

Data Gaps Investigation Report

701 South Jackson Property Seattle, Washington

for 701 South Jackson Partners, LLC c/o Housing Diversity Corp

May 13, 2022

2101 4th Avenue, Suite 950 Seattle, Washington 206.728.2674

Data Gaps Investigation Report

701 South Jackson Property Seattle, Washington

File No. 24504-001-01

May 13, 2022

Prepared for:

701 South Jackson Partners, LLC c/o Housing Diversity Corp 159 South Jackson Street Seattle, Washington 98104

Attention: Brad Padden

Prepared by:

GeoEngineers, Inc. 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Robert S. Trahan, LG

Senior Environmental Scientist

Tim L. Syverson, LHG

Associate

RST:TLS:ch:mce

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRO	DUCTION	1
2.0	BACK	GROUND	2
2.1.	Locati	on and Description	2
		ical Land Use	
2.3.	Regula	atory Framework	2
2.4.	Previo	us Environmental Investigations and Summary of Analytical Results	2
3.0	DATA	GAPS INVESTIGATION	3
3.1.	Soil In	vestigation	3
	3.1.1.	Sample Collection and Processing	3
	3.1.2.	Chemical Analytical Results	4
	3.1.3.	Deviations from the Planned Soil Investigation	4
3.2.	Groun	dwater Investigation	4
	3.2.1.	Monitoring Well Construction and Development	4
	3.2.2.	Groundwater Sampling and Analysis	5
	3.2.3.	Chemical Analytical Results	5
		Deviations from the Planned Groundwater Investigation	
4.0	CONC	LUSIONS	6
5.0	LIMIT	ATIONS	7
6.0	REFE	RENCES	8

LIST OF TABLES

Table 1. Summary of Soil Investigation Chemical Analytical Data

Table 2. Summary of Groundwater Chemical Analytical Data

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Environmental Investigation Sampling Locations

Figure 3. Soil Analytical Results - Gasoline Petroleum

Figure 4. Soil Analytical Results - BTEX

Figure 5. Soil Analytical Results - PAHs and Metals

APPENDICES

Appendix A. Field Program

Appendix B. Chemical Analytical Program

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This document provides the results for the Data Gaps Investigation completed for the Seventh Avenue Service Site (Site) located at 701 South Jackson Street in Seattle, Washington (Property). 701 South Jackson Partners, LLC (South Jackson Partners) is planning for redevelopment of the 0.31-acre Property located at 701 South Jackson Street in the Chinatown-International District neighborhood of Seattle for a new eight-story building with affordable housing and ground level commercial retail space. The planned redevelopment includes the demolition and removal of the existing buildings and improvements, and lot-line to lot-line excavation of subsurface soils to a depth of approximately 15 to 20 feet below ground surface (bgs) and subsequent construction of the new building.

As part of the planned redevelopment, South Jackson Partners will seek a Prospective Purchaser Consent Decree (PPCD) with the Washington State Department of Ecology (Ecology), working with the Assistant Attorney General, Ecology Division (the AGO), to facilitate cleanup as part of project construction. During initial discussions with Ecology and the AGO regarding a PPCD for the Site, the AGO advised that it is prepared to move forward to a PPCD and directed that the Site be enrolled in the Voluntary Cleanup Program (VCP) for approval of the Revised Remedial Investigation/Feasibility Study/Cleanup Action Plan (Revised RI/FS/CAP). The Property will be transitioned to the PPCD track for completion of the Cleanup Action after Ecology approves the preparatory reports. To meet the overall project schedule, the Site has been entered into the Expedited VCP.

Based on investigations conducted from 1992 to 2021, soil at the Site contains gasoline-range total petroleum hydrocarbons, benzene, toluene, ethylbenzene and xylenes (BTEX), and naphthalene at concentrations greater than the Model Toxics Control Act (MTCA) cleanup levels (CULs). Additionally, localized areas of the shallow fill soil imported to the Property during construction for the existing structures contain lead and carcinogenic polycyclic aromatic hydrocarbons (cPAHs) at concentrations greater than the MTCA CULs. Details regarding the previous environmental investigations completed to date and the planned cleanup action to be completed during Property redevelopment are summarized in the Revised RI/FS/CAP (GeoEngineers 2022).

On completion of their review of the Revised RI/FS/CAP, Ecology requested additional sampling and analysis to further evaluate and document the nature and extent of contamination at the Site beyond what was included in the Revised RI/FS/CAP, including: (1) an additional boring within the South Jackson/7th Avenue Rights-of-Way (ROW) to evaluate the lateral extent of contamination northwest of the Site; (2) installation of two new monitoring wells downgradient of previously identified "hot spots" in shallow soil to determine whether contaminants at the Site are impacting deep groundwater; and (3) further evaluation of soil at depths where field screening previously identified elevated headspace vapors (i.e., 35-40 feet bgs).

The sample collection and chemical analytical data described in this document address the previously identified data gaps. On behalf of South Jackson Partners, GeoEngineers is requesting Ecology's concurrence that with the additional data the Site characterization is complete, and that the proposed cleanup action as part of property redevelopment outlined in the Revised RI/FS/CAP will meet the requirements for a No Further Action (NFA) determination for the Site.

2.0 BACKGROUND

2.1. Location and Description

The Site is located at 701 South Jackson Street in Seattle, Washington. The Property at 701 South Jackson Street is currently developed with two single-story structures, including a former gasoline station building in the northwest portion and an "L"-shaped automobile repair garage along the east and south parcel boundaries, and paved parking and drive areas. The buildings are currently vacant.

2.2. Historical Land Use

Since redevelopment following the Jackson Street regrading project in 1927, the Property at 701 South Jackson Street has been used for automobile repair and fueling services which operated from the large "L"-shaped building along the southern and eastern portions of the Property. As early as 1932, a gasoline service station was added to the northwest portion of the Property until sales of gasoline ceased in the 1970s. The former gasoline service station operations included two gasoline underground storage tanks (USTs) and an associated fuel dispenser/pump island, and vehicle service/repair. In 2010, the gasoline USTs associated with the service station were permanently decommissioned and removed from the Property.

2.3. Regulatory Framework

The Site is listed by Ecology with Facility/Site No. 99187287 and Cleanup Site ID No. 11348 and has been identified as a Leaking Underground Storage Tank (LUST) site (LUST Release No. 592055) for benzene, naphthalene, and gasoline-range petroleum hydrocarbons confirmed in soil at concentrations greater than the MTCA CULs. As noted above, South Jackson Partners will seek a PPCD with Ecology as part of the planned redevelopment to facilitate cleanup as part of construction.

2.4. Previous Environmental Investigations and Summary of Analytical Results

Multiple environmental investigations have been completed at the Property to evaluate Site conditions. Soil and groundwater conditions based on the results of the previous environmental investigation activities indicate that soil in the central and western portions of the Property contain gasoline-range total petroleum hydrocarbons BTEX, and naphthalene at concentrations greater than MTCA CULs between approximately 5 and 20 feet bgs. Additionally, localized areas of the shallow fill soil imported to the Property during construction for the existing structures contain lead (GEI-6) and cPAHs (GEI-4) at concentrations greater than the MTCA CULs at a depth of approximately 2.5 feet bgs. Other contaminants of potential concern including diesel- and heavy oil-range total petroleum hydrocarbons, volatile organic compounds (VOCs) (not including BTEX), halogenated VOCs (HVOCs), metals (not including lead) and polychlorinated biphenyls (PCBs) either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the corresponding MTCA CULs.

Analytical results for a groundwater grab sample (GEI-1) collected from the deep regional groundwater unit indicate that contaminants either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the MTCA CULs.

Chemical analytical results for soil and groundwater samples are summarized in Tables 1 and 2, respectively. Soil results are summarized on Figures 3 through 5.

3.0 DATA GAPS INVESTIGATION

Additional investigation activities were completed in April 2022 to further characterize soil and groundwater conditions at the Site. As part of the investigation, sampling was performed within portions of the South Jackson Street and 7th Avenue ROWs to evaluate the northwestern, western, and southwestern limits of petroleum contamination resulting from historical land use in accordance with the proposed Data Gaps Investigation presented in the Revised RI/FS/CAP and the additional sampling and analysis requested by Ecology. The data gaps investigation consisted of completing three shallow borings in the ROW to the northwest, west and southwest of the Property to define the lateral extent of contamination, and the completion of two deep borings in the ROW west of the Property boundary to evaluate soil at depths where field screening previously identified elevated headspace vapors (i.e., 35-40 feet bgs) and to install new monitoring wells for evaluating deep regional groundwater downgradient of the source area (i.e., former gasoline service station and fuel island).

Soil borings GEI-8 through GEI-10 were advanced to depths of 25 feet bgs to evaluate the lateral extent of contamination, and borings GEI-11 and GEI-12 were advanced to depths of approximately 70 and 75 feet, respectively and completed as groundwater monitoring wells as requested by Ecology to further evaluate deep groundwater conditions. At borings GEI-11 and GEI-12, soil samples were also collected for chemical analysis from depth intervals in which previous headspace vapors were elevated (i.e., 35 and 40 feet within borings GEI-3 and GEI-2, respectively).

Boring locations are shown relative to the Property on Figure 2. Soil and groundwater investigation activities and the results of chemical analytical testing are detailed below.

3.1. Soil Investigation

3.1.1. Sample Collection and Processing

Three shallow soil borings within the ROW (GEI-8 through GEI-10; Figure 2) were completed to depths of approximately 25 bgs using a track-mounted direct push drilling rig owned and operated by a licensed driller in the State of Washington (Cascade Drilling). In addition, two deep borings within the ROW (GEI-11 and GEI-12) were completed to depths ranging from 70 to 75 feet bgs using a truck-mounted hollow stem auger drill rig owned and operated by Cascade Drilling. During drilling activities, a representative from GeoEngineers' staff was present to examine, field screen and classify the soils encountered and prepare a detailed boring log of each exploration. Boring logs detailing field screening results and soil types encountered are presented in Appendix A.

Based on the field screening results, soil types encountered and previous soil sample results, selected samples were collected at each location for laboratory chemical analysis. The sample intervals were consistent with the previous verification sample intervals to evaluate contaminant nature and extent and to address the request from Ecology to evaluate elevated headspace vapors in soil at depth. The collected samples were individually homogenized and placed into the appropriate laboratory-supplied sample containers. Samples for volatile analysis (i.e., gasoline) were collected from undisturbed soil at the center of the sampling interval prior to homogenization using United States Environmental Protection Agency (EPA) Method 5035A sampling procedures, consistent with Ecology guidance to reduce volatilization and biodegradation of the sample constituents. Upon collection, the samples were placed into a cooler with ice and logged on the chain-of-custody.

3.1.2. Chemical Analytical Results

Soil samples were submitted to Fremont Analytical (Fremont) in Seattle, Washington, for a combination of the following chemical analyses:

- Gasoline-range petroleum hydrocarbons by NWTPH-Gx.
- BTEX by EPA Method 8260.
- Naphthalenes by EPA Method 8270.

Chemical analytical results for soil samples are summarized in Table 1 and shown on Figures 3 through 6. Based on a review of the chemical analytical data, gasoline-range petroleum hydrocarbons, BTEX and naphthalenes were not detected at concentrations greater than the laboratory reporting limit in any of the samples with two exceptions. Gasoline-range petroleum hydrocarbons and naphthalenes were detected at concentrations greater than MTCA CULs in the soil samples collected from boring GEI-11 and GEI-12 at a depth of approximately 15 feet bgs.

Laboratory reports and the findings of a data quality review for the Data Gaps Investigation are presented in Appendix B.

3.1.3. Deviations from the Planned Soil Investigation

Deviations from the proposed Data Gaps Investigation presented in Revised RI/FS/CAP and as requested by Ecology based on their review of the Revised RI/FS/CAP included:

- Due to the presence of multiple buried utilities, light rail line, and the bus corridor located northwest of the 701 South Jackson Street Property, the additional boring requested by Ecology to further evaluate soil conditions in this area could not be completed.
- Due to the presence of multiple buried utilities and a suspected underground utility vault (concrete surface encountered at multiple locations), the proposed boring in the northwest portion of 7th Avenue as indicated by the Revised RI/FS/CAP could not be completed.

3.2. Groundwater Investigation

3.2.1. Monitoring Well Construction and Development

Monitoring wells GEI-11 and GEI-12 (Figure 2) were installed downgradient of the two soil hot spots areas identified in the Revised RI/FS/CAP. The wells were installed by a Washington State licensed driller in compliance with State standards using truck-mounted hollow stem auger drill rig. Drilling and monitoring well installation activities were observed by a GeoEngineers field technician, who maintained a detailed log documenting the boring log and well installation. Boring logs documenting well construction details are presented in Appendix A.

Following installation, monitoring wells GEI-11 and GEI-12 were developed to stabilize the filter pack and formation materials surrounding the well screen, and to restore the hydraulic connection between the well screen and the surrounding soil. Well development was completed following installation of each new monitoring well in advance of the groundwater sampling activities. Well development included gently surging water through the well screen several times using a decontaminated polyvinyl chloride (PVC) slug rod followed by extraction of the development water. Development activities were completed until a

minimum of five casing volumes of water were removed and/or turbidity of the development water was recorded to be relatively low. The goal of well development was to reduce the turbidity content of the water to approximately 25 nephelometric turbidity units (NTUs). No more than 10 well volumes of water were removed from the wells in an effort to attain the 25 NTU goal.

Water generated during well development activities was stored on the Property in a secured and labeled 55-gallon drum.

3.2.2. Groundwater Sampling and Analysis

Groundwater monitoring activities were completed on April 11, 2022. Prior to sampling, groundwater levels were measured from the top of each well casing rim to the nearest 0.01 foot using a decontaminated electric water level indicator (e-tape). Decontamination procedures are described in Appendix A. Measured water levels are summarized in Table 2.

Groundwater samples were obtained using low-flow/low-turbidity sampling techniques to minimize the suspension of sediment in groundwater samples. Using a bladder pump, groundwater was pumped from the well at a rate not exceeding 0.5 liter per minute through dedicated polyethylene tubing with the end positioned at the approximate midpoint of the saturated screened interval. A YSI-Pro series water quality meter with flow-through-cell was used to monitor the following parameters during purging:

- Acidity (pH)
- Electrical conductivity (EC)
- Turbidity
- Dissolved oxygen (DO)
- Temperature
- Total dissolved solids (TDS)
- Oxygen reduction potential (ORP)

Collection of water samples began once these parameters were observed to vary by less than 10 percent on three consecutive measurements. The stabilized field measurements are summarized in Table 2. Based on the measured groundwater elevations and previous environmental investigations, the inferred groundwater flow direction across the Site is to the southwest.

3.2.3. Chemical Analytical Results

Groundwater samples were submitted to Fremont Analytical (Fremont) in Seattle, Washington, for a combination of the following chemical analyses:

- Gasoline-range total petroleum hydrocarbons by NWTPH-G.
- Diesel- and heavy oil-range total petroleum hydrocarbons by NWTPH-Dx.
- BTEX by EPA Method 8260.
- PAHs by EPA Method 8270D/SIM.
- Total and dissolved MTCA metals by EPA Method 6000/7000 series.

Chemical analytical results for groundwater samples are summarized in Table 2. Based on a review of the chemical analytical data, low concentrations of gasoline-range petroleum hydrocarbons, arsenic and naphthalenes were detected in the groundwater samples collected from monitoring wells GEI-11 and GEI-12. The detected analyte concentrations in the two groundwater samples are less than the MTCA CULs and are similar to the concentrations previously detected in a grab water sample collected from GEI-1 on May 18, 2021.

3.2.4. Deviations from the Planned Groundwater Investigation

No deviations from the proposed Data Gaps Investigation presented in Revised RI/FS/CAP or as requested by Ecology based on their review of the Revised RI/FS/CAP were noted.

4.0 CONCLUSIONS

Previous environmental investigations conducted from 1992 to 2021 identified gasoline-range total petroleum hydrocarbons, BTEX, and naphthalene in soil at concentrations greater than the MTCA CULs in samples collected from approximately 10 to 20 feet bgs at the Site. Additionally, localized areas of the shallow fill soil historically imported to the 701 South Jackson Street Property contain lead and cPAHs at concentrations greater than the MTCA CULs. The additional soil and groundwater investigation activities were completed to address the following data gaps:

- Nature and extent of contamination within the South Jackson/7th Avenue ROWs.
- Characterization of soil at depth along the western property boundary where elevated headspace vapors were previously identified (i.e., locations GEI-2 and GEI-3 between approximately 35 and 40 feet bgs).
- Characterization of groundwater conditions west/downgradient of areas with elevated contaminant concentrations in soil.

To address these data gaps, three shallow direct push borings were completed within the South Jackson/ 7th Avenue ROWs (as noted above, additional borings proposed and/or requested by Ecology could not be completed due to the presence of buried utilities) and two deep hollow stem auger borings were completed as permanent groundwater monitoring wells. Results of the investigation indicated the following:

- Contaminants of concern were not detected at concentrations greater than the laboratory reporting limits at locations GEI-8 through GEI-10 (Figure 2). Based on the laboratory data and soil conditions observed during drilling, the lateral extent of contamination resulting from historical land use is now defined to the northwest, west and southwest of the 701 South Jackson Street Property.
- Contaminants of concern were not detected at concentrations greater than the laboratory reporting limits at locations GEI-11 and GEI-12 at equivalent depths (i.e., 35 and 40 feet bgs, respectively) where elevated headspace vapors were previously identified. Based on the laboratory data and soil conditions observed during drilling, contaminants do not extend below a depth of approximately 20 feet along the western 701 South Jackson Street property boundary which are consistent with previous investigation results.
- Low concentrations of gasoline-range petroleum hydrocarbons, arsenic and naphthalenes were detected in the groundwater samples collected from monitoring wells GEI-11 and GEI-12 located

downgradient of the two identified hot spots in soil at the 701 South Jackson Street Property. The detected contaminant concentrations in the two groundwater samples are less than the MTCA CULs and are similar to the concentrations detected in the grab water sample collected from GEI-1. Based on the detected concentrations, there is no evidence that Site contaminants have adversely affected groundwater downgradient of the Property.

Soil and groundwater data collected to date and presented in the Revised RI/FS/CAP, and as part of the Data Gaps Investigation are presented in Tables 1 and 2. Figures 3 through 5 provide a summary of soil investigation results for the 701 South Jackson Street Property.

As presented in the Revised RI/FS/CAP, the proposed cleanup action during construction will result in the removal of the soil with contaminant concentration greater than the MTCA CULs within the Property boundary and the residual contamination that will remain beneath the 7th Avenue ROW is expected to naturally attenuate over time. The monitoring well samples indicate that although detected, Site contaminants are not present in groundwater at concentrations greater than the MTCA CULs. Based on the environmental data collected to date, we are requesting Ecology's concurrence that the Site characterization is complete and that the proposed cleanup action as part of property redevelopment will meet the requirements for a NFA determination for the Site.

5.0 LIMITATIONS

This Data Gaps Investigation Report has been prepared for use by South Jackson Partners LLC and their authorized agents. GeoEngineers has performed the soil and groundwater investigation activities for the Property located at 701 South Jackson Street in Seattle, Washington, in general accordance with our proposal dated January 21, 2021 (revised May 10, 2021, December 6, 2021 and February 9, 2022). Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C, titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this report.

6.0 REFERENCES

- CDM Smith (CDM). 2012. June 2012 Phase I Environmental Site Assessment Report, Seventh Avenue Service Property, 701 S Jackson Street, Seattle, Washington. June 13, 2012.
- Environmental Associates, Inc. (EAI) 2010. Underground Storage Tank Removal and Soil Testing. 7th Avenue Station, Seattle, Washington. December 16, 2010.
- Farallon Consulting (Farallon). 2019. Phase II Investigation Report, South Jackson Street Property, Seattle, Washington. November 18, 2019.
- Geo Group Northwest, Inc. (GeoGroup). 1992. Level 2 Site Contamination Assessment, Jackson and 7th Gas Station, Seattle, Washington. E-0260. October 14, 1992.
- Geo Group Northwest, Inc. (GeoGroup). 2006. Findings from Limited Phase II Environmental Assessment, Seventh Avenue Service, 701 S. Jackson Street, Seattle, Washington. March 15, 2006.
- Landau Associates, Inc. (LAI). 2011. Focused Phase II Investigation Report, 7th Avenue South and South Jackson Street Property, Seattle, Washington. December 9, 2011.
- GeoEngineers Inc. (GeoEngineers) 2022. Remedial Investigation/Feasibility Study/Cleanup Action Plan, 701 South Jackson Property, Seattle, Washington. prepared for 701 South Jackson Partners, LLC c/o Housing Diversity Corp. July 1, 2022.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	H-1	H-2	H-3		FE	3-3			FB-4		
Sample Identification	H-1-12.5	H-2-7.5	H-3-7.5	FB-3-10.0	FB-3-15.0	FB-3-20.0	FB-3-40.0	FB-4-6.0	FB-4-10.0	FB-4-15.0	
Sampled By	GeoGroup	GeoGroup	GeoGroup	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	MATOA
Sample Date	08/03/92	08/03/92	08/03/92	10/31/19	10/31/19	10/31/19	10/31/19	11/01/19	11/01/19	11/01/19	MTCA Cleanup
Sample Depth (feet bgs)	12.5	7.5	7.5	10.0	15.0	20.0	40.0	6.0	10.0	15.0	Levels ³
Petroleum Hydrocarbons by NWPTH-G			1.0	20.0	20.0	20.0	40.0	0.0	10.0	20.0	Levels
Gasoline-Range	6,000	1.6	1,400	1,300	5.2 U	5.6 U	5.0 U	86	450	1,700	30/100 ⁴
Diesel-Range				980 U		5.6 0	5.0 0		450	31 U	2,000
Lube Oil-Range				570						61 U	2,000
Volatile Organic Compounds (VOCs) by	 EDA 9021/92			370		-				610	2,000
	-		0.24	0.004.11	0.000	0.000.11	0.000.11	0.000.11	0.032	4.2	0.03
Benzene	4	0.05 U	0.31	0.021 U	0.060	0.020 U	0.020 U	0.020 U		1.3	7
Toluene	55	0.05 U	1.9	0.17	0.052 U	0.056 U	0.050 U	0.055 U	0.053 U	21	6
Ethylbenzene	66	0.05 U	6.2	4.6	0.29	0.056 U	0.050 U	0.12	2.2	21	9
Total Xylenes	330	0.05 U	16	11.2	0.104 U	0.112 U	0.10 U	0.1	2.99	129	
1,2 Dibromoethane (EDB)				0.050 U							0.005
1,2 Dichloroethane (EDC)				0.050 U							1
Methyl tertiary-butyl ether (MTBE)	-	-	-	0.050 U							0.1
other VOCs				ND							varies
Total Metals by EPA 6000 series (mg/										Г	200
Arsenic	-					-					20
Barium											16,000
Cadmium						-	-		-		2
Total Chromium									-		2,000
Lead	1.5	2.2	3.8	5.7 U							250
Mercury											2
Selenium											400
Silver											400
Polycyclic Aromatic Hydrocarbons (PAI	Hs) by EPA 827	, , ,	1				T				
Acenaphthene	-	-		0.022							4,800
Acenaphthylene				0.0076							NE
Anthracene				0.025						-	24,000
Benzo[a]anthracene				0.028	-					-	NE
Benzo(a)pyrene				0.027	-					-	0.1
Benzo(b)fluoranthene				0.028	-					-	NE
Benzo(g,h,i)perylene				0.022						-	NE
Benzo(k)fluoranthene				0.0076 U							NE
Chrysene				0.029							NE
Dibenzo(a,h)anthracene				0.0076 U							NE
Fluoranthene				0.057							3,200
Fluorene				0.03							3,200
Indeno(1,2,3-cd)pyrene	-			0.019							NE
Naphthalenes				10.5							5
Phenanthrene				0.098							NE
Pyrene				0.063						-	2,400
cPAHs TEQ ⁶				0.039							0.1
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/	kg)									
Aroclor 1016	-	-		0.057 U	-	-		-	-		NA
Aroclor 1221	-	-		0.057 U							NA
Aroclor 1232				0.057 U							NA
Aroclor 1242				0.057 U							NA
Aroclor 1248	-	-		0.057 U	-	-		-			NA
Aroclor 1254				0.057 U							NA
Aroclor 1260				0.057 U							NA
Total PCBs				0.399 U		_		_			1.0

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"_" = not tested ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹		FB-5 ²			FE	3-6		FE	3-7	B-1-11	
Sample Identification	FB-5-11.0	FB-5-17.0	FB-5-25.0	FB-6-10.0	FB-6-18.0	FB-6-21.0	FB-6-24.0	FB-7-2.5	FB-7-8.0	B-1 S-5	
Sampled By	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Landau	MTCA
Sample Date	11/01/19	11/01/19	11/01/19	11/01/19	11/01/19	11/01/19	11/01/19	10/30/19	10/30/19	11/11/11	Cleanup
Sample Depth (feet bgs)	4.6	7.2	10.6	10.0	18.0	21.0	24.0	2.5	8.0	12.5	Levels ³
Petroleum Hydrocarbons by NWPTH-G											2070.0
Gasoline-Range	17	4,800	5.9 U	4.7 U	28	6.5 U	5.8 U	5.2 U	5.7 U	24,000	30/100 ⁴
Diesel-Range	33 U	590	32 U	-	30 U		31 U	31 U	31 U	120 U	2,000
Lube Oil-Range	66 U	57 U	63 U		61 U		63 U	170	78	50 U	2,000
Volatile Organic Compounds (VOCs) by	EPA 8021/82	260 ⁵ (mg/kg)									_,,
Benzene	0.020 U	1.6	0.020 U	0.020 U	0.020 U	110	0.03				
Toluene	0.071 U	18	0.059 U	0.047 U	0.051 U	0.065 U	0.058 U	0.052 U	0.057 U	1,700	7
Ethylbenzene	0.095	89	0.059 U	0.047 U	1.2	0.065 U	0.058 U	0.052 U	0.057 U	470	6
Total Xylenes	0.087	420	0.118 U	0.094 U	0.55	0.13 U	0.068	0.104 U	0.114 U	2,400	9
1,2 Dibromoethane (EDB)		1.1 U			0.00089 U		-				0.005
1,2 Dichloroethane (EDC)		1.1 U			0.00089 U						1
Methyl tertiary-butyl ether (MTBE)		_									0.1
other VOCs		ND			ND						varies
Total Metals by EPA 6000 series (mg/	kg)		<u> </u>	<u> </u>							
Arsenic		_				_	_	_			20
Barium						_					16,000
Cadmium						_	_				2
Total Chromium							_				2,000
Lead										8.9	250
Mercury											2
Selenium											400
Silver											400
Polycyclic Aromatic Hydrocarbons (PAI	Hs) by EPA 82	! 70D/SIM (mg/	kg)				!				
Acenaphthene		0.025			0.0081 U						4,800
Acenaphthylene		0.025			0.0081 U						NE
Anthracene		0.016			0.0081 U						24,000
Benzo[a]anthracene		0.0083			0.0081 U						NE
Benzo(a)pyrene		0.0076 U			0.0081 U		_			_	0.1
Benzo(b)fluoranthene		0.0076 U			0.0081 U		_			_	NE
Benzo(g,h,i)perylene		0.0076 U			0.0081 U		_			_	NE
Benzo(k)fluoranthene		0.0076 U			0.0081 U		-				NE
Chrysene		0.0076 U			0.0081 U						NE
Dibenzo(a,h)anthracene		0.0076 U			0.0081 U						NE
Fluoranthene		0.012			0.0081 U						3,200
Fluorene		0.053			0.0081 U						3,200
Indeno(1,2,3-cd)pyrene		0.0076 U			0.0081 U						NE
Naphthalenes		12.8			0.66						5
Phenanthrene		0.078			0.0081 U						NE
Pyrene		0.019			0.0081 U	-	_			-	2,400
cPAHs TEQ ⁶		0.005			0.006 U						0.1
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/					•	•		•		
Aroclor 1016		0.057 U			0.061 U						NA
Aroclor 1221		0.057 U			0.061 U					-	NA
Aroclor 1232		0.057 U			0.061 U						NA
Aroclor 1242		0.057 U			0.061 U						NA
Aroclor 1248		0.057 U			0.061 U						NA
Aroclor 1254		0.057 U			0.061 U						NA
Aroclor 1260		0.057 U			0.061 U						NA
Total PCBs		0.399 U			0.427 U						1.0
	I		1				1		I	1	

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable
NE = Not Established

"-" = not tested ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	B-1-11	B-2	2-11	B -3	3- 11	B-4	1-11	B-5-11	В-6	j-11	
Sample Identification	B-1 S-7	B-2 S-4	B-2 S-6	B-3 S-4	B-3 S-6	B-4 S-2	B-4 S-6	B-5 S-8	B-6 S-6	B-6 S-7	
Sampled By	Landau	Landau	Landau	Landau	Landau	Landau	Landau	Landau	Landau	Landau	MTCA
Sample Date	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/14/11	11/04/11	11/04/11	Cleanup
Sample Depth (feet bgs)	17.5	12.5	17.5	12.5	17.5	5.0	15.0	20.0	15.0	20.0	Levels ³
Petroleum Hydrocarbons by NWPTH-G	x/NWTPH-Dx (ı	mg/kg)									
Gasoline-Range	14	14	11	420	6.6	10	26	3.0 U	3.0 U	4.6	30/100 ⁴
Diesel-Range	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	2,000
Lube Oil-Range	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	2,000
Volatile Organic Compounds (VOCs) by			000	000	000	000	000	000	000		
Benzene	0.12	0.044 U	0.051	0.024 U	0.06	0.14	0.38	0.030 U	0.030 U	0.030 U	0.03
Toluene	0.51	0.36	0.4	1.0	0.36	0.43	1.0	0.050 U	0.050 U	0.050 U	7
Ethylbenzene	0.3	0.078	0.08	7.3	0.076	0.12	0.38	0.050 U	0.050 U	0.078	6
Total Xylenes	1.3	0.32	0.32	32	0.39	0.58	2.2	0.20 U	0.20 U	0.20 U	9
1,2 Dibromoethane (EDB)											0.005
1,2 Dichloroethane (EDC)											1
Methyl tertiary-butyl ether (MTBE)											0.1
other VOCs					_						varies
Total Metals by EPA 6000 series (mg/											varies
Arsenic											20
Barium					_					_	16,000
Cadmium											2
Total Chromium											2,000
Lead				7.4		-			<u></u>		250
Mercury											230
Selenium											400
Silver											400
Polycyclic Aromatic Hydrocarbons (PAI											400
Acenaphthene		(ITIG/	T .								4,800
Acenaphthylene											4,800 NE
Anthracene											24,000
Benzo[a]anthracene						-	-				NE
Benzo(a)pyrene											0.1
Benzo(b)fluoranthene											NE
· · ·											
Benzo(g,h,i)perylene											NE NE
Benzo(k)fluoranthene Chrysene							-				NE NE
· · · · · · · · · · · · · · · · · · ·							-				
Dibenzo(a,h)anthracene							-				NE 2 200
Fluoranthene											3,200
Fluorene											3,200
Indeno(1,2,3-cd)pyrene											NE
Naphthalenes							-				5 NE
Phenanthrene							-				NE 2.400
Pyrene cPAHs TEQ ⁶							-				2,400
											0.1
Polychlorinated Biphenyls (PCBs) by El											N I A
Aroclor 1016											NA NA
Aroclor 1221							-				NA NA
Aroclor 1232	-	-	-		-	-					NA NA
Aroclor 1242											NA NA
Aroclor 1248						-					NA NA
Aroclor 1254											NA NA
Aroclor 1260											NA
Total PCBs											1.0

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established
"-" = not tested

ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹		US	T-1			US	T-2		В	-1	
Commis Identification	UST-1-	UST-1-	UST-1-	UST-1-	UST-2-	UST-2-	UST-2-	UST-2-	B4.5	B-1-12.5	
Sample Identification	B-12	N-8/W-6	S-8/E-8	ОВ	B-12	ОВ	N-8/W-6	S-8/E-8	B-1-5	B-1-12.5	
Sampled By	EAI	EAI	EAI	EAI	EAI	EAI	EAI	EAI	GeoGroup	GeoGroup	MTCA
Sample Date	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	02/01/06	02/01/06	Cleanup
Sample Depth (feet bgs)	12.0	6	8.0	Stockpile	12.0	Stockpile	6	8.0	5.0	12.5	Levels ³
Petroleum Hydrocarbons by NWPTH-G		mg/kg)									2010.0
Gasoline-Range	110	2 U	37	2 U	2 U	2 U	2 U	2 U	16	12,000	30/100 ⁴
Diesel-Range			-						28 U	560	2,000
Lube Oil-Range									57 U	62 U	2,000
Volatile Organic Compounds (VOCs) by									37.0	02 0	2,000
		•	0.0011	0.0011	0.0011	0.0011	0.0011	0.00.11	0.000.11	47	0.03
Benzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.020 U	17	7
Toluene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.047 U	7.2	
Ethylbenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.047 U	210	6
Total Xylenes	0.34	0.06 U	1.4	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.061	860	9
1,2 Dibromoethane (EDB)											0.005
1,2 Dichloroethane (EDC)											1
Methyl tertiary-butyl ether (MTBE)						-	-				0.1
other VOCs											varies
Total Metals by EPA 6000 series (mg/	kg)						_				
Arsenic	-	-	-		-	-		-		-	20
Barium											16,000
Cadmium											2
Total Chromium											2,000
Lead											250
Mercury											2
Selenium											400
Silver											400
Polycyclic Aromatic Hydrocarbons (PAI	Hs) by EPA 827	70D/SIM (mg/	kg)	<u>!</u>			!		<u> </u>	!	
Acenaphthene		-									4,800
Acenaphthylene											NE
Anthracene											24,000
Benzo[a]anthracene											NE NE
Benzo(a)pyrene											0.1
Benzo(b)fluoranthene											NE NE
Benzo(g,h,i)perylene											NE
Benzo(k)fluoranthene											NE NE
Chrysene											NE NE
Dibenzo(a,h)anthracene											NE NE
, ,											3,200
Fluoranthene											
Fluorene											3,200
Indeno(1,2,3-cd)pyrene											NE
Naphthalenes											5
Phenanthrene											NE
Pyrene										-	2,400
cPAHs TEQ ⁶											0.1
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/	kg)	ı	ı	ı	ı	T		ı		
Aroclor 1016											NA
Aroclor 1221											NA
Aroclor 1232	-		-		-	-					NA
Aroclor 1242											NA
Aroclor 1248											NA
Aroclor 1254										-	NA
Aroclor 1260						-	-	-	-		NA
Total PCBs											1.0
	-	-	-	-	-	-	-	-	-		

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established
"-" = not tested

ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

 $^{^{\}rm 2}$ Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	В	-3	В	-4		GEI-1			GEI-2		
Sample Identification	B-3-10	B-3-12.5	B-4-9	B-4-14	GEI-1-5.0	GEI-1-12.5	GEI-1-17.5	GEI-2-10.0	GEI-2-15.0	GEI-2-17.5	
Sampled By	GeoGroup	GeoGroup	GeoGroup	GeoGroup	GEI	GEI	GEI	GEI	GEI	GEI	MTCA
Sample Date	02/01/06	02/01/06	02/02/06	02/02/06	05/18/21	05/18/21	05/18/21	05/19/21	05/19/21	05/19/21	Cleanup
Sample Depth (feet bgs)	10.0	12.5	9.0	14.0	5.0	12.5	17.5	10.0	15.0	17.5	Levels ³
Petroleum Hydrocarbons by NWPTH-G			0.0	2410	0.0	12.0	11.10	20.0	20.0	21.10	Leveis
Gasoline-Range	1,300	13 U	10 U	8,300	5.02 U	57.9	4.94 U	1,970	361	5.59 U	30/100 ⁴
Diesel-Range	30 U	27 U	28 U	280	54.4 U	51.8 U	53.6 U			5.59 0	2,000
Lube Oil-Range	60 U	54 U	55 U	62 U	109 U	104 U	107 U				2,000
Volatile Organic Compounds (VOCs) by			33 0	02 0	109 0	1040	107 0				2,000
Benzene	1.8	0.093	0.38	15	0.0201 U	0.0197 U	0.0198 U	0.0207 U	0.129	0.0224 U	0.03
Toluene	4.5	0.39	0.38	35	0.0201 U	0.0197 0	0.0198 U	0.0207 0	2.21	0.0224 U	7
	12	0.39	0.21	100	0.0231 U	0.92	0.0247 U	0.0311 U	0.104	0.0279 U	6
Ethylbenzene Tetal Vylanas	35.4	1.08	0.12	440	0.0501 U	3.252	0.0297 U 0.0494 U	0.03110		0.0559 U	9
Total Xylenes 1,2 Dibromoethane (EDB)		0.057 U		1.1 U					1.315	0.0559 0	0.005
· · · · · · · · · · · · · · · · · · ·											
1,2 Dichloroethane (EDC)		0.057 U		1.1 U							1 0.1
Methyl tertiary-butyl ether (MTBE)		0.057 U		1.1 U							0.1
other VOCs	 	DETECT		Detected							varies
Total Metals by EPA 6000 series (mg/		Ι			4.50	4.00	0.50			Г	
Arsenic	-			-	1.53	1.60	3.58				20
Barium	-			-	40.1	32.0	36.1				16,000
Cadmium	-		-	-	0.171 U	0.177 U	0.185 U				2
Total Chromium	-			-	27.6	26.6	27.2	-			2,000
Lead					1.57	1.62	1.64		-		250
Mercury					0.264 U	0.279 U	0.284 U		-		2
Selenium					1.01	1.07	0.805				400
Silver		-			0.129 U	0.132 U	0.139 U				400
Polycyclic Aromatic Hydrocarbons (PAI		, , ,	1		0.000011	0.040411	0.000011				1.000
Acenaphthene	-	-			0.0209 U	0.0194 U	0.0202 U				4,800
Acenaphthylene	-			-	0.0209 U	0.0194 U	0.0202 U				NE
Anthracene	-				0.0419 U	0.0389 U	0.0404 U		-		24,000
Benzo[a]anthracene	-				0.0209 U	0.0194 U	0.0202 U				NE
Benzo(a)pyrene					0.0209 U	0.0194 U	0.0202 U				0.1
Benzo(b)fluoranthene					0.0209 U	0.0194 U	0.0202 U				NE
Benzo(g,h,i)perylene					0.0419 U	0.0389 U	0.0202 U		-		NE
Benzo(k)fluoranthene					0.0209 U	0.0194 U	0.0202 U				NE
Chrysene					0.0419 U	0.0389 U	0.0404 U				NE
Dibenzo(a,h)anthracene					0.0419 U	0.0389 U	0.0404 U				NE
Fluoranthene					0.0419 U	0.0389 U	0.0404 U				3,200
Fluorene					0.0209 U	0.0194 U	0.0202 U				3,200
Indeno(1,2,3-cd)pyrene					0.0419 U	0.0389 U	0.0404 U				NE
Naphthalenes					0.0209 U	0.0596	0.0202 U				5
Phenanthrene				-	0.0419 U	0.0389 U	0.0404 U				NE
Pyrene					0.0419 U	0.0389 U	0.0404 U				2,400
cPAHs TEQ ⁶					0.016 U	0.015 U	0.015 U				0.1
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/	kg)					1				
Aroclor 1016											NA
Aroclor 1221	-		-								NA
Aroclor 1232				-	-	-					NA
Aroclor 1242							-				NA
Aroclor 1248							-				NA
Aroclor 1254					-		-				NA
Aroclor 1260 Total PCBs						-					1.0

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable
NE = Not Established

"--" = not tested

ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹		GEI-3		GE	1-4	GE	EI-5	GE	:I-6	GEI-7	
Sample Identification	GEI-3-5.0	GEI-3-15.0	GEI-3-17.5	GEI-4-2.5	GEI-4-12.5	GEI-5-2.5	GEI-5-10.0	GEI-6-2.5	GEI-6-10.0	GEI-7-2.5	
Sampled By	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	MTCA
Sample Date	05/19/21	05/19/21	05/19/21	12/29/21	12/29/21	12/29/21	05/19/21	12/29/21	05/19/21	12/29/21	Cleanup
Sample Depth (feet bgs)	5.0	15.0	17.5	2.5	12.5	2.5	10.0	2.5	10.0	2.5	Levels ³
Petroleum Hydrocarbons by NWPTH-Gx			2110	0		0	20.0		_0.0	2.0	Leveis
Gasoline-Range	4.37 U	10,500	5.80 U	5.17 U	5.27 U	4.93 U	4.86 U	5.35 U	5.57 U	4.86 U	30/100 ⁴
Diesel-Range			J.80 U	58.1 U	56.8 U	50.1 U	60.2 U	54.4 U	61 U	57 U	2,000
Lube Oil-Range				116 U	114 U	100 U	120 U	689	122 U	448	2,000
Volatile Organic Compounds (VOCs) by	FPA 8021/82			1100	1140	100 0	1200	003	122 0	440	2,000
Benzene	0.0175 U	13.2	0.232 U	0.0207 U	0.0211 U	0.0197 U	0.0195 U	0.0214 U	0.0223 U	0.0194 U	0.03
Toluene	0.0173 U	97.2	0.232 U	0.0207 U	0.0211 U	0.0197 U	0.0193 U	0.0214 U	0.0223 U	0.0194 U	7
	0.0219 U	87.8	0.0290 U	0.0310 U	0.0310 U	0.0290 U	0.0292 U	0.0321 U	0.0334 U	0.0291 U	6
Ethylbenzene Total Xylenes	0.0282 U	554	0.0548 U	0.0238 U 0.0517 U	0.0203 U 0.0527 U	0.0247 U	0.0243 U	0.0287 U	0.0278 U	0.0243 U	9
1,2 Dibromoethane (EDB)						0.0493 0					0.005
1,2 Dichloroethane (EDC)											1
Methyl tertiary-butyl ether (MTBE)											0.1
other VOCs											varies
Total Metals by EPA 6000 series (mg/k	 (g)										varies
Arsenic				8.35	3.01	7.52	1.77	8.21	5.7	4.34	20
Barium				0.614	86.1	185	43.7	195	130	160	16,000
Cadmium		<u></u>		0.451	0.184 U	0.355	0.199 U	0.635	0.21 U	0.255	2
Total Chromium				53.6	39.3	27.4	25.9	38.2	59.2	34.5	2,000
Lead				340	3.28	93.8	2.04	243	4.79	59.5	250
	-			0.288 U	0.286 U	0.267 U	0.281 U	0.295 U	0.32 U	0.287 U	2
Mercury Selenium				1.33	1.05	0.267 0	0.2810	1.16	1.45	1	400
Silver				0.165	0.138 U	0.130 U	0.149 U	0.25	0.158 U	0.14 U	400
Polycyclic Aromatic Hydrocarbons (PAH				0.103	0.136 0	0.130 0	0.149 0	0.25	0.136 0	0.14 0	400
Acenaphthene				0.0234 U	0.0232 U	0.0226 U	0.0229 U	0.0327	0.0256 U	0.0221 U	4,800
Acenaphthylene				0.0234 U	0.0232 U	0.0226 U	0.0229 U	0.289	0.0256 U	0.0221 U	NE
Anthracene								0.767			
Benzo[a]anthracene		-		0.0234 U 0.0458	0.0464 U 0.0232 U	0.0451 U 0.0226 U	0.0458 U 0.0229 U	1.32	0.0512 U 0.0256 U	0.0442 U 0.0221 U	24,000 NE
Benzo(a)pyrene				0.044	0.0232 U	0.0226 U	0.0229 U	1.12	0.0256 U	0.0221 U	0.1
Benzo(b)fluoranthene	_			0.0453	0.0232 U	0.0226 U	0.0229 U	0.825	0.0256 U	0.0221 U	NE
Benzo(g,h,i)perylene		-		0.0538	0.0232 U	0.0226 U	0.0229 U	0.483	0.0256 U	0.0221 U	NE
Benzo(k)fluoranthene		<u>-</u>		0.0403	0.0232 U	0.0226 U	0.0229 U	0.856	0.0256 U	0.0221 U	NE
Chrysene				0.0476	0.0232 U	0.0220 U	0.0229 U	1.15	0.0230 U	0.0221 U	NE
Dibenzo(a,h)anthracene				0.0469 U	0.0464 U	0.0451 U	0.0458 U	0.231	0.0512 U	0.0442 U	NE
Fluoranthene				0.0469 0	0.0464 U	0.0451 U	0.0458 U	2.84	0.0512 U	0.0442 U	3,200
Fluorene				0.0234 U	0.0484 U	0.0431 U	0.0438 U	0.251	0.0312 U	0.0442 U	3,200
Indeno(1,2,3-cd)pyrene				0.0234 U	0.0232 U 0.0464 U	0.0228 U	0.0229 U	0.473	0.0236 U	0.0221 U	NE
				0.0469 U 0.0234 U	0.0484 U	0.0451 U 0.0226 U	0.0458 U	0.473	0.0312 U 0.0256 U	0.0442 U 0.0221 U	NE
Naphthalenes Phenanthrene				0.0234 U	0.0232 U 0.0464 U	0.0226 U	0.0229 U	2.02	0.0256 U 0.0512 U	0.0221 U 0.0442 U	NE
Pyrene				0.0234 0	0.0464 U	0.0451 U	0.0458 U	2.65	0.0512 U	0.0442 U	2,400
cPAHs TEQ ⁶	-			0.0792 0.059 U	0.0464 U	0.0451 U	0.0458 U	0.74	0.0512 U	0.0442 U	0.1
Polychlorinated Biphenyls (PCBs) by EP	 0A QOQ2 /ma//			0.059 0	0.010 0	0.017 0	0.017 0	0.74	0.018 0	0.017 0	0.1
Aroclor 1016	(mg/ i	kg) 									NA
Aroclor 1016 Aroclor 1221											NA NA
Aroclor 1232											NA NA
Aroclor 1242		-									NA NA
7100101 1242											NA NA
											INA
Aroclor 1248											
											NA NA

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"_" = not tested ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

¹ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	GE	<u> </u>	GE	I-8	GE	I-9	GE	I- 1 0	GE	l- 11	
Sample Identification	GEI-7-7.5	GEI-7-14.0	GEI-8-12.5	GEI-8-17.0	GEI-9-12.5	GEI-9-17.5	GEI-10-12.5	GEI-10-17.0	GEI-11-15.0	GEI-11-35.0	
Sampled By	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	MTCA
Sample Date	05/19/21	05/19/21	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	Cleanup
Sample Depth (feet bgs)	7.5	14.0	12.5	17.0	12.5	17.5	12.5	17.0	15.0	35.0	Levels ³
Petroleum Hydrocarbons by NWPTH-G	x/NWTPH-Dx (ı	mg/kg)								I	
Gasoline-Range	5.46 U	1,370	9.14 U	5.74 U	6.5 U	6.25 U	5.64 U	5.76 U	41.1	5.88 U	30/100 ⁴
Diesel-Range	64.7 U	58.5 U					-				2,000
Lube Oil-Range	129 U	117 U									2,000
Volatile Organic Compounds (VOCs) by	EPA 8021/82	260 ⁵ (mg/kg)	ı	ı		I	•				
Benzene	0.0218 U	0.15	0.0365 U	0.0230 U	0.0260 U	0.0250 U	0.0228 U	0.0230 U	1.42	0.0235 U	0.03
Toluene	0.0327 U	0.177	0.0548 U	0.0348 U	0.0390 U	0.0375 U	0.0328 U	0.0346 U	0.418	0.0353 U	7
Ethylbenzene	0.0273 U	17.1	0.0457 U	0.0287 U	0.0325 U	0.0312 U	0.0282 U	0.0288 U	1.03	0.0294 U	6
Total Xylenes	0.0546 U	39.08	0.0914 U	0.0574 U	0.0650 U	0.0625 U	0.0564 U	0.0576 U	3.482	0.0588 U	9
1,2 Dibromoethane (EDB)	0.0109 U	0.0106 U									0.005
1,2 Dichloroethane (EDC)	0.0251 U	0.0244 U									1
Methyl tertiary-butyl ether (MTBE)	0.0327 U	0.0318 U									0.1
other VOCs	ND	Detected					-				varies
Total Metals by EPA 6000 series (mg/	kg)					•	•				
Arsenic	5.85	7.07								_	20
Barium	134	125		-			-	-		_	16,000
Cadmium	0.203 U	0.189					-			_	2
Total Chromium	64.1	52.2				-	-			-	2,000
Lead	4.82	6.06					-			_	250
Mercury	0.309	0.294 U								_	2
Selenium	1.62	1.42									400
Silver	0.152 U	0.141 U					-			-	400
Polycyclic Aromatic Hydrocarbons (PAI	Hs) by EPA 827	70D/SIM (mg/	kg)			•	•				
Acenaphthene	0.0241 U	0.0249 U									4,800
Acenaphthylene	0.0241 U	0.0249 U				-					NE
Anthracene	0.0482 U	0.0498 U					-				24,000
Benzo[a]anthracene	0.0241 U	0.0249 U				-	-			-	NE
Benzo(a)pyrene	0.0241 U	0.0249 U				-	-			-	0.1
Benzo(b)fluoranthene	0.0241 U	0.0249 U					-				NE
Benzo(g,h,i)perylene	0.0241 U	0.0249 U				-				_	NE
Benzo(k)fluoranthene	0.0241 U	0.0249 U									NE
Chrysene	0.0482 U	0.0498 U									NE
Dibenzo(a,h)anthracene	0.0482 U	0.0498 U									NE
Fluoranthene	0.0482 U	0.0498 U									3,200
Fluorene	0.0241 U	0.0249 U									3,200
Indeno(1,2,3-cd)pyrene	0.0482 U	0.0498 U			-						NE
Naphthalenes	0.0241 U	0.556	22.1 U	24.5 U	21.2 U	24.8 U	22.3 U	24.1 U	571.6	20.1 U	5
Phenanthrene	0.0482 U	0.0498 U			-		-	-			NE
Pyrene	0.0482 U	0.0498 U				-	-			-	2,400
cPAHs TEQ ⁶	0.017 U	0.017 U									0.1
Polychlorinated Biphenyls (PCBs) by El		kg)					_			-	
Aroclor 1016	0.0596 U	0.061 U									NA
Aroclor 1221	0.0596 U	0.061 U					-				NA
Aroclor 1232	0.0596 U	0.061 U									NA
Aroclor 1242	0.0596 U	0.061 U									NA
Aroclor 1248	0.0596 U	0.061 U									NA
Aroclor 1254	0.0596 U	0.061 U									NA
Aroclor 1260	0.0596 U	0.061 U									NA
Total PCBs	0.0596 U	0.061 U									1.0

Notes:

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.
NA = Not Applicable

NE = Not Established

"-" = not tested ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

 $^{^{\}mbox{\scriptsize 1}}$ Approximate exploration locations shown on Figure 3.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	GE	I-12	
Sample Identification	GEI-12-15.0	GEI-11-40.0	
Sampled By	GEI	GEI	
Sample Date	04/04/22	04/04/22	MTCA
Sample Depth (feet bgs)	15.0	40.0	Cleanup Levels ³
Petroleum Hydrocarbons by NWPTH-G			Leveis
Gasoline-Range	3,220	6.05 U	30/100 ⁴
Diesel-Range	3,220	6.05 0	2,000
Lube Oil-Range			2,000
Volatile Organic Compounds (VOCs) by	EDA 9021/92	 260 ⁵ (mg/kg)	2,000
Benzene	0.739	0.0242 U	0.03
Toluene	0.0403 U	0.0242 U	7
Ethylbenzene	13	0.0303 U	6
Total Xylenes	2.39	0.0303 U	9
1,2 Dibromoethane (EDB)			0.005
1,2 Dichloroethane (EDC)			1
Methyl tertiary-butyl ether (MTBE)			0.1
other VOCs			varies
Total Metals by EPA 6000 series (mg/			varies
Arsenic			20
Barium			16,000
Cadmium			2
Total Chromium			2,000
Lead			250
Mercury			2
Selenium			400
Silver			400
Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 827	70D/SIM (mg/	kg)
Acenaphthene	-	-	4,800
Acenaphthylene			NE
Anthracene			24,000
Benzo[a]anthracene			NE
Benzo(a)pyrene			0.1
Benzo(b)fluoranthene			NE
Benzo(g,h,i)perylene			NE
Benzo(k)fluoranthene	-	-	NE
Chrysene		-	NE
Dibenzo(a,h)anthracene			NE
Fluoranthene			3,200
Fluorene			3,200
Indeno(1,2,3-cd)pyrene			NE
Naphthalenes	4,375	18.9 U	5
Phenanthrene	-	-	NE
Pyrene	-	-	2,400
cPAHs TEQ ⁶			0.1
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/	kg)	
Aroclor 1016			NA
Aroclor 1221			NA
Aroclor 1232			NA
Aroclor 1242			NA
Aroclor 1248			NA
Aroclor 1254			NA
Aroclor 1260			NA
Total PCBs			1.0

Notes:

- ¹ Approximate exploration locations shown on Figure 3.
- $^{2}\,\mathrm{Boring}\,\mathrm{Advanced}$ at an angle of 25 digress from vertical.
- ³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when Method A cleanup level has not been established.
- ⁴ When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.
- ⁵ For VOCs, only gasoline-range organic constituent compounds are presented in Table 1. A full list of compounds tested refer to the laboratory reports in Appendix B.
- ⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

HVOCs = halogenated VOCs

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested ND = Not Detected

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Summary of Groundwater Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	GEI-1	GEI-11	GEI-12	
			-	
Sample Identification	GEI-1-20210518	GEI-11-W-041122	GEI-12-W-041122	
Sample Date	05/18/21	04/11/22	04/11/22	MTCA
Depth To Groundwater (feet bgs) Groundwater Elevation ² (feet NAVD88)	64.1	57.96	61.56	Cleanup
	33.9	36.04	36.44	Level ³
Field Measured Parameters				
pH		7.3	7.09	NE
Conductivity (mS/cm)		0.64	0.69	NE
Turbidity (NTU)		18.8	21.2	NE
Dissolved Oxygen (mg/L)		0.84	1.36	NE
Temperature (°C)		15.2	15.1	NE
Total Dissolved Solidss (g/L)		0.507	0.553	NE
Oxidation Reduction Potential (mV)		136.8	144.1	NE
Petroleum Hydrocarbons by NWTPH-G/Dx (µg/L)				
Gasoline-Range Petroleum Hydrocarbons	54.6	694	142	800/1,000 ⁴
Diesel-Range Petroleum Hydrocarbons	176	117 U	117 U	500
Heavy Oil-Range Petroleum Hydrocarbons	98.2 U	117 U	117 U	500
Volatile Organic Compounds (VOCs) by EPA 8260D (µg/	L)		-	
Benzene	0.440 U	2.06	0.440 U	5
Toluene	0.750	9.89	0.750 U	100
Ethylbenzene	0.980	8.28	1.06	700
Total Xylenes	3.274	48.9	1.2	1,000
Total Metals by EPA 200.8/245.1 (µg/L)				25
Arsenic	6.75	2.94	2.85	8 ⁵
Cadmium	0.247	0.200 U	0.200 U	5
Total Chromium	8.39	1.00 U	1.10	50 15
Lead	4.61 0.304	0.500 U 0.100 U	0.500 U 0.100 U	2
Mercury Dissolved Metals by EPA 200.8/245.1 (µg/L)	0.304	0.100 0	0.100 0	2
Arsenic	1.23	2.95	2.91	
Cadmium	0.125 U	0.125 U	0.125 U	5
Total Chromium	0.750 U	0.750 U	0.752	50
Lead	0.500 U	0.500 U	0.500 U	15
Mercury	0.100 U	0.100 U	0.100 U	2
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 8270				
1-Methylnaphthalene	0.105	0.156	0.620	1.5
2-Methylnaphthalene	0.170	0.259	0.799	32
Acenaphthene	0.0994 U	0.099 U	0.0997 U	960
Acenaphthylene	0.0994 U	0.099 U	0.0997 U	NE
Anthracene	0.0994 U	0.099 U	0.0997 U	4,800
Benzo[a]anthracene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(a)pyrene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(b)fluoranthene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(g,h,i)perylene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(k)fluoranthene	0.0994 U	0.099 U	0.0997 U	0.1
Chrysene	0.0994 U	0.099 U	0.0997 U	NE
Dibenzo(a,h)anthracene	0.0994 U	0.099 U	0.0997 U	NE 242
Fluoranthene	0.0994 U	0.099 U	0.0997 U	640
Fluorene	0.0994 U	0.099 U	0.0997 U	640
Indeno(1,2,3-cd)pyrene	0.0994 U	0.099 U	0.0997 U	NE 160
Naphthalene	0.263	0.759	0.521	160
Phenanthrene	0.0994 U	0.099 U	0.0997 U	NE 490
Pyrene Total apa Ha TEO ⁶	0.0994 U	0.099 U	0.0997 U	480
Total cPAHs TEQ ⁶	0.0994 U	0.099 U	0.0997 U	0.1

Notes:

bgs = below ground surface

 μ g/L = micrograms per liter

MTCA = Model Toxics Cleanup Act

EPA = United States Environmental Protection Agency

 $\mbox{\bf U = chemical of concern not detected greater than the laboratory reporting limit shown} \label{eq:unitary}$

- = not analyzed

NE = not established

NA = not applicable

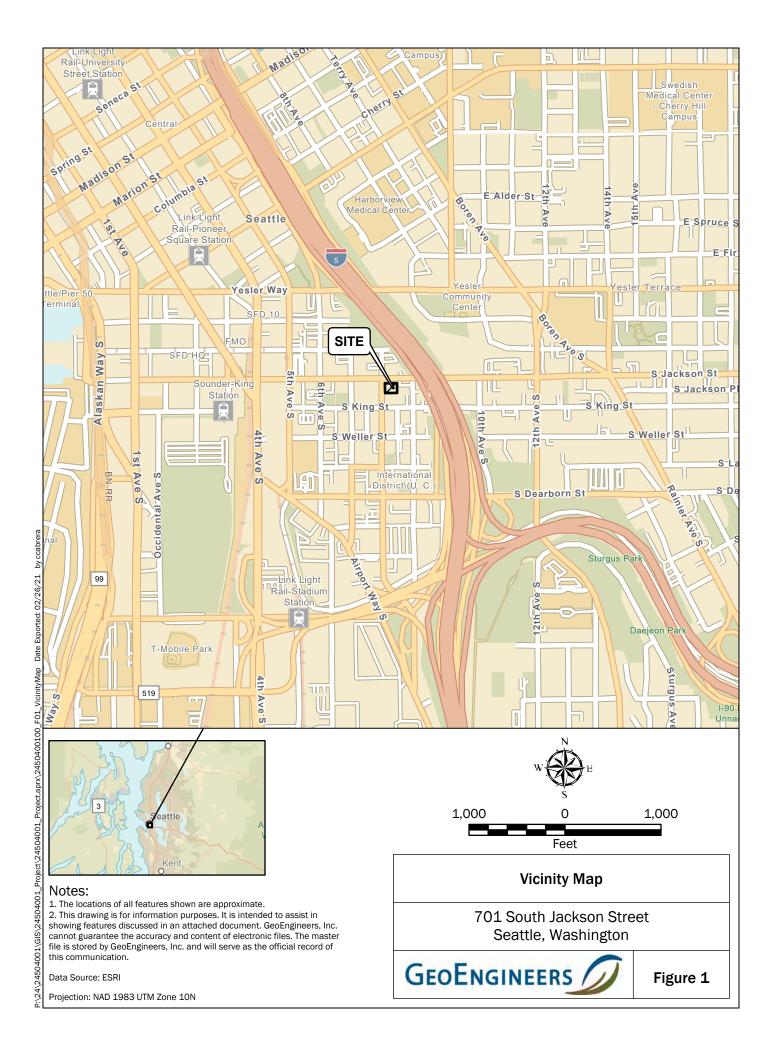
Bold font type indicates the chemical of concern was detected.

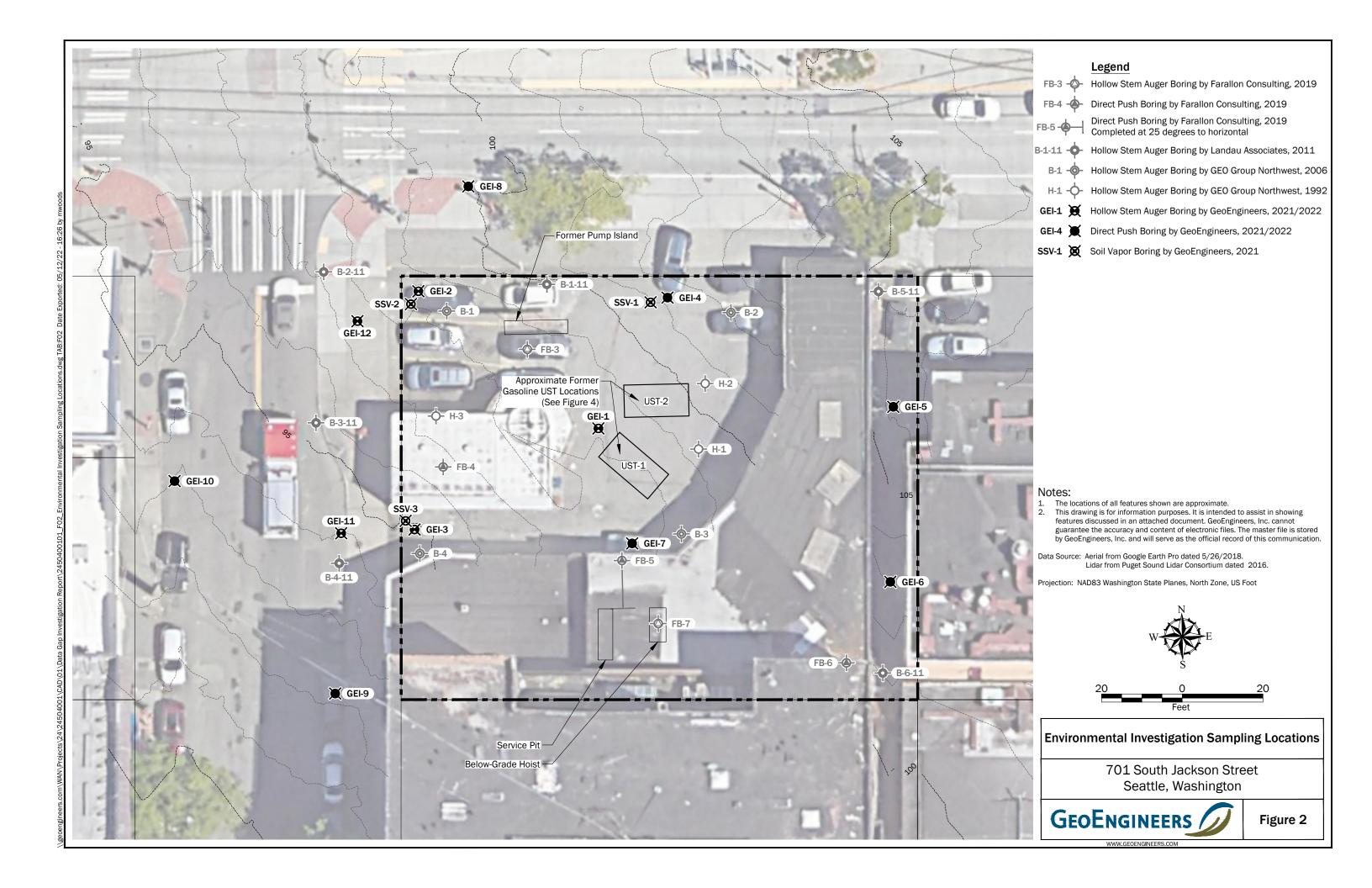
Yellow shading indicates analyte was detected at a concentration greater than the MTCA cleanup level.

Chemical analytical testing by Fremont Analytical of Seattle, Washington.

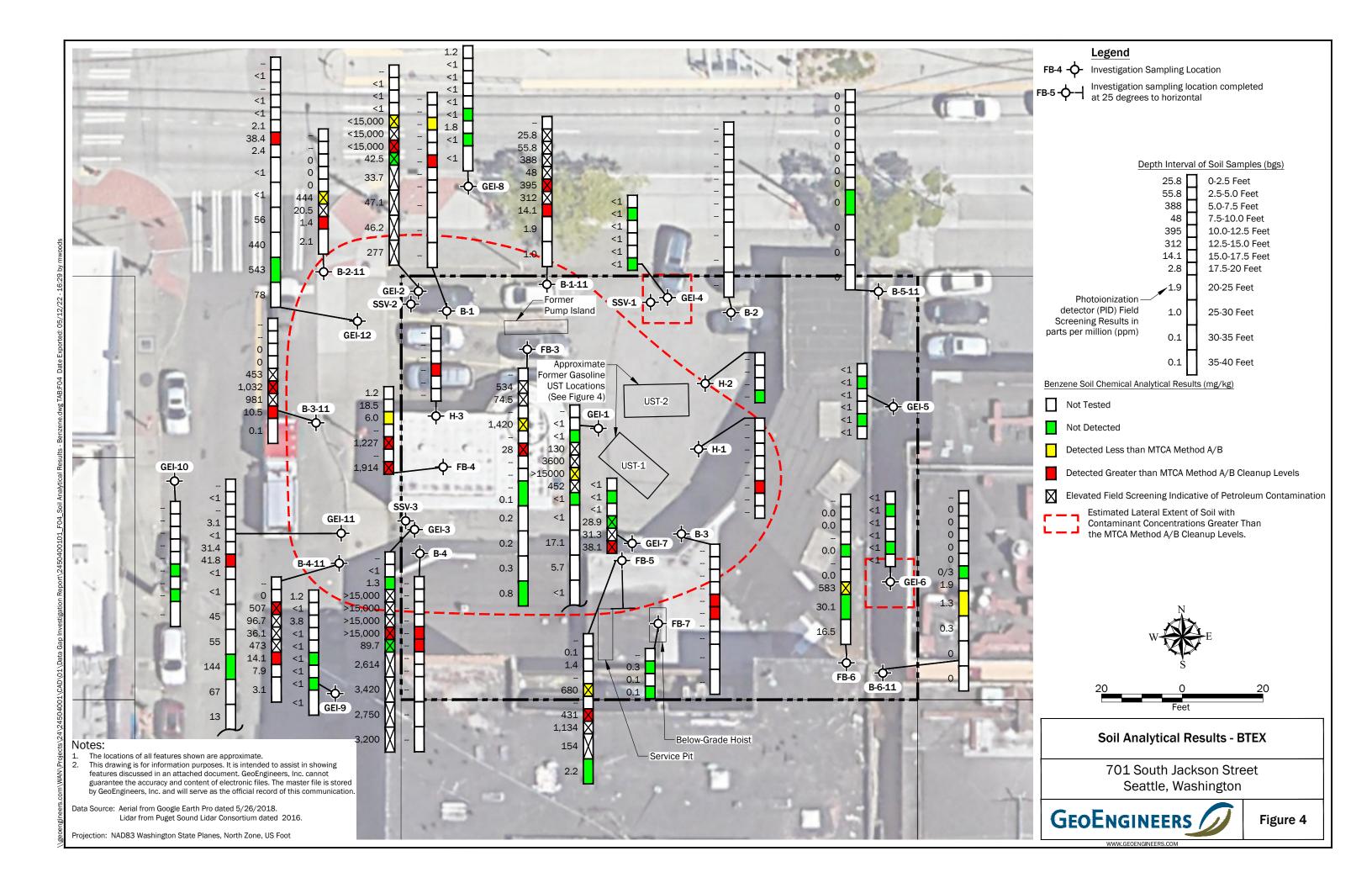
¹Approximate sample locations are shown on Figures 1 through 3.

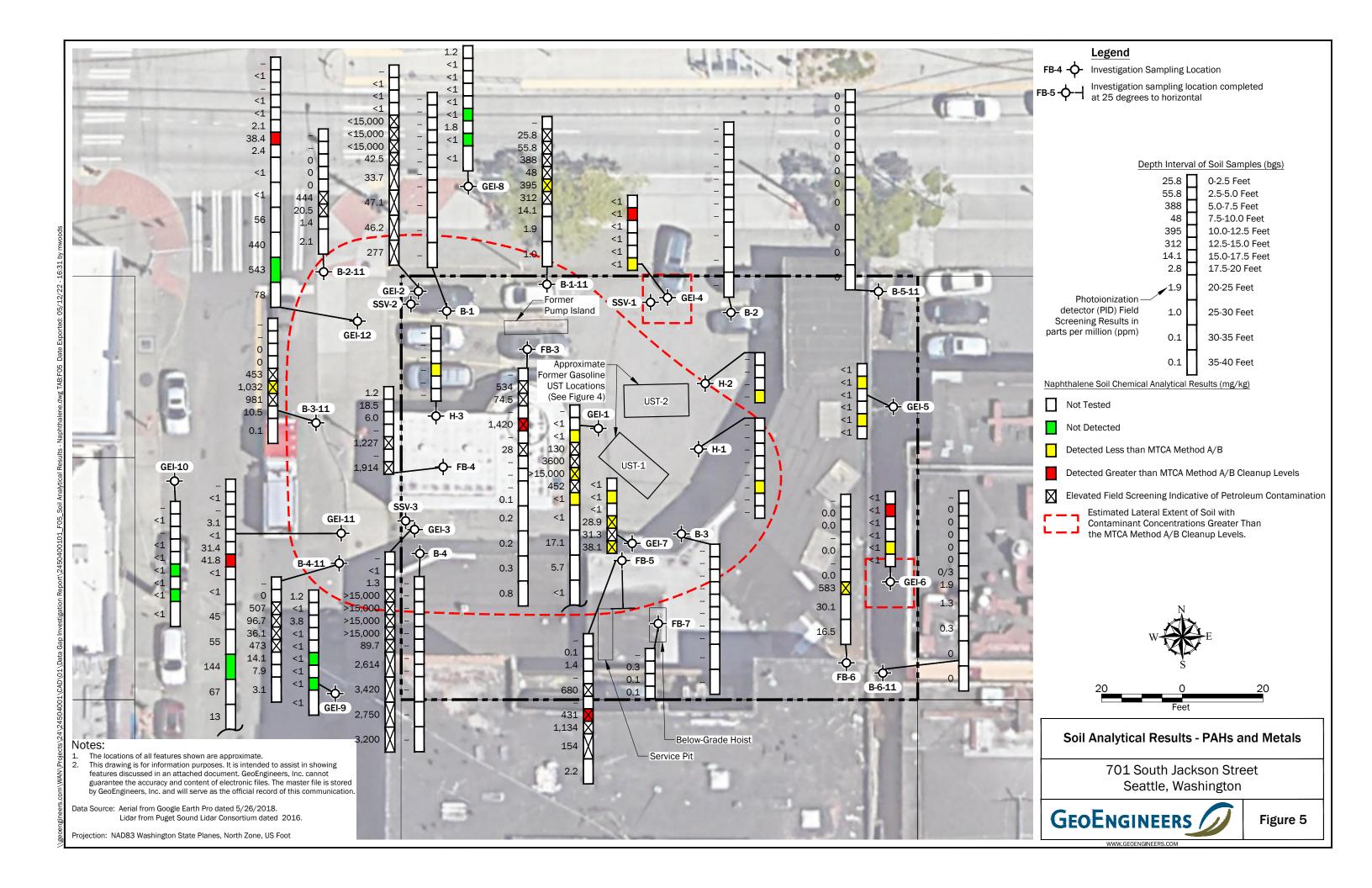
 $^{^2\,}Groundwater\,elevation\,referenced\,to\,the\,approximate\,ground\,surface\,elevation\,(North\,American\,Vertical\,Datum\,\,1988\,[NAVD88]).$


³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Groundwater Cleanup Levels. MTCA Method B cleanup level used when Method A cleanup level has not been established.


⁴ When benzene is present, the gasoline range cleanup level is 800 μg/L. When benzene is not present the gasoline range cleanup level is 1,000 μg/L.

 $^{^{5}}$ Natural background concentration for Puget Sound groundwater (Ecology 2021).


⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.



APPENDIX AField Program

APPENDIX A FIELD PROGRAM

Underground Utility Locate

Prior to drilling activities, an underground utility locate was conducted in the area of the proposed boring locations to identify any subsurface utilities and/or potential underground physical hazards. An underground utility check consisting of contacting a local utility alert service and a private utility locating service was also performed.

Soil Sampling

Subsurface conditions at the Site were evaluated by completing three direct-push (GEI-8 through GEI-10) and two hollow-stem auger (GEI-11 and GEI-12) soil borings using equipment owned and operated by Cascade Drilling of Woodinville, a Washington state-licensed drilling company. The borings extended to depths ranging from approximately 25 to 75 feet below the ground surface (bgs). A representative from our staff classified the soil encountered in each of the borings. Soil in the explorations was visually classified in general accordance with ASTM International (ASTM) D 2488-00. The boring logs are presented on Figures A-2 through A-6. The key for boring log symbols and terminology is presented on Figure A-1.

The sampling equipment was decontaminated before each sampling attempt with a Liqui-Nox® solution wash and a distilled water rinse. Soil samples were obtained for field screening and possible chemical analysis. Soil samples obtained during the exploration activities were collected from the sampler with a decontaminated stainless-steel knife or new nitrile gloves. A portion of each sample was placed in laboratory-prepared sample jars for possible chemical analysis. The remaining portion of each sample was used for field screening. Samples for volatile organic compound and/or gasoline-range petroleum hydrocarbon analysis were collected using Ecology's 5035A sampling methodology.

The soil samples were placed in a cooler with ice for transport to Fremont Analytical of Seattle, Washington. Standard chain-of-custody procedures were followed in transporting the soil samples to the laboratory.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: (1) visual examination; (2) sheen screening; and/or (3) or photoionization detector (PID). The results of headspace and sheen screening are included on the attached boring logs.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

- No Sheen (NS)
 No visible sheen on water surface.
- Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly.
 Natural organic matter in the soil may produce a slight sheen.
- Moderate Sheen (MS) Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on water surface.
- Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a PID is inserted in the bag and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in ppm (parts per million) and is calibrated to isobutylene. The PID is designed to quantify combustible gas and organic vapor concentrations up to 2,500 ppm. Field screening results are site-specific and vary with soil type, soil moisture content, temperature and type of contaminant.

Groundwater Monitoring

Depth to Groundwater

The depths to the groundwater table relative to ground surface were measured using an electric water level indicator (e-tape) and based on observations from soil samples in borings that were not sampled for groundwater. The e-tape was decontaminated with a Liqui-Nox® solution wash and a distilled water rinse prior to use at each location.

Groundwater Sampling

Groundwater samples were obtained using a bladder pump and new dedicated plastic tubing. The water samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to Fremont Analytical. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were followed in transporting the water samples to the testing laboratory.

Investigative Waste Disposal

Drill cuttings and decontamination/purge water generated during drilling activities were temporarily stored on Site in labeled 35- and/or 55-gallon drums pending off-site disposal to a permitted facility.

SOIL CLASSIFICATION CHART

	AAJOR DIVIS	IONE	SYM	BOLS	TYPICAL		
	MAJUR DIVIS	IUNS	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	HIGHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

	2.4-inch I.D. split barrel / Dames & Moore (D&M)
\boxtimes	Standard Penetration Test (SPT)
	Shelby tube

Piston
Direct-Push

Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL				
GRAPH	LETTER	DESCRIPTIONS				
	AC	Asphalt Concrete				
	cc	Cement Concrete				
13	CR	Crushed Rock/ Quarry Spalls				
7 71 71 71 71 71 71 71 71 71 71 71 71 71	SOD	Sod/Forest Duff				
	TS	Topsoil				

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact

Contact between geologic units

Contact between soil of the same geologic unit

Laboratory / Field Tests

%F Percent fines %G Percent gravel AL Atterberg limits CA Chemical analysis

CP Laboratory compaction test

CS Consolidation test
DD Dry density
DS Direct shear
HA Hydrometer analysis
MC Moisture content

MD Moisture content and dry density

Mohs Mohs hardness scale OC Organic content

PM Permeability or hydraulic conductivity

PI Plasticity index
PL Point lead test
PP Pocket penetrometer
SA Sieve analysis
TX Triaxial compression

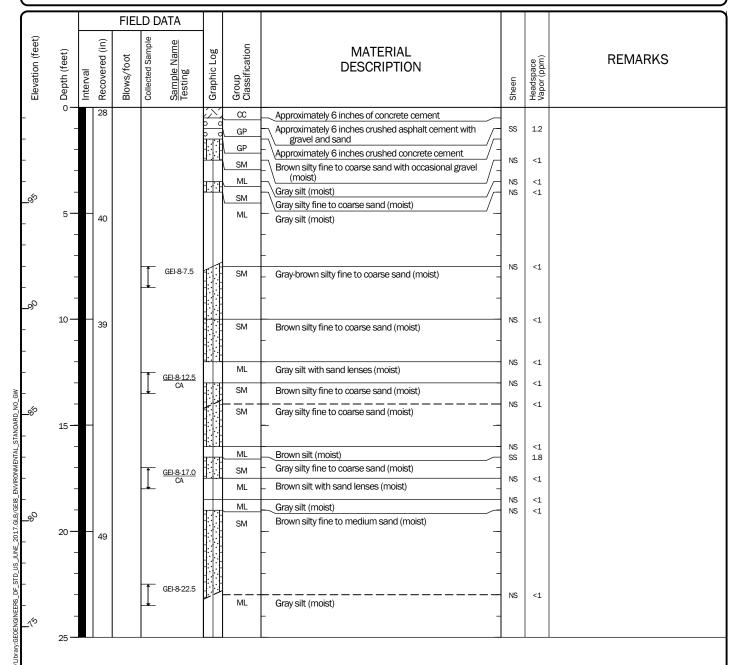
TX Triaxial compression UC Unconfined compression

UU Unconsolidated undrained triaxial compression

VS Vane shear

Sheen Classification

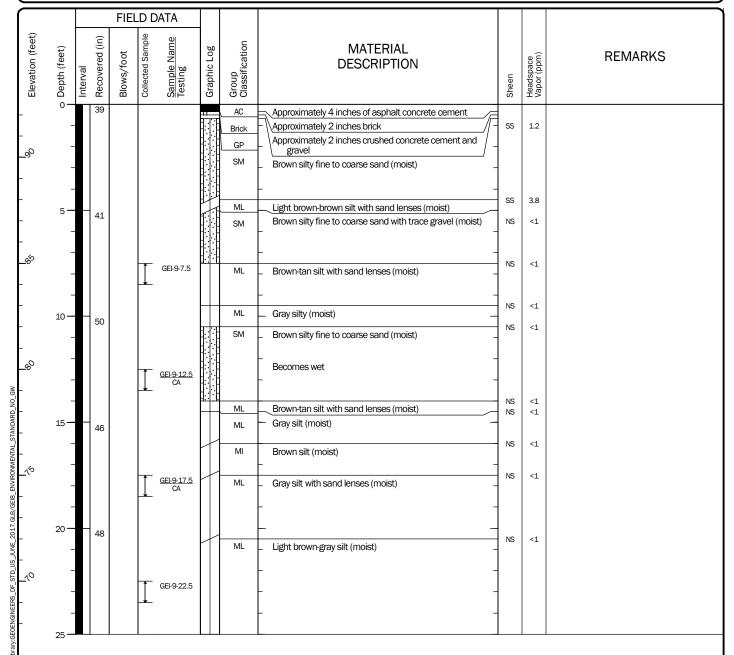
NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen


NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

Figure A-1

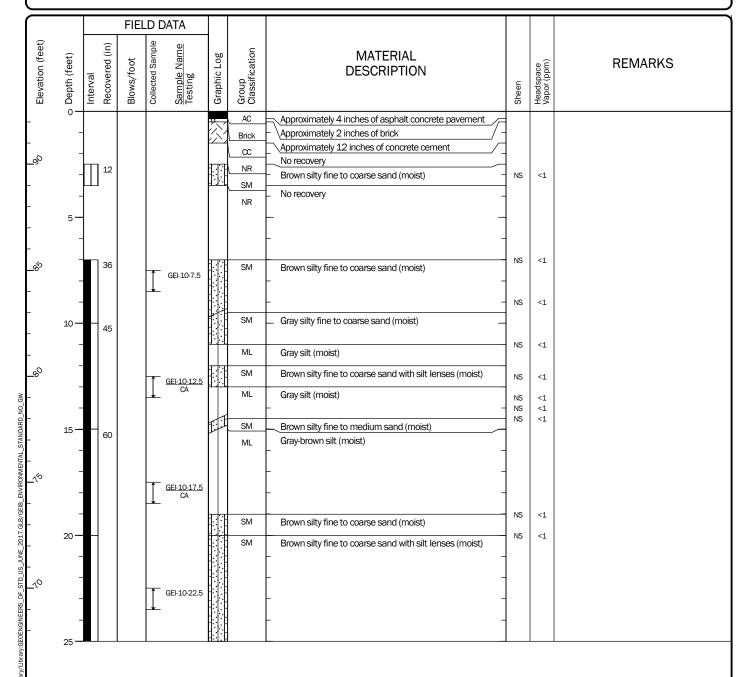
Start Drilled 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push	
Surface Elevation (ft) Vertical Datum				Hammer Data		Pneumatic	Drilling Equipment	Track-mounted probe	
Latitude Longitude				System Datum		Decimal Degrees WGS84	Groundwater not observed at time of exploration		
Notes:									


Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Boring GEI-8

Project: 701 South Jackson Street
Project Location: Seattle, Washington
Project Number: 24504-001-01

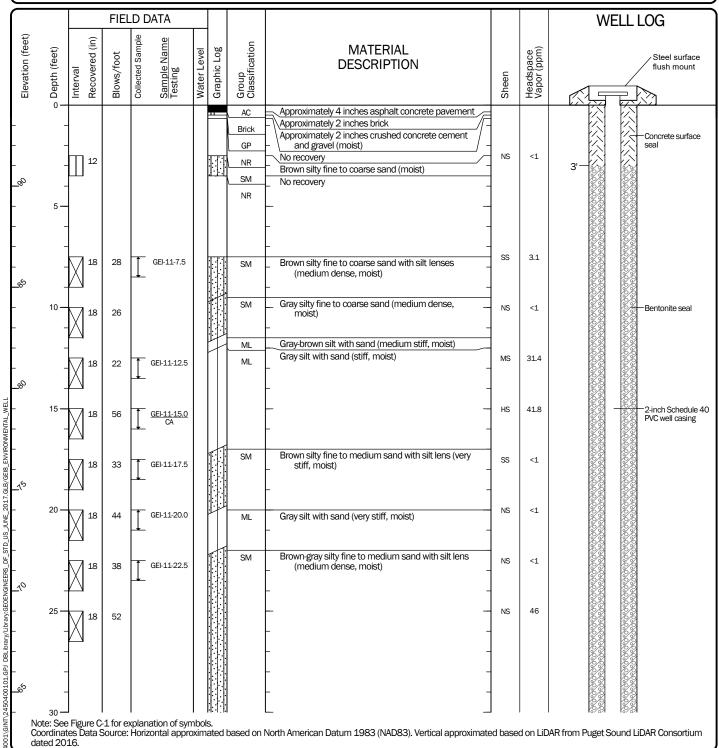
Drilled	<u>Start</u> 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
	Surface Elevation (ft) 92.5 Vertical Datum NAVD88				Hammer Data Pneumatic		Drilling Equipment	Track-mounted probe	
	Latitude Longitude		47.598778 -122.322714		System Datum	Decimal Degrees WGS84 Groundwater not observed at time		er not observed at time of exploration	
Notes:									


Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

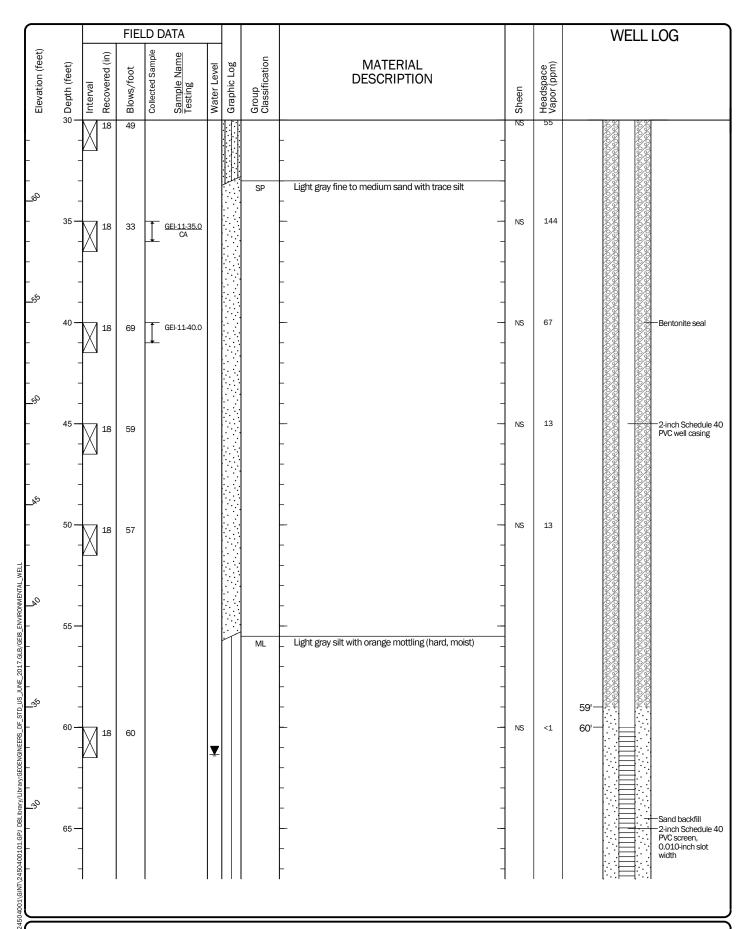
Log of Boring GEI-9

Project: 701 South Jackson Street
Project Location: Seattle, Washington
Project Number: 24504-001-01

Drilled	<u>Start</u> 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
	face Elevation (ft) 92.5 tical Datum NAVD88			Hammer Data	er Pneumatic			Track-mounted probe	
Latitude Longitud	Latitude 47.598907 Longitude -122.323848			System Datum		Decimal Degrees WGS84	r not observed at time of exploration		
Notes: Boring cleared from the ground surface to approximately 7 feet below ground surface (bgs) using an air knife.									


Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Boring GEI-10

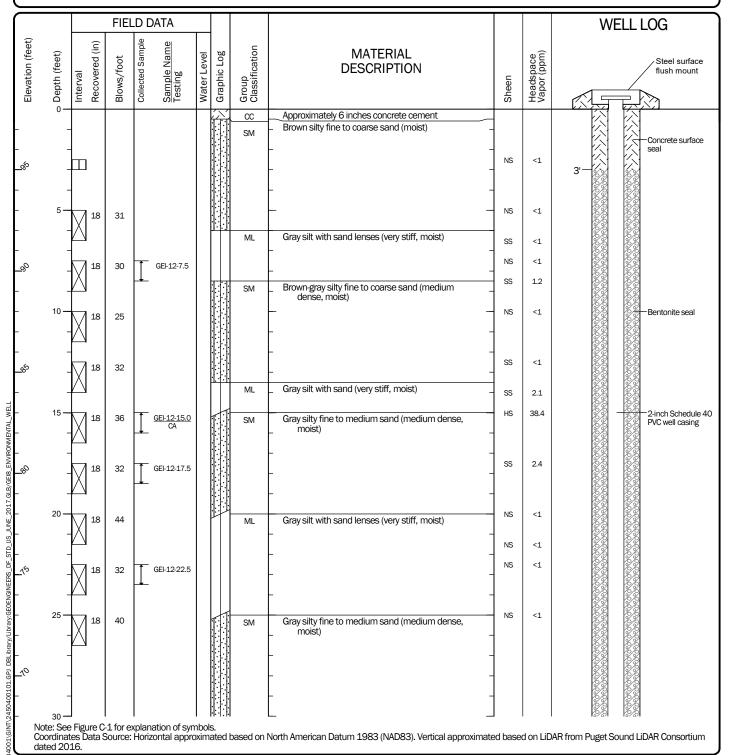

Project: 701 South Jackson Street
Project Location: Seattle, Washington
Project Number: 24504-001-01

Start Drilled 4/5/2022	<u>End</u> 4/5/2022	Total Depth (ft)	71.5	Logged By Checked By	NRS RST	Driller Cascade Drilling	gLP	Drilling Method Hollow-ste	m Auger
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment	Tru	ck-mounted drill rig	DOE Well I.D.: A 2-in well was	BNC 885 s installed on 4/5/2022 to	a depth of 70 ft.
Surface Elevation (ft) Vertical Datum		94 NVD88		Top of Casing Elevation (ft)			Groundwater		
Latitude Longitude				Horizontal Decimal Degrees		<u>Date Measured</u> 4/5/2022	<u>Water (ft)</u> 61.34	Elevation (ft) 32.66	
Notes: Boring c	Datum NAVD88 Elevation (ft) 47.598851 Horizontal Decimal Degrees		ir knife.						

Log of Boring with Monitoring Well GEI-11

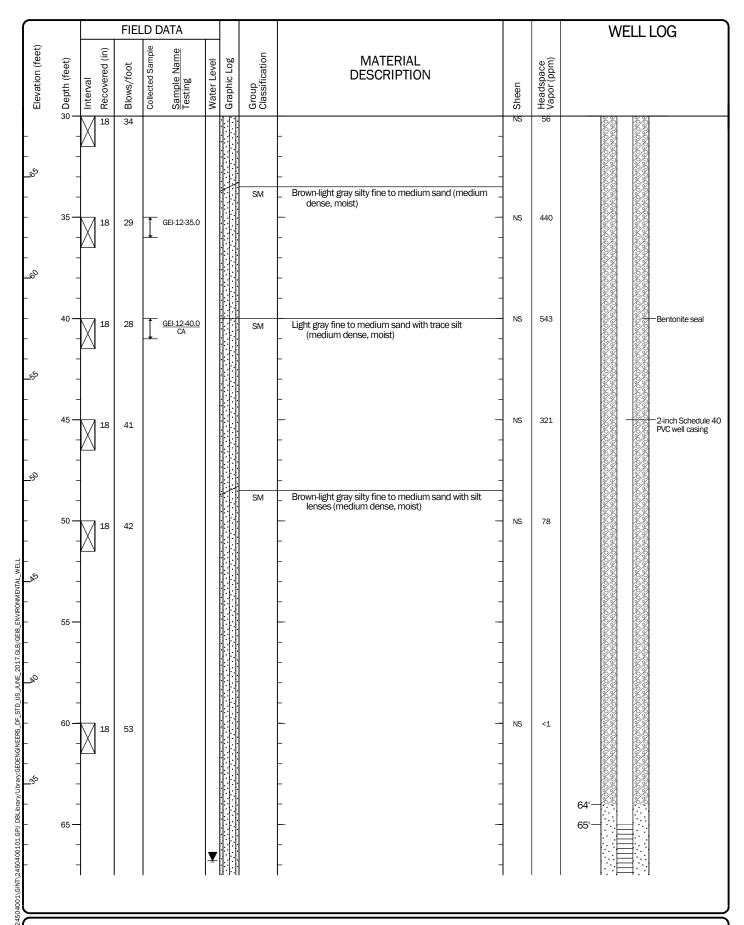
Log of Boring with Monitoring Well GEI-11 (continued)

Project: 701 South Jackson Street Project Location: Seattle, Washington

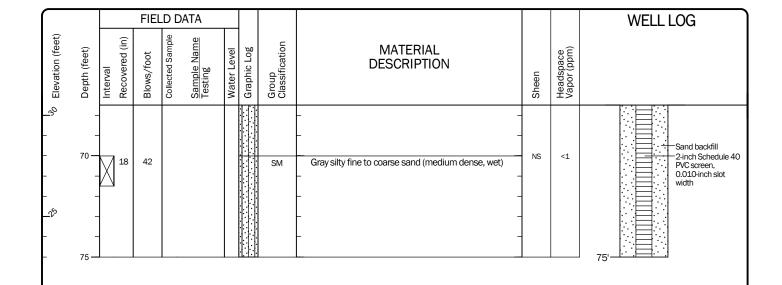

Project Number: 24504-001-01

ſ				FIEL	_D D/	ATA							WELL LOG
	Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	
-	-Ųs	70 —	18	61						- - - -	- NS	<1	70'

Log of Boring with Monitoring Well GEI-11 (continued)



Start Drilled 4/6/2022		Total Depth (ft)	75	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Hollow-stem	n Auger				
Hammer Data	Autohamr 140 (lbs) / 30 (Drilling Equipment	Tru	ck-mounted drill rig	DOE Well I.D.: BNC 886 A 2-in well was installed on 4/6/2022 to a depth of 75 ft.						
Surface Elevation (ft) Vertical Datum	90 NAV	8 D88		Top of Casing Elevation (ft)			Groundwater	Depth to					
Latitude Longitude	47.59 -122.3			Horizontal Datum	[Decimal Degrees WGS84	<u>Date Measured</u> 4/6/2022	<u>Water (ft)</u> 66.78	Elevation (ft) 31.22				
Notes: Boring o	leared from the g	ground surfac	ce to app	roximately 4 feet be	elow groun	d surface (bgs) using hand tools.							


Log of Boring with Monitoring Well GEI-12

Log of Boring with Monitoring Well GEI-12 (continued)

Log of Boring with Monitoring Well GEI-12 (continued)

APPENDIX B Chemical Analytical Program

APPENDIX B CHEMICAL ANALYTICAL PROGRAM

Analytical Methods

Chain-of-custody procedures were followed during the transport of the field samples to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical method reference and laboratory quality control (QC) records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Data quality exceptions documented by the accredited laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Analytical Data Review Summary

Laboratory surrogate recovery limits, matrix spikes, batch QC precision and/or assurance were within control limits based on our review of the laboratory data package. Therefore, in our opinion the data presented in this report are of acceptable quality for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: 701 South Jackson

Work Order Number: 2204073

April 13, 2022

Attention Robert Trahan:

Fremont Analytical, Inc. received 19 sample(s) on 4/5/2022 for the analyses presented in the following report.

Gasoline by NWTPH-Gx
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)
Sample Moisture (Percent Moisture)
Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/13/2022

CLIENT: GeoEngineers Work Order Sample Summary

Project: 701 South Jackson

Work Order: 2204073

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2204073-001	GEI-8-7.5	04/04/2022 10:45 AM	04/05/2022 2:59 PM
2204073-002	GEI-8-12.5	04/04/2022 10:55 AM	04/05/2022 2:59 PM
2204073-003	GEI-8-17.0	04/04/2022 11:05 AM	04/05/2022 2:59 PM
2204073-004	GEI-8-22.5	04/04/2022 11:15 AM	04/05/2022 2:59 PM
2204073-005	GEI-9-7.5	04/04/2022 9:40 AM	04/05/2022 2:59 PM
2204073-006	GEI-9-12.5	04/04/2022 10:05 AM	04/05/2022 2:59 PM
2204073-007	GEI-9-17.5	04/04/2022 10:15 AM	04/05/2022 2:59 PM
2204073-008	GEI-9-22.5	04/04/2022 10:20 AM	04/05/2022 2:59 PM
2204073-009	GEI-10-7.5	04/04/2022 1:35 PM	04/05/2022 2:59 PM
2204073-010	GEI-10-12.5	04/04/2022 1:45 PM	04/05/2022 2:59 PM
2204073-011	GEI-10-17.5	04/04/2022 1:55 PM	04/05/2022 2:59 PM
2204073-012	GEI-10-22.5	04/04/2022 2:05 PM	04/05/2022 2:59 PM
2204073-013	GEI-11-2.5	04/05/2022 9:00 AM	04/05/2022 2:59 PM
2204073-014	GEI-11-12.5	04/05/2022 9:15 AM	04/05/2022 2:59 PM
2204073-015	GEI-11-15.0	04/05/2022 9:20 AM	04/05/2022 2:59 PM
2204073-016	GEI-11-17.5	04/05/2022 9:25 AM	04/05/2022 2:59 PM
2204073-017	GEI-11-22.5	04/05/2022 9:35 AM	04/05/2022 2:59 PM
2204073-018	GEI-11-35.0	04/05/2022 9:50 AM	04/05/2022 2:59 PM
2204073-019	GEI-11-40.0	04/05/2022 10:05 AM	04/05/2022 2:59 PM

Case Narrative

WO#: **2204073**Date: **4/13/2022**

CLIENT: GeoEngineers

Project: 701 South Jackson

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2204073**

Date Reported: 4/13/2022

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 10:55:00 AM

Project: 701 South Jackson

Lab ID: 2204073-002 **Matrix:** Soil

Client Sample ID: GEI-8-12.5

Analyses	Result	RL	Qual	Units	DF	F Date Analyzed	
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ı ID:	36062	Analyst: OK
Naphthalene	ND	22.1		μg/Kg-dry	1	4/13/	2022 4:23:53 AM
2-Methylnaphthalene	ND	22.1		μg/Kg-dry	1	4/13/	2022 4:23:53 AM
1-Methylnaphthalene	ND	22.1		μg/Kg-dry	1	4/13/	2022 4:23:53 AM
Surr: 2-Fluorobiphenyl	91.9	29.6 - 130		%Rec	1	4/13/	2022 4:23:53 AM
Surr: Terphenyl-d14 (surr)	111	38 - 145		%Rec	1	4/13/	2022 4:23:53 AM
Gasoline by NWTPH-Gx				Batch	ı ID:	36034	Analyst: TN
Gasoline	ND	9.14		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
Surr: Toluene-d8	101	65 - 135		%Rec	1	4/7/2	022 6:31:46 PM
Surr: 4-Bromofluorobenzene	100	65 - 135		%Rec	1	4/7/2	022 6:31:46 PM
Volatile Organic Compounds b	y EPA Method	<u> 8260D</u>		Batch	ı ID:	36034	Analyst: TN
Benzene	ND	0.0365		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
Toluene	ND	0.0548		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
Ethylbenzene	ND	0.0457		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
m,p-Xylene	ND	0.0914		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
o-Xylene	ND	0.0457		mg/Kg-dry	1	4/7/2	022 6:31:46 PM
Surr: Dibromofluoromethane	86.3	80 - 120		%Rec	1	4/7/2	022 6:31:46 PM
Surr: Toluene-d8	98.0	80 - 120		%Rec	1	4/7/2	022 6:31:46 PM
Surr: 1-Bromo-4-fluorobenzene	97.0	80 - 120		%Rec	1	4/7/2	022 6:31:46 PM
Sample Moisture (Percent Mois	sture)			Batch	ı ID:	R74648	Analyst: ALB
Percent Moisture	12.7	0.500		wt%	1	4/11/	2022 10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 11:05:00 AM

Project: 701 South Jackson

Lab ID: 2204073-003 **Matrix:** Soil

Client Sample ID: GEI-8-17.0

Analyses	Result	RL	Qual	Units	DF	Date A	nalyzed
Polyaromatic Hydrocarbons by EPA	Method	8270 (SIM)		Batch	ID:	36062 A	nalyst: OK
Naphthalene	ND	24.5		μg/Kg-dry	1	4/13/2022	4:51:51 AM
2-Methylnaphthalene	ND	24.5		μg/Kg-dry	1	4/13/2022	4:51:51 AM
1-Methylnaphthalene	ND	24.5		μg/Kg-dry	1	4/13/2022	4:51:51 AM
Surr: 2-Fluorobiphenyl	87.9	29.6 - 130		%Rec	1	4/13/2022	4:51:51 AM
Surr: Terphenyl-d14 (surr)	104	38 - 145		%Rec	1	4/13/2022	4:51:51 AM
Gasoline by NWTPH-Gx				Batch	ID:	36034 A	nalyst: TN
Gasoline	ND	5.74		mg/Kg-dry	1	4/7/2022	7:35:46 PM
Surr: Toluene-d8	102	65 - 135		%Rec	1	4/7/2022	7:35:46 PM
Surr: 4-Bromofluorobenzene	101	65 - 135		%Rec	1	4/7/2022	7:35:46 PM
Volatile Organic Compounds by EP	A Method	8260D		Batch	ID:	36034 A	nalyst: TN
Benzene	ND	0.0230		mg/Kg-dry	1	4/7/2022	7:35:46 PM
Toluene	ND	0.0345		mg/Kg-dry	1	4/7/2022	7:35:46 PM
Ethylbenzene	ND	0.0287		mg/Kg-dry	1	4/7/2022	7:35:46 PM
m,p-Xylene	ND	0.0574		mg/Kg-dry	1	4/7/2022	7:35:46 PM
o-Xylene	ND	0.0287		mg/Kg-dry	1	4/7/2022	7:35:46 PM
Surr: Dibromofluoromethane	93.7	80 - 120		%Rec	1	4/7/2022	7:35:46 PM
Surr: Toluene-d8	99.3	80 - 120		%Rec	1	4/7/2022	7:35:46 PM
Surr: 1-Bromo-4-fluorobenzene	97.5	80 - 120		%Rec	1	4/7/2022	7:35:46 PM
Sample Moisture (Percent Moisture)	1			Batch	ID:	R74648 A	nalyst: ALB
Percent Moisture	22.8	0.500		wt%	1	4/11/2022	10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 10:05:00 AM

Project: 701 South Jackson

Lab ID: 2204073-006 **Matrix:** Soil

Client Sample ID: GEI-9-12.5

Analyses	Result	RL	Qual	Units	DF	= Da	te Analyzed
Polyaromatic Hydrocarbons by EP	A Method	8270 (SIM)		Batch	ID:	36062	Analyst: OK
Naphthalene	ND	21.2		μg/Kg-dry	1	4/13	/2022 5:19:50 AM
2-Methylnaphthalene	ND	21.2		μg/Kg-dry	1	4/13	/2022 5:19:50 AM
1-Methylnaphthalene	ND	21.2		μg/Kg-dry	1	4/13	/2022 5:19:50 AM
Surr: 2-Fluorobiphenyl	85.7	29.6 - 130		%Rec	1	4/13	/2022 5:19:50 AM
Surr: Terphenyl-d14 (surr)	111	38 - 145		%Rec	1	4/13	/2022 5:19:50 AM
Gasoline by NWTPH-Gx				Batch	ID:	36034	Analyst: TN
Gasoline	ND	6.50		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
Surr: Toluene-d8	102	65 - 135		%Rec	1	4/7/2	2022 8:39:24 PM
Surr: 4-Bromofluorobenzene	101	65 - 135		%Rec	1	4/7/2	2022 8:39:24 PM
Volatile Organic Compounds by E	PA Method	8260D		Batch	ID:	36034	Analyst: TN
Benzene	ND	0.0260		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
Toluene	ND	0.0390		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
Ethylbenzene	ND	0.0325		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
m,p-Xylene	ND	0.0650		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
o-Xylene	ND	0.0325		mg/Kg-dry	1	4/7/2	2022 8:39:24 PM
Surr: Dibromofluoromethane	94.6	80 - 120		%Rec	1	4/7/2	2022 8:39:24 PM
Surr: Toluene-d8	99.4	80 - 120		%Rec	1	4/7/2	2022 8:39:24 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	80 - 120		%Rec	1	4/7/2	2022 8:39:24 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R74648	Analyst: ALB
Percent Moisture	21.4	0.500		wt%	1	4/11	/2022 10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 10:15:00 AM

Project: 701 South Jackson

Lab ID: 2204073-007 **Matrix:** Soil

Client Sample ID: GEI-9-17.5

Analyses	Result	RL	Qual	Units	DF	- Da	ate Analyzed
Polyaromatic Hydrocarbons by EP	A Method	8270 (SIM)		Batch	ı ID:	36062	Analyst: OK
Naphthalene	ND	24.8		μg/Kg-dry	1	4/13	/2022 5:47:53 AM
2-Methylnaphthalene	ND	24.8		μg/Kg-dry	1	4/13	/2022 5:47:53 AM
1-Methylnaphthalene	ND	24.8		μg/Kg-dry	1	4/13	/2022 5:47:53 AM
Surr: 2-Fluorobiphenyl	81.7	29.6 - 130		%Rec	1	4/13/2022 5:47:53 AM	
Surr: Terphenyl-d14 (surr)	109	38 - 145		%Rec	1	4/13	/2022 5:47:53 AM
Gasoline by NWTPH-Gx				Batch ID: 36034 Analyst: T		Analyst: TN	
Gasoline	ND	6.25		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
Surr: Toluene-d8	101	65 - 135		%Rec	0 0 ,		2022 9:11:16 PM
Surr: 4-Bromofluorobenzene	102	65 - 135		%Rec	1	4/7/2	2022 9:11:16 PM
Volatile Organic Compounds by E	PA Method	8260D		Batch	ı ID:	36034	Analyst: TN
Benzene	ND	0.0250		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
Toluene	ND	0.0375		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
Ethylbenzene	ND	0.0312		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
m,p-Xylene	ND	0.0625		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
o-Xylene	ND	0.0312		mg/Kg-dry	1	4/7/2	2022 9:11:16 PM
Surr: Dibromofluoromethane	96.0	80 - 120		%Rec	1	4/7/2	2022 9:11:16 PM
Surr: Toluene-d8	100	80 - 120		%Rec	1	4/7/2	2022 9:11:16 PM
Surr: 1-Bromo-4-fluorobenzene	98.2	80 - 120		%Rec	1	4/7/2	2022 9:11:16 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ı ID:	R74648	Analyst: ALB
Percent Moisture	21.7	0.500		wt% 1 4/11/2022 10:57:50 AM			

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 1:45:00 PM

Project: 701 South Jackson

Lab ID: 2204073-010 **Matrix:** Soil

Client Sample ID: GEI-10-12.5

Analyses	Result	RL	Qual	Units	DF	= Da	ate Analyzed
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ID:	36062	Analyst: OK
Naphthalene	ND	22.3		μg/Kg-dry	1	4/13	/2022 6:15:51 AM
2-Methylnaphthalene	ND	22.3		μg/Kg-dry	1	4/13	/2022 6:15:51 AM
1-Methylnaphthalene	ND	22.3		μg/Kg-dry	1	4/13	/2022 6:15:51 AM
Surr: 2-Fluorobiphenyl	94.6	29.6 - 130		%Rec	1	4/13	/2022 6:15:51 AM
Surr: Terphenyl-d14 (surr)	113	38 - 145		%Rec	1	4/13	/2022 6:15:51 AM
Gasoline by NWTPH-Gx				Batch	ID:	36034	Analyst: TN
Gasoline	ND	5.64		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
Surr: Toluene-d8	101	65 - 135		%Rec	1	4/7/2	2022 9:43:02 PM
Surr: 4-Bromofluorobenzene	99.7	65 - 135		%Rec	1	4/7/2	2022 9:43:02 PM
Volatile Organic Compounds by	y EPA Method	8260D		Batch	ID:	36034	Analyst: TN
Benzene	ND	0.0226		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
Toluene	ND	0.0338		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
Ethylbenzene	ND	0.0282		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
m,p-Xylene	ND	0.0564		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
o-Xylene	ND	0.0282		mg/Kg-dry	1	4/7/2	2022 9:43:02 PM
Surr: Dibromofluoromethane	92.6	80 - 120		%Rec	1	4/7/2	2022 9:43:02 PM
Surr: Toluene-d8	101	80 - 120		%Rec	1	4/7/2	2022 9:43:02 PM
Surr: 1-Bromo-4-fluorobenzene	96.5	80 - 120		%Rec	1	4/7/2	2022 9:43:02 PM
Sample Moisture (Percent Mois	ture)			Batch	ID:	R74648	Analyst: ALB
Percent Moisture	16.5	0.500		wt%	1	4/11	/2022 10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/4/2022 1:55:00 PM

Project: 701 South Jackson

Lab ID: 2204073-011 **Matrix:** Soil

Client Sample ID: GEI-10-17.5

Analyses	Result	RL	Qual	Units	DF	- Da	te Analyzed
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ID:	36062	Analyst: OK
Naphthalene	ND	24.1		μg/Kg-dry	1	4/13/	2022 6:43:50 AM
2-Methylnaphthalene	ND	24.1		μg/Kg-dry	1	4/13/	2022 6:43:50 AM
1-Methylnaphthalene	ND	24.1		μg/Kg-dry	1	4/13/	2022 6:43:50 AM
Surr: 2-Fluorobiphenyl	89.4	29.6 - 130		%Rec	1	4/13/	2022 6:43:50 AM
Surr: Terphenyl-d14 (surr)	108	38 - 145		%Rec	1	4/13/	2022 6:43:50 AM
Gasoline by NWTPH-Gx				Batch	ID:	36034	Analyst: TN
Gasoline	ND	5.76		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
Surr: Toluene-d8	101	65 - 135		%Rec	1	4/7/2	022 10:14:45 PM
Surr: 4-Bromofluorobenzene	101	65 - 135		%Rec	1	4/7/2	022 10:14:45 PM
Volatile Organic Compounds by	y EPA Method	I 8260D		Batch	ID:	36034	Analyst: TN
Benzene	ND	0.0230		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
Toluene	ND	0.0346		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
Ethylbenzene	ND	0.0288		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
m,p-Xylene	ND	0.0576		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
o-Xylene	ND	0.0288		mg/Kg-dry	1	4/7/2	022 10:14:45 PM
Surr: Dibromofluoromethane	95.8	80 - 120		%Rec	1	4/7/2	022 10:14:45 PM
Surr: Toluene-d8	100	80 - 120		%Rec	1	4/7/2	022 10:14:45 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	80 - 120		%Rec	1	4/7/2	022 10:14:45 PM
Sample Moisture (Percent Mois	ture)			Batch	ID:	R74648	Analyst: ALB
Percent Moisture	18.7	0.500		wt%	1	4/11/	2022 10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/5/2022 9:20:00 AM

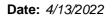
Project: 701 South Jackson

Lab ID: 2204073-015 **Matrix:** Soil

Client Sample ID: GEI-11-15.0

Analyses	Result	RL	Qual	Units	DF	- Da	nte Analyzed
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ID:	36062	Analyst: OK
Naphthalene	308	23.7		μg/Kg-dry	1	4/13	/2022 8:08:00 AM
2-Methylnaphthalene	184	23.7		μg/Kg-dry	1	4/13	/2022 8:08:00 AM
1-Methylnaphthalene	79.6	23.7		μg/Kg-dry	1	4/13	/2022 8:08:00 AM
Surr: 2-Fluorobiphenyl	90.0	29.6 - 130		%Rec	1	4/13	/2022 8:08:00 AM
Surr: Terphenyl-d14 (surr)	109	38 - 145		%Rec	1	4/13	/2022 8:08:00 AM
Gasoline by NWTPH-Gx				Batch	ID:	36034	Analyst: TN
Gasoline	41.4	4.70		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
Surr: Toluene-d8	101	65 - 135		%Rec	1	4/7/2	2022 11:18:14 PM
Surr: 4-Bromofluorobenzene	103	65 - 135		%Rec	1	4/7/2	2022 11:18:14 PM
Volatile Organic Compounds b	y EPA Method	8260D		Batch	ID:	36034	Analyst: TN
Benzene	1.42	0.0188		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
Toluene	0.418	0.0282		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
Ethylbenzene	1.03	0.0235		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
m,p-Xylene	2.99	0.0470		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
o-Xylene	0.492	0.0235		mg/Kg-dry	1	4/7/2	2022 11:18:14 PM
Surr: Dibromofluoromethane	94.5	80 - 120		%Rec	1	4/7/2	2022 11:18:14 PM
Surr: Toluene-d8	103	80 - 120		%Rec	1	4/7/2	2022 11:18:14 PM
Surr: 1-Bromo-4-fluorobenzene	99.3	80 - 120		%Rec	1	4/7/2	2022 11:18:14 PM
Sample Moisture (Percent Mois	ture)			Batch	ID:	R74648	Analyst: ALB
Percent Moisture	17.0	0.500		wt%	1	4/11	/2022 10:57:50 AM

Work Order: **2204073**Date Reported: **4/13/2022**


Client: GeoEngineers Collection Date: 4/5/2022 9:50:00 AM

Project: 701 South Jackson

Lab ID: 2204073-018 **Matrix:** Soil

Client Sample ID: GEI-11-35.0

Analyses	Result	RL	Qual	Units	Batch ID: 36062 (Kg-dry 1 4/13/ (Kg-dry 1 4/13/ (Kg-dry 1 4/13/ 6Rec 1 4/13/ 6Rec 1 4/13/ 6Rec 1 4/7/2 (Kg-dry 1 4/7/2 6Rec 1 4/7/2	e Analyzed		
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	ID:	36062	062 Analyst: OK	
Naphthalene	ND	20.1		μg/Kg-dry	1	4/13/2	2022 8:36:18 AM	M
2-Methylnaphthalene	ND	20.1		μg/Kg-dry	1	4/13/2	2022 8:36:18 AM	VI
1-Methylnaphthalene	ND	20.1		μg/Kg-dry	1	4/13/2	2022 8:36:18 AM	V
Surr: 2-Fluorobiphenyl	94.5	29.6 - 130		%Rec	1	4/13/2	2022 8:36:18 AM	VI
Surr: Terphenyl-d14 (surr)	118	38 - 145		%Rec	1	4/13/2	2022 8:36:18 AM	N
Gasoline by NWTPH-Gx				Batch	ID:	36034	Analyst: Th	٧
Gasoline	ND	5.88		mg/Kg-dry	1	4/7/20)22 10:46:31 PN	VI
Surr: Toluene-d8	102	65 - 135		%Rec	1	4/7/20)22 10:46:31 PM	VI
Surr: 4-Bromofluorobenzene	99.3	65 - 135		%Rec	1	4/7/20)22 10:46:31 PM	N
Volatile Organic Compounds b	y EPA Method	1 8260D		Batch	ID:	36034	Analyst: Ti	٧
Benzene	ND	0.0235		mg/Kg-dry	1	4/7/20)22 10:46:31 PN	M
Toluene	ND	0.0353		mg/Kg-dry	1	4/7/20)22 10:46:31 PM	VI
Ethylbenzene	ND	0.0294		mg/Kg-dry	1	4/7/20)22 10:46:31 PM	VI
m,p-Xylene	ND	0.0588		mg/Kg-dry	1	4/7/20)22 10:46:31 PM	VI
o-Xylene	ND	0.0294		mg/Kg-dry	1	4/7/20)22 10:46:31 PM	VI
Surr: Dibromofluoromethane	97.7	80 - 120		%Rec	1	4/7/20)22 10:46:31 PM	VI
Surr: Toluene-d8	101	80 - 120		%Rec	1	4/7/20)22 10:46:31 PM	VI
Surr: 1-Bromo-4-fluorobenzene	96.1	80 - 120		%Rec	1	4/7/20)22 10:46:31 PM	N
Sample Moisture (Percent Mois	<u>sture)</u>			Batch	ID:	R74648	Analyst: Al	_B
Percent Moisture	3.11	0.500		wt%	1	4/11/2	2022 10:57:50 <i>P</i>	λM

Work Order: 2204073

QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM

Project: 701 South	Jackson				Po	olyaromati	ic Hydrocarbons	by EPA Method 8270) (SIN
Sample ID: MB-36062	SampType: MBLK			Units: µg/Kg		Prep Date	e: 4/11/2022	RunNo: 74713	
Client ID: MBLKS	Batch ID: 36062					Analysis Date	e: 4/13/2022	SeqNo: 1533082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	20.0							
2-Methylnaphthalene	ND	20.0							
1-Methylnaphthalene	ND	20.0							
Surr: 2-Fluorobiphenyl	1,070		1,000		107	29.6	130		
Surr: Terphenyl-d14 (surr)	1,280		1,000		128	38	145		
Sample ID: LCS-36062	SampType: LCS			Units: µg/Kg		Prep Date	e: 4/11/2022	RunNo: 74713	
Client ID: LCSS	Batch ID: 36062					Analysis Date	e: 4/13/2022	SeqNo: 1533083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	2,060	20.0	2,000	0	103	60.2	119		
2-Methylnaphthalene	1,960	20.0	2,000	0	98.0	60.4	121		
1-Methylnaphthalene	1,930	20.0	2,000	0	96.3	62	119		
Surr: 2-Fluorobiphenyl	1,150		1,000		115	29.6	130		
Surr: Terphenyl-d14 (surr)	1,280		1,000		128	38	145		
Sample ID: 2204108-021AMS	SampType: MS			Units: µg/Kg-	dry	Prep Date	e: 4/11/2022	RunNo: 74713	
Client ID: BATCH	Batch ID: 36062					Analysis Date	e: 4/13/2022	SeqNo: 1533085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	1,690	22.4	2,241	0	75.5	30.2	123		
2-Methylnaphthalene	1,580	22.4	2,241	0	70.5	40.9	115		
1-Methylnaphthalene	1,550	22.4	2,241	0	69.3	35.6	121		
Surr: 2-Fluorobiphenyl	935		1,120		83.4	29.6	130		
Surr: Terphenyl-d14 (surr)	1,040		1,120		93.3	38	145		

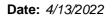
Original Page 13 of 24

Date: 4/13/2022

701 South Jackson

Work Order: 2204073

Project:


QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2204108-021AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 4/11/2 0)22	RunNo: 74 7	713	
Client ID: BATCH	Batch ID: 36062					Analysis Da	te: 4/13/20)22	SeqNo: 15 3	33086	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,450	22.1	2,206	0	65.8	30.2	123	1,692	15.3	30	
2-Methylnaphthalene	1,340	22.1	2,206	0	60.9	40.9	115	1,581	16.2	30	
1-Methylnaphthalene	1,320	22.1	2,206	0	59.9	35.6	121	1,553	16.1	30	
Surr: 2-Fluorobiphenyl	754		1,103		68.3	29.6	130		0		
Surr: Terphenyl-d14 (surr)	856		1,103		77.6	38	145		0		

Original Page 14 of 24

Work Order: 2204073

QC SUMMARY REPORT

CLIENT: GeoEngineers

Gasoline by NWTPH-Gx

Project: 701 South S	Jackson								Gasoline	B DY INVVI	Рп-С
Sample ID: LCS-36034	SampType: LCS			Units: mg/Kg		Prep Date	e: 4/7/202	2	RunNo: 740	627	
Client ID: LCSS	Batch ID: 36034					Analysis Date	: 4/7/202	2	SeqNo: 15	31060	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	23.0	5.00	25.00	0	92.2	65	135				
Surr: Toluene-d8	1.25		1.250		100	65	135				
Surr: 4-Bromofluorobenzene	1.29		1.250		103	65	135				
Sample ID: MB-36034	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/7/202	2	RunNo: 74 6	627	
Client ID: MBLKS	Batch ID: 36034					Analysis Date	: 4/7/202	2	SeqNo: 15	31061	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.26		1.250		101	65	135				
Surr: 4-Bromofluorobenzene	1.26		1.250		101	65	135				
Sample ID: 2204073-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 4/7/202	2	RunNo: 74 6	627	
Client ID: GEI-8-12.5	Batch ID: 36034					Analysis Date	: 4/7/202	2	SeqNo: 15	31064	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	9.14						0		30	
Surr: Toluene-d8	2.32		2.284		102	65	135		0		
Surr: 4-Bromofluorobenzene	2.29		2.284		100	65	135		0		
Sample ID: 2204073-003BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 4/7/202	2	RunNo: 74 6	627	
Client ID: GEI-8-17.0	Batch ID: 36034					Analysis Date	: 4/7/202	2	SeqNo: 15	31066	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.74						0		30	
Surr: Toluene-d8	4.45		1.435		101	65	135		0		
Suit. Toluene-do	1.45		1.700		101	00	100		•		

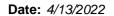
Original Page 15 of 24

Date: 4/13/2022

701 South Jackson

Work Order: 2204073

Project:


QC SUMMARY REPORT

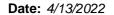
CLIENT: GeoEngineers

Gasoline by NWTPH-Gx

,											
Sample ID: 2204125-001BMS	SampType: MS			Units: mg/Kg	g-dry	Prep Da	te: 4/7/202	22	RunNo: 746	627	
Client ID: BATCH	Batch ID: 36034					Analysis Da	te: 4/8/202	22	SeqNo: 153	31073	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	31.2	5.65	28.23	0	110	65	135				
Surr: Toluene-d8	1.46		1.412		103	65	135				
Surr: 4-Bromofluorobenzene	1.47		1.412		104	65	135				

Original Page 16 of 24

Work Order: 2204073


QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-36034	SampType: LCS			Units: µg/L		Pren Dat	e: 4/7/202	2	RunNo: 746	326	
Client ID: LCSS	Batch ID: 36034			OTINO: µg/L		Analysis Dat			SeqNo: 153	-	
						•			·		_
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	1.04	0.0200	1.000	0	104	80	120				
Toluene	1.02	0.0300	1.000	0	102	80	120				
Ethylbenzene	1.16	0.0250	1.000	0	116	80	120				
m,p-Xylene	2.18	0.0500	2.000	0	109	80	120				
o-Xylene	1.02	0.0250	1.000	0	102	80	120				
Surr: Dibromofluoromethane	1.36		1.250		109	80	120				
Surr: Toluene-d8	1.23		1.250		98.6	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.27		1.250		102	80	120				
Sample ID: MB-36034	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 4/7/202	2	RunNo: 746	526	
Client ID: MBLKS	Batch ID: 36034					Analysis Dat	e: 4/7/202	2	SeqNo: 153	31036	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Toluene	ND	0.0300									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.23		1.250		98.1	80	120				
Surr: Toluene-d8	1.25		1.250		99.8	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.22		1.250		97.3	80	120				
Sample ID: 2204073-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 4/7/202	2	RunNo: 746	626	
Client ID: GEI-8-12.5	Batch ID: 36034					Analysis Dat	e: 4/7/202	2	SeqNo: 153	1039	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0365						0		30	
Toluene	ND	0.0548						0		30	
Ethylbenzene	ND	0.0457						0		30	

Page 17 of 24 Original

Work Order: 2204073

Surr: Dibromofluoromethane

1.67

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Project: 701 South Ja	ackson					voiatile	Organic	Compoun	as by EPA	wietnod	8260
Sample ID: 2204073-002BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	te: 4/7/202	2	RunNo: 746	526	
Client ID: GEI-8-12.5	Batch ID: 36034					Analysis Dat	te: 4/7/202	2	SeqNo: 153	31039	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0914						0		30	
o-Xylene	ND	0.0457						0		30	
Surr: Dibromofluoromethane	2.18		2.284		95.4	80	120		0		
Surr: Toluene-d8	2.29		2.284		100	80	120		0		
Surr: 1-Bromo-4-fluorobenzene	2.21		2.284		96.9	80	120		0		
Sample ID: 2204073-003BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	te: 4/7/202	2	RunNo: 746	626	
Client ID: GEI-8-17.0	Batch ID: 36034					Analysis Dat	te: 4/7/202	2	SeqNo: 153	31041	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0230						0		30	
Toluene	ND	0.0345						0		30	
Ethylbenzene	ND	0.0287						0		30	
m,p-Xylene	ND	0.0574						0		30	
o-Xylene	ND	0.0287						0		30	
Surr: Dibromofluoromethane	1.27		1.435		88.7	80	120		0		
Surr: Toluene-d8	1.42		1.435		99.0	80	120		0		
Surr: 1-Bromo-4-fluorobenzene	1.39		1.435		96.6	80	120		0		
Sample ID: 2204116-007BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Dat	te: 4/7/202	2	RunNo: 746	626	
Client ID: BATCH	Batch ID: 36034			_		Analysis Dat	te: 4/8/202	2	SeqNo: 153	31051	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.40	0.0246	1.230	0	113	76.9	128				
Toluene	1.35	0.0369	1.230	0	110	79.5	127				
Ethylbenzene	1.48	0.0307	1.230	0	121	81.6	130				
m,p-Xylene	2.76	0.0615	2.460	0	112	80.6	128				
o-Xylene	1.32	0.0307	1.230	0	107	80.1	126				

Original Page 18 of 24

109

80

120

1.537

Date: 4/13/2022

701 South Jackson

Work Order: 2204073

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2204116-007BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 4/7/202	2	RunNo: 746	526	
Client ID: BATCH	Batch ID: 36034					Analysis Da	te: 4/8/202	2	SeqNo: 15 3	31051	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Toluene-d8	1.56		1.537		102	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.58		1.537		103	80	120				

Original Page 19 of 24

Sample Log-In Check List

CI	lient Name:	GEI		V	ork Ord	der Numbe	r: 22040	073	-
Lo	ogged by:	Brianna B	arnes	D	ate Red	eived:	4/5/20	022 2:59:00 PM	
Cha	in of Custo	ody							
	Is Chain of C	-	plete?		Yes	✓	No 🗌	Not Present	
	How was the				Client				
	. In								
<u>Log</u>					.,		\Box	··· □	
3.	Coolers are p	oresent?			Yes	V	No 🗀	NA 🗌	
4.	Shipping con	tainer/cooler	in good condition?		Yes	✓	No 🗆		
5.			n shipping container/cooler? ustody Seals not intact)		Yes	✓	No 🗌	Not Present □	
6.	Was an atten	npt made to	cool the samples?		Yes	✓	No 🗌	NA □	
7.	Were all item	is received a	t a temperature of >2°C to 6°C	*	Yes	✓	No 🗌	NA □	
8.	Sample(s) in	proper conta	ainer(s)?		Yes	✓	No \square		
9.	Sufficient san	mple volume	for indicated test(s)?		Yes	✓	No \square		
10.	Are samples	properly pre	served?		Yes	✓	No \square		
11.	Was preserva	ative added	to bottles?		Yes		No 🗸	NA 🗆	
12.	Is there head	Ispace in the	VOA vials?		Yes		No 🗌	NA 🗹	
			s arrive in good condition(unbroker	n)?	Yes	✓	No \square		
14.	Does paperw	ork match b	ottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly ide	entified on Chain of Custody?		Yes	✓	No 🗆		
16.	Is it clear wha	at analyses v	vere requested?		Yes	✓	No 🗌		
17.	Were all hold	ling times ab	le to be met?		Yes	✓	No 🗌		
Spe	cial Handl	ing (if app	olicable)						
_			liscrepancies with this order?		Yes		No \square	NA ✓	
	Person	Notified:		Date:					
	By Who	om:		Via:	eMail	Phor	ne 🗌 Fa	ax In Person	
	Regardi	ing:							
	Client In	nstructions:							
19.	Additional rer	marks:							
Item	<u>Information</u>								
		Item #	Temp °C						

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 21 of 24

www.fremontanalytical.com

Received (Signature)

Print Name

Date/Time

14:50

Turn-around Time:

☐ Same Day

(specify)

COC 1.3 - 11.06.20

CANTEROS Amaly Analy Analy 22.5	See 1 Fr	Date: L Project h Pr	ain of Custody Record & 2022 Page 2 of 701 SOUTH DACKSON 24504 - 001-01 NATHAM SOLOMON SEATH SACKSON SEATH SOLOMON SOLOMON SEATH SOLOMON SEATH S	Record & Laboratory Services Laboratory Services Laboratory Project No (Internal): Special Remarks: HOLD SAMPLES RECOVEST A-IMAL Sample Disposal: Return to client A A A A A A A A A A A A A A A A A A A	Chain of Custody Record & Laboratory Services Agreement 15.2022 15.2022 15.2022 15.2022 15.2034 16.2034
26年1-10-22.5	1405	+			
4 0日:11- 12S	45.22 0900	W W		* *	
	0920	3		У	
	OPS	3		×	
7 GE1-11- 22.5	28.20	3		*	
8 (SE)-11- 35.0	0950	cn cn		У.	
1	1005	w		*	
*Matrix: A = Air, AQ = Aqueous, B = Bulk, (**Metals (Circle): MTCA-5 RCRA-8	O = Other, P = Product, S = Soil, SI Priority Pollutants TAL Indi	, SD = Sediment, SL = Solid, W = Water, Individual: Ap Al As B Ba Be Ca Cd	er, DW=Drinking Water, GW=Ground Water,	Water, SW = Storm Water,	WW = Waste Water ☐ I urn-ground Time:
***Anions (Circle): Nitrate Nitrite	Chloride Sulfate Bro	Bromide O-Phosphate Flu	Nitrite		3 Day Came Day
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	o enter into this Agreement w nd backside of this Agreemen	vith Fremont Analytical on l nt.	behalf of the Client named abo	we, that I have verified Client's	2 Day
Relinquished (Signature)	Print Name	Date/Time	Received (Signature)	Print Name	Date/Time
>				_	112/100

Page 22 of 24

www.fremontanalytical.com

COC 1.3 - 11.06.20

(XIVA)	360	0 Fremont	Ave N.		Ch	air	10	f Cus	tod	ly F	Rec	orc	1 &	Lal	oor	ator	y Ser	vice	s Ag	gree	mei	nt
Fremo	T s	eattle, WA Tel: 206-35		Date:	45						: \		of:				ry Project No					
Analyt	TOTAL F	ax: 206-35	2-7178					500	TH			21			!	pecial R		200	D	. 14.		
Continue to the	A.																DEST				-	
Client: GEOENGINEERS I	NC.							4-00			,						per R.T.					
Address:								3 has			1						PO1 14111	170720				
City, State, Zip: SFATTLE WA				Locatio	on: S	SE	7	THE	XV	4.									- 0			20.1-3
Telephone:				Report	t To (PM): T	200	EQI-	TRA	AHA	M					Sample D	isposal: 🔲	Return to cli	ant 📋	Disposal by	/ lab (afte	r 30 days)
Fax:				PM Em	nail:							,	, ,		_	, ,	,,	, ,				
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	187	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100								1		doc	//		Comment	ts	
1 GE1-8-7.5	44.22	1045	Soil	3			1		1				-	-		-						
2 CIE1-8-125		1055		3	>	_	X								X							
3 GEI -8 - 17.0		1105		3	X		\								X							
4 GEI-8 - 22.5		1115		3										-		_						
5 GE1-9- 75		0940		3												1						
6 GE1-9- 12.5		1005		3	>	_	X								X							
7 GE1-9-17.5		1015		3	X		X								X							
8 GEI-9- 22.5		1020		3																		
9 GEI-10- 7.5		1335		3																		
10 GEI-10- 12.5	*	1345	×	3		X	X								X							
*Matrix: A = Air, AQ = Aqueous, B = Bulk,																					-around	Next Day
**Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	nts TAL	Individ	ual: Ag								ig Mn	Mo I	Na Ni	Pb Sb	Se Sr S	n Ti Tl V	Zn	-//	•	a U	Next Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Brom		O-Phos			Fluoride		ate+Ni				that I	haven	orified	Cliant's a	graaman		3 Day		Same Day
I represent that I am authorized to each of the terms on the front a	to enter into t and backside	his Agree of this Ag	ment wit reement.	h Frem	iont A	naly	ical	on behalf	of the	Cher	nt nan	ned at	bove,	tnati	nave v	ermeu	Chent's a		10	2 Day		(specify)
Relinquished (Signature)	Print Name	Lond		Date/T	22 1	1	40	, ×	eceived	all	U	Sa	w	ey E	Print	betr	Sau	0,0	ate/Time	5/22	14:	59
Relinquished/Signature) x	Print Name			Date/T	ime				eceived	(Signa	icure)				rint	vanie		U	eret full			

GRADIN THE TOTAL OF THE TOTAL O	360	00 Fremont			Cha	in	of Cu	stod	y Re	cord	1 & L	ab	orat	ory Servic	es Agre	emer	it
Fremo	II s	Seattle, WA Tel: 206-35		Date:			22				of: 7			oratory Project No (inter			
Analyti		Fax: 206-35	2-7178	Projec	t Name:	70	1 5	HTCC	مل -	cks	od		11000	ial Remarks:			
Client: GEOFNGINEEOS	r							∞1-c					P	EQUEST A	ES PM	WILL	
	14							_						THE PA	JALYTICA	~	
Address:								Sole									
City, State, Zip: SEACLE	NA.			Locati	on: <	SEA	TILE	- WA	<u> </u>								
Telephone;				Repor	t To (PM):	R	DEED	TP TP	AHA	4			Samp	ple Disposal: Return to	client Dispos	al by lab (after	30 days)
Fax:				PM En	nail:												
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								and the least of t	Comm	ments	
GE1-10-17.5	4.4.22	1355	SOIL	3	X							X	X				
2 GE1-10-22.5	1	1405		3								X					
3 GEL:11- 7.5	45.22	0900		3								X					
4 GEI-11- 125		0915	1 1	3								χ					
5 GEI-11- 15.0		0920		3	X	X						X	X				
6 GEI-11- 17.5		0925		3								X					
GE1-11- 22.5		0935		3								X					
8 GE1-11- 35.0		0950		3	X	X		F 3				X	X				
9 GEI-11- 40.0	1	1005	*	3								X	1 0				
10	8																
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O	Other, P = P	roduct, S =	Soil, SD = S	Sedimen	t, SL = So	lid, W	= Water, D	W = Drinkin	g Water,	GW = Gro	ound Wate	r, SW	= Storm W	Vater, WW = Waste Wa	(e)	urn-around T	
**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutar	nts TAL	Individu	al: Ag	Al As B	Ba Be	Ca Cd Co	o Cr Cu F	e Hg K	Mg Mn	Mo Na I	Ni Pb	Sb Se S	r Sn Ti Tl V Zn	Stand	dard N	ext Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromio		O-Phosph	_	Fluoride	_	e+Nitrite						☐ 3 Day	y 🗆 Sa	ame Day
I represent that I am authorized to to each of the terms on the front an				Frem	ont Ana	lytical	on behal	f of the C	lient na	med ab	ove, that	I ha	ve verifi	ed Client's agreeme	ent 2 Day	y (s	pecify)
Relinquished (Signature) x	Print Name			Date/Ti	me			Received (S	ignature)	ulo	y FI	sal	rint Name	Sanova 4	Date/Time	4:59	
Relinquished (Signature) x	Print Name			Date/Ti	me			Received (S x	ignature)		1	F	rint Name	, , ,	Date/Time		

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: 701 South Jackson

Work Order Number: 2204105

April 13, 2022

Attention Robert Trahan:

Fremont Analytical, Inc. received 6 sample(s) on 4/6/2022 for the analyses presented in the following report.

Gasoline by NWTPH-Gx
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)
Sample Moisture (Percent Moisture)
Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/13/2022

CLIENT: GeoEngineers Work Order Sample Summary

Project: 701 South Jackson

Work Order: 2204105

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2204105-001	GEI-12-7.5	04/06/2022 9:15 AM	04/06/2022 1:04 PM
2204105-002	GEI-12-15.0	04/06/2022 9:20 AM	04/06/2022 1:04 PM
2204105-003	GEI-12-17.5	04/06/2022 9:30 AM	04/06/2022 1:04 PM
2204105-004	GEI-12-22.5	04/06/2022 9:40 AM	04/06/2022 1:04 PM
2204105-005	GEI-12-35.0	04/06/2022 9:55 AM	04/06/2022 1:04 PM
2204105-006	GEI-12-40.0	04/06/2022 10:00 AM	04/06/2022 1:04 PM

Case Narrative

WO#: **2204105**Date: **4/13/2022**

CLIENT: GeoEngineers
Project: 701 South Jackson

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2204105**

Date Reported: **4/13/2022**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2204105**Date Reported: **4/13/2022**

Client: GeoEngineers Collection Date: 4/6/2022 9:20:00 AM

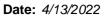
Project: 701 South Jackson

Lab ID: 2204105-002 **Matrix:** Soil

Client Sample ID: GEI-12-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	n ID: 360	062 Analyst: OK
Naphthalene	855	22.3		μg/Kg-dry	1	4/13/2022 9:04:25 AM
2-Methylnaphthalene	2,390	22.3		μg/Kg-dry	1	4/13/2022 9:04:25 AM
1-Methylnaphthalene	1,130	22.3		μg/Kg-dry	1	4/13/2022 9:04:25 AM
Surr: 2-Fluorobiphenyl	103	29.6 - 130		µg/кg-dry %Rec	1	4/13/2022 9:04:25 AM
Surr: Terphenyl-d14 (surr)	118	38 - 145		%Rec	1	4/13/2022 9:04:25 AM
Gasoline by NWTPH-Gx				Batch	n ID: 360	064 Analyst: MVB
Gasoline	3,220	672	D	mg/Kg-dry	100	4/12/2022 9:22:12 AM
Surr: Toluene-d8	103	65 - 135	D	%Rec	100	4/12/2022 9:22:12 AM
Surr: 4-Bromofluorobenzene	103	65 - 135	D	%Rec	100	4/12/2022 9:22:12 AM
Volatile Organic Compounds by	EPA Method	8260D		Batch	n ID: 360	064 Analyst: MVB
Benzene	0.739	0.269	D	mg/Kg-dry	10	4/11/2022 8:42:28 PM
Toluene	ND	0.403	D	mg/Kg-dry	10	4/11/2022 8:42:28 PM
Ethylbenzene	13.0	0.336	D	mg/Kg-dry	10	4/11/2022 8:42:28 PM
m,p-Xylene	2.39	0.672	D	mg/Kg-dry	10	4/11/2022 8:42:28 PM
o-Xylene	ND	0.336	D	mg/Kg-dry	10	4/11/2022 8:42:28 PM
Surr: Dibromofluoromethane	92.1	80 - 120	D	%Rec	10	4/11/2022 8:42:28 PM
Surr: Toluene-d8	104	80 - 120	D	%Rec	10	4/11/2022 8:42:28 PM
Surr: 1-Bromo-4-fluorobenzene	102	80 - 120	D	%Rec	10	4/11/2022 8:42:28 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID: R74	4648 Analyst: ALB
Percent Moisture	16.5	0.500		wt%	1	4/11/2022 10:57:50 AM

Work Order: **2204105**Date Reported: **4/13/2022**


Client: GeoEngineers Collection Date: 4/6/2022 10:00:00 AM

Project: 701 South Jackson

Lab ID: 2204105-006 **Matrix:** Soil

Client Sample ID: GEI-12-40.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by EPA	Method 8	3270 (SIM)		Batch	n ID:	36062 Analyst: OK
Naphthalene	ND	18.9		μg/Kg-dry	1	4/13/2022 9:32:34 AM
2-Methylnaphthalene	ND	18.9		μg/Kg-dry	1	4/13/2022 9:32:34 AM
1-Methylnaphthalene	ND	18.9		μg/Kg-dry	1	4/13/2022 9:32:34 AM
Surr: 2-Fluorobiphenyl	96.9	29.6 - 130		%Rec	1	4/13/2022 9:32:34 AM
Surr: Terphenyl-d14 (surr)	101	38 - 145		%Rec	1	4/13/2022 9:32:34 AM
Gasoline by NWTPH-Gx				Batch	n ID:	36064 Analyst: MVB
Gasoline	ND	6.05		mg/Kg-dry	1	4/11/2022 4:59:44 PM
Surr: Toluene-d8	102	65 - 135		%Rec	1	4/11/2022 4:59:44 PM
Surr: 4-Bromofluorobenzene	99.1	65 - 135		%Rec	1	4/11/2022 4:59:44 PM
Volatile Organic Compounds by EPA	Method	8260D		Batch	n ID:	36064 Analyst: MVB
Benzene	ND	0.0242		mg/Kg-dry	1	4/11/2022 4:59:44 PM
Toluene	ND	0.0363		mg/Kg-dry	1	4/11/2022 4:59:44 PM
Ethylbenzene	ND	0.0303		mg/Kg-dry	1	4/11/2022 4:59:44 PM
m,p-Xylene	ND	0.0605		mg/Kg-dry	1	4/11/2022 4:59:44 PM
o-Xylene	ND	0.0303		mg/Kg-dry	1	4/11/2022 4:59:44 PM
Surr: Dibromofluoromethane	75.8	80 - 120	S	%Rec	1	4/11/2022 4:59:44 PM
Surr: Toluene-d8	98.6	80 - 120		%Rec	1	4/11/2022 4:59:44 PM
Surr: 1-Bromo-4-fluorobenzene NOTES:	95.9	80 - 120		%Rec	1	4/11/2022 4:59:44 PM
S - Outlying surrogate recovery(ies) observed.						
Sample Moisture (Percent Moisture)				Batch	n ID:	R74648 Analyst: ALB
Percent Moisture	2.66	0.500		wt%	1	4/11/2022 10:57:50 AM

QC SUMMARY REPORT

CLIENT: GeoEngineers

Project: 701 South	Jackson				Po	lyaromat	ic Hydrocarbons	by EPA Method 8270	(SIN
Sample ID: MB-36062	SampType: MBLK			Units: µg/Kg		Prep Dat	e: 4/11/2022	RunNo: 74713	
Client ID: MBLKS	Batch ID: 36062					Analysis Dat	e: 4/13/2022	SeqNo: 1533082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	20.0							
2-Methylnaphthalene	ND	20.0							
1-Methylnaphthalene	ND	20.0							
Surr: 2-Fluorobiphenyl	1,070		1,000		107	29.6	130		
Surr: Terphenyl-d14 (surr)	1,280		1,000		128	38	145		
Sample ID: LCS-36062	SampType: LCS			Units: µg/Kg		Prep Dat	e: 4/11/2022	RunNo: 74713	
Client ID: LCSS	Batch ID: 36062					Analysis Dat	e: 4/13/2022	SeqNo: 1533083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	2,060	20.0	2,000	0	103	60.2	119		
2-Methylnaphthalene	1,960	20.0	2,000	0	98.0	60.4	121		
1-Methylnaphthalene	1,930	20.0	2,000	0	96.3	62	119		
Surr: 2-Fluorobiphenyl	1,150		1,000		115	29.6	130		
Surr: Terphenyl-d14 (surr)	1,280		1,000		128	38	145		
Sample ID: 2204108-021AMS	SampType: MS			Units: µg/Kg-	dry	Prep Dat	e: 4/11/2022	RunNo: 74713	
Client ID: BATCH	Batch ID: 36062					Analysis Dat	e: 4/13/2022	SeqNo: 1533085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	1,690	22.4	2,241	0	75.5	30.2	123		
2-Methylnaphthalene	1,580	22.4	2,241	0	70.5	40.9	115		
1-Methylnaphthalene	1,550	22.4	2,241	0	69.3	35.6	121		
Surr: 2-Fluorobiphenyl	935		1,120		83.4	29.6	130		
Surr: Terphenyl-d14 (surr)	1,040		1,120		93.3	38	145		

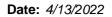
Page 7 of 14 Original

Date: 4/13/2022

701 South Jackson

Work Order: 2204105

Project:

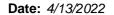

QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2204108-021AMSD	SampType: MSD	·		Units: µg/K	g-dry	Prep Da	te: 4/11/2 0)22	RunNo: 74 7	713	
Client ID: BATCH	Batch ID: 36062					Analysis Da	SeqNo: 1533086				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,450	22.1	2,206	0	65.8	30.2	123	1,692	15.3	30	
2-Methylnaphthalene	1,340	22.1	2,206	0	60.9	40.9	115	1,581	16.2	30	
1-Methylnaphthalene	1,320	22.1	2,206	0	59.9	35.6	121	1,553	16.1	30	
Surr: 2-Fluorobiphenyl	754		1,103		68.3	29.6	130		0		
Surr: Terphenyl-d14 (surr)	856		1,103		77.6	38	145		0		

Original Page 8 of 14


QC SUMMARY REPORT

CLIENT: GeoEngineers

Gasoline by NWTPH-Gx

Project: 701 South 3	Jackson								Gasoline	by NWT	PH-G
Sample ID: LCS-36064	SampType: LCS			Units: mg/Kg		Prep Date	: 4/11/20	22	RunNo: 746	687	
Client ID: LCSS	Batch ID: 36064					Analysis Date	: 4/11/20	22	SeqNo: 153	32471	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	25.7	5.00	25.00	0	103	65	135				
Surr: Toluene-d8	1.26		1.250		101	65	135				
Surr: 4-Bromofluorobenzene	1.27		1.250		101	65	135				
Sample ID: MB-36064	SampType: MBLK			Units: mg/Kg		Prep Date	: 4/11/20	22	RunNo: 746	687	
Client ID: MBLKS	Batch ID: 36064					Analysis Date	: 4/11/20	22	SeqNo: 153	32472	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.25		1.250		100	65	135				
Surr: 4-Bromofluorobenzene	1.24		1.250		99.4	65	135				
Sample ID: 2204105-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 4/11/20	22	RunNo: 746	687	
Client ID: GEI-12-15.0	Batch ID: 36064					Analysis Date	: 4/11/20	22	SeqNo: 153	32459	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	3,780	67.2						3,766	0.313	30	DE
Surr: Toluene-d8	17.3		16.80		103	65	135		0		D
Surr: 4-Bromofluorobenzene	18.0		16.80		107	65	135		0		D
Sample ID: 2204144-003BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 4/11/20	22	RunNo: 746	687	
Client ID: BATCH	Batch ID: 36064					Analysis Date	: 4/11/20	22	SeqNo: 153	32464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	31.5	6.59	32.95	0	95.5	65	135				
Surr: Toluene-d8	1.69		1.648		103	65	135				

Original Page 9 of 14

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Project: 701 South Ja	ackson					Volatile	Organic	Compoun	ds by EPA	Method	8260
Sample ID: LCS-36064	SampType: LCS			Units: µg/L		Prep Dat	te: 4/11/20	22	RunNo: 746	84	
Client ID: LCSS	Batch ID: 36064					Analysis Dat	te: 4/11/20	22	SeqNo: 153	2364	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.09	0.0200	1.000	0	109	80	120				
Toluene	1.07	0.0300	1.000	0	107	80	120				
Ethylbenzene	1.19	0.0250	1.000	0	119	80	120				
m,p-Xylene	2.24	0.0500	2.000	0	112	80	120				
o-Xylene	1.07	0.0250	1.000	0	107	80	120				
Surr: Dibromofluoromethane	1.36		1.250		109	80	120				
Surr: Toluene-d8	1.25		1.250		100	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.30		1.250		104	80	120				
Sample ID: MB-36064	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 4/11/20	22	RunNo: 746		
Client ID: MBLKS	Batch ID: 36064					Analysis Dat	te: 4/11/20	22	SeqNo: 153	2363	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0300									
Ethylbenzene	ND	0.0250									
n,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.10		1.250		88.1	80	120				
Surr: Toluene-d8	1.24		1.250		99.0	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.20		1.250		96.1	80	120				
Sample ID: 2204105-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	te: 4/11/20	22	RunNo: 746		
Client ID: GEI-12-15.0	Batch ID: 36064					Analysis Dat	te: 4/11/20	22	SeqNo: 153	2351	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.761	0.269						0.7393	2.94	30	D
Toluene	ND	0.403						0		30	D
Ethylbenzene	13.2	0.336						13.02	1.67	30	D

Page 10 of 14 Original

Date: 4/13/2022

701 South Jackson

Work Order: 2204105

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2204105-002BDUP	SampType: DUP			Units: mg/h	(g-dry	Prep Dat	te: 4/11/2 0)22	RunNo: 746	684	
Client ID: GEI-12-15.0	Batch ID: 36064					Analysis Dat	te: 4/11/20)22	SeqNo: 153	32351	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	2.45	0.672						2.393	2.21	30	D
o-Xylene	ND	0.336						0		30	D
Surr: Dibromofluoromethane	16.1		16.80		95.6	80	120		0		D
Surr: Toluene-d8	17.5		16.80		104	80	120		0		D
Surr: 1-Bromo-4-fluorobenzene	17.1		16.80		102	80	120		0		D

Sample ID: 2204144-003BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 4/11/20	22	RunNo: 746	684	
Client ID: BATCH	Batch ID: 36064					Analysis Da	te: 4/11/20	22	SeqNo: 153	32359	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.31	0.0264	1.318	0	99.3	76.9	128				
Toluene	1.29	0.0395	1.318	0	98.1	79.5	127				
Ethylbenzene	1.45	0.0330	1.318	0	110	81.6	130				
m,p-Xylene	2.70	0.0659	2.636	0	103	80.6	128				
o-Xylene	1.31	0.0330	1.318	0	99.2	80.1	126				
Surr: Dibromofluoromethane	1.75		1.648		106	80	120				
Surr: Toluene-d8	1.62		1.648		98.2	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.69		1.648		103	80	120				

Original Page 11 of 14

Sample Log-In Check List

С	lient Name:	GEI	Work Order Number	er: 2204105	
Lo	ogged by:	Brianna Barnes	Date Received:	4/6/2022 1	1:04:00 PM
Cha	nin of Custo	ody			
		ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
1.00	ı İn				
<u>Log</u>			Yes 🗸	No 🗆	na 🗆
3.	Coolers are p	nesent?	res 💌	NO L	NA L
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No 🗌	na 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌	
9.		nple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples	properly preserved?	Yes 🗹	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA \square
40	lo thoro bood	anaga in the VOA viole?	Voc.	No 🗆	NA 🗹
		space in the VOA vials?	Yes □ Yes ⊄	No □ No □	NA 💌
		es containers arrive in good condition(unbroken)? ork match bottle labels?	Yes 🗹	No \square	
14.	росэ рарсіw	on mater bottle labels:	103	140	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square	
17.	Were all hold	ing times able to be met?	Yes 🗸	No \square	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗸
	Person	Notified: Da	ate:		
	By Who	m: Vi	a: eMail Pho	ne 🗌 Fax [In Person
	Regardi	ng:			
	Client In	nstructions:			
19.	Additional rer	marks:			
Item	Information				
		Item # Temp °C			

4.2

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 13 of 14

COC 1.3 - 11.06.20

(AN AHO)	360	00 Fremont	Ave N.		Cl	nai	n	of C	us	tod	y F	Rec	orc	8	La	bor	at	ory	Se	rvio	ces	Agr	reer	nei	nt	
Fremo	T s	eattle, WA Tel: 206-35		Date:	-						Page		1	of:									04			
Analyti		Fax: 206-35							2									al Ren								
				Projec	t Nam)i S						M									Th	11		
Client: GEOENGINEERS IN	<u>k.</u>			Projec	t No:		24	50	4-	00	>1-	01					A	NA	LYT	KAL	- 70	2 B	S			
Address:				Collec	ted by	:	NA	THO	M	Sa	LON	101	1				E	dits	per	R.T	. 4/7	7/20	22 -E	BB		
City, State, Zip: SEATTLE W	+			Locati	ion:	<	SE	77	LE	, h	la.															
Telephone:				Repor	t To (P	M):	Ro	85	0	TR	AL	2					Samp	le Dis	osal:	Return	to client	Dis	posal by I	lab (afte	er 30 days)	
Fax:				PM Er	mail:																					
	Sample	Sample	Sample Type	# of	/			al all a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					100 de			4%	3	al a	nter	Ġ,	C	omments			
Sample Name	Date	Time	(Matrix)*		1	8	6	187	On	5/			7	7									minents			
1 GE1-12-7.5	4.6.22	0915	Soir	3				-	+	+			-	+	×			Χ								-
2 GE1-12-15.0		0920		3		X	X								λ			^								
3 GE1-12- 17.5		0930		3											X											
4 GEI-12- 22.5		0940		3					1					1	X											
5 GEI-12- 35.0		0955		3											X											
6 GEI-12-40.0		10:00		3		X	X								X			X								
7 GEI-12- ARC				3	UZ										7	Nas										
8																										
9																										
10																										
*Matrix: A = Air, AQ = Aqueous, B = Bulk,	O = Other, P = F	Product, S =	Soil, SD =	Sedime	nt, SL	= Solid	i, W	= Water	r, DW	= Drink	ing Wa	ter, G	W = Gro	ound V	Vater,	SW = St	orm V	Vater,	WW = V	Naste W	/ater		Turn-a	round	Time:	
**Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	ints TAL	Individe	ual: Ag	Al A	s B E	Ba Be	Ca C	d Co	Cr Cu	Fe Hg	KM	lg Mn	Mo I	Na Ni	Pb Sb	Se S	r Sn	Ti TI V	Zn		☐ St	tandard		Next Day	1
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromi			osphat		Fluor			ate+Nit	_										□ 3	Day	0	Same Da	y
I represent that I am authorized to to each of the terms on the front a	o enter into t nd backside	this Agreen	ment with reement.	h Fren	nont 2	Analy	vtica	on be	ehalf (of the	Clien	t nan	ed ab	ove,	that I	have v	verifi	ed C	ient's a	agreen	nent	□ 2	Day	-	(specify)	-
Relinquished (Signature)	Print Name			Date/1	Time	1			Re	ceived	(Signat	ture) 1			-	Print	Name		_			/Time		10	mil	
× MASI	NATHAN Print Name	Solom	0 il	Date/1	.12 Time	1	20	+	Re	11S eceived	(Signat	ture)	ill	le	1 +	Print	Name	M	Su	Laru	Date	/Time	11	12:	04	
Relinquished (Signature) x	rriit wante			Date/	c				×		,										,					

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers

Robert Trahan 2101 4th Ave, Suite 950 Seattle, WA 98121

RE: 701 South Jackson

Work Order Number: 2204167

April 18, 2022

Attention Robert Trahan:

Fremont Analytical, Inc. received 3 sample(s) on 4/11/2022 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Dissolved Mercury by EPA Method 245.1

Dissolved Metals by EPA Method 200.8

Gasoline by NWTPH-Gx

Mercury by EPA Method 245.1

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Total Metals by EPA Method 200.8

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Brianna Barnes Project Manager		

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/18/2022

CLIENT: GeoEngineers Work Order Sample Summary

Project: 701 South Jackson

Work Order: 2204167

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2204167-001
 GEI-11-W-041122
 04/11/2022 1:10 PM
 04/11/2022 4:21 PM

 2204167-002
 GEI-12-W-041122
 04/11/2022 12:00 PM
 04/11/2022 4:21 PM

 2204167-003
 Trip Blank
 04/11/2022 4:21 PM

Case Narrative

WO#: **2204167**Date: **4/18/2022**

CLIENT: GeoEngineers
Project: 701 South Jackson

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2204167**

Date Reported: **4/18/2022**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2204167**Date Reported: **4/18/2022**

Client: GeoEngineers Collection Date: 4/11/2022 1:10:00 PM

Project: 701 South Jackson

Lab ID: 2204167-001 **Matrix:** Water

Client Sample ID: GEI-11-W-041122

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	h ID:	36079 Analyst: MM
Diesel (Fuel Oil)	ND	117		μg/L	1	4/13/2022 4:04:37 PM
Heavy Oil	ND	117		μg/L	1	4/13/2022 4:04:37 PM
Total Petroleum Hydrocarbons	ND	233		μg/L	1	4/13/2022 4:04:37 PM
Surr: 2-Fluorobiphenyl	80.9	50 - 150		%Rec	1	4/13/2022 4:04:37 PM
Surr: o-Terphenyl	79.8	50 - 150		%Rec	1	4/13/2022 4:04:37 PM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID:	36096 Analyst: OK
Naphthalene	0.759	0.0990		μg/L	1	4/14/2022 12:53:30 PM
2-Methylnaphthalene	0.259	0.0990		μg/L	1	4/14/2022 12:53:30 PM
1-Methylnaphthalene	0.156	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Acenaphthylene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Acenaphthene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Fluorene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Phenanthrene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Anthracene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Fluoranthene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Pyrene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Benz(a)anthracene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Chrysene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Benzo(b)fluoranthene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Benzo(k)fluoranthene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Benzo(a)pyrene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Indeno(1,2,3-cd)pyrene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Dibenz(a,h)anthracene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Benzo(g,h,i)perylene	ND	0.0990		μg/L	1	4/14/2022 12:53:30 PM
Surr: 2-Fluorobiphenyl	68.9	38.8 - 131		%Rec	1	4/14/2022 12:53:30 PM
Surr: Terphenyl-d14	69.7	46 - 144		%Rec	1	4/14/2022 12:53:30 PM
Gasoline by NWTPH-Gx				Batc	h ID:	36063 Analyst: MVB
Gasoline	694	50.0		μg/L	1	4/13/2022 12:33:40 AM
Surr: Toluene-d8	104	65 - 135		%Rec	1	4/13/2022 12:33:40 AM
Surr: 4-Bromofluorobenzene	102	65 - 135		%Rec	1	4/13/2022 12:33:40 AM
Volatile Organic Compounds by	/ EPA Method	8260D		Batc	h ID:	36063 Analyst: MVB
Benzene	2.06	0.440		μg/L	1	4/13/2022 12:33:40 AM
Toluene	9.86	0.750		μg/L	1	4/13/2022 12:33:40 AM

Work Order: **2204167**Date Reported: **4/18/2022**

Client: GeoEngineers Collection Date: 4/11/2022 1:10:00 PM

Project: 701 South Jackson

Lab ID: 2204167-001 **Matrix:** Water

Client Sample ID: GEI-11-W-041122

Analyses	Result	RL	Qual	Units	DF	- D	ate Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Bato	h ID:	36063	Analyst: MVB
Ethylbenzene	8.28	0.400		μg/L	1	4/13	3/2022 12:33:40 AM
m,p-Xylene	33.8	1.00		μg/L	1	4/13	3/2022 12:33:40 AM
o-Xylene	15.1	0.500		μg/L	1	4/13	3/2022 12:33:40 AM
Surr: Dibromofluoromethane	98.0	80 - 120		%Rec	1	4/13	3/2022 12:33:40 AM
Surr: Toluene-d8	98.5	80 - 120		%Rec	1	4/13	3/2022 12:33:40 AM
Surr: 1-Bromo-4-fluorobenzene	101	80 - 120		%Rec	1	4/13	3/2022 12:33:40 AM
Mercury by EPA Method 245.1				Bato	h ID:	36086	Analyst: CH
Mercury	ND	0.100		μg/L	1	4/14	1/2022 10:20:31 AM
Dissolved Mercury by EPA Metho	od 245.1			Bato	h ID:	36132	Analyst: CH
Mercury	ND	0.100		μg/L	1	4/18	8/2022 4:48:26 PM
Dissolved Metals by EPA Method	200.8			Bato	h ID:	36082	Analyst: EH
Arsenic	2.95	1.00		μg/L	1	4/14	1/2022 12:00:10 AM
Cadmium	ND	0.125		μg/L	1	4/14	1/2022 12:00:10 AM
Chromium	ND	0.750		μg/L	1	4/14	1/2022 12:00:10 AM
Lead	ND	0.500		μg/L	1	4/14	1/2022 12:00:10 AM
Total Metals by EPA Method 200) <u>.8</u>			Bato	h ID:	36081	Analyst: EH
Arsenic	2.94	1.00		μg/L	1	4/14	1/2022 11:42:44 AM
Cadmium	ND	0.200		μg/L	1	4/13	3/2022 3:31:48 PM
Chromium	ND	1.00		μg/L	1	4/13	3/2022 3:31:48 PM
Lead	ND	0.500		μg/L	1	4/13	3/2022 3:31:48 PM

Work Order: **2204167**Date Reported: **4/18/2022**

Client: GeoEngineers Collection Date: 4/11/2022 12:00:00 PM

Project: 701 South Jackson

Lab ID: 2204167-002 **Matrix:** Water

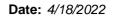
Client Sample ID: GEI-12-W-041122

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	h ID:	36079 Analyst: MM		
Diesel (Fuel Oil)	ND	117		μg/L	1	4/13/2022 4:15:39 PM		
Heavy Oil	ND	117		μg/L	1	4/13/2022 4:15:39 PM		
Total Petroleum Hydrocarbons	ND	234		μg/L	1	4/13/2022 4:15:39 PM		
Surr: 2-Fluorobiphenyl	80.2	50 - 150		%Rec	1	4/13/2022 4:15:39 PM		
Surr: o-Terphenyl	86.5	50 - 150		%Rec	1	4/13/2022 4:15:39 PM		
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batc	h ID:	36096 Analyst: OK		
Naphthalene	0.521	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
2-Methylnaphthalene	0.799	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
1-Methylnaphthalene	0.620	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Acenaphthylene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Acenaphthene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Fluorene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Phenanthrene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Anthracene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Fluoranthene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Pyrene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Benz(a)anthracene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Chrysene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Benzo(b)fluoranthene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Benzo(k)fluoranthene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Benzo(a)pyrene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Indeno(1,2,3-cd)pyrene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Dibenz(a,h)anthracene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Benzo(g,h,i)perylene	ND	0.0997		μg/L	1	4/14/2022 1:22:02 PM		
Surr: 2-Fluorobiphenyl	58.5	38.8 - 131		%Rec	1	4/14/2022 1:22:02 PM		
Surr: Terphenyl-d14	79.0	46 - 144		%Rec	1	4/14/2022 1:22:02 PM		
Gasoline by NWTPH-Gx				Batc	h ID:	36063 Analyst: MVB		
Gasoline	ND	50.0		μg/L	1	4/13/2022 1:03:49 AM		
Gasoline Range Organics (C6-C12)	142	50.0		μg/L	1	4/13/2022 1:03:49 AM		
Surr: Toluene-d8	100	65 - 135		%Rec	1	4/13/2022 1:03:49 AM		
Surr: 4-Bromofluorobenzene	95.4	65 - 135		%Rec	1	4/13/2022 1:03:49 AM		
NOTES:								

Original

GRO - Indicates the presence of unresolved compounds in the gasoline range.

Work Order: **2204167**Date Reported: **4/18/2022**

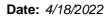

Client: GeoEngineers Collection Date: 4/11/2022 12:00:00 PM

Project: 701 South Jackson

Lab ID: 2204167-002 **Matrix:** Water

Client Sample ID: GEI-12-W-041122

Analyses	Result	RL	Qual	Units	DF	D	ate Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Bato	h ID:	36063	Analyst: MVB
Benzene	ND	0.440		μg/L	1	4/1:	3/2022 1:03:49 AM
Toluene	ND	0.750		μg/L	1	4/1:	3/2022 1:03:49 AM
Ethylbenzene	1.06	0.400		μg/L	1	4/1:	3/2022 1:03:49 AM
m,p-Xylene	1.20	1.00		μg/L	1	4/1:	3/2022 1:03:49 AM
o-Xylene	ND	0.500		μg/L	1	4/1:	3/2022 1:03:49 AM
Surr: Dibromofluoromethane	106	80 - 120		%Rec	1	4/1:	3/2022 1:03:49 AM
Surr: Toluene-d8	101	80 - 120		%Rec	1	4/1:	3/2022 1:03:49 AM
Surr: 1-Bromo-4-fluorobenzene	93.6	80 - 120		%Rec	1	4/13	3/2022 1:03:49 AM
Mercury by EPA Method 245.1				Bato	h ID:	36086	Analyst: CH
Mercury	ND	0.100		μg/L	1	4/14	4/2022 10:22:12 AM
Dissolved Mercury by EPA Metho	od 245.1			Bato	h ID:	36132	Analyst: CH
Mercury	ND	0.100		μg/L	1	4/18	8/2022 4:50:07 PM
Dissolved Metals by EPA Method	200.8			Bato	h ID:	36082	Analyst: EH
Arsenic	2.91	1.00		μg/L	1	4/14	4/2022 12:05:44 AM
Cadmium	ND	0.125		μg/L	1	4/14	4/2022 12:05:44 AM
Chromium	0.752	0.750		μg/L	1	4/14	4/2022 12:05:44 AM
Lead	ND	0.500		μg/L	1	4/14	4/2022 12:05:44 AM
Total Metals by EPA Method 200	<u>).8</u>			Bato	h ID:	36081	Analyst: EH
Arsenic	2.85	1.00		μg/L	1	4/14	4/2022 11:45:28 AM
Cadmium	ND	0.200		μg/L	1	4/1:	3/2022 3:34:32 PM
Chromium	1.10	1.00		μg/L	1	4/1:	3/2022 3:34:32 PM
Lead	ND	0.500		μg/L	1	4/1:	3/2022 3:34:32 PM


QC SUMMARY REPORT

CLIENT: GeoEngineers

Dissolved Metals by EPA Method 200.

Project: 701 South 3	Jackson										
Sample ID: MB-36083FB	SampType: MB	BLK		Units: µg/L		Prep Da	te: 4/13/2 0)22	RunNo: 747	736	
Client ID: MBLKW	Batch ID: 360	082				Analysis Da	te: 4/13/2 0)22	SeqNo: 153	33576	
Analyte	Resul	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	NE	1.00									
Cadmium	ND	0.125									
Chromium	NE	0.750									
Lead	NE	0.500									
Sample ID: MB-36082	SampType: MB	BLK		Units: µg/L		Prep Da	te: 4/13/2 ()22	RunNo: 74 7	736	
Client ID: MBLKW	Batch ID: 360	082				Analysis Da	te: 4/13/2 0)22	SeqNo: 15 3	33577	
Analyte	Resul	t RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Arsenic	NE	1.00									
Cadmium	NE	0.125									
Chromium	NE	0.750									
Lead	NE	0.500									
Sample ID: LCS-36082	SampType: LC :			Units: µg/L		Prep Da	te: 4/13/2 0)22	RunNo: 74 7	736	
•		s		Units: µg/L		Prep Da Analysis Da			RunNo: 747 SeqNo: 15 3		
Client ID: LCSW	SampType: LC :	S 082	SPK value	Units: µg/L SPK Ref Val	%REC	Analysis Da	te: 4/13/2 0				Qua
Client ID: LCSW Analyte	SampType: LC: Batch ID: 360	S 082 t RL	SPK value		%REC 95.6	Analysis Da	te: 4/13/2 0)22	SeqNo: 153	33578	Qua
Client ID: LCSW Analyte Arsenic	SampType: LC: Batch ID: 360 Resul	S 082 tt RL 3 1.00		SPK Ref Val		Analysis Da	te: 4/13/20 HighLimit)22	SeqNo: 153	33578	Qua
Client ID: LCSW Analyte Arsenic Cadmium	SampType: LC: Batch ID: 360 Resul	S 082 tt RL 3 1.00 3 0.125	500.0	SPK Ref Val	95.6	Analysis Da LowLimit	te: 4/13/20 HighLimit)22	SeqNo: 153	33578	Qua
Client ID: LCSW Analyte Arsenic Cadmium Chromium	SampType: LC: Batch ID: 360 Resul	S 082 tt RL 3 1.00 3 0.125 4 0.750	500.0 25.00	SPK Ref Val 0 0	95.6 91.0	Analysis Da LowLimit 85 85	te: 4/13/20 HighLimit 115 115)22	SeqNo: 153	33578	Qua
Client ID: LCSW Analyte Arsenic Cadmium Chromium Lead	SampType: LC: Batch ID: 360 Resul	S 082 tt RL 3 1.00 3 0.125 4 0.750 0 0.500	500.0 25.00 500.0	SPK Ref Val 0 0 0	95.6 91.0 98.8	Analysis Da LowLimit 85 85 85 85	te: 4/13/20 HighLimit 115 115 115	RPD Ref Val	SeqNo: 153	RPDLimit	Qua
Sample ID: LCS-36082 Client ID: LCSW Analyte Arsenic Cadmium Chromium Lead Sample ID: 2204132-001CDUP Client ID: BATCH	SampType: LC 3 Batch ID: 36 0 Resul 478 22.8 494 250	S 082 It RL 3 1.00 3 0.125 4 0.750 0 0.500	500.0 25.00 500.0	SPK Ref Val 0 0 0 0	95.6 91.0 98.8	Analysis Da LowLimit 85 85 85 85	te: 4/13/20 HighLimit 115 115 115 115 115	RPD Ref Val	SeqNo: 153 %RPD	RPDLimit	Qua
Client ID: LCSW Analyte Arsenic Cadmium Chromium Lead Sample ID: 2204132-001CDUP Client ID: BATCH	SampType: LC3 Batch ID: 360 Resul 478 22.8 494 250 SampType: DU	S 082 tt RL 3 1.00 3 0.125 4 0.750 0 0.500 P	500.0 25.00 500.0 250.0	SPK Ref Val 0 0 0 0	95.6 91.0 98.8	Analysis Da LowLimit 85 85 85 87 Prep Da Analysis Da	HighLimit 115 115 115 115 115 115 115 115	RPD Ref Val	SeqNo: 153 %RPD RunNo: 747	RPDLimit	Qua
Client ID: LCSW Analyte Arsenic Cadmium Chromium Lead Sample ID: 2204132-001CDUP	SampType: LC3 Batch ID: 360 Resul 478 22.8 494 250 SampType: DU Batch ID: 360	S 082 tt RL 3 1.00 3 0.125 4 0.750 0 0.500 P 082 tt RL	500.0 25.00 500.0 250.0	SPK Ref Val 0 0 0 0 0 Units: μg/L	95.6 91.0 98.8 99.9	Analysis Da LowLimit 85 85 85 87 Prep Da Analysis Da	HighLimit 115 115 115 115 115 115 115 115	RPD Ref Val	SeqNo: 153 %RPD RunNo: 747 SeqNo: 153	RPDLimit 736	

Original Page 10 of 29

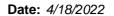
701 South Jackson

Work Order: 2204167

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers


Dissolved Metals by EPA Method 200.8

Sample ID: 2204132-001CDUP	SampType: DUP			Units: µg/L		Prep Da	te: 4/13/2 0)22	RunNo: 74 7	736	
Client ID: BATCH	Batch ID: 36082					Analysis Da	te: 4/13/20)22	SeqNo: 153	33580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	ND	0.750						0		30	
Lead	ND	0.500						0		30	

Sample ID: 2204132-001CMS	SampType: MS			Units: µg/L		Prep Da	te: 4/13/2 0)22	RunNo: 747	'36	
Client ID: BATCH	Batch ID: 36082					Analysis Da	te: 4/13/20)22	SeqNo: 153	3581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	489	1.00	500.0	0	97.9	70	130				
Cadmium	23.6	0.125	25.00	0	94.4	70	130				
Chromium	488	0.750	500.0	0	97.7	70	130				
Lead	243	0.500	250.0	0	97.1	70	130				

Sample ID: 2204185-003CMS	SampType: MS			Units: µg/L		Prep Da	te: 4/13/2022		RunNo: 747	36	
Client ID: BATCH	Batch ID: 36082					Analysis Da	te: 4/14/2022		SeqNo: 153	3596	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Arsenic	500	1.00	500.0	1.004	99.8	70	130				
Cadmium	24.3	0.125	25.00	0	97.2	70	130				
Chromium	478	0.750	500.0	0	95.7	70	130				
Lead	239	0.500	250.0	0	95.6	70	130				

Original Page 11 of 29

QC SUMMARY REPORT

CLIENT: GeoEngineers

Total Metals by FPA Method 200.

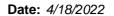
Project: 701 South	Jackson							Total Met	tals by EP	A Method	d 200.
Sample ID: 2204172-001AMS	SampType: MS			Units: µg/L		Prep Da	te: 4/13/2 0	22	RunNo: 74 7	721	
Client ID: BATCH	Batch ID: 36081					Analysis Da	te: 4/13/20	22	SeqNo: 153	33265	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	98.8	1.00	100.0	0.7811	98.0	70	130				
Cadmium	5.01	0.200	5.000	0.01490	99.8	70	130				
Chromium	98.0	1.00	100.0	0.2558	97.7	70	130				
Lead	45.1	0.500	50.00	0.1962	89.8	70	130				
Sample ID: MB-36081	SampType: MBLK			Units: µg/L		Prep Da	te: 4/13/20	22	RunNo: 74 7	721	
Client ID: MBLKW	Batch ID: 36081					Analysis Da	te: 4/13/20	22	SeqNo: 153	33282	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Cadmium	ND	0.200									
Chromium	ND	1.00									
Lead	ND	0.500									
Sample ID: LCS-36081	SampType: LCS			Units: µg/L		Prep Da	te: 4/13/20	22	RunNo: 74 7	721	
Client ID: LCSW	Batch ID: 36081					Analysis Da	te: 4/13/20	22	SeqNo: 153	33283	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	103	1.00	100.0	0	103	85	115				
Cadmium	4.95	0.200	5.000	0	99.0	85	115				
Chromium	96.3	1.00	100.0	0	96.3	85	115				
Lead	49.0	0.500	50.00	0	98.1	85	115				
Sample ID: 2204172-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 4/13/20	22	RunNo: 74 7	721	
Client ID: BATCH	Batch ID: 36081					Analysis Da	te: 4/13/2 0	22	SeqNo: 153	33285	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00						0		30	
Cadmium	ND	0.200						0		30	

Original Page 12 of 29

Date: 4/18/2022

Work Order: 2204167

QC SUMMARY REPORT


CLIENT: GeoEngineers

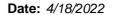
Total Metals by EPA Method 200.8

Sample ID: 2204172-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 4/13/2 0	22	RunNo: 747	721	
Client ID: BATCH	Batch ID: 36081					Analysis Da	te: 4/13/2 0	22	SeqNo: 153	33285	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	ND	1.00						0		30	
Lead	ND	0.500						0		30	

Sample ID: 2204175-005AMS Client ID: BATCH	SampType: MS Batch ID: 36081	Units: µg/L Prep Date: 4/13/2022 Analysis Date: 4/13/2022					RunNo: 74721 SeqNo: 1533375				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	85.0	1.00	100.0	0.8354	84.2	70	130				
Cadmium	4.97	0.200	5.000	0.2590	94.2	70	130				
Chromium	87.6	1.00	100.0	7.082	80.5	70	130				
Lead	61.7	0.500	50.00	16.78	89.7	70	130				

Original Page 13 of 29

CLIENT: GeoEngineers


Project: 701 South Jackson

QC SUMMARY REPORT

Mercury by EPA Method 245.1

Project: 701 South	Jackson						credity by El A Method 24
Sample ID: MB-36086	SampType: MBLK			Units: µg/L	Pre	p Date: 4/13/2022	RunNo: 74723
Client ID: MBLKW	Batch ID: 36086				Analysi	s Date: 4/14/2022	SeqNo: 1533661
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit RPD Ref	Val %RPD RPDLimit Qu
Mercury	ND	0.100					
Sample ID: LCS-36086	SampType: LCS			Units: µg/L	Pre	p Date: 4/13/2022	RunNo: 74723
Client ID: LCSW	Batch ID: 36086				Analysi	s Date: 4/14/2022	SeqNo: 1533662
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit RPD Ref	Val %RPD RPDLimit Qu
Mercury	2.54	0.100	2.500	0	102	85 115	
Sample ID: 2204180-004ADUP	SampType: DUP			Units: µg/L	Pre	p Date: 4/13/2022	RunNo: 74723
Client ID: BATCH	Batch ID: 36086				Analysi	s Date: 4/14/2022	SeqNo: 1533664
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit RPD Ref	Val %RPD RPDLimit Qu
Mercury	ND	0.100					0 20
Sample ID: 2204180-004AMS	SampType: MS			Units: µg/L	Pre	p Date: 4/13/2022	RunNo: 74723
Client ID: BATCH	Batch ID: 36086				Analysi	s Date: 4/14/2022	SeqNo: 1533665
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit RPD Ref	Val %RPD RPDLimit Qu
Mercury	2.92	0.100	2.500	0	117	70 130	
Sample ID: 2204180-004AMSD	SampType: MSD			Units: µg/L	Pre	p Date: 4/13/2022	RunNo: 74723
Client ID: BATCH	Batch ID: 36086				Analysi	s Date: 4/14/2022	SeqNo: 1533666
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowL	imit HighLimit RPD Ref	Val %RPD RPDLimit Qu
Mercury	2.73	0.100	2.500	0	109	70 130 2.9	20 6.73 20

Original Page 14 of 29

QC SUMMARY REPORT

CLIENT: GeoEngineers

Dissolved Mercury by EPA Method 245.1

Project: 701 South 3	Jackson						Dissolved	Mercury by EP	A Wethod	1 245.1
Sample ID: MB-36132	SampType: MBLK			Units: µg/L		Prep Date:	4/18/2022	RunNo: 74	319	
Client ID: MBLKW	Batch ID: 36132				A	Analysis Date:	4/18/2022	SeqNo: 15	35280	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	ef Val %RPD	RPDLimit	Qual
Mercury	ND	0.100								
Sample ID: LCS-36132	SampType: LCS			Units: µg/L		Prep Date:	4/18/2022	RunNo: 74	319	
Client ID: LCSW	Batch ID: 36132				A	Analysis Date:	4/18/2022	SeqNo: 15	35281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Re	f Val %RPD	RPDLimit	Qual
Mercury	2.31	0.100	2.500	0	92.4	85	115			
Sample ID: 2204167-002EDUP	SampType: DUP			Units: µg/L		Prep Date:	4/18/2022	RunNo: 74	319	
Client ID: GEI-12-W-041122	Batch ID: 36132				A	Analysis Date:	4/18/2022	SeqNo: 15 3	35284	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Re	f Val %RPD	RPDLimit	Qual
Mercury	ND	0.100						0	20	
Sample ID: 2204167-002EMS	SampType: MS			Units: µg/L		Prep Date:	4/18/2022	RunNo: 74	319	
Client ID: GEI-12-W-041122	Batch ID: 36132				A	Analysis Date:	4/18/2022	SeqNo: 15	35285	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Re	f Val %RPD	RPDLimit	Qual
Mercury	2.58	0.100	2.500	0	103	70	130			
Sample ID: 2204167-002EMSD	SampType: MSD			Units: µg/L		Prep Date:	4/18/2022	RunNo: 74	319	
Client ID: GEI-12-W-041122	Batch ID: 36132				A	Analysis Date:	4/18/2022	SeqNo: 15	35286	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Re	ef Val %RPD	RPDLimit	Qual
Mercury	2.42	0.100	2.500	0	96.8	70	130 2	2.580 6.40	20	

Original Page 15 of 29

Date: 4/18/2022

Work Order: 2204167

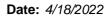
QC SUMMARY REPORT

CLIENT: GeoEngineers

Dissolved Mercury by EPA Method 245.1

 Project:
 701 South Jackson

 Sample ID: MB-36136-FB
 SampType: MBLK
 Units: μg/L


Prep Date: 4/18/2022 RunNo: 74819

Client ID: MBLKW Batch ID: 36132 Analysis Date: 4/18/2022 SeqNo: 1535287

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Mercury ND 0.100

Original Page 16 of 29

QC SUMMARY REPORT

CLIENT: GeoEngineers

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext

Project: 701 South J	lackson						Diesel	and Heavy	Oil by NW	TPH-Dx/l	Dx Ex
Sample ID: MB-36079	SampType: MBLK			Units: µg/L		Prep Dat	e: 4/12/2 0)22	RunNo: 747	743	
Client ID: MBLKW	Batch ID: 36079					Analysis Dat	e: 4/13/2 0)22	SeqNo: 153	33857	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	119									
Heavy Oil	ND	119									
Total Petroleum Hydrocarbons	ND	238									
Surr: 2-Fluorobiphenyl	22.5		23.81		94.7	50	150				
Surr: o-Terphenyl	22.5		23.81		94.5	50	150				
Sample ID: LCS-36079	SampType: LCS			Units: µg/L		Prep Dat	e: 4/12/2 0)22	RunNo: 74 7	743	
Client ID: LCSW	Batch ID: 36079					Analysis Dat	e: 4/13/2 0)22	SeqNo: 153	33858	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	1,140	235	1,176	0	97.3	57.2	125				
Surr: 2-Fluorobiphenyl	16.3		23.52		69.5	50	150				
Surr: o-Terphenyl	27.5		23.52		117	50	150				
Sample ID: 2204169-001BMS	SampType: MS			Units: µg/L		Prep Dat	e: 4/12/20)22	RunNo: 74 7	743	
Client ID: BATCH	Batch ID: 36079					Analysis Dat	e: 4/13/2 0)22	SeqNo: 153	33863	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Petroleum Hydrocarbons	1,120	238	1,192	0	94.3	40.5	128				
Surr: 2-Fluorobiphenyl	17.1		23.83		71.9	50	150				
Surr: o-Terphenyl	24.2		23.83		102	50	150				
Sample ID: 2204169-001BMSD	SampType: MSD			Units: µg/L		Prep Dat	e: 4/12/20)22	RunNo: 74 7	743	
Client ID: BATCH	Batch ID: 36079					Analysis Dat	e: 4/13/2 0)22	SeqNo: 153	33864	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Total Petroleum Hydrocarbons	1,060	235	1,175	0	90.3	40.5	128	1,124	5.68	30	
Surr: 2-Fluorobiphenyl	20.6		23.51		87.7	50	150		0		
Surr: o-Terphenyl	28.5		23.51		121	50	150		0		

Original Page 17 of 29

Date: 4/18/2022

701 South Jackson

Work Order: 2204167

QC SUMMARY REPORT

CLIENT: GeoEngineers

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: **2204169-001BMSD** San

SampType: MSD Units: µg/L

Prep Date: 4/12/2022

RunNo: 74743

Client ID: BATCH

Batch ID: 36079

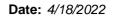
Analysis Date: 4/13/2022

SeqNo: 1533864

Analyte

Project:

Baton IB. GGGTG


Result

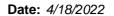
RL SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Original Page 18 of 29

QC SUMMARY REPORT


CLIENT: GeoEngineers

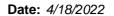
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: 701 Sout	th Jackson				Ро	lyaromati	c Hydro	ocarbons b	y EPA Me	thod 8270	(SIM)
Sample ID: MB-36096	SampType: MBLK			Units: µg/L		Prep Date:	: 4/13/20	22	RunNo: 74 7	762	
Client ID: MBLKW	Batch ID: 36096					Analysis Date	: 4/14/20	22	SeqNo: 153	34161	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100									
2-Methylnaphthalene	ND	0.100									
1-Methylnaphthalene	ND	0.100									
Acenaphthylene	ND	0.100									
Acenaphthene	ND	0.100									
Fluorene	ND	0.100									
Phenanthrene	ND	0.100									
Anthracene	ND	0.100									
Fluoranthene	ND	0.100									
Pyrene	ND	0.100									
Benz(a)anthracene	ND	0.100									
Chrysene	ND	0.100									
Benzo(b)fluoranthene	ND	0.100									
Benzo(k)fluoranthene	ND	0.100									
Benzo(a)pyrene	ND	0.100									
Indeno(1,2,3-cd)pyrene	ND	0.100									
Dibenz(a,h)anthracene	ND	0.100									
Benzo(g,h,i)perylene	ND	0.100									
Surr: 2-Fluorobiphenyl	1.45		2.000		72.5	38.8	131				
Surr: Terphenyl-d14	1.63		2.000		81.7	46	144				

Sample ID: LCS-36096	SampType: LCS			Units: µg/L	Prep Date: 4/13/2022				RunNo: 74762		
Client ID: LCSW	Batch ID: 36096					Analysis Da	te: 4/14/20	22	SeqNo: 153	34162	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.25	0.100	4.000	0	81.3	49.4	107				
2-Methylnaphthalene	3.22	0.100	4.000	0	80.5	50.9	107				
1-Methylnaphthalene	3.17	0.100	4.000	0	79.3	51.1	106				
Acenaphthylene	3.22	0.100	4.000	0	80.6	53.5	107				
Acenaphthene	3.26	0.100	4.000	0	81.5	51.2	105				

Page 19 of 29 Original

QC SUMMARY REPORT


CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: 701 South	n Jackson				Po	lyaroma	tic Hydr	ocarbons b	y EPA Met	thod 827	0 (SIM
Sample ID: LCS-36096	SampType: LCS			Units: µg/L		Prep Da	te: 4/13/2 0)22	RunNo: 74 7	762	
Client ID: LCSW	Batch ID: 36096					Analysis Da	te: 4/14/2 0)22	SeqNo: 153	34162	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	3.36	0.100	4.000	0	84.0	56	114				
Phenanthrene	3.27	0.100	4.000	0	81.9	56.4	110				
Anthracene	3.13	0.100	4.000	0	78.3	53.2	107				
Fluoranthene	3.34	0.100	4.000	0	83.6	60	115				
Pyrene	3.30	0.100	4.000	0	82.4	59	115				
Benz(a)anthracene	3.37	0.100	4.000	0	84.3	56.5	119				
Chrysene	3.25	0.100	4.000	0	81.3	56.7	108				
Benzo(b)fluoranthene	3.72	0.100	4.000	0	93.1	51.6	115				
Benzo(k)fluoranthene	3.38	0.100	4.000	0	84.5	52.1	125				
Benzo(a)pyrene	3.28	0.100	4.000	0	81.9	51.6	120				
Indeno(1,2,3-cd)pyrene	3.70	0.100	4.000	0	92.4	46.4	111				
Dibenz(a,h)anthracene	3.76	0.100	4.000	0	94.1	47.7	116				
Benzo(g,h,i)perylene	3.38	0.100	4.000	0	84.6	46.1	117				
Surr: 2-Fluorobiphenyl	1.46		2.000		72.9	38.8	131				
Surr: Terphenyl-d14	1.61		2.000		80.6	46	144				

Sample ID: 2204167-002CDUP	SampType: DUP			Units: µg/L		Prep Date: 4/13/2	2022	RunNo: 747	'62	
Client ID: GEI-12-W-041122	Batch ID: 36096					Analysis Date: 4/14/2	2022	SeqNo: 153	34165	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	0.591	0.0996					0.5210	12.5	30	
2-Methylnaphthalene	0.987	0.0996					0.7992	21.0	30	
1-Methylnaphthalene	0.765	0.0996					0.6196	21.0	30	
Acenaphthylene	ND	0.0996					0		30	
Acenaphthene	ND	0.0996					0		30	
Fluorene	ND	0.0996					0		30	
Phenanthrene	ND	0.0996					0		30	
Anthracene	ND	0.0996					0		30	
Fluoranthene	ND	0.0996					0		30	
Pyrene	ND	0.0996					0		30	

Page 20 of 29 Original

QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: 701 South 3	Jackson				Ро	lyaromat	ic Hydr	ocarbons b	y EPA Met	thod 8270) (SIM)
Sample ID: 2204167-002CDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 4/13/2 0	22	RunNo: 747	762	
Client ID: GEI-12-W-041122	Batch ID: 36096					Analysis Dat	e: 4/14/2 0	22	SeqNo: 153	34165	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	0.0996						0		30	
Chrysene	ND	0.0996						0		30	
Benzo(b)fluoranthene	ND	0.0996						0		30	
Benzo(k)fluoranthene	ND	0.0996						0		30	
Benzo(a)pyrene	ND	0.0996						0		30	
Indeno(1,2,3-cd)pyrene	ND	0.0996						0		30	
Dibenz(a,h)anthracene	ND	0.0996						0		30	
Benzo(g,h,i)perylene	ND	0.0996						0		30	
Surr: 2-Fluorobiphenyl	1.38		1.992		69.2	38.8	131		0		
Surr: Terphenyl-d14	1.54		1.992		77.5	46	144		0		

Sample ID: 2204169-001CMS	SampType: MS			Units: µg/L		Prep Dat	e: 4/13/20	22	RunNo: 747	62	
Client ID: BATCH	Batch ID: 36096					Analysis Dat	e: 4/14/20	22	SeqNo: 153	4167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.36	0.0994	3.976	0	84.4	56.4	103				
2-Methylnaphthalene	3.30	0.0994	3.976	0	83.0	55.9	104				
1-Methylnaphthalene	3.25	0.0994	3.976	0	81.7	57.4	102				
Acenaphthylene	3.27	0.0994	3.976	0	82.1	54.6	106				
Acenaphthene	3.37	0.0994	3.976	0	84.7	53.3	105				
Fluorene	3.48	0.0994	3.976	0	87.5	58.3	112				
Phenanthrene	3.38	0.0994	3.976	0	85.1	58	107				
Anthracene	3.11	0.0994	3.976	0	78.2	51.6	108				
Fluoranthene	3.45	0.0994	3.976	0	86.8	57.2	115				
Pyrene	3.40	0.0994	3.976	0	85.5	53.9	115				
Benz(a)anthracene	3.46	0.0994	3.976	0	87.1	49.4	120				
Chrysene	3.37	0.0994	3.976	0	84.7	51.9	106				
Benzo(b)fluoranthene	3.86	0.0994	3.976	0	97.1	44.4	114				
Benzo(k)fluoranthene	3.44	0.0994	3.976	0	86.5	41.8	121				
Benzo(a)pyrene	3.26	0.0994	3.976	0	81.9	37.2	123				

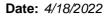
Page 21 of 29 Original

Date: 4/18/2022

701 South Jackson

Work Order: 2204167

Project:


QC SUMMARY REPORT

CLIENT: GeoEngineers

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2204169-001CMS	SampType: MS	. ,,				Prep Da	te: 4/13/2 0)22	RunNo: 747		
Client ID: BATCH	Batch ID: 36096					Analysis Da	ite: 4/14/20)22	SeqNo: 153	34167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	3.59	0.0994	3.976	0	90.2	28.9	112				
Dibenz(a,h)anthracene	3.62	0.0994	3.976	0	91.1	31.1	116				
Benzo(g,h,i)perylene	3.25	0.0994	3.976	0	81.8	29.3	116				
Surr: 2-Fluorobiphenyl	1.44		1.988		72.4	38.8	131				
Surr: Terphenyl-d14	1.59		1.988		80.1	46	144				

Original Page 22 of 29

QC SUMMARY REPORT

CLIENT: GeoEngineers

Gasoline by NWTPH-Gx

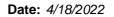
Project: 701 South Ja	ckson									Gasoline	by NWT	PH-
Sample ID: LCS-36063	SampType:	LCS			Units: µg/L		Prep Dat	te: 4/11/20	22	RunNo: 74 7	707	
Client ID: LCSW	Batch ID:	36063					Analysis Dat	te: 4/12/20	22	SeqNo: 153	32940	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		452	50.0	500.0	0	90.4	65	135				
Surr: Toluene-d8		25.2		25.00		101	65	135				
Surr: 4-Bromofluorobenzene		25.7		25.00		103	65	135				
Sample ID: MB-36063	SampType:	MBLK			Units: µg/L		Prep Dat	te: 4/11/20)22	RunNo: 74 7	707	
Client ID: MBLKW	Batch ID:	36063					Analysis Dat	te: 4/12/20	22	SeqNo: 153	32929	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		ND	50.0									
Surr: Toluene-d8		24.6		25.00		98.3	65	135				
Surr: 4-Bromofluorobenzene		23.0		25.00		92.0	65	135				
Sample ID: 2204121-001ADUP	SampType:	DUP			Units: µg/L		Prep Dat	te: 4/11/20	22	RunNo: 74 7	707	
Client ID: BATCH	Batch ID:	36063					Analysis Dat	te: 4/12/20	22	SeqNo: 153	32914	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		ND	50.0						0		30	
Surr: Toluene-d8		24.5		25.00		97.9	65	135		0		
Surr: 4-Bromofluorobenzene		22.7		25.00		90.8	65	135		0		
Sample ID: 2204161-024ADUP	SampType:	DUP			Units: µg/L		Prep Dat	te: 4/11/20	122	RunNo: 74 7	707	
Client ID: BATCH	Batch ID:	36063					Analysis Dat	te: 4/13/20	22	SeqNo: 153	32923	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Gasoline Range Organics (C6-C12)		69.7	50.0						103.0	38.6	30	
Surr: Toluene-d8		24.4		25.00		97.5	65	135		0		
Surr: 4-Bromofluorobenzene NOTES:		23.1		25.00		92.5	65	135		0		

Original Page 23 of 29

Date: 4/18/2022

Work Order: 2204167

Project:

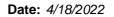

QC SUMMARY REPORT

CLIENT: GeoEngineers 701 South Jackson

Gasoline by NWTPH-Gx

•											
Sample ID: 2204132-003AMS	SampType: MS			Units: µg/L		Prep Da	te: 4/11/20)22	RunNo: 74 7	707	
Client ID: BATCH	Batch ID: 36063	Analysis Date: 4/13/2022)22	SeqNo: 1532918			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	2,100	50.0	500.0	1,435	133	65	135				
Surr: Toluene-d8	26.1		25.00		104	65	135				
Surr: 4-Bromofluorobenzene	29.0		25.00		116	65	135				

Page 24 of 29 Original


QC SUMMARY REPORT

CLIENT: GeoEngineers Project:

Volatile Organic Compounds by EPA Method 8260D

Project: 701 South Ja	ackson					Volatile	Organic Com _l	pounds by EF	'A Method	8260
Sample ID: LCS-36063	SampType: LCS			Units: µg/L		Prep Dat	e: 4/11/2022	RunNo: 7	4709	
Client ID: LCSW	Batch ID: 36063					Analysis Dat	e: 4/12/2022	SeqNo: 1	533002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	ef Val %RPI	D RPDLimit	Qual
Benzene	19.6	0.440	20.00	0	98.1	80	120			
Toluene	20.1	0.750	20.00	0	100	80	120			
Ethylbenzene	20.1	0.400	20.00	0	101	80	120			
m,p-Xylene	39.0	1.00	40.00	0	97.5	80	120			
o-Xylene	19.3	0.500	20.00	0	96.4	80	120			
Surr: Dibromofluoromethane	22.1		25.00		88.4	80	120			
Surr: Toluene-d8	25.6		25.00		102	80	120			
Surr: 1-Bromo-4-fluorobenzene	26.7		25.00		107	80	120			
Sample ID: MB-36063	SampType: MBLK			Units: µg/L		Prep Dat	e: 4/11/2022	RunNo: 7	<u></u> ′4709	
Client ID: MBLKW	Batch ID: 36063					Analysis Dat	e: 4/12/2022	SeqNo: 1	533001	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	ef Val %RPI	D RPDLimit	Qual
Benzene	ND	0.440								
Toluene	ND	0.750								
Ethylbenzene	ND	0.400								
m,p-Xylene	ND	1.00								
o-Xylene	ND	0.500								
Surr: Dibromofluoromethane	25.0		25.00		100	80	120			
Surr: Toluene-d8	25.0		25.00		99.8	80	120			
Surr: 1-Bromo-4-fluorobenzene	23.1		25.00		92.5	80	120			
Sample ID: 2204121-001ADUP	SampType: DUP			Units: µg/L-d	ry	Prep Dat	e: 4/11/2022	RunNo: 7		
Client ID: BATCH	Batch ID: 36063				-	Analysis Dat	e: 4/12/2022	SeqNo: 1	532987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	ef Val %RPI	D RPDLimit	Qual
Benzene	ND	0.440						0	30	
Toluene	ND	0.750						0	30	
Ethylbenzene	ND	0.400						0	30	

Page 25 of 29 Original

701 South Jackson

Work Order: 2204167

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2204121-001ADUP		Units: µg/L-d	ry	Prep Dat	e: 4/11/2 0	22	RunNo: 74709					
Client ID: BATCH	Batch ID: 36063					Analysis Dat	e: 4/12/20	22	SeqNo: 1532987			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
m,p-Xylene	ND	1.00						0		30		
o-Xylene	ND	0.500						0		30		
Surr: Dibromofluoromethane	28.5		25.00		114	80	120		0			
Surr: Toluene-d8	25.3		25.00		101	80	120		0			
Surr: 1-Bromo-4-fluorobenzene	22.7		25.00		91.0	80	120		0			

Sample ID: 2204132-002AMS	SampType: MS			Units: µg/L		Prep Da	te: 4/11/2 0	22	RunNo: 747					
Client ID: BATCH	Batch ID: 36063					Analysis Da	te: 4/13/2 0	22	22 SeqNo: 1532990					
Analyte	Result RL		SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene	24.0	0.440	20.00	0	120	78.5	133							
Toluene	24.6	0.750	20.00	0	123	77	133							
Ethylbenzene	25.5	0.400	20.00	0	128	77.9	133							
m,p-Xylene	48.7	1.00	40.00	0	122	74.8	133							
o-Xylene	24.2	0.500	20.00	0	121	81.2	126							
Surr: Dibromofluoromethane	23.3		25.00		93.2	80	120							
Surr: Toluene-d8	25.8		25.00		103	80	120							
Surr: 1-Bromo-4-fluorobenzene	omo-4-fluorobenzene 27.8 25.00			111	80	120								

Original Page 26 of 29

Sample Log-In Check List

С	lient Name:	GEI				Work Order Number: 2204167												
Lo	ogged by:	Gabrielle C	Coeuille			Date Re	ceived:	4/11/2022	2 4:21:00 PM									
<u>Cha</u>	in of Custo	ody																
1.	Is Chain of C	ustody comp	lete?			Yes		No 🗸	Not Present									
2.	How was the	sample deliv	vered?			<u>Clien</u>	<u>t</u>											
<u>Log</u>																		
3.	Coolers are p	present?				Yes	✓	No 🗀	NA 🗌									
4.	Shipping con	tainer/cooler	in good condition	?		Yes	✓	No 🗌										
5.			shipping contain			Yes	✓	No 🗌	Not Present									
6.	Was an atten	npt made to	cool the samples	?		Yes	✓	No 🗌	NA \square									
7.	Were all item	s received a	t a temperature o	f >2°C to 6°	C *	Yes	✓	No 🗆	NA 🗆									
8.	Sample(s) in	proper conta	niner(s)?			Yes	•	No 🗌										
9.	Sufficient sar	nple volume	for indicated test	(s)?		Yes	✓	No 🗌										
10.	Are samples	properly pres	served?			Yes	✓	No \square										
11.	Was preserva	ative added t	o bottles?			Yes		No 🗹	NA \square									
12.	Is there head	space in the	VOA vials?			Yes		No 🗌	NA 🗸									
13.	Did all sample	es containers	s arrive in good co	ondition(unb	roken)?	Yes	✓	No 🗌										
14.	Does paperw	ork match bo	ottle labels?			Yes	✓	No 🗌										
15.	Are matrices	correctly ide	ntified on Chain o	f Custody?		Yes	•	No 🗌										
16.	Is it clear wha	at analyses v	vere requested?			Yes	✓	No 🗌										
17.	Were all hold	ling times ab	le to be met?			Yes	✓	No 🗌										
Spe	cial Handl	ing (if app	olicable)															
18.	Was client no	otified of all d	liscrepancies with	this order?		Yes		No 🗌	NA 🗹	_								
	Person	Notified:			Date:													
	By Who	m:			Via:	eМа	il 🗌 Pł	none Fax	☐ In Person									
	Regardi	ng:																
	Client In	structions:																
19.	Additional rer	marks:								_								
	Client d	id not relinqu	ish chain of custo	ody														
Item	<u>Information</u>																	
		Item #		Temp ⁰C														
	Sample 1			3.2														

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

GNAHA	Ave N.	Chain of Custody Record & Laboratory Services Agreement																							
Fremo	5	eattle, WA Tel: 206-35		Date:	4	111	2	02	2			Page		1	0	f: /			Labo	ratory	Project No (internal):	2201	1110	7	
Analyti	COTA F	Fax: 206-35	2-7178	Projec						NT.											marks:		, ,		
0	.1.			Projec																					0
Client: GEOENGINEERS	WC.																								9
Address:				Collected by: Nathan Solomon																	6				
City, State, Zip:				Location	Location: SEATORE WA																	4			
Telephone:						Report To (PM): Sample Disposal: Return to													sposal: Return to clien	nt Disposa	l by lab (aff	ter 30 days)	_		
Fax:						PM Email:																			
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	10		18 S	Sel H	10 mm 10 m					10 00 00 00 00 00 00 00 00 00 00 00 00 0		20 10 St.		/	/	///		Comm	ents		
1 GE1-11-W-041122	4.11.22	130	WATER	27		X	×	1	χ		×		x	×											4
2 GE1-12-W-041122	4.11.22	1200	WATER	7	n	K	×		*		X		X	×											
3																									
4														-											
,																									
ь																									٦
7																									T
8						-																-			1
9																-									+
*Matrix: A = Air, AQ = Aqueous, B = Bulk,	O - Other B - B	raduct C-	Cail SD = S	odimon	. 51 -	- Solie	d W	/ = Wat	tor D	1 - ///	Drinkir	n Wat	or (GW -	Groun	d Wat	tor S	W = St	orm V	Vater	WW = Waste Water	Tu	rn-aroun	d Time:	\dashv
	Priority Pollutar																			***********		Stand	ard 🔲	Next Day	
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromio		O-Pho				oride			e+Nit										☐ 3 Day		Same Day	
I represent that I am authorized to to each of the terms on the front a				Frem	ont A	naly	ytica	l on	beha	lf of	the (Clien	t nar	med	abov	e, th	at I h	ave	verifi	ed C	lient's agreement	2 Day		(specify)	-
Relinquished (Signature) x	Date/Ti	Received (Signature) Print Name Date *41 Sull & Column Filsalish Saviory											re/Time	22	10:21										
Relinquished (Signature) x	Print Name			Date/Ti	me					Rece	ived (Signat	ure)	0				Print	Name			te/Time			

GRADIN - 10-10-10-10	Ave N.	Chain of Custody Record & Laboratory Services Agreement																								
Fremo	S.	eattle, WA Tel: 206-35		Date:	4	111	2	02	2			Page:		ı	of	1			Labor	ratory	Project No (intern	nal):2	204	116	7	
Analyti	RIL	ax: 206-35	2-7178	Projec						UT:	+									al Ren						
Client: GEOENGINEERS	wc.			Projec	t No:						01															
				Collec																						
Address:													¥													
City, State, Zip:						8	0	181	7		W!	2							Samp	le Dis	posal: Return to	client	Disposal	by lab (af	ter 30 d	days)
Telephone:						M):	V-O	BE	2		TPF	+++	AN													
Fax:						_	_		_	_	/	/ =	/	/	/	/	_	/	/	_	///	/				
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	# of Cont.	/5		100	Se la								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Comme	ents		
1 GE1-11-W-041122	4.11.22	130	WATER	27		X	×		X		X		X	×												
2 GEI-12 W-041122	4.11.22	1200	WATER	7		K	×		×		X		X	K												
3																										
4																										
5																										
6																										
7																		18								
8																										
9																										
10											13															
*Matrix: A = Air, AQ = Aqueous, B = Bulk, C) = Other, P = P	roduct, S =	Soil, SD = S	edimer	nt, SL	= Soli	d, W	= Wat	er, D	W = D	rinkin	g Wat	er, G	W = G	round	Wate	r, SV	V = Sto	orm W	ater,	WW = Waste Wat	ter	Tur	n-aroun	d Time	e;
**Metals (Circle): MTCA-S RCRA-8	Priority Pollutar	nts TAL	Individu	al: Ag	Al A	ВЕ	За Ве	Ca	Cd C	o Cr	Cu F	e Hg	KN	ng M	n Mo	Na	Ni Pt	Sb	Se Si	r Sn	Ti TI V Zn		Stand:	ard [Next	Day
***Anions (Circle): Nitrate Nitrite	Chloride	Sulfate	Bromio		O-Pho	_			oride		Nitrate		_	_				_					3 Day		Same	e Day
I represent that I am authorized to to each of the frms on the front ar				Frem	ont A	Analy	ytica	l on l	beha	lf of	the C	lient	nan	ned a	bove	, tha	t I ha	ive v	erifie	ed Cl	ient's agreeme	ent	2 Day	-	(speci	ify)
Relinquisher (Signature)	Print Name	Ha	She	Date/T	ime	//	1-6	27	,	×4	lsu lsu	ell	1	80	ee	u	щ	Print	Name	ref	n Sauor	Date/T	4/11	2	6:0	21
Relinquished (Signature) x	Print Name			Date/T	ime					Recei x	ived (S	ignatu	ire))	Print	Name			Date/T	me			

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C

REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for 701 South Jackson Partners, LLC. 701 South Jackson Partners, LLC may distribute copies of this report to 701 South Jackson Partners, LLC authorized agents and regulatory agencies as may be required for the project. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except 701 South Jackson Partners, LLC should rely on this report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report applies to the property at 701 South Jackson Street in Seattle, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

If important changes are made after the date of this remedial action plan, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The CULs referenced in this report are site- and situation-specific. The CULs may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced CULs. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. It is always possible that contamination exists in areas that were not explored, sampled or analyzed. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Geotechnical, Geologic and Geoenvironmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If the client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

