Uses					0).1				5	n 		-		-	-	-					

- a Depth of sample in feet below surface grade (bsg)
- b Semi-volatile organic compounds (SVOCs) were analyzed using EPA method 8270D or 8270E-SIM. SVOCs not listed in the table were not detected in any samples and are listed in the laboratory report
- c Analytical results reported in parts per million (ppm)
- d (cPAHs) Carcinogenic Polycyclic Aromatic Hydrocarbons
- e Toxicity Equivalency Factors (TEFs) calculated under WAC 173-340-708(e) in accordance with Table 708-2 (in WAC 173-340-900). TEF is shown with less than (<) symbol when no cPAHs were detected
- f (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- g Bold value indicates analyte concentration exceeded laboratory reporting limit
- h Brown text indicates samples represent soil that was removed and disposed during excavation cleanup activities
- i Yellow shading indicates analyte concentration, one-half the laboratory reporting, or TEF-adjusted total cPAH concentration exceeds the MTCA Method A Cleanup Level.
- j (-) Not analyzed
- k (~) Sample depth estimated based on photographic log obtained from AEG Environmental Group, LLC.
- I Laboratory Qualifier: The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- m Green text indicates sample represents soil that is capped with concrete/asphalt
- n (--) Not Available (Washington Department of Ecology has not established a Method A Soil Cleanup Level for the respective analyte)

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T3 Soil - SVOCs (CN).xlsx]SVOCs

TABLE 4 SOIL SAMPLE ANALYTICAL DATA - METALS

				variot		VVA 9000C						
) a				RCR	A 8 Meta	s ^b (ppm)	С			
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Arsenic	Barium	Cadmium	Chromium (Total)	Chromium III	Chromium VI	Lead	Mercury	Selenium	Silver
AOPC 1 - Metal R	eceiving Ar	ea Soil S	amples							•		
AOPC1-01 d	4/5/17	< 1	63.1 ef	20.0	23.9	1,360	_ g	-	1,350	< 1.00 ^h	3.79	14.7
AOPC1-02	4/5/17	< 1	< 5.00	8.45	< 1.00	54.9	-	-	2.06	< 1.00	< 1.00	< 1.00
AOPC1-03	4/5/17	< 1	< 5.00	140	< 1.00	43.3	-	-	25.1	< 1.00	< 1.00	< 1.00
AOPC1-04	4/5/17	< 1	15.7	82.9	3.19	169	-	-	57.8	< 1.00	1.12	< 1.00
AOPC1-05	4/5/17	< 1	< 5.00	86.4	1.96	36.1	-	-	50.4	< 1.00	< 1.00	< 1.00
SB-9:5	6/15/17	5	2.64	162	< 1.00	11.4	-	-	19.7	< 1.00	< 1.00	< 1.00
SB-10:5	6/15/17	5	1.96	132	< 1.00	38.0	-	-	5.96	< 1.00	< 1.00	< 1.00
SB-15:<1	4/3/18	< 1	-	1	< 1.00	1	-	-	-	-	-	-
HA-11:<1	4/4/18	< 1	2.00	-	< 1.00	•	-	-	57.3	-	-	-
HA-12:<1	4/4/18	< 1	5.74	-	< 1.00	-	-	-	60.4	_	-	-
HA-13:<1	4/4/18	< 1	2.56	1	< 1.00	ı	-	-	40.6	-	-	-
AOPC1-1	10/29/18	~ 1.5 ⁱ	0.641	231	< 0.569	13.5	-	-	5.69	0.0119	< 2.28	< 1.14
AOPC1-2	10/29/18	~ 1.5	1.39	172	< 0.0700	56.4	37.2	19.2	15.0	0.0172	< 0.620	< 0.120
AOPC1-3	11/14/18	~ 1	3.40	227	< 0.633	17.2	-	-	5.12	0.00697	< 0.785	< 0.120
AOPC1-4	11/14/18	~ 1.5	2.10	179	0.087	20.2	-	-	8.14	0.0109	< 0.785	< 0.120
AOPC1-5	11/14/18	~ 1.5	4.21	179	0.447	60.4	-	-	128	0.0114	< 0.620	< 0.120
S18-0	4/29/21	0	5.73	•	< 1.19	1	-	-	82.7	-	-	-
S19-0	4/29/21	0	34.7	-	4.58	-	-	-	366	-	-	-
S19-1	5/26/21	1	5.12	-	1.04	27.5	-	-	163	-	-	-
S26-2.5 Dup	4/29/21	2.5	-	-	-	-	-	< 1.28	-	-	-	-
S26-2.5	4/29/21	2.5	-	-	-	-	-	< 1.36	-	-	-	-
S27-2.5	4/29/21	2.5	-	-	-	-	-	< 1.17	-	-	-	-
S36-1	4/30/21	1	5.00	-	-	-	-	-	-	-	-	-
S37-1	4/30/21	1	1.77		-	•	-	-	-	-	-	-
S38-1.5	4/30/21	1.5	5.16	-	< 1.18	-	-	-	-	-	-	-
S39-1.5	4/30/21	1.5	27.2	-	1.33	-	-	-	-	-	-	-
S39-2.5	5/26/21	2.5	3.29	-	-	-	-	-	-	-	-	-
S40-1.5	5/26/21	1.5	8.43	-	0.827	-	-	-	-	-	-	-
S41-2.5	5/26/21	2.5	6.71	-	-	-	-	-	-	-	-	-
S42-0	5/26/21	0	5.18	-	-	-	-	-	-	-	-	-
S43-0	5/26/21	0	48.5	-	3.03	84.2	-	-	389	-	-	-
S44-0	5/26/21	0	3.43	-	0.560	16.5	-	-	126	-	-	-
S54-0	6/7/21	0	23.2	-	1.21	-	-	-	253	-	-	-
S55-0	6/7/21	0	12.5	-	1.20	-	-	-	261	-	-	-
S61-0	6/7/21	0	8.18	-	1.21	-	-	-	324	-	-	-
S62-0	6/7/21	0	15.4	-	0.901	-	-	-	102	-	-	-
S63-0	6/7/21	0	18.1	-	6.69	-	-	-	176	-	-	-
S64-0	6/7/21	0	18.1	-	1.40	-	-	-	133	-	-	-
S65-0	6/8/21	0	3.61	-	0.456	- "	-	-	51.4	-	-	-
				TA	BLE 4 (c	ontinued)						

TABLE 4 (Continued) **SOIL SAMPLE ANALYTICAL DATA - METALS** North Star Casteel Property RCRA 8 Metals b (ppm) c (gsq Sample Depth (feet Chromium (Total) Sample Sample ID Date > Chromium Chromium Selenium Mercury Silver **AOPC 2 - EAF Area Soil Samples** AOPC2-01 4/5/17 < 1 31.8 20.3 1.08 379 165 < 1.00 < 1.00 1.59 AOPC2-02 4/5/17 < 5.00 6.57 < 1.00 < 1.00 < 1.00 64.5 2.91 < 1.00 HA-15:<1 4/4/18 1.34 **AOPC 3 - Foundry Building - Sands Soil Samples** 4/5/17 AOPC3-01 < 5.00 8.48 < 1.00 4.37 4.53 < 1.00 < 1.00 < 1.00 < 1 AOPC3-02 4/5/17 < 1 < 5.00 11.8 < 1.00 8.81 4.15 < 1.00 < 1.00 < 1.00 AOPC3-03 4/5/17 < 1 8.93 9.98 < 1.00 352 3.08 < 1.00 < 1.00 < 1.00 AOPC3-04 4/5/17 9.68 < 1.00 9.35 < 1 < 5.00 3.79 < 1.00 < 1.00 < 1.00 AOPC3-05 4/5/17 6.33 1.38 49.4 25.7 < 1.00 < 1.00 < 1.00 SB-14:1 4/3/18 < 1.00 AOPC 4 - Stormwater Drain - Main Yard Soil Samples AOPC4-01 4/5/17 < 1 < 5.00 36.4 < 1.00 52.0 6.54 < 1.00 < 1.00 < 1.00 AOPC4-02 4/5/17 < 5.00 34.7 < 1.00 76.2 20.9 < 1.00 < 1.00 < 1.00 SB-5:15 6/13/17 < 1.00 51.8 < 1.00 2.89 2.42 < 1.00 < 1.00 < 1.00 **AOPC 5 - Southwest Compressor Soil Samples** 6/12/17 52.6 < 1.00 4.27 2.61 SB-2:15 1.04 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 SB-3:5 6/13/17 5 1.99 120 11.3 31.3 80.7 8.60 SB-1:20 6/12/17 20 5.04 < 1.00 9.07 < 1.00 < 1.00 < 1.00 4/27/21 19.3 2.27 188 S1-0 0 < 1.25 557 4/27/21 0.5 < 1.64 < 1.64 < 8.20 < 0.820 S4-0.5 < 4.10 3.72 < 0.0656 < 4.10 2.54 S13-0 4/28/21 0 365 S46-0 5/26/21 0 12.5 1.83 MW2-52 6/14/21 52 0.110 5.78 **AOPC 7 - South Compressor Soil Samples** SB-4:15 6/13/17 15 72.1 < 1.00 3.81 2.79 < 1.00 < 1.00 < 1.00 **AOPC 8 - Maintenance Shop Building Soil Samples** HA-1:1.0 k 6/13/17 3.82 104 < 1.00 14.4 23.7 < 1.00 < 1.00 12.4 HA-2:1.5 6/13/17 1.5 1.50 80.7 < 1.00 8.11 15.6 < 1.00 < 1.00 < 1.00 HA-3:0.8 6/13/17 8.0 6.31 30.9 < 1.00 38.3 36.1 < 1.00 < 1.00 < 1.00 HA-4:0.5 6/13/17 0.5 3.20 54.0 < 1.00 23.2 11.5 < 1.00 < 1.00 < 1.00 AOPC 9 - Welding Station Building Soil Samples 306 4.58 AOPC9-01 4/5/17 6.76 12.8 < 1.00 < 1.00 < 1.00 < 1.00 AOPC9-02 < 1.00 < 1.00 < 1.00 < 1.00 4/5/17 < 1 26.1 1.21 2,360 < 1.00 AOPC9-03 7.24 < 1.00 < 1.00 4/5/17 10.4 1.17 2,880 1.04 SB-16:5 4/3/18 12.5 5 2.95 HA-16:<1 4/4/18 2.56 8.66 ^j / 10.2 < 1 HA-17:<1 4/4/18 < 1 1.33 8.93 --HA-18:<1 4/4/18 < 1 12.5 57.8 HA-19:<1 4/4/18 < 1 8.61 39.6 HA-20:>1 4/4/18 < 1 16.5 23.6 S23-1 4/29/21 31.5 1 5.24 S24-0 6/8/21 0 235.0 1.96 1 S24-1 4/29/21 8.75 22.6 TABLE 4 (continued)

TABLE 4 (Continued) SOIL SAMPLE ANALYTICAL DATA - METALS

North Star Casteel Property

) a				RCR	A 8 Metal	s ^b (ppm)	С			
Sample ID	Sample Date	Sample Depth (feet bsg) ^a	Arsenic	Barium	Cadmium	Chromium (Total)	Chromium III	Chromium VI	Lead	Mercury	Selenium	Silver
AOPC 9 - Welding	Station Bu	ilding So	il Sample	es (cont.))							
S67-0	8/12/21	0	42.3	-	-	73.0	-	-	-	-	-	-
S67-0 DUP	8/12/21	0	11.1	-	-	27.5	-	-	-	-	-	-
S68-0	8/12/21	0	6.54	-	-	51.6	•	-	-	-	•	-
AOPC 10 - Stormw	vater Reten	tion Struc	cture Soi	I Sample	s							
SB-7:5	6/14/17	5	1.90	127	< 1.00	10.4	-	-	11.2	< 1.00	< 1.00	< 1.00
AOPC 11 - Oil-San	d Storage	and Bag I	House Sc	oil Sampl	les							
AOPC11-01	4/5/17	< 1	< 5.00	13.9	< 1.00	10.7	-	-	1.75	< 1.00	< 1.00	< 1.00
AOPC11-02	4/5/17	< 1	< 5.00	15.9	< 1.00	6.45	-	-	1.59	< 1.00	< 1.00	< 1.00
AOPC11-03	4/5/17	< 1	< 5.00	3.43	< 1.00	75.0	-	-	1.57	< 1.00	< 1.00	< 1.00
AOPC 12 - Northw	est Petrole	um Stora	ge Soil S	amples								
AOPC12-01	4/5/17	< 1	< 5.00	25.6	< 1.00	7.32	•	-	3.51	< 1.00	< 1.00	< 1.00
AOPC12-02	4/5/17	< 1	8.53	117	< 1.00	31.8	-	-	18.9	< 1.00	< 1.00	< 1.00
AOPC12-03	4/5/17	< 1	8.09	108	< 1.00	24.4	-	-	17.4	< 1.00	< 1.00	< 1.00
AOPC 13 - Foundr	y Waste Ma	aterial So	il Sample	es								
AOPC13-01	4/5/17	< 1	< 5.00	10.0	< 1.00	107	-	-	4.38	< 1.00	< 1.00	< 1.00
AOPC13-02	4/5/17	< 1	< 5.00	10.6	< 1.00	21.0	•	-	2.99	< 1.00	< 1.00	< 1.00
AOPC13-03	4/5/17	< 1	12.7	40.3	< 1.00	92.9	1	-	115	< 1.00	1.15	< 1.00
AOPC13-04	4/5/17	< 1	6.35	49.7	< 1.00	76.4	-	-	36.6	< 1.00	< 1.00	< 1.00
SB-6:10	6/14/17	10	< 1.00	137	< 1.00	13.8	-	-	4.63	< 1.00	< 1.00	< 1.00
Stockpile Soil San	nples											
STOCKPILE 1	10/29/18	na ^I	0.641	137	0.596	41.1	40.2	0.954	128	0.0505	< 0.620	< 0.120
STOCKPILE 2	10/29/18	na	0.938	49.4	< 0.0700	185	185	< 0.64	21.4	0.00724	< 0.620	< 0.120
STOCKPILE 1-A	4/30/21	na	6.21	78.8	< 1.04	25.3	-	-	100	0.131	< 2.61	< 0.522
STOCKPILE 1-B	4/30/21	na	2.92	25.5	< 1.05	98.0	-	-	7.14	< 0.0419	< 2.62	< 0.524
STOCKPILE 1-C	4/30/21	na	3.20	540	< 1.20	17.6	1	-	16.0	< 0.0480	< 3.00	< 0.600
STOCKPILE 2-ABC	4/30/21	na	7.47	74.7	1.14	155	-	-	198	0.0679	< 2.74	< 0.548
STOCKPILE 3-ABC	4/30/21	na	3.67	141	< 1.09	34.5	-	-	22.1	< 0.0438	< 2.74	< 0.547
						il Cleanup Le						
Unrestricted			20	m	2	2,000)	19	250	2		

- a Depth of sample in feet below surface grade (bsg)
- b RCRA 8 Metals analyzed using EPA method 6010D, 6020A, 6020B, or 7471B
- c Analytical results reported in parts per million (ppm)
- d Brown text indicates samples represent soil that was removed and disposed during excavation cleanup activities
- e Bold value indicates analyte concentration exceeded laboratory reporting limit
- f Yellow shading indicates analyte concentration (or one-half the laboratory reporting limit) exceeds the MTCA Method A Cleanup Level. The exceeded level is also shaded.
- g (-) Not analyzed
- h (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- i (~) Sample depth estimated based on photographic log obtained from AEG Environmental Group, LLC.
- j Laboratory Qualifier: The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- k Green text indicates sample represents soil that is capped with concrete/asphalt
- I (na) Not applicable
- m (--) Not Available (Washington Department of Ecology has not established a cleanup level for the respective analyte)

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T4 Soil - RCRA 8 Metals (CN).xlsx]Metals

TABLE 5 SOIL SAMPLE ANALYTICAL DATA - PCBs

						DC	Bs ^b (ppm	7/ c				
Sample ID	Sample	Sample Depth (feet bsg) ^a						·,				
·	Date	ple Dept	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
		sam	roc	roc	roc	roc	roc	roc	roc	roc	roc	ota_
AOPC 1 - Metal Re	nosivina Ar		-	< <	<	< <	< <	∢	⋖	⋖	<	-
AOPC1-Wetai Re	4/5/17	ea 3011 3 <1	< 0.2 ^d	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	_ e	ND ^f
AOPC1-02 ⁹	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	3.2 h i	< 0.2	-	3.2
AOPC1-03	4/5/17	<1	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		ND
AOPC1-05	4/5/17	<1	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	2.8	< 0.4	-	2.8
SB-9:5	6/15/17	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<u> </u>	ND
SB-10:5	6/15/17	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
SB-15:<1	4/3/18	< 1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<u> </u>	ND
HA-14:<1	4/4/18	< 1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	_	ND
AOPC1-1	10/29/18	~ 1.5 ^j	< 0.0193	< 0.0193	< 0.0193	< 0.0193	< 0.0193	< 0.0193	< 0.0193	- 0.02	_	ND
AOPC1-2	10/29/18	~ 1.5	< 0.0214	< 0.0214	< 0.0214	< 0.0214	< 0.0214	< 0.0214	< 0.0214	_	_	ND
AOPC1-3	11/14/18	~ 1	< 0.00443	< 0.00680	< 0.00528	< 0.00403	< 0.00399	< 0.00597	< 0.00625		_	ND
AOPC1-4	11/14/18	~ 1.5	< 0.00415	< 0.00637	< 0.00495	< 0.00377	< 0.00374	< 0.00560	0.0233	_	_	0.0233
AOPC1-5	11/14/18	~ 1.5	< 0.00410	< 0.00628	< 0.00488	< 0.00372	< 0.00369	< 0.00552	< 0.00578	_	_	ND
S29-1	4/30/21	1	< 0.0408	< 0.0408	< 0.0408	< 0.0408	< 0.0204	< 0.0204	< 0.0204	_	< 0.0204	ND
S29-1 Dup	4/30/21	1	< 0.0414	< 0.0414	< 0.0414	< 0.0414	< 0.0207	< 0.0207	< 0.0207	-	< 0.0207	ND
S30-0.5	4/30/21	0.5	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0194	0.0477	< 0.0194	-	< 0.0194	0.0477
S33-9	4/30/21	9	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0187	< 0.0187	< 0.0187	-	< 0.0187	ND
S38-1.5	4/30/21	1.5	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0200	< 0.0200	0.106	-	< 0.0200	0.106
AOPC 3 - Foundry									0.1100			000
SB-12:1	4/3/18	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	_	ND
SB-13:1	4/3/18	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
SB-14:1	4/3/18	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
AOPC 4 - Stormwa												
AOPC4-01	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC4-02	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
SB-5:15	6/13/17	15	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
AOPC 5 - Southwe	est Compre		I Samples	5				•				
AOPC5-01	4/5/17	<1	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	2	< 0.4	-	2.0
AOPC5-02	4/5/17	<1	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1.8	< 0.4	-	1.8
AOPC5-03	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	1.2	< 0.2	4.7	< 0.2	-	5.9
SB-2:15	6/12/17	15	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
SB-3:5	6/13/17	5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.17	< 0.02	-	0.17
CD 40.E	4/3/18	5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
SB-18:5												
HA-27:<1	4/4/18	< 1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.6	< 0.02	-	0.6

						DC	CBs ^b (ppn	-/ c				
		a (<u> </u>	l	PC	, ps (ppn	' <i>)</i>	l	<u> </u>		
Sample ID	Sample	Sample Depth (feet bsg) ^a										
Campio ib	Date	eptł	16	2	32	42	84	24	09	62	89	v
		Õ	10	12	12	12	12	12	12	12	12	Total PCBs
		nple	clor	- S	Sor	- S	Sor	Sor	Sol	clor	clor	a P
		Sar	Aroclor 1016	Aroclor 122	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Tot
AOPC 5 - Southwe	est Compre	essor Soi										
HA-29:<1	4/4/18	< 1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.24	< 0.02	_	0.24
HA-30:<1	4/4/18	< 1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.079	< 0.02	-	0.079
AOPC5-1	10/29/18	~ 3	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	0.150	-	-	0.150
AOPC5-2	10/29/18	~ 2	< 0.0181	< 0.0181	< 0.0181	< 0.0181	< 0.0181	< 0.0181	0.154	-	-	0.154
AOPC5-3	10/29/18	~ 2	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	0.170	-	-	0.170
AOPC5-4	10/29/18	~ 3	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	0.0950	-	-	0.0950
S1-0	4/27/21	0	< 0.0426	< 0.0426	< 0.0426	< 0.0426	0.0213	0.322	< 0.0213	-	< 0.0213	0.322
AOPC 6 - Sothwes	st Drywell S	Soil Sam	oles		•		•		•		•	
SB-1:20	6/12/17	20	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
AOPC 7 - South C	ompressor	Soil San	nples	•		•				•	•	
AOPC7-01	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC7-02	4/5/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
SB-4:15	6/13/17	15	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
AOPC7-1	10/29/18	~ 1.5	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0186	-	-	ND
AOPC7-2	10/29/18	~ 1.5	< 0.0186	< 0.0186	< 0.0186	< 0.0186	< 0.0186	< 0.0186	< 0.0186	-	-	ND
AOPC 8 - Mainten	ance Shop	Building	Soil Sam	ples								
HA-1:1.0 ^k	6/13/17	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
HA-2:1.5	6/13/17	1.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
HA-3:0.8	6/13/17	8.0	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.020	< 0.02	-	0.020
HA-4:0.5	6/13/17	0.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
AOPC 10 - Stormy	vater Reter	ntion Stru	cture Soi	I Sample:	s							_
SB-7:5	6/14/17	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC 11 - Oil-Sar	nd Storage	and Bag	House So	oil Sample	es							_
AOPC11-01	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC11-02	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC 12 - Northw	est Petrole	eum Stor	age Soil S	amples								
AOPC12-01	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC12-02	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC12-03	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC 13 - Found	ry Waste M	aterial So	oil Sample	es								
AOPC13-01	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC13-02	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC13-03	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC13-04	4/6/17	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
SB-6:10	6/14/17	10	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC 14 - North (r Soil Sa	mples					_				
SB-8:5	6/15/17	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	ND
AOPC14-1	10/29/18	0	< 0.0180	< 0.0180	< 0.0180	< 0.0180	< 0.0180	< 0.0180	0.0135	-	-	0.0135
				TAI	BLE 5 (C	ontinued)						

North Star Casteel Property

		rs o				PC	Bs ^b (ppn	າ) ^ເ				
Sample ID	Sample Date	Sample Depth (feet bsg)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
AOPC 15 - Clack (County Tra	nsformer	Compou	nd Soil S	amples							
HA-5:1.0	6/13/17	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
HA-6:1.0	6/13/17	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
HA-7:1.0	6/13/17	1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	-	ND
Stockpile Soil Sa	mples											_
STOCKPILE-1	10/29/18	na ^I	< 0.0184	< 0.0184	< 0.0184	< 0.0184	< 0.0184	< 0.0184	0.633	-	-	0.633
STOCKPILE-2	10/29/18	na	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	< 0.0188	0.0276	-	-	0.0276
STOCKPILE 1-A	4/30/21	na	< 0.0355	< 0.0355	< 0.0355	< 0.0355	< 0.0178	< 0.0178	0.286	-	< 0.0178	0.286
STOCKPILE 1-B	4/30/21	na	< 0.0356	< 0.0356	< 0.0356	< 0.0356	< 0.0178	< 0.0178	< 0.0178	-	< 0.0178	ND
STOCKPILE 1-C	4/30/21	na	< 0.0408	< 0.0408	< 0.0408	< 0.0408	< 0.0204	< 0.0204	< 0.0204	1	< 0.0204	ND
STOCKPILE 2-ABC	4/30/21	na	< 0.0372	< 0.0372	< 0.0372	< 0.0372	0.118	< 0.0186	0.0839	1	< 0.0186	0.2019
STOCKPILE 3-ABC	4/30/21	na	< 0.0372	< 0.0372	< 0.0372	< 0.0372	< 0.0186	< 0.0186	0.0408	-	< 0.0186	0.0408
			M	TCA Moth	od A Soi	l Claanun	Lovole					

MTCA Method A Soil Cleanup Levels

Unrestricted Land Uses a Depth of sample in feet below surface grade (bsg)

- b Polychlorinated Biphenyls (PCBs) analyzed using EPA method 8082A
- c Analytical results reported in parts per million (ppm)
- d (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- e (-) Not analyzed
- f (ND) No PCBs were detected
- g Brown text indicates samples represent soil that was removed and disposed during excavation cleanup activities
- h Bold value indicates analyte concentration exceeded laboratory reporting limit
- Yellow shading indicates analyte concentration (or one-half the laboratory reporting limit) exceeds an RBC.

The exceeded level is also shaded

- (\sim) Sample depth estimated based on photographic log obtained from AEG Environmental Group, LLC. Green text indicates sample represents soil that is capped with concrete/asphalt
- (na) Not applicable

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T5 Soil - PCBs (CN).xlsx]2017 PCBs

TABLE 6 **WIPE SAMPLE ANALYTICAL DATA - PCBs**

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

					PCBs ^a (μg/wipe) ^t)			
Sample ID	Sample Date	Aroclor 1221	Aroclor 1232	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Total PCBs
AOPC 5 - Sout	hwest Com	pressor								
AOPC5-04 c	4/5/17	< 1 ^d	< 1	< 1	< 1	< 1	< 1	< 1	< 1	ND ^e
AOPC 7 - Sout	h Compres	sor								
AOPC7-03	4/5/17	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	ND
AOPC 14 - Nor	th Compres	ssor								
AOPC14-03	4/6/17	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	ND

- a Polychlorinated Biphenyls (PCBs) analyzed using EPA method 8082A
- b Analytical results reported in micrograms per wipe (µg/wipe), which were each 100 square centimeters (cm²)
- c Brown text indicates samples represent soil that was removed and disposed during excavation cleanup activities d (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- e (ND) No PCBs were detected

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T6 Wipe - PCBs.xlsx]2017 PCBs

TABLE 7 WATER SAMPLE ANALYTICAL DATA - PHCs and VOCs

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

			ıo az ısh							١	/OCs ^c (pp	b)					
		PH	ICs ^a (ppb) ^b			В	TEX d VO	Cs				De	etected Ad	ditional VC	Cs		
Sample ID	Sample Date	Gasoline	Diesel	i.O	Acetone	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloroform	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl chloride
	Metals Recei																
SB-9:GW	6/15/17	< 100 ^e	120 ^{f g}	< 400	- h	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2
SB-10:GW	6/15/17	< 100	86 ^g	< 250	-	< 0.35	< 1	< 1	< 3	1.4	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2
l		Drain - Main Ya	ard					T				T	T		T		
SB-5:GW	6/13/17	< 100	< 60	< 300	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2
AOPC 5 - S	Southwest C	ompressor			1		T	T				T	T		T		
SB-2:GW	6/12/17	< 100	< 50	< 250	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	3.2	< 1	< 1	< 1	< 0.2
MW-2	8/27/21	< 31.6	< 66.7	< 83.3	2.36 ⁱ	< 0.0160	< 0.0500 ^j	< 0.0212	< 0.191	0.0540 ⁱ	< 0.0276	< 0.0572	1.36	0.0430	< 0.0464	< 0.0432	< 0.0273
MW-2 DUP	8/27/21	< 31.6	< 66.7	< 83.3	1.96 ⁱ	< 0.0160	< 0.0500 ^j	< 0.0212	< 0.191	0.0560 i	< 0.0276	< 0.0572	1.50	< 0.0160	< 0.0464	< 0.0432	< 0.0273
AOPC 6 - S	Southwest D	rywell															
SB-1:GW	6/12/17	< 100	79 ^g	< 300	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	1.6	< 1	< 1	< 1	< 0.2
AOPC 7 - S	South Compi	ressor								a							
SB-4:GW	6/13/17	< 100	< 60	< 300	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	1.7	< 1	< 1	< 1	< 0.2
		Retention Str	ucture		· · · · ·	-											
SB-7:GW	6/14/17	< 100	78 ^g	< 350	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2
AOPC 13 -	Foundry Wa	ste Material			· · · · ·	-											
SB-6:GW	6/14/17	< 100	< 60	< 300	-	< 0.35	< 1	< 1	< 3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2
UST Liquid	t																
UST-H20	5/26/21	< 31.6	5,330	4,290	< 0.548	< 0.0160	< 0.0500	< 0.0212	< 0.191	< 0.0166	< 0.0276	< 0.0572	< 0.0280	< 0.0160	< 0.0464	< 0.0432	< 0.0275
Equipment	t Blanks					•	·	•		_		•	•	·	•	•	
EB-1	4/27/21	< 100	< 200	< 250	3.26	< 0.0400	< 0.200	< 0.100	< 0.260	< 0.100	< 0.100	< 0.200	< 0.100	< 0.0400	< 0.200	< 0.200	< 0.100
EB-2	4/28/21	-	< 200	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
							TABLE	7 (Contin	ued)								

TABLE 7 (Continued) WATER SAMPLE ANALYTICAL DATA - PHCs AND VOCs

North Star Casteel Property

			- 0 · · · h							٧	/OCs ^c (pp	b)					
		PH	Cs ^a (ppb) ^b	•		В	TEX d VO	Cs				De	etected Add	ditional VO	Cs		
Sample ID	Sample Date	Gasoline	Diesel	I!O	Acetone	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloroform	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl chloride
Equipmen	t Blanks (co	nt.)			-					_							
EB-3	4/29/21	-	< 100	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
EB-4	4/30/21	-	< 200	< 250	-	-	-	-	-	-	-	-	-	-	-	-	-
EB-5	5/26/21	-	47.2	< 83.3	-	-	-	-	-	-	-	-	-	-	-	-	-
EB-6	6/7/21	-	< 33.3	< 83.3	-	-	-	-	-	-	-	-	-	-	-	-	-
EB-9	8/12/21	-	< 66.7	< 83.3	-	-	-	-	-	-	-	-	-	-	-	-	-
EB-10	8/27/21	< 31.6	< 66.7	< 83.3	5.34 ⁱ	< 0.0160	< 0.0500 ^j	< 0.0212	< 0.191	< 0.0166	< 0.0276	< 0.0572	< 0.0280	< 0.0160	< 0.0464	< 0.0460	< 0.0273
Trip Blank	S																
Trip Blank	4/27/21	-	-	-	2.16	< 0.0400	< 0.200	< 0.100	< 0.260	< 0.100	< 0.100	< 0.200	< 0.100	< 0.0400	< 0.200	< 0.200	< 0.100
	4/29/21	-	-	-	< 10.0	< 0.0400	< 0.200	< 0.100	< 0.260	< 0.100	< 0.100	< 0.200	< 0.100	< 0.0400	< 0.200	< 0.200	< 0.100
	4/30/21	-	-	-	1.64	< 0.0400	< 0.200	< 0.100	< 0.260	< 0.100	< 0.100	< 0.200	< 0.100	< 0.0400	< 0.200	< 0.200	< 0.100
	5/26/21	-	1	-	2.44	< 0.0160	< 0.0500	< 0.0212	< 0.191	< 0.0166	< 0.0276	< 0.0572	< 0.0280	< 0.0160	< 0.0464	< 0.0432	< 0.0273
	6/14/21	-	ı	-	1.45	< 0.160	< 0.500	< 0.0212	< 0.191	< 0.0166	< 0.0276	< 0.0572	< 0.0280	< 0.0160	< 0.0464	< 0.0432	< 0.0273
	8/27/21	-	•	-	< 0.548	< 0.0160	< 0.0500 ^j	< 0.0212	< 0.191	< 0.0166	< 0.0276	< 0.0572	< 0.0280	< 0.0160	< 0.0464	< 0.0432	< 0.0273
						MTCA Met				Levels	<u>.</u>	I	<u>.</u>	1	<u>.</u>		
Ground		800 / 1,000 ^j	500	500	^k	5	1,000	700	1,000				5	5			0.2

- a Petroleum hydrocarbons (PHCs) were analyzed using NWTPH methods Gx (gasoline) and Dx (diesel and oil)
- b Analytical results reported in parts per billion (ppb)
- c Volatile organic compounds (VOCs) were analyzed using EPA method 8260C. VOCs not listed in the table were not detected in any samples and are listed in the laboratory report
- d Benzene, toluene, ethylbenzene, and xylenes (BTEX)
- e (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- f Bold value indicates analyte concentration exceeded laboratory reporting limit
- g The sample chromatographic pattern does not resemble the fuel standard used for quantitation
- h (-) Not analyzed
- i The identification of the analyte is acceptable; the reported value is an estimate
- j The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
- k MTCA Method A Groundwater Cleanup Level is 800 μg/kg when benzene is present in the groundwater and 1,000 μg/kg when benzene is not detected.
- I (--) Not Available (Washington Department of Ecology has not established a Method A Cleanup Level for the respective analyte)

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\\T7 GW - PHCs & VOCs.xlsx\PHCs & VOCs

TABLE 8 WATER SAMPLE ANALYTICAL DATA - SVOCs

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

	SVOCs ^a (ppb) ^b																		
										SVUCS	(ppp)								
		Ca	rcinogen	ic Polycy	clic Aron	natic Hyd	rocarbon	s (cPAHs	s) ^c				Dete	cted Add	itional SV	OCs			
Sample ID	Sample Date	Benzo(a)pyrene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs ^d	Naphthalene	Benzoic acid	Acenaphthylene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Bis(2ethylhexyl)phthalate	Benzo(g,h,i)perylene
AOPC 1 - Metals I																			ı
SB-9:GW	6/15/17	0.15 ^{e f}	0.20	0.23	0.070	0.19	< 0.03 ⁿ	0.10	0.2134	< 0.03	< 10	< 0.03	0.064	0.29	0.069	0.43	0.37	< 3.2	0.086
SB-10:GW	6/15/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	< 0.03	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
MW-1:water	4/5/18	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.0453	- ⁱ	-	-	-	-	-	-	-	-	-
AOPC 4 - Stormw										1		1					1		
SB-5:GW	6/13/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	< 0.03	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
AOPC 5 - Southw			1		1		1	1	1			1	1		1		-		
SB-2:GW	6/12/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	0.052	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
MW-2	8/27/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160 ^J	< 0.0158	< 0.0275	< 0.0197	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184 ^J
MW-2 Dup	8/27/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160 ^J	< 0.0158	< 0.0303	< 0.0197	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184 ^J
AOPC 6 - Southw			<u> </u>		1		1	1				T	1		<u> </u>	1			
SB-1:GW	6/12/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	0.060	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
AOPC 7 - South C																			
SB-4:GW	6/13/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	< 0.03	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
AOPC 10 - Storm					1				1			1	1						,
SB-7:GW	6/14/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	< 0.03	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
AOPC 13 - Found		Material					1	1											
SB-6:GW	6/14/17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02265	< 0.03	< 10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 3.2	< 0.03
							Т	ABLE 8	(Continu	ed)									

TABLE 8 (Continued) WATER SAMPLE ANALYTICAL DATA - SVOCs

North Star Casteel Property

			C)/OC a 4/mmb b																
										SVOCs 6	a (ppb) b								
		Ca	rcinogen	ic Polycy	clic Aron	natic Hyd	rocarbon	s (cPAHs	s) ^c				Dete	cted Add	itional S\	/OCs			
Sample ID	Sample Date	Benzo(a)pyrene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	TEF-Adjusted Total cPAHs ^d	Naphthalene	Benzoic acid	Acenaphthylene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Bis(2ethylhexyl)phthalate	Benzo(g,h,i)perylene
UST Liquid																			
UST-H20	5/26/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160	< 0.0158	< 0.0378	< 0.0197	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184
AOPC 13 - Found	lary Waste	Material																	
EB-1	4/27/21	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0378	< 0.250	-	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	-	< 0.0500
EB-2	4/28/21	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0378	< 0.250	-	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	-	< 0.0500
EB-4	4/30/21	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0378	< 0.250	-	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	-	< 0.0500
EB-5	5/26/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160	< 0.0158	< 0.0378	< 0.0917	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184
EB-6	6/7/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160	< 0.0158	< 0.0303	< 0.0917	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184
EB-8	6/24/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160	< 0.0158	< 0.0303	< 0.0917	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184
EB-10	8/27/21	< 0.0184	< 0.0203	< 0.0168	< 0.0202	< 0.0179	< 0.0160 ^j	< 0.0158	< 0.0303	< 0.0197	-	< 0.0171	< 0.0169	< 0.0180	< 0.0190	< 0.0270	< 0.0169	-	< 0.0184 ^j
						MTCA	A Method	l A Grou	ndwater	Cleanup	Levels								
Groundwate	er																		
a Somi volatilo orga	nia aamma	ada (CVO)	20)	l al		A a 4la a al	0270D a	. 0070E C	M CVOC	o not liete	ا مطاء منام	table war	4	atad in ar			linka al im	Alaa Jalaa	4

- a Semi-volatile organic compounds (SVOCs) were analyzed using EPA method 8270D or 8270E SIM. SVOCs not listed in the table were not detected in any samples and are listed in the laboratory reports.
- b Analytical results reported in parts per billion (ppb)
- c (cPAHs) Carcinogenic Polycyclic Aromatic Hydrocarbons
- d Toxicity Equivalency Factors (TEFs) calculated under WAC 173-340-708(e) in accordance with Table 708-2 (in WAC 173-340-900). TEF is shown with less than (<) symbol when no cPAHs were detect
- e Bold value indicates analyte concentration exceeded laboratory reporting limit
- f Yellow shading indicates analyte concentration, one-half the laboratory reporting limit, or TEF-adjusted total cPAH concentration exceeds the MTCA Method A Cleanup Level.
- g The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- h (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- i (-) Not analyzed
- j The identification of the analyte is acceptable; the reported value is an estimate
- k (-) Not Available (Washington Department of Ecology has not established a Method A Soil Cleanup Level for the respective analyte)

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T8 GW - SVOCs.xlsx]SVOCs

TABLE 9 WATER SAMPLE ANALYTICAL DATA - METALS

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

					RCRA 8 Me	etals ^a (ppb) ^b			
					TOTAL O MC	itais (ppb)			
Sample ID	Sample Date	Arsenic	Barium	Cadmium	Chromium (Total)	Lead	Mercury	Selenium	Silver
AOPC 1 - Me	tals Receiving	Area							
SB-9:GW	6/15/17	< 1 ^c	27.3 ^d	< 1	< 1	< 1	< 1	< 1	< 1
SB-10:GW	6/15/17	< 1	20.0	< 1	< 1	< 1	< 1	< 1	< 1
AOPC 4 - Sto	ormwater Drain	- Main Yard							
SB-5:GW	6/13/17	< 1	24.8	< 1	< 1	< 1	< 1	< 1	< 1
AOPC 5 - So	uthwest Compr	essor							
SB-2:GW	6/12/17	< 1	30.7	< 1	< 1	< 1	< 1	< 1	< 1
MW-2	8/27/21	_e	-	< 0.150	-	< 0.849	-	-	-
MW-2 Dup	8/27/21	-	-	< 0.150	-	1.11 ^f	-	-	-
EB-10	8/27/21	-	-	< 0.150	-	< 0.849	-	-	-
AOPC 6 - So	uthwest Drywel	I							
SB-1:GW	6/12/17	< 1	20.3	< 1	< 1	< 1	< 1	< 1	< 1
	uth Compresso								
SB-4:GW	6/13/17	< 1	18.6	< 1	< 1	< 1	< 1	< 1	< 1
	tormwater Rete			1		1	r		
SB-7:GW	6/14/17	< 1	23.1	< 1	< 1	< 1	< 1	< 1	< 1
-	oundry Waste N		T	Т	T	1	Т	T	
SB-6:GW	6/14/17	< 1	11.9	< 1	< 1	< 1	< 1	< 1	< 1
UST Liquid				T		ı	T	Ī	
UST-H2O	5/26/21	0.356	26.1	< 0.215	2.97	5.57	< 0.100	< 0.300	< 0.0700
Equipment E		1	T	T		ī	T		
EB-1	4/27/21	< 2.00	-	< 1.00	< 2.00	< 2.00	-	-	-
EB-3	4/29/21	< 2.00	-	< 1.00	< 2.00	< 2.00	-	-	-
EB-5	5/26/21	< 0.180	-	< 0.150	< 0.124	< 0.849	-	-	-
EB-6	6/7/21	< 0.180	-	< 0.150	-	< 0.849	-	-	-
EB-7	6/8/21	-	-	-	< 1.24	-	-	1	1
EB-9	8/12/21	< 0.180	-	-	< 1.24	-	-	-	-
			MTCA Metho	d A Groundw	ater Cleanup	Levels			
Groun	dwater	5	g	5		15	2		

- a Resource Conservation and Recovery Act (RCRA) 8 Metals analyzed using EPA method 6020A or 6020B
- b Analytical results reported in parts per billion (ppb)
- c (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- d Bold value indicates analyte concentration exceeded laboratory reporting limit. The exceeded level is also shaded
- e (-) Not analyzed
- f The identification of the analyte is acceptable; values are outside upper control limits
- g (--) Not Available (Washington Department of Ecology has not established a cleanup level for the respective analyte)

 \$\frac{\text{S:\Project Files\North Star Castee\Tables\0}\cURRENT WORKING TABLES}{\text{S:\Project Files\North Star Castee\Tables\0}\cup \text{OF CURRENT WORKING TABLES}}

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T9 GW - RCRA 8 Metals.xlsx]Metals

TABLE 10 WATER SAMPLE ANALYTICAL DATA - PCBs

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

					PCBs ^a	(ppb) ^b				
Sample ID	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Total PCBs
A000 4 Mada	la Danaisia		<	<	<	<	<	< _	<	-
AOPC 1 - Meta	1		.04	.04	.04	.04	.04	.04	.04	d
SB-9:GW	6/15/2017	< 0.1 °	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND d
SB-10:GW	6/15/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
AOPC 4 - Storr			_	T	T		T		1 .	
SB-5:GW	6/13/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
AOPC 5 - South		ī .	T	T	T		T		1 .	
SB-2:GW	6/12/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
MW-2	8/27/2021	< 0.270	< 0.270	< 0.270	< 0.270	< 0.173	< 0.173	< 0.173	_ e	< 0.500
MW-2 Dup	8/27/2021	< 0.270	< 0.270	< 0.270	< 0.270	< 0.173	< 0.173	< 0.173	-	< 0.500
AOPC 6 - Sout			T	T	T		T		1 .	
SB-1:GW	6/12/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
AOPC 7 - Sout			I	I	I	ı	I	ı	1	
SB-4:GW	6/13/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
AOPC 10 - Stor				ı	ı	1	ı	1	1	
SB-7:GW	6/14/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
AOPC 13 - Fou			1	1	1	T	1	T	1	
SB-6:GW	6/14/2017	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND
UST Liquid	1		1	1	1	T	1	T	1	
UST-H20	6/8/2021	< 0.270	< 0.270	< 0.270	< 0.270	< 0.173	< 0.173	< 0.173	< 0.173	ND
Equipment Bla	1		ı	ı	ı	T	ı	T	1	
EB-4	4/30/21	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	-	ND
EB-10	8/27/2021	< 0.270	< 0.270	< 0.270	< 0.270	< 0.173	< 0.173	< 0.173	-	< 0.500
		1	MTCA Me	thod A Gro	undwater C	leanup Lev	rels			

Groundwater

a Polychlorinated Biphenyls (PCBs) analyzed using EPA method 8082A

- b Analytical results reported in parts per billion (ppb)
- c (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- d (ND) No PCBs were detected
- e (-) Not analyzed

S:\Project Files\North Star Casteel\Tables\(0)-CURRENT WORKING TABLES\[T10 GW - PCBs.xlsx]2017 PCBs

0.1

TABLE 11 SUBSLAB VAPOR SAMPLE ANALYTICAL DATA

North Star Casteel 1200 West 13th Street Vancouver, WA 98660

		Petro	oleum Hydro	carbons ^a (µ	ıg/m3) ^b		\/al	itile Orgar	io Compo	unde ^c (u	a/m2)			M	ajor Gases	d (Percent	and PTII/ff	3,	
		Hydro	carbon Frac	ctions	Ŧ		VOI	illie Orgai	iic Compc	Julius (µ	g/1113)			IVI	ajui Gases	(Fercent	and B10/ii	.)	
Sample ID	Sample Date	Aliphatics EC5-8	Aliphatics EC9-12	Aromatics EC9-10	Combined Total Fractions (Total TPP	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Naphthalene	2-Propanol	Carbon Dioxide	Carbon Monoxide	Methane	Nitrogen	Oxygen	Hydrogen	вти
Subslab Vapor	Samples																		
SV-1	8/27/21	1,590 ^{e f}	3,450 ^f	244 ^f	5,284 ^{f g}	1.16	6.08	< 6.95 ^h	< 6.95	< 1.74	6.70	187	0.127	< 0.0500	< 0.0500	77.0	22.9	< 0.0500	< 0.0500
SV-2	8/27/21	987 ^h	2,340 ^h	42.5 ^h	3,369.5	1.80	< 3.77	< 17.4	< 17.4	< 4.34	1.02	83.7	0.285	< 0.0500	< 0.0500	77.1	22.6	< 0.0500	< 0.0500
Leak Test Shro	oud Samples																		
SV-1 Shroud	8/27/21	- '	-	-	-	-	-	-	-	-	-	25,000	-	-	-	-	-	-	-
SV-2 Shroud	8/27/21	-	-	-	-	-	-	-	-	-	-	57,000	-	-	-	-	-	-	-
					•	М	TCA Meth	nod B Scr	eening L	evels		•							
	ıb Vapor	-	-	-	4,700	11	76,000	15,000	1,5	00	2.5	-	-	-	-	-	-	-	-

- a Petroleum fractions were analyzed using EPA method TO-15
- b Analytical results listed in micrograms per cubic meter (µg/m3)
- c Volatile organic compounds (VOCs) were analyzed using EPA method TO-15
- d Major gases were analyzed using EPA method 3C
- e Bold value indicates analyte concentration exceeded laboratory reporting limit f Surrogate recovery was above the upper limit indicating data may be biased high
- g Yellow shading indicates analyte concentration, one-half the laboratory reporting limit, exceeds the MTCA Method B Cleanup Level.

 h (<) Analyte concentration not detected above the laboratory reporting limit, as listed

TABLE 12 SUBSLAB VAPOR TOTAL TPH NON-CARCINOGENIC CLEANUP LEVELS

North Star Casteel 1200 West 13th Street Vancouver, WA 98660

			,			
Sample ID	Sample Date	Petroleum Fraction or Compound ^a	Sample Concentration (µg/m3) ^b	Fraction of Total Concentration (F _i) ^c	CUL _i ^d (µg/m3)	(F _i) / CUL _i (1 / μg/m3)
SV-1	8/27/21	Non-Carcinogenio	Measurements and	d Calculations		
		Aliphatics EC 5-8	1,590	0.3001	9.07E+04	3.31E-06
		Aliphatics EC 9-12	3,450	0.6512	4.53E+03	1.44E-04
		Aromatics EC 9-10	244	0.0461	6.07E+03	7.59E-06
		Benzene	1.16	0.0002	4.57E+02	4.79E-07
		Toluene	6.08	0.0011	7.47E+04	1.54E-08
		Ethylbenzene	< 6.95 ^e	0.0000	1.53E+04	f
		Xylenes	< 8.69	0.0000	1.55E+03	
		Naphthalene	6.7	0.0013	4.60E+01	2.75E-05
		Total TPH	5,298	1.0	5,478.4 ^g	

- a Petroleum fractions/compounds were analyzed using EPA method TO-15
- b Analytical results and CULs listed in micrograms per cubic meter (µg/m3)
- $c (F_i)$ Fraction by weight of petroleum component (unitless)
- d (CUL_i) Subslab vapor cleanup level for petroleum component
- e (<) Analyte not detected above the laboratory reporting limit, as listed
- f (--) Not applicable
- g Total TPH Non-Carcinogenic CUL calculated based on the following equation: CUL = 1 / Σ (F_i / CUL_i)

Appendix A

Previous Report Links

Phase I Environmental Site Assessment Report (Environmental Partners Inc. (EPI)), dated October 31, 2017

(https://drive.google.com/file/d/1u4qm0z3GHnN_kybsMVXAZYaftodNd_70/view?usp=sharing)

Phase II Environmental Site Assessment Report (EPI) dated October 31, 2017 (https://drive.google.com/file/d/1aDEHXOTgtk1nrkxq_rqlgDKV6-dQIVeY/view?usp=sharing)

Updated Subsurface Investigation Letter Report (EPI), dated May 3, 2018 (https://drive.google.com/file/d/1vsCE-sudTvg5Q80QHVmEqWQJyrr8TwqX/view?usp=sharing)

Summary of Selected Confirmational Soil Sampling, Associated Environmental Group, LLC (AEG), dated December 5, 2018

(https://drive.google.com/file/d/1kvZ1fSuQKJjhokW-77-dde62WgTKYhF4/view?usp=sharing)

Wasco County Landfill Disposal Receipts, November 27-28, 2018 (https://drive.google.com/file/d/1PRq_IEWDNNWM39W4drT6KbkeZ20IHFzG/view?usp=sharing)

Appendix B

Field Methods and Procedures

FIELD METHODS AND PROCEDURES

The following presents the general methods and procedures that are utilized to complete field activities. These activities include: advancing borings, soil excavation, groundwater level monitoring and surveying, installing temporary or monitoring wells, and collecting of soil and groundwater samples for laboratory analyses. Soil and groundwater samples are collected, preserved, and transported for analysis in general accordance with the Washington Department of Ecology (Ecology) methodology as presented under Chapter 173-340 Washington Administrative Code (WAC). If not specified by current Ecology regulations, sampling and analytical methods are implemented in general accordance with EPA protocol and/or commonly accepted industry standards for this time and place.

Utility Locating

Utilities, including overhead and underground, are identified and located prior to conducting work at the site. For overhead utilities, a safe minimum working distance is maintained with all sampling equipment dependant on the activity. For drilling or direct push equipment, a minimum 15-20 foot buffer is recommended. For other work such as excavation by backhoe, hand augering, hand probing, etc., a minimum distance is maintained such that the sampling equipment cannot come in contact with the utilities.

Underground utilities are located by contacting Utility Notification Center (UNC) for all underground sampling, excavation, and all other activities performed below the surface. The notification is performed at least 48 hours in advance of the work or as required by local laws and regulations to allow sufficient time for marking of the affected utilities. When warranted, MSBA will arrange on-site meetings with the contracted locators for the utilities to resolve any issues of proximity to the planned work.

In addition to contacting the UNC, MSBA may also perform one or more of the following activities intended to help prevent incidental contact with underground utilities during subsurface activities.

- 1) **Field Observation**: MSBA observes the site and surroundings for any signs of overhead and/or underground utilities.
- 2) **Private Utility Locate**: MSBA may contract with private utility locators if warranted to provide additional clarification of potential utilities and their locations.
- 3) **Hand Clearing**: MSBA may clear up to a maximum of the first five feet of subsurface soil for potential underground utilities by hand digging, hand augering, or air knifing.

Grab Soil Sampling

Grab soil samples are collected by hand or using a decontaminated shovel or hand trowel directly from surface/shallow soil or the sidewalls/base of a test pit or excavation area up to a depth of 4 feet below surface grade (bsg). At depths deeper than 4 feet bsg, soil samples are collected from an excavator bucket. The excavator bucket may be decontaminated prior to sampling. Just prior to collecting each sample, approximately 3 inches of soil is scraped away from the sampling surface. Soil samples are collected with a minimum amount of disturbance.

Soil samples are placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 milliliter (ml) volatile organic analysis (VOA) EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity.

Drilling Method and Soil Sampling

Subsurface explorations are completed using drilling equipment operated by a licensed drilling subcontractor. The drilling method is selected based on the anticipated subsurface conditions. In general, push-probe or hollow-stem methods are utilized for softer silty soils and sonic or air-rotary methods are utilized for harder, rocky conditions. An MSBA representative oversees and directs the explorations and obtains all soil and groundwater samples.

Soil samples are collected by MSBA and placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 ml VOA EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity. The soil type and other pertinent information is recorded on a field Subsurface Exploration Log.

Hand Auger Soil Boring and Sampling

Auger borings are advanced by hand. Samples of soil are collected directly from the barrel of the auger at the target depth or as warranted based on observed conditions. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any unusual conditions which may affect the sample integrity.

Soil samples are collected by MSBA and placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 ml VOA EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity. The soil type and other pertinent information is recorded on a field Subsurface Exploration Log.

Soil Field Screening Methods

Field screening methods consist of visual observations, water sheen screening, and/or headspace vapor screening using a MiniRAE photoionization detector (PID). Visual screening methods include observations of staining, discoloration, and other indicators of petroleum. Water sheen screening involves placing a small amount of soil into water and making observations of any sheens. Water sheen classifications are made as follows:

No Sheen: No visible sheen on the water surface.

Slight Sheen: Faint and dull sheen with no color; dissipates quickly. Naturally occurring

organic matter may produce a slight sheen.

Moderate Sheen: May have some color or iridescence; spread of sheen is irregular to flowing; most

of water surface covered with sheen.

Heavy Sheen: Obvious color and iridescence; spread is rapid; entire water surface may be

covered with sheen.

Headspace vapor screening is conducted by creating a small hole in the soil core or placing a small portion of soil into a Zip-Loc bag and sealing it shut. The probe of the PID is inserted into the soil core. The soil sample within the bag is allowed to volatilize and the probe of the PID is inserted into the bag. The reported accuracy of a MiniRAE PID is 10% discrepancy at concentrations between 1 and 2,000 ppm and 20% discrepancy at concentrations greater than 2,000 ppm. The PID is calibrated in accordance with the manufacturer recommended procedures prior to each day of use.

Temporary Well Installation

Following completion of the soil borings, temporary wells may be installed to allow for groundwater level monitoring and sample collection. Following completion of the groundwater level monitoring and sampling, the temporary well is abandoned in accordance with the Washington Ecology Water Resources Program standards.

Well Development

Following installation, the temporary wells are developed to remove fines and to enhance the recharge and representative quality of water if sufficient water column and recharge is present. The development is performed using a bailer or pump (peristaltic or submersible). The well may be surged prior to development. Well development continues until the discharge is relatively sediment free. Well development may be discontinued if there is insufficient recharge.

Monitoring Well Elevation Survey

The top of each well casing is surveyed to within plus or minus (+/-) 0.01-foot relative to a common temporary benchmark. A temporary benchmark is designated with an assumed elevation relative to the approximate surface elevation above mean sea level (msl). The surveyed locations are marked on each casing for future reference and measuring. The purpose of the survey is to allow precise correlation of measured groundwater levels between each of the wells at the site. The survey information is recorded on a survey data sheet.

Groundwater Level Monitoring

The depth to groundwater (water level) is measured with an electronic, hand-held, water level indicator. The probe of the indicator is lowered in the well until contact with groundwater completes a circuit causing a buzzer to activate. The depth to water, measured from the surveyed point at the top of the well casing, is read directly from a graduated cord attached to the probe with marked increments of 0.01-foot. The groundwater level data is recorded on a groundwater level data sheet.

If present, free product thickness in a well is measured with an electronic, hand-held oil/water interface probe. The oil/water interface probe is lowered into the well until contact with fluids initiates a signal tone. An intermittent tone indicates water and a continuous tone indicates product. A measuring tape in increments of 0.01-foot is attached to the probe and is used to measure thickness of product in a well.

Groundwater Sampling

Prior to collecting a sample for laboratory analysis, the depth to water is measured and the wetted casing length and corresponding well volume is calculated. A minimum of three well volumes of groundwater is then purged with a bailer, submersible pump or peristaltic pump to remove potentially stagnant groundwater and allow the surrounding formation water to enter the well for sampling. During the purging process, the pH, conductivity, and turbidity may be monitored until these parameters are stabilized to confirm that representative formation water is collected for analysis. Stable parameters are generally defined by three successive readings within plus or minus 0.1 for pH, 3 percent for conductivity, and 10 percent for turbidity. Parameter stabilization is typically achieved in less than three well volumes.

After purging, a groundwater sample is collected when the water level in the well has recharged to within 85 percent of the initial static water level. If the desired amount of recharge is not achieved within a period of 60 minutes, the sample is collected and the deficient water level is recorded. If the water column does not contain sufficient volume, the sample may be collected incrementally as recharge allows. The sample is collected from the well using a bailer, submersible pump, or peristaltic pump with dedicated tubing, under low flow conditions to minimize the loss of volatile components, if present.

The groundwater is transferred into laboratory provided 40 ml glass VOA vials, one liter amber glass jars, and 250 ml polyethylene bottles. Some containers may contain a preservative. The type of container, and whether or not it is preserved, is determined by the type of laboratory analysis to be performed. Groundwater samples collected in VOAs are transferred with minimal agitation and sealed with Teflon-lined septum lids so that no head space is present. Samples collected in VOA vials are submitted for volatile organic compound (VOC) analysis. The vials may contain 2-5 drops of dilute HCL as a preservative increasing the sample hold time from 7 to 14 days. Groundwater

samples are collected in preserved or non-preserved one liter amber glass jars for analysis of non-volatile petroleum constituents. Groundwater samples are collected in non-preserved 250 ml polyethylene bottles for analysis of metals. Samples collected for analysis of dissolved metals are filtered in the field to remove 0.45 micron size particles or immediately upon receipt by the laboratory. Samples collected for analysis of total metals are not filtered. Groundwater purge and sample data is recorded on a Purge and Sample Data sheet.

After the samples are properly sealed, they are placed immediately in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until being prepared by the laboratory for analysis.

Chain-of-Custody and Labeling

The Chain-of-Custody (COC) is a form that documents the custody of a sample from the time of origin to the time of disposal or destruction. A COC is initiated in the field at the time the samples are collected. The sampler documents such information as the time, date, type of sample, and requested analyses. Any individual in custody of the samples, including the laboratory, is required to document the transfer of custody (beginning with the sampler) by signing the COC (including date and time of transfer).

Equipment Decontamination

Equipment used to collect soil and groundwater samples such as; bailers, water level indicators, etc., is decontaminated prior to each use. Strict decontamination procedures are utilized to help eliminate the potential for cross-contamination between samples and sample locations.

The decontamination procedure includes a thorough washing in tap water with Liquinox followed by two rinses in tap water and a third and final spray rinse using distilled water. If time permits, the sampling equipment is allowed to air dry. Disposable latex gloves are worn during sampling to help eliminate the potential for cross-contamination by the sampler. The gloves are discarded after each sample event and a new pair is utilized for each subsequent sampling event.

Investigation Derived Waste

Investigation derived waste (IDW) accumulated during the explorations typically consists of soil, groundwater, or decontamination and rinse waters. Soil and water are collected and placed into suitable containers. A label is affixed to each storage container including the date, contents, and contact information. The containers are stored onsite in a secure location pending disposal at an authorized facility. Disposable items such as sampling gloves, paper towels, and plastic sheeting are placed into plastic garbage bags and disposed in a municipal trash receptacle.

S:\Project Files\North Star Casteel\MSBA Reports\Closure Report\App B Field Methods and Procedures\Generic FM&P (070720) (Washington) r.wpd

DRAFT

Appendix C

GeoPotential Geophysical Survey Summary Report

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

330 Creekside Terrace, Fairview, OR 97024 Phone: (\$03) 912-6441 Fax: (\$03) 912-6448 WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

SUMMARY REPORT

SUBSURFACE MAPPING SURVEY
TO DETECT
UNDERGROUND STORAGE TANKS,
BACKFILLED EXCAVATIONS & UTILITIES

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

CLIENT

Martin S. Burck Associates, Inc. 200 North Wasco Court Hood River, OR 97031

DATE OF SURVEY

April 27, 2021

GeoPotential Project Number: 1257

CONTENTS

Summary	3
Introduction	3
Survey Objectives	3
Survey Site	3
Survey Equipment	4
Procedure	4
Results	
Limitations	5
FIGURES Figure 1. REMEDIAL PLAN MAP	6
Figure 2. Site South Locations	7
Figure 3. Site North Locations	8
<u>APPENDICES</u>	
Appendix A - Ground Penetrating Radar Surveys	Q

SUMMARY

A Subsurface Mapping Survey (SMS) was conducted over 13 Areas over the North Star Casteel Property located at 1200 West 13th Street in Vancouver, WA to search for possible Underground Storage Tanks (USTS) and UST backfilled pits (see Figures). A Subsurface Clearance Survey (SCS) was conducted over proposed boring and excavating locations.

Magnetic Surveys, Ground Penetrating Radar (GPR) Surveys and hand held magnetic and electromagnetic scanners were used for the project.

One possible UST was detected in the area covered by the SMS (Area 8).

Two possible UST backfilled excavations were detected (Areas 7 & 1).

Three shallow backfilled excavations were detected (Areas 4, 5 & 11).

Two catch basin/dry wells were mapped (Areas 2 & 3 & Areas 8 & 9).

An open drain field was mapped in Area 10.

A SCS was conducted over all 13 Areas and utilities mapped.

INTRODUCTION

Ralph Soule & Tarek Zaher of GeoPotential conducted the Subsurface Mapping Survey. Josh Owen was the representative for MSBA. Fieldwork was conducted on April 27, 2021. The report was completed and e-mailed to MSBA on May 6, 2021.

Subsurface mapping surveys are geophysical surveys utilizing geophysical methods and data to detect and locate natural and manmade subsurface features. Magnetic Surveys are used to detect and map the locations of buried **ferrous** (iron-bearing) objects (see Appendix A). Ground Penetrating Radar (GPR) Surveys are used to map both natural and manmade subsurface features such as USTs, utilities, backfilled pits, etc. (see Appendix B.). Pipe and cable locators are used to map the locations of buried utilities and piping.

Once subsurface ferrous objects are detected from a magnetic survey then hand held scanners and GPR surveys are used to map the locations, depths, sizes and shapes of the objects.

SURVEY OBJECTIVES

The objectives of this SMS survey were:

- 1. Search for USTS.
- 2. Search for backfilled UST Pits.
- 3. Search for shallow backfilled excavations.
- 4. Search for catch/dry well locations.

SURVEY SITE

The SMS Site consisted of asphalt, gravel and soil covered areas (see Figures). MSBA designated 13 Areas of interest on the Site. Historical information provided by MSBA indicated USTS had previously occupied the Site and shallow excavations had previously been conducted on the Site. A possible standing vent pipe in Area 8 was the only surface indication of possible USTS on the Site. Four catch basins In Areas 2, 3, 8 & 9 were exposed on the Site

SURVEY EQUIPMENT

The following geophysical instruments were used to conduct the survey:

- Mala RAMAC Ground Penetrating Radar System with a 450 MHz antenna (GPR Survey).
- Schonstedt GA52 Magnetic Gradiometer.
- Aqua-Tronics A6 Pipe & Cable locator.
- Heath Sure Lock pipe & Cable locator.

This equipment and the procedures used to meet the survey objectives of this project have been proven effective in detecting metallic objects and mapping non-metallic features such as disturbed soil from backfilled pits.

Geophysical techniques are excellent at detecting changes in the subsurface caused by natural and manmade objects; however, they are poor at actually identifying subsurface features. Complementary methods may be used to assist in the interpretation; however, the only sure way of identifying a buried feature is by excavation.

Brief descriptions of the magnetic method and the radar method are included in the Appendices.

PROCEDURE

SMS Survey

MSBA designated 13 Areas of interest on the Site. The Site was divided into Site South (Figure 2) and Site North (Figure 3). A SMS was conducted over each Area consisting of a Magnetic Scan with the Schonstedt , an Electromagnetic Scan with the A6, a Power Cable Scan with the Heath Sure Lock and a Ground Penetrating Radar Scan with the MALA GPR. Results were marked on the Areas with wire flags and marking paint. A photograph of each Area was taken and is presented in Figures 2 & 3. Google Aerials are used as underlays for Figures.

RESULTS

Results are shown on Figures 2 & 3.

SITE SOUTH - Figure 2

Area 1: This AREA consisted of a shallow (3-4 feet bgs) excavation over part of the Site and a deeper (10-11 feet bgs) over the remainder of the Site that may indicate the former location of a UST. An air pressure line was mapped crossing the Site.

- Areas 2 & 3: A catch basin in Area 3 drains to a catch basin/dry well in Area 2.
- Area 4: A shallow backfilled excavation (2-4 feet bgs) with 2 utility lines in the vicinity of the excavation.
- Area 5: A shallow backfilled excavation (2-4 feet bgs) with a utility line in the vicinity of the excavation.
- Area 6: A utility line in the vicinity of a proposed boring.

NORTH SITE - Figure 3

Area 7: A deeper backfilled excavation (9-10 feet bgs) with a utility line in the vicinity of the excavation.

Area 8: A possible UST at a depth of 4 feet bgs. The diameter of the UST is 5-6 feet. The length could not be determined due to surface features preventing the acquisition of GPR data. A possible vent pipe was exposed on the wall of the building on the South Side of the possible UST. Excavation is necessary to confirm the existence of the UST.

Areas 8 & 9: A catch basin in Area 8 drains to a catch basin/dry well in Area 9.

Area 10: A 10-11 foot bgs backfilled excavation filled with coarse gravel and is interpreted as an open drain field for storm water.

Area 11: A shallow (3-4 feet bgs) backfilled excavation with 2 utility lines in the vicinity of the excavation. An apparent abandoned water meter is located on the South edge of Area 11.

Area 12: A proposed boring location in an open field with no utilities.

Area 13: A proposed boring area with 2 utility lines in the vicinity of the borings.

LIMITATIONS

Limitations of magnetometer and GPR surveys can be seen in the Appendices.

Geophysical surveys consist of interpreting geophysical responses from subsurface features. Since a variety of subsurface features can produce identical geophysical responses, it is necessary to confirm the geophysical interpretation with intrusive investigations such as excavating or drilling. In addition, many subsurface features may produce no geophysical response.

Ralph Soule GeoPotential May 6, 2021

EAST

SOUTH

SOUTHWEST

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

330 Creekside Terrace, Fairview, OR 97024 Phone: (50%) 912-6441 Fax: (50%) 912-6449

WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz SUBSURFACE MAPPING SURVEY

North Star Casteel Property 1200 West 13th Street Vancouver, WA 98660

Figure 3. Site North Locations

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

330 Creekside Terrace, Fairview, OR 97024 Phone: (\$03) 912-6441 Fax: (603) 912-6448
WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

APPENDIX A GROUND PENETRATING RADAR SURVEYS

Ground Penetrating Radar (GPR) can be a valuable tool to accurately locate both metallic and non-metallic UST's and utilities, buried drums and hazardous material at some sites. It may detect objects below reinforced concrete floors and slabs. GPR may delineate trenches and excavations and, under some conditions, it may be used to locate contaminant plumes. It has been used as an archaeological tool to look for buried artifacts. It may accurately profile fresh water lake bottoms either from a boat or from a frozen lake surface. GPR may be used to locate voids below roads and runways. GPR has numerous engineering applications. It can be used in non-destructive testing of engineering material, for example, locating rebar in concrete structures and determining the thickness of concrete and other structural material.

GPR uses short impulses of high frequency radio waves directed into the ground to acquire information about the subsurface. The energy radiated into the ground is reflected back to the antenna by features having different electrical properties to that of the surrounding material. The greater the contrast, the stronger the reflection. Typical reflectors include water table, bedrock, bedding, fractures, voids, contaminant plumes and man-made objects such as UST's and metal and plastic utilities. Materials having little electrical contrast like clay and concrete pipes may not produce strong reflections and may not be seen. Data are digitally recorded or downloaded to a laptop computer for filtering and processing.

The frequency of the radar signal used for a survey is a trade off. Low frequencies ($250 \, \text{MHz} - 50 \, \text{MHz}$) give better penetration but low resolution so that pipes and utilities may not be seen. Pipes and utilities may be seen using higher frequencies ($500 \, \text{MHz}$) but the depth of penetration may be limited to only a few feet especially in the wet, clayey soils found in many areas of the NW USA. The GPR frequency is dependent upon the antenna. Once an antenna is selected, nothing the operator can do can increase the depth of penetration.

Radar data is ambiguous. Many buried objects produce echoes that may be similar to the echo expected from the target object. Boulders and debris produce reflections that are similar to pipes and tanks. Subtle changes in the electrical properties along a traverse caused by changes in soil type, mineralogy, grain size, and moisture content all produce "noise" that can make interpretation difficult. Interpreting radargrams is an art as much as a science.

Under some conditions, although a UST itself may not be clearly visible in a GPR record, the excavation or trench in which the UST is buried is evident. Usually GPR data is used to compliment data from other "tools". For example, a trench-like reflection but no clear UST reflection, combined with a "tank" shaped magnetic anomaly suggests the presence of a UST. Although the UST itself could not be seen using GPR, the radar showed a trench-like reflection. The magnetic data showed a large ferrous object. We would report a possible UST at that location.

GPR is often used in conjunction with magnetometer surveys. Magnetometer Surveys are very fast and large areas can be covered cost effectively. Magnetic anomalies are marked in the field, and then may be further investigated using radar.

GPR, like other geophysical tools, is excellent at detecting changes across a site, but it is poor at actually identifying the cause of the change. **The only definite way to identify buried objects is through excavation.**

ADVANTAGES - General

- When GPR data is properly interpreted subsurface objects can usually be confidently identified.
 This often requires the GPR data be combined with other geophysical data, surface features and
 historical information.
- GPR provides continuous records along traverses which, depending on the goal of the survey, may be interpreted in the field.
- At flat, open sites, for reconnaissance purposes, the antenna can be towed behind a vehicle at several mph.
- Many GPR antennas are shielded and are unaffected by surface and overhead objects and power lines.
- GPR can be used in conjunction with magnetic or EM surveys to accurately locate buried objects.

ADVANTAGES - Site specific

- With a low frequency antenna, in clean, dry, sandy soil, reflections from targets as deep as 100 feet are possible. Geologic features such as bedrock and cross bedding may be seen at some sites.
- The resolution of data is very high particularly for high frequency antennas.
- Shallow, man-made objects generally can be detected.
- Fiberglass UST's and plastic pipes can be detected using GPR.

LIMITATIONS - General

- To acquire the highest quality data, proper coupling between the antenna and the ground surface is necessary. Poor data may be obtained at sites covered with debris, an uneven surface, tall grass and brush. Objects located at curbs are difficult to see.
- Acquiring GPR data is slow. The antenna must be over the target. The signal from the antenna is
 cone-shaped. Reflections from objects to the side of the antenna may be seen, but their actual
 location relative to the antenna is not obvious.
- Penetration of the GPR signal is "site specific" and its depth of penetration at a particular site cannot be predicted ahead of time. Near surface conductive material, such as salty or contaminated ground water and wet, clay-rich soil, may attenuate the radar signal, limiting the effective depth of the survey to several feet. Reinforced concrete also can attenuate the signal. Rebar may produce reflections that look like pipes.

 GPR may not be cost-effective for some projects. For a detailed survey mapping underground storage tanks and utilities, it may be necessary to collect data in orthogonal directions at 5-foot line spacing.

LIMITATIONS – Interpretation

- Interpretation can be difficult. Radar data are ambiguous. Subsurface objects can be detected
 but, in general, they cannot be identified. USTs and utilities have a characteristic reflection,
 however, large rocks and boulders have a similar reflection.
- The reflection visible in a GPR record is very complex and may be caused by small changes in the electrical properties of the soil. The target in mind may not produce the reflection. Due to "noise", the target may be missed. USTs and deep utilities may be missed if they are under debris and/or other pipes.
- Other methods may be necessary to aid in the interpretation of the data (use a magnetometer to detect a large metallic mass, then GPR to determine if the object is tank-like, or a utility locator to determine if there are feed lines and fill pipes leading to the object).
- Adequate contrast between the ground and the target is required to obtain reflections. UST's may be missed if they are badly corroded. Utilities made of "earth" materials like clay and concrete may not be detected since their electrical properties are similar to the surrounding soil.
- To determine the depth to an object without "ground truth", assumptions must be made regarding
 soil properties. Even with ground truth at several locations on the same site, changes in material
 across a site (therefore changes in signal velocity) can cause errors in depth measurements at
 other locations.

Appendix D

Excavation Photographs

Photo 1: AOPC 1: UST Area

Photo 2: AOPC 1: Middle Deeper Excavation

Photo 3: AOPC 1: Southern Excavations

Photo 4: AOPC 1: Southwest Excavations

Photo 5: AOPC 1: Baghouse Excavation

Photo 6: AOPC 1: Baghouse Excavation

Photo 7: AOPC 1: Bahgouse Excavation

Photo 8: AOPC 1: Baghouse Excavation

Photo 9: AOPC 1: Baghouse Excavation

Photo 10: AOPC 5: Middle Excavation

Photo 11: AOPC 5: Western Excavation

Photo 12: AOPC 5: Western Excavation

Photo 13: AOPC 5: Northern Excavation

Photo 14: AOPC 5: Southwest Excavation

Photo 15: AOPC 7: Previous 2018 Excavation and Loading Dock

Photo 16: AOPC 8: Excavation

Photo 17: AOPC 9: S24 and S67 Vacuum Removal

Photo 18: AOPC 9: S23 and S68 Vacuum Removal

Photo 19: AOPC 13: Excavation

Photo 20: AOPC 14: Western Excavation

Photo 1: AOPC 1: UST Area

Photo 3: AOPC 1: Southern Excavations

Photo 2: AOPC 1: Middle Deeper Excavation

Photo 4: AOPC 1: Southwest Excavations

Photo 5: AOPC 1: Baghouse Excavation

Photo 7: AOPC 1: Baghouse Excavation

Photo 6: AOPC 1: Baghouse Excavation

Photo 8: AOPC 1: Baghouse Excavation

Photo 9: AOPC 1: Baghouse Excavation

Photo 11: AOPC 5: Western Excavation

Photo 10: AOPC 5: Middle Excavation

Photo 12: AOPC 5: Western Excavation

Photo 13: AOPC 5: Northern Excavation

Photo 15: AOPC 7: Previous 2018 Excavation and Loading Dock

Photo 14: AOPC 5: Southwest Excavation

Photo 16: AOPC 8: Excavation

Photo 17: AOPC 9: S24 and S67 Vacuum Removal

Photo 19: AOPC 13: Excavation

Photo 18: AOPC 9: S23 and S68 Vacuum Removal

Photo 20: AOPC 14: Western Excavation

DRAFT

Appendix E

Soil Sample Laboratory Analytical Reports

- 1) Sample Date 4/27/21 (#L1346559)
- 2) Sample Date 4/27/21 (#L1350830)
- 3) Sample Date 4/27/21 (#GG-724)
- 4) Sample Date 4/30/21 (#GG-754)
- 5) Sample Date 4/28/21 (#L1346427)
- 6) Sample Date 4/28/21 (#L1350788)
- 7) Sample Date 4/29/21 (#L1350377)
- 8) Sample Date 4/30/21 (#L1352800)
- 9) Sample Date 4/30/21 (#L1347640)
- 10) Sample Date 4/30/21 (#L1347655)
- 11) Sample Date 4/30/21 (#L1350828)
- 12) Sample Date 4/29/21 (#L1352279)
- 13) Sample Date 5/26/21 (#L1359456)
- 14) Sample Date 5/26/21 (#L1359488)
- 15) Sample Date 6/7/21 (#L1363905)
- 16) Sample Date 6/8/21 (#L1364591)
- 17) Sample Date 6/14/21 (#L1367187)
- 18) Sample Date 6/24/21 (#L1371625)
- 19) Sample Date 8/12/21 (#L1390834)
- 20) Sample Date 8/12/21 (#L1394271)

1) Sample Date 4/27/21 (#L1346559)

Ss

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1346559

Samples Received:

05/01/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

⁴ Cn

	[°] Sr
٠	
	_

Tc:	Tab	le <mark>o</mark> f	Conte	nts

Cp: Cover Page

To. Tuble of Contents	_
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
S1-0 L1346559-01	6
S2-1.5 L1346559-02	9
S3-0 L1346559-03	10
S4-0.5 L1346559-04	11
S5-0 L1346559-05	12
S6-1 L1346559-06	13
S7-0 L1346559-07	14
S8-3.5 L1346559-08	15
S9-3.5 L1346559-09	17
S10-3.5 L1346559-10	19
EB-1 L1346559-11	21
TRIP BLANK L1346559-12	24
Qc: Quality Control Summary	26
Total Solids by Method 2540 G-2011	26
Mercury by Method 7471B	28
Metals (ICPMS) by Method 6020B	29
Volatile Organic Compounds (GC) by Method NWTPHGX	31
Volatile Organic Compounds (GC/MS) by Method 8260D	33
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	44
Polychlorinated Biphenyls (GC) by Method 8082 A	46
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	47
GI: Glossary of Terms	54
Al: Accreditations & Locations	56

Sc: Sample Chain of Custody

57

SAMPLE SUMMARY

C1.0 1.12.46550.01 Colid			Collected by Jon White	Collected date/time 04/27/21 09:18	Received da 05/01/21 10:0	
S1-0 L1346559-01 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metilod	Datell	Dilution	date/time	date/time	AllalySt	LOCALIOII
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1663543	5	05/03/21 16:49	05/04/21 11:34	TM	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664581	25	04/27/21 09:18	05/05/21 15:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1663870	20	04/27/21 09:18	05/04/21 22:11	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	400	05/06/21 09:40	05/07/21 03:50	DMG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1664927	1	05/06/21 00:18	05/06/21 09:26	SSH	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/2119:08	05/05/21 06:13	AAT	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	20	05/04/2119:08	05/05/21 12:11	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S2-1.5 L1346559-02 Solid			Jon White	04/27/21 09:58	05/01/21 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664626	1	date/time 05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 05:13	AAT	Mt. Juliet, TN
			Callantarilla	Callanta di data kina	December of the	h = /h:
00.0.14040550.00.0.171			Collected by Jon White	Collected date/time 04/27/2110:12	Received da 05/01/21 10:0	
S3-0 L1346559-03 Solid			Joh White	04/2//21 10.12	03/01/21 10.0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 05:58	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S4-0.5 L1346559-04 Solid			Jon White	04/27/2110:26	05/01/21 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1662830	1	05/04/21 19:39	05/05/21 16:35	BMF	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1663543	5	05/03/21 16:49	05/04/21 11:37	TM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 05:28	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S5-0 L1346559-05 Solid			Jon White	04/27/2112:40	05/01/21 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665739	1	05/08/2114:00	05/09/21 17:25	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S6-1 L1346559-06 Solid			Jon White	04/27/21 12:54	05/01/21 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665739	1	05/08/21 14:00	05/09/21 16:46	AAT	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

		_				
			Collected by	Collected date/time	Received da	
S7-0 L1346559-07 Solid			Jon White	04/27/21 13:01	05/01/21 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665739	1	05/08/21 14:00	05/09/21 14:47	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S8-3.5 L1346559-08 Solid			Jon White	04/27/21 14:47	05/01/21 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664626	1	05/05/21 12:24	05/05/21 12:34	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1663870	1	04/27/21 14:47	05/04/21 22:30	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664826	1	04/27/21 14:47	05/05/21 21:24	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	1	05/06/21 09:40	05/07/21 13:48	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S9-3.5 L1346559-09 Solid			Jon White	04/27/21 14:56	05/01/21 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664627	1	05/05/21 12:09	05/05/21 12:22	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1663870	1	04/27/21 14:56	05/04/21 22:49	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664826	1	04/27/21 14:56	05/05/21 21:43	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	1	05/06/21 09:40	05/07/21 01:14	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S10-3.5 L1346559-10 Solid			Jon White	04/27/21 14:59	05/01/21 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664627	1	05/05/21 12:09	05/05/21 12:22	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1663870	1	04/27/21 14:59	05/04/21 23:08	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664826	1	04/27/21 14:59	05/05/21 22:02	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	1	05/06/21 09:40	05/07/21 01:26	DMG	Mt. Juliet, TN
			Collected by Jon White	Collected date/time 04/27/21 12:02	Received da 05/01/21 10:0	
EB-1 L1346559-11 GW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020B	WG1665090	1	05/06/21 00:49	05/06/21 19:47	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1663987	1	05/05/21 00:46	05/05/21 00:46	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1663336	1	05/03/21 21:53	05/03/21 21:53	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664918	1	05/05/21 17:11	05/06/21 01:34	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663506	1	05/03/21 22:36	05/04/21 08:54	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1346559-12 GW			Jon White	04/27/21 00:00	05/01/21 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Valatila Organia Compounda (CC/MS) by Mathad 9260D	WC166222C	1	0E/02/21 21:24	0E/02/21 21:24	DMD	M4 Julias TNI

Volatile Organic Compounds (GC/MS) by Method 8260D

WG1663336

05/03/21 21:34

BMB

Mt. Juliet, TN

05/03/21 21:34

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

Collected date/time: 04/27/21 09:18

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.9		1	05/05/2021 12:34	WG1664626

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Arsenic	19.3		1.25	5	05/04/2021 11:34	WG1663543
Cadmium	2.27		1.25	5	05/04/2021 11:34	WG1663543
Chromium	188		6.26	5	05/04/2021 11:34	WG1663543
Lead	557		2.50	5	05/04/2021 11:34	WG1663543

Ss

⁵Sr

[°]Qc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	5.12	В	4.04	25	05/05/2021 15:01	WG1664581
(S) a,a,a-Trifluorotoluene(FID)	99.8		77.0-120		05/05/2021 15:01	WG1664581

9 Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		1.62	20	05/04/2021 22:11	WG1663870
Acrylonitrile	ND		0.404	20	05/04/2021 22:11	WG1663870
Benzene	ND		0.0323	20	05/04/2021 22:11	WG1663870
Bromobenzene	ND		0.404	20	05/04/2021 22:11	WG1663870
Bromodichloromethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Bromoform	ND		0.808	20	05/04/2021 22:11	WG1663870
Bromomethane	ND		0.404	20	05/04/2021 22:11	WG1663870
n-Butylbenzene	ND		0.404	20	05/04/2021 22:11	WG1663870
sec-Butylbenzene	ND		0.404	20	05/04/2021 22:11	WG1663870
tert-Butylbenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
Carbon disulfide	ND		0.404	20	05/04/2021 22:11	WG1663870
Carbon tetrachloride	ND		0.162	20	05/04/2021 22:11	WG1663870
Chlorobenzene	ND		0.0808	20	05/04/2021 22:11	WG1663870
Chlorodibromomethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Chloroethane	ND	<u>J4</u>	0.162	20	05/04/2021 22:11	WG1663870
Chloroform	ND		0.0808	20	05/04/2021 22:11	WG1663870
Chloromethane	ND		0.404	20	05/04/2021 22:11	WG1663870
2-Chlorotoluene	ND		0.0808	20	05/04/2021 22:11	WG1663870
4-Chlorotoluene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	0.808	20	05/04/2021 22:11	WG1663870
1,2-Dibromoethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Dibromomethane	ND		0.162	20	05/04/2021 22:11	WG1663870
1,2-Dichlorobenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,3-Dichlorobenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,4-Dichlorobenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
Dichlorodifluoromethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,1-Dichloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,2-Dichloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,1-Dichloroethene	ND		0.0808	20	05/04/2021 22:11	WG1663870
cis-1,2-Dichloroethene	ND		0.0808	20	05/04/2021 22:11	WG1663870
trans-1,2-Dichloroethene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,2-Dichloropropane	ND		0.162	20	05/04/2021 22:11	WG1663870
1,1-Dichloropropene	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,3-Dichloropropane	ND		0.162	20	05/04/2021 22:11	WG1663870
cis-1,3-Dichloropropene	ND		0.0808	20	05/04/2021 22:11	WG1663870

Martin S. Burck Assoc.-Hood River, OR

L1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
trans-1,3-Dichloropropene	ND		0.162	20	05/04/2021 22:11	WG1663870
2,2-Dichloropropane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Di-isopropyl ether	ND		0.0323	20	05/04/2021 22:11	WG1663870
Ethylbenzene	ND		0.0808	20	05/04/2021 22:11	WG1663870
Hexachloro-1,3-butadiene	ND		0.808	20	05/04/2021 22:11	WG1663870
Isopropylbenzene	ND		0.0808	20	05/04/2021 22:11	WG1663870
p-Isopropyltoluene	ND		0.162	20	05/04/2021 22:11	WG1663870
2-Butanone (MEK)	ND		3.23	20	05/04/2021 22:11	WG1663870
Methylene Chloride	ND		0.808	20	05/04/2021 22:11	WG1663870
4-Methyl-2-pentanone (MIBK)	ND		0.808	20	05/04/2021 22:11	WG1663870
Methyl tert-butyl ether	ND		0.0323	20	05/04/2021 22:11	WG1663870
Naphthalene	ND	<u>C3</u>	0.404	20	05/04/2021 22:11	WG1663870
n-Propylbenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
Styrene	ND		0.404	20	05/04/2021 22:11	WG1663870
1,1,1,2-Tetrachloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,1,2,2-Tetrachloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,1,2-Trichlorotrifluoroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Tetrachloroethene	ND		0.0808	20	05/04/2021 22:11	WG1663870
Toluene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,2,3-Trichlorobenzene	ND	C4 J4	0.404	20	05/04/2021 22:11	WG1663870
1,2,4-Trichlorobenzene	ND	<u>C4</u>	0.404	20	05/04/2021 22:11	WG1663870
1,1,1-Trichloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,1,2-Trichloroethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
Trichloroethene	ND		0.0323	20	05/04/2021 22:11	WG1663870
Trichlorofluoromethane	ND		0.0808	20	05/04/2021 22:11	WG1663870
1,2,3-Trichloropropane	ND		0.404	20	05/04/2021 22:11	WG1663870
1,2,4-Trimethylbenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,2,3-Trimethylbenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
1,3,5-Trimethylbenzene	ND		0.162	20	05/04/2021 22:11	WG1663870
Vinyl chloride	ND		0.0808	20	05/04/2021 22:11	WG1663870
Xylenes, Total	ND		0.210	20	05/04/2021 22:11	WG1663870
(S) Toluene-d8	117		75.0-131		05/04/2021 22:11	WG1663870
(S) 4-Bromofluorobenzene	91.1		67.0-138		05/04/2021 22:11	WG1663870

Sample Narrative:

(S) 1,2-Dichloroethane-d4

L1346559-01 WG1663870: Lowest possible dilution due to sample foaming.

104

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	34700		2000	400	05/07/2021 03:50	WG1664922
Residual Range Organics (RRO)	ND		5010	400	05/07/2021 03:50	WG1664922
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/07/2021 03:50	WG1664922

05/04/2021 22:11

70.0-130

Sample Narrative:

L1346559-01 WG1664922: Cannot run at lower dilution due to viscosity of extract

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0426	1	05/06/2021 09:26	WG1664927
PCB 1221	ND		0.0426	1	05/06/2021 09:26	WG1664927
PCB 1232	ND		0.0426	1	05/06/2021 09:26	WG1664927
PCB 1242	ND		0.0426	1	05/06/2021 09:26	WG1664927

WG1663870

²Tc

Collected date/time: 04/27/21 09:18

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1248	ND		0.0213	1	05/06/2021 09:26	WG1664927
PCB 1254	0.322		0.0213	1	05/06/2021 09:26	WG1664927
PCB 1260	ND		0.0213	1	05/06/2021 09:26	WG1664927
PCB 1268	ND		0.0213	1	05/06/2021 09:26	WG1664927
(S) Decachlorobiphenyl	53.3		10.0-135		05/06/2021 09:26	WG1664927
(S) Tetrachloro-m-xylene	45.5		10.0-139		05/06/2021 09:26	WG1664927

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.150	20	05/05/2021 12:11	WG1664105
Acenaphthene	ND		0.150	20	05/05/2021 12:11	WG1664105
Acenaphthylene	ND		0.150	20	05/05/2021 12:11	WG1664105
Benzo(a)anthracene	ND		0.150	20	05/05/2021 12:11	WG1664105
Benzo(a)pyrene	0.128		0.00751	1	05/05/2021 06:13	WG1664105
Benzo(b)fluoranthene	0.113		0.00751	1	05/05/2021 06:13	WG1664105
Benzo(g,h,i)perylene	0.0421		0.00751	1	05/05/2021 06:13	WG1664105
Benzo(k)fluoranthene	0.0308		0.00751	1	05/05/2021 06:13	WG1664105
Chrysene	0.161		0.150	20	05/05/2021 12:11	WG1664105
Dibenz(a,h)anthracene	0.0109		0.00751	1	05/05/2021 06:13	WG1664105
Fluoranthene	0.220		0.150	20	05/05/2021 12:11	WG1664105
Fluorene	ND		0.150	20	05/05/2021 12:11	WG1664105
Indeno(1,2,3-cd)pyrene	0.0487		0.00751	1	05/05/2021 06:13	WG1664105
Naphthalene	0.0590		0.0250	1	05/05/2021 06:13	WG1664105
Phenanthrene	ND		0.150	20	05/05/2021 12:11	WG1664105
Pyrene	0.402		0.150	20	05/05/2021 12:11	WG1664105
1-Methylnaphthalene	ND		0.0250	1	05/05/2021 06:13	WG1664105
2-Methylnaphthalene	0.0433		0.0250	1	05/05/2021 06:13	WG1664105
2-Chloronaphthalene	ND		0.501	20	05/05/2021 12:11	WG1664105
(S) Nitrobenzene-d5	82.7	<u>J7</u>	14.0-149		05/05/2021 12:11	WG1664105
(S) Nitrobenzene-d5	86.4		14.0-149		05/05/2021 06:13	WG1664105
(S) 2-Fluorobiphenyl	79.7	<u>J7</u>	34.0-125		05/05/2021 12:11	WG1664105
(S) 2-Fluorobiphenyl	0.000	<u>J2</u>	34.0-125		05/05/2021 06:13	WG1664105
(S) p-Terphenyl-d14	199	<u>J7</u>	23.0-120		05/05/2021 12:11	WG1664105
(S) p-Terphenyl-d14	0.000	<u>J2</u>	23.0-120		05/05/2021 06:13	WG1664105

Sample Narrative:

L1346559-01 WG1664105: IS/SURR failed on lower dilution.

S2-1.5

SAMPLE RESULTS - 02

Collected date/time: 04/27/21 09:58

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.9		1	05/05/202112:34	WG1664626

	Result (dry) Qu	<u>ualifier</u>	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00742	1	05/05/2021 05:13	WG1664105
Acenaphthene	ND		0.00742	1	05/05/2021 05:13	WG1664105
Acenaphthylene	ND		0.00742	1	05/05/2021 05:13	WG1664105
Benzo(a)anthracene	0.0462		0.00742	1	05/05/2021 05:13	WG1664105
Benzo(a)pyrene	0.0508		0.00742	1	05/05/2021 05:13	WG1664105
Benzo(b)fluoranthene	0.0564		0.00742	1	05/05/2021 05:13	WG1664105
Benzo(g,h,i)perylene	0.0430		0.00742	1	05/05/2021 05:13	WG1664105
Benzo(k)fluoranthene	0.0241		0.00742	1	05/05/2021 05:13	WG1664105
Chrysene	0.0462		0.00742	1	05/05/2021 05:13	WG1664105
Dibenz(a,h)anthracene	0.00765		0.00742	1	05/05/2021 05:13	WG1664105
Fluoranthene	0.0647		0.00742	1	05/05/2021 05:13	WG1664105
Fluorene	ND		0.00742	1	05/05/2021 05:13	WG1664105
Indeno(1,2,3-cd)pyrene	0.0457		0.00742	1	05/05/2021 05:13	WG1664105
Naphthalene	ND		0.0247	1	05/05/2021 05:13	WG1664105
Phenanthrene	0.0323		0.00742	1	05/05/2021 05:13	WG1664105
Pyrene	0.0698		0.00742	1	05/05/2021 05:13	WG1664105
1-Methylnaphthalene	ND		0.0247	1	05/05/2021 05:13	WG1664105
2-Methylnaphthalene	ND		0.0247	1	05/05/2021 05:13	WG1664105
2-Chloronaphthalene	ND		0.0247	1	05/05/2021 05:13	WG1664105
(S) Nitrobenzene-d5	70.3		14.0-149		05/05/2021 05:13	WG1664105
(S) 2-Fluorobiphenyl	46.4		34.0-125		05/05/2021 05:13	WG1664105
(S) p-Terphenyl-d14	67.6		23.0-120		05/05/2021 05:13	WG1664105

S3-0

SAMPLE RESULTS - 03

Collected date/time: 04/27/21 10:12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.6		1	05/05/202112:34	WG1664626

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	0.156		0.00621	1	05/05/2021 05:58	WG1664105
Acenaphthene	0.0125		0.00621	1	05/05/2021 05:58	WG1664105
Acenaphthylene	0.0523		0.00621	1	05/05/2021 05:58	WG1664105
Benzo(a)anthracene	0.600		0.00621	1	05/05/2021 05:58	WG1664105
Benzo(a)pyrene	0.628		0.00621	1	05/05/2021 05:58	WG1664105
Benzo(b)fluoranthene	0.593		0.00621	1	05/05/2021 05:58	WG1664105
Benzo(g,h,i)perylene	0.461		0.00621	1	05/05/2021 05:58	WG1664105
Benzo(k)fluoranthene	0.266		0.00621	1	05/05/2021 05:58	WG1664105
Chrysene	0.588		0.00621	1	05/05/2021 05:58	WG1664105
Dibenz(a,h)anthracene	0.0992		0.00621	1	05/05/2021 05:58	WG1664105
Fluoranthene	0.982		0.00621	1	05/05/2021 05:58	WG1664105
Fluorene	0.0274		0.00621	1	05/05/2021 05:58	WG1664105
Indeno(1,2,3-cd)pyrene	0.546		0.00621	1	05/05/2021 05:58	WG1664105
Naphthalene	0.0521		0.0207	1	05/05/2021 05:58	WG1664105
Phenanthrene	0.611		0.00621	1	05/05/2021 05:58	WG1664105
Pyrene	0.884		0.00621	1	05/05/2021 05:58	WG1664105
1-Methylnaphthalene	ND		0.0207	1	05/05/2021 05:58	WG1664105
2-Methylnaphthalene	0.0278		0.0207	1	05/05/2021 05:58	WG1664105
2-Chloronaphthalene	ND		0.0207	1	05/05/2021 05:58	WG1664105
(S) Nitrobenzene-d5	93.6		14.0-149		05/05/2021 05:58	WG1664105
(S) 2-Fluorobiphenyl	80.4		34.0-125		05/05/2021 05:58	WG1664105
(S) p-Terphenyl-d14	91.4		23.0-120		05/05/2021 05:58	WG1664105

Collected date/time: 04/27/21 10:26

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	61.0		1	05/05/202112:34	WG1664626

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0656	1	05/05/2021 16:35	WG1662830

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		1.64	5	05/04/2021 11:37	WG1663543
Barium	ND		4.10	5	05/04/2021 11:37	WG1663543
Cadmium	ND		1.64	5	05/04/2021 11:37	WG1663543
Chromium	ND		8.20	5	05/04/2021 11:37	WG1663543
Lead	3.72		3.28	5	05/04/2021 11:37	WG1663543
Selenium	ND		4.10	5	05/04/2021 11:37	WG1663543
Silver	ND		0.820	5	05/04/2021 11:37	WG1663543

⁸Al

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Acenaphthene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Acenaphthylene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Benzo(a)anthracene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Benzo(a)pyrene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Benzo(b)fluoranthene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Benzo(g,h,i)perylene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Benzo(k)fluoranthene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Chrysene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Dibenz(a,h)anthracene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Fluoranthene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Fluorene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Indeno(1,2,3-cd)pyrene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Naphthalene	0.0471		0.0328	1	05/05/2021 05:28	WG1664105
Phenanthrene	ND		0.00984	1	05/05/2021 05:28	WG1664105
Pyrene	ND		0.00984	1	05/05/2021 05:28	WG1664105
1-Methylnaphthalene	ND		0.0328	1	05/05/2021 05:28	WG1664105
2-Methylnaphthalene	ND		0.0328	1	05/05/2021 05:28	WG1664105
2-Chloronaphthalene	ND		0.0328	1	05/05/2021 05:28	WG1664105
(S) Nitrobenzene-d5	76.4		14.0-149		05/05/2021 05:28	WG1664105
(S) 2-Fluorobiphenyl	70.2		34.0-125		05/05/2021 05:28	WG1664105
(S) p-Terphenyl-d14	93.5		23.0-120		05/05/2021 05:28	WG1664105

Martin S. Burck Assoc.-Hood River, OR

S5-0

SAMPLE RESULTS - 05

Collected date/time: 04/27/21 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	05/05/2021 12:34	WG1664626

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	0.0559		0.00643	1	05/09/2021 17:25	WG1665739
Acenaphthene	0.00885		0.00643	1	05/09/2021 17:25	WG1665739
Acenaphthylene	ND		0.00643	1	05/09/2021 17:25	WG1665739
Benzo(a)anthracene	0.502		0.00643	1	05/09/2021 17:25	WG1665739
Benzo(a)pyrene	0.322		0.00643	1	05/09/2021 17:25	WG1665739
Benzo(b)fluoranthene	0.538		0.00643	1	05/09/2021 17:25	WG1665739
Benzo(g,h,i)perylene	0.166		0.00643	1	05/09/2021 17:25	WG1665739
Benzo(k)fluoranthene	0.211		0.00643	1	05/09/2021 17:25	WG1665739
Chrysene	0.594		0.00643	1	05/09/2021 17:25	WG1665739
Dibenz(a,h)anthracene	0.0408		0.00643	1	05/09/2021 17:25	WG1665739
Fluoranthene	1.26		0.00643	1	05/09/2021 17:25	WG1665739
Fluorene	0.0111		0.00643	1	05/09/2021 17:25	WG1665739
Indeno(1,2,3-cd)pyrene	0.191		0.00643	1	05/09/2021 17:25	WG1665739
Naphthalene	ND		0.0214	1	05/09/2021 17:25	WG1665739
Phenanthrene	0.405		0.00643	1	05/09/2021 17:25	WG1665739
Pyrene	1.10		0.00643	1	05/09/2021 17:25	WG1665739
1-Methylnaphthalene	ND		0.0214	1	05/09/2021 17:25	WG1665739
2-Methylnaphthalene	ND		0.0214	1	05/09/2021 17:25	WG1665739
2-Chloronaphthalene	ND		0.0214	1	05/09/2021 17:25	WG1665739
(S) Nitrobenzene-d5	35.3		14.0-149		05/09/2021 17:25	WG1665739
(S) 2-Fluorobiphenyl	50.7		34.0-125		05/09/2021 17:25	WG1665739
(S) p-Terphenyl-d14	62.6		23.0-120		05/09/2021 17:25	WG1665739

(S) p-Terphenyl-d14

SAMPLE RESULTS - 06

L1346559

Total Solids by Method 2540 G-2011

Collected date/time: 04/27/21 12:54

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.2		1	05/05/202112:34	WG1664626

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

77.4

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Acenaphthene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Acenaphthylene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Benzo(a)anthracene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Benzo(a)pyrene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Benzo(b)fluoranthene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Benzo(g,h,i)perylene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Benzo(k)fluoranthene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Chrysene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Dibenz(a,h)anthracene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Fluoranthene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Fluorene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Indeno(1,2,3-cd)pyrene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Naphthalene	ND		0.0224	1	05/09/2021 16:46	WG1665739
Phenanthrene	ND		0.00673	1	05/09/2021 16:46	WG1665739
Pyrene	ND		0.00673	1	05/09/2021 16:46	WG1665739
1-Methylnaphthalene	ND		0.0224	1	05/09/2021 16:46	WG1665739
2-Methylnaphthalene	ND		0.0224	1	05/09/2021 16:46	WG1665739
2-Chloronaphthalene	ND		0.0224	1	05/09/2021 16:46	WG1665739
(S) Nitrobenzene-d5	30.2		14.0-149		05/09/2021 16:46	WG1665739
(S) 2-Fluorobiphenyl	47.4		34.0-125		05/09/2021 16:46	WG1665739

23.0-120

WG1665739

05/09/2021 16:46

S7-0

SAMPLE RESULTS - 07

Collected date/time: 04/27/21 13:01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.5		1	05/05/202112:34	WG1664626

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Acenaphthene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Acenaphthylene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Benzo(a)anthracene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Benzo(a)pyrene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Benzo(b)fluoranthene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Benzo(g,h,i)perylene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Benzo(k)fluoranthene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Chrysene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Dibenz(a,h)anthracene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Fluoranthene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Fluorene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Indeno(1,2,3-cd)pyrene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Naphthalene	ND		0.0216	1	05/09/2021 14:47	WG1665739
Phenanthrene	ND		0.00648	1	05/09/2021 14:47	WG1665739
Pyrene	ND		0.00648	1	05/09/2021 14:47	WG1665739
1-Methylnaphthalene	ND		0.0216	1	05/09/2021 14:47	WG1665739
2-Methylnaphthalene	ND		0.0216	1	05/09/2021 14:47	WG1665739
2-Chloronaphthalene	ND		0.0216	1	05/09/2021 14:47	WG1665739
(S) Nitrobenzene-d5	35.6		14.0-149		05/09/2021 14:47	WG1665739
(S) 2-Fluorobiphenyl	53.2		34.0-125		05/09/2021 14:47	WG1665739
(S) p-Terphenyl-d14	80.9		23.0-120		05/09/2021 14:47	WG1665739

Collected date/time: 04/27/21 14:47

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.4		1	05/05/2021 12:34	WG1664626

Volatile Organic Compounds (GC/MS) by Method 8260D

4 Cn	

Acquantaria NO		Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Acyoninic NO 0.038 1 0.0542021 22.30 9466520 9466520	Analyte	mg/kg		mg/kg		date / time	
Bruzzec	Acetone	ND		0.0551	1	05/04/2021 22:30	WG1663870
Brondenseries ND	Acrylonitrile	ND		0.0138	1	05/04/2021 22:30	WG1663870
Broncolarion	Benzene	ND		0.00110	1	05/04/2021 22:30	WG1663870
BinmondFame	Bromobenzene	ND		0.0138	1	05/04/2021 22:30	WG1663870
Bornomethance NO	Bromodichloromethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
n-Buybersene NO	Bromoform	ND		0.0275	1	05/04/2021 22:30	WG1663870
No.	Bromomethane	ND		0.0138	1	05/04/2021 22:30	WG1663870
Intel-BullyNewmene ND 0.00551 1 05/04/2017 22-30 W05/05/3070 Carbon designed ND 0.0088 1 05/04/2017 22-30 W05/05/3070 Carbon designed ND 0.00551 1 05/04/2017 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2017 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2012 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2012 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2012 22-30 W05/05/3070 Chlorochane ND 0.0038 1 05/04/2012 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2012 22-30 W05/05/3070 Chlorochane ND 0.00275 1 05/04/2012 22-30 W05/05/3070 L-2-Dictorochane ND 0.00251 1 05/04/2012 22-30 W05/05/3070 Dibronomerbane ND 0.00551 1 </td <td>n-Butylbenzene</td> <td>ND</td> <td></td> <td>0.0138</td> <td>1</td> <td>05/04/2021 22:30</td> <td>WG1663870</td>	n-Butylbenzene	ND		0.0138	1	05/04/2021 22:30	WG1663870
Carbon destinde NO 0.0188 1 05040201 22:30 W01663870 Carbon totractionide NO 0.00275 1 05040201 22:30 W01663870 Chloroditionnomethane NO 0.00275 1 05040201 22:30 W01663870 Chlorodin NO 0.00275 1 05040201 22:30 W01663870 Chlorodiom NO 0.00275 1 05040201 22:30 W01663870 Chlorodiume NO 0.00275 1 05040201 22:30 W01663870 Chlorodiume NO 0.00275 1 05040201 22:30 W01663870 4 Chlorodiume NO 0.00275 1 05040201 22:30 W01663870 4 Chlorodiume NO 0.00551 1 05040201 22:30 W01663870 1 Callorodiume NO 0.00551 1 05040201 22:30 W01663870 1 Callorodiume NO 0.00551 1 05040201 22:30 W01663870 1 Callorodiume NO 0.00551 1 05040201 22:30 </td <td>sec-Butylbenzene</td> <td>ND</td> <td></td> <td>0.0138</td> <td>1</td> <td>05/04/2021 22:30</td> <td>WG1663870</td>	sec-Butylbenzene	ND		0.0138	1	05/04/2021 22:30	WG1663870
Carbon tetrachloride ND 0.00551 1 05042021 22:30 W51653870 Chlorochrene ND 0.00275 1 05042021 22:30 W51653870 Chlorochrene ND 0.00275 1 05042021 22:30 W51653870 Chlorochrane ND 0.0038 1 05042021 22:30 W51653870 Chlorochrane ND 0.00551 1 05042021 22:30 W51653870 Chlorochrane ND 0.00275 1 05042021 22:30 W51653870 Chlorochrane ND 0.00275 1 05042021 22:30 W51653870 Chlorochrane ND 0.00551 1 05042021 22:30 W51653870 ND 0.00551 1 05042021 22:	tert-Butylbenzene	ND		0.00551	1	05/04/2021 22:30	WG1663870
Chlorobezere	Carbon disulfide	ND		0.0138	1	05/04/2021 22:30	WG1663870
Chlorobezzere ND 0.00275 1 05/04/2012/230 W61663870 Chloroethone ND 0.00255 1 05/04/2012/230 W61663870 Chloroform ND 0.00275 1 05/04/2012/230 W01663870 Chloroform ND 0.00275 1 05/04/2012/230 W01663870 Chloroforme ND 0.00275 1 05/04/2012/230 W01663870 2-Chlorofobure ND 0.00275 1 05/04/2012/230 W01663870 1,2-Distrono-3-Chloropropane ND 0.00251 1 05/04/2012/230 W01663870 1,2-Distrono-3-Chloropropane ND 0.00251 1 05/04/2012/230 W01663870 1,2-Distrono-3-Chloropropane ND	Carbon tetrachloride	ND		0.00551	1	05/04/2021 22:30	
Chloroditamonorthane	Chlorobenzene	ND		0.00275	1	05/04/2021 22:30	
Chloroethane	Chlorodibromomethane	ND		0.00275	1	05/04/2021 22:30	
Chloroform ND 0,00275 1 0,504/2021 22:30 WG1663870 2 Chloricotulene ND 0,00375 1 0,504/2021 22:30 WG1663870 4 Chlorotoblene ND 0,00275 1 0,504/2021 22:30 WG1663870 4 Chlorotoblene ND 0,00275 1 0,504/2021 22:30 WG1663870 1,2 Dibromoethane ND 0,00551 1 0,504/2021 22:30 WG1663870 1,3 Dicthoroberzene ND 0,00551 1 0,504/2021 22:30 WG1663870 1,3 Dicthoroberzene ND 0,00551 1 0,504/2021 22:30 WG1663870 1,3 Dicthoroberzene ND 0,00551 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroberzene ND 0,00551 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroberzene ND 0,00551 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroberzene ND 0,00275 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroperzene ND 0,00275 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroperzene ND 0,00275 1 0,504/2021 22:30 WG1663870 1,4 Dicthoroperzene ND 0,00275 1 0,504/2021 22:30 WG1663870 1,4 Dicthoropropene ND 0,00275 1 0	Chloroethane	ND	J4	0.00551	1	05/04/2021 22:30	
Chloromethane ND 0 0.038 1 0.5042021 22:30 WG1663870	Chloroform	ND	_	0.00275	1	05/04/2021 22:30	
2-Chlorotoluene ND 0.00275 1 0504/2021 22:30 WG1663870 4-Chlorotoluene ND 0.00551 1 0504/2021 22:30 WG1663870 12-Dibromo-chlane ND 0.00275 1 0504/2021 22:30 WG1663870 12-Dibromo-chlane ND 0.00275 1 0504/2021 22:30 WG1663870 12-Dibromo-chlane ND 0.00551 1 0504/2021 22:30 WG1663870 13-Dichromo-chlane ND 0.00551 1 0504/2021 22:30 WG1663870 13-Dichromo-chlane ND 0.00551 1 0504/2021 22:30 WG1663870 14-Dichrocherene ND 0.00275 1 0504/2021 22:30 WG1663870 14-Dichrocropopene ND 0.00275 1 0504/2021 22:30 WG1	Chloromethane	ND		0.0138	1	05/04/2021 22:30	
4-Chlorotoluene ND	2-Chlorotoluene	ND		0.00275	1	05/04/2021 22:30	
12-Dibromo-3-Chiloropropane	4-Chlorotoluene	ND		0.00551	1	05/04/2021 22:30	
12-Dibromoethane	1,2-Dibromo-3-Chloropropane	ND	C3	0.0275	1	05/04/2021 22:30	
Dibromomethane ND	1,2-Dibromoethane	ND	_	0.00275	1	05/04/2021 22:30	
1.2-Dichlorobenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 1.3-Dichlorobenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 1.3-Dichlorobenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Dichlorodfilluoromethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.1-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.1-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.2-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.2-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.2-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1.2-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 1.2-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 1.1-Dichloroethene ND 0.00551 1 05/04/2021 22:30 WG1663870 1.1-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1.1-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1.3-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1.3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1.3-Dichl	Dibromomethane	ND			1	05/04/2021 22:30	
1,3-Dichlorobenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 1,4-Dichlorodenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 1,4-Dichlorodenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,4-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,4-Dichloroptopane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,4-Dichloroptopane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,4-Dichloro	1,2-Dichlorobenzene	ND			1	05/04/2021 22:30	
1.4-Dichlorobenzene	1,3-Dichlorobenzene	ND			1	05/04/2021 22:30	
Dichlorodifluoromethane ND	1,4-Dichlorobenzene	ND			1	05/04/2021 22:30	
1,1-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,2-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,1-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,1-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,1-Dichlor	Dichlorodifluoromethane	ND			1	05/04/2021 22:30	
1,2-Dichloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,1-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,1-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,2-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,1-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1 trans-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1 bi-sopropylether ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-sopropylethezene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>0.00275</td> <td>1</td> <td>05/04/2021 22:30</td> <td></td>	1,1-Dichloroethane	ND		0.00275	1	05/04/2021 22:30	
1,1-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 cis-1,2-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,2-Dichloroethene ND 0.00551 1 05/04/2021 22:30 WG1663870 1,2-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 bi-ispropyl ether ND 0.00275 1 05/04/2021 22:30 WG1663870 bi-ispropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 bi-spropylberzene ND 0.00275 1 05/04/2021 22:30 WG1663870 bi-spropylberzene	1,2-Dichloroethane	ND		0.00275	1	05/04/2021 22:30	
cis-1,2-Dichloroethene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,2-Dichloroethene ND 0.00551 1 05/04/2021 22:30 WG1663870 1,2-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,1-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 cis-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 bi-isopropylether ND 0.00275 1 05/04/2021 22:30 WG1663870 Eithylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.00275 1 05/04/2021 22:30 WG1663870 Jespropyltoliuene	1,1-Dichloroethene	ND		0.00275	1	05/04/2021 22:30	
trans-1,2-Dichloroethene ND 0.00551 1 05/04/2021 22:30 WG1663870 1,2-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 1,1-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 cis-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 2,2-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-Isopropyle ther ND 0.0010 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.0275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.0275 1 05/04/2021 22:30 WG1663870 Pisopropylbenzene	cis-1,2-Dichloroethene	ND		0.00275	1	05/04/2021 22:30	
1,1-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 cis-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 2,2-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-isopropyl ether ND 0.0010 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00275 1 05/04/2021 22:30 WG1663870 P-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methyl-2-pentanone (MIBK)	trans-1,2-Dichloroethene	ND		0.00551	1	05/04/2021 22:30	WG1663870
1,1-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 1,3-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 cis-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 Disopropyl ether ND 0.00275 1 05/04/2021 22:30 WG1663870 Disopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Jebutanone (MEK) ND 0.00551 1 05/04/2021 22:30 WG1663870 Wethylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 Wethylene Chloride ND<	1,2-Dichloropropane	ND		0.00551	1	05/04/2021 22:30	
1,3-Dichloropropane ND 0.00551 1 05/04/2021 22:30 WG1663870 cis-1,3-Dichloropropene ND 0.00275 1 05/04/2021 22:30 WG1663870 trans-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 Di-isopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.00275 1 05/04/2021 22:30 WG1663870 Jespropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropylbenzene ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether	1,1-Dichloropropene	ND		0.00275	1	05/04/2021 22:30	
trans-1,3-Dichloropropene ND 0.00551 1 05/04/2021 22:30 WG1663870 2,2-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-isopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.00275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene	1,3-Dichloropropane	ND		0.00551	1	05/04/2021 22:30	WG1663870
2,2-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-isopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl Lert-butyl ether ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.0138 1 05/04/2021 22:30 WG1663870 Naphthalene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.01	cis-1,3-Dichloropropene	ND		0.00275	1	05/04/2021 22:30	
2,2-Dichloropropane ND 0.00275 1 05/04/2021 22:30 WG1663870 Di-isopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.00275 1 05/04/2021 22:30 WG1663870 isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tet	trans-1,3-Dichloropropene	ND		0.00551	1	05/04/2021 22:30	WG1663870
Di-isopropyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND 0.0138 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND	2,2-Dichloropropane	ND		0.00275	1	05/04/2021 22:30	
Ethylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND 0.0138 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	Di-isopropyl ether	ND		0.00110	1	05/04/2021 22:30	
Hexachloro-1,3-butadiene ND 0.0275 1 05/04/2021 22:30 WG1663870 Isopropylbenzene ND 0.00275 1 05/04/2021 22:30 WG1663870 p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	Ethylbenzene	ND		0.00275	1	05/04/2021 22:30	
Isopropylbenzene	Hexachloro-1,3-butadiene	ND		0.0275	1	05/04/2021 22:30	
p-Isopropyltoluene ND 0.00551 1 05/04/2021 22:30 WG1663870 2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,11,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	Isopropylbenzene	ND		0.00275	1	05/04/2021 22:30	
2-Butanone (MEK) ND 0.110 1 05/04/2021 22:30 WG1663870 Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	p-lsopropyltoluene	ND		0.00551	1	05/04/2021 22:30	
Methylene Chloride ND 0.0275 1 05/04/2021 22:30 WG1663870 4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.0138 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	2-Butanone (MEK)	ND		0.110	1	05/04/2021 22:30	
4-Methyl-2-pentanone (MIBK) ND 0.0275 1 05/04/2021 22:30 WG1663870 Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	Methylene Chloride	ND		0.0275	1	05/04/2021 22:30	
Methyl tert-butyl ether ND 0.00110 1 05/04/2021 22:30 WG1663870 Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	4-Methyl-2-pentanone (MIBK)	ND			1		
Naphthalene ND C3 0.0138 1 05/04/2021 22:30 WG1663870 n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870					1	05/04/2021 22:30	
n-Propylbenzene ND 0.00551 1 05/04/2021 22:30 WG1663870 Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	Naphthalene		C3				
Styrene ND 0.0138 1 05/04/2021 22:30 WG1663870 1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870	n-Propylbenzene						
1,1,1,2-Tetrachloroethane ND 0.00275 1 05/04/2021 22:30 WG1663870							
	1,1,1,2-Tetrachloroethane						
ACCOLINT: DDO IECT: SDC: DATE/TIME: DAG							
	VCCOTIN:	T·		PDO IEC	T·	SDG:	DATE/TIME: PA

1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
1,1,2-Trichlorotrifluoroethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
Tetrachloroethene	ND		0.00275	1	05/04/2021 22:30	WG1663870
Toluene	ND		0.00551	1	05/04/2021 22:30	WG1663870
1,2,3-Trichlorobenzene	ND		0.0138	1	05/05/2021 21:24	WG1664826
1,2,4-Trichlorobenzene	ND	<u>C4</u>	0.0138	1	05/04/2021 22:30	WG1663870
1,1,1-Trichloroethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
1,1,2-Trichloroethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
Trichloroethene	ND		0.00110	1	05/04/2021 22:30	WG1663870
Trichlorofluoromethane	ND		0.00275	1	05/04/2021 22:30	WG1663870
1,2,3-Trichloropropane	ND		0.0138	1	05/04/2021 22:30	WG1663870
1,2,4-Trimethylbenzene	ND		0.00551	1	05/04/2021 22:30	WG1663870
1,2,3-Trimethylbenzene	ND		0.00551	1	05/04/2021 22:30	WG1663870
1,3,5-Trimethylbenzene	ND		0.00551	1	05/04/2021 22:30	WG1663870
Vinyl chloride	ND		0.00275	1	05/04/2021 22:30	WG1663870
Xylenes, Total	ND		0.00716	1	05/04/2021 22:30	WG1663870
(S) Toluene-d8	118		75.0-131		05/04/2021 22:30	WG1663870
(S) Toluene-d8	102		75.0-131		05/05/2021 21:24	WG1664826
(S) 4-Bromofluorobenzene	91.1		67.0-138		05/04/2021 22:30	WG1663870
(S) 4-Bromofluorobenzene	95.7		67.0-138		05/05/2021 21:24	WG1664826
(S) 1,2-Dichloroethane-d4	95.6		70.0-130		05/04/2021 22:30	WG1663870
(S) 1,2-Dichloroethane-d4	91.8		70.0-130		05/05/2021 21:24	WG1664826

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	5.97		4.19	1	05/07/2021 13:48	WG1664922
Residual Range Organics (RRO)	11.8		10.5	1	05/07/2021 13:48	WG1664922
(S) o-Ternhenyl	78.5		18 0-148		05/07/2021 13:48	WG1664922

Collected date/time: 04/27/21 14:56

Volatile Organic Compounds (GC/MS) by Method 8260D

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	05/05/202112:22	WG1664627

L1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00286	1	05/04/2021 22:49	WG1663870
1,1,2-Trichlorotrifluoroethane	ND		0.00286	1	05/04/2021 22:49	WG1663870
Tetrachloroethene	ND		0.00286	1	05/04/2021 22:49	WG1663870
Toluene	ND		0.00572	1	05/04/2021 22:49	WG1663870
1,2,3-Trichlorobenzene	ND		0.0143	1	05/05/2021 21:43	WG1664826
1,2,4-Trichlorobenzene	ND	<u>C4</u>	0.0143	1	05/04/2021 22:49	WG1663870
1,1,1-Trichloroethane	ND		0.00286	1	05/04/2021 22:49	WG1663870
1,1,2-Trichloroethane	ND		0.00286	1	05/04/2021 22:49	WG1663870
Trichloroethene	ND		0.00114	1	05/04/2021 22:49	WG1663870
Trichlorofluoromethane	ND		0.00286	1	05/04/2021 22:49	WG1663870
1,2,3-Trichloropropane	ND		0.0143	1	05/04/2021 22:49	WG1663870
1,2,4-Trimethylbenzene	ND		0.00572	1	05/04/2021 22:49	WG1663870
1,2,3-Trimethylbenzene	ND		0.00572	1	05/04/2021 22:49	WG1663870
1,3,5-Trimethylbenzene	ND		0.00572	1	05/04/2021 22:49	WG1663870
Vinyl chloride	ND		0.00286	1	05/04/2021 22:49	WG1663870
Xylenes, Total	ND		0.00744	1	05/04/2021 22:49	WG1663870
(S) Toluene-d8	118		75.0-131		05/04/2021 22:49	WG1663870
(S) Toluene-d8	106		75.0-131		05/05/2021 21:43	WG1664826
(S) 4-Bromofluorobenzene	88.1		67.0-138		05/04/2021 22:49	WG1663870
(S) 4-Bromofluorobenzene	96.6		67.0-138		05/05/2021 21:43	WG1664826
(S) 1,2-Dichloroethane-d4	91.9		70.0-130		05/04/2021 22:49	WG1663870
(S) 1,2-Dichloroethane-d4	91.6		70.0-130		05/05/2021 21:43	WG1664826

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.28	1	05/07/2021 01:14	WG1664922
Residual Range Organics (RRO)	ND		10.7	1	05/07/2021 01:14	WG1664922
(S) o-Terphenyl	78.2		18.0-148		05/07/2021 01:14	WG1664922

S10-3.5

SAMPLE RESULTS - 10

Collected date/time: 04/27/21 14:59

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.5		1	05/05/2021 12:22	WG1664627

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.0562	1	05/04/2021 23:08	WG1663870	
Acrylonitrile	ND		0.0141	1	05/04/2021 23:08	WG1663870	
Benzene	ND		0.00112	1	05/04/2021 23:08	WG1663870	
Bromobenzene	ND		0.0141	1	05/04/2021 23:08	WG1663870	
Bromodichloromethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
Bromoform	ND		0.0281	1	05/04/2021 23:08	WG1663870	
Bromomethane	ND		0.0141	1	05/04/2021 23:08	WG1663870	
n-Butylbenzene	ND		0.0141	1	05/04/2021 23:08	WG1663870	
sec-Butylbenzene	ND		0.0141	1	05/04/2021 23:08	WG1663870	
tert-Butylbenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
Carbon disulfide	ND		0.0141	1	05/04/2021 23:08	WG1663870	
Carbon tetrachloride	ND		0.00562	1	05/04/2021 23:08	WG1663870	
Chlorobenzene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
Chlorodibromomethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
Chloroethane	ND	<u>J4</u>	0.00562	1	05/04/2021 23:08	WG1663870	
Chloroform	ND	_	0.00281	1	05/04/2021 23:08	WG1663870	
Chloromethane	ND		0.0141	1	05/04/2021 23:08	WG1663870	
2-Chlorotoluene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
4-Chlorotoluene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	0.0281	1	05/04/2021 23:08	WG1663870	
1,2-Dibromoethane	ND	_	0.00281	1	05/04/2021 23:08	WG1663870	
Dibromomethane	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,2-Dichlorobenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,3-Dichlorobenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,4-Dichlorobenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
Dichlorodifluoromethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
1,1-Dichloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
1,2-Dichloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
1,1-Dichloroethene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
cis-1,2-Dichloroethene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
trans-1,2-Dichloroethene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,2-Dichloropropane	ND		0.00562	1	05/04/2021 23:08	WG1663870	
1,1-Dichloropropene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
1,3-Dichloropropane	ND		0.00562	1	05/04/2021 23:08	WG1663870	
cis-1,3-Dichloropropene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
trans-1,3-Dichloropropene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
2,2-Dichloropropane	ND		0.00281	1	05/04/2021 23:08	WG1663870	
Di-isopropyl ether	ND		0.00112	1	05/04/2021 23:08	WG1663870	
Ethylbenzene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
Hexachloro-1,3-butadiene	ND		0.0281	1	05/04/2021 23:08	WG1663870	
Isopropylbenzene	ND		0.00281	1	05/04/2021 23:08	WG1663870	
p-Isopropyltoluene	ND		0.00562	1	05/04/2021 23:08	WG1663870	
2-Butanone (MEK)	ND		0.112	1	05/04/2021 23:08	WG1663870	
Methylene Chloride	ND		0.0281	1	05/04/2021 23:08	WG1663870	
4-Methyl-2-pentanone (MIBK)	ND		0.0281	1	05/04/2021 23:08	WG1663870	
Methyl tert-butyl ether	ND		0.00112	1	05/04/2021 23:08	WG1663870	
Naphthalene	ND	<u>C3</u>	0.0141	1	05/04/2021 23:08	WG1663870	
n-Propylbenzene	ND	_	0.00562	1	05/04/2021 23:08	WG1663870	
Styrene	ND		0.0141	1	05/04/2021 23:08	WG1663870	
1,1,1,2-Tetrachloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870	

L1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870
1,1,2-Trichlorotrifluoroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870
Tetrachloroethene	ND		0.00281	1	05/04/2021 23:08	WG1663870
Toluene	ND		0.00562	1	05/04/2021 23:08	WG1663870
1,2,3-Trichlorobenzene	ND		0.0141	1	05/05/2021 22:02	WG1664826
1,2,4-Trichlorobenzene	ND	<u>C4</u>	0.0141	1	05/04/2021 23:08	WG1663870
1,1,1-Trichloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870
1,1,2-Trichloroethane	ND		0.00281	1	05/04/2021 23:08	WG1663870
Trichloroethene	ND		0.00112	1	05/04/2021 23:08	WG1663870
Trichlorofluoromethane	ND		0.00281	1	05/04/2021 23:08	WG1663870
1,2,3-Trichloropropane	ND		0.0141	1	05/04/2021 23:08	WG1663870
1,2,4-Trimethylbenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870
1,2,3-Trimethylbenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870
1,3,5-Trimethylbenzene	ND		0.00562	1	05/04/2021 23:08	WG1663870
Vinyl chloride	ND		0.00281	1	05/04/2021 23:08	WG1663870
Xylenes, Total	ND		0.00731	1	05/04/2021 23:08	WG1663870
(S) Toluene-d8	116		75.0-131		05/04/2021 23:08	WG1663870
(S) Toluene-d8	103		75.0-131		05/05/2021 22:02	WG1664826
(S) 4-Bromofluorobenzene	88.9		67.0-138		05/04/2021 23:08	WG1663870
(S) 4-Bromofluorobenzene	96.2		67.0-138		05/05/2021 22:02	WG1664826
(S) 1,2-Dichloroethane-d4	88.6		70.0-130		05/04/2021 23:08	WG1663870
(S) 1,2-Dichloroethane-d4	90.1		70.0-130		05/05/2021 22:02	WG1664826

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.23	1	05/07/2021 01:26	WG1664922
Residual Range Organics (RRO)	ND		10.6	1	05/07/2021 01:26	WG1664922
(S) o-Terphenyl	74.6		18.0-148		05/07/2021 01:26	WG1664922

Metals (ICPMS) by Method 6020B

Collected date/time: 04/27/21 12:02

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Arsenic	ND		2.00	1	05/06/2021 19:47	WG1665090
Cadmium	ND		1.00	1	05/06/2021 19:47	WG1665090
Chromium	ND		2.00	1	05/06/2021 19:47	WG1665090
Lead	ND		2.00	1	05/06/2021 19:47	WG1665090

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Gasoline Range Organics-NWTPH	ND		100	1	05/05/2021 00:46	WG1663987
(S) a,a,a-Trifluorotoluene(FID)	99.3		78.0-120		05/05/2021 00:46	WG1663987

⁷ Gl

9
l Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acetone	3.26		1.00	1	05/03/2021 21:53	WG1663336
Acrylonitrile	ND		0.500	1	05/03/2021 21:53	WG1663336
Acrolein	ND	<u>C3</u>	50.0	1	05/03/2021 21:53	WG1663336
Benzene	ND		0.0400	1	05/03/2021 21:53	WG1663336
Bromobenzene	ND		0.500	1	05/03/2021 21:53	WG1663336
Bromodichloromethane	ND		0.100	1	05/03/2021 21:53	WG1663336
Bromoform	ND	<u>C3</u>	1.00	1	05/03/2021 21:53	WG1663336
Bromomethane	ND		0.500	1	05/03/2021 21:53	WG1663336
n-Butylbenzene	ND		0.500	1	05/03/2021 21:53	WG1663336
sec-Butylbenzene	ND		0.500	1	05/03/2021 21:53	WG1663336
tert-Butylbenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
Carbon disulfide	ND		0.500	1	05/03/2021 21:53	WG1663336
Carbon tetrachloride	ND		0.200	1	05/03/2021 21:53	WG1663336
Chlorobenzene	ND		0.100	1	05/03/2021 21:53	WG1663336
Chlorodibromomethane	ND		0.100	1	05/03/2021 21:53	WG1663336
Chloroethane	ND		0.200	1	05/03/2021 21:53	WG1663336
Chloroform	ND		0.100	1	05/03/2021 21:53	WG1663336
Chloromethane	ND		0.500	1	05/03/2021 21:53	WG1663336
2-Chlorotoluene	ND		0.100	1	05/03/2021 21:53	WG1663336
4-Chlorotoluene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,2-Dibromo-3-Chloropropane	ND		1.00	1	05/03/2021 21:53	WG1663336
1,2-Dibromoethane	ND		0.100	1	05/03/2021 21:53	WG1663336
Dibromomethane	ND		0.200	1	05/03/2021 21:53	WG1663336
1,2-Dichlorobenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,3-Dichlorobenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,4-Dichlorobenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
Dichlorodifluoromethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,1-Dichloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,2-Dichloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,1-Dichloroethene	ND		0.100	1	05/03/2021 21:53	WG1663336
cis-1,2-Dichloroethene	ND		0.100	1	05/03/2021 21:53	WG1663336
trans-1,2-Dichloroethene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,2-Dichloropropane	ND		0.200	1	05/03/2021 21:53	WG1663336
1,1-Dichloropropene	ND		0.100	1	05/03/2021 21:53	WG1663336
1,3-Dichloropropane	ND		0.200	1	05/03/2021 21:53	WG1663336
cis-1,3-Dichloropropene	ND		0.100	1	05/03/2021 21:53	WG1663336
trans-1,3-Dichloropropene	ND		0.200	1	05/03/2021 21:53	WG1663336
2,2-Dichloropropane	ND		0.100	1	05/03/2021 21:53	WG1663336
Di-isopropyl ether	ND		0.0400	1	05/03/2021 21:53	WG1663336
Ethylbenzene	ND		0.100	1	05/03/2021 21:53	WG1663336
Hexachloro-1,3-butadiene	ND		1.00	1	05/03/2021 21:53	WG1663336

Collected date/time: 04/27/21 12:02

SAMPLE RESULTS - 11

L1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
2-Hexanone	ND		1.00	1	05/03/2021 21:53	WG1663336
Isopropylbenzene	ND	<u>C3</u>	0.100	1	05/03/2021 21:53	WG1663336
p-lsopropyltoluene	ND		0.200	1	05/03/2021 21:53	WG1663336
2-Butanone (MEK)	ND		1.00	1	05/03/2021 21:53	WG1663336
Methylene Chloride	ND		1.00	1	05/03/2021 21:53	WG1663336
4-Methyl-2-pentanone (MIBK)	ND		1.00	1	05/03/2021 21:53	WG1663336
Methyl tert-butyl ether	ND		0.0400	1	05/03/2021 21:53	WG1663336
Naphthalene	ND		0.500	1	05/03/2021 21:53	WG1663336
n-Propylbenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
Styrene	ND		0.500	1	05/03/2021 21:53	WG1663336
1,1,1,2-Tetrachloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,1,2,2-Tetrachloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,1,2-Trichlorotrifluoroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
Tetrachloroethene	ND	<u>C3</u>	0.100	1	05/03/2021 21:53	WG1663336
Toluene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,2,3-Trichlorobenzene	ND		0.500	1	05/03/2021 21:53	WG1663336
1,2,4-Trichlorobenzene	ND		0.500	1	05/03/2021 21:53	WG1663336
1,1,1-Trichloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,1,2-Trichloroethane	ND		0.100	1	05/03/2021 21:53	WG1663336
Trichloroethene	ND		0.0400	1	05/03/2021 21:53	WG1663336
Trichlorofluoromethane	ND		0.100	1	05/03/2021 21:53	WG1663336
1,2,3-Trichloropropane	ND		0.500	1	05/03/2021 21:53	WG1663336
1,2,4-Trimethylbenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,2,3-Trimethylbenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
1,3,5-Trimethylbenzene	ND		0.200	1	05/03/2021 21:53	WG1663336
Vinyl chloride	ND		0.100	1	05/03/2021 21:53	WG1663336
Xylenes, Total	ND		0.260	1	05/03/2021 21:53	WG1663336
(S) Toluene-d8	99.7		75.0-131		05/03/2021 21:53	WG1663336
(S) 4-Bromofluorobenzene	93.9		67.0-138		05/03/2021 21:53	WG1663336
(S) 1,2-Dichloroethane-d4	125		70.0-130		05/03/2021 21:53	WG1663336

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	05/06/2021 01:34	WG1664918
Residual Range Organics (RRO)	ND		250	1	05/06/2021 01:34	WG1664918
(S) o-Terphenyl	77.5		52.0-156		05/06/2021 01:34	WG1664918

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Acenaphthene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Acenaphthylene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Benzo(a)anthracene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Benzo(a)pyrene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Benzo(b)fluoranthene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Benzo(g,h,i)perylene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Benzo(k)fluoranthene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Chrysene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Dibenz(a,h)anthracene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Fluoranthene	ND		0.100	1	05/04/2021 08:54	WG1663506
Fluorene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Naphthalene	ND		0.250	1	05/04/2021 08:54	WG1663506

²Tc

Collected date/time: 04/27/21 12:02

L1346559

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Phenanthrene	ND		0.0500	1	05/04/2021 08:54	WG1663506
Pyrene	ND		0.0500	1	05/04/2021 08:54	WG1663506
1-Methylnaphthalene	ND		0.250	1	05/04/2021 08:54	WG1663506
2-Methylnaphthalene	ND		0.250	1	05/04/2021 08:54	WG1663506
2-Chloronaphthalene	ND		0.250	1	05/04/2021 08:54	WG1663506
(S) Nitrobenzene-d5	83.7		31.0-160		05/04/2021 08:54	WG1663506
(S) 2-Fluorobiphenyl	88.4		48.0-148		05/04/2021 08:54	WG1663506
(S) p-Terphenyl-d14	88.9		37.0-146		05/04/2021 08:54	WG1663506

Collected date/time: 04/27/21 00:00

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	<u> </u>
Acetone	2.16		1.00	1	05/03/2021 21:34	WG1663336
Acrylonitrile	ND		0.500	1	05/03/2021 21:34	WG1663336
Acrolein	ND	<u>C3</u>	50.0	1	05/03/2021 21:34	WG1663336
Benzene	ND		0.0400	1	05/03/2021 21:34	WG1663336
Bromobenzene	ND		0.500	1	05/03/2021 21:34	WG1663336
Bromodichloromethane	ND		0.100	1	05/03/2021 21:34	WG1663336
Bromoform	ND	<u>C3</u>	1.00	1	05/03/2021 21:34	WG1663336
Bromomethane	ND		0.500	1	05/03/2021 21:34	WG1663336
n-Butylbenzene	ND		0.500	1	05/03/2021 21:34	WG1663336
sec-Butylbenzene	ND		0.500	1	05/03/2021 21:34	WG1663336
tert-Butylbenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
Carbon disulfide	ND		0.500	1	05/03/2021 21:34	WG1663336
Carbon tetrachloride	ND		0.200	1	05/03/2021 21:34	WG1663336
Chlorobenzene	ND		0.100	1	05/03/2021 21:34	WG1663336
Chlorodibromomethane	ND		0.100	1	05/03/2021 21:34	WG1663336
Chloroethane	ND		0.200	1	05/03/2021 21:34	WG1663336
Chloroform	ND		0.100	1	05/03/2021 21:34	WG1663336
Chloromethane	ND		0.500	1	05/03/2021 21:34	WG1663336
2-Chlorotoluene	ND		0.100	1	05/03/2021 21:34	WG1663336
4-Chlorotoluene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,2-Dibromo-3-Chloropropane	ND		1.00	1	05/03/2021 21:34	WG1663336
1,2-Dibromoethane	ND		0.100	1	05/03/2021 21:34	WG1663336
Dibromomethane	ND		0.200	1	05/03/2021 21:34	WG1663336
1,2-Dichlorobenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,3-Dichlorobenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,4-Dichlorobenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
Dichlorodifluoromethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,1-Dichloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,2-Dichloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,1-Dichloroethene	ND		0.100	1	05/03/2021 21:34	WG1663336
cis-1,2-Dichloroethene	ND		0.100	1	05/03/2021 21:34	WG1663336
trans-1,2-Dichloroethene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,2-Dichloropropane	ND		0.200	1	05/03/2021 21:34	WG1663336
1,1-Dichloropropene	ND		0.100	1	05/03/2021 21:34	WG1663336
1,3-Dichloropropane	ND		0.200	1	05/03/2021 21:34	WG1663336
cis-1,3-Dichloropropene	ND		0.100	1	05/03/2021 21:34	WG1663336
trans-1,3-Dichloropropene	ND		0.200	1	05/03/2021 21:34	WG1663336
2,2-Dichloropropane	ND		0.100	1	05/03/2021 21:34	WG1663336
Di-isopropyl ether	ND		0.0400	1	05/03/2021 21:34	WG1663336
Ethylbenzene	ND		0.0400	1	05/03/2021 21:34	WG1663336
Hexachloro-1,3-butadiene	ND		1.00	1	05/03/2021 21:34	WG1663336
2-Hexanone	ND		1.00	1	05/03/2021 21:34	WG1663336
		C2	0.100	1	05/03/2021 21:34	
Isopropylbenzene	ND	<u>C3</u>				WG1663336
p-Isopropyltoluene	ND ND		0.200 1.00	1	05/03/2021 21:34 05/03/2021 21:34	WG1663336
2-Butanone (MEK)				1		WG1663336
Methylene Chloride	ND		1.00	1	05/03/2021 21:34	WG1663336
4-Methyl-2-pentanone (MIBK)	ND ND		1.00 0.0400	1	05/03/2021 21:34	WG1663336 WG1663336
Methyl tert-butyl ether	ND ND			1	05/03/2021 21:34	WG1663336
Naphthalene n Propylhonzono	ND ND		0.500	1	05/03/2021 21:34	WG1663336
n-Propylbenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
Styrene	ND		0.500	1	05/03/2021 21:34	WG1663336
1,1,1,2-Tetrachloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,1,2,2-Tetrachloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,1,2-Trichlorotrifluoroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
Tetrachloroethene	ND	<u>C3</u>	0.100	1	05/03/2021 21:34	WG1663336
Toluene	ND		0.200	1	05/03/2021 21:34	<u>WG1663336</u>

³Ss

Cn

Gl

TRIP BLANK

SAMPLE RESULTS - 12

Collected date/time: 04/27/21 00:00

1346559

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Dateh
		Qualifier		Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
1,2,3-Trichlorobenzene	ND		0.500	1	05/03/2021 21:34	WG1663336
1,2,4-Trichlorobenzene	ND		0.500	1	05/03/2021 21:34	WG1663336
1,1,1-Trichloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,1,2-Trichloroethane	ND		0.100	1	05/03/2021 21:34	WG1663336
Trichloroethene	ND		0.0400	1	05/03/2021 21:34	WG1663336
Trichlorofluoromethane	ND		0.100	1	05/03/2021 21:34	WG1663336
1,2,3-Trichloropropane	ND		0.500	1	05/03/2021 21:34	WG1663336
1,2,4-Trimethylbenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,2,3-Trimethylbenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
1,3,5-Trimethylbenzene	ND		0.200	1	05/03/2021 21:34	WG1663336
Vinyl chloride	ND		0.100	1	05/03/2021 21:34	WG1663336
Xylenes, Total	ND		0.260	1	05/03/2021 21:34	WG1663336
(S) Toluene-d8	99.1		75.0-131		05/03/2021 21:34	WG1663336
(S) 4-Bromofluorobenzene	92.0		67.0-138		05/03/2021 21:34	WG1663336
(S) 1,2-Dichloroethane-d4	125		70.0-130		05/03/2021 21:34	WG1663336

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1346559-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3650972-1 05	5/05/21 12:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

3 Ss

L1346559-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1346559-07 05/05/21 12:34 • (DUP) R3650972-3 05/05/21 12:34

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.5	92.9	1	0.389		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3650972-2 05/05/2112:34

(ECS) R3650972-2 05/05	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Martin S. Burck Assoc.-Hood River, OR

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1346559-09,10

Method Blank (MB)

(MB) R3650969-1	05/05/21 12:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1346577-01 Original Sample (OS) • Duplicate (DUP)

$(\bigcirc$	S) I 1346577-01	05/05/2112:22 •	(DLIP	R3650969-3	05/05/21 12:22
$(\circ,$	3) LI3403/7-01	03/03/21 12.22	(DOF)) K3030303-3	03/03/21 12.22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	88.3	88.3	1	0.0281		10

Ss

Laboratory Control Sample (LCS)

(LCS) R3650969-2 05/05/2112:22

(LC3) R3030909-2 03/03	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1346559-04

Mercury by Method 7471B Method Blank (MB)

(MB) R3650802-1 05/05/2115:26

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Mercury	U		0.0180	0.0400

Laboratory Control Sample (LCS)

(LCS) R3650802-2 05/05/2115:28

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Mercury	0.500	0.509	102	80 0-120	

(OS) L1346504-04 05/05/21 15:31 • (MS) R3650802-3 05/05/21 15:33 • (MSD) R3650802-4 05/05/21 15:36

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Mercury	0.500	ND	0.542	0.521	103	98.7	1	75 0-125			3 89	20	

PAGE:

28 of 58

QUALITY CONTROL SUMMARY

L1346559-01,04

Method Blank (MB)

Metals (ICPMS) by Method 6020B

	· /											
(MB) R3650052-1	1B) R3650052-1 05/04/21 09:58											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Arsenic	U		0.100	1.00								
Barium	U		0.152	2.50								
Cadmium	U		0.0855	1.00								
Chromium	U		0.297	5.00								
Lead	U		0.0990	2.00								
Selenium	U		0.180	2.50								
Silver	U		0.0865	0.500								

Laboratory Control Sample (LCS)

(LCS) R3650052-2 (05/04/21 10:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	97.4	97.4	80.0-120	
Barium	100	100	100	80.0-120	
Cadmium	100	102	102	80.0-120	
Chromium	100	98.2	98.2	80.0-120	
Lead	100	103	103	80.0-120	
Selenium	100	97.9	97.9	80.0-120	
Silver	20.0	20.6	103	80.0-120	

L1346184-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	126	ND	102	105	80.0	82.6	5	75.0-125			3.15	20
Barium	126	84.4	192	192	85.8	85.7	5	75.0-125			0.0724	20
Cadmium	126	ND	114	114	90.7	90.5	5	75.0-125			0.227	20
Chromium	126	143	220	244	61.6	80.4	5	75.0-125	<u>J6</u>		10.2	20
Lead	126	2.81	115	123	88.9	95.9	5	75.0-125			7.40	20
Selenium	126	ND	107	108	84.9	85.8	5	75.0-125			1.09	20
Silver	25.1	ND	23.0	23.3	91.4	92.8	5	75.0-125			1.44	20

QUALITY CONTROL SUMMARY

L1346559-11

Method Blank (MB)

(MB) R3651360-5 05/06/21 17:56

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.180	2.00
Cadmium	U		0.150	1.00
Chromium	U		1.24	2.00
Lead	U		0.849	2 00

Laboratory Control Sample (LCS)

(I CS) P3651360-1 05/06/21 17:24

(LC3) K3031300-1 03/00/	21 17.24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	50.0	48.3	96.7	80.0-120	
Cadmium	50.0	48.8	97.6	80.0-120	
Chromium	50.0	50.2	100	80.0-120	
Lead	50.0	50.1	100	80.0-120	

L1343672-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1343672-08 05/06/21 17:29 • (MS) R3651360-3 05/06/21 18:09 • (MSD) R3651360-4 05/06/21 18:12

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	50.0	ND	48.9	48.4	97.9	96.7	1	75.0-125			1.16	20
Cadmium	50.0	ND	49.1	48.2	98.2	96.5	1	75.0-125			1.82	20
Chromium	50.0	ND	53.7	49.7	107	99.5	1	75.0-125			7.74	20
Lead	50.0	ND	49.7	50.7	99.4	101	1	75.0-125			2.01	20

PAGE:

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1346559-11

Method Blank (MB)

(MB) R3651094-2 05/04/21 23:41										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Gasoline Range Organics-NWTPH	34.0	<u>J</u>	31.6	100						
(S) a,a,a-Trifluorotoluene(FID)	99.9			78.0-120						

Laboratory Control Sample (LCS)

(LCS) R3651094-1 05/04	/21 22:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	5080	92.4	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			104	78.0-120	

L1346182-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346182-02 05/05	/21 04:02 • (MS)	R3651094-3 C	05/05/21 07:18	8 • (MSD) R3651	1094-4 05/05	/21 07:40							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	I
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	ND	4370	4360	79.5	79.3	1	10.0-155			0.229	21	
(S) a,a,a-Trifluorotoluene(FID)					106	105		78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1346559-01

Method Blank (MB)

(MB) R3650688-4 05/05	5/21 11:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPHG C6 - C12	0.0406	<u>J</u>	0.0339	0.100
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650688-2 05/0	5/21 08:43 • (LC	SD) R365068	8-3 05/05/210	9:37							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPHG C6 - C12	5.50	5.00	4.93	90.9	89.6	71.0-124			1.41	20	
(S) a.a.a-Trifluorotoluene(FID)				108	109	77.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-11,12

Method Blank (MB)

(MB) R3650200-3 05/03/	21 20:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		0.548	1.00	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	
tert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
Chloromethane	U		0.0556	0.500	
2-Chlorotoluene	U		0.0368	0.100	
4-Chlorotoluene	U		0.0452	0.200	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0400	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.100	
I,1-Dichloroethane	U		0.0230	0.100	
l,2-Dichloroethane	U		0.0190	0.100	
I,1-Dichloroethene	U		0.0200	0.100	
cis-1,2-Dichloroethene	U		0.0276	0.100	
rans-1,2-Dichloroethene	U		0.0572	0.200	
l,2-Dichloropropane	U		0.0508	0.200	
1,1-Dichloropropene	U		0.0280	0.100	
1,3-Dichloropropane	U		0.0700	0.200	
cis-1,3-Dichloropropene	U		0.0271	0.100	
trans-1,3-Dichloropropene	U		0.0612	0.200	
2,2-Dichloropropane	U		0.0317	0.100	
Di-isopropyl ether	U		0.0140	0.0400	
Ethylbenzene	U		0.0212	0.100	
Hexachloro-1,3-butadiene	U		0.508	1.00	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-11,12

Method Blank (MB)

(MB) R3650200-3 05/03/	/21 20:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
2-Hexanone	U		0.400	1.00	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	U		0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	
Tetrachloroethene	U		0.0280	0.100	
Toluene	U		0.0500	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	
1,1,1-Trichloroethane	U		0.0110	0.100	
1,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
1,2,3-Trichloropropane	U		0.204	0.500	
1,2,3-Trimethylbenzene	U		0.0460	0.200	
1,2,4-Trimethylbenzene	U		0.0464	0.200	
1,3,5-Trimethylbenzene	U		0.0432	0.200	
Vinyl chloride	U		0.0273	0.100	
Xylenes, Total	U		0.191	0.260	
Acrolein	U		0.758	50.0	
(S) Toluene-d8	97.6			75.0-131	
(S) 4-Bromofluorobenzene	91.7			67.0-138	
(S) 1,2-Dichloroethane-d4	123			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650200-1 05/03/21 19:40 • (LCSD) R3650200-2 05/03/21 19:59

,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	26.5	28.1	106	112	10.0-160			5.86	31
Acrylonitrile	25.0	23.1	24.7	92.4	98.8	45.0-153			6.69	22

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-11,12

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650200-1 05/03/2119:40 • (LCSD) R3650200-2 05/03/2119:59

(LCS) R3650200-1 05/03/	Spike Amount	•	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzene	5.00	4.64	4.32	92.8	86.4	70.0-123			7.14	20
Bromobenzene	5.00	4.84	4.45	96.8	89.0	73.0-121			8.40	20
Bromodichloromethane	5.00	4.92	4.63	98.4	92.6	73.0-121			6.07	20
Bromoform	5.00	3.88	3.82	77.6	76.4	64.0-132			1.56	20
Bromomethane	5.00	4.34	4.15	86.8	83.0	56.0-147			4.48	20
n-Butylbenzene	5.00	4.95	4.61	99.0	92.2	68.0-135			7.11	20
sec-Butylbenzene	5.00	4.99	4.65	99.8	93.0	74.0-130			7.05	20
tert-Butylbenzene	5.00	5.03	4.78	101	95.6	75.0-127			5.10	20
Carbon disulfide	5.00	4.42	4.18	88.4	83.6	56.0-133			5.58	20
Carbon tetrachloride	5.00	4.67	4.34	93.4	86.8	66.0-128			7.33	20
Chlorobenzene	5.00	4.17	3.90	83.4	78.0	76.0-128			6.69	20
Chlorodibromomethane	5.00	4.49	4.26	89.8	85.2	74.0-127			5.26	20
Chloroethane	5.00	4.39	4.19	87.8	83.8	61.0-134			4.66	20
Chloroform	5.00	5.22	4.87	104	97.4	72.0-123			6.94	20
Chloromethane	5.00	5.44	5.10	109	102	51.0-138			6.45	20
2-Chlorotoluene	5.00	4.56	4.30	91.2	86.0	75.0-124			5.87	20
4-Chlorotoluene	5.00	5.02	4.61	100	92.2	75.0-124			8.52	20
1,2-Dibromo-3-Chloropropane	5.00	4.07	4.04	81.4	80.8	59.0-130			0.740	20
1,2-Dibromoethane	5.00	4.34	4.02	86.8	80.4	74.0-128			7.66	20
Dibromomethane	5.00	4.87	4.77	97.4	95.4	75.0-122			2.07	20
1,2-Dichlorobenzene	5.00	4.62	4.44	92.4	88.8	76.0-124			3.97	20
1,3-Dichlorobenzene	5.00	4.51	4.30	90.2	86.0	76.0-125			4.77	20
1,4-Dichlorobenzene	5.00	4.70	4.35	94.0	87.0	77.0-121			7.73	20
Dichlorodifluoromethane	5.00	4.56	4.33	91.2	86.6	43.0-156			5.17	20
1,1-Dichloroethane	5.00	5.13	4.84	103	96.8	70.0-127			5.82	20
1,2-Dichloroethane	5.00	6.35	5.79	127	116	65.0-131			9.23	20
1,1-Dichloroethene	5.00	5.06	4.58	101	91.6	65.0-131			9.96	20
cis-1,2-Dichloroethene	5.00	4.64	4.25	92.8	85.0	73.0-125			8.77	20
trans-1,2-Dichloroethene	5.00	4.50	4.09	90.0	81.8	71.0-125			9.55	20
1,2-Dichloropropane	5.00	5.14	4.67	103	93.4	74.0-125			9.58	20
1,1-Dichloropropene	5.00	5.26	4.86	105	97.2	73.0-125			7.91	20
1,3-Dichloropropane	5.00	4.62	4.41	92.4	88.2	80.0-125			4.65	20
cis-1,3-Dichloropropene	5.00	5.06	4.96	101	99.2	76.0-127			2.00	20
trans-1,3-Dichloropropene	5.00	5.03	4.68	101	93.6	73.0-127			7.21	20
2,2-Dichloropropane	5.00	4.97	4.53	99.4	90.6	59.0-135			9.26	20
Di-isopropyl ether	5.00	5.90	5.34	118	107	60.0-136			9.96	20
Ethylbenzene	5.00	4.16	3.92	83.2	78.4	74.0-126			5.94	20
Hexachloro-1,3-butadiene	5.00	4.43	4.43	88.6	88.6	57.0-150			0.000	20
2-Hexanone	25.0	24.4	24.1	97.6	96.4	54.0-147			1.24	20
Isopropylbenzene	5.00	3.90	3.68	78.0	73.6	72.0-127			5.80	20

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-11.12

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

122

124

(LCS) R3650200-1 05/03/2119:40 • (LCSD) R3650200-2 05/03/2119:59

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
p-lsopropyltoluene	5.00	5.08	4.61	102	92.2	72.0-133			9.70	20	
2-Butanone (MEK)	25.0	28.5	30.2	114	121	30.0-160			5.79	24	
Methylene Chloride	5.00	4.30	4.22	86.0	84.4	68.0-123			1.88	20	
4-Methyl-2-pentanone (MIBK)	25.0	28.0	27.5	112	110	56.0-143			1.80	20	
Methyl tert-butyl ether	5.00	4.26	4.03	85.2	80.6	66.0-132			5.55	20	
Naphthalene	5.00	4.09	3.95	81.8	79.0	59.0-130			3.48	20	
n-Propylbenzene	5.00	5.04	4.69	101	93.8	74.0-126			7.19	20	
Styrene	5.00	4.17	3.91	83.4	78.2	72.0-127			6.44	20	
1,1,1,2-Tetrachloroethane	5.00	4.18	3.80	83.6	76.0	74.0-129			9.52	20	
1,1,2,2-Tetrachloroethane	5.00	5.07	4.71	101	94.2	68.0-128			7.36	20	
Tetrachloroethene	5.00	3.84	3.71	76.8	74.2	70.0-136			3.44	20	
Toluene	5.00	4.22	3.95	84.4	79.0	75.0-121			6.61	20	
1,1,2-Trichlorotrifluoroethane	5.00	4.64	4.09	92.8	81.8	61.0-139			12.6	20	
1,2,3-Trichlorobenzene	5.00	4.59	4.32	91.8	86.4	59.0-139			6.06	20	
1,2,4-Trichlorobenzene	5.00	4.47	4.41	89.4	88.2	62.0-137			1.35	20	
1,1,1-Trichloroethane	5.00	4.77	4.36	95.4	87.2	69.0-126			8.98	20	
1,1,2-Trichloroethane	5.00	4.41	4.14	88.2	82.8	78.0-123			6.32	20	
Trichloroethene	5.00	4.46	4.23	89.2	84.6	76.0-126			5.29	20	
Trichlorofluoromethane	5.00	4.56	3.77	91.2	75.4	61.0-142			19.0	20	
1,2,3-Trichloropropane	5.00	5.23	4.94	105	98.8	67.0-129			5.70	20	
1,2,3-Trimethylbenzene	5.00	4.83	4.52	96.6	90.4	74.0-124			6.63	20	
1,2,4-Trimethylbenzene	5.00	4.79	4.48	95.8	89.6	70.0-126			6.69	20	
1,3,5-Trimethylbenzene	5.00	5.08	4.60	102	92.0	73.0-127			9.92	20	
Vinyl chloride	5.00	4.89	4.57	97.8	91.4	63.0-134			6.77	20	
Kylenes, Total	15.0	11.8	11.3	78.7	75.3	72.0-127			4.33	20	
Acrolein	25.0	12.3	13.4	49.2	53.6	10.0-160			8.56	31	
(S) Toluene-d8				98.9	98.6	75.0-131					
(S) 4-Bromofluorobenzene				92.1	92.7	67.0-138					

70.0-130

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-01,08,09,10

Method Blank (MB)

(MB) R3650533-2 05/04/2	21 18:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acetone	U		0.0365	0.0500	
Acrylonitrile	U		0.00361	0.0125	
Benzene	0.000525	<u>J</u>	0.000467	0.00100	
Bromobenzene	U		0.000900	0.0125	
Bromodichloromethane	U		0.000725	0.00250	
Bromoform	U		0.00117	0.0250	
Bromomethane	U		0.00197	0.0125	
n-Butylbenzene	U		0.00525	0.0125	
sec-Butylbenzene	U		0.00288	0.0125	
tert-Butylbenzene	U		0.00195	0.00500	
Carbon disulfide	U		0.000700	0.0125	
Carbon tetrachloride	U		0.000898	0.00500	
Chlorobenzene	U		0.000210	0.00250	
Chlorodibromomethane	U		0.000612	0.00250	
Chloroethane	U		0.00170	0.00500	
Chloroform	U		0.00103	0.00250	
Chloromethane	U		0.00435	0.0125	
2-Chlorotoluene	U		0.000865	0.00250	
4-Chlorotoluene	U		0.000450	0.00500	
1,2-Dibromo-3-Chloropropane	U		0.00390	0.0250	
1,2-Dibromoethane	U		0.000648	0.00250	
Dibromomethane	U		0.000750	0.00500	
1,2-Dichlorobenzene	U		0.000425	0.00500	
1,3-Dichlorobenzene	U		0.000600	0.00500	
1,4-Dichlorobenzene	U		0.000700	0.00500	
Dichlorodifluoromethane	U		0.00161	0.00250	
1,1-Dichloroethane	U		0.000491	0.00250	
1,2-Dichloroethane	U		0.000649	0.00250	
1,1-Dichloroethene	U		0.000606	0.00250	
cis-1,2-Dichloroethene	U		0.000734	0.00250	
trans-1,2-Dichloroethene	U		0.00104	0.00500	
1,2-Dichloropropane	U		0.00142	0.00500	
1,1-Dichloropropene	U		0.000809	0.00250	
1,3-Dichloropropane	U		0.000501	0.00500	
cis-1,3-Dichloropropene	U		0.000757	0.00250	
trans-1,3-Dichloropropene	U		0.00114	0.00500	
2,2-Dichloropropane	U		0.00138	0.00250	
Di-isopropyl ether	U		0.000410	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Hexachloro-1,3-butadiene	U		0.00600	0.0250	

QUALITY CONTROL SUMMARY

L1346559-01,08,09,10

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)

(MB) R3650533-2 05/04/	21 18:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Isopropylbenzene	U		0.000425	0.00250	
p-lsopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	U		0.0635	0.100	
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	
Methyl tert-butyl ether	U		0.000350	0.00100	
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	
1,2,3-Trichlorobenzene	U		0.00733	0.0125	
,2,4-Trichlorobenzene	U		0.00440	0.0125	
1,1,1-Trichloroethane	U		0.000923	0.00250	
,1,2-Trichloroethane	U		0.000597	0.00250	
richloroethene	U		0.000584	0.00100	
Frichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
,2,3-Trimethylbenzene	U		0.00158	0.00500	
,2,4-Trimethylbenzene	U		0.00158	0.00500	
1,3,5-Trimethylbenzene	U		0.00200	0.00500	
/inyl chloride	U		0.00116	0.00250	
Kylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	117			75.0-131	
(S) 4-Bromofluorobenzene	89.9			67.0-138	
(S) 1,2-Dichloroethane-d4	89.1			70.0-130	

Laboratory Control Sample (LCS)

11 0	CIDOC	50533-1	1/21	17·1E

,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Acetone	0.625	0.656	105	10.0-160	
Acrylonitrile	0.625	0.588	94.1	45.0-153	
Benzene	0.125	0.113	90.4	70.0-123	
Bromobenzene	0.125	0.131	105	73.0-121	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-01,08,09,10

Laboratory Control Sample (LCS)

Laboratory Control	Sample (Lo	CS)			
(LCS) R3650533-1 05/04/2	21 17:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Bromodichloromethane	0.125	0.115	92.0	73.0-121	
Bromoform	0.125	0.123	98.4	64.0-132	
Bromomethane	0.125	0.160	128	56.0-147	
n-Butylbenzene	0.125	0.119	95.2	68.0-135	
sec-Butylbenzene	0.125	0.122	97.6	74.0-130	
tert-Butylbenzene	0.125	0.122	97.6	75.0-127	
Carbon disulfide	0.125	0.107	85.6	56.0-133	
Carbon tetrachloride	0.125	0.140	112	66.0-128	
Chlorobenzene	0.125	0.126	101	76.0-128	
Chlorodibromomethane	0.125	0.131	105	74.0-127	
Chloroethane	0.125	0.181	145	61.0-134	<u>J4</u>
Chloroform	0.125	0.111	88.8	72.0-123	
Chloromethane	0.125	0.141	113	51.0-138	
2-Chlorotoluene	0.125	0.123	98.4	75.0-124	
4-Chlorotoluene	0.125	0.123	98.4	75.0-124	
1,2-Dibromo-3-Chloropropane	0.125	0.0962	77.0	59.0-130	
1,2-Dibromoethane	0.125	0.128	102	74.0-128	
Dibromomethane	0.125	0.117	93.6	75.0-122	
1,2-Dichlorobenzene	0.125	0.115	92.0	76.0-124	
1,3-Dichlorobenzene	0.125	0.124	99.2	76.0-125	
1,4-Dichlorobenzene	0.125	0.131	105	77.0-121	
Dichlorodifluoromethane	0.125	0.119	95.2	43.0-156	
1,1-Dichloroethane	0.125	0.106	84.8	70.0-127	
1,2-Dichloroethane	0.125	0.112	89.6	65.0-131	
1,1-Dichloroethene	0.125	0.119	95.2	65.0-131	
cis-1,2-Dichloroethene	0.125	0.113	90.4	73.0-125	
trans-1,2-Dichloroethene	0.125	0.114	91.2	71.0-125	
1,2-Dichloropropane	0.125	0.116	92.8	74.0-125	
1,1-Dichloropropene	0.125	0.113	90.4	73.0-125	
1,3-Dichloropropane	0.125	0.132	106	80.0-125	
cis-1,3-Dichloropropene	0.125	0.115	92.0	76.0-127	
trans-1,3-Dichloropropene	0.125	0.128	102	73.0-127	
2,2-Dichloropropane	0.125	0.114	91.2	59.0-135	
Di-isopropyl ether	0.125	0.106	84.8	60.0-136	
Ethylbenzene	0.125	0.128	102	74.0-126	
Hexachloro-1,3-butadiene	0.125	0.112	89.6	57.0-150	
Isopropylbenzene	0.125	0.115	92.0	72.0-127	
p-Isopropyltoluene	0.125	0.124	99.2	72.0-133	
2-Butanone (MEK)	0.625	0.686	110	30.0-160	
Methylene Chloride	0.125	0.102	81.6	68.0-123	

PAGE:

39 of 58

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-01,08,09,10

Laboratory Control Sample (LCS)

11 (5	R3650533-1	05/04/21 17:45

(LCS) R3650533-1 05/04/2	21 17:45						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
4-Methyl-2-pentanone (MIBK)	0.625	0.698	112	56.0-143			
Methyl tert-butyl ether	0.125	0.120	96.0	66.0-132			
Naphthalene	0.125	0.0742	59.4	59.0-130			
n-Propylbenzene	0.125	0.127	102	74.0-126			
Styrene	0.125	0.113	90.4	72.0-127			
1,1,1,2-Tetrachloroethane	0.125	0.126	101	74.0-129			
1,1,2,2-Tetrachloroethane	0.125	0.112	89.6	68.0-128			
Tetrachloroethene	0.125	0.142	114	70.0-136			
Toluene	0.125	0.136	109	75.0-121			
1,1,2-Trichlorotrifluoroethane	0.125	0.123	98.4	61.0-139			
1,2,3-Trichlorobenzene	0.125	0.0543	43.4	59.0-139	<u>J4</u>		
1,2,4-Trichlorobenzene	0.125	0.0882	70.6	62.0-137			
1,1,1-Trichloroethane	0.125	0.118	94.4	69.0-126			
1,1,2-Trichloroethane	0.125	0.123	98.4	78.0-123			
Trichloroethene	0.125	0.126	101	76.0-126			
Trichlorofluoromethane	0.125	0.113	90.4	61.0-142			
1,2,3-Trichloropropane	0.125	0.133	106	67.0-129			
1,2,3-Trimethylbenzene	0.125	0.114	91.2	74.0-124			
1,2,4-Trimethylbenzene	0.125	0.120	96.0	70.0-126			
1,3,5-Trimethylbenzene	0.125	0.121	96.8	73.0-127			
Vinyl chloride	0.125	0.151	121	63.0-134			
Xylenes, Total	0.375	0.368	98.1	72.0-127			
(S) Toluene-d8			118	75.0-131			
(S) 4-Bromofluorobenzene			92.8	67.0-138			
(S) 1,2-Dichloroethane-d4			105	70.0-130			

L1346602-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346602-04 05/05/21 01:02 • (MS) R3650533-3 05/05/21 02:18 • (MSD) R3650533-4 05/05/21 02:37

	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acrylonitrile	6.28	ND	6.51	6.93	104	110	8	10.0-160			6.15	40
Bromobenzene	1.26	ND	1.07	1.25	85.0	99.2	8	10.0-156			15.4	38
Acetone	6.28	ND	6.65	4.50	106	71.6	8	10.0-160			38.6	40
n-Butylbenzene	1.26	ND	0.785	0.979	62.5	77.9	8	10.0-160			21.9	40
Benzene	1.26	ND	0.737	0.933	58.7	74.2	8	10.0-149			23.4	37
sec-Butylbenzene	1.26	ND	0.837	1.02	66.6	81.4	8	10.0-159			20.1	39
tert-Butylbenzene	1.26	ND	0.797	1.01	63.4	80.4	8	10.0-156			23.6	39
Bromodichloromethane	1.26	ND	0.898	1.03	71.4	82.0	8	10.0-143			13.7	37

ACCOUNT: Martin S. Burck Assoc.-Hood River, OR

PROJECT: NORTH STAR

SDG: L1346559

DATE/TIME: 05/11/21 18:50

PAGE:

40 of 58

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-01,08,09,10

L1346602-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346602-04 05/05/21 01:02 • (MS) R3650533-3 05/05/21 02:18 • (MSD) R3650533-4 05/05/21 02:37

1		
		n
	$\overline{}$	μ

		² Tc
--	--	-----------------

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Bromoform	1.26	ND	1.17	1.27	93.3	101	8	10.0-146			8.12	36
Bromomethane	1.26	ND	0.883	1.08	70.3	86.3	8	10.0-149			20.5	38
2-Chlorotoluene	1.26	ND	1.09	1.25	86.6	99.3	8	10.0-159			13.7	38
4-Chlorotoluene	1.26	ND	0.863	1.08	68.7	85.9	8	10.0-155			22.3	39
Carbon disulfide	1.26	ND	0.453	0.635	36.1	50.5	8	10.0-145			33.4	39
Carbon tetrachloride	1.26	ND	0.792	1.08	63.0	85.9	8	10.0-145			30.7	37
Chlorobenzene	1.26	ND	0.885	1.10	70.4	87.9	8	10.0-152			22.1	39
Chlorodibromomethane	1.26	ND	1.13	1.29	89.7	102	8	10.0-146			13.2	37
Dibromomethane	1.26	ND	1.00	1.15	79.7	91.8	8	10.0-147			14.1	35
Chloroethane	1.26	ND	1.00	1.38	79.6	110	8	10.0-146			31.7	40
Chloroform	1.26	ND	0.817	0.969	65.0	77.1	8	10.0-146			17.0	37
Chloromethane	1.26	ND	0.732	0.911	58.3	72.5	8	10.0-159			21.7	37
1,2-Dibromo-3-Chloropropane	1.26	ND	1.01	1.03	80.3	82.2	8	10.0-151			2.43	39
1,2-Dibromoethane	1.26	ND	1.15	1.31	91.6	104	8	10.0-148			12.9	34
1,2-Dichlorobenzene	1.26	ND	0.946	1.10	75.3	87.2	8	10.0-155			14.7	37
1,3-Dichlorobenzene	1.26	ND	0.919	1.11	73.2	88.6	8	10.0-153			19.0	38
1,4-Dichlorobenzene	1.26	ND	0.987	1.15	78.6	91.6	8	10.0-151			15.3	38
1,1-Dichloropropene	1.26	ND	0.648	0.852	51.6	67.8	8	10.0-153			27.1	35
1,3-Dichloropropane	1.26	ND	1.14	1.31	91.1	104	8	10.0-154			13.2	35
Dichlorodifluoromethane	1.26	ND	0.643	0.888	51.2	70.7	8	10.0-160			32.0	35
1,1-Dichloroethane	1.26	ND	0.719	0.911	57.2	72.5	8	10.0-147			23.5	37
1,2-Dichloroethane	1.26	ND	0.995	1.06	79.2	84.1	8	10.0-148			5.96	35
2,2-Dichloropropane	1.26	ND	0.642	0.916	51.1	72.9	8	10.0-138			35.2	36
1,1-Dichloroethene	1.26	ND	0.665	0.873	52.9	69.5	8	10.0-155			27.1	37
cis-1,2-Dichloroethene	1.26	ND	0.789	0.977	62.8	77.8	8	10.0-149			21.3	37
Di-isopropyl ether	1.26	ND	0.893	1.04	71.1	83.0	8	10.0-147			15.5	36
trans-1,2-Dichloroethene	1.26	ND	0.683	0.865	54.3	68.8	8	10.0-150			23.5	37
1,2-Dichloropropane	1.26	ND	0.916	1.06	72.9	84.7	8	10.0-148			15.0	37
Hexachloro-1,3-butadiene	1.26	ND	0.800	0.946	63.7	75.3	8	10.0-160			16.7	40
cis-1,3-Dichloropropene	1.26	ND	0.926	1.05	73.7	83.3	8	10.0-151			12.2	37
trans-1,3-Dichloropropene	1.26	ND	1.06	1.22	84.6	97.0	8	10.0-148			13.6	37
p-Isopropyltoluene	1.26	ND	0.848	1.05	67.5	83.3	8	10.0-160			20.9	40
Ethylbenzene	1.26	ND	0.805	1.06	64.1	84.1	8	10.0-160			27.0	38
Naphthalene	1.26	ND	0.660	0.726	52.5	57.8	8	10.0-160			9.55	36
Isopropylbenzene	1.26	ND	0.749	0.977	59.6	77.8	8	10.0-155			26.4	38
n-Propylbenzene	1.26	ND	0.827	1.07	65.8	85.0	8	10.0-158			25.5	38
2-Butanone (MEK)	6.28	ND	6.56	6.98	104	111	8	10.0-160			6.11	40
1,1,1,2-Tetrachloroethane	1.26	ND	0.921	1.14	73.3	90.8	8	10.0-149			21.3	39
Methylene Chloride	1.26	ND	0.336	0.919	26.7	73.2	8	10.0-141		<u>J3</u>	93.0	37
۸۵	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:	PAGE:

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-01,08,09,10

L1346602-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346602-04 05/05/21 01:02 • (MS) R3650533-3 05/05/21 02:18 • (MSD) R3650533-4 05/05/21 02:37

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
4-Methyl-2-pentanone (MIBK)	6.28	ND	7.24	7.41	115	118	8	10.0-160			2.26	35
Methyl tert-butyl ether	1.26	ND	1.09	1.21	87.1	96.1	8	11.0-147			9.77	35
Styrene	1.26	ND	0.840	0.990	66.8	78.8	8	10.0-160			16.4	40
1,1,2,2-Tetrachloroethane	1.26	ND	2.63	2.86	209	228	8	10.0-160	<u>J5</u>	<u>J5</u>	8.43	35
1,2,3-Trichloropropane	1.26	ND	1.27	0.466	101	37.1	8	10.0-156		<u>J3</u>	92.8	35
Tetrachloroethene	1.26	ND	0.785	1.04	62.5	82.5	8	10.0-156			27.6	39
1,2,3-Trimethylbenzene	1.26	ND	0.828	0.985	65.9	78.4	8	10.0-160			17.3	36
1,2,4-Trimethylbenzene	1.26	ND	0.847	1.00	67.4	79.9	8	10.0-160			17.0	36
Toluene	1.26	ND	0.847	1.11	67.4	88.0	8	10.0-156			26.6	38
1,1,2-Trichlorotrifluoroethane	1.26	ND	0.799	1.06	63.6	84.7	8	10.0-160			28.6	36
1,3,5-Trimethylbenzene	1.26	ND	0.818	1.05	65.1	83.4	8	10.0-160			24.6	38
1,2,3-Trichlorobenzene	1.26	ND	0.402	0.417	32.0	33.2	8	10.0-160			3.64	40
1,2,4-Trichlorobenzene	1.26	ND	0.686	0.843	54.6	67.1	8	10.0-160			20.5	40
1,1,1-Trichloroethane	1.26	ND	0.724	0.942	57.6	75.0	8	10.0-144			26.2	35
1,1,2-Trichloroethane	1.26	ND	1.12	1.22	88.9	97.0	8	10.0-160			8.63	35
Trichloroethene	1.26	ND	0.810	1.06	64.5	84.3	8	10.0-156			26.7	38
Trichlorofluoromethane	1.26	ND	0.949	1.23	75.5	97.6	8	10.0-160			25.5	40
Vinyl chloride	1.26	ND	0.719	0.987	57.2	78.6	8	10.0-160			31.4	37
Xylenes, Total	3.77	ND	2.40	3.04	63.6	80.7	8	10.0-160			23.7	38

117

111

105

114

102

109

75.0-131

67.0-138

70.0-130

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1346559-08,09,10

Method Blank (MB)

(MB) R3651069-3 05/05/2	21 20:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
1,2,3-Trichlorobenzene	U		0.00733	0.0125
(S) Toluene-d8	106			75.0-131
(S) 4-Bromofluorobenzene	97.4			67.0-138
(S) 1,2-Dichloroethane-d4	90.1			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 1100010001 1 00/00/	2110.11 (2002	2) 110001000 2	2 00/00/21 10.0	30							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
1,2,3-Trichlorobenzene	0.125	0.108	0.111	86.4	88.8	59.0-139			2.74	20	
(S) Toluene-d8				103	105	75.0-131					
(S) 4-Bromofluorobenzene				96.1	99.2	67.0-138					
(S) 1.2-Dichloroethane-d4				94.7	93.9	70.0-130					

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1346559-11

Method Blank (MB)

(S) o-Terphenyl

(MB) R3650964-1 05/05/2	1 22:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	83.0			52.0-156

²Tc

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650964-2 05/05/	/21 23:12 • (LCS	SD) R3650964	-3 05/05/21 2	3:32						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1560	1540	104	103	50.0-150			1.29	20

52.0-156

121

134

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1346559-01,08,09,10

Method Blank (MB)

(MB) R3651572-1 05/06/21	22:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	76.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3651572-2 05/06/	/21 23:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	48.8	97.6	50.0-150	
(S) o-Terphenyl			65.0	18.0-148	

L1346403-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346403-04 05/07/21 00:08 • (MS) R3651572-3 05/07/21 00:21 • (MSD) R3651572-4 05/07/21 00:34

(00) 210 10 100 0 1 00,077	` '	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Diesel Range Organics (DRO)	48.5	7.01	51.1	50.8	82.2	81.1	1	50.0-150			0.651	20
(S) o-Terphenyl					47.4	46.2		18.0-148				

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1346559-01

Method Blank (MB)

(MB) R3651696-1 05/06/2	21 09:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	69.2			10.0-135
(S) Tetrachloro-m-xylene	64.7			10.0-139

Laboratory Control Sample (LCS)

	S) R3651696-2 05/	06/21 09:18
--	-------------------	-------------

(LC3) K3031030-2 03/00	72109.10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
PCB 1260	0.167	0.126	75.4	37.0-145	
PCB 1016	0.167	0.132	79.0	36.0-141	
(S) Decachlorobiphenyl			74.2	10.0-135	
(S) Tetrachloro-m-xvlene			67.9	10.0-139	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

1346559-11

Method Blank (MB)

(MB) R3649966-2 05/0	04/21 02:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	86.0			31.0-160	
(S) 2-Fluorobiphenyl	90.0			48.0-148	
(S) p-Terphenyl-d14	101			37.0-146	

Laboratory Control Sample (LCS)

(LCS) R3649966-1 05/0	04/21 02:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Anthracene	2.00	1.69	84.5	67.0-150	
Acenaphthene	2.00	1.79	89.5	65.0-138	
Acenaphthylene	2.00	1.91	95.5	66.0-140	
Benzo(a)anthracene	2.00	1.75	87.5	61.0-140	
Benzo(a)pyrene	2.00	1.58	79.0	60.0-143	
Benzo(b)fluoranthene	2.00	1.71	85.5	58.0-141	
Benzo(g,h,i)perylene	2.00	1.54	77.0	52.0-153	
Benzo(k)fluoranthene	2.00	1.57	78.5	58.0-148	
Chrysene	2.00	1.69	84.5	64.0-144	
Dibenz(a,h)anthracene	2.00	1.55	77.5	52.0-155	
Fluoranthene	2.00	1.77	88.5	69.0-153	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346559-11

Laboratory Control Sample (LCS)

(LCS)	R3649966-1	05/04/21	02.13

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Fluorene	2.00	1.85	92.5	64.0-136	
Indeno(1,2,3-cd)pyrene	2.00	1.58	79.0	54.0-153	
Naphthalene	2.00	1.61	80.5	61.0-137	
Phenanthrene	2.00	1.81	90.5	62.0-137	
Pyrene	2.00	1.79	89.5	60.0-142	
1-Methylnaphthalene	2.00	1.75	87.5	66.0-142	
2-Methylnaphthalene	2.00	1.66	83.0	62.0-136	
2-Chloronaphthalene	2.00	1.75	87.5	64.0-140	
(S) Nitrobenzene-d5			84.5	31.0-160	
(S) 2-Fluorobiphenyl			89.5	48.0-148	
(S) p-Terphenyl-d14			96.5	37.0-146	

L1346142-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346142-07 05/04/21 05:33 • (MS) R3649966-3 05/04/21 05:53 • (MSD) R3649966-4 05/04/21 06:13

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Anthracene	1.90	ND	1.25	1.17	65.8	61.6	1	56.0-156			6.61	20
Acenaphthene	1.90	ND	1.79	1.76	94.2	92.6	1	44.0-153			1.69	20
Acenaphthylene	1.90	ND	1.84	1.82	96.8	95.8	1	53.0-150			1.09	20
Benzo(a)anthracene	1.90	ND	1.79	1.77	94.2	93.2	1	47.0-151			1.12	20
Benzo(a)pyrene	1.90	ND	1.29	1.21	67.9	63.7	1	45.0-146			6.40	20
Benzo(b)fluoranthene	1.90	ND	1.58	1.54	83.2	81.1	1	43.0-142			2.56	20
Benzo(g,h,i)perylene	1.90	ND	1.55	1.48	81.6	77.9	1	40.0-147			4.62	20
Benzo(k)fluoranthene	1.90	ND	1.55	1.47	81.6	77.4	1	43.0-148			5.30	21
Chrysene	1.90	ND	1.68	1.65	88.4	86.8	1	50.0-148			1.80	20
Dibenz(a,h)anthracene	1.90	ND	1.59	1.53	83.7	80.5	1	37.0-151			3.85	20
Fluoranthene	1.90	ND	1.84	1.81	96.8	95.3	1	56.0-157			1.64	20
Fluorene	1.90	ND	1.84	1.83	96.8	96.3	1	48.0-148			0.545	20
Indeno(1,2,3-cd)pyrene	1.90	ND	1.64	1.60	86.3	84.2	1	41.0-148			2.47	20
Naphthalene	1.90	ND	1.64	1.62	86.3	85.3	1	10.0-160			1.23	20
Phenanthrene	1.90	ND	1.79	1.75	94.2	92.1	1	47.0-147			2.26	20
Pyrene	1.90	ND	1.70	1.69	89.5	88.9	1	51.0-148			0.590	20
1-Methylnaphthalene	1.90	ND	1.76	1.75	92.6	92.1	1	21.0-160			0.570	20
2-Methylnaphthalene	1.90	ND	1.70	1.65	89.5	86.8	1	31.0-160			2.99	20
2-Chloronaphthalene	1.90	ND	1.76	1.74	92.6	91.6	1	52.0-148			1.14	20
(S) Nitrobenzene-d5					86.8	87.4		31.0-160				
(S) 2-Fluorobiphenyl					89.5	89.5		48.0-148				
(S) p-Terphenyl-d14					94.7	92.6		37.0-146				

(S) 2-Fluorobiphenyl

(S) p-Terphenyl-d14

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346142-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 13/61/2 08 05/04/21 09:54 - (MS) P36/0966 5 05/04/21 10:14 - (MSD) P36/0966 6 05/04/21 10:34

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Anthracene	1.90	0.0538	1.55	1.78	78.7	90.9	1	56.0-156			13.8	20	
Acenaphthene	1.90	0.856	7.68	2.71	359	97.6	1	44.0-153	<u>J5</u>	<u>J3</u>	95.7	20	
Acenaphthylene	1.90	ND	2.40	2.12	126	112	1	53.0-150			12.4	20	
Benzo(a)anthracene	1.90	ND	2.03	1.82	107	95.8	1	47.0-151			10.9	20	
Benzo(a)pyrene	1.90	ND	1.87	1.47	98.4	77.4	1	45.0-146		<u>J3</u>	24.0	20	
Benzo(b)fluoranthene	1.90	ND	1.79	1.27	94.2	66.8	1	43.0-142		<u>J3</u>	34.0	20	
Benzo(g,h,i)perylene	1.90	0.521	4.63	1.56	216	54.7	1	40.0-147	<u>J5</u>	<u>J3</u>	99.2	20	
enzo(k)fluoranthene	1.90	ND	3.22	1.30	169	68.4	1	43.0-148	<u>J5</u>	<u>J3</u>	85.0	21	
hrysene	1.90	ND	1.70	1.39	89.5	73.2	1	50.0-148		<u>J3</u>	20.1	20	
ibenz(a,h)anthracene	1.90	ND	1.01	1.07	53.2	56.3	1	37.0-151			5.77	20	
luoranthene	1.90	ND	1.78	2.29	93.7	121	1	56.0-157		<u>J3</u>	25.1	20	
·luorene	1.90	0.500	5.17	2.40	246	100	1	48.0-148	<u>J5</u>	<u>J3</u>	73.2	20	
ndeno(1,2,3-cd)pyrene	1.90	ND	1.73	1.26	91.1	66.3	1	41.0-148		<u>J3</u>	31.4	20	
laphthalene	1.90	ND	1.70	1.53	89.5	80.5	1	10.0-160			10.5	20	
henanthrene	1.90	ND	2.13	1.59	112	83.7	1	47.0-147		<u>J3</u>	29.0	20	
yrene	1.90	0.392	4.12	1.74	196	70.9	1	51.0-148	<u>J5</u>	<u>J3</u>	81.2	20	
Methylnaphthalene	1.90	0.315	3.83	2.06	185	91.8	1	21.0-160	<u>J5</u>	<u>J3</u>	60.1	20	
-Methylnaphthalene	1.90	ND	1.94	1.69	102	88.9	1	31.0-160			13.8	20	
-Chloronaphthalene	1.90	ND	1.36	1.60	71.6	84.2	1	52.0-148			16.2	20	
(S) Nitrobenzene-d5					103	86.3		31.0-160					

81.6

76.3

67.4

82.1

48.0-148

37.0-146

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346559-01,02,03,04

Method Blank (MB)

(MB) R3650543-2 05/0	05/21 00:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	
Acenaphthylene	U		0.00216	0.00600	
Benzo(a)anthracene	U		0.00173	0.00600	
Benzo(a)pyrene	U		0.00179	0.00600	
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	95.9			14.0-149	
(S) 2-Fluorobiphenyl	91.0			34.0-125	
(S) p-Terphenyl-d14	118			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3650543-1 05/0	5/21 00:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0724	90.5	50.0-126	
Acenaphthene	0.0800	0.0663	82.9	50.0-120	
Acenaphthylene	0.0800	0.0723	90.4	50.0-120	
Benzo(a)anthracene	0.0800	0.0724	90.5	45.0-120	
Benzo(a)pyrene	0.0800	0.0634	79.3	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0630	78.8	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0656	82.0	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0703	87.9	49.0-125	
Chrysene	0.0800	0.0728	91.0	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0696	87.0	47.0-125	
Fluoranthene	0.0800	0.0717	89.6	49.0-129	

ACCOUNT:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346559-01,02,03,04

Laboratory Control Sample (LCS)

(LCS	R3650543-1	05/05/21	00.30

,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.080.0	0.0698	87.3	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0619	77.4	46.0-125	
Naphthalene	0.0800	0.0617	77.1	50.0-120	
Phenanthrene	0.0800	0.0692	86.5	47.0-120	
Pyrene	0.0800	0.0753	94.1	43.0-123	
1-Methylnaphthalene	0.0800	0.0645	80.6	51.0-121	
2-Methylnaphthalene	0.0800	0.0624	78.0	50.0-120	
2-Chloronaphthalene	0.0800	0.0663	82.9	50.0-120	
(S) Nitrobenzene-d5			106	14.0-149	
(S) 2-Fluorobiphenyl			94.7	34.0-125	
(S) p-Terphenyl-d14			118	23.0-120	

(OS) L1346533-16 05/05/21 03:14 • (MS) R3650543-3 05/05/21 03:29 • (MSD) R3650543-4 05/05/21 03:44

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0792	ND	0.0680	0.0694	85.9	86.8	1	10.0-145			2.04	30	
Acenaphthene	0.0792	ND	0.0635	0.0643	80.2	80.4	1	14.0-127			1.25	27	
Acenaphthylene	0.0792	ND	0.0704	0.0700	88.9	87.5	1	21.0-124			0.570	25	
Benzo(a)anthracene	0.0792	ND	0.0677	0.0694	85.5	86.8	1	10.0-139			2.48	30	
Benzo(a)pyrene	0.0792	ND	0.0596	0.0638	75.3	79.8	1	10.0-141			6.81	31	
Benzo(b)fluoranthene	0.0792	ND	0.0580	0.0598	73.2	74.8	1	10.0-140			3.06	36	
Benzo(g,h,i)perylene	0.0792	ND	0.0632	0.0629	79.8	78.6	1	10.0-140			0.476	33	
Benzo(k)fluoranthene	0.0792	ND	0.0654	0.0643	82.6	80.4	1	10.0-137			1.70	31	
Chrysene	0.0792	ND	0.0685	0.0684	86.5	85.5	1	10.0-145			0.146	30	
Dibenz(a,h)anthracene	0.0792	ND	0.0664	0.0671	83.8	83.9	1	10.0-132			1.05	31	
Fluoranthene	0.0792	ND	0.0659	0.0677	83.2	84.6	1	10.0-153			2.69	33	
Fluorene	0.0792	ND	0.0652	0.0665	82.3	83.1	1	11.0-130			1.97	29	
Indeno(1,2,3-cd)pyrene	0.0792	ND	0.0601	0.0598	75.9	74.8	1	10.0-137			0.500	32	
Naphthalene	0.0792	ND	0.0622	0.0631	78.5	78.9	1	10.0-135			1.44	27	
Phenanthrene	0.0792	ND	0.0656	0.0667	82.8	83.4	1	10.0-144			1.66	31	
Pyrene	0.0792	ND	0.0708	0.0712	89.4	89.0	1	10.0-148			0.563	35	
1-Methylnaphthalene	0.0792	ND	0.0651	0.0639	82.2	79.9	1	10.0-142			1.86	28	
2-Methylnaphthalene	0.0792	ND	0.0638	0.0611	80.6	76.4	1	10.0-137			4.32	28	
2-Chloronaphthalene	0.0792	ND	0.0651	0.0651	82.2	81.4	1	29.0-120			0.000	24	
(S) Nitrobenzene-d5					92.4	95.6		14.0-149					
(S) 2-Fluorobiphenyl					84.6	85.1		34.0-125					
(S) p-Terphenyl-d14					104	102		23.0-120					

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346559-05,06,07

Method Blank (MB)

(MB) R3652372-2 05/0	09/21 11:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	
Acenaphthylene	U		0.00216	0.00600	
Benzo(a)anthracene	U		0.00173	0.00600	
Benzo(a)pyrene	U		0.00179	0.00600	
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	32.1			14.0-149	
(S) 2-Fluorobiphenyl	48.4			34.0-125	
(S) p-Terphenyl-d14	79.9			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3652372-1 05/0	9/21 10:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0457	57.1	50.0-126	
Acenaphthene	0.0800	0.0526	65.8	50.0-120	
Acenaphthylene	0.080.0	0.0504	63.0	50.0-120	
Benzo(a)anthracene	0.080.0	0.0466	58.3	45.0-120	
Benzo(a)pyrene	0.080.0	0.0502	62.8	42.0-120	
Benzo(b)fluoranthene	0.080.0	0.0558	69.8	42.0-121	
Benzo(g,h,i)perylene	0.080.0	0.0620	77.5	45.0-125	
Benzo(k)fluoranthene	0.080.0	0.0558	69.8	49.0-125	
Chrysene	0.080.0	0.0554	69.3	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0588	73.5	47.0-125	
Fluoranthene	0.0800	0.0542	67.8	49.0-129	

ACCOUNT:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346559-05,06,07

Laboratory Control Sample (LCS)

(LCS)	R3652372-1	05/09/21 10:49

•	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Amalista	•				200 qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0571	71.4	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0526	65.8	46.0-125	
Naphthalene	0.0800	0.0517	64.6	50.0-120	
Phenanthrene	0.0800	0.0537	67.1	47.0-120	
Pyrene	0.0800	0.0549	68.6	43.0-123	
1-Methylnaphthalene	0.0800	0.0577	72.1	51.0-121	
2-Methylnaphthalene	0.0800	0.0519	64.9	50.0-120	
2-Chloronaphthalene	0.0800	0.0489	61.1	50.0-120	
(S) Nitrobenzene-d5			39.8	14.0-149	
(S) 2-Fluorobiphenyl			57.7	34.0-125	
(S) p-Terphenyl-d14			85.7	23.0-120	

L1344415-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1344415-01 05/09/21 11:28 • (MS) R3652372-3 05/09/21 11:48 • (MSD) R3652372-4 05/09/21 12:08

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0972	ND	0.0573	0.0526	58.9	54.3	1	10.0-145			8.54	30	
Acenaphthene	0.0972	ND	0.0566	0.0591	58.2	61.1	1	14.0-127			4.26	27	
Acenaphthylene	0.0972	ND	0.0580	0.0584	59.6	60.3	1	21.0-124			0.636	25	
Benzo(a)anthracene	0.0972	ND	0.0819	0.0659	78.3	62.1	1	10.0-139			21.7	30	
Benzo(a)pyrene	0.0972	ND	0.0832	0.0678	77.9	62.4	1	10.0-141			20.4	31	
Benzo(b)fluoranthene	0.0972	0.0162	0.104	0.0833	90.2	69.4	1	10.0-140			22.0	36	
Benzo(g,h,i)perylene	0.0972	0.00791	0.0856	0.0736	79.9	67.8	1	10.0-140			15.2	33	
Benzo(k)fluoranthene	0.0972	0.00740	0.0824	0.0685	77.2	63.1	1	10.0-137			18.5	31	
Chrysene	0.0972	0.0125	0.106	0.0810	95.9	70.8	1	10.0-145			26.6	30	
Dibenz(a,h)anthracene	0.0972	ND	0.0643	0.0674	66.1	69.6	1	10.0-132			4.69	31	
Fluoranthene	0.0972	0.0294	0.132	0.0958	106	68.6	1	10.0-153			31.9	33	
Fluorene	0.0972	ND	0.0620	0.0634	63.7	65.6	1	11.0-130			2.36	29	
Indeno(1,2,3-cd)pyrene	0.0972	0.00750	0.0766	0.0660	71.1	60.5	1	10.0-137			14.9	32	
Naphthalene	0.0972	ND	0.0906	0.0758	80.8	65.9	1	10.0-135			17.8	27	
Phenanthrene	0.0972	0.0418	0.147	0.109	108	69.5	1	10.0-144			29.5	31	
Pyrene	0.0972	0.0279	0.122	0.0906	97.1	64.8	1	10.0-148			29.8	35	
1-Methylnaphthalene	0.0972	ND	0.111	0.0976	91.0	77.9	1	10.0-142			12.6	28	
2-Methylnaphthalene	0.0972	ND	0.101	0.0882	85.9	73.2	1	10.0-137			13.4	28	
2-Chloronaphthalene	0.0972	ND	0.0527	0.0548	53.6	56.1	1	29.0-120			3.90	24	
(S) Nitrobenzene-d5					33.6	33.8		14.0-149					
(S) 2-Fluorobiphenyl					42.6	50.2		34.0-125					
(S) p-Terphenyl-d14					74.9	74.7		23.0-120					

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Martin S. Burck Assoc.-Hood River, OR
 NORTH STAR
 L1346559
 05/11/21 18:50
 53 of 58

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

	·
В	The same analyte is found in the associated blank.
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Martin S. Burck Assoc.-Hood River, OR
 NORTH STAR
 L1346559
 05/11/21 18:50
 54 of 58

GLOSSARY OF TERMS

Qualifier	Description
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
.J7	Surrogate recovery cannot be used for control limit evaluation due to dilution

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Lab Project # MSBAHROR P.O. # Vor # Quote #	Please Cir PT MT CT PR-NSTARCAST SF-PS-NSTARCAST Sults Needed	No. of Contrs	As,Cd,Cr,Pb 6020 8ozClr-NoPres	Cr6 7199 2o2Clr-NoPres	NWTPHDX NOSGT 802Clr-NoPres	PAHs 8270ESIM 8o2Clr-NoPres	VOCs 8260D 40mlAmb/MeOH10ml/Syr (Full list)	water PAHs 8270ESIM 40mlAmb-NoPres-WT	RCRA 8 Much 15 (total)	NWTPH-GX	PCBs	12065 Lebanon Ro Phone: 615-758-55 Submitting a samp constitutes acknow Pace Terms and Co https://info.pacela terms.odf SDG # Table #	839348 Frian Ford 1/6/20
Lab Project # MSBAHROR P.O. # Quote # Date Resu	Please Cir PT MT CT DR-NSTARCAST Start Sta	No. of Contrs	6020	Cr6 7199 2o2Clr-NoPres	NWTPHDX NOSGT 802Clr-NoPres	PAHs 8270ESIM 8ozClr-NoPres	40mlAmb/MeOH10ml/Syr (water PAHs 8270ESIM 40mlAmb-NoPres-WT	CRAB MULLIS (total	HATM	CB	Phone: 615-758-51 Submitting a samp constitutes acknow Pace Terms and Co https://info.pacela terms.odf SDG # Table # Acctnum: N Template:T Prelogin: P8 PM: 110 - B1 PB: DV Shipped Via	assa Air. 200-767-3859 pile vila this chalin of custody wiedgment and acceptance of the onditions found at: abs.com/hubfs/pas-standard- 346359 MSBAHROR 185028 839348 brian Ford
Lab Project # MSBAHROR P.O. # Quote # Date Resu	Please Cir PT MT CT DR-NSTARCAST Start Sta	No. of Contrs	6020	Cr6 7199 2o2Clr-NoPres	NWTPHDX NOSGT 802Clr-NoPres	PAHs 8270ESIM 8ozClr-NoPres	VOCs 8260D 40mlAmb/MeOH10ml/Syr	water PAHs 8270ESIM 40mlAmb-NoPres	CRAB MULLIS (total	HATM	CB	Phone: 615-758-51 Submitting a samp constitutes acknow Pace Terms and Co https://info.pacela terms.odf SDG # Table # Acctnum: N Template:T Prelogin: P8 PM: 110 - B1 PB: DV Shipped Via	assa Air. 200-767-3859 pile vila this chalin of custody wiedgment and acceptance of the onditions found at: abs.com/hubfs/pas-standard- 346359 MSBAHROR 185028 839348 brian Ford
P.O. # Quote # Date Resu	PT MT CO	No. of Contrs	6020	Cr6 7199 2o2Clr-NoPres	NWTPHDX NOSGT 802Clr-NoPres	PAHs 8270ESIM 8ozCir-NoPres	VOCs 8260D 40mlAmb/MeOH10ml	water PAHs 8270ESIM 40mlAmb-No	CRAB MULLIS (total	HATM	CB	Pace Terms and Control of Intro-Ching SDG # Table # Acctnum: No Template: T Prelogin: PS PM: 110 - Bi PB: DN Shipped Via	MSBAHROR 185028 839348 Frian Ford
P.O. # Quote # Date Resu	Sfar sults Needed Time 1 14:00 13:57 09:18	No. of Cntrs	6020	Cr6 7199 2ozClr-NoPres	NWTPHDX NOSGT 802Clr-NoP	PAHS 8270ESIM 802Clr-NoPres	VOCs 8260D 40mlAmb/MeOH	water PAHs 8270ESIM 40mlAn	CRA 8 MULLIS (to	HATM	CB	Table # Acctnum: M Template:T Prelogin: P8 PM: 110 - Bi PB: DW Shipped Via	185028 839348 Frian Ford
Quote # Date Resu	Time 1 14:00 13:57 09:18	of Cntrs	6020	Cr6 7199 2ozClr-NoPres	NWTPHDX NOSGT 802C	PAHS 8270ESIM 8ozClr-I	VOCs 8260D 40mlAmb/	water PAHs 8270ESIM 4	CRA 8	HATM	CB	Acctnum: No Template: The Prelogin:	185028 839348 Frian Ford
Date Resu	Time 1 14:00 13:57 09:18	of Cntrs	6020	Cr6 7199 2ozClr-N	NWTPHDX NOSG	PAHS 8270ESIM 8	VOCs 8260D 40m	water PAHs 8270	CRA 8	HATM	CB	Prelogin: P8 PM: 110 - B PB: DV Shipped Via	839348 Frian Ford 1/6/20
Date	Time 1 14:00 13:57 09:18 09:58	of Cntrs	As,Cd,Cr,Pb	Cr6 7199 2	NWTPHDX	PAHS 8270	VOCs 8260	water PAHs	CRA	NWTPH	CB	PB: DV Shipped Via	14/6/al
	1 14:00 13:57 09:18 09:58	3 3	As,Co	Cr6 7	TWN	PAHS	VOCs	wate	Rc	7	100000000000000000000000000000000000000		
4/27/21	13:57 09:18 09:58	3	1										201
	09:18	3	1						0				-01
	09:58	-	1								100000000000000000000000000000000000000		-01
		10	V		1	1	1			1	1		
	10110	2				1				41.0			-02
	10:12	2				1							-03
	10:26	2				1			1				-09
	12:40	2				1							-05
	12:54	2	1			1							-06
- Irake	13:01	2				1		-	-	24			-07
1	14:47	3			1		/	4					-08
				3		pH Flow	7				COC Seal COC Sign Bottles Correct	Present/Intached/Accurate: arrive intact bottles used:	ct: WP Y N
	(1)	13	0	08				-	An		VOA Zero	If Application Headspace:	eable Y_N
130							1	1	FBR	он [
Rece	ceived by: (Signatu	ire)			T	emp: A	VALUE OF	C Bottl	es Receive	ed:	If preserva	ation required by I	Login: Date/Time
-	Re	Tracking # 9 8	Tracking # 9483 Received by: (Signature)	Tracking # 9483 O Received by: (Signature)	Tracking # 4 8 3 00 8 Received by: (Signature)	Tracking # 9 8 3 00 8 6 Received by: (Signature) Received by: (Signature)	Tracking # 9 8 3 00 8 6 30 Received by: (Signature) Received by: (Signature) Temp: A	PH	pH Temp Flow Other Tracking # 9483 0086 3609 Received by: (Signature) Trip Blank Received: Yes Received by: (Signature) Temp: AVALOC Bottl	pH Temp	# 14:47 3 pH Temp Flow Other Tracking # 9 8 3 00 8 6 36 04 Received by: (Signature) Trip Blank Received: Yes No HCL / MeoH TBR	Preserved by: (Signature) pH Temp Coc Seal Coc Sign Bottles Correct Sufficie Tracking # 7	# Temp Sample Receipt Description

Company Name/Address:			-	Silling Information:						Analysis / Container / Preservative							_	Chain of Custody	Page Lof_
Martin S. Burck AssocHood River, OR 200 N. Wasco Ct. Hood River, OR 97031			200 N.	Accounts Payable 200 N. Wasco Ct. Hood River, OR 97031								Full (15+)	TV						Analytical * Iter for Testing & Innove
Report to: Jon White			Email To:		nmental.	com;jwhite@	msbae						Pres-V	260				12065 Lebanon Road Mt Phone: 615-758-5858 Alt Submitting a sample via	: 800-767-5859
Project Description: North Star Casteel	. A /			uver.	WA	Please C		S		sa.		10ml/s	loN-qu	30					nent and acceptance of the ns found at:
Phone: 541-387-4422	Client Pr			Lab Pro	oject#	NSTARCAS	TEE	-NoPre		Ir-NoPr	NoPres	MeOH	0mlAn	VOCS				SDG # 3	46550
Collected by (print): Jon While Collected by (signature):		lity ID #		P.O. # Quote	orth	Stor		6020 8ozClr-NoPre	2ozClr-NoPres	NWTPHDX NOSGT 8o2Clr-NoPres	PAHs 8270ESIM 8ozClr-NoPres	40mlAmb/MeOH10ml/Syr	water PAHs 8270ESIM 40mlAmb-NoPres-WT	11 1154	Heis			Acctnum: MSB Template:T185	6028
Josh Owen for Jon U Immediately Packed on Ice N_ Y_	Jhite_Si	me Day Fi	ve Day		ate Result	s Needed	No.	Cr,Pb	66	ON XOH	8270ESIN	VOCs 8260D 40	PAHS 82	ber Full	TP#-#			Prelogin: P839 PM: 110 - Brian PB: DV	
Sample ID	Comp/G	irab Matrix	Depth		Date	Time	Cntrs	As,Cd,	Cr6 71	NWT	PAHS	VOCs	water	wader	3			Shipped Via:	Sample # (lab only
59-3.5	Gro	b ss	3,5	4/2	7/21	14:56	3			1		1							709
\$10-3.5		SS	3.5		ĺ	14159	3			1		1							-10
EB-1	1	OT SS		- 6		12:02	- 11	V		13		WE.	1	1	1				- (1
Trip Blank			_	-										1		15.7	£ -00		-12
		SS																	
		SS					1					1 20							
		SS					0.00					4							
		SS																	
	4	SS								1		1							
		SS					1/			100								4.3	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks:									100	pH		_ Temp		_	COC Si Bottle	igned/ es arr et bot	le Receipt Che esent/Intact: Accurate: ive intact: tles used:	NP Y I
OT - Other Equipment Black Relinquished by : (Signature)	Samples retu	rned via: edEx Couri	er	ne:	Trackir	ng# (\signa) ed by: (Signa)	183 ture)) (2008	36	30 Trip Blan	(0)	/ed: Y	es / No		VOA Ze	ero He		e Y N
Relinquished by : (Signature)		4/29/ Date:		5:30		ed by: (Signa	4.			_	Temp	PL o		HCL / Me TBR les Receiv					n: Date/Time
						16	101				4.32	:9,1	***	74		Date			Condition
Relinquished by : (Signature)		Date:	Tin	ie:	Receiv	ed for lab by:	(Signa	c ()	,		Date: 4/30	121	Tim	15		Hold:			NCF / OK

2) Sample Date 4/27/21 (#L1350830)

Ss

Cn

Śr

[°]Qc

Gl

Αl

Sc

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1350830

Samples Received:

05/01/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page Tc: Table of Contents

Al: Accreditations & Locations	
Sc: Sample Chain of Custody	•

3

4

5

5

6

6

7

8 9

10

SAMPLE SUMMARY

Collected by

Collected date/time

Received date/time

Jon White 04/27/21 09:18 05/01/21 10:00 S1-0 L1350830-01 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 WG1664626 05/05/21 12:24 05/05/21 12:34 JAV Mt. Juliet, TN 1 Wet Chemistry by Method 7199 WG1669705 1 05/13/21 23:42 05/14/21 13:40 MSP Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

S1-0

SAMPLE RESULTS - 01

L13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	79.9		1	05/05/2021 12:34	WG1664626	

²Tc

Collected date/time: 04/27/21 09:18

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexavalent Chromium	ND		1.25	1	05/14/2021 13:40	WG1669705

Martin S. Burck Assoc.-Hood River, OR

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350830-01

Method Blank (MB)

(MB) R3650972-1 05	5/05/21 12:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

³Ss

L1346559-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1346559-07 05/05/21 12:34 • (DUP) R3650972-3 05/05/21 12:34

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	%	%		%		%				
Total Solids	92.5	92.9	1	0.389		10				

Laboratory Control Sample (LCS)

(LCS) R3650972-2 05/05/2112:34

(LC3) K3030972-2 03/03	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1350830-01

Wet Chemistry by Method 7199

Method Blank (MB)

(MB) R3654626-1 05/14/2110:59

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Hexavalent Chromium	U		0.255	1.00

Ss

L1346831-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1346831-01 05/14/21 11:14 • (DUP) R3654626-3 05/14/21 11:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3654626-2 05/14/21 11:04

(===,		LCS Resu	ılt LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Hexavalent Chromium	10.0	11.8	118	80.0-120

L1350828-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1350828-01 05/14/21 13:09 • (MS) R3654626-7 05/14/21 13:24

, -	,	` '						
		Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Aı	nalyte	mg/kg	mg/kg	mg/kg	%		%	
Н	exavalent Chromium	675	ND	515	76.4	50	75.0-125	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	Mational	12065 1	shanon Rd	Mount	luliet	TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Manne/Address:				Billing Information:							A	nalvsis /	Contai	ner / Pre	servativ	e .		Chain of Custody	Page of
Martin S. Burck AssocHood River, OR			Accounts Payable			Pres	851	2016					100			0			
200 N. Wasco Ct. Hood River, OR 97031				200 N. Wasco Ct. Hood River, OR 97031				Chk					(Pulling)	T/V				Pace	Analytical
Report to: Jon White				Email To: msba@ms	baenviro	nmental	.com;jwhite@	msbae					Syr (F	Pres-\					Alt: 800-767-5859 a this chain of custody
Project Description: City/State North Star Casteel Collected: \				Vancouver, WA (PT) MT					S		es		Loml/	oN-di	=	1.		Pace Terms and Condit https://info.pacelabs.c	ent and acceptance of the ns found at: n/hubfs/pas-standard-
one: 541-387-4422 Client Project # North Star			to the state of th	Lab Pro	oject #	-NSTARCAS	TEE	-NoPres	*	8ozClr-NoPres	NoPres	MeOH	40mlAmb-NoPres-WT	(total		7.6 7.6 7.7 7.7 7.7 7.7	SDG# +3	340359	
Collected by (print):		Site/Facility ID #			P.O.#	North Star			8ozClr-	Johres	NOSGT	PAHs 8270ESIM 8ozClr-NoPres	8260D 40mlAmb/MeOH10ml/Syr	water PAHs 8270ESIM 4	1A 8 MULITS	4PH-6x		Acctnum: MS	
Collected by (signature): Signature (Signature): Immediately Packed on Ice N Y	14.2	Rush? Same Next I Two D Three	Day 5 0	le Notified) e Day lay (Rad Only) Day (Rad Only)	Quote	s Needed No.		Ü	Cr6 7199 2o2Clr-NoPres	SS							Prelogin: P83 PM: 110 - Bria PB: DV	9348	
Sample ID	Co	omp/Grat	Matrix *	Depth	Date		Time	Cntrs	As,Cd,	2r6 71	NWTPHDX	AHS 8	VOCs	water	RICKA	NWT	PC	Shipped Via:	Sample # (lab only)
AOPG 1- FILL	6	Srab	ss	0.5	4/27/21		14:00	3											
ADPC 7- BIL		- 1	SS	0.5		i	13:57	3									E BE		
SI-O			SS	0			09:18	3	1		1	1	1			1	1		TOT
52-1.5			SS	1.5			09:58	2				1	80			4, 8			-69
53-0			SS	0			10112	2				1					100		-03
SH-0.5			SS	0.5			10:26	2				1			1				-04
55-0			SS	0			12:40	2			1	1							-05
56-1			SS	41			12154	2				1							-06
57-0			SS	0			13:01	9E 159				1	腦			97.4	188		-07
58-3.5		1	SS	3,5		7	14:47	100			1		1						1-08
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater		Remarks:										pH Temp Flow Other					COC Signed/Accurate: Bottles arrive intact: Correct bottles used:		N N N N N N N N N N N N N N N N N N N
DW - Drinking Water OT - Other		es returne S Fedi	ed via: x Couri	er		Track	ing # 48	83	(008	16	3	401	1			VOA Zer	ent volume sent: If Applicat o Headspace:	ole Y N
Relinquished by : (Signature)			Date:	Time		Recei	lved by: (Signa	ture)				Trip Bla	nk Rece	eived: Y	ACL / Me	нон		ation Correct/Ch een <0.5 mR/hr:	necked: Y_N
Relingdished by : (Signature) Date:		4/29) Date:	/21 /5:30 Time:		Recei	ived by: (Signa	ture)	36			Temp: AVAZ °C Bottles Received:				ved:	If preservation required by Login: Date/Time			
Relinquished by : (Signature)		Date: Time		e:	Rece	lved for lab by	(Signa	ature)			Date: 4/21/21 9:15				1	05-001 Con		Condition: NCF / OR	

L1346559 MSBAHROR re-log

R3/R4/RX/EX

Please re-log L1346559-01 (S1-0) for CR6IC,TS. Transfer TS. RX due 05/18.

Time estimate: oh

Time spent: oh

Members

Brian Ford

LISAGES MEDAHRO - 4-104

Please myba Ligassio & go o) for CRGR S (5-

The estimater of a Time some

Menhors

arth Britan Ford

THE PERSON OF TH

OND THE WASHERS OF THE WASH

The estimatary of

Mean of

Beers Prints Hone

TO STATE OF THE PARTY OF THE PA

Con extinguishing

DRAFT

3) Sample Date 4/27/21 (#GG-724)

❖ CERTIFIED ENVIRONMENTAL CONSULTING, LLC ❖

SOIL SAMPLE ANALYSIS REPORT

CLIENT:

MARTIN S BURCK ASSOCIATES, INC.

SOURCE:

NORTH STAR CASTEEL, 120 WEST 13TH,

VANCOUVER, WASHINGTON

MR. JOSH OWEN

200 NORTH WASCO COURT

SAMPLED BY:

CLIENT

HOOD RIVER, OREGON 97031

LAB#

GG-724

ANALYZED BY:

KYLER SPEARS

DATE SAMPLED:

04-27-21

DATE RECEIVED:

04-27-21

DATE COMPLETED:

04-30-21

ANALYTICAL METHOD: EPA 600/R-93/116, 40 CFR Part 763, Subpart E, Appendix E, Section #1, PLM/Dispersion Staining

SAMPLE	SAMPLE	SAMPLE	ASBESTOS	OTHER MATERIAL
ID #	DESCRIPTION	LOCATION	PRESENT/ABSENT	
1	GRAY/BROWN SOIL	AOPC 5 EXCAVATION	ASBESTOS PRESENT	CALCIUM CARBONATE, FIBERGLASS, CELLULOSE, AGGREGATE, DEBRIS, ADHESIVE, WOOD

ANALYST:

DEVIATION FROM METHOD: NONE. PERCENTAGES ARE ESTIMATES.

TEST RESULTS PERTAIN ONLY TO ITEMS TESTED.

* DETECTION LIMIT IS LESS THAN 1% ASBESTOS.

NON-ASBESTOS MATERIALS ARE NOT NECESSARILY LISTED.

PLEASE CHOOSE HOW SOON YOU WANT RESULTS

♦CERTIFIED ENVIRONMENTAL CONSULTING, LLC.**♦**

	ЛТЕ 12, VANCOUVER, WASHINGTON 98683-5280 DNE (360) 254-9385 FAX-(360) 891-9633
	tssoc. Inc. contact: bsh Owen sample date: 4/27/21
BILLING ADDRESS: 200 N. Was to Ct. C	ITY/STATE: Hood River, OR ZIP CODE: 9703/
PHONE: S41 387 4422 EMAIL: jouren & Misbach	Uresmental com ANALYSIS REQUESTED: ASSESSES
SAMPLED BY: PROJECT NAME AND ADDRESS: North St. PLEASE CHOOSE HOW SOON YOU WANT RESULTS FOIL BUSINESS DAY) TURN AROUND TIME IS FOR ASBESTOS ONLY. PIC	CITY/STATE: Vancour, MARASBESTOS! NORMAL [] (END OF 3RD BUSINESS DAY) RUSH [] (END OF NEXT
AMPLE DESCRIPTION OF MATERIAL # (I.E. SHEET VINYL , FLOOR TILE, CEILING TEXTURE WITH COLOR)	SAMPLE LOCATION (WHICH ROOM OR AREA THE SAMPLE WAS COLLECTED)
1 Gray material in Soil	AOPC 5 excavation
J	
	,
SENT TO: RELANQUISHED BY (PRINT): Josh Outen	RELINQUISHED BY (SIGNATURE):
RECEIVED BY: DATE RECEIVED	YED: 4-27-21 PAGE OF

DRAFT

4) Sample Date 4/30/21 (#GG-754)

❖ CERTIFIED ENVIRONMENTAL CONSULTING, LLC ❖

BULK SAMPLE ANALYSIS REPORT

CLIENT:

MARTIN S BURCK ASSOCIATES, INC.

SOURCE:

NORTH STAR CASTEEL, 1200 WEST 13TH

STREET, VANCOUVER, WASHINGTON

MR. JOSH OWEN

SAMPLED BY:

CLIENT

200 NORTH WASCO COURT HOOD RIVER, OREGON 97031 LAB#

GG-754

ANALYZED BY:

EMSL ANALYTICAL, INC.

(NVLAP LAB CODE #101048-3)

DATE SAMPLED:

04-30-21

DATE RECEIVED:

05-03-21

DATE COMPLETED:

05-11-21

ANALYTICAL METHOD: ASBESTOS ANALYSIS OF SOILS VIA EPA 600/R-93/116, USING PLM AND MILLING PREP. OUANTITATION USING 400 POINT COUNT PROCEDURE

SAMPLE ID #	SAMPLE DESCRIPTION	SAMPLE LOCATION	% FIBROUS	% NON-FIBROUS	ASBESTOS CONTENT % TYPE
1	CLAYEY LIGHT GRAY SOIL	WITHIN AOPC 5		100.0% NON-FIBROUS (OTHER)	NONE DETECTED

REVIEWED BY:

DEVIATION FROM METHOD: NONE. PERCENTAGES ARE ESTIMATES.

TEST RESULTS PERTAIN ONLY TO ITEMS TESTED.

* DETECTION LIMIT IS 0.1%

NON-ASBESTOS MATERIALS ARE NOT NECESSARILY LISTED.

♦CERTIFIED ENVIRONMENTAL CONSULTING, LLC.◆

615 SE CHKALOV DRIVE SUITE 12, VANCOUVER, WASHINGTON 98683-5280 (503) 221-7904 PHONE (360) 254-9385 FAX-(360) 891-9633

-	CLIENT: Martin S. Burck Associates,	Inc CONTACT: Josh Owen SAMPLE DATE: 4/30/21
BILLIN	G ADDRESS: 200 N Wasco Ct.	TY/STATE: Hood River ZIP CODE: 97031
PHONE	EMAIL: jowen@msbaenvironmental.com	m FAX: 541 387 4813 ANALYSIS REQUESTED: Asbestos (quantified)
SAMPL NORMA	PROJECT NAME AND ADDRESS: North State State	ar Casteel, 1200 W 13th St CITY/STATE: Vancouver, WA
#	DESCRIPTION OF MATERIAL (I.E. SHEET VINYL , FLOOR TILE, CEILING TEXTURE WITH COLOR)	SAMPLE LOCATION (WHICH ROOM OR AREA THE SAMPLE WAS COLLECTED)
	Clayey light gray material found in soil	Within AOPC 5
		· · · · · · · · · · · · · · · · · · ·
SENT TO	D: RELINQUISHED BY (PRINT) : Ton White	RELINQUISHED BY (SIGNATURE) 17:00 4136/21
RECEIV	ED BY: Win Orun Dox DATE RECEIVE	

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 101048-3

EMSL Analytical, Inc.

San Leandro, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2020-07-01 through 2021-06-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

NVLAP

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

EMSL Analytical, Inc.

464 McCormick St. San Leandro, CA 94577 Mr. Michael DeCavallas Phone: 510-895-3675

Email: mdecavallas@emsl.com http://www.emsl.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101048-3

Bulk Asbestos Analysis

<u>Code</u>	<u>Description</u>
18/A01	EPA - 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of Asbestos in Bulk Insulation Samples
18/A03	EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

Code	<u>Description</u>
18/A02	U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and
	Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in
	40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

DRAFT

5) Sample Date 4/28/21 (#L1346427)

Ss

Cn

Śr

[°]Qc

Gl

Αl

Sc

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1346427

Samples Received:

04/30/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

TABLE OF CONTENTS

DNTENTS

H	
3	Ss

⁴ Cn

	Sr
ĺ	6

25

Cp: Cover Page
Tc: Table of Contents

Sc: Sample Chain of Custody

Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
S1-0.5 L1346427-01	6
S11-1 L1346427-02	7
S12-0 L1346427-03	8
S13-0 L1346427-04	9
S14-1 L1346427-05	10
S15-0 L1346427-06	11
S16-1 L1346427-07	12
S17-0 L1346427-08	13
EB-2 L1346427-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	17
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	19
GI: Glossary of Terms	23
Al: Accreditations & Locations	24

SAMPLE SUMMARY

S1-0.5 L1346427-01 Solid			Collected by Jon White	Collected date/time 04/28/21 10:00	Received dat 04/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	40	05/06/21 09:40	05/07/21 03:24	DMG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	400	05/06/21 09:40	05/07/21 14:49	WCR	Mt. Juliet, TN
S11-1 L1346427-02 Solid			Collected by Jon White	Collected date/time 04/28/21 07:49	Received dat 04/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 01:59	AAT	Mt. Juliet, TN
			Collected by Jon White	Collected date/time 04/28/21 08:02	Received dat 04/30/21 09:	
S12-0 L1346427-03 Solid			Jon Wille	04/20/21 00.02	04/30/2109.	i)
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 05:43	AAT	Mt. Juliet, TN
C12 O 1 124C 427 O4 Calid			Collected by Jon White	Collected date/time 04/28/21 10:06	Received date/time 04/30/21 09:15	
S13-0 L1346427-04 Solid					0 1100121 00.	10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	20	05/06/21 09:40	05/07/21 02:45	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	e Received date/time	
S14-1 L1346427-05 Solid			Jon White	04/28/21 10:30	04/30/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	40	05/06/21 09:40	05/07/21 02:58	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/2119:08	05/05/21 06:28	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
S15-0 L1346427-06 Solid			Jon White	04/28/21 10:37	04/30/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	40	05/06/21 09:40	05/07/21 03:11	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664105	1	05/04/21 19:08	05/05/21 06:43	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
S16-1 L1346427-07 Solid			Jon White	04/28/21 11:49	04/30/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664141	1	05/04/21 17:10	05/04/21 17:33	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	20	05/06/21 09:40	05/07/21 14:36	WCR	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

S17-0 L1346427-08 Solid			Collected by Jon White	Collected date/time 04/28/2112:04	04/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664147	1	05/04/21 16:49	05/04/21 17:04	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664922	1	05/06/21 09:40	05/07/21 00:48	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EB-2 L1346427-09 GW			Jon White	04/28/21 12:04	04/30/21 09:	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664918	1	05/05/21 17:11	05/06/21 01:13	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663717	1	05/04/21 18:38	05/05/21 01:00	AAT	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford Brian Ford

Project Manager

S1-0.5

SAMPLE RESULTS - 01

Collected date/time: 04/28/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.6		1	05/04/2021 17:33	WG1664141	

Тс

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	15100		1750	400	05/07/2021 14:49	WG1664922
Residual Range Organics (RRO)	1940		436	40	05/07/2021 03:24	WG1664922
(S) o-Terphenyl	7660	<u>J7</u>	18.0-148		05/07/2021 14:49	WG1664922
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/07/2021 03:24	WG1664922

Ss

L1346427

Total Solids by Method 2540 G-2011

Collected date/time: 04/28/21 07:49

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.2		1	05/04/2021 17:33	WG1664141

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Acenaphthene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Acenaphthylene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Benzo(a)anthracene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Benzo(a)pyrene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Benzo(b)fluoranthene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Benzo(g,h,i)perylene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Benzo(k)fluoranthene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Chrysene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Dibenz(a,h)anthracene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Fluoranthene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Fluorene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Indeno(1,2,3-cd)pyrene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Naphthalene	ND		0.0235	1	05/05/2021 01:59	WG1664105
Phenanthrene	ND		0.00704	1	05/05/2021 01:59	WG1664105
Pyrene	ND		0.00704	1	05/05/2021 01:59	WG1664105
1-Methylnaphthalene	ND		0.0235	1	05/05/2021 01:59	WG1664105
2-Methylnaphthalene	ND		0.0235	1	05/05/2021 01:59	WG1664105
2-Chloronaphthalene	ND		0.0235	1	05/05/2021 01:59	WG1664105
(S) Nitrobenzene-d5	69.8		14.0-149		05/05/2021 01:59	WG1664105
(S) 2-Fluorobiphenyl	68.9		34.0-125		05/05/2021 01:59	WG1664105
(S) p-Terphenyl-d14	90.6		23.0-120		05/05/2021 01:59	WG1664105

S12-0

SAMPLE RESULTS - 03

Collected date/time: 04/28/21 08:02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	05/04/2021 17:33	WG1664141

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
mg/kg		mg/kg		date / time	
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
0.00645		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.00631	1	05/05/2021 05:43	WG1664105
0.0271		0.0210	1	05/05/2021 05:43	WG1664105
0.00721		0.00631	1	05/05/2021 05:43	WG1664105
0.00712		0.00631	1	05/05/2021 05:43	WG1664105
ND		0.0210	1	05/05/2021 05:43	WG1664105
ND		0.0210	1	05/05/2021 05:43	WG1664105
ND		0.0210	1	05/05/2021 05:43	WG1664105
88.4		14.0-149		05/05/2021 05:43	WG1664105
75.9		34.0-125		05/05/2021 05:43	WG1664105
100		23.0-120		05/05/2021 05:43	WG1664105
	mg/kg ND	Mg/kg ND	mg/kg mg/kg ND 0.00631 0.0271 0.00631 0.00712 0.00631 ND 0.0210 ND 0.0210	mg/kg mg/kg ND 0.00631 1 0.0271 0.0210 1 0.00712 0.00631 1 ND 0.0210 1 <td>mg/kg mg/kg date / time ND 0.00631 1 05/05/2021 05:43 0.0271 0.0210 1 05/05/2021 05:43 ND 0.0210 1 05/05/2021 05:43 ND 0.0210 1</td>	mg/kg mg/kg date / time ND 0.00631 1 05/05/2021 05:43 0.0271 0.0210 1 05/05/2021 05:43 ND 0.0210 1 05/05/2021 05:43 ND 0.0210 1

S13-0

SAMPLE RESULTS - 04

Collected date/time: 04/28/21 10:06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	89.5		1	05/04/2021 17:33	WG1664141	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1346427-04 WG1664922: Cannot run at lower dilution due to viscosity of extract

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	165		89.4	20	05/07/2021 02:45	WG1664922
Residual Range Organics (RRO)	ND		223	20	05/07/2021 02:45	WG1664922
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/07/2021 02:45	WG1664922

Ss

Sample Narrative:

Collected date/time: 04/28/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	05/04/2021 17:33	WG1664141

Ср

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		171	40	05/07/2021 02:58	WG1664922
Residual Range Organics (RRO)	752		428	40	05/07/2021 02:58	WG1664922
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/07/2021 02:58	WG1664922

Ss

⁵**C**r

Sample Narrative:

L1346427-05 WG1664922: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00642	1	05/05/2021 06:28	WG1664105
Acenaphthene	ND		0.00642	1	05/05/2021 06:28	WG1664105
Acenaphthylene	ND		0.00642	1	05/05/2021 06:28	WG1664105
Benzo(a)anthracene	0.0213		0.00642	1	05/05/2021 06:28	WG1664105
Benzo(a)pyrene	0.0379		0.00642	1	05/05/2021 06:28	WG1664105
Benzo(b)fluoranthene	0.0544		0.00642	1	05/05/2021 06:28	WG1664105
Benzo(g,h,i)perylene	0.0330		0.00642	1	05/05/2021 06:28	WG1664105
Benzo(k)fluoranthene	0.0155		0.00642	1	05/05/2021 06:28	WG1664105
Chrysene	0.0225		0.00642	1	05/05/2021 06:28	WG1664105
Dibenz(a,h)anthracene	0.00837		0.00642	1	05/05/2021 06:28	WG1664105
Fluoranthene	0.0356		0.00642	1	05/05/2021 06:28	WG1664105
Fluorene	ND		0.00642	1	05/05/2021 06:28	WG1664105
Indeno(1,2,3-cd)pyrene	0.0326		0.00642	1	05/05/2021 06:28	WG1664105
Naphthalene	0.0219		0.0214	1	05/05/2021 06:28	WG1664105
Phenanthrene	0.0183		0.00642	1	05/05/2021 06:28	WG1664105
Pyrene	0.0361		0.00642	1	05/05/2021 06:28	WG1664105
1-Methylnaphthalene	ND		0.0214	1	05/05/2021 06:28	WG1664105
2-Methylnaphthalene	ND		0.0214	1	05/05/2021 06:28	WG1664105
2-Chloronaphthalene	ND		0.0214	1	05/05/2021 06:28	WG1664105
(S) Nitrobenzene-d5	86.1		14.0-149		05/05/2021 06:28	WG1664105
(S) 2-Fluorobiphenyl	84.3		34.0-125		05/05/2021 06:28	WG1664105
(S) p-Terphenyl-d14	98.2		23.0-120		05/05/2021 06:28	WG1664105

Total Solids by Method 2540 G-2011

Collected date/time: 04/28/21 10:37

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.1		1	05/04/2021 17:33	WG1664141

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		178	40	05/07/2021 03:11	WG1664922
Residual Range Organics (RRO)	446		444	40	05/07/2021 03:11	WG1664922
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/07/2021 03:11	WG1664922

Ss

Sample Narrative:

L1346427-06 WG1664922: Cannot run at lower dilution due to viscosity of extract

Gl

ΆΙ

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	0.0120		0.00666	1	05/05/2021 06:43	WG1664105
Acenaphthene	ND		0.00666	1	05/05/2021 06:43	WG1664105
Acenaphthylene	ND		0.00666	1	05/05/2021 06:43	WG1664105
Benzo(a)anthracene	0.0971		0.00666	1	05/05/2021 06:43	WG1664105
Benzo(a)pyrene	0.140		0.00666	1	05/05/2021 06:43	WG1664105
Benzo(b)fluoranthene	0.185		0.00666	1	05/05/2021 06:43	WG1664105
Benzo(g,h,i)perylene	0.0817		0.00666	1	05/05/2021 06:43	WG1664105
Benzo(k)fluoranthene	0.0641		0.00666	1	05/05/2021 06:43	WG1664105
Chrysene	0.106		0.00666	1	05/05/2021 06:43	WG1664105
Dibenz(a,h)anthracene	0.0212		0.00666	1	05/05/2021 06:43	WG1664105
Fluoranthene	0.158		0.00666	1	05/05/2021 06:43	WG1664105
Fluorene	ND		0.00666	1	05/05/2021 06:43	WG1664105
Indeno(1,2,3-cd)pyrene	0.101		0.00666	1	05/05/2021 06:43	WG1664105
Naphthalene	ND		0.0222	1	05/05/2021 06:43	WG1664105
Phenanthrene	0.0469		0.00666	1	05/05/2021 06:43	WG1664105
Pyrene	0.133		0.00666	1	05/05/2021 06:43	WG1664105
1-Methylnaphthalene	ND		0.0222	1	05/05/2021 06:43	WG1664105
2-Methylnaphthalene	ND		0.0222	1	05/05/2021 06:43	WG1664105
2-Chloronaphthalene	ND		0.0222	1	05/05/2021 06:43	WG1664105
(S) Nitrobenzene-d5	80.9		14.0-149		05/05/2021 06:43	WG1664105
(S) 2-Fluorobiphenyl	81.7		34.0-125		05/05/2021 06:43	WG1664105
(S) p-Terphenyl-d14	98.6		23.0-120		05/05/2021 06:43	WG1664105

Collected date/time: 04/28/21 11:49

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	89.7		1	05/04/2021 17:33	WG1664141	

²Tc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		89.2	20	05/07/2021 14:36	WG1664922
Residual Range Organics (RRO)	268		223	20	05/07/2021 14:36	WG1664922
(S) o-Terphenyl	89.1	<u>J7</u>	18.0-148		05/07/2021 14:36	WG1664922

Ss

Sample Narrative:

L1346427-07 WG1664922: Cannot run at lower dilution due to viscosity of extract

S17-0

SAMPLE RESULTS - 08

Collected date/time: 04/28/21 12:04

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	95.2		1	05/04/2021 17:04	WG1664147		

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	22.0		4.20	1	05/07/2021 00:48	WG1664922
Residual Range Organics (RRO)	159		10.5	1	05/07/2021 00:48	WG1664922
(S) o-Terphenyl	70.6		18.0-148		05/07/2021 00:48	WG1664922

Ss

EB-2

SAMPLE RESULTS - 09

Collected date/time: 04/28/21 12:04

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	05/06/2021 01:13	WG1664918
Residual Range Organics (RRO)	ND		250	1	05/06/2021 01:13	WG1664918
(S) o-Terphenyl	80.5		52.0-156		05/06/2021 01:13	WG1664918

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	<u>Qualifier</u>	RDL	Dilution	. ,	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Acenaphthene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Acenaphthylene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Benzo(a)anthracene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Benzo(a)pyrene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Benzo(b)fluoranthene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Benzo(g,h,i)perylene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Benzo(k)fluoranthene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Chrysene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Dibenz(a,h)anthracene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Fluoranthene	ND		0.100	1	05/05/2021 01:00	WG1663717
Fluorene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Naphthalene	ND		0.250	1	05/05/2021 01:00	WG1663717
Phenanthrene	ND		0.0500	1	05/05/2021 01:00	WG1663717
Pyrene	ND		0.0500	1	05/05/2021 01:00	WG1663717
1-Methylnaphthalene	ND		0.250	1	05/05/2021 01:00	WG1663717
2-Methylnaphthalene	ND		0.250	1	05/05/2021 01:00	WG1663717
2-Chloronaphthalene	ND		0.250	1	05/05/2021 01:00	WG1663717
(S) Nitrobenzene-d5	87.0		31.0-160		05/05/2021 01:00	WG1663717
(S) 2-Fluorobiphenyl	95.0		48.0-148		05/05/2021 01:00	WG1663717
(S) p-Terphenyl-d14	99.0		37.0-146		05/05/2021 01:00	WG1663717

WG1664141

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1346427-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3650578-1 (05/04/21 17:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

10

DUP Qualifier

Dilution DUP RPD

%

0.170

L1346427-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1346427-01 05/04/2117:33 • (DUP) R3650578-3 05/04/2117:33

%

91.6

Original Result DUP Result

%

91.8

DUP RPD Limits			
%			

Laboratory Control Sample (LCS)

(LCS) R3650578-2 05/04/2117:33

Analyte Total Solids

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

WG1664147

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1346427-08

Method Blank (MB)

(MB) R3650576-1 05	5/04/21 17:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00300			

3 Ss

L1346440-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1346440-01 05/04/21 17:04 • (DUP) R3650576-3 05/04/21 17:04

	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	75.7	75.5	1	0.253		10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3650576-2 05/04/2117:04

(LCS) K3030370-2 03/04.	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1346427-09

Method Blank (MB)

(S) o-Terphenyl

(MB) R3650964-1 05/05/2	1 22:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	83.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

134

121

(LCS) R3650964-2 05/05	/21 23:12 • (LCS	SD) R3650964	1-3 05/05/212	3:32						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1560	1540	104	103	50.0-150			1.29	20

52.0-156

WG1664922

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1346427-01,04,05,06,07,08

Method Blank (MB)

(MB) R3651572-1 05/06/21	22:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	76.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3651572-2 05/06/	/21 23:03							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Diesel Range Organics (DRO)	50.0	48.8	97.6	50.0-150				
(S) o-Terphenyl			65.0	18.0-148				

WG1663717

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

1346427-09

Method Blank (MB)

(MB) R3650620-3 05/0	05/21 00:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	119			31.0-160	
(S) 2-Fluorobiphenyl	141			48.0-148	
(S) p-Terphenyl-d14	163	J1		37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650620-1 05/09	5/21 00:33 • (LCS	SD) R3650620	0-2 05/05/21 0	0:42							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	1.90	1.99	95.0	99.5	67.0-150			4.63	20	
Acenaphthene	2.00	1.90	1.97	95.0	98.5	65.0-138			3.62	20	
Acenaphthylene	2.00	1.92	1.99	96.0	99.5	66.0-140			3.58	20	
Benzo(a)anthracene	2.00	1.77	1.85	88.5	92.5	61.0-140			4.42	20	
Benzo(a)pyrene	2.00	1.88	1.97	94.0	98.5	60.0-143			4.68	20	
Benzo(b)fluoranthene	2.00	1.95	2.11	97.5	105	58.0-141			7.88	20	
Benzo(g,h,i)perylene	2.00	2.18	1.96	109	98.0	52.0-153			10.6	20	
Benzo(k)fluoranthene	2.00	2.14	2.24	107	112	58.0-148			4.57	20	
Chrysene	2.00	2.02	2.00	101	100	64.0-144			0.995	20	
Dibenz(a,h)anthracene	2.00	2.15	1.99	107	99.5	52.0-155			7.73	20	
Fluoranthene	2.00	1.70	1.94	85.0	97.0	69.0-153			13.2	20	

ACCOUNT:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346427-09

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650620-1 05/05/21 00:33 • (LCSD) R3650620-2 05/05/21 00:42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	2.05	2.00	103	100	64.0-136			2.47	20
Indeno(1,2,3-cd)pyrene	2.00	2.11	1.94	105	97.0	54.0-153			8.40	20
Naphthalene	2.00	1.81	1.87	90.5	93.5	61.0-137			3.26	20
Phenanthrene	2.00	1.87	1.91	93.5	95.5	62.0-137			2.12	20
Pyrene	2.00	2.03	2.05	102	103	60.0-142			0.980	20
1-Methylnaphthalene	2.00	1.93	1.98	96.5	99.0	66.0-142			2.56	20
2-Methylnaphthalene	2.00	1.82	1.90	91.0	95.0	62.0-136			4.30	20
2-Chloronaphthalene	2.00	1.86	1.96	93.0	98.0	64.0-140			5.24	20
(S) Nitrobenzene-d5				84.0	88.5	31.0-160				
(S) 2-Fluorobiphenyl				84.5	92.0	48.0-148				
(S) p-Terphenyl-d14				110	112	37.0-146				

WG1664105

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346427-02,03,05,06

Method Blank (MB)

(MB) R3650543-2 05/0	05/21 00:45				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Anthracene	U		0.00230	0.00600	Ь
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	Ľ
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4 (
Benzo(b)fluoranthene	U		0.00153	0.00600	느
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	95.9			14.0-149	
(S) 2-Fluorobiphenyl	91.0			34.0-125	
(S) p-Terphenyl-d14	118			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3650543-1 05/0)5/21 00:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0724	90.5	50.0-126	
Acenaphthene	0.0800	0.0663	82.9	50.0-120	
Acenaphthylene	0.0800	0.0723	90.4	50.0-120	
Benzo(a)anthracene	0.0800	0.0724	90.5	45.0-120	
Benzo(a)pyrene	0.0800	0.0634	79.3	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0630	78.8	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0656	82.0	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0703	87.9	49.0-125	
Chrysene	0.0800	0.0728	91.0	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0696	87.0	47.0-125	
Fluoranthene	0.0800	0.0717	89.6	49.0-129	

WG1664105

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1346427-02,03,05,06

Laboratory Control Sample (LCS)

11 (5	R3650543-1	05/05/21	UU-3U

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
A b - d -	•				200 qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0698	87.3	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0619	77.4	46.0-125	
Naphthalene	0.0800	0.0617	77.1	50.0-120	
Phenanthrene	0.0800	0.0692	86.5	47.0-120	
Pyrene	0.0800	0.0753	94.1	43.0-123	
1-Methylnaphthalene	0.0800	0.0645	80.6	51.0-121	
2-Methylnaphthalene	0.0800	0.0624	78.0	50.0-120	
2-Chloronaphthalene	0.0800	0.0663	82.9	50.0-120	
(S) Nitrobenzene-d5			106	14.0-149	
(S) 2-Fluorobiphenyl			94.7	34.0-125	
(S) p-Terphenyl-d14			118	23.0-120	

L1346533-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346533-16 05/05/21 03:14	• (MS) R3650543-3	05/05/21 03:29 • (MSD)	R3650543-4 05/05/21 03:44
---------------------------------	-------------------	------------------------	---------------------------

		MC Decula	MCD Decula	MC Doo	MCD Doo	Dilution	Don Limito	MC Ouglifier	MCD Ouglifies	DDD	DDD Limits
•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
ng/kg	mg/kg	mg/kg	mg/kg	%	%					%	%
0.0792	ND	0.0680	0.0694	85.9	86.8	1	10.0-145			2.04	30
0.0792	ND	0.0635	0.0643	80.2	80.4	1	14.0-127			1.25	27
0.0792	ND	0.0704	0.0700	88.9	87.5	1	21.0-124			0.570	25
0.0792	ND	0.0677	0.0694	85.5	86.8	1	10.0-139			2.48	30
0.0792	ND	0.0596	0.0638	75.3	79.8	1	10.0-141			6.81	31
0.0792	ND	0.0580	0.0598	73.2	74.8	1	10.0-140			3.06	36
0.0792	ND	0.0632	0.0629	79.8	78.6	1	10.0-140			0.476	33
0.0792	ND	0.0654	0.0643	82.6	80.4	1	10.0-137			1.70	31
).0792	ND	0.0685	0.0684	86.5	85.5	1	10.0-145			0.146	30
).0792	ND	0.0664	0.0671	83.8	83.9	1	10.0-132			1.05	31
).0792	ND	0.0659	0.0677	83.2	84.6	1	10.0-153			2.69	33
).0792	ND	0.0652	0.0665	82.3	83.1	1	11.0-130			1.97	29
).0792	ND	0.0601	0.0598	75.9	74.8	1	10.0-137			0.500	32
0.0792	ND	0.0622	0.0631	78.5	78.9	1	10.0-135			1.44	27
).0792	ND	0.0656	0.0667	82.8	83.4	1	10.0-144			1.66	31
).0792	ND	0.0708	0.0712	89.4	89.0	1	10.0-148			0.563	35
).0792	ND	0.0651	0.0639	82.2	79.9	1	10.0-142			1.86	28
).0792	ND	0.0638	0.0611	80.6	76.4	1	10.0-137			4.32	28
0.0792	ND	0.0651	0.0651	82.2	81.4	1	29.0-120			0.000	24
				92.4	95.6		14.0-149				
				84.6	85.1		34.0-125				
				104	102		23.0-120				
	0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792 0792	0792 ND	0792 ND 0.0680 .0792 ND 0.0635 .0792 ND 0.0704 .0792 ND 0.0677 .0792 ND 0.0596 .0792 ND 0.0580 .0792 ND 0.0632 .0792 ND 0.0654 .0792 ND 0.0685 .0792 ND 0.0664 .0792 ND 0.0659 .0792 ND 0.0652 .0792 ND 0.0601 .0792 ND 0.0656 .0792 ND 0.0656 .0792 ND 0.0708 .0792 ND 0.0651 .0792 ND 0.0638	.0792 ND 0.0680 0.0694 .0792 ND 0.0635 0.0643 .0792 ND 0.0704 0.0700 .0792 ND 0.0677 0.0694 .0792 ND 0.0596 0.0638 .0792 ND 0.0580 0.0598 .0792 ND 0.0632 0.0629 .0792 ND 0.0654 0.0643 .0792 ND 0.0685 0.0684 .0792 ND 0.0664 0.0671 .0792 ND 0.0659 0.0677 .0792 ND 0.0659 0.0665 .0792 ND 0.0652 0.0665 .0792 ND 0.0622 0.0631 .0792 ND 0.0656 0.0667 .0792 ND 0.0708 0.0712 .0792 ND 0.0651 0.0639 .0792 ND 0.0651 0.0639 .0792 ND	.0792 ND 0.0680 0.0694 85.9 .0792 ND 0.0635 0.0643 80.2 .0792 ND 0.0704 0.0700 88.9 .0792 ND 0.0677 0.0694 85.5 .0792 ND 0.0596 0.0638 75.3 .0792 ND 0.0580 0.0598 73.2 .0792 ND 0.0632 0.0629 79.8 .0792 ND 0.0654 0.0643 82.6 .0792 ND 0.0685 0.0684 86.5 .0792 ND 0.0664 0.0671 83.8 .0792 ND 0.0659 0.0677 83.2 .0792 ND 0.0652 0.0665 82.3 .0792 ND 0.0662 0.0665 82.3 .0792 ND 0.0622 0.0631 78.5 .0792 ND 0.0656 0.0667 82.8 .0792 ND	0.0792 ND 0.0680 0.0694 85.9 86.8 0.0792 ND 0.0635 0.0643 80.2 80.4 0.0792 ND 0.0704 0.0700 88.9 87.5 0.0792 ND 0.0677 0.0694 85.5 86.8 0.0792 ND 0.0596 0.0638 75.3 79.8 0.0792 ND 0.0580 0.0598 73.2 74.8 0.0792 ND 0.0632 0.0629 79.8 78.6 0.0792 ND 0.0654 0.0643 82.6 80.4 0.0792 ND 0.06654 0.0643 82.6 80.4 0.0792 ND 0.0664 0.0671 83.8 83.9 0.0792 ND 0.0659 0.0677 83.2 84.6 0.0792 ND 0.0652 0.0665 82.3 83.1 0.0792 ND 0.0652 0.0665 82.3 83.4 0.0792<	0792 ND 0.0680 0.0694 85.9 86.8 1 0792 ND 0.0635 0.0643 80.2 80.4 1 0792 ND 0.0704 0.0700 88.9 87.5 1 0792 ND 0.0677 0.0694 85.5 86.8 1 0792 ND 0.0596 0.0638 75.3 79.8 1 0.0792 ND 0.0580 0.0598 73.2 74.8 1 0.0792 ND 0.0632 0.0629 79.8 78.6 1 0.0792 ND 0.0654 0.0643 82.6 80.4 1 0.0792 ND 0.0685 0.0684 86.5 85.5 1 0.0792 ND 0.0665 0.0671 83.8 83.9 1 0.0792 ND 0.0659 0.0677 83.2 84.6 1 0.0792 ND 0.0652 0.0665 82.3 83.1<	0792 ND 0.0680 0.0694 85.9 86.8 1 10.0-145 0.0792 ND 0.0635 0.0643 80.2 80.4 1 14.0-127 0.0792 ND 0.0704 0.0700 88.9 87.5 1 21.0-124 0.0792 ND 0.0677 0.0694 85.5 86.8 1 10.0-139 0.0792 ND 0.0596 0.0638 75.3 79.8 1 10.0-141 0.0792 ND 0.0580 0.0598 73.2 74.8 1 10.0-140 0.0792 ND 0.0632 0.0629 79.8 78.6 1 10.0-140 0.0792 ND 0.0654 0.0643 82.6 80.4 1 10.0-137 0.0792 ND 0.0685 0.0684 86.5 85.5 1 10.0-145 0.0792 ND 0.0664 0.0671 83.8 83.9 1 10.0-132 0.0792 N	0792 ND 0.0680 0.0694 85.9 86.8 1 10.0-145 0792 ND 0.0635 0.0643 80.2 80.4 1 14.0-127 0792 ND 0.0704 0.0700 88.9 87.5 1 21.0-124 0792 ND 0.0677 0.0694 85.5 86.8 1 10.0-139 0792 ND 0.0596 0.0638 75.3 79.8 1 10.0-141 0792 ND 0.0580 0.0598 73.2 74.8 1 10.0-140 0792 ND 0.0632 0.0629 79.8 78.6 1 10.0-140 0792 ND 0.0654 0.0643 82.6 80.4 1 10.0-137 0792 ND 0.0664 0.0671 83.8 83.9 1 10.0-132 0792 ND 0.0659 0.0677 83.2 84.6 1 10.0-135 0792 ND 0	ND	0792 ND 0.0680 0.0694 85.9 86.8 1 10.0-145 2.04 0792 ND 0.0635 0.0643 80.2 80.4 1 14.0-127 1.25 0792 ND 0.0704 0.0700 88.9 87.5 1 21.0-124 0.570 0792 ND 0.0677 0.0694 85.5 86.8 1 10.0-139 2.48 0792 ND 0.0596 0.0638 75.3 79.8 1 10.0-141 6.81 0792 ND 0.0580 0.0598 73.2 74.8 1 10.0-140 3.06 0792 ND 0.0632 0.0629 79.8 78.6 1 10.0-140 3.06 0792 ND 0.0654 0.0643 82.6 80.4 1 10.0-137 1.70 0792 ND 0.0664 0.0671 83.8 83.9 1 10.0-132 1.05 0792 ND

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

- 100:0:0:0:0:0	- 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCREDITATIONS & LOCATIONS

Pace Analytical	National	12065 Leband	an Rd Mount	luliet "	TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Information:							-	Analysis	/ Contai	iner / Pr	eservativ	/e			Chain of Custody	Page of
Martin S. Burck AssocHood River, OR		Accounts Payable 200 N. Wasco Ct.			Pres Chk											Pace	Analytical*		
200 N. Wasco Ct. Hood River, OR 97031			Hood River, OR 97031										TW					National C	enter for Testing & Innovatio
Neport to.				Email To: msba@msbaenvironmental.com;jwhite@ms								/Syr	oPres-						
Project Description: North Star Casteel		City/State Collected:	lancou	ver. W	A	Please Cir		S		es		Oml	p-N-d					Pace Terms and Condi- https://info.pacelabs.c terms.ndf	tions found at: com/hubfs/pas-standard-
Phone: 541-387-4422	Client Project # North Ster		Lab Proje	Lab Project # MSBAHROR-NSTARCASTEE			6020 8ozClr-NoPres		Ir-NoPre	NoPres	MeOH1	40mlAmb-NoPres-WT	OmlAm				SDG# L1	346427 G083	
Collected by (print):	Site/Facility I	D#		North Sar) 8ozCl	2ozClr-NoPres	3T 802C	8ozClr-	nlAmb/	8270ESIM 4					Acctnum: MS Template:T18	ВАНКОК
Collected by (signature): John Owen for Jon W Immediately Packed on Ice N Y	Rush? (Same D Next Do Two Da Three D	sy 5 Day 10 Da		Quote i	ate Results Needed No.		No.	s,Cd,Cr,Pb 6020	7199 2ozClr-	NWTPHDX NOSGT 802Clr-NoPres	8270ESIM 8ozClr-NoPres	OCs 8260D 40mlAmb/MeOH10ml/Syr	PAHS	Id	٦			Prelogin: P83 PM: 110 - Bria PB: DV	9348
Sample ID	Comp/Grab	Matrix *	Depth	Da	ite	Time	Cntrs	As,Cd	Cr6 7.	NWT	PAHS	VOCs	water	Holy				Shipped Via:	Sample # (lab only)
\$1-0.5	Gras	SS	0.5	4/2	8/21	10100	3			1					2/3				-01
511-1		SS	1		1	07:49	3		A.C.		1								02
512-0		SS	0			08:02	3				1								03
S13-0	4 400	SS	0			10:06	3			1					es V				04
514-1		SS	1			10:30	3			1	1	11.00							04
515-0		SS	0			10:37	3			V	1		77-17						64
516-1		GW S				11:49	3	13		1	1 30							1	07
S17-0		EW 55	0			12:64	3			1									08
EB-2	1	GWOT			L	08138	h			1	1				10				09
* Matrix: Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater							pH Temp coc seal Flow Other Bottles and							al Progned/	Accurate: ive intact:	necklist : _NP _Y _N _X _N			
OT - Other Equipment Blank Samples returned via: UPS _FedEx _ Courier					Tracking #										Sufficient volume sent: If Applicable VOA Zero Headspace: //				
Relinquished by: (Signature)	196	Date: Time: 4/29/21 1511			an tak	red by: (Signat					Trip Blar	0	1	es No HCL / Me TBR		Preservation Correct/Checked: _Y _N RAD Screen <0.5 mR/hr: _Y _N			
Relinguished by : (Signature)	7-17-18	ate:	Time			ved by: (Signat					TempA 1.4+.		5	des Receiv	ored:		rvation	required by Log	
Relinquished by : (Signature)	D	ate:	Time	e:	Receiv	red for lab by:	Bignat	urey			Date:	0/21	Tim	e: 09	15	Hold:			NCF / OK

DRAFT

6) Sample Date 4/28/21 (#L1350788)

Ss

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1350788

Samples Received:

04/30/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page Tc: Table of Contents Ss: Sample Summary Cn: Case Narrative

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Sr: Sample Results

S13-0 L1350788-01

GI: Glossary of Terms

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

3

4

5

5

6

7

8

10

11

12

Dilution

1

20

5

1

Batch

WG1664141

WG1671162

WG1671162

WG1669300

S13-0 L1350788-01 Solid

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Metals (ICPMS) by Method 6020B

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Method

Collected by Jon White

Preparation

05/04/21 17:10

05/15/21 12:36

05/15/21 12:36

05/12/21 17:56

date/time

Collected date/time Received date/time

Analyst

JAV

LD

LD

AMG

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

04/28/21 10:06 04/30/21 09:15

Analysis

date/time

05/04/21 17:33

05/16/21 23:00

05/16/21 22:03

05/13/21 04:25

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

Total Solids by Method 2540 G-2011

Collected date/time: 04/28/21 10:06

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	89.5		1	05/04/2021 17:33	WG1664141		

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cadmium	2.54		1.12	5	05/16/2021 22:03	WG1671162
Lead	365		8.94	20	05/16/2021 23:00	WG1671162

Ss

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	0.104		0.00670	1	05/13/2021 04:25	WG1669300
Acenaphthene	0.0178		0.00670	1	05/13/2021 04:25	WG1669300
Acenaphthylene	0.0707		0.00670	1	05/13/2021 04:25	WG1669300
Benzo(a)anthracene	0.412		0.00670	1	05/13/2021 04:25	WG1669300
Benzo(a)pyrene	0.295		0.00670	1	05/13/2021 04:25	WG1669300
Benzo(b)fluoranthene	0.450		0.00670	1	05/13/2021 04:25	WG1669300
Benzo(g,h,i)perylene	0.236		0.00670	1	05/13/2021 04:25	WG1669300
Benzo(k)fluoranthene	0.185		0.00670	1	05/13/2021 04:25	WG1669300
Chrysene	0.455		0.00670	1	05/13/2021 04:25	WG1669300
Dibenz(a,h)anthracene	0.0519		0.00670	1	05/13/2021 04:25	WG1669300
Fluoranthene	0.899		0.00670	1	05/13/2021 04:25	WG1669300
Fluorene	0.0450		0.00670	1	05/13/2021 04:25	WG1669300
Indeno(1,2,3-cd)pyrene	0.285		0.00670	1	05/13/2021 04:25	WG1669300
Naphthalene	0.0736		0.0223	1	05/13/2021 04:25	WG1669300
Phenanthrene	0.842		0.00670	1	05/13/2021 04:25	WG1669300
Pyrene	0.766		0.00670	1	05/13/2021 04:25	WG1669300
1-Methylnaphthalene	0.0420		0.0223	1	05/13/2021 04:25	WG1669300
2-Methylnaphthalene	0.0589		0.0223	1	05/13/2021 04:25	WG1669300
2-Chloronaphthalene	ND		0.0223	1	05/13/2021 04:25	WG1669300
(S) Nitrobenzene-d5	61.0		14.0-149		05/13/2021 04:25	WG1669300
(S) 2-Fluorobiphenyl	64.0		34.0-125		05/13/2021 04:25	WG1669300
(S) p-Terphenyl-d14	83.6		23.0-120		05/13/2021 04:25	WG1669300

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350788-01

Method Blank (MB)

Analyte Total Solids

(MB) R3650578-	-1 05/04/21 17:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1346427-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1346427-0

7-01 05/04/	/21 17:33 • (DUP)	R3650578-3	05/04/21	17:33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
	%	%		%		%
	91.6	91.8	1	0.170		10

Laboratory Control Sample (LCS)

(LCS) R3650578-2 05/04/2117:33

	Spike Amount LCS Result	LCS Result LCS Rec.	Rec. Limits LCS
Analyte	% %	% %	%
Total Solids	50.0 50.0	50.0 99.9	85.0-115

QUALITY CONTROL SUMMARY

L1350788-01

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3655097-1 05	5/16/21 21:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cadmium	U		0.0855	1.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3655097-2 05/16	5/21 21:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cadmium	100	92.1	92.1	80.0-120	
Lead	100	89.0	89.0	80.0-120	

. ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cadmium	154	ND	155	148	101	96.4	5	75.0-125			4.28	20
Lead	154	8.98	160	161	98.6	99.1	5	75.0-125			0.516	20

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1350788-01

Method Blank (MB)

(MB) R3653882-2 05/1	2/21 23:27				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4 (
Benzo(b)fluoranthene	U		0.00153	0.00600	느
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	L
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	52.3			14.0-149	
(S) 2-Fluorobiphenyl	70.0			34.0-125	
(S) p-Terphenyl-d14	88.0			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3653882-1 05/1	2/21 23:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0586	73.3	50.0-126	
Acenaphthene	0.0800	0.0640	80.0	50.0-120	
Acenaphthylene	0.0800	0.0652	81.5	50.0-120	
Benzo(a)anthracene	0.0800	0.0576	72.0	45.0-120	
Benzo(a)pyrene	0.0800	0.0471	58.9	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0576	72.0	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0606	75.8	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0584	73.0	49.0-125	
Chrysene	0.0800	0.0641	80.1	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0607	75.9	47.0-125	
Fluoranthene	0.0800	0.0686	85.8	49.0-129	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1350788-01

Laboratory Control Sample (LCS)

(LCS) R3653882-1 (05/12/21 23:08
--------------------	----------------

(,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.080.0	0.0693	86.6	49.0-120	
Indeno(1,2,3-cd)pyrene	0.080.0	0.0588	73.5	46.0-125	
Naphthalene	0.080.0	0.0616	77.0	50.0-120	
Phenanthrene	0.080.0	0.0643	80.4	47.0-120	
Pyrene	0.080.0	0.0600	75.0	43.0-123	
1-Methylnaphthalene	0.080.0	0.0706	88.3	51.0-121	
2-Methylnaphthalene	0.080.0	0.0640	80.0	50.0-120	
2-Chloronaphthalene	0.080.0	0.0593	74.1	50.0-120	
(S) Nitrobenzene-d5			61.2	14.0-149	
(S) 2-Fluorobiphenyl			76.3	34.0-125	
(S) p-Terphenyl-d14			87.8	23.0-120	

L1350936-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Analyte mg/kg mg/kg mg/kg mg/kg mg/kg %<		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Acenaphthene 0.0796 0.115 0.0644 0.0655 0.000 0.000 1 14.0427 16 1,69 27 Acenaphthylene 0.0796 0.0093 0.0704 0.0721 77.0 79.5 1 21.0124	Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthylene 0.0796 0.00913 0.0704 0.0721 77.0 79.5 1 21.0124 2.39 25 Benzo(a)anthracene 0.0796 0.289 0.0986 0.0908 0.000 1 10.0139 J6 J6 8.24 30 Benzo(a)phyrene 0.0796 0.258 0.101 0.0904 0.000 1 10.0141 J6 J6 11.1 31 Benzo(b)filtuoranthene 0.0796 0.138 0.108 0.0955 0.000 0.000 1 10.0140 J6 J6 18.5 36 Benzo(b)filtuoranthene 0.0796 0.127 0.0800 0.0738 0.000 0.000 1 10.0143 J6 J6 8.06 31 Chrysene 0.0796 0.127 0.0800 0.0738 0.000 0.000 1 10.0145 Y Y 9.51 30 Dibenziga(h)anthracene 0.0796 0.328 0.082 23.1 25.9 1 10.0145	Anthracene	0.0796	0.129	0.0639	0.0635	0.000	0.000	1	10.0-145	<u>J6</u>	<u>J6</u>	0.628	30
Benzo(a)nthracene 0.0796 0.289 0.0986 0.0908 0.000 0.0000 1 10.0439 16 16 16 11 11 13 18 18 18 19 19 19 19 19	Acenaphthene	0.0796	0.115	0.0644	0.0655	0.000	0.000	1	14.0-127	<u>J6</u>	<u>J6</u>	1.69	27
Benzo(a)pyrene 0.0796 0.258 0.101 0.0904 0.000 0.000 1 10.0-141 16 16 16 18.5 36	Acenaphthylene	0.0796	0.00913	0.0704	0.0721	77.0	79.5	1	21.0-124			2.39	25
Benzo(b)fluoranthene 0.0796 0.314 0.124 0.103 0.000 0.000 1 10.0-140 J6 J6 18.5 36 Benzo(g), i)perylene 0.0796 0.188 0.108 0.0955 0.000 0.000 1 10.0-140 J6 J6 12.3 33 Benzo(k)fluoranthene 0.0796 0.127 0.0800 0.0738 0.000 0.000 1 10.0-145 V V 9.51 30 Chrysene 0.0796 0.328 0.108 0.0982 0.000 0.000 1 10.0-145 V V 9.51 30 Dibenzal(A)hanthracene 0.0796 0.0390 0.0574 0.0595 23.1 25.9 1 10.0-132 V V 9.30 33 Fluoranthene 0.0796 0.0733 0.123 0.000 0.000 1 10.0-132 V V 9.30 33 Fluoranthene 0.0796 0.104 0.0776 0.0876 0.0	Benzo(a)anthracene	0.0796	0.289	0.0986	0.0908	0.000	0.000	1	10.0-139	<u>J6</u>	<u>J6</u>	8.24	30
Benzo(g,h,i)perylene 0.0796 0.188 0.108 0.0955 0.000 0.000 1 10.0-140 J6 J6 12.3 33 Benzo(k)fluoranthene 0.0796 0.127 0.0800 0.0738 0.000 0.000 1 10.0-137 J6 J6 8.06 31 Chrysene 0.0796 0.328 0.108 0.0982 0.000 0.000 1 10.0-145 V Y 9.51 30 Dibenz(a,h)anthracene 0.0796 0.0390 0.0574 0.0595 23.1 25.9 1 10.0-132 Y 9.51 3.59 31 Fluoranthene 0.0796 0.733 0.135 0.123 0.000 0.000 1 10.0-132 Y 9.30 33 Fluoranthene 0.0796 0.104 0.0706 0.0706 0.000 1 10.0-132 Y Y 9.30 33 Fluoranthene 0.0796 0.145 0.000 0.000 1 10.0-137 </td <td>Benzo(a)pyrene</td> <td>0.0796</td> <td>0.258</td> <td>0.101</td> <td>0.0904</td> <td>0.000</td> <td>0.000</td> <td>1</td> <td>10.0-141</td> <td><u>J6</u></td> <td><u>J6</u></td> <td>11.1</td> <td>31</td>	Benzo(a)pyrene	0.0796	0.258	0.101	0.0904	0.000	0.000	1	10.0-141	<u>J6</u>	<u>J6</u>	11.1	31
Benzo(k)fluoranthene 0.0796 0.127 0.0800 0.0738 0.000 0.000 1 10.0-137 J6 J6 8.06 31 Chrysene 0.0796 0.328 0.108 0.0982 0.000 0.000 1 10.0-145 Y Y 9.51 30 Dibenz(a,h)anthracene 0.0796 0.0390 0.0574 0.0595 23.1 25.9 1 10.0-132 Y Y 9.30 33 Fluorene 0.0796 0.104 0.0700 0.0768 0.000 0.000 1 11.0-130 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 0.000 1 11.0-130 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 18.3 1 10.0-137 J6 J6 13.2 3.2 2.7 Phenanthrene 0.0796 0.822 0.	Benzo(b)fluoranthene	0.0796	0.314	0.124	0.103	0.000	0.000	1	10.0-140	<u>J6</u>	<u>J6</u>	18.5	36
Chrysene 0.0796 0.328 0.108 0.0982 0.000 0.000 1 10.0455 V V 9.51 30 Dibenz(a,h)anthracene 0.0796 0.0390 0.0574 0.0595 23.1 25.9 1 10.0432 V V 9.51 30 Fluoranthene 0.0796 0.733 0.135 0.123 0.000 0.000 1 10.0453 V V 9.30 33 Fluorene 0.0796 0.104 0.0700 0.0768 0.000 0.000 1 11.0430 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 0.000 1 10.0437 J6 J6 13.2 32 Nphthalene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0444 V V 4 6.97 31 Pyrene 0.0796 0.624 0.118 0.108	Benzo(g,h,i)perylene	0.0796	0.188	0.108	0.0955	0.000	0.000	1	10.0-140	<u>J6</u>	<u>J6</u>	12.3	33
Dibenz(a,h)anthracene 0.0796 0.0390 0.0574 0.0595 23.1 25.9 1 10.0-132 3.59 3.59 31 Fluoranthene 0.0796 0.733 0.135 0.123 0.000 1 10.0-153 V V V 9.30 33 Fluorene 0.0796 0.104 0.0700 0.0768 0.000 0.000 1 11.0-130 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 1 10.0-137 J6 J6 13.2 32 Naphthalene 0.0796 0.0765 0.0733 0.0910 0.000 18.3 1 10.0-137 J6 J6 13.2 32 27 Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0-144 V V 4 6.97 31 Pyrene 0.0796 0.0731 0.0808 0.0921 9	Benzo(k)fluoranthene	0.0796	0.127	0.0800	0.0738	0.000	0.000	1	10.0-137	<u>J6</u>	<u>J6</u>	8.06	31
Dibenz(a,h)anthracene 0.0796 0.0390 0.0554 0.0595 23.1 25.9 1 10.0-132 3.59 3.59 31 Fluoranthene 0.0796 0.733 0.135 0.123 0.000 1 10.0-153 V V V 9.30 33 Fluorene 0.0796 0.104 0.0700 0.0768 0.000 0.000 1 11.0-130 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 1 10.0-137 J6 J6 13.2 32 Naphthalene 0.0796 0.0765 0.0733 0.0910 0.000 18.3 1 10.0-137 J6 J6 13.2 27 Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0-144 V V 4.92 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0886 0.0941 8.92<	Chrysene	0.0796	0.328	0.108	0.0982	0.000	0.000	1	10.0-145	$\underline{\vee}$	$\underline{\vee}$	9.51	30
Fluorene 0.0796 0.104 0.0700 0.0768 0.000 0.000 1 11.0-130 J6 J6 9.26 29 Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 0.000 1 10.0-137 J6 J6 13.2 32 Naphthalene 0.0796 0.0765 0.0733 0.0910 0.000 18.3 1 10.0-135 J6 21.5 27 Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0-144 V V 6.97 31 Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 V V 8.85 35 1-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 J6 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3	Dibenz(a,h)anthracene	0.0796	0.0390	0.0574	0.0595	23.1	25.9	1	10.0-132			3.59	31
Indeno(1,2,3-cd)pyrene 0.0796 0.195 0.100 0.0876 0.000 0.000 1 10.0-137 J6 J6 13.2 32 Naphthalene 0.0796 0.0765 0.0733 0.0910 0.000 18.3 1 10.0-135 J6 2 21.5 27 Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0-144 V V 6.97 31 Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 V V 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0808 0.0921 9.67 24.0 1 10.0-142 J6 1 13.1 28 2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 J6 1 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604	Fluoranthene	0.0796	0.733	0.135	0.123	0.000	0.000	1	10.0-153	$\underline{\vee}$	$\underline{\vee}$	9.30	33
Naphthalene 0.0796 0.0765 0.0733 0.0910 0.000 18.3 1 10.0-135 J6 21.5 27 Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 1 10.0-144 V V 6.97 31 Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 V V 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0808 0.0921 9.67 24.0 1 10.0-142 J6 13.1 28 2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 J6 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149 14.0-149	Fluorene	0.0796	0.104	0.0700	0.0768	0.000	0.000	1	11.0-130	<u>J6</u>	<u>J6</u>	9.26	29
Phenanthrene 0.0796 0.822 0.0950 0.0886 0.000 0.000 1 10.0-144 V V V 6.97 31 Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 V V V 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0808 0.0921 9.67 24.0 1 10.0-142 Je 1 13.1 28 2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 Je 1 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 1 14.0-149 1 <th< td=""><td>Indeno(1,2,3-cd)pyrene</td><td>0.0796</td><td>0.195</td><td>0.100</td><td>0.0876</td><td>0.000</td><td>0.000</td><td>1</td><td>10.0-137</td><td><u>J6</u></td><td><u>J6</u></td><td>13.2</td><td>32</td></th<>	Indeno(1,2,3-cd)pyrene	0.0796	0.195	0.100	0.0876	0.000	0.000	1	10.0-137	<u>J6</u>	<u>J6</u>	13.2	32
Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 V V V 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0808 0.0921 9.67 24.0 1 10.0-142 16 13.1 28 2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 16 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 14.0-149 3.20 24 (S) Nitrobenzene-d5 59.9 14.0-149 <td< td=""><td>Naphthalene</td><td>0.0796</td><td>0.0765</td><td>0.0733</td><td>0.0910</td><td>0.000</td><td>18.3</td><td>1</td><td>10.0-135</td><td><u>J6</u></td><td></td><td>21.5</td><td>27</td></td<>	Naphthalene	0.0796	0.0765	0.0733	0.0910	0.000	18.3	1	10.0-135	<u>J6</u>		21.5	27
Pyrene 0.0796 0.624 0.118 0.108 0.000 0.000 1 10.0-148 ✓ ✓ ✓ ✓ 8.85 35 1-Methylnaphthalene 0.0796 0.0731 0.0808 0.0921 9.67 24.0 1 10.0-142 16 13.1 28 2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 16 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 14.0-149 3.20 24 (S) Nitrobenzene-d5 56.1 59.9 14.0-149	Phenanthrene	0.0796	0.822	0.0950	0.0886	0.000	0.000	1	10.0-144	$\underline{\vee}$	$\underline{\vee}$	6.97	31
2-Methylnaphthalene 0.0796 0.0704 0.0775 0.0941 8.92 29.9 1 10.0-137 16 19.3 28 2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 3.20 24 (S) Nitrobenzene-d5 56.1 59.9 14.0-149	Pyrene	0.0796	0.624	0.118	0.108	0.000	0.000	1	10.0-148	$\underline{\vee}$	$\underline{\vee}$	8.85	35
2-Chloronaphthalene 0.0796 ND 0.0585 0.0604 73.5 76.3 1 29.0-120 3.20 24 (S) Nitrobenzene-d5 56.1 59.9 14.0-149	1-Methylnaphthalene	0.0796	0.0731	0.0808	0.0921	9.67	24.0	1	10.0-142	<u>J6</u>		13.1	28
(S) Nitrobenzene-d5 56.1 59.9 14.0-149	2-Methylnaphthalene	0.0796	0.0704	0.0775	0.0941	8.92	29.9	1	10.0-137	<u>J6</u>		19.3	28
	2-Chloronaphthalene	0.0796	ND	0.0585	0.0604	73.5	76.3	1	29.0-120			3.20	24
(S) 2-Fluorobiphenyl 74.9 78.1 34.0-125	(S) Nitrobenzene-d5					56.1	59.9		14.0-149				
	(S) 2-Fluorobiphenyl					74.9	78.1		34.0-125				
(S) p-Terphenyl-d14 84.3 88.9 23.0-120	(S) p-Terphenyl-d14					84.3	88.9		23.0-120				

PAGE: 9 of 13

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Deminions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	Mational	12065 1	shanon Rd	Mount	luliet	TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address			Billing Infor	rmation:			-		A	nalvsis /	Contai	ner / Pro	servativ	e		Chain of Custo	dy Page of
Martin S. Burck Assocl	Hood Rive	r, OR	Accounts	Pavable	1 10 8	Pres	18		80							0	
						Chk			7.1			WT				- Fac	e Analytical * Ownter for Teating & Innoversion
eport to:	1		Email To: msba@msbaenvironmental.com;jwhite@n								Syr	NoPres-WT				Phone: 615-758-585	d Mt Juliet, TN 97122 28 Ah: 800-767-5859 e yie this chain of custody
Project Description: City/State		City/State Collected: V	A BANK	ALL COL	Please Cir				55		Oml/					Pace Terms and Cor	ledgment and acceptance of the inditions found et: is.com/hubfs/pes-standard-
Phone: 541-387-4422	Client Project #		1	Lab Project #			-NoPres		8ozClr-NoPres	NoPres	MeOHI	40mlAmb-				SDG# L	G083
Collected by (print):	Site/Facility ID		P.O.#		North Shr		BozClr	NoPres		3ozClr-	IAmb/	8270ESIM 4				Acctnum: M	SAME AND ADDRESS OF THE PARTY.
Collected by (signature): York Owen for Jon W	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only)		Quote # Date Resul	# te Results Needed		As,Cd,Cr,Pb 6020 BozClr-	7199 ZozClr-NoPres	X NOSGT	PAHs 8270ESIM 802Clr-NoPres	8260D 40mlAmb/MeOH10ml/Syr	PAHS 8270				Prelogin: P8	339348	
Packed on Ice NY	Two DayThree DayComp/Grab	Section and Advantage of the Contract of the C	Depth	Date	Time	No. of Cntrs	s,Cd,Cr,	Cr6 7199	NWTPHDX	AHS 827	vocs 820	water PA	Hold			Shipped Via:	Sample # (lab only)
\$1-0.5	Gras	SS	0.5	4/28/21	10100	3	4	U	1	4	>	3		113			
511-1	1	SS	1		07:49	3				1						* -	-02
S12-0		SS	0		08:02	. 3		4	1	1	200	10.7				图 建分类	-03
S13-0		SS	0		10:06	3			1			12		E . S.			04
\$14-1		SS		1. 1	10:30	3			1	1	133					13.4	_05
515-0		SS	0		10137				1	1			B99				-64
516-1	51	SWS!	1		11:49	10 75 22			1				1				-67
\$17-0		,GW 55	0	1	12:64	3	TO SE		1	-1							-08
EB-2		GWST			08138	1	- 25		1	1			2.0			7.0	- 09
Trip Blank	Remarks:	OT	-		1—								1		San	ple Receipt	Checklist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay										PH	v	TemOth	12011		COC Seal COC Signe Bottles a Correct b	Present/Intag d/Accurate: rrive intact ottles used:	NP TO NN
OW - Drinking Water OT - Other Equipment Blank	Samples returned UPSFedEx	l via: Courier		E REAL PROPERTY.	king#										VOA Zero	If Applic Headspace: ion Correct/	oble / N
Relinquished by : (Signature)		ate: 4/29/21	Tim	6: Rece	ived by: (Signa	iture)				Ho	0	eived: (HCL/M			n <0.5 mR/hr	
Relinquished by : (Signature)		ate:	Tim		lived by: (Sign:	ature)				Temp/ 1.4+	1=1.		ties Recei	ved:	If preservat	on required by	Login: Date/Time
Relinquished by : (Signature)	D	ate.	Tim	Rece	and for ab by	/: (Signa	turey	1_		Date:	30/2	Tin	ne: 09	15	Hold:		NCF / OK

L1346427 MSBAHROR re-log short hold

R1/R2

Please re-log L1346427-04 (S13-0) for CDG,PBG,SV8270PAHSIMD,TS. Transfer TS. RX due o5/18. SV8270PAHSIMD out of hold tomorrow. 1.5x multiplier for short hold.

Time estimate: oh

Time spent: oh

Members

Brian Ford

PAGGET MESBAIROF TO-TOR Short Problem

Please re-ling Ligatora va (Sig-o) for CDG PBCN

STRETO PATISERED out - hold tomorrow, Law Pieller and

Time eliterative of Time sperie

Member

S Britan Forst

THE PARTY NAMED OF STREET

Towns to bred to the last of the City and the

Trace estimates of

THE STATE OF

Torrhors

ASSER REINST MIT

1 of 1

7) Sample Date 4/29/21 (#L1350377)

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1350377

Samples Received:

05/01/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page Tc: Table of Contents

³Ss
4

⁴Cn

Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
S18-0 L1350377-01	7
S19-0 L1350377-02	8
S20-9 L1350377-03	9
S20-9 DUP L1350377-04	10
S21-9 L1350377-05	11
S22-9 L1350377-06	12
S23-1 L1350377-07	13
S24-1 L1350377-08	14
S25-1.5 L1350377-09	15
S26-2.5 L1350377-10	16
S26-2.5 DUP L1350377-11	17
S27-2.5 L1350377-12	18
S28-8 L1350377-13	19
EB-3 L1350377-14	20
TRIP BLANK L1350377-15	21
Qc: Quality Control Summary	23
Total Solids by Method 2540 G-2011	23
Wet Chemistry by Method 7199	26
Metals (ICPMS) by Method 6020B	27
Volatile Organic Compounds (GC/MS) by Method 8260D	29
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	33
Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID	35
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

S18-0 L1350377-01 Solid			Collected by Jon White	Collected date/time 04/29/21 09:27	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668084	1	05/11/21 10:31	05/11/21 10:40	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1668294	5	05/11/21 11:21	05/12/21 10:06	JPD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID	WG1668844	10	05/12/21 07:36	05/12/21 20:24	TJD	Mt. Juliet, TN
S19-0 L1350377-02 Solid			Collected by Jon White	Collected date/time 04/29/2110:03	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668084	1	05/11/21 10:31	05/11/21 10:40	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1668294	20	05/11/21 11:21	05/12/21 10:39	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1668294	5	05/11/21 11:21	05/12/21 10:18	JPD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID	WG1668844	10	05/12/21 07:36	05/12/21 22:11	TJD	Mt. Juliet, TN
S20-9 L1350377-03 Solid			Collected by Jon White	Collected date/time 04/29/21 12:13	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	1	05/11/21 20:26	05/12/21 10:30	CAG	Mt. Juliet, TN
S20-9 DUP L1350377-04 Solid			Collected by Jon White	Collected date/time 04/29/2112:13	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	1	05/11/21 20:26	05/12/21 10:43	CAG	Mt. Juliet, TN
S21-9 L1350377-05 Solid			Collected by Jon White	Collected date/time 04/29/2112:25	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	1	05/11/21 20:26	05/12/21 11:23	CAG	Mt. Juliet, TN
S22-9 L1350377-06 Solid			Collected by Jon White	Collected date/time 04/29/2112:33	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	1	05/11/21 20:26	05/12/21 11:36	CAG	Mt. Juliet, TN
S23-1 L1350377-07 Solid			Collected by Jon White	Collected date/time 04/29/21 15:21	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN

S24-1 L1350377-08 Solid			Collected by Jon White	Collected date/time 04/29/2115:35	Received date 05/01/21 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Bate	2 matron	date/time	date/time	7.1101/30	200000
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1668294	5	05/11/21 11:21	05/12/21 10:25	JPD	Mt. Juliet, TN
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						,
			Collected by	Collected date/time	Received date	/time
S25-1.5 L1350377-09 Solid			Jon White	04/29/2116:22	05/01/21 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	25	05/11/21 20:26	05/12/21 12:15	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668363	5	05/11/21 20:26	05/12/21 11:49	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	a/tima
000 0 5 14050077 40 0 1:1			Jon White	04/29/21 17:42	05/01/21 10:00	
S26-2.5 L1350377-10 Solid			Joh White	07/23/2117.72	03/01/21 10.00	,
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Net Chemistry by Method 7199	WG1668261	1	05/11/21 12:38	05/12/21 17:59	MSP	Mt. Juliet, TN
			Callantad by		Described date	/h:
			Collected by	Collected date/time		
S26-2.5 DUP L1350377-11 Solid			Jon White	04/29/21 17:42	05/01/21 10:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Vet Chemistry by Method 7199	WG1668261	1	05/11/21 12:38	05/12/21 18:04	MSP	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	/timo
007.0 5.1405.0077.40.00.17.1			Jon White	04/29/21 17:49	05/01/21 10:00	
S27-2.5 L1350377-12 Solid			Joh White	04/23/2117.43	03/01/21 10.00	,
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1668091	1	05/11/21 10:18	05/11/21 10:25	KDW	Mt. Juliet, TN
Vet Chemistry by Method 7199	WG1668261	1	05/11/21 12:38	05/12/21 18:09	MSP	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	
S28-8 L1350377-13 Solid			Jon White	04/29/21 18:00	05/01/21 10:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1668220	1	05/11/21 10:08	05/11/21 10:16	CMK	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID	WG1668844	1	05/12/21 07:36	05/12/21 17:43	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
EB-3 L1350377-14 GW			Jon White	04/29/21 11:42	05/01/21 10:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	- 12-	
Metals (ICPMS) by Method 6020B	WG1668265	1	05/11/21 12:49	05/11/21 18:52	LD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668988	1	05/12/21 14:14	05/13/21 10:25	DMG	Mt. Juliet, TN
Semi volume organic compounds (OG) by inclined NW 11 HDA-NO 301	4401000300	'	JJ/12/21 17.14	UJ/13/21 1U.ZJ	DIVIO	ivic. Juliet, IIV

Martin S. Burck Assoc.-Hood River, OR

TRIP BLANK L1350377-15 GW			Jon White	04/29/21 00:00	05/01/21 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1669061	1	05/12/21 15:53	05/12/21 15:53	ADM	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford

Buar Ford

Project Manager

1350377

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 09:27

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	83.9		1	05/11/2021 10:40	WG1668084		

²Tc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.73		1.19	5	05/12/2021 10:06	WG1668294
Cadmium	ND		1.19	5	05/12/2021 10:06	WG1668294
Lead	82.7		2.38	5	05/12/2021 10:06	WG1668294

Cn

Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Gasoline (C7-C12)	ND		47.7	10	05/12/2021 20:24	WG1668844
Mineral Spirits	ND		47.7	10	05/12/2021 20:24	WG1668844
Kerosene	ND		47.7	10	05/12/2021 20:24	WG1668844
Diesel (C12-C24)	70.6		47.7	10	05/12/2021 20:24	WG1668844
#6 Fuel Oil	ND		47.7	10	05/12/2021 20:24	WG1668844
Hydraulic Fluid	ND		47.7	10	05/12/2021 20:24	WG1668844
Motor Oil (C24-C30)	423		119	10	05/12/2021 20:24	WG1668844
(S) o-Terphenyl	60.9		18.0-148		05/12/2021 20:24	WG1668844

Sample Narrative:

L1350377-01 WG1668844: Dilution due to matrix impact during extract concentration procedure

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 10:03

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	95.1		1	05/11/2021 10:40	WG1668084	

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	34.7		1.05	5	05/12/2021 10:18	WG1668294
Cadmium	4.58		1.05	5	05/12/2021 10:18	WG1668294
Lead	366		8.41	20	05/12/2021 10:39	WG1668294

Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Gasoline (C7-C12)	ND		42.1	10	05/12/2021 22:11	WG1668844
Mineral Spirits	ND		42.1	10	05/12/2021 22:11	WG1668844
Kerosene	ND		42.1	10	05/12/2021 22:11	WG1668844
Diesel (C12-C24)	ND		42.1	10	05/12/2021 22:11	WG1668844
#6 Fuel Oil	ND		42.1	10	05/12/2021 22:11	WG1668844
Hydraulic Fluid	ND		42.1	10	05/12/2021 22:11	WG1668844
Motor Oil (C24-C30)	ND		105	10	05/12/2021 22:11	WG1668844
(S) o-Terphenyl	71.7		18.0-148		05/12/2021 22:11	WG1668844

GI

Sample Narrative:

 $L1350377\text{-}02\ WG1668844: Dilution\ due\ to\ matrix\ impact\ during\ extract\ concentration\ procedure$

S20-9

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 03

Dilution

1

Analysis

date / time

05/12/2021 10:30

05/12/2021 10:30

05/12/2021 10:30

Batch

WG1668363

WG1668363

WG1668363

Collected date/time: 04/29/21 12:13

Total Solids by Method 2540 G-2011

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

RDL (dry)

mg/kg

4.89

12.2

18.0-148

Result (dry)

mg/kg

ND

ND

36.7

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	81.9		1	05/11/2021 10:25	WG1668091	

Ss

S20-9 DUP

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 12:13

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	83.3		1	05/11/2021 10:25	WG1668091	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.80	1	05/12/2021 10:43	WG1668363
Residual Range Organics (RRO)	ND		12.0	1	05/12/2021 10:43	WG1668363
(S) o-Terphenyl	40.2		18.0-148		05/12/2021 10:43	WG1668363

Ss

S21-9

SAMPLE RESULTS - 05

Collected date/time: 04/29/21 12:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	83.4		1	05/11/2021 10:25	WG1668091	

Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.79	1	05/12/2021 11:23	WG1668363
Residual Range Organics (RRO)	ND		12.0	1	05/12/2021 11:23	WG1668363
(S) o-Terphenyl	45.0		18.0-148		05/12/2021 11:23	WG1668363

Martin S. Burck Assoc.-Hood River, OR

S22-9

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 12:33

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	81.4		1	05/11/2021 10:25	WG1668091	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.91	1	05/12/2021 11:36	WG1668363
Residual Range Organics (RRO)	ND		12.3	1	05/12/2021 11:36	WG1668363
(S) o-Terphenyl	33.9		18.0-148		05/12/2021 11:36	WG1668363

Ss

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 15:21

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	89.6		1	05/11/2021 10:25	WG1668091	

Тс

Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.24		1.12	5	05/12/2021 10:21	WG1668294
Chromium	31.5		5.58	5	05/12/2021 10:21	WG1668294

Martin S. Burck Assoc.-Hood River, OR

S24-1

SAMPLE RESULTS - 08

L135

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 15:35

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.1		1	05/11/2021 10:25	WG1668091	

²Tc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	8.75		1.10	5	05/12/2021 10:25	WG1668294
Chromium	22.6		5.49	5	05/12/2021 10:25	WG1668294

S25-1.5

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 16:22

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	93.7		1	05/11/2021 10:25	WG1668091	

Тс

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	667		21.3	5	05/12/2021 11:49	WG1668363
Residual Range Organics (RRO)	3350		267	25	05/12/2021 12:15	WG1668363
(S) o-Terphenyl	52.2		18.0-148		05/12/2021 11:49	WG1668363
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/12/2021 12:15	WG1668363

Ss

S26-2.5

SAMPLE RESULTS - 10

Collected date/time: 04/29/21 17:42

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	73.5		1	05/11/2021 10:25	WG1668091	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexavalent Chromium	ND		136	1	05/12/2021 17:59	WG1668261	

S26-2.5 DUP

Analyte

Hexavalent Chromium

SAMPLE RESULTS - 11

Dilution

Analysis

date / time

05/12/2021 18:04

Batch

WG1668261

Total Solids by Method 2540 G-2011

Result (dry)

mg/kg

ND

Qualifier

RDL (dry)

mg/kg

1.28

Collected date/time: 04/29/21 17:42

Wet Chemistry by Method 7199

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	78.3		1	05/11/2021 10:25	WG1668091		

Ss

S27-2.5

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 17:49

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	85.3		1	05/11/2021 10:25	WG1668091	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexavalent Chromium	ND		1.17	1	05/12/2021 18:09	WG1668261	

Total Solids by Method 2540 G-2011

Collected date/time: 04/29/21 18:00

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	82.1		1	05/11/2021 10:16	WG1668220	

Ss

Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline (C7-C12)	ND		4.87	1	05/12/2021 17:43	WG1668844
Mineral Spirits	ND		4.87	1	05/12/2021 17:43	WG1668844
Kerosene	ND		4.87	1	05/12/2021 17:43	WG1668844
Diesel (C12-C24)	ND		4.87	1	05/12/2021 17:43	WG1668844
#6 Fuel Oil	ND		4.87	1	05/12/2021 17:43	WG1668844
Hydraulic Fluid	ND		4.87	1	05/12/2021 17:43	WG1668844
Motor Oil (C24-C30)	ND		12.2	1	05/12/2021 17:43	WG1668844
(S) o-Terphenyl	33.4		18.0-148		05/12/2021 17:43	WG1668844

Collected date/time: 04/29/21 11:42

Metals (ICPMS) by Method 6020B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		П
Analyte	ug/l		ug/l		date / time			
Arsenic	ND		2.00	1	05/11/2021 18:52	WG1668265		
Cadmium	ND		1.00	1	05/11/2021 18:52	WG1668265		
Chromium	ND		2.00	1	05/11/2021 18:52	WG1668265		
Lead	ND		2.00	1	05/11/2021 18:52	WG1668265		

Cn

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		100	1	05/13/2021 10:25	WG1668988
Residual Range Organics (RRO)	ND		250	1	05/13/2021 10:25	WG1668988
(S) o-Terphenyl	95.8		31.0-160		05/13/2021 10:25	WG1668988

Collected date/time: 04/29/21 00:00 L1

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>		
Analyte	ug/l		ug/l		date / time			
Acetone	ND		10.0	1	05/12/2021 15:53	WG1669061		
Acrylonitrile	ND		0.500	1	05/12/2021 15:53	WG1669061		
Acrolein	ND		50.0	1	05/12/2021 15:53	WG1669061		
Benzene	ND		0.0400	1	05/12/2021 15:53	WG1669061		
Bromobenzene	ND		0.500	1	05/12/2021 15:53	WG1669061		
Bromodichloromethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
Bromoform	ND		1.00	1	05/12/2021 15:53	WG1669061		
Bromomethane	ND		0.500	1	05/12/2021 15:53	WG1669061		
n-Butylbenzene	ND		0.500	1	05/12/2021 15:53	WG1669061		
sec-Butylbenzene	ND		0.500	1	05/12/2021 15:53	WG1669061		
tert-Butylbenzene	ND		0.200	1	05/12/2021 15:53	WG1669061		
Carbon disulfide	ND		0.500	1	05/12/2021 15:53	WG1669061		
Carbon tetrachloride	ND		0.200	1	05/12/2021 15:53	WG1669061		
Chlorobenzene	ND		0.100	1	05/12/2021 15:53	WG1669061		
Chlorodibromomethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
Chloroethane	ND	<u>C3</u>	0.200	1	05/12/2021 15:53	WG1669061		
Chloroform	ND		0.100	1	05/12/2021 15:53	WG1669061		
Chloromethane	ND		0.500	1	05/12/2021 15:53	WG1669061		
2-Chlorotoluene	ND		0.100	1	05/12/2021 15:53	WG1669061		
4-Chlorotoluene	ND		0.200	1	05/12/2021 15:53	WG1669061		
1,2-Dibromo-3-Chloropropane	ND		1.00	1	05/12/2021 15:53	WG1669061		
1,2-Dibromoethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
Dibromomethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
	ND		0.200	1	05/12/2021 15:53			
1,2-Dichlorobenzene						WG1669061		
1,3-Dichlorobenzene	ND		0.200	1	05/12/2021 15:53	WG1669061		
1,4-Dichlorobenzene	ND		0.200	1	05/12/2021 15:53	WG1669061		
Dichlorodifluoromethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,1-Dichloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,2-Dichloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,1-Dichloroethene	ND		0.100	1	05/12/2021 15:53	WG1669061		
cis-1,2-Dichloroethene	ND		0.100	1	05/12/2021 15:53	WG1669061		
trans-1,2-Dichloroethene	ND		0.200	1	05/12/2021 15:53	WG1669061		
1,2-Dichloropropane	ND		0.200	1	05/12/2021 15:53	WG1669061		
1,1-Dichloropropene	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,3-Dichloropropane	ND		0.200	1	05/12/2021 15:53	WG1669061		
cis-1,3-Dichloropropene	ND		0.100	1	05/12/2021 15:53	WG1669061		
trans-1,3-Dichloropropene	ND		0.200	1	05/12/2021 15:53	WG1669061		
2,2-Dichloropropane	ND		0.100	1	05/12/2021 15:53	WG1669061		
Di-isopropyl ether	ND		0.0400	1	05/12/2021 15:53	WG1669061		
Ethylbenzene	ND		0.100	1	05/12/2021 15:53	WG1669061		
Hexachloro-1,3-butadiene	ND		1.00	1	05/12/2021 15:53	WG1669061		
2-Hexanone	ND		1.00	1	05/12/2021 15:53	WG1669061		
Isopropylbenzene	ND		0.100	1	05/12/2021 15:53	WG1669061		
p-Isopropyltoluene	ND		0.200	1	05/12/2021 15:53	WG1669061		
2-Butanone (MEK)	ND		1.00	1	05/12/2021 15:53	WG1669061		
Methylene Chloride	ND		1.00	1	05/12/2021 15:53	WG1669061		
4-Methyl-2-pentanone (MIBK)	ND		1.00	1	05/12/2021 15:53	WG1669061		
Methyl tert-butyl ether	ND		0.0400	1	05/12/2021 15:53	WG1669061		
Naphthalene	ND		0.500	1	05/12/2021 15:53	WG1669061		
n-Propylbenzene	ND		0.200	1	05/12/2021 15:53	WG1669061		
Styrene	ND		0.500	1	05/12/2021 15:53	WG1669061		
1,1,1,2-Tetrachloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,1,2,2-Tetrachloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
1,1,2-Trichlorotrifluoroethane	ND		0.100	1	05/12/2021 15:53	WG1669061		
Tetrachloroethene	ND		0.100	1	05/12/2021 15:53	WG1669061		
						WG1669061		

TRIP BLANK

SAMPLE RESULTS - 15

Collected date/time: 04/29/21 00:00

1350377

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
1,2,3-Trichlorobenzene	ND		0.500	1	05/12/2021 15:53	WG1669061
1,2,4-Trichlorobenzene	ND		0.500	1	05/12/2021 15:53	WG1669061
1,1,1-Trichloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061
1,1,2-Trichloroethane	ND		0.100	1	05/12/2021 15:53	WG1669061
Trichloroethene	ND		0.0400	1	05/12/2021 15:53	WG1669061
Trichlorofluoromethane	ND		0.100	1	05/12/2021 15:53	WG1669061
1,2,3-Trichloropropane	ND		0.500	1	05/12/2021 15:53	WG1669061
1,2,4-Trimethylbenzene	ND		0.200	1	05/12/2021 15:53	WG1669061
1,2,3-Trimethylbenzene	ND		0.200	1	05/12/2021 15:53	WG1669061
1,3,5-Trimethylbenzene	ND		0.200	1	05/12/2021 15:53	WG1669061
Vinyl chloride	ND		0.100	1	05/12/2021 15:53	WG1669061
Xylenes, Total	ND		0.260	1	05/12/2021 15:53	WG1669061
(S) Toluene-d8	103		75.0-131		05/12/2021 15:53	WG1669061
(S) 4-Bromofluorobenzene	103		67.0-138		05/12/2021 15:53	WG1669061
(S) 1,2-Dichloroethane-d4	107		70.0-130		05/12/2021 15:53	WG1669061

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350377-01,02

Method Blank (MB)

(MB) R3653262-1 05/	5/11/21 10:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1350276-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1350276-01	05/11/21 10:40 •	(DLIP)	R3653262-3	05/11/21 10:40

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	86.3	85.5	1	0.872		10

¹Cn

Laboratory Control Sample (LCS)

	(LCS)	R3653262-2	05/11/21 10:40
--	-------	------------	----------------

(LCG) 1(3033202-2 03/11/2	Spike Amount LC	CS Result	LCS Rec.	Rec. Limits
Analyte	% %	ó	%	%
otal Solids	50.0 50	0.0	100	85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350377-03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3653259-1 0	5/11/21 10:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

²Tc

Ss

L1350377-03 Original Sample (OS) • Duplicate (DUP)

	001	14000077 00	OF /41/04 40.0F		DOCEDOEO O	OF /41/04 40.0F
- (()	1113503//-03	05/11/21 10:25 • (או זו וו	1 R 305 3 259-3	()5/11/21 10:25
	-	1 -1000077 00	00/11/21 10.20	(00,	110000200	00/11/21 10.20

	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	81.9	82.1	1	0.279		10	

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3653259-2 05/11/21 10:25

(ECG) NG003233 2 03/11/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350377-13

							_
- N/	1eth	റർ	RI	anl	k (M	R

(MB) R3653053-1 0	5/11/21 10:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1347389-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1347389-01 05/11/21 10:16 • (DUP) R3653053-3 05/11/21 10:16

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	81.3	80.6	1	0.842		10

Laboratory Control Sample (LCS)

(LCS) R3653053-2 05/11/21 10:16

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1350377-10,11,12

Wet Chemistry by Method 7199

Method Blank (MB)	N	1ethod	Blank	(MB)
-------------------	---	---------------	-------	------

(MB) R3653933-1 05/12/21 15:49

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Hexavalent Chromium	U		0.255	1.00

L1349801-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1349801-03 05/12/21 16:36 • (DUP) R3653933-3 05/12/21 16:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	200	P1	20

L1350161-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1350161-03 05/12/21 17:38 • (DLIP) R3653933-8 05/12/21 17:54

(03) [1330101-03 03/12/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	200	<u>P1</u>	20

Laboratory Control Sample (LCS)

(LCS) R3653933-2 05/12/21 15:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Hexavalent Chromium	10.0	10.8	108	80.0-120	

L1350106-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350106-05 05/12/21 17:07 • (MS) R3653933-4 05/12/21 17:12 • (MSD) R3653933-5 05/12/21 17:17

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Hexavalent Chromium	20.0	ND	16.5	19.5	82.3	97.7	1	75.0-125			17.1	20	

L1350106-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1350106-05 05/12/21 17:07 • (MS) R3653933-6 05/12/21 17:22

(,		Original Result		MS Rec.	Dilution	Rec. Limits
Analyte	mg/kg	mg/kg	mg/kg	%		%
Hexavalent Chromium	716	ND	583	81.4	50	75.0-125

QUALITY CONTROL SUMMARY

L1350377-14

Method Blank (MB)

(MB) R3653133-1 05/11/21 17:20

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.180	2.00
Cadmium	U		0.150	1.00
Chromium	U		1.24	2.00
Lead	U		0.849	2.00

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3653133-2 05/11/21 17:24

(LCS) 113033133 2 03/11/2	-117.27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	50.0	48.1	96.3	80.0-120	
Cadmium	50.0	53.5	107	80.0-120	
Chromium	50.0	51.4	103	80.0-120	
Lead	50.0	51.0	102	80.0-120	

L1345902-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1345902-01 05/11/21 17:27 • (MS) R3653133-4 05/11/21 17:34 • (MSD) R3653133-5 05/11/21 17:37

(00) 210 10002 01 00/11/2	1117.27 (1110) 110	3000100 1 007	172117.01 (1	1100) 110000100	0 00/11/211/.	07						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	50.0	ND	50.0	49.4	99.5	98.3	1	75.0-125			1.21	20
Cadmium	50.0	ND	54.2	54.9	108	110	1	75.0-125			1.20	20
Chromium	50.0	ND	52.1	51.9	101	101	1	75.0-125			0.320	20
Lead	50.0	ND	50.7	51.5	101	103	1	75.0-125			1.53	20

QUALITY CONTROL SUMMARY

L1350377-01,02,07,08

Method Blank (MB)

(MB) R3653390-1 05/12/21 08:55

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00
Chromium	U		0.297	5.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3653390-2 05/12/21 08:58

(200) ((0000000 2 00) (2	_, 00.00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	98.7	98.7	80.0-120	
Cadmium	100	98.0	98.0	80.0-120	
Chromium	100	99.8	99.8	80.0-120	
Lead	100	92.2	92.2	80.0-120	

L1348896-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348896-11 05/12/21 09:01 • (MS) R3653390-5 05/12/21 09:11 • (MSD) R3653390-6 05/12/21 09:15

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	100	8.84	104	109	94.7	100	5	75.0-125			5.30	20
Cadmium	100	ND	113	118	112	118	5	75.0-125			4.76	20
Chromium	100	20.9	125	128	104	107	5	75.0-125			2.30	20
Lead	100	6.74	112	114	106	107	5	75 0-125			1.63	20

PAGE:

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1350377-15

Method Blank (MB)

(MB) R3653587-3 05/12/2	115:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	2.08		0.548	10.0	
Acrolein	U		0.758	50.0	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	
tert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
Chloromethane	U		0.0556	0.500	
2-Chlorotoluene	U		0.0368	0.100	
4-Chlorotoluene	U		0.0452	0.200	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0400	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.100	
1,1-Dichloroethane	U		0.0230	0.100	
l,2-Dichloroethane	U		0.0190	0.100	
I,1-Dichloroethene	U		0.0200	0.100	
cis-1,2-Dichloroethene	U		0.0276	0.100	
trans-1,2-Dichloroethene	U		0.0572	0.200	
1,2-Dichloropropane	U		0.0508	0.200	
1,1-Dichloropropene	U		0.0280	0.100	
1,3-Dichloropropane	U		0.0700	0.200	
cis-1,3-Dichloropropene	U		0.0271	0.100	
trans-1,3-Dichloropropene	U		0.0612	0.200	
2,2-Dichloropropane	U		0.0317	0.100	
Di-isopropyl ether	U		0.0140	0.0400	
Ethylbenzene	U		0.0212	0.100	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1350377-15

Method Blank (MB)

(MB) R3653587-3 05/12/2	21 15:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Hexachloro-1,3-butadiene	U		0.508	1.00	
2-Hexanone	U		0.400	1.00	
sopropylbenzene	U		0.0345	0.100	
o-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	U		0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
,1,1,2-Tetrachloroethane	U		0.0200	0.100	
,1,2,2-Tetrachloroethane	U		0.0156	0.100	
etrachloroethene	U		0.0280	0.100	
oluene	U		0.0500	0.200	
,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
,2,3-Trichlorobenzene	U		0.0250	0.500	
,2,4-Trichlorobenzene	U		0.193	0.500	
,1,1-Trichloroethane	U		0.0110	0.100	
,1,2-Trichloroethane	U		0.0353	0.100	
richloroethene	U		0.0160	0.0400	
richlorofluoromethane	U		0.0200	0.100	
,2,3-Trichloropropane	U		0.204	0.500	
2,3-Trimethylbenzene	U		0.0460	0.200	
,2,4-Trimethylbenzene	U		0.0464	0.200	
,3,5-Trimethylbenzene	U		0.0432	0.200	
inyl chloride	U		0.0273	0.100	
Kylenes, Total	U		0.191	0.260	
(S) Toluene-d8	105			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	
(S) 1,2-Dichloroethane-d4	109			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3653587-1 05/12/	S) R3653587-1 05/12/21 11:31 • (LCSD) R3653587-2 05/12/21 11:50													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits				
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%				
Acetone	25.0	25.5	25.1	102	100	10.0-160			1.58	31				
Acrolein	25.0	31.4	31.7	126	127	10.0-160			0.951	31				

Volatile Organic Compounds (GC/MS) by Method 8260D

L1350377-15

(LCS) R3653587-1 05/12/2	1 11:31 • (LCSD)	R3653587-2	05/12/21 11:50								
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acrylonitrile	25.0	24.8	25.0	99.2	100	45.0-153			0.803	22	
Benzene	5.00	4.90	4.77	98.0	95.4	70.0-123			2.69	20	
Bromobenzene	5.00	5.00	4.99	100	99.8	73.0-121			0.200	20	
Bromodichloromethane	5.00	4.55	4.55	91.0	91.0	73.0-121			0.000	20	
Bromoform	5.00	5.34	5.20	107	104	64.0-132			2.66	20	
Bromomethane	5.00	4.39	4.36	87.8	87.2	56.0-147			0.686	20	
n-Butylbenzene	5.00	4.22	4.37	84.4	87.4	68.0-135			3.49	20	
sec-Butylbenzene	5.00	4.39	4.45	87.8	89.0	74.0-130			1.36	20	
tert-Butylbenzene	5.00	4.39	4.51	87.8	90.2	75.0-127			2.70	20	
Carbon disulfide	5.00	4.54	4.56	90.8	91.2	56.0-133			0.440	20	
Carbon tetrachloride	5.00	5.26	5.08	105	102	66.0-128			3.48	20	
Chlorobenzene	5.00	4.79	4.85	95.8	97.0	76.0-128			1.24	20	
Chlorodibromomethane	5.00	5.34	5.12	107	102	74.0-127			4.21	20	
Chloroethane	5.00	3.68	3.90	73.6	78.0	61.0-134			5.80	20	
Chloroform	5.00	4.66	4.53	93.2	90.6	72.0-123			2.83	20	
Chloromethane	5.00	4.43	4.78	88.6	95.6	51.0-138			7.60	20	
2-Chlorotoluene	5.00	4.78	4.74	95.6	94.8	75.0-124			0.840	20	
4-Chlorotoluene	5.00	4.29	4.47	85.8	89.4	75.0-124			4.11	20	
1,2-Dibromo-3-Chloropropane	5.00	4.45	4.54	89.0	90.8	59.0-130			2.00	20	
1,2-Dibromoethane	5.00	5.01	5.00	100	100	74.0-128			0.200	20	
Dibromomethane	5.00	5.16	5.16	103	103	75.0-122			0.000	20	
1,2-Dichlorobenzene	5.00	4.82	4.93	96.4	98.6	76.0-124			2.26	20	
1,3-Dichlorobenzene	5.00	4.73	4.82	94.6	96.4	76.0-125			1.88	20	
1,4-Dichlorobenzene	5.00	4.74	4.67	94.8	93.4	77.0-121			1.49	20	
Dichlorodifluoromethane	5.00	5.10	5.20	102	104	43.0-156			1.94	20	
1,1-Dichloroethane	5.00	4.78	4.63	95.6	92.6	70.0-127			3.19	20	
1,2-Dichloroethane	5.00	4.62	4.61	92.4	92.2	65.0-131			0.217	20	
1,1-Dichloroethene	5.00	4.74	4.72	94.8	94.4	65.0-131			0.423	20	
cis-1,2-Dichloroethene	5.00	4.96	4.76	99.2	95.2	73.0-125			4.12	20	
trans-1,2-Dichloroethene	5.00	4.79	4.74	95.8	94.8	71.0-125			1.05	20	
1,2-Dichloropropane	5.00	4.92	5.01	98.4	100	74.0-125			1.81	20	
1,1-Dichloropropene	5.00	4.61	4.52	92.2	90.4	73.0-125			1.97	20	
l,3-Dichloropropane	5.00	4.91	4.90	98.2	98.0	80.0-125			0.204	20	
cis-1,3-Dichloropropene	5.00	4.80	4.67	96.0	93.4	76.0-127			2.75	20	
rans-1,3-Dichloropropene	5.00	4.89	4.80	97.8	96.0	73.0-127			1.86	20	
2,2-Dichloropropane	5.00	5.00	5.16	100	103	59.0-135			3.15	20	
Di-isopropyl ether	5.00	5.10	4.82	102	96.4	60.0-136			5.65	20	
Ethylbenzene	5.00	5.03	5.02	101	100	74.0-126			0.199	20	
Hexachloro-1,3-butadiene	5.00	4.90	5.36	98.0	107	57.0-150			8.97	20	
2-Hexanone	25.0	24.8	24.7	99.2	98.8	54.0-147			0.404	20	

1,3,5-Trimethylbenzene

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

5.00

5.00

15.0

4.46

4.17

14.5

4.44

4.25

14.6

89.2

83.4

96.7

102

102

98.9

88.88

85.0

97.3

101

103

99.5

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3653587-1 05/12/21 11:31 • (LCSD) R3653587-2 05/12/21 11:50 LCSD Rec. **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ug/l ug/l ug/l % % % % % Isopropylbenzene 5.00 4.80 4.73 96.0 94.6 72.0-127 1.47 20 20 5.00 4.43 4.49 88.6 89.8 72.0-133 1.35 p-Isopropyltoluene 2-Butanone (MEK) 25.0 24.6 24.0 98.4 96.0 30.0-160 2.47 24 5.00 4.72 4.78 94.4 95.6 68.0-123 1.26 20 Methylene Chloride 4-Methyl-2-pentanone (MIBK) 25.0 25.5 102 103 56.0-143 1.17 20 25.8 5.00 5.35 4.91 107 98.2 66.0-132 8.58 20 Methyl tert-butyl ether Naphthalene 5.00 4.22 4.33 84.4 59.0-130 2.57 20 86.6 n-Propylbenzene 5.00 4.22 4.24 84.4 84.8 74.0-126 0.473 20 5.00 4.75 4.78 95.0 95.6 72.0-127 0.630 20 Styrene 20 1,1,1,2-Tetrachloroethane 5.00 5.29 5.29 106 106 74.0-129 0.000 20 1,1,2,2-Tetrachloroethane 5.00 4.43 4.48 88.6 89.6 68.0-128 1.12 104 0.775 20 Tetrachloroethene 5.00 5.18 5.14 103 70.0-136 Toluene 5.00 4.70 4.83 94.0 96.6 75.0-121 2.73 20 104 61.0-139 5.42 20 1,1,2-Trichlorotrifluoroethane 5.00 5.21 5.50 110 5.00 4.50 84.2 90.0 59.0-139 6.66 20 1,2,3-Trichlorobenzene 4.21 1,2,4-Trichlorobenzene 5.00 4.85 5.02 97.0 100 62.0-137 3.44 20 5.00 4.81 96.2 93.4 69.0-126 2.95 20 1,1,1-Trichloroethane 4.67 1,1,2-Trichloroethane 5.00 4.92 4.94 98.4 98.8 78.0-123 0.406 20 101 76.0-126 0.595 20 Trichloroethene 5.00 5.06 5.03 101 Trichlorofluoromethane 5.00 4.66 4.81 93.2 96.2 61.0-142 3.17 20 95.0 20 1,2,3-Trichloropropane 5.00 4.75 4.96 99.2 67.0-129 4.33 1,2,3-Trimethylbenzene 5.00 4.38 4.35 87.6 87.0 74.0-124 0.687 20 1,2,4-Trimethylbenzene 5.00 4.49 4.43 89.8 88.6 70.0-126 1.35 20

73.0-127

63.0-134

72.0-127

75.0-131

67.0-138

70.0-130

0.449

1.90

0.687

20

20

20

DATE/TIME:

05/14/21 10:58

PAGE:

32 of 42

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1350377-03,04,05,06,09

Method Blank (MB)

(MB) R3653410-1 05/12/21	10:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	52.1			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3653410-2 05/12/2	21 10:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	33.6	67.2	50.0-150	
(S) o-Terphenyl			55.1	18.0-148	

L1350377-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350377-04 05/12/21 10:43 • (MS) R3653410-3 05/12/21 10:56 • (MSD) R3653410-4 05/12/21 11:09

(00) [1000077 04 00/12/2	, ,	Original Result (dry)	,	,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	59.1	ND	35.8	38.9	60.6	65.9	1	50.0-150			8.36	20
(S) o-Terphenyl					41.5	49.7		18.0-148				

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1350377-14

Method Blank (MB)

(MB) R3653914-1 05/13/21	09:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		33.3	100
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	93.0			31.0-160

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

		*			*					
(LCS) R3653914-2 05/13/2	21 09:32 • (LCS	D) R3653914-3	3 05/13/21 09:5	59						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1430	1370	95.3	91.3	50.0-150			4.29	20
(S) o-Terphenyl				98.5	96.0	31.0-160				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPH-HCID

L1350377-01,02,13

Method Blank (MB)

(MB) R3653636-1 05/12	/21 16:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Mineral Spirits	U		1.33	4.00
Kerosene	U		1.33	4.00
#6 Fuel Oil	U		1.33	4.00
Hydraulic Fluid	U		1.33	4.00
Gasoline (C7-C12)	U		1.33	4.00
Diesel (C12-C24)	U		1.33	4.00
Motor Oil (C24-C30)	U		3.33	10.0
(S) o-Terphenyl	44.6			18.0-148

(LCS) R3653636-2 05/12/	/21 16:49				S) R3653636-2 05/12/21 16:49												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier												
Analyte	mg/kg	mg/kg	%	%													
Diesel (C12-C24)	50.0	30.4	60.8	50.0-150													
(S) o-Terphenyl			57.4	18.0-148													

L1350279-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350279-02 05/13/2	OS) L1350279-02 05/13/21 00:15 • (MS) R3653636-3 05/13/21 00:28 • (MSD) R3653636-4 05/13/21 00:41														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%			
Diesel (C12-C24)	48.6	ND	29.6	39.4	60.9	81.1	1	50.0-150		<u>J3</u>	28.4	20			
(S) o-Terphenyl					60.2	70.2		18.0-148							

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Delimitoris
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier l	Г	Description	

C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Martin S. Burck Assoc.-Hood River, OR
 NORTH STAR
 L1350377
 05/14/21 10:58
 36 of 42

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address:			Billing Info	rmation:						1	nalvsis	/ Contai	per / Pre	eservati	ve			Chain of Custod	Page of
Martin S. Burck Assoc	Hood Ri	ver, OR	Account	s Payabl	e		Pres			1				V to S	91 3)
00 N. Wasco Ct.			200 N. W				Chk			10000		7 500		1000				1 0/20	ce Analytical
ood River, OR 97031	17/		Hood Riv	ver, OR 9	97031													1/-	
eport to:			Email To:	ill To														D06	3
on White				msba@msbaenvironmental.com;jwhite@m								Syr						Submitting a sample of constitutes acknowled	la this chain of custody gment and acceptance of the
oject Description: orth Star Casteel		City/State Collected:	Collected: Vancou			Please Ci				20		Jun0						Pace Terms and Condi	tions found at: om/hubfs/pas-standard-
one: 541-387-4422	Client Proje		************	Lab Proje	ect#	~		Pre		Pre	es.	H		9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SDG# /	1350377
	None	h Star		MSBAH	HROR-	NSTARCAS	TEE	No		N-N	VOP	Med		Pb					-097
illected by (print):	Site/Facility			P.O.#	L elle			Bozcir	res	res	J-N	b/n	10	Cd,					
Jon White ollected by (signature):		arti	1		th Steer				Nop	1 80	ozo	IAm	10	Property of				Acctnum: MS	
		(Lab MUST Be		Quote				6020	1 1	580	M	Om	HC	ts.	8			Template:T18	
Josh Owen for Jon wh		Day 5 Da	y (Rad Only)	Date	e Result	s Needed	T	pp e	40Z(S	SESI	700	1	¥	A			Prelogin: P84	The second second second second
nmediately acked on ice N Y	Two		ay (Rad Only)		3,4		No.	O, p	66	HD.	1270	126	d	2)	~		0	PB:	
Sample ID	Comp/Gra	b Matrix *	Depth	Da	te	Time	Cntrs	1000	Cr6 7199 4ozCir-NoPres	NWTPHDX NOSGT 802CIr-NoPr	PAHs 8270ESIM 802Clr-NoPres	VOCs 8260D 40mlAmb/MeOH10ml/Syr	NWTP#	Tota,	Total		1101	Shipped Via:	Sample # (lab only)
SE-12	Grab	SS	12	4/29	121	15:05	Г	×	U	Z	Δ.	>	<∞		1		/		
5/6-0	1	SS	0			09:27	3	The same					1	1			Y	100 - V 711 - V 1	_ 0)
\$19-0		SS	0			10:03	3						1	1					62
520-9	100	SS	9			12:13	2		13	J							1 - 1	#14 T	63
520-9 Dup	l de s	SS	9		ni fara	12:13	1000	1		1									oy
521-9	1.11	SS	9			12:25	4			1									05
522-9		SS	9			12:33		1		1									06
523-1		SS				15:21	1								V			2.00	07
524-1		SS)			15:35	100000								.,				OR.
525-1.5	1	SS	1,5		_	16:22	3			1					*				09
Matrix: R	emarks:						1.5			land and	pH		Temp				Sampl	s Receipt Ch	
	יוטקאין) will	emasi	ana	ytre	cal re	智能	rts							1	OC Si	gned/A	sent/Intact: ocurate:	NP Y N
VW - WasteWater W - Drinking Water	amples returne	of plan		ESTATES.	No.			25.25.90	200	SAPAR	Flow	2000	Other			orrec	t bott	ve intact: les used: clumé sent:	_A _M
T - Other	DWILLIAM SHAPPERSON	x Courier			Trackin	84 9463	19	22 25	1551									If Applicabl	
telinquished by : (Signature)		Date:	Time:		Receive	ed by: (Signatu					np Blant	Receive	ed: Yes			reser	varion	Correct/Che	cked: T n
John Chry		4/30/2	The second second	130										CL/Med BR	H				
telinquished by : (Signature)		Date:	Time: Received by: (S		ed by: (Signatu	ire)			Te	emp:	°C	Bottle	is Receive	Agr. H	preser	vation	required by Log	in: Date/Time	
telinquished by : (Signature)	4	Date:	Time:	- 1	Receive	ed for lab by; (Signati	ure)		D	ate:		Time	1 7	-	iold:			Condition:
7979					N. P.									Ser Ser	3-1				NCF / OK

npany Name/Address:		Billing Information:					Analysis / Container / Preservative												
lartin S. Burck AssocH	ood River	, OR	Accounts	Payable			Pres											0)	
	17 - 18V.		200 N. W	asco Ct.			Chk		51			20000					-	/ Pac	e Analytical "
00 N. Wasco Ct.			Hood Riv	er, OR 97	031							200		200			r al	1	
ood River, OR 97031																		1 12065 Lebanon Rd. Mo	of the surename
port to:	100	12 12 17	Email To:	paenvironm	ental.co	om;jwhite@n	nsbae					Syr						Submitting a sample vi- constitutes admowled;	this chain of custody ment and acceptance of the
on White	10	îty/State	Please Circ									nI/S						Pace Terms and Condit https://info.pacelatrs.o terms.pdf	ions found at: orn/iw/bfs/pas-standard-
oject Description: orth Star Casteel	i	ollected:	lancous				ET	65		res	N	100	-1						2 /2 200
none: 541-387-4422	Client Project #			Lab Pfojec		STARCAST	FF	opr		Nop	Pre	10a		66		7		SDG# LI	350377
ione. 341 307 4 122	North	Sho		IVISBATII	NOIL-II	is i Aircas		BozCir-NoPr	v	1	N-	ž	0	計				Table#	
ollected by (print):	Site/Facility ID	#		P.O.#				DZC	Pre	1020	Clr	mb	()	U				Acctnum: MS	BAHROR
Jon White									No	15	802	VOCs 8260D 40mlAmb/MeOH10ml/Syr	NWTP#-#C	Cal				Template:T18	6091
ollected by (signature):	- Philippin	b MUST Be							Cr6 7199 4ozCIr-NoPres	NOSGT BOZCIr-NoPres	Σ	404	+	SECULOS DE				Prelogin: P84	2230
Josh Owen for Jan Whi	Same Day		Day (Rad Only)	Date	Results	Needed		op 6020	402	Z	PAHS 8270ESIM 802Clr-NoPres	CO	Pi	As		TA ST		PM: 110 - Bria	
mmediately	Two Day	The second second	ay (Rad Only)				No. of	s,Cd,Cr,Pb	66	XUHTWWN	827	826	1	7			0	P8:	
Packed on Ice N Y	-	Matrix *	Depth	Date		Time	Cntrs	S.	5 71	d A	H _S	S	3	ich			Hol	Shipped Via:	Sample # (lab only)
Sample ID	Comp/Grab	Matrix) Depair	1			_	As	5	NN	PA	2	2	7			-	1	
525-2	Grab	SS	2	4/29/	21	16:57	3										1		1.
526-2.5	4	55	2.5	1 1		17:42	-	100	1		-						-		10
526-2,5 Dup		55	2.5			17:42	3	200	1										1 12
527-2.5		55	2.5			17:49	13		V								1000		12
528-8		55	8		- da -	18:00	3						1						13
EB-3	1	OT		1	-	11:52	u			1		S Railes		/					14
		OT		-			2		1	136		1							15
Prix Blank								1800											
		723.4					E				100								
				4.5	21	dia.						000						7	
	Remarks:	1				1	_	10000		Imm		Losso					Samo	le Receipt C	necklist
SS - Soil AIR - Air F - Filter	MSBA	w17/	emai	1 and	alyt	ical m	46	ists			рH		_ Temp		-	COC S	(gned/	Accurate:	Y N
GW - Groundwater B - Bioassay WW - WasteWater	1 1200				/			1	-		Flov	v	Othe	r		Corre	ct hot	ive intact:	YN
DW - Drinking Water	iemples returned	via:			Tracki	ng #												olume sent:	
OT-Other Blank (equipment)	_UPSFedE	ALC: NAME OF TAXABLE PARTY.	ACCORDING TO SPECIAL PROPERTY.			ved by: (Signa	tural		01887		Trip Bla	nk Recei	ived; Y	es / No		Prese	rvatio	adapade: on Correct/Ci	scked:XN
Relinquished by: (Signature)	0	ate:	Tim		Receiv	red by, (Signa	curcy							HCL/Me	оН	MAD 6	creen	<0.5 mm/hr:	
The Ewen 4/3:	4/30/	2/ /	5:30	Receiv	ved by: (Signa	ture)				Temp:		21 20 11 to 100	TBR des Recen	red:	If pres	ervatio	n required by Lo	gin: Date/Time	
Relinquished by : (Signature)		atc.	1,110				7.5					San train							
A		ate:	Tim	NG*	Recel	ved for lab by	(Signa	ature)	18041	Maria B	Date:	NATE OF	Tin	e:	Will to	Hold:	1		Condition: NCF / OK

			Billing Info	rmations		_	1			a a busia	/ Contri	nos / Dec	servative		Chain of Custon	dy Page of
Martin S. Burck Assoc	Hood Pi	vor OP					1000		A	naivsis	Contail	ner / Pre	servative		Chamfor custo	, rage lord
Martin 3. Burck Assoc	cHood Ki	ver, or		s Payable		Pres								Trille made	10	
200 N. Wasco Ct.			200 N. W	Vasco Ct. ver, OR 9703	1	Clik	2017		Remitte		Billion KER		AUR AU		- / Pa	ce Analytical
Hood River, OR 97031	Thomas regula	1/4	HOOG KIN	ver, OK 3703												
	1 1 1 1 1 1 1 1	- Acons	Consil Ter											To the second	4	Mount Juliet, TN 37122
Report to: Jon White			Email To: msba@ms	baenvironment	msbae		i.			Syr				Submitting a sample	via this chain of custody edgment and acceptance of the	
Project Description:		City/State		ALV ALGER OF	Please C						a C				Pace Terms and Con https://info.pacelabs terms.pdf	ditions found at: com/hubfs/pas-standard-
North Star Casteel			Vancou	iver, h	CT ET	es		res	l s	40mlAmb/MeOH10ml/Sy						
Phone: 541-387-4422	Client Proje	ect #		Lab Project # MSBAHROR-NSTARCASTE					Nop	Pre	OH				SDG# LI	350377
	North	h Star		IVISBATIKO	N-N3 IANCA	,,,,,	8ozClr-NoPres	-	8ozClr-NoPres	No.	Me				Table #	
Collected by (print):	Site/Facility			P.O.#			102	res	OZC	Cir	nb/				Acetnum: M	CRAUPOP
Jon White				North	Steer		80	NoF	80	302	N N				Template:T1	
Collected by (signature):		(Lab MUST Be		Quote#			6020	1	NOSGT	Σ	101				Prelogin: P8	
Josh Owen For Jon 1	what Same Next	e Day Five	Day y (Rad Only)	Date Per	ults Needed		9 0	020	N	ESI	7 Q(Prelogin: Po	
Immediately	Two	Day 10 D	ay (Rad Only)	Date Nes	No.	r,P	9 4	XQI	270	260				PB:		
Packed on Ice N Y	Thre	e Day				of	D'P	719	TPF	00	\$ 8	+ 1			Shipped Via:	
Sample ID	Comp/Gra	ab Matrix *	Depth	Date	Time	Cntrs	As,Cd,Cr,Pb	Cr6 7199 4ozClr-NoPres	NWTPHDX	PAHs 8270ESIM 8ozClr-NoPres	VOCs 8260D				Remarks	Sample # (lab only
SB-12	Grab	, ss	12	4/29/2	15105			7 =								
5/8-0	1	SS	0		09:2	7				-17	A +0	7.00 - 1				
519-0		SS	0		10:03	3								A Solid		
520-9		SS	9		12:13											
		SS	9		12:13											
520-9 Dup		SS	786		76 Laz :-		1		200			7.6				The Later
521-9			9		12:25				101124 10423							
522-9		SS	9		12:33	3	1330				to the					
523-1		SS	1		1512	1	0									
524-1		SS	1		15:3	5					1					
525-1.5	12	SS	11.5	1 1	16:27	2		44			11535	-				制度效素
* Matrix:	Remarks:	0								nu	- 1	Tomo			Sample Receipt (
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	MSBI	t will	email	analy	Heal n	egac	5+3			рН		_ Temp		COC Sig	l Present/Intac med/Accurate:	14 1
WW - WasteWater								. 7		Flow		Othe		Correct	arrive intact: bottles used:	Y
DW - Drinking Water OT - Other	Samples return			Tra	cking#	46	3	19	22	26	87	/20	351		ent volume sent If Applica	ble
	UPS Fed	fEx Courier	-			10	/	V 1		Tele Dia	ak Pasai	und: N	- I		o Headspace: ration Correct/C	hecked: Y
Relinquished by : (Signature)		Date:	Time	Francisco (III)	ceived by: (Signa	acure)				ттр віа	The neces	ved: (Ye	HEL/MeoH	RAD SCT	een <0.5 mR/hr:	4-1
Johthen		4/30/2	The second second	5:30	all de la la		1				4		rBR es Received:	Ifproces	vation required by L	ogin: Date/Time
Relinquished by : (Signature)		Date:	Time	e: Rec	ceived by: (Signa	ature)				Temp/	2		- 7	ii presen	vacion required by t	ogin. Date/Time
Relinquished by : (Signature)		Date:	Time		ceived for lab lo	Asimo	tiral	1	2	/1.57 Date:	1220	Tim) /	Hold:		Condition:
				I KO												COMUNICION.

On VAddress:			Billing Infor	mation:					A	nalvsis /	Contair	ner / Pres	ervative		Chain of Custod	y Page 6 of 6
Martin S. Burck AssocHe	ood Rive	er, OR	Accounts	Payable)
and the interest			200 N. W			Chk									- / Pac	ce Analytical
200 N. Wasco Ct. Hood River, OR 97031	19 and the		Hood Riv	er, OR 97031		-										
lood river, ox 57051				600												
Report to: on White	, de	10 To	Email To: msba@msbaenvironmental.com;jwhite@n								/Syr				constitutes acknowled	ria this chain of custody dgment and acceptance of th itions found at:
Project Description:		City/State Collected:	Please Cir						Se		Oml				https://info.pacelabs. terms.pdf	com/hubfs/pas-standard-
Phone: 541-387-4422	Client Project	#	Vancouver WA (P) MT C Lab Project # MSBAHROR-NSTARCAS			TEE	6020 8ozCir-NoPres		8ozClr-NoPres	PAHs 8270ESIM 8ozClr-NoPres	8260D 40mlAmb/MeOH10ml/Sy				SDG # 1/3	350377
	North	2 Stas					N.	S	100	-No	N				Table #	
	Site/Facility ID)#		P.O.#				Pre	302(zClr	mb)				Acctnum: MS	BAHROR
Jon White Collected by (signature):					Steer		80 NoF		ST 8	802	nIA				Template:T18	
1 ^		ab MUST Be		Quote#			020	Ci.	NOSGT	Σ	40h			(27-15) Table of	Prelogin: P84	
Josh Owen for Jon Whit	Same Da	7.2	y (Rad Only)	Date Result	ts Needed	Т		402		DES	GO				PM: 110 - Bria	
Immediately Packed on Ice N Y	Two Day	The second second second second second	ay (Rad Only)				Q, P	66	HD	327	326				PB:	
	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	As,Cd,Cr,Pb	Cr6 7199 4ozClr-NoPres	NWTPHDX	Hs	SS				Shipped Via:	
Sample ID	Comp/Grab	IVIdUIX	Бериі	Date	1 11116	1	As,	95	Z	PA	VOCs				Remarks	Sample # (lab only
525-2	Grab	SS	2	4/29/21	16:57											
526-2.5	1-	55	2.5		17:42	-	To a second					23.5				
526-2.5 Dup	- 144	SS	2.5		17:42	4				25.7						
527-2.5		55	2,5		17:49					1						医 的性质量
528-8		55	8		18:00				Alexander							
EB-3	1	OT	-37	4 4	11:42							79				
Trip Blank		OT														
								-	RES			EJ.				
						+		-			DOME I	4		100000		
	2-			1		1_			1347		449.50				Sample Receipt C	hacklist /
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	marks: MSBA	WIII	emai	1 analyt	ical r	cgo	ists			pН		_ Temp _ Other		COC Sec	al Present/Intact gned/Accurate: s arrive intact:	
ww - WasteWater		WAS INCOME.		managed a sea	THE STATE OF THE S	010 A TO 10	PATRICE			Flow	4	_ Other	ARM SURFICIO		t bottles used: ient volume sent:	TY.
DW - Drinking Water OT - Other Blank (equipmental	mples returned UPS FedEx	via:		Track	ing# qu	16	31	92	12	268	71	12.	351		If Applicator Headspace:	
Relinquished by : (Signature)	NAME OF TAXABLE	ate:	Time	Recei	ved by: (Signa	ture)	-			Trip Bla	nk Recei	ved: Ye	9/No	Preser	vation Correct/Ch reen <0.5 mR/hr:	Chicago Control of the Control of th
710		1/2.1		5130							. 7		BR MeoH	RAD SC		
Relinquished by : (Signature)	Da	7/30/ ate:	Time		ved by: (Signa	ture)			y y	Temp:	2.		es Received:	If preser	rvation required by Lo	gin: Date/Time
					1 25 2	0			1	03	25	0,1	57			
DOTATION OF THE STATE OF THE ST		ate:	Time	Docai	yed for lab by	Minno	turol	and California	1	Date:	1	Time	A COURSE OF	Hold:	Subject State	Condition:

MSBAHROR log off hold

R1/R2

Please log off hold per the attached revised COC as 05/11 RX. I did not receive a HOLD COC or Hold number from Project Service, but these were received Sat o5/01 (fedex #s 946319222551 and 946319222687)

Time estimate: oh Tim

Time spent: oh

Members

Brian Ford

Comments

Logged to L1350377

Andy Vann

10 May 2021 09:18

l of l

8) Sample Date 4/30/21 (#L1352800)

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1352800

Samples Received:

05/04/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page Tc: Table of Contents Ss: Sample Summary

Volatile Organic Compounds (GC/MS) by Method 8260D

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Polychlorinated Biphenyls (GC) by Method 8082 A

Cn: Case Narrative

Sr: Sample Results

GI: Glossary of Terms

Al: Accreditations & Locations

Sc: Sample Chain of Custody

S38-1.5 L1352800-01

Qc: Quality Control Summary

Total Solids by Method 2540 G-2011

3

4

5

5

8

9

13

14

16

17

18

SAMPLE SUMMARY

Dilution

1

1

Batch

WG1665910

WG1670595

WG1671620

WG1670778

S38-1.5 L1352800-01 Solid

Volatile Organic Compounds (GC/MS) by Method 8260D

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Polychlorinated Biphenyls (GC) by Method 8082 A

Total Solids by Method 2540 G-2011

Method

Collected by Jon White

Preparation

05/06/21 17:02

04/30/21 15:52

05/17/21 06:46

05/14/21 15:11

date/time

Collected date/time Received date/time

Analyst

JAV

ACG

AMM

LEA

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

04/30/21 15:52 05/04/2112:00

Analysis

date/time

05/06/21 17:13

05/14/21 15:58

05/18/21 11:53

05/15/21 19:50

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

S38-1.5

SAMPLE RESULTS - 01 L1352800

Collected date/time: 04/30/21 15:52

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.0		1	05/06/2021 17:13	WG1665910

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	<u>Batch</u>	
Acetone	ND ND	J3 J4	0.0692	1	05/14/2021 15:58	WG1670595	
Acrylonitrile	ND	J3 J4	0.0173	1	05/14/2021 15:58	WG1670595	
Benzene	0.00321		0.00138	1	05/14/2021 15:58	WG1670595	
Bromobenzene	ND		0.0173	1	05/14/2021 15:58	WG1670595	
Bromodichloromethane	ND		0.00346	1	05/14/2021 15:58	WG1670595	
Bromoform	ND		0.0346	1	05/14/2021 15:58	WG1670595	
Bromomethane	ND		0.0173	1	05/14/2021 15:58	WG1670595	
n-Butylbenzene	ND		0.0173	1	05/14/2021 15:58	WG1670595	
sec-Butylbenzene	ND		0.0173	1	05/14/2021 15:58	WG1670595	
tert-Butylbenzene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
Carbon disulfide	ND		0.0173	1	05/14/2021 15:58	WG1670595	
Carbon tetrachloride	ND		0.00692	1	05/14/2021 15:58	WG1670595	
Chlorobenzene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
Chlorodibromomethane	ND		0.00346	1	05/14/2021 15:58	WG1670595	
Chloroethane	ND	<u>C3</u>	0.00692	1	05/14/2021 15:58	WG1670595	
Chloroform	ND	_	0.00346	1	05/14/2021 15:58	WG1670595	
Chloromethane	ND		0.0173	1	05/14/2021 15:58	WG1670595	
2-Chlorotoluene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
4-Chlorotoluene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0346	1	05/14/2021 15:58	WG1670595	
1,2-Dibromoethane	ND	_	0.00346	1	05/14/2021 15:58	WG1670595	
Dibromomethane	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,2-Dichlorobenzene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,3-Dichlorobenzene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,4-Dichlorobenzene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
Dichlorodifluoromethane	ND	<u>C3</u>	0.00346	1	05/14/2021 15:58	WG1670595	
1,1-Dichloroethane	ND	<u> </u>	0.00346	1	05/14/2021 15:58	WG1670595	
1,2-Dichloroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595	
1,1-Dichloroethene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
cis-1.2-Dichloroethene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
trans-1,2-Dichloroethene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,2-Dichloropropane	ND		0.00692	1	05/14/2021 15:58	WG1670595	
1,1-Dichloropropene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
1,3-Dichloropropane	ND		0.00692	1	05/14/2021 15:58	WG1670595	
cis-1,3-Dichloropropene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
trans-1,3-Dichloropropene	ND		0.00692	1	05/14/2021 15:58	WG1670595	
2,2-Dichloropropane	ND		0.00346	1	05/14/2021 15:58	WG1670595	
Di-isopropyl ether	ND		0.00138	1	05/14/2021 15:58	WG1670595	
Ethylbenzene	0.00627		0.00346	1	05/14/2021 15:58	WG1670595	
Hexachloro-1,3-butadiene	ND		0.0346	1	05/14/2021 15:58	WG1670595	
Isopropylbenzene	ND		0.00346	1	05/14/2021 15:58	WG1670595	
p-lsopropyltoluene	ND		0.00540	1	05/14/2021 15:58	WG1670595	
2-Butanone (MEK)	ND	<u>J3</u>	0.00092	1	05/14/2021 15:58	WG1670595	
Methylene Chloride	ND	<u>55</u>	0.0346	1	05/14/2021 15:58	WG1670595	
4-Methyl-2-pentanone (MIBK)	ND	<u>J3</u>	0.0346	1	05/14/2021 15:58	WG1670595	
Methyl tert-butyl ether	ND	<u>J3</u>	0.0040	1	05/14/2021 15:58	WG1670595	
Naphthalene	ND	<u>55</u>	0.00138	1	05/14/2021 15:58	WG1670595	
n-Propylbenzene	ND ND		0.00692	1	05/14/2021 15:58	WG1670595	
Styrene	ND		0.00092	1	05/14/2021 15:58	WG1670595	
1,1,1,2-Tetrachloroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595	
ACCOUN			PROJEC	_	SDG:	DATE/TIME:	PAG

Collected date/time: 04/30/21 15:52

SAMPLE RESULTS - 01

1352800

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595
1,1,2-Trichlorotrifluoroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595
Tetrachloroethene	ND		0.00346	1	05/14/2021 15:58	WG1670595
Toluene	0.0181		0.00692	1	05/14/2021 15:58	WG1670595
1,2,3-Trichlorobenzene	ND		0.0173	1	05/14/2021 15:58	WG1670595
1,2,4-Trichlorobenzene	ND		0.0173	1	05/14/2021 15:58	WG1670595
1,1,1-Trichloroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595
1,1,2-Trichloroethane	ND		0.00346	1	05/14/2021 15:58	WG1670595
Trichloroethene	ND		0.00138	1	05/14/2021 15:58	WG1670595
Trichlorofluoromethane	ND		0.00346	1	05/14/2021 15:58	WG1670595
1,2,3-Trichloropropane	ND		0.0173	1	05/14/2021 15:58	WG1670595
1,2,4-Trimethylbenzene	0.0106		0.00692	1	05/14/2021 15:58	WG1670595
1,2,3-Trimethylbenzene	ND	C3 J4	0.00692	1	05/14/2021 15:58	WG1670595
1,3,5-Trimethylbenzene	ND		0.00692	1	05/14/2021 15:58	WG1670595
Vinyl chloride	ND		0.00346	1	05/14/2021 15:58	WG1670595
Xylenes, Total	0.0269		0.00900	1	05/14/2021 15:58	WG1670595
(S) Toluene-d8	102		75.0-131		05/14/2021 15:58	WG1670595
(S) 4-Bromofluorobenzene	103		67.0-138		05/14/2021 15:58	WG1670595
(S) 1,2-Dichloroethane-d4	103		70.0-130		05/14/2021 15:58	WG1670595

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0400	1	05/18/2021 11:53	WG1671620
PCB 1221	ND		0.0400	1	05/18/2021 11:53	WG1671620
PCB 1232	ND		0.0400	1	05/18/2021 11:53	WG1671620
PCB 1242	ND		0.0400	1	05/18/2021 11:53	WG1671620
PCB 1248	ND		0.0200	1	05/18/2021 11:53	WG1671620
PCB 1254	ND		0.0200	1	05/18/2021 11:53	WG1671620
PCB 1260	0.106		0.0200	1	05/18/2021 11:53	WG1671620
PCB 1268	ND		0.0200	1	05/18/2021 11:53	WG1671620
(S) Decachlorobiphenyl	106		10.0-135		05/18/2021 11:53	WG1671620
(S) Tetrachloro-m-xylene	107		10.0-139		05/18/2021 11:53	WG1671620

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Acenaphthene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Acenaphthylene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Benzo(a)anthracene	0.00887		0.00706	1	05/15/2021 19:50	WG1670778
Benzo(a)pyrene	0.00747		0.00706	1	05/15/2021 19:50	WG1670778
Benzo(b)fluoranthene	0.0160		0.00706	1	05/15/2021 19:50	WG1670778
Benzo(g,h,i)perylene	0.0161		0.00706	1	05/15/2021 19:50	WG1670778
Benzo(k)fluoranthene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Chrysene	0.0100		0.00706	1	05/15/2021 19:50	WG1670778
Dibenz(a,h)anthracene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Fluoranthene	0.0120		0.00706	1	05/15/2021 19:50	WG1670778
Fluorene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Indeno(1,2,3-cd)pyrene	ND		0.00706	1	05/15/2021 19:50	WG1670778
Naphthalene	ND		0.0235	1	05/15/2021 19:50	WG1670778
Phenanthrene	0.00963		0.00706	1	05/15/2021 19:50	WG1670778
Pyrene	0.0196		0.00706	1	05/15/2021 19:50	WG1670778
1-Methylnaphthalene	ND		0.0235	1	05/15/2021 19:50	WG1670778
2-Methylnaphthalene	ND		0.0235	1	05/15/2021 19:50	WG1670778

Ss

Cn

GI

S38-1.5

SAMPLE RESULTS - 01

Collected date/time: 04/30/21 15:52

L1352800

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

		, ,	<u> </u>			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
2-Chloronaphthalene	ND		0.0235	1	05/15/2021 19:50	WG1670778
(S) Nitrobenzene-d5	82.2		14.0-149		05/15/2021 19:50	WG1670778
(S) 2-Fluorobiphenyl	66.3		34.0-125		05/15/2021 19:50	WG1670778
(S) p-Terphenyl-d14	83.0		23.0-120		05/15/2021 19:50	WG1670778

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1352800-01

Method Blank (MB)

(MB) R3651651-1 05	5/06/21 17:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

²Tc

L1347640-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1347640-10 05/06/21 17:13 • (DUP) R3651651-3 05/06/21 17:13

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.0	88.8	1	4.35		10

Laboratory Control Sample (LCS)

(LCS) R3651651-2 05/06/21 17:13

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1352800-01

Mothod Plank (MP)

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)						
(MB) R3655828-2 05/14/2	21 09:58					
, ,	MB Result	MB Qualifier	MB MDL	B RDL		
Analyte	mg/kg		mg/kg	/kg		
Acetone	U		0.0365	0500		
Acrylonitrile	U		0.00361	0125		
Benzene	U		0.000467	00100		
Bromobenzene	U		0.000900	0125		
Bromodichloromethane	U		0.000725	00250		
Bromoform	U		0.00117	0250		
Bromomethane	U		0.00197	0125		
n-Butylbenzene	U		0.00525	0125		
sec-Butylbenzene	U		0.00288	0125		
tert-Butylbenzene	U		0.00195	00500		
Carbon disulfide	U		0.000700	0125		
Carbon tetrachloride	U		0.000898	00500		
Chlorobenzene	U		0.000210	00250		
Chlorodibromomethane	U		0.000612	00250		
Chloroethane	U		0.00170	00500		
Chloroform	U		0.00103	00250		
Chloromethane	U		0.00435	0125		
2-Chlorotoluene	U		0.000865	00250		
4-Chlorotoluene	U		0.000450	00500		
1,2-Dibromo-3-Chloropropane	U		0.00390	0250		
1,2-Dibromoethane	U		0.000648	00250		
Dibromomethane	U		0.000750	00500		
1,2-Dichlorobenzene	U		0.000425	00500		
1,3-Dichlorobenzene	U		0.000600	00500		
1,4-Dichlorobenzene	U		0.000700	00500		
Dichlorodifluoromethane	U		0.00161	00250		
1,1-Dichloroethane	U		0.000491	00250		
1,2-Dichloroethane	U		0.000649	00250		
1,1-Dichloroethene	U		0.000606	00250		
cis-1,2-Dichloroethene	U		0.000734	00250		
trans-1,2-Dichloroethene	U		0.00104	00500		
1,2-Dichloropropane	U		0.00142	00500		
1,1-Dichloropropene	U		0.000809	00250		
1,3-Dichloropropane	U		0.000501	00500		
cis-1,3-Dichloropropene	U		0.000757	00250		
trans-1,3-Dichloropropene	U		0.00114	00500		
2,2-Dichloropropane	U		0.00138	00250		
Di-isopropyl ether	U		0.000410	00100		
Ethylbenzene	U		0.000737	00250		
Hexachloro-1,3-butadiene	U		0.00600	0250		

ACCOUNT:

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1352800-01

Method Blank (MB)

(MB) R3655828-2 05/14/2	21 09:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Isopropylbenzene	U		0.000425	0.00250	
p-lsopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	0.113		0.0635	0.100	
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	
Methyl tert-butyl ether	U		0.000350	0.00100	
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	
1,2,3-Trichlorobenzene	U		0.00733	0.0125	
1,2,4-Trichlorobenzene	U		0.00440	0.0125	
1,1,1-Trichloroethane	U		0.000923	0.00250	
1,1,2-Trichloroethane	U		0.000597	0.00250	
Trichloroethene	U		0.000584	0.00100	
Trichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
,2,3-Trimethylbenzene	U		0.00158	0.00500	
1,2,4-Trimethylbenzene	U		0.00158	0.00500	
1,3,5-Trimethylbenzene	U		0.00200	0.00500	
/inyl chloride	U		0.00116	0.00250	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	101			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	
(S) 1,2-Dichloroethane-d4	102			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3655828-1 05/14/2	21 09:01 • (LCSE)) R3655828-3	3 05/14/21 19:2	6						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	1.43	0.589	229	94.2	10.0-160	<u>J4</u>	<u>J3</u>	83.3	31
Acrylonitrile	0.625	1.09	0.487	174	77.9	45.0-153	<u>J4</u>	<u>J3</u>	76.5	22
Benzene	0.125	0.130	0.124	104	99.2	70.0-123			4.72	20
Bromobenzene	0.125	0.125	0.120	100	96.0	73.0-121			4.08	20

Volatile Organic Compounds (GC/MS) by Method 8260D

L1352800-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3655828-1 05/14/2	21 09:01 • (LCSI	D) R3655828-3	3 05/14/21 19:2	6						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Bromodichloromethane	0.125	0.115	0.114	92.0	91.2	73.0-121			0.873	20
Bromoform	0.125	0.135	0.128	108	102	64.0-132			5.32	20
Bromomethane	0.125	0.119	0.131	95.2	105	56.0-147			9.60	20
n-Butylbenzene	0.125	0.111	0.109	88.8	87.2	68.0-135			1.82	20
sec-Butylbenzene	0.125	0.111	0.113	88.8	90.4	74.0-130			1.79	20
ert-Butylbenzene	0.125	0.108	0.113	86.4	90.4	75.0-127			4.52	20
Carbon disulfide	0.125	0.110	0.111	88.0	88.8	56.0-133			0.905	20
Carbon tetrachloride	0.125	0.134	0.137	107	110	66.0-128			2.21	20
Chlorobenzene	0.125	0.121	0.120	96.8	96.0	76.0-128			0.830	20
hlorodibromomethane	0.125	0.130	0.123	104	98.4	74.0-127			5.53	20
hloroethane	0.125	0.0971	0.102	77.7	81.6	61.0-134			4.92	20
hloroform	0.125	0.120	0.111	96.0	88.8	72.0-123			7.79	20
Chloromethane	0.125	0.115	0.116	92.0	92.8	51.0-138			0.866	20
-Chlorotoluene	0.125	0.120	0.115	96.0	92.0	75.0-124			4.26	20
-Chlorotoluene	0.125	0.107	0.100	85.6	80.0	75.0-124			6.76	20
2-Dibromo-3-Chloropropane	0.125	0.134	0.106	107	84.8	59.0-130		<u>J3</u>	23.3	20
2-Dibromoethane	0.125	0.128	0.123	102	98.4	74.0-128		_	3.98	20
bromomethane	0.125	0.142	0.125	114	100	75.0-122			12.7	20
2-Dichlorobenzene	0.125	0.129	0.121	103	96.8	76.0-124			6.40	20
3-Dichlorobenzene	0.125	0.118	0.115	94.4	92.0	76.0-125			2.58	20
I-Dichlorobenzene	0.125	0.116	0.110	92.8	88.0	77.0-121			5.31	20
chlorodifluoromethane	0.125	0.0976	0.107	78.1	85.6	43.0-156			9.19	20
-Dichloroethane	0.125	0.129	0.120	103	96.0	70.0-127			7.23	20
2-Dichloroethane	0.125	0.126	0.113	101	90.4	65.0-131			10.9	20
1-Dichloroethene	0.125	0.114	0.117	91.2	93.6	65.0-131			2.60	20
s-1,2-Dichloroethene	0.125	0.135	0.129	108	103	73.0-125			4.55	20
ans-1,2-Dichloroethene	0.125	0.119	0.113	95.2	90.4	71.0-125			5.17	20
2-Dichloropropane	0.125	0.126	0.119	101	95.2	74.0-125			5.71	20
-Dichloropropene	0.125	0.114	0.121	91.2	96.8	73.0-125			5.96	20
3-Dichloropropane	0.125	0.127	0.125	102	100	80.0-125			1.59	20
s-1,3-Dichloropropene	0.125	0.116	0.121	92.8	96.8	76.0-127			4.22	20
ns-1,3-Dichloropropene	0.125	0.118	0.117	94.4	93.6	73.0-127			0.851	20
2-Dichloropropane	0.125	0.142	0.138	114	110	59.0-135			2.86	20
-isopropyl ether	0.125	0.135	0.115	108	92.0	60.0-136			16.0	20
hylbenzene	0.125	0.124	0.124	99.2	99.2	74.0-126			0.000	20
exachloro-1,3-butadiene	0.125	0.134	0.129	107	103	57.0-150			3.80	20
sopropylbenzene	0.125	0.120	0.124	96.0	99.2	72.0-127			3.28	20
o-Isopropyltoluene	0.125	0.111	0.113	88.8	90.4	72.0-133			1.79	20
-Butanone (MEK)	0.625	0.890	0.558	142	89.3	30.0-160		<u>J3</u>	45.9	24
lethylene Chloride	0.125	0.132	0.111	106	88.8	68.0-123		_	17.3	20

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1352800-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

`C\ D3655030 1	05/11/2100.01	. (LCSD) R3655828-3	05/1//21 10·26

' '	•	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	E
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	0.625	0.753	0.608	120	97.3	56.0-143		<u>J3</u>	21.3	20	Ĺ
Methyl tert-butyl ether	0.125	0.163	0.110	130	88.0	66.0-132		<u>J3</u>	38.8	20	
Naphthalene	0.125	0.124	0.115	99.2	92.0	59.0-130			7.53	20	
n-Propylbenzene	0.125	0.108	0.106	86.4	84.8	74.0-126			1.87	20	Į.
Styrene	0.125	0.118	0.117	94.4	93.6	72.0-127			0.851	20	
1,1,1,2-Tetrachloroethane	0.125	0.143	0.136	114	109	74.0-129			5.02	20	
1,1,2,2-Tetrachloroethane	0.125	0.115	0.104	92.0	83.2	68.0-128			10.0	20	1
Tetrachloroethene	0.125	0.129	0.135	103	108	70.0-136			4.55	20	ΙL
Toluene	0.125	0.122	0.122	97.6	97.6	75.0-121			0.000	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.127	0.139	102	111	61.0-139			9.02	20	
1,2,3-Trichlorobenzene	0.125	0.128	0.118	102	94.4	59.0-139			8.13	20	
1,2,4-Trichlorobenzene	0.125	0.135	0.128	108	102	62.0-137			5.32	20	
1,1,1-Trichloroethane	0.125	0.125	0.123	100	98.4	69.0-126			1.61	20	Ĺ
1,1,2-Trichloroethane	0.125	0.123	0.117	98.4	93.6	78.0-123			5.00	20	
Trichloroethene	0.125	0.128	0.132	102	106	76.0-126			3.08	20	
Trichlorofluoromethane	0.125	0.110	0.120	88.0	96.0	61.0-142			8.70	20	1 5
1,2,3-Trichloropropane	0.125	0.134	0.114	107	91.2	67.0-129			16.1	20	
1,2,3-Trimethylbenzene	0.125	0.0863	0.0839	69.0	67.1	74.0-124	<u>J4</u>	<u>J4</u>	2.82	20	ΙL
1,2,4-Trimethylbenzene	0.125	0.110	0.110	88.0	88.0	70.0-126			0.000	20	
1,3,5-Trimethylbenzene	0.125	0.110	0.111	88.0	88.8	73.0-127			0.905	20	
Vinyl chloride	0.125	0.109	0.111	87.2	88.8	63.0-134			1.82	20	
Xylenes, Total	0.375	0.370	0.371	98.7	98.9	72.0-127			0.270	20	
(S) Toluene-d8				100	101	75.0-131					
(S) 4-Bromofluorobenzene				102	103	67.0-138					

70.0-130

111

103

Polychlorinated Biphenyls (GC) by Method 8082 A

L1352800-01

Method Blank (MB)

(MB) R3655878-1 05/18/2	21 10:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	57.8			10.0-135
(S) Tetrachloro-m-xylene	53.5			10.0-139

Laboratory Control Sample (LCS)

(LCS) R3655878-2 05/18	CS) R3655878-2 05/18/21 11:06											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
PCB 1260	0.167	0.126	75.4	37.0-145								
PCB 1016	0.167	0.127	76.0	36.0-141								
(S) Decachlorobiphenyl			76.9	10.0-135								
(S) Tetrachloro-m-xylene			83.2	10.0-139								

L1352800-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1352800-01 05/18/2	OS) L1352800-01 05/18/21 11:53 • (MS) R3655878-3 05/18/21 12:05 • (MSD) R3655878-4 05/18/21 12:17												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
PCB 1260	0.196	0.106	0.389	0.287	144	94.0	1	10.0-160			30.3	38	
PCB 1016	0.196	ND	0.258	0.246	131	127	1	10.0-160			4.67	37	
(S) Decachlorobiphenyl					100	118		10.0-135					
(S) Tetrachloro-m-xylene					112	119		10.0-139					

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1352800-01

Method Blank (MB)

(MB) R3655104-2 05/19	5/21 13:56				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4
Benzo(b)fluoranthene	U		0.00153	0.00600	L
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	F
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	64.7			14.0-149	
(S) 2-Fluorobiphenyl	61.9			34.0-125	
(S) p-Terphenyl-d14	75.9			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3655104-1 05/15	5/21 13:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0659	82.4	50.0-126	
Acenaphthene	0.0800	0.0639	79.9	50.0-120	
Acenaphthylene	0.080.0	0.0688	86.0	50.0-120	
Benzo(a)anthracene	0.080.0	0.0668	83.5	45.0-120	
Benzo(a)pyrene	0.0800	0.0462	57.8	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0567	70.9	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0547	68.4	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0578	72.3	49.0-125	
Chrysene	0.080.0	0.0649	81.1	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0591	73.9	47.0-125	
Fluoranthene	0.0800	0.0641	80.1	49.0-129	

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1352800-01

Laboratory Control Sample (LCS)

(LCS) R3655104-1 05/15/21 13:47

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0693	86.6	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0586	73.3	46.0-125	
Naphthalene	0.0800	0.0630	78.8	50.0-120	
Phenanthrene	0.0800	0.0649	81.1	47.0-120	
Pyrene	0.0800	0.0662	82.8	43.0-123	
1-Methylnaphthalene	0.0800	0.0592	74.0	51.0-121	
2-Methylnaphthalene	0.0800	0.0588	73.5	50.0-120	
2-Chloronaphthalene	0.0800	0.0617	77.1	50.0-120	
(S) Nitrobenzene-d5			78.2	14.0-149	
(S) 2-Fluorobiphenyl			74.5	34.0-125	
(S) p-Terphenyl-d14			85.9	23.0-120	

L1348896-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348896-11 05/15/21 17:07 • (MS) R3655104-3 05/15/21 17:16 • (MSD) R3655104-4 05/15/21 17:25

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Anthracene	0.0780	0.0117	0.0843	0.0636	65.1	46.1	1	10.0-145			28.0	30
Acenaphthene	0.0780	ND	0.0773	0.0873	69.4	77.5	1	14.0-127			12.2	27
Acenaphthylene	0.0780	ND	0.0616	0.0621	55.3	55.2	1	21.0-124			0.924	25
Benzo(a)anthracene	0.0780	ND	0.0691	0.0620	62.1	55.1	1	10.0-139			10.9	30
Benzo(a)pyrene	0.0780	ND	0.0607	0.0526	54.5	46.7	1	10.0-141			14.4	31
Benzo(b)fluoranthene	0.0780	ND	0.0646	0.0556	57.9	49.4	1	10.0-140			15.0	36
Benzo(g,h,i)perylene	0.0780	ND	0.0520	0.0449	46.7	39.8	1	10.0-140			14.7	33
Benzo(k)fluoranthene	0.0780	ND	0.0649	0.0573	58.2	50.9	1	10.0-137			12.4	31
Chrysene	0.0780	ND	0.0706	0.0610	63.3	54.2	1	10.0-145			14.5	30
Dibenz(a,h)anthracene	0.0780	ND	0.0580	0.0480	52.1	42.6	1	10.0-132			18.9	31
Fluoranthene	0.0780	ND	0.0643	0.0624	53.5	51.3	1	10.0-153			2.93	33
Fluorene	0.0780	0.0837	0.122	0.166	34.0	72.8	1	11.0-130		<u>J3</u>	30.7	29
Indeno(1,2,3-cd)pyrene	0.0780	ND	0.0559	0.0469	50.1	41.6	1	10.0-137			17.5	32
Naphthalene	0.0780	0.661	0.604	0.906	0.000	217	1	10.0-135	$\underline{\vee}$	<u>J3 V</u>	39.9	27
Phenanthrene	0.0780	0.0613	0.106	0.143	39.7	72.5	1	10.0-144			30.0	31
Pyrene	0.0780	0.00869	0.0763	0.0733	60.7	57.4	1	10.0-148			4.01	35
1-Methylnaphthalene	0.0780	0.807	0.646	1.13	0.000	291	1	10.0-142	$\underline{\vee}$	<u>J3 V</u>	54.9	28
2-Methylnaphthalene	0.0780	1.61	1.30	2.19	0.000	508	1	10.0-137	<u>∨</u>	<u>J3 V</u>	50.5	28
2-Chloronaphthalene	0.0780	ND	0.0690	0.0733	50.7	54.0	1	29.0-120			6.02	24
(S) Nitrobenzene-d5					110	105		14.0-149				
(S) 2-Fluorobiphenyl					53.8	47.0		34.0-125				
(S) p-Terphenyl-d14					70.8	59.0		23.0-120				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Ss

Cn

Sr

Qc

Gl

Sc

Abbreviations and Definitions

Appleviations and	d Dell'Illions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifi⊝r)esc	rir	∩ti	\cap r	٦
Quai		$\overline{}$	7E3C	ւլլ	Jι	Οı	ı

C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L1352800

05/19/21 18:22

16 of 19

NORTH STAR

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	Nebraska NE-OS-15-05		
Alaska	17-026	Nevada	TN000032021-1		
Arizona	AZ0612	New Hampshire	2975		
Arkansas	88-0469	New Jersey-NELAP	TN002		
California	2932	New Mexico ¹	TN00003		
Colorado	TN00003	New York	11742		
Connecticut	PH-0197	North Carolina	Env375		
Florida	E87487	North Carolina ¹	DW21704		
Georgia	NELAP	North Carolina ³	41		
Georgia ¹	923	North Dakota	R-140		
ldaho	TN00003	Ohio-VAP	CL0069		
Illinois	200008	Oklahoma	9915		
Indiana	C-TN-01	Oregon	TN200002		
lowa	364	Pennsylvania	68-02979		
Kansas	E-10277	Rhode Island	LAO00356		
Kentucky ^{1 6}	KY90010	South Carolina	84004002		
Kentucky ²	16	South Dakota	n/a		
Louisiana	Al30792	Tennessee 1 4	2006		
Louisiana	LA018	Texas	T104704245-20-18		
Maine	TN00003	Texas ⁵	LAB0152		
Maryland	324	Utah	TN000032021-11		
Massachusetts	M-TN003	Vermont	VT2006		
Michigan	9958	Virginia	110033		
Minnesota	047-999-395	Washington	C847		
Mississippi	TN00003	West Virginia	233		
Missouri	340	Wisconsin	998093910		
Montana	CERT0086	Wyoming	A2LA		
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789		
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01		
Canada	1461.01	USDA	P330-15-00234		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Billing Information:							100		A	Analysis / Container / Preservative					Chain of Custody Page 2 of 2				
Martin S. Burck Associates 200 N. Wasco Ct., Hood River, OR 97		Accounts Paya 200 N. Wasco C Hood River, Of				Pres Chk						1			1		PaceA	nalytical*	
Report to: Josh Owen				To:												Y 98	12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5851	188	
Project Description: North Star Casteel		14,36		City/State Collected: Va	ncouver, WA			10 PG		219				1			Page 625-778-5850 P-AGES		Ε,
Phone: 541.387.4422 Fac: 541.387.4813	Client Project # North Star		Lab Project 8		经经济的 医神经神经 医神经神经 医				3	M List			PO T				Table #	7640 352800	3/14/2
Collected by (printly. Jan Whate	Site/Facility ID			P.O.# North Star			(2) (1) (4) (4)		a		F		an				Acctnum		
Collected by (signature): Immediately Packed on ice N Y	C CAPIDE NO. OF SA	h? (Lab MUST Be Notified) me Dey Rive Dey ext Day S pay (Rad Only) we Dey 10 bay (Rad Only)		Quote #	2006年1月1日日本中華日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日			NWTPH-Gx	NWTPH-Dx	8260D - VOCs	8270 E SIM - PAHs	PCBS	h/ As				Template: Prelogin: TSR: PB:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	No. of Onto	NWTPH-HCID	N	NW	826	827	PC	Total			Hold	Shipped Via:	Sample # (lab only)	
538-1.5	grab	55	1.5	4/30/21	1552	4			1				1					=10-	-6
539-1.5	grab	55	1.5'	4/30/24	1601	4	100	173	1	100		1	1			4	2	-H	
EB-4	, -	OTI	-	4/30/21	0837	11			1		V	1	100	200		<u>. </u>		-12	
Trip Black		OT2	<u> </u>			1		7.		1						×		1 03	
A W STE			1																
							39		第:		20.78					6 1	100		
	S Car of Car				7 . IT P.		P				133								
				1					蹘		100		3.5			just.		1 7	
* Matrix: SS - Soil AIR - Air F - Fifter GW - Groundwater B - Bloassay	Remarks: (۱ ۱۱۱،در	email	avalytic	al requests	•	SA-P.			DJI Ph	voice: stommr one 1 T Del	(615)75	XR 50-5858	DV 1	1 10 L	.88	Shippin Special Handlin D.00 Tatal	0.0	0
WW - WasteWater DW - Drinking Water OT - Other OTI = Destind Water OTZ = Lab FreeMod Water	Samples retu UPSF	ened via:	ourler	200	Tracking # 988	_	_	412	ð,	Bess: PRIORITY OVERWIGHT TROX: 9853 DOR7 4120									
Relinquished by Signature)		Date: 5 3	121	15:30	Received by: (Sign	Hely No. 12			-		o(400	HCL/I	10.00	of press	rvath	ration required by Login: Date/Time		
Relinquished by : (Signature)		Date:		Times	Neceived by: (Sign	Received by: (Signature)			Z.I	Temp: A1 *C Bottles Received: If preservation required by Login: D 2.11-2.0 52					£.				
Relinquished by : (Signature)		Dates	-2	Time;	Received for lab	ry: (Sie	nature	1		Date:	641	u'	me: - / 2	00	Hold:	4 20		Condition:	

All of the land of the same of

L1347640 MSBAHROR re-log short hold

R1/R2

Please re-log L1347640-10 (S38-1.5) for V8260C, SV8270PAHSIMD, SV8082, TS as R4 due 05/19. hold time expires tomorrow (Fri 05/14). transfer TS.

Time spent: oh Time estimate: oh

Members

DRAFT

9) Sample Date 4/30/21 (#L1347640)

Ss

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1347640

Samples Received:

05/04/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

2		_
ľ	_	

⁴ Cn

⁵Sr
6

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
S29-1 L1347640-01	6
S30-0.5 L1347640-02	7
S31-0 L1347640-03	8
S32-1.5 L1347640-04	9
S33-9 L1347640-05	10
S34-2 L1347640-06	12
S35-0.5 L1347640-07	13
S36-1 L1347640-08	14
S37-1 L1347640-09	15
S38-1.5 L1347640-10	16
S39-1.5 L1347640-11	17
EB-4 L1347640-12	18
S29-1 DUP L1347640-16	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Metals (ICPMS) by Method 6020B	23
Volatile Organic Compounds (GC/MS) by Method 8260D	24
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	30
Polychlorinated Biphenyls (GC) by Method 8082 A	32
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	34
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

Cp: Cover Page

SAMPLE SUMMARY

S29-1 L1347640-01 Solid			Collected by Jon White	Collected date/time 04/30/21 09:34	Received da 05/04/21 12:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1667230	1	05/10/21 11:28	05/11/21 04:49	AMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S30-0.5 L1347640-02 Solid			Jon White	04/30/2110:00	05/04/2112:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1667230	1	05/10/21 11:28	05/11/21 17:43	SSH	Mt. Juliet, TN
			Collected by	Collected date/time		
S31-0 L1347640-03 Solid			Jon White	04/30/2110:25	05/04/2112:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 17:58	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S32-1.5 L1347640-04 Solid			Jon White	04/30/2112:33	05/04/2112:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 16:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S33-9 L1347640-05 Solid			Jon White	04/30/2112:56	05/04/2112:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1665926	1	04/30/2112:56	05/07/21 01:08	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 16:30	CAG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1667230	1	05/10/21 11:28	05/11/21 05:12	AMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S34-2 L1347640-06 Solid			Jon White	04/30/2113:29	05/04/21 12:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/2116:42	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
S35-0.5 L1347640-07 Solid			Jon White	04/30/21 15:12	05/04/21 12:	UU
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 19:26	CAG	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

S36-1 L1347640-08 Solid			Collected by Jon White	Collected date/time 04/30/2115:18	Received dat 05/04/21 12:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/2116:00	05/09/21 18:52	LD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	10	05/08/21 06:40	05/08/21 19:52	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
S37-1 L1347640-09 Solid			Jon White	04/30/2115:24	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1665909	1	05/06/21 17:22	05/06/21 17:31	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/21 16:00	05/09/21 18:56	LD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 15:52	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
S38-1.5 L1347640-10 Solid			Jon White	04/30/2115:52	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1665910	1	05/06/21 17:02	05/06/21 17:13	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/2116:00	05/09/21 21:53	TM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/08/21 18:11	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	10	05/08/21 06:40	05/09/21 17:15	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
S39-1.5 L1347640-11 Solid			Jon White	04/30/2116:01	05/04/21 12:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1665910	1	05/06/21 17:02	05/06/21 17:13	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/21 16:00	05/09/21 21:56	TM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	2	05/08/21 06:40	05/09/21 16:23	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
EB-4 L1347640-12 GW			Jon White	04/30/21 08:37	05/04/21 12:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1668047	1	05/10/21 20:48	05/11/21 07:48	AEG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1666428	1	05/08/21 07:15	05/08/21 16:52	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1664944	1	05/06/21 00:00	05/06/21 14:07	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
S29-1 DUP L1347640-16 Solid			Jon White	04/30/21 09:34	05/04/21 12:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida Iv. Math at 2540 C 2044	WC4507075	4	date/time	date/time	VP.W	MAL ILLEY TAX
Total Solids by Method 2540 G-2011	WG1667075	1	05/09/21 22:59	05/09/21 23:21	KDW	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

Polychlorinated Biphenyls (GC) by Method 8082 A

WG1667230

1

05/10/21 11:28

05/11/21 05:24

AMM

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford Brian Ford

Project Manager

SAMPLE RESULTS - 01

Collected date/time: 04/30/21 09:34

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	83.2		1	05/06/2021 17:31	WG1665909	

Тс

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0408	1	05/11/2021 04:49	WG1667230
PCB 1221	ND		0.0408	1	05/11/2021 04:49	WG1667230
PCB 1232	ND		0.0408	1	05/11/2021 04:49	WG1667230
PCB 1242	ND		0.0408	1	05/11/2021 04:49	WG1667230
PCB 1248	ND		0.0204	1	05/11/2021 04:49	WG1667230
PCB 1254	ND		0.0204	1	05/11/2021 04:49	WG1667230
PCB 1260	ND		0.0204	1	05/11/2021 04:49	WG1667230
PCB 1268	ND		0.0204	1	05/11/2021 04:49	WG1667230
(S) Decachlorobiphenyl	71.0		10.0-135		05/11/2021 04:49	WG1667230
(S) Tetrachloro-m-xylene	84.4		10.0-139		05/11/2021 04:49	WG1667230

Martin S. Burck Assoc.-Hood River, OR

S30-0.5

SAMPLE RESULTS - 02

Collected date/time: 04/30/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	87.7		1	05/06/2021 17:31	WG1665909	

Тс

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
PCB 1016	ND		0.0388	1	05/11/2021 17:43	WG1667230	
PCB 1221	ND		0.0388	1	05/11/2021 17:43	WG1667230	
PCB 1232	ND		0.0388	1	05/11/2021 17:43	WG1667230	
PCB 1242	ND		0.0388	1	05/11/2021 17:43	WG1667230	
PCB 1248	ND		0.0194	1	05/11/2021 17:43	WG1667230	
PCB 1254	0.0477		0.0194	1	05/11/2021 17:43	WG1667230	
PCB 1260	ND		0.0194	1	05/11/2021 17:43	WG1667230	
PCB 1268	ND		0.0194	1	05/11/2021 17:43	WG1667230	
(S) Decachlorobiphenyl	87.6		10.0-135		05/11/2021 17:43	WG1667230	
(S) Tetrachloro-m-xvlene	101		10.0-139		05/11/2021 17:43	WG1667230	

Martin S. Burck Assoc.-Hood River, OR

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

Collected date/time: 04/30/21 10:25

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.0		1	05/06/2021 17:31	WG1665909	

Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	5.73		4.40	1	05/08/2021 17:58	WG1666732
Residual Range Organics (RRO)	42.0		11.0	1	05/08/2021 17:58	WG1666732
(S) o-Terphenyl	87.5		18.0-148		05/08/2021 17:58	WG1666732

S32-1.5

SAMPLE RESULTS - 04

Collected date/time: 04/30/21 12:33

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	83.2		1	05/06/2021 17:31	WG1665909	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.81	1	05/08/2021 16:17	WG1666732
Residual Range Organics (RRO)	ND		12.0	1	05/08/2021 16:17	WG1666732
(S) o-Terphenyl	77.4		18.0-148		05/08/2021 16:17	WG1666732

Ss

SAMPLE RESULTS - 05

Collected date/time: 04/30/21 12:56

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.0		1	05/06/2021 17:31	WG1665909

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	mg/kg		date / time	
Acetone	ND	0.0605	1	05/07/2021 01:08	WG1665926
Acrylonitrile	ND	0.0151	1	05/07/2021 01:08	WG1665926
Benzene	ND	0.00121	1	05/07/2021 01:08	WG1665926
Bromobenzene	ND	0.0151	1	05/07/2021 01:08	WG1665926
Bromodichloromethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
Bromoform	ND	0.0303	1	05/07/2021 01:08	WG1665926
Bromomethane	ND	0.0151	1	05/07/2021 01:08	WG1665926
n-Butylbenzene	ND	0.0151	1	05/07/2021 01:08	WG1665926
sec-Butylbenzene	ND	0.0151	1	05/07/2021 01:08	WG1665926
tert-Butylbenzene	ND	0.00605	1	05/07/2021 01:08	WG1665926
Carbon disulfide	ND	0.0151	1	05/07/2021 01:08	WG1665926
Carbon tetrachloride	ND	0.00605	1	05/07/2021 01:08	WG1665926
Chlorobenzene	ND	0.00303	1	05/07/2021 01:08	WG1665926
Chlorodibromomethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
Chloroethane	ND	0.00605	1	05/07/2021 01:08	WG1665926
Chloroform	ND	0.00303	1	05/07/2021 01:08	WG1665926
Chloromethane	ND	0.0151	1	05/07/2021 01:08	WG1665926
2-Chlorotoluene	ND	0.00303	1	05/07/2021 01:08	WG1665926
4-Chlorotoluene	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,2-Dibromo-3-Chloropropane	ND	0.0303	1	05/07/2021 01:08	WG1665926
1,2-Dibromoethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
Dibromomethane	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,2-Dichlorobenzene	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,3-Dichlorobenzene	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,4-Dichlorobenzene	ND	0.00605	1	05/07/2021 01:08	WG1665926
Dichlorodifluoromethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
1,1-Dichloroethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
1,2-Dichloroethane	ND	0.00303	1	05/07/2021 01:08	WG1665926
1,1-Dichloroethene	ND	0.00303	1	05/07/2021 01:08	WG1665926
cis-1,2-Dichloroethene	ND	0.00303	1	05/07/2021 01:08	WG1665926
trans-1,2-Dichloroethene	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,2-Dichloropropane	ND	0.00605	1	05/07/2021 01:08	WG1665926
1,1-Dichloropropene	ND	0.00303	1	05/07/2021 01:08	WG1665926
1,3-Dichloropropane	ND	0.00605	1	05/07/2021 01:08	WG1665926
cis-1,3-Dichloropropene	ND	0.00303	1	05/07/2021 01:08	WG1665926
trans-1,3-Dichloropropene	ND	0.00605	1	05/07/2021 01:08	WG1665926
2,2-Dichloropropane	ND	0.00303	1	05/07/2021 01:08	WG1665926
Di-isopropyl ether	ND	0.00303	1	05/07/2021 01:08	WG1665926
Ethylbenzene	ND	0.00303	1	05/07/2021 01:08	WG1665926
Hexachloro-1,3-butadiene	ND	0.00303	1	05/07/2021 01:08	WG1665926
Isopropylbenzene	ND	0.00303	1	05/07/2021 01:08	WG1665926
p-Isopropyltoluene	ND	0.00505	1	05/07/2021 01:08	WG1665926
2-Butanone (MEK)	ND	0.00003	1	05/07/2021 01:08	WG1665926
Methylene Chloride	ND	0.0303	1	05/07/2021 01:08	WG1665926
4-Methyl-2-pentanone (MIBK)	ND	0.0303	1	05/07/2021 01:08	WG1665926
Methyl tert-butyl ether	ND	0.0303	1	05/07/2021 01:08	WG1665926
Naphthalene	ND	0.00121	1	05/07/2021 01:08	WG1665926
n-Propylbenzene	ND	0.00605	1	05/07/2021 01:08	WG1665926
	ND	0.00605		05/07/2021 01:08	
Styrene 1,1,1,2-Tetrachloroethane	ND	0.00303	1		WG1665926
ı,ı,ı,z-retraciilordetiidile	INU	0.00303		05/07/2021 01:08	<u>WG1665926</u>
			_		

Collected date/time: 04/30/21 12:56

SAMPLE RESULTS - 05

1347640

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00303	1	05/07/2021 01:08	WG1665926
1,1,2-Trichlorotrifluoroethane	ND		0.00303	1	05/07/2021 01:08	WG1665926
Tetrachloroethene	ND		0.00303	1	05/07/2021 01:08	WG1665926
Toluene	ND		0.00605	1	05/07/2021 01:08	WG1665926
1,2,3-Trichlorobenzene	ND		0.0151	1	05/07/2021 01:08	WG1665926
1,2,4-Trichlorobenzene	ND		0.0151	1	05/07/2021 01:08	WG1665926
1,1,1-Trichloroethane	ND		0.00303	1	05/07/2021 01:08	WG1665926
1,1,2-Trichloroethane	ND		0.00303	1	05/07/2021 01:08	WG1665926
Trichloroethene	ND		0.00121	1	05/07/2021 01:08	WG1665926
Trichlorofluoromethane	ND		0.00303	1	05/07/2021 01:08	WG1665926
1,2,3-Trichloropropane	ND		0.0151	1	05/07/2021 01:08	WG1665926
1,2,4-Trimethylbenzene	ND		0.00605	1	05/07/2021 01:08	WG1665926
1,2,3-Trimethylbenzene	ND		0.00605	1	05/07/2021 01:08	WG1665926
1,3,5-Trimethylbenzene	ND		0.00605	1	05/07/2021 01:08	WG1665926
Vinyl chloride	ND		0.00303	1	05/07/2021 01:08	WG1665926
Xylenes, Total	ND		0.00787	1	05/07/2021 01:08	WG1665926
(S) Toluene-d8	101		75.0-131		05/07/2021 01:08	WG1665926
(S) 4-Bromofluorobenzene	102		67.0-138		05/07/2021 01:08	WG1665926
(S) 1,2-Dichloroethane-d4	95.3		70.0-130		05/07/2021 01:08	WG1665926

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.40	1	05/08/2021 16:30	WG1666732
Residual Range Organics (RRO)	ND		11.0	1	05/08/2021 16:30	WG1666732
(S) o-Terphenyl	84.4		18.0-148		05/08/2021 16:30	WG1666732

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0374	1	05/11/2021 05:12	WG1667230
PCB 1221	ND		0.0374	1	05/11/2021 05:12	WG1667230
PCB 1232	ND		0.0374	1	05/11/2021 05:12	WG1667230
PCB 1242	ND		0.0374	1	05/11/2021 05:12	WG1667230
PCB 1248	ND		0.0187	1	05/11/2021 05:12	WG1667230
PCB 1254	ND		0.0187	1	05/11/2021 05:12	WG1667230
PCB 1260	ND		0.0187	1	05/11/2021 05:12	WG1667230
PCB 1268	ND		0.0187	1	05/11/2021 05:12	WG1667230
(S) Decachlorobiphenyl	105		10.0-135		05/11/2021 05:12	WG1667230
(S) Tetrachloro-m-xylene	108		10.0-139		05/11/2021 05:12	WG1667230

Ss

Cn

Gl

Sc

S34-2

SAMPLE RESULTS - 06

Collected date/time: 04/30/21 13:29

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	87.3		1	05/06/2021 17:31	WG1665909	

Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	4.63		4.58	1	05/08/2021 16:42	WG1666732
Residual Range Organics (RRO)	15.4		11.5	1	05/08/2021 16:42	WG1666732
(S) o-Terphenyl	81.8		18.0-148		05/08/2021 16:42	WG1666732

S35-0.5

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 07

Dilution

1

Analysis

date / time

05/08/2021 19:26

05/08/2021 19:26

05/08/2021 19:26

Batch

WG1666732

WG1666732

WG1666732

Collected date/time: 04/30/21 15:12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	90.5		1	05/06/2021 17:31	WG1665909		

RDL (dry)

mg/kg

4.42

11.0

18.0-148

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

Result (dry)

mg/kg

22.8

119

79.5

Ss

⁴Cn
•

Martin S. Burck Assoc.-Hood River, OR

SAMPLE RESULTS - 08

Collected date/time: 04/30/21 15:18

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	90.9		1	05/06/2021 17:31	WG1665909	

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.00		1.10	5	05/09/2021 18:52	WG1666839

Cn

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		44.0	10	05/08/2021 19:52	WG1666732
Residual Range Organics (RRO)	271		110	10	05/08/2021 19:52	WG1666732
(S) o-Terphenyl	82.7		18.0-148		05/08/2021 19:52	WG1666732

Sample Narrative:

L1347640-08 WG1666732: Cannot run at lower dilution due to viscosity of extract

Martin S. Burck Assoc.-Hood River, OR

S37-1

SAMPLE RESULTS - 09

Collected date/time: 04/30/21 15:24

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	79.3		1	05/06/2021 17:31	WG1665909		

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Arsenic	1.77		1.26	5	05/09/2021 18:56	WG1666839

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.04	1	05/08/2021 15:52	WG1666732
Residual Range Organics (RRO)	ND		12.6	1	05/08/2021 15:52	WG1666732
(S) o-Terphenyl	58.5		18.0-148		05/08/2021 15:52	WG1666732

SAMPLE RESULTS - 10

1347640

Total Solids by Method 2540 G-2011

Collected date/time: 04/30/21 15:52

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	85.0		1	05/06/2021 17:13	WG1665910	

²Tc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.16		1.18	5	05/09/2021 21:53	WG1666839
Cadmium	ND		1.18	5	05/09/2021 21:53	WG1666839

⁵Sr

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	288		4.70	1	05/08/2021 18:11	WG1666732
Residual Range Organics (RRO)	1580		118	10	05/09/2021 17:15	WG1666732
(S) o-Terphenyl	46.4		18.0-148		05/09/2021 17:15	WG1666732
(S) o-Terphenyl	80.1		18.0-148		05/08/2021 18:11	WG1666732

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

Collected date/time: 04/30/21 16:01

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	88.2		1	05/06/2021 17:13	WG1665910	

Тс

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	27.2		1.13	5	05/09/2021 21:56	WG1666839
Cadmium	1.33		1.13	5	05/09/2021 21:56	WG1666839

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	68.6		9.07	2	05/09/2021 16:23	WG1666732
Residual Range Organics (RRO)	175		22.7	2	05/09/2021 16:23	WG1666732
(S) o-Terphenyl	45.5		18.0-148		05/09/2021 16:23	WG1666732

Martin S. Burck Assoc.-Hood River, OR

Collected date/time: 04/30/21 08:37

SAMPLE RESULTS - 12

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	05/11/2021 07:48	WG1668047
Residual Range Organics (RRO)	ND		250	1	05/11/2021 07:48	WG1668047
(S) o-Terphenyl	80.5		52.0-156		05/11/2021 07:48	WG1668047

Cn

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
PCB 1016	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1221	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1232	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1242	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1248	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1254	ND		0.500	1	05/08/2021 16:52	WG1666428
PCB 1260	ND		0.500	1	05/08/2021 16:52	WG1666428
(S) Decachlorobiphenyl	113		10.0-128		05/08/2021 16:52	WG1666428
(S) Tetrachloro-m-xylene	92.9		10.0-127		05/08/2021 16:52	WG1666428

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	05/06/2021 14:07	WG1664944
Acenaphthene	ND		0.0500	1	05/06/2021 14:07	WG1664944
Acenaphthylene	ND		0.0500	1	05/06/2021 14:07	WG1664944
Benzo(a)anthracene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Benzo(a)pyrene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Benzo(b)fluoranthene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Benzo(g,h,i)perylene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Benzo(k)fluoranthene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Chrysene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Dibenz(a,h)anthracene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Fluoranthene	ND		0.100	1	05/06/2021 14:07	WG1664944
Fluorene	ND		0.0500	1	05/06/2021 14:07	WG1664944
Indeno(1,2,3-cd)pyrene	ND	<u>J3</u>	0.0500	1	05/06/2021 14:07	WG1664944
Naphthalene	ND		0.250	1	05/06/2021 14:07	WG1664944
Phenanthrene	ND		0.0500	1	05/06/2021 14:07	WG1664944
Pyrene	ND		0.0500	1	05/06/2021 14:07	WG1664944
1-Methylnaphthalene	ND		0.250	1	05/06/2021 14:07	WG1664944
2-Methylnaphthalene	ND		0.250	1	05/06/2021 14:07	WG1664944
2-Chloronaphthalene	ND		0.250	1	05/06/2021 14:07	WG1664944
(S) Nitrobenzene-d5	90.5		31.0-160		05/06/2021 14:07	WG1664944
(S) 2-Fluorobiphenyl	94.5		48.0-148		05/06/2021 14:07	WG1664944
(S) p-Terphenyl-d14	108		37.0-146		05/06/2021 14:07	WG1664944

S29-1 DUP

SAMPLE RESULTS - 16

Collected date/time: 04/30/21 09:34

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.2		1	05/09/2021 23:21	WG1667075

2

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0414	1	05/11/2021 05:24	WG1667230
PCB 1221	ND		0.0414	1	05/11/2021 05:24	WG1667230
PCB 1232	ND		0.0414	1	05/11/2021 05:24	WG1667230
PCB 1242	ND		0.0414	1	05/11/2021 05:24	WG1667230
PCB 1248	ND		0.0207	1	05/11/2021 05:24	WG1667230
PCB 1254	ND		0.0207	1	05/11/2021 05:24	WG1667230
PCB 1260	ND		0.0207	1	05/11/2021 05:24	WG1667230
PCB 1268	ND		0.0207	1	05/11/2021 05:24	WG1667230
(S) Decachlorobiphenyl	78.8		10.0-135		05/11/2021 05:24	WG1667230
(S) Tetrachloro-m-xylene	84.0		10.0-139		05/11/2021 05:24	WG1667230

Ss

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1347640-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3651652-1 05	5/06/21 17:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

3 Ss

L1347640-06 Original Sample (OS) • Duplicate (DUP)

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	87.3	88.9	1	1.85		10

Laboratory Control Sample (LCS)

(LCS) R3651652-2 05/06/21 17:31

,	Spike Amount LCS	t LCS Result Lo	LCS Rec. Rec. Limits
Analyte	% %	% %	% %
Total Solids	50.0 50.0	50.0 10	100 85.0-115

⁹Sc

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1347640-10,11

Method Blank (MB)

(MB) R3651651-1 05/	/06/21 17:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

3 Sc

L1347640-10 Original Sample (OS) • Duplicate (DUP)

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.0	88.8	1	4.35		10

5 0 4

Laboratory Control Sample (LCS)

(LCS) R3651651-2 05/06/21 17:13

(LC3) R3031031-2 U3/U0/2	Spike Amount LCS	.CS Result Lo	LCS Rec. Rec. Limi
Analyte	% %	% %	% %
Total Solids	50.0 50.0	50.0 10	100 85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1347640-16

Method Blank (MB)

(MB) R3652307-1 0	05/09/21 23:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00300			

3

L1348518-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1348518-07 05/09/21 23:21 • (DUP) R3652307-3 05/09/21 23:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	80.7	81.1	1	0.578		10

Laboratory Control Sample (LCS)

(LCS) R3652307-2 05/09/21 23:21

(200) 110002007 2 00,00		LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1347640-08,09,10,11

Mothad Plank (MP)

Metals (ICPMS) by Method 6020B

Method	Blank	(INIR)

(MB) R3652184-1 05/0	9/21 18:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00

(LCS) R3652184-2	05/09/21 18:28
------------------	----------------

Cadmium

(LC3) K3032104-2 03/0	19/21 10.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	86.1	86.1	80.0-120	
Cadmium	100	90.1	90.1	80.0-120	

L1348343-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348343-01 05/09/21 18:32 • (MS) R3652184-5 05/09/21 18:42 • (MSD) R3652184-6 05/09/21 18:45

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	113	3.91	96.9	104	82.3	89.0	5	75.0-125			7.42	20

75.0-125

90.6

20

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347640-05

Method Blank (MB)

(MB) R3651473-3 05/06/2	1 21:23				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acetone	U		0.0365	0.0500	
Acrylonitrile	U		0.00361	0.0125	
Benzene	U		0.000467	0.00100	
Bromobenzene	U		0.000900	0.0125	
Bromodichloromethane	U		0.000725	0.00250	
Bromoform	U		0.00117	0.0250	
Bromomethane	U		0.00197	0.0125	
n-Butylbenzene	U		0.00525	0.0125	
ec-Butylbenzene	U		0.00288	0.0125	
ert-Butylbenzene	U		0.00195	0.00500	
Carbon disulfide	U		0.000700	0.0125	
Carbon tetrachloride	U		0.000898	0.00500	
Chlorobenzene	U		0.000210	0.00250	
Chlorodibromomethane	U		0.000612	0.00250	
Chloroethane	U		0.00170	0.00500	
Chloroform	U		0.00103	0.00250	
Chloromethane	U		0.00435	0.0125	
-Chlorotoluene	U		0.000865	0.00250	
-Chlorotoluene	U		0.000450	0.00500	
2-Dibromo-3-Chloropropane	U		0.00390	0.0250	
2-Dibromoethane	U		0.000648	0.00250	
ibromomethane	U		0.000750	0.00500	
2-Dichlorobenzene	U		0.000425	0.00500	
3-Dichlorobenzene	U		0.000600	0.00500	
4-Dichlorobenzene	U		0.000700	0.00500	
ichlorodifluoromethane	U		0.00161	0.00250	
1-Dichloroethane	U		0.000491	0.00250	
,2-Dichloroethane	U		0.000649	0.00250	
1-Dichloroethene	U		0.000606	0.00250	
is-1,2-Dichloroethene	U		0.000734	0.00250	
ans-1,2-Dichloroethene	U		0.00104	0.00500	
2-Dichloropropane	U		0.00142	0.00500	
1-Dichloropropene	U		0.000809	0.00250	
3-Dichloropropane	U		0.000501	0.00500	
is-1,3-Dichloropropene	U		0.000757	0.00250	
rans-1,3-Dichloropropene	U		0.00114	0.00500	
2,2-Dichloropropane	U		0.00138	0.00250	
Di-isopropyl ether	U		0.000410	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Hexachloro-1,3-butadiene	U		0.00600	0.0250	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347640-05

Method Blank (MB)

(MB) R3651473-3 05/06/2	21 21:23				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
sopropylbenzene	U		0.000425	0.00250	
p-Isopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	0.0897	<u>J</u>	0.0635	0.100	
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	
Methyl tert-butyl ether	U		0.000350	0.00100	
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	
1,2,3-Trichlorobenzene	U		0.00733	0.0125	
1,2,4-Trichlorobenzene	U		0.00440	0.0125	
1,1,1-Trichloroethane	U		0.000923	0.00250	
,1,2-Trichloroethane	U		0.000597	0.00250	
Trichloroethene	U		0.000584	0.00100	
Trichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
,2,3-Trimethylbenzene	U		0.00158	0.00500	
1,2,4-Trimethylbenzene	U		0.00158	0.00500	
,3,5-Trimethylbenzene	U		0.00200	0.00500	
/inyl chloride	U		0.00116	0.00250	
Kylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	101			67.0-138	
(S) 1,2-Dichloroethane-d4	96.8			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3651473	-1 05/06/2119:49 •	(LCSD) R3651473-2	05/06/21 20:08
----------------	--------------------	-------------------	----------------

(200) 1100011701 0070072	1113.13 (2002	71100011702	00/00/2120.0	J						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	0.681	0.615	109	98.4	10.0-160			10.2	31
Acrylonitrile	0.625	0.602	0.619	96.3	99.0	45.0-153			2.78	22
Benzene	0.125	0.127	0.126	102	101	70.0-123			0.791	20
Bromobenzene	0.125	0.124	0.125	99.2	100	73.0-121			0.803	20

Volatile Organic Compounds (GC/MS) by Method 8260D

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CS/ P3651/73-1 05/06/21 19:49 • // CSD) P3651473-2 05/06/21 20:08

LCS) R3651473-1 05/06/2	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	LCS Qualifier	ECSD Qualifier	%	%	
Bromodichloromethane	0.125	0.120	0.121	96.0	96.8	73.0-121			0.830	20	
Bromoform	0.125	0.123	0.123	98.4	98.4	64.0-132			0.000	20	
Bromomethane	0.125	0.121	0.118	96.8	94.4	56.0-147			2.51	20	
n-Butylbenzene	0.125	0.119	0.120	95.2	96.0	68.0-135			0.837	20	
sec-Butylbenzene	0.125	0.123	0.124	98.4	99.2	74.0-130			0.810	20	
tert-Butylbenzene	0.125	0.122	0.122	97.6	97.6	75.0-127			0.000	20	
Carbon disulfide	0.125	0.114	0.113	91.2	90.4	56.0-133			0.881	20	
Carbon tetrachloride	0.125	0.122	0.125	97.6	100	66.0-128			2.43	20	
Chlorobenzene	0.125	0.118	0.119	94.4	95.2	76.0-128			0.844	20	
Chlorodibromomethane	0.125	0.130	0.127	104	102	74.0-127			2.33	20	
Chloroethane	0.125	0.110	0.109	88.0	87.2	61.0-134			0.913	20	
Chloroform	0.125	0.121	0.103	96.8	94.4	72.0-123			2.51	20	
Chloromethane	0.125	0.116	0.110	92.8	96.8	51.0-138			4.22	20	
2-Chlorotoluene	0.125	0.124	0.130	99.2	104	75.0-124			4.72	20	
4-Chlorotoluene	0.125	0.120	0.121	96.0	96.8	75.0-124			0.830	20	
1,2-Dibromo-3-Chloropropane	0.125	0.109	0.107	87.2	85.6	59.0-130			1.85	20	
,2-Dibromoethane	0.125	0.122	0.120	97.6	96.0	74.0-128			1.65	20	
Dibromomethane	0.125	0.134	0.128	107	102	75.0-122			4.58	20	
,2-Dichlorobenzene	0.125	0.126	0.126	101	101	76.0-124			0.000	20	
l,3-Dichlorobenzene	0.125	0.123	0.122	98.4	97.6	76.0-125			0.816	20	
l,4-Dichlorobenzene	0.125	0.122	0.121	97.6	96.8	77.0-121			0.823	20	
Dichlorodifluoromethane	0.125	0.119	0.118	95.2	94.4	43.0-156			0.844	20	
I,1-Dichloroethane	0.125	0.125	0.121	100	96.8	70.0-127			3.25	20	
I,2-Dichloroethane	0.125	0.124	0.124	99.2	99.2	65.0-131			0.000	20	
,1-Dichloroethene	0.125	0.121	0.120	96.8	96.0	65.0-131			0.830	20	
cis-1,2-Dichloroethene	0.125	0.126	0.120	101	96.0	73.0-125			4.88	20	
rans-1,2-Dichloroethene	0.125	0.120	0.114	96.0	91.2	71.0-125			5.13	20	
I,2-Dichloropropane	0.125	0.129	0.123	103	98.4	74.0-125			4.76	20	
I,1-Dichloropropene	0.125	0.117	0.116	93.6	92.8	73.0-125			0.858	20	
l,3-Dichloropropane	0.125	0.127	0.127	102	102	80.0-125			0.000	20	
cis-1,3-Dichloropropene	0.125	0.122	0.121	97.6	96.8	76.0-127			0.823	20	
rans-1,3-Dichloropropene	0.125	0.122	0.121	97.6	96.8	73.0-127			0.823	20	
2,2-Dichloropropane	0.125	0.133	0.129	106	103	59.0-135			3.05	20	
Di-isopropyl ether	0.125	0.125	0.124	100	99.2	60.0-136			0.803	20	
Ethylbenzene	0.125	0.123	0.121	98.4	96.8	74.0-126			1.64	20	
Hexachloro-1,3-butadiene	0.125	0.133	0.128	106	102	57.0-150			3.83	20	
sopropylbenzene	0.125	0.117	0.119	93.6	95.2	72.0-127			1.69	20	
o-Isopropyltoluene	0.125	0.117	0.119	97.6	95.2	72.0-133			2.49	20	
2-Butanone (MEK)	0.625	0.635	0.643	102	103	30.0-160			1.25	24	
Methylene Chloride	0.125	0.131	0.124	105	99.2	68.0-123			5.49	20	

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

1347640-05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3651473-1 05/06/2119:49 • (LCSD) R3651473-2 05/06/21 20:08

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	0.625	0.644	0.638	103	102	56.0-143			0.936	20	_
Methyl tert-butyl ether	0.125	0.120	0.125	96.0	100	66.0-132			4.08	20	
Naphthalene	0.125	0.114	0.116	91.2	92.8	59.0-130			1.74	20	
n-Propylbenzene	0.125	0.118	0.117	94.4	93.6	74.0-126			0.851	20	ı
Styrene	0.125	0.120	0.118	96.0	94.4	72.0-127			1.68	20	
1,1,1,2-Tetrachloroethane	0.125	0.132	0.128	106	102	74.0-129			3.08	20	Ļ
1,1,2,2-Tetrachloroethane	0.125	0.119	0.119	95.2	95.2	68.0-128			0.000	20	
Tetrachloroethene	0.125	0.120	0.118	96.0	94.4	70.0-136			1.68	20	
Toluene	0.125	0.123	0.121	98.4	96.8	75.0-121			1.64	20	_ 1
1,1,2-Trichlorotrifluoroethane	0.125	0.133	0.129	106	103	61.0-139			3.05	20	
1,2,3-Trichlorobenzene	0.125	0.114	0.115	91.2	92.0	59.0-139			0.873	20	
1,2,4-Trichlorobenzene	0.125	0.123	0.124	98.4	99.2	62.0-137			0.810	20	
1,1,1-Trichloroethane	0.125	0.117	0.116	93.6	92.8	69.0-126			0.858	20	_ [
1,1,2-Trichloroethane	0.125	0.125	0.127	100	102	78.0-123			1.59	20	I
Trichloroethene	0.125	0.122	0.118	97.6	94.4	76.0-126			3.33	20	
Trichlorofluoromethane	0.125	0.123	0.121	98.4	96.8	61.0-142			1.64	20	
1,2,3-Trichloropropane	0.125	0.129	0.125	103	100	67.0-129			3.15	20	
1,2,3-Trimethylbenzene	0.125	0.117	0.117	93.6	93.6	74.0-124			0.000	20	
1,2,4-Trimethylbenzene	0.125	0.119	0.120	95.2	96.0	70.0-126			0.837	20	
1,3,5-Trimethylbenzene	0.125	0.120	0.125	96.0	100	73.0-127			4.08	20	
Vinyl chloride	0.125	0.117	0.113	93.6	90.4	63.0-134			3.48	20	
Xylenes, Total	0.375	0.356	0.355	94.9	94.7	72.0-127			0.281	20	
(S) Toluene-d8				102	99.7	75.0-131					
(S) 4-Bromofluorobenzene				98.8	99.7	67.0-138					

L1347647-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

109

106

(OS) L1347647-02 05/07/21 03:20 • (MS) R3651473-4 05/07/21 03:57 • (MSD) R3651473-5 05/07/21 04:16

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	4.55	ND	4.91	4.06	108	89.2	8	10.0-160			19.0	40
Acrylonitrile	4.55	ND	4.86	3.51	107	77.1	8	10.0-160			32.3	40
Benzene	0.910	ND	0.529	0.607	58.1	66.7	8	10.0-149			13.7	37
Bromobenzene	0.910	ND	0.651	0.685	71.5	75.3	8	10.0-156			5.09	38
Bromodichloromethane	0.910	ND	0.610	0.642	67.0	70.5	8	10.0-143			5.11	37
Bromoform	0.910	ND	0.821	0.758	90.2	83.3	8	10.0-146			7.98	36
Bromomethane	0.910	ND	0.394	0.485	43.3	53.3	8	10.0-149			20.7	38
n-Butylbenzene	0.910	ND	0.609	0.697	66.9	76.6	8	10.0-160			13.5	40

70.0-130

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347640-05

L1347647-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MethodMishamMisha	(OS) L1347647-02 05/07/2	21 03:20 • (MS)	R3651473-4 C)5/07/21 03:57	• (MSD) R3651	473-5 05/07/2	21 04:16						
See Bank Processor 1930 No. 0.566 0.296 939 759 8 10.0499 146 39		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Include processor 1985 1	Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chron traductionation 9.00 ND 0.70 0.74 4.07 8.7 10.015 2.19 30 98 10.015 2.24 3.2 3.2 10.015 2.2 3.2 3.2 10.015 2.2 3.2 3.2 10.015 2.0 10.015 2.0 3.0	sec-Butylbenzene	0.910	ND	0.636	0.736	59.9	70.9	8	10.0-159			14.6	39
Carbon resolvation 0.900 ND 0.480 0.610 52.7 67.3 8 10.0445 24.2 3 Chlorochtornomethaee 0.800 ND 0.6562 0.574 81.0 82.9 8 10.0446 2.62 3 Chlorochtornomethaee 0.900 ND 0.540 0.542 83.0 45.0 10.0446 25.2 3 Chlorochtornomethaee 0.900 ND 0.540 0.522 63.0 65.2 80.00-466 22.1 3 Chlorochtornomethaee 0.900 ND 0.914 0.550 63.0 51.0 8 10.0456 22.2 3 Chlorochtornomethae 0.900 ND 0.916 0.88 0.94 89.0 9.0 0.94 3.3 3 1.2 Decimanication 0.90 ND 0.92 0.82 88.8 81.0 0.0446 3.3 3 3 1.2 Decimanication 0.90 ND 0.686 0.657 73.4	tert-Butylbenzene	0.910	ND	0.536	0.633	58.9	69.6	8	10.0-156			16.6	39
Choracterizence 0.900	Carbon disulfide	0.910	ND	0.370	0.461	40.7	50.7	8	10.0-145			21.9	39
Discontamentaning 1980	Carbon tetrachloride	0.910	ND	0.480	0.612	52.7	67.3	8	10.0-145			24.2	37
Chlorederine 0.900	Chlorobenzene	0.910	ND		0.627	61.9	68.9	8	10.0-152			10.8	39
Chotomore (more) 0.90° ND 0.49° 0.60° 66.3 66.2 8 0.04669 9.21 37 2-Chotombrane 0.90° ND 0.49° 0.69° 0.69° 0.69° 0.69° 0.69° 0.69° 0.00° <	Chlorodibromomethane	0.910	ND	0.774	0.754	85.1	82.9	8	10.0-146			2.62	37
Colomorchane Q-900 NO 0-421 Q-500 6-30 6-30 6-90 8 10-0-199 17-2 3 2-Chriorothene 9.90 NO 0-528 0-50 8.0 76-0 8 100-195 347 9 12-Distrones-Chinospopane 9.90 NO 0-75 8.88 10-1 10-148 344 34 12-Distroneshane 9.90 NO 0-78 0-72 23-2 8.8 10-0-147 34 34 9 12-Distroneshane 9.90 NO 0-78 0-78 3.7 73 8 10-0-147 33 34 9 12-Distrophoresee 9.90 NO 0-615 0-53 6.7 70 8 10-0-15 34 34 9 13-Distrophoresee 9.90 NO 0-52 0-62 8 10-0-15 34 3 9 14-Distrophoresee 9.90 NO 0-52 0-60 72 8	Chloroethane	0.910	ND	0.336	0.436	36.9	47.9	8	10.0-146			25.9	40
2-Chloroblene 9.90 NO 9.54 0.95	Chloroform	0.910	ND	0.549	0.602	60.3	66.2	8	10.0-146			9.21	37
4 Chorotolone 0.910 ND 0.528 0.910 88.0 95.0 8 10.0155 14.0 34.7 39.0 1.2-Diornome-Chiloropene 0.910 ND 0.959 0.772 87.8 83.8 10.048 3.4 34 34 Diornomethane 0.910 ND 0.763 0.732 87.8 83.8 10.0497 3.33 35 35 12-Dichloroberzene 0.910 ND 0.650 0.674 73.4 83 10.0453 3.35 35 38 1.4-Dichloroberzene 0.910 ND 0.650 0.674 81.8 10.0453 2.4 3.5 35	Chloromethane	0.910	ND	0.421	0.500	46.3	54.9	8	10.0-159			17.2	37
12-Dibriomo-S-Chiloropropieme 0.910 ND 0.945 0.918 0.418 0.418 0.919 8 10.0-151 1.44 39 12-Dibriomo-Chamene 0.910 ND 0.763 0.738 0.838 811 8 10.0-147 3.33 3.5 12-Dibriomo-Chamene 0.910 ND 0.668 0.676 73.4 73.2 8 10.0-155 119 37 12-Dibriomo-Chamene 0.910 ND 0.618 0.627 67.6 73.0 8 10.0-155 119 37 13-Dichipropherane 0.910 ND 0.614 0.629 67.5 69.1 8 10.0-155 12.0 14.0 13.5 14-Dichipropherane 0.910 ND 0.614 0.629 67.5 69.1 8 10.0-153 12.0 14.5 14.5 35 14-Dichipropherane 0.910 ND 0.529 0.624 58.1 68.6 8 10.0-160 15.5 35 14-Dichipropherane 0.910 ND 0.578 0.660 74.3 72.5 8 10.0-160 16.5 35 14-Dichipropherane 0.910 ND 0.676 0.660 74.3 72.5 8 10.0-148 24.0 35 14-Dichipropherane 0.910 ND 0.676 0.660 74.3 72.5 8 10.0-148 24.0 35 14-Dichipropherane 0.910 ND 0.676 0.660 74.3 72.5 8 10.0-148 24.0 35 14-Dichipropherane 0.910 ND 0.548 0.602 62.2 8 10.0-148 24.0 3.9 3.9 3.7 14-Dichipropherane 0.910 ND 0.548 0.602 62.2 8.5 10.0-148 24.0 3.9 3.9 3.7 14-Dichipropherane 0.910 ND 0.544 0.676 0.636 71.1 72.5 8.9 10.0-155 3.2 3.9 3.9 3.9 3.9 3.0	2-Chlorotoluene	0.910	ND	0.549	0.645	60.3	70.9	8	10.0-159			16.1	38
1.2 Diaromethane 0.910 0.790 0.772 0	4-Chlorotoluene	0.910	ND	0.528	0.510	58.0	56.0	8	10.0-155			3.47	39
Discommentation 0,910	1,2-Dibromo-3-Chloropropane	0.910	ND	0.945	0.818	104	89.9	8	10.0-151			14.4	39
1.2 Dichlorobenzene 9.90 ND 0.688 0.676 73.4 73.4 8 10.155 1.90 3.9 3.9 3.9 3.9 1.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.0 4.0 6.0 6.76 6.70 8 10.151 2.4 3.9 3.0 3	1,2-Dibromoethane	0.910	ND	0.799	0.772	87.8	84.8	8	10.0-148			3.44	34
L3-Dichlorobenzene 9.90 ND 0.615 0.637 67.6 70.0 8 10.0453 3.51 38 L4-Dichlorobenzene 0.910 ND 0.614 0.624 8.1 69.1 8 10.0450 2.1 38 L1-Dichloroethane 0.910 ND 0.518 0.604 56.9 6.59 8 10.0447 14.7 37 L2-Dichloroethane 0.910 ND 0.586 0.606 73.3 72.5 8 10.048 240 25.0 35 L3-Dichloroethane 0.910 ND 0.548 0.602 62.2 8 10.048 240 25.0 37 L3-Dichloroptone 0.910 ND 0.548 0.602 62.2 8 10.049 39.3 37 L3-Dichloroptone 0.910 ND 0.549 0.558 8.9 8 10.049 3.0 4.9 3.7 L3-Dichloroptopene 0.910 ND 0.644 0.576 <t< td=""><td>Dibromomethane</td><td>0.910</td><td>ND</td><td>0.763</td><td>0.738</td><td>83.8</td><td>81.1</td><td>8</td><td>10.0-147</td><td></td><td></td><td>3.33</td><td>35</td></t<>	Dibromomethane	0.910	ND	0.763	0.738	83.8	81.1	8	10.0-147			3.33	35
1.4 Dichlordonenzene 9.91 NB 6.14 0.619 6.75 6.91 8 10.015 2.41 38 Dichlorodifiloromethane 9.90 NB 0.529 0.624 81 68.6 8 10.040 147 35 1.2-Dichloroethane 9.90 ND 0.58 0.600 58.0 59.0 8 10.048 240 35 1.2-Dichloroethane 9.90 ND 0.630 0.600 73.3 59.6 8 10.048 240 23.0 37 1.2-Dichloroethane 9.90 ND 0.58 0.582 8.0 9.0 10.048 2.30 37 1.2-Dichloropthane 9.90 ND 0.640 0.538 71.1 72.3 8 10.048 10.048 15.3 37 1.3-Dichloroptopane 9.90 ND 0.647 0.758 8.35 8.90 8 10.048 2.9 32 1.3-Dichloroptopane 9.90 ND 0.78	1,2-Dichlorobenzene	0.910	ND	0.668	0.676	73.4	74.3	8	10.0-155			1.19	37
Dichlorodrifluoromethane 0.910 ND 0.529 0.524 0.624 0.636 0.636 0.636 0.046 0.046 0.047 0.04	1,3-Dichlorobenzene	0.910	ND	0.615	0.637	67.6	70.0	8	10.0-153			3.51	38
f, Dichlorethane 9.90 ND 0.518 0.600 56.9 65.9 8 10.0447 14.7 37 1,2-Dichlorethane 0.910 ND 0.676 0.600 74.3 72.5 8 10.0488 2.0 35 dis-1,2-Dichlorethane 0.910 ND 0.548 0.602 62.2 8 10.0499 9.39 37 trans-1,2-Dichlorethane 0.910 ND 0.460 0.536 50.5 58.9 8 10.0499 9.39 37 1,2-Dichloropropane 0.910 ND 0.464 0.556 71.1 72.3 8 10.0488 16.9 37 1,3-Dichloropropane 0.910 ND 0.644 0.576 83.5 80.9 8 10.0488 25.9 37 1,3-Dichloropropane 0.910 ND 0.760 0.736 83.5 80.9 8 10.0488 27.9 37 1,3-Dichloropropane 0.910 ND 0.778 0.762	1,4-Dichlorobenzene	0.910	ND	0.614	0.629	67.5	69.1	8	10.0-151			2.41	38
1,2-Dichloroethane 0,910 ND 0,676 0,660 74,3 72,5 8 10,0148 2,40 35 1,1-Dichloroethene 0,910 ND 0,430 0,542 47,3 59,6 8 10,0155 23,0 37 trans-1,2-Dichloroethene 0,910 ND 0,548 0,602 62,2 62,2 8 10,0149 93,9 37 1,2-Dichloroethene 0,910 ND 0,460 0,536 50,5 58,9 8 10,0148 169 37 1,2-Dichloropropane 0,910 ND 0,444 0,576 48,8 63,3 8 10,0148 169 37 1,1-Dichloropropane 0,910 ND 0,444 0,576 48,8 63,3 8 10,0153 25,9 35 1,3-Dichloropropane 0,910 ND 0,664 0,674 73,0 71 8 10,0153 12,9 37 1,3-Dichloropropane 0,910 ND 0,590 <	Dichlorodifluoromethane	0.910	ND	0.529	0.624	58.1	68.6	8	10.0-160			16.5	35
1.1-Dichloroethene 0.910 ND 0.430 0.542 47.3 59.6 8 10.0-155 23.0 37 cis-1.2-Dichloroethene 0.910 ND 0.548 0.602 60.2 66.2 8 10.0-149 9.39 37 trans-1.2-Dichloroptane 0.910 ND 0.464 0.556 50.5 58.0 8 10.0-148 16.9 37 1.1-Dichloroptopane 0.910 ND 0.444 0.576 48.8 63.3 8 10.0-153 25.9 35 1.3-Dichloroptopene 0.910 ND 0.444 0.576 48.8 63.3 8 10.0-153 25.9 35 1.3-Dichloroptopene 0.910 ND 0.760 0.736 83.5 80.9 8 10.0-154 3.21 35 1.3-Dichloroptopane 0.910 ND 0.760 0.736 78.9 78.7 8 10.0-154 2.2 2.2 10.0-150 2.2 2.0 2.2 2.0	1,1-Dichloroethane	0.910	ND	0.518	0.600	56.9	65.9	8	10.0-147			14.7	37
cis-1,2-Dichloroethene 0.910 ND 0.548 0.602 60.2 66.2 8 10.0-149 9.39 37 trans-1,2-Dichloroethene 0.910 ND 0.460 0.536 50.5 58.9 8 10.0-150 15.3 37 1,2-Dichloropropane 0.910 ND 0.647 0.658 71.1 72.3 8 10.0-153 15.3 37 1,1-Dichloropropane 0.910 ND 0.644 0.576 48.8 63.3 8 10.0-153 25.9 35 1,3-Dichloropropane 0.910 ND 0.766 0.736 83.5 80.9 8 10.0-153 149 37 35 41.1 8 10.0-151 149 37 37 41.1 8 10.0-151 149 37 37 41.1 8 10.0-151 149 37 37 41.1 8 10.0-151 149 37 37 38 10.0-151 149 37 38 10.0-143	1,2-Dichloroethane	0.910	ND	0.676	0.660	74.3	72.5	8	10.0-148			2.40	35
trans-1,2-Dichloroethenee 0.910 ND 0.460 0.536 50.5 58.9 8 10.0-150 15.3 37 1,2-Dichloropropane 0.910 ND 0.647 0.658 7.11 72.3 8 10.0-148 1.69 37 1,1-Dichloropropene 0.910 ND 0.444 0.576 48.8 63.3 8 10.0-153 25.9 35 1,3-Dichloropropene 0.910 ND 0.760 0.764 73.0 74.1 8 10.0-154 3.2 35 ct-1,3-Dichloropropene 0.910 ND 0.766 0.674 73.0 74.1 8 10.0-154 1.9 37 trans-1,3-Dichloropropene 0.910 ND 0.718 0.716 78.9 78.7 8 10.0-148 0.279 37 2,-Dichloropropane 0.910 ND 0.519 0.525 46.9 57.7 8 10.0-148 20.6 3.0 10.0-148 3.0 3.0 3.0 3.6 <td>1,1-Dichloroethene</td> <td>0.910</td> <td>ND</td> <td>0.430</td> <td>0.542</td> <td>47.3</td> <td>59.6</td> <td>8</td> <td>10.0-155</td> <td></td> <td></td> <td>23.0</td> <td>37</td>	1,1-Dichloroethene	0.910	ND	0.430	0.542	47.3	59.6	8	10.0-155			23.0	37
1.2-Dichloropropane 0.910 ND 0.647 0.658 71.1 72.3 8 10.0-148 1.69 37 1,1-Dichloropropene 0.910 ND 0.444 0.576 48.8 63.3 8 10.0-153 25.9 35 1,3-Dichloropropane 0.910 ND 0.760 0.736 83.5 80.9 8 10.0-154 3.21 35 cis-1,3-Dichloropropane 0.910 ND 0.664 0.674 73.0 74.1 8 10.0-151 1.49 37 trans-1,3-Dichloropropane 0.910 ND 0.718 0.718 78.7 8 10.0-158 0.279 37 2,2-Dichloropropane 0.910 ND 0.427 0.525 46.9 57.7 8 10.0-138 20.6 36 Di-Isopropyl ether 0.910 ND 0.599 0.608 64.8 66.8 8 10.0-147 3.0 3.0 3.6 Hexachlora-1,3-butaliene 0.910 ND <	cis-1,2-Dichloroethene	0.910	ND	0.548	0.602	60.2	66.2	8	10.0-149			9.39	37
1.1-Dichloropropene 0.910 ND 0.444 0.576 48.8 63.3 8 10.0-153 25.9 35 1,3-Dichloropropane 0.910 ND 0.760 0.736 83.5 80.9 8 10.0-154 3.21 35 cis-1,3-Dichloropropene 0.910 ND 0.664 0.674 73.0 74.1 8 10.0-151 1.49 37 trans-1,3-Dichloropropene 0.910 ND 0.718 0.716 78.9 78.7 8 10.0-148 0.279 37 2,2-Dichloropropane 0.910 ND 0.427 0.525 46.9 57.7 8 10.0-148 0.206 36 Di-Isopropylether 0.910 ND 0.590 0.608 64.8 66.8 8 10.0-147 3.01 36 Ethylbenzene 0.910 ND 0.519 0.615 57.0 67.6 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.521	trans-1,2-Dichloroethene	0.910	ND	0.460	0.536	50.5	58.9	8	10.0-150			15.3	37
1,3-Dichloropropane 0,910 ND 0,760 0,736 83.5 80.9 8 10,0-154 3.21 35 cis-1,3-Dichloropropene 0,910 ND 0,664 0,674 73.0 74.1 8 10,0-151 1.49 37 trans-1,3-Dichloropropene 0,910 ND 0,718 0,716 78.9 78.7 8 10,0-148 0,279 37 2,2-Dichloropropane 0,910 ND 0,427 0,525 46.9 57.7 8 10,0-148 20.6 36 Di-Isopropyl ether 0,910 ND 0,590 0,608 64.8 66.8 8 10,0-147 3.01 36 Ethylbenzene 0,910 ND 0,519 0,615 57.0 67.6 8 10,0-160 16.9 38 Pisopropylbenzene 0,910 ND 0,521 0,607 57.3 66.7 8 10,0-160 15.2 38 Pisopropylbluizene 0,910 ND 0,552	1,2-Dichloropropane	0.910	ND	0.647	0.658	71.1	72.3	8	10.0-148			1.69	37
cis-1,3-Dichloropropene 0.910 ND 0.664 0.674 73.0 74.1 8 10.0-151 1.49 37 trans-1,3-Dichloropropene 0.910 ND 0.718 0.716 78.9 78.7 8 10.0-148 0.279 37 2,2-Dichloropropane 0.910 ND 0.427 0.525 46.9 57.7 8 10.0-138 20.6 36 Di-isopropyl ether 0.910 ND 0.590 0.608 64.8 66.8 8 10.0-147 3.01 36 Ethylbenzene 0.910 ND 0.519 0.615 57.0 67.6 8 10.0-160 16.9 38 Hexachloro-1,3-butadiene 0.910 ND 0.932 1.14 102 125 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.520 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 0.552	1,1-Dichloropropene	0.910	ND	0.444	0.576	48.8	63.3	8	10.0-153			25.9	35
trans-1,3-Dichloropropene 0,910 ND 0,718 0,716 78.9 78.7 8 10,0-148 0,279 37 2,2-Dichloropropane 0,910 ND 0,427 0,525 46.9 57.7 8 10,0-138 20.6 36 Di-isopropyl ether 0,910 ND 0,590 0,608 64.8 66.8 8 10,0-147 3.01 36 Ethylbenzene 0,910 ND 0,519 0,615 57.0 67.6 8 10,0-160 16.9 38 Hexachloro-1,3-butadiene 0,910 ND 0,932 1,14 102 125 8 10,0-160 20.1 40 Isopropylbenzene 0,910 ND 0,521 0,607 57.3 66.7 8 10,0-160 15.2 38 p-Isopropylbeluene 0,910 ND 0,580 0,686 61.1 72.8 8 10,0-160 16.7 40 2-Butanone (MEK) 4,55 ND 0,552	1,3-Dichloropropane	0.910	ND	0.760	0.736	83.5	80.9	8	10.0-154			3.21	
2,2-Dichloropropane 0.910 ND 0.427 0.525 46.9 57.7 8 10.0-138 20.6 36 Di-isopropyl ether 0.910 ND 0.590 0.608 64.8 66.8 8 10.0-147 3.01 36 Ethylbenzene 0.910 ND 0.519 0.615 57.0 67.6 8 10.0-160 16.9 38 Hexachloro-1,3-butadiene 0.910 ND 0.932 1.14 102 125 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.521 0.607 57.3 66.7 8 10.0-155 15.2 38 p-Isopropyltoluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 <t< td=""><td>cis-1,3-Dichloropropene</td><td>0.910</td><td>ND</td><td>0.664</td><td>0.674</td><td>73.0</td><td>74.1</td><td>8</td><td>10.0-151</td><td></td><td></td><td></td><td>37</td></t<>	cis-1,3-Dichloropropene	0.910	ND	0.664	0.674	73.0	74.1	8	10.0-151				37
Di-isopropyl ether 0.910 ND 0.590 0.608 64.8 66.8 8 10.0-147 3.01 36 Ethylbenzene 0.910 ND 0.519 0.615 57.0 67.6 8 10.0-160 16.9 38 Hexachloro-1,3-butadiene 0.910 ND 0.932 1.14 102 125 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.521 0.607 57.3 66.7 8 10.0-155 15.2 38 P-Isopropylboluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.	trans-1,3-Dichloropropene	0.910	ND	0.718	0.716	78.9	78.7	8	10.0-148			0.279	37
Ethylbenzene 0.910 ND 0.519 0.615 57.0 67.6 8 10.0-160 16.9 38 Hexachloro-1,3-butadiene 0.910 ND 0.932 1.14 102 125 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.521 0.607 57.3 66.7 8 10.0-155 15.2 38 p-Isopropylboluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 <	2,2-Dichloropropane	0.910	ND	0.427	0.525	46.9	57.7	8	10.0-138			20.6	36
Hexachloro-1,3-butadiene 0.910 ND 0.932 1.14 102 125 8 10.0-160 20.1 40 Isopropylbenzene 0.910 ND 0.521 0.607 57.3 66.7 8 10.0-155 15.2 38 p-isopropyltoluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 <t< td=""><td>Di-isopropyl ether</td><td>0.910</td><td>ND</td><td>0.590</td><td>0.608</td><td>64.8</td><td>66.8</td><td>8</td><td>10.0-147</td><td></td><td></td><td>3.01</td><td>36</td></t<>	Di-isopropyl ether	0.910	ND	0.590	0.608	64.8	66.8	8	10.0-147			3.01	36
Sopropylbenzene 0.910 ND 0.521 0.607 57.3 66.7 8 10.0-155 15.2 38 p-Isopropyltoluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	Ethylbenzene	0.910	ND	0.519	0.615	57.0		8	10.0-160			16.9	
p-Isopropyltoluene 0.910 ND 0.580 0.686 61.1 72.8 8 10.0-160 16.7 40 2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	Hexachloro-1,3-butadiene	0.910	ND	0.932	1.14	102	125	8				20.1	40
2-Butanone (MEK) 4.55 ND 5.52 4.26 121 93.6 8 10.0-160 25.8 40 Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	Isopropylbenzene	0.910	ND	0.521	0.607	57.3	66.7		10.0-155			15.2	
Methylene Chloride 0.910 ND 0.552 0.611 60.7 67.1 8 10.0-141 10.1 37 4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	p-Isopropyltoluene	0.910	ND	0.580	0.686	61.1	72.8	8	10.0-160			16.7	40
4-Methyl-2-pentanone (MIBK) 4.55 ND 4.78 4.18 105 91.9 8 10.0-160 13.4 35 Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	2-Butanone (MEK)	4.55	ND		4.26	121	93.6		10.0-160			25.8	
Methyl tert-butyl ether 0.910 ND 0.750 0.717 82.4 78.8 8 11.0-147 4.50 35 Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	Methylene Chloride	0.910	ND	0.552	0.611	60.7	67.1	8	10.0-141			10.1	
Naphthalene 0.910 ND 0.932 0.867 102 95.3 8 10.0-160 7.23 36	4-Methyl-2-pentanone (MIBK)	4.55	ND	4.78	4.18	105	91.9		10.0-160			13.4	
	Methyl tert-butyl ether	0.910	ND	0.750	0.717	82.4	78.8	8	11.0-147			4.50	35
n-Propylbenzene 0.910 ND 0.501 0.599 55.1 65.8 8 10.0-158 17.8 38	Naphthalene	0.910	ND	0.932	0.867	102	95.3		10.0-160			7.23	36
	n-Propylbenzene	0.910	ND	0.501	0.599	55.1	65.8	8	10.0-158			17.8	38

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347640-05

L1347647-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347647-02 05/07/21 03:20 • (MS) R3651473-4 05/07/21 03:57 • (MSD) R3651473-5 05/07/21 04:16

Analyte	mg/kg			MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
	5 5	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Styrene	0.910	ND	0.596	0.632	65.5	69.5	8	10.0-160			5.86	40
1,1,1,2-Tetrachloroethane	0.910	ND	0.606	0.702	66.6	77.1	8	10.0-149			14.7	39
1,1,2,2-Tetrachloroethane	0.910	ND	1.93	1.79	212	197	8	10.0-160	<u>J5</u>	<u>J5</u>	7.53	35
Tetrachloroethene	0.910	ND	0.476	0.589	52.3	64.7	8	10.0-156			21.2	39
Toluene	0.910	ND	0.520	0.600	55.9	64.7	8	10.0-156			14.3	38
1,1,2-Trichlorotrifluoroethane	0.910	ND	0.530	0.682	58.2	74.9	8	10.0-160			25.1	36
1,2,3-Trichlorobenzene	0.910	ND	0.700	0.588	76.9	64.6	8	10.0-160			17.4	40
1,2,4-Trichlorobenzene	0.910	ND	0.724	0.749	79.6	82.3	8	10.0-160			3.39	40
1,1,1-Trichloroethane	0.910	ND	0.447	0.565	49.1	62.1	8	10.0-144			23.3	35
1,1,2-Trichloroethane	0.910	ND	0.849	0.785	93.3	86.3	8	10.0-160			7.83	35
Trichloroethene	0.910	ND	0.513	0.585	56.4	64.3	8	10.0-156			13.1	38
Trichlorofluoromethane	0.910	ND	0.424	0.515	46.6	56.6	8	10.0-160			19.4	40
1,2,3-Trichloropropane	0.910	ND	0.429	0.427	47.1	46.9	8	10.0-156			0.467	35
l,2,3-Trimethylbenzene	0.910	ND	0.577	0.629	63.4	69.1	8	10.0-160			8.62	36
l,2,4-Trimethylbenzene	0.910	ND	0.553	0.619	60.8	68.0	8	10.0-160			11.3	36
1,3,5-Trimethylbenzene	0.910	ND	0.537	0.630	59.0	69.2	8	10.0-160			15.9	38
/inyl chloride	0.910	ND	0.414	0.548	45.5	60.2	8	10.0-160			27.9	37
Kylenes, Total	2.73	ND	1.59	1.79	57.8	65.1	8	10.0-160			11.8	38
(S) Toluene-d8					101	98.6		75.0-131				
(S) 4-Bromofluorobenzene					106	106		67.0-138				

99.5

70.0-130

PAGE:

102

Sample Narrative:

(S) 1,2-Dichloroethane-d4

OS: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1347640-03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3652071-1 05/08/21	15:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	78.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3652071-2 05/08/	/21 15:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	49.1	98.2	50.0-150	
(S) o-Terphenyl			86.5	18.0-148	

L1347619-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347619-05 05/08/21 16:55 • (MS) R3652071-3 05/08/21 17:08 • (MSD) R3652071-4 05/08/21 17:20

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1347640-12

Method Blank (MB)

(MB) R3652913-2 05/11/21	11:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	90.0	<u>J</u>	83.3	250
(S) o-Terphenyl	78.5			52.0-156

²Tc

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3652913-3 05/11/2	1 11:41 • (LCSD) I	R3652913-1 0	5/11/21 05:47							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	970	1000	64.7	66.7	50.0-150			3.05	20
(S) n-Ternhenyl				123	113	52 0-156				

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1347640-12

Method Blank (MB)

(MB) R3652550-1 05/08/	/21 15:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
PCB 1260	U		0.173	0.500
PCB 1016	U		0.270	0.500
PCB 1221	U		0.270	0.500
PCB 1232	U		0.270	0.500
PCB 1242	U		0.270	0.500
PCB 1248	U		0.173	0.500
PCB 1254	U		0.173	0.500
(S) Decachlorobiphenyl	71.1			10.0-128
(S) Tetrachloro-m-xylene	95.0			10.0-127

Laboratory Control Sample (LCS)

(LCS) R3652550-2 05/08	8/21 15:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
PCB 1260	2.50	2.24	89.6	42.0-131	<u>P</u>
PCB 1016	2.50	2.78	111	36.0-135	
(S) Decachlorobiphenyl			63.6	10.0-128	
(S) Tetrachloro-m-xylene			93.3	10.0-127	

L1346465-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
PCB 1260	2.50	ND	1.39	1.97	55.6	78.8	1	20.0-142		<u>J3</u>	34.5	27
PCB 1016	2.50	ND	2.25	2.68	90.0	107	1	11.0-160	<u>P</u>	<u>P</u>	17.4	38
(S) Decachlorobiphenyl					42.4	67.3		10.0-128				
(S) Tetrachloro-m-xylene					78.5	93.8		10.0-127				

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1347640-01,02,05,16

Method Blank (MB)

(MB) R3653083-1 05/11/2	1 02:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	65.8			10.0-135
(S) Tetrachloro-m-xylene	64.3			10.0-139

Laboratory Control Sample (LCS)

(LCS) R3653083-2 05/11/	21 02:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
PCB 1260	0.167	0.166	99.4	37.0-145	
PCB 1016	0.167	0.153	91.6	36.0-141	
(S) Decachlorobiphenyl			78.4	10.0-135	
(S) Tetrachloro-m-xylene			78.7	10.0-139	

L1347593-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347593-07 05/11/21 04:14 • (MS) R3653083-3 05/11/21 04:25 • (MSD) R3653083-4 05/11/21 04:37 Spike Amount Original Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1260	0.178	ND	0.227	0.227	128	128	1	10.0-160	<u>P</u>		0.000	38
PCB 1016	0.178	ND	0.220	0.209	124	117	1	10.0-160			5.46	37
(S) Decachlorobiphenyl					91.3	104		10.0-135				
(S) Tetrachloro-m-xylene					101	102		10.0-139				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

1347640-12

Method Blank (MB)

(MB) R3651402-3 05/0	6/21 08:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	92.0			31.0-160	
(S) 2-Fluorobiphenyl	98.5			48.0-148	
(S) p-Terphenyl-d14	111			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3651402-1 05/06	/21 08:19 • (LCSI	D) R3651402-2	2 05/06/21 08:	37							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	1.94	1.77	97.0	88.5	67.0-150			9.16	20	
Acenaphthene	2.00	1.95	1.83	97.5	91.5	65.0-138			6.35	20	
Acenaphthylene	2.00	2.02	1.88	101	94.0	66.0-140			7.18	20	
Benzo(a)anthracene	2.00	1.81	1.48	90.5	74.0	61.0-140		<u>J3</u>	20.1	20	
Benzo(a)pyrene	2.00	1.71	1.20	85.5	60.0	60.0-143		<u>J3</u>	35.1	20	
Benzo(b)fluoranthene	2.00	1.84	1.45	92.0	72.5	58.0-141		<u>J3</u>	23.7	20	
Benzo(g,h,i)perylene	2.00	1.72	1.11	86.0	55.5	52.0-153		<u>J3</u>	43.1	20	
Benzo(k)fluoranthene	2.00	1.74	1.20	87.0	60.0	58.0-148		<u>J3</u>	36.7	20	
Chrysene	2.00	1.87	1.46	93.5	73.0	64.0-144		<u>J3</u>	24.6	20	
Dibenz(a,h)anthracene	2.00	1.65	1.06	82.5	53.0	52.0-155		<u>J3</u>	43.5	20	
Fluoranthene	2.00	1.93	1.73	96.5	86.5	69.0-153			10.9	20	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

11347640-12

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3651402-1 05/06/21 08:19 • (LCSD) R3651402-2 05/06/21 08:37

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	1.99	1.86	99.5	93.0	64.0-136			6.75	20
Indeno(1,2,3-cd)pyrene	2.00	1.63	1.08	81.5	54.0	54.0-153		<u>J3</u>	40.6	20
Naphthalene	2.00	1.92	1.80	96.0	90.0	61.0-137			6.45	20
Phenanthrene	2.00	1.99	1.86	99.5	93.0	62.0-137			6.75	20
Pyrene	2.00	2.12	1.86	106	93.0	60.0-142			13.1	20
1-Methylnaphthalene	2.00	1.98	1.84	99.0	92.0	66.0-142			7.33	20
2-Methylnaphthalene	2.00	1.88	1.74	94.0	87.0	62.0-136			7.73	20
2-Chloronaphthalene	2.00	1.97	1.84	98.5	92.0	64.0-140			6.82	20
(S) Nitrobenzene-d5				101	90.5	31.0-160				
(S) 2-Fluorobiphenyl				100	93.5	48.0-148				
(S) p-Terphenyl-d14				106	77.0	37.0-146				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Delimitoris
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P	RPD between the primary and confirmatory analysis exceeded 40%.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

All Control of Marie Marie (1997)			Billing Info	rmation:						Analysis	/Conta	iner/Pr	eservativ	e	W. V.	Chain of Cust	ody Pageof_2
Martin S. Burck Associa 200 N. Wasco Ct., Hood		97031	200 N. V	ts Payable Wasco Ct. Iver, OR 97	031	Pres Chk										Pad) Se Analytical *
Report to: Iosh Owen		GA .	Email To:	msbaenviro	onmental.com											12065 Lebenon Mount Arlet, TH Phone: 615-758	37122 2027 AND
Project Description: North Star Casteel				City/State Collected: Va	ancouver, WA											Phone: 800-767- Fax: 615-758-58	5858 273777777
thone; 541,387,4422	North Star			MSBAHRO	OR-NSTARCAST	TEE				# List						Table #	47640
Tan White	Site/Facility 10			P.O.# North Sta					1	題	PAHs					Acctnum:	
collected by (signature): Third mmediately acked on log N Y Y	Rush? (L Same Do Next Day Two Day Three D	5 Day		Quote #	esuits Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D - VOCs	8270 E SIM - P.	Bs	1 As			Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Critics	NWT	NW	NW	8260	8270	PC	Total		Hold	Shipped Via:	Sample 6 (lab only)
521-1	gras	55	l'	4/30/2	1 0934	3						1					-01
529-1 Dup	gras	55	11	4/30/	1 0934	3						V					
530-0.5	gras	55	0.5	4/30/2	1 1000	3				1.5	3.33	1	29			L Young	-02
531-0	arsh	. 55	0	4/30/2	BEETS DECEMPORTURES PRODUCTIONS	3			/				6				-03
532-1.5	areb	55	1.5'	4/31/2	1 (233	3			/							76.08	-04
533 -9	grab	55	9'	4 30 2	1 1256	3			/	1		V			1		-05
534-2	Gra5	-55	2'	4/30/2	1329	3			1	ă						1	1-do
535-05	Grab	55	0.5	4/30/2	1 1512	4			1	1							-07
536-1	amb	55	1'	4/30/2	4 1518	4	1		V	4.5			V				-08
537-1	Grab Remarks:	55	11	4/30/2	1 1524	4	100		1		^		1				-09
Matric 5 - Soll AIR - Air F - Filter 8W - Groundwater B - Blosssay WW - WasteWater NW - Drinking Water OT - Other OT = Distilled Water OT2 = jab Provided Water	Samples return	ned via: dExCou	rier		Tracking #	988	(3.00	DY7	4/2	pH Flow		Tem		Bo Co Su	C Seal C Signed ttles as rrect be fficient	ple Receipt Present/Intac I/Accurate: rrive intact ottles used; tvolume sent If Application Teadpace:	
telinquished by: (Signature)		Date: 5)	21	15:30	Received by: (Signa Received by: (Signa	ture)	37.77			_	nk Rece	1	RS / NO CHCL / Me TBR tles Receiv	ioH Pr	eservat	lon Correct/	Checked:YN Login: Date/Time
	. v . iii	1000			A A		1			21	1 1 = 2	2.0	52				
elinquished by : (Signature)		Date:	T	lme:	Received for lab by		1			Date: 05/0	14/21	Thn	120	O H	old:	i e	Condition: NCP / OK

	4750		Billing Infor	mation:	7 7 2 20		6.74	1	A	unalysis /	/ Contai	iner / Pre	eservativ	e			Chain of Custody	Page 2-01 3
Martin S. Burck Associat 200 N. Wasco Ct., Hood I		97031	200 N. W	s Payable /asco Ct. ver, OR 970)31	Pres Chk										T I	Pace/ National Co	Analytical*
Report to: Josh Owen			Email To: jowen@s	msbaenviro	onmental.com				7								12065 Lebanon Rd Mount Arliet, TN 371 Phone: 615-758-585	4344
Project Description: North Star Casteel				City/State Collected: Va	incouver, WA								Р				Phone: 800-767-585 Fax: 615-758-5859	BIS WATE
Phone: 541.387.4422 Fax: 541.387.4813	Client Project &			Lab Project # MSBAHRO	R-NSTARCAST	EE			3	M List			Ü				Table #	7640
Collected by (print):	Site/Facility ID			P.O.# North Sta			Design		a	-	AHs	-	and				Acctnum	
Collected by (signature): Immediately Packed on ice N Y	Rush? (Li Serne Day Two Day Three Day	5 Day		Quote #	esults Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D - VOCs	8270 E SIM - PAHS	Bs	b/ As				Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	M	N	N	826	8270	PCBS	Total			Hold	Shipped Via: Remarks	Sample # (lab only
538-1.5	grab	55	1.5'	4/30/21	1552	4			V				V		-14			-10
539-1.5	grab	55	1.5'	4/30/2	THE RESIDENCE OF THE PERSON NAMED IN	4			1				1			4		-11
E6-4	1	OTI	-	4/30/2	0837	11			/	1	V	1						-12
Trip Blank		0T2				1				V						×		
	1																	
				100				1			1 30 00		1.5			7 8 1		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater	Remarks: (mail	analyfic	ul reguests	As				Cus		1 PNP0 (616)75	R 9-5858	Date : Weight COD : DV : ORITY OW CK: 9883	1 10	LBS	Shippin Special Handlin 0.00 Tatal	0.0
DW - Drinking Water OT - Other OTI = Disdited Water OT2 = Leb Provided Water	_UPS _F	edExCo			Tracking # 977	-	YT	4120	>				18	W.E. 2004	ugar 412			
Relinquished by Signature)		Date: 5 3	21	Time: \5:30	Received by: (Sign Received by: (Sign		*	30	e ju		of_	ac Bo	HCL/A TBR Attles Rece		If pres	ervativ	on required by Lo	gin: Date/Time
Relinquished by : (Signature)	. 9	Date:		Time:	neceived by: (sign	atrite)	100	. *			-1=Z	200	52		1	- VOIA		
Relinquished by : (Signature)		Date:	·斯 (美	Time:	Received for lab b	y: (Sign:	ature)	1		Date:	1	THE RESERVE AND ADDRESS.	me: /2	12.5	Hold:	4.		Condition:

			Billing Info	rmatio	on:					A	Analysis	/ Contai	ner / Pr	eservativ	e			Chain of Custody	Page of _2
Martin S. Burck Associa 200 N. Wasco Ct., Hood		97031	Account 200 N. V				Pres Chk			· -								Pace	Analytical*
200 N. Wasco Ct., Hood	niver, on	37031	Hood Ri	ver,	OR 970	31												This year or	
Report to: Josh Owen			Email To:	msb	aenviro	nmental.com												12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	8
Project Description: North Star Casteel	100			City	/State ected: Va	ncouver, WA												Phone: 800-767-58 Fax: 615-758-5859	° 63441.
Phone: 541.387.4422 Fax: 541.387.4813	Client Project	#			Project # BAHRO	R-NSTARCAST	EE		- N A		OM List							B2	12
Collected by (print): - Jan White	Site/Facility ID	#		P.O.	# rth Star						- RBDM	PAHs			Satt			Acctnum:	
Collected by (signature):		ab MUST Be		Que	ote#			GID	×	×	OCs							Template: Prelogin:	
Immediately Packed on Ice N Y	Same Da Next Day Two Day Three Da	5 Day	Day (Rad Only) ay (Rad Only)		Date Re	sults Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D - VOCs	DESIM						TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	T	Date	Time	Cntrs	MM	N	MN	826	8270					Hold	Shipped Via:	Sample # (lab only)
529-1	grab	55	11'	14	130/21	0934	3	25.1								14 - 18 m			I managed as
529-1 Dup	gras	55	1'		1/30/2		3												
530-0.5	gras	- 55	0.5	-	130/21	SEA PROPERTY AND ADDRESS OF THE PARTY OF THE	3	15.62											Sell of
531-0	grab	55	0	14	130/21	1025	3			4	1								
532-1.5	greb	SS	1.5	ч	30/21	1233	3												
533-9	grab	55	9'		30/21	1256	3			14 4 5	1						t		
534-2	gras	55	21	Ч	30/21	1329	3											V.61	200
535-05	grab	55	0.5	ч	130/2	1512	4							1					
536-1	gmb	55	1'	l	130/2	1518	4												
537-1	Grab	55	11	L	130/21	1524	4		0						per per committee				
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:		£							3"	pH	á	Ter	-17	_	COC S Bottl	Seal P Signed es ar	ole Receipt C resent/Intact /Accurate: rive intact: ttles used:	- NP VY N - Y N - Y N
DW - Drinking Water DT - Other OT1 = Distilled Water OT2 = Lab Provided Water	Samples return UPSFe	dExCou				Tracking # 9	88	30	108	7 9	112			€ / No		Suffi VOA 2	cient Cero H	volume sent: If Applicated seadspace: on Correct/Ch	ole Y N
Relinquished by: (Signature) Relinquished by: (Signature)		Date:	21	Time:	:30	Received by: (Signa					AZ Temp:	07	1	HCL/N TBR ottles Recei	- J 15	E		n required by Lo	
(Signature)								46			\$100 profession (A) 2	1=20)	52					
Relinquished by : (Signature)	and the same	Date:		Time:		Received for lab by	(Signa	ture)			Date:	1		me: [2 ⁶	7 10	Hold:			Condition: NCF / OK

			Billing Info	ormation:					_ A	Analysis ,	/ Contai	iner / Pre	servati	ve			Chain of Custody	Page 2 of 2
Martin S. Burck Associa 200 N. Wasco Ct., Hood		97031	200 N. V	ts Payable Wasco Ct. iver, OR 970	031	Pres Chk											Pace A	Analytical * the for Tageting & Indovention
Report to: Josh Owen			Email To:	msbaenviro	onmental.com												12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585	
Project Description: North Star Castee	ı		10	City/State Collected: Va	ncouver, WA												Phone: 800-767-5859 Fax: 615-758-5859	
Phone: 541.387.4422 Fax: 541.387.4813	Client Project North Star		in vis	Lab Project # MSBAHRO	R-NSTARCAS	TEE				OM List			75				L# Table#	
Collected by (print): Jan White	Site/Facility ID)#		P.O. # North Star	l e					- RBDM	AHS			a section			Acctnum:	
Collected by (signature):	Rush? (L	ab MUST Be		Quote #			CID	X	×C	- VOCs	0 1						Template: Prelogin:	
Immediately Packed on Ice N Y	Next Day Two Day Three Day	10 D	y (Rad Only) Day (Rad Only)	Date R	esults Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	1- Q0	DESIM	- 1					TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	N	N	N N	8260D	8270					Hold	Shipped Via:	Sample # (lab only)
538-1.5	gras	55	1.5	4/30/21	1552	4				-		- 12		- 96		-		
539-1.5	grab	55	1.5	4/30/21	1601	4												
EB-4	-	OTI		4/30/21	0837	11												
Trip Blank	17-	OT2	_			- 1		177								×		
and the second s				-	1.0													
referrings to											700		A 4	-				
	- Mercany Constant	- 7	1 1 1 1 1	- 1 /- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				3.5				VBILLEY				1000		4.00
			9															
					1.14	- 3									al,			
	4					d												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: (mail	analytica	ul requests	s As	A-P.			pH	w	Tem			COC S Bottl	Seal P Signed les ar ect bo	ole Receipt Chresent/Intact /Accurate: rive intact: ttles used: volume sent:	ecklist : _NP _Y _N _Y _N _Y _N _Y _N _Y _N
OT - Other OT1 = Distilled Water OT2 = Lab Provided Water		edExCo	ourier		Tracking #		98	831	YOC	71	112	0			VOA 2	Zero H	If Applicab eadspace:	<u>le</u> YN
Relinquished by (Signature)		Date: 5 3		Time: \5:30	Received by: (Sign	nature)				Trip Bl	ank Rec	eived: (BS / NO HEL / TBR		Prese	ervati	on Correct/Che	
Relinquished by : (Signature)	75 %	Date:		Time:	Received by: (Sign	nature)	2. Jr.			Temp:	1-2.	-	tles Rec		If pres	servatio	on required by Log	gin: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab b	y: (Signa	hue			Date: 05/	64/	Tin		00	Hold:			Condition: NCF / OK

Time estimate: oh Time spent: oh	
Members	
HM Hailey Melson (responsible) Brian Ford	
Parameter(s) past holding time	
Temperature not in range	
Improper container type	
pH not in range	
Insufficient sample volume	
Sample is biphasic	
Vials received with headspace	
◆ Broken container	
Sufficient sample remains	
If broken container: Insufficient packing material around container	iner
If broken container: Insufficient packing material inside cooler	
✓ If broken container: Improper handling by carrier:_FedEx	
If broken container: Sample was frozen	
If broken container: Container lid not intact	
Client informed by Call	
Client informed by Email	
Client informed by Voicemail	
Date/Time:	
PM initials: bjf	
Client Contact:	
Comments	
Hailey Melson	5 May 2021 2:52 PM
Sample S29-1 Dup 8oz jar was received broken. Sample was transferred into a new jar but there may be broken glass in the jar.	sferred into a new jar but there
Hailey Melson	5 May 2021 2:53 PM
Also i apologize the Kanban will not let me add the COC.	
Brian Ford	5 May 2021 2:58 PM
proceed with S29-1 Dup analysis from salvaged sample.	
also, please log the trip blank off hold for analysis requested on the COC	the COC.

DRAFT

10) Sample Date 4/30/21 (#L1347655)

Ss

Sc

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1347655

Samples Received:

05/04/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

³ Ss

⁴ Cn

Oi.
⁶ Qc

Tc: Table of Contents
Ss: Sample Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Cp: Cover Page

Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SP1-A L1347655-01	6
SP1-B L1347655-02	9
SP1-C L1347655-03	12
SP2-ABC L1347655-04	15
SP3-ABC L1347655-05	18
TRIP BLANK L1347655-06	21
Qc: Quality Control Summary	23
Total Solids by Method 2540 G-2011	23
Mercury by Method 7471B	25
Metals (ICPMS) by Method 6020B	26
Volatile Organic Compounds (GC) by Method NWTPHGX	27
Volatile Organic Compounds (GC/MS) by Method 8260D	28
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	38
Polychlorinated Biphenyls (GC) by Method 8082 A	39
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	41
GI: Glossary of Terms	44

45

46

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	
SP1-A L1347655-01 Solid			Jon White	04/30/21 11:55	05/04/21 12:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1665918	1	05/08/21 11:04	05/08/21 11:21	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1666350	1	05/07/2112:54	05/08/21 01:52	SD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	10	05/08/21 16:00	05/10/21 00:24	TM	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/21 16:00	05/09/21 21:59	TM	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1666156	25	04/30/21 11:55	05/09/21 09:39	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1666254	1	04/30/2111:55	05/07/21 11:55	ACG	Mt. Juliet, TN
	WG1666732	1		05/09/21 16:10	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1667401		05/08/21 06:40	05/13/21 06:06	JNJ	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A		1	05/11/21 09:04		LEA	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1667777	1	05/11/21 08:55	05/11/21 16:33	LEA	wit. Juliet, TN
			Collected by	Collected date/time		
SP1-B L1347655-02 Solid			Jon White	04/30/21 12:05	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Duteil	DilutiOII	date/time	date/time	raidiyət	Location
Total Solids by Method 2540 G-2011	WG1665918	1	05/08/21 11:04	05/08/21 11:21	KDW	Mt. Juliet, TN
,						Mt. Juliet, TN Mt. Juliet, TN
Mercury by Method 7471B	WG1666350	1	05/07/2112:54	05/08/21 01:54	SD	•
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/2116:00	05/09/21 22:02	TM	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1666839	5	05/08/21 16:00	05/10/21 08:13	TM	,
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1666156	25	04/30/2112:05	05/09/21 10:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1666254	1	04/30/2112:05	05/07/21 12:14	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1666732	1	05/08/21 06:40	05/09/21 15:31	CAG	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1668054	1	05/11/21 08:23	05/11/21 22:35	JNJ	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1668054	1	05/11/21 08:23	05/13/21 21:22	MTJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1667777	1	05/11/21 08:55	05/11/21 16:53	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	:e/time
SP1-C L1347655-03 Solid			Collected by Jon White	Collected date/time 04/30/21 12:17	Received dat 05/04/2112:0	
	Datch	Dilution	Jon White	04/30/21 12:17	05/04/21 12:0	00
SP1-C L1347655-03 Solid Method	Batch	Dilution	Jon White Preparation	04/30/21 12:17 Analysis		
Method			Jon White Preparation date/time	04/30/2112:17 Analysis date/time	05/04/2112:0 Analyst	Location
Method Total Solids by Method 2540 G-2011	WG1665918	1	Preparation date/time 05/08/2111:04	04/30/21 12:17 Analysis date/time 05/08/21 11:21	05/04/2112:0 Analyst KDW	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B	WG1665918 WG1666350	1 1	Jon White Preparation date/time 05/08/2111:04 05/07/2112:54	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56	O5/04/2112:0 Analyst KDW SD	Location Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B	WG1665918 WG1666350 WG1666839	1 1 5	Jon White Preparation date/time 05/08/2111:04 05/07/2112:54 05/08/2116:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06	Analyst KDW SD TM	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B	WG1665918 WG1666350 WG1666839 WG1666839	1 1 5 50	Jon White Preparation date/time 05/08/2111:04 05/07/2112:54 05/08/2116:00 05/08/2116:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17	Analyst KDW SD TM TM	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156	1 1 5 50 25	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23	Analyst KDW SD TM TM DWR	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D	WG1665918 WG1666350 WG1666839 WG1666156 WG1666254	1 1 5 50 25 1	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32	Analyst KDW SD TM TM DWR ACG	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732	1 1 5 50 25 1	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18	Analyst KDW SD TM TM DWR ACG CAG	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054	1 1 5 50 25 1 1	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45	Analyst KDW SD TM TM DWR ACG CAG JNJ	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732	1 1 5 50 25 1	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18	Analyst KDW SD TM TM DWR ACG CAG	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054	1 1 5 50 25 1 1	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45	Analyst KDW SD TM TM DWR ACG CAG JNJ	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054	1 1 5 50 25 1 1	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45	Analyst KDW SD TM TM DWR ACG CAG JNJ	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054	1 1 5 50 25 1 1	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665918 WG1666350 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG1667777	1 1 5 50 25 1 1 1	Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054	1 1 5 50 25 1 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White Preparation	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG1667777	1 1 5 50 25 1 1 1 1	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0	Location Mt. Juliet, TN Location
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG1667777	1 1 5 50 25 1 1 1 1 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B	WG1665918 WG1666350 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG1667777 Batch WG1665918 WG1666350	1 1 5 50 25 1 1 1 1 1	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/07/21 12:54	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 15:18 05/11/21 12:32 05/09/21 15:18 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst	Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-04 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1665918 WG1666350 WG1666839	1 1 5 50 25 1 1 1 1 1 1 1 20	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1665918 WG1666350 WG1666839 WG1666839	1 1 5 50 25 1 1 1 1 1 1 Dilution	Preparation date/time 05/08/21 11:04 05/08/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM TM TM TM TM TM TM TM	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1665918 WG1666350 WG1666839 WG1666839 WG1666839	1 1 5 50 25 1 1 1 1 1 1 1 20 5 25	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09 05/09/21 10:45	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dal 05/04/21 12:0 Analyst KDW SD TM TM DWR ACG TM TM DWR	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254	1 1 5 50 25 1 1 1 1 1 1 Dilution	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 12:09 05/09/21 12:51	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG CAG CAG CAG CAG CAG CAG CAG CAG	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1665918 WG1666350 WG1666839 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732	1 1 5 50 25 1 1 1 1 1 1 1 20 5 25 1 1 20	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/07/21 12:54 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00 04/30/21 00:00 05/08/21 06:40	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 12:51 05/08/21 12:51 05/08/21 20:17	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG CAG CAG CAG CAG CAG CAG CAG CAG	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1666350 WG1666350 WG166639 WG1666839 WG1666156 WG1666732 WG1666732 WG1666754	1 1 5 50 25 1 1 1 1 1 1 20 5 25 1 20 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00 04/30/21 00:00 05/08/21 106:40 05/11/21 08:23	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09 05/09/21 10:45 05/08/21 20:17 05/08/21 20:17	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG JNJ LEA	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Wolatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16665918 WG1666350 WG1666839 WG1666839 WG1666839 WG1666839 WG1666156 WG1666732 WG1666732 WG1668054	1 1 5 50 25 1 1 1 1 1 1 20 5 25 1 20 1 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00 04/30/21 00:00 05/08/21 00:00 05/08/21 00:00 05/08/21 00:00 05/08/21 00:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/07/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09 05/09/21 10:45 05/07/21 12:51 05/08/21 20:17 05/11/21 22:55 05/13/21 21:33	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16667777 Batch WG1666350 WG1666350 WG166639 WG1666839 WG1666156 WG1666732 WG1666732 WG1666754	1 1 5 50 25 1 1 1 1 1 1 20 5 25 1 20 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00 04/30/21 00:00 05/08/21 106:40 05/11/21 08:23	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09 05/09/21 10:45 05/08/21 20:17 05/08/21 20:17	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG JNJ LEA	Location Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Metals (ICPMS) by Method 6020B Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM SP2-ABC L1347655-O4 Solid Method Total Solids by Method 2540 G-2011 Mercury by Method 7471B Metals (ICPMS) by Method 6020B Wolatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Polychlorinated Biphenyls (GC) by Method 8082 A Polychlorinated Biphenyls (GC) by Method 8082 A	WG1665918 WG1666350 WG1666839 WG1666839 WG1666156 WG1666254 WG1666732 WG1668054 WG16665918 WG1666350 WG1666839 WG1666839 WG1666839 WG1666839 WG1666156 WG1666732 WG1666732 WG1668054	1 1 5 50 25 1 1 1 1 1 1 20 5 25 1 20 1 1	Preparation date/time 05/08/21 11:04 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 05/08/21 16:00 04/30/21 12:17 04/30/21 12:17 05/08/21 06:40 05/11/21 08:23 05/11/21 08:55 Collected by Jon White Preparation date/time 05/08/21 11:04 05/08/21 16:00 05/08/21 16:00 04/30/21 00:00 04/30/21 00:00 05/08/21 00:00 05/08/21 00:00 05/08/21 00:00 05/08/21 00:00	04/30/21 12:17 Analysis date/time 05/08/21 11:21 05/08/21 01:56 05/09/21 22:06 05/10/21 08:17 05/09/21 10:23 05/09/21 12:32 05/09/21 15:18 05/11/21 22:45 05/11/21 17:12 Collected date/time 04/30/21 00:00 Analysis date/time 05/08/21 11:21 05/08/21 01:58 05/10/21 00:27 05/09/21 22:09 05/09/21 10:45 05/07/21 12:51 05/08/21 20:17 05/11/21 22:55 05/13/21 21:33 05/11/21 22:06	Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst KDW SD TM TM DWR ACG CAG JNJ LEA Received dat 05/04/2112:0 Analyst	Location Mt. Juliet, TN

NORTH STAR

Martin S. Burck Assoc.-Hood River, OR

L1347655

05/17/21 09:39

3 of 47

¹Cp

SAMPLE SUMMARY

SP3-ABC L1347655-05 Solid

Volatile Organic Compounds (GC/MS) by Method 8260D

Collected by Jon White

date/time

05/09/21 17:10

1

date/time

05/09/21 17:10

JHH

Mt. Juliet, TN

Collected date/time Received date/time

04/30/21 00:00 05/04/2112:00

² Tc

WG1667276

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford Brian Ford

Project Manager

SP1-A

SAMPLE RESULTS - 01

Collected date/time: 04/30/21 11:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.7		1	05/08/2021 11:21	WG1665918

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.131		0.0418	1	05/08/2021 01:52	WG1666350

⁴Cn

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	6.21		1.04	5	05/09/2021 21:59	WG1666839
Barium	78.8		5.22	10	05/10/2021 00:24	WG1666839
Cadmium	ND		1.04	5	05/09/2021 21:59	WG1666839
Chromium	25.3		5.22	5	05/09/2021 21:59	WG1666839
Lead	100		4.18	10	05/10/2021 00:24	WG1666839
Selenium	ND		2.61	5	05/09/2021 21:59	WG1666839
Silver	ND		0.522	5	05/09/2021 21:59	WG1666839

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		2.76	25	05/09/2021 09:39	WG1666156
(S) a,a,a-Trifluorotoluene(FID)	95.8		77.0-120		05/09/2021 09:39	WG1666156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	<u>C3</u>	0.0552	1	05/07/2021 11:55	WG1666254
Acrylonitrile	ND		0.0138	1	05/07/2021 11:55	WG1666254
Benzene	ND		0.00110	1	05/07/2021 11:55	WG1666254
Bromobenzene	ND		0.0138	1	05/07/2021 11:55	WG1666254
Bromodichloromethane	ND		0.00276	1	05/07/2021 11:55	WG1666254
Bromoform	ND		0.0276	1	05/07/2021 11:55	WG1666254
Bromomethane	ND		0.0138	1	05/07/2021 11:55	WG1666254
n-Butylbenzene	ND		0.0138	1	05/07/2021 11:55	WG1666254
sec-Butylbenzene	ND		0.0138	1	05/07/2021 11:55	WG1666254
tert-Butylbenzene	ND		0.00552	1	05/07/2021 11:55	WG1666254
Carbon disulfide	ND		0.0138	1	05/07/2021 11:55	WG1666254
Carbon tetrachloride	ND		0.00552	1	05/07/2021 11:55	WG1666254
Chlorobenzene	ND		0.00276	1	05/07/2021 11:55	WG1666254
Chlorodibromomethane	ND		0.00276	1	05/07/2021 11:55	WG1666254
Chloroethane	ND		0.00552	1	05/07/2021 11:55	WG1666254
Chloroform	ND		0.00276	1	05/07/2021 11:55	WG1666254
Chloromethane	ND		0.0138	1	05/07/2021 11:55	WG1666254
2-Chlorotoluene	ND		0.00276	1	05/07/2021 11:55	WG1666254
4-Chlorotoluene	ND		0.00552	1	05/07/2021 11:55	WG1666254
1,2-Dibromo-3-Chloropropane	ND		0.0276	1	05/07/2021 11:55	WG1666254
1,2-Dibromoethane	ND		0.00276	1	05/07/2021 11:55	WG1666254
Dibromomethane	ND		0.00552	1	05/07/2021 11:55	WG1666254
1,2-Dichlorobenzene	ND		0.00552	1	05/07/2021 11:55	WG1666254
1,3-Dichlorobenzene	ND		0.00552	1	05/07/2021 11:55	WG1666254
1,4-Dichlorobenzene	ND		0.00552	1	05/07/2021 11:55	WG1666254
Dichlorodifluoromethane	ND		0.00276	1	05/07/2021 11:55	WG1666254
1,1-Dichloroethane	ND		0.00276	1	05/07/2021 11:55	WG1666254

Collected date/time: 04/30/21 11:55

L1347655

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
1,2-Dichloroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,1-Dichloroethene	ND	0.00276	1	05/07/2021 11:55	WG1666254
cis-1,2-Dichloroethene	ND	0.00276	1	05/07/2021 11:55	WG1666254
trans-1,2-Dichloroethene	ND	0.00552	1	05/07/2021 11:55	WG1666254
1,2-Dichloropropane	ND	0.00552	1	05/07/2021 11:55	WG1666254
1,1-Dichloropropene	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,3-Dichloropropane	ND	0.00552	1	05/07/2021 11:55	WG1666254
cis-1,3-Dichloropropene	ND	0.00276	1	05/07/2021 11:55	WG1666254
trans-1,3-Dichloropropene	ND	0.00552	1	05/07/2021 11:55	WG1666254
2,2-Dichloropropane	ND	0.00276	1	05/07/2021 11:55	WG1666254
Di-isopropyl ether	ND	0.00110	1	05/07/2021 11:55	WG1666254
Ethylbenzene	ND	0.00276	1	05/07/2021 11:55	WG1666254
Hexachloro-1,3-butadiene	ND	0.0276	1	05/07/2021 11:55	WG1666254
Isopropylbenzene	0.00384	0.00276	1	05/07/2021 11:55	WG1666254
p-lsopropyltoluene	ND	0.00552	1	05/07/2021 11:55	WG1666254
2-Butanone (MEK)	ND	0.110	1	05/07/2021 11:55	WG1666254
Methylene Chloride	ND	0.0276	1	05/07/2021 11:55	WG1666254
4-Methyl-2-pentanone (MIBK)	ND	0.0276	1	05/07/2021 11:55	WG1666254
Methyl tert-butyl ether	ND	0.00110	1	05/07/2021 11:55	WG1666254
Naphthalene	0.0468	0.0138	1	05/07/2021 11:55	WG1666254
n-Propylbenzene	ND	0.00552	1	05/07/2021 11:55	WG1666254
Styrene	ND	0.0138	1	05/07/2021 11:55	WG1666254
1,1,1,2-Tetrachloroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,1,2,2-Tetrachloroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,1,2-Trichlorotrifluoroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
Tetrachloroethene	0.00899	0.00276	1	05/07/2021 11:55	WG1666254
Toluene	0.0350	0.00552	1	05/07/2021 11:55	WG1666254
1,2,3-Trichlorobenzene	ND	0.0138	1	05/07/2021 11:55	WG1666254
1,2,4-Trichlorobenzene	ND	0.0138	1	05/07/2021 11:55	WG1666254
1,1,1-Trichloroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,1,2-Trichloroethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
Trichloroethene	ND	0.00110	1	05/07/2021 11:55	WG1666254
Trichlorofluoromethane	ND	0.00276	1	05/07/2021 11:55	WG1666254
1,2,3-Trichloropropane	ND	0.0138	1	05/07/2021 11:55	WG1666254
1,2,4-Trimethylbenzene	0.00657	0.00552	1	05/07/2021 11:55	WG1666254
1,2,3-Trimethylbenzene	ND	0.00552	1	05/07/2021 11:55	WG1666254
1,3,5-Trimethylbenzene	ND	0.00552	1	05/07/2021 11:55	WG1666254
Vinyl chloride	ND	0.00276	1	05/07/2021 11:55	WG1666254
Xylenes, Total	0.00782	0.00717	1	05/07/2021 11:55	WG1666254
(S) Toluene-d8	101	75.0-131		05/07/2021 11:55	WG1666254
(S) 4-Bromofluorobenzene	99.2	67.0-138		05/07/2021 11:55	WG1666254
(S) 1,2-Dichloroethane-d4	94.6	70.0-130		05/07/2021 11:55	WG1666254

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	42.2		4.18	1	05/09/2021 16:10	WG1666732
Residual Range Organics (RRO)	76.4		10.4	1	05/09/2021 16:10	WG1666732
(S) o-Terphenyl	46.9		18.0-148		05/09/2021 16:10	WG1666732

Ss

Cn

GI

Collected date/time: 04/30/21 11:55

Polychlorinated Biphenyls (GC) by Method 8082 A

Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
mg/kg		mg/kg		date / time	
ND		0.0355	1	05/13/2021 06:06	WG1667401
ND		0.0355	1	05/13/2021 06:06	WG1667401
ND		0.0355	1	05/13/2021 06:06	WG1667401
ND		0.0355	1	05/13/2021 06:06	WG1667401
ND		0.0178	1	05/13/2021 06:06	WG1667401
ND		0.0178	1	05/13/2021 06:06	WG1667401
0.286		0.0178	1	05/13/2021 06:06	WG1667401
ND		0.0178	1	05/13/2021 06:06	WG1667401
85.6		10.0-135		05/13/2021 06:06	WG1667401
81.6		10.0-139		05/13/2021 06:06	WG1667401
	mg/kg ND	mg/kg ND	mg/kg mg/kg ND 0.0355 ND 0.0355 ND 0.0355 ND 0.0178 85.6 10.0-135	mg/kg mg/kg ND 0.0355 1 ND 0.0355 1 ND 0.0355 1 ND 0.0355 1 ND 0.0178 1 ND 0.0178 1 0.286 0.0178 1 ND 0.0178 1 85.6 10.0-135	mg/kg mg/kg date / time ND 0.0355 1 05/13/2021 06:06 ND 0.0178 1 05/13/2021 06:06 ND 0.0178 1 05/13/2021 06:06 0.286 0.0178 1 05/13/2021 06:06 ND 0.0178 1 05/13/2021 06:06 ND 0.0178 1 05/13/2021 06:06 85.6 10.0-135 05/13/2021 06:06

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00627	1	05/11/2021 16:33	WG1667777
Acenaphthene	ND	0.00627	1	05/11/2021 16:33	WG1667777
Acenaphthylene	ND	0.00627	1	05/11/2021 16:33	WG1667777
Benzo(a)anthracene	0.0168	0.00627	1	05/11/2021 16:33	WG1667777
Benzo(a)pyrene	0.0194	0.00627	1	05/11/2021 16:33	WG1667777
Benzo(b)fluoranthene	0.0369	0.00627	1	05/11/2021 16:33	WG1667777
Benzo(g,h,i)perylene	0.0281	0.00627	1	05/11/2021 16:33	WG1667777
Benzo(k)fluoranthene	0.0124	0.00627	1	05/11/2021 16:33	WG1667777
Chrysene	0.0229	0.00627	1	05/11/2021 16:33	WG1667777
Dibenz(a,h)anthracene	ND	0.00627	1	05/11/2021 16:33	WG1667777
Fluoranthene	0.0380	0.00627	1	05/11/2021 16:33	WG1667777
Fluorene	ND	0.00627	1	05/11/2021 16:33	WG1667777
Indeno(1,2,3-cd)pyrene	0.0250	0.00627	1	05/11/2021 16:33	WG1667777
Naphthalene	ND	0.0209	1	05/11/2021 16:33	WG1667777
Phenanthrene	0.0221	0.00627	1	05/11/2021 16:33	WG1667777
Pyrene	0.0373	0.00627	1	05/11/2021 16:33	WG1667777
1-Methylnaphthalene	ND	0.0209	1	05/11/2021 16:33	WG1667777
2-Methylnaphthalene	ND	0.0209	1	05/11/2021 16:33	WG1667777
2-Chloronaphthalene	ND	0.0209	1	05/11/2021 16:33	WG1667777
(S) Nitrobenzene-d5	65.7	14.0-149		05/11/2021 16:33	WG1667777
(S) 2-Fluorobiphenyl	71.4	34.0-125		05/11/2021 16:33	WG1667777
(S) p-Terphenyl-d14	86.6	23.0-120		05/11/2021 16:33	WG1667777

PAGE:

8 of 47

Collected date/time: 04/30/21 12:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.5		1	05/08/2021 11:21	WG1665918

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0419	1	05/08/2021 01:54	WG1666350

Cn

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Arsenic	2.92		1.05	5	05/09/2021 22:02	WG1666839
Barium	25.5		2.62	5	05/10/2021 08:13	WG1666839
Cadmium	ND		1.05	5	05/09/2021 22:02	WG1666839
Chromium	98.0		5.24	5	05/09/2021 22:02	WG1666839
Lead	7.14		2.09	5	05/09/2021 22:02	WG1666839
Selenium	ND		2.62	5	05/09/2021 22:02	WG1666839
Silver	ND		0.524	5	05/09/2021 22:02	WG1666839

Gl

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		2.75	25	05/09/2021 10:01	WG1666156
(S) a,a,a-Trifluorotoluene(FID)	96.0		77.0-120		05/09/2021 10:01	WG1666156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	<u>C3</u>	0.0550	1	05/07/2021 12:14	WG1666254
Acrylonitrile	ND		0.0138	1	05/07/2021 12:14	WG1666254
Benzene	0.00190		0.00110	1	05/07/2021 12:14	WG1666254
Bromobenzene	ND		0.0138	1	05/07/2021 12:14	WG1666254
Bromodichloromethane	ND		0.00275	1	05/07/2021 12:14	WG1666254
Bromoform	ND		0.0275	1	05/07/2021 12:14	WG1666254
Bromomethane	ND		0.0138	1	05/07/2021 12:14	WG1666254
n-Butylbenzene	ND		0.0138	1	05/07/2021 12:14	WG1666254
sec-Butylbenzene	ND		0.0138	1	05/07/2021 12:14	WG1666254
tert-Butylbenzene	ND		0.00550	1	05/07/2021 12:14	WG1666254
Carbon disulfide	ND		0.0138	1	05/07/2021 12:14	WG1666254
Carbon tetrachloride	ND		0.00550	1	05/07/2021 12:14	WG1666254
Chlorobenzene	ND		0.00275	1	05/07/2021 12:14	WG1666254
Chlorodibromomethane	ND		0.00275	1	05/07/2021 12:14	WG1666254
Chloroethane	ND		0.00550	1	05/07/2021 12:14	WG1666254
Chloroform	ND		0.00275	1	05/07/2021 12:14	WG1666254
Chloromethane	ND		0.0138	1	05/07/2021 12:14	WG1666254
2-Chlorotoluene	ND		0.00275	1	05/07/2021 12:14	WG1666254
4-Chlorotoluene	ND		0.00550	1	05/07/2021 12:14	WG1666254
1,2-Dibromo-3-Chloropropane	ND		0.0275	1	05/07/2021 12:14	WG1666254
1,2-Dibromoethane	ND		0.00275	1	05/07/2021 12:14	WG1666254
Dibromomethane	ND		0.00550	1	05/07/2021 12:14	WG1666254
1,2-Dichlorobenzene	ND		0.00550	1	05/07/2021 12:14	WG1666254
1,3-Dichlorobenzene	ND		0.00550	1	05/07/2021 12:14	WG1666254
1,4-Dichlorobenzene	ND		0.00550	1	05/07/2021 12:14	WG1666254
Dichlorodifluoromethane	ND		0.00275	1	05/07/2021 12:14	WG1666254
1,1-Dichloroethane	ND		0.00275	1	05/07/2021 12:14	WG1666254

Collected date/time: 04/30/21 12:05

SAMPLE RESULTS - 02

1347655

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry) Qua	alifier RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
1,2-Dichloroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,1-Dichloroethene	ND	0.00275	1	05/07/2021 12:14	WG1666254
cis-1,2-Dichloroethene	ND	0.00275	1	05/07/2021 12:14	WG1666254
trans-1,2-Dichloroethene	ND	0.00550	1	05/07/2021 12:14	WG1666254
1,2-Dichloropropane	ND	0.00550	1	05/07/2021 12:14	WG1666254
1,1-Dichloropropene	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,3-Dichloropropane	ND	0.00550	1	05/07/2021 12:14	WG1666254
cis-1,3-Dichloropropene	ND	0.00275	1	05/07/2021 12:14	WG1666254
trans-1,3-Dichloropropene	ND	0.00550	1	05/07/2021 12:14	WG1666254
2,2-Dichloropropane	ND	0.00275	1	05/07/2021 12:14	WG1666254
Di-isopropyl ether	ND	0.00110	1	05/07/2021 12:14	WG1666254
Ethylbenzene	0.00283	0.00275	1	05/07/2021 12:14	WG1666254
Hexachloro-1,3-butadiene	ND	0.0275	1	05/07/2021 12:14	WG1666254
Isopropylbenzene	ND	0.00275	1	05/07/2021 12:14	WG1666254
p-lsopropyltoluene	ND	0.00550	1	05/07/2021 12:14	WG1666254
2-Butanone (MEK)	ND	0.110	1	05/07/2021 12:14	WG1666254
Methylene Chloride	ND	0.0275	1	05/07/2021 12:14	WG1666254
4-Methyl-2-pentanone (MIBK)	ND	0.0275	1	05/07/2021 12:14	WG1666254
Methyl tert-butyl ether	ND	0.00110	1	05/07/2021 12:14	WG1666254
Naphthalene	0.0239	0.0138	1	05/07/2021 12:14	WG1666254
n-Propylbenzene	ND	0.00550	1	05/07/2021 12:14	WG1666254
Styrene	ND	0.0138	1	05/07/2021 12:14	WG1666254
1,1,1,2-Tetrachloroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,1,2,2-Tetrachloroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,1,2-Trichlorotrifluoroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
Tetrachloroethene	ND	0.00275	1	05/07/2021 12:14	WG1666254
Toluene	0.00931	0.00550	1	05/07/2021 12:14	WG1666254
1,2,3-Trichlorobenzene	ND <u>C4</u>	0.0138	1	05/07/2021 12:14	WG1666254
1,2,4-Trichlorobenzene	ND	0.0138	1	05/07/2021 12:14	WG1666254
1,1,1-Trichloroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,1,2-Trichloroethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
Trichloroethene	ND	0.00110	1	05/07/2021 12:14	WG1666254
Trichlorofluoromethane	ND	0.00275	1	05/07/2021 12:14	WG1666254
1,2,3-Trichloropropane	ND	0.0138	1	05/07/2021 12:14	WG1666254
1,2,4-Trimethylbenzene	0.0161	0.00550	1	05/07/2021 12:14	WG1666254
1,2,3-Trimethylbenzene	0.00574	0.00550	1	05/07/2021 12:14	WG1666254
1,3,5-Trimethylbenzene	0.00802	0.00550	1	05/07/2021 12:14	WG1666254
Vinyl chloride	ND	0.00275	1	05/07/2021 12:14	WG1666254
Xylenes, Total	0.0437	0.00715	1	05/07/2021 12:14	WG1666254
(S) Toluene-d8	102	75.0-131		05/07/2021 12:14	WG1666254
(S) 4-Bromofluorobenzene	99.4	67.0-138		05/07/2021 12:14	WG1666254
(S) 1,2-Dichloroethane-d4	97.8	70.0-130		05/07/2021 12:14	WG1666254

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	17.4		4.19	1	05/09/2021 15:31	WG1666732
Residual Range Organics (RRO)	63.2		10.5	1	05/09/2021 15:31	WG1666732
(S) o-Terphenyl	55.6		18.0-148		05/09/2021 15:31	WG1666732

Ss

Cn

GI

SAMPLE RESULTS - 02 L1347655

Collected date/time: 04/30/21 12:05

Polychlorinated Biphenyls (GC) by Method 8082 A

Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
mg/kg		mg/kg		date / time	
ND		0.0356	1	05/11/2021 22:35	WG1668054
ND		0.0356	1	05/11/2021 22:35	WG1668054
ND		0.0356	1	05/11/2021 22:35	WG1668054
ND		0.0356	1	05/11/2021 22:35	WG1668054
ND		0.0178	1	05/11/2021 22:35	WG1668054
ND		0.0178	1	05/13/2021 21:22	WG1668054
ND		0.0178	1	05/11/2021 22:35	WG1668054
ND		0.0178	1	05/11/2021 22:35	WG1668054
74.3		10.0-135		05/11/2021 22:35	WG1668054
77.9		10.0-135		05/13/2021 21:22	WG1668054
77.9		10.0-139		05/13/2021 21:22	WG1668054
74.3		10.0-139		05/11/2021 22:35	WG1668054
	mg/kg ND 74.3 77.9	mg/kg ND T4.3 T7.9	mg/kg mg/kg ND 0.0356 ND 0.0356 ND 0.0356 ND 0.0356 ND 0.0178 ND 0.0178 ND 0.0178 ND 0.0178 74.3 10.0-135 77.9 10.0-135 77.9 10.0-139	mg/kg mg/kg ND 0.0356 1 ND 0.0356 1 ND 0.0356 1 ND 0.0356 1 ND 0.0178 1 74.3 10.0-135 77.9 10.0-135 77.9 10.0-139	mg/kg date / time ND 0.0356 1 05/11/2021 22:35 ND 0.0178 1 05/11/2021 22:35 ND 0.0178 1 05/13/2021 21:22 ND 0.0178 1 05/11/2021 22:35 ND 0.0178 1 05/11/2021 22:35 ND 0.0178 1 05/11/2021 22:35 74.3 10.0-135 05/11/2021 22:35 77.9 10.0-135 05/13/2021 21:22 77.9 10.0-139 05/13/2021 21:22

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Acenaphthene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Acenaphthylene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Benzo(a)anthracene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Benzo(a)pyrene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Benzo(b)fluoranthene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Benzo(g,h,i)perylene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Benzo(k)fluoranthene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Chrysene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Dibenz(a,h)anthracene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Fluoranthene	0.00658	0.00628	1	05/11/2021 16:53	WG1667777
Fluorene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Indeno(1,2,3-cd)pyrene	ND	0.00628	1	05/11/2021 16:53	WG1667777
Naphthalene	0.0279	0.0209	1	05/11/2021 16:53	WG1667777
Phenanthrene	0.00979	0.00628	1	05/11/2021 16:53	WG1667777
Pyrene	ND	0.00628	1	05/11/2021 16:53	WG1667777
1-Methylnaphthalene	ND	0.0209	1	05/11/2021 16:53	WG1667777
2-Methylnaphthalene	ND	0.0209	1	05/11/2021 16:53	WG1667777
2-Chloronaphthalene	ND	0.0209	1	05/11/2021 16:53	WG1667777
(S) Nitrobenzene-d5	60.6	14.0-149		05/11/2021 16:53	WG1667777
(S) 2-Fluorobiphenyl	64.4	34.0-125		05/11/2021 16:53	WG1667777
(S) p-Terphenyl-d14	76.8	23.0-120		05/11/2021 16:53	WG1667777

Martin S. Burck Assoc.-Hood River, OR

L1347655

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	83.3		1	05/08/2021 11:21	WG1665918	

Mercury by Method 7471B

Collected date/time: 04/30/21 12:17

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0480	1	05/08/2021 01:56	WG1666350

Cn

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Arsenic	3.20		1.20	5	05/09/2021 22:06	WG1666839
Barium	540		30.0	50	05/10/2021 08:17	WG1666839
Cadmium	ND		1.20	5	05/09/2021 22:06	WG1666839
Chromium	17.6		6.00	5	05/09/2021 22:06	WG1666839
Lead	16.0		2.40	5	05/09/2021 22:06	WG1666839
Selenium	ND		3.00	5	05/09/2021 22:06	WG1666839
Silver	ND		0.600	5	05/09/2021 22:06	WG1666839

(GI

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		3.59	25	05/09/202110:23	WG1666156
(S) a,a,a-Trifluorotoluene(FID)	95.9		77.0-120		05/09/2021 10:23	WG1666156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	<u>C3</u>	0.0719	1	05/07/2021 12:32	WG1666254
Acrylonitrile	ND		0.0180	1	05/07/2021 12:32	WG1666254
Benzene	ND		0.00144	1	05/07/2021 12:32	WG1666254
Bromobenzene	ND		0.0180	1	05/07/2021 12:32	WG1666254
Bromodichloromethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Bromoform	ND		0.0359	1	05/07/2021 12:32	WG1666254
Bromomethane	ND		0.0180	1	05/07/2021 12:32	WG1666254
n-Butylbenzene	ND		0.0180	1	05/07/2021 12:32	WG1666254
sec-Butylbenzene	ND		0.0180	1	05/07/2021 12:32	WG1666254
tert-Butylbenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
Carbon disulfide	ND		0.0180	1	05/07/2021 12:32	WG1666254
Carbon tetrachloride	ND		0.00719	1	05/07/2021 12:32	WG1666254
Chlorobenzene	ND		0.00359	1	05/07/2021 12:32	WG1666254
Chlorodibromomethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Chloroethane	ND		0.00719	1	05/07/2021 12:32	WG1666254
Chloroform	ND		0.00359	1	05/07/2021 12:32	WG1666254
Chloromethane	ND		0.0180	1	05/07/2021 12:32	WG1666254
2-Chlorotoluene	ND		0.00359	1	05/07/2021 12:32	WG1666254
4-Chlorotoluene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,2-Dibromo-3-Chloropropane	ND		0.0359	1	05/07/2021 12:32	WG1666254
1,2-Dibromoethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Dibromomethane	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,2-Dichlorobenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,3-Dichlorobenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,4-Dichlorobenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
Dichlorodifluoromethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,1-Dichloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254

Collected date/time: 04/30/21 12:17

SAMPLE RESULTS - 03

1347655

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,2-Dichloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,1-Dichloroethene	ND		0.00359	1	05/07/2021 12:32	WG1666254
cis-1,2-Dichloroethene	ND		0.00359	1	05/07/2021 12:32	WG1666254
trans-1,2-Dichloroethene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,2-Dichloropropane	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,1-Dichloropropene	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,3-Dichloropropane	ND		0.00719	1	05/07/2021 12:32	WG1666254
cis-1,3-Dichloropropene	ND		0.00359	1	05/07/2021 12:32	WG1666254
trans-1,3-Dichloropropene	ND		0.00719	1	05/07/2021 12:32	WG1666254
2,2-Dichloropropane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Di-isopropyl ether	ND		0.00144	1	05/07/2021 12:32	WG1666254
Ethylbenzene	ND		0.00359	1	05/07/2021 12:32	WG1666254
Hexachloro-1,3-butadiene	ND		0.0359	1	05/07/2021 12:32	WG1666254
Isopropylbenzene	ND		0.00359	1	05/07/2021 12:32	WG1666254
p-Isopropyltoluene	ND		0.00719	1	05/07/2021 12:32	WG1666254
2-Butanone (MEK)	ND		0.144	1	05/07/2021 12:32	WG1666254
Methylene Chloride	ND		0.0359	1	05/07/2021 12:32	WG1666254
4-Methyl-2-pentanone (MIBK)	ND		0.0359	1	05/07/2021 12:32	WG1666254
Methyl tert-butyl ether	ND		0.00144	1	05/07/2021 12:32	WG1666254
Naphthalene	0.0436		0.0180	1	05/07/2021 12:32	WG1666254
n-Propylbenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
Styrene	ND		0.0180	1	05/07/2021 12:32	WG1666254
1,1,1,2-Tetrachloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,1,2,2-Tetrachloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,1,2-Trichlorotrifluoroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Tetrachloroethene	ND		0.00359	1	05/07/2021 12:32	WG1666254
Toluene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,2,3-Trichlorobenzene	ND	<u>C4</u>	0.0180	1	05/07/2021 12:32	WG1666254
1,2,4-Trichlorobenzene	ND		0.0180	1	05/07/2021 12:32	WG1666254
1,1,1-Trichloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,1,2-Trichloroethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
Trichloroethene	ND		0.00144	1	05/07/2021 12:32	WG1666254
Trichlorofluoromethane	ND		0.00359	1	05/07/2021 12:32	WG1666254
1,2,3-Trichloropropane	ND		0.0180	1	05/07/2021 12:32	WG1666254
1,2,4-Trimethylbenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,2,3-Trimethylbenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
1,3,5-Trimethylbenzene	ND		0.00719	1	05/07/2021 12:32	WG1666254
Vinyl chloride	ND		0.00359	1	05/07/2021 12:32	WG1666254
Xylenes, Total	ND		0.00934	1	05/07/2021 12:32	WG1666254
(S) Toluene-d8	102		75.0-131		05/07/2021 12:32	WG1666254
(S) 4-Bromofluorobenzene	102		67.0-138		05/07/2021 12:32	WG1666254
(S) 1,2-Dichloroethane-d4	94.9		70.0-130		05/07/2021 12:32	WG1666254

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	9.38		4.80	1	05/09/2021 15:18	WG1666732
Residual Range Organics (RRO)	27.5		12.0	1	05/09/2021 15:18	WG1666732
(S) o-Terphenyl	78.7		18.0-148		05/09/2021 15:18	WG1666732

2

Collected date/time: 04/30/21 12:17

1347655

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0408	1	05/11/2021 22:45	WG1668054
PCB 1221	ND		0.0408	1	05/11/2021 22:45	WG1668054
PCB 1232	ND		0.0408	1	05/11/2021 22:45	WG1668054
PCB 1242	ND		0.0408	1	05/11/2021 22:45	WG1668054
PCB 1248	ND		0.0204	1	05/11/2021 22:45	WG1668054
PCB 1254	ND		0.0204	1	05/11/2021 22:45	WG1668054
PCB 1260	ND		0.0204	1	05/11/2021 22:45	WG1668054
PCB 1268	ND		0.0204	1	05/11/2021 22:45	WG1668054
(S) Decachlorobiphenyl	<i>7</i> 5.9		10.0-135		05/11/2021 22:45	WG1668054
(S) Tetrachloro-m-xylene	78.4		10.0-139		05/11/2021 22:45	WG1668054

Ср

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00720	1	05/11/2021 17:12	WG1667777
Acenaphthene	ND	0.00720	1	05/11/2021 17:12	WG1667777
Acenaphthylene	ND	0.00720	1	05/11/2021 17:12	WG1667777
Benzo(a)anthracene	0.0243	0.00720	1	05/11/2021 17:12	WG1667777
Benzo(a)pyrene	0.0225	0.00720	1	05/11/2021 17:12	WG1667777
Benzo(b)fluoranthene	0.0301	0.00720	1	05/11/2021 17:12	WG1667777
Benzo(g,h,i)perylene	0.0197	0.00720	1	05/11/2021 17:12	WG1667777
Benzo(k)fluoranthene	0.0110	0.00720	1	05/11/2021 17:12	WG1667777
Chrysene	0.0263	0.00720	1	05/11/2021 17:12	WG1667777
Dibenz(a,h)anthracene	ND	0.00720	1	05/11/2021 17:12	WG1667777
Fluoranthene	0.0460	0.00720	1	05/11/2021 17:12	WG1667777
Fluorene	ND	0.00720	1	05/11/2021 17:12	WG1667777
Indeno(1,2,3-cd)pyrene	0.0185	0.00720	1	05/11/2021 17:12	WG1667777
Naphthalene	ND	0.0240	1	05/11/2021 17:12	WG1667777
Phenanthrene	0.0339	0.00720	1	05/11/2021 17:12	WG1667777
Pyrene	0.0492	0.00720	1	05/11/2021 17:12	WG1667777
1-Methylnaphthalene	ND	0.0240	1	05/11/2021 17:12	WG1667777
2-Methylnaphthalene	ND	0.0240	1	05/11/2021 17:12	WG1667777
2-Chloronaphthalene	ND	0.0240	1	05/11/2021 17:12	WG1667777
(S) Nitrobenzene-d5	59.9	14.0-149		05/11/2021 17:12	WG1667777
(S) 2-Fluorobiphenyl	63.1	34.0-125		05/11/2021 17:12	WG1667777
(S) p-Terphenyl-d14	76.0	23.0-120		05/11/2021 17:12	WG1667777

Collected date/time: 04/30/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	05/08/2021 11:21	WG1665918

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.0679		0.0438	1	05/08/2021 01:58	WG1666350

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	7.47		1.10	5	05/09/2021 22:09	WG1666839
Barium	74.7		11.0	20	05/10/2021 00:27	WG1666839
Cadmium	1.14		1.10	5	05/09/2021 22:09	WG1666839
Chromium	155		21.9	20	05/10/2021 00:27	WG1666839
Lead	198		8.76	20	05/10/2021 00:27	WG1666839
Selenium	ND		2.74	5	05/09/2021 22:09	WG1666839
Silver	ND		0.548	5	05/09/2021 22:09	WG1666839

⁸Al

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		2.98	25	05/09/2021 10:45	WG1666156
(S) a,a,a-Trifluorotoluene(FID)	95.0		77.0-120		05/09/2021 10:45	WG1666156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	<u>C3</u>	0.0595	1	05/07/2021 12:51	WG1666254
Acrylonitrile	ND		0.0149	1	05/07/2021 12:51	WG1666254
Benzene	0.00283		0.00119	1	05/07/2021 12:51	WG1666254
Bromobenzene	ND		0.0149	1	05/07/2021 12:51	WG1666254
Bromodichloromethane	ND		0.00298	1	05/07/2021 12:51	WG1666254
Bromoform	ND		0.0298	1	05/07/2021 12:51	WG1666254
Bromomethane	ND		0.0149	1	05/07/2021 12:51	WG1666254
n-Butylbenzene	ND		0.0149	1	05/07/2021 12:51	WG1666254
sec-Butylbenzene	ND		0.0149	1	05/07/2021 12:51	WG1666254
tert-Butylbenzene	ND		0.00595	1	05/07/2021 12:51	WG1666254
Carbon disulfide	ND		0.0149	1	05/07/2021 12:51	WG1666254
Carbon tetrachloride	ND		0.00595	1	05/07/2021 12:51	WG1666254
Chlorobenzene	ND		0.00298	1	05/07/2021 12:51	WG1666254
Chlorodibromomethane	ND		0.00298	1	05/07/2021 12:51	WG1666254
Chloroethane	ND		0.00595	1	05/07/2021 12:51	WG1666254
Chloroform	ND		0.00298	1	05/07/2021 12:51	WG1666254
Chloromethane	ND		0.0149	1	05/07/2021 12:51	WG1666254
2-Chlorotoluene	ND		0.00298	1	05/07/2021 12:51	WG1666254
4-Chlorotoluene	ND		0.00595	1	05/07/2021 12:51	WG1666254
1,2-Dibromo-3-Chloropropane	ND		0.0298	1	05/07/2021 12:51	WG1666254
1,2-Dibromoethane	ND		0.00298	1	05/07/2021 12:51	WG1666254
Dibromomethane	ND		0.00595	1	05/07/2021 12:51	WG1666254
1,2-Dichlorobenzene	ND		0.00595	1	05/07/2021 12:51	WG1666254
1,3-Dichlorobenzene	ND		0.00595	1	05/07/2021 12:51	WG1666254
1,4-Dichlorobenzene	ND		0.00595	1	05/07/2021 12:51	WG1666254
Dichlorodifluoromethane	ND		0.00298	1	05/07/2021 12:51	WG1666254
1,1-Dichloroethane	ND		0.00298	1	05/07/2021 12:51	WG1666254

Collected date/time: 04/30/21 00:00

L1347655

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
1,2-Dichloroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,1-Dichloroethene	ND	0.00298	1	05/07/2021 12:51	WG1666254
cis-1,2-Dichloroethene	ND	0.00298	1	05/07/2021 12:51	WG1666254
trans-1,2-Dichloroethene	ND	0.00595	1	05/07/2021 12:51	WG1666254
1,2-Dichloropropane	ND	0.00595	1	05/07/2021 12:51	WG1666254
1,1-Dichloropropene	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,3-Dichloropropane	ND	0.00595	1	05/07/2021 12:51	WG1666254
cis-1,3-Dichloropropene	ND	0.00298	1	05/07/2021 12:51	WG1666254
trans-1,3-Dichloropropene	ND	0.00595	1	05/07/2021 12:51	WG1666254
2,2-Dichloropropane	ND	0.00298	1	05/07/2021 12:51	WG1666254
Di-isopropyl ether	ND	0.00119	1	05/07/2021 12:51	WG1666254
Ethylbenzene	0.00343	0.00298	1	05/07/2021 12:51	WG1666254
Hexachloro-1,3-butadiene	ND	0.0298	1	05/07/2021 12:51	WG1666254
Isopropylbenzene	ND	0.00298	1	05/07/2021 12:51	WG1666254
p-Isopropyltoluene	0.0146	0.00595	1	05/07/2021 12:51	WG1666254
2-Butanone (MEK)	ND	0.119	1	05/07/2021 12:51	WG1666254
Methylene Chloride	ND	0.0298	1	05/07/2021 12:51	WG1666254
4-Methyl-2-pentanone (MIBK)	ND	0.0298	1	05/07/2021 12:51	WG1666254
Methyl tert-butyl ether	ND	0.00119	1	05/07/2021 12:51	WG1666254
Naphthalene	0.0612	0.0149	1	05/07/2021 12:51	WG1666254
n-Propylbenzene	ND	0.00595	1	05/07/2021 12:51	WG1666254
Styrene	ND	0.0149	1	05/07/2021 12:51	WG1666254
1,1,1,2-Tetrachloroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,1,2,2-Tetrachloroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,1,2-Trichlorotrifluoroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
Tetrachloroethene	0.111	0.00298	1	05/07/2021 12:51	WG1666254
Toluene	0.0150	0.00595	1	05/07/2021 12:51	WG1666254
1,2,3-Trichlorobenzene	ND	0.0149	1	05/07/2021 12:51	WG1666254
1,2,4-Trichlorobenzene	ND	0.0149	1	05/07/2021 12:51	WG1666254
1,1,1-Trichloroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,1,2-Trichloroethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
Trichloroethene	ND	0.00119	1	05/07/2021 12:51	WG1666254
Trichlorofluoromethane	ND	0.00298	1	05/07/2021 12:51	WG1666254
1,2,3-Trichloropropane	ND	0.0149	1	05/07/2021 12:51	WG1666254
1,2,4-Trimethylbenzene	0.0258	0.00595	1	05/07/2021 12:51	WG1666254
1,2,3-Trimethylbenzene	0.0205	0.00595	1	05/07/2021 12:51	WG1666254
1,3,5-Trimethylbenzene	0.0133	0.00595	1	05/07/2021 12:51	WG1666254
Vinyl chloride	ND	0.00298	1	05/07/2021 12:51	WG1666254
Xylenes, Total	0.0251	0.00774	1	05/07/2021 12:51	WG1666254
(S) Toluene-d8	101	75.0-131		05/07/2021 12:51	WG1666254
(S) 4-Bromofluorobenzene	102	67.0-138		05/07/2021 12:51	WG1666254
(S) 1,2-Dichloroethane-d4	103	70.0-130		05/07/2021 12:51	WG1666254

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	1110		87.6	20	05/08/2021 20:17	WG1666732
Residual Range Organics (RRO)	864		219	20	05/08/2021 20:17	WG1666732
(S) o-Terphenyl	89.5	J7	18.0-148		05/08/2021 20:17	WG1666732

Ss

Cn

GI

Sc

SP2-ABC

SAMPLE RESULTS - 04

Collected date/time: 04/30/21 00:00

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0372	1	05/11/2021 22:55	WG1668054
PCB 1221	ND		0.0372	1	05/11/2021 22:55	WG1668054
PCB 1232	ND		0.0372	1	05/11/2021 22:55	WG1668054
PCB 1242	ND		0.0372	1	05/11/2021 22:55	WG1668054
PCB 1248	0.118	<u>P</u>	0.0186	1	05/13/2021 21:33	WG1668054
PCB 1254	ND		0.0186	1	05/11/2021 22:55	WG1668054
PCB 1260	0.0839		0.0186	1	05/13/2021 21:33	WG1668054
PCB 1268	ND		0.0186	1	05/11/2021 22:55	WG1668054
(S) Decachlorobiphenyl	82.2		10.0-135		05/13/2021 21:33	WG1668054
(S) Decachlorobiphenyl	81.0		10.0-135		05/11/2021 22:55	WG1668054
(S) Tetrachloro-m-xylene	74.0		10.0-139		05/11/2021 22:55	WG1668054
(S) Tetrachloro-m-xylene	75.7		10.0-139		05/13/2021 21:33	WG1668054
(S) Tetrachloro-m-xylene	74.0		10.0-139		05/11/2021 22:55	WG1668054

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	0.0249		0.00657	1	05/11/2021 22:06	WG1667777
Acenaphthene	0.00701		0.00657	1	05/11/2021 22:06	WG1667777
Acenaphthylene	0.0142		0.00657	1	05/11/2021 22:06	WG1667777
Benzo(a)anthracene	0.0795		0.00657	1	05/11/2021 22:06	WG1667777
Benzo(a)pyrene	0.104		0.00657	1	05/11/2021 22:06	WG1667777
Benzo(b)fluoranthene	0.123		0.00657	1	05/11/2021 22:06	WG1667777
Benzo(g,h,i)perylene	0.112		0.00657	1	05/11/2021 22:06	WG1667777
Benzo(k)fluoranthene	0.0406		0.00657	1	05/11/2021 22:06	WG1667777
Chrysene	0.0691		0.00657	1	05/11/2021 22:06	WG1667777
Dibenz(a,h)anthracene	0.0163		0.00657	1	05/11/2021 22:06	WG1667777
Fluoranthene	0.127		0.00657	1	05/11/2021 22:06	WG1667777
Fluorene	0.00939		0.00657	1	05/11/2021 22:06	WG1667777
Indeno(1,2,3-cd)pyrene	0.107		0.00657	1	05/11/2021 22:06	WG1667777
Naphthalene	0.0537		0.0219	1	05/11/2021 22:06	WG1667777
Phenanthrene	0.109		0.00657	1	05/11/2021 22:06	WG1667777
Pyrene	0.129		0.00657	1	05/11/2021 22:06	WG1667777
1-Methylnaphthalene	ND		0.0219	1	05/11/2021 22:06	WG1667777
2-Methylnaphthalene	0.0331		0.0219	1	05/11/2021 22:06	WG1667777
2-Chloronaphthalene	ND		0.0219	1	05/11/2021 22:06	WG1667777
(S) Nitrobenzene-d5	63.1		14.0-149		05/11/2021 22:06	WG1667777
(S) 2-Fluorobiphenyl	60.8		34.0-125		05/11/2021 22:06	WG1667777
(S) p-Terphenyl-d14	74.5		23.0-120		05/11/2021 22:06	WG1667777

SP3-ABC

SAMPLE RESULTS - 05

Collected date/time: 04/30/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	05/08/2021 06:44	WG1665923

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0438	1	05/08/2021 01:59	WG1666350

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	3.67		1.09	5	05/09/2021 22:12	WG1666839
Barium	141		5.47	10	05/10/2021 08:20	WG1666839
Cadmium	ND		1.09	5	05/09/2021 22:12	WG1666839
Chromium	34.5		5.47	5	05/09/2021 22:12	WG1666839
Lead	22.1		2.19	5	05/09/2021 22:12	WG1666839
Selenium	ND		2.74	5	05/09/2021 22:12	WG1666839
Silver	ND		0.547	5	05/09/2021 22:12	<u>WG1666839</u>

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		2.97	25	05/09/2021 11:07	WG1666156
(S) a,a,a-Trifluorotoluene(FID)	96.8		77.0-120		05/09/2021 11:07	WG1666156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	<u>C3</u>	0.0595	1	05/07/2021 13:10	WG1666254
Acrylonitrile	ND		0.0149	1	05/07/2021 13:10	WG1666254
Benzene	ND		0.00119	1	05/07/2021 13:10	WG1666254
Bromobenzene	ND		0.0149	1	05/07/2021 13:10	WG1666254
Bromodichloromethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Bromoform	ND		0.0297	1	05/07/2021 13:10	WG1666254
Bromomethane	ND		0.0149	1	05/07/2021 13:10	WG1666254
n-Butylbenzene	ND		0.0149	1	05/07/2021 13:10	WG1666254
sec-Butylbenzene	ND		0.0149	1	05/07/2021 13:10	WG1666254
tert-Butylbenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
Carbon disulfide	ND		0.0149	1	05/07/2021 13:10	WG1666254
Carbon tetrachloride	ND		0.00595	1	05/07/2021 13:10	WG1666254
Chlorobenzene	ND		0.00297	1	05/07/2021 13:10	WG1666254
Chlorodibromomethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Chloroethane	ND		0.00595	1	05/07/2021 13:10	WG1666254
Chloroform	ND		0.00297	1	05/07/2021 13:10	WG1666254
Chloromethane	ND		0.0149	1	05/07/2021 13:10	WG1666254
2-Chlorotoluene	ND		0.00297	1	05/07/2021 13:10	WG1666254
4-Chlorotoluene	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,2-Dibromo-3-Chloropropane	ND		0.0297	1	05/07/2021 13:10	WG1666254
1,2-Dibromoethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Dibromomethane	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,2-Dichlorobenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,3-Dichlorobenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,4-Dichlorobenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
Dichlorodifluoromethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,1-Dichloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254

Collected date/time: 04/30/21 00:00

1347655

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,2-Dichloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,1-Dichloroethene	ND		0.00297	1	05/07/2021 13:10	WG1666254
cis-1,2-Dichloroethene	ND		0.00297	1	05/07/2021 13:10	WG1666254
trans-1,2-Dichloroethene	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,2-Dichloropropane	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,1-Dichloropropene	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,3-Dichloropropane	ND		0.00595	1	05/07/2021 13:10	WG1666254
cis-1,3-Dichloropropene	ND		0.00297	1	05/07/2021 13:10	WG1666254
trans-1,3-Dichloropropene	ND		0.00595	1	05/07/2021 13:10	WG1666254
2,2-Dichloropropane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Di-isopropyl ether	ND		0.00119	1	05/07/2021 13:10	WG1666254
Ethylbenzene	ND		0.00297	1	05/07/2021 13:10	WG1666254
Hexachloro-1,3-butadiene	ND		0.0297	1	05/07/2021 13:10	WG1666254
Isopropylbenzene	ND		0.00297	1	05/07/2021 13:10	WG1666254
p-Isopropyltoluene	ND		0.00595	1	05/07/2021 13:10	WG1666254
2-Butanone (MEK)	0.121	B	0.119	1	05/07/2021 13:10	WG1666254
Methylene Chloride	ND		0.0297	1	05/07/2021 13:10	WG1666254
4-Methyl-2-pentanone (MIBK)	ND		0.0297	1	05/07/2021 13:10	WG1666254
Methyl tert-butyl ether	ND		0.00119	1	05/07/2021 13:10	WG1666254
Naphthalene	0.0202		0.0149	1	05/07/2021 13:10	WG1666254
n-Propylbenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
Styrene	ND		0.0149	1	05/07/2021 13:10	WG1666254
1,1,1,2-Tetrachloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,1,2,2-Tetrachloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,1,2-Trichlorotrifluoroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Tetrachloroethene	ND		0.00297	1	05/07/2021 13:10	WG1666254
Toluene	0.0121		0.00595	1	05/07/2021 13:10	WG1666254
1,2,3-Trichlorobenzene	ND	<u>C4</u>	0.0149	1	05/07/2021 13:10	WG1666254
1,2,4-Trichlorobenzene	ND		0.0149	1	05/07/2021 13:10	WG1666254
1,1,1-Trichloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,1,2-Trichloroethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
Trichloroethene	ND		0.00119	1	05/07/2021 13:10	WG1666254
Trichlorofluoromethane	ND		0.00297	1	05/07/2021 13:10	WG1666254
1,2,3-Trichloropropane	ND		0.0149	1	05/07/2021 13:10	WG1666254
1,2,4-Trimethylbenzene	0.00762		0.00595	1	05/07/2021 13:10	WG1666254
1,2,3-Trimethylbenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
1,3,5-Trimethylbenzene	ND		0.00595	1	05/07/2021 13:10	WG1666254
Vinyl chloride	ND		0.00297	1	05/07/2021 13:10	WG1666254
Xylenes, Total	0.0177		0.00773	1	05/07/2021 13:10	WG1666254
(S) Toluene-d8	103		75.0-131		05/07/2021 13:10	WG1666254
(S) 4-Bromofluorobenzene	102		67.0-138		05/07/2021 13:10	WG1666254
(S) 1,2-Dichloroethane-d4	93.8		70.0-130		05/07/2021 13:10	WG1666254

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	73.5		4.38	1	05/08/2021 19:14	WG1666732
Residual Range Organics (RRO)	120		10.9	1	05/08/2021 19:14	WG1666732
(S) o-Terphenyl	70.3		18.0-148		05/08/2021 19:14	WG1666732

Ss

Cn

GI

Sc

SP3-ABC

SAMPLE RESULTS - 05

Collected date/time: 04/30/21 00:00

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0372	1	05/13/2021 21:43	WG1668054
PCB 1221	ND		0.0372	1	05/13/2021 21:43	WG1668054
PCB 1232	ND		0.0372	1	05/13/2021 21:43	WG1668054
PCB 1242	ND		0.0372	1	05/13/2021 21:43	WG1668054
PCB 1248	ND		0.0186	1	05/13/2021 21:43	WG1668054
PCB 1254	ND		0.0186	1	05/13/2021 21:43	WG1668054
PCB 1260	0.0408		0.0186	1	05/13/2021 21:43	WG1668054
PCB 1268	ND		0.0186	1	05/13/2021 21:43	WG1668054
(S) Decachlorobiphenyl	86.5		10.0-135		05/13/2021 21:43	WG1668054
(S) Tetrachloro-m-xylene	74.6		10.0-139		05/13/2021 21:43	WG1668054

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00657	1	05/11/2021 22:25	WG1667777
Acenaphthene	ND		0.00657	1	05/11/2021 22:25	WG1667777
Acenaphthylene	ND		0.00657	1	05/11/2021 22:25	WG1667777
Benzo(a)anthracene	0.0219		0.00657	1	05/11/2021 22:25	WG1667777
Benzo(a)pyrene	0.0197		0.00657	1	05/11/2021 22:25	WG1667777
Benzo(b)fluoranthene	0.0303		0.00657	1	05/11/2021 22:25	WG1667777
Benzo(g,h,i)perylene	0.0197		0.00657	1	05/11/2021 22:25	WG1667777
Benzo(k)fluoranthene	0.00945		0.00657	1	05/11/2021 22:25	WG1667777
Chrysene	0.0209		0.00657	1	05/11/2021 22:25	WG1667777
Dibenz(a,h)anthracene	ND		0.00657	1	05/11/2021 22:25	WG1667777
Fluoranthene	0.0332		0.00657	1	05/11/2021 22:25	WG1667777
Fluorene	ND		0.00657	1	05/11/2021 22:25	WG1667777
Indeno(1,2,3-cd)pyrene	0.0177		0.00657	1	05/11/2021 22:25	WG1667777
Naphthalene	ND		0.0219	1	05/11/2021 22:25	WG1667777
Phenanthrene	0.0154		0.00657	1	05/11/2021 22:25	WG1667777
Pyrene	0.0297		0.00657	1	05/11/2021 22:25	WG1667777
1-Methylnaphthalene	ND		0.0219	1	05/11/2021 22:25	WG1667777
2-Methylnaphthalene	ND		0.0219	1	05/11/2021 22:25	WG1667777
2-Chloronaphthalene	ND		0.0219	1	05/11/2021 22:25	WG1667777
(S) Nitrobenzene-d5	65.9		14.0-149		05/11/2021 22:25	WG1667777
(S) 2-Fluorobiphenyl	62.3		34.0-125		05/11/2021 22:25	WG1667777
(S) p-Terphenyl-d14	73.5		23.0-120		05/11/2021 22:25	WG1667777

Martin S. Burck Assoc.-Hood River, OR

SAMPLE RESULTS - 06 L1347655

Collected date/time: 04/30/21 00:00

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	-
Acetone	1.64	<u>J3</u>	1.00	1	05/09/2021 17:10	WG1667276
Acrylonitrile	ND	_	0.500	1	05/09/2021 17:10	WG1667276
Acrolein	ND	C3 J3	50.0	1	05/09/2021 17:10	WG1667276
Benzene	ND		0.0400	1	05/09/2021 17:10	WG1667276
Bromobenzene	ND		0.500	1	05/09/2021 17:10	WG1667276
Bromodichloromethane	ND		0.100	1	05/09/2021 17:10	WG1667276
Bromoform	ND		1.00	1	05/09/2021 17:10	WG1667276
Bromomethane	ND		0.500	1	05/09/2021 17:10	WG1667276
n-Butylbenzene	ND	<u>C3</u>	0.500	1	05/09/2021 17:10	WG1667276
sec-Butylbenzene	ND	_	0.500	1	05/09/2021 17:10	WG1667276
tert-Butylbenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
Carbon disulfide	ND		0.500	1	05/09/2021 17:10	WG1667276
Carbon tetrachloride	ND		0.200	1	05/09/2021 17:10	WG1667276
Chlorobenzene	ND		0.100	1	05/09/2021 17:10	WG1667276
Chlorodibromomethane	ND		0.100	1	05/09/2021 17:10	WG1667276
Chloroethane	ND		0.200	1	05/09/2021 17:10	WG1667276
Chloroform	ND		0.100	1	05/09/2021 17:10	WG1667276
Chloromethane	ND		0.500	1	05/09/2021 17:10	WG1667276
2-Chlorotoluene	ND		0.100	1	05/09/2021 17:10	WG1667276
4-Chlorotoluene	ND		0.100	1	05/09/2021 17:10	WG1667276
1,2-Dibromo-3-Chloropropane	ND		1.00	1	05/09/2021 17:10	WG1667276
1,2-Dibromoethane	ND		0.100	1	05/09/2021 17:10	WG1667276
Dibromomethane	ND		0.100	1	05/09/2021 17:10	
	ND ND		0.200	1	05/09/2021 17:10	WG1667276
1,2-Dichlorobenzene						WG1667276
1,3-Dichlorobenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
1,4-Dichlorobenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
Dichlorodifluoromethane	ND		0.100	1	05/09/2021 17:10	WG1667276
1,1-Dichloroethane	ND		0.100	1	05/09/2021 17:10	WG1667276
1,2-Dichloroethane	ND	62	0.100	1	05/09/2021 17:10	WG1667276
1,1-Dichloroethene	ND	<u>C3</u>	0.100	1	05/09/2021 17:10	WG1667276
cis-1,2-Dichloroethene	ND		0.100	1	05/09/2021 17:10	WG1667276
trans-1,2-Dichloroethene	ND		0.200	1	05/09/2021 17:10	WG1667276
1,2-Dichloropropane	ND		0.200	1	05/09/2021 17:10	WG1667276
1,1-Dichloropropene	ND		0.100	1	05/09/2021 17:10	WG1667276
1,3-Dichloropropane	ND		0.200	1	05/09/2021 17:10	WG1667276
cis-1,3-Dichloropropene	ND		0.100	1	05/09/2021 17:10	WG1667276
trans-1,3-Dichloropropene	ND		0.200	1	05/09/2021 17:10	WG1667276
2,2-Dichloropropane	ND		0.100	1	05/09/2021 17:10	WG1667276
Di-isopropyl ether	ND		0.0400	1	05/09/2021 17:10	WG1667276
Ethylbenzene	ND		0.100	1	05/09/2021 17:10	WG1667276
Hexachloro-1,3-butadiene	ND		1.00	1	05/09/2021 17:10	WG1667276
2-Hexanone	ND		1.00	1	05/09/2021 17:10	WG1667276
Isopropylbenzene	ND		0.100	1	05/09/2021 17:10	WG1667276
p-Isopropyltoluene	ND		0.200	1	05/09/2021 17:10	<u>WG1667276</u>
2-Butanone (MEK)	ND		1.00	1	05/09/2021 17:10	<u>WG1667276</u>
Methylene Chloride	ND		1.00	1	05/09/2021 17:10	<u>WG1667276</u>
4-Methyl-2-pentanone (MIBK)	ND		1.00	1	05/09/2021 17:10	<u>WG1667276</u>
Methyl tert-butyl ether	ND		0.0400	1	05/09/2021 17:10	<u>WG1667276</u>
Naphthalene	ND		0.500	1	05/09/2021 17:10	<u>WG1667276</u>
n-Propylbenzene	ND		0.200	1	05/09/2021 17:10	<u>WG1667276</u>
Styrene	ND		0.500	1	05/09/2021 17:10	WG1667276
1,1,1,2-Tetrachloroethane	ND		0.100	1	05/09/2021 17:10	WG1667276
1,1,2,2-Tetrachloroethane	ND		0.100	1	05/09/2021 17:10	<u>WG1667276</u>
1,1,2-Trichlorotrifluoroethane	ND		0.100	1	05/09/2021 17:10	WG1667276
Tetrachloroethene	ND		0.100	1	05/09/2021 17:10	<u>WG1667276</u>
Toluene	ND		0.200	1	05/09/2021 17:10	WG1667276

TRIP BLANK

SAMPLE RESULTS - 06

Collected date/time: 04/30/21 00:00

1347655

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
1,2,3-Trichlorobenzene	ND		0.500	1	05/09/2021 17:10	WG1667276
1,2,4-Trichlorobenzene	ND		0.500	1	05/09/2021 17:10	WG1667276
1,1,1-Trichloroethane	ND		0.100	1	05/09/2021 17:10	WG1667276
1,1,2-Trichloroethane	ND		0.100	1	05/09/2021 17:10	WG1667276
Trichloroethene	ND		0.0400	1	05/09/2021 17:10	WG1667276
Trichlorofluoromethane	ND		0.100	1	05/09/2021 17:10	WG1667276
1,2,3-Trichloropropane	ND		0.500	1	05/09/2021 17:10	WG1667276
1,2,4-Trimethylbenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
1,2,3-Trimethylbenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
1,3,5-Trimethylbenzene	ND		0.200	1	05/09/2021 17:10	WG1667276
Vinyl chloride	ND		0.100	1	05/09/2021 17:10	WG1667276
Xylenes, Total	ND		0.260	1	05/09/2021 17:10	WG1667276
(S) Toluene-d8	104		75.0-131		05/09/2021 17:10	WG1667276
(S) 4-Bromofluorobenzene	98.7		67.0-138		05/09/2021 17:10	WG1667276
(S) 1,2-Dichloroethane-d4	101		70.0-130		05/09/2021 17:10	WG1667276

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1347655-01,02,03,04

Method Blank (MB)

(MB) R3652221-1 0	(MB) R3652221-1 05/08/21 11:21							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	%		%	%				
Total Solids	0.00200							

Ss

L1347653-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1347653-06 05/08/21 11:21 • (DUP) R3652221-3 05/08/21 11:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.8	92.4	1	0.711		10

Laboratory Control Sample (LCS)

(LCS) R3652221-2 05/08/21 11:21

	Spike Amount LCS Result	ult LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	100	85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1347655-05

Method Blank (MB)

(MB) R3652158-1 05/	08/21 06:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

[†]Cn

L1347655-05 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.3	91.2	1	0.189		10

Laboratory Control Sample (LCS)

(LCS) R3652158-2 05/08/21 06:44

(LCS) R3652158-2 U5/U8/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

QUALITY CONTROL SUMMARY

L1347655-01,02,03,04,05

Mercury by Method 7471B

Method Blank (MB)

 MB R3651910-1
 05/08/21 01:36

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/kg
 mg/kg
 mg/kg

 Mercury
 U
 0.0180
 0.0400

Ss

Laboratory Control Sample (LCS)

(LCS) R3651910-2 05/08/21 01:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Mercury	0.500	0.488	97.7	80.0-120	

L1348420-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348420-03 05/08/21 01:40 • (MS) R3651910-3 05/08/21 01:48 • (MSD) R3651910-4 05/08/21 01:50

(00) 210 10 120 00 00/00/2	Spike Amount (dry)			,			Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.589	ND	0.548	0.505	93.0	85.8	1	75.0-125			8.06	20

PAGE:

25 of 47

QUALITY CONTROL SUMMARY

L1347655-01,02,03,04,05

Method Blank (MB)

(MB) R3652184-1 05/09/21 18:25

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Barium	U		0.152	2.50
Cadmium	U		0.0855	1.00
Chromium	U		0.297	5.00
Lead	U		0.0990	2.00
Selenium	U		0.180	2.50

U

(LCS) R3652184-2 05/09/21 18:28

Silver

L1348343-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0865

0.500

LCS Qualifier

(OS) L1348343-01 05/09/21 18:32 • (MS) R3652184-5 05/09/21 18:42 • (MSD) R3652184-6 05/09/21 18:45

	Spike Amount	Original Result	MS Result (dry)	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyto	(dry)	(ury)		(ury)	%	0/		%			%	%
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	/0	/0		/0			/0	/0
Arsenic	113	3.91	96.9	104	82.3	89.0	5	75.0-125			7.42	20
Barium	113	123	221	246	86.1	109	5	75.0-125			11.0	20
Cadmium	113	ND	102	114	90.6	101	5	75.0-125			10.9	20
Chromium	113	14.5	110	117	84.4	91.1	5	75.0-125			6.63	20
Lead	113	7.26	105	113	86.8	93.5	5	75.0-125			6.91	20
Selenium	113	ND	100	112	88.3	98.6	5	75.0-125			10.9	20
Silver	22.6	ND	20.3	22.3	89.6	98.5	5	75.0-125			9.46	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1347655-01,02,03,04,05

Method Blank (MB)

(MB) R3652102-2 05/09)/21 04:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.0339	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3652102-1 05/09/21 03:26								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Gasoline Range Organics-NWTPH	5.50	5.93	108	71.0-124				
(S) a,a,a-Trifluorotoluene(FID)			114	77.0-120				

L1346816-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346816-01 05/09/2	21 04:54 • (MS) F	3652102-3 0	5/09/21 12:13 • ((MSD) R365210	J2-4 U5/U9/21	12:35						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	351	ND	373	388	106	110	38.8	10.0-149			3.90	27
(S) a,a,a-Trifluorotoluene(FID)					114	115		77.0-120				

PAGE: 27 of 47

QUALITY CONTROL SUMMARY

L1347655-01,02,03,04,05

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260D

(MB) R3651836-2 05/07/2	21.08:40				_
(MB) N3031030-2 03/07/2	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg	WB Qualifer	mg/kg	mg/kg	
Acetone	U		0.0365	0.0500	_
Acrylonitrile	U		0.00361	0.0125	
Benzene	U		0.000467	0.00100	
Bromobenzene	U		0.000900	0.0125	
Bromodichloromethane	U		0.000725	0.00250	
Bromoform	U		0.00117	0.0250	
Bromomethane	U		0.00197	0.0125	
n-Butylbenzene	U		0.00525	0.0125	
sec-Butylbenzene	U		0.00288	0.0125	
tert-Butylbenzene	U		0.00195	0.00500	
Carbon disulfide	U		0.000700	0.0125	
Carbon tetrachloride	U		0.000898	0.00500	
Chlorobenzene	U		0.000210	0.00250	
Chlorodibromomethane	U		0.000612	0.00250	
Chloroethane	U		0.00170	0.00500	
Chloroform	U		0.00103	0.00250	
Chloromethane	U		0.00435	0.0125	
2-Chlorotoluene	U		0.000865	0.00250	
4-Chlorotoluene	U		0.000450	0.00500	
1,2-Dibromo-3-Chloropropane			0.00390	0.0250	
1,2-Dibromoethane	U		0.000648	0.00250	
Dibromomethane	U		0.000750	0.00500	
1,2-Dichlorobenzene	U		0.000425	0.00500	
1,3-Dichlorobenzene	U		0.000600	0.00500	
1,4-Dichlorobenzene	U		0.000700	0.00500	
Dichlorodifluoromethane	U		0.00161	0.00250	
1,1-Dichloroethane	U		0.000491	0.00250	
1,2-Dichloroethane	U		0.000649	0.00250	
1,1-Dichloroethene	U		0.000606	0.00250	
cis-1,2-Dichloroethene	U		0.000734	0.00250	
trans-1,2-Dichloroethene	U		0.00104	0.00500	
1,2-Dichloropropane	U		0.00142	0.00500	
1,1-Dichloropropene	U		0.000809	0.00250	
1,3-Dichloropropane	U		0.000501	0.00500	
cis-1,3-Dichloropropene	U		0.000757	0.00250	
trans-1,3-Dichloropropene	U		0.00114	0.00500	
2,2-Dichloropropane	U		0.00138	0.00250	
Di-isopropyl ether	U		0.000410	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Hexachloro-1,3-butadiene	U		0.00600	0.0250	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D L1347655-01,02,03,04,05

Method Blank (MB)

(MB) R3651836-2 05/07/21 08:40 MB MDL MB RDL MB Result MB Qualifier Analyte mg/kg mg/kg mg/kg Isopropylbenzene U 0.000425 0.00250 U 0.00255 0.00500 p-Isopropyltoluene 2-Butanone (MEK) 0.120 0.0635 0.100 Methylene Chloride U 0.00664 0.0250 4-Methyl-2-pentanone (MIBK) U 0.00228 0.0250 U 0.000350 0.00100 Methyl tert-butyl ether Naphthalene U 0.00488 0.0125 n-Propylbenzene U 0.000950 0.00500 U 0.000229 0.0125 Styrene 1,1,1,2-Tetrachloroethane U 0.000948 0.00250 0.000695 0.00250 1,1,2,2-Tetrachloroethane U U 0.000896 Tetrachloroethene 0.00250 Toluene U 0.00130 0.00500 0.000754 1,1,2-Trichlorotrifluoroethane U 0.00250 1,2,3-Trichlorobenzene U 0.00733 0.0125 1,2,4-Trichlorobenzene U 0.00440 0.0125 1,1,1-Trichloroethane U 0.000923 0.00250 1,1,2-Trichloroethane 0.000597 0.00250 U 0.000584 0.00100 Trichloroethene Trichlorofluoromethane 0.000827 0.00250 U 0.00162 0.0125 1,2,3-Trichloropropane 1,2,3-Trimethylbenzene U 0.00158 0.00500 1,2,4-Trimethylbenzene U 0.00158 0.00500 1,3,5-Trimethylbenzene U 0.00200 0.00500 Vinyl chloride U 0.00116 0.00250 Xylenes, Total U 0.000880 0.00650

Laboratory Control Sample (LCS)

100

104

113

(LCS) R3651836-1 05/07/21 05:13

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(200) 110001000 1 00/07/2	000				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Acetone	0.625	0.460	73.6	10.0-160	
Acrylonitrile	0.625	0.511	81.8	45.0-153	
Benzene	0.125	0.121	96.8	70.0-123	
Bromobenzene	0.125	0.122	97.6	73.0-121	

75.0-131

67.0-138

70.0-130

Ss

Cn

Sr

GI

Sc

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-01,02,03,04,05

Laboratory Control Sample (LCS)

_	Laboratory Control	1 (/			
	(LCS) R3651836-1 05/07/2	1 05:13				
		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
	Analyte	mg/kg	mg/kg	%	%	
	Bromodichloromethane	0.125	0.114	91.2	73.0-121	
	Bromoform	0.125	0.124	99.2	64.0-132	
	Bromomethane	0.125	0.120	96.0	56.0-147	
	n-Butylbenzene	0.125	0.112	89.6	68.0-135	
	sec-Butylbenzene	0.125	0.119	95.2	74.0-130	
1	tert-Butylbenzene	0.125	0.116	92.8	75.0-127	
	Carbon disulfide	0.125	0.112	89.6	56.0-133	
-	Carbon tetrachloride	0.125	0.126	101	66.0-128	
	Chlorobenzene	0.125	0.117	93.6	76.0-128	
-	Chlorodibromomethane	0.125	0.127	102	74.0-127	
	Chloroethane	0.125	0.106	84.8	61.0-134	
-	Chloroform	0.125	0.112	89.6	72.0-123	
	Chloromethane	0.125	0.120	96.0	51.0-138	
	2-Chlorotoluene	0.125	0.119	95.2	75.0-124	
	4-Chlorotoluene	0.125	0.113	90.4	75.0-124	
	1,2-Dibromo-3-Chloropropane	0.125	0.112	89.6	59.0-130	
	1,2-Dibromoethane	0.125	0.123	98.4	74.0-128	
	Dibromomethane	0.125	0.129	103	75.0-122	
	1,2-Dichlorobenzene	0.125	0.124	99.2	76.0-124	
	1,3-Dichlorobenzene	0.125	0.115	92.0	76.0-125	
	1,4-Dichlorobenzene	0.125	0.117	93.6	77.0-121	
	Dichlorodifluoromethane	0.125	0.115	92.0	43.0-156	
	1,1-Dichloroethane	0.125	0.118	94.4	70.0-127	
	1,2-Dichloroethane	0.125	0.118	94.4	65.0-131	
	1,1-Dichloroethene	0.125	0.117	93.6	65.0-131	
	cis-1,2-Dichloroethene	0.125	0.113	90.4	73.0-125	
	trans-1,2-Dichloroethene	0.125	0.109	87.2	71.0-125	
	1,2-Dichloropropane	0.125	0.122	97.6	74.0-125	
	1,1-Dichloropropene	0.125	0.114	91.2	73.0-125	
	1,3-Dichloropropane	0.125	0.124	99.2	80.0-125	
	cis-1,3-Dichloropropene	0.125	0.120	96.0	76.0-127	
1	trans-1,3-Dichloropropene	0.125	0.122	97.6	73.0-127	
	2,2-Dichloropropane	0.125	0.122	97.6	59.0-135	
	Di-isopropyl ether	0.125	0.112	89.6	60.0-136	
	Ethylbenzene	0.125	0.120	96.0	74.0-126	
	Hexachloro-1,3-butadiene	0.125	0.128	102	57.0-150	
	sopropylbenzene	0.125	0.121	96.8	72.0-127	
	o-Isopropyltoluene	0.125	0.117	93.6	72.0-133	
	2-Butanone (MEK)	0.625	0.604	96.6	30.0-160	
	Methylene Chloride	0.125	0.105	84.0	68.0-123	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-01,02,03,04,05

Laboratory Control Sample (LCS)

(I CS)	R3651836-1	05/07/21 05:13

(LCS) R3651836-1 U5/U7/2	21 05:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
4-Methyl-2-pentanone (MIBK)	0.625	0.599	95.8	56.0-143	
Methyl tert-butyl ether	0.125	0.124	99.2	66.0-132	
Naphthalene	0.125	0.122	97.6	59.0-130	
n-Propylbenzene	0.125	0.110	88.0	74.0-126	
Styrene	0.125	0.118	94.4	72.0-127	
1,1,1,2-Tetrachloroethane	0.125	0.128	102	74.0-129	
1,1,2,2-Tetrachloroethane	0.125	0.117	93.6	68.0-128	
Tetrachloroethene	0.125	0.123	98.4	70.0-136	
Toluene	0.125	0.118	94.4	75.0-121	
1,1,2-Trichlorotrifluoroethane	0.125	0.137	110	61.0-139	
1,2,3-Trichlorobenzene	0.125	0.124	99.2	59.0-139	
1,2,4-Trichlorobenzene	0.125	0.127	102	62.0-137	
1,1,1-Trichloroethane	0.125	0.115	92.0	69.0-126	
1,1,2-Trichloroethane	0.125	0.120	96.0	78.0-123	
Trichloroethene	0.125	0.118	94.4	76.0-126	
Trichlorofluoromethane	0.125	0.121	96.8	61.0-142	
1,2,3-Trichloropropane	0.125	0.121	96.8	67.0-129	
1,2,3-Trimethylbenzene	0.125	0.119	95.2	74.0-124	
1,2,4-Trimethylbenzene	0.125	0.115	92.0	70.0-126	
1,3,5-Trimethylbenzene	0.125	0.115	92.0	73.0-127	
Vinyl chloride	0.125	0.117	93.6	63.0-134	
Xylenes, Total	0.375	0.350	93.3	72.0-127	
(S) Toluene-d8			103	75.0-131	
(S) 4-Bromofluorobenzene			102	67.0-138	
(S) 1,2-Dichloroethane-d4			101	70.0-130	

L1347647-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347647-06 05/07/21 15:42 • (MS) R3651836-3 05/07/21 16:58 • (MSD) R3651836-4 05/07/21 17:17

(/	- ' ' - '			/								
	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	3.94	ND	3.47	9.59	88.1	243	8	10.0-160		<u>J3 J5</u>	93.7	40
Acrylonitrile	3.94	ND	3.10	8.01	78.7	203	8	10.0-160		<u>J3 J5</u>	88.3	40
Benzene	0.788	ND	0.764	0.496	96.9	62.9	8	10.0-149		<u>J3</u>	42.6	37
Bromobenzene	0.788	ND	0.791	0.621	100	78.7	8	10.0-156			24.1	38
Bromodichloromethane	0.788	ND	0.706	0.586	89.5	74.4	8	10.0-143			18.5	37
Bromoform	0.788	ND	0.731	0.788	92.7	100	8	10.0-146			7.53	36
Bromomethane	0.788	ND	0.535	0.244	67.9	31.0	8	10.0-149		<u>J3</u>	74.7	38
n-Butylbenzene	0.788	0.275	1.34	0.891	135	78.2	8	10.0-160			39.9	40

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

(dry)

0.788

0.788

0.788

0.788

0.788

0.788

0.788

0.788

0.788

3.94

0.788

3.94

0.788

0.788

1,3-Dichloropropane

2,2-Dichloropropane

Di-isopropyl ether

Isopropylbenzene

p-Isopropyltoluene

2-Butanone (MEK)

Methylene Chloride

Methyl tert-butyl ether

Naphthalene

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Hexachloro-1,3-butadiene

ND

0.261

0.0462

0.0983

0.743

0.760

0.740

0.745

0.698

0.754

1.25

0.810

0.928

3.75

0.711

3.85

0.731

1.15

0.721

0.608

0.669

0.416

0.655

0.478

0.947

0.528

0.635

0.537

5.37

0.973

1.27

6.17

L1347655-01,02,03,04,05

Dilution Rec. Limits

MS Qualifier

MSD Qualifier

RPD

2.95

22.3

10.1

56.7

6.39

44.8

27.5

42.2

37.6

48.7

27.9

32.8

28.4

9.24

<u>J3</u>

<u>J3</u>

<u>J3</u>

<u>J3</u>

35

37

37 36

36

38

40

38

40

40

37

35

35

36

PAGE:

32 of 47

RPD Limits

MSD Rec.

L1347647-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MSD Result

MS Rec.

94.2

96.5

93.9

94.5

88.5

95.6

159

96.9

105

95.2

90.2

97.7

92.7

113

(OS) L1347647-06 05/07/21 15:42 • (MS) R3651836-3 05/07/21 16:58 • (MSD) R3651836-4 05/07/21 17:17

Spike Amount Original Result MS Result (dry)

(dry)

1	С	р
		١.

Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		%	%	
sec-Butylbenzene	0.788	0.387	1.28	0.930	114	68.9	8	10.0-159		32.1	39	3
tert-Butylbenzene	0.788	ND	0.806	0.502	99.2	60.7	8	10.0-156	<u>J3</u>	46.5	39	
Carbon disulfide	0.788	ND	0.549	0.271	69.7	34.4	8	10.0-145	<u>J3</u>	67.9	39	
Carbon tetrachloride	0.788	ND	0.835	0.421	106	53.4	8	10.0-145	<u>J3</u>	66.0	37	2
Chlorobenzene	0.788	ND	0.734	0.543	93.1	68.9	8	10.0-152		29.9	39	
Chlorodibromomethane	0.788	ND	0.771	0.721	97.7	91.5	8	10.0-146		6.65	37	
Chloroethane	0.788	ND	0.533	0.211	67.6	26.8	8	10.0-146	<u>J3</u>	86.5	40	
Chloroform	0.788	ND	0.722	0.524	91.6	66.5	8	10.0-146		31.8	37	
Chloromethane	0.788	ND	0.591	0.331	75.0	41.9	8	10.0-159	<u>J3</u>	56.6	37	
2-Chlorotoluene	0.788	ND	0.743	0.573	94.2	72.7	8	10.0-159		25.7	38	
4-Chlorotoluene	0.788	ND	0.697	0.434	88.4	55.0	8	10.0-155	<u>J3</u>	46.6	39	[7
1,2-Dibromo-3-Chloropropane	0.788	ND	0.754	0.959	95.6	122	8	10.0-151		23.9	39	
1,2-Dibromoethane	0.788	ND	0.739	0.743	93.7	94.2	8	10.0-148		0.515	34	
Dibromomethane	0.788	ND	0.779	0.796	98.9	101	8	10.0-147		2.10	35	8
1,2-Dichlorobenzene	0.788	ND	0.788	0.689	100	87.4	8	10.0-155		13.4	37	
1,3-Dichlorobenzene	0.788	ND	0.739	0.579	93.7	73.4	8	10.0-153		24.3	38	Ş
1,4-Dichlorobenzene	0.788	ND	0.757	0.591	96.0	75.0	8	10.0-151		24.5	38	
Dichlorodifluoromethane	0.788	ND	0.804	0.353	102	44.8	8	10.0-160	<u>J3</u>	77.8	35	_
1,1-Dichloroethane	0.788	ND	0.739	0.493	93.7	62.6	8	10.0-147	<u>J3</u>	39.8	37	
1,2-Dichloroethane	0.788	ND	0.679	0.682	86.1	86.5	8	10.0-148		0.374	35	
1,1-Dichloroethene	0.788	ND	0.720	0.365	91.3	46.3	8	10.0-155	<u>J3</u>	65.4	37	
cis-1,2-Dichloroethene	0.788	ND	0.734	0.549	93.1	69.7	8	10.0-149		28.7	37	
trans-1,2-Dichloroethene	0.788	ND	0.683	0.412	86.6	52.3	8	10.0-150	<u>J3</u>	49.5	37	
1,2-Dichloropropane	0.788	ND	0.776	0.587	98.4	74.5	8	10.0-148		27.6	37	
1,1-Dichloropropene	0.788	ND	0.739	0.371	93.7	47.1	8	10.0-153	<u>J3</u>	66.2	35	

91.5

77.1

84.8

52.7

83.1

60.6

120

61.1

68.0

156

68.1

136

123

128

8

8

8

8

8

8

8

8

8

8

8

8

8

8

10.0-154

10.0-151

10.0-148

10.0-138

10.0-147

10.0-160

10.0-160

10.0-155

10.0-160

10.0-160

10.0-141

10.0-160

11.0-147

10.0-160

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-01,02,03,04,05

L1347647-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1347647-06 05/07/21 15:42 • (MS) R3651836-3 05/07/21 16:58 • (MSD) R3651836-4 05/07/21 17:17

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
n-Propylbenzene	0.788	0.137	0.842	0.576	89.4	55.6	8	10.0-158			37.5	38	
Styrene	0.788	ND	0.734	0.558	93.1	70.8	8	10.0-160			27.2	40	
1,1,1,2-Tetrachloroethane	0.788	ND	0.776	0.668	98.4	84.7	8	10.0-149			15.0	39	L D
1,1,2,2-Tetrachloroethane	0.788	ND	2.30	2.23	292	282	8	10.0-160	<u>J5</u>	<u>J5</u>	3.37	35	١
Tetrachloroethene	0.788	ND	0.764	0.421	96.9	53.4	8	10.0-156		<u>J3</u>	57.9	39	Į
Toluene	0.788	ND	0.715	0.467	90.6	59.2	8	10.0-156		<u>J3</u>	42.0	38	
1,1,2-Trichlorotrifluoroethane	0.788	ND	0.944	0.416	120	52.7	8	10.0-160		<u>J3</u>	77.6	36	
1,2,3-Trichlorobenzene	0.788	ND	0.744	0.710	94.4	90.0	8	10.0-160			4.72	40	
1,2,4-Trichlorobenzene	0.788	ND	0.843	0.752	107	95.3	8	10.0-160			11.5	40	
1,1,1-Trichloroethane	0.788	ND	0.740	0.413	93.9	52.4	8	10.0-144		<u>J3</u>	56.7	35	
1,1,2-Trichloroethane	0.788	ND	0.913	0.947	116	120	8	10.0-160			3.69	35	
Trichloroethene	0.788	ND	0.768	0.524	97.4	66.5	8	10.0-156			37.8	38	
Trichlorofluoromethane	0.788	ND	0.702	0.317	89.0	40.2	8	10.0-160		<u>J3</u>	75.7	40	1
1,2,3-Trichloropropane	0.788	ND	0.346	0.754	43.9	95.6	8	10.0-156		<u>J3</u>	74.2	35	
1,2,3-Trimethylbenzene	0.788	ND	0.750	0.523	95.2	66.3	8	10.0-160			35.8	36	ı
1,2,4-Trimethylbenzene	0.788	0.215	1.05	0.799	105	74.0	8	10.0-160			26.9	36	
1,3,5-Trimethylbenzene	0.788	0.0889	0.900	0.600	103	64.9	8	10.0-160		<u>J3</u>	40.0	38	
Vinyl chloride	0.788	ND	0.687	0.328	87.1	41.6	8	10.0-160		<u>J3</u>	70.7	37	L
Xylenes, Total	2.37	ND	2.20	1.50	93.0	63.4	8	10.0-160			37.8	38	
(S) Toluene-d8					96.3	100		75.0-131					
(S) 4-Bromofluorobenzene					107	113		67.0-138					

98.8

112

70.0-130

Sample Narrative:

(S) 1,2-Dichloroethane-d4

OS: Non-target compounds too high to run at a lower dilution.

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-06

Method Blank (MB)

(MB) R3652254-3 05/09/2	21 14:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		0.548	1.00	
Acrolein	U		0.758	50.0	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	
tert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
Chloromethane	U		0.0556	0.500	
2-Chlorotoluene	U		0.0368	0.100	
4-Chlorotoluene	U		0.0452	0.200	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0400	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.100	
1,1-Dichloroethane	U		0.0230	0.100	
1,2-Dichloroethane	U		0.0190	0.100	
1,1-Dichloroethene	U		0.0200	0.100	
cis-1,2-Dichloroethene	U		0.0276	0.100	
trans-1,2-Dichloroethene	U		0.0572	0.200	
1,2-Dichloropropane	U		0.0508	0.200	
1,1-Dichloropropene	U		0.0280	0.100	
1,3-Dichloropropane	U		0.0700	0.200	
cis-1,3-Dichloropropene	U		0.0271	0.100	
trans-1,3-Dichloropropene	U		0.0612	0.200	
2,2-Dichloropropane	U		0.0317	0.100	
Di-isopropyl ether	U		0.0140	0.0400	
Ethylbenzene	U		0.0212	0.100	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-06

Method Blank (MB)

(MB) R3652254-3 05/09/	/21 14:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Hexachloro-1,3-butadiene	U		0.508	1.00	
2-Hexanone	U		0.400	1.00	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	1.75		0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	
Tetrachloroethene	U		0.0280	0.100	
Toluene	U		0.0500	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	
1,1,1-Trichloroethane	U		0.0110	0.100	
1,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
1,2,3-Trichloropropane	U		0.204	0.500	
1,2,3-Trimethylbenzene	U		0.0460	0.200	
1,2,4-Trimethylbenzene	U		0.0464	0.200	
1,3,5-Trimethylbenzene	U		0.0432	0.200	
Vinyl chloride	U		0.0273	0.100	
Xylenes, Total	U		0.191	0.260	
(S) Toluene-d8	106			75.0-131	
(S) 4-Bromofluorobenzene	94.6			67.0-138	
(S) 1,2-Dichloroethane-d4	92.2			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R36522!	64-1 05/09/21	12:25 • (LCSD) R3652254-2	05/09/21 13:20
---------------	---------------	---------------	--------------	----------------

()	(_,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	21.2	29.7	84.8	119	10.0-160		<u>J3</u>	33.4	31
Acrolein	25.0	4.81	10.0	19.2	40.0	10.0-160		<u>J3</u>	70.1	31

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1347655-06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CC/ DOCEODE / /	05/00/01/10/05	(LCSD) R3652254-2	05/00/01/10:00
$\Pi \cup S \cup R : S \cup S \cup S \cup A = I$	115/119/71 17:75	$\Pi \cup S \cup \Pi \cup S \cup $	115/119/7113:71

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acrylonitrile	25.0	20.5	22.5	82.0	90.0	45.0-153			9.30	22	
Benzene	5.00	4.72	4.59	94.4	91.8	70.0-123			2.79	20	
Bromobenzene	5.00	4.95	4.65	99.0	93.0	73.0-121			6.25	20	
Bromodichloromethane	5.00	4.69	4.69	93.8	93.8	73.0-121			0.000	20	
Bromoform	5.00	4.68	4.71	93.6	94.2	64.0-132			0.639	20	
Bromomethane	5.00	5.17	5.36	103	107	56.0-147			3.61	20	
n-Butylbenzene	5.00	3.93	3.93	78.6	78.6	68.0-135			0.000	20	
sec-Butylbenzene	5.00	4.37	4.19	87.4	83.8	74.0-130			4.21	20	
ert-Butylbenzene	5.00	4.83	4.55	96.6	91.0	75.0-127			5.97	20	
Carbon disulfide	5.00	4.53	4.54	90.6	90.8	56.0-133			0.221	20	
Carbon tetrachloride	5.00	4.87	4.93	97.4	98.6	66.0-128			1.22	20	
Chlorobenzene	5.00	4.68	4.55	93.6	91.0	76.0-128			2.82	20	
Chlorodibromomethane	5.00	4.93	4.80	98.6	96.0	74.0-127			2.67	20	
Chloroethane	5.00	4.18	4.31	83.6	86.2	61.0-134			3.06	20	
Chloroform	5.00	4.94	5.08	98.8	102	72.0-123			2.79	20	
Chloromethane	5.00	4.22	4.26	84.4	85.2	51.0-138			0.943	20	
-Chlorotoluene	5.00	4.27	4.25	85.4	85.0	75.0-124			0.469	20	
I-Chlorotoluene	5.00	4.49	4.16	89.8	83.2	75.0-124			7.63	20	
,2-Dibromo-3-Chloropropane	5.00	4.69	4.79	93.8	95.8	59.0-130			2.11	20	
,2-Dibromoethane	5.00	4.65	4.51	93.0	90.2	74.0-128			3.06	20	
Dibromomethane	5.00	4.73	4.75	94.6	95.0	75.0-122			0.422	20	
l,2-Dichlorobenzene	5.00	4.59	4.51	91.8	90.2	76.0-124			1.76	20	
l,3-Dichlorobenzene	5.00	4.51	4.29	90.2	85.8	76.0-125			5.00	20	
l,4-Dichlorobenzene	5.00	4.60	4.48	92.0	89.6	77.0-121			2.64	20	
Dichlorodifluoromethane	5.00	4.54	4.81	90.8	96.2	43.0-156			5.78	20	
,1-Dichloroethane	5.00	4.42	4.33	88.4	86.6	70.0-127			2.06	20	
l,2-Dichloroethane	5.00	4.55	4.81	91.0	96.2	65.0-131			5.56	20	
,1-Dichloroethene	5.00	3.91	3.91	78.2	78.2	65.0-131			0.000	20	
cis-1,2-Dichloroethene	5.00	4.85	4.77	97.0	95.4	73.0-125			1.66	20	
rans-1,2-Dichloroethene	5.00	4.65	4.65	93.0	93.0	71.0-125			0.000	20	
l,2-Dichloropropane	5.00	4.31	4.27	86.2	85.4	74.0-125			0.932	20	
,1-Dichloropropene	5.00	5.25	5.15	105	103	73.0-125			1.92	20	
,3-Dichloropropane	5.00	4.50	4.40	90.0	88.0	80.0-125			2.25	20	
is-1,3-Dichloropropene	5.00	5.06	4.97	101	99.4	76.0-127			1.79	20	
rans-1,3-Dichloropropene	5.00	4.87	4.81	97.4	96.2	73.0-127			1.24	20	
2,2-Dichloropropane	5.00	5.37	5.15	107	103	59.0-135			4.18	20	
Di-isopropyl ether	5.00	4.20	4.31	84.0	86.2	60.0-136			2.59	20	
Ethylbenzene	5.00	4.68	4.48	93.6	89.6	74.0-126			4.37	20	
Hexachloro-1,3-butadiene	5.00	4.38	4.90	87.6	98.0	57.0-150			11.2	20	
2-Hexanone	25.0	20.3	19.4	81.2	77.6	54.0-147			4.53	20	

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

1347655-06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

101

105

(LCS) R3652254-1 05/09/2112:25 • (LCSD) R3652254-2 05/09/2113:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Isopropylbenzene	5.00	4.41	4.42	88.2	88.4	72.0-127			0.227	20	
p-Isopropyltoluene	5.00	4.59	4.46	91.8	89.2	72.0-133			2.87	20	
2-Butanone (MEK)	25.0	21.9	24.8	87.6	99.2	30.0-160			12.4	24	
Methylene Chloride	5.00	4.57	4.52	91.4	90.4	68.0-123			1.10	20	
4-Methyl-2-pentanone (MIBK)	25.0	21.5	21.1	86.0	84.4	56.0-143			1.88	20	
Methyl tert-butyl ether	5.00	4.32	4.36	86.4	87.2	66.0-132			0.922	20	
Naphthalene	5.00	4.07	4.29	81.4	85.8	59.0-130			5.26	20	
n-Propylbenzene	5.00	4.48	4.10	89.6	82.0	74.0-126			8.86	20	
Styrene	5.00	4.57	4.44	91.4	88.8	72.0-127			2.89	20	
1,1,1,2-Tetrachloroethane	5.00	4.74	4.72	94.8	94.4	74.0-129			0.423	20	
1,1,2,2-Tetrachloroethane	5.00	4.36	4.10	87.2	82.0	68.0-128			6.15	20	
Tetrachloroethene	5.00	5.06	4.75	101	95.0	70.0-136			6.32	20	
Toluene	5.00	4.58	4.36	91.6	87.2	75.0-121			4.92	20	
1,1,2-Trichlorotrifluoroethane	5.00	4.52	4.62	90.4	92.4	61.0-139			2.19	20	
1,2,3-Trichlorobenzene	5.00	4.26	4.69	85.2	93.8	59.0-139			9.61	20	
1,2,4-Trichlorobenzene	5.00	4.21	4.76	84.2	95.2	62.0-137			12.3	20	
1,1,1-Trichloroethane	5.00	4.92	4.85	98.4	97.0	69.0-126			1.43	20	
1,1,2-Trichloroethane	5.00	4.46	4.58	89.2	91.6	78.0-123			2.65	20	
Trichloroethene	5.00	5.13	5.02	103	100	76.0-126			2.17	20	
Trichlorofluoromethane	5.00	4.62	4.60	92.4	92.0	61.0-142			0.434	20	
1,2,3-Trichloropropane	5.00	4.83	4.58	96.6	91.6	67.0-129			5.31	20	
1,2,3-Trimethylbenzene	5.00	4.33	4.24	86.6	84.8	74.0-124			2.10	20	
1,2,4-Trimethylbenzene	5.00	4.54	4.31	90.8	86.2	70.0-126			5.20	20	
1,3,5-Trimethylbenzene	5.00	4.66	4.38	93.2	87.6	73.0-127			6.19	20	
Vinyl chloride	5.00	4.60	4.53	92.0	90.6	63.0-134			1.53	20	
Xylenes, Total	15.0	13.4	13.0	89.3	86.7	72.0-127			3.03	20	
(S) Toluene-d8				103	104	75.0-131					
(S) 4-Bromofluorobenzene				97.1	101	67.0-138					

70.0-130

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1347655-01,02,03,04,05

Method Blank (MB)

(MB) R3652071-1 05/08/21	l 15:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	78.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3652071-2 05/08/	/21 15:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	49.1	98.2	50.0-150	
(S) o-Terphenyl			86.5	18.0-148	

L1347619-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347619-05 05/08/21 16:55 • (MS) R3652071-3 05/08/21 17:08 • (MSD) R3652071-4 05/08/21 17:20

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1347655-01

Method Blank (MB)

(MB) R3654096-1 05/12/2	21 20:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	62.6			10.0-135
(S) Tetrachloro-m-xylene	62.2			10.0-139

Laboratory Control Sample (LCS)

(LCS) R3654096-2	05/12/21 21:15
------------------	----------------

(LC3) K3034090-2 03/12	/21/21.13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
PCB 1260	0.167	0.0673	40.3	37.0-145	
PCB 1016	0.167	0.0707	42.3	36.0-141	
(S) Decachlorobiphenyl			45.9	10.0-135	
(S) Tetrachloro-m-xylene			43.8	10.0-139	

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1347655-02,03,04,05

Method Blank (MB)

(MB) R3653568-1 05/11/2	1 16:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	47.9			10.0-135
(S) Tetrachloro-m-xvlene	491			10 0-139

Laboratory Control Sample (LCS)

(LCS) R3653568-2 05/11/	CS) R3653568-2 05/11/21 16:24									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
PCB 1260	0.167	0.114	68.3	37.0-145						
PCB 1016	0.167	0.119	71.3	36.0-141						
(S) Decachlorobiphenyl			67.3	10.0-135						
(S) Tetrachloro-m-xylene			70.9	10.0-139						

L1348222-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348222-01 05/11/21 23:15 • (MS) R3653568-3 05/11/21 23:25 • (MSD) R3653568-4 05/11/21 23:35												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1260	0.181	ND	0.179	0.102	98.8	45.2	1	10.0-160	<u>P</u>	<u>J3</u>	74.4	38
PCB 1016	0.181	ND	0.186	0.117	82.6	51.9	1	10.0-160	<u>P</u>	<u>J3</u>	45.7	37
(S) Decachlorobiphenyl					68.3	65.3		10.0-135				
(S) Tetrachloro-m-xylene					77.5	71.9		10.0-139				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1347655-01,02,03,04,05

Method Blank (MB)

(MB) R3653116-2 05/11/	21 14:55				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	
Acenaphthylene	U		0.00216	0.00600	
Benzo(a)anthracene	U		0.00173	0.00600	
Benzo(a)pyrene	U		0.00179	0.00600	
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	71.3			14.0-149	
(S) 2-Fluorobiphenyl	77.2			34.0-125	
(S) p-Terphenyl-d14	103			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3653116-1 05/11/	21 14:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0540	67.5	50.0-126	
Acenaphthene	0.0800	0.0613	76.6	50.0-120	
Acenaphthylene	0.0800	0.0600	75.0	50.0-120	
Benzo(a)anthracene	0.0800	0.0516	64.5	45.0-120	
Benzo(a)pyrene	0.0800	0.0486	60.8	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0602	75.3	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0628	78.5	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0589	73.6	49.0-125	
Chrysene	0.0800	0.0604	75.5	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0584	73.0	47.0-125	
Fluoranthene	0.0800	0.0606	75.8	49.0-129	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1347655-01,02,03,04,05

Laboratory Control Sample (LCS)

(LCS	R3653116-1	05/11/21	14:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0625	78.1	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0553	69.1	46.0-125	
Naphthalene	0.0800	0.0625	78.1	50.0-120	
Phenanthrene	0.0800	0.0608	76.0	47.0-120	
Pyrene	0.0800	0.0612	76.5	43.0-123	
1-Methylnaphthalene	0.0800	0.0653	81.6	51.0-121	
2-Methylnaphthalene	0.0800	0.0606	75.8	50.0-120	
2-Chloronaphthalene	0.0800	0.0579	72.4	50.0-120	
(S) Nitrobenzene-d5			71.7	14.0-149	
(S) 2-Fluorobiphenyl			76.6	34.0-125	
(S) p-Terphenyl-d14			96.0	23.0-120	

L1347666-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347666-23 05/11/21 19:29 • (MS) R3653116-3 05/11/21 19:49 • (MSD) R3653116-4 05/11/21 20:08

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.106	ND	0.0607	0.0617	57.1	57.3	1	10.0-145			1.76	30	
Acenaphthene	0.106	ND	0.0721	0.0743	64.1	65.2	1	14.0-127			2.95	27	
Acenaphthylene	0.106	ND	0.0660	0.0681	62.2	63.1	1	21.0-124			3.02	25	
Benzo(a)anthracene	0.106	ND	0.0573	0.0585	53.9	54.3	1	10.0-139			2.10	30	
Benzo(a)pyrene	0.106	ND	0.0603	0.0617	56.7	57.3	1	10.0-141			2.43	31	
Benzo(b)fluoranthene	0.106	ND	0.0659	0.0677	62.1	62.8	1	10.0-140			2.62	36	
Benzo(g,h,i)perylene	0.106	ND	0.0673	0.0683	63.3	63.4	1	10.0-140			1.59	33	
Benzo(k)fluoranthene	0.106	ND	0.0635	0.0660	59.8	61.3	1	10.0-137			3.95	31	
Chrysene	0.106	ND	0.0670	0.0677	63.1	62.8	1	10.0-145			1.00	30	
Dibenz(a,h)anthracene	0.106	ND	0.0594	0.0609	56.0	56.5	1	10.0-132			2.46	31	
Fluoranthene	0.106	ND	0.0659	0.0670	62.1	62.1	1	10.0-153			1.62	33	
Fluorene	0.106	ND	0.0811	0.0832	69.1	70.0	1	11.0-130			2.46	29	
ndeno(1,2,3-cd)pyrene	0.106	ND	0.0588	0.0569	55.3	52.8	1	10.0-137			3.26	32	
Naphthalene	0.106	0.539	1.03	0.834	461	274	1	10.0-135	$\underline{\vee}$	$\underline{\vee}$	20.8	27	
Phenanthrene	0.106	0.00927	0.0802	0.0837	66.8	69.0	1	10.0-144			4.28	31	
Pyrene	0.106	ND	0.0704	0.0710	66.2	65.9	1	10.0-148			0.953	35	
l-Methylnaphthalene	0.106	0.318	0.613	0.619	278	279	1	10.0-142	<u>J5</u>	<u>J5</u>	0.875	28	
2-Methylnaphthalene	0.106	0.644	1.14	1.14	471	460	1	10.0-137	$\underline{\vee}$	$\underline{\vee}$	0.354	28	
2-Chloronaphthalene	0.106	ND	0.0654	0.0673	61.5	62.4	1	29.0-120			2.85	24	
(S) Nitrobenzene-d5					68.7	65.5		14.0-149					
(S) 2-Fluorobiphenyl					59.2	59.7		34.0-125					
(S) p-Terphenyl-d14					73.8	72.9		23.0-120					

(S) p-Terphenyl-d14

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1347655-01,02,03,04,05

L1349826-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349826-25 05/11/21 21:07 • (MS) R3653116-5 05/11/21 21:27 • (MSD) R3653116-6 05/11/21 21:46

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0800	ND	0.0505	0.0483	63.1	60.4	1	10.0-145			4.45	30	
Acenaphthene	0.0800	ND	0.0588	0.0568	73.5	71.0	1	14.0-127			3.46	27	
Acenaphthylene	0.0800	ND	0.0564	0.0548	70.5	68.5	1	21.0-124			2.88	25	
Benzo(a)anthracene	0.0800	ND	0.0523	0.0489	62.3	58.1	1	10.0-139			6.72	30	
Benzo(a)pyrene	0.080.0	0.00887	0.0624	0.0553	66.9	58.0	1	10.0-141			12.1	31	
Benzo(b)fluoranthene	0.080.0	0.0132	0.0697	0.0616	70.6	60.5	1	10.0-140			12.3	36	
Benzo(g,h,i)perylene	0.0800	0.0289	0.0930	0.0770	80.1	60.1	1	10.0-140			18.8	33	
Benzo(k)fluoranthene	0.080.0	ND	0.0619	0.0585	73.0	68.7	1	10.0-137			5.65	31	
Chrysene	0.0800	ND	0.0631	0.0587	73.4	67.9	1	10.0-145			7.22	30	
Dibenz(a,h)anthracene	0.0800	ND	0.0576	0.0560	72.0	70.0	1	10.0-132			2.82	31	
Fluoranthene	0.0800	0.00848	0.0665	0.0593	72.5	63.5	1	10.0-153			11.4	33	
Fluorene	0.0800	ND	0.0630	0.0689	78.8	86.1	1	11.0-130			8.95	29	
Indeno(1,2,3-cd)pyrene	0.0800	0.0193	0.0739	0.0626	68.3	54.1	1	10.0-137			16.6	32	
Naphthalene	0.0800	ND	0.0607	0.0631	75.9	78.9	1	10.0-135			3.88	27	
Phenanthrene	0.0800	ND	0.0586	0.0571	73.3	71.4	1	10.0-144			2.59	31	
Pyrene	0.0800	0.0145	0.0716	0.0644	71.4	62.4	1	10.0-148			10.6	35	
1-Methylnaphthalene	0.0800	ND	0.0632	0.0620	79.0	77.5	1	10.0-142			1.92	28	
2-Methylnaphthalene	0.0800	ND	0.0579	0.0577	72.4	72.1	1	10.0-137			0.346	28	
2-Chloronaphthalene	0.0800	ND	0.0551	0.0538	68.9	67.3	1	29.0-120			2.39	24	
(S) Nitrobenzene-d5					63.9	62.8		14.0-149					
(S) 2-Fluorobiphenyl					70.0	68.7		34.0-125					

83.7

85.0

23.0-120

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Delimitoris
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
P	RPD between the primary and confirmatory analysis exceeded 40%.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1347655 05/17/21 09:39 NORTH STAR

ACCREDITATIONS & LOCATIONS

Pace Analytical National	12065 Lebanor	n Rd Mount Ji	uliet TN 37 12 2

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

		EU-L	Billing Inf	ormation:		F	200	A.S.	- 1	Analysis	/ Contail	ner / Pre	servatív	e ,		94	Chain of Custody	Page [of]
Martin S. Burck Associa 100 N. Wasco Ct., Hood		97031	200 N.	counts Payable O N. Wasco Ct. ood River, OR 97031													Pace	Inalytical*
eport to: osh Owen			Email To:	The state of the s	msbaenvironmental.com												12065 Leburon Rd Alount Asket, TN 371 Phone: 615-758-5858	18 60 6
roject escription: North Star Castee	1 - 7			City/State Collected: V	City/State Collected: Vancouver, WA									42.			Phone: 800-767-5851 Fex: 615-758-5859	
hone: 541.387.4422 541.387.4813	Client Project North Star			sb Project # ISBAHROR-NSTARCASTEE				=	WITLIST			Ja 15				Table #	655	
Jan Wh.h	Site/Facility IC	•	P.O.# North		P.O. # North Star			Ł.	C	H	PAHs		B				Acctnum:	
collected by/signature):	Rush? (L.	ab MUST Be		Quote #		1.4	8	×	×	- VOCs	N-P		00				Template: Prelogin:	
nimed stely sched on loe N _ Y _	Next Day Two Day Three Day	5 Ow 10 D	y (Rad Only) wy (Rad Only)		Results Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D-V	8270 E SIM -	Bs	RA		Toolin for	-	TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Critic	ž	Ž	Ž	82(827	PC	RC	- 1	1	Hold	Shipped VIa: Remarks	Sample 8 (lab only)
5P1-A	grab	55	-	4130/21	1155	2		1	1	1	1	/	/	A		U		701
SP1-B	grab	55	-	4/30/2	1 1205	2		1	1	1	/	/	1					-02
5P1-C	grab	55	-	4(30/2	1 1217	2		1	1	1	1	V	1				3 70 9	-03
SP2- A	grab	55	-	4/30/2	1 1415	3		14	/	1	/	/	V				.11	7
5P2-B	gras	55	-	4(30/2	1 1422	4		V	1	1	1	1	1	5 1	3	POI	Thosa.	-1-04
582-C	grab	55	-	4/70/21	1436	4		1	1	1	1	1	1					1
593-A	gras	55	-	4/30/21	1449	4	1	TV	V	1	1	1	1		1			7
SP3-B	gras	55	-	4/30/2	1 1506	4		1	V	1	1	1	1			C	mposi	te -05
583-C	gres	55	-	4/30/2	4 1511	4		1	V	V	V	1	1					
Trip Blank		OT2	-			1				1/		3.2				×		-06
Metric: 5-Soil AIR-Air F-Filter W-Groundwater B-Bloessey NV-WasteWater		9873 00 PT					Invoi Cueto Phone SAT I	CO CO	Signer the	Presered/Accu	t/Inta rate: intact	act:	Y N	t Checklist If App VOA Zero He Pres.Correc	olicable adspace: _Y_ t/Check: _Y_			
W - Drinking Water T - Other OT1 = Distilled Water	UPSFe		irler	* N	Tracking #						CO	fficie	nt volu	ime set	nt: 💆	N		
OTE = Lab Provided Weber linguished by : (digneture) Date: Time: 5 3 24 15:3		Time: 5:30	Received by: (Signat	ture)	* **				PA	D Scre	GOL/A	5 m.P./ (1)	L	-		an commercial design of the second		
elinquished by : (Signature)	T PC WY		Time:	Received by: (Signal	ture)				Temp:	,	°C bo	3 U		If pre	servati	on required by L	ogin: Date/Time	
elinquished by : (Signature)		Date:		Time:	Received for lab/by:	San	inture)	1		Date:	1/21	Th	ne:		r	05	-031	NCF / OK

**************************************	114V V. 73	- No.	Billing Info	illing Information:					- 1	Analysis	/ Containe	er / Preser	vative			Chain of Custody	Page 1 of 1		
Martin S. Burck Associa 200 N. Wasco Ct., Hood		97031	200 N.	its Payable Wasco Ct. liver, OR 97	031	Pres Chk										Pace Medional Co	Analytical® nur for feeting & trinovalion		
Report to: Josh Owen			Email To:	emsbaenvironmental.com						1						12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-585			
Project Description: North Star Casteel	1			City/State Collected: V	City/State Collected: Vancouver, WA											Phone: 800-767-585 Fax: 615-758-5859			
Phone: 541.387.4422 Fax: 541.387.4813	Client Project North Star				Lab Project # MSBAHROR-NSTARCAST					-		OM List						L# 39	7655
Collected by (print): Jan Wh. h	Site/Facility ID	#		P.O. # North Sta	r		3			- RBDM	AHs		- F			Acctnum:	4.2%		
Collected by (signature):	Same Da	7	Day	Quote#			HCID	GX	Dx	8260D - VOCs	SIM - P.					Template: Prelogin:			
Immediately Packed on Ice NY	Next Day Two Day Three Day	10 Da	y (Rad Only) ay (Rad Only)	Date	Results Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx		ш	ш			_	PB:			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		N N	N		8270	-			Hold	Shipped Via: Remarks	Sample # (lab only)		
SPI-A	grab	55	1 -	4/30/21	1155	2										7			
SP1-B	grab	55	-	4/30/2	1205	2										1.7			
5P1-C	grab	55	(T	4(30/2	1217	2		9											
SP2-A	grab	55	-	4/30/2	1 1415	3													
SPZ-B	grab	SS	-	4/30/2	1 1422	4	11	2	9.0										
5P2-C	grab	SS	-	4/30/21	1436	4		1	14.										
5P3-A	grab	55	-	4/30/21	1449	Ч													
SP3-B	gras	55	_	4/30/2	1 1506	4													
583-C	gras	55	-	4/30/2	1 1511	4										the state of			
Trip Blank	T -	OT2				1						V			×				
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater W - Drinking Water OT2 = Lab Provided Water	Samples retur			analytic	analytical regrests					pH	w	Temp_ Other_		COC Bott Corr Suff	Seal P Signed les ar ect bo icient Zero H	ple Receipt C resent/Intact /Accurate: rive intact: ttles used: volume sent: If Applicate eadspace:	: _NP _Y _N _Y _N _Y _N _Y _N _Y _N		
Relinquished by : (dignature)	linquished by : (dignature) Date:		Time: 5:30	Received by: (Signat	1	2			Trip Bla	ank Receiv	TBI	L/MeoH	1		on Correct/Ch				
Relinquished by : (Signature)	inquished by : (Signature) Date: Time		Time:	Received by: (Signat	ture)	5			Temp!	1=.4		Received:	If pre	If preservation required by Login: Date/Time					
elinquished by : (Signature) Date: Time:		Time:	Received for lab by:			1		Date:	4/21	Time:	200	Hold: Cor			Condition: NCF / OK				

DRAFT

11) Sample Date 4/30/21 (#L1350828)

Ss

Cn

Śr [°]Qc

Gl

Αl

Sc

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1350828

Samples Received:

05/04/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page
Tc: Table of Contents

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
SP1-B L1350828-01 Solid			Jon White	04/30/2112:05	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1665918	1	05/08/21 11:04	05/08/21 11:21	JAV	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1669705	1	05/13/21 23:42	05/14/21 13:09	MSP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SP1-C L1350828-02 Waste			Jon White	04/30/21 12:17	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1670509	1	05/14/21 12:30	05/14/21 12:30	IDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1670944	1	05/15/21 17:13	05/16/21 15:47	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SP2-ABC L1350828-03 Solid			Jon White	04/30/21 00:00	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1665918	1	05/08/21 11:04	05/08/21 11:21	JAV	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1669705	1	05/13/21 23:42	05/14/21 13:35	MSP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SP2-ABC L1350828-04 Waste			Jon White	04/30/21 00:00	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1670793	1	05/15/21 08:44	05/15/21 08:44	TM	Mt. Juliet, TN

WG1671714

Martin S. Burck Assoc.-Hood River, OR

Metals (ICP) by Method 6010D

05/16/21 22:22

05/17/21 09:30

EL

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

SP1-B

Analyte

Hexavalent Chromium

SAMPLE RESULTS - 01

Collected date/time: 04/30/21 12:05

Wet Chemistry by Method 7199

Result (dry)

mg/kg

ND

Qualifier

J3 J6

RDL (dry)

mg/kg

1.05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	95.5		1	05/08/2021 11:21	WG1665918	

Dilution

Analysis

date / time

05/14/2021 13:09

Batch

WG1669705

SP1-C

SAMPLE RESULTS - 02

Collected date/time: 04/30/21 12:17

Preparation by Method 1311

	Result	Qualifier	Prep	Batch			
Analyte			date / time				
TCLP Extraction	-		5/14/2021 12:30:20 PM	WG1670509			
Fluid	1		5/14/2021 12:30:20 PM	WG1670509			
Initial pH	7.20		5/14/2021 12:30:20 PM	WG1670509			
Final pH	5.10		5/14/2021 12:30:20 PM	WG1670509			

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Barium	1.24		0.100	100	1	05/16/2021 15:47	WG1670944

Cn

SP2-ABC

SAMPLE RESULTS - 03

Collected date/time: 04/30/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.3		1	05/08/2021 11:21	WG1665918	

Тс

Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexavalent Chromium	ND		1.10	1	05/14/2021 13:35	WG1669705	

SP2-ABC

Collected date/time: 04/30/21 00:00 Preparation by Method 1311

SP2-ABC Collected date/time: 04/30/21 0	0:00		SAMPLE RE		04	7	\	
Preparation by Method 1	311				<i>)</i>	KA	4 🗀	
	Result	Qualifier	Prep	Batch				
Analyte			date / time					
TCLP Extraction	-		5/15/2021 8:44:14 AM	WG1670793				
Fluid	1		5/15/2021 8:44:14 AM	WG1670793				
Initial pH	8.44		5/15/2021 8:44:14 AM	WG1670793				
Final pH	5.10		5/15/2021 8:44:14 AM	WG1670793				

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chromium	ND		0.100	5	1	05/17/2021 09:30	WG1671714
Lead	ND		0.100	5	1	05/17/2021 09:30	WG1671714

Cn

Martin S. Burck Assoc.-Hood River, OR

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1350828-01,03

Method Blank (MB)

(MB) R3652221-1 0!	5/08/21 11:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

3

L1347653-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1347653-06 05/08/21 11:21 • (DUP) R3652221-3 05/08/21 11:21

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	91.8	92.4	1	0.711		10	

Laboratory Control Sample (LCS)

(LCS) R3652221-2 05/08/21 11:21

(LCS) K3032221-2 03/06/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1350828-01,03

Wet Chemistry by Method 7199 Method Blank (MB)

(MB) R3654626-1 05/14/2110:59

	MB Result	MB Qualifier	MB MDL	MB RDL
nalyte	mg/kg		mg/kg	mg/kg
lexavalent Chromium	U		0.255	1.00

[†]Cn

L1346831-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1346831-01 05/14/21 11:14 • (DUP) R3654626-3 05/14/21 11:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3654626-2 05/14/21 11:04

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Hexavalent Chromium	10.0	11.8	118	80.0-120	

L1350828-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350828-01 05/14/21 13:09 • (MS) R3654626-5 05/14/21 13:14 • (MSD) R3654626-6 05/14/21 13:19

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Hexavalent Chromium	20.9	ND	5.45	6.77	26.0	32.3	1	75.0-125	J6	J3 J6	21.6	20

L1350828-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1350828-01 05/14/2	21 13:09 • (MS) R	(3654626-/ 0	5/14/21 13:24			
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MS Rec.	Dilution Rec	ec. Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	
Hexavalent Chromium	675	ND	515	76.4	50 75 (0-125

QUALITY CONTROL SUMMARY

L1350828-02

Metals (ICP) by Method 6010D

Method Blank (MB) (MB) R3655120-1 05/16/21 14:33

(,	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Barium	U		0.0333	0.100			

Laboratory Control Sample (LCS)

(LCS) R3655120-2 05/16/21 14:36

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Barium	10.0	10.2	102	80.0-120	

[†]Cn

QUALITY CONTROL SUMMARY

L1350828-04

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3655386-1	05/17/21 09:25

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chromium	U		0.0333	0.100
Lead	U		0.0333	0.100

(LCS) R3655386-2	05/17/21 09:28
------------------	----------------

(LC3) K3033360-2 U3/1/	LC3) K3033360-2							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
Chromium	10.0	9.62	96.2	80.0-120				
Lead	10.0	9.84	98.4	80.0-120				

L1350828-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05) L1350828-04 $05/17/21$ 09:30 • (MS) R3655386-4 $05/17/21$ 09:36 • (MSD) R3655386-5 $05/17/21$ 09:38												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	10.0	ND	9.74	9.75	97.4	97.5	1	75.0-125			0.0808	20
Lead	10.0	ND	10.0	9 99	99.8	99.2	1	75.0-125			0.519	20

L1352030-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1352030-02 05/17/21 09:41 • (MS) R3655386-6 05/17/21 09:43 • (MSD) R3655386-7 05/17/21 09:46

(00) 2.002000 02 00	(30) 21002000 02 00/1/1/2001 (110) /10000000 0 00/1/1/20010											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	10.0	0.633	10.3	10.4	97.1	98.1	1	75.0-125			0.956	20
Lead	10.0	0.156	9 94	10.1	97 9	98 9	1	75 0-125			1.07	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

cription

J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination: spike value is low.

Qc

ACCREDITATIONS & LOCATIONS

Pace Analy	vtical National	12065 Lebano	in Rd Mount	Juliet TN 37	7122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

			Billing Infor	w selection					A.	nalysis /	Contain	er/Pre	servative	233		- 0	Chain of Custody	Page _ cf _ l	
	Art other	2,2,016		8、5、1个事故语的			17 10			3			3				0		
Martin S. Burck Associat 100 N. Wasco Ct., Hood		97031	200 N. W	Payable asco Ct. ver, OR 9703		Chik	1		7	4							PaceAr	nalytical*	
leport to:		7	Email To: loweri@r	nsbaenviron	mental.com												12065 Leberon Rd Hours Juliet, TH 37123 Phone: 615-758-5858 Phone: 800-767-5859	554	
roject Description: North Star Casteel				City/State Collected; Van	couver, WA				the state of		A T						Fac: 615-758-5899	2000	INV.
tione: 541.387.4422	Client Project &	1.1		Lab Project # MSBAHROF	-NSTARCASTI	EE			1	SMTLIst			SIN				Table # 13	50823	5/1
Collected by forints: Jan Wh. h	Site/Facility ID			P.O. # North Star					نا	Ba	PAHs	1.	Me			11000	Acctnuitie		1
collected by signature):	Rush? (Li	ab MUST Be	Same Shirt	Quote #			8	×	×	VOCs	5 14.17	1	8				Template: Prelogin:		
minediately lacked on ice N Y	- Next Cory Two Cory Three De	5 Owy	(Rad Only) y (Rad Only)	Date Re	sultx Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D-V	8270 E SIM	Bs	RA			P	TSR: PB: Shipped Via:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Critis	ž	Ž	Ž	82	827	Pc	RC			Hold	Bestefa	Savagila & Bab overy	
SP1-A	grab	55	197	4/30/21	1155	2	1.3	1	1	1	1	1	/					-01	10
SP1-B	grab	55	-	4/30/21	1205	2	2 3	1	1	1	1	/	/				E 465 - Port 6	702	-
5P1-C	grab	55	-	4(30/21	1217	2	1	1	1	1	1	V	/		_		3043	-03	-0
592-A	grab	55	-	4/30/21	1415	3		14	/	1/	1	/	V	1	_	70	1POSIT	-104	1.0
5P2-B	5mb	55	-	4/30/21	1422	4		V	1	1	1	1	~	-	_ `	<i>_</i>	dos.	101	4
582-C	grab	55	-	4/70/21	1436	14	1	1	4	/	1	1	/	4			E 27% - 1	R The State of	-
593-A	6mb	55		4 30 21	1449	14	1	V	V	1	1	1	1	7			the second	7	4
SP3-B	goas	55	-	4/30/21	1506	14	11	1	V	1	1	1	1	K	2	5	mpos.	PETO.	4
583-C	gres	55	-	4/30/24	1511	4	\Box	1	V	V	V	1	V	14				-06	4
Trip Blank	-	072	-	1/2	- Hear-	11	1_	1_	1	1	1	1				×		1-06	1
Metric 5-Soit AIR-Air F-Filter NW-Groundwater B-Bloassay VW-WasteWater	temerks: V	otil e	سمآا	avalytic	9373 00 P					Invo Cuet Phon SAT	B 00	C Side	ed Acci	t/Intac	2	eceipt Y N N	VOA Zero Hea	olicable adspace: _Y t/Check: _Y	_N
SW - Drinking Water IT - Other OTT - Distilled Water OTT - Lab Provided Water	Samples retur _ UPS _ Fe	med via: MEXCo	rier		Tracking #				AV		Co	rrect	bottle	used: ime sent mR/hr:	. 5	N N N			
selinguished by : [digrasture]	*	Date: 5 3		15:30	Received by: (Signs		3,5					1	GOL/I	feoH	***			a se sensi se se	4
telinquished by ; (Signature)	7	Detec		Time;	Received by: (Sign	ature)				Temp	4	.c ,	3.0		n pre	servati	on required by La	Why restry I was	

L1347655 MSBAHROR re-log

R3/R4/RX/EX

Please re-log the following as RX due o5/18. transfer TS.

L1347655-02 (SP1-B): CR6IC,TS.

L1347655-03 (SP1-C): TCLP BAICP.

L1347655-04 (SP2-ABC): CR6IC,TS.

Time estimate: oh

Time spent: oh

Members

Brian Ford

10712

Constitution (Sport Constitution)

light setting the ah

Messisting .

22 Print Ford

DRAFT

12) Sample Date 4/29/21 (#L1352279)

Ss

Cn Śr

[°]Qc

Gl

Αl

Sc

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1352279

Samples Received:

05/01/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

CONTENTS

3

4

5

5

6

7

9

10

11

12

Ss: Sample Summary

Cn: Case Narrative
Sr: Sample Results

S18-0 L1352279-01

S25-2 L1352279-02

Qc: Quality Control Summary

Total Solids by Method 2540 G-2011

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

GI: Glossary of Terms

Al: Accreditations & Locations

Sc: Sample Chain of Custody

SAMPLE SUMMARY

S18-0 L1352279-01 Solid			Jon White	O4/29/21 09:27	05/01/21 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1668084	1	05/11/21 10:31	05/11/21 10:40	JAV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1670442	2	05/13/21 22:40	05/17/21 14:30	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	time/time
S25-2 L1352279-02 Solid			Jon White	04/29/21 16:57	05/01/21 10:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
T						
Total Solids by Method 2540 G-2011	WG1671724	1	05/17/21 09:53	05/17/21 10:06	KDW	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 01

Dilution

2

Analysis

date / time

05/17/2021 14:30

05/17/2021 14:30

05/17/2021 14:30

Batch

WG1670442

WG1670442

WG1670442

Collected date/time: 04/29/21 09:27

Total Solids by Method 2540 G-2011

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

RDL (dry)

mg/kg

9.54

23.8

18.0-148

Result (dry)

mg/kg

39.0

247

55.6

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	83.9		1	05/11/2021 10:40	WG1668084	

Тс

Ss

Martin S. Burck Assoc.-Hood River, OR

S25-2

SAMPLE RESULTS - 02

Collected date/time: 04/29/21 16:57

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	96.3		1	05/17/2021 10:06	WG1671724	

Ss

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	639		83.1	20	05/17/2021 14:57	WG1670442
Residual Range Organics (RRO)	3300		208	20	05/17/2021 14:57	WG1670442
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/17/2021 14:57	WG1670442

WG1668084

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1352279-01

Method Blank (MB)

(MB) R3653262-1 05	5/11/21 10:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Тс

L1350276-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1350276-01 05/11/21 10:40 • (DUP) R3653262-3 05/11/21 10:40

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	86.3	85.5	1	0.872		10

Laboratory Control Sample (LCS)

(LCS) R3653262-2 05/11/21 10:40

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

PAGE: 7 of 14

WG1671724

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1352279-02

Method Blank (MB)

(MB) R3655646-1 0	5/17/21 10:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00300			

Laboratory Control Sample (LCS)

(LCS) R3655646-2 05/17	/21 10:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Ss

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1352279-01,02

Method Blank (MB)

(MB) R3654422-2 05/14/2	1 03:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	55.4			18.0-148

²Tc

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3654422-1 05/14/2	21 03:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	32.8	65.6	50.0-150	
(S) o-Terphenyl			35.6	18.0-148	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J7

Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

TN00003

EPA-Crypto

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Martin S. Burck Assoc.	Rurck Assoc -Hood River OR						20000	Page 1	Page A	nalvsis	Contain	per/Pre	servativ	e		Chain of Custod	y Page of 2	}
			200 N. W		47/4/2	Chk						TO STATE OF				1 da	na Amah dinal	
00 N. Wasco Ct. lood River, OR 97031	Hood River, OR 97031														Pace Analytical D063			
eport to: on White			Email To. msba@msl	baenvironmenta	Lcom:jwhite@	msbae					/Syr	<u></u>					in the their of custody (great and supplement of the	
roject Description: North Star Casteel	**/	City/State Collected: \	Vancou	iver, W	Please C		- La		Sa		Own						com/hubb/pas-et anciaes-	
thone: 541-387-4422	Nonth	TUE .		MSBAHROR	-NSTARCAS	TEE	-NoPres		Ir-NoPr	802Clr-NoPres	MedHi		Pb			C	1350377 057	40/21
ollected by (print):	Site/Facility I			P.O. #			801Cf	Pres	OZC	0	Jqu	41	P	4		6	1352279	IN
Jon White collected by (signature):	Purch3 I	Lab MUST Be	Northead	North Quote#	Sterr		0.80	No.	3T 8		pla	U	0	9		Template: T11		5/13/21
Ash Owen for Jun Williams		tay Five in the say 5 Day in 10 Day			hs Needed	No.	s,cd,cr,Pb 6020	Cr6 7199 4ozCir-NoPres	NWTPHDX NOSGT 802Clr-NoPres	PAHS 8270ESIM	\$260D 40mlAmb/MeOH10ml/Sy	4-40-	al As	1 As	19	Prelogic P84 PM: 110 - Bris	12230	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Critrs	As, Cd	Cr6 71	NWTP	PAHS	VOCS	NE	Tot	Toh	140	Shipped Via:	Sample # (lab only)	
SE-12	Grab	SS	12	4/29/21	15:05			42				1			1			638
518-0	1	SS	0		09:27	3						1	/				-01	-01
\$19-0		SS	0		10:03	3						1	V		1	***	se	
520-9	100	SS	9		12:13	2	200		J			0-1				-	63	100
520-9 Dup		SS	9	BA	12:13	-			1		150						of.	
521-9		SS	9		12:25				1								-05	
522-9		SS	9		12:33	31			1							7.5	-06	
523~1		SS	11		15:21	13			7					1	3	43.	-07	
524-1		SS	1		15:35	13								1			08	
525-1.5	1	SS	165	1	16:22	13		1	1	12		*					108	
S · Soil AIR - Air F · Filter IW - Groundwater B · Bloassay VW - WasteWater	Remarks: MSBA	w:21	email	analyti	real re	you	rts			pH Flow		Temp		COL	Soul Pro	a Pecsipi C sent/intact communicati two intacts les used;		
IW - Drinking Water IT - Other	Samples lutarner UPSFedE			Irack	dag # 9465	19	22	1551								olume semi 11 Auniton	de -Y -Y	
teknquished by : (Signature)	0	ate	Time	Recei	ived by: (Signat	ure)	1			rip Blac	k Feceiv	ed: Ye		Pas	PREVETTO	Correct/C	notiked: _Y _n	200
Mohlmy	1	1/30/2	Time	5(30		1						1	BR BR	7.				
telinguished by: (Signature)			i i i i	Rece	ived by: (Signat	urej				emp:	E A	n Bottl	ex Receiv	of B	reservation	required by Lo	gla: Date/Time	
telinquished by : (Signature)	10	ate:	Time	Rece	ived for tab by:	(Chinat	C31	Market Street	September 1)abe		Terre		Hol	100000000000000000000000000000000000000		Condition:	II .

	The Park	-	Billing Inform	antion:			130			natysis /	Contain	or / Prese	ervative	1.00		Chain of Custody	page Lot L	}
pany Name/Address: Partin S. Burck AssocF	lood Rive	The state of the s	· 是有" %"	Sea Date		Pres	1		200					200		0	TV AND	
rartin S. Burck ASSOC.	iood mide		Accounts 200 N. Wa	0.00	建 种主义。	Chk					200					1 820	e Analytical*	
00 N. Wasco Ct.		1.345-20109-0000000		er, OR 97031	1		1000									1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ood River, OR 97031				776							168					1 /12	12279	
eport to:			Email To:	Arrau .												12065 Lebanon Rd Mo Selectory a semple of	unit pulles, 1N 87127 strick chain of evaluaty	
on White			msba@msb	aenvironment	al.com;jwhite@	4		1		AL NE	1/5/	-				Constitutes administrate Pack Terms and Condition		
roject Description:		City/State	1	- 11A	Priease Ci		130		S	14	G					term pd		
Vorth Star Casteel	Client Project	Collected:	MALLIA	Lab Project #	10		BozCir-NoPres		Pre	res	H1		49			SOG # 11	350377	
hone: 541-387-4422	7	14.00	61.527	MSBAHRO	R-NSTARCAS	TEE	No		ž	loPr	Acc		19698			2,027(4)(7)(8)		
	North Site/Facility II	h Star	in . 1776	P.O. #			Ha:	es	T)Z	N.	E P	9	13			Table #	是特色的影响。	1
Collected by (print):	Site/Facility II	D#			In Star		1205	OPr	80	DZC	Wy	v	7			Acctnum: MS	Maria Cara Cara Cara Cara Cara Cara Cara	1
Jon White	10000	Lab MUST Be	Sintified.	Quote #	n nou		902	Z	15	180	mil	Ħ	cd, Cr	- 6		Template:T18		1
Collected by (signature):	10						9209	102	0	SIN	N O	#	Asi			Prelogin: P84		1
Josh Owen for Jun Wh	Mext D	ay 5 Day	(Rad Only) ay (Rad Only)	Date Res	sults Needed	No.	PB	Cr6 7199 4ozClr-NoPres	NWTPHOX NOSGT 802Ch-NoPres	PAHS 8270ESIM 8ozCir-NoPres	VOCs 8260D 40mIAmb/MeOH10mI/Syr	NWTP#-HCID				PM: 110 - Bria	a rora	
Immediately Packed on Ice N Y	Two De	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	(mac Carry)	1,5	, Jack	of	As,Cd,Cr,Pb	199	PHC	82	82	5	Total		pto			1
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Critis	उ	67	PA PA	YHs	200	3	13		土	Remarks	Sample # (Sab only	
Satisfie to			1			_	-1000	ō	Z	d	5	-			RE ISSUE	,	Me trains	-
525-2	Grab	SS	2	14/29/2			1000							100	- V			
526-2.5	1	55	2.5	1 1	17:47	-3	100	1	96		1			1000			10	
	16 00	55	2.5		17:4	10 10 12	题	1					50				<u>-#</u>	
526-2.5 Dup		55	2.5	101	17:40	1 3	188	1			100		5.5				一代	
527-2.5		55	0	100	18.00	15			188		1	1					1-13	
528-8	1-1-		-1900		COLUMN TO A STATE OF THE PARTY	1	360		1		1		1	4			14	
EB-3		OT			11:40	2	1065		V		1		Y				16	
Trip Blank	4 700	DT	-		in the same	15	100		1800		Y		00 mms				1/	
							188		200		1000			10000000000000000000000000000000000000			100 TO 10	
		Ties and				20	188		188		1000			12		1 - 4		
	· A SALES								艦		200		1		夏兰			
Matrix:	Remarks:			1. 7						Hq		Tens			Seal F	ole Repuipt C	becklist E. NP Y	
SS-Soil AIR-Air F-Filter	MSBI	4 w:71	emai	1 anal	ytical !	regu	ists							000	Signed	/Accerate:		H
GW - Groundwater B - Bloassay WW - WasteWater								San Na		Flo	W	Othe	1000	Cor	real ho	tiles used)		N
DW - Drinking Water DT - Other Blank (equipme	immples return	ted via:		1	racking #									Well Street		If Applica	AND REAL PROPERTY AND REAL PRO	g
	LIPS Fee		SOMEON STREET	19	ecrived by: (Sign	aturel		BACKS	37.5	Trio tit	ank Rece	rved: Y	es / No	P 20	BETYRE	ion Correct/C	recked: J	R
Relinquished by : (Signature)		Date;											HCE / Me	olt				
Toh Chren		4/3c/	2/ /	5130	eceived by: (Sign	aturel				Temp:	200	-	TER des Ander	end: If p	reservati	on required by L	ogin: Date/Time	
Refunduished by : (Signature)		Ualle:					th:				100					T-AM		
		Date:	Tin	ne: B	eceived for Jab t	yc (Sign	uturé)	90)66	A33/2	Date:	150	Tio	e.,	flo	d:	Alba Vision	Candition:	
Relinquished by : (Signature)	242				THE STATE OF		1980			10000	100 PM				HOTEL ST		NO / OK	231

de

L1350377 MSBAHROR R2 short hold

R1/R2

Please log the following as R2 due o5/14. Goes out of hold today. Add to L1350377.

L1350377-01 (S18-0): NWTPHDXNOSGT.

S25-2 (hold#05-097): NWTPHDXNOSGT,TS.

Time spent: oh

Time estimate: oh

Members

Brian Ford

13) Sample Date 5/26/21 (#L1359456)

Ss

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1359456

Samples Received:

05/28/2021

Project Number:

NORTHSTAR

Description:

North Star Casteel

Site:

NORTHSTAR

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

F CONTENTS A

		1 C	
ì	_		
ı	3		

⁴Cn
_

5	Sr	
L		

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
S1-2.5 L1359456-03	6
S2-2.5 L1359456-04	7
S15-1 L1359456-06	8
S19-1 L1359456-07	9
S25-2.5 L1359456-09	10
S39-2.5 L1359456-10	11
UST-H20 L1359456-11	12
EB-5 L1359456-12	15
TRIP BLANK L1359456-13	16
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Mercury by Method 7470A	20
Metals (ICPMS) by Method 6020B	21
Volatile Organic Compounds (GC) by Method NWTPHGX	23
Volatile Organic Compounds (GC/MS) by Method 8260D	24
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	28
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	31

Cp: Cover Page

GI: Glossary of Terms

Al: Accreditations & Locations

Sc: Sample Chain of Custody

37

39

40

SAMPLE SUMMARY

³Ss

[†]Cn

Sr

[°]Qc

GI

ΆΙ

Sc

S1-2.5 L1359456-03 Solid			Collected by Jon White	Collected date/time 05/26/2114:05	Received da 05/28/21 09	
		D.I				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1681336	1	06/02/21 14:34	06/02/21 14:43	KDW	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680018	1	05/30/21 01:30	06/04/21 02:24	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680018	1	05/30/21 01:30	06/11/21 11:34	JDG	Mt. Juliet, TN
rolatic organic compounds (og by method MTT 152 No 301	Weigedold	•	03/30/21 01.30	00/11/2111.01	320	ma sunct, m
			Collected by	Collected date/time	Received da	ite/time
S2-2.5 L1359456-04 Solid			Jon White	05/26/21 14:31	05/28/21 09	:00
fethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Baten	511411011	date/time	date/time	rinaryse	200000
otal Solids by Method 2540 G-2011	WG1681336	1	06/02/21 14:34	06/02/21 14:43	KDW	Mt. Juliet, TN
emi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1681985	1	06/03/21 10:04	06/03/21 16:06	JNJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
15-1 L1359456-06 Solid			Jon White	05/26/21 11:52	05/28/21 09	:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1681336	1	06/02/21 14:34	06/02/21 14:43	KDW	Mt. Juliet, TN
emi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680479	1	06/01/21 19:09	06/02/21 05:22	AMG	Mt. Juliet, TN
			Collected by	Collected date/time		
319-1 L1359456-07 Solid			Jon White	05/26/21 09:50	05/28/21 09	:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1681336	1	06/02/21 14:34	06/02/21 14:43	KDW	Mt. Juliet, TN
etals (ICPMS) by Method 6020B	WG1680447	20	06/01/21 07:17	06/02/21 16:11	JPD	Mt. Juliet, TN
letals (ICPMS) by Method 6020B	WG1680447	5	06/01/21 07:17	06/02/21 02:18	LAT	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680018	5	05/30/21 01:30	06/05/21 00:23	CAG	Mt. Juliet, TN
			Callagtad by	Callage and data time a	Received da	to Itima o
205.0.5.14050450.00.0.154			Collected by Jon White	Collected date/time 05/26/2112:58	05/28/21 09	
S25-2.5 L1359456-09 Solid			Joh White			.00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1681336	1	06/02/21 14:34	06/02/21 14:43	KDW	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680019 WG1680019	10 50	05/30/21 01:37 05/30/21 01:37	06/03/21 19:26 06/03/21 22:55	TJD JDG	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680019	50	05/30/21 01:37	06/03/21 22:55	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
339-2.5 L1359456-10 Solid			Jon White	05/26/21 09:05	05/28/21 09	
	5	D.I				
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1681337	1	06/02/21 14:20	06/02/21 14:30	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1680447	5	06/01/21 07:17	06/02/21 02:21	LAT	Mt. Juliet, TN
5.2.2. p. 5. moj oj modiod 50200		3	00,0,12101.11	30,0212102.21	L/ 11	Junet, III
			Collected by	Collected date/time	Received da	ite/time
JST-H20 L1359456-11 GW			Jon White	05/26/21 08:45	05/28/21 09	
	Dotah	D;l4:				
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
lercury by Method 7470A	WG1682005	1	06/04/21 09:46	06/06/21 00:49	SD	Mt. Juliet, TN
etals (ICPMS) by Method 6020B	WG1682005 WG1681008	1	06/02/21 17:03	06/02/21 22:16	LD SD	Mt. Juliet, TN
	WG1681008 WG1682850	1	06/02/21 17:03	06/02/21 22:16	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method NWTPHGX olatile Organic Compounds (GC/MS) by Method 8260D	WG1682850 WG1682788	1	06/05/21 16:32	06/05/21 16:32	DWR	Mt. Juliet, TN Mt. Juliet, TN
Sidane organic compounds (do/inis) by internod 62000	WU1002/08	ı	UU/U4/Z1 10.U4	00/04/21 10.04	DWK	ivit. Juilet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
Martin C. Dural, Assau Hand Divor, OD	NODTLICTAD		14050450	00/11	1/21 10:17	

NORTHSTAR

L1359456

06/11/21 16:17

3 of 41

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	:e/time
UST-H20 L1359456-11 GW			Jon White	05/26/21 08:45	05/28/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1681265	1	06/02/21 08:38	06/03/21 07:41	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680191	1	05/31/21 09:56	05/31/21 17:59	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
EB-5 L1359456-12 GW			Jon White	05/26/21 08:22	05/28/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1681008	1	06/02/21 17:03	06/02/21 22:19	LD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1681265	1	06/02/21 08:38	06/03/21 16:14	WCR	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680191	1	05/31/21 09:56	05/31/21 18:16	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
TRIP BLANK L1359456-13 GW			Jon White	05/26/21 00:00	05/28/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

WG1682788

06/04/21 11:57

DWR

Mt. Juliet, TN

06/04/21 11:57

Volatile Organic Compounds (GC/MS) by Method 8260D

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

S1-2.5

SAMPLE RESULTS - 03

Collected date/time: 05/26/21 14:05

Total Solids by Method 2540 G-2011

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	93.5		1	06/02/2021 14:43	WG1681336	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	200		1.42	4.28	1	06/11/2021 11:34	WG1680018
Residual Range Organics (RRO)	84.9		3.56	10.7	1	06/04/2021 02:24	WG1680018
(S) o-Terphenyl	87.6			18.0-148		06/04/2021 02:24	WG1680018
(S) o-Terphenyl	54.5			18.0-148		06/11/2021 11:34	WG1680018

S2-2.5

SAMPLE RESULTS - 04

Collected date/time: 05/26/21 14:31

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.6		1	06/02/2021 14:43	WG1681336

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00444	<u>J</u>	0.00248	0.00648	1	06/03/2021 16:06	WG1681985
Acenaphthene	U		0.00226	0.00648	1	06/03/2021 16:06	WG1681985
Acenaphthylene	0.00373	<u>J J3</u>	0.00233	0.00648	1	06/03/2021 16:06	WG1681985
Benzo(a)anthracene	0.0242	J3 J5	0.00187	0.00648	1	06/03/2021 16:06	WG1681985
Benzo(a)pyrene	0.0347	J3 J5	0.00193	0.00648	1	06/03/2021 16:06	WG1681985
Benzo(b)fluoranthene	0.0508	J3 J5	0.00165	0.00648	1	06/03/2021 16:06	WG1681985
Benzo(g,h,i)perylene	0.0485	J3 J5	0.00191	0.00648	1	06/03/2021 16:06	WG1681985
Benzo(k)fluoranthene	0.0166	J3 J5	0.00232	0.00648	1	06/03/2021 16:06	WG1681985
Chrysene	0.0281	J3 J5	0.00251	0.00648	1	06/03/2021 16:06	WG1681985
Dibenz(a,h)anthracene	0.00690	<u>J3</u>	0.00186	0.00648	1	06/03/2021 16:06	WG1681985
Fluoranthene	0.0356	J3 J5	0.00245	0.00648	1	06/03/2021 16:06	WG1681985
Fluorene	U		0.00221	0.00648	1	06/03/2021 16:06	WG1681985
Indeno(1,2,3-cd)pyrene	0.0404	J3 J5	0.00195	0.00648	1	06/03/2021 16:06	WG1681985
Naphthalene	0.0146	J J3	0.00441	0.0216	1	06/03/2021 16:06	WG1681985
Phenanthrene	0.0284		0.00249	0.00648	1	06/03/2021 16:06	WG1681985
Pyrene	0.0379	J3 J5	0.00216	0.00648	1	06/03/2021 16:06	WG1681985
1-Methylnaphthalene	0.00639	<u>J</u>	0.00485	0.0216	1	06/03/2021 16:06	WG1681985
2-Methylnaphthalene	0.00836	<u>J</u>	0.00461	0.0216	1	06/03/2021 16:06	WG1681985
2-Chloronaphthalene	U		0.00503	0.0216	1	06/03/2021 16:06	WG1681985
(S) Nitrobenzene-d5	92.6			14.0-149		06/03/2021 16:06	WG1681985
(S) 2-Fluorobiphenyl	92.8			34.0-125		06/03/2021 16:06	WG1681985
(S) p-Terphenyl-d14	89.0			23.0-120		06/03/2021 16:06	WG1681985

S15-1

2-Methylnaphthalene

2-Chloronaphthalene

(S) Nitrobenzene-d5

(S) 2-Fluorobiphenyl

(S) p-Terphenyl-d14

SAMPLE RESULTS - 06

Collected date/time: 05/26/21 11:52

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.9		1	06/02/2021 14:43	WG1681336

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

U

89.7

71.5

101

Ss

WG1680479

WG1680479

WG1680479

WG1680479

⁴ Cn

0.0208

0.0208

14.0-149

34.0-125

23.0-120

1

06/02/2021 05:22

06/02/2021 05:22

06/02/2021 05:22

06/02/2021 05:22

06/02/2021 05:22

0.00445

0.00486

SAMPLE RESULTS - 07

Collected date/time: 05/26/21 09:50

Total Solids by Method 2540 G-2011

		Result	Qualifier	Dilution	Analysis	Batch
	Analyte	%			date / time	
-	Total Solids	87.4		1	06/02/2021 14:43	WG1681336

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	5.12		0.114	1.14	5	06/02/2021 02:18	WG1680447
Cadmium	1.04	<u>J</u>	0.0979	1.14	5	06/02/2021 02:18	WG1680447
Chromium	27.5		0.339	5.72	5	06/02/2021 02:18	WG1680447
Lead	163		0.453	9.16	20	06/02/2021 16:11	WG1680447

Ss

³Sr

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	26.9	<u>J5</u>	7.61	22.9	5	06/05/2021 00:23	WG1680018
Residual Range Organics (RRO)	124		19.0	57.2	5	06/05/2021 00:23	WG1680018
(S) o-Terphenyl	83.9			18.0-148		06/05/2021 00:23	WG1680018

[°]Qc

9 of 41

S25-2.5

SAMPLE RESULTS - 09

Collected date/time: 05/26/21 12:58

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.0		1	06/02/2021 14:43	WG1681336

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	847		14.4	43.5	10	06/03/2021 19:26	WG1680019
Residual Range Organics (RRO)	4830		180	543	50	06/03/2021 22:55	WG1680019
(S) o-Terphenyl	0.000	<u>J2</u>		18.0-148		06/03/2021 19:26	WG1680019
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		06/03/2021 22:55	WG1680019

Ss

Sample Narrative:

L1359456-09 WG1680019: Surrogate failure due to matrix interference

Martin S. Burck Assoc.-Hood River, OR

S39-2.5

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 09:05

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	83.7		1	06/02/2021 14:30	WG1681337	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	3.29		0.119	1.19	5	06/02/2021 02:21	WG1680447

Martin S. Burck Assoc.-Hood River, OR

UST-H20

Analyte

Arsenic

Barium Cadmium

Chromium

Selenium

Lead

Silver

SAMPLE RESULTS - 11

Dilution

1

1

1

Analysis

date / time

06/02/2021 22:16

06/02/2021 22:16

06/02/2021 22:16

06/02/2021 22:16

06/02/2021 22:16

06/02/2021 22:16

06/02/2021 22:16

Batch

WG1681008

WG1681008

WG1681008

WG1681008

WG1681008

WG1681008

WG1681008

Collected date/time: 05/26/21 08:45 Mercury by Method 7470A

Metals (ICPMS) by Method 6020B

Result

ug/l

0.357

26.1

0.215

2.97

5.57

U

U

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Mercury	U		0.100	0.200	1	06/06/2021 00:49	WG1682005	

RDL

ug/l

2.00

2.00

1.00

2.00

2.00

2.00

2.00

Ss

Qualifier

J

J

MDL

ug/l

0.180

0.381

0.150

1.24

0.849

0.300

0.0700

	Result	<u>Qualifier</u>	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	06/05/2021 16:32	WG1682850
(S) a,a,a-Trifluorotoluene(FID)	99.6			78.0-120		06/05/2021 16:32	WG1682850

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		0.548	10.0	1	06/04/2021 16:04	WG1682788
Acrylonitrile	U		0.0760	0.500	1	06/04/2021 16:04	WG1682788
Acrolein	U		0.758	50.0	1	06/04/2021 16:04	WG1682788
Benzene	U		0.0160	0.0400	1	06/04/2021 16:04	WG1682788
Bromobenzene	U		0.0420	0.500	1	06/04/2021 16:04	WG1682788
Bromodichloromethane	U		0.0315	0.100	1	06/04/2021 16:04	WG1682788
Bromoform	U		0.239	1.00	1	06/04/2021 16:04	WG1682788
Bromomethane	U		0.148	0.500	1	06/04/2021 16:04	WG1682788
n-Butylbenzene	U	<u>C3</u>	0.153	0.500	1	06/04/2021 16:04	WG1682788
sec-Butylbenzene	U		0.101	0.500	1	06/04/2021 16:04	WG1682788
tert-Butylbenzene	U		0.0620	0.200	1	06/04/2021 16:04	WG1682788
Carbon disulfide	U		0.162	0.500	1	06/04/2021 16:04	WG1682788
Carbon tetrachloride	U		0.0432	0.200	1	06/04/2021 16:04	WG1682788
Chlorobenzene	U		0.0229	0.100	1	06/04/2021 16:04	WG1682788
Chlorodibromomethane	U		0.0180	0.100	1	06/04/2021 16:04	WG1682788
Chloroethane	U		0.0432	0.200	1	06/04/2021 16:04	WG1682788
Chloroform	U		0.0166	0.100	1	06/04/2021 16:04	WG1682788
Chloromethane	U		0.0556	0.500	1	06/04/2021 16:04	WG1682788
2-Chlorotoluene	U		0.0368	0.100	1	06/04/2021 16:04	WG1682788
4-Chlorotoluene	U		0.0452	0.200	1	06/04/2021 16:04	WG1682788
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	06/04/2021 16:04	WG1682788
1,2-Dibromoethane	U		0.0210	0.100	1	06/04/2021 16:04	WG1682788
Dibromomethane	U		0.0400	0.200	1	06/04/2021 16:04	WG1682788
1,2-Dichlorobenzene	U		0.0580	0.200	1	06/04/2021 16:04	WG1682788
1,3-Dichlorobenzene	U		0.0680	0.200	1	06/04/2021 16:04	WG1682788
1,4-Dichlorobenzene	U		0.0788	0.200	1	06/04/2021 16:04	WG1682788
Dichlorodifluoromethane	U		0.0327	0.100	1	06/04/2021 16:04	WG1682788
1,1-Dichloroethane	U		0.0230	0.100	1	06/04/2021 16:04	WG1682788
1,2-Dichloroethane	U		0.0190	0.100	1	06/04/2021 16:04	WG1682788
1,1-Dichloroethene	U		0.0200	0.100	1	06/04/2021 16:04	WG1682788
cis-1,2-Dichloroethene	U		0.0276	0.100	1	06/04/2021 16:04	WG1682788

UST-H20

SAMPLE RESULTS - 11

Collected date/time: 05/26/21 08:45

L1359456

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
trans-1,2-Dichloroethene	U		0.0572	0.200	1	06/04/2021 16:04	WG1682788	
1,2-Dichloropropane	U		0.0508	0.200	1	06/04/2021 16:04	WG1682788	
1,1-Dichloropropene	U		0.0280	0.100	1	06/04/2021 16:04	WG1682788	
1,3-Dichloropropane	U		0.0700	0.200	1	06/04/2021 16:04	WG1682788	
cis-1,3-Dichloropropene	U		0.0271	0.100	1	06/04/2021 16:04	WG1682788	
trans-1,3-Dichloropropene	U		0.0612	0.200	1	06/04/2021 16:04	WG1682788	
2,2-Dichloropropane	U		0.0317	0.100	1	06/04/2021 16:04	WG1682788	
Di-isopropyl ether	U	<u>C4</u>	0.0140	0.0400	1	06/04/2021 16:04	WG1682788	
Ethylbenzene	U		0.0212	0.100	1	06/04/2021 16:04	WG1682788	
Hexachloro-1,3-butadiene	U		0.508	1.00	1	06/04/2021 16:04	WG1682788	
2-Hexanone	U		0.400	1.00	1	06/04/2021 16:04	WG1682788	
Isopropylbenzene	U		0.0345	0.100	1	06/04/2021 16:04	WG1682788	
p-Isopropyltoluene	U		0.0932	0.200	1	06/04/2021 16:04	WG1682788	
2-Butanone (MEK)	U		0.500	1.00	1	06/04/2021 16:04	WG1682788	
Methylene Chloride	U		0.265	1.00	1	06/04/2021 16:04	WG1682788	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	06/04/2021 16:04	WG1682788	
Methyl tert-butyl ether	U		0.0118	0.0400	1	06/04/2021 16:04	WG1682788	
Naphthalene	U		0.124	0.500	1	06/04/2021 16:04	WG1682788	
n-Propylbenzene	U		0.0472	0.200	1	06/04/2021 16:04	WG1682788	
Styrene	U		0.109	0.500	1	06/04/2021 16:04	WG1682788	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	06/04/2021 16:04	WG1682788	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	06/04/2021 16:04	WG1682788	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	06/04/2021 16:04	WG1682788	
Tetrachloroethene	U		0.0280	0.100	1	06/04/2021 16:04	WG1682788	
Toluene	U		0.0500	0.200	1	06/04/2021 16:04	WG1682788	
1,2,3-Trichlorobenzene	U		0.0250	0.500	1	06/04/2021 16:04	WG1682788	
1,2,4-Trichlorobenzene	U		0.193	0.500	1	06/04/2021 16:04	WG1682788	
1,1,1-Trichloroethane	U		0.0110	0.100	1	06/04/2021 16:04	WG1682788	
1,1,2-Trichloroethane	U		0.0353	0.100	1	06/04/2021 16:04	WG1682788	
Trichloroethene	U		0.0160	0.0400	1	06/04/2021 16:04	WG1682788	
Trichlorofluoromethane	U		0.0200	0.100	1	06/04/2021 16:04	WG1682788	
1,2,3-Trichloropropane	U		0.204	0.500	1	06/04/2021 16:04	WG1682788	
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	06/04/2021 16:04	WG1682788	
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	06/04/2021 16:04	WG1682788	
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	06/04/2021 16:04	WG1682788	
Vinyl chloride	U		0.0273	0.100	1	06/04/2021 16:04	WG1682788	
Xylenes, Total	U		0.191	0.260	1	06/04/2021 16:04	WG1682788	
(S) Toluene-d8	98.8			75.0-131		06/04/2021 16:04	WG1682788	
(S) 4-Bromofluorobenzene	117			67.0-138		06/04/2021 16:04	WG1682788	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	5330		33.3	100	1	06/03/2021 07:41	WG1681265
Residual Range Organics (RRO)	4290		83.3	250	1	06/03/2021 07:41	WG1681265
(S) o-Terphenyl	79.0			31.0-160		06/03/2021 07:41	WG1681265

70.0-130

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0190	0.0500	1	05/31/2021 17:59	WG1680191
Acenaphthene	U		0.0190	0.0500	1	05/31/2021 17:59	WG1680191
Acenaphthylene	U		0.0171	0.0500	1	05/31/2021 17:59	WG1680191
Benzo(a)anthracene	U		0.0203	0.0500	1	05/31/2021 17:59	WG1680191

112

(S) 1,2-Dichloroethane-d4

06/04/2021 16:04

WG1682788

Tc

UST-H20

SAMPLE RESULTS - 11

Collected date/time: 05/26/21 08:45

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		- L
Benzo(a)pyrene	U		0.0184	0.0500	1	05/31/2021 17:59	WG1680191	
Benzo(b)fluoranthene	U		0.0168	0.0500	1	05/31/2021 17:59	WG1680191	
Benzo(g,h,i)perylene	U		0.0184	0.0500	1	05/31/2021 17:59	WG1680191	T ₃
Benzo(k)fluoranthene	U		0.0202	0.0500	1	05/31/2021 17:59	WG1680191	
Chrysene	U		0.0179	0.0500	1	05/31/2021 17:59	WG1680191	_
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	05/31/2021 17:59	WG1680191	4
Fluoranthene	U		0.0270	0.100	1	05/31/2021 17:59	WG1680191	
Fluorene	U		0.0169	0.0500	1	05/31/2021 17:59	WG1680191	5
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	05/31/2021 17:59	WG1680191	
Naphthalene	U		0.0917	0.250	1	05/31/2021 17:59	WG1680191	
Phenanthrene	U		0.0180	0.0500	1	05/31/2021 17:59	WG1680191	•
Pyrene	U		0.0169	0.0500	1	05/31/2021 17:59	WG1680191	
1-Methylnaphthalene	U		0.0687	0.250	1	05/31/2021 17:59	WG1680191	Б
2-Methylnaphthalene	U		0.0674	0.250	1	05/31/2021 17:59	WG1680191	
2-Chloronaphthalene	U		0.0682	0.250	1	05/31/2021 17:59	WG1680191	
(S) Nitrobenzene-d5	120			31.0-160		05/31/2021 17:59	WG1680191	8
(S) 2-Fluorobiphenyl	101			48.0-148		05/31/2021 17:59	WG1680191	
(S) p-Terphenyl-d14	117			37.0-146		05/31/2021 17:59	WG1680191	9

SAMPLE RESULTS - 12

Metals (ICPMS) by Method 6020B

Collected date/time: 05/26/21 08:22

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic	U		0.180	2.00	1	06/02/2021 22:19	WG1681008	
Cadmium	U		0.150	1.00	1	06/02/2021 22:19	WG1681008	
Chromium	U		1.24	2.00	1	06/02/2021 22:19	WG1681008	
Lead	U		0.849	2.00	1	06/02/2021 22:19	WG1681008	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	47.2	J	33.3	100	1	06/03/2021 16:14	WG1681265
Residual Range Organics (RRO)	U		83.3	250	1	06/03/2021 16:14	WG1681265
(S) o-Terphenyl	93.0			31.0-160		06/03/2021 16:14	WG1681265

Cn

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0190	0.0500	1	05/31/2021 18:16	WG1680191
Acenaphthene	U		0.0190	0.0500	1	05/31/2021 18:16	WG1680191
Acenaphthylene	U		0.0171	0.0500	1	05/31/2021 18:16	WG1680191
Benzo(a)anthracene	U		0.0203	0.0500	1	05/31/2021 18:16	WG1680191
Benzo(a)pyrene	U		0.0184	0.0500	1	05/31/2021 18:16	WG1680191
Benzo(b)fluoranthene	U		0.0168	0.0500	1	05/31/2021 18:16	WG1680191
Benzo(g,h,i)perylene	U		0.0184	0.0500	1	05/31/2021 18:16	WG1680191
Benzo(k)fluoranthene	U		0.0202	0.0500	1	05/31/2021 18:16	WG1680191
Chrysene	U		0.0179	0.0500	1	05/31/2021 18:16	WG1680191
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	05/31/2021 18:16	WG1680191
Fluoranthene	U		0.0270	0.100	1	05/31/2021 18:16	WG1680191
Fluorene	U		0.0169	0.0500	1	05/31/2021 18:16	WG1680191
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	05/31/2021 18:16	WG1680191
Naphthalene	U		0.0917	0.250	1	05/31/2021 18:16	WG1680191
Phenanthrene	U		0.0180	0.0500	1	05/31/2021 18:16	WG1680191
Pyrene	U		0.0169	0.0500	1	05/31/2021 18:16	WG1680191
1-Methylnaphthalene	U		0.0687	0.250	1	05/31/2021 18:16	WG1680191
2-Methylnaphthalene	U		0.0674	0.250	1	05/31/2021 18:16	WG1680191
2-Chloronaphthalene	U		0.0682	0.250	1	05/31/2021 18:16	WG1680191
(S) Nitrobenzene-d5	122			31.0-160		05/31/2021 18:16	WG1680191
(S) 2-Fluorobiphenyl	99.5			48.0-148		05/31/2021 18:16	WG1680191
(S) p-Terphenyl-d14	123			37.0-146		05/31/2021 18:16	WG1680191

SAMPLE RESULTS - 13 L1359456

Collected date/time: 05/26/21 00:00

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	2.44	<u>J</u>	0.548	10.0	1	06/04/2021 11:57	WG1682788
Acrylonitrile	U		0.0760	0.500	1	06/04/2021 11:57	WG1682788
Acrolein	U		0.758	50.0	1	06/04/2021 11:57	WG1682788
Benzene	U		0.0160	0.0400	1	06/04/2021 11:57	WG1682788
Bromobenzene	U		0.0420	0.500	1	06/04/2021 11:57	WG1682788
Bromodichloromethane	U		0.0315	0.100	1	06/04/2021 11:57	WG1682788
Bromoform	U		0.239	1.00	1	06/04/2021 11:57	WG1682788
Bromomethane	U		0.148	0.500	1	06/04/2021 11:57	WG1682788
n-Butylbenzene	U	<u>C3</u>	0.153	0.500	1	06/04/2021 11:57	WG1682788
sec-Butylbenzene	U		0.101	0.500	1	06/04/2021 11:57	WG1682788
tert-Butylbenzene	U		0.0620	0.200	1	06/04/2021 11:57	WG1682788
Carbon disulfide	U		0.162	0.500	1	06/04/2021 11:57	WG1682788
Carbon tetrachloride	U		0.0432	0.200	1	06/04/2021 11:57	WG1682788
Chlorobenzene	U		0.0229	0.100	1	06/04/2021 11:57	WG1682788
Chlorodibromomethane	U		0.0180	0.100	1	06/04/2021 11:57	WG1682788
Chloroethane	U		0.0432	0.200	1	06/04/2021 11:57	WG1682788
Chloroform	U		0.0166	0.100	1	06/04/2021 11:57	WG1682788
Chloromethane	U		0.0556	0.500	1	06/04/2021 11:57	WG1682788
2-Chlorotoluene	U		0.0368	0.100	1	06/04/2021 11:57	WG1682788
4-Chlorotoluene	U		0.0452	0.200	1	06/04/2021 11:57	WG1682788
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	06/04/2021 11:57	WG1682788
1,2-Dibromoethane	U		0.0210	0.100	1	06/04/2021 11:57	WG1682788
Dibromomethane	U		0.0400	0.200	1	06/04/2021 11:57	WG1682788
1,2-Dichlorobenzene	U		0.0580	0.200	1	06/04/2021 11:57	WG1682788
1,3-Dichlorobenzene	U		0.0680	0.200	1	06/04/2021 11:57	WG1682788
1,4-Dichlorobenzene	U		0.0788	0.200	1	06/04/2021 11:57	WG1682788
Dichlorodifluoromethane	U		0.0327	0.100	1	06/04/2021 11:57	WG1682788
1,1-Dichloroethane	U		0.0230	0.100	1	06/04/2021 11:57	WG1682788
1,2-Dichloroethane	U		0.0190	0.100	1	06/04/2021 11:57	WG1682788
1,1-Dichloroethene	U		0.0200	0.100	1	06/04/2021 11:57	WG1682788
cis-1,2-Dichloroethene	U		0.0276	0.100	1	06/04/2021 11:57	WG1682788
trans-1,2-Dichloroethene	U		0.0572	0.200	1	06/04/2021 11:57	WG1682788
1,2-Dichloropropane	U		0.0508	0.200	1	06/04/2021 11:57	WG1682788
1,1-Dichloropropene	U		0.0280	0.100	1	06/04/2021 11:57	WG1682788
1,3-Dichloropropane	U		0.0700	0.200	1	06/04/2021 11:57	WG1682788
cis-1,3-Dichloropropene	U		0.0271	0.100	1	06/04/2021 11:57	WG1682788
trans-1,3-Dichloropropene	U		0.0612	0.200	1	06/04/2021 11:57	WG1682788
2,2-Dichloropropane	U		0.0317	0.100	1	06/04/2021 11:57	WG1682788
Di-isopropyl ether	U	<u>C4</u>	0.0140	0.0400	1	06/04/2021 11:57	WG1682788
Ethylbenzene	U		0.0212	0.100	1	06/04/2021 11:57	WG1682788
Hexachloro-1,3-butadiene	U		0.508	1.00	1	06/04/2021 11:57	WG1682788
2-Hexanone	U		0.400	1.00	1	06/04/2021 11:57	WG1682788
Isopropylbenzene	U		0.0345	0.100	1	06/04/2021 11:57	WG1682788
p-Isopropyltoluene	U		0.0932	0.200	1	06/04/2021 11:57	WG1682788
2-Butanone (MEK)	U		0.500	1.00	1	06/04/2021 11:57	WG1682788
Methylene Chloride	U		0.265	1.00	1	06/04/2021 11:57	WG1682788
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	06/04/2021 11:57	WG1682788
Methyl tert-butyl ether	U		0.0118	0.0400	1	06/04/2021 11:57	WG1682788
Naphthalene	U		0.124	0.500	1	06/04/2021 11:57	WG1682788
n-Propylbenzene	U		0.0472	0.200	1	06/04/2021 11:57	WG1682788
Styrene	U		0.109	0.500	1	06/04/2021 11:57	WG1682788
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	06/04/2021 11:57	WG1682788
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	06/04/2021 11:57	WG1682788
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	06/04/2021 11:57	WG1682788
Tetrachloroethene	U		0.0280	0.100	1	06/04/2021 11:57	WG1682788
Toluene	U		0.0500	0.200	1	06/04/2021 11:57	WG1682788

³Ss

Cn

Gl

Αl

Sc

TRIP BLANK

SAMPLE RESULTS - 13

Collected date/time: 05/26/21 00:00

1359456

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
1,2,3-Trichlorobenzene	U		0.0250	0.500	1	06/04/2021 11:57	WG1682788
1,2,4-Trichlorobenzene	U		0.193	0.500	1	06/04/2021 11:57	WG1682788
1,1,1-Trichloroethane	U		0.0110	0.100	1	06/04/2021 11:57	WG1682788
1,1,2-Trichloroethane	U		0.0353	0.100	1	06/04/2021 11:57	WG1682788
Trichloroethene	U		0.0160	0.0400	1	06/04/2021 11:57	WG1682788
Trichlorofluoromethane	U		0.0200	0.100	1	06/04/2021 11:57	WG1682788
1,2,3-Trichloropropane	U		0.204	0.500	1	06/04/2021 11:57	WG1682788
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	06/04/2021 11:57	WG1682788
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	06/04/2021 11:57	WG1682788
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	06/04/2021 11:57	WG1682788
Vinyl chloride	U		0.0273	0.100	1	06/04/2021 11:57	WG1682788
Xylenes, Total	U		0.191	0.260	1	06/04/2021 11:57	WG1682788
(S) Toluene-d8	98.9			75.0-131		06/04/2021 11:57	WG1682788
(S) 4-Bromofluorobenzene	103			67.0-138		06/04/2021 11:57	WG1682788
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		06/04/2021 11:57	WG1682788

WG1681336

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1359456-03,04,06,07,09

Method Blank (MB)

(MB) R3662655-1	06/02/21 14:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1359454-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1359454-07 06/02/21 14:43 • (DUP) R3662655-3 06/02/21 14:43

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.6	92.1	1	0.585		10

Ss

91.6 92.1 1 0.585 10

Laboratory Control Sample (LCS)

(LCS) R3662655-2 06/02/21 14:43

(LCS) K3002033-2 00/02	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1359456-10

N .	1 - + 1-		DI I	k (MB)
- 11/	пдтп	\cap	Riani	ν (IV/IH)

(MB) R3662650-1 O	6/02/21 14:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1359460-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1359460-17 06/02/21 14:30 • (DUP) R3662650-3 06/02/21 14:30

	Original Resi	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	88.2	86.4	1	1.97		10	

Laboratory Control Sample (LCS)

(LCS) R3662650-2 06/02/2114:30

,	Spike Amount LCS Resu	e Amount LCS Result	LCS Rec. Rec. Limits
Analyte	% %	%	% %
Total Solids	50.0 50.0	50.0	100 85.0-115

QUALITY CONTROL SUMMARY

L1359456-11

Mercury by Method 7470A

(MB) R3663643-1 06/06/21 00:23

Method Blank (MB)

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.100	0.200

³Ss

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	3.04	101	80.0-120	

[†]Cn

⁶Qc

(OS) L1359654-03 06/06/21 00:27 • (MS) R3663643-3 06/06/21 00:29 • (MSD) R3663643-4 06/06/21 00:31

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Mercury	3.00	U	3.05	3.05	102	102	1	75.0-125			0.135	20	

PAGE:

20 of 41

QUALITY CONTROL SUMMARY

L1359456-07,10

Method Blank (MB)

Metals (ICPMS) by Method 6020B

(MB) R3661888-1 06/01/21 23:18 MB RDL MB Result MB Qualifier MB MDL Analyte mg/kg mg/kg mg/kg U Arsenic 0.100 1.00 Cadmium 0.0855 1.00 Chromium U 0.297 5.00 Lead U 0.0990 2.00

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3661888-2 06/01/21 23:25

(200) 110001000 2 00/01	72120.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	87.6	87.6	80.0-120	
Cadmium	100	91.7	91.7	80.0-120	
Chromium	100	91.6	91.6	80.0-120	
Lead	100	87.0	87.0	80.0-120	

L1356535-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1356535-05 06/01/21 23:28 • (MS) R3661888-5 06/01/21 23:38 • (MSD) R3661888-6 06/01/21 23:41

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	112	1.18	97.8	99.5	86.1	87.7	5	75.0-125			1.78	20
Cadmium	112	U	105	106	93.3	94.1	5	75.0-125			0.848	20
Chromium	112	348	420	421	63.9	64.9	5	75.0-125	<u>J6</u>	<u>J6</u>	0.266	20
Lead	112	0.934	99.4	104	87.7	91.9	5	75.0-125			4.57	20

QUALITY CONTROL SUMMARY

L1359456-11,12

Mother of Dioxels (MD)

Metals (ICPMS) by Method 6020B

Method Blank	(MB)
--------------	------

(MB) R3662488-1 0	6/02/21 20:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.180	2.00
Barium	U		0.381	2.00
Cadmium	U		0.150	1.00
Chromium	U		1.24	2.00
Lead	U		0.849	2.00
Selenium	U		0.300	2.00
Silver	U		0.0700	2.00

⁵Sr

Laboratory Control Sample (LCS)

	'
(LCS) R3662488-2	06/02/21 20:44

(200) 110002 100 2	0,02,2.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	50.0	46.8	93.7	80.0-120	
Barium	50.0	45.6	91.2	80.0-120	
Cadmium	50.0	50.8	102	80.0-120	
Chromium	50.0	50.2	100	80.0-120	
Lead	50.0	47.7	95.5	80.0-120	
Selenium	50.0	48.5	96.9	80.0-120	
Silver	50.0	46.9	93.7	80 0-120	

⁹Sc

L1359250-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359250-01 06/02/21 20:48 • (MS) R3662488-4 06/02/21 20:54 • (MSD) R3662488-5 06/02/21 20:58

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Arsenic	50.0	0.317	47.7	49.2	94.8	97.7	1	75 O-125			3.03	20	

22 of 41

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1359456-11

Method Blank (MB)

(MB) R3664563-2 06/05	5/21 08:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	99.8			78.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R3664563-1 06/05	5/21 07:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	4740	86.2	70.0-124	
(S) a.a.a-Trifluorotoluene(FID)			109	78.0-120	

QUALITY CONTROL SUMMARY

L1359456-11,13

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)

(MB) R3663688-2 06/04/2	21 09:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		0.548	10.0	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
ec-Butylbenzene	U		0.101	0.500	
ert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
hloromethane	U		0.0556	0.500	
-Chlorotoluene	U		0.0368	0.100	
-Chlorotoluene	U		0.0452	0.200	
,2-Dibromo-3-Chloropropane	U		0.204	1.00	
2-Dibromoethane	U		0.0210	0.100	
ibromomethane	U		0.0400	0.200	
2-Dichlorobenzene	U		0.0580	0.200	
3-Dichlorobenzene	U		0.0680	0.200	
4-Dichlorobenzene	U		0.0788	0.200	
ichlorodifluoromethane	U		0.0327	0.100	
1-Dichloroethane	U		0.0230	0.100	
2-Dichloroethane	U		0.0190	0.100	
1-Dichloroethene	U		0.0200	0.100	
is-1,2-Dichloroethene	U		0.0276	0.100	
ans-1,2-Dichloroethene	U		0.0572	0.200	
2-Dichloropropane	U		0.0508	0.200	
1-Dichloropropene	U		0.0280	0.100	
3-Dichloropropane	U		0.0700	0.200	
s-1,3-Dichloropropene	U		0.0271	0.100	
ans-1,3-Dichloropropene	U		0.0612	0.200	
,2-Dichloropropane	U		0.0317	0.100	
i-isopropyl ether	U		0.0140	0.0400	
thylbenzene	U		0.0212	0.100	
lexachloro-1,3-butadiene	U		0.508	1.00	

QUALITY CONTROL SUMMARY

L1359456-11,13

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260D

(1.17) 700000000000000000000000000000000000	04.00.00				
(MB) R3663688-2 06/04/					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
2-Hexanone	U		0.400	1.00	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	0.898	<u>J</u>	0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	
Tetrachloroethene	U		0.0280	0.100	
Toluene	U		0.0500	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	
1,1,1-Trichloroethane	U		0.0110	0.100	
1,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
1,2,3-Trichloropropane	U		0.204	0.500	
1,2,3-Trimethylbenzene	U		0.0460	0.200	
1,2,4-Trimethylbenzene	U		0.0464	0.200	
1,3,5-Trimethylbenzene	U		0.0432	0.200	
Vinyl chloride	U		0.0273	0.100	
Xylenes, Total	U		0.191	0.260	
Acrolein	U		0.758	50.0	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	

Laboratory Control Sample (LCS)

11 (CID	0020220	1 06/04/21	$0.7 \cdot E0$

(S) 1,2-Dichloroethane-d4

(===)					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Acetone	25.0	20.6	82.4	10.0-160	
Acrylonitrile	25.0	20.0	80.0	45.0-153	

84.4

70.0-130

L1359456-11,13

Volatile Organic Compounds (GC/MS) by Method 8260D

Laboratory Control Sample (LCS)

(LCS) R3663688-1 06/04/2	21 07:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.28	106	70.0-123	
Bromobenzene	5.00	5.22	104	73.0-121	
Bromodichloromethane	5.00	5.27	105	73.0-121	
Bromoform	5.00	5.48	110	64.0-132	
Bromomethane	5.00	4.90	98.0	56.0-147	
n-Butylbenzene	5.00	3.90	78.0	68.0-135	
sec-Butylbenzene	5.00	4.19	83.8	74.0-130	
tert-Butylbenzene	5.00	4.31	86.2	75.0-127	
Carbon disulfide	5.00	4.78	95.6	56.0-133	
Carbon tetrachloride	5.00	5.82	116	66.0-128	
Chlorobenzene	5.00	4.79	95.8	76.0-128	
Chlorodibromomethane	5.00	5.23	105	74.0-127	
Chloroethane	5.00	4.60	92.0	61.0-134	
Chloroform	5.00	5.75	115	72.0-123	
Chloromethane	5.00	4.00	80.0	51.0-138	
2-Chlorotoluene	5.00	5.10	102	75.0-124	
4-Chlorotoluene	5.00	5.03	101	75.0-124	
1,2-Dibromo-3-Chloropropane	5.00	4.99	99.8	59.0-130	
1,2-Dibromoethane	5.00	4.89	97.8	74.0-128	
Dibromomethane	5.00	4.87	97.4	75.0-122	
1,2-Dichlorobenzene	5.00	4.19	83.8	76.0-124	
1,3-Dichlorobenzene	5.00	4.68	93.6	76.0-125	
1,4-Dichlorobenzene	5.00	4.18	83.6	77.0-121	
Dichlorodifluoromethane	5.00	5.41	108	43.0-156	
	5.00	4.83	96.6	70.0-127	
1,2-Dichloroethane	5.00	5.88	118	65.0-131	
1,1-Dichloroethene	5.00	4.55	91.0	65.0-131	
cis-1,2-Dichloroethene	5.00	5.56	111	73.0-125	
trans-1,2-Dichloroethene	5.00	5.34	107	71.0-125	
	5.00	5.00	100	74.0-125	
	5.00	5.52	110	73.0-125	
1,3-Dichloropropane	5.00	4.79	95.8	80.0-125	
cis-1,3-Dichloropropene	5.00	5.62	112	76.0-127	
trans-1,3-Dichloropropene	5.00	5.12	102	73.0-127	
	5.00	5.39	108	59.0-135	
Di-isopropyl ether	5.00	3.66	73.2	60.0-136	
Ethylbenzene	5.00	4.93	98.6	74.0-126	
Hexachloro-1,3-butadiene	5.00	4.58	91.6	57.0-150	
2-Hexanone	25.0	24.1	96.4	54.0-147	
Isopropylbenzene	5.00	4.59	91.8	72.0-127	

(S) 1,2-Dichloroethane-d4

107

70.0-130

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1359456-11,13

Laboratory Control Sample (LCS)

(LCS) R3663688-1 06/04/	21 07:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
p-lsopropyltoluene	5.00	4.26	85.2	72.0-133	
2-Butanone (MEK)	25.0	25.1	100	30.0-160	
Methylene Chloride	5.00	4.03	80.6	68.0-123	
4-Methyl-2-pentanone (MIBK)	25.0	21.1	84.4	56.0-143	
Methyl tert-butyl ether	5.00	4.13	82.6	66.0-132	
Naphthalene	5.00	3.99	79.8	59.0-130	
n-Propylbenzene	5.00	4.68	93.6	74.0-126	
Styrene	5.00	4.98	99.6	72.0-127	
1,1,1,2-Tetrachloroethane	5.00	4.64	92.8	74.0-129	
1,1,2,2-Tetrachloroethane	5.00	4.20	84.0	68.0-128	
Tetrachloroethene	5.00	5.10	102	70.0-136	
Toluene	5.00	4.82	96.4	75.0-121	
1,1,2-Trichlorotrifluoroethane	5.00	4.80	96.0	61.0-139	
1,2,3-Trichlorobenzene	5.00	4.07	81.4	59.0-139	
1,2,4-Trichlorobenzene	5.00	4.65	93.0	62.0-137	
1,1,1-Trichloroethane	5.00	6.01	120	69.0-126	
1,1,2-Trichloroethane	5.00	5.18	104	78.0-123	
Trichloroethene	5.00	6.27	125	76.0-126	
Trichlorofluoromethane	5.00	4.38	87.6	61.0-142	
1,2,3-Trichloropropane	5.00	5.23	105	67.0-129	
1,2,3-Trimethylbenzene	5.00	5.41	108	74.0-124	
1,2,4-Trimethylbenzene	5.00	4.64	92.8	70.0-126	
1,3,5-Trimethylbenzene	5.00	5.20	104	73.0-127	
Vinyl chloride	5.00	4.55	91.0	63.0-134	
Xylenes, Total	15.0	13.7	91.3	72.0-127	
Acrolein	25.0	30.3	121	10.0-160	
(S) Toluene-d8			100	75.0-131	
(S) 4-Bromofluorobenzene			91.8	67.0-138	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1359456-03,07

Method Blank (MB)

(MB) R3663028-1 06/03/2	1 20:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	85.9			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3663028-2 06/03	/21 20:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	46.6	93.2	50.0-150	
(S) o-Terphenyl			93.4	18.0-148	

L1359456-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359456-07 06/05/21 00:23 • (MS) R3663708-1 06/05/21 00:36 • (MSD) R3663708-2 06/05/21 00:49

(03) 21333430 07 00/03/	•	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	56.0	26.9	96.6	118	125	163	5	50.0-150		<u>J5</u>	19.9	20
(S) o-Terphenyl					109	116		18.0-148				

PAGE:

28 of 41

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1359456-09

Method Blank (MB)

(MB) R3663029-1 06/03/2	1 15:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	76.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3663029-2 06/03	3/21 15:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	37.7	75.4	50.0-150	
(S) o-Terphenyl			79.6	18.0-148	

(OS) L1359370-06 06/03/21 17:02 • (MS) R3663029-3 06/03/21 17:15 • (MSD) R3663029-4 06/03/21 17:28

(00) 21000010 00 0010012	2117.02 (1110)	1.0000023 0 0	00/00/21 17:10	(11102) 1100000	020 1 00/00/2	11 17.20						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	51.3	6.41	51.3	49.2	87.5	81.6	1	50.0-150			4.27	20
(S) o-Terphenyl					90.1	86.8		18.0-148				

PAGE:

29 of 41

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

968

L1359456-11,12

Method Blank (MB)

Diesel Range Organics (DRO) 1500

(S) o-Terphenyl

(MB) R3662792-1 06/03/2	1 04:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		33.3	100
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	70.0			31.0-160

²Tc

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

1050

64.5

71.0

70.0

47.3

(LCS) R3662792-2 06/03/	'21 04:40 • (LCS	SD) R3662792-	3 06/03/21 05	5:02						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%

50.0-150

31.0-160

8.13

20

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-11,12

Method Blank (MB)

(MB) R3661510-3 05/31	/21 17:41				
,	MB Result	MB Qualifier	MB MDL	MB RDL	<u></u>
Analyte	ug/l		ug/l	ug/l	ľ
Anthracene	U		0.0190	0.0500	L
Acenaphthene	U		0.0190	0.0500	3
Acenaphthylene	U		0.0171	0.0500	L
Benzo(a)anthracene	U		0.0203	0.0500	4
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	L
Benzo(g,h,i)perylene	U		0.0184	0.0500	5
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	6
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	_
Fluorene	U		0.0169	0.0500	7
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	L
Naphthalene	U		0.0917	0.250	8
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	-
1-Methylnaphthalene	U		0.0687	0.250	9
2-Methylnaphthalene	U		0.0674	0.250	L
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	109			31.0-160	
(S) 2-Fluorobiphenyl	87.5			48.0-148	
(S) p-Terphenyl-d14	118			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3661510-1 05/31/2	21 17:06 • (LCSD)	R3661510-2	05/31/21 17:24								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	1.76	1.72	88.0	86.0	67.0-150			2.30	20	
Acenaphthene	2.00	1.86	1.82	93.0	91.0	65.0-138			2.17	20	
Acenaphthylene	2.00	1.86	1.80	93.0	90.0	66.0-140			3.28	20	
Benzo(a)anthracene	2.00	1.65	1.69	82.5	84.5	61.0-140			2.40	20	
Benzo(a)pyrene	2.00	1.64	1.74	82.0	87.0	60.0-143			5.92	20	
Benzo(b)fluoranthene	2.00	1.86	1.94	93.0	97.0	58.0-141			4.21	20	
Benzo(g,h,i)perylene	2.00	1.77	1.90	88.5	95.0	52.0-153			7.08	20	
Benzo(k)fluoranthene	2.00	1.77	1.89	88.5	94.5	58.0-148			6.56	20	
Chrysene	2.00	1.79	1.88	89.5	94.0	64.0-144			4.90	20	
Dibenz(a,h)anthracene	2.00	1.62	1.71	81.0	85.5	52.0-155			5.41	20	
Fluoranthene	2.00	1.86	1.81	93.0	90.5	69.0-153			2.72	20	

ACCOUNT:

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-11.12

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3661510-1	05/31/21 17:06	(LCSD) R3661510-2	05/31/21 17:24

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	1.89	1.82	94.5	91.0	64.0-136			3.77	20
Indeno(1,2,3-cd)pyrene	2.00	1.66	1.67	83.0	83.5	54.0-153			0.601	20
Naphthalene	2.00	1.79	1.78	89.5	89.0	61.0-137			0.560	20
Phenanthrene	2.00	1.93	1.89	96.5	94.5	62.0-137			2.09	20
Pyrene	2.00	1.93	2.02	96.5	101	60.0-142			4.56	20
1-Methylnaphthalene	2.00	1.82	1.78	91.0	89.0	66.0-142			2.22	20
2-Methylnaphthalene	2.00	1.71	1.69	85.5	84.5	62.0-136			1.18	20
2-Chloronaphthalene	2.00	1.87	1.83	93.5	91.5	64.0-140			2.16	20
(S) Nitrobenzene-d5				114	111	31.0-160				
(S) 2-Fluorobiphenyl				94.5	90.0	48.0-148				
(S) p-Terphenyl-d14				108	115	37.0-146				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-06

Method Blank (MB)

(MB) R3662194-2 06/0	1/21 23:26				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4
Benzo(b)fluoranthene	U		0.00153	0.00600	L
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	L
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	89.6			14.0-149	
(S) 2-Fluorobiphenyl	76.1			34.0-125	
(S) p-Terphenyl-d14	111			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3662194-1 06/0	1/21 23:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0571	71.4	50.0-126	
Acenaphthene	0.0800	0.0658	82.3	50.0-120	
Acenaphthylene	0.0800	0.0631	78.9	50.0-120	
Benzo(a)anthracene	0.0800	0.0628	78.5	45.0-120	
Benzo(a)pyrene	0.0800	0.0642	80.3	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0709	88.6	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0689	86.1	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0691	86.4	49.0-125	
Chrysene	0.0800	0.0716	89.5	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0624	78.0	47.0-125	
Fluoranthene	0.0800	0.0696	87.0	49.0-129	

ACCOUNT:

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-06

Laboratory Control Sample (LCS)

11 (5)	R3662194-1	06/01/21	23.08

(,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0681	85.1	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0640	80.0	46.0-125	
Naphthalene	0.0800	0.0638	79.8	50.0-120	
Phenanthrene	0.0800	0.0587	73.4	47.0-120	
Pyrene	0.0800	0.0725	90.6	43.0-123	
1-Methylnaphthalene	0.0800	0.0707	88.4	51.0-121	
2-Methylnaphthalene	0.0800	0.0663	82.9	50.0-120	
2-Chloronaphthalene	0.0800	0.0588	73.5	50.0-120	
(S) Nitrobenzene-d5			97.6	14.0-149	
(S) 2-Fluorobiphenyl			81.8	34.0-125	
(S) p-Terphenyl-d14			103	23.0-120	

(OS) L1359842-03 06/02/21 02:06 • (MS) R3662194-3 06/02/21 02:24 • (MSD) R3662194-4 06/02/21 02:42

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0886	U	0.0618	0.0650	69.8	73.4	1	10.0-145			5.07	30
Acenaphthene	0.0886	0.00803	0.0742	0.0732	74.7	73.6	1	14.0-127			1.35	27
Acenaphthylene	0.0886	U	0.0643	0.0630	72.5	71.1	1	21.0-124			1.91	25
Benzo(a)anthracene	0.0886	U	0.0624	0.0645	70.4	72.8	1	10.0-139			3.32	30
Benzo(a)pyrene	0.0886	U	0.0674	0.0677	76.0	76.4	1	10.0-141			0.492	31
Benzo(b)fluoranthene	0.0886	U	0.0716	0.0675	80.7	76.1	1	10.0-140			5.90	36
Benzo(g,h,i)perylene	0.0886	U	0.0701	0.0701	79.1	79.1	1	10.0-140			0.000	33
Benzo(k)fluoranthene	0.0886	U	0.0688	0.0723	77.6	81.6	1	10.0-137			5.02	31
Chrysene	0.0886	U	0.0708	0.0731	79.9	82.5	1	10.0-145			3.23	30
Dibenz(a,h)anthracene	0.0886	U	0.0617	0.0684	69.6	77.1	1	10.0-132			10.2	31
Fluoranthene	0.0886	U	0.0727	0.0748	82.0	84.4	1	10.0-153			2.85	33
Fluorene	0.0886	0.0218	0.0851	0.0868	71.4	73.3	1	11.0-130			1.93	29
Indeno(1,2,3-cd)pyrene	0.0886	U	0.0627	0.0602	70.8	67.9	1	10.0-137			4.15	32
Naphthalene	0.0886	0.321	0.329	0.370	8.75	55.0	1	10.0-135	<u>J6</u>		11.7	27
Phenanthrene	0.0886	0.0207	0.0811	0.0822	68.1	69.4	1	10.0-144			1.36	31
Pyrene	0.0886	0.00448	0.0745	0.0764	78.9	81.2	1	10.0-148			2.64	35
1-Methylnaphthalene	0.0886	0.345	0.368	0.410	26.2	73.8	1	10.0-142			10.8	28
2-Methylnaphthalene	0.0886	0.710	0.695	0.763	0.000	60.0	1	10.0-137	$\underline{\vee}$		9.42	28
2-Chloronaphthalene	0.0886	U	0.0607	0.0609	68.5	68.8	1	29.0-120			0.364	24
(S) Nitrobenzene-d5					143	114		14.0-149				
(S) 2-Fluorobiphenyl					72.1	68.9		34.0-125				
(S) p-Terphenyl-d14					89.8	93.3		23.0-120				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-04

Method Blank (MB)

(MB) R3663410-2 06/0	3/21 15:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	² T
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	³ S
Acenaphthylene	U		0.00216	0.00600	Ľ
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	⁴ C
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	⁵ S
Benzo(k)fluoranthene	U		0.00215	0.00600	Ľ
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	, C
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	⁷ G
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	Ã
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	°S
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	86.6			14.0-149	
(S) 2-Fluorobiphenyl	91.8			34.0-125	
(S) p-Terphenyl-d14	93.2			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3663410-1 06/0	3/21 15:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0747	93.4	50.0-126	
Acenaphthene	0.0800	0.0763	95.4	50.0-120	
Acenaphthylene	0.0800	0.0753	94.1	50.0-120	
Benzo(a)anthracene	0.0800	0.0728	91.0	45.0-120	
Benzo(a)pyrene	0.0800	0.0578	72.3	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0647	80.9	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0634	79.3	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0671	83.9	49.0-125	
Chrysene	0.0800	0.0778	97.3	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0612	76.5	47.0-125	
Fluoranthene	0.0800	0.0794	99.3	49.0-129	

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359456-04

Laboratory Control Sample (LCS)

(LCS)	R3663410-1	06/03/21	15.26

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0773	96.6	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0616	77.0	46.0-125	
Naphthalene	0.0800	0.0697	87.1	50.0-120	
Phenanthrene	0.0800	0.0765	95.6	47.0-120	
Pyrene	0.0800	0.0742	92.8	43.0-123	
1-Methylnaphthalene	0.0800	0.0716	89.5	51.0-121	
2-Methylnaphthalene	0.0800	0.0669	83.6	50.0-120	
2-Chloronaphthalene	0.0800	0.0801	100	50.0-120	
(S) Nitrobenzene-d5			104	14.0-149	
(S) 2-Fluorobiphenyl			106	34.0-125	
(S) p-Terphenyl-d14			100	23.0-120	

L1359456-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359456-04 06/03/21 16:06 • (MS) R3663410-3 06/03/21 16:26 • (MSD) R3663410-4 06/03/21 16:45

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0847	0.00444	0.0854	0.0686	95.7	75.8	1	10.0-145			21.9	30
Acenaphthene	0.0847	U	0.0768	0.0691	90.7	81.6	1	14.0-127			10.5	27
Acenaphthylene	0.0847	0.00373	0.107	0.0730	122	81.8	1	21.0-124		<u>J3</u>	37.7	25
Benzo(a)anthracene	0.0847	0.0242	0.362	0.0850	399	71.8	1	10.0-139	<u>J5</u>	<u>J3</u>	124	30
Benzo(a)pyrene	0.0847	0.0347	0.447	0.0793	487	52.7	1	10.0-141	<u>J5</u>	<u>J3</u>	140	31
Benzo(b)fluoranthene	0.0847	0.0508	0.422	0.0965	439	54.1	1	10.0-140	<u>J5</u>	<u>J3</u>	126	36
Benzo(g,h,i)perylene	0.0847	0.0485	0.417	0.0895	435	48.5	1	10.0-140	<u>J5</u>	<u>J3</u>	129	33
Benzo(k)fluoranthene	0.0847	0.0166	0.206	0.0691	224	62.0	1	10.0-137	<u>J5</u>	<u>J3</u>	99.6	31
Chrysene	0.0847	0.0281	0.445	0.0987	492	83.4	1	10.0-145	<u>J5</u>	<u>J3</u>	127	30
Dibenz(a,h)anthracene	0.0847	0.00690	0.0891	0.0489	97.1	49.6	1	10.0-132		<u>J3</u>	58.2	31
Fluoranthene	0.0847	0.0356	0.517	0.108	569	85.2	1	10.0-153	<u>J5</u>	<u>J3</u>	131	33
Fluorene	0.0847	U	0.0781	0.0703	92.2	83.0	1	11.0-130			10.5	29
Indeno(1,2,3-cd)pyrene	0.0847	0.0404	0.363	0.0803	381	47.2	1	10.0-137	<u>J5</u>	<u>J3</u>	127	32
Naphthalene	0.0847	0.0146	0.113	0.0800	117	77.3	1	10.0-135		<u>J3</u>	34.5	27
Phenanthrene	0.0847	0.0284	0.122	0.0972	111	81.3	1	10.0-144			22.7	31
Pyrene	0.0847	0.0379	0.615	0.0985	682	71.6	1	10.0-148	<u>J5</u>	<u>J3</u>	145	35
1-Methylnaphthalene	0.0847	0.00639	0.0802	0.0735	87.2	79.3	1	10.0-142			8.71	28
2-Methylnaphthalene	0.0847	0.00836	0.0785	0.0720	82.9	75.2	1	10.0-137			8.61	28
2-Chloronaphthalene	0.0847	U	0.0794	0.0731	93.8	86.4	1	29.0-120			8.22	24
(S) Nitrobenzene-d5					99.6	90.9		14.0-149				
(S) 2-Fluorobiphenyl					99.4	89.2		34.0-125				
(S) p-Terphenyl-d14					90.8	80.3		23.0-120				

PAGE:

36 of 41

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Ss

Cn

Sr

Qc

GI

Sc

Abbreviations and Definitions

Appreviations and	Demittions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

GLOSSARY OF TERMS

Qualifier Description

The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analy	vtical National	12065 Lebano	in Rd Mount	Juliet TN 37	7122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Mame/Address:			Billing Infor	rmation:		1.8	3.365		A	nalvsis /	Contain	ner / Pre	servative	2/2/3/2	Chain of Custoo	y Page of Z
Martin S. Burck Assoc.				s Payable Vasco Ct.		Pres Chk						e-in-sep			- Pa) ce Analytical [°]
200 N. Wasco Ct. Hood River, OR 97031			Hood Riv	ver, OR 970)31											, or many sour
Report to: Jon White	7			baenvironme	ental.com;jwhite@	0.11					/Syr				Submitting a sample constitutes acknowle Pace Terms and Conc	
Project Description: North Star Casteel		City/State Collected:	Vancou	ver, wa	Please Ci		NoPres		res		10m				terms.pdf	com/hubfs/pas-standard-
Phone: 541-387-4422	Client Project	# Str		MSBAHR	Lab Project # MSBAHROR-NSTARCASTI				8ozCir-NoPres	PAHs 8270ESIM 802Clr-NoPres	40mlAmb/MeOH10ml/Syr					561456 F163
Collected by (print): Jan Whitz	Site/Facility II	h Sta	-	P.O.#	P.O.# NML Ster			loPres	**************************************	ozClr-	[Amb]				Acctnum: MS	
Collected by (signature):	Same D	Lab MUST Be	Day				6020 8ozClr-1	Cr6 7199 4ozClr-NoPres	NOSGT	ESIM 8			J		Template: T1 Prelogin: P8 PM: 110 - Bri	15085
Immediately Packed on Ice N Y	Next Da	y 10 D	y (Rad Only) Day (Rad Only)					7199 4	NWTPHDX	8270	VOCs 8260D	19	seni		PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	As,Cd,Cr,Pb	Cr6 7	TWN	PAH	VOC	Hold	A	á	Remarks	Sample # (lab only)
51-1.5	grab	SS	1.5	5/26/2	21 1342	3		سيليت				V				-01
51-1.5 200	grab	SS	1.5	5/26/2	1342	2		4.3				/				-02
51-2.5	grab	SS	2.5	5/26/	21 1405	3			/			74				-03
52-2.5	grab	SS	2.5	5/24/	21 1431	2				/						1-ay
52-3	grab	SS	3	5 26	121 1440	2						~				-05
515-1	grab	SS	1'	5/261	7 - 7 - 7 - 7 - 7 - 7	2				1						-06
519-1	grab	SS	1.1	5/26		3	V		1							-07
519-2	grab	SS	2'	5 26		2	1					V			2 1461	-08
\$25-2.5	grab	SS	2.5	5/26/		018	3		V						All Inches	- 09
539-2.5	grab	SS	2.5	5/26	21 0905	1		13					/		s/ 1	-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		_ Temp		COC Seal COC Sign Bottles Correct	Sample Receipt () I Present/Intached/Accurate: arrive intact: bottles used:	NP V N
DW - Drinking Water OT - Other	Samples returned UPS FedE	x Courie	to to the same		Fracking# 5	0(0 (22	6	28	63	1/2		VOA Zero	ent volume sent If Applica Headspace: ation Correct/C	ole // N
Relinquished by: (Signature) Date: Time: Received by: (A2			HQ / MeoH TBR	RAD Sere	een <0.5 mR/hr:	N N
Relinquished by : (Signature)		ate:	Time	e:	Received by: (Signa	ture)				Temp:	=6	C Bottl	es Received:	ii preserv	ation required by L	giii. Date/ lime
Relinquished by : (Signature)		ate:	Time	Time: Received for lab by			ature) Di			Date: 5/28/21 Time: 900				Hold:		Condition: NCF / OK

ompany Name / Address:			Billing Info	mation:					A	nalvsis /	Contair	ner / Pre	servative			Chain of Custody	Page 2 of 2			
Martin S. Burck AssocHood River, OR 200 N. Wasco Ct. Hood River, OR 97031			Accounts Payable Pres 200 N. Wasco Ct. Hood River, OR 97031													Pac	e Analytical			
eport to:	The second		Email To:	:											12065 Lebanon Rd Mo					
on White				baenvironme	ntal.com;jwhite	@msba	74 EN SECURIO	S			×	74				Submitting a sample via constitutes acknowledg Pace Terms and Condit	gment and acceptance of th			
roject Description: North Star Casteel		Collected: PT MT CT E		Please Circle: PT MT CT ET		INO	rPre	HC		res-		5KI			https://info.pacelabs.co terms.pdf	om/hubfs/pas-standard-				
hone: 541-387-4422	Client Project			Client Project#		Lab Project #		Lab Project #				250mlHDPE-HNO3	50miTube/plungerPres	I Amb-HC		nb-NoP	p-HCI	15/T	,	
Collected by (print):	Site/Facility ID	th star		P.O.# North Star			250ml	nITube,	NOSGT 100ml	Amb HC	10mlAn	OmlAm	Mek			Acctnum: MS				
Collected by (signature):		ab MUST Be				6020	C 50r	IOSG	0ml/	SIM	LL 4	80			Template: T186092 Prelogin: P845086					
Immediately Packed on Ice N Y		y 5 Day y 10 Da		Date R	esults Needed	No. of	As,Cd,Cr,Pb	Cr6 3500Cr	NWTPHDX	NWTPHGX 40mlAmb HC	PAHs 8270ESIM 40mlAmb-NoPres-WT	VOCs 8260D LL 40mlAmb-HCI	RA			PM: 110 - Brian PB: Shipped Via:	n Ford			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntr	As,Cd	Cr6 3	TWN	TWN	PAHS	VOCs	RC			Remarks	Sample # {lab onh			
UST-H20		G₩ oT	10859	5/26/	1 084	5 11			1	1	/	V	/			17 25	-11			
EB-5	200	GW oT		5/26	21 082	2 11	1	1	/		1					1	-12			
Trip Blank		G₩∘T				1						/					-13			
		GW																		
1555	my description of a cross of the	GW			4				Sale III		lane ly									
in the second second	7-	GW			Total V		持 衛	4 10					0 9							
		GW	ATT. SALE									175								
							The s													
	71	- 100																		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other Watev Samples returned via: UPS FedEx Courier				1			Flow Other Bot					Seal P Signed tles ar	Sample Receipt Checklist Seal Present/Intact: NP N Signed/Accurate: NN les arrive intact: NN ect bottles used: NN							
				ı	racking#									020		volume sent: <u>If Applicab</u> eadspace:	le A			
Relinquished by : (Signature)		5/27/2	Time: Received by: (Signature		nature)				Trip Bla	nk Recei	1	HCL/ Med TBR	Pre RAD	servati Screen	on Correct/Che <0.5 mR/hr:	<u> </u>				
Relinquished by : (Signature)	Da	ate:	Time	e: F	Received by: (Sig	nature)				Temp:	=.6	C Bott	les Receiv	ed: If pr	eservatio	on required by Log	gin: Date/Time			
Relinquished by : (Signature)	Da	ate:	Time	e: F	Received for lab	by: (Sign				Date:	sh	Tim	900	Hole			Condition: NCF / OK			

DRAFT

14) Sample Date 5/26/21 (#L1359488)

Revised Report

Martin S. Burck Assoc.-Hood River, OR

L1359488 Sample Delivery Group:

Samples Received: 05/28/2021

Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

1	
	³ S c

⁴ Cn

Tc: Table of Contents			2
Ss: Sample Summary			3
Cn: Case Narrative			6
Sr: Sample Results			7
S40-1.5 L1359488-01			7
S41-2.5 L1359488-02			8
S42-0 L1359488-03			9
S43-0 L1359488-04			10
S44-0 L1359488-05			11
S45-0 L1359488-06			12
S46-0 L1359488-07			13
S47-0 L1359488-08			14
S48-0 L1359488-09			15
S49-0 L1359488-10			16
S50-0 L1359488-11			17
S50-0 DUP L1359488-12			18
S51-2.5 L1359488-13			19
S51-3 L1359488-14			20
S52-3 L1359488-15			21
S53-2 L1359488-16			22
TRIP BLANK L1359488-17			23
Qc: Quality Control Summary			25
Total Solids by Method 2540 G-2011			25
Metals (ICPMS) by Method 6020B			28
Volatile Organic Compounds (GC/MS) by Method 8260D			29
Semi-Volatile Organic Compounds (GC) by Method NWTP	HDX-NO	SGT	33
Semi Volatile Organic Compounds (GC/MS) by Method 82	270E-SIM		34
GI: Glossary of Terms			39
Al: Accreditations & Locations			40
Sc: Sample Chain of Custody			41

Cp: Cover Page

SAMPLE SUMMARY

Ss

^⁴Cn

Sr

[°]Qc

GI

ΆΙ

Sc

S40-1.5 L1359488-01 Solid			Collected by Jon White	Collected date/time 05/26/21 09:21	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wedilou	Daten	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 00:52	LAT	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680166	10	05/31/21 00:52	06/03/21 03:23	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680166	50	05/31/21 00:52	06/03/21 11:33	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 14:22	JNJ	Mt. Juliet, TN
			Collected by	Collected date/time		
S41-2.5 L1359488-02 Solid			Jon White	05/26/21 09:32	05/28/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 00:56	LAT	Mt. Juliet, TN
			Collected by	Collected date/time		
542-0 L1359488-03 Solid			Jon White	05/26/21 09:41	05/28/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 00:59	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	to/timo
543-0 L1359488-04 Solid			Jon White	05/26/21 10:03	05/28/21 09	
	Dotob	Dilution	Droporotion	Anglusia	Amaluat	Leastion
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solida by Mothad 2E40 C 2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDM	Mt. Juliet, TN
otal Solids by Method 2540 G-2011		1			KDW	,
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 02:05	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	50	06/01/21 16:23	06/03/21 02:09	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S44-0 L1359488-05 Solid			Jon White	05/26/21 10:12	05/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
neurou	Dateii	Dilution	date/time	date/time	AlldiySt	Location
otal Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	10	06/01/21 16:23	06/03/21 02:16	LAT	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 01:07	LAT	Mt. Juliet, TN
ictals (ict ins) by iniction 0020b	WG1001002	3	00/01/21 10.23	00/03/2101.07	LAI	Wit. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
545-0 L1359488-06 Solid			Jon White	05/26/2110:36	05/28/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,500	
otal Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1680166	2	05/31/21 00:52	06/03/21 03:09	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
546-0 L1359488-07 Solid			Jon White	05/26/2110:48	05/28/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 01:11	LAT	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1681082	5	06/01/21 16:23	06/03/21 02:19	LAT	Mt. Juliet, TN
ACCOUNT	DDG ISCT		606	5	E/TINAE	
ACCOUNT:	PROJECT:		SDG:		E/TIME:	

NORTH STAR

L1359488

06/08/2112:43

3 of 42

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

S46-0 L1359488-07 Solid			Collected by Jon White	Collected date/time 05/26/21 10:48	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 14:02	JNJ	Mt. Juliet, TN
S47-0 L1359488-08 Solid			Collected by Jon White	Collected date/time 05/26/21 11:00	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 13:03	JNJ	Mt. Juliet, TN
S48-0 L1359488-09 Solid			Collected by Jon White	Collected date/time 05/26/21 11:09	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681369	1	06/02/21 13:56	06/02/21 14:05	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 11:43	JNJ	Mt. Juliet, TN
S49-0 L1359488-10 Solid			Collected by Jon White	Collected date/time 05/26/2111:24	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 13:42	JNJ	Mt. Juliet, TN
S50-0 L1359488-11 Solid			Collected by Jon White	Collected date/time 05/26/2111:37	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 14:42	JNJ	Mt. Juliet, TN
S50-0 DUP L1359488-12 Solid			Collected by Jon White	Collected date/time 05/26/21 11:37	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	10	05/31/21 01:05	05/31/21 15:01	JNJ	Mt. Juliet, TN
S51-2.5 L1359488-13 Solid			Collected by Jon White	Collected date/time 05/26/2115:03	Received da 05/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Comi Valetile Overenia Compoundo (CC/MC) to Matha at 02705 CM	WC4C0C4C7	4	05/21/21 01:05	05/21/21 12:42	181.1	NAC INDICA TAI

Martin S. Burck Assoc.-Hood River, OR

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

WG1680167

05/31/21 01:05

05/31/21 12:43

JNJ

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
S51-3 L1359488-14 Solid			Jon White	05/26/21 15:15	05/28/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1682852	1	06/05/21 10:34	06/05/21 10:49	CMK	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1682705	1	06/04/21 08:35	06/04/21 22:55	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S52-3 L1359488-15 Solid			Jon White	05/26/21 15:41	05/28/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 12:03	JNJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S53-2 L1359488-16 Solid			Jon White	05/26/2116:24	05/28/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1681402	1	06/02/21 12:05	06/02/21 12:12	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1680167	1	05/31/21 01:05	05/31/21 12:23	JNJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1359488-17 GW			Jon White	05/26/21 00:00	05/28/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

WG1682788

Martin S. Burck Assoc.-Hood River, OR

Volatile Organic Compounds (GC/MS) by Method 8260D

06/04/21 12:16

DWR

Mt. Juliet, TN

06/04/21 12:16

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

DATE/TIME:

06/08/2112:43

PAGE:

6 of 42

Brian Ford Project Manager

Report Revision History

Buar Ford

Level II Report - Version 1: 06/07/21 16:56

SAMPLE RESULTS - 01

L1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 09:21

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	86.2		1	06/02/2021 14:05	WG1681369	

²Tc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	8.43		0.116	1.16	5	06/03/2021 00:52	WG1681082
Cadmium	0.827	<u>J</u>	0.0992	1.16	5	06/03/2021 00:52	WG1681082

Cn

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	538		15.4	46.4	10	06/03/2021 03:23	WG1680166
Residual Range Organics (RRO)	1950		193	580	50	06/03/2021 11:33	WG1680166
(S) o-Terphenyl	67.5			18.0-148		06/03/2021 03:23	WG1680166
(S) o-Terphenyl	105	<u>J7</u>		18.0-148		06/03/2021 11:33	WG1680166

Gl

Sample Narrative:

L1359488-01 WG1680166: Dilution due to matrix.

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0104		0.00267	0.00696	1	05/31/2021 14:22	WG1680167
Acenaphthene	0.00523	<u>J</u>	0.00242	0.00696	1	05/31/2021 14:22	WG1680167
Acenaphthylene	U		0.00251	0.00696	1	05/31/2021 14:22	WG1680167
Benzo(a)anthracene	0.0507		0.00201	0.00696	1	05/31/2021 14:22	WG1680167
Benzo(a)pyrene	0.0334		0.00208	0.00696	1	05/31/2021 14:22	WG1680167
Benzo(b)fluoranthene	0.0546		0.00177	0.00696	1	05/31/2021 14:22	WG1680167
Benzo(g,h,i)perylene	0.0389		0.00205	0.00696	1	05/31/2021 14:22	WG1680167
Benzo(k)fluoranthene	0.0181		0.00249	0.00696	1	05/31/2021 14:22	WG1680167
Chrysene	0.0599		0.00269	0.00696	1	05/31/2021 14:22	WG1680167
Dibenz(a,h)anthracene	0.00639	<u>J</u>	0.00200	0.00696	1	05/31/2021 14:22	WG1680167
Fluoranthene	0.0775		0.00263	0.00696	1	05/31/2021 14:22	WG1680167
Fluorene	0.00479	<u>J</u>	0.00238	0.00696	1	05/31/2021 14:22	WG1680167
Indeno(1,2,3-cd)pyrene	0.0261		0.00210	0.00696	1	05/31/2021 14:22	WG1680167
Naphthalene	0.0197	J	0.00473	0.0232	1	05/31/2021 14:22	WG1680167
Phenanthrene	0.0480		0.00268	0.00696	1	05/31/2021 14:22	WG1680167
Pyrene	0.0662		0.00232	0.00696	1	05/31/2021 14:22	WG1680167
1-Methylnaphthalene	0.00699	<u>J</u>	0.00521	0.0232	1	05/31/2021 14:22	WG1680167
2-Methylnaphthalene	0.0115	J	0.00495	0.0232	1	05/31/2021 14:22	WG1680167
2-Chloronaphthalene	U		0.00541	0.0232	1	05/31/2021 14:22	WG1680167
(S) Nitrobenzene-d5	67.6			14.0-149		05/31/2021 14:22	WG1680167
(S) 2-Fluorobiphenyl	58.3			34.0-125		05/31/2021 14:22	WG1680167
(S) p-Terphenyl-d14	86.7			23.0-120		05/31/2021 14:22	WG1680167

S41-2.5

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 09:32

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	82.2		1	06/02/2021 14:05	WG1681369	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Arsenic	6.71		0.122	122	5	06/03/2021 00:56	WG1681082	

S42-0

Analyte

Arsenic

SAMPLE RESULTS - 03

RDL (dry)

mg/kg

1.16

Dilution

5

Analysis

date / time

06/03/2021 00:59

Batch

WG1681082

Qualifier

MDL (dry)

mg/kg

0.116

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Result (dry)

mg/kg

5.18

Collected date/time: 05/26/21 09:41

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	86.0		1	06/02/2021 14:05	WG1681369	

Martin S. Burck Assoc.-Hood River, OR

S43-0

Analyte

Arsenic

Lead

Cadmium Chromium

SAMPLE RESULTS - 04

RDL (dry)

mg/kg

1.05

1.05

5.24

21.0

Dilution

5

5

5

50

Analysis

date / time

06/03/2021 02:05

06/03/2021 02:05

06/03/2021 02:05

06/03/2021 02:09

Batch

WG1681082

WG1681082

WG1681082

WG1681082

Collected date/time: 05/26/21 10:03

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Result (dry)

mg/kg

48.5

3.03

84.2

389

Qualifier

MDL (dry)

mg/kg

0.105

0.0897

0.311

1.04

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	95.3		1	06/02/2021 14:05	WG1681369	

Тс

S44-0

Analyte

Arsenic

Lead

Cadmium Chromium

SAMPLE RESULTS - 05

RDL (dry)

mg/kg

1.13

1.13

5.66

4.52

Dilution

5

5

5

10

Analysis

date / time

06/03/2021 01:07

06/03/2021 01:07

06/03/2021 01:07

06/03/2021 02:16

Batch

WG1681082

WG1681082

WG1681082

WG1681082

Collected date/time: 05/26/21 10:12

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Result (dry)

mg/kg

3.43

0.560

16.5

126

Qualifier

MDL (dry)

mg/kg

0.113

0.0967

0.335

0.224

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	88.4		1	06/02/2021 14:05	WG1681369	

Тс

Martin S. Burck Assoc.-Hood River, OR

S45-0

SAMPLE RESULTS - 06

Collected date/time: 05/26/2110:36

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	92.4		1	06/02/2021 14:05	WG1681369		

Ср

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	663		2.88	8.66	2	06/03/2021 03:09	WG1680166
Residual Range Organics (RRO)	153		7.21	21.7	2	06/03/2021 03:09	WG1680166
(S) o-Terphenyl	79.4			18.0-148		06/03/2021 03:09	WG1680166

Ss

SAMPLE RESULTS - 07

Collected date/time: 05/26/2110:48

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.8		1	06/02/2021 14:05	WG1681369

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	12.5		0.110	1.10	5	06/03/2021 02:19	WG1681082
Cadmium	1.83		0.0941	1.10	5	06/03/2021 01:11	WG1681082

Cn

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00253	0.00661	1	05/31/2021 14:02	WG1680167
Acenaphthene	U		0.00230	0.00661	1	05/31/2021 14:02	WG1680167
Acenaphthylene	U		0.00238	0.00661	1	05/31/2021 14:02	WG1680167
Benzo(a)anthracene	0.0555		0.00190	0.00661	1	05/31/2021 14:02	WG1680167
Benzo(a)pyrene	0.0444		0.00197	0.00661	1	05/31/2021 14:02	WG1680167
Benzo(b)fluoranthene	0.0937		0.00168	0.00661	1	05/31/2021 14:02	WG1680167
Benzo(g,h,i)perylene	0.0535		0.00195	0.00661	1	05/31/2021 14:02	WG1680167
Benzo(k)fluoranthene	0.0285		0.00237	0.00661	1	05/31/2021 14:02	WG1680167
Chrysene	0.0704		0.00255	0.00661	1	05/31/2021 14:02	WG1680167
Dibenz(a,h)anthracene	0.0108		0.00189	0.00661	1	05/31/2021 14:02	WG1680167
Fluoranthene	0.119		0.00250	0.00661	1	05/31/2021 14:02	WG1680167
Fluorene	U		0.00226	0.00661	1	05/31/2021 14:02	WG1680167
Indeno(1,2,3-cd)pyrene	0.0532		0.00199	0.00661	1	05/31/2021 14:02	WG1680167
Naphthalene	0.0291		0.00449	0.0220	1	05/31/2021 14:02	WG1680167
Phenanthrene	U		0.00254	0.00661	1	05/31/2021 14:02	WG1680167
Pyrene	0.113		0.00220	0.00661	1	05/31/2021 14:02	WG1680167
1-Methylnaphthalene	0.0123	<u>J</u>	0.00494	0.0220	1	05/31/2021 14:02	WG1680167
2-Methylnaphthalene	0.0198	<u>J</u>	0.00470	0.0220	1	05/31/2021 14:02	WG1680167
2-Chloronaphthalene	U		0.00513	0.0220	1	05/31/2021 14:02	WG1680167
(S) Nitrobenzene-d5	68.5			14.0-149		05/31/2021 14:02	WG1680167
(S) 2-Fluorobiphenyl	49.4			34.0-125		05/31/2021 14:02	WG1680167
(S) p-Terphenyl-d14	87.5			23.0-120		05/31/2021 14:02	WG1680167

Martin S. Burck Assoc.-Hood River, OR

S47-0

SAMPLE RESULTS - 08

Collected date/time: 05/26/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.9		1	06/02/2021 14:05	WG1681369

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0105		0.00253	0.00660	1	05/31/2021 13:03	WG1680167
Acenaphthene	0.00887		0.00230	0.00660	1	05/31/2021 13:03	WG1680167
Acenaphthylene	0.0121		0.00238	0.00660	1	05/31/2021 13:03	WG1680167
Benzo(a)anthracene	0.0424		0.00190	0.00660	1	05/31/2021 13:03	WG1680167
Benzo(a)pyrene	0.0494		0.00197	0.00660	1	05/31/2021 13:03	WG1680167
Benzo(b)fluoranthene	0.0642		0.00168	0.00660	1	05/31/2021 13:03	WG1680167
Benzo(g,h,i)perylene	0.0429		0.00195	0.00660	1	05/31/2021 13:03	WG1680167
Benzo(k)fluoranthene	0.0224		0.00236	0.00660	1	05/31/2021 13:03	WG1680167
Chrysene	0.0525		0.00255	0.00660	1	05/31/2021 13:03	WG1680167
Dibenz(a,h)anthracene	0.00791		0.00189	0.00660	1	05/31/2021 13:03	WG1680167
Fluoranthene	0.0754		0.00250	0.00660	1	05/31/2021 13:03	WG1680167
Fluorene	0.00822		0.00225	0.00660	1	05/31/2021 13:03	WG1680167
Indeno(1,2,3-cd)pyrene	0.0453		0.00199	0.00660	1	05/31/2021 13:03	WG1680167
Naphthalene	0.0341		0.00449	0.0220	1	05/31/2021 13:03	WG1680167
Phenanthrene	0.0743		0.00254	0.00660	1	05/31/2021 13:03	WG1680167
Pyrene	0.0706		0.00220	0.00660	1	05/31/2021 13:03	WG1680167
1-Methylnaphthalene	0.0164	<u>J</u>	0.00494	0.0220	1	05/31/2021 13:03	WG1680167
2-Methylnaphthalene	0.0346		0.00470	0.0220	1	05/31/2021 13:03	WG1680167
2-Chloronaphthalene	U		0.00512	0.0220	1	05/31/2021 13:03	WG1680167
(S) Nitrobenzene-d5	55.4			14.0-149		05/31/2021 13:03	WG1680167
(S) 2-Fluorobiphenyl	54.9			34.0-125		05/31/2021 13:03	WG1680167
(S) p-Terphenyl-d14	61.5			23.0-120		05/31/2021 13:03	WG1680167

PAGE:

14 of 42

S48-0

SAMPLE RESULTS - 09

Collected date/time: 05/26/21 11:09

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	06/02/2021 14:05	WG1681369

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00373	<u>J</u>	0.00239	0.00624	1	05/31/2021 11:43	WG1680167
Acenaphthene	U		0.00217	0.00624	1	05/31/2021 11:43	WG1680167
Acenaphthylene	U		0.00225	0.00624	1	05/31/2021 11:43	WG1680167
Benzo(a)anthracene	U		0.00180	0.00624	1	05/31/2021 11:43	WG1680167
Benzo(a)pyrene	U		0.00186	0.00624	1	05/31/2021 11:43	WG1680167
Benzo(b)fluoranthene	0.00240	<u>J</u>	0.00159	0.00624	1	05/31/2021 11:43	WG1680167
Benzo(g,h,i)perylene	U		0.00184	0.00624	1	05/31/2021 11:43	WG1680167
Benzo(k)fluoranthene	U		0.00224	0.00624	1	05/31/2021 11:43	WG1680167
Chrysene	U		0.00241	0.00624	1	05/31/2021 11:43	WG1680167
Dibenz(a,h)anthracene	U		0.00179	0.00624	1	05/31/2021 11:43	WG1680167
Fluoranthene	0.00403	<u>J</u>	0.00236	0.00624	1	05/31/2021 11:43	WG1680167
Fluorene	U		0.00213	0.00624	1	05/31/2021 11:43	WG1680167
Indeno(1,2,3-cd)pyrene	U		0.00188	0.00624	1	05/31/2021 11:43	WG1680167
Naphthalene	0.0212		0.00425	0.0208	1	05/31/2021 11:43	WG1680167
Phenanthrene	0.00852		0.00240	0.00624	1	05/31/2021 11:43	WG1680167
Pyrene	0.00389	<u>J</u>	0.00208	0.00624	1	05/31/2021 11:43	WG1680167
1-Methylnaphthalene	U		0.00467	0.0208	1	05/31/2021 11:43	WG1680167
2-Methylnaphthalene	0.00689	J	0.00444	0.0208	1	05/31/2021 11:43	WG1680167
2-Chloronaphthalene	U		0.00485	0.0208	1	05/31/2021 11:43	WG1680167
(S) Nitrobenzene-d5	62.4			14.0-149		05/31/2021 11:43	WG1680167
(S) 2-Fluorobiphenyl	65.8			34.0-125		05/31/2021 11:43	WG1680167
(S) p-Terphenyl-d14	86.6			23.0-120		05/31/2021 11:43	WG1680167

SAMPLE RESULTS - 10

L1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 11:24

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.5		1	06/02/2021 12:12	WG1681402

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.125		0.00251	0.00655	1	05/31/2021 13:42	WG1680167
Acenaphthene	0.0154		0.00228	0.00655	1	05/31/2021 13:42	WG1680167
Acenaphthylene	0.0306		0.00236	0.00655	1	05/31/2021 13:42	WG1680167
Benzo(a)anthracene	0.317		0.00189	0.00655	1	05/31/2021 13:42	WG1680167
Benzo(a)pyrene	0.328		0.00196	0.00655	1	05/31/2021 13:42	WG1680167
Benzo(b)fluoranthene	0.344		0.00167	0.00655	1	05/31/2021 13:42	WG1680167
Benzo(g,h,i)perylene	0.228		0.00193	0.00655	1	05/31/2021 13:42	WG1680167
Benzo(k)fluoranthene	0.128		0.00235	0.00655	1	05/31/2021 13:42	WG1680167
Chrysene	0.318		0.00253	0.00655	1	05/31/2021 13:42	WG1680167
Dibenz(a,h)anthracene	0.0468		0.00188	0.00655	1	05/31/2021 13:42	WG1680167
Fluoranthene	0.528		0.00248	0.00655	1	05/31/2021 13:42	WG1680167
Fluorene	0.0239		0.00224	0.00655	1	05/31/2021 13:42	WG1680167
Indeno(1,2,3-cd)pyrene	0.258		0.00198	0.00655	1	05/31/2021 13:42	WG1680167
Naphthalene	0.0604		0.00446	0.0218	1	05/31/2021 13:42	WG1680167
Phenanthrene	0.395		0.00252	0.00655	1	05/31/2021 13:42	WG1680167
Pyrene	0.471		0.00218	0.00655	1	05/31/2021 13:42	WG1680167
1-Methylnaphthalene	0.0253		0.00490	0.0218	1	05/31/2021 13:42	WG1680167
2-Methylnaphthalene	0.0457		0.00466	0.0218	1	05/31/2021 13:42	WG1680167
2-Chloronaphthalene	U		0.00509	0.0218	1	05/31/2021 13:42	WG1680167
(S) Nitrobenzene-d5	71.0			14.0-149		05/31/2021 13:42	WG1680167
(S) 2-Fluorobiphenyl	67.0			34.0-125		05/31/2021 13:42	WG1680167
(S) p-Terphenyl-d14	76.9			23.0-120		05/31/2021 13:42	WG1680167

SAMPLE RESULTS - 11

1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 11:37

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.3		1	06/02/2021 12:12	WG1681402

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00372	<u>J</u>	0.00263	0.00687	1	05/31/2021 14:42	WG1680167
Acenaphthene	U		0.00239	0.00687	1	05/31/2021 14:42	WG1680167
Acenaphthylene	0.00278	<u>J</u>	0.00247	0.00687	1	05/31/2021 14:42	WG1680167
Benzo(a)anthracene	0.0334		0.00198	0.00687	1	05/31/2021 14:42	WG1680167
Benzo(a)pyrene	0.0453		0.00205	0.00687	1	05/31/2021 14:42	WG1680167
Benzo(b)fluoranthene	0.0479		0.00175	0.00687	1	05/31/2021 14:42	WG1680167
Benzo(g,h,i)perylene	0.0539		0.00203	0.00687	1	05/31/2021 14:42	WG1680167
Benzo(k)fluoranthene	0.0132		0.00246	0.00687	1	05/31/2021 14:42	WG1680167
Chrysene	0.0300		0.00266	0.00687	1	05/31/2021 14:42	WG1680167
Dibenz(a,h)anthracene	0.0107		0.00197	0.00687	1	05/31/2021 14:42	WG1680167
Fluoranthene	0.0356		0.00260	0.00687	1	05/31/2021 14:42	WG1680167
Fluorene	U		0.00235	0.00687	1	05/31/2021 14:42	WG1680167
Indeno(1,2,3-cd)pyrene	0.0368		0.00207	0.00687	1	05/31/2021 14:42	WG1680167
Naphthalene	0.00548	<u>J</u>	0.00467	0.0229	1	05/31/2021 14:42	WG1680167
Phenanthrene	0.0126		0.00265	0.00687	1	05/31/2021 14:42	WG1680167
Pyrene	0.0428		0.00229	0.00687	1	05/31/2021 14:42	WG1680167
1-Methylnaphthalene	U		0.00514	0.0229	1	05/31/2021 14:42	WG1680167
2-Methylnaphthalene	U		0.00489	0.0229	1	05/31/2021 14:42	WG1680167
2-Chloronaphthalene	U		0.00534	0.0229	1	05/31/2021 14:42	WG1680167
(S) Nitrobenzene-d5	70.3			14.0-149		05/31/2021 14:42	WG1680167
(S) 2-Fluorobiphenyl	58.9			34.0-125		05/31/2021 14:42	WG1680167
(S) p-Terphenyl-d14	72.7			23.0-120		05/31/2021 14:42	WG1680167

S50-0 DUP

SAMPLE RESULTS - 12

L1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 11:37

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.7		1	06/02/2021 12:12	WG1681402

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.0254	0.0661	10	05/31/2021 15:01	WG1680167
Acenaphthene	U		0.0230	0.0661	10	05/31/2021 15:01	WG1680167
Acenaphthylene	U		0.0238	0.0661	10	05/31/2021 15:01	WG1680167
Benzo(a)anthracene	0.0358	<u>J</u>	0.0191	0.0661	10	05/31/2021 15:01	WG1680167
Benzo(a)pyrene	0.0765		0.0197	0.0661	10	05/31/2021 15:01	WG1680167
Benzo(b)fluoranthene	0.0892		0.0169	0.0661	10	05/31/2021 15:01	WG1680167
Benzo(g,h,i)perylene	0.101		0.0195	0.0661	10	05/31/2021 15:01	WG1680167
Benzo(k)fluoranthene	0.0254	<u>J</u>	0.0237	0.0661	10	05/31/2021 15:01	WG1680167
Chrysene	0.0407	<u>J</u>	0.0256	0.0661	10	05/31/2021 15:01	WG1680167
Dibenz(a,h)anthracene	U		0.0190	0.0661	10	05/31/2021 15:01	WG1680167
Fluoranthene	0.0595	<u>J</u>	0.0250	0.0661	10	05/31/2021 15:01	WG1680167
Fluorene	U		0.0226	0.0661	10	05/31/2021 15:01	WG1680167
Indeno(1,2,3-cd)pyrene	0.0779		0.0200	0.0661	10	05/31/2021 15:01	WG1680167
Naphthalene	U		0.0450	0.220	10	05/31/2021 15:01	WG1680167
Phenanthrene	U		0.0255	0.0661	10	05/31/2021 15:01	WG1680167
Pyrene	0.0714		0.0220	0.0661	10	05/31/2021 15:01	WG1680167
1-Methylnaphthalene	U		0.0495	0.220	10	05/31/2021 15:01	WG1680167
2-Methylnaphthalene	U		0.0471	0.220	10	05/31/2021 15:01	WG1680167
2-Chloronaphthalene	U		0.0514	0.220	10	05/31/2021 15:01	WG1680167
(S) Nitrobenzene-d5	49.8			14.0-149		05/31/2021 15:01	WG1680167
(S) 2-Fluorobiphenyl	49.8			34.0-125		05/31/2021 15:01	WG1680167
(S) p-Terphenyl-d14	66.6			23.0-120		05/31/2021 15:01	WG1680167

S51-2.5

(S) p-Terphenyl-d14

SAMPLE RESULTS - 13

L1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 15:03

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.0		1	06/02/2021 12:12	WG1681402

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

82.9

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0146		0.00242	0.00632	1	05/31/2021 12:43	WG1680167
Acenaphthene	U		0.00220	0.00632	1	05/31/2021 12:43	WG1680167
Acenaphthylene	0.0191		0.00227	0.00632	1	05/31/2021 12:43	WG1680167
Benzo(a)anthracene	0.166		0.00182	0.00632	1	05/31/2021 12:43	WG1680167
Benzo(a)pyrene	0.252		0.00188	0.00632	1	05/31/2021 12:43	WG1680167
Benzo(b)fluoranthene	0.224		0.00161	0.00632	1	05/31/2021 12:43	WG1680167
Benzo(g,h,i)perylene	0.237		0.00186	0.00632	1	05/31/2021 12:43	WG1680167
Benzo(k)fluoranthene	0.0758		0.00226	0.00632	1	05/31/2021 12:43	WG1680167
Chrysene	0.196		0.00244	0.00632	1	05/31/2021 12:43	WG1680167
Dibenz(a,h)anthracene	0.0257		0.00181	0.00632	1	05/31/2021 12:43	WG1680167
Fluoranthene	0.239		0.00239	0.00632	1	05/31/2021 12:43	WG1680167
Fluorene	0.00227	<u>J</u>	0.00216	0.00632	1	05/31/2021 12:43	WG1680167
Indeno(1,2,3-cd)pyrene	0.217		0.00191	0.00632	1	05/31/2021 12:43	WG1680167
Naphthalene	0.0261		0.00429	0.0211	1	05/31/2021 12:43	WG1680167
Phenanthrene	0.0719		0.00243	0.00632	1	05/31/2021 12:43	WG1680167
Pyrene	0.320		0.00211	0.00632	1	05/31/2021 12:43	WG1680167
1-Methylnaphthalene	0.00583	J	0.00473	0.0211	1	05/31/2021 12:43	WG1680167
2-Methylnaphthalene	0.00891	<u>J</u>	0.00449	0.0211	1	05/31/2021 12:43	WG1680167
2-Chloronaphthalene	U		0.00491	0.0211	1	05/31/2021 12:43	WG1680167
(S) Nitrobenzene-d5	70.6			14.0-149		05/31/2021 12:43	WG1680167
(S) 2-Fluorobiphenyl	70.1			34.0-125		05/31/2021 12:43	WG1680167

23.0-120

WG1680167

05/31/2021 12:43

SAMPLE RESULTS - 14

1359488

Total Solids by Method 2540 G-2011

Collected date/time: 05/26/21 15:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.7		1	06/05/202110:49	WG1682852

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0208		0.00243	0.00633	1	06/04/2021 22:55	WG1682705
Acenaphthene	U		0.00221	0.00633	1	06/04/2021 22:55	WG1682705
Acenaphthylene	0.0313		0.00228	0.00633	1	06/04/2021 22:55	WG1682705
Benzo(a)anthracene	0.260		0.00183	0.00633	1	06/04/2021 22:55	WG1682705
Benzo(a)pyrene	0.442		0.00189	0.00633	1	06/04/2021 22:55	WG1682705
Benzo(b)fluoranthene	0.449		0.00162	0.00633	1	06/04/2021 22:55	WG1682705
Benzo(g,h,i)perylene	0.471		0.00187	0.00633	1	06/04/2021 22:55	WG1682705
Benzo(k)fluoranthene	0.155		0.00227	0.00633	1	06/04/2021 22:55	WG1682705
Chrysene	0.283		0.00245	0.00633	1	06/04/2021 22:55	WG1682705
Dibenz(a,h)anthracene	0.0448		0.00182	0.00633	1	06/04/2021 22:55	WG1682705
Fluoranthene	0.491		0.00240	0.00633	1	06/04/2021 22:55	WG1682705
Fluorene	0.00379	<u>J</u>	0.00216	0.00633	1	06/04/2021 22:55	WG1682705
Indeno(1,2,3-cd)pyrene	0.397		0.00191	0.00633	1	06/04/2021 22:55	WG1682705
Naphthalene	0.0452		0.00431	0.0211	1	06/04/2021 22:55	WG1682705
Phenanthrene	0.109		0.00244	0.00633	1	06/04/2021 22:55	WG1682705
Pyrene	0.646		0.00211	0.00633	1	06/04/2021 22:55	WG1682705
1-Methylnaphthalene	0.00742	<u>J</u>	0.00474	0.0211	1	06/04/2021 22:55	WG1682705
2-Methylnaphthalene	0.0121	<u>J</u>	0.00451	0.0211	1	06/04/2021 22:55	WG1682705
2-Chloronaphthalene	U		0.00492	0.0211	1	06/04/2021 22:55	WG1682705
(S) Nitrobenzene-d5	87.8			14.0-149		06/04/2021 22:55	WG1682705
(S) 2-Fluorobiphenyl	76.3			34.0-125		06/04/2021 22:55	WG1682705
(S) p-Terphenyl-d14	90.6			23.0-120		06/04/2021 22:55	WG1682705

PAGE:

20 of 42

SAMPLE RESULTS - 15

Collected date/time: 05/26/21 15:41

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.2		1	06/02/2021 12:12	WG1681402

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00420	<u>J</u>	0.00252	0.00658	1	05/31/2021 12:03	WG1680167
Acenaphthene	U		0.00229	0.00658	1	05/31/2021 12:03	WG1680167
Acenaphthylene	U		0.00237	0.00658	1	05/31/2021 12:03	WG1680167
Benzo(a)anthracene	0.00709		0.00190	0.00658	1	05/31/2021 12:03	WG1680167
Benzo(a)pyrene	0.00598	<u>J</u>	0.00196	0.00658	1	05/31/2021 12:03	WG1680167
Benzo(b)fluoranthene	0.00689		0.00168	0.00658	1	05/31/2021 12:03	WG1680167
Benzo(g,h,i)perylene	0.00380	<u>J</u>	0.00194	0.00658	1	05/31/2021 12:03	WG1680167
Benzo(k)fluoranthene	0.00259	<u>J</u>	0.00236	0.00658	1	05/31/2021 12:03	WG1680167
Chrysene	0.00679		0.00254	0.00658	1	05/31/2021 12:03	WG1680167
Dibenz(a,h)anthracene	U		0.00189	0.00658	1	05/31/2021 12:03	WG1680167
Fluoranthene	0.0123		0.00249	0.00658	1	05/31/2021 12:03	WG1680167
Fluorene	U		0.00225	0.00658	1	05/31/2021 12:03	WG1680167
Indeno(1,2,3-cd)pyrene	0.00405	<u>J</u>	0.00198	0.00658	1	05/31/2021 12:03	WG1680167
Naphthalene	0.0227		0.00447	0.0219	1	05/31/2021 12:03	WG1680167
Phenanthrene	0.0120		0.00253	0.00658	1	05/31/2021 12:03	WG1680167
Pyrene	0.0123		0.00219	0.00658	1	05/31/2021 12:03	WG1680167
1-Methylnaphthalene	U		0.00492	0.0219	1	05/31/2021 12:03	WG1680167
2-Methylnaphthalene	0.00607	J	0.00468	0.0219	1	05/31/2021 12:03	WG1680167
2-Chloronaphthalene	U		0.00511	0.0219	1	05/31/2021 12:03	WG1680167
(S) Nitrobenzene-d5	71.3			14.0-149		05/31/2021 12:03	WG1680167
(S) 2-Fluorobiphenyl	72.2			34.0-125		05/31/2021 12:03	WG1680167
(S) p-Terphenyl-d14	86.9			23.0-120		05/31/2021 12:03	WG1680167

(S) p-Terphenyl-d14

SAMPLE RESULTS - 16

Collected date/time: 05/26/21 16:24

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.6		1	06/02/2021 12:12	WG1681402

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

86.8

Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
mg/kg		mg/kg	mg/kg		date / time	
0.00376	<u>J</u>	0.00254	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00231	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00238	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00191	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00198	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00169	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00195	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00237	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00256	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00190	0.00662	1	05/31/2021 12:23	WG1680167
0.00423	<u>J</u>	0.00250	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00226	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00200	0.00662	1	05/31/2021 12:23	WG1680167
0.0295		0.00450	0.0221	1	05/31/2021 12:23	WG1680167
0.0101		0.00255	0.00662	1	05/31/2021 12:23	WG1680167
0.00365	<u>J</u>	0.00221	0.00662	1	05/31/2021 12:23	WG1680167
U		0.00495	0.0221	1	05/31/2021 12:23	WG1680167
0.00857	<u>J</u>	0.00471	0.0221	1	05/31/2021 12:23	WG1680167
U		0.00514	0.0221	1	05/31/2021 12:23	WG1680167
70.9			14.0-149		05/31/2021 12:23	WG1680167
69.8			34.0-125		05/31/2021 12:23	WG1680167
	mg/kg 0.00376 U U U U U U U U U U U U U U 0.00423 U U 0.00295 0.0101 0.00365 U 0.00857 U 70.9	mg/kg 0.00376 U U U U U U U U U U U U U	mg/kg mg/kg 0.00376	mg/kg mg/kg mg/kg 0.00376 J 0.00254 0.00662 U 0.00231 0.00662 U 0.00238 0.00662 U 0.00191 0.00662 U 0.00198 0.00662 U 0.00169 0.00662 U 0.00195 0.00662 U 0.00237 0.00662 U 0.00237 0.00662 U 0.00190 0.00662 U 0.00190 0.00662 U 0.00256 0.00662 U 0.00250 0.00662 U 0.00226 0.00662 U 0.00220 0.00662 U 0.00295 0.00450 0.0221 0.0101 0.00255 0.00662 U 0.00450 0.0221 0.00857 J 0.00471 0.0221 0.00514 0.0221 70.9 14.0-149	mg/kg mg/kg mg/kg 0.00376 J 0.00254 0.00662 1 U 0.00231 0.00662 1 U 0.00238 0.00662 1 U 0.00191 0.00662 1 U 0.00198 0.00662 1 U 0.00169 0.00662 1 U 0.00195 0.00662 1 U 0.00237 0.00662 1 U 0.00256 0.00662 1 U 0.00190 0.00662 1 U 0.00256 0.00662 1 U 0.00250 0.00662 1 U 0.00226 0.00662 1 U 0.00226 0.00662 1 0.0295 0.00450 0.0221 1 0.0101 0.00255 0.00662 1 0.00365 J 0.0021 0.00662 1 0.00857 J 0.00471	mg/kg mg/kg mg/kg date / time 0.00376 J 0.00254 0.00662 1 05/31/202112:23 U 0.00231 0.00662 1 05/31/202112:23 U 0.00238 0.00662 1 05/31/202112:23 U 0.00191 0.00662 1 05/31/202112:23 U 0.00198 0.00662 1 05/31/202112:23 U 0.00199 0.00662 1 05/31/202112:23 U 0.00195 0.00662 1 05/31/202112:23 U 0.00237 0.00662 1 05/31/202112:23 U 0.00256 0.00662 1 05/31/202112:23 U 0.00190 0.00662 1 05/31/202112:23 U 0.00256 0.00662 1 05/31/202112:23 U 0.00250 0.00662 1 05/31/202112:23 U 0.00250 0.00662 1 05/31/202112:23 U 0.00250 0.00662

23.0-120

05/31/2021 12:23

WG1680167

Collected date/time: 05/26/21 00:00

SAMPLE RESULTS - 17

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	Quantier	мы ug/l	ug/l	Dilution	date / time	Batti
Acetone	2.69	<u>J</u>	0.548	10.0	1	06/04/2021 12:16	WG1682788
Acrylonitrile	U	<u>-</u>	0.0760	0.500	1	06/04/2021 12:16	WG1682788
Acrolein	U		0.758	50.0	1	06/04/2021 12:16	WG1682788
Benzene	U		0.0160	0.0400	1	06/04/2021 12:16	WG1682788
Bromobenzene	U		0.0420	0.500	1	06/04/2021 12:16	WG1682788
Bromodichloromethane	U		0.0315	0.100	1	06/04/2021 12:16	WG1682788
Bromoform	U		0.239	1.00	1	06/04/2021 12:16	WG1682788
Bromomethane	U		0.148	0.500	1	06/04/2021 12:16	WG1682788
n-Butylbenzene	U	<u>C3</u>	0.153	0.500	1	06/04/2021 12:16	WG1682788
sec-Butylbenzene	U		0.101	0.500	1	06/04/2021 12:16	WG1682788
tert-Butylbenzene	U		0.0620	0.200	1	06/04/2021 12:16	WG1682788
Carbon disulfide	U		0.162	0.500	1	06/04/2021 12:16	WG1682788
Carbon tetrachloride	U		0.0432	0.200	1	06/04/2021 12:16	WG1682788
Chlorobenzene	U		0.0229	0.100	1	06/04/2021 12:16	WG1682788
Chlorodibromomethane	U		0.0180	0.100	1	06/04/2021 12:16	WG1682788
Chloroethane	U		0.0432	0.200	1	06/04/2021 12:16	WG1682788
Chloroform	U		0.0166	0.100	1	06/04/2021 12:16	WG1682788
Chloromethane	U		0.0556	0.500	1	06/04/2021 12:16	WG1682788
2-Chlorotoluene	U		0.0368	0.100	1	06/04/2021 12:16	WG1682788
4-Chlorotoluene	U		0.0452	0.200	1	06/04/2021 12:16	WG1682788
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	06/04/2021 12:16	WG1682788
1,2-Dibromoethane	U		0.0210	0.100	1	06/04/2021 12:16	WG1682788
Dibromomethane	U		0.0400	0.200	1	06/04/2021 12:16	WG1682788
1,2-Dichlorobenzene	U		0.0580	0.200	1	06/04/2021 12:16	WG1682788
1,3-Dichlorobenzene	U		0.0680	0.200	1	06/04/2021 12:16	WG1682788
1,4-Dichlorobenzene	U		0.0788	0.200	1	06/04/2021 12:16	WG1682788
Dichlorodifluoromethane	U		0.0327	0.100	1	06/04/2021 12:16	WG1682788
1,1-Dichloroethane	U		0.0230	0.100	1	06/04/2021 12:16	WG1682788
1,2-Dichloroethane	U		0.0190	0.100	1	06/04/2021 12:16	WG1682788
1,1-Dichloroethene	U		0.0200	0.100	1	06/04/2021 12:16	WG1682788
cis-1,2-Dichloroethene	U		0.0200	0.100	1	06/04/2021 12:16	WG1682788
trans-1,2-Dichloroethene	U		0.0270	0.200	1	06/04/2021 12:16	WG1682788
1,2-Dichloropropane	U		0.0572	0.200	1	06/04/2021 12:16	WG1682788
	U		0.0308	0.200	1	06/04/2021 12:16	WG1682788
1,1-Dichloropropene	U		0.0280	0.100	1	06/04/2021 12:16	WG1682788
1,3-Dichloropropane cis-1,3-Dichloropropene	U		0.0700		1		_
	U		0.0271	0.100 0.200		06/04/2021 12:16 06/04/2021 12:16	WG1682788
trans-1,3-Dichloropropene	U				1		WG1682788 WG1682788
2,2-Dichloropropane Di-isopropyl ether	U	C1	0.0317 0.0140	0.100 0.0400	1	06/04/2021 12:16 06/04/2021 12:16	WG1682788
Ethylbenzene	U	<u>C4</u>	0.0140	0.0400	1	06/04/2021 12:16	WG1682788
Hexachloro-1,3-butadiene	U		0.0212	1.00	1	06/04/2021 12:16	
,	U			1.00	1		WG1682788
2-Hexanone			0.400			06/04/2021 12:16	WG1682788
Isopropylbenzene	U		0.0345	0.100	1	06/04/2021 12:16	WG1682788
p-Isopropyltoluene	U		0.0932	0.200	1	06/04/2021 12:16	WG1682788
2-Butanone (MEK)	U		0.500	1.00	1	06/04/2021 12:16	WG1682788
Methylene Chloride	U		0.265	1.00	1	06/04/2021 12:16	WG1682788
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	06/04/2021 12:16	WG1682788
Methyl tert-butyl ether	U		0.0118	0.0400	1	06/04/2021 12:16	WG1682788
Naphthalene	U		0.124	0.500	1	06/04/2021 12:16	WG1682788
n-Propylbenzene	U		0.0472	0.200	1	06/04/2021 12:16	WG1682788
Styrene	U		0.109	0.500	1	06/04/2021 12:16	WG1682788
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	06/04/2021 12:16	WG1682788
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	06/04/2021 12:16	WG1682788
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	06/04/2021 12:16	WG1682788
Tetrachloroethene	U		0.0280	0.100	1	06/04/2021 12:16	WG1682788
Toluene	U		0.0500	0.200	1	06/04/2021 12:16	WG1682788

Ss

Cn

GI

Sc

TRIP BLANK

SAMPLE RESULTS - 17

Collected date/time: 05/26/21 00:00

1359488

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
1,2,3-Trichlorobenzene	U		0.0250	0.500	1	06/04/2021 12:16	WG1682788
1,2,4-Trichlorobenzene	U		0.193	0.500	1	06/04/2021 12:16	WG1682788
1,1,1-Trichloroethane	U		0.0110	0.100	1	06/04/2021 12:16	WG1682788
1,1,2-Trichloroethane	U		0.0353	0.100	1	06/04/2021 12:16	WG1682788
Trichloroethene	U		0.0160	0.0400	1	06/04/2021 12:16	WG1682788
Trichlorofluoromethane	U		0.0200	0.100	1	06/04/2021 12:16	WG1682788
1,2,3-Trichloropropane	U		0.204	0.500	1	06/04/2021 12:16	WG1682788
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	06/04/2021 12:16	WG1682788
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	06/04/2021 12:16	WG1682788
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	06/04/2021 12:16	WG1682788
Vinyl chloride	U		0.0273	0.100	1	06/04/2021 12:16	WG1682788
Xylenes, Total	U		0.191	0.260	1	06/04/2021 12:16	WG1682788
(S) Toluene-d8	95.8			75.0-131		06/04/2021 12:16	WG1682788
(S) 4-Bromofluorobenzene	106			67.0-138		06/04/2021 12:16	WG1682788
(S) 1,2-Dichloroethane-d4	104			70.0-130		06/04/2021 12:16	WG1682788

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1359488-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3662635-1 0	06/02/21 14:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

IC

L1359478-07 Original Sample (OS) • Duplicate (DUP)

	Original Resu	ılt DUP Result	Dilution	DUP RPD	DUP Qualifier	PRPD its	
Analyte	%	%		%			
Total Solids	82.2	82.0	1	0.337			

Laboratory Control Sample (LCS)

(LCS) R3662635-2 06/02/2114:05

(LCS) R3002035-2 00/02	Spike Amount LCS Res	Result LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	0 100	85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1359488-10,11,12,13,15,16

Method Blank (MB)

(MB) R3662626-1 (06/02/21 12:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1359488-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1359488-12 06/02/21 12:12 • (DUP) R3662626-3 06/02/21 12:12

(OS) L1359488-12 06/02/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.7	89.4	1	1.42		10

Laboratory Control Sample (LCS)

(LCS) R3662626-2 06/02	Spike Amount	nt LCS Re	sult LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1359488-14

	10th	\sim d	Blan	I2 (1	Ⅵ▢
- Ιν	чени	COLL	man	K II	VIII

(MB) R3663848-1 (06/05/21 10:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1360497-02 Original Sample (OS) • Duplicate (DUP)

(OS)	I 1360497-02	06/05/21 10:49 • ((DUP	R3663848-3	06/05/2110:49

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyt	e	%	%		%		%
Total S	iolids	85.5	85.2	1	0.357		10

Laboratory Control Sample (LCS)

(LCS) R3663848-2 C	06/05/21 10:49
--------------------	----------------

,	Spike Amount LCS Result	LCS Rec. Rec. Limits
Analyte	% %	% %
Total Solids	50.0 50.0	100 85.0-115

PAGE: 27 of 42

QUALITY CONTROL SUMMARY

L1359488-01,02,03,04,05,07

Method Blank (MB)

Metals (ICPMS) by Method 6020B

(MB) R3662518-1 06/0	02/21 23:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00
Chromium	U		0.297	5.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3662518-2	06/02/21	23:23
------------------	----------	-------

	Cnilco Amount	LCC Docult	LCC Doc	Dog Limits	LCC Qualifier
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	92.9	92.9	80.0-120	
Cadmium	100	96.9	96.9	80.0-120	
Chromium	100	91.5	91.5	80.0-120	
Lead	100	99.8	99.8	80.0-120	

[°]Al

L1358341-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358341-03 06/03/21 00:09 • (MS) R3662518-5 06/02/21 23:38 • (MSD) R3662518-6 06/02/21 23:41

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	128	0.958	108	122	83.5	94.6	5	75.0-125			12.3	20
Cadmium	128	U	121	136	94.7	106	5	75.0-125			11.4	20
Chromium	128	12.8	120	143	83.3	102	5	75.0-125			17.8	20
Lead	128	2.41	125	127	95.4	97.1	5	75.0-125			1.71	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1359488-17

Method Blank (MB)

(MB) R3663688-2 06/04/2	21 09:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		0.548	10.0	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	
tert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
Chloromethane	U		0.0556	0.500	
2-Chlorotoluene	U		0.0368	0.100	
1-Chlorotoluene	U		0.0452	0.200	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0400	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.100	
1,1-Dichloroethane	U		0.0230	0.100	
l,2-Dichloroethane	U		0.0190	0.100	
1,1-Dichloroethene	U		0.0200	0.100	
cis-1,2-Dichloroethene	U		0.0276	0.100	
trans-1,2-Dichloroethene	U		0.0572	0.200	
1,2-Dichloropropane	U		0.0508	0.200	
1,1-Dichloropropene	U		0.0280	0.100	
1,3-Dichloropropane	U		0.0700	0.200	
cis-1,3-Dichloropropene	U		0.0271	0.100	
trans-1,3-Dichloropropene	U		0.0612	0.200	
2,2-Dichloropropane	U		0.0317	0.100	
Di-isopropyl ether	U		0.0140	0.0400	
Ethylbenzene	U		0.0212	0.100	
Hexachloro-1,3-butadiene	U		0.508	1.00	

QUALITY CONTROL SUMMARY

L1359488-17

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260D

(MB) R3663688-2 06/04/	21 09:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
2-Hexanone	U		0.400	1.00	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	0.898	<u>J</u>	0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
,1,2,2-Tetrachloroethane	U		0.0156	0.100	
etrachloroethene	U		0.0280	0.100	
oluene	U		0.0500	0.200	
,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
,2,3-Trichlorobenzene	U		0.0250	0.500	
,2,4-Trichlorobenzene	U		0.193	0.500	
,1,1-Trichloroethane	U		0.0110	0.100	
,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
,2,3-Trichloropropane	U		0.204	0.500	
,2,3-Trimethylbenzene	U		0.0460	0.200	
,2,4-Trimethylbenzene	U		0.0464	0.200	
,3,5-Trimethylbenzene	U		0.0432	0.200	
/inyl chloride	U		0.0273	0.100	
Kylenes, Total	U		0.191	0.260	
Acrolein	U		0.758	50.0	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	
(S) 1,2-Dichloroethane-d4	84.4			70.0-130	

Laboratory Control Sample (LCS)

11 (CC)	P3663688-1	06/04/21	07.E0

(200) ((0000000 : 00/0 :/	2.07.00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Acetone	25.0	20.6	82.4	10.0-160	
Acrylonitrile	25.0	20.0	80.0	45.0-153	

Volatile Organic Compounds (GC/MS) by Method 8260D

L1359488-17

Laboratory Control Sample (LCS)

Laboratory Control	(=)	/			
(LCS) R3663688-1 06/04/2	1 07:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.28	106	70.0-123	
Bromobenzene	5.00	5.22	104	73.0-121	
Bromodichloromethane	5.00	5.27	105	73.0-121	
Bromoform	5.00	5.48	110	64.0-132	
Bromomethane	5.00	4.90	98.0	56.0-147	
n-Butylbenzene	5.00	3.90	78.0	68.0-135	
sec-Butylbenzene	5.00	4.19	83.8	74.0-130	
ert-Butylbenzene	5.00	4.31	86.2	75.0-127	
Carbon disulfide	5.00	4.78	95.6	56.0-133	
Carbon tetrachloride	5.00	5.82	116	66.0-128	
Chlorobenzene	5.00	4.79	95.8	76.0-128	
Chlorodibromomethane	5.00	5.23	105	74.0-127	
hloroethane	5.00	4.60	92.0	61.0-134	
hloroform	5.00	5.75	115	72.0-123	
hloromethane	5.00	4.00	80.0	51.0-138	
-Chlorotoluene	5.00	5.10	102	75.0-124	
-Chlorotoluene	5.00	5.03	101	75.0-124	
	5.00	4.99	99.8	59.0-130	
2-Dibromoethane	5.00	4.89	97.8	74.0-128	
ibromomethane	5.00	4.87	97.4	75.0-122	
2-Dichlorobenzene	5.00	4.19	83.8	76.0-124	
3-Dichlorobenzene	5.00	4.68	93.6	76.0-125	
4-Dichlorobenzene	5.00	4.18	83.6	77.0-121	
ichlorodifluoromethane	5.00	5.41	108	43.0-156	
1-Dichloroethane	5.00	4.83	96.6	70.0-127	
2-Dichloroethane	5.00	5.88	118	65.0-131	
1-Dichloroethene	5.00	4.55	91.0	65.0-131	
is-1,2-Dichloroethene	5.00	5.56	111	73.0-125	
ans-1,2-Dichloroethene	5.00	5.34	107	71.0-125	
2-Dichloropropane	5.00	5.00	100	74.0-125	
1-Dichloropropene	5.00	5.52	110	73.0-125	
3-Dichloropropane	5.00	4.79	95.8	80.0-125	
s-1,3-Dichloropropene	5.00	5.62	112	76.0-127	
ans-1,3-Dichloropropene	5.00	5.02	102	73.0-127	
		5.39	102	59.0-135	
,2-Dichloropropane i-isopropyl ether	5.00 5.00	3.66	73.2	60.0-136	
thylbenzene					
	5.00	4.93	98.6	74.0-126	
Hexachloro-1,3-butadiene	5.00	4.58	91.6	57.0-150	
2-Hexanone	25.0	24.1	96.4	54.0-147	

L1359488-17

Volatile Organic Compounds (GC/MS) by Method 8260D

Laboratory Control Sample (LCS)

(LCS) R3663688-1 06/04/2	21 07:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
p-Isopropyltoluene	5.00	4.26	85.2	72.0-133	
2-Butanone (MEK)	25.0	25.1	100	30.0-160	
Methylene Chloride	5.00	4.03	80.6	68.0-123	
4-Methyl-2-pentanone (MIBK)	25.0	21.1	84.4	56.0-143	
Methyl tert-butyl ether	5.00	4.13	82.6	66.0-132	
Naphthalene	5.00	3.99	79.8	59.0-130	
n-Propylbenzene	5.00	4.68	93.6	74.0-126	
Styrene	5.00	4.98	99.6	72.0-127	
1,1,1,2-Tetrachloroethane	5.00	4.64	92.8	74.0-129	
1,1,2,2-Tetrachloroethane	5.00	4.20	84.0	68.0-128	
Tetrachloroethene	5.00	5.10	102	70.0-136	
Toluene	5.00	4.82	96.4	75.0-121	
1,1,2-Trichlorotrifluoroethane	5.00	4.80	96.0	61.0-139	
1,2,3-Trichlorobenzene	5.00	4.07	81.4	59.0-139	
1,2,4-Trichlorobenzene	5.00	4.65	93.0	62.0-137	
1,1,1-Trichloroethane	5.00	6.01	120	69.0-126	
1,1,2-Trichloroethane	5.00	5.18	104	78.0-123	
Trichloroethene	5.00	6.27	125	76.0-126	
Trichlorofluoromethane	5.00	4.38	87.6	61.0-142	
1,2,3-Trichloropropane	5.00	5.23	105	67.0-129	
1,2,3-Trimethylbenzene	5.00	5.41	108	74.0-124	
1,2,4-Trimethylbenzene	5.00	4.64	92.8	70.0-126	
1,3,5-Trimethylbenzene	5.00	5.20	104	73.0-127	
Vinyl chloride	5.00	4.55	91.0	63.0-134	
Xylenes, Total	15.0	13.7	91.3	72.0-127	
Acrolein	25.0	30.3	121	10.0-160	
(S) Toluene-d8			100	75.0-131	
(S) 4-Bromofluorobenzene			91.8	67.0-138	

Martin S. Burck Assoc.-Hood River, OR

(S) 1,2-Dichloroethane-d4

107

70.0-130

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1359488-01,06

Method Blank (MB)

(MB) R3662607-1 06/02/2	1 22:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	62.5			18.0-148

3 Ss

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3662607-2 06/02/21 23:05						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Diesel Range Organics (DRO)	50.0	38.5	77.0	50.0-150		
(S) o-Terphenyl			80.6	18.0-148		

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359488-01,07,08,09,10,11,12,13,15,16

Method Blank (MB)

(MB) R3661522-2 05/3	1/21 07:45				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4 (
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	L
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	62.1			14.0-149	
(S) 2-Fluorobiphenyl	62.5			34.0-125	
(S) p-Terphenyl-d14	76.4			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3661522-1 05/3	1/21 07:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0725	90.6	50.0-126	
Acenaphthene	0.0800	0.0617	77.1	50.0-120	
Acenaphthylene	0.0800	0.0697	87.1	50.0-120	
Benzo(a)anthracene	0.0800	0.0758	94.8	45.0-120	
Benzo(a)pyrene	0.0800	0.0599	74.9	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0597	74.6	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0547	68.4	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0603	75.4	49.0-125	
Chrysene	0.0800	0.0683	85.4	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0590	73.8	47.0-125	
Fluoranthene	0.0800	0.0693	86.6	49.0-129	

PAGE: 34 of 42

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359488-01,07,08,09,10,11,12,13,15,16

Laboratory Control Sample (LCS)

(LCS) R3661522-1 05/31/21 07:	.2	77	(/21	31	05/3	22-1	R36615	(LCS)	
-------------------------------	----	----	---	-----	----	------	------	--------	-------	--

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.080.0	0.0678	84.8	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0603	75.4	46.0-125	
Naphthalene	0.0800	0.0583	72.9	50.0-120	
Phenanthrene	0.0800	0.0662	82.8	47.0-120	
Pyrene	0.0800	0.0674	84.3	43.0-123	
1-Methylnaphthalene	0.0800	0.0622	77.8	51.0-121	
2-Methylnaphthalene	0.0800	0.0602	75.3	50.0-120	
2-Chloronaphthalene	0.0800	0.0606	75.8	50.0-120	
(S) Nitrobenzene-d5			68.5	14.0-149	
(S) 2-Fluorobiphenyl			63.5	34.0-125	
(S) p-Terphenyl-d14			<i>75.3</i>	23.0-120	

L1359302-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359302-01 05/31/21 10:44 • (MS) R3661522-3 05/31/21 11:03 • (MSD) R3661522-4 05/31/21 11:23

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0949	0.00288	0.0687	0.0673	69.4	67.5	1	10.0-145			2.14	30
Acenaphthene	0.0949	0.00633	0.0667	0.0610	63.6	57.3	1	14.0-127			8.91	27
Acenaphthylene	0.0949	U	0.0673	0.0621	70.9	65.1	1	21.0-124			8.04	25
Benzo(a)anthracene	0.0949	0.00223	0.0738	0.0696	75.5	70.6	1	10.0-139			5.91	30
Benzo(a)pyrene	0.0949	U	0.0662	0.0619	69.8	65.0	1	10.0-141			6.61	31
Benzo(b)fluoranthene	0.0949	0.00270	0.0616	0.0588	62.1	58.8	1	10.0-140			4.62	36
Benzo(g,h,i)perylene	0.0949	0.00252	0.0601	0.0566	60.7	56.8	1	10.0-140			6.01	33
Benzo(k)fluoranthene	0.0949	U	0.0633	0.0587	66.7	61.5	1	10.0-137			7.54	31
Chrysene	0.0949	U	0.0717	0.0663	75.6	69.5	1	10.0-145			7.89	30
Dibenz(a,h)anthracene	0.0949	U	0.0596	0.0563	62.9	59.0	1	10.0-132			5.85	31
Fluoranthene	0.0949	0.00449	0.0671	0.0669	66.1	65.5	1	10.0-153			0.361	33
Fluorene	0.0949	0.0133	0.0806	0.0737	70.9	63.3	1	11.0-130			8.94	29
ndeno(1,2,3-cd)pyrene	0.0949	U	0.0611	0.0577	64.4	60.5	1	10.0-137			5.70	32
Naphthalene	0.0949	0.0587	0.136	0.123	81.0	67.9	1	10.0-135			9.35	27
Phenanthrene	0.0949	0.0157	0.0811	0.0783	68.9	65.6	1	10.0-144			3.49	31
Pyrene	0.0949	0.00738	0.0739	0.0709	70.2	66.6	1	10.0-148			4.18	35
I-Methylnaphthalene	0.0949	0.287	0.460	0.422	182	142	1	10.0-142	<u>J5</u>		8.50	28
2-Methylnaphthalene	0.0949	0.657	0.986	0.912	347	268	1	10.0-137	$\underline{\vee}$	$\underline{\vee}$	7.78	28
2-Chloronaphthalene	0.0949	U	0.0600	0.0548	63.3	57.5	1	29.0-120			9.06	24
(S) Nitrobenzene-d5					0.000	0.000		14.0-149	<u>J2</u>	<u>J2</u>		
(S) 2-Fluorobiphenyl					48.7	52.1		34.0-125				
(S) p-Terphenyl-d14					66.0	62.9		23.0-120				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359488-01,07,08,09,10,11,12,13,15,16

L1359302-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359302-01 05/31/21 10:44 • (MS) R3661522-3 05/31/21 11:03 • (MSD) R3661522-4 05/31/21 11:23

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%

Sample Narrative:

OS: Surrogate failure due to matrix interference

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359488-14

Method Blank (MB)

(MB) R3663461-2 06/0	4/21 16:38				
,	MB Result	MB Qualifier	MB MDL	MB RDL	_ _
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	_
Benzo(a)pyrene	U		0.00179	0.00600	4
Benzo(b)fluoranthene	U		0.00153	0.00600	L
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	1
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	L
1-Methylnaphthalene	U		0.00449	0.0200	5
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	95.0			14.0-149	
(S) 2-Fluorobiphenyl	82.7			34.0-125	
(S) p-Terphenyl-d14	118			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3663461-1 06/04	4/21 16:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.080.0	0.0541	67.6	50.0-126	
Acenaphthene	0.0800	0.0654	81.8	50.0-120	
Acenaphthylene	0.0800	0.0613	76.6	50.0-120	
Benzo(a)anthracene	0.0800	0.0566	70.8	45.0-120	
Benzo(a)pyrene	0.0800	0.0582	72.8	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0642	80.3	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0684	85.5	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0684	85.5	49.0-125	
Chrysene	0.0800	0.0676	84.5	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0684	85.5	47.0-125	
Fluoranthene	0.080.0	0.0662	82.8	49.0-129	

DATE/TIME:

06/08/2112:43

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1359488-14

Laboratory Control Sample (LCS)

11 (5)	R3663461-1	06/04/21 16:21

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0640	80.0	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0759	94.9	46.0-125	
Naphthalene	0.0800	0.0649	81.1	50.0-120	
Phenanthrene	0.0800	0.0572	71.5	47.0-120	
Pyrene	0.0800	0.0738	92.3	43.0-123	
1-Methylnaphthalene	0.0800	0.0728	91.0	51.0-121	
2-Methylnaphthalene	0.0800	0.0676	84.5	50.0-120	
2-Chloronaphthalene	0.0800	0.0590	73.8	50.0-120	
(S) Nitrobenzene-d5			101	14.0-149	
(S) 2-Fluorobiphenyl			89.6	34.0-125	
(S) p-Terphenyl-d14			117	23.0-120	

L1361308-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1361308-01 06/04/21 19:56 • (MS) R3663461-3 06/04/21 20:14 • (MSD) R36	3663461-4 06/04/21 20:32
--	--------------------------

(OS) L1361308-01 06/04												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0788	U	0.0447	0.0382	56.7	48.5	1	10.0-145			15.7	30
Acenaphthene	0.0788	U	0.0557	0.0491	70.7	62.3	1	14.0-127			12.6	27
Acenaphthylene	0.0788	U	0.0528	0.0462	67.0	58.6	1	21.0-124			13.3	25
Benzo(a)anthracene	0.0788	U	0.0465	0.0384	59.0	48.7	1	10.0-139			19.1	30
Benzo(a)pyrene	0.0788	U	0.0524	0.0439	66.5	55.7	1	10.0-141			17.7	31
Benzo(b)fluoranthene	0.0788	U	0.0507	0.0417	64.3	52.9	1	10.0-140			19.5	36
Benzo(g,h,i)perylene	0.0788	U	0.0555	0.0481	70.4	61.0	1	10.0-140			14.3	33
Benzo(k)fluoranthene	0.0788	U	0.0530	0.0451	67.3	57.2	1	10.0-137			16.1	31
Chrysene	0.0788	U	0.0580	0.0498	73.6	63.2	1	10.0-145			15.2	30
Dibenz(a,h)anthracene	0.0788	U	0.0532	0.0427	67.5	54.2	1	10.0-132			21.9	31
Fluoranthene	0.0788	U	0.0581	0.0490	73.7	62.2	1	10.0-153			17.0	33
Fluorene	0.0788	U	0.0543	0.0469	68.9	59.5	1	11.0-130			14.6	29
Indeno(1,2,3-cd)pyrene	0.0788	U	0.0601	0.0517	76.3	65.6	1	10.0-137			15.0	32
Naphthalene	0.0788	U	0.0582	0.0517	73.9	65.6	1	10.0-135			11.8	27
Phenanthrene	0.0788	U	0.0480	0.0411	60.9	52.2	1	10.0-144			15.5	31
Pyrene	0.0788	U	0.0650	0.0558	82.5	70.8	1	10.0-148			15.2	35
1-Methylnaphthalene	0.0788	U	0.0649	0.0571	82.4	72.5	1	10.0-142			12.8	28
2-Methylnaphthalene	0.0788	U	0.0591	0.0520	75.0	66.0	1	10.0-137			12.8	28
2-Chloronaphthalene	0.0788	U	0.0501	0.0440	63.6	55.8	1	29.0-120			13.0	24
(S) Nitrobenzene-d5					87.7	78.7		14.0-149				
(S) 2-Fluorobiphenyl					76.1	66.3		34.0-125				
(S) p-Terphenyl-d14					96.2	81.9		23.0-120				

PAGE:

38 of 42

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

	·
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1359488 06/08/2112:43 Martin S. Burck Assoc.-Hood River, OR **NORTH STAR** 39 of 42

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

npany Name/Address: lartin S. Burck Assocl	Hood Rive	r, OR	Accounts Payable 200 N. Wasco Ct.						An	alvsis /	Contain	er / Pres	ervative			Chain of Custody	Page of _2_
00 N. Wasco Ct. Dood River, OR 97031			Hood Riv	er, OR 970	31											12065 Lebanon Rd Mou	
port to: on White			Email To: msba@msb	aenvironmer	tal.com;jwhite	@msb	ae	3			/Syr					Submitting a sample via constitutes acknowledg Pace Terms and Condition	this chain of custody ment and acceptance of the ons found at:
oject Description: orth Star Casteel		City/State Collected: ^	Vancou	ver, WA	Please		T		sa.		10ml					https://info.pacelabs.co terms.pdf	1000
one: 541-387-4422	Client Project	#	21 - 4	Lab Project		STEE	6020 8ozCir-NoPres	S	8ozClr-NoPr	PAHs 8270ESIM 8ozCir-NoPres	VOCs 8260D 40mlAmb/MeOH10ml/Syr	Codmium					1359488
ollected by (print): Jon Wh. +	Site/Facility ID	"Ster		P.O.#	h star		8ozCl	4ozClr-NoPres		SozCir	IAmb				Acctnum: MSBAHROR Template: T186091		
ollected by (signature):	Rush? (L	ab MUST Be		Quote#			9020	CIr-P	NOSGT	SIM 8	40m	and			G-193	Prelogin: P84	5085
nmediately acked on Ice N Y	Next Da	y 5 Da 10 D	(Rad Only)	Date R	esults Needed	No	Pb		NWTPHDX N	s 8270E	s 8260D	Arsenic	rsenic			PM: 110 - Brian PB: Shipped Via:	n Ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cn	trs O'SA	Cr6 7199	LWN	PAH	VOC	Ars	An			Remarks	Sample # (lab only)
540-1.5	grab	SS	1.5	5/26/2	1 092	1	3		1	V		1		2567 Silver			- 01
541-2-5	grab	SS	2.5'	5/26/		-	1						4	37		1 17	- 03
542-0	arab	SS	0	5 26	1 094		1						/			1.000/40	- 01
543+0	grub	SS	0	5/26	1 10 10 10 10 10		2 V			14	165					1/20/	
544-D	grab	SS	0	5/26/	21 1017		2/		,			-				1	- 05
545-0	grab	SS	0	526	21 1036	_	3	20m	1	<u></u>	September 1					1	-96
546-0	grab	SS	0	5/26	21 1048		24			V		1				1	-05
547-0	grab	SS	0	5/26/	MOR THE PROPERTY.		2			V		-					-09
548-0	gras	SS	0	5/26	11 110°	T	2		19586	1		1					-(0
549-0	grab	SS	U	5/26	21 112	1	21		E	V		Ess	助計		GIV.	ole Receipt Ch	
	Remarks:			- 100 miles		pH Temp					COC Bott	Seal P. Signed les ar	resent/Intact /Accurate: rive intact: ttles used:	:NPYN YN YN			
DW - Drinking Water OT - Other	Samples returnedUPSFedEx				racking#							1)	VOA	Sufficient volume sent: _Y_N If Applicable VOA Zero Headspace: _Y_N Preservation Correct/Checked: _Y_N		
Relinquished by: (Signature)	D	ste:	Tim	e: 5:30	Received by: (Si	gnatur	e)			Trip Bla	nk Rece		HCL / Meo TBR	RAD	Screen	<0.5 mR/hr:	_ N
Relinquished by : (Signature)	0	ate:	Tim	e:	Received by: (Si	gnatu	re)			Temp:	1,720	C	30			on required by Lo	
Relinquished by : (Signature)	C	Pate:	Tim	ne:	Received for lat	by: 19	Signature)			Data:	8/21	Tim	1,00) Holo			Condition: NCF / 6k

Company name/Address:	C. P. Hand		Billing Information:					Analysis / Container / Preservative										Chain of Custody Page 2_of			
Martin S. Burck AssocHood River, OR 200 N. Wasco Ct. Hood River, OR 97031				Accounts Payable 200 N. Wasco Ct. Hood River, OR 97031													Pau	ce Analytical®			
Report to: Jon White			Email To: msba@ms	baenvironn	mental.c	om;jwhite@	msbae					Syr					Submitting a sample constitutes acknowle	lount Juliet, TN 37122 via this chain of custody dgment and acceptance of the			
Project Description: North Star Casteel		City/State Collected:	Vancou	ver, W	A	Please Ci		S		Sa		10ml/					Pace Terms and Cond https://info.pacelabs terms.pdf	itions found at: .com/hubfs/pas-standard-			
Phone: 541-387-4422	Client Proje	ct#		MSBAH		ISTARCAS	TEE	-NoPre		8ozCir-NoPres	NoPres	Меон					SDG #	1359488			
Collected by (print): Jon White (M)	Site/Facility	h Star		P.O.#		P.O.# Nark Star		Star		6020 8ozCir-NoPres	lopres		ozClr-N	lAmb/				Acctnum: MSI			
Collected by (print): Jon Wh. to Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only)			Day			sults Needed		Cr6 7199 4ozClr-NoPres	NWTPHDX NOSGT	PAHS 8270ESIM 8ozClr-NoPres	VOCs 8260D 40mlAmb/MeOH10ml/Syr					Template:T186091 Prelogin: P845085 PM: 110 - Brian Ford				
mmediately Packed on Ice N Y	Two l	Day10 D	Day (Rad Only)				No. of Cntrs	As,Cd,Cr,Pb	7199	ТРНБУ	15 827(.s 826	Hold				PB: Shipped Via:				
Sample ID	Comp/Gra	b Matrix *	Depth	Dat	te	Time	I I	As,C	Cr6	3	PAH	00	王			1	Remarks	Sample # (lab only)			
550-0	grab	SS	0	5/26	21	1137	2	Contract			V				4-11			-11			
550-0 dop 551-2.5	grab	55	0	5/26	121	1137					1		is no le	1.45				-12			
551-2.5	grat	55	2.5	5/26	121	1503	2				1							-13			
NS51-3.0 S51-3	grab	1	3'	5/21	6/21	1515	2			1946			V				20	11			
\$ 552-3	grat		3'	5 21	1/21	1541	2				1	100						NS.			
553-2	grab	55	2'		6/21	1624	2	-			V	- 2						-16			
Trip Blank	3						1					/						, in			
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1 2/1-								in in		10									
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:				7		*				pH Flow		_ Temp _ _ Other		COC S Bottl	igned/ es arr	le Receipt C esent/Intact Accurate: ive intact: tles used:	Checklist : NP Y N -Y N -Y N -Y N			
DW - Drinking Water DT - Other	Samples return	ed via: Ex Courier			Trackin	g#						4:	Ê		Suffi VOA Z	cient ero He	volume sent: If Applical adspace:	YN ole YN			
Relinquished by : (Signature)									Trip Blar	nk Recei	TE				n Correct/Ch <0.5 mR/hr:	necked: _Y_N					
Relinquished by : (Signature) Date: Time: Received by: (Signat					-				o. 17	200	3 5	Received:		ervation	required by Lo	ogin: Date/Time					
Relinquished by : (Signature)		Date:	Time	2:	Receive	d for lab by:	(Signat	ture)			Date:	28/2	Time:	00	Hold:			Condition: NCF / OK			

DRAFT

15) Sample Date 6/7/21 (#L1363905)

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group:

L1363905

Samples Received:

06/09/2021

Project Number:

NORTH STAR

Description:

North Star Casteel

Site:

NORTH STAR

Report To:

Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

	TABLE OF CONTE	NIS
Cp: Cover Page		
Tc: Table of Contents		

³Ss

Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
S47-1.5 L1363905-01	7
S47-1.5 DUP L1363905-02	8
S51-4 L1363905-03	9
S54-0 L1363905-04	10
S55-0 L1363905-05	11
S56-1.5 L1363905-06	12
S57-1.5 L1363905-07	13
S58-0 L1363905-08	14
S59-0 L1363905-09	15
S61-0 L1363905-11	16
S62-0 L1363905-12	17
S63-0 L1363905-13	18
S64-0 L1363905-14	19
S40-2.5 L1363905-15	20
EB-6 L1363905-16	21
Qc: Quality Control Summary	22
Total Solids by Method 2540 G-2011	22
Metals (ICPMS) by Method 6020B	26
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	30
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	32
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

SAMPLE SUMMARY

S47-1.5 L1363905-01 Solid			Collected by Jon White	Collected date/time 06/07/21 11:46	Received da 06/09/2110:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685987	1	06/10/21 23:24	06/10/21 23:30	CMK	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 10:55	TMM	Mt. Juliet, TN
047.45 DUD 14000005 00 0 151			Collected by Jon White	Collected date/time 06/07/21 11:46	Received da 06/09/2110:	
S47-1.5 DUP L1363905-02 Solid			Joh Willte	00/07/2111.40	00/03/2110.	13
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685987	1	06/10/21 23:24	06/10/21 23:30	CMK	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 11:15	TMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S51-4 L1363905-03 Solid			Jon White	06/07/2110:58	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685987	1	06/10/21 23:24	06/10/21 23:30	CMK	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 11:35	TMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S54-0 L1363905-04 Solid			Jon White	06/07/21 09:56	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685987	1	06/10/21 23:24	06/10/21 23:30	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1687347	5	06/15/21 17:55	06/16/21 16:01	LAT	Mt. Juliet, TN
S55-0 L1363905-05 Solid			Collected by Jon White	Collected date/time 06/07/2110:03	Received date/time 06/09/21 10:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1693077	1	06/23/21 10:08	06/23/21 10:14	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1693489	5	06/23/2117:34	06/25/21 15:08	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S56-1.5 L1363905-06 Solid			Jon White	06/07/21 10:42	06/09/21 10:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Mothad 2540 C 2011	WG1685988	1	date/time 06/12/21 08:24	date/time 06/12/21 08:29	ND/M	M+ Julia+ TN
Total Solids by Method 2540 G-2011 Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1685988 WG1686336	1 1	06/11/21 08:24	06/12/21 08:29	KDW TMM	Mt. Juliet, TN Mt. Juliet, TN
S57-1.5 L1363905-07 Solid			Collected by Jon White	Collected date/time 06/07/2110:50	Received da 06/09/21 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 12:14	TMM	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

			Callacted by	Collected date/time	Docaived do	to/time
S58-0 L1363905-08 Solid			Collected by Jon White	06/07/21 11:09	Received da 06/09/21 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 12:34	TMM	Mt. Juliet, TN
			Collected by	Collected date/time		
S59-0 L1363905-09 Solid			Jon White	06/07/21 11:21	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1686336	1	06/11/21 03:16	06/11/21 12:54	TMM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
S61-0 L1363905-11 Solid			Jon White	06/07/2112:58	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1687347	5	06/15/21 17:55	06/16/21 16:05	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S62-0 L1363905-12 Solid			Jon White	06/07/2113:04	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1693611	1	06/23/21 15:50	06/23/21 15:59	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1693489	5	06/23/21 17:34	06/25/21 15:12	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
S63-0 L1363905-13 Solid			Jon White	06/07/21 13:44	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1687347	5	06/15/21 17:55	06/16/21 16:23	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S64-0 L1363905-14 Solid			Jon White	06/07/2113:58	06/09/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1687347	5	06/15/21 17:55	06/16/21 16:26	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S40-2.5 L1363905-15 Solid			Jon White	06/07/21 14:18	06/09/21 10:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1685988	1	06/12/21 08:24	06/12/21 08:29	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1687173	1	06/11/21 19:25	06/12/21 15:21	JN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1687173	5	06/11/21 19:25	06/13/21 12:51	JN	Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

SAMPLE SUMMARY

Dilution

1

1

Batch

WG1698198

WG1700969

WG1685907

WG1686666

EB-6 L1363905-16 GW

Metals (ICPMS) by Method 6020B

Metals (ICPMS) by Method 6020B

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Method

Collected by Jon White

Preparation

06/30/21 18:36

07/07/21 04:21

06/10/21 08:48

06/11/21 20:57

date/time

Analysis

date/time

06/30/21 22:29

07/07/21 17:14

06/11/21 18:25

06/12/21 02:41

Collected date/time Received date/time

06/07/21 09:20 06/09/21 10:15

Analyst

LD

LD

WCR

LEA

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 11:46

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	06/10/2021 23:30	WG1685987

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00242	<u>J</u>	0.00242	0.00631	1	06/11/2021 10:55	WG1686336
Acenaphthene	U		0.00220	0.00631	1	06/11/2021 10:55	WG1686336
Acenaphthylene	0.00464	<u>J</u>	0.00227	0.00631	1	06/11/2021 10:55	WG1686336
Benzo(a)anthracene	0.0165		0.00182	0.00631	1	06/11/2021 10:55	WG1686336
Benzo(a)pyrene	0.0197		0.00188	0.00631	1	06/11/2021 10:55	WG1686336
Benzo(b)fluoranthene	0.0294		0.00161	0.00631	1	06/11/2021 10:55	WG1686336
Benzo(g,h,i)perylene	0.0230		0.00186	0.00631	1	06/11/2021 10:55	WG1686336
Benzo(k)fluoranthene	0.0102		0.00226	0.00631	1	06/11/2021 10:55	WG1686336
Chrysene	0.0200		0.00244	0.00631	1	06/11/2021 10:55	WG1686336
Dibenz(a,h)anthracene	0.00304	<u>J</u>	0.00181	0.00631	1	06/11/2021 10:55	WG1686336
Fluoranthene	0.0250		0.00239	0.00631	1	06/11/2021 10:55	WG1686336
Fluorene	U		0.00216	0.00631	1	06/11/2021 10:55	WG1686336
Indeno(1,2,3-cd)pyrene	0.0215		0.00190	0.00631	1	06/11/2021 10:55	WG1686336
Naphthalene	0.0120	<u>J</u>	0.00429	0.0210	1	06/11/2021 10:55	WG1686336
Phenanthrene	0.0139		0.00243	0.00631	1	06/11/2021 10:55	WG1686336
Pyrene	0.0283		0.00210	0.00631	1	06/11/2021 10:55	WG1686336
1-Methylnaphthalene	0.0102	<u>J</u>	0.00472	0.0210	1	06/11/2021 10:55	WG1686336
2-Methylnaphthalene	0.0141	<u>J</u>	0.00449	0.0210	1	06/11/2021 10:55	WG1686336
2-Chloronaphthalene	U		0.00490	0.0210	1	06/11/2021 10:55	WG1686336
(S) Nitrobenzene-d5	69.1			14.0-149		06/11/2021 10:55	WG1686336
(S) 2-Fluorobiphenyl	65.7			34.0-125		06/11/2021 10:55	WG1686336
(S) p-Terphenyl-d14	<i>7</i> 5.9			23.0-120		06/11/2021 10:55	WG1686336

S47-1.5 DUP

(S) p-Terphenyl-d14

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 11:46

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	06/10/2021 23:30	WG1685987

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

69.4

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00242	0.00631	1	06/11/2021 11:15	WG1686336
Acenaphthene	U		0.00220	0.00631	1	06/11/2021 11:15	WG1686336
Acenaphthylene	0.00365	<u>J</u>	0.00227	0.00631	1	06/11/2021 11:15	WG1686336
Benzo(a)anthracene	0.0107		0.00182	0.00631	1	06/11/2021 11:15	WG1686336
Benzo(a)pyrene	0.0134		0.00188	0.00631	1	06/11/2021 11:15	WG1686336
Benzo(b)fluoranthene	0.0185		0.00161	0.00631	1	06/11/2021 11:15	WG1686336
Benzo(g,h,i)perylene	0.0148		0.00186	0.00631	1	06/11/2021 11:15	WG1686336
Benzo(k)fluoranthene	0.00636		0.00226	0.00631	1	06/11/2021 11:15	WG1686336
Chrysene	0.0159		0.00244	0.00631	1	06/11/2021 11:15	WG1686336
Dibenz(a,h)anthracene	0.00196	<u>J</u>	0.00181	0.00631	1	06/11/2021 11:15	WG1686336
Fluoranthene	0.0185		0.00239	0.00631	1	06/11/2021 11:15	WG1686336
Fluorene	U		0.00216	0.00631	1	06/11/2021 11:15	WG1686336
Indeno(1,2,3-cd)pyrene	0.0138		0.00190	0.00631	1	06/11/2021 11:15	WG1686336
Naphthalene	0.00775	<u>J</u>	0.00429	0.0210	1	06/11/2021 11:15	WG1686336
Phenanthrene	0.0117		0.00243	0.00631	1	06/11/2021 11:15	WG1686336
Pyrene	0.0207		0.00210	0.00631	1	06/11/2021 11:15	WG1686336
1-Methylnaphthalene	U		0.00472	0.0210	1	06/11/2021 11:15	WG1686336
2-Methylnaphthalene	0.00550	<u>J</u>	0.00449	0.0210	1	06/11/2021 11:15	WG1686336
2-Chloronaphthalene	U		0.00490	0.0210	1	06/11/2021 11:15	WG1686336
(S) Nitrobenzene-d5	61.7			14.0-149		06/11/2021 11:15	WG1686336
(S) 2-Fluorobiphenyl	60.0			34.0-125		06/11/2021 11:15	WG1686336

23.0-120

06/11/2021 11:15

WG1686336

S51-4

(S) p-Terphenyl-d14

SAMPLE RESULTS - 03

Collected date/time: 06/07/21 10:58

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	06/10/2021 23:30	WG1685987

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

72.1

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00689		0.00244	0.00637	1	06/11/2021 11:35	WG1686336
Acenaphthene	U		0.00222	0.00637	1	06/11/2021 11:35	WG1686336
Acenaphthylene	0.0108		0.00229	0.00637	1	06/11/2021 11:35	WG1686336
Benzo(a)anthracene	0.0561		0.00184	0.00637	1	06/11/2021 11:35	WG1686336
Benzo(a)pyrene	0.0884		0.00190	0.00637	1	06/11/2021 11:35	WG1686336
Benzo(b)fluoranthene	0.0832		0.00162	0.00637	1	06/11/2021 11:35	WG1686336
Benzo(g,h,i)perylene	0.0952		0.00188	0.00637	1	06/11/2021 11:35	WG1686336
Benzo(k)fluoranthene	0.0264		0.00228	0.00637	1	06/11/2021 11:35	WG1686336
Chrysene	0.0699		0.00246	0.00637	1	06/11/2021 11:35	WG1686336
Dibenz(a,h)anthracene	0.00875		0.00183	0.00637	1	06/11/2021 11:35	WG1686336
Fluoranthene	0.0864		0.00241	0.00637	1	06/11/2021 11:35	WG1686336
Fluorene	U		0.00218	0.00637	1	06/11/2021 11:35	WG1686336
Indeno(1,2,3-cd)pyrene	0.0839		0.00192	0.00637	1	06/11/2021 11:35	WG1686336
Naphthalene	0.0260		0.00433	0.0212	1	06/11/2021 11:35	WG1686336
Phenanthrene	0.0380		0.00245	0.00637	1	06/11/2021 11:35	WG1686336
Pyrene	0.115		0.00212	0.00637	1	06/11/2021 11:35	WG1686336
1-Methylnaphthalene	0.00656	<u>J</u>	0.00477	0.0212	1	06/11/2021 11:35	WG1686336
2-Methylnaphthalene	0.0102	<u>J</u>	0.00453	0.0212	1	06/11/2021 11:35	WG1686336
2-Chloronaphthalene	U		0.00495	0.0212	1	06/11/2021 11:35	WG1686336
(S) Nitrobenzene-d5	63.2			14.0-149		06/11/2021 11:35	WG1686336
(S) 2-Fluorobiphenyl	62.8			34.0-125		06/11/2021 11:35	WG1686336

23.0-120

06/11/2021 11:35

WG1686336

Analyte

Arsenic

Lead

Cadmium

SAMPLE RESULTS - 04

RDL (dry)

mg/kg

1.04

1.04

2.09

Dilution

5

5

5

Analysis

date / time

06/16/2021 16:01

06/16/2021 16:01

06/16/2021 16:01

Batch

WG1687347

WG1687347

WG1687347

Collected date/time: 06/07/21 09:56

Result (dry)

mg/kg

23.2

1.21

253

Qualifier

MDL (dry)

mg/kg

0.104

0.0892

0.103

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	95.9		1	06/10/2021 23:30	WG1685987		

Martin S. Burck Assoc.-Hood River, OR

S55-0

SAMPLE RESULTS - 05

Collected date/time: 06/07/21 10:03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	96.7		1	06/23/2021 10:14	WG1693077		

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	12.5		0.103	1.03	5	06/25/2021 15:08	WG1693489
Cadmium	1.20		0.0884	1.03	5	06/25/2021 15:08	WG1693489
Lead	261		0.102	2.07	5	06/25/2021 15:08	WG1693489

Ss

S56-1.5

(S) p-Terphenyl-d14

SAMPLE RESULTS - 06

Collected date/time: 06/07/21 10:42

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.5		1	06/12/2021 08:29	WG1685988

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

72.4

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0254		0.00243	0.00635	1	06/11/2021 11:55	WG1686336
Acenaphthene	0.00369	<u>J</u>	0.00221	0.00635	1	06/11/2021 11:55	WG1686336
Acenaphthylene	0.0136		0.00228	0.00635	1	06/11/2021 11:55	WG1686336
Benzo(a)anthracene	0.0923		0.00183	0.00635	1	06/11/2021 11:55	WG1686336
Benzo(a)pyrene	0.0952		0.00189	0.00635	1	06/11/2021 11:55	WG1686336
Benzo(b)fluoranthene	0.0989		0.00162	0.00635	1	06/11/2021 11:55	WG1686336
Benzo(g,h,i)perylene	0.0596		0.00187	0.00635	1	06/11/2021 11:55	WG1686336
Benzo(k)fluoranthene	0.0365		0.00227	0.00635	1	06/11/2021 11:55	WG1686336
Chrysene	0.104		0.00245	0.00635	1	06/11/2021 11:55	WG1686336
Dibenz(a,h)anthracene	0.0107		0.00182	0.00635	1	06/11/2021 11:55	WG1686336
Fluoranthene	0.139		0.00240	0.00635	1	06/11/2021 11:55	WG1686336
Fluorene	0.00820		0.00217	0.00635	1	06/11/2021 11:55	WG1686336
Indeno(1,2,3-cd)pyrene	0.0652		0.00191	0.00635	1	06/11/2021 11:55	WG1686336
Naphthalene	0.0168	<u>J</u>	0.00432	0.0212	1	06/11/2021 11:55	WG1686336
Phenanthrene	0.0943		0.00244	0.00635	1	06/11/2021 11:55	WG1686336
Pyrene	0.144		0.00212	0.00635	1	06/11/2021 11:55	WG1686336
1-Methylnaphthalene	0.00615	<u>J</u>	0.00475	0.0212	1	06/11/2021 11:55	WG1686336
2-Methylnaphthalene	0.00909	<u>J</u>	0.00452	0.0212	1	06/11/2021 11:55	WG1686336
2-Chloronaphthalene	U		0.00493	0.0212	1	06/11/2021 11:55	WG1686336
(S) Nitrobenzene-d5	63.7			14.0-149		06/11/2021 11:55	WG1686336
(S) 2-Fluorobiphenyl	63.3			34.0-125		06/11/2021 11:55	WG1686336

23.0-120

06/11/2021 11:55

WG1686336

S57-1.5

(S) p-Terphenyl-d14

SAMPLE RESULTS - 07

Collected date/time: 06/07/21 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	06/12/2021 08:29	WG1685988

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

67.4

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00526	J	0.00244	0.00637	1	06/11/2021 12:14	WG1686336
Acenaphthene	0.00301	<u>J</u>	0.00222	0.00637	1	06/11/2021 12:14	WG1686336
Acenaphthylene	0.00356	<u>J</u>	0.00229	0.00637	1	06/11/2021 12:14	WG1686336
Benzo(a)anthracene	0.0233		0.00184	0.00637	1	06/11/2021 12:14	WG1686336
Benzo(a)pyrene	0.0260		0.00190	0.00637	1	06/11/2021 12:14	WG1686336
Benzo(b)fluoranthene	0.0350		0.00163	0.00637	1	06/11/2021 12:14	WG1686336
Benzo(g,h,i)perylene	0.0248		0.00188	0.00637	1	06/11/2021 12:14	WG1686336
Benzo(k)fluoranthene	0.0119		0.00228	0.00637	1	06/11/2021 12:14	WG1686336
Chrysene	0.0307		0.00246	0.00637	1	06/11/2021 12:14	WG1686336
Dibenz(a,h)anthracene	0.00392	<u>J</u>	0.00183	0.00637	1	06/11/2021 12:14	WG1686336
Fluoranthene	0.0409		0.00241	0.00637	1	06/11/2021 12:14	WG1686336
Fluorene	0.00296	<u>J</u>	0.00218	0.00637	1	06/11/2021 12:14	WG1686336
Indeno(1,2,3-cd)pyrene	0.0243		0.00192	0.00637	1	06/11/2021 12:14	WG1686336
Naphthalene	0.0133	<u>J</u>	0.00433	0.0212	1	06/11/2021 12:14	WG1686336
Phenanthrene	0.0326		0.00245	0.00637	1	06/11/2021 12:14	WG1686336
Pyrene	0.0403		0.00212	0.00637	1	06/11/2021 12:14	WG1686336
1-Methylnaphthalene	0.00600	<u>J</u>	0.00477	0.0212	1	06/11/2021 12:14	WG1686336
2-Methylnaphthalene	0.0123	<u>J</u>	0.00454	0.0212	1	06/11/2021 12:14	WG1686336
2-Chloronaphthalene	U		0.00495	0.0212	1	06/11/2021 12:14	WG1686336
(S) Nitrobenzene-d5	61.0			14.0-149		06/11/2021 12:14	WG1686336
(S) 2-Fluorobiphenyl	60.0			34.0-125		06/11/2021 12:14	WG1686336

23.0-120

06/11/2021 12:14

WG1686336

PAGE:

13 of 39

S58-0

SAMPLE RESULTS - 08

Collected date/time: 06/07/21 11:09

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.2		1	06/12/2021 08:29	WG1685988

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00234	0.00611	1	06/11/2021 12:34	WG1686336
Acenaphthene	U		0.00213	0.00611	1	06/11/2021 12:34	WG1686336
Acenaphthylene	0.00248	<u>J</u>	0.00220	0.00611	1	06/11/2021 12:34	WG1686336
Benzo(a)anthracene	0.0128		0.00176	0.00611	1	06/11/2021 12:34	WG1686336
Benzo(a)pyrene	0.0178		0.00182	0.00611	1	06/11/2021 12:34	WG1686336
Benzo(b)fluoranthene	0.0180		0.00156	0.00611	1	06/11/2021 12:34	WG1686336
Benzo(g,h,i)perylene	0.0163		0.00180	0.00611	1	06/11/2021 12:34	WG1686336
Benzo(k)fluoranthene	0.00648		0.00219	0.00611	1	06/11/2021 12:34	WG1686336
Chrysene	0.0131		0.00236	0.00611	1	06/11/2021 12:34	WG1686336
Dibenz(a,h)anthracene	U		0.00175	0.00611	1	06/11/2021 12:34	WG1686336
Fluoranthene	0.0197		0.00231	0.00611	1	06/11/2021 12:34	WG1686336
Fluorene	U		0.00209	0.00611	1	06/11/2021 12:34	WG1686336
Indeno(1,2,3-cd)pyrene	0.0154		0.00184	0.00611	1	06/11/2021 12:34	WG1686336
Naphthalene	U		0.00416	0.0204	1	06/11/2021 12:34	WG1686336
Phenanthrene	0.00754		0.00235	0.00611	1	06/11/2021 12:34	WG1686336
Pyrene	0.0254		0.00204	0.00611	1	06/11/2021 12:34	WG1686336
1-Methylnaphthalene	U		0.00457	0.0204	1	06/11/2021 12:34	WG1686336
2-Methylnaphthalene	U		0.00435	0.0204	1	06/11/2021 12:34	WG1686336
2-Chloronaphthalene	U		0.00475	0.0204	1	06/11/2021 12:34	WG1686336
(S) Nitrobenzene-d5	45.9			14.0-149		06/11/2021 12:34	WG1686336
(S) 2-Fluorobiphenyl	49.4			34.0-125		06/11/2021 12:34	WG1686336
(S) p-Terphenyl-d14	51.9			23.0-120		06/11/2021 12:34	WG1686336

S59-0

SAMPLE RESULTS - 09

Collected date/time: 06/07/21 11:21

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	06/12/2021 08:29	WG1685988

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1363905

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 12:58

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	89.6		1	06/12/2021 08:29	WG1685988	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	8.18		0.112	1.12	5	06/16/2021 16:05	WG1687347
Cadmium	1.21		0.0955	1.12	5	06/16/2021 16:05	WG1687347
Lead	324		0.111	2.23	5	06/16/2021 16:05	WG1687347

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 13:04

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	94.4		1	06/23/2021 15:59	WG1693611	

Тс

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	15.4		0.106	1.06	5	06/25/2021 15:12	WG1693489
Cadmium	0.901	<u>J</u>	0.0906	1.06	5	06/25/2021 15:12	WG1693489
Lead	102		0.105	2.12	5	06/25/2021 15:12	WG1693489

Ss

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 13:44

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	94.5		1	06/12/2021 08:29	WG1685988	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	18.1		0.106	1.06	5	06/16/2021 16:23	WG1687347
Cadmium	6.69		0.0905	1.06	5	06/16/2021 16:23	WG1687347
Lead	176		0.105	2.12	5	06/16/2021 16:23	WG1687347

Ss

Total Solids by Method 2540 G-2011

Collected date/time: 06/07/21 13:58

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	93.2		1	06/12/2021 08:29	WG1685988	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	18.1		0.107	1.07	5	06/16/2021 16:26	WG1687347
Cadmium	1.40		0.0918	1.07	5	06/16/2021 16:26	WG1687347
Lead	133		0.106	2.15	5	06/16/2021 16:26	WG1687347

S40-2.5

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 15

RDL (dry)

mg/kg

4.36

54.5

18.0-148

18.0-148

Dilution

Analysis

date / time

06/12/2021 15:21

06/13/2021 12:51

06/13/2021 12:51

06/12/2021 15:21

Batch

WG1687173

WG1687173

WG1687173

WG1687173

Total Solids by Method 2540 G-2011

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

MDL (dry)

mg/kg

1.45

18.1

Result (dry)

mg/kg

85.5

286

56.5

51.2

Collected date/time: 06/07/21 14:18

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.8		1	06/12/2021 08:29	WG1685988	

Ss

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO) 145

SAMPLE RESULTS - 16

L1363905

Dilution

Analysis

date / time

06/11/2021 18:25

06/11/2021 18:25

06/11/2021 18:25

Metals (ICPMS) by Method 6020B

Result

ug/l

81.0

Collected date/time: 06/07/21 09:20

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic	U		0.180	2.00	1	06/30/2021 22:29	WG1698198	
Cadmium	U		0.150	1.00	1	06/30/2021 22:29	WG1698198	
Lead	U		0.849	2.00	1	07/07/2021 17:14	WG1700969	

RDL

ug/l

100

250

31.0-160

Batch

WG1685907

WG1685907 WG1685907

	Sr	
1		

⁶Qc

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Qualifier

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

MDL

ug/l

33.3

83.3

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0190	0.0500	1	06/12/2021 02:41	WG1686666
Acenaphthene	U		0.0190	0.0500	1	06/12/2021 02:41	WG1686666
Acenaphthylene	U		0.0171	0.0500	1	06/12/2021 02:41	WG1686666
Benzo(a)anthracene	U		0.0203	0.0500	1	06/12/2021 02:41	WG1686666
Benzo(a)pyrene	U		0.0184	0.0500	1	06/12/2021 02:41	WG1686666
Benzo(b)fluoranthene	U		0.0168	0.0500	1	06/12/2021 02:41	WG1686666
Benzo(g,h,i)perylene	U		0.0184	0.0500	1	06/12/2021 02:41	WG1686666
Benzo(k)fluoranthene	U		0.0202	0.0500	1	06/12/2021 02:41	WG1686666
Chrysene	U		0.0179	0.0500	1	06/12/2021 02:41	WG1686666
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	06/12/2021 02:41	WG1686666
Fluoranthene	U		0.0270	0.100	1	06/12/2021 02:41	WG1686666
Fluorene	U		0.0169	0.0500	1	06/12/2021 02:41	WG1686666
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	06/12/2021 02:41	WG1686666
Naphthalene	U		0.0917	0.250	1	06/12/2021 02:41	WG1686666
Phenanthrene	U		0.0180	0.0500	1	06/12/2021 02:41	WG1686666
Pyrene	U		0.0169	0.0500	1	06/12/2021 02:41	WG1686666
1-Methylnaphthalene	U		0.0687	0.250	1	06/12/2021 02:41	WG1686666
2-Methylnaphthalene	U		0.0674	0.250	1	06/12/2021 02:41	WG1686666
2-Chloronaphthalene	U		0.0682	0.250	1	06/12/2021 02:41	WG1686666
(S) Nitrobenzene-d5	113			31.0-160		06/12/2021 02:41	WG1686666
(S) 2-Fluorobiphenyl	109			48.0-148		06/12/2021 02:41	WG1686666
(S) p-Terphenyl-d14	124			37.0-146		06/12/2021 02:41	WG1686666

Martin S. Burck Assoc.-Hood River, OR

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1363905-01,02,03,04

Method Blank (MB)

(MB) R3666287-1	(MB) R3666287-1 06/10/21 23:30						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00100						

L1363888-02 Original Sample (OS) • Duplicate (DUP)

(OS) I 1363888-02	06/10/21 23:30	(DUP) R3666287-3	06/10/21 23:30
(00) 1000000 02	00/10/21 20.00	(001)1100002010	00/10/21 20.00

(00, 1.000000 02 00, 10, 1	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%	6		%		%
Total Solids	95.3	95	5.5	1	0.153		10

Ss

Laboratory Control Sample (LCS)

(LCS) R3666287-2 06/10/21 23:3

(LCS) R3666287-2 06/10/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1363905-06,07,08,09,11,13,14,15

Method Blank (MB)

(MB) R3666708-1 (06/12/21 08:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1363905-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1363905-11 06/12/21 08:29 • (DUP) R3666708-3 06/12/21 08:29

(,	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.6	90.3	1	0.771		10

Laboratory Control Sample (LCS)

(LCS) R3666708-2 06/12/21 08:29

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1363905-05

Method Bl	ايادد	
IVIEITION BI	ลกหา	IVIB

(MB) R3671352-1 06	6/23/21 10:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Тс

L1369012-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1369012-03 06/23/21 10:14 • (DUP) R3671352-3 06/23/21 10:14

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.8	92.0	1	0.211		10

600

Laboratory Control Sample (LCS)

(LCS) R3671352-2 06/23/21 10:14

, ,	Spike Amount LCS	CS Result LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	0.0 100	85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1363905-12

Method Blank (MB)

(MB) R3671216-1 06	6/23/21 15:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1367028-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1367028-01 06/23/21 15:59 • (DUP) R3671216-3 06/23/21 15:59

	Original Re	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	51.7	51.2	1	1.05		10	

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3671216-2 06/23/21 15:59

(200) 11007 1210 2 0072072		LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1363905-04,11,13,14

Method Blank (MB)

(MB) R3668211-1 06/16/21 15:33

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3668211-2 06/16/21 15:37

(LCS) R3668211-2 06/16/	21 15.37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	101	101	80.0-120	
Cadmium	100	104	104	80.0-120	
Lead	100	99.7	99.7	80.0-120	

L1364028-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1364028-05 06/16/21 15:41 • (MS) R3668211-5 06/16/21 15:51 • (MSD) R3668211-6 06/16/21 15:54

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	106	8.28	108	109	94.2	95.7	5	75.0-125			1.39	20
Cadmium	106	1.53	110	117	103	109	5	75.0-125			5.95	20
Lead	106	359	3750	510	3210	143	5	75.0-125	J5	J3 J5	152	20

QUALITY CONTROL SUMMARY

L1363905-05,12

Method Blank (MB)

(MB) R3672211-1 06/25/21 14:26

Metals (ICPMS) by Method 6020B

(IVID) 1(30722111 00	/23/21 14.20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) P3672211-2 06/25/21 1/1:29

(LC3) K3072211-2 00/23/2	114.23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	94.9	94.9	80.0-120	
Cadmium	100	96.4	96.4	80.0-120	
Lead	100	91.4	91.4	80.0-120	

(OS) L1368385-02 06/25/2114:33 • (MS) R3672211-5 06/25/2114:42 • (MSD) R3672211-6 06/25/2114:46

(O3) L1300303-02 00/23/	21 14.55 • (1015)	N30/2211-3 00	0/23/21 14.42	(NOD) K30722	11-0 00/23/21	14.40						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	126	3.47	110	107	84.3	81.9	5	75.0-125			2.83	20
Cadmium	126	0.136	115	115	90.8	90.9	5	75.0-125			0.113	20
Lead	126	13.1	116	133	81.3	94.8	5	75.0-125			13.7	20

L1368385-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1368385-06 06/25/21 14:49 • (MS) R3672211-8 06/25/21 14:55 • (MSD) R3672211-9 06/25/21 15:05

(,				(
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	106	3.37	94.9	107	86.6	97.9	5	75.0-125			11.7	20
Cadmium	106	0.105	99.1	115	93.7	109	5	75.0-125			14.9	20
Lead	106	1.52	95.3	108	88.8	101	5	75.0-125			12.9	20

Cadmium

QUALITY CONTROL SUMMARY

L1363905-16

Method Blank (MB)

Metals (ICPMS) by Method 6020B

(MB) R3674236-1 06	6/30/21 22:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.180	2.00

Laboratory Control Sample (LCS)

(LCS) R3674236-2	06/30/21	22:2
------------------	----------	------

(LC3) K3074230-2 00/30	0/2122.25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	50.0	45.8	91.5	80.0-120	
Cadmium	50.0	47.9	95.7	80.0-120	

L1363905-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.150

1.00

(OS) L1363905-16 06/30/21 22:29 • (MS) R3674236-4 06/30/21 22:35 • (MSD) R3674236-5 06/30/21 22:38

(03) [1303303-10 00/30	7/21 22.23 ° (IVIS)	113074230-4 (00/00/2122.0	5 · (IVISD) 1(50)	7230-3 00/3	0/2122.50							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Arsenic	50.0	U	45.8	45.6	91.7	91.1	1	75.0-125			0.557	20	
Cadmium	50.0	П	48 3	48 7	96.5	97 3	1	75 0-125			0.801	20	

QUALITY CONTROL SUMMARY

L1363905-16

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3676742-1 07/07/21 16:54

, ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead	U		0.849	2.00

[†]Cn

7/21 16:58

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead	50.0	46.8	93.6	80 0-120	

GI

(OS) L1368721-08 07/07/21 17:01 • (MS) R3676742-4 07/07/21 17:08 • (MSD) R3676742-5 07/07/21 17:11

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	50.0	0.869	46.4	47.2	91.0	92.7	1	75.0-125			1.77	20

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1363905-16

Method Blank (MB)

(MB) R3665644-1 06/10/21	13:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		33.3	100
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	69.5			31.0-160

²Tc

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3665644-2 06/10/	'21 13:30 • (LCSI	D) R3665644-	3 06/10/21 13:5	55							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Diesel Range Organics (DRO)	1500	1170	1230	78.0	82.0	50.0-150			5.00	20	
(S) o-Terphenyl				82.5	95.5	31.0-160					

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1363905-15

Method Blank (MB)

(MB) R3666523-1 06/12/21	l 11:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	66.1			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3666523-2 06/12/	/21 11:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	45.3	90.6	50.0-150	
(S) o-Terphenyl			86.8	18.0-148	

L1364005-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1364005-03 06/13/2110:28 • (MS) R3667235-1 06/13/2110:41 • (MSD) R3667235-2 06/13/2110:54

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1363905-01,02,03,06,07,08,09

Method Blank (MB)

(MB) R3666348-2 06/1	1/21 08:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	E
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	Ŀ
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	_
Benzo(a)pyrene	U		0.00179	0.00600	2
Benzo(b)fluoranthene	U		0.00153	0.00600	L
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	L
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	- 17
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	L
1-Methylnaphthalene	U		0.00449	0.0200	- 1
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	50.2			14.0-149	
(S) 2-Fluorobiphenyl	55.5			34.0-125	
(S) p-Terphenyl-d14	76.0			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3666348-1 06/1	1/21 08:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0636	79.5	50.0-126	
Acenaphthene	0.0800	0.0604	75.5	50.0-120	
Acenaphthylene	0.0800	0.0682	85.3	50.0-120	
Benzo(a)anthracene	0.0800	0.0653	81.6	45.0-120	
Benzo(a)pyrene	0.0800	0.0545	68.1	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0513	64.1	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0501	62.6	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0529	66.1	49.0-125	
Chrysene	0.0800	0.0606	75.8	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0491	61.4	47.0-125	
Fluoranthene	0.0800	0.0626	78.3	49.0-129	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1363905-01,02,03,06,07,08,09

Laboratory Control Sample (LCS)

11 CS	R3666348-1	06/11/21	08.36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0649	81.1	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0520	65.0	46.0-125	
Naphthalene	0.0800	0.0578	72.3	50.0-120	
Phenanthrene	0.0800	0.0601	75.1	47.0-120	
Pyrene	0.0800	0.0629	78.6	43.0-123	
1-Methylnaphthalene	0.0800	0.0619	77.4	51.0-121	
2-Methylnaphthalene	0.0800	0.0598	74.8	50.0-120	
2-Chloronaphthalene	0.0800	0.0597	74.6	50.0-120	
(S) Nitrobenzene-d5			72.5	14.0-149	
(S) 2-Fluorobiphenyl			73.4	34.0-125	
(S) p-Terphenyl-d14			88.2	23.0-120	

L1363932-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1363932-02 06/11/21 13:34 • (MS) R3666348-3 06/11/21 13:54 • (MSD) R3666348-4 06/11/21 14:14

Άl

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1363905-16

Method Blank (MB)

(MB) R3666670-2 06/1	1/21 23:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	103			31.0-160	
(S) 2-Fluorobiphenyl	102			48.0-148	
(S) p-Terphenyl-d14	119			37.0-146	

Laboratory Control Sample (LCS)

(LCS) R3666670-1 06/11	1/21 23:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Anthracene	2.00	2.24	112	67.0-150	
Acenaphthene	2.00	2.12	106	65.0-138	
Acenaphthylene	2.00	2.36	118	66.0-140	
Benzo(a)anthracene	2.00	2.38	119	61.0-140	
Benzo(a)pyrene	2.00	2.13	106	60.0-143	
Benzo(b)fluoranthene	2.00	2.06	103	58.0-141	
Benzo(g,h,i)perylene	2.00	1.96	98.0	52.0-153	
Benzo(k)fluoranthene	2.00	2.05	103	58.0-148	
Chrysene	2.00	2.22	111	64.0-144	
Dibenz(a,h)anthracene	2.00	2.05	103	52.0-155	
Fluoranthene	2.00	2.28	114	69.0-153	

ACCOUNT:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1363905-16

Laboratory Control Sample (LCS)

$(I \cap G)$	S) R36666	S70-1	06/11/21	23.30

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Fluorene	2.00	2.25	112	64.0-136	
Indeno(1,2,3-cd)pyrene	2.00	2.04	102	54.0-153	
Naphthalene	2.00	1.99	99.5	61.0-137	
Phenanthrene	2.00	2.18	109	62.0-137	
Pyrene	2.00	2.15	107	60.0-142	
1-Methylnaphthalene	2.00	2.13	106	66.0-142	
2-Methylnaphthalene	2.00	2.05	103	62.0-136	
2-Chloronaphthalene	2.00	2.12	106	64.0-140	
(S) Nitrobenzene-d5			112	31.0-160	
(S) 2-Fluorobiphenyl			111	48.0-148	
(S) p-Terphenyl-d14			124	37.0-146	

L1364648-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1364648-03 06/12/21 00:04	 (MS) R3666670-3 06/12/21 00:22 	• (MSD) R3666670-4 06/12/21 00:39
---------------------------------	--	-----------------------------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Anthracene	1.90	0.0320	2.33	2.21	121	115	1	56.0-156			5.29	20
Acenaphthene	1.90	0.249	1.94	2.20	89.0	103	1	44.0-153			12.6	20
Acenaphthylene	1.90	U	1.99	2.24	105	118	1	53.0-150			11.8	20
Benzo(a)anthracene	1.90	U	2.34	2.20	123	116	1	47.0-151			6.17	20
Benzo(a)pyrene	1.90	U	2.06	1.93	108	102	1	45.0-146			6.52	20
Benzo(b)fluoranthene	1.90	U	2.04	1.93	107	102	1	43.0-142			5.54	20
Benzo(g,h,i)perylene	1.90	U	1.94	1.82	102	95.8	1	40.0-147			6.38	20
Benzo(k)fluoranthene	1.90	U	2.01	1.86	106	97.9	1	43.0-148			7.75	21
Chrysene	1.90	U	2.22	2.09	117	110	1	50.0-148			6.03	20
Dibenz(a,h)anthracene	1.90	U	2.00	1.84	105	96.8	1	37.0-151			8.33	20
Fluoranthene	1.90	U	2.27	2.14	119	113	1	56.0-157			5.90	20
Fluorene	1.90	0.929	2.54	3.02	84.8	110	1	48.0-148			17.3	20
Indeno(1,2,3-cd)pyrene	1.90	U	2.02	1.86	106	97.9	1	41.0-148			8.25	20
Naphthalene	1.90	0.339	2.52	2.20	115	97.9	1	10.0-160			13.6	20
Phenanthrene	1.90	1.38	3.39	3.45	106	109	1	47.0-147			1.75	20
Pyrene	1.90	U	2.18	2.08	115	109	1	51.0-148			4.69	20
1-Methylnaphthalene	1.90	0.395	2.41	2.43	106	107	1	21.0-160			0.826	20
2-Methylnaphthalene	1.90	U	2.04	1.98	107	104	1	31.0-160			2.99	20
2-Chloronaphthalene	1.90	U	1.75	1.98	92.1	104	1	52.0-148			12.3	20
(S) Nitrobenzene-d5					106	102		31.0-160				
(S) 2-Fluorobiphenyl					97.4	106		48.0-148				
(S) p-Terphenyl-d14					131	122		37.0-146				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

ACCREDITATIONS & LOCATIONS

Pace Analytical	National	12065 Lehan	on Rd Moun	t luliet TI	N 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

		35.4	Billing Info	rmation:	7.37		1		A	nalysis /	Contai	ner / Pre	servativ	е		Chain of Custod	/ Page 1 of 2
Martin S. Burck Associates 200 N. Wasco Ct., Hood River, OR 97031			200 N. V	ts Payable Vasco Ct. ver, OR 970	Pres Chk							u.pa.			Pace Mullional C	Analytical* Trusting A Innovation	
Report to: Jon White		Email To: jwhite@msbaenvironmental.com										ndmi	filtered)		12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-51	7122	
Project Description: North Star Co			City/State Collected: Va	in cours, in	IA							5,0	d filt		Phone: 800-767-50 Fax: 615-758-5859	359	
Phone: 541.387.4422 Fax: 541.387.4813	Client Project			Lab Project # Nav A star						OM List	Full List		Arseni	d (field		J18	16 7705 35
Collected by (print): Jan Wh. to	Site/Facility ID	stew		P.O.#	hstar			1 3		- RBDM	- Full	- PAHs	-	d Lead		Acctnum:	
Collected by (signature): Immediately Packed on Ice N Y	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day			Quote #			NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D - VOCs	8260D - VOCs	N N	0 Total Lead	0 Dissolved	-	Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time —	Cntrs	S	N N	ž	826	826	827	6010	6010	Hold	Shipped Via:	Sample # (lab only)
547-1.5	grab	55	1.5	6/7/21	1146	1						V	X	m			1-01
547-1.5 dup	grab	55	1.5'	6/7/21	1146	1				aris de al .		V					-02
551-4	grab	55	4'	417/21	1058	1						V	2	2			-03
554-0	grab	55	0	6/7/21	. 0956	1							00		-Run		_64
555-0	grab	55	0	6/7/21	1063	1									/		-05
556-1.5	grab	55	1.5'	6/7/21	1042	1						1					-06
557-1.5	grab	55	1.5	6/7/21	1050	1						1					-07
558-0	grab	SS.	D	6/7/21	and the second second second second second	1						V					-08
559-0	grab	SS	0	6/7/21		1						1			E DE SE		-09
560-0	arab	SS	0	6/7/21	1134	1									/		1-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	rix: Remarks: Rix - Air F - Filter Groundwater B - Bioassay WasteWater							pH Temp Flow Other							Sample Receipt Checklist COC Seal Present/Intact: NP N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: N Sufficient volume sent: N		
DW - Drinking Water OT - Other OT1 = Distilled Water OT2 = Lab Provided Water UPS FedEx Courie					Tracking #										VOA Zero	If Applica Headspace:	ible Y N
Relinquished by: (Signature)	r Jon Wh	15130	Received by: (Signa			- 1	101	Trip Bl	ank Rec	4	Yes / No HCL / N TBR	МеоН		ion Correct/C			
Relinquished by : (Signature)		Date:	,	Time:	Received by: (Signa	ature)			APPER.	Temp: A °C Bot			Bottles Received:		if preservat	ion required by l	ogin: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab by	r: (Sign	ature)	V		Date:	da	Tie	me: OB	,	Hold:		Condition: NCF / OR

(P			Billing Info	rmation:	4.6	T			A	nalysis ,	/ Contai	iner / Pr	eservati	ve	Chain of Custody Page 2 o			
Martin S. Burck Associates 200 N. Wasco Ct., Hood River, OR 97031			Account 200 N. V Hood Ri	Pres Chk							ium			Pace / Pantieras Co	Analytical* the for Testing A trocustion			
Report to: Jon White	Email To:				To: te@msbaenvironmental.com									Cadmi	ered)		12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585	
Project Description: North Stew Casteel				City/State Collected: \	lancouver, v	VA							5	(field filtered)		Phone: 800-767-8859 Fax: 615-758-5859		
Phone: 541.387.4422 Fax: 541.387.4813	Client Project	#		Lab Project # North Star						8260D - VOCs - RBDM List	8260D - VOCs - Full List		Arseni	d (fiel		L# 54	1/6/10	
Collected by (print): The White	Site/Facility II				P.O.# Nath Star							- PAHs	-	d Lead		Acctnum:		
Collected by (signature): Immediately Packed on Ice N Y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y10 D		Quote #	Date Results Needed N		NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	D-VOCs	D- VOCs	8270E-SIM - P.	6010 Total Lead	6010 Dissolved		Template: Prelogin: TSR: PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	MN	N	NW	826	826	8270	601	601	Hold	Shipped Via:	Sample # (lab only)	
561-0	grab	SS	0	6/7/21	1258	I							1				-11	
562-0	gras	55	0	6/7/21	1304	1		10000		Militar		lu ad		at record	1		-12	
563-0	grals	55	0	6 7/2	1344	1					10.18		V				-13	
564-0	gras	55	0	6/7/21	1358	1							1		問題		-14	
540-2.5	grab	55	2.5	6/7/21	1418	1			1							100	-15	
EB-6	-	OTI	-	6/7/2	0920	11			1			1	1				-16	
Trip Blank	-	OT2	-	-	+	x	10								/		-17	
* Matrix:	Domontino							11.3					Ţi-					
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	- Soil AIR - Air F - Filter V - Groundwater B - Bioassay						COC S Bottl								COC Sea COC Sig Bottles	Sample Receipt Ch 1 Present/Intact med/Accurate: arrive intact:	NP N	
DW - Drinking Water Samples r		mples returned via: UPSFedExCourier				Tracking #				rio					Suffici	bottles used: ent volume sent: If Applicab o Headspace:	le Y N	
Relinquished by: (Signature) Date: Ath One for Jon White 6/81:		21	15:30	Received by: (Sign	Received by: (Signature)				Trip Blank Received: (res / No HCL / MeoH TBR					Preservation Correct/Checked: _Y _N				
Relinquished by : (Signature)	V)	Date:		Time:	Received by: (Signi	ature)				Temp: A °C Bottles Receive			eived:	If preservation required by Login: Date/Tir				
Relinquished by : (Signature) Date:			Time:	Received for lab by	v: (Signa	ture)	N		Date: 6921 (015)	Hold:	NCF / OK				

DRAFT

16) Sample Date 6/8/21 (#L1364591)

Ss

Martin S. Burck Assoc.-Hood River, OR

L1364591 Sample Delivery Group:

Samples Received: 06/10/2021

Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page

³ Ss	

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
S24-0 L1364591-01 Solid			Jon White	06/08/21 10:15	06/10/21 12:4	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1687436	1	06/13/21 11:23	06/13/21 11:35	CMK	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1688766	1	06/16/21 10:27	06/16/21 20:14	GB	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1689082	5	06/15/21 16:35	06/16/21 11:10	LAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S65-0 L1364591-03 Solid			Jon White	06/08/21 11:14	06/10/21 12:4	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1693611	1	06/23/21 15:50	06/23/2115:59	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1693489	5	06/23/21 17:34	06/25/21 15:15	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EB-7 L1364591-05 GW			Jon White	06/08/21 08:57	06/10/21 12:4	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1698905	1	07/02/21 21:45	07/03/21 11:45	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
UST-H2O L1364591-06 GW			Jon White	06/08/21 08:25	06/10/21 12:4	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

WG1687270

Martin S. Burck Assoc.-Hood River, OR

Polychlorinated Biphenyls (GC) by Method 8082 A

06/14/21 05:52

06/14/21 13:35

JMB

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SAMPLE RESULTS - 01

Collected date/time: 06/08/21 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	95.0		1	06/13/2021 11:35	WG1687436	

²Tc

Wet Chemistry by Method 7199

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Hexavalent Chromium	1.96		0.268	1.05	1	06/16/2021 20:14	WG1688766

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chromium	235		0.312	5.26	5	06/16/2021 11:10	WG1689082	

Cn

Martin S. Burck Assoc.-Hood River, OR

S65-0

SAMPLE RESULTS - 03

Collected date/time: 06/08/21 11:14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	92.3		1	06/23/2021 15:59	WG1693611	

Тс

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	3.61		0.108	1.08	5	06/25/2021 15:15	WG1693489
Cadmium	0.456	<u>J</u>	0.0927	1.08	5	06/25/2021 15:15	WG1693489
Lead	51.4		0.107	2.17	5	06/25/2021 15:15	WG1693489

Martin S. Burck Assoc.-Hood River, OR

EB-7

SAMPLE RESULTS - 05
L1364591

Collected date/time: 06/08/21 08:57

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chromium	U		1.24	2.00	1	07/03/2021 11:45	WG1698905

UST-H20

SAMPLE RESULTS - 06

Collected date/time: 06/08/21 08:25

L1364591

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
PCB 1016	U		0.270	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1221	U		0.270	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1232	U		0.270	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1242	U		0.270	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1248	U		0.173	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1254	U		0.173	0.500	1	06/14/2021 13:35	WG1687270	
PCB 1260	U		0.173	0.500	1	06/14/2021 13:35	WG1687270	
(S) Decachlorobiphenyl	50.8			10.0-128		06/14/2021 13:35	WG1687270	
(S) Tetrachloro-m-xylene	52.1			10.0-127		06/14/2021 13:35	WG1687270	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1364591-01

Method Blank (MB)

(MB) R3666964-1 (06/13/21 11:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1364581-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1364581-03 06/13/21 11:35 • (DUP) R3666964-3 06/13/21 11:35

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.6	84.0	1	1.92		10

Laboratory Control Sample (LCS)

(LCS) R3666964-2 06/13/21 11:35

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.9	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1364591-03

Method Blank (MB)

(MB) R3671216-1 06	6/23/21 15:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1367028-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1367028-01 06/23/21 15:59 • (DUP) R3671216-3 06/23/21 15:59

	Original Result	ult DUP Res	ult Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	51.7	51.2	1	1.05		10

Laboratory Control Sample (LCS)

(LCS) R3671216-2 06/23/21 15:59

, ,	Spike Amount LCS Result LCS	Rec. Rec. Limits
Analyte	% % %	%
Total Solids	50.0 50.0 100	85.0-115

⁹Sc

Method Blank (MB)

QUALITY CONTROL SUMMARY

L1364591-01

Wet Chemistry by Method 7199

(MB) R3668599-1 06/16/21 18:44											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Hexavalent Chromium	U		0.255	1.00							

Ss

L1364464-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1364464-04 06/16/21 19:10 • (DUP) R3668599-3 06/16/21 19:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	U	U	1	0.000		20

L1364464-05 Original Sample (OS) • Duplicate (DUP)

(03) 11304404-03 00/1//2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3668599-2 06/16/21 18:49

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Hexavalent Chromium	10.0	10.9	109	80.0-120	

L1364464-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1364464-07 06/16/21 19:33 • (MS) R3668599-4 06/16/21 19:38 • (MSD) R3668599-5 06/16/21 19:53

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Hexavalent Chromium	20.0	U	15.4	15.3	77.2	76.7	1	75.0-125			0.626	20

L1364464-07 Original Sample (OS) • Matrix Spike (MS)

(OS) L1364464-07 06/16/21 19:33 • (MS) R3668599-6 06/16/21 19:59

(23) -123	Spike Amount			MS Rec.	Dilution	Rec. Limits
Analyte	mg/kg	mg/kg	mg/kg	%		%
Hexavalent Chromium	631	U	633	100	50	75.0-125

QUALITY CONTROL SUMMARY

L1364591-01

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3667999-1 06/16/2110:46										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Chromium	U		0.297	5.00						

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3667999-2 06/16/21 10:50

(,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chromium	100	98.0	98.0	80.0-120	

GI

(OS) L1365276-03 06/16/21 10:53 • (MS) R3667999-5 06/16/21 11:03 • (MSD) R3667999-6 06/16/21 11:07

Spike Amount Original Result (dry) MSD Result (dry) MSD Result (dry) MSD Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
	Spike Amount (dry)	(dry)	MS Result (dry)	(dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chromium	118	13.5	115	126	85.6	95.4	5	75.0-125			9.65	20

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3672211-1 06/25/21 14:26

Metals (ICPMS) by Method 6020B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Cadmium	U		0.0855	1.00
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) P3672211-2 06/25/21 1/1:29

(LC3) K3072211-2 00/23/2	114.23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	94.9	94.9	80.0-120	
Cadmium	100	96.4	96.4	80.0-120	
Lead	100	91.4	91.4	80.0-120	

L1368385-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1368385-02 06/25/21 14:33 • (MS) R3672211-5 06/25/21 14:42 • (MSD) R3672211-6 06/25/21 14:46

(00) 21000000 02 00/20/2111.00 (1110) 1100/20/2111.10												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	126	3.47	110	107	84.3	81.9	5	75.0-125			2.83	20
Cadmium	126	0.136	115	115	90.8	90.9	5	75.0-125			0.113	20
Lead	126	13.1	116	133	81.3	94.8	5	75.0-125			13.7	20

DATE/TIME:

07/06/2115:59

L1368385-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1368385-06 06/25/21 14:49 • (MS) R3672211-8 06/25/21 14:55 • (MSD) R3672211-9 06/25/21 15:05

(,				(
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	106	3.37	94.9	107	86.6	97.9	5	75.0-125			11.7	20
Cadmium	106	0.105	99.1	115	93.7	109	5	75.0-125			14.9	20
Lead	106	1.52	95.3	108	88.8	101	5	75.0-125			12.9	20

QUALITY CONTROL SUMMARY

L1364591-05

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3675312-1 07/03/2111:25

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chromium	U		124	2 00

Laboratory Control Sample (LCS)

(LCS) R3675312-2	07/03/21 11:28
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chromium	50.0	46.7	93.5	80.0-120	

[†]Cn

(OS) L1368215-01 07/03/21 11:32 • (MS) R3675312-4 07/03/21 11:38 • (MSD) R3675312-5 07/03/21 11:42

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chromium	50.0	П	44 5	43.6	89.0	87.2	1	75.0-125			2.06	20

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1364591-06

Method Blank (MB)

(MB) R3667336-1 06/14/2	21 11:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
PCB 1260	U		0.173	0.500
PCB 1016	U		0.270	0.500
PCB 1221	U		0.270	0.500
PCB 1232	U		0.270	0.500
PCB 1242	U		0.270	0.500
PCB 1248	U		0.173	0.500
PCB 1254	U		0.173	0.500
(S) Decachlorobiphenyl	33.7			10.0-128
(S) Tetrachloro-m-xylene	52.2			10.0-127

Laboratory Control Sample (LCS)

(LCS) R3667336-2	06/14/21 12:00
------------------	----------------

Spike Amount LCS Result LCS Rec. Limits LCS Qualifier Analyte ug/l ug/l % PCB 1260 2.50 2.35 94.0 42.0-131 PCB 1016 2.50 2.72 109 36.0-135	00,000 = 00, =	3, 1.000,000 = 00,	.00 2 00/11/21 12:00				
PCB 1260 2.50 2.35 94.0 42.0-131	Sp		Spike Amount LCS Re	t LCS Rec.	Rec. Limits	LCS Qualifier	
	ug/	lyte	ug/l ug/l	%	%		
PCB 1016 2.50 2.72 109 36.0-135	2.5	1260	2.50 2.35	94.0	42.0-131		
	2.5	1016	2.50 2.72	109	36.0-135		
(S) Decachlorobiphenyl 26.5 10.0-128	chlorobiphenyl) Decachlorobiphenyl	obiphenyl	26.5	10.0-128		
(S) Tetrachloro-m-xylene 45.6 10.0-127	chloro-m-xylene) Tetrachloro-m-xylene	o-m-xylene	45.6	10.0-127		

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Deminions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Cp

²Tc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

			Billing Info	rmation:	7 3 - 1				Α	nalysis /	Contair	ner / Pre	servati	ve			Chain of Custody	Page of					
200 N. Wasso Ct. Hood River OR 97031 200 N. V		200 N Wasso Ct Hood River OR 97031			River OR 97031 200 N. Was		N. Wasco Ct.			counts Payable 0 N. Wasco Ct. ood River, OR 97031					A SECTION				51			Pace A	Analytical* and Tenting A Innovation
Report to: Jon White		3/4	Email To: jwhite@	msbaenviro	msbaenvironmental.com									d filtered)		_	12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585						
Project Description: North Stav	Castee	1		City/State Collected: V	ancourer, u	AL							50	A COLOR		ic te	Phone: 800-767-585 Fax: 615-758-5859						
Client Project #		The state of the s		Lab Project # Warth Star						M List	Full List		P.C.	d (fie		N. 5.M	B15						
Collected by (print):	Site/Facility ID	# 5tz.v	,	P.O.# North Star						- RBDM	1	AHs	10	de		\tilde{Q}	Acctnum:						
Collected by (signature)	2012 01		Notified)	Quote #			ICID	X	×C	/OCs	10Cs	4 - P	alte	solve		evient	Template: Prelogin:						
Immedia/ely Packed on Ice N Y X	Next Day Two Day Three Da	5 Day	y (Rad Only) ay (Rad Only)	Date F	esults Needed	No.	WWTPH-HCID	NWTPH-Gx	NWTPH-Dx	8260D - VOCs 8260D - VOCs		8260D - VOCs - Fu 8270E-SIM - PAHs	OE-SIN	6010 Total Lead	6010-Dissolv	Hold	3	TSR: PB: Shipped Via:					
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	N	Ž	Ž	82	82	827	99	99	Hol	Hex	Remarks	Sample # (lab only)					
524-0	grab	55	0	18 8 21	1015	2						4 3		1		/		-01					
525-0	grab	55	0	6/8/21	1039	4					desdess				1			-07					
545-0	gras	55	٥	618/2	1 1114	2								- 10	1			-03					
Cooling Pot	grab	55	-	6/8/2	1 1453	4							450		1	Barta.	5.75	-04					
EB-7		OTI	-	6/8/21	0857	11								1				-05					
UST-HZO	2	NW	-	6/8/21	6825	2				E and			1				155.7	-06					
Trip Blank	-	OT2	-	3		1									1			-07					
		1														Fee 172							
								30					100										
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:			3.						pH Flo	4 31	Ten			COC S	eal P igned es ar	ple Receipt C resent/Intact /Accurate: rive intact: ttles used:	necklist /					
DW - Drinking Water OT - Other OT1 = Distilled Water OT2 = Lab Provided Water	nking Water Samples returned via: er OT1 = Distilled Water UPS FedEx Courier						- Marine Street		988	30	80	73	58	D			Suffi VOA Z	cient Mero H	volume sent: If Applicate eadspace: on Correct/Ch	ole Y			
Relinquished by (Signature)		Date: 6 9(2	21 15:30	Time: 15:30	Received by: (Sign					Trip Bl	ank Reco	1	HOL/ TBR	MeoH									
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)				るる	1.0:	°C 80	ttles Rec	eived:	If pres	ervatio	on required by Lo	gin: Date/Time					
Relinquished by : (Signature)		Date:		Time:	Received for lab b	y: (Sign	ature	7.	/	Date:	inh	Ťi	12:	45	Hold:			Condition: NCF / OK					

DRAFT

17) Sample Date 6/14/21 (#L1367187)

Martin S. Burck Assoc.-Hood River, OR

L1367187 Sample Delivery Group:

Samples Received: 06/16/2021

Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

12

13

14

15

25

26

28

29

30

³ Ss	

١	4
	[⁺] Cn

⁵Sr

Tc: Table of Contents								
Ss: Sample Summary								
Cn: Case Narrative								
Sr: Sample Results								
MW2-5 L1367187-01								
MW2-52 L1367187-02								
TRIP BLANK L1367187-03								
Qc: Quality Control Summary								

Total Solids by Method 2540 G-2011

Cp: Cover Page

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM **GI: Glossary of Terms**

Al: Accreditations & Locations Sc: Sample Chain of Custody

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW2-5 L1367187-01 Solid			Jon White	06/14/21 11:22	06/16/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1691693	1	06/22/21 09:02	06/22/21 09:30	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1691753	1.04	06/14/21 11:22	06/20/21 20:36	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW2-52 L1367187-02 Solid			Jon White	06/14/21 13:57	06/16/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1691693	1	06/22/21 09:02	06/22/21 09:30	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1691532	5	06/21/21 17:46	06/22/21 15:19	LAT	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1692202	25	06/14/21 13:57	06/24/21 00:50	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1691753	1	06/14/21 13:57	06/20/21 20:55	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1693822	1	06/23/21 16:47	06/23/21 23:43	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1692010	1	06/22/21 08:33	06/22/21 16:25	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1367187-03 GW			Jon White	06/14/21 00:00	06/16/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

WG1693908

06/23/21 17:55

06/23/2117:55

ADM

Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

Volatile Organic Compounds (GC/MS) by Method 8260D

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

MW2-5

SAMPLE RESULTS - 01

Collected date/time: 06/14/21 11:22

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.7		1	06/22/2021 09:30	WG1691693

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
ınalyte	mg/kg		mg/kg	mg/kg		date / time	
cetone	U		0.0457	0.0625	1.04	06/20/2021 20:36	WG1691753
crylonitrile	U		0.00451	0.0156	1.04	06/20/2021 20:36	WG1691753
enzene	0.00119	J	0.000584	0.00125	1.04	06/20/2021 20:36	WG1691753
romobenzene	U		0.00113	0.0156	1.04	06/20/2021 20:36	WG1691753
romodichloromethane	U		0.000907	0.00313	1.04	06/20/2021 20:36	WG1691753
romoform	U		0.00147	0.0313	1.04	06/20/2021 20:36	WG1691753
romomethane	U		0.00247	0.0156	1.04	06/20/2021 20:36	WG1691753
Butylbenzene	U		0.00657	0.0156	1.04	06/20/2021 20:36	WG1691753
ec-Butylbenzene	U		0.00361	0.0156	1.04	06/20/2021 20:36	WG1691753
rt-Butylbenzene	U		0.00244	0.00625	1.04	06/20/2021 20:36	WG1691753
arbon disulfide	U		0.000875	0.0156	1.04	06/20/2021 20:36	WG1691753
arbon tetrachloride	U		0.00112	0.00625	1.04	06/20/2021 20:36	WG1691753
nlorobenzene	U		0.000262	0.00313	1.04	06/20/2021 20:36	WG1691753
nlorodibromomethane	U		0.000765	0.00313	1.04	06/20/2021 20:36	WG1691753
nloroethane	U		0.00213	0.00625	1.04	06/20/2021 20:36	WG1691753
nloroform	U		0.00129	0.00313	1.04	06/20/2021 20:36	WG1691753
nloromethane	U		0.00544	0.0156	1.04	06/20/2021 20:36	WG1691753
Chlorotoluene	U		0.00108	0.00313	1.04	06/20/2021 20:36	WG1691753
Chlorotoluene	U		0.000563	0.00625	1.04	06/20/2021 20:36	WG1691753
2-Dibromo-3-Chloropropane	U		0.00488	0.0313	1.04	06/20/2021 20:36	WG1691753
2-Dibromoethane	U		0.000811	0.00313	1.04	06/20/2021 20:36	WG1691753
bromomethane	U		0.000938	0.00625	1.04	06/20/2021 20:36	WG1691753
?-Dichlorobenzene	U		0.000538	0.00625	1.04	06/20/2021 20:36	WG1691753
3-Dichlorobenzene	U		0.000352	0.00625	1.04	06/20/2021 20:36	WG1691753
1-Dichlorobenzene	U		0.000730	0.00625	1.04	06/20/2021 20:36	WG1691753
chlorodifluoromethane	U		0.000875	0.00023	1.04	06/20/2021 20:36	WG1691753
	U		0.00201	0.00313	1.04		
-Dichloroethane	U					06/20/2021 20:36	WG1691753
2-Dichloroethane			0.000812	0.00313	1.04	06/20/2021 20:36	WG1691753
-Dichloroethene	U		0.000758	0.00313	1.04	06/20/2021 20:36	WG1691753
s-1,2-Dichloroethene	U		0.000918	0.00313	1.04	06/20/2021 20:36	WG1691753
nns-1,2-Dichloroethene	U		0.00130	0.00625	1.04	06/20/2021 20:36	WG1691753
2-Dichloropropane	U		0.00178	0.00625	1.04	06/20/2021 20:36	WG1691753
-Dichloropropene	U		0.00101	0.00313	1.04	06/20/2021 20:36	WG1691753
3-Dichloropropane	U		0.000627	0.00625	1.04	06/20/2021 20:36	WG1691753
s-1,3-Dichloropropene	U		0.000946	0.00313	1.04	06/20/2021 20:36	WG1691753
nns-1,3-Dichloropropene	U		0.00143	0.00625	1.04	06/20/2021 20:36	WG1691753
2-Dichloropropane	U		0.00173	0.00313	1.04	06/20/2021 20:36	WG1691753
-isopropyl ether	U		0.000512	0.00125	1.04	06/20/2021 20:36	WG1691753
hylbenzene	U		0.000921	0.00313	1.04	06/20/2021 20:36	WG1691753
exachloro-1,3-butadiene	U		0.00750	0.0313	1.04	06/20/2021 20:36	WG1691753
propylbenzene	U		0.000532	0.00313	1.04	06/20/2021 20:36	WG1691753
sopropyltoluene	U		0.00319	0.00625	1.04	06/20/2021 20:36	WG1691753
Butanone (MEK)	U		0.0794	0.125	1.04	06/20/2021 20:36	WG1691753
ethylene Chloride	U		0.00831	0.0313	1.04	06/20/2021 20:36	WG1691753
Methyl-2-pentanone (MIBK)	U		0.00285	0.0313	1.04	06/20/2021 20:36	WG1691753
ethyl tert-butyl ether	U		0.000438	0.00125	1.04	06/20/2021 20:36	WG1691753
aphthalene	0.0372	<u>C5 J4</u>	0.00611	0.0156	1.04	06/20/2021 20:36	WG1691753
Propylbenzene	U		0.00119	0.00625	1.04	06/20/2021 20:36	WG1691753
tyrene	U		0.000286	0.0156	1.04	06/20/2021 20:36	WG1691753
I,1,2-Tetrachloroethane	U		0.00119	0.00313	1.04	06/20/2021 20:36	WG1691753

Martin S. Burck Assoc.-Hood River, OR

MW2-5 Collected date/time: 06/14/21 11:22

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1,1,2,2-Tetrachloroethane	U		0.000869	0.00313	1.04	06/20/2021 20:36	WG1691753	
1,1,2-Trichlorotrifluoroethane	U		0.000943	0.00313	1.04	06/20/2021 20:36	WG1691753	
Tetrachloroethene	0.00457	<u>C5</u>	0.00112	0.00313	1.04	06/20/2021 20:36	WG1691753	
Toluene	0.0129		0.00162	0.00625	1.04	06/20/2021 20:36	WG1691753	
1,2,3-Trichlorobenzene	U	<u>J4</u>	0.00916	0.0156	1.04	06/20/2021 20:36	WG1691753	
1,2,4-Trichlorobenzene	U	<u>J4</u>	0.00551	0.0156	1.04	06/20/2021 20:36	WG1691753	
1,1,1-Trichloroethane	U		0.00115	0.00313	1.04	06/20/2021 20:36	WG1691753	
1,1,2-Trichloroethane	U		0.000747	0.00313	1.04	06/20/2021 20:36	WG1691753	
Trichloroethene	U		0.000730	0.00125	1.04	06/20/2021 20:36	WG1691753	
Trichlorofluoromethane	U		0.00103	0.00313	1.04	06/20/2021 20:36	WG1691753	
1,2,3-Trichloropropane	U		0.00202	0.0156	1.04	06/20/2021 20:36	WG1691753	
1,2,4-Trimethylbenzene	0.00678		0.00197	0.00625	1.04	06/20/2021 20:36	WG1691753	
1,2,3-Trimethylbenzene	0.00369	<u>J</u>	0.00197	0.00625	1.04	06/20/2021 20:36	WG1691753	
1,3,5-Trimethylbenzene	0.00385	<u>J</u>	0.00250	0.00625	1.04	06/20/2021 20:36	WG1691753	
Vinyl chloride	U		0.00146	0.00313	1.04	06/20/2021 20:36	WG1691753	
Xylenes, Total	0.0109		0.00110	0.00813	1.04	06/20/2021 20:36	WG1691753	
(S) Toluene-d8	101			75.0-131		06/20/2021 20:36	WG1691753	
(S) 4-Bromofluorobenzene	99.4			67.0-138		06/20/2021 20:36	WG1691753	
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		06/20/2021 20:36	WG1691753	

Analyte

Gasoline Range Organics-NWTPH

(S) a,a,a-Trifluorotoluene(FID)

SAMPLE RESULTS - 02

Collected date/time: 06/14/21 13:57

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.0		1	06/22/2021 09:30	WG1691693

Qualifier

MDL (dry)

mg/kg

1.32

Batch

WG1692202

WG1692202

Ss

Qc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Cadmium	0.110	<u>J</u>	0.107	1.25	5	06/22/2021 15:19	WG1691532
Lead	5.78		0.124	2.50	5	06/22/2021 15:19	WG1691532

RDL (dry)

mg/kg

3.88

77.0-120

Dilution

25

Analysis

date / time

06/24/2021 00:50

06/24/2021 00:50

Volatile Organic Compounds (GC/MS) by Method 8260D

Volatile Organic Compounds (GC) by Method NWTPHGX

Result (dry)

mg/kg

U

95.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0567	0.0777	1	06/20/2021 20:55	WG1691753
Acrylonitrile	U		0.00561	0.0194	1	06/20/2021 20:55	WG1691753
Benzene	U		0.000725	0.00155	1	06/20/2021 20:55	WG1691753
Bromobenzene	U		0.00140	0.0194	1	06/20/2021 20:55	WG1691753
Bromodichloromethane	U		0.00113	0.00388	1	06/20/2021 20:55	WG1691753
Bromoform	U		0.00182	0.0388	1	06/20/2021 20:55	WG1691753
Bromomethane	U		0.00306	0.0194	1	06/20/2021 20:55	WG1691753
n-Butylbenzene	U		0.00816	0.0194	1	06/20/2021 20:55	WG1691753
sec-Butylbenzene	U		0.00447	0.0194	1	06/20/2021 20:55	WG1691753
tert-Butylbenzene	U		0.00303	0.00777	1	06/20/2021 20:55	WG1691753
Carbon disulfide	U		0.00109	0.0194	1	06/20/2021 20:55	WG1691753
Carbon tetrachloride	U		0.00140	0.00777	1	06/20/2021 20:55	WG1691753
Chlorobenzene	U		0.000326	0.00388	1	06/20/2021 20:55	WG1691753
Chlorodibromomethane	U		0.000951	0.00388	1	06/20/2021 20:55	WG1691753
Chloroethane	U		0.00264	0.00777	1	06/20/2021 20:55	WG1691753
Chloroform	U		0.00160	0.00388	1	06/20/2021 20:55	WG1691753
Chloromethane	U		0.00676	0.0194	1	06/20/2021 20:55	WG1691753
2-Chlorotoluene	U		0.00134	0.00388	1	06/20/2021 20:55	WG1691753
4-Chlorotoluene	U		0.000699	0.00777	1	06/20/2021 20:55	WG1691753
1,2-Dibromo-3-Chloropropane	U		0.00606	0.0388	1	06/20/2021 20:55	WG1691753
1,2-Dibromoethane	U		0.00101	0.00388	1	06/20/2021 20:55	WG1691753
Dibromomethane	U		0.00117	0.00777	1	06/20/2021 20:55	WG1691753
1,2-Dichlorobenzene	U		0.000660	0.00777	1	06/20/2021 20:55	WG1691753
1,3-Dichlorobenzene	U		0.000932	0.00777	1	06/20/2021 20:55	WG1691753
1,4-Dichlorobenzene	U		0.00109	0.00777	1	06/20/2021 20:55	WG1691753
Dichlorodifluoromethane	U		0.00250	0.00388	1	06/20/2021 20:55	WG1691753
1,1-Dichloroethane	U		0.000763	0.00388	1	06/20/2021 20:55	WG1691753
1,2-Dichloroethane	U		0.00101	0.00388	1	06/20/2021 20:55	WG1691753
1,1-Dichloroethene	U		0.000941	0.00388	1	06/20/2021 20:55	WG1691753
cis-1,2-Dichloroethene	U		0.00114	0.00388	1	06/20/2021 20:55	WG1691753
trans-1,2-Dichloroethene	U		0.00162	0.00777	1	06/20/2021 20:55	WG1691753
1,2-Dichloropropane	U		0.00221	0.00777	1	06/20/2021 20:55	WG1691753
1,1-Dichloropropene	U		0.00126	0.00388	1	06/20/2021 20:55	WG1691753
1,3-Dichloropropane	U		0.000778	0.00777	1	06/20/2021 20:55	WG1691753
cis-1,3-Dichloropropene	U		0.00118	0.00388	1	06/20/2021 20:55	WG1691753
trans-1,3-Dichloropropene	U		0.00177	0.00777	1	06/20/2021 20:55	WG1691753
2,2-Dichloropropane	U		0.00214	0.00388	1	06/20/2021 20:55	WG1691753

(S) Toluene-d8
(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

SAMPLE RESULTS - 02

Collected date/time: 06/14/21 13:57

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Di-isopropyl ether	U		0.000637	0.00155	1	06/20/2021 20:55	WG1691753
Ethylbenzene	U		0.00114	0.00388	1	06/20/2021 20:55	WG1691753
Hexachloro-1,3-butadiene	U		0.00932	0.0388	1	06/20/2021 20:55	WG1691753
Isopropylbenzene	U		0.000660	0.00388	1	06/20/2021 20:55	WG1691753
p-Isopropyltoluene	U		0.00396	0.00777	1	06/20/2021 20:55	WG1691753
2-Butanone (MEK)	U		0.0986	0.155	1	06/20/2021 20:55	WG1691753
Methylene Chloride	U		0.0103	0.0388	1	06/20/2021 20:55	WG1691753
4-Methyl-2-pentanone (MIBK)	U		0.00354	0.0388	1	06/20/2021 20:55	WG1691753
Methyl tert-butyl ether	U		0.000544	0.00155	1	06/20/2021 20:55	WG1691753
Naphthalene	U	<u>J4</u>	0.00758	0.0194	1	06/20/2021 20:55	WG1691753
n-Propylbenzene	U		0.00148	0.00777	1	06/20/2021 20:55	WG1691753
Styrene	U		0.000356	0.0194	1	06/20/2021 20:55	WG1691753
1,1,1,2-Tetrachloroethane	U		0.00147	0.00388	1	06/20/2021 20:55	WG1691753
1,1,2,2-Tetrachloroethane	U		0.00108	0.00388	1	06/20/2021 20:55	WG1691753
1,1,2-Trichlorotrifluoroethane	U		0.00117	0.00388	1	06/20/2021 20:55	WG1691753
Tetrachloroethene	0.00300	<u>J</u>	0.00139	0.00388	1	06/20/2021 20:55	WG1691753
Toluene	U		0.00202	0.00777	1	06/20/2021 20:55	WG1691753
1,2,3-Trichlorobenzene	U	<u>J4</u>	0.0114	0.0194	1	06/20/2021 20:55	WG1691753
1,2,4-Trichlorobenzene	U	J4	0.00684	0.0194	1	06/20/2021 20:55	WG1691753
1,1,1-Trichloroethane	U	_	0.00143	0.00388	1	06/20/2021 20:55	WG1691753
1,1,2-Trichloroethane	U		0.000927	0.00388	1	06/20/2021 20:55	WG1691753
Trichloroethene	U		0.000907	0.00155	1	06/20/2021 20:55	WG1691753
Trichlorofluoromethane	U		0.00128	0.00388	1	06/20/2021 20:55	WG1691753
1,2,3-Trichloropropane	U		0.00252	0.0194	1	06/20/2021 20:55	WG1691753
1,2,4-Trimethylbenzene	U		0.00245	0.00777	1	06/20/2021 20:55	WG1691753
1,2,3-Trimethylbenzene	U		0.00245	0.00777	1	06/20/2021 20:55	WG1691753
,3,5-Trimethylbenzene	U		0.00311	0.00777	1	06/20/2021 20:55	WG1691753
Vinyl chloride	U		0.00180	0.00388	1	06/20/2021 20:55	WG1691753
Xylenes, Total	U		0.00137	0.0101	1	06/20/2021 20:55	WG1691753

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

102

101

94.9

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U	<u>J6</u>	1.66	5.00	1	06/23/2021 23:43	WG1693822
Residual Range Organics (RRO)	U		4.16	12.5	1	06/23/2021 23:43	WG1693822
(S) o-Terphenyl	60.3			18.0-148		06/23/2021 23:43	WG1693822

75.0-131

67.0-138

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00288	0.00750	1	06/22/2021 16:25	WG1692010
Acenaphthene	U		0.00261	0.00750	1	06/22/2021 16:25	WG1692010
Acenaphthylene	U		0.00270	0.00750	1	06/22/2021 16:25	WG1692010
Benzo(a)anthracene	U		0.00216	0.00750	1	06/22/2021 16:25	WG1692010
Benzo(a)pyrene	U		0.00224	0.00750	1	06/22/2021 16:25	WG1692010
Benzo(b)fluoranthene	U		0.00191	0.00750	1	06/22/2021 16:25	WG1692010
Benzo(g,h,i)perylene	U		0.00221	0.00750	1	06/22/2021 16:25	WG1692010
Benzo(k)fluoranthene	U		0.00269	0.00750	1	06/22/2021 16:25	WG1692010
Chrysene	U		0.00290	0.00750	1	06/22/2021 16:25	WG1692010
Dibenz(a,h)anthracene	U		0.00215	0.00750	1	06/22/2021 16:25	WG1692010
Fluoranthene	U		0.00284	0.00750	1	06/22/2021 16:25	WG1692010
Fluorene	U		0.00256	0.00750	1	06/22/2021 16:25	WG1692010

WG1691753

WG1691753 WG1691753

06/20/2021 20:55

06/20/2021 20:55

06/20/2021 20:55

Ss

Cn

Gl

ΆΙ

Sc

MW2-52

SAMPLE RESULTS - 02

Collected date/time: 06/14/21 13:57

L1367187

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	<u>quamer</u>	mg/kg	mg/kg	2 maari	date / time	
Indeno(1,2,3-cd)pyrene	U		0.00226	0.00750	1	06/22/2021 16:25	WG1692010
Naphthalene	U		0.00510	0.0250	1	06/22/2021 16:25	WG1692010
Phenanthrene	U		0.00289	0.00750	1	06/22/2021 16:25	WG1692010
Pyrene	U		0.00250	0.00750	1	06/22/2021 16:25	WG1692010
1-Methylnaphthalene	U		0.00561	0.0250	1	06/22/2021 16:25	WG1692010
2-Methylnaphthalene	U		0.00534	0.0250	1	06/22/2021 16:25	WG1692010
2-Chloronaphthalene	U		0.00583	0.0250	1	06/22/2021 16:25	WG1692010
(S) Nitrobenzene-d5	57.9			14.0-149		06/22/2021 16:25	WG1692010
(S) 2-Fluorobiphenyl	70.5			34.0-125		06/22/2021 16:25	WG1692010
(S) p-Terphenyl-d14	83.4			23.0-120		06/22/2021 16:25	WG1692010

SAMPLE RESULTS - 03

Collected date/time: 06/14/21 00:00

Volatile Organic Compounds (GC/MS) by Method 8260D

Volutile Organic et					F-11		
Analyto	Result	Qualifier	MDL ug/l	RDL	Dilution	Analysis data / timo	Batch
Analyte	ug/l	D.I.	ug/l	ug/l	1	date / time	WC4C02000
Acetone	1.45	<u>B J</u>	0.548	10.0	1	06/23/2021 17:55	WG1693908
crylonitrile	U		0.0760	0.500	1	06/23/2021 17:55	WG1693908
crolein	U		0.758	50.0	1	06/23/2021 17:55	WG1693908
Benzene	U		0.0160	0.0400	1	06/23/2021 17:55	WG1693908
Bromobenzene	U		0.0420	0.500	1	06/23/2021 17:55	WG1693908
dromodichloromethane	U		0.0315	0.100	1	06/23/2021 17:55	WG1693908
Bromoform	U		0.239	1.00	1	06/23/2021 17:55	WG1693908
romomethane	U		0.148	0.500	1	06/23/2021 17:55	WG1693908
-Butylbenzene	U		0.153	0.500	1	06/23/2021 17:55	WG1693908
ec-Butylbenzene	U		0.101	0.500	1	06/23/2021 17:55	WG1693908
ert-Butylbenzene	U		0.0620	0.200	1	06/23/2021 17:55	WG1693908
Carbon disulfide	U		0.162	0.500	1	06/23/2021 17:55	WG1693908
Carbon tetrachloride	U		0.0432	0.200	1	06/23/2021 17:55	WG1693908
Chlorobenzene	U		0.0229	0.100	1	06/23/2021 17:55	<u>WG1693908</u>
Chlorodibromomethane	U		0.0180	0.100	1	06/23/2021 17:55	<u>WG1693908</u>
Chloroethane	U		0.0432	0.200	1	06/23/2021 17:55	WG1693908
hloroform	U		0.0166	0.100	1	06/23/2021 17:55	<u>WG1693908</u>
Chloromethane	U		0.0556	0.500	1	06/23/2021 17:55	<u>WG1693908</u>
-Chlorotoluene	U		0.0368	0.100	1	06/23/2021 17:55	WG1693908
-Chlorotoluene	U		0.0452	0.200	1	06/23/2021 17:55	WG1693908
2-Dibromo-3-Chloropropane	U		0.204	1.00	1	06/23/2021 17:55	WG1693908
2-Dibromoethane	U		0.0210	0.100	1	06/23/2021 17:55	WG1693908
ibromomethane	U		0.0400	0.200	1	06/23/2021 17:55	WG1693908
2-Dichlorobenzene	U		0.0580	0.200	1	06/23/2021 17:55	WG1693908
3-Dichlorobenzene	U		0.0680	0.200	1	06/23/2021 17:55	WG1693908
4-Dichlorobenzene	U		0.0788	0.200	1	06/23/2021 17:55	WG1693908
ichlorodifluoromethane	U		0.0327	0.100	1	06/23/2021 17:55	WG1693908
1-Dichloroethane	U		0.0230	0.100	1	06/23/2021 17:55	WG1693908
2-Dichloroethane	U		0.0190	0.100	1	06/23/2021 17:55	WG1693908
1-Dichloroethene	U		0.0200	0.100	1	06/23/2021 17:55	WG1693908
is-1,2-Dichloroethene	U		0.0276	0.100	1	06/23/2021 17:55	WG1693908
rans-1,2-Dichloroethene	U		0.0572	0.200	1	06/23/2021 17:55	WG1693908
,2-Dichloropropane	U		0.0508	0.200	1	06/23/2021 17:55	WG1693908
1-Dichloropropene	U		0.0280	0.100	1	06/23/2021 17:55	WG1693908
,3-Dichloropropane	U		0.0700	0.200	1	06/23/2021 17:55	WG1693908
is-1,3-Dichloropropene	U		0.0271	0.100	1	06/23/2021 17:55	WG1693908
ans-1,3-Dichloropropene	U		0.0612	0.200	1	06/23/2021 17:55	WG1693908
,2-Dichloropropane	U		0.0317	0.100	1	06/23/2021 17:55	WG1693908
i-isopropyl ether	U		0.0140	0.0400	1	06/23/2021 17:55	WG1693908
thylbenzene	U		0.0212	0.100	1	06/23/2021 17:55	WG1693908
lexachloro-1,3-butadiene	U		0.508	1.00	1	06/23/2021 17:55	WG1693908
-Hexanone	U		0.400	1.00	1	06/23/2021 17:55	WG1693908
sopropylbenzene	U		0.0345	0.100	1	06/23/2021 17:55	WG1693908
-Isopropyltoluene	U		0.0932	0.200	1	06/23/2021 17:55	WG1693908
-Butanone (MEK)	U		0.500	1.00	1	06/23/2021 17:55	WG1693908
Methylene Chloride	U		0.265	1.00	1	06/23/2021 17:55	WG1693908
-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	06/23/2021 17:55	WG1693908
lethyl tert-butyl ether	U		0.0118	0.0400	1	06/23/2021 17:55	WG1693908
aphthalene	U	<u>J4</u>	0.124	0.500	1	06/23/2021 17:55	WG1693908
-Propylbenzene	U	<u> </u>	0.0472	0.200	1	06/23/2021 17:55	WG1693908
tyrene	U		0.109	0.500	1	06/23/2021 17:55	WG1693908
1,1,2-Tetrachloroethane	U		0.0200	0.300	1	06/23/2021 17:55	WG1693908
1,2,2-Tetrachloroethane	U		0.0200	0.100	1	06/23/2021 17:55	WG1693908
	U		0.0156	0.100	1	06/23/2021 17:55	WG1693908
1 /- I richiorotritiuoroothana			0.0270	0.100		001231202111.33	W01033300
,1,2-Trichlorotrifluoroethane Tetrachloroethene	U		0.0280	0.100	1	06/23/2021 17:55	WG1693908

Ss

Cn

Gl

³Sc

10 of 30

TRIP BLANK

SAMPLE RESULTS - 03

Collected date/time: 06/14/21 00:00

1367187

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,2,3-Trichlorobenzene	U		0.0250	0.500	1	06/23/2021 17:55	WG1693908
1,2,4-Trichlorobenzene	U		0.193	0.500	1	06/23/2021 17:55	WG1693908
1,1,1-Trichloroethane	U		0.0110	0.100	1	06/23/2021 17:55	WG1693908
1,1,2-Trichloroethane	U		0.0353	0.100	1	06/23/2021 17:55	WG1693908
Trichloroethene	U		0.0160	0.0400	1	06/23/2021 17:55	WG1693908
Trichlorofluoromethane	U		0.0200	0.100	1	06/23/2021 17:55	WG1693908
1,2,3-Trichloropropane	U		0.204	0.500	1	06/23/2021 17:55	WG1693908
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	06/23/2021 17:55	WG1693908
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	06/23/2021 17:55	WG1693908
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	06/23/2021 17:55	WG1693908
Vinyl chloride	U		0.0273	0.100	1	06/23/2021 17:55	WG1693908
Xylenes, Total	U		0.191	0.260	1	06/23/2021 17:55	WG1693908
(S) Toluene-d8	103			75.0-131		06/23/2021 17:55	WG1693908
(S) 4-Bromofluorobenzene	102			67.0-138		06/23/2021 17:55	WG1693908
(S) 1,2-Dichloroethane-d4	100			70.0-130		06/23/2021 17:55	WG1693908

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1367187-01,02

Method Blank (MB)

(MB) R36/0694-1 (06/22/21 09:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1367181-44 Original Sample (OS) • Duplicate (DUP)

(OS) L1367181-44 06/22/21 09:30 • (DUP) R3670694-3 06/22/21 09:30

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.4	83.0	1	1.67		10

Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3670694-2 06/22/21 09:30

	Spike Amount LCS Result LCS Rec.	Rec. Limits
Analyte	% %	%
otal Solids	50.0 50.0 100	85.0-115

QUALITY CONTROL SUMMARY

L1367187-02

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3670482-1 0	6/22/21 14:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cadmium	U		0.0855	1.00
Lead	0.102	J	0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3670482-2 06/22/2114:26

(LC3) R3070462-2 00/22	2/21 14.20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cadmium	100	96.7	96.7	80.0-120	
Lead	100	91.6	91.6	80.0-120	

(OS) L1366386-01 06/22/2114:29 • (MS) R3670482-5 06/22/2114:39 • (MSD) R3670482-6 06/22/2114:42

(03) 21300300 01 00/22/	, ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cadmium	100	0.706	92.4	87.4	91.7	86.6	5	75.0-125			5.67	20
Lead	100	2 61	86.6	83.0	84 0	80.3	5	75 0-125			4 33	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1367187-02

Method Blank (MB)

(MB) R3671140-2 06/23/2	21 16:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.0339	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3671140-1 06/23/2	21 15:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	6.10	111	71.0-124	
(S) a.a.a-Trifluorotoluene(FID)			114	77.0-120	

L1367187-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1367187-02 06/24/21 00:50 • (MS) R3671140-3 06/24/21 01:56 • (MSD) R3671140-4 06/24/21 02:18

QUALITY CONTROL SUMMARY

L1367187-01,02

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)

(MB) R3671386-3 06/20/2	113:52				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acetone	U		0.0365	0.0500	
Acrylonitrile	U		0.00361	0.0125	
Benzene	U		0.000467	0.00100	
Bromobenzene	U		0.000900	0.0125	
Bromodichloromethane	U		0.000725	0.00250	
Bromoform	U		0.00117	0.0250	
Bromomethane	U		0.00197	0.0125	
n-Butylbenzene	U		0.00525	0.0125	
sec-Butylbenzene	U		0.00288	0.0125	
tert-Butylbenzene	U		0.00195	0.00500	
Carbon disulfide	U		0.000700	0.0125	
Carbon tetrachloride	U		0.000898	0.00500	
Chlorobenzene	U		0.000210	0.00250	
Chlorodibromomethane	U		0.000612	0.00250	
Chloroethane	U		0.00170	0.00500	
Chloroform	U		0.00103	0.00250	
Chloromethane	U		0.00435	0.0125	
2-Chlorotoluene	U		0.000865	0.00250	
4-Chlorotoluene	U		0.000450	0.00500	
1,2-Dibromo-3-Chloropropane	U		0.00390	0.0250	
1,2-Dibromoethane	U		0.000648	0.00250	
Dibromomethane	U		0.000750	0.00500	
1,2-Dichlorobenzene	U		0.000425	0.00500	
1,3-Dichlorobenzene	U		0.000600	0.00500	
1,4-Dichlorobenzene	U		0.000700	0.00500	
Dichlorodifluoromethane	U		0.00161	0.00250	
1,1-Dichloroethane	U		0.000491	0.00250	
1,2-Dichloroethane	U		0.000649	0.00250	
l,1-Dichloroethene	U		0.000606	0.00250	
cis-1,2-Dichloroethene	U		0.000734	0.00250	
trans-1,2-Dichloroethene	U		0.00104	0.00500	
1,2-Dichloropropane	U		0.00142	0.00500	
1,1-Dichloropropene	U		0.000809	0.00250	
1,3-Dichloropropane	U		0.000501	0.00500	
cis-1,3-Dichloropropene	U		0.000757	0.00250	
trans-1,3-Dichloropropene	U		0.00114	0.00500	
2,2-Dichloropropane	U		0.00138	0.00250	
Di-isopropyl ether	U		0.000410	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Hexachloro-1,3-butadiene	U		0.00600	0.0250	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1367187-01,02

Method Blank (MB)

(MB) R3671386-3 06/20/2	21 13:52						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
sopropylbenzene	U		0.000425	0.00250			
p-Isopropyltoluene	U		0.00255	0.00500			
2-Butanone (MEK)	0.123		0.0635	0.100			
Methylene Chloride	U		0.00664	0.0250			
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250			
Methyl tert-butyl ether	U		0.000350	0.00100			
Naphthalene	U		0.00488	0.0125			
n-Propylbenzene	U		0.000950	0.00500			
Styrene	U		0.000229	0.0125			
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250			
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250			
etrachloroethene	U		0.000896	0.00250			
Toluene	U		0.00130	0.00500			
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250			
1,2,3-Trichlorobenzene	U		0.00733	0.0125			
1,2,4-Trichlorobenzene	U		0.00440	0.0125			
,1,1-Trichloroethane	U		0.000923	0.00250			
,1,2-Trichloroethane	U		0.000597	0.00250			
Frichloroethene	U		0.000584	0.00100			
richlorofluoromethane	U		0.000827	0.00250			
,2,3-Trichloropropane	U		0.00162	0.0125			
,2,3-Trimethylbenzene	U		0.00158	0.00500			
,2,4-Trimethylbenzene	U		0.00158	0.00500			
,3,5-Trimethylbenzene	U		0.00200	0.00500			
/inyl chloride	U		0.00116	0.00250			
Kylenes, Total	U		0.000880	0.00650			
(S) Toluene-d8	104			75.0-131			
(S) 4-Bromofluorobenzene	101			67.0-138			
(S) 1,2-Dichloroethane-d4	89.3			70.0-130			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3671386-1	06/20/21 12:36 •	(LCSD) R3671386-	2 06/20/21 12:55
------------------	------------------	------------------	------------------

(200) 11007 1000 1 0072072	22.00 (2002	,	00/20/21 12:01	•						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	0.657	0.694	105	111	10.0-160			5.48	31
Acrylonitrile	0.625	0.642	0.676	103	108	45.0-153			5.16	22
Benzene	0.125	0.145	0.144	116	115	70.0-123			0.692	20
Bromobenzene	0.125	0.135	0.134	108	107	73.0-121			0.743	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1367187-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3671386-1 06/20/21 12:36 • (LCSD) R3671386-2 06/20/21 12:55

(LCS) R36/1386-1 06/20/2	Spike Amount	•	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Bromodichloromethane	0.125	0.132	0.128	106	102	73.0-121			3.08	20
Bromoform	0.125	0.112	0.114	89.6	91.2	64.0-132			1.77	20
Bromomethane	0.125	0.140	0.137	112	110	56.0-147			2.17	20
n-Butylbenzene	0.125	0.135	0.139	108	111	68.0-135			2.92	20
sec-Butylbenzene	0.125	0.136	0.134	109	107	74.0-130			1.48	20
tert-Butylbenzene	0.125	0.131	0.135	105	108	75.0-127			3.01	20
Carbon disulfide	0.125	0.144	0.134	115	107	56.0-133			7.19	20
Carbon tetrachloride	0.125	0.131	0.131	105	105	66.0-128			0.000	20
Chlorobenzene	0.125	0.140	0.139	112	111	76.0-128			0.717	20
Chlorodibromomethane	0.125	0.122	0.125	97.6	100	74.0-127			2.43	20
Chloroethane	0.125	0.129	0.142	103	114	61.0-134			9.59	20
Chloroform	0.125	0.145	0.144	116	115	72.0-123			0.692	20
Chloromethane	0.125	0.155	0.150	124	120	51.0-138			3.28	20
2-Chlorotoluene	0.125	0.135	0.129	108	103	75.0-124			4.55	20
4-Chlorotoluene	0.125	0.136	0.134	109	107	75.0-124			1.48	20
1,2-Dibromo-3-Chloropropane	0.125	0.130	0.139	104	111	59.0-130			6.69	20
1,2-Dibromoethane	0.125	0.142	0.144	114	115	74.0-128			1.40	20
Dibromomethane	0.125	0.134	0.135	107	108	75.0-122			0.743	20
1,2-Dichlorobenzene	0.125	0.141	0.143	113	114	76.0-124			1.41	20
1,3-Dichlorobenzene	0.125	0.140	0.140	112	112	76.0-125			0.000	20
1,4-Dichlorobenzene	0.125	0.139	0.136	111	109	77.0-121			2.18	20
Dichlorodifluoromethane	0.125	0.131	0.135	105	108	43.0-156			3.01	20
1,1-Dichloroethane	0.125	0.124	0.125	99.2	100	70.0-127			0.803	20
1,2-Dichloroethane	0.125	0.135	0.134	108	107	65.0-131			0.743	20
1,1-Dichloroethene	0.125	0.147	0.148	118	118	65.0-131			0.678	20
cis-1,2-Dichloroethene	0.125	0.135	0.133	108	106	73.0-125			1.49	20
trans-1,2-Dichloroethene	0.125	0.132	0.137	106	110	71.0-125			3.72	20
1,2-Dichloropropane	0.125	0.133	0.137	106	110	74.0-125			2.96	20
1,1-Dichloropropene	0.125	0.149	0.150	119	120	73.0-125			0.669	20
1,3-Dichloropropane	0.125	0.137	0.137	110	110	80.0-125			0.000	20
cis-1,3-Dichloropropene	0.125	0.122	0.126	97.6	101	76.0-127			3.23	20
trans-1,3-Dichloropropene	0.125	0.121	0.126	96.8	101	73.0-127			4.05	20
2,2-Dichloropropane	0.125	0.136	0.140	109	112	59.0-135			2.90	20
Di-isopropyl ether	0.125	0.130	0.135	104	108	60.0-136			3.77	20
Ethylbenzene	0.125	0.141	0.146	113	117	74.0-126			3.48	20
Hexachloro-1,3-butadiene	0.125	0.146	0.153	117	122	57.0-150			4.68	20
Isopropylbenzene	0.125	0.142	0.144	114	115	72.0-127			1.40	20
p-Isopropyltoluene	0.125	0.135	0.139	108	111	72.0-133			2.92	20
2-Butanone (MEK)	0.625	0.671	0.675	107	108	30.0-160			0.594	24
Methylene Chloride	0.125	0.130	0.129	104	103	68.0-123			0.772	20

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

1367187-01,02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

C) D2671206	1 06/20/21/12:26	. (I CSD) P3671386-2	06/20/21 12:55

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	0.625	0.674	0.670	108	107	56.0-143			0.595	20	
Methyl tert-butyl ether	0.125	0.121	0.123	96.8	98.4	66.0-132			1.64	20	
Naphthalene	0.125	0.165	0.173	132	138	59.0-130	<u>J4</u>	<u>J4</u>	4.73	20	
n-Propylbenzene	0.125	0.136	0.134	109	107	74.0-126			1.48	20	
Styrene	0.125	0.138	0.135	110	108	72.0-127			2.20	20	
1,1,1,2-Tetrachloroethane	0.125	0.133	0.128	106	102	74.0-129			3.83	20	
1,1,2,2-Tetrachloroethane	0.125	0.134	0.128	107	102	68.0-128			4.58	20	
Tetrachloroethene	0.125	0.153	0.150	122	120	70.0-136			1.98	20	
Toluene	0.125	0.141	0.138	113	110	75.0-121			2.15	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.163	0.156	130	125	61.0-139			4.39	20	
1,2,3-Trichlorobenzene	0.125	0.181	0.187	145	150	59.0-139	<u>J4</u>	<u>J4</u>	3.26	20	
1,2,4-Trichlorobenzene	0.125	0.169	0.173	135	138	62.0-137		<u>J4</u>	2.34	20	
1,1,1-Trichloroethane	0.125	0.139	0.136	111	109	69.0-126			2.18	20	
1,1,2-Trichloroethane	0.125	0.129	0.128	103	102	78.0-123			0.778	20	
Trichloroethene	0.125	0.147	0.139	118	111	76.0-126			5.59	20	
Trichlorofluoromethane	0.125	0.135	0.130	108	104	61.0-142			3.77	20	
1,2,3-Trichloropropane	0.125	0.126	0.120	101	96.0	67.0-129			4.88	20	
1,2,3-Trimethylbenzene	0.125	0.132	0.132	106	106	74.0-124			0.000	20	
1,2,4-Trimethylbenzene	0.125	0.130	0.128	104	102	70.0-126			1.55	20	
1,3,5-Trimethylbenzene	0.125	0.132	0.129	106	103	73.0-127			2.30	20	
Vinyl chloride	0.125	0.132	0.137	106	110	63.0-134			3.72	20	
Xylenes, Total	0.375	0.433	0.435	115	116	72.0-127			0.461	20	
(S) Toluene-d8				99.2	102	75.0-131					
(S) 4-Bromofluorobenzene				99.9	102	67.0-138					

L1366711-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

98.9

99.2

(OS) L1366711-17 06/20/21 15:51 • (MS) R3671386-4 06/20/21 22:12 • (MSD) R3671386-5 06/20/21 22:31

Analyte mg/kg Acrylonitrile 0.869 Bromobenzene 0.174 Acetone 0.869 n-Butylbenzene 0.174 Benzene 0.174	369 74	U U	mg/kg 0.700 0.156	mg/kg 0.864 0.128	% 80.6 89.9	% 99.4 73.9	1	% 10.0-160		% 21.0	% 40
Bromobenzene 0.174 Acetone 0.869 n-Butylbenzene 0.174	74	U					1	10.0-160		21.0	40
Acetone 0.869 n-Butylbenzene 0.174			0.156	0.128	89.9	72.0					10
n-Butylbenzene 0.174	369	11				13.9	1	10.0-156		19.5	38
•	,,,,	U	0.575	0.618	66.2	71.2	1	10.0-160		7.21	40
Benzene 0.174	174	U	0.159	0.101	91.7	58.1	1	10.0-160	<u>J3</u>	44.9	40
	74	U	0.150	0.105	86.4	60.2	1	10.0-149		35.8	37
sec-Butylbenzene 0.174	174	U	0.159	0.108	91.7	62.0	1	10.0-159		38.7	39
tert-Butylbenzene 0.174	74	U	0.149	0.102	85.8	58.9	1	10.0-156		37.2	39
Bromodichloromethane 0.174	17/1	U	0.146	0.124	84.2	71.4	1	10.0-143		16.5	37

70.0-130

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Martin S. Burck Assoc.-Hood River, OR
 NORTH STAR
 L1367187
 06/25/21 10:41
 18 of 30

Methylene Chloride

0.174

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1366711-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1366711-17 06/20/21 15:51 • (MS) R3671386-4 06/20/21 22:12 • (MSD) R3671386-5 06/20/21 22:31

ľ	Cn
L	Ch
L	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Bromoform	0.174	U	0.153	0.152	87.9	87.4	1	10.0-146			0.523	36
Bromomethane	0.174	U	0.0963	0.0545	55.4	31.4	1	10.0-149		<u>J3</u>	55.4	38
2-Chlorotoluene	0.174	U	0.148	0.115	85.3	66.0	1	10.0-159			25.6	38
1-Chlorotoluene	0.174	U	0.145	0.114	83.6	65.9	1	10.0-155			23.7	39
Carbon disulfide	0.174	U	0.119	0.0666	68.6	38.3	1	10.0-145		<u>J3</u>	56.6	39
Carbon tetrachloride	0.174	U	0.140	0.0888	80.8	51.1	1	10.0-145		<u>J3</u>	45.1	37
Chlorobenzene	0.174	U	0.152	0.116	87.5	66.9	1	10.0-152			26.7	39
Chlorodibromomethane	0.174	U	0.151	0.146	86.9	83.9	1	10.0-146			3.44	37
Dibromomethane	0.174	U	0.155	0.149	89.0	85.7	1	10.0-147			3.78	35
Chloroethane	0.174	U	0.0563	0.0357	32.4	20.6	1	10.0-146		<u>J3</u>	44.7	40
Chloroform	0.174	U	0.150	0.114	86.6	65.5	1	10.0-146			27.7	37
Chloromethane	0.174	U	0.117	0.0744	67.4	42.8	1	10.0-159		<u>J3</u>	44.6	37
1,2-Dibromo-3-Chloropropane	0.174	U	0.155	0.175	89.4	101	1	10.0-151			12.2	39
I,2-Dibromoethane	0.174	U	0.171	0.169	98.2	97.2	1	10.0-148			0.939	34
l,2-Dichlorobenzene	0.174	U	0.169	0.148	97.2	85.4	1	10.0-155			13.0	37
,3-Dichlorobenzene	0.174	U	0.157	0.132	90.2	76.0	1	10.0-153			17.1	38
l,4-Dichlorobenzene	0.174	U	0.156	0.129	89.6	74.1	1	10.0-151			18.9	38
l,1-Dichloropropene	0.174	U	0.145	0.0843	83.6	48.5	1	10.0-153		<u>J3</u>	53.1	35
1,3-Dichloropropane	0.174	U	0.167	0.159	96.3	91.7	1	10.0-154			4.88	35
Dichlorodifluoromethane	0.174	U	0.128	0.0724	73.5	41.7	1	10.0-160		<u>J3</u>	55.3	35
1,1-Dichloroethane	0.174	U	0.131	0.0891	75.7	51.3	1	10.0-147		<u>J3</u>	38.4	37
1,2-Dichloroethane	0.174	U	0.156	0.144	89.9	82.8	1	10.0-148			8.18	35
2,2-Dichloropropane	0.174	U	0.0892	0.0446	51.4	25.7	1	10.0-138		<u>J3</u>	66.7	36
1,1-Dichloroethene	0.174	U	0.146	0.0864	84.0	49.7	1	10.0-155		<u>J3</u>	51.3	37
cis-1,2-Dichloroethene	0.174	U	0.139	0.104	80.1	59.6	1	10.0-149		_	29.3	37
Di-isopropyl ether	0.174	U	0.152	0.130	87.3	75.0	1	10.0-147			15.1	36
trans-1,2-Dichloroethene	0.174	U	0.133	0.0830	76.4	47.8	1	10.0-150		<u>J3</u>	46.1	37
1,2-Dichloropropane	0.174	U	0.152	0.115	87.3	66.4	1	10.0-148			27.2	37
Hexachloro-1,3-butadiene	0.174	U	0.295	0.229	170	132	1	10.0-160	<u>J5</u>		24.9	40
cis-1,3-Dichloropropene	0.174	U	0.142	0.123	81.8	70.6	1	10.0-151			14.8	37
rans-1,3-Dichloropropene	0.174	U	0.150	0.137	86.1	78.9	1	10.0-148			8.78	37
o-Isopropyltoluene	0.174	U	0.163	0.111	93.6	63.7	1	10.0-160			38.0	40
Ethylbenzene	0.174	U	0.146	0.101	84.0	58.0	1	10.0-160			36.7	38
Naphthalene	0.174	U	0.242	0.258	139	149	1	10.0-160			6.37	36
sopropylbenzene	0.174	U	0.150	0.0991	86.5	57.1	1	10.0-155		<u>J3</u>	41.0	38
n-Propylbenzene	0.174	U	0.145	0.0923	83.3	53.1	1	10.0-158		<u>J3</u>	44.3	38
2-Butanone (MEK)	0.869	U	0.821	0.875	94.5	101	1	10.0-160		_	6.39	40
I,1,1,2-Tetrachloroethane	0.174	U	0.143	0.120	82.3	68.9	1	10.0-149			17.7	39
			0.440	0.400	00.0	FO 4		40.0.444			22.4	27

0.103

82.2

59.4

10.0-141

0.143

32.1

DATE/TIME:

06/25/21 10:41

37

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1367187-01,02

L1366711-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1366711-17 06/20/21 15:51 • (MS) R3671386-4 06/20/21 22:12 • (MSD) R3671386-5 06/20/21 22:31

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
4-Methyl-2-pentanone (MIBK)	0.869	U	0.797	0.869	91.7	100	1	10.0-160			8.61	35	
Methyl tert-butyl ether	0.174	U	0.147	0.135	84.7	78.0	1	11.0-147			8.23	35	
Styrene	0.174	U	0.152	0.119	87.3	68.6	1	10.0-160			24.0	40	
1,1,2,2-Tetrachloroethane	0.174	U	0.504	0.486	290	280	1	10.0-160	<u>J5</u>	<u>J5</u>	3.54	35	
1,2,3-Trichloropropane	0.174	U	0.153	0.124	88.0	71.4	1	10.0-156			20.8	35	
Tetrachloroethene	0.174	U	0.146	0.0856	84.2	49.3	1	10.0-156		<u>J3</u>	52.4	39	
1,2,3-Trimethylbenzene	0.174	U	0.153	0.126	88.1	72.8	1	10.0-160			19.1	36	
1,2,4-Trimethylbenzene	0.174	U	0.145	0.110	83.6	63.3	1	10.0-160			27.6	36	
Toluene	0.174	U	0.148	0.103	85.0	59.4	1	10.0-156			35.5	38	
1,1,2-Trichlorotrifluoroethane	0.174	U	0.169	0.0869	97.2	50.0	1	10.0-160		<u>J3</u>	64.2	36	
1,3,5-Trimethylbenzene	0.174	U	0.143	0.102	82.4	59.0	1	10.0-160			33.1	38	
1,2,3-Trichlorobenzene	0.174	U	0.223	0.237	128	137	1	10.0-160			6.23	40	
1,2,4-Trichlorobenzene	0.174	U	0.228	0.204	131	117	1	10.0-160			11.1	40	
1,1,1-Trichloroethane	0.174	U	0.136	0.0800	78.4	46.1	1	10.0-144		<u>J3</u>	52.0	35	
1,1,2-Trichloroethane	0.174	U	0.175	0.166	101	95.4	1	10.0-160			5.61	35	
Trichloroethene	0.174	U	0.156	0.105	90.1	60.2	1	10.0-156		<u>J3</u>	39.8	38	
Trichlorofluoromethane	0.174	U	0.0865	0.0422	49.8	24.3	1	10.0-160		<u>J3</u>	68.8	40	
Vinyl chloride	0.174	U	0.117	0.0639	67.3	36.8	1	10.0-160		<u>J3</u>	58.7	37	
Xylenes, Total	0.521	U	0.454	0.327	87.2	62.7	1	10.0-160			32.7	38	
(S) Toluene-d8					101	103		75.0-131					
(S) 4-Bromofluorobenzene					122	122		67.0-138					

96.4

70.0-130

97.3

Sample Narrative:

(S) 1,2-Dichloroethane-d4

OS: Non-target compounds too high to run at a lower dilution.

WG1693908

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

1367187-03

Method Blank (MB)

(MB) R3671531-2 06/23/21	I 13:54				
(2) 1.007.1001.2 007.207.2	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	1.00		0.548	10.0	
Acrolein	U		0.758	50.0	
Acrylonitrile	U		0.0760	0.500	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	
Bromomethane	U		0.148	0.500	
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	
tert-Butylbenzene	U		0.0620	0.200	
Carbon disulfide	U		0.162	0.500	
Carbon tetrachloride	U		0.0432	0.200	
Chlorobenzene	U		0.0229	0.100	
Chlorodibromomethane	U		0.0180	0.100	
Chloroethane	U		0.0432	0.200	
Chloroform	U		0.0166	0.100	
Chloromethane	U		0.0556	0.500	
2-Chlorotoluene	U		0.0368	0.100	
4-Chlorotoluene	U		0.0452	0.200	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0400	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.100	
1,1-Dichloroethane	U		0.0230	0.100	
1,2-Dichloroethane	U		0.0190	0.100	
1,1-Dichloroethene	U		0.0200	0.100	
cis-1,2-Dichloroethene	U		0.0276	0.100	
trans-1,2-Dichloroethene	U		0.0572	0.200	
1,2-Dichloropropane	U		0.0508	0.200	
1,1-Dichloropropene	U		0.0280	0.100	
1,3-Dichloropropane	U		0.0700	0.200	
cis-1,3-Dichloropropene	U		0.0271	0.100	
trans-1,3-Dichloropropene	U		0.0612	0.200	
2,2-Dichloropropane	U		0.0317	0.100	
Di-isopropyl ether	U		0.0140	0.0400	
Ethylbenzene	U		0.0212	0.100	

WG1693908

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1367187-03

Method Blank (MB)

(MB) R3671531-2 06/23/2	1 13:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Hexachloro-1,3-butadiene	U		0.508	1.00	
2-Hexanone	U		0.400	1.00	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	U		0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	
Tetrachloroethene	U		0.0280	0.100	
Toluene	U		0.0500	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	
1,1,1-Trichloroethane	U		0.0110	0.100	
1,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
1,2,3-Trichloropropane	U		0.204	0.500	
,2,3-Trimethylbenzene	U		0.0460	0.200	
l,2,4-Trimethylbenzene	U		0.0464	0.200	
,3,5-Trimethylbenzene	U		0.0432	0.200	
/inyl chloride	U		0.0273	0.100	
Kylenes, Total	U		0.191	0.260	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	101			67.0-138	
(S) 1,2-Dichloroethane-d4	99.2			70.0-130	

(ICS) R3671531-1	06/23/21 13:16
(LCJ	1130/1331-1	00/23/21 13.10

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Acetone	25.0	25.3	101	10.0-160
Acrolein	25.0	21.5	86.0	10.0-160

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1367187-03

CLCS R3671531-1 06/23/21 13:16 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier	
Analyte ug/l ug/l % % Acrylonitrile 25.0 24.3 97.2 45.0-153 Benzene 5.00 5.65 113 70.0-123 Bromobenzene 5.00 5.38 108 73.0-121 Bromodichloromethane 5.00 5.31 106 73.0-121 Bromomethane 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Acrylonitrile 25.0 24.3 97.2 45.0-153 Benzene 5.00 5.65 113 70.0-123 Bromobenzene 5.00 5.38 108 73.0-121 Bromodichloromethane 5.00 5.31 106 73.0-121 Bromoform 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Benzene 5.00 5.65 113 70.0-123 Bromobenzene 5.00 5.38 108 73.0-121 Bromodichloromethane 5.00 5.31 106 73.0-121 Bromoform 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Bromobenzene 5.00 5.38 108 73.0-121 Bromodichloromethane 5.00 5.31 106 73.0-121 Bromoform 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Bromodichloromethane 5.00 5.31 106 73.0-121 Bromoform 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Bromoform 5.00 5.36 107 64.0-132 Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	
Bromomethane 5.00 5.31 106 56.0-147 n-Butylbenzene 5.00 5.10 102 68.0-135	Γ.
n-Butylbenzene 5.00 5.10 102 68.0-135	
coc Putulborrona 5.00 5.21 104 74.0.120	
sec-Butylbenzene 5.00 5.21 104 74.0-130	
tert-Butylbenzene 5.00 4.98 99.6 75.0-127	
Carbon disulfide 5.00 5.78 116 56.0-133	
Carbon tetrachloride 5.00 5.73 115 66.0-128	
Chlorobenzene 5.00 5.50 110 76.0-128	
Chlorodibromomethane 5.00 5.11 102 74.0-127	
Chloroethane 5.00 5.43 109 61.0-134	
Chloroform 5.00 6.02 120 72.0-123	
Chloromethane 5.00 5.55 111 51.0-138	L
2-Chlorotoluene 5.00 5.46 109 75.0-124	[
4-Chlorotoluene 5.00 5.42 108 75.0-124	
1,2-Dibromo-3-Chloropropane 5.00 5.37 107 59.0-130	-
1,2-Dibromoethane 5.00 5.40 108 74.0-128	
Dibromomethane 5.00 5.48 110 75.0-122	
1,2-Dichlorobenzene 5.00 5.31 106 76.0-124	
1,3-Dichlorobenzene 5.00 5.29 106 76.0-125	
1,4-Dichlorobenzene 5.00 5.16 103 77.0-121	
Dichlorodifluoromethane 5.00 5.18 104 43.0-156	
1,1-Dichloroethane 5.00 5.04 101 70.0-127	
1,2-Dichloroethane 5.00 5.51 110 65.0-131	
1,1-Dichloroethene 5.00 5.94 119 65.0-131	
cis-1,2-Dichloroethene 5.00 5.29 106 73.0-125	
trans-1,2-Dichloroethene 5.00 5.67 113 71.0-125	
1,2-Dichloropropane 5.00 5.27 105 74.0-125	
1,1-Dichloropropene 5.00 5.80 116 73.0-125	
1,3-Dichloropropane 5.00 5.42 108 80.0-125	
cis-1,3-Dichloropropene 5.00 5.06 101 76.0-127	
trans-1,3-Dichloropropene 5.00 5.16 103 73.0-127	
2,2-Dichloropropane 5.00 5.88 118 59.0-135	
Di-isopropyl ether 5.00 5.43 109 60.0-136	
Ethylbenzene 5.00 5.45 109 74.0-126	
Hexachloro-1,3-butadiene 5.00 5.92 118 57.0-150	
2-Hexanone 25.0 25.2 101 54.0-147	

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

L1367187-03

Volatile Organic Compounds (GC/MS) by Method 8260D

102

70.0-130

(LCS) R3671531-1 06/23/2	21 13:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Isopropylbenzene	5.00	5.63	113	72.0-127	
p-Isopropyltoluene	5.00	5.10	102	72.0-133	
2-Butanone (MEK)	25.0	27.9	112	30.0-160	
Methylene Chloride	5.00	5.36	107	68.0-123	
4-Methyl-2-pentanone (MIBK)	25.0	26.2	105	56.0-143	
Methyl tert-butyl ether	5.00	4.77	95.4	66.0-132	
Naphthalene	5.00	6.58	132	59.0-130	<u>J4</u>
n-Propylbenzene	5.00	5.16	103	74.0-126	
Styrene	5.00	5.24	105	72.0-127	
1,1,1,2-Tetrachloroethane	5.00	5.29	106	74.0-129	
1,1,2,2-Tetrachloroethane	5.00	4.76	95.2	68.0-128	
Tetrachloroethene	5.00	5.91	118	70.0-136	
Toluene	5.00	5.49	110	75.0-121	
1,1,2-Trichlorotrifluoroethane	5.00	6.14	123	61.0-139	
1,2,3-Trichlorobenzene	5.00	6.86	137	59.0-139	
1,2,4-Trichlorobenzene	5.00	5.98	120	62.0-137	
1,1,1-Trichloroethane	5.00	5.33	107	69.0-126	
1,1,2-Trichloroethane	5.00	4.97	99.4	78.0-123	
Trichloroethene	5.00	5.75	115	76.0-126	
Trichlorofluoromethane	5.00	5.59	112	61.0-142	
1,2,3-Trichloropropane	5.00	4.74	94.8	67.0-129	
1,2,3-Trimethylbenzene	5.00	5.11	102	74.0-124	
1,2,4-Trimethylbenzene	5.00	4.90	98.0	70.0-126	
1,3,5-Trimethylbenzene	5.00	5.02	100	73.0-127	
Vinyl chloride	5.00	5.15	103	63.0-134	
Xylenes, Total	15.0	17.2	115	72.0-127	
(S) Toluene-d8			102	75.0-131	
(S) 4-Bromofluorobenzene			103	67.0-138	

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1367187-02

Method Blank (MB)

(MB) R3671392-1 06/23/21	23:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	71.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3671392-2 06/23/	21 23:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	41.2	82.4	50.0-150	
(S) o-Terphenyl			92.5	18.0-148	

L1367187-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1367187-02 06/23/21 23:43 • (MS) R3671392-3 06/23/21 23:56 • (MSD) R3671392-4 06/24/21 00:10

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	61.8	U	36.8	30.4	59.5	49.6	1	50.0-150		<u>J6</u>	19.0	20
(S) o-Terphenyl					59.1	51.5		18.0-148				

WG1692010

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1367187-02

Method Blank (MB)

(MB) R3670421-2 06/2	2/21 11:46				- `
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Anthracene	U		0.00230	0.00600	· <u>L</u>
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4 (
Benzo(b)fluoranthene	U		0.00153	0.00600	╘
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	ΙĽ
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	54.9			14.0-149	
(S) 2-Fluorobiphenyl	68.6			34.0-125	
(S) p-Terphenyl-d14	86.8			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3670421-1 06/22	.CS) R3670421-1 06/22/21 11:26								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Anthracene	0.0800	0.0621	77.6	50.0-126					
Acenaphthene	0.0800	0.0577	72.1	50.0-120					
Acenaphthylene	0.0800	0.0632	79.0	50.0-120					
Benzo(a)anthracene	0.0800	0.0629	78.6	45.0-120					
Benzo(a)pyrene	0.0800	0.0504	63.0	42.0-120					
Benzo(b)fluoranthene	0.0800	0.0529	66.1	42.0-121					
Benzo(g,h,i)perylene	0.0800	0.0516	64.5	45.0-125					
Benzo(k)fluoranthene	0.0800	0.0548	68.5	49.0-125					
Chrysene	0.0800	0.0606	75.8	49.0-122					
Dibenz(a,h)anthracene	0.0800	0.0507	63.4	47.0-125					
Fluoranthene	0.0800	0.0655	81.9	49.0-129					

ACCOUNT:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1367187-02

Laboratory Control Sample (LCS)

(LCS) R3670421-1	06/22/21	11.26

(OS) L1366824-14 06/22/21 14:25 • (MS) R3670421-3 06/22/21 14:45 • (MSD) R3670421-4 06/22/21 15:05

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0869	U	0.0456	0.0483	52.5	55.6	1	10.0-145			5.81	30	_
Acenaphthene	0.0869	U	0.0450	0.0488	51.8	56.2	1	14.0-127			8.00	27	
Acenaphthylene	0.0869	U	0.0485	0.0524	55.8	60.3	1	21.0-124			7.89	25	
Benzo(a)anthracene	0.0869	U	0.0420	0.0456	48.3	52.5	1	10.0-139			8.31	30	
Benzo(a)pyrene	0.0869	U	0.0415	0.0445	47.8	51.2	1	10.0-141			6.88	31	
Benzo(b)fluoranthene	0.0869	U	0.0398	0.0430	45.8	49.5	1	10.0-140			7.69	36	
Benzo(g,h,i)perylene	0.0869	U	0.0413	0.0445	47.5	51.2	1	10.0-140			7.43	33	
Benzo(k)fluoranthene	0.0869	U	0.0411	0.0436	47.3	50.1	1	10.0-137			5.91	31	
Chrysene	0.0869	U	0.0454	0.0490	52.2	56.4	1	10.0-145			7.71	30	
Dibenz(a,h)anthracene	0.0869	U	0.0372	0.0397	42.8	45.7	1	10.0-132			6.51	31	
Fluoranthene	0.0869	U	0.0472	0.0498	54.3	57.3	1	10.0-153			5.39	33	
Fluorene	0.0869	U	0.0513	0.0555	59.0	63.9	1	11.0-130			7.88	29	
Indeno(1,2,3-cd)pyrene	0.0869	U	0.0384	0.0399	44.2	45.9	1	10.0-137			3.77	32	
Naphthalene	0.0869	U	0.0499	0.0503	57.5	57.9	1	10.0-135			0.681	27	
Phenanthrene	0.0869	U	0.0458	0.0488	52.7	56.2	1	10.0-144			6.25	31	
Pyrene	0.0869	U	0.0470	0.0506	54.1	58.2	1	10.0-148			7.46	35	
1-Methylnaphthalene	0.0869	U	0.0536	0.0527	61.6	60.6	1	10.0-142			1.71	28	
2-Methylnaphthalene	0.0869	U	0.0579	0.0503	66.6	57.9	1	10.0-137			14.1	28	
2-Chloronaphthalene	0.0869	U	0.0469	0.0511	53.9	58.8	1	29.0-120			8.59	24	
(S) Nitrobenzene-d5					51.4	54.6		14.0-149					
(S) 2-Fluorobiphenyl					60.1	63.1		34.0-125					
(S) p-Terphenyl-d14					62.9	67.3		23.0-120					

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Martin S. Burck Assoc.-Hood River, OR
 NORTH STAR
 L1367187
 06/25/21 10:41
 27 of 30

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Delimitions
Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Method Detection Limit.
Method Detection Limit.
Reported Detection Limit.
Reported Detection Limit.
Recovery.
Relative Percent Difference.
Sample Delivery Group.
Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Not detected at the Reporting Limit (or MDL where applicable).
The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Confidence level of 2 sigma.
A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

В	The same analyte is found in the associated blank.
C5	The reported concentration is an estimate. The continuing calibration standard associated with this data responded high. Data is likely to show a high bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

			Billing Information:					ie.	Ar	nalysis /	Contain	er / Pres	ervative		•	Chain of Custody	Page of		
Martin S. Burck Associates 200 N. Wasco Ct., Hood River, OR 97031		200 N. V	s Payable Vasco Ct. ver, OR 9703	Pres Chk												Pace.	Analytical ** setter for Teetling & Innovation		
Report to: Josh Owen			Email To:	msbaenviron	mental.com										1	12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58			
Project Description: NWM Sta	er Cast	rec)		City/State Collected: Vav	ncouver, v	VA		J. 7.	3	د	Fig.					Phone: 800-767-58 Fax: 615-758-5859			
Phone: 541.387.4422 Fax: 541.387.4813	Client Project	oject#		Lab Project #	4 Star				E SIM	7-0	ead					J13	39		
Collected by (print): Jan Wh. h	Site/Facility ID			P.O.# North	Star	1	OX	1 GX	270	82600	7,1					Acctnum:			
Collected by (signature): Immediately Packed on Ice N Y	Same Da		Day	otified) V Rad Only) Date Results Needed				+ +	+ +	+	PAHS - 8	VOCs - 87	admiss					Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	2	2	PA	5	Ü					Shipped Via: Remarks	Sample # (lab only)		
Mw2-5	gras	55	5	6/14/21	11:22					×							701		
MW2-52	grab	55	52'	6/14/21	13:57		×	X	×	×	×						-02		
Trip Blank										X							-03		
								70.											
						1													
															1				
										50.00									
* Matrix; Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay									pH Flov		Tem		COC Bott	Seal P Signed les ar	ple Receipt C Present/Intact d/Accurate: crive intact: ottles used:				
WW - WasteWater DW - Drinking Water OT - Other OT1 = Distilled Water OT2 = Lab Provided Water UPS FedEx Con						86	2	'5C	18	11	10		Suff	icient Zero H	volume sent If Applica Headspace: Lon Correct/Cl	ble Y N			
Relinquished by : (Signature)		b (5	121	15:30	eceived by: (Signa				1	THIP DIS	H.		HCL / Meo TBR	н					
Relinquished by : (Signature)		Date:		Time: R	eceived by: (Signa	ture)				AND THE	7.00	C Goot	les Received	: If pre	servation	on required by Lo	ogin: Date/Time		
Relinquished by : (Signature)		Date:						,		Date:	121	Tim	400	Hold:			Condition: NCF / OR		

DRAFT

18) Sample Date 6/24/21 (#L1371625)

Martin S. Burck Assoc.-Hood River, OR

L1371625 Sample Delivery Group:

Samples Received: 06/26/2021

Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

3

4

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
S51-5 L1371625-01 Solid			Jon White	06/24/21 13:33	06/26/21 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1699112	1	07/02/21 14:37	07/02/21 14:58	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1699773	1	07/03/21 14:25	07/06/21 16:41	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S51-6 L1371625-02 Solid			Jon White	06/24/21 13:56	06/26/21 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1699112	1	07/02/21 14:37	07/02/21 14:58	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1699773	1	07/03/21 14:25	07/05/21 10:13	SHG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S66-1.5 L1371625-03 Solid			Jon White	06/24/21 14:11	06/26/21 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1699112	1	07/02/21 14:37	07/02/21 14:58	KDW	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1699773	1	07/03/21 14:25	07/06/21 16:59	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EB-8 L1371625-04 GW			Jon White	06/24/21 13:10	06/26/21 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

WG1698042

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

07/01/21 10:34

06/30/21 22:46

LEA

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

SAMPLE RESULTS - 01

1371625

Total Solids by Method 2540 G-2011

Collected date/time: 06/24/21 13:33

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.0		1	07/02/2021 14:58	WG1699112

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0129		0.00256	0.00667	1	07/06/2021 16:41	WG1699773
Acenaphthene	0.00287	J	0.00232	0.00667	1	07/06/2021 16:41	WG1699773
Acenaphthylene	0.0101		0.00240	0.00667	1	07/06/2021 16:41	WG1699773
Benzo(a)anthracene	0.0698		0.00192	0.00667	1	07/06/2021 16:41	WG1699773
Benzo(a)pyrene	0.0989		0.00199	0.00667	1	07/06/2021 16:41	WG1699773
Benzo(b)fluoranthene	0.121		0.00170	0.00667	1	07/06/2021 16:41	WG1699773
Benzo(g,h,i)perylene	0.111		0.00197	0.00667	1	07/06/2021 16:41	WG1699773
Benzo(k)fluoranthene	0.0386		0.00239	0.00667	1	07/06/2021 16:41	WG1699773
Chrysene	0.0760		0.00258	0.00667	1	07/06/2021 16:41	WG1699773
Dibenz(a,h)anthracene	0.0169		0.00191	0.00667	1	07/06/2021 16:41	WG1699773
Fluoranthene	0.119		0.00252	0.00667	1	07/06/2021 16:41	WG1699773
Fluorene	0.00349	<u>J</u>	0.00228	0.00667	1	07/06/2021 16:41	WG1699773
Indeno(1,2,3-cd)pyrene	0.0968		0.00201	0.00667	1	07/06/2021 16:41	WG1699773
Naphthalene	0.0296		0.00454	0.0222	1	07/06/2021 16:41	WG1699773
Phenanthrene	0.0824		0.00257	0.00667	1	07/06/2021 16:41	WG1699773
Pyrene	0.132		0.00222	0.00667	1	07/06/2021 16:41	WG1699773
1-Methylnaphthalene	0.0138	J	0.00499	0.0222	1	07/06/2021 16:41	WG1699773
2-Methylnaphthalene	0.0218	J	0.00475	0.0222	1	07/06/2021 16:41	WG1699773
2-Chloronaphthalene	U		0.00518	0.0222	1	07/06/2021 16:41	WG1699773
(S) Nitrobenzene-d5	88.7			14.0-149		07/06/2021 16:41	WG1699773
(S) 2-Fluorobiphenyl	75.1			34.0-125		07/06/2021 16:41	WG1699773
(S) p-Terphenyl-d14	87.3			23.0-120		07/06/2021 16:41	WG1699773

SAMPLE RESULTS - 02

L1371625

Total Solids by Method 2540 G-2011

Collected date/time: 06/24/21 13:56

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	86.0		1	07/02/2021 14:58	WG1699112		

Ср

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00285	<u>J</u>	0.00267	0.00697	1	07/05/2021 10:13	WG1699773
Acenaphthene	U		0.00243	0.00697	1	07/05/2021 10:13	WG1699773
Acenaphthylene	0.00438	<u>J</u>	0.00251	0.00697	1	07/05/2021 10:13	WG1699773
Benzo(a)anthracene	0.0271		0.00201	0.00697	1	07/05/2021 10:13	WG1699773
Benzo(a)pyrene	0.0373		0.00208	0.00697	1	07/05/2021 10:13	WG1699773
Benzo(b)fluoranthene	0.0427		0.00178	0.00697	1	07/05/2021 10:13	WG1699773
Benzo(g,h,i)perylene	0.0372		0.00206	0.00697	1	07/05/2021 10:13	WG1699773
Benzo(k)fluoranthene	0.0139		0.00250	0.00697	1	07/05/2021 10:13	WG1699773
Chrysene	0.0318		0.00270	0.00697	1	07/05/2021 10:13	WG1699773
Dibenz(a,h)anthracene	0.00484	<u>J</u>	0.00200	0.00697	1	07/05/2021 10:13	WG1699773
Fluoranthene	0.0573		0.00264	0.00697	1	07/05/2021 10:13	WG1699773
Fluorene	U		0.00238	0.00697	1	07/05/2021 10:13	WG1699773
Indeno(1,2,3-cd)pyrene	0.0341		0.00210	0.00697	1	07/05/2021 10:13	WG1699773
Naphthalene	0.0181	<u>J</u>	0.00474	0.0232	1	07/05/2021 10:13	WG1699773
Phenanthrene	0.0303		0.00269	0.00697	1	07/05/2021 10:13	WG1699773
Pyrene	0.0599		0.00232	0.00697	1	07/05/2021 10:13	WG1699773
1-Methylnaphthalene	0.00622	<u>J</u>	0.00522	0.0232	1	07/05/2021 10:13	WG1699773
2-Methylnaphthalene	0.0106	<u>J</u>	0.00496	0.0232	1	07/05/2021 10:13	WG1699773
2-Chloronaphthalene	U		0.00542	0.0232	1	07/05/2021 10:13	WG1699773
(S) Nitrobenzene-d5	91.3			14.0-149		07/05/2021 10:13	WG1699773
(S) 2-Fluorobiphenyl	74.7			34.0-125		07/05/2021 10:13	WG1699773
(S) p-Terphenyl-d14	85.5			23.0-120		07/05/2021 10:13	WG1699773

S66-1.5

SAMPLE RESULTS - 03

Collected date/time: 06/24/21 14:11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.3		1	07/02/2021 14:58	WG1699112

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0121		0.00244	0.00636	1	07/06/2021 16:59	WG1699773
Acenaphthene	U		0.00222	0.00636	1	07/06/2021 16:59	WG1699773
Acenaphthylene	0.0170		0.00229	0.00636	1	07/06/2021 16:59	WG1699773
Benzo(a)anthracene	0.0692		0.00184	0.00636	1	07/06/2021 16:59	WG1699773
Benzo(a)pyrene	0.0607		0.00190	0.00636	1	07/06/2021 16:59	WG1699773
Benzo(b)fluoranthene	0.0960		0.00162	0.00636	1	07/06/2021 16:59	WG1699773
Benzo(g,h,i)perylene	0.0557		0.00188	0.00636	1	07/06/2021 16:59	WG1699773
Benzo(k)fluoranthene	0.0316		0.00228	0.00636	1	07/06/2021 16:59	WG1699773
Chrysene	0.0711		0.00246	0.00636	1	07/06/2021 16:59	WG1699773
Dibenz(a,h)anthracene	0.0106		0.00182	0.00636	1	07/06/2021 16:59	WG1699773
Fluoranthene	0.120		0.00241	0.00636	1	07/06/2021 16:59	WG1699773
Fluorene	0.00372	J	0.00217	0.00636	1	07/06/2021 16:59	WG1699773
Indeno(1,2,3-cd)pyrene	0.0536		0.00192	0.00636	1	07/06/2021 16:59	WG1699773
Naphthalene	0.0244		0.00433	0.0212	1	07/06/2021 16:59	WG1699773
Phenanthrene	0.0557		0.00245	0.00636	1	07/06/2021 16:59	WG1699773
Pyrene	0.122		0.00212	0.00636	1	07/06/2021 16:59	WG1699773
1-Methylnaphthalene	0.00644	J	0.00476	0.0212	1	07/06/2021 16:59	WG1699773
2-Methylnaphthalene	0.00941	J	0.00453	0.0212	1	07/06/2021 16:59	WG1699773
2-Chloronaphthalene	U		0.00494	0.0212	1	07/06/2021 16:59	WG1699773
(S) Nitrobenzene-d5	87.5			14.0-149		07/06/2021 16:59	WG1699773
(S) 2-Fluorobiphenyl	76.4			34.0-125		07/06/2021 16:59	WG1699773
(S) p-Terphenyl-d14	88.6			23.0-120		07/06/2021 16:59	WG1699773

(S) p-Terphenyl-d14

93.0

SAMPLE RESULTS - 04

1371625

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Anthracene	U		0.0190	0.0500	1	07/01/2021 10:34	WG1698042	
Acenaphthene	U		0.0190	0.0500	1	07/01/2021 10:34	WG1698042	
Acenaphthylene	U		0.0171	0.0500	1	07/01/2021 10:34	WG1698042	
Benzo(a)anthracene	U		0.0203	0.0500	1	07/01/2021 10:34	WG1698042	
Benzo(a)pyrene	U		0.0184	0.0500	1	07/01/2021 10:34	WG1698042	
Benzo(b)fluoranthene	U		0.0168	0.0500	1	07/01/2021 10:34	WG1698042	
Benzo(g,h,i)perylene	U		0.0184	0.0500	1	07/01/2021 10:34	WG1698042	
Benzo(k)fluoranthene	U		0.0202	0.0500	1	07/01/2021 10:34	WG1698042	
Chrysene	U		0.0179	0.0500	1	07/01/2021 10:34	WG1698042	
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	07/01/2021 10:34	WG1698042	
Fluoranthene	U	<u>J3</u>	0.0270	0.100	1	07/01/2021 10:34	WG1698042	
Fluorene	U		0.0169	0.0500	1	07/01/2021 10:34	WG1698042	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	07/01/2021 10:34	WG1698042	
Naphthalene	U		0.0917	0.250	1	07/01/2021 10:34	WG1698042	
Phenanthrene	U		0.0180	0.0500	1	07/01/2021 10:34	WG1698042	
Pyrene	U		0.0169	0.0500	1	07/01/2021 10:34	WG1698042	
1-Methylnaphthalene	U		0.0687	0.250	1	07/01/2021 10:34	WG1698042	
2-Methylnaphthalene	U		0.0674	0.250	1	07/01/2021 10:34	WG1698042	
2-Chloronaphthalene	U		0.0682	0.250	1	07/01/2021 10:34	WG1698042	
(S) Nitrobenzene-d5	103			31.0-160		07/01/2021 10:34	WG1698042	
(S) 2-Fluorobiphenyl	79.5			48.0-148		07/01/2021 10:34	WG1698042	

37.0-146

WG1698042

07/01/2021 10:34

WG1699112

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1371625-01,02,03

Method Blank (MB)

(MB) R3675411-1 0	7/02/21 14:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1371625-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1371625-03 07/02/21 14:58 • (DUP) R3675411-3 07/02/21 14:58

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	9	%	%		%		%
Total So	olids	94.3	93.9	1	0.442		10

Laboratory Control Sample (LCS)

(LCS) R3675411-2 07/02/21 14:58

, ,	Spike Amount LCS Result	LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	100	85.0-115

WG1698042

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1371625-04

Method Blank (MB)

(MB) R3674698-3 07/0	1/21 07:05				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	110			31.0-160	
(S) 2-Fluorobiphenyl	96.0			48.0-148	
(S) p-Terphenyl-d14	116			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3674698-1 07/01/	21 06:13 • (LCSE) R3674698-2	2 07/01/21 06:4	8							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	1.72	1.63	86.0	81.5	67.0-150			5.37	20	
Acenaphthene	2.00	1.65	1.58	82.5	79.0	65.0-138			4.33	20	
Acenaphthylene	2.00	1.86	1.75	93.0	87.5	66.0-140			6.09	20	
Benzo(a)anthracene	2.00	1.58	1.56	79.0	78.0	61.0-140			1.27	20	
Benzo(a)pyrene	2.00	1.38	1.50	69.0	75.0	60.0-143			8.33	20	
Benzo(b)fluoranthene	2.00	1.47	1.51	73.5	75.5	58.0-141			2.68	20	
Benzo(g,h,i)perylene	2.00	1.41	1.40	70.5	70.0	52.0-153			0.712	20	
Benzo(k)fluoranthene	2.00	1.33	1.50	66.5	75.0	58.0-148			12.0	20	
Chrysene	2.00	1.45	1.51	72.5	75.5	64.0-144			4.05	20	
Dibenz(a,h)anthracene	2.00	1.35	1.36	67.5	68.0	52.0-155			0.738	20	
Fluoranthene	2.00	1.53	1.88	76.5	94.0	69.0-153		<u>J3</u>	20.5	20	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1371625-04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3674698-1 07/01/21 06:13 • (LCSD) R3674698-2 07/01/21 06:48

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	1.75	1.66	87.5	83.0	64.0-136			5.28	20
Indeno(1,2,3-cd)pyrene	2.00	1.47	1.43	73.5	71.5	54.0-153			2.76	20
Naphthalene	2.00	1.75	1.67	87.5	83.5	61.0-137			4.68	20
Phenanthrene	2.00	1.60	1.60	80.0	80.0	62.0-137			0.000	20
Pyrene	2.00	1.70	1.67	85.0	83.5	60.0-142			1.78	20
1-Methylnaphthalene	2.00	1.85	1.74	92.5	87.0	66.0-142			6.13	20
2-Methylnaphthalene	2.00	1.77	1.69	88.5	84.5	62.0-136			4.62	20
2-Chloronaphthalene	2.00	1.60	1.54	80.0	77.0	64.0-140			3.82	20
(S) Nitrobenzene-d5				105	101	31.0-160				
(S) 2-Fluorobiphenyl				82.0	79.0	48.0-148				
(S) p-Terphenyl-d14				83.5	87.0	37.0-146				

WG1699773

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1371625-01,02,03

Method Blank (MB)

(MB) R3675984-2 07/0	5/21 08:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	
Acenaphthylene	U		0.00216	0.00600	
Benzo(a)anthracene	U		0.00173	0.00600	
Benzo(a)pyrene	U		0.00179	0.00600	
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	83.7			14.0-149	
(S) 2-Fluorobiphenyl	70.6			34.0-125	
(S) p-Terphenyl-d14	89.8			23.0-120	

(LCS) R3675984-1 07/0	5/21 08:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Anthracene	0.0800	0.0735	91.9	50.0-126	
Acenaphthene	0.0800	0.0777	97.1	50.0-120	
Acenaphthylene	0.0800	0.0784	98.0	50.0-120	
Benzo(a)anthracene	0.0800	0.0727	90.9	45.0-120	
Benzo(a)pyrene	0.0800	0.0618	77.3	42.0-120	
Benzo(b)fluoranthene	0.0800	0.0788	98.5	42.0-121	
Benzo(g,h,i)perylene	0.0800	0.0798	99.8	45.0-125	
Benzo(k)fluoranthene	0.0800	0.0786	98.3	49.0-125	
Chrysene	0.0800	0.0794	99.3	49.0-122	
Dibenz(a,h)anthracene	0.0800	0.0760	95.0	47.0-125	
Fluoranthene	0.0800	0.0792	99.0	49.0-129	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1371625-01,02,03

Laboratory Control Sample (LCS)

11 (5)	R3675984-1	07/05/21 08:13

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
	•				LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.0800	0.0816	102	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0781	97.6	46.0-125	
Naphthalene	0.0800	0.0788	98.5	50.0-120	
Phenanthrene	0.0800	0.0781	97.6	47.0-120	
Pyrene	0.0800	0.0801	100	43.0-123	
1-Methylnaphthalene	0.0800	0.0766	95.8	51.0-121	
2-Methylnaphthalene	0.0800	0.0716	89.5	50.0-120	
2-Chloronaphthalene	0.0800	0.0681	85.1	50.0-120	
(S) Nitrobenzene-d5			108	14.0-149	
(S) 2-Fluorobiphenyl			82.5	34.0-125	
(S) p-Terphenyl-d14			107	23.0-120	

L1372027-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1372027-03 07/05/21 09:13 • (MS) R3675984-3 07/05/21 09:33 • (MSD) R3675984-4 07/05/21 09:53

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0764	U	0.0585	0.0537	76.6	70.3	1	10.0-145			8.56	30	
Acenaphthene	0.0764	U	0.0601	0.0551	78.7	72.1	1	14.0-127			8.68	27	
Acenaphthylene	0.0764	U	0.0641	0.0585	83.9	76.6	1	21.0-124			9.14	25	
Benzo(a)anthracene	0.0764	U	0.0606	0.0561	79.3	73.4	1	10.0-139			7.71	30	
Benzo(a)pyrene	0.0764	U	0.0587	0.0525	76.8	68.7	1	10.0-141			11.2	31	
Benzo(b)fluoranthene	0.0764	0.00338	0.0574	0.0523	70.7	64.0	1	10.0-140			9.30	36	
Benzo(g,h,i)perylene	0.0764	0.00309	0.0588	0.0527	72.9	64.9	1	10.0-140			10.9	33	
Benzo(k)fluoranthene	0.0764	U	0.0553	0.0508	72.4	66.5	1	10.0-137			8.48	31	
Chrysene	0.0764	U	0.0632	0.0571	82.7	74.7	1	10.0-145			10.1	30	
Dibenz(a,h)anthracene	0.0764	U	0.0572	0.0513	74.9	67.1	1	10.0-132			10.9	31	
Fluoranthene	0.0764	0.00235	0.0643	0.0579	81.1	72.7	1	10.0-153			10.5	33	
Fluorene	0.0764	U	0.0640	0.0567	83.8	74.2	1	11.0-130			12.1	29	
Indeno(1,2,3-cd)pyrene	0.0764	0.00230	0.0604	0.0557	76.0	69.9	1	10.0-137			8.10	32	
Naphthalene	0.0764	U	0.0609	0.0549	79.7	71.9	1	10.0-135			10.4	27	
Phenanthrene	0.0764	U	0.0596	0.0545	78.0	71.3	1	10.0-144			8.94	31	
Pyrene	0.0764	0.00340	0.0598	0.0561	73.8	69.0	1	10.0-148			6.38	35	
1-Methylnaphthalene	0.0764	U	0.0597	0.0543	78.1	71.1	1	10.0-142			9.47	28	
2-Methylnaphthalene	0.0764	U	0.0555	0.0515	72.6	67.4	1	10.0-137			7.48	28	
2-Chloronaphthalene	0.0764	U	0.0568	0.0517	74.3	67.7	1	29.0-120			9.40	24	
(S) Nitrobenzene-d5					95.4	86.2		14.0-149					
(S) 2-Fluorobiphenyl					77.6	68.6		34.0-125					
(S) p-Terphenyl-d14					89.1	80.0		23.0-120					

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Deminions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifi⊝r	Γ	es	cri	nt	ric	۱n	١
Quai		$\overline{}$	′ここ	CH	μ	-10	711	1

J	The identification of the analyte is acceptable; the reported value is an estimate.
ЛЗ	The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

			Billing Info	rmation:					A	nalysis /	Contai	ner / Pre	servativ	ve			Chain of Custody	Page of
Martin S. Burck Associates 200 N. Wasco Ct., Hood River, OR 9703			200 N. V	Accounts Payable 200 N. Wasco Ct. Hood River, OR 97031													Pace, Matients O	Analytical ** notine for Teeting A Teconomic
Report to: Jon White			Email To:	msbaenviror	nmental.com							the Commission of the Commissi		ered)			12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	
Project Description: North Star (Casteel			City/State Collected: Va	ncower, w	A		P 4						(field filtered)			Phone: 800-767-58 Fax: 615-758-5859	"
Phone: 541.387.4422 Fax: 541.387.4813	Client Project			Lab Project #	Har			i i		RBDM List	List						C07	37 <i>1625</i> 0
Collected by (print):	Site/Facility IC	star		P.O.#	Star			4 5		1	- Full	PAHs	pe	d Lead	ñ C		Acctnum:	100 Maria
Collected by (signature)	Same Da Next Da Two Day	Lab MUST Be ay Five y 5 Day y 10 D	Day (Rad Only)	Quote #	sults Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	VOCs	D-VOCs-Full	8270E-SIM - PA	6010 Total Lead	Dissolved			Template: Prelogin: TSR: PB:	
Packed on Ice N Y Y Sample ID	Three D	Matrix *	Depth	Date	Time	of Cntrs	TWN	WM	TWN	8260D -	8260D-	270E	6010	6010	Hold		Shipped Via:	Sample # (lab only)
S51-5	gnab	55	5'	6/24/21	13:33	1						×						-01
S51-6	grab	55	6	6/24/21	13:56	1		4				1			X			- 02
566-1.5	grab	55	1.5	6/24/21	14:11	1				19.00					×			- 07
EB-8	10_	071	-	6/24/21		2						X		- VES				- al
Trip Blank	-	0T2	-	-	-	1						100			×	1		- O
				4										-			1 200	
			ă,		222													
				111														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH	w	Tem	This is		COC S	Seal P Signed les ar	ple Receipt C resent/Intac /Accurate: rive intact: ttles used:	hecklist NP Y
DW - Drinking Water OT - Other OT1 = Distilled Water	Samples returned UPS Fe	rned via: edEx Co	urier		Fracking #		11-12								Suffi	icient	volume sent If Applica eadspace:	
OT2 = Lab Provided Water Relinquished by : (Signature)		Date: 6/25	21	Time:	Received by: (Signa	ature)				Trip Bla	ank Rece	eived:	Yes / No HCL / I TBR	MeoH	Prese	ervati	on Correct/C	
Reinquished by : (Signature)	The state of	Date:		Time:	Received by: (Signa	ature)				Temp:	2>	°C 80	ttles Reco	eived:	If pres	servatio	on required by Lo	igin: Date/Time
Relinquished by : (Signature)		Date:			Received for lab by	4 Signa	ture			Date:	26	Tir	ne: 93/)	Hold:			Condition: NCF / OK

DRAFT

19) Sample Date 8/12/21 (#L1390834)

Martin S. Burck Assoc.-Hood River, OR

PAGE:

1 of 18

Martin S. Burck Assoc.-Hood River, OR

L1390834 Sample Delivery Group:

Samples Received: 08/14/2021 Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

L1390834

08/23/21 18:04

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

³ Ss

⁴ Cn

17

18

Tc: Table of Contents		2
TC. Table of Contents		
Ss: Sample Summary		3
Cn: Case Narrative		4
Sr: Sample Results		5
S25-3 L1390834-01		5
S67-0 L1390834-05		6
S67-0 DUP L1390834-06		7
S68-0 L1390834-07		8
EB-9 L1390834-08		9
Qc: Quality Control Summary		10
Total Solids by Method 2540 G-2011		10
Metals (ICPMS) by Method 6020B		12
Semi-Volatile Organic Compounds (GC) by Method NW	TPHDX-NO SGT	14
GI: Glossary of Terms		16

Cp: Cover Page

Al: Accreditations & Locations

Sc: Sample Chain of Custody

SAMPLE SUMMARY

			Collected by Jon White	Collected date/time 08/12/21 08:38	Received da 08/14/21 09:	
S25-3 L1390834-01 Solid			Joh Wille	06/12/21 06.36	06/14/21 09.	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1726042	1	08/20/21 09:13	08/20/21 09:27	CMK	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1726189	10	08/20/21 22:14	08/21/21 15:01	JDG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1726189	50	08/20/21 22:14	08/22/21 01:27	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S67-0 L1390834-05 Solid			Jon White	08/12/21 10:51	08/14/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1726042	1	08/20/21 09:13	08/20/21 09:27	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1724987	5	08/18/21 08:40	08/19/21 02:45	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S67-0 DUP L1390834-06 Solid			Jon White	08/12/21 10:51	08/14/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1726042	1	08/20/21 09:13	08/20/21 09:27	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1724987	5	08/18/21 08:40	08/19/21 02:48	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
S68-0 L1390834-07 Solid			Jon White	08/12/21 11:04	08/14/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1726043	1	08/20/21 08:57	08/20/21 09:08	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1724987	5	08/18/21 08:40	08/19/21 02:52	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EB-9 L1390834-08 GW			Jon White	08/12/21 08:25	08/14/21 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

WG1724306

WG1726182

1

08/17/21 16:53

08/20/21 17:08

08/18/21 17:06

08/20/21 22:32

JPD

WCR

Mt. Juliet, TN

Mt. Juliet, TN

Martin S. Burck Assoc.-Hood River, OR

Metals (ICPMS) by Method 6020B

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

Collected date/time: 08/12/21 08:38

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	95.6		1	08/20/2021 09:27	WG1726042	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	422		13.9	41.9	10	08/21/2021 15:01	WG1726189
Residual Range Organics (RRO)	1990		174	523	50	08/22/2021 01:27	WG1726189
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		08/22/2021 01:27	WG1726189
(S) o-Terphenyl	73.1			18.0-148		08/21/2021 15:01	WG1726189

Ss

S67-0

Analyte

Arsenic

Chromium

SAMPLE RESULTS - 05

RDL (dry)

mg/kg

1.08

5.40

Dilution

5

5

Analysis

date / time

08/19/2021 02:45

08/19/2021 02:45

Batch

WG1724987

WG1724987

Collected date/time: 08/12/21 10:51

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Result (dry)

mg/kg

42.3

73.0

Qualifier

MDL (dry)

mg/kg

0.108

0.320

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	92.6		1	08/20/2021 09:27	WG1726042	

Тс

Ss

S67-0 DUP

Analyte

Arsenic

Chromium

SAMPLE RESULTS - 06

RDL (dry)

mg/kg

1.06

5.31

Dilution

5

5

Analysis

date / time

08/19/2021 02:48

08/19/2021 02:48

Batch

WG1724987

WG1724987

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Result (dry)

mg/kg

11.1

27.5

Qualifier

MDL (dry)

mg/kg

0.106

0.315

Collected date/time: 08/12/21 10:51

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	94.1		1	08/20/2021 09:27	WG1726042	

Тс

Martin S. Burck Assoc.-Hood River, OR

S68-0

SAMPLE RESULTS - 07

Collected date/time: 08/12/21 11:04

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	90.4		1	08/20/2021 09:08	WG1726043	

Тс

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Arsenic	6.54		0.111	1.11	5	08/19/2021 02:52	WG1724987
Chromium	51.6		0.327	5.53	5	08/19/2021 02:52	WG1724987

Martin S. Burck Assoc.-Hood River, OR

EB-9

SAMPLE RESULTS - 08

L1390834

Metals (ICPMS) by Method 6020B

Collected date/time: 08/12/21 08:25

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic	U		0.180	2.00	1	08/18/2021 17:06	WG1724306	
Chromium	U		1.24	2.00	1	08/18/2021 17:06	WG1724306	

Ср

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	08/20/2021 22:32	WG1726182
Residual Range Organics (RRO)	U		83.3	250	1	08/20/2021 22:32	WG1726182
(S) o-Terphenyl	101			52.0-156		08/20/2021 22:32	WG1726182

Ss

QUALITY CONTROL SUMMARY

L1390834-01,05,06

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3694753-1 O	08/20/21 09:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1390834-04 Original Sample (OS) • Duplicate (DUP)

(05)	11390834-04	08/20/21 09:27 •	(DLIP	R3694753-3	08/20/21 09:27
\cup		00/20/2103.27	(00)	1113034733	00/20/2103.27

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.4	94.4	1	0.0787		10

Laboratory Control Sample (LCS)

(LCS) R3694753-2 08/20/21 09:27

(LCS) R3694753-2 08/20/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1390834-07

Method Blank (MB)

(MB) R3694752-1 (08/20/21 09:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

²Tc

L1390839-02 Original Sample (OS) • Duplicate (DUP)

-	(05)	11390839-02	08/20/21 09:08 •	(DLIP	R3694752-3	08/20/21 09:08
		1000000000	00/20/2100.00	(00.	11000017020	00/20/2100.00

(,	Original Result	, ,			DUP RPD	DUP Qualifier	DUP RPD Limits
	o/	giliai Kesait L	0/	Dilution	0/	DOI Qualifier	Limi o/
nalyte	%	7	%		%		%
Total Solids	56.6	.6 5	57.4 1	1	1.36		10

⁴Cn

Ss

Laboratory Control Sample (LCS)

11 00	\ D26047E2 2	00/20/21	0.000
ILCS) R3694752-2	08/20/21	09.08

	Spike Amount LCS Result L	LCS Rec. Rec. L
Analyte	% %	% %
Total Solids	50.0 50.0	99.9 85.0-1

QUALITY CONTROL SUMMARY

L1390834-08

Method Blank (MB)

Metals (ICPMS) by Method 6020B

(MB) R3693499-1 08	3/18/21 15:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Arsenic	U		0.180	2.00
Chromium	U		1.24	2.00

Laboratory Control Sample (LCS)

(LCS) R3693499-2 08/18	/21 15:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	50.0	49.1	98.1	80.0-120	
Chromium	50.0	51.9	104	80.0-120	

⁷ GI

L1390828-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1390828-01 08/18/2	21 15:38 • (MS) F	3693499-4 0	8/18/21 15:45 •	(MSD) R36934	99-5 08/18/2	1 15:48						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	50.0	0.429	49.8	50.7	98.7	101	1	75.0-125			1.86	20
Chromium	50.0	U	52.5	54.7	105	109	1	75.0-125			4.15	20

QUALITY CONTROL SUMMARY

L1390834-05,06,07

Metals (ICPMS) by Method 6020B Method Blank (MB)

(MB) R3693791-1 08/19/21 02:20

(1112) 1130337311 00/13/2	. 02.20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Chromium	U		0.297	5.00

Laboratory Control Sample (LCS)

(LCS) R3693791-2 08/19/2	21 02:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	94.5	94.5	80.0-120	
Chromium	100	97.8	97.8	80.0-120	

L1391520-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(00) 1001020 01 0	0/13/21 02.27 - (1413) 1	(30337313 00	0/10/21 02.50	(IVISD) 1(3033)	00/13/2	.102.71						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	100	16.7	116	109	99.8	92.5	5	75.0-125			6.48	20
Chromium	100	22.8	124	121	101	97.8	5	75 0-125			2.60	20

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1390834-08

Method Blank (MB)

(MB) R3694874-1 08/20/21	I 21:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	130			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3694874-2 08/20/21 21:40 • (LCSD) R3694874-3 08/20/21 22:06	
--	--

(LC3) R3094074-2 00/20/	21 21.40 • (LCS	D) K3094674	-3 00/20/21/22	2.00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1430	1470	95.3	98.0	50.0-150			2.76	20
(S) o-Terphenyl				114	115	52.0-156				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1390834-01

Method Blank (MB)

(MB) R3694832-1 08/21/21	05:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	67.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3694832-2 08/21/	21 05:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	40.7	81.4	50.0-150	
(S) o-Terphenyl			70.6	18.0-148	

L1390924-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1390924-10 08/21/21 09:23 • (MS) R3694832-3 08/21/21 09:37 • (MSD) R3694832-4 08/21/21 09:50

(00) 2100002 1 10 00/21/2	100.20 (1110)	1000 1002 0 0	0/21/21 00.07	(11102) 1000 10	00/21/21	00.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	50.0	1.62	36.6	33.9	70.0	64.6	1	50.0-150			7.66	20
(S) o-Terphenyl					59.8	51.7		18.0-148				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL (dir.)	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J7

Surrogate recovery cannot be used for control limit evaluation due to dilution.

ACCREDITATIONS & LOCATIONS

Pace Analytical	National	12065 Leband	an Rd Mount	luliet "	TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

			Billing Info	rmation:		T			A	Analysis	/ Conta	iner / Pr	eservati	ve			Chain of Custody	Page 1 of 1
Martin S. Burck Associa 200 N. Wasco Ct., Hood		97031	200 N. V	ts Payable Vasco Ct. iver, OR 9703	1	Pres Chk											Pace A	nalytical ** the far Tanting & Innocation
Report to: Jon White			Email To:	msbaenviron	mental.com								As	red)		Dx	12065 Lebanon Rd Mount Juliet, TN 371	
Project Description: North Star	Consteal			City/State Collected: VG	couver, W	A							5	(field filtered)		1	Phone: 615-758-5859 Phone: 800-767-5859 Fax: 615-758-5859	高黎 里
Phone: 541.387.4422 Fax: 541.387.4813	Client Project			Lab Project #	ster	1				RBDM List	List		0208			NVSTPH	L# 3°	0834
Collected by (print): Jan Whits	Site/Facility ID	# Star		P.O.# North	Stev					RBD	Full.	PAHS	09 19	d Lea		- P1 0	Acctnum:	
Collected by (signature): Immediately Packed on Ice N Y		10 Da		Quote #	ults Needed	No.	NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	D-VOCs	8260D - VOCs - Full List	1	5010 Total Lead	6010 Dissolved Lead		xtract/Ho	Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	NWT	TWN	TWN	8260D	8260	8270E-SIM	6010	6010	Hold	Ext	Shipped Via:	Sample # (lab only)
525-3	grab	55	3'	8/12/21	08:38	12			X									10
525-4	grab	55	41	8/12/24	68:43	2										X		02
525-5	grab	55	5'	8/12/21	08:49	2	100									X		03
525-6	grab	55	6'	8/12/21	68:57	2						10				X		24
567-0	gmb	55	0'	8/12/21	10:51	1							X					05
S67-0 dup	gras	35	6'	8/12/21	10:51	1						W-7/I	×					de
568-0	grab	95	b'	8/12/21	11:04	1							X					Ø
EB-9	-	OTI	-	8/12/21	08:25				X				X					a
Trip Blank	-	OT2	-	-	-	2									X			مع
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other OT1 = Distilled Water	Remarks: Samples retur UPSFe		rier	Tr	\$1174 racking # 44	3.8.	49	96		pH		_ Ten			COC S Bottl Corre	Seal Programmed Articles are bot continued are continued a	ple Receipt Ch resent/Intact: /Accurate: rive intact: tles used: volume sent: If Applicab	
OT2 = Lab Provided Water Relinquished by: (Signature) Relinquished by: (Signature)		Date:	21	Time: Re	eceived by: (Signa		10	7.0		Trip Bla	nk Rece	2	YESY NO HCI / I TBR ttles Reco	МеоН	Prese	ervatio	eadspace: on Correct/Che n required by Log	
Relinquished by : (Signature)		Date:		Time:	Tened for lab by	(Sanat	ture	w		Date:	1/2	Tir	ne: q	00	Hold:			Condition: NCF / OK

DRAFT

20) Sample Date 8/12/21 #L1394271

Martin S. Burck Assoc.-Hood River, OR

Sample Delivery Group: L1394271

Samples Received: 08/14/2021

Project Number: **NORTH STAR**

Description: North Star Casteel

Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page Tc: Table of Contents Ss: Sample Summary Cn: Case Narrative

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Sr: Sample Results

S25-4 L1394271-01

S67-0 L1394271-02

GI: Glossary of Terms

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

3

4

5

5

6

7

8

9

10

11

12

SAMPLE SUMMARY

		Collected by Jon White	Collected date/time 08/12/21 08:43	08/14/21 09:0	
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1726042	1	08/20/21 09:13	08/20/21 09:27	JAV	Mt. Juliet, TN
WG1726189	1	08/20/21 22:14	08/21/21 07:25	AEG	Mt. Juliet, TN
		Collected by	Collected date/time	Received dat	e/time
		Jon White	08/12/21 10:51	08/14/21 09:0	00
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1726042	1	08/20/21 09:13	08/20/21 09:27	JAV	Mt. Juliet, TN
	WG1726042 WG1726189 Batch	WG1726042 1 WG1726189 1 Batch Dilution	Batch Dilution Preparation date/time	Jon White 08/12/21 08:43	Batch Dilution Preparation date/time date/ti

Martin S. Burck Assoc.-Hood River, OR

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SAMPLE RESULTS - 01

Collected date/time: 08/12/21 08:43

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.9		1	08/20/2021 09:27	WG1726042

2

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	5.71		1.42	4.26	1	08/21/2021 07:25	WG1726189
Residual Range Organics (RRO)	30.8		3.55	10.7	1	08/21/2021 07:25	WG1726189
(S) o-Terphenyl	77.0			18.0-148		08/21/2021 07:25	WG1726189

Ss

S67-0

Analyte

Arsenic

SAMPLE RESULTS - 02

RDL (dry)

mg/kg

1.08

Dilution

5

Analysis

date / time

08/26/2021 19:54

Batch

WG1729533

Collected date/time: 08/12/21 10:51

Result (dry)

mg/kg

6.01

Qualifier

MDL (dry)

mg/kg

0.108

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	92.6		1	08/20/2021 09:27	WG1726042		

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1394271-01,02

Method Blank (MB)

(MB) R3694753-1 08	3/20/21 09:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1390834-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1390834-04 08/20/21 09:27 • (DUP) R3694753-3 08/20/21 09:27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.4	94.4	1	0.0787		10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3694753-2 08/20/21 09:27

(LCS) R3694753-2 08/20/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1394271-02

Metals (ICPMS) by Method 6020B

Method Blank (MB)

(MB) R3697036-1 08/2	6/21 18:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00

²Tc

Laboratory Control Sample (LCS)

(LCS) R3697036-2 08/26/2118:51

	·	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Α	nalyte	mg/kg	mg/kg	%	%
A	rsenic	100	87.4	87.4	80.0-120

[†]Cn

L1394939-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1394939-02 08/26/21 18:55 • (MS) R3697036-5 08/26/21 19:06 • (MSD) R3697036-6 08/26/21 19:09

(OS) L1394939-02 08/26/2	21 18:55 • (IVIS) I	K369/U36-5 (08/26/21 19:06	• (IVISD) R369/1	036-6 08/26/2	1119:09						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	123	4.28	112	109	87.8	85.3	5	75.0-125			2.70	20

PAGE:

8 of 13

DATE/TIME:

09/08/21 09:36

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1394271-01

Method Blank (MB)

(MB) R3694832-1 08/21/21	05:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	67.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3694832-2 08/21/	yte mg/kg mg/kg % %								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Diesel Range Organics (DRO)	50.0	40.7	81.4	50.0-150					
(S) o-Terphenyl			70.6	18.0-148					

L1390924-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1390924-10 08/21/21 09:23 • (MS) R3694832-3 08/21/21 09:37 • (MSD) R3694832-4 08/21/21 09:50

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Dilation	%	mo quamer	MOD Guanner	%	%
Diesel Range Organics (DRO)	50.0	1.62	36.6	33.9	70.0	64.6	1	50.0-150			7.66	20
(S) o-Terphenyl					59.8	51.7		18.0-148				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National	12065 Lebanor	n Rd Mount Ji	uliet TN 37 12 2

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

			Billing Information:					Analysis / Container / Preservative										Chain of Custody Page of		
200 N. Wasco Ct., Hood River, OR 97031			200 N. V	Accounts Payable 200 N. Wasco Ct. Hood River, OR 97031													Pace	Analytical*		
Report to: Jon White			Email To: jwhite@	msbaenvironmental.com									As,	filtered)		×	12065 Lebanon Rd Mount Juliet, TN 37			
Project Description: North Ster Consteel				City/State Collected: Vancouver, WA									5	d filte		H-D	Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859			
Phone: 541.387.4422 Fax: 541.387.4813	Client Project # North Star			Lab Project #	ster					M List	List		2208	d (field		NWTPH	K14	1394271		
Collected by (print): Jan White	Site/Facility ID			P.O.# North	Stev					- RBDM	-Full	3Hs	09 ps	d Lead		- P10	Acctnum:	1399211		
Collected by (signature):	Authorities Rush7 (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day		Quote#			HCID	NWTPH-Gx	Dx	8260D - VOCs	8260D - VOCs	8270E-SIM - PAHs	6010 Total Lend	0 Dissolved		4/40	Template: Prelogin:				
Immediately Packed on Ice N Y			Date Resi	ults Needed	No.	NWTPH-HCID		NWTPH-Dx						7	xtrac	TSR:				
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Catr	N	N	N	826	826	8270	109	6010	Hold	X	Shipped Via:	Sample # (lab only)		
525-3	grab	55	3'	8/12/21	08:38	12			X	1000					100	1		-61		
525-4	Amb	55	41	8/12/24	68:43	2	100	180		No.						X		-02-		
\$25-5	grab	55	5'	8/12/24	08:49	2						150				X		07		
525-6	grab	55	6'	8/12/21	68:57	2	- Bill			100	TO SE		100			X		04		
567-0	gns	55	0'	8/12/21	10:51	1	100	1		100/		A	X				3.61	-05 -		
567-0 dup	girals	35	6'	8/12/21	10:51	1	Bigge.	100		0.535			X		1000			de		
568-0	grab	95	D'	8/12/21	11:04	1		250					X		1	135	C Y S	-09		
EB-9	-	DTI	-	8/12/21	08:25				X	183			X		155			A		
Trip Blank		OT2	-	-	-	2	麗								X			- 69		
Matrix: -S - Soil AIR - Air F - Filter -SW - Groundwater 8 - Bioassay - WW - WasteWater	Remarks:										рН То				COC S	Seal Pr	ple Receipt Checklist Present/Intact: NP V N d/Accurate: Y N rrive intact: N			
OW - Wastewater OW - Drinking Water OT - Other OT1 = Distilled Water OT2 = Lab Provided Water	Samples returnups UPS Fe		urier	Tr	511744 acking # 44	3.8	49	96		Flow		Other			Corre	ct bot	tles used: volume sent: If Applicab	lew _w		
		IS:30	eceived by: (Signa	iture)	10			Trip Bla	nk Rece	nved (No HO/I		The party of	DECK OF THE	adspace: on Correct/Ch	ecked: Y N				
Relinquished by : (Signature) Date:			Time: Received by: (Signature)						Temp:	12	23.3	tles Rec	yed:	If preservation required by Login.			gin. Date/Time			
Relinquished by : (Signature)		Date:		Time:	Thed for lab by	Dr	nture	w		Date /k	1/7	Tin	ne 9	00	Hold:			Condition NCF / OK		

L1390834 MSBAHROR re-log

R5

Please re-log as R5 due 08/31. Transfer TS.

L1390834-02 (S25-4): NWTPHDXNOSGT, TS (previous EXTRACT-HOLD, place in appropriate

WG/status and add comment)

L1390834-05 (S67-0): ASG,TS.

Time estimate: oh

Time spent: oh

Members

Appendix F

Disposal Documentation

REMIT TO: WASCO COUNTY LANDFILL A WASTE CONNECTIONS COMPANY 2550 STEELE RD THE DALLES, OR 97058 541-296-4082

BILL TO: STRATUS CORPORATION

Date Account Number
06/15/2021 2042-144
Invoice Number

AMOUNT DUE

PAYMENT DUE UPON RECEIPT

LATE PAYMENT MAY RESULT IN AN INTERUPTION OF SERVICE.
PAST DUE INVOICES MAY BE SUBJECT TO A LATE CHARGE
FOR EACH MONTH OR PART THEREOF THAT THE INVOICE IS
PAST DUE.

DATE	TICKET	TRUCK ID PO#	TRAILER ID	TON/YARD	DESCRIPTION	DOLLARS
06/09/2021	379742	21-086		35.17	PETR CONT SOIL	
06/09/2021	379764	21-086		26.89	PETR CONT SOIL	
06/10/2021	379823	21-086		30.09	PETR CONT SOIL	
06/10/2021	379853	21-086		31.60	PETR CONT SOIL	
06/10/2021	379961	21-086		35.75	PETR CONT SOIL	
06/10/2021	380007	21-086		30.42	PETR CONT SOIL	

Total Tons: 189.92

REMIT TO: WASCO COUNTY LANDFILL A WASTE CONNECTIONS COMPANY 2550 STEELE RD THE DALLES, OR 97058 541-296-4082

BILL TO: STRATUS CORPORATION

Date	Account Number
08/15/2021	2042-144
Invoi	ce Number
AMO	OUNT DUE

LATE PAYMENT MAY RESULT IN AN INTERUPTION OF SERVICE.

PAST DUE INVOICES MAY BE SUBJECT TO A LATE CHARGE
FOR EACH MONTH OR PART THEREOF THAT THE INVOICE IS

PAST DUE.

DATE	TICKET	TRUCK ID	PO#	TRAILER ID	TON/YARD	DESCRIPTION	DOLLARS
08/13/2021	389017	21-086			28.69	PETR CONT SOIL	
08/13/2021	389039	21-086				PETR CONT SOIL	
	389101	21-086			20.24	PETR CONT SOIL	

Total Tons: 94.22

Profile #: 446147 **Manifest ID** 131141

Generator Name: Stratus Corporation **Address:** 39515 SW Hartley Rd.

Gaston, OR, 97119

Wash out?:

Yes

Same as Transporter?

Yes

Billing Firm: Stratus Corporation

Waste Description (choose one):

Oil/Water

Unit:

Pounds

Initial Weight (lbs): 28180 Final Weight (lbs): 24620

Solids?:

No

Total Weight (lbs): 3560

Color: Black Odor None pH: 7

Liquid Phase: 90 **Sludge/Solids:** 10

Total Gallons: 384.63 Total Solids (Tons): 0.18

Method of

Shipment:

Barrel Truck

Weight Ticket:

b_20210430_0003....

Does This Manifest Need a Change

Order?:

No

Relinquished By

(Driver Signiture):

Driver Name:

27

larry

PPV Technician: Michael Douglas Shockley

PPV Acceptance:

Truck License #:

Approved

Date Friday, April 30, 2021

Time

8:17 AM

Profile #: 446147 **Manifest ID** 131142

Generator Name: Stratus Corporation **Address:** 39515 SW Hartley Rd.

Gaston, OR, 97119

Wash out?:

Yes

Same as Transporter?

Yes

Billing Firm: Stratus Corporation

Waste Description (choose one):

Oil/Water

Unit:

Pounds

Initial Weight (lbs): 27580 Final Weight (lbs): 24180

Solids?:

No

Total Weight (lbs): 3400

Color: Brown Odor None PH: 7

Liquid Phase: 90 **Sludge/Solids:** 10

Total Gallons: 367.35 **Total Solids (Tons):** 0.17

Method of

Shipment:

Barrel Truck

Weight Ticket:

b_20210430_0004....

Does This Manifest Need a Change

Order?:

No

Relinquished By

(Driver Signiture):

Driver Name:

dean

Truck License #:

25

PPV Technician: Michael Douglas Shockley

PPV Acceptance:

Approved

Date Friday, April 30, 2021

Time

8:21 AM

Profile #: 446147 Manifest ID 131156

PO #: 21127w

Generator Name: Stratus Corporation Address: 39515 SW Hartley Rd.

Gaston, OR, 97119

Conner

Wash out?: Yes

Same as

Yes **Transporter?**

Stratus Corporation Billing Firm:

Waste Description Unit: Oil/Water **Pounds** (choose one):

Initial Weight (lbs): 26000 Final Weight (lbs): 24560

Black **Color:** Solids?: No

> Total Weight (lbs): 1440

Odor pH: 7 None

Liquid Phase: 95 Sludge/Solids: 5

Total Gallons: 0 **Total Solids (Tons):**

Total Gallons: 164.23 **Total Solids (Tons):** 0.04

Method of **Weight Ticket:**

Vac Truck **Shipment:**

Stratus.pdf

No

Does This Manifest Need a Change

Order?:

Relinquished By Driver Name:

(Driver Signiture): Truck License #: 27

Acceptance: **Approved** Technician: Francis Reyes

Profile #: 446147 **Manifest ID** 131161

PO #: 21127

Generator Name: Stratus Corporation Address: 39515 SW Hartley Rd.

Gaston, OR, 97119

Pounds

Stratus_0001.pdf

Yes

Unit:

Wash out?:

Waste Description

Yes Same as Transporter?

Billing Firm: Stratus Corporation

(choose one):

Initial Weight (lbs): 25340 Final Weight (lbs): 24080

Color: Black Solids?: No

Total Weight (lbs): 1260

Odor None pH: 7

No

Liquid Phase: 60 **Sludge/Solids:** 40

Total Gallons: 90.76 **Total Solids (Tons):** 0.25

Method of Vac Truck Weight Ticket: Shipment:

Does This Manifest Need a Change Order?:

Relinquished By Driver Name: DC

(Driver Signiture): Truck License #: 25

Technician: Francis Reyes Acceptance: Approved

Date Friday, April 30, 2021 **Time** 1:23 PM

Pounds

Manifest_2022032...

Profile #: 446147 **Manifest ID** 139025

Stratus Corporation -Address: 39515 SW Hartley Rd. **Generator Name:** gaston, Oregon, 97116

Categorical

Wash out?: Same as Yes Yes **Transporter?**

Oil/Water

Billing Firm: Stratus Corporation

Waste Description

(choose one):

Initial Weight (lbs): 55360 Final Weight (lbs): 51340

Color: Brown Solids?: No

> Total Weight (lbs): 4020

Unit:

Odor 8 pH: Mild

Liquid Phase: Sludge/Solids: 90 10

Total Gallons: Total Solids (Tons): 434.33 0.20

Method of **Weight Ticket:** Vac Truck **Shipment:**

Does This Manifest Need a Change No Order?:

Technician: Johnson Hooks **Driver Name:** Kenneth

Thursday, March 24, 2022 Truck License #: **Date** 63

> Acceptance: Approved

Time 10:36 AM

DRAFT

Appendix G

MW-2 Soil Boring Log and Resource Protection Well Report

Nort 1200	Site Ado Site Ado Site Ado L Site of 13th	dress: Cash L stre , WA	Page Nu Drilling C	AW-2 umber 1 of 1 Contractor A+35 Carp	MSBA Martin S. Burck Associates, Inc. eologic and Environmental Consulting Services Orilling Method HSA/Push Probe Finish (Date - Time)
Sample Number PID reading (ppm)	Sample Recovery (inches)	Depth (feet) Sample Interval	6/14/21 - 1105	b	114/21 - 1945 ogged g. W. tz
072 la	00 & 0	Sam	Soil De	escription	well Construction
Mw2-52 8	54/60 60/60 60/60 60/60 50/60 34/60 34/60 34/60	0 -	grant City (0-3.5') GM: Silty gran SP: Sand; poorl to medium; gran moist medium to coarse	ly graded; midium - (17'- 42') graded; fine g(42'-63')	Concrete I therefore I therefore Since Sands (47-63') - push probe from 5-5 bog - push probe through HSA from 45'-55' forgus sample push probe remained Set temp well

Resource Protection Well Report Notice of Intent No. RE21303 Submit one well report per well installed. See page two for instructions. Type of Well: Type of Work: Resource Protection Well Injection Point Remediation Well □ Construction Grounding Well ☐ Decommission ➡ Original NOI No. _____ Geotechnical Soil Boring Ground Source Heat Pump Environmental Boring Other Ecology Well ID Tag No. BHU-973 Soil- □ Vapor- □ Water-sampling Site Well Name MW-2 Property Owner North Star Casteel Consulting Firm MSBA Well Street Address 1200 West 13th St Was a variance approved for this well/boring? ☐ Yes ⋈ No City Vancouver County Clark If yes, what was the variance for? Tax Parcel No. WWM □ or EWM □ Location (see instructions): WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all NE 1/4-1/4 SW 1/4, Section 51 Town 2N Range 1e Washington well construction standards. Materials used and the information Latitude (Example: 47.12345) _____ reported are true to my best knowledge and belief. Longitude (Example: -120.12345) □ Driller □ Trainee □ Engineer Name (Print Last, First Name) Flaherty, Scott (WGS 84 Coordinate System) Driller/Engineer/Trainee Signature _ Borehole diameter <u>8.25</u> inches Casing diameter <u>2</u> inches License No. 1664 Static water level _____ ft below top of casing Date _____ Company Name Stratus Corporation ☐ Above-ground completion with bollards ☐ Flush monument If trainee box is checked, sponsor's license number: Stick-up of top of well casing _____ ft above ground surface Sponsor's signature Start Date 6/14/21 Completed Date 6/14/21 Driller's Log Well Data Construction Design 0 - 48'0-3' Concrete 2" PVC Blank GRAVEL FILL 0 - 4' SILTY SAND 4' - 63' 3' - 47' Bentonite Chips -RECEIVED 47' - 63' 12/20 Silica Sand 48' - 63' 2" .010 pre-pack PVC Screen JUN 25 2021 WA State Department of Ecology (SWRO)

Dlameter 2" From 48 To 63 PVC Screen PVC Blank Locking Well Cap Dlameter 2" Slot Sizer: 010 Pre-Packed? Driller Name: Scott Floherty Start Card # Site Address! Project #: Consultant Well # PZINZTW-MSBA Well Tag # BHW- 973 1200 West 13th 2-MW/ NorthStar Casteel gaves till S 51-TZN-RIE NEISW Silty Sand 6/14/21 Formation Description Drilling Method STreet WA State Department of Ecology (SWRO) RECEIVED JUN 25 2021 RE 21303 4-63 0,14 BGS

The Department of Ecology does NOT warranty the Data and/or information on this well report. sc016.02

Clark

DRAFT

Appendix H

Groundwater Purge and Sample Data

MARTIN S. BURCK ASSOCIATES, INC.

1			
V	5	B	A

SUBSLAB/SOIL VAPOR PURGE AND SAMPLE DATA

Date:	8/27/21		Sampled By:	Jon	W.hz	,		
			NITORING WE					
Well Numb	per:mw -						J. N.	wolding Station
	eter (in): 2		otal Depth (ft)			Dept	h to	(ft): 53.24
Wetted Casing Ler	ngth (ft): 9		One Well Volume (gals):	_1.0	. 6	No. o Volu	of Well mes to P	ourge: 3
		s): 5		e Meth	od (Pump,	Bailer, etc.):_ <u>5ub</u>	= 1.02; 6" = 1.47; 12" = 5.88
Time	Depth to Water	Gallons Purged	Cumulative Total	(°C)	C (μS)	рН	TDS (ppm)	Comments
14:04	53.26	k	38					Start purge
14:21	53,30	5	5					UK to sample
Comment	s: ≥ 85% statio	water colur	mn ≤ 54,7 2 fe	et DtW	WEL	L TYPE:		
Collection		.25	Appearance	eT	lear loudy urbid	Therr Prese	mal ervation _ [√Gx	Ice Chest & Ice Other
	Preserved (16	Preserve	CL SVC Bailer (7	250 ml F served Ly HNO ₃	An	quested alyses:	DX BTEX	☐ RBDM VOCs ☐ PAHs ☐ Other(cd, el

DRAFT

Appendix I

Water Sample Laboratory Analytical Report

PAGE:

1 of 29

Martin S. Burck Assoc.-Hood River, OR

L1396571 Sample Delivery Group:

Samples Received: 08/28/2021

Project Number: **NORTH STAR**

Description: North Star Casteel Site: **NORTH STAR**

Report To: Jon White

200 N. Wasco Ct.

Hood River, OR 97031

Entire Report Reviewed By:

Buar Ford

L1396571

09/13/21 10:32

Brian Ford

Martin S. Burck Assoc.-Hood River, OR

29

³ Ss	

Cn

ľ	Sr	
L		

Cp: Cover Page	
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-2 L1396571-01	5
MW-2 DUP L1396571-02	8
EB-10 L1396571-03	11
TRIP BLANK L1396571-04	14
Qc: Quality Control Summary	16
Metals (ICPMS) by Method 6020B	16
Volatile Organic Compounds (GC) by Method NWTPHGX	17
Volatile Organic Compounds (GC/MS) by Method 8260D	18
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	23
Polychlorinated Biphenyls (GC) by Method 8082 A	24
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	25
GI: Glossary of Terms	27
Al: Accreditations & Locations	28

Sc: Sample Chain of Custody

SAMPLE SUMMARY

MW-2 L1396571-01 GW			Collected by Jon White	Collected date/time 08/27/2114:25	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1732243	1	08/31/21 13:18	09/02/21 15:19	LAT	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1735927	1	09/08/21 01:16	09/08/21 01:16	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735235	1	09/05/21 09:13	09/05/21 09:13	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735665	1	09/06/21 22:34	09/06/21 22:34	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1735421	1	09/06/21 08:40	09/10/21 14:09	JAS	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1734074	1	09/03/21 00:08	09/03/21 17:47	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1732562	1	09/01/21 23:14	09/02/21 10:33	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 DUP L1396571-02 GW			Jon White	08/27/21 14:25	08/28/21 09:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICPMS) by Method 6020B	WG1732243	1	08/31/21 13:18	09/02/21 15:23	LAT	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1735927	1	09/08/21 01:38	09/08/21 01:38	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735235	1	09/05/21 09:33	09/05/21 09:33	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735665	1	09/06/21 22:53	09/06/21 22:53	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1735421	1	09/06/21 08:40	09/10/21 14:29	JAS	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1734074	1	09/03/21 00:08	09/03/21 17:55	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1732562	1	09/01/21 23:14	09/02/21 10:50	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EB-10 L1396571-03 GW			Jon White	08/27/21 11:38	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020B	WG1732243	1	08/31/21 13:18	09/02/21 15:26	LAT	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1735927	1	09/08/21 02:00	09/08/21 02:00	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735235	1	09/05/21 09:52	09/05/21 09:52	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1735665	1	09/06/21 23:12	09/06/21 23:12	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1735421	1	09/06/21 08:40	09/10/21 14:56	JAS	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1734074	1	09/03/21 00:08	09/03/21 18:14	AMM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1732562	1	09/01/21 23:14	09/02/21 11:08	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1396571-04 GW			Jon White	08/27/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Martin S. Burck Assoc.-Hood River, OR

Volatile Organic Compounds (GC/MS) by Method 8260D

Volatile Organic Compounds (GC/MS) by Method 8260D

WG1735235

WG1735665

09/05/21 06:18

09/06/21 22:16

09/05/21 06:18

09/06/21 22:16

Mt. Juliet, TN

Mt. Juliet, TN

JAH

ADM

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

MW-2

SAMPLE RESULTS - 01

Collected date/time: 08/27/21 14:25

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cadmium	U		0.150	1.00	1	09/02/2021 15:19	WG1732243
Lead	U		0.849	2.00	1	09/02/2021 15:19	WG1732243

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	U		31.6	100	1	09/08/2021 01:16	WG1735927	
(S) a,a,a-Trifluorotoluene(FID)	97.9			78.0-120		09/08/2021 01:16	WG1735927	

³Ss

[°]Qc

GI

Αl

Sc

PAGE:

5 of 29

Volatile Organic Compounds (GC/MS) by Method 8260D

ACCOUNT:

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	2.36	<u>J</u>	0.548	10.0	1	09/05/2021 09:13	WG1735235
Acrylonitrile	U		0.0760	0.500	1	09/05/2021 09:13	WG1735235
Acrolein	U	<u>J4</u>	0.758	50.0	1	09/05/2021 09:13	WG1735235
Benzene	U		0.0160	0.0400	1	09/05/2021 09:13	WG1735235
Bromobenzene	U		0.0420	0.500	1	09/05/2021 09:13	WG1735235
Bromodichloromethane	U		0.0315	0.100	1	09/05/2021 09:13	WG1735235
Bromoform	U		0.239	1.00	1	09/05/2021 09:13	WG1735235
Bromomethane	U		0.148	0.500	1	09/05/2021 09:13	WG1735235
n-Butylbenzene	U		0.153	0.500	1	09/05/2021 09:13	WG1735235
sec-Butylbenzene	U		0.101	0.500	1	09/05/2021 09:13	WG1735235
tert-Butylbenzene	U		0.0620	0.200	1	09/05/2021 09:13	WG1735235
Carbon disulfide	U		0.162	0.500	1	09/05/2021 09:13	WG1735235
Carbon tetrachloride	U		0.0432	0.200	1	09/05/2021 09:13	WG1735235
Chlorobenzene	U	<u>C3</u>	0.0229	0.100	1	09/05/2021 09:13	WG1735235
Chlorodibromomethane	U		0.0180	0.100	1	09/05/2021 09:13	WG1735235
Chloroethane	U		0.0432	0.200	1	09/05/2021 09:13	WG1735235
Chloroform	0.0540	<u>J</u>	0.0166	0.100	1	09/05/2021 09:13	WG1735235
Chloromethane	U		0.0556	0.500	1	09/05/2021 09:13	WG1735235
2-Chlorotoluene	U		0.0368	0.100	1	09/05/2021 09:13	WG1735235
4-Chlorotoluene	U		0.0452	0.200	1	09/05/2021 09:13	WG1735235
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	09/05/2021 09:13	WG1735235
1,2-Dibromoethane	U		0.0210	0.100	1	09/05/2021 09:13	WG1735235
Dibromomethane	U		0.0400	0.200	1	09/05/2021 09:13	WG1735235
1,2-Dichlorobenzene	U		0.0580	0.200	1	09/06/2021 22:34	WG1735665
1,3-Dichlorobenzene	U		0.0680	0.200	1	09/05/2021 09:13	WG1735235
1,4-Dichlorobenzene	U		0.0788	0.200	1	09/05/2021 09:13	WG1735235
Dichlorodifluoromethane	U		0.0327	0.100	1	09/05/2021 09:13	WG1735235
1,1-Dichloroethane	U		0.0230	0.100	1	09/05/2021 09:13	WG1735235
1,2-Dichloroethane	U		0.0190	0.100	1	09/05/2021 09:13	WG1735235
1,1-Dichloroethene	U		0.0200	0.100	1	09/05/2021 09:13	WG1735235
cis-1,2-Dichloroethene	U		0.0276	0.100	1	09/05/2021 09:13	WG1735235
trans-1,2-Dichloroethene	U		0.0572	0.200	1	09/05/2021 09:13	WG1735235
1,2-Dichloropropane	U		0.0508	0.200	1	09/05/2021 09:13	WG1735235
1,1-Dichloropropene	U		0.0280	0.100	1	09/05/2021 09:13	WG1735235
1,3-Dichloropropane	U		0.0700	0.200	1	09/05/2021 09:13	WG1735235
cis-1,3-Dichloropropene	U		0.0271	0.100	1	09/05/2021 09:13	WG1735235
trans-1,3-Dichloropropene	U		0.0612	0.200	1	09/05/2021 09:13	WG1735235
2,2-Dichloropropane	U		0.0317	0.100	1	09/05/2021 09:13	WG1735235
Di-isopropyl ether	U		0.0140	0.0400	1	09/05/2021 09:13	WG1735235
Ethylbenzene	U		0.0212	0.100	1	09/05/2021 09:13	WG1735235
Hexachloro-1,3-butadiene	U		0.508	1.00	1	09/06/2021 22:34	WG1735665
,							

SAMPLE RESULTS - 01

1396571

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte		Qualifier	ug/l	ug/l	Dilution	date / time	<u>BdtCII</u>
•	ug/l			-	4		WOATOFOOF
Isopropylbenzene	U		0.0345	0.100	1	09/05/2021 09:13	WG1735235
p-Isopropyltoluene	U		0.0932	0.200	1	09/05/2021 09:13	WG1735235
2-Butanone (MEK)	U		0.500	1.00	1	09/05/2021 09:13	WG1735235
Methylene Chloride	U		0.265	1.00	1	09/05/2021 09:13	<u>WG1735235</u>
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	09/05/2021 09:13	<u>WG1735235</u>
Methyl tert-butyl ether	U		0.0118	0.0400	1	09/05/2021 09:13	<u>WG1735235</u>
Naphthalene	U	<u>C3 J3</u>	0.124	0.500	1	09/05/2021 09:13	<u>WG1735235</u>
n-Propylbenzene	U		0.0472	0.200	1	09/05/2021 09:13	WG1735235
Styrene	U		0.109	0.500	1	09/05/2021 09:13	WG1735235
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	09/05/2021 09:13	WG1735235
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	09/05/2021 09:13	WG1735235
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	09/05/2021 09:13	WG1735235
Tetrachloroethene	1.36		0.0280	0.100	1	09/05/2021 09:13	WG1735235
Toluene	U	<u>C3</u>	0.0500	0.200	1	09/05/2021 09:13	WG1735235
1,2,3-Trichlorobenzene	U	<u>C4</u>	0.0250	0.500	1	09/06/2021 22:34	WG1735665
1,2,4-Trichlorobenzene	U	<u>C4</u>	0.193	0.500	1	09/06/2021 22:34	WG1735665
1,1,1-Trichloroethane	U		0.0110	0.100	1	09/05/2021 09:13	WG1735235
1,1,2-Trichloroethane	U	<u>C3</u>	0.0353	0.100	1	09/05/2021 09:13	WG1735235
Trichloroethene	0.0430		0.0160	0.0400	1	09/05/2021 09:13	WG1735235
Trichlorofluoromethane	U		0.0200	0.100	1	09/05/2021 09:13	WG1735235
1,2,3-Trichloropropane	U	<u>J4</u>	0.204	0.500	1	09/05/2021 09:13	WG1735235
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	09/05/2021 09:13	WG1735235
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	09/05/2021 09:13	WG1735235
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	09/05/2021 09:13	WG1735235
Vinyl chloride	U		0.0273	0.100	1	09/05/2021 09:13	WG1735235
Xylenes, Total	U		0.191	0.260	1	09/05/2021 09:13	WG1735235
(S) Toluene-d8	87.2			75.0-131		09/05/2021 09:13	WG1735235
(S) Toluene-d8	101			75.0-131		09/06/2021 22:34	WG1735665
(S) 4-Bromofluorobenzene	94.4			67.0-138		09/05/2021 09:13	WG1735235
(S) 4-Bromofluorobenzene	90.6			67.0-138		09/06/2021 22:34	WG1735665
(S) 1,2-Dichloroethane-d4	132	<u>J1</u>		70.0-130		09/05/2021 09:13	WG1735235
(S) 1,2-Dichloroethane-d4	105	_		70.0-130		09/06/2021 22:34	WG1735665

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	09/10/2021 14:09	WG1735421
Residual Range Organics (RRO)	U		83.3	250	1	09/10/2021 14:09	WG1735421
(S) o-Terphenyl	109			52.0-156		09/10/2021 14:09	WG1735421

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
PCB 1016	U		0.270	0.500	1	09/03/2021 17:47	WG1734074
PCB 1221	U		0.270	0.500	1	09/03/2021 17:47	WG1734074
PCB 1232	U		0.270	0.500	1	09/03/2021 17:47	WG1734074
PCB 1242	U		0.270	0.500	1	09/03/2021 17:47	WG1734074
PCB 1248	U		0.173	0.500	1	09/03/2021 17:47	WG1734074
PCB 1254	U		0.173	0.500	1	09/03/2021 17:47	WG1734074
PCB 1260	U		0.173	0.500	1	09/03/2021 17:47	WG1734074
(S) Decachlorobiphenyl	72.8			10.0-128		09/03/2021 17:47	WG1734074
(S) Tetrachloro-m-xylene	86.4			10.0-127		09/03/2021 17:47	WG1734074

Ss

Cn

GI

MW-2

(S) p-Terphenyl-d14

SAMPLE RESULTS - 01

1396571

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Collected date/time: 08/27/21 14:25

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0190	0.0500	1	09/02/2021 10:33	WG1732562
Acenaphthene	U		0.0190	0.0500	1	09/02/2021 10:33	WG1732562
Acenaphthylene	U		0.0171	0.0500	1	09/02/2021 10:33	WG1732562
Benzo(a)anthracene	U		0.0203	0.0500	1	09/02/2021 10:33	WG1732562
Benzo(a)pyrene	U		0.0184	0.0500	1	09/02/2021 10:33	WG1732562
Benzo(b)fluoranthene	U		0.0168	0.0500	1	09/02/2021 10:33	WG1732562
Benzo(g,h,i)perylene	U	<u>J3</u>	0.0184	0.0500	1	09/02/2021 10:33	WG1732562
Benzo(k)fluoranthene	U		0.0202	0.0500	1	09/02/2021 10:33	WG1732562
Chrysene	U		0.0179	0.0500	1	09/02/2021 10:33	WG1732562
Dibenz(a,h)anthracene	U	<u>J3</u>	0.0160	0.0500	1	09/02/2021 10:33	WG1732562
Fluoranthene	U		0.0270	0.100	1	09/02/2021 10:33	WG1732562
Fluorene	U		0.0169	0.0500	1	09/02/2021 10:33	WG1732562
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	09/02/2021 10:33	WG1732562
Naphthalene	U		0.0917	0.250	1	09/02/2021 10:33	WG1732562
Phenanthrene	U		0.0180	0.0500	1	09/02/2021 10:33	WG1732562
Pyrene	U		0.0169	0.0500	1	09/02/2021 10:33	WG1732562
1-Methylnaphthalene	U		0.0687	0.250	1	09/02/2021 10:33	WG1732562
2-Methylnaphthalene	U		0.0674	0.250	1	09/02/2021 10:33	WG1732562
2-Chloronaphthalene	U		0.0682	0.250	1	09/02/2021 10:33	WG1732562
(S) Nitrobenzene-d5	120			31.0-160		09/02/2021 10:33	WG1732562
(S) 2-Fluorobiphenyl	127			48.0-148		09/02/2021 10:33	WG1732562

37.0-146

09/02/2021 10:33

WG1732562

MW-2 DUP

SAMPLE RESULTS - 02

Collected date/time: 08/27/21 14:25

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cadmium	U		0.150	1.00	1	09/02/2021 15:23	WG1732243
Lead	1.11	J	0.849	2.00	1	09/02/2021 15:23	WG1732243

³Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	09/08/2021 01:38	WG1735927
(S) a a a-Trifluorotoluene(FID)	98.1			78.0-120		09/08/2021 01:38	WG1735927

Sr ⁶Qc

GI

Αl

³Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	1.96	<u>J</u>	0.548	10.0	1	09/05/2021 09:33	WG1735235
Acrylonitrile	U	_	0.0760	0.500	1	09/05/2021 09:33	WG1735235
Acrolein	U	<u>J4</u>	0.758	50.0	1	09/05/2021 09:33	WG1735235
Benzene	U		0.0160	0.0400	1	09/05/2021 09:33	WG1735235
Bromobenzene	U		0.0420	0.500	1	09/05/2021 09:33	WG1735235
Bromodichloromethane	U		0.0315	0.100	1	09/05/2021 09:33	WG1735235
Bromoform	U		0.239	1.00	1	09/05/2021 09:33	WG1735235
Bromomethane	U		0.148	0.500	1	09/05/2021 09:33	WG1735235
n-Butylbenzene	U		0.153	0.500	1	09/05/2021 09:33	WG1735235
sec-Butylbenzene	U		0.101	0.500	1	09/05/2021 09:33	WG1735235
tert-Butylbenzene	U		0.0620	0.200	1	09/05/2021 09:33	WG1735235
Carbon disulfide	U		0.162	0.500	1	09/05/2021 09:33	WG1735235
Carbon tetrachloride	U		0.0432	0.200	1	09/05/2021 09:33	WG1735235
Chlorobenzene	U	<u>C3</u>	0.0229	0.100	1	09/05/2021 09:33	WG1735235
Chlorodibromomethane	U	_	0.0180	0.100	1	09/05/2021 09:33	WG1735235
Chloroethane	U		0.0432	0.200	1	09/05/2021 09:33	WG1735235
Chloroform	0.0560	<u>J</u>	0.0166	0.100	1	09/05/2021 09:33	WG1735235
Chloromethane	U		0.0556	0.500	1	09/05/2021 09:33	WG1735235
2-Chlorotoluene	U		0.0368	0.100	1	09/05/2021 09:33	WG1735235
4-Chlorotoluene	U		0.0452	0.200	1	09/05/2021 09:33	WG1735235
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	09/05/2021 09:33	WG1735235
1,2-Dibromoethane	U		0.0210	0.100	1	09/05/2021 09:33	WG1735235
Dibromomethane	U		0.0400	0.200	1	09/05/2021 09:33	WG1735235
1,2-Dichlorobenzene	U		0.0580	0.200	1	09/06/2021 22:53	WG1735665
1,3-Dichlorobenzene	U		0.0680	0.200	1	09/05/2021 09:33	WG1735235
1,4-Dichlorobenzene	U		0.0788	0.200	1	09/05/2021 09:33	WG1735235
Dichlorodifluoromethane	U		0.0327	0.100	1	09/05/2021 09:33	WG1735235
1,1-Dichloroethane	U		0.0230	0.100	1	09/05/2021 09:33	WG1735235
1,2-Dichloroethane	U		0.0190	0.100	1	09/05/2021 09:33	WG1735235
1,1-Dichloroethene	U		0.0200	0.100	1	09/05/2021 09:33	WG1735235
cis-1,2-Dichloroethene	U		0.0276	0.100	1	09/05/2021 09:33	WG1735235
trans-1,2-Dichloroethene	U		0.0572	0.200	1	09/05/2021 09:33	WG1735235
1,2-Dichloropropane	U		0.0508	0.200	1	09/05/2021 09:33	WG1735235
1,1-Dichloropropene	U		0.0280	0.100	1	09/05/2021 09:33	WG1735235
1,3-Dichloropropane	U		0.0700	0.200	1	09/05/2021 09:33	WG1735235
cis-1,3-Dichloropropene	U		0.0271	0.100	1	09/05/2021 09:33	WG1735235
trans-1,3-Dichloropropene	U		0.0612	0.200	1	09/05/2021 09:33	WG1735235
2,2-Dichloropropane	U		0.0317	0.100	1	09/05/2021 09:33	WG1735235
Di-isopropyl ether	U		0.0140	0.0400	1	09/05/2021 09:33	WG1735235
Ethylbenzene	U		0.0212	0.100	1	09/05/2021 09:33	WG1735235
Hexachloro-1,3-butadiene	U		0.508	1.00	1	09/06/2021 22:53	WG1735665
2-Hexanone	U		0.400	1.00	1	09/05/2021 09:33	WG1735235

Martin S. Burck Assoc.-Hood River, OR

MW-2 DUP

SAMPLE RESULTS - 02

Collected date/time: 08/27/21 14:25

1396571

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Isopropylbenzene	U		0.0345	0.100	1	09/05/2021 09:33	WG1735235
p-Isopropyltoluene	U		0.0932	0.200	1	09/05/2021 09:33	WG1735235
2-Butanone (MEK)	U		0.500	1.00	1	09/05/2021 09:33	WG1735235
Methylene Chloride	U		0.265	1.00	1	09/05/2021 09:33	WG1735235
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	09/05/2021 09:33	WG1735235
Methyl tert-butyl ether	U		0.0118	0.0400	1	09/05/2021 09:33	WG1735235
Naphthalene	U	C3 J3	0.124	0.500	1	09/05/2021 09:33	WG1735235
n-Propylbenzene	U		0.0472	0.200	1	09/05/2021 09:33	WG1735235
Styrene	U		0.109	0.500	1	09/05/2021 09:33	WG1735235
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	09/05/2021 09:33	WG1735235
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	09/05/2021 09:33	WG1735235
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	09/05/2021 09:33	WG1735235
Tetrachloroethene	1.50		0.0280	0.100	1	09/05/2021 09:33	WG1735235
Toluene	U	<u>C3</u>	0.0500	0.200	1	09/05/2021 09:33	WG1735235
1,2,3-Trichlorobenzene	U	<u>C4</u>	0.0250	0.500	1	09/06/2021 22:53	WG1735665
1,2,4-Trichlorobenzene	U	<u>C4</u>	0.193	0.500	1	09/06/2021 22:53	WG1735665
1,1,1-Trichloroethane	U		0.0110	0.100	1	09/05/2021 09:33	WG1735235
1,1,2-Trichloroethane	U	<u>C3</u>	0.0353	0.100	1	09/05/2021 09:33	WG1735235
Trichloroethene	U		0.0160	0.0400	1	09/05/2021 09:33	WG1735235
Trichlorofluoromethane	U		0.0200	0.100	1	09/05/2021 09:33	WG1735235
1,2,3-Trichloropropane	U	<u>J4</u>	0.204	0.500	1	09/05/2021 09:33	WG1735235
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	09/05/2021 09:33	WG1735235
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	09/05/2021 09:33	WG1735235
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	09/05/2021 09:33	WG1735235
Vinyl chloride	U		0.0273	0.100	1	09/05/2021 09:33	WG1735235
Xylenes, Total	U		0.191	0.260	1	09/05/2021 09:33	WG1735235
(S) Toluene-d8	88.1			75.0-131		09/05/2021 09:33	WG1735235
(S) Toluene-d8	100			75.0-131		09/06/2021 22:53	WG1735665
(S) 4-Bromofluorobenzene	89.4			67.0-138		09/05/2021 09:33	WG1735235
(S) 4-Bromofluorobenzene	93.1			67.0-138		09/06/2021 22:53	WG1735665
(S) 1,2-Dichloroethane-d4	132	<u>J1</u>		70.0-130		09/05/2021 09:33	WG1735235

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	09/10/2021 14:29	WG1735421
Residual Range Organics (RRO)	U		83.3	250	1	09/10/2021 14:29	WG1735421
(S) o-Terphenyl	95.8			52.0-156		09/10/2021 14:29	WG1735421

Polychlorinated Biphenyls (GC) by Method 8082 A

(S) 1,2-Dichloroethane-d4 97.5

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
PCB 1016	U		0.270	0.500	1	09/03/2021 17:55	WG1734074
PCB 1221	U		0.270	0.500	1	09/03/2021 17:55	WG1734074
PCB 1232	U		0.270	0.500	1	09/03/2021 17:55	WG1734074
PCB 1242	U		0.270	0.500	1	09/03/2021 17:55	WG1734074
PCB 1248	U		0.173	0.500	1	09/03/2021 17:55	WG1734074
PCB 1254	U		0.173	0.500	1	09/03/2021 17:55	WG1734074
PCB 1260	U		0.173	0.500	1	09/03/2021 17:55	WG1734074
(S) Decachlorobiphenyl	72.5			10.0-128		09/03/2021 17:55	WG1734074
(S) Tetrachloro-m-xylene	83.7			10.0-127		09/03/2021 17:55	WG1734074

WG1735665

Ss

Cn

GI

ΆΙ

Sc

MW-2 DUP

(S) p-Terphenyl-d14

159

SAMPLE RESULTS - 02

Collected date/time: 08/27/21 14:25

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		- L
Anthracene	U		0.0190	0.0500	1	09/02/2021 10:50	WG1732562	- I
Acenaphthene	U		0.0190	0.0500	1	09/02/2021 10:50	WG1732562	L
Acenaphthylene	U		0.0171	0.0500	1	09/02/2021 10:50	WG1732562	[3
Benzo(a)anthracene	U		0.0203	0.0500	1	09/02/2021 10:50	WG1732562	П
Benzo(a)pyrene	U		0.0184	0.0500	1	09/02/2021 10:50	WG1732562	_ L
Benzo(b)fluoranthene	U		0.0168	0.0500	1	09/02/2021 10:50	WG1732562	4
Benzo(g,h,i)perylene	U	<u>J3</u>	0.0184	0.0500	1	09/02/2021 10:50	WG1732562	Ĺ
Benzo(k)fluoranthene	U		0.0202	0.0500	1	09/02/2021 10:50	WG1732562	9
Chrysene	U		0.0179	0.0500	1	09/02/2021 10:50	WG1732562	
Dibenz(a,h)anthracene	U	<u>J3</u>	0.0160	0.0500	1	09/02/2021 10:50	WG1732562	
Fluoranthene	U		0.0270	0.100	1	09/02/2021 10:50	WG1732562	6
Fluorene	U		0.0169	0.0500	1	09/02/2021 10:50	WG1732562	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	09/02/2021 10:50	WG1732562	Ē
Naphthalene	U		0.0917	0.250	1	09/02/2021 10:50	WG1732562	
Phenanthrene	U		0.0180	0.0500	1	09/02/2021 10:50	WG1732562	Ľ
Pyrene	U		0.0169	0.0500	1	09/02/2021 10:50	WG1732562	8
1-Methylnaphthalene	U		0.0687	0.250	1	09/02/2021 10:50	WG1732562	
2-Methylnaphthalene	U		0.0674	0.250	1	09/02/2021 10:50	WG1732562	9
2-Chloronaphthalene	U		0.0682	0.250	1	09/02/2021 10:50	WG1732562	
(S) Nitrobenzene-d5	123			31.0-160		09/02/2021 10:50	WG1732562	L
(S) 2-Fluorobiphenyl	129			48.0-148		09/02/2021 10:50	WG1732562	

37.0-146

WG1732562

09/02/2021 10:50

SDG:

L1396571

DATE/TIME:

09/13/21 10:32

PAGE:

10 of 29

EB-10

SAMPLE RESULTS - 03

Collected date/time: 08/27/21 11:38

Metals (ICPMS) by Method 6020B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cadmium	U		0.150	1.00	1	09/02/2021 15:26	WG1732243
Lead	U		0.849	2.00	1	09/02/2021 15:26	WG1732243

³Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	09/08/2021 02:00	WG1735927
(S) a,a,a-Trifluorotoluene(FID)	98.4			78.0-120		09/08/2021 02:00	WG1735927

⁶Qc

GI

Αl

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	5.34	<u>J</u>	0.548	10.0	1	09/05/2021 09:52	WG1735235
Acrylonitrile	U		0.0760	0.500	1	09/05/2021 09:52	WG1735235
Acrolein	U	<u>J4</u>	0.758	50.0	1	09/05/2021 09:52	WG1735235
Benzene	U		0.0160	0.0400	1	09/05/2021 09:52	WG1735235
Bromobenzene	U		0.0420	0.500	1	09/05/2021 09:52	WG1735235
Bromodichloromethane	U		0.0315	0.100	1	09/05/2021 09:52	WG1735235
Bromoform	U		0.239	1.00	1	09/05/2021 09:52	WG1735235
Bromomethane	U		0.148	0.500	1	09/05/2021 09:52	WG1735235
n-Butylbenzene	U		0.153	0.500	1	09/05/2021 09:52	WG1735235
sec-Butylbenzene	U		0.101	0.500	1	09/05/2021 09:52	WG1735235
tert-Butylbenzene	U		0.0620	0.200	1	09/05/2021 09:52	WG1735235
Carbon disulfide	U		0.162	0.500	1	09/05/2021 09:52	WG1735235
Carbon tetrachloride	U		0.0432	0.200	1	09/05/2021 09:52	WG1735235
Chlorobenzene	U	<u>C3</u>	0.0229	0.100	1	09/05/2021 09:52	WG1735235
Chlorodibromomethane	U		0.0180	0.100	1	09/05/2021 09:52	WG1735235
Chloroethane	U		0.0432	0.200	1	09/05/2021 09:52	WG1735235
Chloroform	U		0.0166	0.100	1	09/05/2021 09:52	WG1735235
Chloromethane	U		0.0556	0.500	1	09/05/2021 09:52	WG1735235
2-Chlorotoluene	U		0.0368	0.100	1	09/05/2021 09:52	WG1735235
4-Chlorotoluene	U		0.0452	0.200	1	09/05/2021 09:52	WG1735235
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	09/05/2021 09:52	WG1735235
1,2-Dibromoethane	U		0.0210	0.100	1	09/05/2021 09:52	WG1735235
Dibromomethane	U		0.0400	0.200	1	09/05/2021 09:52	WG1735235
1,2-Dichlorobenzene	U		0.0580	0.200	1	09/06/2021 23:12	WG1735665
1,3-Dichlorobenzene	U		0.0680	0.200	1	09/05/2021 09:52	WG1735235
1,4-Dichlorobenzene	U		0.0788	0.200	1	09/05/2021 09:52	WG1735235
Dichlorodifluoromethane	U		0.0327	0.100	1	09/05/2021 09:52	WG1735235
1,1-Dichloroethane	U		0.0230	0.100	1	09/05/2021 09:52	WG1735235
1,2-Dichloroethane	U		0.0190	0.100	1	09/05/2021 09:52	WG1735235
1,1-Dichloroethene	U		0.0200	0.100	1	09/05/2021 09:52	WG1735235
cis-1,2-Dichloroethene	U		0.0276	0.100	1	09/05/2021 09:52	WG1735235
trans-1,2-Dichloroethene	U		0.0572	0.200	1	09/05/2021 09:52	WG1735235
1,2-Dichloropropane	U		0.0508	0.200	1	09/05/2021 09:52	WG1735235
1,1-Dichloropropene	U		0.0280	0.100	1	09/05/2021 09:52	WG1735235
1,3-Dichloropropane	U		0.0700	0.200	1	09/05/2021 09:52	WG1735235
cis-1,3-Dichloropropene	U		0.0271	0.100	1	09/05/2021 09:52	WG1735235
trans-1,3-Dichloropropene	U		0.0612	0.200	1	09/05/2021 09:52	WG1735235
2,2-Dichloropropane	U		0.0317	0.100	1	09/05/2021 09:52	WG1735235
Di-isopropyl ether	U		0.0140	0.0400	1	09/05/2021 09:52	WG1735235
Ethylbenzene	U		0.0212	0.100	1	09/05/2021 09:52	WG1735235
Hexachloro-1,3-butadiene	U		0.508	1.00	1	09/06/2021 23:12	WG1735665
2-Hexanone	U		0.400	1.00	1	09/05/2021 09:52	WG1735235

Collected date/time: 08/27/21 11:38

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Isopropylbenzene	U		0.0345	0.100	1	09/05/2021 09:52	WG1735235
p-Isopropyltoluene	U		0.0932	0.200	1	09/05/2021 09:52	WG1735235
2-Butanone (MEK)	U		0.500	1.00	1	09/05/2021 09:52	WG1735235
Methylene Chloride	U		0.265	1.00	1	09/05/2021 09:52	WG1735235
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	09/05/2021 09:52	WG1735235
Methyl tert-butyl ether	U		0.0118	0.0400	1	09/05/2021 09:52	WG1735235
Naphthalene	U	C3 J3	0.124	0.500	1	09/05/2021 09:52	WG1735235
n-Propylbenzene	U		0.0472	0.200	1	09/05/2021 09:52	WG1735235
Styrene	U		0.109	0.500	1	09/05/2021 09:52	WG1735235
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	09/05/2021 09:52	WG1735235
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	09/05/2021 09:52	WG1735235
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	09/05/2021 09:52	WG1735235
Tetrachloroethene	U		0.0280	0.100	1	09/05/2021 09:52	WG1735235
Toluene	U	<u>C3</u>	0.0500	0.200	1	09/05/2021 09:52	WG1735235
1,2,3-Trichlorobenzene	U	<u>C4</u>	0.0250	0.500	1	09/06/2021 23:12	WG1735665
1,2,4-Trichlorobenzene	U	<u>C4</u>	0.193	0.500	1	09/06/2021 23:12	WG1735665
1,1,1-Trichloroethane	U		0.0110	0.100	1	09/05/2021 09:52	WG1735235
1,1,2-Trichloroethane	U	<u>C3</u>	0.0353	0.100	1	09/05/2021 09:52	WG1735235
Trichloroethene	U		0.0160	0.0400	1	09/05/2021 09:52	WG1735235
Trichlorofluoromethane	U		0.0200	0.100	1	09/05/2021 09:52	WG1735235
1,2,3-Trichloropropane	U	<u>J4</u>	0.204	0.500	1	09/05/2021 09:52	WG1735235
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	09/05/2021 09:52	WG1735235
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	09/05/2021 09:52	WG1735235
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	09/05/2021 09:52	WG1735235
Vinyl chloride	U		0.0273	0.100	1	09/05/2021 09:52	WG1735235
Xylenes, Total	U		0.191	0.260	1	09/05/2021 09:52	WG1735235
(S) Toluene-d8	87.6			75.0-131		09/05/2021 09:52	WG1735235
(S) Toluene-d8	101			75.0-131		09/06/2021 23:12	WG1735665
(S) 4-Bromofluorobenzene	91.9			67.0-138		09/05/2021 09:52	WG1735235
(S) 4-Bromofluorobenzene	89.8			67.0-138		09/06/2021 23:12	WG1735665
(S) 1,2-Dichloroethane-d4	137	<u>J1</u>		70.0-130		09/05/2021 09:52	WG1735235
(S) 1,2-Dichloroethane-d4	98.7			70.0-130		09/06/2021 23:12	WG1735665

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	09/10/2021 14:56	WG1735421
Residual Range Organics (RRO)	U		83.3	250	1	09/10/2021 14:56	WG1735421
(S) o-Terphenyl	114			52.0-156		09/10/2021 14:56	WG1735421

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
PCB 1016	U		0.270	0.500	1	09/03/2021 18:14	WG1734074
PCB 1221	U		0.270	0.500	1	09/03/2021 18:14	WG1734074
PCB 1232	U		0.270	0.500	1	09/03/2021 18:14	WG1734074
PCB 1242	U		0.270	0.500	1	09/03/2021 18:14	WG1734074
PCB 1248	U		0.173	0.500	1	09/03/2021 18:14	WG1734074
PCB 1254	U		0.173	0.500	1	09/03/2021 18:14	WG1734074
PCB 1260	U		0.173	0.500	1	09/03/2021 18:14	WG1734074
(S) Decachlorobiphenyl	27.4			10.0-128		09/03/2021 18:14	WG1734074
(S) Tetrachloro-m-xylene	78.6			10.0-127		09/03/2021 18:14	WG1734074

Тс

Ss

Cn

GI

Sc

EB-10

(S) p-Terphenyl-d14

SAMPLE RESULTS - 03

Collected date/time: 08/27/21 11:38

1396571

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0190	0.0500	1	09/02/2021 11:08	WG1732562
Acenaphthene	U		0.0190	0.0500	1	09/02/2021 11:08	WG1732562
Acenaphthylene	U		0.0171	0.0500	1	09/02/2021 11:08	WG1732562
Benzo(a)anthracene	U		0.0203	0.0500	1	09/02/2021 11:08	WG1732562
Benzo(a)pyrene	U		0.0184	0.0500	1	09/02/2021 11:08	WG1732562
Benzo(b)fluoranthene	U		0.0168	0.0500	1	09/02/2021 11:08	WG1732562
Benzo(g,h,i)perylene	U	<u>J3</u>	0.0184	0.0500	1	09/02/2021 11:08	WG1732562
Benzo(k)fluoranthene	U		0.0202	0.0500	1	09/02/2021 11:08	WG1732562
Chrysene	U		0.0179	0.0500	1	09/02/2021 11:08	WG1732562
Dibenz(a,h)anthracene	U	<u>J3</u>	0.0160	0.0500	1	09/02/2021 11:08	WG1732562
Fluoranthene	U		0.0270	0.100	1	09/02/2021 11:08	WG1732562
Fluorene	U		0.0169	0.0500	1	09/02/2021 11:08	WG1732562
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	09/02/2021 11:08	WG1732562
Naphthalene	U		0.0917	0.250	1	09/02/2021 11:08	WG1732562
Phenanthrene	U		0.0180	0.0500	1	09/02/2021 11:08	WG1732562
Pyrene	U		0.0169	0.0500	1	09/02/2021 11:08	WG1732562
1-Methylnaphthalene	U		0.0687	0.250	1	09/02/2021 11:08	WG1732562
2-Methylnaphthalene	U		0.0674	0.250	1	09/02/2021 11:08	WG1732562
2-Chloronaphthalene	U		0.0682	0.250	1	09/02/2021 11:08	WG1732562
(S) Nitrobenzene-d5	127			31.0-160		09/02/2021 11:08	WG1732562
(S) 2-Fluorobiphenyl	127			48.0-148		09/02/2021 11:08	WG1732562

09/02/2021 11:08

WG1732562

37.0-146

Collected date/time: 08/27/21 00:00

SAMPLE RESULTS - 04

Ss

Cn

GI

³Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

Volume Organic Co							
Analyto	Result	Qualifier	MDL ug/l	RDL	Dilution	Analysis	Batch
Analyte	ug/l U		ug/l	ug/l	1	date / time	W/C172E22E
Acetone			0.548	10.0	1	09/05/2021 06:18	WG1735235
Acrylonitrile	U	1.4	0.0760	0.500	1	09/05/2021 06:18	WG1735235
Acrolein	U	<u>J4</u>	0.758	50.0	1	09/05/2021 06:18	WG1735235
Benzene	U		0.0160	0.0400	1	09/05/2021 06:18	WG1735235
Bromobenzene	U		0.0420	0.500	1	09/05/2021 06:18	WG1735235
Bromodichloromethane	U		0.0315	0.100	1	09/05/2021 06:18	WG1735235
Bromoform	U		0.239	1.00	1	09/05/2021 06:18	WG1735235
Bromomethane	U		0.148	0.500	1	09/05/2021 06:18	WG1735235
n-Butylbenzene	U		0.153	0.500	1	09/05/2021 06:18	WG1735235
sec-Butylbenzene	U		0.101	0.500	1	09/05/2021 06:18	WG1735235
tert-Butylbenzene	U		0.0620	0.200	1	09/05/2021 06:18	WG1735235
Carbon disulfide	0.215	<u>J</u>	0.162	0.500	1	09/05/2021 06:18	WG1735235
Carbon tetrachloride	U		0.0432	0.200	1	09/05/2021 06:18	WG1735235
Chlorobenzene	U	<u>C3</u>	0.0229	0.100	1	09/05/2021 06:18	WG1735235
Chlorodibromomethane	U		0.0180	0.100	1	09/05/2021 06:18	<u>WG1735235</u>
Chloroethane	U		0.0432	0.200	1	09/05/2021 06:18	WG1735235
Chloroform	U		0.0166	0.100	1	09/05/2021 06:18	<u>WG1735235</u>
Chloromethane	U		0.0556	0.500	1	09/05/2021 06:18	<u>WG1735235</u>
2-Chlorotoluene	U		0.0368	0.100	1	09/05/2021 06:18	<u>WG1735235</u>
4-Chlorotoluene	U		0.0452	0.200	1	09/05/2021 06:18	WG1735235
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	09/05/2021 06:18	WG1735235
1,2-Dibromoethane	U		0.0210	0.100	1	09/05/2021 06:18	WG1735235
Dibromomethane	U		0.0400	0.200	1	09/05/2021 06:18	WG1735235
,2-Dichlorobenzene	U		0.0580	0.200	1	09/06/2021 22:16	WG1735665
,3-Dichlorobenzene	U		0.0680	0.200	1	09/05/2021 06:18	WG1735235
l,4-Dichlorobenzene	U		0.0788	0.200	1	09/05/2021 06:18	WG1735235
Dichlorodifluoromethane	U		0.0327	0.100	1	09/05/2021 06:18	WG1735235
1,1-Dichloroethane	U		0.0230	0.100	1	09/05/2021 06:18	WG1735235
1,2-Dichloroethane	U		0.0190	0.100	1	09/05/2021 06:18	WG1735235
1,1-Dichloroethene	U		0.0200	0.100	1	09/05/2021 06:18	WG1735235
cis-1,2-Dichloroethene	U		0.0276	0.100	1	09/05/2021 06:18	WG1735235
trans-1,2-Dichloroethene	U		0.0572	0.200	1	09/05/2021 06:18	WG1735235
1,2-Dichloropropane	U		0.0508	0.200	1	09/05/2021 06:18	WG1735235
1,1-Dichloropropene	U		0.0280	0.100	1	09/05/2021 06:18	WG1735235
1,3-Dichloropropane	U		0.0700	0.200	1	09/05/2021 06:18	WG1735235
cis-1,3-Dichloropropene	U		0.0271	0.100	1	09/05/2021 06:18	WG1735235
rans-1,3-Dichloropropene	U		0.0612	0.200	1	09/05/2021 06:18	WG1735235
2,2-Dichloropropane	U		0.0317	0.100	1	09/05/2021 06:18	WG1735235
Di-isopropyl ether	U		0.0140	0.0400	1	09/05/2021 06:18	WG1735235
Ethylbenzene	U		0.0212	0.100	1	09/05/2021 06:18	WG1735235
Hexachloro-1,3-butadiene	U		0.508	1.00	1	09/06/2021 22:16	WG1735665
2-Hexanone	U		0.400	1.00	1	09/05/2021 06:18	WG1735235
sopropylbenzene	U		0.0345	0.100	1	09/05/2021 06:18	WG1735235
o-Isopropyltoluene	U		0.0932	0.200	1	09/05/2021 06:18	WG1735235
2-Butanone (MEK)	U		0.500	1.00	1	09/05/2021 06:18	WG1735235
Methylene Chloride	U		0.265	1.00	1	09/05/2021 06:18	WG1735235
1-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	09/05/2021 06:18	WG1735235
Methyl tert-butyl ether	U		0.0118	0.0400	1	09/05/2021 06:18	WG1735235
Naphthalene	U	<u>C3 J3</u>	0.124	0.500	1	09/05/2021 06:18	WG1735235
n-Propylbenzene	U	22 30	0.0472	0.200	1	09/05/2021 06:18	WG1735235
Styrene	U		0.109	0.500	1	09/05/2021 06:18	WG1735235 WG1735235
,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	09/05/2021 06:18	WG1735235 WG1735235
,1,2,2-Tetrachloroethane	U		0.0200	0.100	1	09/05/2021 06:18	WG1735235 WG1735235
,,,,,,,,=,CuaciiiOIUCUIalic				0.100	1	09/05/2021 06:18	WG1735235 WG1735235
1,1,2-Trichlorotrifluoroethane Tetrachloroethene	U		0.0270 0.0280	0.100	1	09/05/2021 06:18	WG1735235 WG1735235

TRIP BLANK

SAMPLE RESULTS - 04

Collected date/time: 08/27/21 00:00

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		
1,2,3-Trichlorobenzene	U	<u>C4</u>	0.0250	0.500	1	09/06/2021 22:16	WG1735665	² Tc
1,2,4-Trichlorobenzene	U	<u>C4</u>	0.193	0.500	1	09/06/2021 22:16	WG1735665	
1,1,1-Trichloroethane	U		0.0110	0.100	1	09/05/2021 06:18	WG1735235	3
1,1,2-Trichloroethane	U	<u>C3</u>	0.0353	0.100	1	09/05/2021 06:18	WG1735235	Ss
Trichloroethene	U		0.0160	0.0400	1	09/05/2021 06:18	WG1735235	
Trichlorofluoromethane	U		0.0200	0.100	1	09/05/2021 06:18	WG1735235	⁴ Cn
1,2,3-Trichloropropane	U	<u>J4</u>	0.204	0.500	1	09/05/2021 06:18	WG1735235	
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	09/05/2021 06:18	WG1735235	5
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	09/05/2021 06:18	WG1735235	⁵ Sr
1,3,5-Trimethylbenzene	U		0.0432	0.200	1	09/05/2021 06:18	WG1735235	
Vinyl chloride	U		0.0273	0.100	1	09/05/2021 06:18	WG1735235	⁶ Qc
Xylenes, Total	U		0.191	0.260	1	09/05/2021 06:18	WG1735235	L QC
(S) Toluene-d8	89.4			<i>75.0-131</i>		09/05/2021 06:18	WG1735235	7
(S) Toluene-d8	102			75.0-131		09/06/2021 22:16	WG1735665	GI
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/05/2021 06:18	WG1735235	
(S) 4-Bromofluorobenzene	91.5			67.0-138		09/06/2021 22:16	WG1735665	8 Al
(S) 1,2-Dichloroethane-d4	122			70.0-130		09/05/2021 06:18	WG1735235	
(S) 1,2-Dichloroethane-d4	104			70.0-130		09/06/2021 22:16	WG1735665	9
								Sc

QUALITY CONTROL SUMMARY

L1396571-01,02,03

Metals (ICPMS) by Method 6020B Method Blank (MB)

(MB) R3699691-1 09/02/21 14:38 MB Result MB MDL MB RDL MB Qualifier Analyte ug/l ug/l ug/l U Cadmium 0.150 1.00 U Lead 0.849 2.00

(LCS) R3699691-2 09/02	CS) R3699691-2 09/02/21 14:42								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Cadmium	50.0	45.2	90.5	80.0-120					
Lead	50.0	44.1	88.2	80.0-120					

[†]Cn

L1396816-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396816-04 09/02/2	(OS) L1396816-04											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Cadmium	50.0	U	48.1	46.7	96.1	93.4	1	75.0-125			2.84	20
Load	E0 0	11	1E 2	44.0	00 5	00 N	1	7E O 12E			2.70	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1396571-01,02,03

Method Blank (MB)

(MB) R3701641-2 09/08/	21 00:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	97.5			78.0-120

²Tc

Laboratory Control Sample (LCS)

(LCS) R3701641-1 09/07/2	CS) R3701641-1 09/07/21 23:19								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Gasoline Range Organics-NWTPH	5500	6200	113	70.0-124					
(S) a,a,a-Trifluorotoluene(FID)			106	78.0-120					

QUALITY CONTROL SUMMARY

L1396571-01,02,03,04

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)				
(MB) R3700712-3 09/05/2	1 05:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Acetone	U		0.548	10.0
Acrolein	U		0.758	50.0
Acrylonitrile	U		0.0760	0.500
Benzene	U		0.0160	0.0400
Bromobenzene	U		0.0420	0.500
Bromodichloromethane	U		0.0315	0.100
Bromoform	U		0.239	1.00
Bromomethane	U		0.148	0.500
n-Butylbenzene	U		0.153	0.500
sec-Butylbenzene	U		0.101	0.500
tert-Butylbenzene	U		0.0620	0.200
Carbon disulfide	U		0.162	0.500
Carbon tetrachloride	U		0.0432	0.200
Chlorobenzene	U		0.0229	0.100
Chlorodibromomethane	U		0.0180	0.100
Chloroethane	U		0.0432	0.200
Chloroform	U		0.0166	0.100
Chloromethane	U		0.0556	0.500
2-Chlorotoluene	U		0.0368	0.100
4-Chlorotoluene	U		0.0452	0.200
1,2-Dibromo-3-Chloropropane	U		0.204	1.00
1,2-Dibromoethane	U		0.0210	0.100
Dibromomethane	U		0.0400	0.200
1,3-Dichlorobenzene	U		0.0680	0.200
1,4-Dichlorobenzene	U		0.0788	0.200
Dichlorodifluoromethane	U		0.0327	0.100
1,1-Dichloroethane	U		0.0230	0.100
1,2-Dichloroethane	U		0.0190	0.100
1,1-Dichloroethene	U		0.0200	0.100
cis-1,2-Dichloroethene	U		0.0276	0.100
trans-1,2-Dichloroethene	U		0.0572	0.200
1,2-Dichloropropane	U		0.0508	0.200
1,1-Dichloropropene	U		0.0280	0.100
1,3-Dichloropropane	U		0.0700	0.200
cis-1,3-Dichloropropene	U		0.0271	0.100
trans-1,3-Dichloropropene	U		0.0612	0.200
2,2-Dichloropropane	U		0.0317	0.100
Di-isopropyl ether	U		0.0140	0.0400
Ethylbenzene	U		0.0212	0.100
2-Hexanone	U		0.400	1.00

QUALITY CONTROL SUMMARY

L1396571-01,02,03,04

Volatile Organic Compounds (GC/MS) by Method 8260D

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

1 05:20				
MB Result	MB Qualifier	MB MDL	MB RDL	
ug/l		ug/l	ug/l	
U		0.0345	0.100	
U		0.0932	0.200	
U		0.500	1.00	
U		0.265	1.00	
U		0.400	1.00	
U		0.0118	0.0400	
U		0.124	0.500	
U		0.0472	0.200	
U		0.109	0.500	
U		0.0200	0.100	
U		0.0156	0.100	
U		0.0280	0.100	
U		0.0500	0.200	
U		0.0270	0.100	
U		0.0110	0.100	
U		0.0353	0.100	
U		0.0160	0.0400	
U		0.0200	0.100	
U		0.204	0.500	
U		0.0460	0.200	
U		0.0464	0.200	
U		0.0432	0.200	
U		0.0273	0.100	
U		0.191	0.260	
89.7			75.0-131	
100			67.0-138	
	MB Result ug/I U U U U U U U U U U U U U U U U U U	MB Result ug/l U U U U U U U U U U U U U U U U U U	MB Result ug/l MB Qualifier ug/l MB MDL ug/l U 0.0345 0.0932 U 0.500 0.500 U 0.265 0.400 U 0.0118 0.124 U 0.0472 0.0920 U 0.0200 0.0156 U 0.0280 0.0280 U 0.0500 0.0100 U 0.0353 0.0110 U 0.0353 0.0160 U 0.0200 0.0204 U 0.0460 0.0460 U 0.0464 0.0432 U 0.0273 0.191	MB Result ug/l MB Qualifier ug/l MB MDL ug/l MB RDL ug/l U 0.0345 0.100 U 0.0932 0.200 U 0.500 1.00 U 0.265 1.00 U 0.400 1.00 U 0.0118 0.0400 U 0.124 0.500 U 0.0472 0.200 U 0.109 0.500 U 0.0200 0.100 U 0.0280 0.100 U 0.0500 0.200 U 0.0500 0.200 U 0.0353 0.100 U 0.0353 0.100 U 0.0160 0.0400 U 0.0200 0.100 U 0.0460 0.200 U 0.0460 0.200 U 0.0464 0.200 U 0.0432 0.200 U 0.0273 0.100 U

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700712-1 09/0!	5/21 04:02 • (LCS	D) R3700712-:	2 09/05/21 04:	22						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	33.0	29.0	132	116	10.0-160			12.9	31
Acrolein	25.0	78.1	69.0	312	276	10.0-160	<u>J4</u>	<u>J4</u>	12.4	31
Acrylonitrile	25.0	33.3	30.9	133	124	45.0-153			7.48	22
Benzene	5.00	4.57	4.79	91.4	95.8	70.0-123			4.70	20
Bromobenzene	5.00	4.32	5.10	86.4	102	73.0-121			16.6	20
Bromodichloromethane	5.00	5.02	5.01	100	100	73.0-121			0.199	20

122

70.0-130

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1396571-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700712-1 09/05/2	21 04:02 • (LCS	D) R3700712-2	09/05/21 04:	22							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromoform	5.00	4.51	4.43	90.2	88.6	64.0-132			1.79	20	
Bromomethane	5.00	5.19	4.97	104	99.4	56.0-147			4.33	20	
n-Butylbenzene	5.00	4.10	3.47	82.0	69.4	68.0-135			16.6	20	
sec-Butylbenzene	5.00	4.24	4.06	84.8	81.2	74.0-130			4.34	20	
tert-Butylbenzene	5.00	4.39	4.44	87.8	88.8	75.0-127			1.13	20	
Carbon disulfide	5.00	5.83	5.43	117	109	56.0-133			7.10	20	
Carbon tetrachloride	5.00	5.58	5.48	112	110	66.0-128			1.81	20	
Chlorobenzene	5.00	3.89	4.06	77.8	81.2	76.0-128			4.28	20	
Chlorodibromomethane	5.00	4.09	4.15	81.8	83.0	74.0-127			1.46	20	
Chloroethane	5.00	5.19	4.77	104	95.4	61.0-134			8.43	20	
Chloroform	5.00	5.62	5.37	112	107	72.0-123			4.55	20	
Chloromethane	5.00	5.13	4.85	103	97.0	51.0-138			5.61	20	
2-Chlorotoluene	5.00	4.14	4.51	82.8	90.2	75.0-124			8.55	20	
4-Chlorotoluene	5.00	4.54	4.81	90.8	96.2	75.0-124			5.78	20	
1,2-Dibromo-3-Chloropropane	5.00	5.36	5.16	107	103	59.0-130			3.80	20	
1,2-Dibromoethane	5.00	4.22	4.57	84.4	91.4	74.0-128			7.96	20	
Dibromomethane	5.00	5.43	4.99	109	99.8	75.0-122			8.45	20	
1,3-Dichlorobenzene	5.00	4.25	4.14	85.0	82.8	76.0-125			2.62	20	
1,4-Dichlorobenzene	5.00	4.28	4.19	85.6	83.8	77.0-121			2.13	20	
Dichlorodifluoromethane	5.00	5.69	5.67	114	113	43.0-156			0.352	20	
1,1-Dichloroethane	5.00	5.60	5.09	112	102	70.0-127			9.54	20	
1,2-Dichloroethane	5.00	5.50	5.26	110	105	65.0-131			4.46	20	
1,1-Dichloroethene	5.00	6.15	5.78	123	116	65.0-131			6.20	20	
cis-1,2-Dichloroethene	5.00	5.38	4.93	108	98.6	73.0-125			8.73	20	
trans-1,2-Dichloroethene	5.00	5.42	5.13	108	103	71.0-125			5.50	20	
1,2-Dichloropropane	5.00	4.71	4.87	94.2	97.4	74.0-125			3.34	20	
1,1-Dichloropropene	5.00	5.07	4.94	101	98.8	73.0-125			2.60	20	
1,3-Dichloropropane	5.00	4.20	4.68	84.0	93.6	80.0-125			10.8	20	
cis-1,3-Dichloropropene	5.00	4.50	4.66	90.0	93.2	76.0-127			3.49	20	
rans-1,3-Dichloropropene	5.00	4.00	4.54	80.0	90.8	73.0-127			12.6	20	
2,2-Dichloropropane	5.00	4.71	4.38	94.2	87.6	59.0-135			7.26	20	
Di-isopropyl ether	5.00	4.84	4.67	96.8	93.4	60.0-136			3.58	20	
Ethylbenzene	5.00	4.02	3.98	80.4	79.6	74.0-126			1.00	20	
2-Hexanone	25.0	26.8	28.3	107	113	54.0-147			5.44	20	
sopropylbenzene	5.00	4.01	3.72	80.2	74.4	72.0-127			7.50	20	
p-Isopropyltoluene	5.00	3.99	3.70	79.8	74.0	72.0-133			7.54	20	
2-Butanone (MEK)	25.0	29.9	34.9	120	140	30.0-160			15.4	24	
Methylene Chloride	5.00	5.30	4.76	106	95.2	68.0-123			10.7	20	
4-Methyl-2-pentanone (MIBK)	25.0	26.2	27.4	105	110	56.0-143			4.48	20	
Methyl tert-butyl ether	5.00	5.33	4.80	107	96.0	66.0-132			10.5	20	

СР

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1396571-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700712-1 09/05/21 04:02 • (LCSD) R3700712-2 09/05/21 04:22

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Naphthalene	5.00	3.91	3.02	78.2	60.4	59.0-130		<u>J3</u>	25.7	20
n-Propylbenzene	5.00	4.45	4.71	89.0	94.2	74.0-126			5.68	20
Styrene	5.00	4.19	3.95	83.8	79.0	72.0-127			5.90	20
1,1,1,2-Tetrachloroethane	5.00	4.27	3.99	85.4	79.8	74.0-129			6.78	20
1,1,2,2-Tetrachloroethane	5.00	4.50	5.39	90.0	108	68.0-128			18.0	20
Tetrachloroethene	5.00	4.06	4.24	81.2	84.8	70.0-136			4.34	20
Toluene	5.00	3.93	4.23	78.6	84.6	75.0-121			7.35	20
1,1,2-Trichlorotrifluoroethane	5.00	5.26	4.91	105	98.2	61.0-139			6.88	20
1,1,1-Trichloroethane	5.00	6.01	5.84	120	117	69.0-126			2.87	20
1,1,2-Trichloroethane	5.00	3.96	4.38	79.2	87.6	78.0-123			10.1	20
Trichloroethene	5.00	4.65	4.65	93.0	93.0	76.0-126			0.000	20
Trichlorofluoromethane	5.00	5.47	5.07	109	101	61.0-142			7.59	20
1,2,3-Trichloropropane	5.00	6.13	6.98	123	140	67.0-129		<u>J4</u>	13.0	20
1,2,3-Trimethylbenzene	5.00	4.15	3.74	83.0	74.8	74.0-124			10.4	20
1,2,4-Trimethylbenzene	5.00	4.25	4.11	85.0	82.2	70.0-126			3.35	20
1,3,5-Trimethylbenzene	5.00	4.39	4.38	87.8	87.6	73.0-127			0.228	20
Vinyl chloride	5.00	5.22	5.01	104	100	63.0-134			4.11	20
Xylenes, Total	15.0	12.3	11.8	82.0	78.7	72.0-127			4.15	20
(S) Toluene-d8				86.4	89.1	75.0-131				
(S) 4-Bromofluorobenzene				94.3	92.1	67.0-138				

70.0-130

124

123

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1396571-01,02,03,04

Method Blank (MB)

(MB) R3700978-3 09/06/					L L
	MB Result	MB Qualifier	MB MDL	MB RDL	Г
Analyte	ug/l		ug/l	ug/l	
1,2-Dichlorobenzene	U		0.0580	0.200	
Hexachloro-1,3-butadiene	U		0.508	1.00	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	ŗ
(S) Toluene-d8	101			75.0-131	
(S) 4-Bromofluorobenzene	91.2			67.0-138	L.
(S) 1,2-Dichloroethane-d4	98.4			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700978-1 09/06/21 15:00 • (LCSD) R3700978-2	09/06/21 15:19
---	----------------

(200)	•	•									7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	L
1,2-Dichlorobenzene	5.00	4.71	4.57	94.2	91.4	76.0-124			3.02	20	8
Hexachloro-1,3-butadiene	5.00	4.24	4.52	84.8	90.4	57.0-150			6.39	20	
1,2,3-Trichlorobenzene	5.00	3.36	3.17	67.2	63.4	59.0-139			5.82	20	c
1,2,4-Trichlorobenzene	5.00	3.49	3.49	69.8	69.8	62.0-137			0.000	20	
(S) Toluene-d8				98.1	101	75.0-131					L
(S) 4-Bromofluorobenzene				96.0	92.8	67.0-138					
(S) 1,2-Dichloroethane-d4				96.8	93.1	70.0-130					

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1396571-01,02,03

Method Blank (MB)

(MB) R3700943-1 09/06/21 17:03										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Diesel Range Organics (DRO)	U		66.7	200						
Residual Range Organics (RRO)	U		83.3	250						
(S) o-Terphenyl	70.5			52.0-156						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3/00943-2 09/06	/21 1/:29 • (LCS	D) R3/00943	-3 09/06/211/:	22						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1510	1560	101	104	50.0-150			3.26	20
(S) o-Terphenyl				96.0	94.0	52.0-156				

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1396571-01,02,03

Method Blank (MB)

(MB) R3700211-1 09/03/2	21 13:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
PCB 1260	U		0.173	0.500
PCB 1016	U		0.270	0.500
PCB 1221	U		0.270	0.500
PCB 1232	U		0.270	0.500
PCB 1242	U		0.270	0.500
PCB 1248	U		0.173	0.500
PCB 1254	U		0.173	0.500
(S) Decachlorobiphenyl	86.1			10.0-128
(S) Tetrachloro-m-xylene	88.0			10.0-127

Laboratory Control Sample (LCS)

(LCS) R3700211-2 09/03/	S) R3700211-2 09/03/21 13:30											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
PCB 1260	2.50	2.50	100	42.0-131								
PCB 1016	2.50	2.42	96.8	36.0-135								
(S) Decachlorobiphenyl			76.1	10.0-128								
(S) Tetrachloro-m-xylene			85.6	10.0-127								

L1396417-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396417-01 09/03/	DS) L1396417-01 09/03/21 15:25 • (MS) R3700211-4 09/03/21 16:35 • (MSD) R3700211-5 09/03/21 18:05														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%			
PCB 1260	2.50	U	1.28	3.99	51.2	160	1	20.0-142	<u>P</u>	<u>J3 J5</u>	103	27			
PCB 1016	2.50	U	2.72	8.37	109	335	1	11.0-160	<u>P</u>	<u>J3 J5 P</u>	102	38			
(S) Decachlorobiphenyl					32.6	36.6		10.0-128							
(S) Tetrachloro-m-xylene					58.9	74.7		10.0-127							

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1396571-01,02,03

Method Blank (MB)

(MB) R3699766-3 09/0)2/21 08:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	103			31.0-160	
(S) 2-Fluorobiphenyl	131			48.0-148	
(S) p-Terphenyl-d14	155	J1		37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3699766-1 09/02	2/21 08:13 • (LCS	D) R3699766-	-2 09/02/21 08	:31							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	2.42	2.48	121	124	67.0-150			2.45	20	
Acenaphthene	2.00	2.41	2.52	120	126	65.0-138			4.46	20	
Acenaphthylene	2.00	2.53	2.64	126	132	66.0-140			4.26	20	
Benzo(a)anthracene	2.00	1.83	2.09	91.5	104	61.0-140			13.3	20	
Benzo(a)pyrene	2.00	1.53	1.82	76.5	91.0	60.0-143			17.3	20	
Benzo(b)fluoranthene	2.00	1.63	1.91	81.5	95.5	58.0-141			15.8	20	
Benzo(g,h,i)perylene	2.00	1.41	1.73	70.5	86.5	52.0-153		<u>J3</u>	20.4	20	
Benzo(k)fluoranthene	2.00	1.49	1.82	74.5	91.0	58.0-148			19.9	20	
Chrysene	2.00	1.72	1.99	86.0	99.5	64.0-144			14.6	20	
Dibenz(a,h)anthracene	2.00	1.41	1.74	70.5	87.0	52.0-155		<u>J3</u>	21.0	20	
Fluoranthene	2.00	2.24	2.36	112	118	69.0-153			5.22	20	

09/13/21 10:32

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1396571-01,02,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3699766-1 09/02/21 08:13 • (LCSD) R3699766-2 09/02/21 08:31

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	2.47	2.55	123	128	64.0-136			3.19	20
Indeno(1,2,3-cd)pyrene	2.00	1.46	1.74	73.0	87.0	54.0-153			17.5	20
Naphthalene	2.00	2.31	2.41	115	120	61.0-137			4.24	20
Phenanthrene	2.00	2.46	2.56	123	128	62.0-137			3.98	20
Pyrene	2.00	2.28	2.40	114	120	60.0-142			5.13	20
1-Methylnaphthalene	2.00	2.38	2.48	119	124	66.0-142			4.12	20
2-Methylnaphthalene	2.00	2.22	2.34	111	117	62.0-136			5.26	20
2-Chloronaphthalene	2.00	2.35	2.48	117	124	64.0-140			5.38	20
(S) Nitrobenzene-d5				120	136	31.0-160				
(S) 2-Fluorobiphenyl				124	129	48.0-148				
(S) p-Terphenyl-d14				99.0	118	37.0-146				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P	RPD between the primary and confirmatory analysis exceeded 40%.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:		-	Billing Info	rmation:						Analysis	/ Conta	iner / Pr	eservativ	/e		0	hain of Custod	ly Page of	
Martin S. Burck Assoc 200 N. Wasco Ct. Hood River, OR 97031	Hood Riv	er, OR	Account 200 N. V	s Payable Vasco Ct. ver, OR 9703	1	Pres Chk				1014313	CONTRA		72				0) ce Analytica	
Report to: Jon White			Email To: jwhite@m	sbaenvironmer	ntal.com;msba@	msbae			17		3					Su	ubmitting a sample v	fount Juliet, TN 37122 via this chain of custody dgment and acceptance of	f the
Project Description: North Star Castel		City/State Collected:	To colonia de la		Please C PT MT (-HCI		Pres-V		-HNO		20			ht	ace Terms and Cond ttps://info.pacelabs. erms.pdf	com/hubfs/pas-standard-	,
Phone: 541-387-4422	Client Project	ct# KSta		MSBAHRO	R-WHITE Star Cash	cel	nl Amb	D	nb-No	NoPres	NHDPE	ID-HCI	-60			s	1099	1651	L
Collected by (print): Jan White	Site/Facility	th Star		P.O.#	th Star		T 100r	mb H	IOMIA	Amb-	3 250n	OmlAn	otal				cctnum: MS		9
Collected by (signature): Immediately Packed on Ice N Y	Same		Day	Quote # Date Res	sults Needed	No. of	NWTPHDX NOSGT 100ml Amb-HCl	NWTPHGX 40mlAmb HCI	PAHs 8270ESIM 40mlAmb-NoPres-WT	PCBs 8082 100ml Amb-NoPres	Total RCRA8 6020 250mlHDPE-HNO3	VOCs 8260D LL 40mlAmb-HCl	Pb - To-			Pi Pi		57879	11
Sample ID	Comp/Grat	Matrix *	Depth	Date	Time	Cntrs	NWT	NWT	PAHS	PCBs	Total	VOCs	09			SI	hipped Via:	Sample # (lab or	nly)
mw-2		GW		8 27 21	14:25	14	X	X	×	×		×	×					-01	
mw-2 dup		GW		8/27/21	14:25	14	X	×	×	×		X	×					-02	
EB-10		GW		8/27/2	11:38	13	X	X	×	×		×	×					-63	
Trip Blank		GW										X	198					-04	
		GW				1													
		GW																	
		GW																	
		GW			-														
		GW		-															
		GW											7 6						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH		_ Tem_ Othe		_	coc si Bottle	al Prese gned/Access arrive	Receipt C ent/Intact curate: e intact: es used:		N N N
DW - Drinking Water OT - Other	Samples returne	ExCourier			cking# 51	117	4	430	-	528		- (1	line.	Suffic VOA Ze	ient vo	lume sent: f Applical	ble A	N N
Relinquished by: (Signature)		Date: 8/27/2	-	:00	eived by: (Signa					Trip Bla		l	HEL/ME TBR		RAD Sc	reen <0	.5 mR/hr:	_ y _	N
Relinquished by : (Signature)		Date:	Time		ceived by: (Signa					Temp;	0=1.	7	des Receiv	/ed:		vation re	equired by Lo	ogin: Date/Time	
Relinquished by : (Signature)	*	Date:	Time	Red	ceived for lab by	: (Signat	ure)		-	Date:	21	Tim	115		Hold:			NCF / OK	

DRAFT

Appendix J

Soil Vapor Purge and Sample Data

MARTIN S. BURCK ASSOCIATES, INC.

SUBSLAB/SOIL VAPOR PURGE AND SAMPLE DATA

Date: 8	127/21	Sampled By: <u>タ</u> . いんよ	
		0	
A	Star Carlotter	SAMPLE INFORMATION	0 t A la 6 t
Sample Na	ame_ 5v-1	General Location: Maint	
Tubing Dia	meter (ID) _ 0.\7"	Total Depth (ft)	Total Tubing/ Manifold Length
Installation	Type Substab	Installation Date/Time 9 27/21 - 0950	One Purge Volume 25mL
No. of Volu Purge _	imes to 3	Total Purge Volume	75mL
		SOIL VAPOR PURGING INFORM	ATION
Time	Comments and	Leak Test Description and Results	
12:12	2-proponal pla	ed in shroud	
12:19	shroud pid = 19.	Бррт	
12:21		1 syringe; shroud pid = 21	Tppm
12:23		ppm; Shroud pid = 23.8 ppm	
12:24		hroud pid= 19.8 ppm	
12:28	61	Samph 641-Shroud; shroud	016=17.70pm
12:29		Lross pid = 18.2 ppm	
12:34	Downhole pid =		Ψ.
		SOIL VAPOR SAMPLE INFORMA	ATION
Start Time	12:24	End Time (Time of Collection on COC) 12:2	9 Start/End 30/5"Hg
Container(s	s) TU-15 # 48		equested

MARTIN S. BURCK ASSOCIATES, INC.

SOIL VAPOR PURGE VOLUME CALCULATION WORKSHEET

Project: North Star Co	steel		Sample Order (1)
Date: 8/27/21		y: J. W.T.	
Sample Name SV-1		E INFORMATION al Location: Maintenan	. B. W.
Tubing Diameter (ID)0.1			allation Type <u>Swsslab</u>
	SAMPLE	POINT VOLUME	
Total Depth (ft) of Sanded Sampling Space	6.17'	Total Volume (L) of Sanded Sampling Spa	1Ce 0.007 L 1" Bore = 0.0432 3.25" Bore = 0.48 Liters/foot Liters/foot
	TUBING	TRAIN VOLUME	
Total Tubing/Manifold Length	4'	Total Tubing/Manifold Volume	6 . 6 1 8 L 0.170" ID Teflon Tubing = 0.0044 Liters/foot
	TOTAL	PURGE VOLUME	
One Purge Volume	0.0 2 5L	= 25mL	
No. of Volumes to Purge	3	Total Purge Volun	ne 75mL

MARTIN S. BURCK ASSOCIATES, INC.

SUBSLAB/SOIL VAPOR PURGE AND SAMPLE DATA

	8 27 21 San	npled By:	N.h	
		SAMPLE INFORM	ATION	
Sample Na	ame 5v-2	General Location:	welding st	ation Building
Гubing Dia	meter (ID)	Total Depth (ft)0.6	ı Te	otal Tubing/ 4'
nstallation	Type <u>Subslab</u>	nstallation Date/Time <u> </u>	4	e Purge lume25 m L
No. of Volu Purge _	imes to 3	Total Purge Volu	me	75mL
	SOII	L VAPOR PURGING IN	FORMATION	
Time	Comments and Lea	k Test Description and	Results	
13:12	2-propunol pland	in shroud		
13:18	shroud pid = 22 pp			
0110	0.10	N.		
			rose old	22.5 - Liz . was . P. 55
13:22	purged 75 ml us	sing syringe; st	orose pid:	= 22.9 ; purse pid = 2.5 p
13:22	purged 75 ml us start sv sample e	sing syringe; st collection; vac = 30	"Hs; shrow	pid = 17.7 ppm
13:22	start er sample collected shrould so	sing Syringe; 31 solled the; vac = 30 urple svz-shroud	(750 M); 8	pid=17.74pm hrost pid=20.36pm
13:22	start sy sample of collected shroud so stop sy sampling	sing Syringe; st collection; vac = 30 uph 5v2-Shrowd ; shrout pid = 20	(750 M); 8	pid=17.74pm hrost pid=20.36pm
13:23 13:24 13:26	start er sample collected shrould so	sing Syringe; st collection; vac = 30 uph 5v2-Shrowd ; shrout pid = 20	(750 M); 8	pid=17.74pm hrost pid=20.36pm
13:23	purged 75 ml vs start sv sample of collected shroud so stop sv sampling Downhole pid = 1	sing Syringe; st collection; vac = 30 uple 5v2-Shroud ; shroud pid = 20	"Hg; shrow (750 MI); 8 5; YAC = U	pid=17.74pm hrost pid=20.36pm
13:23 13:24 13:26	purged 75 ml vs start sv sample of collected shroud so stop sv sampling Downhole pid = 1	sing Syringe; 31 collection; vac = 30 collection; v	"Hg; shrow (750 MI); 8 5; YAC = U	pid=17.74pm hrost pid=20.36pm
13:23 13:24 13:26	purged 75 ml vs start sv sample of collected shroud so stop sv sampling Downhole pid = 1	sing Syringe; st collection; vac = 30 uple 5v2-Shroud ; shroud pid = 20	"Hg; shrow (750 MI); 8 5; YAC = U	pid=17.74pm hrost pid=20.36pm

MARTIN S. BURCK ASSOCIATES, INC.

SOIL VAPOR PURGE VOLUME CALCULATION WORKSHEET

Project: North Ster Caster	Sample Order (2)
	ed By: A. Whitz
Sample Name SV-2 Ge	meral Location: welding Station Building tal Depth (ft) 0,67 Installation Type 5 5 5 1 6 b
SAM	PLE POINT VOLUME
Total Depth (ft) of Sanded Sampling Space	Total Volume (L) of Sanded Sampling Space D D T
TUB	ING TRAIN VOLUME
Total Tubing/Manifold H	Total Tubing/Manifold Volume 0.170" ID Tefion Tubing = 0.0044 Liters/foot
тот	AL PURGE VOLUME
One Purge Volume 0.025L:	= 25 m L
No. of Volumes to Purge3	Total Purge Volume75 mL

Appendix K

Subslab Vapor Sample Laboratory Analytical Reports and Modeling Subslab Vapor Sample Laboratory Analytical Report Leak Test Shroud Vapor Sample Laboratory Analytical Report BioVapor Modeling Inputs and Outputs

Subslab Vapor Sample Laboratory Analytical Report

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Martin S Burck & Associates Inc Josh Owen 200 N Wasco St. Hood River, OR 97031

RE: North Star Casteel

Work Order Number: 2109007

September 27, 2021

Attention Josh Owen:

Fremont Analytical, Inc. received 2 sample(s) on 9/1/2021 for the analyses presented in the following report.

Major Gases by EPA Method 3C
Petroleum Fractionation by EPA Method TO-15
Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Martin S Burck & Associates Inc Work Order Sample Summary

Project: North Star Casteel

Work Order: 2109007

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2109007-001
 SV-1
 08/27/2021 12:29 PM
 09/01/2021 10:11 AM

 2109007-002
 SV-2
 08/27/2021 1:23 PM
 09/01/2021 10:11 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Date: 9/27/2021

CLIENT: Martin S Burck & Associates Inc

Project: North Star Casteel

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3. Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm). Note: The estimated BTU calculation is based off of the methane result.

9/27/21: Revision 1 includes additional analysis requested by the client.

Qualifiers & Acronyms

WO#:

2109007

Date Reported:

9/27/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2109007**Date Reported: **9/27/2021**

CLIENT: Martin S Burck & Associates Inc

Project: North Star Casteel

Lab ID: 2109007-001 **Collection Date:** 8/27/2021 12:29:00 PM

Client Sample ID: SV-1 Matrix: Soil Gas

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	n ID: R7	0036 Analyst: SLA
Carbon Dioxide	0.127	0.0500	%	1	9/21/2021 10:41:00 AM
Carbon Monoxide	ND	0.0500	%	1	9/21/2021 10:41:00 AM
Methane	ND	0.0500	%	1	9/21/2021 10:41:00 AM
Nitrogen	77.0	0.0500	%	1	9/21/2021 10:41:00 AM
Oxygen	22.9	0.0500	%	1	9/21/2021 10:41:00 AM
Hydrogen	ND	0.0500	%	1	9/21/2021 10:41:00 AM
BTU	ND		BTU/ft³	1	9/21/2021 10:41:00 AM

Lab ID: 2109007-002 **Collection Date:** 8/27/2021 1:23:00 PM

Client Sample ID: SV-2 Matrix: Soil Gas

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	n ID: R7	0036 Analyst: SLA
Carbon Dioxide	0.285	0.0500	%	1	9/21/2021 10:53:00 AM
Carbon Monoxide	ND	0.0500	%	1	9/21/2021 10:53:00 AM
Methane	ND	0.0500	%	1	9/21/2021 10:53:00 AM
Nitrogen	77.1	0.0500	%	1	9/21/2021 10:53:00 AM
Oxygen	22.6	0.0500	%	1	9/21/2021 10:53:00 AM
Hydrogen	ND	0.0500	%	1	9/21/2021 10:53:00 AM
BTU	ND		BTU/ft³	1	9/21/2021 10:53:00 AM

Date Sampled: 8/27/2021

Date Received: 9/1/2021

Client: Martin S Burck & Associates Inc

WorkOrder: 2109007

Project: North Star Casteel

Client Sample ID: SV-1

Lab ID: 2109007-001A

Sample Type:

Analyte	Concen	tration	Reporting Limit		Qual	Method	Date/Analy	'st
Petroleum Fractionation by EPA	Method TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	419	1,590	30.0	114		EPA-TO-15	09/10/2021	MS
Aliphatic Hydrocarbon (EC9-12)	586	3,450	20.0	118		EPA-TO-15	09/10/2021	MS
Aromatic Hydrocarbon (EC9-10)	48.4	244	5.00	25.2		EPA-TO-15	09/10/2021	MS
Surr: 4-Bromofluorobenzene	143 %Rec		70-130		S	EPA-TO-15	09/10/2021	MS
NOTES: S - Outlying surrogate recovery(ies) of Volatile Organic Compounds by		<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Isopropyl Alcohol	76.2	187	4.00	9.83		EPA-TO-15	09/10/2021	MS
Benzene	0.363	1.16	0.0400	0.128		EPA-TO-15	09/10/2021	MS
Ethylbenzene	<1.60	<6.95	1.60	6.95		EPA-TO-15	09/10/2021	MS
m,p-Xylene	<1.60	<6.95	1.60	6.95		EPA-TO-15	09/10/2021	MS
Naphthalene	1.28	6.70	0.0400	0.210		EPA-TO-15	09/10/2021	MS
o-Xylene	<0.400	<1.74	0.400	1.74		EPA-TO-15	09/10/2021	MS
Toluene	1.61	6.08	0.400	1.51		EPA-TO-15	09/10/2021	MS
Surr: 4-Bromofluorobenzene	108 %Rec		70-130			EPA-TO-15	09/10/2021	MS

Date Sampled: 8/27/2021

Client: Martin S Burck & Associates Inc

WorkOrder: 2109007

Project: North Star Casteel

Client Sample ID: SV-2

Lab ID: 2109007-002A Date Received: 9/1/2021

Sample Type:

Analyte	Concen	tration	Reportir	Reporting Limit		Method	Date/Analy	st
Petroleum Fractionation by EPA M	ethod TO-15							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Aliphatic Hydrocarbon (EC5-8)	260	987	30.0	114		EPA-TO-15	09/10/2021	MS
Aliphatic Hydrocarbon (EC9-12)	397	2,340	20.0	118		EPA-TO-15	09/10/2021	MS
Aromatic Hydrocarbon (EC9-10)	8.46	42.5	5.00	25.2		EPA-TO-15	09/10/2021	MS
Surr: 4-Bromofluorobenzene	121 %Rec		70-130			EPA-TO-15	09/10/2021	MS
Volatile Organic Compounds by EF	PA Method TO	<u>-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Isopropyl Alcohol	34.1	83.7	10.0	24.6		EPA-TO-15	09/10/2021	MS
Benzene	0.563	1.80	0.100	0.319		EPA-TO-15	09/10/2021	MS
Ethylbenzene	<4.00	<17.4	4.00	17.4		EPA-TO-15	09/10/2021	MS
m,p-Xylene	<4.00	<17.4	4.00	17.4		EPA-TO-15	09/10/2021	MS
Naphthalene	0.195	1.02	0.100	0.524		EPA-TO-15	09/10/2021	MS
o-Xylene	<1.00	<4.34	1.00	4.34		EPA-TO-15	09/10/2021	MS
Toluene	<1.00	<3.77	1.00	3.77		EPA-TO-15	09/10/2021	MS
Surr: 4-Bromofluorobenzene	89.8 %Rec		70-130			EPA-TO-15	09/10/2021	MS

Work Order: 2109007

QC SUMMARY REPORT

CLIENT: Martin S Burck & Associates Inc

Petroleum Fractionation by EPA Method TO-15

Project: North Star C	Casteel					Pet	troleum	Fractionation	on by EPA	A Method	TO-15
Sample ID: LCS-R69874	SampType: LCS			Units: ppbv		Prep Dat	te: 9/10/20	21	RunNo: 698	374	
Client ID: LCSW	Batch ID: R69874					Analysis Dat	te: 9/10/20	21	SeqNo: 141	16610	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	12.9	7.50	12.00	0	108	70	130				
Aliphatic Hydrocarbon (EC9-12)	15.0	5.00	12.00	0	125	70	130				
Aromatic Hydrocarbon (EC9-10)	12.1	1.25	10.00	0	121	70	130				
Surr: 4-Bromofluorobenzene	5.33		4.000		133	70	130				S
NOTES:											

S - Outlying surrogate recovery(ies) observed.

Sample ID: MB-R69874	SampType: MBLK		Units: ppbv			te: 9/10/20	21	RunNo: 69874			
Client ID: MBLKW	Batch ID: R69874					Analysis Da	te: 9/10/20	21	SeqNo: 141	6611	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	7.50									
Aliphatic Hydrocarbon (EC9-12)	ND	5.00									
Aromatic Hydrocarbon (EC9-10)	ND	1.25									
Surr: 4-Bromofluorobenzene	4.42		4.000		110	70	130				

Sample ID: 2109007-001AREP	SampType: REP			Units: ppbv		Prep Da	te: 9/10/2 0	21	RunNo: 698	374	
Client ID: SV-1	Batch ID: R69874			Analysis Date: 9/10/2021 SeqNo					SeqNo: 14 1	16613	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	342	30.0						418.8	20.1	25	
Aliphatic Hydrocarbon (EC9-12)	522	20.0						586.5	11.6	25	
Aromatic Hydrocarbon (EC9-10)	42.7	5.00						48.42	12.6	25	
Surr: 4-Bromofluorobenzene	20.7		16.00		129	70	130		0		

Page 8 of 14 Revision v1

Work Order: 2109007

CLIENT: Martin S Burck & Associates Inc

Project: North Star Casteel

QC SUMMARY REPORT

Major Gases by EPA Method 3C

Project: North Star (Casteel										
Sample ID: LCS-R70036	SampType: LCS			Units: %		Prep Date	e: 9/21/2021		RunNo: 70 0)36	
Client ID: LCSW	Batch ID: R70036					Analysis Date	e: 9/21/2021		SeqNo: 142	20138	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	99.8	0.0500	100.0	0	99.8	70	130				
Carbon Monoxide	99.8	0.0500	100.0	0	99.8	70	130				
Methane	99.8	0.0500	100.0	0	99.8	70	130				
Nitrogen	100	0.0500	100.0	0	100	70	130				
Oxygen	99.5	0.0500	100.0	0	99.5	70	130				
Hydrogen	97.9	0.0500	100.0	0	97.9	70	130				
Sample ID: 2109293-001AREP	SampType: REP			Units: %		Prep Date	e: 9/21/2021		RunNo: 70 0)36	
Client ID: BATCH	Batch ID: R70036					Analysis Date	e: 9/21/2021		SeqNo: 142	20134	
Amalida	Danielt	DI	CDI/l	CDK D-tV-I	0/ DEC	Landinett	Himblinett DE	D D-f \/-I	0/ DDD	DDDI ::t	01

Campio is: 2100200 001AILLI	oumprypo. ILL			OTHES: 70		1 10p Du		,	110111101 701	,,,,	
Client ID: BATCH	Batch ID: R70036					Analysis Da	te: 9/21/2 0)21	SeqNo: 142	20134	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	4.04	0.0500						4.014	0.530	30	
Carbon Monoxide	ND	0.0500						0		30	
Methane	0.409	0.0500						0.4171	1.97	30	
Nitrogen	94.5	0.0500						94.45	0.0198	30	
Oxygen	1.09	0.0500						1.122	2.88	30	
Hydrogen	ND	0.0500						0		30	
BTU	4.14							4.218	1.97		

Revision v1 Page 9 of 14

Work Order: 2109007

Project:

QC SUMMARY REPORT

CLIENT: Martin S Burck & Associates Inc North Star Casteel

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R69860	SampType:	LCS			Units: ppbv		Prep Dat	te: 9/10/20	21	RunNo: 698	360	
Client ID: LCSW	Batch ID: R69860 Analysis Date: 9/10/2021		SeqNo: 1416476									
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol		1.78	1.00	2.000	0	88.9	70	130				
Benzene		1.95	0.0100	2.000	0	97.5	70	130				
Toluene		1.91	0.100	2.000	0	95.7	70	130				
Ethylbenzene		1.93	0.400	2.000	0	96.7	70	130				
m,p-Xylene	;	3.96	0.400	4.000	0	99.1	70	130				
o-Xylene		1.95	0.100	2.000	0	97.7	70	130				
Naphthalene		1.72	0.0100	2.000	0	85.9	70	130				
Surr: 4-Bromofluorobenzene		4.21		4.000		105	70	130				

Sample ID: 2109007-001AREP	SampType: REP			Units: ppbv		Prep Da	te: 9/10/2 0	21	RunNo: 698	860	
Client ID: SV-1	Batch ID: R69860					Analysis Da	te: 9/10/2 0	21	SeqNo: 14	16461	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	63.5	4.00						76.24	18.2	25	1
Benzene	0.327	0.0400						0.3632	10.6	25	1
Toluene	1.54	0.400						1.614	4.39	25	1
Ethylbenzene	ND	1.60						0		25	1
m,p-Xylene	ND	1.60						0		25	1
o-Xylene	ND	0.400						0		25	1
Naphthalene	1.16	0.0400						1.279	9.80	25	1
Surr: 4-Bromofluorobenzene	15.5		16.00		96.9	70	130		0		1
NOTES.											

NOTES:

I - Internal standards were outside of acceptance criteria. Re-analysis and/or matrix spike samples yielded the same result indicating a possible matrix effect.

Sample ID: MB2-R69860	SampType: MBLK			Units: ppbv		Prep Da	te: 9/10/20)21	RunNo: 69860		
Client ID: MBLKW Batch ID: R69860				Analysis Da	te: 9/10/20)21	SeqNo: 14 1	16465			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	ND	1.00									
Benzene	ND	0.0100									

Page 10 of 14 Revision v1

Date: 9/27/2021

Work Order: 2109007

Project:

QC SUMMARY REPORT

CLIENT: Martin S Burck & Associates Inc North Star Casteel

Volatile Organic Compounds by EPA Method TO-15

Sample ID: MB2-R69860	SampType: MBLK			Units: ppbv		Prep Da	te: 9/10/2 0	021	RunNo: 698	860	
Client ID: MBLKW	Batch ID: R69860					Analysis Da	te: 9/10/2 0	021	SeqNo: 14	16465	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	ND	0.100									
Ethylbenzene	ND	0.400									
m,p-Xylene	ND	0.400									
o-Xylene	ND	0.100									
Naphthalene	ND	0.0100									
Surr: 4-Bromofluorobenzene	3.32		4.000		83.1	70	130				

Page 11 of 14 Revision v1

С	lient Name:	MSBA	Work Order Number	er: 2109007	
L	ogged by:	Gabrielle Coeuille	Date Received:	9/1/2021 1	10:11:00 AM
Cha	ain of Cust	<u>ody</u>			
1.	Is Chain of C	sustody complete?	Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?	<u>UPS</u>		
Log	<u>ı In</u>				
3.	Coolers are p	present?	Yes	No 🗸	NA \square
			Air samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No 🗌	
5.	Custody Sea (Refer to con	Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	ns received at a temperature of >2°C to 6°C *	Yes	No 🗆	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🔽	No 🗆	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗹	No \square	
10	Are samples	properly preserved?	Yes 🗸	No \square	
11	. Was preserv	ative added to bottles?	Yes	No 🗸	NA 🗌
12	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗹
13	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No \square	
14	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌	
15	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16	ls it clear wha	at analyses were requested?	Yes 🗸	No \square	
17	. Were all hold	ling times able to be met?	Yes 🗸	No 🗌	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date	:		
	By Who	om: Via:	eMail Pho	ne 🗌 Fax [In Person
	Regardi	ing:			
	Client Ir	nstructions:			
10	Additional rea	marks:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Leak Test Shroud Vapor Sample Laboratory Analytical Report

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Martin S Burck & Associates Inc Josh Owen 200 N Wasco St. Hood River, OR 97031

RE: North Star Casteel

Work Order Number: 2108405

September 07, 2021

Attention Josh Owen:

Fremont Analytical, Inc. received 2 sample(s) on 8/30/2021 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Martin S Burck & Associates Inc Work Order Sample Summary

Project: North Star Casteel

Work Order: 2108405

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2108405-001
 SV1-Shroud
 08/27/2021 12:24 PM
 08/30/2021 9:32 AM

 2108405-002
 SV2-Shroud
 08/27/2021 1:22 PM
 08/30/2021 9:32 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Date:

9/7/2021

CLIENT: Martin S Burck & Associates Inc

Project: North Star Casteel

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#:

2108405

Date Reported:

9/7/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Client: Martin S Burck & Associates Inc

WorkOrder: 2108405

Project: North Star Casteel

 Client Sample ID:
 SV1-Shroud
 Date Sampled:
 8/27/2021

 Lab ID:
 2108405-001A
 Date Received:
 8/30/2021

Sample Type: Tedlar Bag

Analyte	Concen	Concentration		Reporting Limit		Method	Date/Analyst						
Volatile Organic Compounds by	Volatile Organic Compounds by EPA Method TO-15												
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)	511	EDA TO 15	00/00/0004						
Isopropyl Alcohol	10,200	25,000	4,000	9,830	DH	EPA-TO-15	09/03/2021	MS					
Surr: 4-Bromofluorobenzene	92.9 %Rec		70-130		DH	EPA-TO-15	09/03/2021	MS					

Client: Martin S Burck & Associates Inc

WorkOrder: 2108405

Project: North Star Casteel

 Client Sample ID:
 SV2-Shroud
 Date Sampled:
 8/27/2021

 Lab ID:
 2108405-002A
 Date Received:
 8/30/2021

Sample Type: Tedlar Bag

Analyte	Concen	Concentration		Reporting Limit		Method	Date/Analyst				
Volatile Organic Compounds by EPA Method TO-15 (ppbv) (ug/m³) (ppbv) (ug/m³)											
Isopropyl Alcohol	23,200	(ug/m³) 57,000	(ppbv) 4,000	9,830	DH	EPA-TO-15	09/03/2021	MS			
Surr: 4-Bromofluorobenzene	92.7 %Rec		70-130		DH	EPA-TO-15	09/03/2021	MS			

Date: 9/7/2021

Work Order: 2108405

QC SUMMARY REPORT

CLIENT: Martin S Burck & Associates Inc

Volatile Organic Compounds by EPA Method TO-15

Project: North Star	Casteel					Volatile	Organic	Compoun	ds by EPA	A Method	1 10-1
Sample ID: LCS-R69735	SampType: LCS			Units: ppbv		Prep Dat	e: 9/3/202	1	RunNo: 697	735	
Client ID: LCSW	Batch ID: R69735					Analysis Dat	e: 9/3/202	1	SeqNo: 14 1	13702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	1.48	1.00	2.000	0	73.8	70	130				
Surr: 4-Bromofluorobenzene	3.46		4.000		86.5	70	130				
Sample ID: MB-R69735	SampType: MBLK			Units: ppbv		Prep Dat	e: 9/3/202	1	RunNo: 697	735	
Client ID: MBLKW	Batch ID: R69735					Analysis Dat	e: 9/3/202	1	SeqNo: 14 1	13703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	ND	1.00									
Surr: 4-Bromofluorobenzene	3.32		4.000		83.0	70	130				
Sample ID: 2109003-001AREP	SampType: REP			Units: ppbv		Prep Dat	e: 9/3/202	1	RunNo: 697	735	
Client ID: BATCH	Batch ID: R69735					Analysis Dat	e: 9/3/202	1	SeqNo: 14 1	13705	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Alcohol	ND	10.0						0		25	
Surr: 4-Bromofluorobenzene	35.3		40.00		88.4	70	130		0		

Original Page 7 of 9

С	lient Name:	MSBA	Work Order Number	er: 2108405	
Lo	ogged by:	Gabrielle Coeuille	Date Received:	8/30/2021 9	9:32:00 AM
Cha	ain of Custo	ody			
1.	Is Chain of C	ustody complete?	Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	<u>ı In</u>				
3.	Coolers are p	present?	Yes	No 🗸	NA \square
			Ais samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes	No 🗆	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA \square
12.	Is there head	space in the VOA vials?	Yes	No \square	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square	
17.	Were all hold	ing times able to be met?	Yes	No 🗸	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18.	. Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗸
	Person	Notified: Da	te:		
	By Who	m: Via	a: eMail Pho	ne 🗌 Fax 📋	In Person
	Regardi	ng:			
	Client In	nstructions:			
19	Additional rer	marks:			
.0.		s required dilutions			

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Item Information

COC Air 1.6 - 2.15.21

BioVapor Modeling Inputs and Outputs

Site Name: SW1712 **BioVapor Input**

Date: 10/22/2021 Address: 1200 W 13th St, Vancouver, WA Completed By: Josh Owen Job ID: North Star Casteel

Site Name: test1
Address: test1
BioVapor Inputs

Date: 10/2/2009 Completed By: tes1

Job ID: 3395

Site Name: test1 **BioVapor Results** Address: test1

Date: 10/2/2009 Completed By: tes1

Job ID: 3395

2. Commands and Options Print Home **Next:: Results Previous** After Clicking "Next :: Results", see status bar in lower

1. Soil Gas Source **Chemical Concentrations**

Chemical	ug/m³
naphthalene	6.70E+00
C5 to C6 Aliphatic	5.30E+02
C6 to C7 Aliphatic	5.30E+02
C7 to C8 Aliphatic	5.30E+02
C9 to C10 Aromatic	2.44E+02
C9 to C10 Aliphatic	1.15E+03
C10 to C11 Aliphatic	1.15E+03
C11 to C12 Aliphatic	1.15E+03

Total Entered 5.29E+03 Hydrocarbon Concentration (ug/m³)

left corner for progress on calculations.

Note: The total hydrocarbon concentration should equal the total concentration of all hydrocarbons in the source area

Site Name: SW1712
Address: 1200 W 13th St, Vancouver, WA
BioVapor Results

Date: 10/22/2021 Completed By: Josh Owen Job ID: North Star Casteel

Site Name: SW1712 Address: 1200 W 13th St, Vancouver, WA **BioVapor Results**

Date: 10/22/2021 Completed By: Josh Owen Job ID: North Star Casteel

General Results - Forward Calculations

Depth from building foundation to aerobic/anaerobic interface	Depth from aerobic/anaerobic interface to source	Total Depth
cm	cm	cm
2.54	0.00	2.54

Chemical Specific Results - Forward Calculations

Chemical	Foundation Mass Transfer Resistance	Soil Resistance	Sub-slab to indoor air attenuation factor	Aerobic/anaerobic interface to sub-slab attenuation factor	Source to aerobic/anaerobic interface attenuation factor	Source to indoor air attenuation factor	Source to indoor air attenuation factor (if no biodegradation)
	cm/sec	cm/sec	(-)	(-)	(-)	(-)	(-)
naphthalene	7.84E-05	3.76E-03	1.16E-03	7.16E-01	1.00E+00	8.29E-04	1.13E-03
C5 to C6 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.81E-01	1.00E+00	1.14E-03	1.14E-03
C6 to C7 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.81E-01	1.00E+00	1.14E-03	1.14E-03
C7 to C8 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.80E-01	1.00E+00	1.13E-03	1.14E-03
C9 to C10 Aromatic	7.84E-05	6.36E-03	1.16E-03	9.69E-01	1.00E+00	1.12E-03	1.14E-03
C9 to C10 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.79E-01	1.00E+00	1.13E-03	1.14E-03
C10 to C11 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.79E-01	1.00E+00	1.13E-03	1.14E-03
C11 to C12 Aliphatic	7.84E-05	6.36E-03	1.16E-03	9.78E-01	1.00E+00	1.13E-03	1.14E-03

Chemical	Concentration in indoor air	Concentration in sub-slab gas	Concentration at aerobic/anaerobic interface	Concentration at source	Concentration in indoor air (if no biodegradation)	Flux into enclosure	Flux from source
naphthalene	5.56E-03	4.80E+00	6.70E+00	6.70E+00	7.60E-03	3.98E-04	1.6E-02
C5 to C6 Aliphatic	6.02E-01	5.20E+02	5.30E+02	5.30E+02	6.06E-01	4.32E-02	9.3E-02
C6 to C7 Aliphatic	6.02E-01	5.20E+02	5.30E+02	5.30E+02	6.06E-01	4.31E-02	9.6E-02
C7 to C8 Aliphatic	6.01E-01	5.19E+02	5.30E+02	5.30E+02	6.06E-01	4.31E-02	1.0E-01
C9 to C10 Aromatic	2.74E-01	2.37E+02	2.44E+02	2.44E+02	2.79E-01	1.96E-02	8.2E-02
C9 to C10 Aliphatic	1.30E+00	1.13E+03	1.15E+03	1.15E+03	1.32E+00	9.35E-02	2.3E-01
C10 to C11 Aliphatic	1.30E+00	1.13E+03	1.15E+03	1.15E+03	1.32E+00	9.34E-02	2.4E-01
C11 to C12 Aliphatic	1.30E+00	1.12E+03	1.15E+03	1.15E+03	1.32E+00	9.33E-02	2.5E-01
Totals	5.99E+00	5.18E+03	5.29E+03	5.29E+03	6.05E+00	4.30E-01	1.11E+00

Chemical	Oxygen Demand in Vadose Zone	Minimum O₂ Concentration at top of aerobic zone (i.e., below building foundation)	Oxygen mass flow at the top of aerobic zone					
	% of total demand	%	ug/sec					
naphthalene	0.01%							
C5 to C6 Aliphatic	0.04%							
C6 to C7 Aliphatic	0.04%							
C7 to C8 Aliphatic	0.04%							
C9 to C10 Aromatic	0.04%							
C9 to C10 Aliphatic	0.11%							
C10 to C11 Aliphatic	0.11%							
C11 to C12 Aliphatic	0.12%							
Baseline Soil Oxygen Demand	99.49%							
Totals	100.00%	1.00%	4.50E+02					

Appendix L

CSM Investigation Documentation

Water Resources Program Well Search Results

Water Resources Program Well Log #327775

Vancouver Water Stations and Wellhead Protection Areas Map

Zoning Map

MTCA Table 749-2 Ecological Screening Values

Water Resources Program Well Search Results

Well Construction and Licensing Search Tools

About us

Laws, Regs and Rules ► Map Search Text Search Forms Site Info Contact Us

Well Construction and Licensing Search Tools

MAP SEARCH RESULTS Back New Search • Search Criteria Used: Left Coordinate: 1078909, Right Coordinate: 1084761, Top Coordinate: 119701, Bottom Coordinate: 114292, Well Log Type: Water Well Logs Only • There are **1** Well Reports that match your search criteria. <u>Download all 1 images</u> | □ <u>Download all 1 data records</u> | <u>Print this page</u> | <u>Help</u> Displaying 1 - 1 of 1 well report results Sort results by Well Owner Name 1. A. M. JANNSEN DRILLING CO. - { View PDF \(\lambda \)} Public Land Survey: NW, SW, S-27, T-02-N, R-01-E, Tax Parcel Number: (blank) County: Clark, Well Address: 21075 S.W. TULATIN VALLEY HIGHWAY ALOHA, OREGON 97005 Well Report ID: 237775, Well Tag ID:(blank), Notice of Intent Number: (blank) Well Diameter: 0 in., Well Depth: 0 ft. Well Type: Water Well Completion Date: (blank), Well Report Received Date: (blank) Total Result Pages: 1

Copyright © Washington State Department of Ecology
Privacy Notice | Site Info | Accessibility | Contact the web team |

Water Resources Program Well Log #327775

NW 45W4 Sec. 27.7.2N.KIE Clark Co. A. M. JANNSEN DRILLING CO.

21075 S.W. Tualatin Valley Highway ALOHA, OREGON 97005

April 29, 1975

92.227540

Boise Cascade Papers P. O. Box 690 98660 Vancouver, Washington

Attention: J. K. Gould

Gentlemen:

Following are the well logs of wells drilled in Vancouver, Washington for Columbia River Paper Mills in 1947, 1948, and 1957:

Well drilled at Vancouver, Washington 26" Well, 150 feet deep Static Water Level 22 feet 4600 gallons per minute

0 4 Clay Log: 4 96 Loose Gravel 96 100 Gravel & clay, mixed 100 113 Loose Gravel 113 150 Cemented Gravel

137' 1" of 26" Casing:

> 181 of 20"--liner

Perforations: 10 perforations diametrically, 10"

vertically between perforations -

from 22 feet to 125 feet.

1-22-48 Well drilled at Vancouver, Washington 26" Well, 137 feet deep Static Water Level 22 feet

4600 gallons per minute

0 50 Log: Cemented Gravel Loose water bearing grave1 50 112

112 134 Cemented gravel 134 137 Loose gravel

Casing: 117' 7" of 26" Casing

of 18" perforated liner,

Perforations: 1211 perforations from 40' to 137'

DRAFT

Page 2

5-10-57 Well drilled at Vancouver, Washington Driller: Ace Owens

26" Well, 127-1/2 feet deep Static Water Level 33 feet

Pump Test not made

Log: 0 50 Dry gravel and boulders

50 1272 Boulders and gravel, water bearing

Casing: 127 ft. of 26" I.D. PE Black

Perforations: 800 perforations from 55 ft. to 125 ft.

Note: Hole has a slant to the North.

Our records do not contain all the information now required on well logs. I hope the above information will be sufficient for your requirements.

Very truly,

A. M. JANNSEN DRILLING CO.

أمي معيدها

Edward M. Jannsen

jw

Vancouver Water Stations and Wellhead Protection Areas Map

DRAFT

Zoning Map

Map Section: D-4

Comprehensive Plan Designations Urban Lower Density Residential Public Facility Urban Higher Density Residential Open Space Commercial & Mixed Use Water

Industrial

Updated by Ord M-3994 Effective December 7, 2011

MTCA Table 749-2 Ecological Screening Values

Table 749-2 Priority Contaminants of Ecological Concern for Sites that Qualify for the Simplified Terrestrial Ecological Evaluation Procedure.^a

Priority contaminant	Soil concentration (mg/kg)	
	Unrestricted land use ^b	Industrial or commercial site
METALS: ^c		
Antimony	See note d	See note d
Arsenic III	20 mg/kg	20 mg/kg
Arsenic V	95 mg/kg	260 mg/kg
Barium	1,250 mg/kg	1,320 mg/kg
Beryllium	25 mg/kg	See note d
Cadmium	25 mg/kg	36 mg/kg
Chromium (total)	42 mg/kg	135 mg/kg
Cobalt	See note d	See note d
Copper	100 mg/kg	550 mg/kg
Lead	220 mg/kg	220 mg/kg
Magnesium	See note d	See note d
Manganese	See note d	23,500 mg/kg
Mercury, inorganic	9 mg/kg	9 mg/kg
Mercury, organic	0.7 mg/kg	0.7 mg/kg
Molybdenum	See note d	71 mg/kg
Nickel	100 mg/kg	1,850 mg/kg
Selenium	0.8 mg/kg	0.8 mg/kg
Silver	See note d	See note d
Tin	275 mg/kg	See note d
Vanadium	26 mg/kg	See note d
Zinc	270 mg/kg	570 mg/kg
PESTICIDES:		
Aldicarb/aldicarb sulfone (total)	See note d	See note d
Aldrin	0.17 mg/kg	0.17 mg/kg
Benzene hexachloride (including lindane)	10 mg/kg	10 mg/kg
Carbofuran	See note d	See note d
Chlordane	1 mg/kg	7 mg/kg
Chlorpyrifos/chlorpyrifos-methyl (total)	See note d	See note d
DDT/DDD/DDE (total)	1 mg/kg	1 mg/kg
Dieldrin	0.17 mg/kg	0.17 mg/kg
Endosulfan	See note d	See note d
Endrin	0.4 mg/kg	0.4 mg/kg
Heptachlor/heptachlor epoxide (total)	0.6 mg/kg	0.6 mg/kg
Hexachlorobenzene	31 mg/kg	31 mg/kg
Parathion/methyl parathion (total)	See note d	See note d
Pentachlorophenol	11 mg/kg	11 mg/kg
Toxaphene	See note d	See note d

OTHER CHLORINATED ORGANICS:			
Chlorinated dibenzofurans (total)	3E-06 mg/kg	3E-06 mg/kg	
Chlorinated dibenzo-p-dioxins (total)	5E-06 mg/kg	5E-06 mg/kg	
Hexachlorophene	See note d	See note d	
PCB mixtures (total)	2 mg/kg	2 mg/kg	
Pentachlorobenzene	168 mg/kg	See note d	
OTHER NONCHLORINATED ORGANICS:			
Acenaphthene	See note d	See note d	
Benzo(a)pyrene	30 mg/kg	300 mg/kg	
Bis (2-ethylhexyl) phthalate	See note d	See note d	
Di-n-butyl phthalate	200 mg/kg	See note d	
PETROLEUM:			
Gasoline Range Organics	200 mg/kg	12,000 mg/kg except that the concentration shall not exceed residual satura- tion at the soil surface.	
Diesel Range Organics	460 mg/kg	15,000 mg/kg except that the concentration shall not exceed residual satura- tion at the soil surface.	

Footnotes:

- Caution on misusing these chemical concentration numbers. These values have been developed for use at sites where a site-specific terrestrial ecological evaluation is not required. They are not intended to be protective of terrestrial ecological receptors at every site. Exceedances of the values in this table do not necessarily trigger requirements for cleanup action under this chapter. The table is not intended for purposes such as evaluating sludges or wastes.
 - This list does not imply that sampling must be conducted for each of these chemicals at every site. Sampling should be conducted for those chemicals that might be present based on available information, such as current and past uses of chemicals at the site.
- b Applies to any site that does not meet the definition of industrial or commercial.
- For arsenic, use the valence state most likely to be appropriate for site conditions, unless laboratory information is available. Where soil conditions alternate between saturated, anaerobic and unsaturated, aerobic states, resulting in the alternating presence of arsenic III and arsenic V, the arsenic III concentrations shall apply.
- d Safe concentration has not yet been established. See WAC 173-340-7492(2)(c).