APPENDIX B

Treatability Study Results – In Situ Solidification and Sediment Conditioning Report

TREATABILITY STUDY RESULTS - *IN SITU* SOLIDIFICATION AND SEDIMENT CONDITIONING

R.G. Haley Site, Bellingham, Washington

November 13, 2019

Crete Consulting Incorporated PC 108 South Washington Street, Suite 300 Seattle, WA 98104

TREATABILITY STUDY RESULTS- IN SITU SOLIDIFICATION AND SEDIMENT CONDITIONING

R.G. Haley Site, Bellingham, Washington

November 13, 2019

Prepared for: GeoEngineers, Inc

Prepared by:

1	Introduction1-1								
	1.1	Background/Site Conditions1-1							
	1.2	Test Objectives							
	1.3	Preliminary Performance Criteria1-3							
2	Samnl	e Collection 2-1							
-	2 1	Unland Sampling 2-1							
	2.1	Intertidal Sampling 2-3							
	2.2	Free Product Collection 2-3							
	2.4	Decontamination and Residuals Management2-3							
3	ISS Tre	patability Testing 3-1							
5	3 1	ISS Baseline Analysis 3-1							
	3.2	ISS Preliminary Screening 3-3							
	3.3	ISS Advanced Screening							
4	Interti	dal Sediment Testing Results4-1							
5	Summ	ary of Results5-1							
6	Discus	sion and Recommendations6-1							
-	6.1	Groundwater pH							
	6.2	Leaching of Arsenic							
		6.2.1 Metals in ISS Amendments							
		6.2.2 Metals in Site Soil							
		6.2.3 Arsenic Speciation							
		6.2.4 Case Study Data							
	6.3	LEAF Testing Data							
	6.4	Recommendations6-5							

List of Tables

- Table 1Upland Sample Collection Summary
- Table 2
 Untreated Physical Properties Characterization
- Table 3 Untreated Analytical Results
- Table 4Preliminary Screening Evaluation Results
- Table 5 Summary of Advanced Screening

List of Figures

- Figure 1 Bench-Scale Treatability Study Sample Locations
- Figure 2 Examples of Debris Found in Test Pits
- Figure 3 Cumulative Flux for Detected IHSs
- Figure 4 Interval Flux for Pentachlorophenol

List of Appendices

- Appendix A Test Pit Logs
- Appendix B Photographic Log
- Appendix C ISS Treatability Laboratory Data Report
- Appendix D Intertidal Sediment Conditioning Laboratory Reports

Acronyms and Abbreviations

ASTM	American Society for Testing and Materials
BMC	Bellingham Municipal Code
сРАН	carcinogenic poly aromatic hydrocarbons
cm/s	centimeters per second
CRETE	CRETE Consulting Incorporated, PC
су	cubic yards
EPA	United States Environmental Protection Agency
GGBFS	ground granulated blast furnace slag
HASP	Site Specific Health and Safety Plan
kg	kilograms
LEAF	Leaching Environmental Assessment Framework
LNAPL	Light non-aqueous phase liquid
Ft	feet
ft bgs	feet below ground surface
ft/day	feet per day
ft-lbs/in ²	foot-pounds per square inch
ID	inner diameter
ISS	in situ solidification
mg/kg	milligrams per kilogram
OD	outer diameter
РСР	pentachlorophenol
Psi	pounds per square inch
RI/FS	Remedial Investigation and Feasibility Study
SPT	standard penetration test
ТРН	total petroleum hydrocarbon
UCS	unconfined compressive strength

1 Introduction

Crete Consulting Incorporated, PC (CRETE) has prepared this report to summarize the results of treatability testing performed for the RG Haley Site (Site) in Bellingham, Washington. The work was performed in accordance with the Treatability Study Work Plan (Work Plan; CRETE 2015) to provide a pre-remedial design site-specific assessment of: 1) *in situ* soil solidification (ISS); and, 2) conditioning of removed intertidal sediment prior to upland and sediment consolidation at the site. ISS and removal of intertidal sediment were selected as part of the preferred cleanup remedy in the Remedial Investigation and Feasibility Study (RI/FS; GeoEngineers 2015) that was submitted by the City of Bellingham to the Washington State Department of Ecology (Ecology) under Agreed Order No. DE 2186, as amended. The Work Plan contains additional discussion on the development of specific performance criteria and the rationale used to develop the approach to the testing.

The preliminary extent of ISS and intertidal sediment removal are shown on Figure 1. The preliminary ISS volume identified in the FS is approximately 15,300 cubic yards (cy), with a treatment zone thickness that varies between 8 and 13 feet (ft), to a depth of about 19 ft below current grade. The intertidal sediment removal and conditioning volume is estimated at 6,200 in-place cy. The extent of ISS and intertidal sediment removal will be refined during the remedial design process.

1.1 Background/Site Conditions

The site is located on the shore of Bellingham Bay and historically operated as a lumber mill and a wood treating site. Portions of previous site operations were initially constructed on wharves supported by wood piles. Many wood piles remain exposed in the bank, intertidal, and subtidal areas while other areas of piling were subsequently buried when the site was filled. As a result of lumber operations, there are significant deposits of sawdust and other wood waste. Wood treating operations resulted in soil, groundwater, and sediment contamination with total petroleum hydrocarbons (TPH; medium aromatic carrier oil) and pentachlorophenol (PCP). The petroleum hydrocarbon smear zone is primarily contained within the Upland Fill and Marine Fill units, although smaller discontinuous Wood Fill areas are impacted. These lithologic units were described in detail in the RI/FS. The key lithologic units as they relate to the treatability testing include the following:

- Upland Fill consists predominantly of poorly-graded silty sand, sand, and gravel, with some silt and variable amounts of coal fragments, brick fragments, wood debris, construction debris, and sawdust.
- Wood Fill contains roughly 50 percent or more woody material mixed with silt, sand, and gravel. The woody material includes sawdust, wood chips, dimensional lumber, and log ends.
- Marine Fill highly variable and includes silt, silty sand, and poorly-graded fine- to medium-grained sand with shell fragments and occasional wood fragments. Distinct

wood waste layers consisting of 50 to 100 percent sawdust also are intermixed with the marine fill. The fill also occasionally contains other debris including glass, brick, and plastic.

The proposed extent of ISS extends slightly vertically and laterally beyond the extent of the footprint of potentially mobile light non-aqueous phase liquid (LNAPL).

Intertidal sediment proposed for removal is predominantly in the Wood Fill unit.

Site Soil Strength

The *in situ* strength of soil in the ISS area was estimated to develop a minimum strength goal for the ISS performance criteria. Average standard penetration test (SPT) blow counts were calculated for the upper 15 feet of boreholes TL-MW-13 through TL-MW-16. The average SPT N blow counts ranged from 6 blows per foot in TL-MW-16 to 13 blows per foot in TL-MW-15. Using these blow count data, the unconfined compressive strength (UCS) of the site soil in the ISS area was estimated at 10 to 24 pounds per square inch (psi).

The blow counts listed on the borehole logs were developed using a 2.4-inch inner diameter (ID) split barrel sampler using a 300 pound hammer and a 30-inch drop. This sampler was assumed to be what is referred to as a Dames & Moore sampler (2.4-inch ID, 3.25-inch outer diameter [OD]) which results in sampling system energy of 211.3 foot-pounds per square inch (ft-lbs/in²). The SPT setup uses a smaller sampler (1.375-inch ID, 2-inch OD), a 140 pound hammer, and a 30-inch drop which results in a sampling system energy of 198.8 ft-lbs/in². The field values were multiplied by the energy ratio (198.8/211.3 = 0.94) to convert the field blows to SPT-N equivalent blows. Given that this is a general correlation to develop an average strength over a wide area, the rod length and hammer type were not considered in the calculation.

The converted blow counts were averaged within the depth of interest (upper 15 ft) and the average SPT blow counts were used along with conversion factors (Table 45.2; Terzaghi and Peck, 1967) to estimate the UCS for the soil. The range of soil strength reported (10 to 24 psi) was developed to encompass the range in blow counts, the general nature of the relationship between the converted blow counts and UCS (reference table generally developed for cohesive soil when our soil is variable), and the variability of the soils encountered in the field.

1.2 Test Objectives

The overall objectives of the ISS treatability testing are to demonstrate that ISS can achieve the preliminary performance criteria (Section 1.3) and to provide an estimated amendment recipe that is expected to achieve the performance criteria. An additional goal is to develop an economical mix that uses locally available products. The objective of the intertidal sediment conditioning is to demonstrate that the sediment can be conditioned/improved such that it is geotechnically suitable to be compacted and consolidated beneath the low-permeability cap with other contaminated soil.

Additional ISS bench testing may be performed during the remedial design by the bidding Contractors, and is expected to be performed by the selected Contractor to optimize the mix design. At the beginning of field implementation, a test cell will be treated to verify performance of the mix design and effectiveness of the mixing process (e.g. the number of mixing passes needed to adequately mix the amendments and soil) under field conditions. Quality control testing will be performed during field implementation to demonstrate that performance objectives are achieved.

1.3 Preliminary Performance Criteria

The full development of preliminary performance criteria is described in the Work Plan. Results from the ISS treatability testing were evaluated against the following performance criteria:

- **ISS Hydraulic conductivity:** the preliminary hydraulic conductivity target for this project is less than 1x10⁻⁵ centimeter per second (cm/s), which is more than two orders of magnitude below the average and median Fill Unit conductivities of 3.9x10⁻³ cm/s (11.0 feet per day [ft/day]) and 1.1x10⁻³ cm/s (3.2 ft/day), respectively.
- **ISS Strength:** the preliminary target range for 28-day UCS is between 30 and 200 psi. The lower limit of 30 psi is modified from the 50 psi presented in the Work Plan. The new lower limit was derived based on the site soil strength estimate discussed in Section 1.1 so that the ISS mass would not be weaker than the surrounding soil.

ISS ductility is also a consideration but is not set as a performance criterion. The diffusioncontrolled release of chemicals from an ISS mass is a function of surface area and that surface area could be increased if significant cracks form in the ISS mass as a result of a seismic event. Strength, permeability, and ductility can be competing properties so the approach taken was to evaluate the mix designs that achieved the strength/permeability performance requirements and also showed higher axial strain values at failure.

Leach testing was performed consistent with the Leaching Environmental Assessment Framework (LEAF). Environmental Protection Agency (EPA) Method 1315 was designed specifically to estimate the mass transfer rates (release rates) of analytes contained in a monolith, under diffusion-controlled release conditions, as a function of leaching time. There are no specific performance criteria for these tests. The ability of ISS to support achievement of groundwater cleanup standards will be considered during remedial design using the data generated from the LEAF testing. This remedial design work will include simplified fate and transport modeling to assess attenuation of upland groundwater discharging to intertidal marine sediment and surface water through planned sediment caps.

The overall goal for intertidal sediment conditioning is to remove free water and create a material that is workable and compactable using standard construction equipment. The ability to achieve this condition will be based on an evaluation of moisture content, Atterberg Limits, and moisture-density relationships (Proctor compaction testing). Specific performance criteria were not developed since the criteria are dependent on the properties of the sediment.

2 Sample Collection

Upland test pitting was performed on December 16, 2015 and intertidal hand augers were advanced on December 14, 2015. Intertidal hand augers were advanced between 9 and 11 PM, once the tide was below +5 ft MLLW. Two upland test pit locations were slightly modified during utility locating on December 9, 2015: TP-TTWP-LF was moved about 30 ft true south (project southeast) off of a concrete slab and TP-TTWP-WF was moved about 40 ft true east-northeast (project north-northeast) to avoid buried power lines. The sample locations are shown on Figure 1.

2.1 Upland Sampling

Treatability soil samples were collected from 5 upland test pit locations. Test pit excavation was performed using an excavator operated by Strider Construction of Bellingham, WA. Test pitting was generally performed as described in the Work Plan with soil samples collected from the excavation spoils pile. Test pit logs are provided in Appendix A. A photographic log is included in Appendix B. Test pitting was performed in substantive compliance with the City of Bellingham Grading Performance standards (Bellingham Municipal Code [BMC] 16.70.070) and Stormwater Management Code (BMC 15.42).

Table 1 provides the basis for the location of each test pit that was included in the Work Plan. Field observations that are relevant to the basis are included in the table. In general, significant wood and lumber debris was observed. Vertical timber piles were observed at three test pit locations (TP-TTWP-C, TP-TTWP-N, and TP-TTWP-LF) and a pile cap and wood wall were also observed at TP-TTWP-N. Figure 2 provides a subset of photographs to illustrate the extent and type of debris that was observed.

Based on the observed test pit conditions, it was decided to create ISS South and ISS North treatability samples. ISS South includes landfill debris and sawdust and was expected to have lower chemical concentrations. ISS North includes wood debris and wood fill and was expected to have higher chemical concentrations. Each treatability sample consisted of two 5-gallon buckets as follows:

ISS South

- Bucket 1 5 gallons from TP-TTWP-LF
- Bucket 2 5 gallons from TP-TTWP-S

ISS North

- Bucket 3 4 gallons from TP-TTWP-N and 1 gallon from TP-TTWP-WF
- Bucket 4 4 gallons from TP-TTWP-C and 1 gallon from TP-TTWP-WF

A bucket consisting of 2.5 gallons from each of TP-TTWP-N and TP-TTWP-C was also created to represent intertidal sediment conditions within the smear zone.

	opiana oampic ooncotion oam	inal y
Sample ID	Basis	Observations
TP-TTWP-LF (5-14 ft bgs)	 Elevated TPH and cPAH Moderate LNAPL accumulation observed in nearby well TL-MW-12 Assess debris content in area where ISS overlaps with Cornwall Landfill Near the shoreline and can observe for possible turbidity impacts 	 Landfill debris from about 1.5 to 6 ft bgs No turbidity in the Bay Top of vertical timber pile observed at 7 to 8 ft bgs
TP-TTWP-S (5-14 ft bgs)	 Elevated TPH and PCP Moderate to low LNAPL accumulation observed in nearby well TL-MW-10 Sawdust present Near the shoreline and can observe for possible turbidity impacts 	 Sawdust Large chunks of concrete and other debris No turbidity in Bay
TP-TTWP-C (5-14 ft bgs)	 Elevated TPH and PCP Thickest LNAPL accumulation on site in nearby well TL-MW-2 Check for size and frequency of wood debris that could interfere with ISS 	 Large chunks of concrete and dimensional lumber Top of one vertical timber pile observed at 4 to 5 ft bgs Straw and a sand bag indicate that the area may have been previously disturbed
TP-TTWP-N (5-13 ft bgs)	 Elevated TPH and PCP Moderate to low LNAPL accumulation in nearby wells TL-MW-5A & TL-MW-7 Check for size and frequency of wood debris that could interfere with ISS Check extent and spacing of wood piles that will need to be removed prior to <i>in</i> <i>situ</i> soil mixing 	 Significant and large dimensional lumber debris Top of two vertical timber piles observed at 3 to 4 ft bgs; one pile removed during test pit (see Appendix B photos) Top of timber pile cap and wall observed at 3 ft bgs
TP-TTWP-WF (9-10 ft bgs)	 Collect wood fill sample for possible inclusion in treatability samples (wood fill zone is shallow and close to the water table at this location) 	 Smaller dimensional lumber debris

Table 1 Upland Sample Collection Summary

2.2 Intertidal Sampling

Intertidal samples were collected from outside the smear zone using hand-held tools (hand auger and post-hole digger), generally as described in the Work Plan. The intertidal sampling was performed under Nationwide Permit (NWP) 6, *Survey Activities* NWS-2015-779, issued to the City of Bellingham on September 22, 2015 (USACE 2015).

Location IT-TTWP-N was advanced to the full 5 feet and the 5-gallon bucket of sediment was collected as planned. The sediment consisted of silt with sand and gravel. IT-TTWP-S was attempted at numerous locations and the sediment could not be penetrated below 30 inches. A 5-gallon bucket of material was collected that consisted of poorly graded sand with gravel. Wood waste was not encountered at the frequency anticipated, although wood debris was present. A review of sediment sampling logs indicated that significant wood waste may be present subtidal, but confirmed that it was not previously observed in the intertidal area.

Five gallons of soil were also collected from the upland test pits (2.5 gallons from each of TP-TTWP-C and N) from the same elevation and lithologic horizon that is present in the intertidal area. This soil was used to represent intertidal conditions within the smear zone.

2.3 Free Product Collection

Two liters of free product were collected on February 18, 2016 from monitoring well TL-MW-02. The free product was collected to spike the ISS North treatability sample. The sample was spiked because chemical concentrations in the baseline analysis (discussed in Section 3.1) were not representative of average to high concentrations in the ISS area.

2.4 Decontamination and Residuals Management

Sample equipment used to collect, composite, and fill sample buckets was decontaminated between each sample location and prior to leaving the site using a wash of Liqui-noxTM and rinsed with distilled/deionized water.

Water collected during decontamination, extra soil from collection of treatability samples, and personal protective equipment and plastic totes were all placed in separate labeled 55-gallon drums in the soil handling area.

3 ISS Treatability Testing

ISS treatability samples were submitted to KEMRON Environmental Services, Inc. in Atlanta, GA (KEMRON). KEMRON subcontracted the analytical testing portion of the testing to Test America in Nashville, TN, a certified Washington State laboratory. Copies of analytical laboratory reports are included in Appendix C.

The soil was homogenized at the laboratory to ensure uniform materials for the study. Homogenization was performed by placing the contents of each bucket into a pre-cleaned plastic mixing pan and gently blending by hand using a stainless steel spoon until visually homogenous. Any particles measuring greater than 0.5 inches in diameter were broken into more manageable sizes or were removed in order to facilitate bench-scale treatment and adhere to particle-size limits outlined in certain ASTM and EPA test methods.

After homogenizing each bucket separately, KEMRON combined and homogenized the buckets labeled "TP-TTWP-S" and "TP-TTWP-LF" together to form the "ISS South" composite, and the buckets labeled "TP-TTWP-C&WF" and "TP-TTWP-N&WF" were combined and homogenized together to form "ISS North" composite.

3.1 ISS Baseline Analysis

The results of the baseline analysis of the untreated material are presented in Table 2 (physical testing) and Table 3 (analytical testing). Results indicated that the ISS South and ISS North composite materials are classified as black silty sands (SM) with a slightly acidic pH of 6. The ISS South material has a significantly higher organic content (9.18%) and soluble sulfate concentration (35.43 grams SO4/kg soil) than the ISS North material (3.61% and 15.65 grams SO4/kg soil).

The soluble sulfate concentration results indicated that the soil at the site represents severe to very severe sulfate exposure (Hayes 2007). Publications are available describing mitigation measures to prevent sulfate attack of Portland Cement (Bhatty and Taylor 2006; Lafarge 2016). One of the mitigation measures is to use an amendment mix that includes ground granulated blast furnace slag (GGBFS) such that the maximum ratio of Type I Portland Cement to GGBFS is 2:1.

In addition to physical properties testing, untreated composite materials were subjected to analytical testing. In general, the results of analytical testing indicate that the untreated ISS North was slightly more impacted than the untreated ISS South. Concentrations of PAHs and PCP were relatively low in both untreated composite samples. A summary of the results of the analytical testing are provided on Table 3, and analytical reports for the untreated materials are included in Appendix C.

The results of the analytical testing indicated lower contaminant concentrations in ISS North than expected when compared to previous analytical testing of site samples. The

ISS North sample was spiked to provide a material with a significantly higher degree of contaminant concentrations and more closely match anticipated site conditions. The spiked material was prepared by blending 1,380 grams of light non-aqueous phase liquid (LNAPL) obtained from the site (from monitoring well TL-MW-02) with 46 kilograms of the untreated ISS North sample. Spiking was performed by placing the entire 46 kilograms of the ISS North sample into a large mixing bin at the laboratory. The LNAPL was then introduced and blended thoroughly with the soil. The spiked ISS North was then returned to the storage containers, placed in a 4-degree-Celsius (°C) walk-in cooler, and allowed to equilibrate for a period of 24 hours. Duplicate aliquots of the spiked ISS North material ("ISS North Spiked") were then sampled and forwarded to Test America for the untreated material analyses previously outlined.

Analytical testing results from the ISS North Spiked sample showed increases in concentrations of indicator hazardous substances (IHSs). The PCP concentration increased from 2.17 milligrams per kilograms (mg/kg) to 20.2 mg/kg (duplicate sample result of 20.1 mg/kg). TPH concentrations increased with the C10-C24 range rising from 859 mg/kg to 18,700 mg/kg (duplicate sample result of 9,580 mg/kg) and the C24-C40 range rising from 35.7 mg/kg to 599 mg/kg (duplicate sample result of 372 mg/kg). The 1-Methylnaphthalene concentration increased from 24.8 mg/kg to 226 mg/kg (duplicate sample result of 141 mg/kg) and 2-Methylnaphthalene concentration increased from 34.8 mg/kg to 359 mg/kg (duplicate sample result of 218 mg/kg). These results are summarized on Table 3.

Comparing the spiked results to the existing soil data in the ISS area presented in Section 6 of the RI/FS¹, suggests that the spiked data represents above average soil conditions. Existing data from the ISS area includes the highest PCP result in site soil samples, soil from test pit TP-6 at 6 ft bgs with a concentration of 221 mg/kg. Including this sample, the average PCP concentration in the ISS area is approximately 17.8 mg/kg and the median concentration is 0.73 mg/kg, lower than the spiked result of 20.2 mg/kg. Excluding the highest sample, the average PCP concentration in the ISS area is approximately 2.3 mg/kg and the median concentration is 0.91 mg/kg. The ISS area encompasses the LNAPL plume and represents some of the highest concentrations of TPH in soil and groundwater. The average soil concentration of TPH (sum of diesel and lube oil range TPH) in the ISS area is approximately 11,444 mg/kg and the median is 4,376 mg/kg, lower than the spiked result of 19,299 mg/kg.

¹ Averages were determined using the plume area shown on RI/FS Figures 6-29 and 6-30 for PCP and figures 6-9 and 6-10 for TPH. These figures present data from samples collected 5-15 ft bgs, consistent with ISS test pit depths. Data from the following samples were included in the average calculation: TP-6, TL-DP-2,TL-MW-1, TP-3, TL-MW-15, TP-2, HEI-SP-A, TL-DP-4, TP-14, HS-MW-8, HS-MW-13, TL-DP-2, TL-MW-14 and TL-MW-15.

3.2 ISS Preliminary Screening

The following reagents were used to formulate amendment mixtures after reviewing the physical and chemical characterization of the untreated and spiked material:

Reagent	<u>Supplier</u>
Richmond Type I Portland Cement	Lafarge North America, Inc., Seattle, WA
Type II/V Portland Cement	LeHigh Cement Company, Redding, CA
GGBFS Grade 100	Lafarge North America, Inc., Seattle, WA
Hydrogel Bentonite	Wyo-Ben, Inc., Billings, MT
Centralia Class F Fly Ash	LaFarge North America, Inc., Seattle, WA
Lime Kiln Dust (Tacoma LKD)	LeHigh Cement Company, Tacoma, WA

Tap water was used in preparing the amendment mixtures, similar to what would occur during full-scale cleanup. Eighteen samples were prepared in the preliminary screening phase of the study. These samples included nine amendment mixture designs for the ISS South material and nine for the ISS North Spiked material. The nine amendment mixes are summarized in Table 4.

All samples were prepared using a bench-scale Hobart-type mixer at the laboratory. Samples were prepared by placing an aliquot of the untreated material into the mixing chamber. The appropriate reagents were then added as a slurry to the untreated material while the mixer was operating. All reagents (including water) were added on a weight basis. Each sample was blended for a period of 60 to 90 seconds at a rate of approximately 60 revolutions per minute.

The following is a summary of material testing performed on the treated samples, and brief descriptions of the protocols utilized for the stabilization evaluations:

- Pocket penetrometer testing on the mixtures at cure times of 1, 3, and 5 days. Approximately 100 grams of each treated material was placed into a small plastic cup then cured and tested at the above intervals to evaluate the potential setting characteristics. Results of the pocket penetrometer testing are summarized on Table 4.
- After 7 days of curing, the UCS of each of the 18 mixtures was tested. UCS testing was performed in accordance with ASTM Method D1633 by first removing each cured sample specimen from its cylindrical mold. The weight and physical dimensions of the sample were recorded on the appropriate data sheet and the specimen was placed on a UCS load frame and compressed at a rate of 1% strain per minute until the sample failed or 15% strain had been achieved. UCS test results are presented on Table 4.

Seven of the nine samples developed with each of the ISS South and the ISS North Spiked material achieved pocket penetrometer strength gains in excess of 3 tons per square foot.

The results of the 7-day UCS tests show values ranging from 3.9 psi to 31.5 psi. The mixtures developed using Class F Fly Ash and Lime Kiln Dust at addition rates of 10% combined with a 4% Portland cement addition exhibited the lowest strength values. Mixtures including Wyo-Ben Hydrogel Bentonite showed some decrease in strength compared with the same mixtures without the use of bentonite. This strength decrease was more significant in the ISS South samples than the ISS North Spiked samples.

3.3 ISS Advanced Screening

Five amendment mixtures for each sample (ISS South and ISS North Spiked) were selected for advanced screening evaluations based on the results of the preliminary screening. The reagent blends were added to the untreated material using the previously outlined protocol in the preliminary screening evaluations. Lime kiln dust and fly ash were not used as amendments due to the generally low strength results obtained during the preliminary screening. Type II/V (sulfate resistant) Portland Cement was not used as it did not show increased benefit relative to Type I Portland Cement.

The following is a summary of treated material testing performed on the treated samples, and brief descriptions of the protocols utilized for the stabilization evaluations:

- Pocket penetrometer testing on the mixtures following cure times of 1, 3, 5, 7, 14 and 28 days was performed. Approximately 100 grams of each treated material was put into a small plastic cup then cured and tested at the above intervals to evaluate the potential setting characteristics. Results of the pocket penetrometer testing are summarized on Table 5.
- After 7 and 28 days of curing, the UCS of each of the 10 samples was tested. UCS testing was performed in accordance with ASTM Method D1633 by first removing each cured sample specimen from its cylindrical mold. The weight and physical dimensions of the sample were recorded on the appropriate data sheet. The specimen was then placed on the load frame and compressed at a rate of 1% strain per minute until the sample failed or 15% strain had been achieved. UCS test results are presented on Table 5.
- Hydraulic Conductivity testing was conducted on 6 of the 10 samples after 28 days of curing, in accordance with ASTM D5084. Hydraulic Conductivity test results are presented on Table 5.

All of the treated materials achieved a penetrometer strength in excess of 4.5 tons per square foot within 7 days of curing. The results of the 28-day UCS test indicated that all of the treated materials exceeded the performance criteria of 30 psi, with UCS values ranging from 44.1 to 84.9 psi. Since all ten samples achieved the UCS performance

criterion, the samples were selected for hydraulic conductivity testing based on lower cement percentages, lower total amendment percentages, and higher axial strain at failure during UCS testing. The hydraulic conductivity testing indicated that all six of the samples met the performance criteria of 1×10^{-5} cm/s, each by more than an order of magnitude.

The results of UCS and hydraulic conductivity testing were used to select four samples for the LEAF EPA Method 1315 leaching procedure at the 28 day cure period. Since all of the samples achieved the UCS and hydraulic conductivity performance criteria, the samples were selected for leach testing so that the same two amendment mixes were tested for ISS North Spiked and ISS South and results could be compared. The mixes selected for LEAF leach testing were:

- 4.0% Richmond Type I Portland Cement #1047/8.0% NewCem GGBFS 100 #1049 ISS South Sample 0600-019 and ISS North Spiked Sample 0600-024
- 6.0% Richmond Type I Portland Cement #1047/8.0% NewCem GGBFS 100 #1049/1.0%Wyo-Ben Hydrogel Bentonite #807– ISS South Sample 0600-022 and ISS North Spiked Sample 0600-027

EPA Method 1315 was designed specifically to estimate the mass transfer rates (release rates) of analytes contained in a monolith, under diffusion-controlled release conditions, as a function of leaching time. The leach testing was performed using deionized water. There are no specific performance criteria for these tests since test leachate concentrations do not directly translate to expected groundwater concentrations near the solidified mass (monolith). Hydraulic modelling estimates of groundwater flow around the solidified mass are used along with the leach testing results to estimate resulting IHS groundwater concentrations leaving the area of solidification and assess the ability of the full-scale cleanup to achieve cleanup standards.

Eluate samples were collected at leaching intervals of 2 hours, 24 hours, 48 hours, 7 days, 14 days, 28 days, 42 days, 49 days, and 63 days. At each interval, the solidified sample was moved to a fresh deionized water bath, and the resulting eluate was analyzed to determine pH, specific conductivity, and oxidation-reduction potential.

The leachate was then sampled and analyzed for PAHs, PCP, and TPH diesel range. Complete analytical reports and the completed EPA Method 1315 (LEAF) data sheets are included in Appendix C. The analytical data was used to calculate interval flux and cumulative flux for each IHS. The flux was calculated as follows:

• Interval flux is the mass of IHS leached per unit surface area of the ISS sample per unit time for each of the discrete time intervals (milligrams per square meter per second; mg/m²/s). Interval flux is calculated by multiplying the analytical result by the volume of eluate to derive mass IHS leached. The mass is then divided by both the surface area of the ISS sample and the time interval duration.

• The cumulative flux (also called cumulative release) is the cumulative IHS mass released through the most recent time interval divided by the ISS sample surface area through the sampling time interval (milligrams per square meter; mg/m²).

Results for each of the leach tests followed the expected pattern for diffusion-controlled release (ITRC 2011). This pattern is to generally follow a slope of +0.5 for cumulative flux (or -0.5 for interval flux) since diffusion-controlled release is a function of the square root of time. The cumulative flux results for detected IHSs (PCP, 1- and 2-methylnaphthalene, and acenaphthene) are shown on Figure 3. The other IHSs (cPAH TEQ and benzo(a)anthracene) were not detected.

Figure 4 shows the interval flux for PCP from each of the amendment mixtures tested (two for ISS North Spike and two for ISS South). For all four samples tested, the graph illustrates decreasing interval flux with time as diffusion occurs from further within the solidified mass, where the time to release as leachate is proportionate to the distance from the outer edge of the solidified mass. The flux from the ISS South sample mixes is more than two orders of magnitude below the flux from ISS North Spiked sample while the difference between the flux for the two amendment mixtures for each of ISS South and ISS North Spiked is small (less than a factor of two). Further evaluation of the leach test flux data will be performed during remedial design.

Leachate concentrations observed during testing are not representative of groundwater concentrations expected in the area surrounding the solidified mass since the test baths do not reflect the groundwater flow processes of dispersion and advection that will occur when IHSs are released from the solidified mass. Therefore, the laboratory leachate concentrations observed during this test should not be compared to groundwater cleanup levels. However, leachate testing results will be used as a conservative source concentration to inform simplified fate and transport modeling to support cap design.

4 Intertidal Sediment Testing Results

Intertidal sediment treatability samples were delivered to the Materials Testing & Consulting, Inc. (MTC) laboratory in Tukwila, WA for physical testing. The 5-gallon sample from IT-TTWP-S was kept separate from the other samples based on field observation of grain size. To verify field observations, a grain size analysis was performed on IT-TTWP-S. Due to the coarse-grained and free draining nature of the sample (poorly graded sand with gravel, SP), it was not included in the sediment conditioning evaluation.

The other two buckets of sample material (designated as "IT-TTWP-N" and "2.5 gal C + 2.5 gal N") were homogenized by the laboratory. The composite sample was identified as IT-TTWP-N. The grain size analysis indicated the composite sample IT-TTWP-N was a silty sand (SM) with gravel that contained 2.1% organics and 25% moisture. A Proctor test was completed on composite sample IT-TTWP-N with the results showing an optimum moisture content of 7.4%. The results indicated that the *in situ* moisture content of the composited sample (25%) was higher than the optimum moisture content (7.4%) which may present handling/compaction difficulties for the soil.

The ability of IT-TTWP-N to free drain in a soil stockpile to nearer optimum moisture content was assessed using the paint filter test. Free water was not generated during the paint filter test, indicating that the sediment would not free drain in a stockpile. As a result, a preliminary conditioning assessment was performed by amending samples of the sediment with 1%, 3%, and 5% Lafarge Type I Portland Cement. Proctor tests were run on the three samples after they cured for 3 days.

The 5% Portland Cement sample was compactable with the sample moisture content only slightly above optimum moisture content. The 1% Portland Cement sample was still very fluid and not compactable. The 3% Portland Cement sample was above optimum moisture content and pumped slightly to moderately during Proctor testing but this sample was expected to perform adequately with additional curing time. Based on these observations, the remainder of the sediment was amended with 3% Portland Cement and allowed to cure for 28 days prior to additional testing. The sediment amended with 3% Portland Cement was tested for:

- Standard Proctor ASTM D698
- Atterberg Limits ASTM D4318
- Particle Size w/Hydrometer ASTM D422
- Hydraulic Conductivity ASTM D5084
- Consolidated, Undrained Trixial Shear Test ASTM D4767 (Three point)

The laboratory reports are provided in Appendix D. The results indicated that the amended sediment was non-plastic silty sand (SM) with a hydraulic conductivity of 1.8×10^{-4} cm/s. Proctor testing indicated that the optimum moisture content was 11.3%, slightly below the 13% measured moisture content. At 13% moisture, the sediment amended with 3%

Portland Cement is expected to compact to at least 95% of the ASTM D698 maximum dry density after 28 days of curing, thereby providing a workable and compactable material.

A three point consolidated, undrained triaxial test was also performed on the sediment amended with 3% Portland Cement. Testing was performed under confining pressures of 10, 20, and 25 psi, where 25 psi represents about 30 ft of overlying fill soil, consistent with the maximum fill depth identified in conceptual redevelopment plans for the site as a park. These test results can be used during remedial design to evaluate the geotechnical suitability of the amended sediment as upland fill material and stability of the resulting fill slope.

The three triaxial tests exhibited shear failure on a well-defined shear plane. The samples showed very little change in height as a result of initial consolidation, and failed at relatively low strains between 1.5% and 2% strain. Application of additional sample strain after initial failure resulted in relatively minor strength loss, and no significant elevation in sample pore pressure (generally reduction in pore pressure with strain) until the test was stopped at around 12% strain.

These results suggest that the amended material should exhibit relatively little consolidation upon placement. Deformation and behavior should be similar to a well-drained granular soil if/when subsequent loading is sufficient to exceed the shear strength of the amended material.

5 Summary of Results

ISS treatability testing demonstrated that numerous combinations of Type I Portland Cement, GGBFS, and bentonite were capable of achieving the preliminary performance criteria for compressive strength and hydraulic conductivity. The most cost effective amendment mix included 4% Richmond Type I Portland Cement and 8% GGBFS (ISS Mix). These amendments are both locally available with the Portland Cement manufactured in Richmond, British Columbia and the GGBFS, a recycled industrial byproduct, available in Seattle, Washington.

This ISS Mix achieved a 28-day compressive strength of 61 psi for ISS South and 52 psi for ISS North Spiked, and a hydraulic conductivity of 2.4×10^{-7} cm/s for ISS South and 1.4×10^{-7} for ISS North Spiked. The ISS Mix satisfies the performance criteria by achieving the minimum compressive strength of 30 psi and the maximum hydraulic conductivity of 1 x 10^{-5} cm/s. Sulfate compatibility of the amendment mix was achieved by using a Portland Cement to GGBFS ratio of 0.5, well below the maximum allowable ratio of 2.

Axial strain was also considered during ISS amendment mix development to reduce the potential for fracture of the solidified matrix during a significant seismic event. Axial strain for the most cost-effective mix was measured during UCS testing at 1.32% for ISS South and 1.53% for ISS North Spiked. The strain value was the highest reported for the ISS North Spiked sample and was 93% of the maximum strain value reported for the ISS South samples.

Intertidal sediment conditioning treatability testing was performed to estimate how much amendment would be required to create a workable, soil-like material that could be placed in the upland and be geotechnically suitable for the planned future land use as a park. Testing indicated that amendment with 3% Type I Portland Cement resulted in a suitable material. Additional geotechnical evaluation of the amended sediment will be performed during remedial design based on the data generated during treatability testing.

6 Discussion and Recommendations

Given a preferred ISS mix of 4% Richmond Type I Portland Cement and 8% GGBFS, this section discusses some specific issues that have been raised by Ecology with respect to the effectiveness of ISS, specifically:

- pH of groundwater downgradient of the ISS matrix
- Leaching of arsenic due to elevated pH
- Clarity of LEAF testing results

Recommendations for application of ISS to the site are also presented.

6.1 Groundwater pH

The measured pH of water during the LEAF testing was typically 11.5 after the first few exchanges of water. This is anticipated since the pore solution of hydrating cement typically has a pH of about 12 to 13 while the use of GGBFS in the ISS mix decreases the pH relative to a 100% Portland cement mix.

While the ISS mix is not identical to a concrete mix, it can be informative to consider information from studies on concrete. As concrete cures, the connectivity of the voids within the concrete decreases, reducing the permeability of the concrete and the connection between the pore solution and the concrete surface (Kosmatka and Wilson 2011). In addition, weathering or carbonation of the concrete further reduces pH at the concrete surface. The California Department of Transportation performed research (CTC & Associates 2016) and identified four literature citations related to measuring the effects of concrete construction within waterways on surface water pH. The research showed that surface water pH declines to neutral levels with a few days of construction.

Our research identified limited groundwater pH data associated with two solidification/stabilization sites: Steel Pepper and Sydney Tar Ponds. Solidification/stabilization performed in 1993 at Pepper Steel used a mix of Portland Cement and fly ash. Groundwater data was collected from the Pepper Steel site in 2017 from four perimeter wells and two wells located within the monolith (USEPA 2017). The pH measured during groundwater sampling ranged between 7.16 and 8.85. ISS was performed at Sydney Tar Ponds between 2010 and 2012. Groundwater monitoring was performed quarterly during construction (Dillon 2012). Thirteen of the wells were located within about 100 feet of the ISS monolith. The seven wells located downgradient of the ISS area had pH ranging from 7.3 to 8. Four of the upgradient wells had pH ranging from 7 to 7.6; however, two of the upgradient wells had pH of 11.7. One of these locations was adjacent to active ISS-related construction but it was unclear why the other upgradient well had elevated pH.

Based on this analysis, we would expect the pH to drop rapidly from the face of the ISS monolith to downgradient groundwater.

6.2 Leaching of Arsenic

The potential for non-IHS metals present in site soil or metals introduced through ISS amendments to leach into groundwater at concentrations that present a risk to human health and the environment is discussed in this section

The solubility of most metals is lowest at a pH between 9 and 12 and the solubility of dissolved organic carbon tends to increase rapidly above pH 11 (ITRC 2011). Other metals such as arsenic and hexavalent chromium, depending on speciation, may not respond in a similar manner. For this site, Ecology expressed concern regarding the potential for the elevated pH to increase the leaching and, therefore, the groundwater concentration of arsenic. To assess this potential, we reviewed the following:

- Metals introduced in ISS amendments
- Current metals concentrations at the site
- Arsenic speciation
- Case study data

6.2.1 Metals in ISS Amendments

Analyses for metals in Richmond Type I Portland Cement and GGBFS (NewCem) were provided by Lafarge at the outset of the project. Total and TCLP metals were provided for NewCem GGBFS while only TCLP data were provided for Richmond Type I Portland Cement.

Analyte	GGBFS (N	NewCem)	Richmond Type I PC
	Total Metals (mg/kg)	TCLP Metals (mg/L)	TCLP Metals (mg/L)
Arsenic	<32.2	<0.011	<0.011
Barium	393	0.38	0.84
Cadmium	<0.32	<0.0016	<0.0016
Chromium	13.0	<0.0034	0.70
Lead	<16.1	<0.0042	<0.0042
Selenium	<4.0	<0.017	<0.017
Silver	<0.81	<0.0035	<0.0035
Mercury	<0.091	<0.00011	<0.00011

TCLP testing does not provide the most representative data due to the acidic conditions created during the test, but this is the only data available.

6.2.2 Metals in Site Soil

Arsenic and hexavalent chromium are not IHSs the Site; arsenic has only been detected at low concentrations and hexavalent chromium has not been detected. The data presented below are from Table 6-4 of the RI/FS (GeoEngineers 2015) for two investigation locations upgradient of the proposed ISS area.

Sample ID	Arsenic	Chromium	Hexavalent		
	(mg/kg)	(mg/kg)	Chromium (mg/kg)		
HS-DP-1-4-6	4.35	36.7	<2		
HS-DP-1-8-10	7.39	41.4	<1.9		
HS-DP-1-12-14	7.67	68.3	<1.7		
HS-DP-5B-0-2	3.29	13.2	<2		
HS-DP-5B-8-10	1.54	19.1	<1.8		
HS-DP-5B-12-16	3.42	43.3	<1.6		

6.2.3 Arsenic Speciation

Arsenic solubility is affected by pH, but it is also affected by redox conditions, the presence of sulfides, and other factor that influence speciation. In general, arsenite (As(III)) is present in less reducing conditions and arsenate (As(V)) is present under more reducing conditions. As(III) is both more soluble and more toxic.

Oxidation-reduction potential (ORP) measurements from site groundwater typically ranged between -350 and -100 millivolts (mV) while eluate ORP was measured during bench testing at about +10 to +15 mV after the first several water exchanges. In order to convert ORP to redox potential (Eh) using the standard electrode, 200 to 250 mV needs to be added to the ORP results. As a result, the typical Eh measured in site groundwater ranges between -150 and +150 mV while the Eh for the ISS mix ranges between approximately +200 and +250 mV. Applying these Eh values and the pH data presented above to the Eh-pH diagram for arsenic-water systems we get the following results:

- For current site conditions, AS(III) is present as H₃AsO₃
- For the ISS data, As(V) is present as HAsO₄²⁻

This is a highly simplified review of site data and it is important to note that the eluate water was exposed to air.

The use of GGBFS in addition to cement introduces iron sulfide that is naturally present in the slag and provides reducing capability.

6.2.4 Case Study Data

Based on available case studies, leachable metals typically were not evaluated at sites where these metals were not the source of contamination, including sites that use GGBFS. However, sites where these metals were a source of contamination have been successfully addressed using cement-based solidification/stabilization. Several examples have been presented in the literature, including Pepper Steel, American Creosote and Sydney Tar Ponds (CCLR et al 2010; Bates and Hills 2015; Public Works and Government Services Canada 2014).

At Pepper Steel, arsenic concentrations were present in soil at up to 50 mg/kg along with PCBs and lead. Using a cement and fly ash amendment, SPLP results from cores taken 16 years after project implementation had arsenic results of 4 to 8 ug/L. In addition, groundwater samples were collected from the Pepper Steel site in 2017 from four perimeter wells and two wells located within the monolith (USEPA 2017). Arsenic concentrations were 1.7 and 5.6 ug/L in the monolith samples and ranged between <1 and 1.1 ug/L in the perimeter wells.

At American Creosote in 1999 and 2000, a cement, fly ash, and activated carbon amendment was used to address elevated arsenic, PCP, PAH, and dioxins. It was reported that SPLP leachate concentrations were reduced from 9,600 ug/L for PCP and 155 ug/L for cPAH TEQ in untreated soil to <100 ug/L and <1 ug/L, respectively, after ISS. Cores were also collected in 2003 and tested using SPLP. Leachate from 4 of 5 samples tested had no detectable arsenic. The fifth core had a reported SPLP leachate concentration of 20 ug/L arsenic.

At Sydney Tar Ponds, ISS was performed in 2010 through 2012 using Portland Cement to address PAHs, PCBs, TPH, and metals. Quarterly groundwater monitoring was performed during the construction years (Dillon 2012). Thirteen of the wells were located within about 100 feet of the ISS monolith. The seven wells located downgradient of the ISS area had arsenic concentrations ranging from <0.6 to 8.6 ug/L. The six wells upgradient of the ISS area had arsenic concentrations ranging from <0.6 to 21 ug/L.

6.3 LEAF Testing Data

It is not possible to directly compare measurements from the bench test to expected field results. LEAF results reflect the diffusion of compounds from the ISS matrix in the absence of groundwater flow conditions, thus neglecting the mixing and dilution that will occur in situ. While these results are expected to represent initial conditions after ISS placement rather than a long-term contaminant source, the LEAF results were considered during evaluation of groundwater conditions that may need to be addressed by the adjacent sediment cap. Simplified fate and transport modeling to support cap design utilized the LEAF results as conservative source concentration for modeling.

Eluate measurements typically had detectable concentration of 1-methylnaphthalene, 2methylnaphthalene, diesel-range petroleum, and PCP. Other compounds detected included acenaphthene, anthracene naphthalene, and fluorene, and oil-range petroleum. As expected, concentrations were higher in the ISS North spiked sample than the ISS South sample. Figures 5 and 6 present the diesel range petroleum and PCP eluate concentration data, respectively.

6.4 Recommendations

Additional mix design testing will occur when the selected contractor develops the final mix to satisfy the performance criteria provided in the construction specifications. The performance criteria provided in the specifications will be developed based on the preliminary performance criteria used for treatability testing, these treatability testing results, and the evaluation of leach flux data during remedial design.

ISS treatability sample collection test pits confirmed the presence of significant debris. Pieces of dimensional lumber are present in most locations while bricks, concrete, pipes, and larger wood piles and structures are present less consistently. Small- and medium-sized debris can be incorporated during the ISS mixing process. The larger debris, wood piling, and large pieces of dimensional lumber and concrete will likely prevent *in situ* mixing equipment, such as augers, from working effectively. As a result, this large debris will need to be removed by excavators prior to or during the *in situ* mixing process or the ISS mixing process will need to be performed entirely using excavators. Either approach can be used to effectively solidify the ISS area. The ISS mixing approach decision will be further detailed in the design process and may be left up to the contractor. The QA/QC testing program will verify that performance criteria are achieved during the mixing.

7 References

Bhatty, J. I. and P. C. Taylor 2006. Sulfate Resistance of Concrete Using Blended Cements or Supplementary Cementitious Materials. R&D Serial No. 2916a. Portland Cement Association (PCA). 2006.

Bates, E. and C. Hills 2015. Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice. 2015.

Centre for Contaminated Land Remediation (CCLR) The University of Greenwich, Environmental Research Group University of New Hampshire, and INERTEC 2010. Performance Assessment of Solidified/Stabilised Waste-forms (PASSify). Final Report. March 2010.

CRETE 2015. Treatability Study Work Plan - *In Situ* Solidification and Sediment Conditioning. CRETE Consulting. December 1, 2015.

CTC & Associates 2016. Determining the Appropriate Amount of Time to Isolate Portland Cement Concrete from Receiving Waters. Caltrans Division of Research, Innovation, and System Information. Produced by CTC & Associates, LLC. February 1, 2016.

Dillon Consulting Limited 2012. Year 3 Construction/Remediation 1st Quarter Groundwater Monitoring Event – Final Report. Sydney Tar Ponds Agency. August 3, 2012.

GeoEngineers 2015. Public Review Draft Remedial Investigation/Feasibility Study R.G. Haley Site Bellingham, Washington. August 17, 2015.

Hayes, C.F. 2007. Test Methods for Water-Soluble Sulfate in Soils. R&D Serial No. 3016. Portland Cement Association (PCA). 2007.

ITRC 2011. Development of Performance Specifications for Solidification/Stabilization Guidance. Interstate Technology and Regulatory Council Solidifications/Stabilization Team. July 2011.

Kosmatka, S.H. and M.L. Wilson 2011. Design and Control of Concrete Mixtures. EB001. 15th Edition. Portland Cement Association. 2011.

Lafarge 2016. Richmond I + 30% Seattle NewCem. Letter prepared by Robert Shogren, Regional Technical Director, Lafarge North America. February 2, 2016.

Public Works and Government Services Canada 2014. Final Evaluation of the Sydney Tar Ponds and Coke Ovens Remediation Project. Office of Audit and Evaluation Final Report 2013-602. July 28, 2014. Terzaghi, K. and R.B. Peck. Soil Mechanics in Engineering Practice. Second Edition. 1967

USACE 2015. Nationwide Permit (NWP) 6, *Survey Activities* NWS-2015-779 City of Bellingham. September 22, 2015.

USEPA 2017. Sampling Investigation Report Pepper Steel and Alloys Inc. Medley, Florida. Science and Ecosystem Support Division Project ID: 17-0265. August 17, 2017.

USEPA 1995. Presumptive Remedies for Soils, Sediments, and Sludges at Wood Treater Sites. EPA/540/R-95/128. December 1995.

Tables

Table 2 Untreated Physical Properties Characterization

Testing Decemptor (1)	Test Mathed	11	Untreated	d Material
Testing Parameter (1)	Test Method	Unit	ISS South	ISS North
Particle Size Distribution	ASTM D422			
Gravel		%	5.2	4.5
Sand		%	77.4	70.2
Silt		%	12.1	16.3
Clay		%	5.3	9.0
Sample Description	USCS ASTM D2487		Black Silty Sand	Black Silty Sand
Sample Classification	USCS ASTM D2487		SM	SM
Loss on Ignition	ASTM D2974			
Average ASTM Moisture Content		%	64.66	39.25
Average Loss on Ignition @ 440°C		%	9.18	3.61
Material pH	EPA Method 9045	S.U.	6.44	6.26
Atterberg Limits	ASTM D4318 Method B			
Plastic Limit			NP	NP
Liquid Limit			N/A	N/A
Plasticity Index			N/A	N/A
Soluble Sulfate	ASTM C1580-15	g SO ₄ /	35.43	15.65
		ka soil		

Notes:

Sample color determined by the Munsell Soil Color Charts

%= Percent

S.U. = Standard Units

g SO₄/kg soil = grams of Sulfate per kilogram pf soil

(1) = Testing was performed on homogenized material screen through a 0.5 inch sieve

NP = Nonplastic

N/A = Not Applicable

USCS = Unified Soil Clasification System

Table 3 Untreated Analytical Results

Parameter	Units	ISS South			ISS North			ISS N	lorth Sp	oiked	ISS North Spiked (Duplicate)		
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	Polycyclic Aromatic Hydrocarbons (PAH) 8270D												
1-Methylnaphthalene	mg/Kg	4.47	E	0.0140	24.8	E	0.0699	226	E	0.416	141	E	0.422
2-Methylnaphthalene	mg/Kg	1.88		0.0160	34.8	E	0.0799	359	Е	0.475	218	Е	0.482
Acenaphthene	mg/Kg	0.550		0.00998	1.62	F1	0.00998	14.4		0.297	9.38		0.301
Acenaphthylene	mg/Kg	0.106		0.00899	ND		0.00899	1.69		0.0134	4.07		0.0136
Anthracene	mg/Kg	0.124		0.00899	0.342	F1	0.00899	1.80		0.0134	1.30		0.0136
Benzo[a]anthracene	mg/Kg	ND		0.0150	0.0878		0.0150	0.350		0.0223	0.315		0.0226
Benzo[a]pyrene	mg/Kg	ND		0.0120	0.0661	J	0.0120	0.223		0.0178	0.191		0.0181
Benzo[b]fluoranthene	mg/Kg	0.0450	J	0.0120	0.0693		0.0120	0.276		0.0178	0.218		0.0181
Benzo[g,h,i]perylene	mg/Kg	ND		0.00899	0.0390	J	0.00899	0.139		0.0134	0.127		0.0136
Benzo[k]fluoranthene	mg/Kg	ND		0.0140	0.0470	J	0.0140	0.125		0.0208	0.0910	J	0.0211
Chrysene	mg/Kg	ND		0.00899	0.102		0.00899	0.575		0.0134	0.510		0.0136
Dibenz(a,h)anthracene	mg/Kg	ND		0.00699	ND		0.00699	ND		0.0104	ND		0.0105
Fluoranthene	mg/Kg	0.0658	J	0.00899	0.240		0.00899	1.10		0.0134	0.975		0.0136
Fluorene	mg/Kg	0.317		0.0120	1.32	F1	0.0120	13.3		0.356	8.24		0.362
Indeno[1,2,3-cd]pyrene	mg/Kg	ND		0.00998	ND		0.00998	0.101		0.0149	0.0793	J	0.0151
Naphthalene	mg/Kg	0.105		0.00899	1.09	F1	0.00899	7.73		0.267	5.16		0.0136
Phenanthrene	mg/Kg	0.597		0.00899	3.74		0.0449	33.0		0.267	21.0		0.271
Pyrene	mg/Kg	0.122		0.0120	0.438		0.0120	3.31		0.0178	2.64		0.0181
North West - Total Petroleum Hydrocarbon Diesel (NW-TPH Diesel)													
C10-C24	mg/Kg	452	В	6.98	859	В	13.8	18,700		293	9,580		300
C24-C40	mg/Kg	220		9.98	35.7		1.98	599		29.3	372		30.0
Pentachlorophenol 8151A													
Pentachlorophenol	mg/Kg	0.0488		0.0217	2.17		1.08	20.2		3.21	20.1		6.52

Notes:

mg/Kg = milligram per kilogram

MDL = Method Detect Limit

E = Result exceeded calibration range

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit

and the concentration is an approximate value

B = Compound was found in the blank and sample

F1 = Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) Recovery is outside acceptance limits

Table 4 Preliminary Screening Evaluation Results

				Watar					Unconfined Compressive Strength				Predicted	Axial	
KEMRON			Reagent	Water Addition % by Reagent	Pocket Penotrometer (TSF)			Cure Day	ASTM D2166				28-Day	Final	Strain
Sample	Untreated Material Type	Reagent Type and Identification Number(s)	Addition % by						Moisture	Bulk	Dry Density				
Number			wet Soll wt.	wt.	1 Day	2 Day	5 Dov		Content (%)	(Ib/ft ³)	(lb/ft ³)	UCS (lb/in ²)	UCS (lb/in*)	UCS (lb/in*)	(%)
0600-001	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	2.00	3.75	4.25	7	61.66	97.3	60.2	17.5	23.3	26.8	2.8%
0600-002	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.25	4.50	>4.50	7	63.91	98.3	60.0	24.6	32.8	37.7	2.2%
0600-003	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	2.50	3.75	>4.50	7	64.81	96.8	58.7	28.0	37.3	42.9	1.9%
0600-004	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	2.75	3.00	3.75	7	65.27	97.2	58.8	15.4	20.5	23.6	3.6%
0600-005	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.50	>4.50	7	64.52	98.2	59.7	22.2	29.6	34.0	2.8%
0600-006	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	1.00	1.75	2.00	7	61.42	102.1	63.2	9.2	12.3	14.1	3.5%
0600-007	ISS South	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.75	1.25	7	58.93	100.0	62.9	7.2	9.6	11.0	5.9%
0600-008	ISS South	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.75	3.75	>4.50	7	62.87	97.2	59.7	31.5	42.0	48.3	2.0%
0600-009	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.50	1.50	2.00	7	75.58	92.5	52.7	11.2	14.9	17.2	3.7%
0600-010	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	1.50	3.00	4.25	7	43.47	107.2	74.7	20.0	26.7	30.7	1.9%
0600-011	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.00	4.50	>4.50	7	46.18	105.4	72.1	29.8	39.7	45.7	2.3%
0600-012	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	0.25	2.75	4.00	7	44.64	105.1	72.7	21.4	28.5	32.8	2.8%
0600-013	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	1.50	2.00	3.25	7	44.04	106.1	73.7	19.2	25.6	29.4	2.9%
0600-014	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.5	>4.50	7	45.31	105.8	72.8	30.2	40.3	46.3	2.3%
0600-015	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	0.00	0.75	1.25	7	47.14	106.1	72.1	8.7	11.6	13.3	3.0%
0600-016	ISS North Spiked	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.00	0.00	7	46.07	107.8	73.8	3.9	5.2	6.0	8.4%
0600-017	ISS North Spiked	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.00	2.75	>4.50	7	42.18	106.3	74.8	27.1	36.1	41.6	1.2%
0600-018	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.25	2.75	3.25	7	49.15	103.3	69.3	19.1	25.5	29.3	3.5%

Notes:

% = Percent

lb/ft³ = pounds per cubic foot

Ib/in² = pounds per square inch UCS = Unconfined Compressive Strength

TSF = Tons per square foot

Wt= Weight

GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cement

LKD = Lime Kiln Dust

Table 5 Summary of Advanced Screening

			IS	S South					
Reagent Type and Identification Number(s)	Reagent Addition % by Wet Soil wt.	igent Addition % by KEMRON Axial Strain (%) Wet Soil wt. Sample ID 28 day		UCS (lb/in ²) 28 day	Hydraulic Conductivity (cm/sec) 28 day	KEMRON Sample ID	Axial Strain (%) 28 day	UCS (lb/in ²) 28 day	Hydraulic Conductivity (cm/sec) 28 day
	Performance Critiera			> 30 psi	< 1.0E-5			> 30 psi	< 1.0E-5
Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	0600-019	1.32	61.0	2.4E-07	0600-024	1.53	51.5	1.4E-07
Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	6.00/8.00/1.00	0600-022	1.42	84.9	8.0E-08	0600-027	1.17	79.8	3.5E-08
		The followin	g mixtures were no	t carried forward for	leachability testing				
Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.00/10.00/1.00	0600-020	1.40	80.1	1.5E-08	0600-025	1.17	44.1	Not Tested
Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	8.00/4.00/1.00	0600-023	1.41	57.6	Not Tested	0600-028	1.27	65.8	9.8E-08
Richmond Type I PC #1047/NewCem GGBFS 100 #1049	6.00/6.00	0600-021	1.28	73.2	Not Tested	0600-026	1.03	59.9	Not Tested

Notes:

% = Percent

K = hydraulic conductivity cm/sec - Performace Critieria of 1x10-5 cm/sec

lb/in² = pounds per square inch

UCS = Unconfined Compressive Strength - Performace Critiera of 30 lb/in2, based on site data of SPT logs of 10 to 24 psi.

TSF = Tons per square foot

GGBFS = Grangulated Ground Blast Furnace Slag

PC = Portland Cement

Figures

and will serve as the official record of this communication.

GEOENGINEERS

Figure 1

Woody debris in TP-TTWP-S (left) high volume of wooden piles and timbers. TP-TTWP-N (right) significant large dimensional lumber debris present.

Concrete debris in the surface of TP-TWP-S (left) and woody debris in TP-TTWP-WF (right).

Treatability Study Results R.G. Haley Site, Bellingham Washington November 13, 2019 Figure 2 Examples of Debris Found in Test Pits

1-methylnaphthalene Cumulative Flux

Acenaphthene Cumulative Flux Mean Interval (days) 0.01 0.1 1 10 100 10 Cumulative Flux (mg/m2) slope = 1/20.1 X 0.01 ◆ 0600-019 Acenaphthene □ 0600-022 Acenaphthene ▲ 0600-024 Acenaphthene × 0600-027 Acenaphthene

2-methylnaphthalene Cumulative Flux

	Figure 3
Cumulative Flux for Detect	ed IHSs

Appendix A Test Pit Logs

JP-LF ST PIT		tum :										
FIELD LOG OF TE	t Operator: / <u></u>	levation (ft) : Da tance in Feet										
51:11-02:01	Strider Cens Hitach: 160 t Checked	pit side Surface E Horizontal Di										
	Contractor : <u> Contractor :</u> <u> Contractor : <u> Contractor : <u> Contractor : <u> Contractor : <u> Contractor : <u> Contractor : <u> Contrac</u></u></u></u></u></u></u>	Sketch of										
	ispector : <u>GL3</u> Date : <u>//2-//</u> /eather : <u>C/C4/</u>	Ground Water Samples Feet		F	3	Ľ.	0	¢	101	5	line	
CRETE	Project : KG Harey In: Job No. : Location : Former RG Harey Bellinghon W	Soil Description & Remarks	ind wi silts some gravers	msw w/ oily lense	silty fin sand w/ occasional msw and	Residue at 10' become a nore gray	chunky silt uf semic sand and some wood debris	Insitu pile @ approx 7-0' bas.	Bettom ot		Parton at Tort BILD in l	LIGUILLES ASSAULS

All and a second se

9: 40-10:25 Inspector: 48 Contractor: 541 dec Const.	Date : バートレージ Equipment : /// イルムト / しの ビー - Weather : <u>しんが, (か) ざの</u> Checked By 言葉 覧 話 話 Sketch of bit side Surface Flew		5 2 2	e e			· >
9:44	Uate: /メートをつう Equipmen Weather: <u>C/ビが_/ (お</u> 付 ぎの) 賞 覧 <mark>賞 賞 </mark> Sketch of	Grow Grow Market Concentration of the second	0	, X	100	15,	K

			9:10-9:4	0,	(TP-TTWP-U	(L)
CONVLTING.INC.					FIELD LOG OF TEST PIT	
Project: KG Haley Ins Job No.: Location Former RG Haley Bellinghan We	spector : <u>G</u> Date : <u>/</u> @ eather : <u>0</u> @	16-15 16-15 W, Cold	Contractor : Equipment : Zas	HINEL CONST. HITACHI 160 EN	Operator: Mike	
Soil Description & Remarks	Ground Water Samples	E Sketch	of	oit side Surface Eleve	ation (ft) : Datum :	
Sand wild Silt Organics and gravels w/ Usanc drain fige remnants and Concrete pieces						
wates at approx. 51-6"		5				
Glavel and Silts of Sand and lots of wood debris						
When we she and cily odor. Wood debris was fragmented broken dimensional						
wood waste up to 24" in length wood chips and Churks of Solidified Sandust	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Test pit to approx. 10'						
						-

9:10-9:40

TP-TTWP-A LDLOG OF TEST PIT	Operator : <i>MiKE</i> Jate - Date -	ו (ft) : Datum : Feet											
8:15-9:00	contractor: Stider Const. cquipment: Hitach, 100 Exco Low 305 Checked By:	pit side Surface Elevatio											
	Inspector :	Ground Bepth in Feet Samples	in ref	<i>A</i>	tebris tebris trisonal	<i>4'</i>		à	01	1.21		14	
	Project : KG Haley Job No. : Location : Former RG Havey Belly	Soil Description & Remarks	churchy, bluish graves and or	brownish gray Silty Sand	with subconded coords of 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Innber, tragmented wood 17-Situ piles.	CUHINGS had oily odor and heavy sheen				when he is the form	HT UPPICX 13 SONS CU	snell"Hagnears

RUC_ 9:00

CENERT Project: <u>KG Hatey</u> Inspect Job No.: Job No.: Job No.: Job No.: Job No.: Job No.: Job No.: Soil Description & Remarks Bob No.: Soil Description & Remarks Bob No. Soil Description & Remarks Bob No. Soil Description & Remarks Many Weather Soil Description & Remarks Many Weather Soil Description & Remarks Bob No. Soil	Water Transmission Water Transmission Water Transmission Contract	II. 40 - 12.15 TP-TTUP FIELD LOG OF TEST PIT FIELD LOG OF TEST PIT Participation IIII to the test of test	
black fim said w/ shell	141		-
Bothen al opposed 141			:

11:40-12:15

Appendix B Photographic Log

Appendix B – Photographic Log Page **1** of **8**

Photo 1: Excavator and start of test pitting (at location TP-TTWP-C)

Photo 2: Typical soil stockpile on plastic (at location TP-TTWP-LF)

Photo 3: Typical completed test pit surface (at location TP-TTWP-C)

Photo 4: TP-TTWP-S – High volume of wood debris

Photo 5: TP-TTWP-S – Wood debris

Photo 6: TP-TTWP-LF – Landfill debris (Wood pile not photographed)

Photo 7: TP-TTWP-C – Wood pile

Photo 8: TP-TTWP-C – Abundance of straw and organic debris

Photo 9: TP-TTWP-WF – High volume of wood debris, stained TPH soil

Photo 10: TP-TTWP-WF

Photo 11: TP-TTWP-N – Wood pile and pile cap (wood wall behind pile cap not shown)

Photo 12: TP-TTWP-N – Second large pile encountered

Photo 13: TP-TTWP-N - High volume of large dimensional woody debris in oil-stained saturated layer

Photo 14: Upland Samples – TP-TTWP-WF (Left) and TP-TTWP-N (Right)

Appendix B – Photographic Log Page **8** of **8**

Photo 15: Upland Samples - TP-TTWP-C (both sample containers)

Photo 16: Upland Samples – TP-TTWP-LF (Left) and TP-TTWP-S (Right)

Appendix C ISS Treatability Laboratory Data Report

Washington Wood Preserving In-Situ Soil Stabilization Bench Scale Treatability Study SH0600 Interim Report

KEMRON Environmental Services, Inc. 1359-A Ellsworth Industrial Boulevard Atlanta, Georgia 30318

July 18, 2016

Table of Contents

1.0 INTRODUCTION	1
2.0 MATERIAL RECEIPT, HOMOGENIZATION, AND CHARACTERIZATION	1
3.0 STABILIZATION EVALUATIONS	8
3.1 PRELIMINARY SCREENING EVALUATIONS	8
3.2 ADVANCED SCRRENING EVALUATIONS	11
4.0 CONCLUSIONS	16

List of Tables and Appendices

- Table 1
 Untreated Physical Properties Testing
- Table 2Untreated Analytical Characterization
- Table 3Spiked Untreated Analytical Characterization
- Table 4Preliminary Screening Evaluations
- Table 5Advanced Screening Evaluations
- Table 6LEAF Method 1315 Analytical Characterization
- Appendix A Untreated Physical Properties Testing Data Sheets
- Appendix B Untreated Analytical Characterization Report
- Appendix C Spiked Untreated Analytical Characterization Report
- Appendix D Preliminary Screening Evaluations Design Sheets
- Appendix E Preliminary Screening Physical Properties Testing Data Sheets
- Appendix F Advanced Screening Evaluations Design Sheets
- Appendix G Advanced Screening Physical Properties testing Data Sheets
- Appendix H EPA Method 1315 Data Sheets
- Appendix I EPA Method 1315 Analytical Characterization Report

1.0 INTRODUCTION

KEMRON Environmental Services, Inc. (KEMRON) is pleased to present CRETE Consulting, Inc. (CRETE), with this interim report of the In-Situ Stabilization (ISS) Bench Scale Treatability Study performed on material sampled from the Washington Wood Preserving Site, located in Seattle, Washington. This report provides the methodology and protocols used, as well as the results of testing performed on the untreated and treated site materials.

The objective of the treatability study was to evaluate potential readily available reagents and addition rates capable of achieving the performance criteria, primarily strength and permeability, for ISS and for the reduction of the leachability of contaminants of concern (COCs) from the site soils.

2.0 MATERIAL RECEIPT, HOMOGENIZATION, AND CHARACTERIZATION

On January 8, 2016, KEMRON received four 5-gallon buckets of soil from the site labeled as follows: "TP-TTWP-S, TP-TTWP-LF, TP-TTWP-C&WF, and TP-TTWP-N&WF. Immediately following sample receipt, KEMRON logged the materials into a sample tracking database and placed the soil in a 4-degree-Celsius (°C) walk-in cooler for storage.

Prior to conducting any testing on the untreated site materials, KEMRON homogenized each material type separately to ensure uniform materials for the study. Homogenization was performed by placing the contents of each bucket into a precleaned plastic mixing pan and gently blending by hand using a stainless steel spoon until visually homogenous. Any particles measuring greater than 0.5 inches in diameter were broken into more manageable sizes or were removed in order to facilitate bench-scale treatment and adhere to particle-size limits outlined in certain ASTM and EPA test methods. Approximately 11lbs of oversized debris were removed from the TP-TTWP-N&WF material, 8.5 pounds from the TP-TTWP-C&WF material, 7 pounds from the TP-TTWP-LF material, and 5 pounds from the TP-TTWP-S material. After homogenizing each bucket separately, KEMRON combined and homogenized the buckets labeled "TP-TTWP-S" and "TP-TTWP-C&WF" and "TP-TTWP-N&WF" were combined and homogenized together to form "ISS North Composite."

In order to assist in the selection of potential appropriate reagent(s) and addition rates,

as well as to provide geotechnical information, KEMRON evaluated selected physical properties of the homogenized material by conducting the following tests:

PARAMETER

Material pH Loss on Ignition (@440C) Atterberg Limits Particle Size (w/ Hydrometer) Soluble Sulfate

<u>METHOD</u>

EPA Method 9040 ASTM D2974 ASTM D4318 ASTM D422 ASTM C1580

A summary of the results of the physical properties testing are provided on **Table 1**, and physical properties data sheets for the untreated materials are included in **Appendix A**.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 1

UNTREATED PHYSICAL PROPERTIES CHARACTERIZATION

Testing Decemeter (1)	Teet Method	Unit	Untreated	d Material
Testing Parameter (1)	Test Method	Unit	ISS South Composite	ISS North Composite
Particle Size Distribution	ASTM D422			
Gravel		%	5.2	4.5
Sand		%	77.4	70.2
Silt		%	12.1	16.3
Clay		%	5.3	9.0
Sample Description	USCS ASTM D2487		Black Silty Sand	Black Silty Sand
Sample Classification	USCS ASTM D2487		SM	SM
Loss on Ignition	ASTM D2974			
Average ASTM Moisture Content		%	64.66	39.25
Average Loss on Ignition @ 440°C		%	9.18	3.61
Material pH	EPA Method 9045	S.U.	6.44	6.26
Atterberg Limits	ASTM D4318 Method B			
Plastic Limit			NP	NP
Liquid Limit			N/A	N/A
Plasticity Index			N/A	N/A
Soluble Sulfate	ASTM C1580-15	g SO ₄ /	35.43	15.65
		ka soil		
		ing soll	1	

Notes:

Sample color determined by the Munsell Soil Color Charts

%= Percent

S.U. = Standard Units

g SO₄/kg soil = grams of Sulfate per kilogram pf soil

(1) = Testing was performed on homogenized material screen through a 0.5 inch sieve

NP = Nonplastic

N/A = Not Applicable

USCS = Unified Soil Clasification System

The results of untreated material characterization testing presented in **Table 1** indicate that the ISS South Composite and ISS North Composite material are classified as black silty sands(SM) with a slightly acidic pH (6 s.u.). The ISS North Composite material has a significantly higher organic content (9.18%) and soluable sulfate concentration (200 grams SO4/kg soil) than the ISS South Composite material.

In addition to physical properties testing, aliquots of the untreated composite materials were subjected to the following analytical tests, at Test America Laboratories, Inc. in Nashville, TN, in accordance with the outlined testing methods:

PARAMETER

Total PAH Total Pentachlorophenol NW-TPH Diesel (North West – Total Petroleum Hydrocarbon Diesel)

<u>METHOD</u>

EPA Method 8270 EPA Method 8151 Washington Method

A summary of the results of the analytical testing are provided on **Table 2**, and analytical report for the untreated materials are included in **Appendix B**.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 2

UNTREATED ANALYTICAL CHARACTERIZATION PAHs, NW-TPH Diesel, and Pentachlorophenol

Peremeter	Unito	ISS So	uth Cor	nposite	ISS North Composite				
Farameter	Units	Results	Qual.	MDL	Results	Qual.	MDL		
Polycyclic Aromatic Hydrocarbo	ns (PAH) 82	270D							
Acenaphthene	mg/Kg	0.550		0.00998	1.62	F1	0.00998		
Acenaphthylene	mg/Kg	0.106		0.00899	ND		0.00899		
Anthracene	mg/Kg	0.124		0.00899	0.342	F1	0.00899		
Benzo[a]anthracene	mg/Kg	ND		0.0150	0.0878		0.0150		
Benzo[a]pyrene	mg/Kg	ND		0.0120	0.0661	J	0.0120		
Benzo[b]fluoranthene	mg/Kg	0.0450	J	0.0120	0.0693		0.0120		
Benzo[g,h,i]perylene	mg/Kg	ND		0.00899	0.0390	J	0.00899		
Benzo[k]fluoranthene	mg/Kg	ND		0.0140	0.0470	J	0.0140		
Chrysene	mg/Kg	ND		0.00899	0.102		0.00899		
Dibenz(a,h)anthracene	mg/Kg	ND		0.00699	ND		0.00699		
Fluoranthene	mg/Kg	0.0658	J	0.00899	0.240		0.00899		
Fluorene	mg/Kg	0.317		0.0120	1.32	F1	0.0120		
Indeno[1,2,3-cd]pyrene	mg/Kg	ND		0.00998	ND		0.00998		
Naphthalene	mg/Kg	0.105		0.00899	1.09	F1	0.00899		
Phenanthrene	mg/Kg	0.597		0.00899	3.74		0.0449		
Pyrene	mg/Kg	0.122		0.0120	0.438		0.0120		
North West - Total Petroleum Hy	drocarbon	Diesel (NW	/-TPH D	iesel)					
C10-C24	mg/Kg	452	В	6.98	859	В	13.8		
C24-C40	mg/Kg	220		9.98	35.7		1.98		
Pentachlorophenol 8151A									
Pentachlorophenol	mg/Kg	0.0488		0.0217	2.17		1.08		

Notes:

mg/Kg = milligram per kilogram

MDL = Method Detect Limit

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

B = Compound was found in the blank and sample

F1 = Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) Recovery is outside acceptance limits

In general, the results of analytical testing indicated that the untreated ISS North Composite was slightly more impacted than the untreated ISS South Composite. Concentrations of PAHs and pentachlorophenol were relatively low in both untreated composite materials with the PAH compounds phenanthrene and acenaphthene detected at the highest concentrations in the ISS North Composite at values of 3.74 and 1.62 milligrams per kilogram (mg/KG) respectively, and pentachlorophenol was detected in the ISS North Composite at a concentration of 2.17 mg/Kg. The Northwest Total Petroleum Hydrocarbon Diesel (NW-TPH) analyses indicated hydrocarbon concentrations of 452 mg/kg and 859 mg/kg in the C10-C24 range for the ISS South Composite and ISS North Composite, respectively. In addition, the NW-TPH analyses indicated hydrocarbon concentrations of 220 mg/kg and 35.7 mg/kg in the C24-C40 range for the ISS South Composite and ISS North Composite, respectively.

The results of the analytical testing indicated lower contaminant concentrations than expected. Therefore, KEMRON spiked the ISS North Composite material, per CRETE's request, to provide a material with a significantly higher degree of contaminant of concern (COC) concentrations and more closely mimic anticipated site conditions. The spiked material was prepared by blending 1,380 grams of Light Non-aqueous Phase Liquid (LNAPL) provided from the site with the 46 kilograms of the untreated ISS North Composite material. Spiking was performed by placing the entire 46 kilograms of the ISS North Composite into a large mixing bin. The LNAPL was then introduced and blended thoroughly with the soil. The spiked ISS North Composite was then returned to the storage containers, placed in a 4-degree-Celsius (°C) walk-in cooler, and allowed to equilibrate for a period of 24 hours. Duplicate aliquots of the spiked ISS North Composite material were then sampled and forwarded to Test America for the untreated material analyses previously outlined.

A summary of the results of the analytical testing on the spiked material are provided on **Table 3**, and the complete analytical report for the spiked ISS North Composite material are included in **Appendix C**. The term "ISS North Composite" used in the remainder of this report refers to the "spiked ISS North Composite" material.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 3

SPIKED UNTREATED ANALYTICAL CHARACTERIZATION PAHs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	ISS No	rth Con	nposite	ISS No (D	rth Com uplicat	nposite e)
		Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ns (PAH) 8	270D					
Acenaphthene	mg/Kg	14.4		0.297	9.38		0.301
Acenaphthylene	mg/Kg	1.69		0.0134	4.07		0.0136
Anthracene	mg/Kg	1.80		0.0134	1.30		0.0136
Benzo[a]anthracene	mg/Kg	0.350		0.0223	0.315		0.0226
Benzo[a]pyrene	mg/Kg	0.223		0.0178	0.191		0.0181
Benzo[b]fluoranthene	mg/Kg	0.276		0.0178	0.218		0.0181
Benzo[g,h,i]perylene	mg/Kg	0.139		0.0134	0.127		0.0136
Benzo[k]fluoranthene	mg/Kg	0.125		0.0208	0.0910	J	0.0211
Chrysene	mg/Kg	0.575		0.0134	0.510		0.0136
Dibenz(a,h)anthracene	mg/Kg	ND		0.0104	ND		0.0105
Fluoranthene	mg/Kg	1.10		0.0134	0.975		0.0136
Fluorene	mg/Kg	13.3		0.356	8.24		0.362
Indeno[1,2,3-cd]pyrene	mg/Kg	0.101		0.0149	0.0793	J	0.0151
Naphthalene	mg/Kg	7.73		0.267	5.16		0.0136
Phenanthrene	mg/Kg	33.0		0.267	21.0		0.271
Pyrene	mg/Kg	3.31		0.0178	2.64		0.0181
North West - Total Petroleum Hy	drocarbon	Diesel (NV	V-TPH [Diesel)			
C10-C24	mg/Kg	18,700		293	9,580		300
C24-C40	mg/Kg	599		29.3	372		30.0
Pentachlorophenol 8151A							
Pentachlorophenol	mg/Kg	20.2		3.21	20.1		6.52

Notes:

mg/Kg = milligram per kilogram

MDL = Method Detect Limit

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

The results of the analytical testing of the spiked ISS North Composite showed increases in concentrations of COCs. Pentachlorophenol concentration increased from 2.17 mg/kg to approximately 20 mg/kg, and the NW-TPH Diesel concentrations also increased with the concentration in the C10-C24 range rising from 859 mg/kg to 18,700 mg/kg and the C24-C40 range from 35.7 mg/kg to 599 mg/kg.

3.0 STABILIZATION EVALUATIONS

After reviewing the physical and chemical characterization of the untreated material and spiked material, CRETE and KEMRON decided to use the following reagents to formulate mixture designs:

REAGENT

Type I Portland Cement Type II/V Portland Cement Ground Granulated Blast Furnace Slag (GGBFS) Grade 100 Hydrogel Bentonite Centralia Class F Fly Ash Lime Kiln Dust City Water

SUPPLIER

Lafarge North America, Inc., Seattle, WA LeHigh Cement Company, Redding, CA Lafarge North America, Inc., Seattle, WA

Wyo-Ben, Inc., Billings, MT LaFarge North America, Inc. LeHigh Cement Company, Tacoma, WA City of Atlanta

3.1 Preliminary Screening Evaluations

KEMRON prepared a total of 18 mixtures in the first round of the preliminary screening phase of the study. The mixture design sheets are located in **Appendix D**. The mixture designs are summarized in **Table 4** below. These mixtures included nine (9) mixture designs for the ISS South Composite material and nine (9) for the ISS North Composite material.

The reagent blends were added to the untreated material as a pumpable slurry. In mixtures where bentonite was included, the bentonite was hydrated with a portion of the water used in the mixture development overnight before blending with the other reagent materials and subsequent mixing with the untreated material. The reagent additions were calculated on a by-weight basis according to the quantity of untreated material utilized. The water used in each mixture was based on the total weight of the reagents utilized in the mixture. For example in a mixture with 7.5 percent (%) Portland cement, and 7.5% GGBF Slag with a 75% water addition, for every 100g of untreated material, 7.5 grams (g) of Portland cement was blended with 7.5g of GGBF Slag and then slurried with 11.25g of water and mixed with the untreated material. For mixtures involving bentonite, the water used to hydrated the bentonite overnight is included in the water addition rate reported in the **Table 4**.

All mixtures were prepared using a bench-scale Hobart-type mixer. The mixer has a 4½ quart stainless steel mixing bowl and "flat beater" type paddles. Treatment utilizing this mixer is intended to simulate potential full-scale remediation options, to the closest

extent possible on the bench-scale. This approach is routinely utilized to simulate a wide range of potential full-scale remediation approaches, including both in-situ and exsitu applications. Mixtures were prepared by placing an aliquot of the untreated material into the mixing chamber. The appropriate reagents were then added as a slurry to the untreated material, while mixing. All reagents (including water) were added on a byweight basis. Each mixture was blended for a period of approximately 60 to 90 seconds at a rate of approximately 60 revolutions per minute (rpm).

The following is a summary of treated material curing techniques, testing performed on the treated samples, and brief descriptions of the protocols utilized for the stabilization evaluations:

- The 18 mixtures were poured into cylindrical curing molds. Each sample mold was firmly tapped on a hard surface to remove any air bubbles, and allowed to cure at ambient temperature (68 °F to 72 °F) in moisture-sealed containers.
- Pocket penetrometer testing was performed by KEMRON on the mixtures at cure times including 1, 3, and 5 days. Approximately 100 grams of each treated material was placed into a small plastic cup then cured and tested at the above intervals to evaluate the potential setting characteristics. Results of the pocket penetrometer testing are noted individually on each of the mixture design sheets provided in **Appendix D**, and are summarized on **Table 4** below.
- After 7 days of curing, KEMRON tested the unconfined compressive strength (UCS) of each of the 18 mixtures. UCS testing was performed in accordance with ASTM Method D1633 by first removing each cured sample specimen from its cylindrical mold. The weight and physical dimensions of the sample were recorded on the appropriate data sheet, and the specimen was placed on a UCS load frame and compressed at a rate of 1% strain per minute until the sample failed or 15% strain had been achieved. Throughout the testing, KEMRON documented the load at specific strain values. A representative aliquot of the post-test specimen was then subjected to moisture content testing. UCS test results are presented on Table 4, and the data sheets are provided in Appendix E.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 4

PRELIMINARY SCREENING EVALUATIONS Mixture Designs, Pocket Penetrometer and Unconfined Compressive Strength

KEMRON			Peagent	Water	Pocke	t Penotre	enotrometer		Unconfined Compressive Strength ASTM D2166				
Sample Number	Untreated Material Type	Reagent Type and Identification Number(s)	Addition % by Wet Soil wt.	by Reagent wt.	1 Day	(TSF)	5 Day	Cure Day	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	UCS (lb/in ²)	
0600-001	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	2.00	3.75	4.25	7	61.66	97.3	60.2	17.5	
0600-002	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.25	4.50	>4.50	7	63.91	98.3	60.0	24.6	
0600-003	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	2.50	3.75	>4.50	7	64.81	96.8	58.7	28.0	
0600-004	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	2.75	3.00	3.75	7	65.27	97.2	58.8	15.4	
0600-005	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.50	>4.50	7	64.52	98.2	59.7	22.2	
0600-006	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	1.00	1.75	2.00	7	61.42	102.1	63.2	9.2	
0600-007	ISS South Composite	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.75	1.25	7	58.93	100.0	62.9	7.2	
0600-008	ISS South Composite	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.75	3.75	>4.50	7	62.87	97.2	59.7	31.5	
0600-009	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/W yo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.50	1.50	2.00	7	75.58	92.5	52.7	11.2	
0600-010	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	1.50	3.00	4.25	7	43.47	107.2	74.7	20.0	
0600-011	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.00	4.50	>4.50	7	46.18	105.4	72.1	29.8	
0600-012	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	0.25	2.75	4.00	7	44.64	105.1	72.7	21.4	
0600-013	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	1.50	2.00	3.25	7	44.04	106.1	73.7	19.2	
0600-014	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.5	>4.50	7	45.31	105.8	72.8	30.2	
0600-015	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	0.00	0.75	1.25	7	47.14	106.1	72.1	8.7	
0600-016	ISS North Composite	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.00	0.00	7	46.07	107.8	73.8	3.9	
0600-017	ISS North Composite	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.00	2.75	>4.50	7	42.18	106.3	74.8	27.1	
0600-018	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.25	2.75	3.25	7	49.15	103.3	69.3	19.1	

Notes:

Notes: % = Percent b/n² = pounds per subic foot b/n³ = pounds per square inch UCS = Unconfined Compressive Strength TSF = Tons per square foot Wt= Weight GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cement LKD = Lime Kiln Dust

Review of the test data presented in **Table 4** indicates that of the nine mixtures using the untreated ISS South Composite material, seven of the mixtures achieved pocket penetrometer strength gains in excess of 3.0 tons per square foot (tsf) and eight of the nine mixtures developed using the untreated ISS North Composite material achieved pocket penetrometer strength gains in excess of 3.0 tsf after 5 days of curing.

The results of the 7-day UCS tests indicate that the treated materials exhibited UCS values ranging from 3.9 pounds per square inch (psi) to 31.5 psi. The results indicate that the mixtures developed using Class F Fly Ash and Lime Kiln Dust at an addition rates of 10% combined with a 4% Portland cement addition exhibited the lowest strength values. Mixtures including Wyoming Bentonite showed some decrease in strength compared with the same mixtures without the use of bentonite. This strength decrease was more significant in the treatment of the ISS South Composite than the Spiked ISS North Composite.

3.2 Advanced Screening Evaluations

After review of the results of the Preliminary Screening Evaluations, it was determined that an additional 10 mixtures would be developed using ISS South Composite and ISS North Composite for a second round of screening evaluations. These mixture designs were also provided by CRETE based on recommendations from KEMRON. The mixture design sheets are located in **Appendix F**. The mixture designs are summarized in **Table 5** below.

The reagent blends were added to the untreated material using the previously outlined protocol in the preliminary screening evaluations. The following is a summary of treated material curing techniques, testing performed on the treated samples, and brief descriptions of the protocols utilized for the stabilization evaluations:

- The 10 mixtures were poured into cylindrical curing molds and allowed to cure at ambient temperature (68 °F to 72 °F) in moisture-sealed containers.
- Pocket penetrometer testing was performed by KEMRON on the mixtures following cure times of 1, 3, 5, 7, 14 and 28 days. Approximately 100 grams of each treated material was put into a small plastic cup then cured and tested at the above intervals to evaluate the potential setting characteristics. Results of the pocket penetrometer testing are noted individually on each of the mixture design sheets provided in **Appendix F**, and are summarized on **Table 5** below.
- After 7 and 28 days of curing, KEMRON tested the unconfined compressive strength (UCS) of each of the 10 mixtures. UCS testing was performed in accordance with ASTM Method D1633 by first removing each cured sample specimen from its cylindrical mold. The weight and physical dimensions of the sample were recorded on the appropriate data sheet. The specimen was then placed on the load frame and compressed at a rate of 1% strain per minute until the sample failed or 15% strain had been achieved. Throughout the testing, KEMRON documented the load at specific strain values. A representative

aliquot of the post-test specimen was then subjected to moisture content testing. UCS test results are presented on **Table 5**, and the data sheets are provided in **Appendix G**.

• Hydraulic Conductivity testing was conducted on 6 of the 10 mixtures selected by CRETE after 28 days of curing, in accordance with ASTM D5084. The mixtures were removed from the curing molds, and the weights and physical dimensions of the samples were recorded on the appropriate data sheets. The permeameter was assembled, and the samples were saturated to a minimum value of 95%, and then consolidated using a standard 10-psi confining pressure. Water was then passed through the samples, and the Hydraulic Conductivity was determined. Hydraulic Conductivity test results are presented on **Table 5** below, and the data sheets are provided in **Appendix G**.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 5

ADVANCED SCREENING EVALUATIONS Mixture Designs, Pocket Penetrometer, Unconfined Compressive Strength, and Hydraulic Conductivity

KEMRON			Reagent	Water		Deals					Unconfined Compressive Strength ASTM D2166				Hydraulic Conductivity ASTM D5084				
Sample Number	Untreated Material Type	Reagent Type and Identification Number(s)	Addition % by Wet Soil wt.	by Reagent wt.	1 Day	3 Day	5 Day	7 Day	(13F) 14 Day	28 Day	Day	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	UCS (lb/in ²)	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	K (cm/sec)
0600-019	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	4 00/8 00	80.0	1 50	>4 50	>4 50	>4 50	>4 50	>4 50	7	66.75	95.9	57.5	32.9				
0000-013	135 South Composite	100 #1049	4.00/0.00	00.0	1.50	-4.00	-4.50	24.50	24.30	-4.50	28	61.72	96.6	59.7	61.0	60.3	98	61.3	2.4E-07
0600-020	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	5.00/10.00/1.00	100.0	1.00	>4.50	>4.50	>4.50	>4.50	>4.50	7	67.04	94.5	56.6	43.8				
		100 #1049/wyo-Ben Hydrogei Bentonite #807									28	64.94	95.4	57.9	80.1	62.7	96	59.0	1.5E-08
0600-021	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/6.00	80.0	2.00	4.50	>4.50	>4.50	>4.50	>4.50	7	60.07	96.3	60.1	34.5				
		100 #1049									28	57.77	97.6	61.8	73.2				
0600-022	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/8.00/1.00	100.0	1.00	3.50	>4.50	>4.50	>4.50	>4.50	7	65.33	94.8	57.4	34.4				
		100 #1043/WY0-Dell Hydroger Delitonite #007									28	65.13	94.5	57.2	84.9	63.0	95	58.1	8.0E-08
0600-023	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	8.00/4.00/1.00	100.0	1.75	>4.50	>4.50	>4.50	>4.50	>4.50	7	66.89	95.8	57.4	34.7				
		100 # 1045/Wyo-Ben Hydroger Bentonite #007									28	59.63	97.0	60.7	57.6				
0600-024	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	4.00/8.00	80.0	0.50	3.00	>4.50	>4.50	>4.50	>4.50	7	46.01	106.8	73.2	10.7				
		100 #1045									28	46.60	105.5	71.9	51.5	45.0	105	72.7	1.4E-07
0600-025	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	5.00/10.00/1.00	100.0	0.50	3.50	>4.50	>4.50	>4.50	>4.50	7	46.53	105.6	72.0	27.8				
		100 # 1043/W yo-Dell Hydroger Delitonite #007									28	48.89	104.0	69.9	44.1				
0600-026	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/6.00	80.0	0.75	4.25	>4.50	>4.50	>4.50	>4.50	7	40.35	107.5	76.6	29.2				
		100 #1049									28	39.76	106.3	76.0	59.9				
0600-027	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/8.00/1.00	100.0	0.00	2.00	2.75	>4.50	>4.50	>4.50	7	48.36	104.7	70.5	15.6				
		тоо #то49/wyo-вен нуdrogei велюние #60/									28	47.60	103.0	69.8	79.8	59.5	101	63.1	3.5E-08
0600-028	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	8.00/4.00/1.00	100.0	1.50	3.25	>4.50	>4.50	>4.50	>4.50	7	42.17	105.6	74.3	36.9				
		100 #1049/wyo-ben Hydrogel Bentonite #807									28	43.61	105.3	73.3	65.8	44.8	104	72.0	9.8E-08

Notes: % = Percent

lb/ft³ = pounds per cubic foot

Ib/in² = pounds per square inch UCS = Unconfined Compressive Strength TSF = Tons per square foot

Wt= Weight GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cement

= Testing not requested

Review of the test data presented in **Table 5** indicates that all of the treated materials achieved a penetrometer strength in excess of 4.5 tons per square foot within 7 days of curing. The results of the 7-day UCS tests indicate that only seven of the 10 mixtures met or exceeded the performance criteria of 30 psi. The results of the 28-day UCS test indicate that all of the treated materials exceeded the performance criteria of 30 psi, with UCS values ranging from 44.1 to 84.9 psi. The hydraulic conductivity testing all 6 of the candidate mixtures met the performance criteria of 1 x 10^{-5} cm/sec.

Based on the results of UCS and permeability testing CRETE selected four candidate mixtures for testing utilizing the EPA Method 1315 (LEAF) leaching procedure at the 28 day cure period. The samples were removed from their cylindrical molds and placed in a deionized-water bath in airtight polypropylene containers. The leaching procedure reported in this interim report include 2 hours, 24 hours, 48 hours,, 7 days, 14 days, and 28 days. At each interval, the sample was moved to a fresh DI water bath, and the resulting eluate was analyzed to determine pH, specific conductivity, and oxidation-reduction potential. These parameters are reported in the LEAF data sheets in Appendix H. The leachate was then sampled and shipped to Test America for laboratory analysis of total PAHs, Pentachlorophenol, and NW-TPH Diesel. The results of analytical testing are presented in **Tables 6a, 6b, 6c, and 6d** which are presented below. Complete analytical reports are included in **Appendix I**.

Review of analytical results performed up to the time of this interim report on the LEAF eluate from the four candidate mixtures indicate that mixture 0600-019 did not exhibit detectible concentrations of through the 28 day leaching interval. Naphthalene was the only PAH compound detected in the LEAF eluate from mixture 0600-022, and at concentrations below the reporting limit but above the method detection limit. Analysis of the eluate from mixtures 0600-024 and 027 exhibited several PAH compounds but at concentrations which may be considered relatively low and may meet the treatment goals for the site. The analysis for NW-TPH show that mixture 0600-022 had the lowest detectible concentrations of TPHs in the C10-24 range but no detections in the C24-C40 range. The eluate from mixture 0600-024 had the highest maximum concentration of NW-TPH in the C10-C24 range of 1,040 μ g/L. The results of the Pentachlorophenol analysis show that the eluate from mixtures 0600-019 and 0600-022 exhibited the lowest leachable concentrations of the candidate mixtures subjected to LEAF testing.

CRETE CONSULTING INC, PC WASHINGTON WOOD PRESERVING ISS KEMRON Project No. SH0600

TABLE 6a

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-019 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600-019 (2 hour)			0600-019 (24 hour)			0600-019 (48 hour)			0600-019 (7 day)			0600-019 (14 day)			0600-019 (28 day)			0600-019 (42 day)			0600-019 (49 day)			0600-019 (63 day)		
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarb	ons (PAH)	8270D																										
1-Methylnaphthalene	µg/L	ND		0.310	1.48	J	0.310	1.28	J	0.310	3.60		0.333	4.45		0.333	3.18		0.310									
2-Methylnaphthalene	µg/L	ND		0.345	ND		0.345	ND		0.345	1.11	J	0.370	1.26	J	0.370	0.929	J	0.345									
Acenaphthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Indeno[1,2,3-cd]pyren€	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Phenanthrene	µg/L	ND		0.362	ND		0.362	ND		0.362	ND		0.389	ND		0.389	ND		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum Hydrocarbon Diesel (NW-TPH Diesel)																												
C10-C24	µg/L	83.7	J	26.4	216		26.4	151		26.4	532		26.2	371		26.2	392		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	51.3	J	46.7	49.0	J	46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachloropheno	µg/L	0.412	J	0.279	0.755	J	0.279	ND		0.300	0.390	J,p	0.279	0.352	J,p	0.279	0.344	J,p	0.279									

Notes: $\mu g/L = microgram per Liter$ ND - Non Detect MDL = Method Detect Limil J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Lim and the concentration is an approximate valu p = The %RPD between the primary and confirmation column/detector is >40%. The lower value ha been reported
TABLE 6b

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-022 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600-022 (2 hour) Results Qual. MDL			0600-	-022 (24	1 hour)	0600	-022 (48	hour)	0600	-022 (7	' day)	0600	-022 (14	4 day)	0600	-022 (28	3 day)	0600	-022 (4	2 day)	0600	-022 (49	day)	0600	-022 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarb	ons (PAH)	8270D																										
1-Methylnaphthalene	µg/L	0.318	J	0.310	1.12	J	0.310	0.908	L	0.310	2.73		0.333	3.60		0.333	3.45		0.310									
2-Methylnaphthalene	µg/L	ND		0.345	0.500	J	0.345	ND		0.345	0.866	J	0.370	1.04	J	0.370	0.963	J	0.345									
Acenaphthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Indeno[1,2,3-cd]pyren€	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	0.334	J	0.319	ND		0.319	ND		0.343	0.353	J	0.343	ND		0.319									
Phenanthrene	µg/L	ND		0.362	ND		0.362	ND		0.362	ND		0.389	ND		0.389	ND		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum H	ydrocarbo	n Diesel (N	IW-TPH	Diesel)																								
C10-C24	µg/L	44.7	J	26.4	182		26.4	89.4	J	26.4	387		26.2	290		26.2	450		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	ND		46.7	ND		46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachloropheno	μg/L	0.314	J	0.279	0.640	J	0.279	ND		0.279	0.375	J	0.279	0.319	J,p	0.279	0.291	J,p	0.279									

Notes:

Notes: $\mu g/L = microgram per Liter$ ND - Non Detect MDL = Method Detect Limit J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Lim and the concentration is an approximate valu p = The %RPD between the primary and confirmation column/detector is >40%. The lower value ha been reported

TABLE 6c

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-024 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-024 (2	hour)	0600	-024 (24	hour)	0600-	024 (48	hour)	0600	-024 (7	day)	0600	0-024 (14	4 day)	0600	-024 (28	8 day)	0600	-024 (42	2 day)	0600	-024 (49	9 day)	0600	-024 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarb	ons (PAH)	8270D																										
1-Methylnaphthalen€	µg/L	7.62		0.310	18.1		0.310	20.4		0.310	34.7		0.333	63.1		0.333	62.3		0.310									
2-Methylnaphthalen€	µg/L	9.90		0.345	22.7		0.345	24.8		0.345	40.4		0.370	74.5	E	0.370	74.8		0.690									
Acenaphthene	µg/L	0.522	J	0.276	0.786	J	0.276	0.889	J	0.276	1.24	J	0.296	2.23		0.296	1.97		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	0.438	J	0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	0.477	J	0.276	0.781	J	0.276	0.794	J	0.276	0.928	J	0.296	1.80	J	0.296	1.56	J	0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	0.678	J	0.319	2.10		0.319	2.08		0.319	4.13		0.343	8.04		0.343	7.37		0.319									
Phenanthrene	µg/L	1.22	J	0.362	1.40	J	0.362	1.33	J	0.362	1.04	ſ	0.389	2.22		0.389	1.85		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum H	ydrocarboi	n Diesel (N	W-TPH	Diesel)																								
C10-C24	µg/L	369		26.4	841		26.4	506		26.4	1,040		26.2	976		26.2	947		26.2									
C24-C40	µg/L	ND		47.2	59.4	J	47.2	ND		47.2	70.1	J	46.7	53.8	J	46.7	48.6	J	46.7									
Pentachlorophenol 8151A	-							-															-					
Pentachloropheno	µg/L	47.6	J	14.0	92.6	J	14.0	52.6	J	14.0	142		14.0	139		14.0	144		14.0									

Notes: $\mu g(L = microgram per Liter$ MD - Non Detect MDL = Method Detect Limit J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limand the concentration is an approximate valu<math>E = Result exceeded calibration range

TABLE 6d

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-027 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-027 (2	hour)	0600	-027 (24	hour)	0600-	027 (48	hour)	0600	-027 (7	day)	0600	-027 (14	4 day)	0600	-027 (28	8 day)	0600	-027 (42	2 day)	0600	-027 (49) day)	0600	-027 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarb	ons (PAH)	8270D																										
1-Methylnaphthalene	µg/L	2.58		0.310	12.3		0.310	12.7		0.310	30.5		0.333	43.2		0.333	43.7		0.310									
2-Methylnaphthalen€	µg/L	3.19		0.345	15.1		0.345	15.7		0.345	36.0		0.370	50.1		0.370	50.9		0.345									
Acenaphthene	µg/L	ND		0.276	0.549	J	0.276	0.591	J	0.276	1.08	J	0.296	1.63	L	0.296	1.57	J	0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	0.356	J	0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	0.510	J	0.276	0.551	ſ	0.276	0.904	J	0.296	1.36	J	0.296	1.23	J	0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	1.40	J	0.319	1.32	J	0.319	3.54		0.343	5.03		0.343	4.79		0.319									
Phenanthrene	µg/L	0.630	J	0.362	0.881	ſ	0.362	1.07	J	0.362	1.17	L	0.389	1.81	L	0.389	1.53	J	0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum H	ydrocarboi	n Diesel (N	W-TPH	Diesel)																								
C10-C24	µg/L	179		26.4	364		26.4	309		26.4	873		26.2	731		26.2	737		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	62.9	J	46.7	ND		46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachloropheno	µg/L	27.0	J	5.58	56.5	J	14.0	27.0	J	6.00	72.9	J	14.0	78.9	J	14.0	89.1	J	14.0									

Notes: μg/L = microgram per Liter ND - Non Detect MDL = Method Detect Limil J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Lim

4.0 CONCLUSIONS

KEMRON evaluated a variety of solidification/stabilization treatments recommended by CRETE Consulting, Inc. potentially capable of improving the physical properties of the study materials, and reducing leachability of contaminates of concern (TPH and pentachlorphenol). The treatments utilized various combinations of Type I Portland Cement (PC), Portland Type II/V Portland Cement blend, Ground Granulated Blast Furnace Slag (GGBFS) Grade 100, Hydrogel Bentonite, Class F Fly Ash, and Lime Kiln Dust. The stabilization study was performed in a phased approach to identify and optimize candidate treatment applications.

Untreated material characterization testing identified that the ISS North Composite material was slightly more impacted with COCs than the ISS South Composite material. However, the concentrations of the material were lower than the average concentrations at the site. Therefore, CRETE instructed KEMRON to spike the ISS North Composite material with site NAPL. Both of the composite materials were classified as silty sand (SM), but the ISS South Composite material exhibited a higher percentage of organic matter, a higher moisture content, and a higher amount of soluble sulfate.

After evaluating a preliminary screening of 18 mixture designs (9 mix designs for each of the two composite materials, KEMRON develop 10 additional mixture designs during the advanced screening phase of testing. The UCS testing results in the advanced screening phase, presented on **Table 5** show that all of the treatment mixtures exceeded the site specific treatment criteria of 30 psi at the 28 day curing interval for UCS and a Hydraulic Conductivity performance criteria of 10⁻⁵ cm/sec.

Based on a review of the preliminary and advance screening evaluations, CRETE selected four mixtures to evaluate leaching using EPA Method 1315 (LEAF). The LEAF procedures performed on the four candidate mixtures. KEMRON has completed the first 6 of 9 sampling intervals. The results from the remaining three intervals will be reported under a separate cover.

This report should be reviewed in its entirety including all attachments prior to making decisions concerning a remedial approach. This study is intended to suggest what will occur in the field but does not guarantee the same results.

If you have any questions concerning the data provided in this report, please do not hesitate to contact us at 404-601-6927.

Sincerely,

KEMRON Environmental Services, Inc.

Voncera N Kiles

Tomecia N. Riley Chemical Engineer II

201 AL

Tommy A. Jordan, P.G Program Manager

TABLE 1

UNTREATED PHYSICAL PROPERTIES CHARACTERIZATION

Testing Decemeter (1)	Teet Method	Unit	Untreated	d Material
Testing Parameter (1)	Test Method	Unit	ISS South Composite	ISS North Composite
Particle Size Distribution	ASTM D422			
Gravel		%	5.2	4.5
Sand		%	77.4	70.2
Silt		%	12.1	16.3
Clay		%	5.3	9.0
Sample Description	USCS ASTM D2487		Black Silty Sand	Black Silty Sand
Sample Classification	USCS ASTM D2487		SM	SM
Loss on Ignition	ASTM D2974			
Average ASTM Moisture Content		%	64.66	39.25
Average Loss on Ignition @ 440°C		%	9.18	3.61
Material pH	EPA Method 9045	S.U.	6.44	6.26
Atterberg Limits	ASTM D4318 Method B			
Plastic Limit			NP	NP
Liquid Limit			N/A	N/A
Plasticity Index			N/A	N/A
Soluble Sulfate	ASTM C1580-15	g SO ₄ /	35.43	15.65
		ka soil		
	1	ing soll	1	

Notes:

Sample color determined by the Munsell Soil Color Charts

%= Percent

S.U. = Standard Units

g SO₄/kg soil = grams of Sulfate per kilogram pf soil

(1) = Testing was performed on homogenized material screen through a 0.5 inch sieve

NP = Nonplastic

N/A = Not Applicable

USCS = Unified Soil Clasification System

TABLE 2

UNTREATED ANALYTICAL CHARACTERIZATION PAHs, NW-TPH Diesel, and Pentachlorophenol

Peremeter	Unito	ISS So	uth Cor	nposite	ISS No	rth Con	nposite
Farameter	Units	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ns (PAH) 82	270D					
Acenaphthene	mg/Kg	0.550		0.00998	1.62	F1	0.00998
Acenaphthylene	mg/Kg	0.106		0.00899	ND		0.00899
Anthracene	mg/Kg	0.124		0.00899	0.342	F1	0.00899
Benzo[a]anthracene	mg/Kg	ND		0.0150	0.0878		0.0150
Benzo[a]pyrene	mg/Kg	ND		0.0120	0.0661	J	0.0120
Benzo[b]fluoranthene	mg/Kg	0.0450	J	0.0120	0.0693		0.0120
Benzo[g,h,i]perylene	mg/Kg	ND		0.00899	0.0390	J	0.00899
Benzo[k]fluoranthene	mg/Kg	ND		0.0140	0.0470	J	0.0140
Chrysene	mg/Kg	ND		0.00899	0.102		0.00899
Dibenz(a,h)anthracene	mg/Kg	ND		0.00699	ND		0.00699
Fluoranthene	mg/Kg	0.0658	J	0.00899	0.240		0.00899
Fluorene	mg/Kg	0.317		0.0120	1.32	F1	0.0120
Indeno[1,2,3-cd]pyrene	mg/Kg	ND		0.00998	ND		0.00998
Naphthalene	mg/Kg	0.105		0.00899	1.09	F1	0.00899
Phenanthrene	mg/Kg	0.597		0.00899	3.74		0.0449
Pyrene	mg/Kg	0.122		0.0120	0.438		0.0120
North West - Total Petroleum Hy	drocarbon	Diesel (NW	/-TPH D	iesel)			
C10-C24	mg/Kg	452	В	6.98	859	В	13.8
C24-C40	mg/Kg	220		9.98	35.7		1.98
Pentachlorophenol 8151A							
Pentachlorophenol	mg/Kg	0.0488		0.0217	2.17		1.08

Notes:

mg/Kg = milligram per kilogram

MDL = Method Detect Limit

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

B = Compound was found in the blank and sample

F1 = Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) Recovery is outside acceptance limits

TABLE 3

SPIKED UNTREATED ANALYTICAL CHARACTERIZATION PAHs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	ISS No	rth Con	nposite	ISS No (D	rth Com uplicat	nposite e)
		Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ns (PAH) 8	270D					
Acenaphthene	mg/Kg	14.4		0.297	9.38		0.301
Acenaphthylene	mg/Kg	1.69		0.0134	4.07		0.0136
Anthracene	mg/Kg	1.80		0.0134	1.30		0.0136
Benzo[a]anthracene	mg/Kg	0.350		0.0223	0.315		0.0226
Benzo[a]pyrene	mg/Kg	0.223		0.0178	0.191		0.0181
Benzo[b]fluoranthene	mg/Kg	0.276		0.0178	0.218		0.0181
Benzo[g,h,i]perylene	mg/Kg	0.139		0.0134	0.127		0.0136
Benzo[k]fluoranthene	mg/Kg	0.125		0.0208	0.0910	J	0.0211
Chrysene	mg/Kg	0.575		0.0134	0.510		0.0136
Dibenz(a,h)anthracene	mg/Kg	ND		0.0104	ND		0.0105
Fluoranthene	mg/Kg	1.10		0.0134	0.975		0.0136
Fluorene	mg/Kg	13.3		0.356	8.24		0.362
Indeno[1,2,3-cd]pyrene	mg/Kg	0.101		0.0149	0.0793	J	0.0151
Naphthalene	mg/Kg	7.73		0.267	5.16		0.0136
Phenanthrene	mg/Kg	33.0		0.267	21.0		0.271
Pyrene	mg/Kg	3.31		0.0178	2.64		0.0181
North West - Total Petroleum Hy	drocarbon	Diesel (NV	V-TPH [Diesel)			
C10-C24	mg/Kg	18,700		293	9,580		300
C24-C40	mg/Kg	599		29.3	372		30.0
Pentachlorophenol 8151A							
Pentachlorophenol	mg/Kg	20.2		3.21	20.1		6.52

Notes:

mg/Kg = milligram per kilogram

MDL = Method Detect Limit

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

TABLE 4

PRELIMINARY SCREENING EVALUATIONS Mixture Designs, Pocket Penetrometer and Unconfined Compressive Strength

KEMBON			Peagent	Water	Pocke	t Penotre	ometer		Unco	nfined Com ASTM	pressive Stro D2166	ength
Sample Number	Untreated Material Type	Reagent Type and Identification Number(s)	Addition % by Wet Soil wt.	by Reagent wt.	1 Day	(TSF)	5 Day	Cure Day	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	UCS (lb/in ²)
0600-001	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	2.00	3.75	4.25	7	61.66	97.3	60.2	17.5
0600-002	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.25	4.50	>4.50	7	63.91	98.3	60.0	24.6
0600-003	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	2.50	3.75	>4.50	7	64.81	96.8	58.7	28.0
0600-004	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	2.75	3.00	3.75	7	65.27	97.2	58.8	15.4
0600-005	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.50	>4.50	7	64.52	98.2	59.7	22.2
0600-006	ISS South Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	1.00	1.75	2.00	7	61.42	102.1	63.2	9.2
0600-007	ISS South Composite	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.75	1.25	7	58.93	100.0	62.9	7.2
0600-008	ISS South Composite	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.75	3.75	>4.50	7	62.87	97.2	59.7	31.5
0600-009	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/W yo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.50	1.50	2.00	7	75.58	92.5	52.7	11.2
0600-010	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	80.0	1.50	3.00	4.25	7	43.47	107.2	74.7	20.0
0600-011	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7.00/3.00	80.0	2.00	4.50	>4.50	7	46.18	105.4	72.1	29.8
0600-012	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	0.25	2.75	4.00	7	44.64	105.1	72.7	21.4
0600-013	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	1.50	2.00	3.25	7	44.04	106.1	73.7	19.2
0600-014	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4.5	>4.50	7	45.31	105.8	72.8	30.2
0600-015	ISS North Composite	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	0.00	0.75	1.25	7	47.14	106.1	72.1	8.7
0600-016	ISS North Composite	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10.00	80.0	0.00	0.00	0.00	7	46.07	107.8	73.8	3.9
0600-017	ISS North Composite	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4.00/8.00	80.0	1.00	2.75	>4.50	7	42.18	106.3	74.8	27.1
0600-018	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.25	2.75	3.25	7	49.15	103.3	69.3	19.1

Notes:

Notes: % = Percent b/n² = pounds per subic foot b/n³ = pounds per square inch UCS = Unconfined Compressive Strength TSF = Tons per square foot Wt= Weight GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cement LKD = Lime Kiln Dust

TABLE 5

ADVANCED SCREENING EVALUATIONS Mixture Designs, Pocket Penetrometer, Unconfined Compressive Strength, and Hydraulic Conductivity

KEMRON			Reagent	Water		Deals						Unco	nfined Com ASTM	pressive Stre D2166	ength		lydraulic C ASTM	onductivit	y
Sample Number	Untreated Material Type	Reagent Type and Identification Number(s)	Addition % by Wet Soil wt.	by Reagent wt.	1 Day	3 Day	5 Day	7 Day	(13F) 14 Day	28 Day	Day	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	UCS (lb/in ²)	Moisture Content (%)	Bulk Density (lb/ft ³)	Dry Density (lb/ft ³)	K (cm/sec)
0600-019	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	4 00/8 00	80.0	1 50	>4 50	>4 50	>4 50	>4 50	>4 50	7	66.75	95.9	57.5	32.9				
0000-013	135 South Composite	100 #1049	4.00/0.00	00.0	1.50	-4.00	-4.50	24.50	24.30	-4.50	28	61.72	96.6	59.7	61.0	60.3	98	61.3	2.4E-07
0600-020	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	5.00/10.00/1.00	100.0	1.00	>4.50	>4.50	>4.50	>4.50	>4.50	7	67.04	94.5	56.6	43.8				
		100 #1049/wyo-Ben Hydrogei Bentonite #807									28	64.94	95.4	57.9	80.1	62.7	96	59.0	1.5E-08
0600-021	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/6.00	80.0	2.00	4.50	>4.50	>4.50	>4.50	>4.50	7	60.07	96.3	60.1	34.5				
		100 #1049									28	57.77	97.6	61.8	73.2				
0600-022	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/8.00/1.00	100.0	1.00	3.50	>4.50	>4.50	>4.50	>4.50	7	65.33	94.8	57.4	34.4				
		100 #1043/WY0-Dell Hydroger Delitonite #007									28	65.13	94.5	57.2	84.9	63.0	95	58.1	8.0E-08
0600-023	ISS South Composite	Richmond Type I PC #1047/NewCem GGBFS	8.00/4.00/1.00	100.0	1.75	>4.50	>4.50	>4.50	>4.50	>4.50	7	66.89	95.8	57.4	34.7				
		100 # 1045/Wyo-Ben Hydroger Bentonite #007									28	59.63	97.0	60.7	57.6				
0600-024	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	4.00/8.00	80.0	0.50	3.00	>4.50	>4.50	>4.50	>4.50	7	46.01	106.8	73.2	10.7				
		100 #1045									28	46.60	105.5	71.9	51.5	45.0	105	72.7	1.4E-07
0600-025	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	5.00/10.00/1.00	100.0	0.50	3.50	>4.50	>4.50	>4.50	>4.50	7	46.53	105.6	72.0	27.8				
		100 # 1043/W yo-Dell Hydroger Delitonite #007									28	48.89	104.0	69.9	44.1				
0600-026	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/6.00	80.0	0.75	4.25	>4.50	>4.50	>4.50	>4.50	7	40.35	107.5	76.6	29.2				
		100 #1049									28	39.76	106.3	76.0	59.9				
0600-027	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	6.00/8.00/1.00	100.0	0.00	2.00	2.75	>4.50	>4.50	>4.50	7	48.36	104.7	70.5	15.6				
		тоо #то49/wyo-вен нуdrogei велюние #60/									28	47.60	103.0	69.8	79.8	59.5	101	63.1	3.5E-08
0600-028	ISS North Composite	Richmond Type I PC #1047/NewCem GGBFS	8.00/4.00/1.00	100.0	1.50	3.25	>4.50	>4.50	>4.50	>4.50	7	42.17	105.6	74.3	36.9				
		100 #1049/wyo-ben Hydrogel Bentonite #807									28	43.61	105.3	73.3	65.8	44.8	104	72.0	9.8E-08

Notes: % = Percent

lb/ft³ = pounds per cubic foot

Ib/in² = pounds per square inch UCS = Unconfined Compressive Strength TSF = Tons per square foot

Wt= Weight GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cement

= Testing not requested

TABLE 6a

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-019 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-019 (2	hour)	0600-	019 (24	hour)	0600-	019 (48 I	nour)	0600	0-019 (7	day)	0600	-019 (14	day)	0600	-019 (28	day)	0600-	-019 (42	2 day)	0600	-019 (49	day)	0600	-019 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ons (PAH) 8	270D																										
Acenaphthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Phenanthrene	µg/L	ND		0.362	ND		0.362	ND		0.362	ND		0.389	ND		0.389	ND		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum Hy	drocarbon	Diesel (NW	-TPH Di	esel)																								
C10-C24	µg/L	83.7	J	26.4	216		26.4	151		26.4	532		26.2	371		26.2	392		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	51.3	J	46.7	49.0	J	46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachlorophenol	µg/L	0.412	J	0.279	0.755	J	0.279	ND		0.300	0.390	J,p	0.279	0.352	J,p	0.279	0.344	J,p	0.279									

Notes: µg/L = microgram per Liter ND - Non Detect NDL = Method Detect Limit J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value p = The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported

TABLE 6b

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-022 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-022 (2	hour)	0600-	022 (24	hour)	0600-	022 (48	hour)	0600)-022 (7	day)	0600	-022 (14	day)	0600	-022 (28	day)	0600-	-022 (42	2 day)	0600	-022 (49	day)	0600	-022 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ons (PAH) 8	270D																										
Acenaphthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	0.334	J	0.319	ND		0.319	ND		0.343	0.353	J	0.343	ND		0.319									
Phenanthrene	µg/L	ND		0.362	ND		0.362	ND		0.362	ND		0.389	ND		0.389	ND		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum Hy	drocarbon	Diesel (NW	-TPH D	iesel)																								
C10-C24	µg/L	44.7	J	26.4	182		26.4	89.4	J	26.4	387		26.2	290		26.2	450		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	ND		46.7	ND		46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachlorophenol	µg/L	0.314	J	0.279	0.640	J	0.279	ND		0.279	0.375	J	0.279	0.319	J,p	0.279	0.291	J,p	0.279									

Notes: μg/L = microgram per Liter ND - Non Detect MDL = Method Detect Limit

MILE – Method Detect Limit J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value p = The %RPD between the primary and confirmation column/detector is >40%. The lower value hasbeen reported

TABLE 6c

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-024 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-024 (2	hour)	0600-	024 (24	hour)	0600-	024 (48	hour)	0600	-024 (7	day)	0600	-024 (14	day)	0600	-024 (28	8 day)	0600-	-024 (42	2 day)	0600	-024 (49) day)	0600	-024 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ons (PAH) 8	270D																										
Acenaphthene	µg/L	0.522	J	0.276	0.786	J	0.276	0.889	J	0.276	1.24	J	0.296	2.23		0.296	1.97		0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	0.438	J	0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	0.477	J	0.276	0.781	J	0.276	0.794	J	0.276	0.928	J	0.296	1.80	J	0.296	1.56	J	0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	0.678	J	0.319	2.10		0.319	2.08		0.319	4.13		0.343	8.04		0.343	7.37		0.319									
Phenanthrene	µg/L	1.22	J	0.362	1.40	J	0.362	1.33	J	0.362	1.04	J	0.389	2.22		0.389	1.85		0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum Hy	drocarbon	Diesel (NW	-TPH D	iesel)																								
C10-C24	µg/L	369		26.4	841		26.4	506		26.4	1,040		26.2	976		26.2	947		26.2									
C24-C40	µg/L	ND		47.2	59.4	J	47.2	ND		47.2	70.1	J	46.7	53.8	J	46.7	48.6	J	46.7									
Pentachlorophenol 8151A																												
Pentachlorophenol	µg/L	47.6	J	14.0	92.6	J	14.0	52.6	J	14.0	142		14.0	139		14.0	144		14.0									

Notes: µg/L = microgram per Liter ND - Non Detect MDL = Method Detect Limit

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

TABLE 6d

EPA METHOD 1315 ANALYTICAL RESULTS - 0600-027 SVOCs, NW-TPH Diesel, and Pentachlorophenol

Parameter	Units	0600	-027 (2	hour)	0600-	027 (24	hour)	0600-	027 (48	hour)	0600)-027 (7	day)	0600	-027 (14	day)	0600	-027 (28	day)	0600-	-027 (42	2 day)	0600	-027 (49	day)	0600	-027 (63	day)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarbo	ons (PAH) 8	270D																										
Acenaphthene	µg/L	ND		0.276	0.549	J	0.276	0.591	J	0.276	1.08	J	0.296	1.63	J	0.296	1.57	J	0.276									
Acenaphthylene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
Anthracene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	0.356	J	0.352	ND		0.328									
Benzo[a]anthracene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Benzo[a]pyrene	µg/L	ND		0.328	ND		0.328	ND		0.328	ND		0.352	ND		0.352	ND		0.328									
Benzo[b]fluoranthene	µg/L	ND		0.310	ND		0.310	ND		0.310	ND		0.333	ND		0.333	ND		0.310									
Benzo[g,h,i]perylene	µg/L	ND		0.534	ND		0.534	ND		0.534	ND		0.574	ND		0.574	ND		0.534									
Benzo[k]fluoranthene	µg/L	ND		0.319	ND		0.319	ND		0.319	ND		0.343	ND		0.343	ND		0.319									
Chrysene	µg/L	ND		0.284	ND		0.284	ND		0.284	ND		0.306	ND		0.306	ND		0.284									
Dibenz(a,h)anthracene	µg/L	ND		0.388	ND		0.388	ND		0.388	ND		0.417	ND		0.417	ND		0.388									
Fluoranthene	µg/L	ND		0.276	ND		0.276	ND		0.276	ND		0.296	ND		0.296	ND		0.276									
Fluorene	µg/L	ND		0.276	0.510	J	0.276	0.551	J	0.276	0.904	J	0.296	1.36	J	0.296	1.23	J	0.276									
Indeno[1,2,3-cd]pyrene	µg/L	ND		0.353	ND		0.353	ND		0.353	ND		0.380	ND		0.380	ND		0.353									
Naphthalene	µg/L	ND		0.319	1.40	J	0.319	1.32	J	0.319	3.54		0.343	5.03		0.343	4.79		0.319									
Phenanthrene	µg/L	0.630	J	0.362	0.881	J	0.362	1.07	J	0.362	1.17	J	0.389	1.81	J	0.389	1.53	J	0.362									
Pyrene	µg/L	ND		0.302	ND		0.302	ND		0.302	ND		0.324	ND		0.324	ND		0.302									
North West - Total Petroleum Hy	drocarbon	Diesel (NW	-TPH D	iesel)																								
C10-C24	µg/L	179		26.4	364		26.4	309		26.4	873		26.2	731		26.2	737		26.2									
C24-C40	µg/L	ND		47.2	ND		47.2	ND		47.2	62.9	J	46.7	ND		46.7	ND		46.7									
Pentachlorophenol 8151A																												
Pentachlorophenol	µg/L	27.0	J	5.58	56.5	J	14.0	27.0	J	6.00	72.9	J	14.0	78.9	J	14.0	89.1	J	14.0									

Notes: μg/L = microgram per Liter ND - Non Detect MDL = Method Detect Limit J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit

APPENDIX A UNTREATED PHYSICAL PROPERTIES CHARACTERIZATION DATA SHEETS

LOSS ON IGNITION (ORGANIC CONTENT) ASTM D2974

PROJECT:	Washington Wood Preserving
PROJECT No.:	SH0600
SAMPLE No.:	ISS South Composite
TESTING DATE:	1/27/16
TESTED BY:	TNB
TRACKING CODE:	A635_LI

MOISTURE CONTENT / LOSS ON IGNITION								
1. MOISTURE TIN NO.	А		В		С			
2. WT MOISTURE TIN (tare weight)	61.996	g	61.718	g	63.893	g		
3. WT WET SOIL + TARE	113.200	g	111.605	g	114.084	g		
4. WT DRY SOIL + TARE	92.631	g	92.827	g	94.042	g		
5. WT WATER, Ww	20.569	g	18.778	g	20.042	g		
6. WT DRY SOIL, Ws	30.635	g	31.108	g	30.149	g		
7. WT FINAL SOIL + TARE	89.787	g	90.186	g	91.101	g		
8. WT FINAL SOIL, Wf	27.791	g	28.467	g	27.208	g		
9. WT ORGANICS, Wo	2.844	g	2.641	g	2.941	g		
10. MOISTURE CONTENT(ASTM)	67.14	%	60.36	%	66.48	%		
11. LOSS ON IGNITION	9.28	%	8.49	%	9.76	%		
12. AVERAGE MOISTURE CONTENT	64.66	%						
13. AVERAGE LOSS ON IGNITION	9.18	%						

MATERIAL pH

EPA METHOD 9045 DATA SHEET

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
TESTING DATE:	1/13/2016
TESTED BY:	TNB
TRACKING CODE:	A635_PH

	KEMRON SAI	MPLE No.	MATERIAL pH
1.	ISS South Co	mposite (A)	6.70
2.	ISS South Co	6.48	
3.	ISS South Cor	6.14	
4.			
5.			
6.			
7.			
8.			
9.			
10.			
8		AVERAGE:	6.44

WATER-SOLUBLE SULFATE IN SOIL REPORT FORM By ASTM C1580

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	ISS South Composite
TESTING DATE:	1/22/2016
TESTED BY:	TNB/LC
TRACKING CODE:	A635

SOLUBLE SULFATE TESTING									
Test Parameters	Unite	ISS South Composite			ISS South Composite Dup				
restratameters	Offics	A1	A2	B1	B2	A1	A2	B1	B2
Absorbance		0.160	0.316	0.066	0.035	0.099	0.352	0.044	0.055
SO4 concentration (calibration curve), M	mg/L	25.40	50.16	10.48	5.56	15.71	55.87	6.98	8.73
Mass of soil sample, W	g	30.0	30.0	3.0	3.0	30.0	30.0	3.0	3.0
Volume of Aliqout specimen, A/B	ml	10.0	20.0	10.0	20.0	10.0	20.0	10.0	20.0
Percent of SO4 in dried soil, P	%	0.212	0.209	0.873	0.231	0.131	0.233	0.582	0.364
Average of valid results, P	%	0.381 0.327							
Souble Sulfate	g SO4/kg soil		38.13 32.74				2.74		
					Average Soluble	g SO4/kg soil		35.43	

g SO4/kg soil Sulafate

LOSS ON IGNITION (ORGANIC CONTENT) ASTM D2974

PROJECT:	Washington Wood Preserving
PROJECT No.:	SH0600
SAMPLE No.:	ISS North Composite
TESTING DATE:	1/27/16
TESTED BY:	TNB
TRACKING CODE:	A636_LI

MOISTURE CONTENT / LOSS ON IGNITION								
1. MOISTURE TIN NO.	Α		В		С			
2. WT MOISTURE TIN (tare weight)	65.644	g	65.330	g	63.330	g		
3. WT WET SOIL + TARE	115.776	g	118.804	g	115.284	g		
4. WT DRY SOIL + TARE	101.589	g	103.838	g	100.598	g		
5. WT WATER, Ww	14.187	g	14.966	g	14.686	g		
6. WT DRY SOIL, Ws	35.945	g	38.508	g	37.268	g		
7. WT FINAL SOIL + TARE	100.305	g	102.458	g	99.229	g		
8. WT FINAL SOIL, Wf	34.661	g	37.128	g	35.899	g		
9. WT ORGANICS, Wo	1.284	g	1.380	g	1.369	g		
10. MOISTURE CONTENT(ASTM)	39.47	%	38.87	%	39.41	%		
11. LOSS ON IGNITION	3.57	%	3.58	%	3.67	%		
12. AVERAGE MOISTURE CONTENT	39.25	%						
13. AVERAGE LOSS ON IGNITION	3.61	%						

MATERIAL pH

EPA METHOD 9045 DATA SHEET

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
TESTING DATE:	1/13/2016
TESTED BY:	TNB
TRACKING CODE:	A636_PH

	KEMRON SAI	MPLE No.	MATERIAL pH
1.	ISS North Co	mposite (A)	5.78
2.	ISS North Co	mposite (B)	6.51
3.	ISS North Cor	6.48	
4.			
5.			
6.			
7.			
8.			
9.			
10.			
8		AVERAGE:	6.26

WATER-SOLUBLE SULFATE IN SOIL REPORT FORM By ASTM C1580

Washington Wood Preserving ISS
SH0600
ISS North Composite
1/25/2016
TNB/LC
A636

SOLUBLE SULFATE TESTING									
Test Parameters	Unite	ISS North Composite			ISS North Composite Dup				
restratameters	Onits	A1	A2	B1	B2	A1	A2	B1	B2
Absorbance		0.093	0.154	0.042	0.009	0.054	0.105	0.010	0.021
SO4 concentration (calibration curve), M	mg/L	14.76	24.44	6.67	1.43	8.57	16.67	1.59	3.33
Mass of soil sample, W	g	30.0	30.0	3.0	3.0	30.0	30.0	3.0	3.0
Volume of Aliqout specimen, A/B	ml	10.0	20.0	10.0	20.0	10.0	20.0	10.0	20.0
Percent of SO4 in dried soil, P	%	0.123	0.102	0.556	0.060	0.071	0.069	0.132	0.139
Average of valid results, P	%	0.210 0.103							
Souble Sulfate	g SO4/kg soil	21.00 10.30				0.30			
					Average Soluble	g SO4/kg soil		15.65	

g SO4/kg soil Sulafate

APPENDIX B UNTREATED ANALYTICAL CHARACTERIZATION REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-95693-1

Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Heather Baker

Authorized for release by: 1/28/2016 2:05:23 PM

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

Review your project results through

LINKS

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
QC Association	12
Chronicle	14
Method Summary	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	19

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

TestAmerica Job ID: 490-95693-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
490-95693-1	ISS North Composite	Solid	01/13/16 12:00 01/15/16 09:06
490-95693-2	ISS South Composite	Solid	01/13/16 13:30 01/15/16 09:06

TestAmerica Nashville

Job ID: 490-95693-1

Laboratory: TestAmerica Nashville

Client: Kemron Environmental Services, Inc.

Project/Site: Washington Wood Preserving ISS

Narrative

Job Narrative 490-95693-1

Comments

No additional comments.

Receipt

The samples were received on 1/15/2016 9:06 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS Semi VOA

Method 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 490-313505 and analytical batch 490-313651 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: ISS North Composite (490-95693-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-314611 and analytical batch 490-315175.

Method 8151A: Surrogate recovery for the following sample was outside control limits: ISS North Composite (490-95693-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method NWTPH-Dx: The following samples were diluted due to the nature of the sample matrix: ISS North Composite (490-95693-1), ISS South Composite (490-95693-2) and (490-95693-A-2-E DU). Elevated reporting limits (RLs) are provided.

Method NWTPH-Dx: The following sample contained a hydrocarbon pattern for analyte C24-C40 which does not match a typical Total Petroleum Hydrocarbon (TPH) pattern used by the laboratory for quantitative purposes: ISS North Composite (490-95693-1).

Method NWTPH-Dx: The following samples contained a hydrocarbon pattern that most closely resembles the Diesel Fuel #2 and Motor oil products used by the laboratory for quantitative purposes: ISS South Composite (490-95693-2) and (490-95693-A-2-E DU).

Method NWTPH-Dx: The following sample contained a hydrocarbon pattern for analyte C10-C24 that most closely resembles a Diesel product used by the laboratory for quantitative purposes: ISS North Composite (490-95693-1).

Method NWTPH-Dx: The method blank for preparation batch 490-313582 and analytical batch 490-313591 contained C10-C24 above the method detection limit. This target analyte concentration was less than half the reporting limit (RL); therefore, re-extraction and re-analysis of samples was not performed. Also, all associated sample results were greater than 10x the MB result.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Qualifiers

CC	MC	Comi	
GCI		Selli	

Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	 ı
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
E	Result exceeded calibration range.	
GC Semi V	ΛΟΑ	

Qualifier	Qualifier Description
Х	Surrogate is outside control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: ISS North Composite

Lab Sample ID: 490-95693-1 Matrix: Solid Percent Solids: 67.0

Analyzed

D

Prepared

 Date Collected: 01/13/16 12:00

 Date Received: 01/15/16 09:06

 Method: 8270D - Semivolatile
 Organic Compounds (GC/MS)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit

 Acenaphthene
 1.62
 F1
 0.0669
 0.00998
 mg/Kg

-							•	•	
Acenaphthene	1.62	F1	0.0669	0.00998	mg/Kg	<u>Å</u>	01/19/16 09:01	01/19/16 15:46	1
Acenaphthylene	ND		0.0669	0.00899	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Anthracene	0.342	F1	0.0669	0.00899	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Benzo[a]anthracene	0.0878		0.0669	0.0150	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Benzo[a]pyrene	0.0661	J	0.0669	0.0120	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Benzo[b]fluoranthene	0.0693		0.0669	0.0120	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Benzo[g,h,i]perylene	0.0390	J	0.0669	0.00899	mg/Kg	¢.	01/19/16 09:01	01/19/16 15:46	1
Benzo[k]fluoranthene	0.0470	J	0.0669	0.0140	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Pyrene	0.438		0.0669	0.0120	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Phenanthrene	3.74		0.334	0.0449	mg/Kg	₽	01/19/16 09:01	01/21/16 14:50	5
Chrysene	0.102		0.0669	0.00899	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Dibenz(a,h)anthracene	ND		0.0669	0.00699	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Fluoranthene	0.240		0.0669	0.00899	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Fluorene	1.32	F1	0.0669	0.0120	mg/Kg	₽	01/19/16 09:01	01/19/16 15:46	1
Indeno[1,2,3-cd]pyrene	ND		0.0669	0.00998	mg/Kg	¢	01/19/16 09:01	01/19/16 15:46	1
Naphthalene	1.09	F1	0.0669	0.00899	mg/Kg	¢	01/19/16 09:01	01/19/16 15:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		29 - 120	01/19/16 09:01	01/19/16 15:46	1
2-Fluorobiphenyl (Surr)	107		29 - 120	01/19/16 09:01	01/21/16 14:50	5
Terphenyl-d14 (Surr)	103		13 - 120	01/19/16 09:01	01/19/16 15:46	1
Terphenyl-d14 (Surr)	118		13 - 120	01/19/16 09:01	01/21/16 14:50	5
Nitrobenzene-d5 (Surr)	86		27 - 120	01/19/16 09:01	01/19/16 15:46	1
Nitrobenzene-d5 (Surr)	102		27 - 120	01/19/16 09:01	01/21/16 14:50	5

Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	2.17		1.64	1.08	mg/Kg	<u> </u>	01/25/16 16:25	01/27/16 17:31	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	522	X	10 - 150				01/25/16 16:25	01/27/16 16:28	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	859	В	39.5	13.8	mg/Kg	\ ₽	01/19/16 11:04	01/20/16 16:55	10
C24-C40	35.7		3.95	1.98	mg/Kg	¢	01/19/16 11:04	01/19/16 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	306	X	50 - 150				01/19/16 11:04	01/19/16 18:00	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	33		0.10	0.10	%			01/18/16 11:35	1
Percent Solids	67		0.10	0.10	%			01/18/16 11:35	1

Dil Fac

Client Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Date Collected: 01/13/16 13:30

Client Sample ID: ISS South Composite

Lab Sample ID: 490-95693-2 Matrix: Solid Percent Solids: 60.2

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

6

Date Received: 01/15/16 09:06 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Result Qualifier MDL Unit Analyte RL D Prepared Analyzed ₽ 0.0669 0.00998 mg/Kg 01/19/16 09:01 01/19/16 16:57 Acenaphthene 0.550 ¢ 01/19/16 09:01 01/19/16 16:57 Acenaphthylene 0.0669 0.00899 mg/Kg 0.106 Anthracene 0.124 0.0669 0.00899 mg/Kg ₩ 01/19/16 09:01 01/19/16 16:57 Benzo[a]anthracene ND 0.0669 0.0150 mg/Kg ά 01/19/16 09:01 01/19/16 16:57 ÷Ċ Benzo[a]pyrene ND 0.0669 0.0120 mg/Kg 01/19/16 09:01 01/19/16 16:57 Benzo[b]fluoranthene 0.0450 0.0669 0.0120 mg/Kg ¢ 01/19/16 09:01 01/19/16 16:57 ά Benzo[g,h,i]perylene ND 0.0669 0.00899 mg/Kg 01/19/16 09:01 01/19/16 16:57 Benzo[k]fluoranthene ND 0.0669 0.0140 mg/Kg ¢ 01/19/16 09:01 01/19/16 16:57 Ċ. 0.0669 0.0120 mg/Kg 01/19/16 09:01 01/19/16 16:57 **Pyrene** 0.122 ¢ 01/19/16 09:01 01/19/16 16:57 **Phenanthrene** 0.597 0.0669 0.00899 mg/Kg Chrysene 0.0669 0.00899 mg/Kg Æ 01/19/16 09:01 01/19/16 16:57 ND Dibenz(a,h)anthracene 0.0669 0.00699 mg/Kg ₽ 01/19/16 09:01 01/19/16 16:57 ND **Fluoranthene** 0.0658 0.0669 0.00899 mg/Kg ġ. 01/19/16 09:01 01/19/16 16:57 J 0.0669 0.0120 mg/Kg Φ 01/19/16 09:01 01/19/16 16:57 **Fluorene** 0.317 0.0669 ¢ 01/19/16 09:01 01/19/16 16:57 Indeno[1,2,3-cd]pyrene ND 0.00998 mg/Kg * 01/19/16 09:01 01/19/16 16:57 0.0669 0.00899 mg/Kg **Naphthalene** 0.105 Surrogate %Recovery Qualifier Limits Prepared Analyzed 2-Fluorobiphenyl (Surr) 72 29 - 120 01/19/16 09:01 01/19/16 16:57 Terphenyl-d14 (Surr) 82 13 - 120 01/19/16 09:01 01/19/16 16:57 Nitrobenzene-d5 (Surr) 01/19/16 09:01 01/19/16 16:57 72 27 - 120 Method: 8151A - Herbicides (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Ţ 01/25/16 16:25 01/27/16 16:48 **Pentachlorophenol** 0.0488 0.0329 0.0217 mg/Kg Qualifier Limits Prepared Analyzed Surrogate %Recovery Dichloroacetic acid(Surr) 45 10 - 150 01/25/16 16:25 01/27/16 16:48 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) MDL Unit Analvte **Result Qualifier** RI п Prepared Analvzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	452	В	20.0	6.98	mg/Kg	<u>⊅</u>	01/19/16 11:04	01/19/16 18:55	5
C24-C40	220		20.0	9.98	mg/Kg	¢	01/19/16 11:04	01/19/16 18:55	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150				01/19/16 11:04	01/19/16 18:55	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	40		0.10	0.10	%			01/18/16 11:35	1
Percent Solids	60		0.10	0.10	%			01/18/16 11:35	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-313505/1-A Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 313505

5

6 7

Matrix: Solid Analysis Batch: 313651

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Anthracene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Pyrene	ND		0.0670	0.0120	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Chrysene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Fluorene	ND		0.0670	0.0120	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		01/19/16 09:01	01/19/16 14:59	1
	MB	MB							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	80		29 - 120	01/19/16 09:01	01/19/16 14:59	1
Terphenyl-d14 (Surr)	87		13 - 120	01/19/16 09:01	01/19/16 14:59	1
Nitrobenzene-d5 (Surr)	78		27 - 120	01/19/16 09:01	01/19/16 14:59	1

Lab Sample ID: LCS 490-313505/2-A Matrix: Solid Analysis Batch: 313651

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 313505

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1.67	1.298		mg/Kg		78	36 - 120	
Acenaphthylene	1.67	1.284		mg/Kg		77	38 - 120	
Anthracene	1.67	1.343		mg/Kg		81	46 - 124	
Benzo[a]anthracene	1.67	1.333		mg/Kg		80	45 - 120	
Benzo[a]pyrene	1.67	1.323		mg/Kg		79	45 - 120	
Benzo[b]fluoranthene	1.67	1.336		mg/Kg		80	42 - 120	
Benzo[g,h,i]perylene	1.67	1.329		mg/Kg		80	38 - 120	
Benzo[k]fluoranthene	1.67	1.257		mg/Kg		75	42 - 120	
Pyrene	1.67	1.257		mg/Kg		75	43 - 120	
Phenanthrene	1.67	1.250		mg/Kg		75	45 - 120	
Chrysene	1.67	1.263		mg/Kg		76	43 - 120	
Dibenz(a,h)anthracene	1.67	1.353		mg/Kg		81	32 - 128	
Fluoranthene	1.67	1.309		mg/Kg		79	46 - 120	
Fluorene	1.67	1.287		mg/Kg		77	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.330		mg/Kg		80	41 - 121	
Naphthalene	1.67	1.177		mg/Kg		71	32 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	77		29 - 120
Terphenyl-d14 (Surr)	81		13 - 120

TestAmerica Nashville

QC Sample Results

Limits

27 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

83

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Lab Sample ID: LCS 490-313505/2-A

Matrix: Solid

Surrogate

Analysis Batch: 313651

Nitrobenzene-d5 (Surr)

Client Sample ID: ISS North Composite

Client Sample ID: ISS North Composite

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 313505** 7

Lab Sample ID: 490-95693-1 MS Matrix: Solid

Analysis Batch: 313651									Prep Batch: 313505
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.62	F1	2.45	4.099		mg/Kg	<u>Å</u>	101	19 - 120
Acenaphthylene	ND		2.45	1.885		mg/Kg	¢	77	25 - 120
Anthracene	0.342	F1	2.45	0.5526	F1	mg/Kg	¢	9	28 - 125
Benzo[a]anthracene	0.0878		2.45	1.608		mg/Kg	¢	62	23 - 120
Benzo[a]pyrene	0.0661	J	2.45	1.605		mg/Kg	¢	63	15 - 128
Benzo[b]fluoranthene	0.0693		2.45	1.673		mg/Kg	¢	66	12 - 133
Benzo[g,h,i]perylene	0.0390	J	2.45	1.489		mg/Kg	¢	59	22 - 120
Benzo[k]fluoranthene	0.0470	J	2.45	1.482		mg/Kg	¢	59	28 - 120
Pyrene	0.438		2.45	2.267		mg/Kg	¢	75	20 - 123
Phenanthrene	3.38	EF1	2.45	7.352	EF1	mg/Kg	¢	162	21 - 122
Chrysene	0.102		2.45	1.562		mg/Kg	¢	60	20 - 120
Dibenz(a,h)anthracene	ND		2.45	1.439		mg/Kg	¢	59	12 - 128
Fluoranthene	0.240		2.45	1.876		mg/Kg	¢	67	10 - 143
Fluorene	1.32	F1	2.45	3.704		mg/Kg	¢	97	20 - 120
Indeno[1,2,3-cd]pyrene	ND		2.45	1.453		mg/Kg	¢	59	22 - 121
Naphthalene	1.09	F1	2.45	3.119		mg/Kg	¢	83	10 - 120

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	53		29 - 120
Terphenyl-d14 (Surr)	60		13 - 120
Nitrobenzene-d5 (Surr)	60		27 - 120

Lab Sample ID: 490-95693-1 MSD Matrix: Solid Analysia Potoby 212651

Analysis balch: 515051									Ргер Ба	aton: 5	13505
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	1.62	F1	2.43	5.369	E F1	mg/Kg	\ ☆	155	19 - 120	27	50
Acenaphthylene	ND		2.43	2.553		mg/Kg	☆	105	25 - 120	30	50
Anthracene	0.342	F1	2.43	0.5963	F1	mg/Kg	☆	10	28 - 125	8	49
Benzo[a]anthracene	0.0878		2.43	2.193		mg/Kg	¢	87	23 - 120	31	50
Benzo[a]pyrene	0.0661	J	2.43	2.139		mg/Kg	☆	85	15 - 128	29	50
Benzo[b]fluoranthene	0.0693		2.43	2.073		mg/Kg	☆	83	12 - 133	21	50
Benzo[g,h,i]perylene	0.0390	J	2.43	2.011		mg/Kg	¢	81	22 - 120	30	50
Benzo[k]fluoranthene	0.0470	J	2.43	2.113		mg/Kg	☆	85	28 - 120	35	45
Pyrene	0.438		2.43	2.983		mg/Kg	☆	105	20 - 123	27	50
Phenanthrene	3.38	EF1	2.43	9.428	E F1	mg/Kg	¢	249	21 - 122	25	50
Chrysene	0.102		2.43	2.070		mg/Kg	☆	81	20 - 120	28	49
Dibenz(a,h)anthracene	ND		2.43	1.985		mg/Kg	☆	82	12 - 128	32	50
Fluoranthene	0.240		2.43	2.441		mg/Kg	¢	91	10 - 143	26	50
Fluorene	1.32	F1	2.43	4.892	E F1	mg/Kg	₽	147	20 - 120	28	50

TestAmerica Nashville

Prep Type: Total/NA

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-95693 Matrix: Solid Analysis Batch: 313651	3-1 MSD	Samala	Spiko	Men	MSD	Client	: Sam	ple ID:	ISS North Prep Tyj Prep Ba	Comp De: Tot atch: 31	osite al/NA 13505
Analyta	Bocult	Ouglifier	Addod	Pocult	Qualifier	Unit	п	% Poc	/onec.	DDD	Limit
Allalyte	Result	Quaimer	Auueu	Result	Quaimer	Unit		/orec	Linits		LIIIII
Indeno[1,2,3-cd]pyrene	ND		2.43	1.977		mg/Kg	Þ	82	22 - 121	31	50
Naphthalene	1.09	F1	2.43	4.034	F1	mg/Kg	¢	121	10 - 120	26	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	72		29 - 120								
Terphenyl-d14 (Surr)	82		13 - 120								
Nitrobenzene-d5 (Surr)	80		27 - 120								

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 490-314 Matrix: Solid Analysis Batch: 315175	1611/1-A MF	3 MB					Clie	ent Samp	ole ID: Method Prep Type: To Prep Batch:	l Blank otal/NA 314611
Analyte	Resul	t Qualifier	RL	MDL	Unit	D	P	repared	Analyzed	Dil Fac
Pentachlorophenol	N	<u> </u>	0.0330	0.0217	mg/K	g	01/2	25/16 16:24	01/27/16 16:01	1
	М	3 <i>MB</i>								
Surrogate	%Recover	y Qualifier	Limits				P	repared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	2	8	10 - 150				01/2	25/16 16:24	01/27/16 16:01	1
Lab Sample ID: LCS 490-31 Matrix: Solid Analysis Batch: 315175	4611/2-A		Spike	LCS LC	s	Clier	it Sa	mple ID:	Lab Control S Prep Type: To Prep Batch: %Rec.	Sample otal/NA 314611
Analyte			Added	Result Qu	alifier	Unit	D	%Rec	Limits	
Pentachlorophenol			0.0833	0.02562 J		mg/Kg		31	10 - 150	
	LCS LC	s								
Surrogate	%Recovery Qu	ıalifier	Limits							
Dichloroacetic acid(Surr)	29		10 - 150							

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-313 Matrix: Solid Analysis Batch: 313591	582/1-A MB	МВ					Client Samp	le ID: Method Prep Type: To Prep Batch: 3	I Blank otal/NA 313582
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	1.766	J	4.00	1.40	mg/Kg		01/19/16 11:04	01/19/16 17:44	1
C24-C40	ND		4.00	2.00	mg/Kg		01/19/16 11:04	01/19/16 17:44	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	73		50 - 150				01/19/16 11:04	01/19/16 17:44	1

TestAmerica Nashville
5

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 490-3 Matrix: Solid Analysis Batch: 313591 Analyte C10-C24	13582/2-A		Spike Added 40.0	LCS Result 31.59	LCS Qualifier	Clier Unit mg/Kg	nt Sar	mple ID %Rec 79	Lab Control Sa Prep Type: Tot Prep Batch: 3 %Rec. Limits 55 - 129	ample tal/NA 13582
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	69		50 - 150							
Lab Sample ID: 490-95693 Matrix: Solid Analysis Batch: 313591	-2 DU					Client	Sam	ple ID:	ISS South Comp Prep Type: Tot Prep Batch: 3	oosite tal/NA 13582
-	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
C10-C24	452	B		534.0		mg/Kg	\ ↓		17	50
C24-C40	220			254.0		mg/Kg	¢		14	50
	DU	DU								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	103		50 - 150							

Method: Moisture - Percent Moisture

Lab Sample ID: 490-95666-C-1 DU Matrix: Solid Analysis Batch: 313333					Cli	ent Sample ID: Dup Prep Type: Tot	licate al/NA	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	4.2		4.0		%		4	20
Percent Solids	96		96		%		0.2	20

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

8 9

GC/MS Semi VOA

Prep Batch: 313505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	3550C	
490-95693-1 MS	ISS North Composite	Total/NA	Solid	3550C	
490-95693-1 MSD	ISS North Composite	Total/NA	Solid	3550C	
490-95693-2	ISS South Composite	Total/NA	Solid	3550C	
LCS 490-313505/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-313505/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 313	651				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	8270D	313505
490-95693-1 MS	ISS North Composite	Total/NA	Solid	8270D	313505
490-95693-1 MSD	ISS North Composite	Total/NA	Solid	8270D	313505
490-95693-2	ISS South Composite	Total/NA	Solid	8270D	313505
LCS 490-313505/2-A	Lab Control Sample	Total/NA	Solid	8270D	313505
MB 490-313505/1-A	Method Blank	Total/NA	Solid	8270D	313505
Analysis Batch: 314	079				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	8270D	313505

GC Semi VOA

Prep Batch: 313582

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	3550B	
490-95693-2	ISS South Composite	Total/NA	Solid	3550B	
490-95693-2 DU	ISS South Composite	Total/NA	Solid	3550B	
LCS 490-313582/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 490-313582/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 313591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	NWTPH-Dx	313582
490-95693-2	ISS South Composite	Total/NA	Solid	NWTPH-Dx	313582
490-95693-2 DU	ISS South Composite	Total/NA	Solid	NWTPH-Dx	313582
LCS 490-313582/2-A	Lab Control Sample	Total/NA	Solid	NWTPH-Dx	313582
MB 490-313582/1-A	Method Blank	Total/NA	Solid	NWTPH-Dx	313582

Analysis Batch: 313858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	NWTPH-Dx	313582

Prep Batch: 314611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95693-1	ISS North Composite	Total/NA	Solid	8151A	
490-95693-2	ISS South Composite	Total/NA	Solid	8151A	
LCS 490-314611/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 490-314611/1-A	Method Blank	Total/NA	Solid	8151A	

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-95693-1

GC Semi VOA (Continued)

Analysis Batch: 315175

Lab Sample ID 490-95693-1	Client Sample ID ISS North Composite	Prep Type Total/NA	Matrix Solid	Method 8151A	Prep Batch 314611
490-95693-1	ISS North Composite	Total/NA	Solid	8151A	314611
490-95693-2	ISS South Composite	Total/NA	Solid	8151A	314611
LCS 490-314611/2-A	Lab Control Sample	Total/NA	Solid	8151A	314611
MB 490-314611/1-A	Method Blank	Total/NA	Solid	8151A	314611

General Chemistry

Analysis Batch: 313333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-95655-G-12 MS	Matrix Spike	Total/NA	Solid	Moisture	
490-95655-G-12 MSD	Matrix Spike Duplicate	Total/NA	Solid	Moisture	
490-95666-C-1 DU	Duplicate	Total/NA	Solid	Moisture	
490-95693-1	ISS North Composite	Total/NA	Solid	Moisture	
490-95693-2	ISS South Composite	Total/NA	Solid	Moisture	

Initial

Amount

Initial

Amount

44.83 g

44.83 g

44.83 g

44.83 g

44.98 g

44.98 g

44.98 g

44.98 g

37.75 g

37.75 g

37.75 g

37.75 g

Final

Amount

Final

Amount

1 mL

1 mL

1 mL

1 mL

10 mL

10 mL

10 mL

10 mL

1.00 mL

1.00 mL

1.00 mL

1.00 mL

Batch

Number

313333

Batch

Number

313505

313651

313505

314079

314611

315175

314611

315175

313582

313591

313582

313858

Dil

Dil

1

5

1

50

1

10

Factor

Factor

Run

Run

Client Sample ID: ISS North Composite

Batch

Method

Moisture

Batch

Method

3550C

8270D

3550C

8270D

8151A

8151A

8151A

8151A

3550B

3550B

NWTPH-Dx

NWTPH-Dx

Batch

Туре

Batch

Type

Prep

Prep

Prep

Prep

Prep

Prep

Date Collected: 01/13/16 13:30

Date Received: 01/15/16 09:06

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Client Sample ID: ISS South Composite

Analysis

Client Sample ID: ISS North Composite

Date Collected: 01/13/16 12:00

Date Received: 01/15/16 09:06

Date Collected: 01/13/16 12:00

Date Received: 01/15/16 09:06

Prep Type

Prep Type

Total/NA

Lab Sample ID: 490-95693-1

Analyst

Analyst

MNM

BES

Lab Sample ID: 490-95693-1

Prepared

or Analyzed

Prepared

or Analyzed

01/19/16 09:01

01/19/16 15:46

01/19/16 09:01 MNM

01/21/16 14:50 BES

01/25/16 16:25 LOJ

01/27/16 16:28 JML

01/25/16 16:25 LOJ

01/27/16 17:31 JML

01/19/16 11:04 MNM

01/19/16 18:00 TRF

01/19/16 11:04 MNM

01/20/16 16:55 TRF

01/18/16 11:35 RMS

Matrix: Solid

Lab

TAL NSH

Matrix: Solid

Lab TAL NSH

Matrix: Solid

Percent Solids: 67.0

	5
	8
	9

Lab Sample ID: 490-95693-2

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
l otal/NA	Analysis	Moisture		1			313333	01/18/16 11:35	RMS	TAL NSH

Client Sample ID: ISS South Composite Date Collected: 01/13/16 13:30 Date Received: 01/15/16 09:06

Lab Sample ID: 490-95693-2 Matrix: Solid Percent Solids: 60.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			49.90 g	1 mL	313505	01/19/16 09:01	MNM	TAL NSH
Total/NA	Analysis	8270D		1	49.90 g	1 mL	313651	01/19/16 16:57	BES	TAL NSH
Total/NA	Prep	8151A			49.90 g	10 mL	314611	01/25/16 16:25	LOJ	TAL NSH
Total/NA	Analysis	8151A		1	49.90 g	10 mL	315175	01/27/16 16:48	JML	TAL NSH
Total/NA	Prep	3550B			41.61 g	1.00 mL	313582	01/19/16 11:04	MNM	TAL NSH
Total/NA	Analysis	NWTPH-Dx		5	41.61 g	1.00 mL	313591	01/19/16 18:55	TRF	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

,	
	5
	8
	9
1	0
1	1

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
Vashington	State Prog	gram	10	C789	07-19-16
The following analyte:	s are included in this repo	rt. but certification is	not offered by the a	overning authority.	
0,		,		e rennig aantenij.	
Analysis Method	Prep Method	Matrix	Analyt	te	
Analysis Method Moisture	Prep Method	Matrix Solid	Analyt Perce	te nt Moisture	

TestAmerica	
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM	490-95693 Chain of Custody
Cooler Received/Opened On <u>1/15/2016 @ 0906</u>	
Time Samples Removed From Cooler <u>170</u> Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #_ <u>HI(00/02010(last 4 digits, FedEx)</u> Courier: _HotS	hot_
IR Gun ID <u>14740456</u> pH Strip Lot <u>HC554612</u> Chlorine Strip Lot <u>072815A</u>	
2. Temperature of rep. sample of temp blank when opened: $t + t$ Degrees Celsius	
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank fro	zen? YES NO. (NA)
4. Were custody seals on outside of cooler?	YES./.NONA
If yes, now many and where:	
5. Were the seals intact, signed, and dated correctly?	(YES/NONA
6. Were custody papers inside cooler?	AESNONA
Certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES (NØ and Intact	YESNO. NA
were these signed and dated correctly?	YESNO. MA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert	Paper Other None
9. Cooling process:	ry ice Other None
10. Did all containers arrive in good condition (unbroken)?	YES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	KESNONA
13a. Were VOA vials received?	YESNO/NA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, see	quence #/
I certify that I unloaded the cooler and answered questions 7-14 (initial)	<u> </u>
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH le	evel? YESNONO.
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO(NA)
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (in	tial) ACC
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	ESNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial) f	ALS
I certify that I attached a label with the unique LIMS number to each container (intial)	HOS
21. Were there Non-Conformance issues at login? YES. NO Was a NCM generated? Y	es100#N (A

Page 17 of 19

stAmerica Nashville	Foster Creighton Drive
TestA	2960 Fo

Chain of Custody Record

Nashville, TN 37204-3719 phone 615.726.0177 fax 615.726.3404	Regulatory Program:	IDAN [] MD	ES 🗌 R.CR.A 🗍 Other:		TestAmerica Laboratories, Inc
Client Contact	Project Manager: Towerica Bi	adhou	Site Contact:	Date: 1.14.16	COC No:
Kommon Environmented Scenices, Inc.	TeliFax: 404-601-692=		Lab Contact:	Carrier:	1 of 1 COCs
1359-A Flisworth Ind. Blud.	Analysis Turnaround T	me	[9]		Sampler:
Atlanta, 6A 30318	CALENDAR DAYS	VING DAYS	18		For Lab Use Only:
HUL-636-0428 Phone	TAT if different from Below		₩ { 9# N / (Walk-in Client:
Project Name: North Misch Discover in the					Lab Sampling:
Site:	2 days				Job / SDG No.:
PO# SHOUCE	1 day		1 Ha 229 AQL 1 / SL duie		
Sample Identification	Sample Sample Sample Type Date Time c≂comp.	fatrix Cont	Fillered S. Portorm N 77-WN 77-WN 77-WN		Sample Specific Notes:
ISS North Connosite	1.13.16 1200 G	0 1	N X X N		
ISS Such Compart	41 1330 61	2	N X X X		Loc: 490
					95693
Preservation Used: 3= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=	=NaOH; 6= Other	가는 물건을 다 갔다.			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please	List any EPA Waste Codes for the s	ample in the	Sample Disposal (A fee	e may be assessed if samples are ret	ined longer than 1 month)
N Non-Hazard Fine tables to dispose of the set lipte.	Poison B	MI	Retrum to Client	Disnocal by Lah	for Months
Special Instructions/QC Requirements & Comment. HOT	i Samphes	Sen	report to : the	ordan@kemion.com	
*	washington Mcthod				
Custody Seals Intact:YesNo	Custody Seal No.:		Cooler Temp.	(°C): Obs'd;	Therm ID No.:
Relinquished by:	Company:	H-IL 124	E Received by:	1 Hundred St	Patel Date The 1245
Relinquished by:	Company	146/16 15.	70 Received by:	Company:	Date/Time:
Relinquished by:	Company:)ate/Time:	Received in Laboratory b	Y 1, 1°C Company.	Date/Time. 11/15/2016 0906
			0	Form No.	CA-C-WI-002, Rev. 4.8, dated 11/04/2019

Page 18 of 19

stnsltA-188

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 95693 List Number: 1 Creator: Stvartak, Anthony Q

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-95693-1

List Source: TestAmerica Nashville

APPENDIX C SPIKED UNTREATED ANALYTICAL CHARACTERIZATION REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-98912-1

Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Roxanne Cisneros

Authorized for release by: 3/23/2016 5:35:27 PM Roxanne Cisneros, Senior Project Manager (615)301-5761 roxanne.cisneros@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Have a Question? Ask The Expert

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	6
Client Sample Results	7
QC Sample Results	9
QC Association	13
Chronicle	15
Method Summary	16
Certification Summary	17
Chain of Custody	18
Receipt Checklists	20

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

TestAmerica Job ID: 490-98912-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
490-98912-1	ISS North Composite	Solid	03/07/16 12:30 03/08/16 09:
490-99129-1	ISS North Composite (Duplicate)	Solid	03/08/16 13:00 03/09/16 08

TestAmerica Nashville

Job ID: 490-98912-1

Laboratory: TestAmerica Nashville

Narrative

Merge with 490-99129-1.

Job Narrative 490-98912-1

Comments

No additional comments.

Receipt

The sample was received on 3/8/2016 9:43 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: Due to matrix interferences which required dilution of the parent sample, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 490-323709 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: (490-98912-B-1-B MS) and (490-98912-B-1-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The following sample was diluted due to the abundance of target analytes: ISS North Composite (490-98912-1). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following sample was diluted due to the nature of the sample matrix: ISS North Composite (490-98912-1). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C24-C40 which does not match a typical Total Petroleum Hydrocarbon (TPH) pattern used by the laboratory for quantitative purposes: ISS North Composite (490-98912-1).

Method(s) NWTPH-Dx: The sample duplicate (DUP) precision for preparation batch 490-323889 was outside control limits for C10-C24. Sample non-homogeneity is suspected.

Method(s) NWTPH-Dx: Surrogate recovery for the following sample was outside control limits: ISS North Composite (490-98912-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 490-99129-1

Laboratory: TestAmerica Nashville

Narrative

Merge with 490-98912-1.

Job Narrative 490-99129-1

1 2 3 4 5 6 7 8 9 10 11

Job ID: 490-99129-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

Receipt

The sample was received on 3/9/2016 8:59 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: Due to matrix interferences which required dilution of the parent sample, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 490-323709 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: (490-98912-B-1-B MS) and (490-98912-B-1-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The following sample was diluted due to the abundance of target analytes: ISS North Composite (Duplicate) (490-99129-1). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following samples were diluted due to the nature of the sample matrix: ISS North Composite (Duplicate) (490-99129-1) and (490-99129-A-1-C DU). As such, surrogate recoveries are below the calibration range, and elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following samples was diluted due to the nature of the sample matrix: ISS North Composite (Duplicate) (490-99129-1) and (490-99129-A-1-C DU). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern that most closely resembles a Diesel Fuel #2 product used by the laboratory for quantitative purposes: ISS North Composite (Duplicate) (490-99129-1) and (490-99129-A-1-C DU).

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C24-C40 which does not match a typical Total Petroleum Hydrocarbon (TPH) pattern used by the laboratory for quantitative purposes: ISS North Composite (Duplicate) (490-99129-1) and (490-99129-A-1-C DU).

Method(s) NWTPH-Dx: The sample duplicate (DUP) precision for preparation batch 490-323889 was outside control limits for C10-C24. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Qualifiers

		_	
GC	/MS	Semi	ίνοδ
00		COLIN	

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC Semi VC	Α
Qualifier	Qualifier Description
X	Surrogate is outside control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.
F3	Duplicate RPD exceeds the control limit
Х	Surrogate is outside control limits
F3	Duplicate RPD exceeds the control limit
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

Client Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Date Collected: 03/07/16 12:30

Date Received: 03/08/16 09:43

Client Sample ID: ISS North Composite

Lab Sample ID: 490-98912-1 Matrix: Solid Percent Solids: 66.8

5

6

Method: 8270D - Semivola	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	14.4		1.99	0.297	mg/Kg	₩ ₩	03/14/16 13:34	03/22/16 09:37	20
Acenaphthylene	1.69		0.0995	0.0134	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Anthracene	1.80		0.0995	0.0134	mg/Kg	⇔	03/14/16 13:34	03/18/16 18:55	1
Benzo[a]anthracene	0.350		0.0995	0.0223	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Benzo[a]pyrene	0.223		0.0995	0.0178	mg/Kg	₽	03/14/16 13:34	03/18/16 18:55	1
Benzo[b]fluoranthene	0.276		0.0995	0.0178	mg/Kg	₽	03/14/16 13:34	03/18/16 18:55	1
Benzo[g,h,i]perylene	0.139		0.0995	0.0134	mg/Kg	¢.	03/14/16 13:34	03/18/16 18:55	1
Benzo[k]fluoranthene	0.125		0.0995	0.0208	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Pyrene	3.31		0.0995	0.0178	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Phenanthrene	33.0		1.99	0.267	mg/Kg	¢.	03/14/16 13:34	03/22/16 09:37	20
Chrysene	0.575		0.0995	0.0134	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Dibenz(a,h)anthracene	ND		0.0995	0.0104	mg/Kg	¢	03/14/16 13:34	03/18/16 18:55	1
Fluoranthene	1.10		0.0995	0.0134	mg/Kg	¢.	03/14/16 13:34	03/18/16 18:55	1
Fluorene	13.3		1.99	0.356	mg/Kg	☆	03/14/16 13:34	03/22/16 09:37	20
Indeno[1,2,3-cd]pyrene	0.101		0.0995	0.0149	mg/Kg	⇔	03/14/16 13:34	03/18/16 18:55	1
Naphthalene	7.73		1.99	0.267	mg/Kg	¢	03/14/16 13:34	03/22/16 09:37	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	62		29 - 120				03/14/16 13:34	03/18/16 18:55	1
Terphenyl-d14 (Surr)	95		13 - 120				03/14/16 13:34	03/18/16 18:55	1
Nitrobenzene-d5 (Surr)	57		27 - 120				03/14/16 13:34	03/18/16 18:55	1
Method: 8151A - Herbicid	es (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	20.2		4.88	3.21	mg/Kg	¢	03/13/16 14:43	03/14/16 16:24	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr) _	5816	X	10 - 150				03/13/16 14:43	03/14/16 16:24	100
Method: NWTPH-Dx - Nor	thwest - Semi-V	olatile Pet	roleum Prod	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	18700		585	293	mg/Kg	¢	03/14/16 12:32	03/15/16 00:52	100
C24-C40	599		58.5	29.3	mg/Kg	¢	03/14/16 12:32	03/14/16 21:15	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	4313	X	50 - 150				03/14/16 12:32	03/14/16 21:15	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	33.2		0.1	0.1	%			03/15/16 09:14	1
Percent Solids	66.8		0.1	0.1	%			03/15/16 09:14	1

Client Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Lab Sample ID: 490-99129-1 Matrix: Solid Percent Solids: 65.3

Analyzed

D

Prepared

☆ 03/14/16 13:34 03/22/16 10:01

Client Sample ID: ISS North Composite (Duplicate) Date Collected: 03/08/16 13:00 Date Received: 03/09/16 08:59 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier MDL Unit RL 0.301 mg/Kg 2.02 Acenaphthene 9.38 la é la s 0 4 0 4 . . . ~

Acenaphthylene	4.07	0.101	0.0136 mg/Kg	03/14/16 13:34 03/18/16 19:20 1
Anthracene	1.30	0.101	0.0136 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Benzo[a]anthracene	0.315	0.101	0.0226 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Benzo[a]pyrene	0.191	0.101	0.0181 mg/Kg	[☆] 03/14/16 13:34 03/18/16 19:20 1
Benzo[b]fluoranthene	0.218	0.101	0.0181 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Benzo[g,h,i]perylene	0.127	0.101	0.0136 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Benzo[k]fluoranthene	0.0910 J	0.101	0.0211 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Pyrene	2.64	0.101	0.0181 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Phenanthrene	21.0	2.02	0.271 mg/Kg	* 03/14/16 13:34 03/22/16 10:01 20
Chrysene	0.510	0.101	0.0136 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Dibenz(a,h)anthracene	ND	0.101	0.0105 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Fluoranthene	0.975	0.101	0.0136 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Fluorene	8.24	2.02	0.362 mg/Kg	⁽²⁾ 03/14/16 13:34 03/22/16 10:01 20
Indeno[1,2,3-cd]pyrene	0.0793 J	0.101	0.0151 mg/Kg	* 03/14/16 13:34 03/18/16 19:20 1
Naphthalene	5.16	0.101	0.0136 mg/Kg	© 03/14/16 13:34 03/18/16 19:20 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66		29 - 120	03/14/16 13:34	03/18/16 19:20	1
Terphenyl-d14 (Surr)	92		13 - 120	03/14/16 13:34	03/18/16 19:20	1
Nitrobenzene-d5 (Surr)	61		27 - 120	03/14/16 13:34	03/18/16 19:20	1

Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	20.1		9.91	6.52	mg/Kg	<u></u>	03/13/16 14:43	03/14/16 17:09	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	6076	X	10 - 150				03/13/16 14:43	03/14/16 17:09	200

Method: NWTPH-Dx	- Northwest	- Semi-Volatile	Petroleum	Products	(GC)
					·/

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	9580		601	300	mg/Kg	₽	03/14/16 12:32	03/15/16 01:08	100
C24-C40	372		60.1	30.0	mg/Kg	¢	03/14/16 12:32	03/14/16 21:31	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	2530	X	50 - 150				03/14/16 12:32	03/14/16 21:31	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	34.7		0.1	0.1	%			03/11/16 09:31	1
Percent Solids	65.3		0.1	0.1	%			03/11/16 09:31	1

Dil Fac

20

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-323909/1-A Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 323909

7

Analysis Batch: 325014

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Anthracene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Pyrene	ND		0.0670	0.0120	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Chrysene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Fluorene	ND		0.0670	0.0120	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		03/14/16 13:34	03/18/16 15:40	1
	MB	MB							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		29 - 120	03/14/16 13:34	03/18/16 15:40	1
Terphenyl-d14 (Surr)	81		13 - 120	03/14/16 13:34	03/18/16 15:40	1
Nitrobenzene-d5 (Surr)	62		27 - 120	03/14/16 13:34	03/18/16 15:40	1

Lab Sample ID: LCS 490-323909/2-A Matrix: Solid Analysis Batch: 325014

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 323909

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1.67	1.397		mg/Kg		84	36 - 120	
Acenaphthylene	1.67	1.418		mg/Kg		85	38 - 120	
Anthracene	1.67	1.468		mg/Kg		88	46 - 124	
Benzo[a]anthracene	1.67	1.483		mg/Kg		89	45 - 120	
Benzo[a]pyrene	1.67	1.502		mg/Kg		90	45 - 120	
Benzo[b]fluoranthene	1.67	1.482		mg/Kg		89	42 - 120	
Benzo[g,h,i]perylene	1.67	1.412		mg/Kg		85	38 - 120	
Benzo[k]fluoranthene	1.67	1.591		mg/Kg		95	42 - 120	
Pyrene	1.67	1.538		mg/Kg		92	43 - 120	
Phenanthrene	1.67	1.406		mg/Kg		84	45 - 120	
Chrysene	1.67	1.483		mg/Kg		89	43 - 120	
Dibenz(a,h)anthracene	1.67	1.473		mg/Kg		88	32 - 128	
Fluoranthene	1.67	1.473		mg/Kg		88	46 - 120	
Fluorene	1.67	1.422		mg/Kg		85	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.440		mg/Kg		86	41 - 121	
Naphthalene	1.67	1.274		mg/Kg		76	32 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	78		29 - 120
Terphenyl-d14 (Surr)	89		13 - 120

TestAmerica Nashville

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8270D - Semiv	volatile Or	gaı	nic Cor	npounds	(GC/M	IS) ((Con	tinued)				
Lab Sample ID: LCS 490-3 Matrix: Solid	323909/2-A							Clien	it Sa	mple ID:	Lab Contro Prep Type: Prep Bate	ol Sa Tot	ample al/NA
Analysis Batch. 525014											Ртер Басс	n. 3/	23909
	LCS	LCS	5										
Surrogate	%Recovery	Qua	alifier	Limits									
Nitrobenzene-d5 (Surr) _	74			27 - 120									
Method: 8151A - Herbi	cides (GC)											
Lab Sample ID: MB 490-32	23709/1-A								Cli	ent Sam	ple ID: Meth	nod	Blank
Matrix: Solid											Prep Type:	Tot	al/NA
Analysis Batch: 323862											Prep Batc	h: 3	23709
	_	MB	MB					_					
Analyte	Re	sult	Qualifier	RL		MDL	Unit	D	F	Prepared	Analyzed		Dil Fac
Pentachlorophenol		ND		0.0330	0.0	0217	mg/K	g	03/	13/16 14:43	8 03/14/16 13:	52	1
		MВ	MB										
Surrogate	%Reco	very	Qualifier	Limits					F	Prepared	Analyzed		Dil Fac
Dichloroacetic acid(Surr)		68		10 - 150	-				03/	13/16 14:43	3 03/14/16 13:	52	1
Lab Sample ID: LCS 490-3	323709/2-A							Clien	it Sa	mple ID:	Lab Contro	ol Sa	ample
Matrix: Solid											Prep Type:	101	al/NA
Analysis Batch: 323862				Spiko	1.09							n: 3	23705
Analyte					Posult		lifior	Unit	п	%Pac	/intec.		
Pentachlorophenol				0.0833	0.03985	Que		ma/Ka		48	10 - 150		
				0.0000	0.00000								
	LCS	LCS	5										
Surrogate	%Recovery	Qua	alifier	Limits									
Dichloroacetic acid(Surr)	62			10 - 150									
Lab Sample ID: 490-98912	2-1 MS							Client	San	nple ID: I	SS North C	omp	oosite
Matrix: Solid											Prep Type:	Tot	al/NA
Analysis Batch: 323862											Prep Batc	h: 3	23709
	Sample	San	nple	Spike	MS	MS					%Rec.		
Analyte	Result	Qua	lifier	Added	Result	Qua	alifier	Unit	D	%Rec	Limits		
Pentachlorophenol	1.16	Е		0.123	1.070	E 4		mg/Kg	¢	-76	10 - 150		
	MS	MS											
Surrogate	%Recovery	Qua	alifier	Limits									
Dichloroacetic acid(Surr)	2133	X		10 - 150									
Lab Sample ID: 490-98912	-1 MSD							Client	San	ple ID: I	SS North C	omp	oosite
Matrix: Solid											Prep Type:	Tot	al/NA
Analysis Batch: 323862											Prep Batc	h: 3	23709
	Sample	San	nple	Spike	MSD	MSI	D				%Rec.		RPD
Analyte	Result	Qua	alifier	Added	Result	Qua	alifier	Unit	D	%Rec	Limits F	RPD	Limi
Pentachlorophenol	1.16	E		0.123	1.063	E 4		mg/Kg	\X	-82	10 - 150	1	50
	MSD	MS	D										
Surrogate	%Recovery	Qua	alifier	Limits									
Dichloroacetic acid(Surr)	2358	X		10 - 150									

5

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-32 Matrix: Solid Analysis Batch: 323912	3889/1-A								(Clie	ent Sam	ple ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 323889
		MB	MB										
Analyte	Re	sult	Qualifier	RL	·	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
C10-C24		ND		4.00)	2.00	mg/K	g	(03/14	4/16 12:32	2 03/14/16 20:41	1
C24-C40		ND		4.00)	2.00	mg/K	g	()3/14	4/16 12:32	2 03/14/16 20:41	1
		MB	MB										
Surrogate	%Reco	very	Qualifier	Limits						Pi	repared	Analyzed	Dil Fac
o-Terphenyl		74		50 - 150	-				0	03/1-	4/16 12:32	2 03/14/16 20:41	1
Lab Sample ID: LCS 490-32 Matrix: Solid Analysis Batch: 323912	23889/2-A			Spiko	1.05			Clie	ent (Sar	mple ID:	Lab Control S Prep Type: To Prep Batch: 3	Sample otal/NA 323889
Analyto				Added	Posult	0112	lifior	Unit		п	%Pac	%Rec.	
				40.0	28.73	Qua	inner	ma/Ka		_	72 -	55 129	
010-024				40.0	20.70			ing/itg			12	55-125	
	LCS	LCS	5										
Surrogate	%Recovery	Qua	lifier	Limits									
o-Terphenyl	71			50 - 150									
Lab Sample ID: 490-99129- Matrix: Solid Analysis Batch: 323912	-1 DU Sample	Sam	nple		DU	Cliei DU	nt Sa	mple IC): IS	SS I	North Co	omposite (Dup Prep Type: To Prep Batch: 3	olicate) otal/NA 323889 RPD
Analyte	Result	Qua	lifier		Result	Qua	lifier	Unit		D		RPD	Limit
C24-C40	372				540.6			mg/Kg		☆		37	50
	וות	נוס											
Surrogate	%Recoverv	Qua	lifier	Limits									
o-Terphenyl	3806	\overline{X}		50 - 150									
_ Lab Sample ID: 490-99129- Matrix: Solid Analysis Batch: 323912	-1 DU	Som			DU	Clie	nt Sa	mple IC): IS	SS I	North Co	omposite (Dup Prep Type: To Prep Batch: 3	olicate) otal/NA 323889
Analyte	Result	Oua	lifior		Result	0112	lifior	Unit		п		RPC	
C10-C24	9580	Guu			16180	F3		mg/Kg		₽ ₽			50
Lab Sample ID: 490-99129 Matrix: Solid Analysis Batch: 323912	A-1-C DU										Client	Sample ID: Du Prep Type: To Prep Batch: 3	plicate otal/NA 323889
	Sample	Sam	nple		DU	DU				_			RPD
Analyte	Result	Qua	lifier		Result	Qua	lifier	Unit		D w			Limit
C24-C40	372 נות	ווח			540.6			mg/Kg		¥		37	50
Surrogate	%Recovery	Qua	lifier	Limits									
o-Terphenvl	3806	$\frac{1}{X}$		50 - 150									

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

5

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 490-99129- Matrix: Solid Analysis Batch: 323912	A-1-C DU						Client Sample ID: Du Prep Type: To Prep Batch:	plicate otal/NA 323889
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD) Limit
C10-C24	9580		 16180	F3	mg/Kg	- \\\	5	ī <u>50</u>

Method: Moisture - Percent Moisture

Lab Sample ID: 490-98912- Matrix: Solid Analysis Batch: 324058	1 DU		Client Sample ID: ISS North Composi Prep Type: Total/N					
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	33.2		 34.2		%		3	20
Percent Solids	66.8		65.8		%		1	20

TestAmerica Nashville

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

GC/MS Semi VOA

Prep Batch: 323909

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	3550C	
490-99129-1	ISS North Composite (Duplicate)	Total/NA	Solid	3550C	
LCS 490-323909/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-323909/1-A	Method Blank	Total/NA	Solid	3550C	
nalysis Batch: 325	014				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	8270D	323909
490-99129-1	ISS North Composite (Duplicate)	Total/NA	Solid	8270D	323909
LCS 490-323909/2-A	Lab Control Sample	Total/NA	Solid	8270D	323909
MB 490-323909/1-A	Method Blank	Total/NA	Solid	8270D	323909
nalysis Batch: 325	702				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	8270D	323909
100-00120-1	ISS North Composite (Duplicate)	Total/NA	Solid	8270D	323909

GC Semi VOA

Prep Batch: 323709

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	8151A	
490-98912-1 MS	ISS North Composite	Total/NA	Solid	8151A	
490-98912-1 MSD	ISS North Composite	Total/NA	Solid	8151A	
490-99129-1	ISS North Composite (Duplicate)	Total/NA	Solid	8151A	
LCS 490-323709/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 490-323709/1-A	Method Blank	Total/NA	Solid	8151A	

Analysis Batch: 323862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	8151A	323709
490-98912-1 MS	ISS North Composite	Total/NA	Solid	8151A	323709
490-98912-1 MSD	ISS North Composite	Total/NA	Solid	8151A	323709
490-99129-1	ISS North Composite (Duplicate)	Total/NA	Solid	8151A	323709
LCS 490-323709/2-A	Lab Control Sample	Total/NA	Solid	8151A	323709
MB 490-323709/1-A	Method Blank	Total/NA	Solid	8151A	323709

Prep Batch: 323889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	3550B	
490-99129-A-1-C DU	Duplicate	Total/NA	Solid	3550B	
LCS 490-323889/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 490-323889/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 323912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	NWTPH-Dx	323889
490-98912-1	ISS North Composite	Total/NA	Solid	NWTPH-Dx	323889
490-99129-A-1-C DU	Duplicate	Total/NA	Solid	NWTPH-Dx	323889
490-99129-A-1-C DU	Duplicate	Total/NA	Solid	NWTPH-Dx	323889

TestAmerica Nashville

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

GC Semi VOA (Continued)

Analysis Batch: 323912 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 490-323889/2-A	Lab Control Sample	Total/NA	Solid	NWTPH-Dx	323889
MB 490-323889/1-A	Method Blank	Total/NA	Solid	NWTPH-Dx	323889

General Chemistry

Analysis Batch: 323280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-99129-1	ISS North Composite (Duplicate)	Total/NA	Solid	Moisture	
Analysis Batch: 3240	058				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-98912-1	ISS North Composite	Total/NA	Solid	Moisture	
490-98912-1 DU	ISS North Composite	Total/NA	Solid	Moisture	
490-99241-A-1 MS	Matrix Spike	Total/NA	Solid	Moisture	
490-99241-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	Moisture	

Client Sample ID: ISS North Composite

Lab Sample ID: 490-98912-1

2 3 4 5 6 7 8 9

Date Collecte Date Receive	d: 03/07/16 d: 03/08/16 (12:30 09:43							Ма	atrix: Solid
Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 324058	Prepared or Analyzed 03/15/16 09:14	Analyst AAB	Lab TAL NSH
Client Sam	ple ID: ISS	S North Co	mposite					Lab Sample	ID: 490	-98912-1
Date Collecte	d: 03/07/16	12:30							Ма	atrix: Solid
Date Receive	d: 03/08/16	09:43						P	ercent S	olids: 66.8
_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Гуре	Method	Run	⊢actor	Amount	Amount	Number	or Analyzed	Analyst	Lab

	Batch	Batch		DII	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			30.23 g	1.00 mL	323909	03/14/16 13:34	LOJ	TAL NSH
Total/NA	Analysis	8270D		1	30.23 g	1.00 mL	325014	03/18/16 18:55	LEG	TAL NSH
Total/NA	Prep	3550C			30.23 g	1.00 mL	323909	03/14/16 13:34	LOJ	TAL NSH
Total/NA	Analysis	8270D		20	30.23 g	1.00 mL	325702	03/22/16 09:37	LEG	TAL NSH
Total/NA	Prep	8151A			30.37 g	10 mL	323709	03/13/16 14:43	LOJ	TAL NSH
Total/NA	Analysis	8151A		100	30.37 g	10 mL	323862	03/14/16 16:24	JML	TAL NSH
Total/NA	Prep	3550B			25.58 g	1.00 mL	323889	03/14/16 12:32	LOJ	TAL NSH
Total/NA	Analysis	NWTPH-Dx		10	25.58 g	1.00 mL	323912	03/14/16 21:15	MDW	TAL NSH
Total/NA	Prep	3550B			25.58 g	1.00 mL	323889	03/14/16 12:32	LOJ	TAL NSH
Total/NA	Analysis	NWTPH-Dx		100	25.58 g	1.00 mL	323912	03/15/16 00:52	MDW	TAL NSH

Client Sample ID: ISS North Composite (Duplicate) Date Collected: 03/08/16 13:00

Date Received: 03/09/16 08:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			323280	03/11/16 09:31	AAB	TAL NSH

Client Sample ID: ISS North Composite (Duplicate) Date Collected: 03/08/16 13:00 Date Received: 03/09/16 08:59

Lab Sample ID: 490-99129-1 Matrix: Solid Percent Solids: 65.3

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			30.48 g	1.00 mL	323909	03/14/16 13:34	LOJ	TAL NSH
Total/NA	Analysis	8270D		1	30.48 g	1.00 mL	325014	03/18/16 19:20	LEG	TAL NSH
Total/NA	Prep	3550C			30.48 g	1.00 mL	323909	03/14/16 13:34	LOJ	TAL NSH
Total/NA	Analysis	8270D		20	30.48 g	1.00 mL	325702	03/22/16 10:01	LEG	TAL NSH
Total/NA	Prep	8151A			30.60 g	10 mL	323709	03/13/16 14:43	LOJ	TAL NSH
Total/NA	Analysis	8151A		200	30.60 g	10 mL	323862	03/14/16 17:09	JML	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Lab Sample ID: 490-99129-1 Matrix: Solid

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

	5
	8
	9
1	0

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program	Program		Certification ID	Expiration Date	
Vashington	State Pro	gram	10	C789	07-19-16	
The following analyte	s are included in this repo	rt, but certification is	not offered by the go	overning authority:		
Analysis Method	Prep Method	Matrix	Analyt	te		
Analysis Method Moisture	Prep Method	Matrix Solid	Analyt Percel	te nt Moisture		

Vegen I			٠	
100	-Ar	ne	ric	` C
Name of Concession, Name of Street, or other	THE OWNER WATER OF THE OWNER WATER	COMPANY AND A DOCUMENT OF A DOCUMENTA O	drassmologasason	COLUMN STREET,

THE LEADER IN ENVIRONMENTAL TESTING

Cooler Received/Opened On 3/8/2016 @ 0943

Nashville, TN

COOLER RECEIPT FORM

490-98912 Chain of Custody

Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #	L
IR Gun ID <u>18290455</u> pH Strip Lot <u>HC564992</u> Chlorine Strip Lot <u>072815A</u>	
2. Temperature of rep. sample or temp blank when opened:Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO MA
4. Were custody seals on outside of cooler?	ES.NONA
If yes, how many and where: <u>()Fron t</u>	
5. Were the seals intact, signed, and dated correctly?	ESNONA
6. Were custody papers inside cooler?	ESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	Man
7. Were custody seals on containers: YES NO and Intact	YESNO
Were these signed and dated correctly?	YESNO NA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: Ice lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	EsNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YES NA If multiple coolers, sequence	:e #_ <u>MA</u>
I certify that I unloaded the cooler and answered questions 7-14 (intial)	A
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA
16. Was residual chlorine present?	YESNONA
Lcertify that I checked for chlorine and pH as per SOP and answered guestions 15-16 (intial)	ELA
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	VESNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	4
I certify that I attached a label with the unique LIMS number to each container (intial)	4
21. Were there Non-Conformance issues at login? YES(N) Was a NCM generated? YES(i9#

£.

5

6

	Relinquisted by:	Relinquished by	Reinquisned by:	Custody Seals Intact: Yes No		Special Instructions/QC Requirements & Comments:	Comments Section if the lab is to dispose of the sample.	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L	Preservation Used: 1= Ice; 2= HCI; 3= H2SO4; 4=HNO3; 5=							ISS North Composite	Sample Identification	P O # SH0600	Sife:	(xxx) xxx-xxxx FAX	404-636-0928 Phone	Atlanta, GA 303018	1359-A Ellsworth Industrial Blvd.		phone 615.726.0177 fax 615.726.3404	TestAmerica Nashville 2960 Foster Creighton Drive Nashville TN 37204-3719
	Company:	Company:	Company:	Custody Sea	hr.	RY H		ist anv EPA W	NaOH; 6= Oth							3/7/2016	Sample S Date][_][]	TAT #		An	Project Man	Regulat	
	2	3-2-10	MIZO	I No.:	5	921		/aste Codes)er					 	-	1230	Sample (c Time c	^ us	2 L M	2 W	different from E	AR DAYS	alysis Turn	ager: Tomn	ory Progra	
	Dat	Dat	v Dat		30	Plea		for the sam	21 - Partie 17							G	ampie Type =Comp, ≡Grab) Ma	Ak Ak	eek	eeks	Below	WORKIN	around Tim	ny Jordan		-
	e/Time:	e/Time:	e/Time: 1/1/16	0	g/ Ka	CP GPA		nle in fhe		 						2	# of trix Cont					IG DAYS	Ð		OM 🗌 NbD	Chain
1	R	\ 	R ^R			7		ŝ	21. 475			-		_	_		Filtered S Perform M	ample /IS / M	(Y SD	/N) (Y/	N)			Site		o f
	ceive	<i>Seive</i>	Ceive		77]	ample	-						_	×	Total Pen	tochlo	rop	hend	ol 81	51		Conta	RCR	C u
6	d in	by by	d by	0	Ŧ	Neurin	-	Dis	1	 				 _	-	×	Total PAF	ls 827	0				_[²	: Ict	s T	stc
-	Mat	· · ·		00	10'			soc		 _				_									-		L P	ďy
	N.		\sim	4	1 > 5	. la	j	<u>م</u>			-														her:	ਨ੍ਹ
	grator	A)	\mathcal{D}	er Ten	Ph	LIERT	<u>}</u>	al (A	2 <u>2</u> 7,2														_			D
	fratory by:	A)	Ð	er Temp. (⁰	PAH			al (A fee n					 	 		-							_			ö
(fratory by:	A 1	P	er Temp. (°C): C	PAH			al (A fee may t																		cord
(fratory by:	N	Ð.	er Temp. (⁰C): Obs'd:	PAH			al (A fee may be as																, 0		cord
(fratory by:	A /	D.	er Temp. (°C): Obs'd:	PAH]	al (A fee may be assess											······					Date: 3		cord
(fratory by:	Corr		er Temp. (ºC): Obs'd:	PAH]	al (A fee may be assessed if										· · · · · · · · · · · · · · · · · · ·						Date: 3/7/16		cord
(fratory by: Company	Company	Company T	er Temp. (°C): Obs'd:Cc	PAH		<u>}</u>	al (A fee may be assessed if sam						86										Date: 3/7/16		cord
(fratory by: Company	Company:	Company	er Temp. (°C): Obs'd: Corr'd:	PAH	TIEL IN DISDOSAL DA TA)	al (A fee may be assessed if samples						1686										Date: 3/7/16		cord
For	fratory by: Company	Company:	Company Typ	er Temp. (°C): Obs'd:Corr'd:	PAH			al (A fee may be assessed if samples are						212 08912										Date: 3/7/16		cord
Form No	Wratory by: Company	Company:	Company Company	er Temp. (°C): Obs'd:Corr'd:	PAH Friday	Inter a province to a bullion		al (A fee may be assessed if samples are retai						98912										Date: 3/7/16		cord
Form No. CA	Matory by: Company Company		Company	er Temp. (°C): Obs'd:Corr'd:T	PAH	TIEL A DISCOGN DY LAD , AIGUNE TO		al (A fee may be assessed if samples are retained						98912				·····						Date: 3/7/16		cord
Form No. CA-C-W	fratory by: Company Dated	Company: Date/	Company Daten	er Temp. (°C): Obs'd: Corr'd: Therm	PAH provide pr	Inter a District to displayer of the		al (A fee may be assessed if samples are retained longe								Ven				Lab S	Walk-	ForL		Date: 3/7/16 COC	Tes	cord
Form No. CA-C-WI-002	fratory by: Company, Date, Date, Jime:	Company: Date/Time:	Company Date/Time:	er Temp. (°C): Obs'd: Corr'd: Therm ID N	PAH Front Front Samp	THEN I DISOUSED VIED , AUTIVE TO MORE		al (A fee may be assessed if samples are retained longer tha								Very	Sam			Lab Sampli	Walk-in Cli	For Lab Us	Varrier:	Date: 3/7/16 COC No:	TestAme	cord THE LEADER
Form No. CA-C-WI-002, Rev	fratory by: Company, Date Jime: 16	Company: Date/Time:	Company Date/Time:	er Temp. (°C): Obs'd: Corr'd: Therm iD No.:	PAH print print sampe	inter a little to billing to make a		al (A fee may be assessed if samples are retained longer than 1 n							at Lynn and the	Very Me	Sample S	Job / SUG No.:		Lab Sampling:	Walk-in Client:	For Lab Use Or	Carrier:	Date: 3/7/16 COC No:	TestAmerica	cord
Form No. CA-C-WI-002, Rev. 4.9,	fratory by: Company Dated Ime: 16 20	Company: Date/Time:	Company Date/Time:	er Temp. (°C): Obs'd: Corr'd: Therm ID No.:	PAH Prove prove and	inter a process to a billione for many of		al (A fee may be assessed if samples are retained longer than 1 montl							02 at land and the 30	Very Hor	Sample Speci			Lab Sampling:	Walk-in Client:	For Lab Use Only:		Date: 3/7/16 COC No:	TestAmerica Lab	cord TestAm
Form No. CA-C-WI-002, Rev. 4.9, date	Matory by: Company Date Jime: 16 943	Company: Date/Time:	Company Date/Time: TTY Date/Time:	er Temp. (°C): Obs'd:Corr'd:Therm ID No.:	PAH print print sumper wifed	inter a line to a billione to make alice		al (A fee may be assessed if samples are retained longer than 1 month)						98912	1 and to 30 g	Very Hor!!	Sample Specific N	Job / SDG No.:		Lab Sampling:	Walk-in Client:	For Lab Use Only:	Learner: Image: Im	Date: 3/7/16 COC No:	TestAmerica Laborat	cord
Form No. CA-C-WI-002, Rev. 4.9, dated 2/	fratory by: Company Dated Ine: 16 GUS 1.	Company: Date/Time:	Company Date/Time: Date/Time: 7-16 143 D	er Temp. (°C): Obs'd: Corr'd: Therm iD No.:	PAH my pring sungeden	inter of USDOSEI DY LAD , A VILLAND CA IN A VILLANDER OF THE STATE OF		al (A fee may be assessed if samples are retained longer than 1 month)							und to 30 g/kg	Very Hor'!	Sample Specific Notes:	Job / SUG No.:		Lab Sampling:	Walk-in Client:	For Lab Use Only:		Date: 3/7/16 COC No:	TestAmerica Laboratorie	Cord
Form No. CA-C-WI-002, Rev. 4.9, dated 2/2/201	Matory by: Company Date Jime: 16 EUS 1,7	Company: Date/Time:	Company Date/Time: TY 7-16 1430	er Temp. (°C): Obs'd:Corr'd:Therm iD No.:	PAH my sumper ungedt.	inter process to bellene complexity of the second		al (A fee may be assessed if samples are retained longer than 1 month)							up to 30 g/kg Ti	Very Hor!!	Sample Specific Notes:	JOD / SUG No.:		Lab Sampling:	Walk-in Client:	For Lab Use Only:	Learner: Image: Im	Date: 3/7/16 COC No:	TestAmerica Laboratories, In	CORD THE LEADER IN ENVIRONMENTAL TESTIN

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 98912 List Number: 1 Creator: Abernathy, Eric

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-98912-1

List Source: TestAmerica Nashville

APPENDIX D PRELIMINARY SCREENING EVALUATIONS DESIGN SHEETS

PROJECT:	Washington Wo	od Preserving IS	5	MIX No.	
PROJECT No .:	SH	0600		0600	0-001
MIXING DATE:	30-N	1ar-16		MIXED BY:	JDM/DMC
UNTREATED MATER	IAL TYPE			ISS Sc	outh Composite
WEIGHT OF UNTREA	TED MATERIAL			800	g
REAGENT TYPE AND L	_OT NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #104	.7	5.25	%	42.0	g
NewCem GGBFS 100 #10	49	2.25	%	18.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	48.0	g
OBSERVATIONS / NOT Pocket Penetrometer @ 1, UCS @ 7 Days	ES 3, 5 Days				
	PENETR	OMETER AI	VALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons	/ft ²) 2.00	3.75	4.25		

PROJECT No.:SH06000600-002MIXING DATE:30-Mar-16MIXED BY:JDM/DMIUNTREATED MATERIAL TYPEISS South ComposeWEIGHT OF UNTREATED MATERIAL800 gREAGENT TYPE AND LOT NUMBERADDITION RATEWEIGHTRichmond Type I PC #10477.00 %56.0 gNewCem GGBFS 100 #10493.00 %24.0 g%0.0 g%0.0 g
MIXING DATE: 30-Mar-16 MIXED BY: JDM/DM/ UNTREATED MATERIAL TYPE ISS South Compose WEIGHT OF UNTREATED MATERIAL 800 g REAGENT TYPE AND LOT NUMBER ADDITION RATE WEIGHT Richmond Type I PC #1047 7.00 % 56.0 g NewCem GGBFS 100 #1049 3.00 % 24.0 g % 0.0 g % % 0.0 g % % 0.0 g % % 0.0 g %
UNTREATED MATERIAL TYPE ISS South Composition WEIGHT OF UNTREATED MATERIAL 800 g REAGENT TYPE AND LOT NUMBER ADDITION RATE WEIGHT Richmond Type I PC #1047 7.00 % 56.0 g NewCem GGBFS 100 #1049 3.00 % 24.0 g % 0.0 g % 0.0 g % 0.0 g Water Addition 80 % 64 0 g
WEIGHT OF UNTREATED MATERIAL800 gREAGENT TYPE AND LOT NUMBERADDITION RATEWEIGHTRichmond Type I PC #10477.00 %56.0 gNewCem GGBFS 100 #10493.00 %24.0 g%0.0 g%0.0 g%0.0 g%0.0 g%0.0 g
REAGENT TYPE AND LOT NUMBER ADDITION RATE WEIGHT Richmond Type I PC #1047 7.00 % 56.0 g NewCem GGBFS 100 #1049 3.00 % 24.0 g % 0.0 g % % 0.0 g % % 0.0 g % % 0.0 g %
Richmond Type I PC #1047 7.00 % 56.0 g NewCem GGBFS 100 #1049 3.00 % 24.0 g % 0.0 g
NewCem GGBFS 100 #1049 7.00 % 3.00 % 24.0 g % 0.0 g % 0.0 g
New our data of loc in total 0.00 g % 0.0 g
% 0.0 g % 0.0 g % 0.0 g % 0.0 g
% 0.0 g Water Addition 80 % 64 0 g
Water Addition 80 % 64 0 g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 Days UCS @ 7 Days

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No.:	SHO	0600	_	0600	0-003
MIXING DATE:	30-M	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSS	outh Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		4.00	%	32.0	g
NewCem GGBFS 100 #1049		8.00	%	64.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	76.8	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5	Days				
UCS@7Days					
	PENETR	OMETER AI	NALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	2.50	3.8	>4.5		

PROJECT:	Washington Wo	od Preserving IS	S	MIX No.	
PROJECT No.:	SHO	0600		0600	0-004
MIXING DATE:	30-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSS	outh Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		6.00	%	48.0	g
Centralia Class F Fly Ash #10	18	1.50	%	12.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	48.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	PENETR	OMETER AI	NALYSES		
CURE TIME (Days)	1	3	5		
DENETROMETER $(tops/ft^2)$	2 75	3.00	3 75		

PROJECT:	Washington Wood Preserving ISS		5	MIX No.	
PROJECT No.:	SH0600			0600-005	
MIXING DATE:	30-Mar-16			MIXED BY:	JDM/DMC
UNTREATED MATERIAL TYPE				ISS South Composite	
WEIGHT OF UNTREATED MATERIAL				800	g
REAGENT TYPE AND LOT NUMBER		ADDITIC	ON RATE	WEIGHT	
		0.00	0/	64.0	
		8.00	%	64.0	g
Centralia Class F Fly Ash #1048		2.00	%	16.0	g
			%	0.0	g
			% 0/	0.0	g
			70 0/	0.0	y
Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	DENIETD				
			E		
CURE TIME (Days)		3			
PENETROMETER (tons/ft ⁻)	2.50	>4.5	24.5		
PROJECT:	Washington Wo	od Preserving IS	5	MIX No.	
---	---------------	------------------	---------	-----------	----------------
PROJECT No .:	SHO	0600		0600	0-006
MIXING DATE:	30-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSS	outh Composite
WEIGHT OF UNTREATED	MATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type LPC #1047		4.00	%	32.0	a
Centralia Class F Fly Ash #104	.8	10.00	%	80.0	a
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	89.6	g
OBSERVATIONS/NOTES					
Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
eee @ / Edje					
	PENETR	OMETER A	VALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	1.00	1.75	2.00		

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No .:	SHO	0600		0600	0-007
MIXING DATE:	30-M	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSS	outh Composite
WEIGHT OF UNTREATED	MATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Pichmond Type L PC #1047		4.00	0/.	32.0	2
Tacoma LKD #919		4.00	<u>/o</u>	32.0 80.0	y a
		10.00	%	0.0	9 0
			%	0.0	a
			%	0.0	g
Water Addition		80	%	89.6	g
OBSERVATIONS/NOTES					
Pocket Penetrometer @ 1, 3, 5	Days				
ccc@/bdjc					
	PENETR	OMETER AI	VALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	0.00	0.75	1.25		

PROJECT:	Washington Wo	od Preserving IS	5	MIX No.	
PROJECT No .:	SH	0600		0600	0-008
MIXING DATE:	30-N	1ar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIA	L TYPE			ISSS	outh Composite
WEIGHT OF UNTREATE	ED MATERIAL			800	g
REAGENT TYPE AND LO	T NUMBER	ADDITIC	N RATE	WEI	GHT
		4.00	0/		
LeHigh Type II/V PC #1042		4.00	<u>%</u>	32.0	g
NewCem GGBFS#1049		8.00	%	64.0	g
			%	0.0	g
			70 0/_	0.0	<u>g</u>
Water Addition		00	70 0/	76.9	<u>g</u>
Pocket Penetrometer @ 1, 3, UCS @ 7 Days	5 Days				
	PENETR	OMETER A	NALYSES	1	1
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²) 1.75	3.75	>4.5		

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No .:	SHO	0600	_	0600	0-009
MIXING DATE:	31-M	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSS	outh Composite
WEIGHT OF UNTREATED	MATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Distance of Taxas I DO #1047		F 0F	0/	40.0	
Richmond Type PC #1047		5.25 2.25	<u>%</u>	42.0	g
Www.Bon Hydrogol Bontonito	4807	2.23	70 9/	18.0	y a
wyo-barriyuloga ballolille	+807	1.00	%	0.0	g g
			%	0.0	g a
Water Addition		125	%	85.0	a
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	PENETR	OMETER AI	NALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	0.50	1.50	2.00		

PROJECT:	Washington Woo	od Preserving IS	5	MIX No.	
PROJECT No.:	SHO	0600		0600	0-010
MIXING DATE:	31-M	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		5.25	%	42.0	g
NewCem GGBFS 100 #1049		2.25	%	18.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	48.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	PENETR		VAL YSES		
				1	1
CUKE HIME (Days)	1 50	3 200	3 4 25		
PENETROMETER (tons/ft ⁻)	1.50	3.00	4.25		

PROJECT:	Washington Wo	od Preserving IS	5	MIX No.	
PROJECT No .:	SHO	0600		0600	D-011
MIXING DATE:	31-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
		7.00	0/	50.0	
Richmond TypeT PC #1047		7.00	%	56.0	g
NewCem GGBFS 100 #1049		3.00	%	24.0	g
			%	0.0	g
			% 0/	0.0	g
Mater Addition		80	/0	0.0	<u>y</u>
Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	DENETO				
			E	1	I
CURE TIME (Days)		3	5		
PENETROMETER (tons/ft ⁻)	2.00	4.50	24.5		

PROJECT:	Washington Woo	od Preserving IS	6	MIX No.	
PROJECT No.:	SHO	0600		0600	0-012
MIXING DATE:	31-M	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	N RATE	WEI	GHT
Richmond Type PC #1047		4.00	%	32.0	g
NewCem GGBFS 100 #1049		8.00	%	64.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	76.8	g
OBSERVATIONS/NOTES					
Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Davs	Days				
	PENETR				
CURE TIME (Days)	$\frac{PENETR}{1}$	3	5		

PROJECT:	Washington Wo	od Preserving IS	S	MIX No.	
PROJECT No .:	SH	0600		0600	0-013
MIXING DATE:	31-M	1ar-16		MIXED BY:	JDM/DMC
	AL TYPE			ISSN	orth Composite
WEIGHT OF UNTREAT	ED MATERIAL			800	g
REAGENT TYPE AND L	OT NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		6.00	%	48.0	g
Centralia Class F Fly Ash #	1048	1.50	%	12.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	48.0	g
OBSERVATIONS / NOTE Pocket Penetrometer @ 1, 3 UCS @ 7 Days	:S , 5 Days				
	PENETR	OMETER AI	VALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/f	t ²) 1.50	2.00	3.25		

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No.:	SHO	0600		0600	0-014
MIXING DATE:	31-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		8.00	%	64.0	g
Centralia Class F Fly Ash #104	18	2.00	%	16.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	64.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	PENETR	OMETER AI	NALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	2.50	>4.5	>4.5		

PROJECT:	Washington Woo	od Preserving IS	5	MIX No.	
PROJECT No.:	SHO	0600		0600	0-015
MIXING DATE:	31-M	ar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATED	MATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	N RATE	WEI	GHT
Dishmond Tyme L DC #1047		4.00	0/	22.0	2
Controlio Closs E Ely A sh #1047	8	4.00	/0 0/_	<u> </u>	g g
	0	10.00	<u> </u>	0.0	g g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	89.6	a
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Days	Days				
	PENFTR				
CURE TIME (Davs)	1 1	3	5		

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No.:	SHO	0600		0600	0-016
MIXING DATE:	31-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATED	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Pichmond Type I DC #1047		4.00	0/	32.0	2
Tacoma I KD #919		4.00	%	<u> </u>	y a
		10.00	%	0.0	9 0
			%	0.0	a
			%	0.0	g
Water Addition		80	%	89.6	g
OBSERVATIONS/NOTES					
Pocket Penetrometer @ 1, 3, 5 UCS @ 7 Davs	Days				
	DENETO				
				1	
CUKE TIME (Days)	1	3	5		
I PENEIKUVIEIEK (tons/ft-)	0.00	0.00	0.00		

PROJECT:	Washington Wo	od Preserving IS	5	MIX No.	
PROJECT No.:	SHO	0600		0600	0-017
MIXING DATE:	31-N	lar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL	TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
LeHigh Tpye II/V PC #1042		4.00	%	32.0	g
NewCem GGBFS #1049		8.00	%	64.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	76.8	g
OBSERVATIONS/NOTES	Days				
UCS@7Days	Days				
	PENETR	OMETER AI	NALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²)	1.00	2.75	>4.5		

PROJECT:	Washington Wo	od Preserving IS	S	MIX No.	
PROJECT No.:	SH	0600	_	0600)-018
MIXING DATE:	31-N	1ar-16		MIXED BY:	JDM/DMC
UNTREATED MATERIAL TYPE				ISS No	orth Composite
WEIGHT OF UNTREATE	DMATERIAL			800	g
REAGENT TYPE AND LO	T NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		5.25	%	42.0	g
NewCem GGBFS #1049		2.25	%	18.0	g
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	8.0	g
			%	0.0	g
			%	0.0	g
Water Addition		125	%	85.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 9 UCS @ 7 Days	5 Days				
	PENETR	OMETER AI	VALYSES		
CURE TIME (Days)	1	3	5		
PENETROMETER (tons/ft ²) 0.25	2.75	3.25		

APPENDIX E PRELIMINARY SCREENING EVALUATIONS PHYSICAL CHARACTERIZATION DATA SHEETS

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-001 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A743_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETER	1	LENGTH		
No. 1	2.00 i	n.	3.93 in.		
No. 2	1.99 i	n.	3.93 in.		
No. 3	1.99 i	n.	3.93 in.		
Average	1.99 i	n.	3.93 in.		

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	312.61	g		
Initial Area, Ao	3.11	in²		
Initial Volume, Vo	12.23	in³		
Initial Bulk Unit Weight,	97.3	lb/ft³		
Initial Dry Unit Weight	60.2	lb/ft ³		
Maximum Load (Peak)	56.00	lbs.		
UCS	17.5	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.114	0.0000	0.0
56	0.110	0.110	3.204	0.0280	17.5

114.42

192.00

162.41

29.59

47.99

61.66

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-002 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A744_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	1.99	in.	3.93	in.	
No. 2	1.99	in.	3.95	in.	
No. 3	1.98	in.	3.93	in.	
Average	1.99	in.	3.93	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	314.69	g		
Initial Area, Ao	3.10	in²		
Initial Volume, Vo	12.20	in³		
Initial Bulk Unit Weight,	98.3	lb/ft³		
Initial Dry Unit Weight	60.0	lb/ft ³		
Maximum Load (Peak)	78.00	lbs.		
UCS	24.6	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.100	0.0000	0.0
78	0.085	0.085	3.168	0.0216	24.6

106.53 200.04

163.58

36.46

57.05

63.91

g g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-003 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: 0.0400 in./min. TRACKING CODE: A745_US

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH		
No. 1	2.00	in.	3.97	in.	
No. 2	1.99	in.	3.95	in.	
No. 3	1.98	in.	3.97	in.	
Average	1.99	in.	3.96	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	313.47	g			
Initial Area, Ao	3.11	in²			
Initial Volume, Vo	12.34	in³			
Initial Bulk Unit Weight,	96.8	lb/ft ³			
Initial Dry Unit Weight	58.7	lb/ft³			
Maximum Load (Peak)	89.00	lbs.			
UCS	28.0	lb/in²			

	COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
	0	0.000	0.000	3.113	0.0000	0.0
Ī	89	0.075	0.075	3.173	0.0189	28.0

113.23 213.60

174.13

39.47

60.90

64.81

g g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-004 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: 0.0400 in./min. TRACKING CODE: A746_US

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH				1			
No. 1	2.01	in.	3.93	in.			
No. 2	1.99	in.	3.93	in.			
No. 3	1.98	in.	3.93	in.			
Average	Average 1.99 in. 3.93 in.						

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	312.94	g			
Initial Area, Ao	3.12	in²			
Initial Volume, Vo	12.27	in³			
Initial Bulk Unit Weight,	97.2	lb/ft ³			
Initial Dry Unit Weight	58.8	lb/ft ³			
Maximum Load (Peak)	50.00	lbs.			
UCS	15.4	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.123	0.0000	0.0
50	0.140	0.140	3.238	0.0356	15.4

115.98

206.02

170.46

35.56

54.48

65.27

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-005 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A747_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.00	in.	3.93	in.			
No. 2	1.99	in.	3.94	in.			
No. 3	1.98	in.	3.93	in.			
Average	Average 1.99 in. 3.93 in.						

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	314.95	g			
Initial Area, Ao	3.11	in²			
Initial Volume, Vo	12.22	in³			
Initial Bulk Unit Weight,	98.2	lb/ft ³			
Initial Dry Unit Weight	59.7	lb/ft³			
Maximum Load (Peak)	71.00	lbs.			
UCS	22.2	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.106	0.0000	0.0
71	0.110	0.110	3.195	0.0280	22.2

118.37

214.63

176.88

37.75

58.51

64.52

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-006 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A748_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	1.97 i	n.	3.86 in.				
No. 2	1.97 i	n.	3.83 in.				
No. 3	1.97 i	n.	3.83 in.				
Average	Average 1.97 in. 3.84 in.						

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	314.38	g			
Initial Area, Ao	3.05	in²			
Initial Volume, Vo	11.73	in³			
Initial Bulk Unit Weight,	102.1	lb/ft³			
Initial Dry Unit Weight	63.2	lb/ft ³			
Maximum Load (Peak)	29.00	lbs.			
UCS	9.2	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.052	0.0000	0.0
29	0.135	0.135	3.163	0.0351	9.2

111.87

209.19

172.16

37.03

60.29

61.42

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-007 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: 0.0400 in./min. TRACKING CODE: A749_US

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	1.95 in	. <u>3.84</u> in.				
No. 2	1.97 in	. <u>3.85</u> in.				
No. 3	1.96 in	. <u>3.83</u> in.				
Average	1.96 in	. 3.84 in.				

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	302.95	g		
Initial Area, Ao	3.01	in²		
Initial Volume, Vo	11.54	in³		
Initial Bulk Unit Weight,	100.0	lb/ft ³		
Initial Dry Unit Weight	62.9	lb/ft³		
Maximum Load (Peak)	23.00	lbs.		
UCS	7.2	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.008	0.0000	0.0
23	0.225	0.225	3.196	0.0586	7.2

114.71

191.41

162.97

28.44

48.26

58.93

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-008 (7-Day)
TESTING DATE:	6-Apr-16
TESTED BY:	LC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A750_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH	1	
No. 1	1.99	in.	3.93	in.	
No. 2	2.00	in.	3.93	in.	
No. 3	1.99	in.	3.94	in.	
Average 1.99 in. 3.93 in.					

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	312.46	g		
Initial Area, Ao	3.11	in²		
Initial Volume, Vo	12.25	in³		
Initial Bulk Unit Weight,	97.2	lb/ft³		
Initial Dry Unit Weight	59.7	lb/ft ³		
Maximum Load (Peak)	100.00	lbs.		
UCS	31.5	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.114	0.0000	0.0
100	0.080	0.080	3.179	0.0203	31.5

113.21

200.98

167.10

33.88

53.89

62.87

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-009 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: 0.0400 in./min. TRACKING CODE: A755_US

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	1.98	in.	3.92 in.		
No. 2	1.99	in.	3.96 in.		
No. 3	1.99	in.	3.92 in.		
Average	1.99	in.	3.93 in.		

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	295.99	g		
Initial Area, Ao	3.10	in²		
Initial Volume, Vo	12.19	in³		
Initial Bulk Unit Weight,	92.5	lb/ft ³		
Initial Dry Unit Weight	52.7	lb/ft³		
Maximum Load (Peak)	36.00	lbs.		
UCS	11.2	lb/in²		

0 0.000 0.000 3.101 0.0000	0.0
36 0.145 0.145 3.220 0.0369	11.2

76.15

128.49

105.96

22.53

29.81

75.58

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-010 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A756_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH	1	
No. 1	2.00	in.	3.96	in.	
No. 2	2.00	in.	3.96	in.	
No. 3	1.99	in.	3.97	in.	
Average	2.00	in.	3.97	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	349.91	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.44	in³			
Initial Bulk Unit Weight,	107.2	lb/ft ³			
Initial Dry Unit Weight	74.7	lb/ft³			
Maximum Load (Peak)	64.00	lbs.			
UCS	20.0	lb/in²			

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.136	0.0000	0.0
64	0.075	0.075	3.196	0.0189	20.0

76.63 124.09

109.71

14.38

33.08

43.47

g g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-011 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A757_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH		
No. 1	2.01	in.	3.96	in.	
No. 2	2.00	in.	3.94	in.	
No. 3	2.00	in.	3.97	in.	
Average	2.00	in.	3.95	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	344.21	g			
Initial Area, Ao	3.15	in²			
Initial Volume, Vo	12.44	in³			
Initial Bulk Unit Weight,	105.4	lb/ft³			
Initial Dry Unit Weight	72.1	lb/ft ³			
Maximum Load (Peak)	96.00	lbs.			
UCS	29.8	lb/in ²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (Ib/in ²)
0	0.000	0.000	3.146	0.0000	0.0
96	0.090	0.090	3.219	0.0228	29.8

63.32

124.41

105.11

19.30

41.79

46.18

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-012 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: 0.0400 in./min. TRACKING CODE: A758_US

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH				1	
No. 1	2.01	in.	3.95	in.	
No. 2	2.00	in.	3.96	in.	
No. 3	1.99	in.	3.94	in.	
Average	2.00	in.	3.95	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	342.08	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.40	in³			
Initial Bulk Unit Weight,	105.1	lb/ft ³			
Initial Dry Unit Weight	72.7	lb/ft³			
Maximum Load (Peak)	69.00	lbs.			
UCS	21.4	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	ONCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.139	0.0000	0.0
69	0.110	0.110	3.229	0.0278	21.4

76.74

130.53

113.93

16.60

37.19

44.64

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-013 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A759_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH	1	
No. 1	2.00	in.	3.94	in.	
No. 2	1.99	in.	3.95	in.	
No. 3	2.00	in.	3.94	in.	
Average	2.00	in.	3.94	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	343.97	g		
Initial Area, Ao	3.13	in²		
Initial Volume, Vo	12.35	in³		
Initial Bulk Unit Weight,	106.1	lb/ft³		
Initial Dry Unit Weight	73.7	lb/ft ³		
Maximum Load (Peak)	62.00	lbs.		
UCS	19.2	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (Ib/in ²)
0	0.000	0.000	3.134	0.0000	0.0
62	0.115	0.115	3.228	0.0292	19.2

76.69

137.26

118.74

18.52

42.05

44.04

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-014 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A760_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH	1	
No. 1	2.01	in.	3.90	in.	
No. 2	2.00	in.	3.91	in.	
No. 3	1.99	in.	3.90	in.	
Average	2.00	in.	3.90	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	340.73	g		
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	12.27	in³		
Initial Bulk Unit Weight,	105.8	lb/ft³		
Initial Dry Unit Weight	72.8	lb/ft ³		
Maximum Load (Peak)	97.00	lbs.		
UCS	30.2	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.143	0.0000	0.0
97	0.090	0.090	3.217	0.0231	30.2
97	0.090	0.090	3.217	0.0231	

76.99

126.38

110.98

15.40

33.99

45.31

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-015 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A761_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTH	1	
No. 1	2.01	in.	3.78	in.	
No. 2	1.99	in.	3.80	in.	
No. 3	1.99	in.	3.79	in.	
Average	2.00	in.	3.79	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	330.18	g			
Initial Area, Ao	3.13	in²			
Initial Volume, Vo	11.86	in³			
Initial Bulk Unit Weight,	106.1	lb/ft ³			
Initial Dry Unit Weight	72.1	lb/ft³			
Maximum Load (Peak)	28.00	lbs.			
UCS	8.7	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.129	0.0000	0.0
28	0.115	0.115	3.227	0.0303	8.1

76.02

129.24

112.19

17.05

36.17

47.14

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-016 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: <u>A762_US</u>

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	1.96	in.	3.88 in.			
No. 2	2.00	in.	3.89 in.			
No. 3	1.95	in.	3.91 in.			
Average	1.97	in.	3.89 in.			

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	335.45	g			
Initial Area, Ao	3.04	in²			
Initial Volume, Vo	11.85	in³			
Initial Bulk Unit Weight,	107.8	lb/ft ³			
Initial Dry Unit Weight	73.8	lb/ft³			
Maximum Load (Peak)	13.00	lbs.			
UCS	3.9	lb/in²			

0 0.000 0.000 3.043 0.0000	COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
	0	0.000	0.000	3.043	0.0000	0.0
13 0.325 0.325 3.321 0.0835	13	0.325	0.325	3.321	0.0835	3.9

77.45

130.91

114.05

16.86

36.60

46.07

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-017 (7-Day)
TESTING DATE:	7-Apr-16
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

2. WT MOISTURE TIN (tare weight) 3. WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: <u>A763_US</u>

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	1.99	in.	3.89	in.		
No. 2	2.01	in.	3.88	in.		
No. 3	2.00	in.	3.86	in.		
Average	2.00	in.	3.87	in.		

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	339.02	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.15	in³			
Initial Bulk Unit Weight,	106.3	lb/ft ³			
Initial Dry Unit Weight	74.8	lb/ft ³			
Maximum Load (Peak)	86.00	lbs.			
UCS	27.1	lb/in²			

(lbs.)	(in.)	(in.)	(in ²)	(in/in)	(lb/in ²)
0	0.000	0.000	3.135	0.0000	0.0
86	0.045	0.045	3.172	0.0116	27.1

76.37

130.30

114.30

16.00

37.93

42.18

g

g

g

ASTM D 1633

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-018 (7-Day)
TESTING DATE:	4/7/2016
TESTED BY:	DMC

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

7. MOISTURE CONTENT, W

5. WT WATER, Ww

6. WT DRY SOIL, Ws

WT MOISTURE TIN (tare weight)
WT WET SOIL + TARE

LOADING RATE: TRACKING CODE: A764_US

0.0400 in./min.

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.99	in.	
No. 2	1.99	in.	3.97	in.	
No. 3	1.99	in.	3.98	in.	
Average	1.99	in.	3.98	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	337.47	g		
Initial Area, Ao	3.13	in²		
Initial Volume, Vo	12.44	in³		
Initial Bulk Unit Weight,	103.3	lb/ft³		
Initial Dry Unit Weight	69.3	lb/ft ³		
Maximum Load (Peak)	62.00	lbs.		
UCS	19.1	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.125	0.0000	0.0
62	0.140	0.140	3.239	0.0352	19.1

76.99

129.49

112.19

17.30

35.20

49.15

g

g

g

APPENDIX F ADVANCED SCREENING EVALUATIONS DESIGN SHEETS

PROJECT:	Washington Wood Preserving ISS		S	MIX No.		
PROJECT No .:	SH0600		_	0600-019		
MIXING DATE:	G DATE: 20-Apr-16			MIXED BY:	LC	
UNTREATED MATERIA	L TYPE			ISSS	outh Composite	
WEIGHT OF UNTREATE	ED MATERIAL			1,800 g		
REAGENT TYPE AND LO	T NUMBER	ADDITIC	ON RATE	WEI	GHT	
Richmond Type J PC #1047		4.00	%	72.0	0	
NewCem GGBES 100 #1049		8.00	%	144.0	<u>g</u>	
		0.00	%	0.0	<u>9</u>	
			%	0.0	a	
			%	0.0	g	
Water Addition		80	%	172.8	g	
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	5, 7, 14, and 28 Da	ys				
	DENETD					
			7	1/	20	
DENETROMETER (topo/ft ²	1,3	5 5/5	/	14 57 5	20	
FEINETROWETER (101911	1.50, ~4.5	~4.5	/4.5	~4.5	~4.5	

PROJECT:	OJECT: Washington Wood Prese		S	MIX No.		
PROJECT No.:	SH0600		_	0600-020		
MIXING DATE:	E: 20-Apr-16			MIXED BY:	LC	
UNTREATED MATERIAL	. TYPE			ISSS	outh Composite	
WEIGHT OF UNTREATE	DMATERIAL			1,800 g		
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT	
Richmond Type I PC #1047		5.00	%	90.0	a	
NewCem GGBES 100 #1049		10.00	%	180.0	g	
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	18.0	g	
			%	0.0	g	
			%	0.0	g	
Water Addition		100	%	288.0	g	
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	, 7, 14, and 28 Da	ys				
	DENETO					
				14	20	
CURE TIME (Days)	I, 3	5		14	<u> </u>	
PENEI KUVIEI EK (tons/tt)	1.00,24.5	>4.5	24.5	24.D	24.D	

PROJECT:	Washington Wood Preserving ISS		S	MIX No.			
PROJECT No .:	SH0600			0600-021			
MIXING DATE:	20-Apr-16			MIXED BY:	LC		
UNTREATED MATERIA	L TYPE			ISS South Composite			
WEIGHT OF UNTREATE	DMATERIAL			1,800 g			
REAGENT TYPE AND LOT NUMBER		ADDITIC	ON RATE	WEIGHT			
Richmond Type I PC #1047		6.00	%	108.0	0		
NewCem GGBES 100 #1049		6.00	%	108.0	<u>g</u>		
		0.00	%	0.0	<u>a</u>		
			%	0.0	g		
			%	0.0	g		
Water Addition		80	%	172.8	g		
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	5, 7, 14, and 28 Da	ys					
	PENETR	OMETER AI	VALYSES				
CURE TIME (Days)	1, 3	5	7	14	28		
PENETROMETER (tons/ft ²	120045	>4.5	>4.5	>4.5	>4.5		
PROJECT:	Washington Woo	/ood Preserving ISS MIX No.		MIX No.			
--	--------------------	-----------------------------	--------------	-----------	----------------		
PROJECT No.:	SHO	0600		0600-022			
MIXING DATE:	20-A	pr-16		MIXED BY:	LC		
UNTREATED MATERIAL	. TYPE			ISSS	outh Composite		
WEIGHT OF UNTREATE			1,800 g				
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT		
Richmond Type I PC #1047		6.00	%	108.0	a		
NewCem GGBFS 100 #1049		8.00	%	144.0	g		
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	18.0	g		
			%	0.0	g		
			%	0.0	g		
Water Addition		80	0/2	216.0	a		
		80	70	210.0	9		
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	, 7, 14, and 28 Da	ys	70	210.0	9		
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	, 7, 14, and 28 Da			210.0	9		
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	7, 14, and 28 Da	ys OMETER AI	VALYSES 7	14	28		

PROJECT:	Washington Woo	ood Preserving ISS N		MIX No.	
PROJECT No.:	SHO	0600		0600)-023
MIXING DATE:	20-A	.pr-16		MIXED BY:	LC
UNTREATED MATERIA	. TYPE			ISS Sc	outh Composite
WEIGHT OF UNTREATE			1,800 g		
REAGENT TYPE AND LO	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		8.00	%	144.0	a
NewCem GGBFS 100 #1049		4.00	%	72.0	a
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	18.0	g
			%	0.0	g
			%	0.0	g
Water Addition		100	%	234.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	i, 7, 14, and 28 Da	ys			
	DENETD				
CURE TIME (Davs)	1.3	<u>OMETERAI</u> 5	7	14	28

PROJECT:	Washington Wo	od Preserving IS	S	MIX No.	
PROJECT No .:	SH	0600		0600)-024
MIXING DATE:	20-A	.pr-16		MIXED BY:	LC
UNTREATED MATERI	AL TYPE			ISSN	orth Composite
WEIGHT OF UNTREAT	ED MATERIAL			1,800	g
REAGENT TYPE AND L	OT NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type LPC #1047	,	4 00	%	72.0	a
NewCem GGBFS 100 #104	9	8.00	%	144.0	<u>a</u>
	-		%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition		80	%	172.8	g
OBSERVATIONS / NOTE Pocket Penetrometer @ 1, 3 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	ES , 5, 7, 14, and 28 Da	ys			
					00
CURE TIME (Days)	1, 3	5	/	14	28
PENETROMETER (tons/f	t [−]) 0.50, 3.00	>4.5	>4.5	>4.5	>4.5

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No.:	SH0600		0600)-025	
MIXING DATE:	20-A	pr-16		MIXED BY:	LC
UNTREATED MATERIAL	TYPE			I SS No	orth Composite
WEIGHT OF UNTREATE			1,800	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		5.00	%	90.0	a
NewCem GGBFS 100 #1049		10.00	%	180.0	g
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	18.0	g
			%	0.0	g
			%	0.0	g
Water Addition		100	%	288.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	, 7, 14, and 28 Da	ys			
	DENETD				
			7	1/	28
PENETROMETER (tons/ft ²)	0.50, 3.50	>45	>45	>4.5	>4 5
	0.00, 0.00	- -	~ 7 .5	- -	́т.J

PROJECT:	Washington Wo	od Preserving IS	S	MIX No.	
PROJECT No .:	SHO	0600		0600-026	
MIXING DATE:	20-A	.pr-16		MIXED BY:	LC
UNTREATED MATERIA	AL TYPE			ISSN	orth Composite
WEIGHT OF UNTREAT			1,800 g		
REAGENT TYPE AND LO	OT NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		6.00	%	108.0	0
NewCem GGBES 100 #104	9	6.00	%	108.0	<u>a</u>
	-	0.00	%	0.0	g q
			%	0.0	g
			%	0.0	g
Water Addition		80	%	172.8	g
OBSERVATIONS / NOTE Pocket Penetrometer @ 1, 3 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	S 5, 7, 14, and 28 Da	ys			
	PENETR	OMETER AI	VALYSES		
CURE TIME (Days)	1, 3	5	7	14	28
PENETROMETER (tons/ft	(1) 0.75.4.25	>4.5	>4.5	>4.5	>4.5

	Washington Wo	ood Preserving ISS		MIX No.	
PROJECT No .:	SHO	SH0600		0600	0-027
MIXING DATE:	20-A	pr-16		MIXED BY:	LC
UNTREATED MATERIA	_ TYPE			ISS No	orth Composite
WEIGHT OF UNTREATE			1,800	g	
REAGENT TYPE AND LO	Γ NUMBER	ADDITIC	N RATE	WEI	GHT
Dishmond Type I DC #1047		6.00	0/	109.0	~
NewCen CCBES 100 #1047		8.00	70 %	106.0	y a
Wvo-Ben Hydrogel Bentonite	#807	1 00	%	18.0	9 0
		1.00	%	0.0	a
			%	0.0	g
Water Addition		100	%	270.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 9 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	5, 7, 14, and 28 Da	ys			
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 9 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	5, 7, 14, and 28 Da				
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 9 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	5, 7, 14, and 28 Da	ys OMETER AI	NALYSES	14	28

PROJECT:	Washington Woo	od Preserving IS	S	MIX No.	
PROJECT No.:	SHO	0600		0600)-028
MIXING DATE:	20-A	pr-16		MIXED BY:	LC
UNTREATED MATERIAL	. TYPE			ISSN	orth Composite
WEIGHT OF UNTREATE			1,800	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIC	ON RATE	WEI	GHT
Richmond Type I PC #1047		8.00	%	144.0	a
NewCem GGBFS 100 #1049		4.00	%	72.0	g
Wyo-Ben Hydrogel Bentonite	#807	1.00	%	18.0	g
			%	0.0	g
			%	0.0	g
Water Addition		100	%	234.0	g
OBSERVATIONS / NOTES Pocket Penetrometer @ 1, 3, 5 UCS @ 7 and 28 Days Permeability @ 28 Days Potential LEAF Testing	, 7, 14, and 28 Da	ys			
			VALYSES		
CURE TIME (Days)	1, 3	5	7	14	28
PENETROMETER (tons/ft ²)	1.50, 3.25	>4.5	>4.5	>4.5	>4.5

APPENDIX G ADVANCED SCREENING EVALUATIONS PHYSICAL CHARATERIZATION DATA SHEETS

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-019 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A790_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare weight)	113.56	g			
3. WT WET SOIL + TARE	155.23	g			
4. WT DRY SOIL + TARE	138.55	g			
5. WT WATER, Ww	16.68	g			
6. WT DRY SOIL, Ws	24.99	g			
7. MOISTURE CONTENT, W	66.75	%			

SOIL SPECIMEN DIMENSIONS						
	DIAMET	ER	LENGTH			
No. 1	2.00	in.	3.92	in.		
No. 2	2.00	in.	4.01	in.		
No. 3	1.99	in.	3.92	in.		
Average	3.95	in.				

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	311.33	g			
Initial Area, Ao	3.13	in²			
Initial Volume, Vo	12.37	in³			
Initial Bulk Unit Weight,	95.9	lb/ft³			
Initial Dry Unit Weight	57.5	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	32.9	lb/in²			

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.131	0.0000	0.0
1	0.003	0.003	3.134	0.0008	0.3
3	0.005	0.005	3.135	0.0013	1.0
4	0.007	0.007	3.137	0.0018	1.3
7	0.010	0.010	3.139	0.0025	2.2
17	0.015	0.015	3.143	0.0038	5.4
31	0.020	0.020	3.147	0.0051	9.9
44	0.025	0.025	3.151	0.0063	14.0
61	0.030	0.030	3.155	0.0076	19.3
75	0.035	0.035	3.159	0.0089	23.7
86	0.040	0.040	3.163	0.0101	27.2
93	0.045	0.045	3.167	0.0114	29.4
98	0.050	0.050	3.171	0.0127	30.9
101	0.055	0.055	3.175	0.0139	31.8
103	0.060	0.060	3.179	0.0152	32.4
104	0.065	0.065	3.184	0.0165	32.7
105	0.070	0.070	3.188	0.0177	32.9
104	0.080	0.080	3.196	0.0202	32.5
103	0.085	0.085	3.200	0.0215	32.2
101	0.090	0.090	3.204	0.0228	31.5
99	0.095	0.095	3.208	0.0240	30.9
97	0.100	0.100	3.212	0.0253	30.2
95	0.105	0.105	3.217	0.0266	29.5
93	0.110	0.110	3.221	0.0278	28.9
90	0.115	0.115	3.225	0.0291	27.9
87	0.120	0.120	3.229	0.0304	26.9
84	0.125	0.125	3.233	0.0316	26.0

UNCONFINED COMPRESSION TESTING Sample No. 0600-019 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-019 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	66.7 %				
BULK UNIT WEIGHT	95.9 lb/ft ³				
DRY UNIT WEIGHT	57.5 lb/ft3				
UCS *	32.9 lb/in ²				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS		
PROJECT No.:	SH0600		
SAMPLE No.:	0600-020 (7-day)		
TESTING DATE:	27-Apr-16		
TESTED BY:	DMC		

LOADING RATE: 0.0400 in./min. TRACKING CODE: A791_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare weight)	116.06	g			
3. WT WET SOIL + TARE	159.19	g			
4. WT DRY SOIL + TARE	141.88	g			
5. WT WATER, Ww	17.31	g			
6. WT DRY SOIL, Ws	25.82	g			
7. MOISTURE CONTENT, W	67.04	%			

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.01	in.	3.96	in.		
No. 2	1.99	in.	3.96	in.		
No. 3	1.99	in.	3.95	in.		
Average 2.00 in. 3.96 in.						

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	307.55	g	
Initial Area, Ao	3.13	in²	
Initial Volume, Vo	12.39	in³	
Initial Bulk Unit Weight,	94.5	lb/ft³	
Initial Dry Unit Weight	56.6	lb/ft³	
15 % Strain (0.15 Lo)	0.59	in.	
UCS	43.8	lb/in²	

	COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
ŀ	0	0.000	0.000	3.133	0.0000	0.0
ŀ	6	0.003	0.003	3.136	0.0008	1.9
ľ	10	0.005	0.005	3.137	0.0013	3.2
ľ	21	0.007	0.007	3.139	0.0018	6.7
Ī	29	0.010	0.010	3.141	0.0025	9.2
Ī	50	0.015	0.015	3.145	0.0038	15.9
	73	0.020	0.020	3.149	0.0051	23.2
	97	0.025	0.025	3.153	0.0063	30.8
	114	0.030	0.030	3.157	0.0076	36.1
	127	0.035	0.035	3.161	0.0088	40.2
	134	0.040	0.040	3.165	0.0101	42.3
	137	0.045	0.045	3.169	0.0114	43.2
	139	0.050	0.050	3.173	0.0126	43.8
l	136	0.060	0.060	3.181	0.0152	42.7
l	134	0.065	0.065	3.186	0.0164	42.1
l	130	0.070	0.070	3.190	0.0177	40.8
l	126	0.075	0.075	3.194	0.0190	39.5
l	122	0.080	0.080	3.198	0.0202	38.2
ļ	118	0.085	0.085	3.202	0.0215	36.9
ļ	113	0.090	0.090	3.206	0.0228	35.2
ļ	110	0.095	0.095	3.210	0.0240	34.3

UNCONFINED COMPRESSION TESTING Sample No. 0600-020 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-020 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	67.0 %				
BULK UNIT WEIGHT	94.5 lb/ft3				
DRY UNIT WEIGHT	56.6 lb/ft ³				
UCS *	43.8 lb/in ²				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS	
PROJECT No.:	SH0600	
SAMPLE No.:	0600-021 (7-day)	
TESTING DATE:	27-Apr-16	
TESTED BY:	DMC	

 LOADING RATE:
 0.0400 in./min.

 TRACKING CODE:
 A792_US

MOISTURE CONTENT (Dry Basis)			
1. MOISTURE TIN NO.			
2. WT MOISTURE TIN (tare weight)	116.74	g	
3. WT WET SOIL + TARE	155.54	g	
4. WT DRY SOIL + TARE	140.98	g	
5. WT WATER, Ww	14.56	g	
6. WT DRY SOIL, Ws	24.24	g	
7. MOISTURE CONTENT, W	60.07	%	

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.95	in.	
No. 2	2.00	in.	3.95	in.	
No. 3	1.99	in.	3.95	in.	
Average 2.00 in. 3.95 in.					

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	312.36	g	
Initial Area, Ao	3.13	in²	
Initial Volume, Vo	12.36	in³	
Initial Bulk Unit Weight,	96.3	lb/ft ³	
Initial Dry Unit Weight	60.1	lb/ft³	
15 % Strain (0.15 Lo)	0.59	in.	
UCS	34.5	lb/in ²	

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.130	0.0000	0.0
2	0.003	0.003	3.132	0.0008	0.6
5	0.005	0.005	3.134	0.0013	1.6
8	0.007	0.007	3.135	0.0018	2.6
15	0.010	0.010	3.138	0.0025	4.8
26	0.015	0.015	3.141	0.0038	8.3
40	0.020	0.020	3.145	0.0051	12.7
58	0.025	0.025	3.149	0.0063	18.4
76	0.030	0.030	3.154	0.0076	24.1
87	0.035	0.035	3.158	0.0089	27.6
96	0.040	0.040	3.162	0.0101	30.4
100	0.045	0.045	3.166	0.0114	31.6
102	0.050	0.050	3.170	0.0127	32.2
104	0.055	0.055	3.174	0.0139	32.8
106	0.060	0.060	3.178	0.0152	33.4
107	0.065	0.065	3.182	0.0165	33.6
108	0.070	0.070	3.186	0.0177	33.9
110	0.075	0.075	3.190	0.0190	34.5
108	0.080	0.080	3.194	0.0203	33.8
107	0.090	0.090	3.203	0.0228	33.4
105	0.095	0.095	3.207	0.0241	32.7
102	0.100	0.100	3.211	0.0253	31.8
99	0.105	0.105	3.215	0.0266	30.8
95	0.110	0.110	3.219	0.0278	29.5
90	0.115	0.115	3.223	0.0291	27.9
87	0.120	0.120	3.228	0.0304	27.0
82	0.125	0.125	3.232	0.0316	25.4

UNCONFINED COMPRESSION TESTING Sample No. 0600-021 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-021 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	60.1 %				
BULK UNIT WEIGHT	96.3 lb/ft3				
DRY UNIT WEIGHT	60.1 lb/ft ³				
UCS *	34.5 lb/in ²				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS		
PROJECT No.:	SH0600		
SAMPLE No.:	0600-022 (7-day)		
TESTING DATE:	27-Apr-16		
TESTED BY:	DMC		

LOADING RATE: 0.0400 in./min. TRACKING CODE: A793_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare weight)	107.86				
3. WT WET SOIL + TARE	155.74 g				
4. WT DRY SOIL + TARE	136.82				
5. WT WATER, Ww	18.92 g				
6. WT DRY SOIL, Ws	28.96				
7. MOISTURE CONTENT, W	65.33 %				

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.01	in.	3.92	in.			
No. 2	2.00	in.	3.93	in.			
No. 3	1.99	in.	3.95	in.			
Average 2.00 in. 3.93 in.							

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	307.63	g		
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	12.36	in³		
Initial Bulk Unit Weight,	94.8	lb/ft ³		
Initial Dry Unit Weight	57.4	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	34.4	lb/in²		

COMPRESSIVE LOAD DIAL GAGE READING SPECIMEN DEFORMATION CORRECTED AREA AXIAL STRAIN COMPRESSIVE STRENGTH 0 0.000 0.000 3.141 0.000 0.000 3 0.003 0.003 3.141 0.000 0.001 4 0.005 0.005 3.145 0.0018 2.22 10 0.010 0.010 3.149 0.0025 3.22 18 0.015 0.153 3.153 0.0038 5.7 27 0.020 0.025 3.161 0.0064 12.7 60 0.035 0.035 3.165 0.0076 19.0 60 0.035 0.055 3.182 0.0127 31.7 101 0.055 0.055 3.186 0.0140 32.26 101 0.055 0.055 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.065 3.194 0.0165						UNCONFINED
LOAD (lbs.) READING (in.) DEFORMATION (in.) AREA (in ²) STRAIN (in/in) STRENGTH (ib/in ²) 0 0.000 0.000 3.141 0.0000 0.0 3 0.003 0.003 3.143 0.0008 1.0 4 0.005 0.007 3.145 0.0018 2.2 10 0.010 0.010 3.147 0.0018 2.2 110 0.010 0.010 3.147 0.0018 2.2 118 0.015 0.015 3.153 0.0038 5.7 27 0.020 0.020 3.157 0.0051 8.6 40 0.025 0.025 3.161 0.0064 12.7 60 0.030 0.303 3.165 0.0076 19.0 76 0.035 0.035 3.169 0.0089 24.0 87 0.040 0.173 0.0102 27.4 96 0.045 0.045 3.177 0.0114 30.2	COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
(lbs.)(in.)(in2)(in/in)(lb/in2)00.0000.000 3.141 0.00000.030.0030.003 3.143 0.00081.040.0050.005 3.145 0.00131.1370.0070.007 3.147 0.00182.2100.0100.010 3.149 0.00253.21180.0150.015 3.153 0.00885.7270.0200.020 3.157 0.00518.6400.0250.025 3.161 0.006412.7600.0300.030 3.165 0.007619.0760.0350.035 3.169 0.008924.0870.0400.044 3.173 0.010227.4960.0450.045 3.177 0.011430.21010.0500.050 3.182 0.012731.71040.0550.055 3.186 0.014032.61070.0600.065 3.194 0.016534.11090.0850.085 3.210 0.021634.01080.0900.090 3.215 0.022433.21060.1000.105 3.227 0.026732.21030.1100.116 3.231 0.028031.91040.1550.125 3.244 0.031829.61050.1250.125 3.244 0.031829.6106	LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0.000	0.000	3.141	0.0000	0.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.003	0.003	3.143	0.0008	1.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	0.005	0.005	3.145	0.0013	1.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	0.007	0.007	3.147	0.0018	2.2
18 0.015 0.015 3.153 0.0038 5.7 27 0.020 0.020 3.157 0.0051 8.6 40 0.025 0.025 3.161 0.0064 12.7 60 0.030 0.030 3.165 0.0076 19.0 76 0.035 0.035 3.169 0.0089 24.0 87 0.040 0.040 3.173 0.0102 27.4 96 0.045 0.045 3.177 0.0114 30.2 101 0.050 0.050 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 100 0.070 0.70 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 <	10	0.010	0.010	3.149	0.0025	3.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	0.015	0.015	3.153	0.0038	5.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	0.020	0.020	3.157	0.0051	8.6
60 0.030 0.030 3.165 0.0076 19.0 76 0.035 0.035 3.169 0.0089 24.0 87 0.040 0.040 3.173 0.0102 27.4 96 0.045 0.045 3.177 0.0114 30.2 101 0.050 0.050 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.3198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.105 3.227 0.0267 32.2 104 0.105	40	0.025	0.025	3.161	0.0064	12.7
76 0.035 0.035 3.169 0.0089 24.0 87 0.040 0.040 3.173 0.0102 27.4 96 0.045 0.045 3.177 0.0114 30.2 101 0.050 0.050 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.125 3.240 0.0305 30.2 103	60	0.030	0.030	3.165	0.0076	19.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	76	0.035	0.035	3.169	0.0089	24.0
96 0.045 0.045 3.177 0.0114 30.2 101 0.050 0.050 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.244 0.0305 30.2 93	87	0.040	0.040	3.173	0.0102	27.4
101 0.050 3.182 0.0127 31.7 104 0.055 0.055 3.186 0.0140 32.6 107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 98 0.125 0.125 3.244 0.0318 29.6 93 0.130	96	0.045	0.045	3.177	0.0114	30.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	101	0.050	0.050	3.182	0.0127	31.7
107 0.060 0.060 3.190 0.0153 33.5 109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 98 0.130 0.130 3.248 0.0330 28.6 93 0.130 0.135 3.253 0.0343 27.4	104	0.055	0.055	3.186	0.0140	32.6
109 0.065 0.065 3.194 0.0165 34.1 110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	107	0.060	0.060	3.190	0.0153	33.5
110 0.070 0.070 3.198 0.0178 34.4 109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	109	0.065	0.065	3.194	0.0165	34.1
109 0.085 0.085 3.210 0.0216 34.0 108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	110	0.070	0.070	3.198	0.0178	34.4
108 0.090 0.090 3.215 0.0229 33.6 107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	109	0.085	0.085	3.210	0.0216	34.0
107 0.095 0.095 3.219 0.0241 33.2 106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	108	0.090	0.090	3.215	0.0229	33.6
106 0.100 0.100 3.223 0.0254 32.9 104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	107	0.095	0.095	3.219	0.0241	33.2
104 0.105 0.105 3.227 0.0267 32.2 103 0.110 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	106	0.100	0.100	3.223	0.0254	32.9
103 0.110 3.231 0.0280 31.9 100 0.115 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	104	0.105	0.105	3.227	0.0267	32.2
100 0.115 3.236 0.0292 30.9 98 0.120 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	103	0.110	0.110	3.231	0.0280	31.9
98 0.120 3.240 0.0305 30.2 96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	100	0.115	0.115	3.236	0.0292	30.9
96 0.125 0.125 3.244 0.0318 29.6 93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	98	0.120	0.120	3.240	0.0305	30.2
93 0.130 0.130 3.248 0.0330 28.6 89 0.135 0.135 3.253 0.0343 27.4	96	0.125	0.125	3.244	0.0318	29.6
89 0.135 0.135 3.253 0.0343 27.4	93	0.130	0.130	3.248	0.0330	28.6
	89	0.135	0.135	3.253	0.0343	27.4

UNCONFINED COMPRESSION TESTING Sample No. 0600-022 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-022 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	65.3	%			
BULK UNIT WEIGHT	94.8	lb/ft ³			
DRY UNIT WEIGHT	57.4	lb/ft ³			
UCS *	34.4	lb/in²			

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS			
PROJECT No.:	SH0600			
SAMPLE No.:	0600-023 (7-day)			
TESTING DATE:	27-Apr-16			
TESTED BY:	DMC			

LOADING RATE: 0.0400 in./min. TRACKING CODE: A794_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare we	eight) 113.23 g				
3. WT WET SOIL + TARE	162.53 g				
4. WT DRY SOIL + TARE	142.77 g				
5. WT WATER, Ww	19.76 g				
6. WT DRY SOIL, Ws	29.54 g				
7. MOISTURE CONTENT, W	66.89 %				

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.00	in.	3.99	in.			
No. 2	2.00	in.	3.98	in.			
No. 3	1.99	in.	3.98	in.			
Average 1.99 in. 3.98 in.							

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	312.92	g		
Initial Area, Ao	3.12	in²		
Initial Volume, Vo	12.44	in³		
Initial Bulk Unit Weight,	95.8	lb/ft ³		
Initial Dry Unit Weight	57.4	lb/ft³		
15 % Strain (0.15 Lo)	0.60	in.		
UCS	34.7	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.124	0.0000	0.0
3	0.003	0.003	3.126	0.0008	1.0
4	0.005	0.005	3.128	0.0013	1.3
7	0.007	0.007	3.129	0.0018	2.2
14	0.010	0.010	3.132	0.0025	4.5
23	0.015	0.015	3.136	0.0038	7.3
32	0.020	0.020	3.140	0.0050	10.2
43	0.025	0.025	3.144	0.0063	13.7
54	0.030	0.030	3.148	0.0075	17.2
67	0.035	0.035	3.152	0.0088	21.3
78	0.040	0.040	3.156	0.0100	24.7
87	0.045	0.045	3.160	0.0113	27.5
93	0.050	0.050	3.164	0.0126	29.4
98	0.055	0.055	3.168	0.0138	30.9
101	0.060	0.060	3.172	0.0151	31.8
103	0.065	0.065	3.176	0.0163	32.4
106	0.070	0.070	3.180	0.0176	33.3
107	0.075	0.075	3.184	0.0188	33.6
109	0.080	0.080	3.188	0.0201	34.2
110	0.085	0.085	3.192	0.0213	34.5
111	0.095	0.095	3.200	0.0239	34.7
110	0.100	0.100	3.204	0.0251	34.3
108	0.105	0.105	3.208	0.0264	33.7
107	0.110	0.110	3.213	0.0276	33.3
106	0.115	0.115	3.217	0.0289	33.0
103	0.120	0.120	3.221	0.0301	32.0
101	0.125	0.125	3.225	0.0314	31.3
100	0.130	0.130	3.229	0.0327	31.0
96	0.135	0.135	3.233	0.0339	29.7
93	0.140	0.140	3.238	0.0352	28.7
91	0.145	0.145	3.242	0.0364	28.1

UNCONFINED COMPRESSION TESTING Sample No. 0600-023 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-023 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	66.9 %				
BULK UNIT WEIGHT	95.8 lb/ft ³				
DRY UNIT WEIGHT	57.4 lb/ft ³				
UCS *	34.7 lb/in ²				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-024 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A795_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare weight)	115.95 g				
3. WT WET SOIL + TARE	155.46 g				
4. WT DRY SOIL + TARE	143.01 g				
5. WT WATER, Ww	12.45 g				
6. WT DRY SOIL, Ws	27.06 g				
7. MOISTURE CONTENT, W	46.01 %				

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTI				ГН		
No. 1	2.01	in.	3.89	in.		
No. 2	2.00	in.	3.90	in.		
No. 3	1.99	in.	3.90	in.		
Average 2.00 in. 3.89 in.						

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	342.89	g		
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	12.23	in³		
Initial Bulk Unit Weight,	106.8	lb/ft ³		
Initial Dry Unit Weight	73.2	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	10.7	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in)	SPECIMEN DEFORMATION	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
(100.)	0.000	0.000	3 141	0.0000	(10/111)
3	0.003	0.003	3 143	0.0008	1.0
4	0.005	0.005	3.145	0.0013	1.3
7	0.007	0.007	3.147	0.0018	2.2
14	0.010	0.010	3.149	0.0026	4.4
21	0.015	0.015	3.153	0.0039	6.7
26	0.020	0.020	3.157	0.0051	8.2
29	0.025	0.025	3.161	0.0064	9.2
30	0.030	0.030	3.165	0.0077	9.5
31	0.035	0.035	3.170	0.0090	9.8
32	0.040	0.040	3.174	0.0103	10.1
33	0.050	0.050	3.182	0.0128	10.4
34	0.055	0.055	3.186	0.0141	10.7
32	0.060	0.060	3.190	0.0154	10.0
31	0.065	0.065	3.194	0.0167	9.7
30	0.070	0.070	3.199	0.0180	9.4
27	0.075	0.075	3.203	0.0193	8.4
26	0.085	0.085	3.211	0.0218	8.1
25	0.095	0.095	3.220	0.0244	7.8

UNCONFINED COMPRESSION TESTING Sample No. 0600-024 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-024 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	46.0	%		
BULK UNIT WEIGHT	106.8	lb/ft ³		
DRY UNIT WEIGHT	73.2	lb/ft ³		
UCS *	10.7	lb/in²		

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-025 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A796_US

MOISTURE CONTENT (Dry Basis)			
1. MOISTURE TIN NO.			
2. WT MOISTURE TIN (tare weight)	114.99 g		
3. WT WET SOIL + TARE	166.35 g		
4. WT DRY SOIL + TARE	150.04 g		
5. WT WATER, Ww	16.31 g		
6. WT DRY SOIL, Ws	35.05 g		
7. MOISTURE CONTENT, W	46.53 %		

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH				ГН	
No. 1	2.01	in.	3.92	in.	
No. 2	1.98	in.	3.93	in.	
No. 3	1.99	in.	3.93	in.	
Average 1.99 in. 3.93 in.					

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	340.11	g		
Initial Area, Ao	3.12	in²		
Initial Volume, Vo	12.27	in³		
Initial Bulk Unit Weight,	105.6	lb/ft ³		
Initial Dry Unit Weight	72.0	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	27.8	lb/in ²		

COMPRESSIVE			CORRECTED	ΔΥΙΔΙ	
	READING		ARFA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in ²)	(in/in)	(lb/in ²)
0	0.000	0.000	3.125	0.0000	0.0
6	0.003	0.003	3.127	0.0008	1.9
11	0.005	0.005	3.129	0.0013	3.5
16	0.007	0.007	3.130	0.0018	5.1
24	0.010	0.010	3.133	0.0025	7.7
33	0.015	0.015	3.137	0.0038	10.5
45	0.020	0.020	3.141	0.0051	14.3
56	0.025	0.025	3.145	0.0064	17.8
67	0.030	0.030	3.149	0.0076	21.3
78	0.035	0.035	3.153	0.0089	24.7
85	0.040	0.040	3.157	0.0102	26.9
88	0.045	0.045	3.161	0.0115	27.8
87	0.050	0.050	3.165	0.0127	27.5
85	0.060	0.060	3.173	0.0153	26.8
83	0.065	0.065	3.177	0.0165	26.1
80	0.070	0.070	3.182	0.0178	25.1
77	0.075	0.075	3.186	0.0191	24.2
74	0.080	0.080	3.190	0.0204	23.2
70	0.085	0.085	3.194	0.0216	21.9
66	0.090	0.090	3.198	0.0229	20.6
62	0.095	0.095	3.202	0.0242	19.4
60	0.100	0.100	3.207	0.0255	18.7

UNCONFINED COMPRESSION TESTING Sample No. 0600-025 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-025 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	46.5	%			
BULK UNIT WEIGHT	105.6	lb/ft ³			
DRY UNIT WEIGHT	72.0	lb/ft ³			
UCS *	27.8	lb/in²			

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-026 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A797_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.					
2. WT MOISTURE TIN (tare weight)	111.52	g			
3. WT WET SOIL + TARE	156.15	g			
4. WT DRY SOIL + TARE	143.32	g			
5. WT WATER, Ww	12.83	g			
6. WT DRY SOIL, Ws	31.80	g			
7. MOISTURE CONTENT, W	40.35	%			

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.01	in.	3.88	in.		
No. 2	2.00	in.	3.87	in.		
No. 3	2.00	in.	3.86	in.		
Average 2.00 in. 3.87 in.						

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	343.72	g		
Initial Area, Ao	3.15	in²		
Initial Volume, Vo	12.18	in³		
Initial Bulk Unit Weight,	107.5	lb/ft ³		
Initial Dry Unit Weight	76.6	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	29.2	lb/in²		

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
(lbs.)	(in.)	(in.)	(in ²)	(in/in)	(lb/in ²)
0	0.000	0.000	3.147	0.0000	0.0
4	0.003	0.003	3.149	0.0008	1.3
10	0.005	0.005	3.151	0.0013	3.2
17	0.007	0.007	3.153	0.0018	5.4
27	0.010	0.010	3.155	0.0026	8.6
40	0.015	0.015	3.159	0.0039	12.7
57	0.020	0.020	3.163	0.0052	18.0
68	0.025	0.025	3.167	0.0065	21.5
77	0.030	0.030	3.171	0.0078	24.3
84	0.035	0.035	3.176	0.0090	26.5
89	0.040	0.040	3.180	0.0103	28.0
92	0.045	0.045	3.184	0.0116	28.9
93	0.050	0.050	3.188	0.0129	29.2
92	0.060	0.060	3.196	0.0155	28.8
90	0.065	0.065	3.201	0.0168	28.1
87	0.070	0.070	3.205	0.0181	27.1
85	0.075	0.075	3.209	0.0194	26.5
81	0.080	0.080	3.213	0.0207	25.2
77	0.085	0.085	3.217	0.0220	23.9
73	0.090	0.090	3.222	0.0233	22.7

UNCONFINED COMPRESSION TESTING Sample No. 0600-026 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-026 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	40.3	%			
BULK UNIT WEIGHT	107.5	lb/ft ³			
DRY UNIT WEIGHT	76.6	lb/ft ³			
UCS *	29.2	lb/in ²			

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-027 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A798_US

	MOISTURE CONTENT (Dry Basis)			
1.	MOISTURE TIN NO.			
2.	WT MOISTURE TIN (tare weight)	106.55 g		
3.	WT WET SOIL + TARE	156.19 g		
4.	WT DRY SOIL + TARE	140.01 g		
5.	WT WATER, Ww	16.18 g		
6.	WT DRY SOIL, Ws	33.46 g		
7.	MOISTURE CONTENT, W	48.36 %		

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	1.99	in.	3.83	in.	
No. 2	1.99	in.	3.83	in.	
No. 3	1.99	in.	3.83	in.	
Average 1.99 in. 3.83 in.					

	SPECIMEN CONDITIONS				
	Initial Specimen WT, Wo	327.85	g		
	Initial Area, Ao	3.11	in²		
	Initial Volume, Vo	11.93	in³		
	Initial Bulk Unit Weight,	104.7	lb/ft³		
	Initial Dry Unit Weight	70.5	lb/ft³		
	15 % Strain (0.15 Lo)	0.57	in.		
3	UCS	15.6	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (Ib/in ²)
0	0.000	0.000	3.115	0.0000	0.0
4	0.003	0.003	3.117	0.0008	1.3
7	0.005	0.005	3.119	0.0013	2.2
11	0.007	0.007	3.121	0.0018	3.5
17	0.010	0.010	3.123	0.0026	5.4
25	0.015	0.015	3.127	0.0039	8.0
34	0.020	0.020	3.131	0.0052	10.9
43	0.025	0.025	3.135	0.0065	13.7
47	0.030	0.030	3.140	0.0078	15.0
49	0.035	0.035	3.144	0.0091	15.6
47	0.050	0.050	3.156	0.0131	14.9
46	0.055	0.055	3.160	0.0144	14.6
44	0.060	0.060	3.165	0.0157	13.9
42	0.065	0.065	3.169	0.0170	13.3
39	0.070	0.070	3.173	0.0183	12.3

UNCONFINED COMPRESSION TESTING Sample No. 0600-027 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-027 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	48.4	%		
BULK UNIT WEIGHT	104.7	lb/ft ³		
DRY UNIT WEIGHT	70.5	lb/ft ³		
UCS *	15.6	lb/in²		

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-028 (7-day)
TESTING DATE:	27-Apr-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min. TRACKING CODE: A800_US

MOISTURE CONTENT (Dry Basis)			
1. MC	DISTURE TIN NO.		
2. WT	MOISTURE TIN (tare weight)	114.46	g
3. WT	WET SOIL + TARE	158.49	g
4. WT	DRY SOIL + TARE	145.43	g
5. WT	WATER, Ww	13.06	g
6. WT	DRY SOIL, Ws	30.97	g
7. MC	DISTURE CONTENT, W	42.17	%

SOIL SPECIMEN DIMENSIONS				
	DIAMETER		LENGTH	
No. 1	2.00	in.	3.91	in.
No. 2	1.99	in.	3.92	in.
No. 3	1.99	in.	3.93	in.
Average	2.00	in.	3.92	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	340.17	g	
Initial Area, Ao	3.13	in²	
Initial Volume, Vo	12.27	in³	
Initial Bulk Unit Weight,	105.6	lb/ft ³	
Initial Dry Unit Weight	74.3	lb/ft³	
15 % Strain (0.15 Lo)	0.59	in.	
UCS	36.9	lb/in²	

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.127	0.0000	0.0
4	0.003	0.003	3.130	0.0008	1.3
7	0.005	0.005	3.131	0.0013	2.2
12	0.007	0.007	3.133	0.0018	3.8
18	0.010	0.010	3.135	0.0025	5.7
34	0.015	0.015	3.139	0.0038	10.8
55	0.020	0.020	3.143	0.0051	17.5
76	0.025	0.025	3.148	0.0064	24.1
91	0.030	0.030	3.152	0.0076	28.9
101	0.035	0.035	3.156	0.0089	32.0
108	0.040	0.040	3.160	0.0102	34.2
113	0.045	0.045	3.164	0.0115	35.7
115	0.050	0.050	3.168	0.0127	36.3
117	0.055	0.055	3.172	0.0140	36.9
116	0.060	0.060	3.176	0.0153	36.5
114	0.065	0.065	3.180	0.0166	35.8
112	0.070	0.070	3.184	0.0178	35.2
107	0.075	0.075	3.188	0.0191	33.6
102	0.080	0.080	3.193	0.0204	31.9
98	0.085	0.085	3.197	0.0217	30.7
94	0.090	0.090	3.201	0.0229	29.4
UNCONFINED COMPRESSION TESTING Sample No. 0600-028 (7-day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-028 (7-day)

 TESTING DATE:
 4/27/2016

 TESTED BY:
 DMC

TESTING PARAMET	TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	42.2	%				
BULK UNIT WEIGHT	105.6	lb/ft ³				
DRY UNIT WEIGHT	74.3	lb/ft ³				
UCS *	36.9	lb/in ²				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No .:	SH0600
SAMPLE No.:	0600-019 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A838_US

	MOISTURE CONTENT (Dr	y Basis)	
1.	MOISTURE TIN NO.		
2.	WT MOISTURE TIN (tare weight)	114.98	g
3.	WT WET SOIL + TARE	178.47	g
4.	WT DRY SOIL + TARE	154.24	g
5.	WT WATER, Ww	24.23	g
6.	WT DRY SOIL, Ws	39.26	g
7.	MOISTURE CONTENT, W	61.72	%

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.77	in.	
No. 2	2.00	in.	3.78	in.	
No. 3	1.99	in.	3.77	in.	
Average	2.00	in.	3.77	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	300.13	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	11.84	in³			
Initial Bulk Unit Weight,	96.6	lb/ft³			
Initial Dry Unit Weight	59.7	lb/ft ³			
15 % Strain (0.15 Lo)	0.57	in.			
UCS	61.0	lb/in²			

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.138	0.0000	0.0
3	0.003	0.003	3.140	0.0008	1.0
6	0.005	0.005	3.142	0.0013	1.9
9	0.007	0.007	3.144	0.0019	2.9
18	0.010	0.010	3.146	0.0026	5.7
34	0.015	0.015	3.150	0.0040	10.8
62	0.020	0.020	3.155	0.0053	19.7
88	0.025	0.025	3.159	0.0066	27.9
127	0.030	0.030	3.163	0.0079	40.2
162	0.035	0.035	3.167	0.0093	51.1
181	0.040	0.040	3.172	0.0106	57.1
191	0.045	0.045	3.176	0.0119	60.1
194	0.050	0.050	3.180	0.0132	61.0
193	0.055	0.055	3.184	0.0146	60.6
191	0.060	0.060	3.189	0.0159	59.9
187	0.065	0.065	3.193	0.0172	58.6
183	0.070	0.070	3.197	0.0185	57.2
180	0.075	0.075	3.202	0.0199	56.2
177	0.080	0.080	3.206	0.0212	55.2
171	0.085	0.085	3.210	0.0225	53.3
167	0.090	0.090	3.215	0.0238	52.0
163	0.095	0.095	3.219	0.0252	50.6
160	0.100	0.100	3.223	0.0265	49.6

UNCONFINED COMPRESSION TESTING Sample No. 0600-019 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-019 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETE	R AND RESUL	TS
MOISTURE CONTENT	61.7	%
BULK UNIT WEIGHT	96.6	lb/ft ³
DRY UNIT WEIGHT	59.7	lb/ft ³
UCS *	61.0	lb/in²

Client:	Kemron Environmental			
Project Name:	Washington Wood Preserving ISS			
Project Location:				
GTX #:	GTX-304790			
Start Date:	5/27/2016	Tested By:	jm	
End Date:	6/1/2016	Checked By:	mcm	
Boring		Test #: K1		
Sample #:	0600-019 (28-Day)			
Depth:				
Visual Description:	Moist, gray sandy silt			

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample Type: intact							Permeant Fluid: de-aired tap water					
Orientat	ion:		Vertical				Cell #: P2					
Sample Preparation: Specimen weighed and dime moisture content.			nsions re	corded the	placed into	permeameter at	as-receiv	ved densi	ity and			
				Paramete	er		Initial		Fi	nal		
			Height, in				2.37		2.	36		
			Diameter,	in			2.99		2.	99		
			Area, in ²				7.02		7.	02		
			Volume, i	n ³			16.6		16	5.6		
			Mass, g				430		4	37		
			Bulk Dens	sity, pcf			98		1	00		
			Moisture (Content,	%		60.3		62.8			
			Dry Densi	ty, pcf	0/	61.3			61.5			
			Degree of	Saturati	on, %		98					
B COEF	FICIEN	T DETE	RMINATIC	DN								
Cell Pres	ssure. ps	si:		90			Pressure Ir	ncrement. p	si:	9.7		
Sample	Pressure	e, psi:		80			B Coefficie	nt:		0.97		
FLOW D	ΔΑΤΑ											
	Trial	Droco					Elapsed		Permeability	Tomp		Permeability
Data		Press	Comple	не 		JS	nine,	Cuadiant	N ,	°⊂		
Date	#	Cell	Sample	H ₁	H ₂	$H_1 H_2$	sec	Gradient	cm/sec	- <u>(</u>	R _t	cm/sec
5/31	2	90	80 80	/8.2 77 Q	76.8	0.3	180 600	13.0	2.3E-07	21	0.976	2.2E-07
5/31	4	90	80	76.8	74.9	1.9	1020	12.8	2.6E-07	21	0.976	2.6E-07
5/31	5	90	80	74.9	72.7	2.2	1440	12.5	2.2E-07	21	0.976	2.2E-07

PERMEABILITY AT 20° C: 2.4 x 10^{-7} cm/sec (@ 10 psi effective stress)

ASTM D 2166

Vashington Wood Preserving	100
PROJECT No.: SH0600	
SAMPLE No.: 0600-020 (28-Day)	
TESTING DATE: 18-May-16	
TESTED BY: DMC	

LOADING RATE: 0.0400 in./min TRACKING CODE: A839_US

	MOISTURE CONTENT (Dry	/ Basis)	
1.	MOISTURE TIN NO.		
2.	WT MOISTURE TIN (tare weight)	114.48	g
3.	WT WET SOIL + TARE	160.96	g
4.	WT DRY SOIL + TARE	142.66	g
5.	WT WATER, Ww	18.30	g
6.	WT DRY SOIL, Ws	28.18	g
7.	MOISTURE CONTENT, W	64.94	%

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.01	in.	3.94	in.	
No. 2	2.00	in.	3.93	in.	
No. 3	1.99	in.	3.93	in.	
Average	2.00	in.	3.93	in.	

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	309.07	g				
Initial Area, Ao	3.14	in²				
Initial Volume, Vo	12.34	in³				
Initial Bulk Unit Weight,	95.4	lb/ft³				
Initial Dry Unit Weight	57.9	lb/ft³				
15 % Strain (0.15 Lo)	0.59	in.				
UCS	80.1	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (Ib/in ²)
0	0.000	0.000	3.138	0.0000	0.0
4	0.005	0.005	3.142	0.0013	1.3
14	0.007	0.007	3.144	0.0018	4.5
33	0.010	0.010	3.146	0.0025	10.5
65	0.015	0.015	3.150	0.0038	20.6
95	0.020	0.020	3.154	0.0051	30.1
134	0.025	0.025	3.159	0.0064	42.4
170	0.030	0.030	3.163	0.0076	53.8
201	0.035	0.035	3.167	0.0089	63.5
226	0.040	0.040	3.171	0.0102	71.3
240	0.045	0.045	3.175	0.0114	75.6
249	0.050	0.050	3.179	0.0127	78.3
255	0.055	0.055	3.183	0.0140	80.1
254	0.060	0.060	3.187	0.0153	79.7
250	0.065	0.065	3.191	0.0165	78.3
240	0.070	0.070	3.195	0.0178	75.1
235	0.075	0.075	3.199	0.0191	73.4
231	0.080	0.080	3.204	0.0203	72.1
226	0.085	0.085	3.208	0.0216	70.5
221	0.090	0.090	3.212	0.0229	68.8
216	0.095	0.095	3.216	0.0242	67.2
210	0.100	0.100	3.220	0.0254	65.2

UNCONFINED COMPRESSION TESTING Sample No. 0600-020 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-020 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

0.0400 in./min A839_US

TESTING PARAMETER AND RESULTS							
MOISTURE CONTENT	64.9 %						
BULK UNIT WEIGHT	95.4 lb/ft ³						
DRY UNIT WEIGHT	57.9 lb/ft ³						
UCS *	80.1 lb/in ²						

Client:	Kemron Environmental				
Project Name:	Washington Wood Preservin	ig ISS			
Project Location:					
GTX #:	GTX-304790				
Start Date:	5/31/2016	Tested By:	jm		
End Date:	6/3/2016	Checked By:	mcm		
Boring		Test #: K4			
Sample #:	0600-020 (28-Day)				
Depth:					
Visual Description:	Moist, gray sandy silt				

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample [•]	Type:		intact			Permeant I	Fluid:	de-aired tap water				
Orientat	ion:		Vertical				Cell #:		P2			
Sample	Prepara	tion:	ion: Specimen weighed and dimensions recorded the placed into permeameter at as-received density and moisture content.						ity and			
				Paramete	er		Initial		Fi	nal		
			Height, in				2.01		2.	01		
			Diameter,	in			2.99		2.	99		
			Area, in ²	2			7.02		7.	02		
			Volume, i	n³			14.1		14	4.1		
			Mass, g				356		3	65		
			Bulk Dens	sity, pcf	0/		96		9	8		
			Moisture (Lontent,	%	62.7		66.8				
			Degree of	iy, pci Saturati	on %	59.0		97				
			Degree of	Saturati	011, 70							
B COEF	FICIEN	T DETE	RMINATIC	DN								
Cell Pres	sure, p	si:		90			Pressure Ir	ncrement, p	si:	9.8		
Sample	Pressure	e, psi:		80			B Coefficient: 98					
FLOW D	АТА											
	T : 1	_					Elapsed		Permeability	-		Permeability
	Irial	Press	ure, psi	He	ead reading	IS	lime,		К,	Temp,		к@20°С,
Date	#	Cell	Sample	H_1	H ₂	$H_{1}H_{2}$	sec	Gradient	cm/sec	°C	R _t	cm/sec
6/1	2	90	80	96.1	95.8 05.5	0.3	1920	18.8	1.5E-08	21	0.976	1.5E-08
6/1	3 4	90 90	80 80	95.0 95.5	95.5 95.0	0.5	3000	18.7	1.6E-08	21	0.976	1.6E-08
6/1	5	90	80	95.0	94.3	0.7	4500	18.6	1.5E-08	21	0.976	1.5E-08

PERMEABILITY AT 20° C: 1.5 x 10⁻⁸ cm/sec (@ 10 psi effective stress)

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No .:	SH0600
SAMPLE No.:	0600-021 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A840_US

	MOISTURE CONTENT (Dry Basis)					
1.	MOISTURE TIN NO.					
2.	WT MOISTURE TIN (tare weight)	116.76	g			
3.	WT WET SOIL + TARE	162.83	g			
4.	WT DRY SOIL + TARE	145.96	g			
5.	WT WATER, Ww	16.87	g			
6.	WT DRY SOIL, Ws	29.20	g			
7.	MOISTURE CONTENT, W	57.77	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGT	ГН	
No. 1	2.01	in.	3.92	in.	
No. 2	2.00	in.	3.92	in.	
No. 3	1.99	in.	3.92	in.	
Average	2.00	in.	3.92	in.	

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	315.31	g				
Initial Area, Ao	3.14	in²				
Initial Volume, Vo	12.31	in³				
Initial Bulk Unit Weight,	97.6	lb/ft³				
Initial Dry Unit Weight	61.8	lb/ft³				
15 % Strain (0.15 Lo)	0.59	in.				
UCS	73.2	lb/in²				

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.142	0.0000	0.0
4	0.003	0.003	3.145	0.0008	1.3
9	0.005	0.005	3.146	0.0013	2.9
17	0.007	0.007	3.148	0.0018	5.4
28	0.010	0.010	3.150	0.0026	8.9
56	0.015	0.015	3.154	0.0038	17.8
101	0.020	0.020	3.158	0.0051	32.0
158	0.025	0.025	3.162	0.0064	50.0
188	0.030	0.030	3.166	0.0077	59.4
210	0.035	0.035	3.170	0.0089	66.2
224	0.040	0.040	3.175	0.0102	70.6
231	0.045	0.045	3.179	0.0115	72.7
233	0.050	0.050	3.183	0.0128	73.2
231	0.055	0.055	3.187	0.0140	72.5
225	0.060	0.060	3.191	0.0153	70.5
217	0.065	0.065	3.195	0.0166	67.9
202	0.070	0.070	3.199	0.0179	63.1
190	0.075	0.075	3.203	0.0191	59.3

UNCONFINED COMPRESSION TESTING Sample No. 0600-021 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

PROJECT:	Washington Wood Preserving ISS		
PROJECT No .:	SH0600		
SAMPLE No.:	0600-021 (28-Day)		
TESTING DATE:	5/18/2016	LOADING RATE:	0.0400 in./min
TESTED BY:	DMC	TRACKING CODE:	A840_US

TESTING PARAMETER AND RESULTS						
MOISTURE CONTENT	57.8 %					
BULK UNIT WEIGHT	97.6 lb/ft ³					
DRY UNIT WEIGHT	61.8 lb/ft ³					
UCS *	73.2 lb/in ²					

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS		
PROJECT No.:	SH0600		
SAMPLE No.:	0600-022 (28-Day)		
TESTING DATE:	18-May-16		
TESTED BY:	DMC		
SAMPLE No.: TESTING DATE: TESTED BY:	0600-022 (28-Day) 18-May-16 DMC		

LOADING RATE: 0.0400 in./min TRACKING CODE: A841_US

	MOISTURE CONTENT (Dry Basis)				
1.	MOISTURE TIN NO.				
2.	WT MOISTURE TIN (tare weight)	113.96	g		
3.	WT WET SOIL + TARE	162.69	g		
4.	WT DRY SOIL + TARE	143.47	g		
5.	WT WATER, Ww	19.22	g		
6.	WT DRY SOIL, Ws	29.51	g		
7.	MOISTURE CONTENT, W	65.13	%		

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.91	in.		
No. 2	2.00	in.	3.90	in.		
No. 3	2.00	in.	3.90	in.		
Average	in.	3.90	in.			

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	303.70	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.24	in³			
Initial Bulk Unit Weight,	94.5	lb/ft ³			
Initial Dry Unit Weight	57.2	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	84.9	lb/in ²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.136	0.0000	0.0
11	0.003	0.003	3.138	0.0008	3.5
21	0.005	0.005	3.140	0.0013	6.7
30	0.007	0.007	3.141	0.0018	9.5
56	0.010	0.010	3.144	0.0026	17.8
89	0.015	0.015	3.148	0.0038	28.3
134	0.020	0.020	3.152	0.0051	42.5
176	0.025	0.025	3.156	0.0064	55.8
213	0.030	0.030	3.160	0.0077	67.4
235	0.035	0.035	3.164	0.0090	74.3
252	0.040	0.040	3.168	0.0102	79.5
262	0.045	0.045	3.172	0.0115	82.6
268	0.050	0.050	3.177	0.0128	84.4
270	0.055	0.055	3.181	0.0141	84.9
268	0.060	0.060	3.185	0.0154	84.1
263	0.065	0.065	3.189	0.0167	82.5
255	0.070	0.070	3.193	0.0179	79.9
247	0.075	0.075	3.197	0.0192	77.3
239	0.080	0.080	3.201	0.0205	74.7
231	0.085	0.085	3.206	0.0218	72.1
222	0.090	0.090	3.210	0.0231	69.2
215	0.095	0.095	3.214	0.0243	66.9

UNCONFINED COMPRESSION TESTING Sample No. 0600-022 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-022 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS						
65.1	%					
94.5	lb/ft ³					
57.2	lb/ft ³					
84.9	lb/in²					
	AND RESU 65.1 94.5 57.2 84.9					

Client:	Kemron Environmental				
Project Name:	Washington Wood Preservir	ig ISS			
Project Location:					
GTX #:	GTX-304790				
Start Date:	5/31/2016	Tested By:	jm		
End Date:	6/3/2016	Checked By:	mcm		
Boring		Test #: K5			
Sample #:	0600-22 (28-Day)				
Depth:					
Visual Description:	Moist, gray sandy silt				

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample Type: intact					Permeant I	-luid:	de-aired tap wat	ter				
Orientat	ion:		Vertical				Cell #:		P2			
Sample Preparation: Specimen weighed and dimension moisture content.					isions re	corded the	placed into	permeameter at	as-receiv	ved densi	ity and	
				Paramete	er		Initial		Fi	nal		
			Height, in				1.65		1.	65		
			Diameter,	, in			2.99		2.	99		
			Area, in ²				7.02		7.	02		
			Volume, i	n ³			11.6		1:	1.6		
			Mass, g				288		2	95		
			Bulk Dens	sity, pcf			95		g)7		
			Moisture	Content,	%	63.0			67.0			
			Dry Dens	ty, pcf	0/	58.1			58.1			
			Degree of	Saturati	on, %		95					
B COEF	FICIEN	T DETE	RMINATIC	ON								
Cell Pres	ssure, p	si:		90			Pressure Ir	ncrement, p	si:	9.7		
Sample	Pressur	e, psi:		80			B Coefficie	nt:		97		
												
FLOW L												
							Elapsed		Permeability			Permeability
	Trial	Press	ure, psi	He	ead reading	IS	Time,		К,	Temp,		K @ 20 °C,
Date	#	Cell	Sample	H_1	H ₂	$H_{1}H_{2}$	sec	Gradient	cm/sec	°C	R _t	cm/sec
6/1	3	90	80	70.4	69.1	1.3	1620	16.8	8.7E-08	21	0.976	8.5E-08
6/1	4	90	80	69.1	67.7	1.4	1920	16.5	8.0E-08	21	0.976	7.8E-08
6/1	5	90 90	80 80	67.7 66.0	63.4	2.6	2340 3900	15.7	8.2⊑-08 7.8E-08	21	0.976	8.0E-08 7.6E-08
· · ·	-							_		1		

PERMEABILITY AT 20° C: 8.0 x 10^{-8} cm/sec (@ 10 psi effective stress)

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-023 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A842_US

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.				
2. WT MOISTURE TIN (tare weight)	111.88 g			
3. WT WET SOIL + TARE	178.62 g			
4. WT DRY SOIL + TARE	153.69 g			
5. WT WATER, Ww	24.93 g			
6. WT DRY SOIL, Ws	41.81 g			
7. MOISTURE CONTENT, W	59.63 %			

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.01	in.	3.89	in.	
No. 2	1.99	in.	3.90	in.	
No. 3	1.99	in.	3.90	in.	
Average	2.00	in.	3.90	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	310.90	g			
Initial Area, Ao	3.13	in²			
Initial Volume, Vo	12.21	in³			
Initial Bulk Unit Weight,	97.0	lb/ft ³			
Initial Dry Unit Weight	60.7	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	57.6	lb/in ²			

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.133	0.0000	0.0
3	0.003	0.003	3.136	0.0008	1.0
7	0.005	0.005	3.137	0.0013	2.2
12	0.007	0.007	3.139	0.0018	3.8
19	0.010	0.010	3.141	0.0026	6.0
43	0.015	0.015	3.145	0.0038	13.7
68	0.020	0.020	3.149	0.0051	21.6
98	0.025	0.025	3.153	0.0064	31.1
127	0.030	0.030	3.158	0.0077	40.2
147	0.035	0.035	3.162	0.0090	46.5
167	0.040	0.040	3.166	0.0103	52.8
176	0.045	0.045	3.170	0.0115	55.5
181	0.050	0.050	3.174	0.0128	57.0
183	0.055	0.055	3.178	0.0141	57.6
181	0.065	0.065	3.186	0.0167	56.8
179	0.070	0.070	3.191	0.0180	56.1
176	0.075	0.075	3.195	0.0192	55.1
172	0.080	0.080	3.199	0.0205	53.8
167	0.085	0.085	3.203	0.0218	52.1
162	0.090	0.090	3.207	0.0231	50.5
158	0.095	0.095	3.211	0.0244	49.2
152	0.100	0.100	3.216	0.0257	47.3
147	0.105	0.105	3.220	0.0269	45.7

UNCONFINED COMPRESSION TESTING Sample No. 0600-023 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-023 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS							
MOISTURE CONTENT	59.6	%					
BULK UNIT WEIGHT	97.0	lb/ft ³					
DRY UNIT WEIGHT	60.7	lb/ft ³					
UCS *	57.6	lb/in²					

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-024 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A843_US

	MOISTURE CONTENT (Dry Basis)							
1.	MOISTURE TIN NO.							
2.	WT MOISTURE TIN (tare weight)	115.96	g					
3.	WT WET SOIL + TARE	184.92	g					
4.	WT DRY SOIL + TARE	163.00	g					
5.	WT WATER, Ww	21.92	g					
6.	WT DRY SOIL, Ws	47.04	g					
7.	MOISTURE CONTENT, W	46.60	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.94	in.		
No. 2	2.01	in.	3.91	in.		
No. 3	1.99	in.	3.90	in.		
Average	2.00	in.	3.91	in.		

SPECIMEN CONDITIONS							
Initial Specimen WT, Wo	339.72	g					
Initial Area, Ao	3.13	in²					
Initial Volume, Vo	12.27	in³					
Initial Bulk Unit Weight,	105.5	lb/ft ³					
Initial Dry Unit Weight	71.9	lb/ft³					
15 % Strain (0.15 Lo)	0.59	in.					
UCS	51.5	lb/in ²					

COMPRESSIVE	DIAL GAGE	SPECIMEN		AXIAL	UNCONFINED COMPRESSIVE
(lbs.)	(in)		(in ²)	(in/in)	(lb/in ²)
(150.)	0.000	0.000	3 135	0.0000	0.0
6	0.003	0.003	3.135	0.0008	1.9
10	0.005	0.005	3 139	0.0013	3.2
13	0.007	0.007	3.140	0.0018	4.1
17	0.010	0.010	3.143	0.0026	5.4
27	0.015	0.015	3.147	0.0038	8.6
53	0.020	0.020	3.151	0.0051	16.8
77	0.025	0.025	3.155	0.0064	24.4
103	0.030	0.030	3.159	0.0077	32.6
124	0.035	0.035	3.163	0.0089	39.2
139	0.040	0.040	3.167	0.0102	43.9
152	0.045	0.045	3.171	0.0115	47.9
157	0.050	0.050	3.175	0.0128	49.4
162	0.055	0.055	3.179	0.0140	51.0
164	0.060	0.060	3.184	0.0153	51.5
163	0.065	0.065	3.188	0.0166	51.1
159	0.070	0.070	3.192	0.0179	49.8
152	0.075	0.075	3.196	0.0192	47.6
148	0.080	0.080	3.200	0.0204	46.2
139	0.085	0.085	3.204	0.0217	43.4
134	0.090	0.090	3.209	0.0230	41.8

UNCONFINED COMPRESSION TESTING Sample No. 0600-024 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

PROJECT:Washington Wood Preserving ISSPROJECT No.:SH0600SAMPLE No.:0600-024 (28-Day)TESTING DATE:5/18/2016TESTED BY:DMCTRACKING CODE:A843_US

TESTING PARAMETER AND RESULTS						
MOISTURE CONTENT	46.6	%				
BULK UNIT WEIGHT	105.5	lb/ft ³				
DRY UNIT WEIGHT	71.9	lb/ft ³				
UCS *	51.5	lb/in²				

Client:	Kemron Environmental					
Project Name:	Washington Wood Preserving ISS					
Project Location:						
GTX #:	GTX-304790					
Start Date:	5/27/2016	Tested By:	jm			
End Date:	6/1/2016	Checked By:	mcm			
Boring		Test #: K2				
Sample #:	0600-024 (28-Day)					
Depth:						
Visual Description:	Moist, gray sandy silt					

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample	Type:		intact				Permeant I	Fluid:	de-aired tap wat	ter		
Orientat	ion:		Vertical				Cell #:		P2			
Sample Preparation: Specimen weighed and dimen moisture content.				isions re	corded the	placed into	permeameter at	as-receiv	ved dens	ity and		
				Paramete	er		Initial		Fi	nal		
			Height, in				1.24		1.	24		
			Diameter,	in			2.99		2.	99		
			Area, in ²				7.02		7.	02		
			Volume, i	n³			8.7		8	.7		
			Mass, g				241		2	43		
			Bulk Dens	sity, pcf	o.		105		1	06		
			Moisture (content,	%		45.0		46.2			
			Dry Densi	iy, pci Saturati	on %		/2./		/2./			
			Degree of	Saturati	011, 70				32			
B COEF	FICIEN	T DETE	RMINATIC	DN								
Cell Pres	ssure, ps	si:		90			Pressure Ir	ncrement, p	si:	9.7		
Sample	Pressure	e, psi:		80			B Coefficie	nt:		0.97		
FLOW D	ΔΑΤΑ											
									_			Davasaabilii
	Trial	Droco	uro poi	LI.	and reading		Elapsed		Permeability	Tomp		$\kappa \otimes 20^{\circ}C$
Data	тпат 	Call	Gamala			15	nine,	Cuediant	K,	°c		K @ 20 C,
Date	#	Cell	Sample	H ₁	H ₂	$H_{1}-H_{2}$	sec				K _t	
5/31	3 4	90 90	80 80	65.3 65.2	65.2 65.0	0.1	120	20.7	1.4E-07 1.4E-07	21	0.976	1.4E-07 1.4E-07
5/31	5	90	80	65.0	64.9	0.1	60	20.6	1.5E-07	21	0.976	1.4E-07
5/31	6	90	80	64.9	64.7	0.2	120	20.6	1.5E-07	21	0.976	1.4E-07

PERMEABILITY AT 20° C: 1.4×10^{-7} cm/sec (@ 10 psi effective stress)

ASTM D 2166

PROJECT No.: SH0600
SAMPLE No.: 0600-025 (28-Day)
TESTING DATE: 18-May-16
TESTED BY: DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A844_US

	MOISTURE CONTENT (Dry Basis)						
1.	MOISTURE TIN NO.						
2.	WT MOISTURE TIN (tare weight)	113.24	g				
3.	WT WET SOIL + TARE	164.73	g				
4.	WT DRY SOIL + TARE	143.43	g				
5.	WT WATER, Ww	21.30	g				
6.	WT DRY SOIL, Ws	30.19	g				
7.	MOISTURE CONTENT, W	70.55	%				

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGT	Ή
No. 1	2.00	in.	3.85	in.
No. 2	2.00	in.	3.84	in.
No. 3	1.99	in.	3.86	in.
Average	2.00	in.	3.85	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	329.72	g		
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	12.07	in³		
Initial Bulk Unit Weight,	104.0	lb/ft ³		
Initial Dry Unit Weight	61.0	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	44.1	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (Ib/in ²)
0	0.000	0.000	3.136	0.0000	0.0
3	0.003	0.003	3.139	0.0008	1.0
8	0.005	0.005	3.140	0.0013	2.5
15	0.007	0.007	3.142	0.0018	4.8
25	0.010	0.010	3.145	0.0026	8.0
46	0.015	0.015	3.149	0.0039	14.6
65	0.020	0.020	3.153	0.0052	20.6
85	0.025	0.025	3.157	0.0065	26.9
107	0.030	0.030	3.161	0.0078	33.9
132	0.035	0.035	3.165	0.0091	41.7
139	0.040	0.040	3.169	0.0104	43.9
140	0.045	0.045	3.173	0.0117	44.1
139	0.055	0.055	3.182	0.0143	43.7
135	0.060	0.060	3.186	0.0156	42.4
131	0.065	0.065	3.190	0.0169	41.1
127	0.070	0.070	3.194	0.0182	39.8
124	0.075	0.075	3.199	0.0195	38.8
121	0.080	0.080	3.203	0.0208	37.8
117	0.085	0.085	3.207	0.0221	36.5
113	0.090	0.090	3.211	0.0234	35.2

UNCONFINED COMPRESSION TESTING Sample No. 0600-025 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-025 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	70.6	%			
BULK UNIT WEIGHT	104.0	lb/ft ³			
DRY UNIT WEIGHT	61.0	lb/ft ³			
UCS *	44.1	lb/in²			

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No .:	SH0600
SAMPLE No.:	0600-026 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A845_US

	MOISTURE CONTENT (Dry Basis)				
1.	MOISTURE TIN NO.				
2.	WT MOISTURE TIN (tare weight)	114.28	g		
3.	WT WET SOIL + TARE	169.85	g		
4.	WT DRY SOIL + TARE	154.04	g		
5.	WT WATER, Ww	15.81	g		
6.	WT DRY SOIL, Ws	39.76	g		
7.	MOISTURE CONTENT, W	39.76	%		

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGT	ГН
No. 1	2.01	in.	3.88	in.
No. 2	2.01	in.	3.89	in.
No. 3	1.99	in.	3.88	in.
Average	2.00	in.	3.88	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	341.88	g		
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	12.26	in³		
Initial Bulk Unit Weight,	106.3	lb/ft³		
Initial Dry Unit Weight	76.0	lb/ft ³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	59.9	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.156	0.0000	0.0
13	0.003	0.003	3.158	0.0008	4.1
23	0.005	0.005	3.160	0.0013	7.3
34	0.007	0.007	3.161	0.0018	10.8
52	0.010	0.010	3.164	0.0026	16.4
79	0.015	0.015	3.168	0.0039	24.9
130	0.020	0.020	3.172	0.0051	41.0
172	0.025	0.025	3.176	0.0064	54.2
185	0.030	0.030	3.180	0.0077	58.2
190	0.035	0.035	3.184	0.0090	59.7
191	0.040	0.040	3.189	0.0103	59.9
189	0.045	0.045	3.193	0.0116	59.2
182	0.050	0.050	3.197	0.0129	56.9
176	0.055	0.055	3.201	0.0142	55.0
165	0.060	0.060	3.205	0.0154	51.5
159	0.065	0.065	3.209	0.0167	49.5
151	0.070	0.070	3.214	0.0180	47.0

UNCONFINED COMPRESSION TESTING Sample No. 0600-026 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-026 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS					
39.8	%				
106.3	lb/ft ³				
76.0	lb/ft ³				
59.9	lb/in²				
	ER AND RESU 39.8 106.3 76.0 59.9				

ASTM D 2166

PROJECT:	Washington Wood Preserving ISS
PROJECT No.:	SH0600
SAMPLE No.:	0600-027 (28-Day)
TESTING DATE:	18-May-16
TESTED BY:	DMC

LOADING RATE: 0.0400 in./min TRACKING CODE: A846_US

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.				
2. WT MOISTURE TIN (tare weight)	111.81 g			
3. WT WET SOIL + TARE	170.57 g			
4. WT DRY SOIL + TARE	151.62 g			
5. WT WATER, Ww	18.95 g			
6. WT DRY SOIL, Ws	39.81 g			
7. MOISTURE CONTENT, W	47.60 %			

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.01	in.	3.86	in.			
No. 2	2.00	in.	3.86	in.			
No. 3	2.00	in.	3.85	in.			
Average 2.00 in. 3.86 in.							

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	327.93	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.12	in³			
Initial Bulk Unit Weight,	103.0	lb/ft ³			
Initial Dry Unit Weight	69.8	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	79.8	lb/in ²			

COMPRESSIVE LOAD	DIAL GAGE READING	SPECIMEN DEFORMATION	CORRECTED AREA	AXIAL STRAIN	UNCONFINED COMPRESSIVE STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.144	0.0000	0.0
13	0.003	0.003	3.147	0.0008	4.1
30	0.005	0.005	3.148	0.0013	9.5
44	0.007	0.007	3.150	0.0018	14.0
63	0.010	0.010	3.152	0.0026	20.0
109	0.015	0.015	3.156	0.0039	34.5
171	0.020	0.020	3.161	0.0052	54.1
235	0.025	0.025	3.165	0.0065	74.3
226	0.030	0.030	3.169	0.0078	71.3
229	0.035	0.035	3.173	0.0091	72.2
245	0.040	0.040	3.177	0.0104	77.1
254	0.045	0.045	3.181	0.0117	79.8
251	0.050	0.050	3.186	0.0130	78.8
242	0.055	0.055	3.190	0.0143	75.9
229	0.060	0.060	3.194	0.0156	71.7
218	0.065	0.065	3.198	0.0169	68.2
209	0.070	0.070	3.202	0.0182	65.3
201	0.075	0.075	3.207	0.0195	62.7
194	0.080	0.080	3.211	0.0207	60.4

UNCONFINED COMPRESSION TESTING Sample No. 0600-027 (28-Day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-027 (28-Day)

 TESTING DATE:
 5/18/2016

 TESTED BY:
 DMC

TESTING PARAMETER AND RESULTS							
MOISTURE CONTENT	47.6	%					
BULK UNIT WEIGHT	103.0	lb/ft ³					
DRY UNIT WEIGHT	69.8	lb/ft ³					
UCS *	79.8	lb/in²					

Client:	Kemron Environmental				
Project Name:	Washington Wood Preservin	ig ISS			
Project Location:					
GTX #:	GTX-304790				
Start Date:	5/31/2016	Tested By:	jm		
End Date:	6/3/2016	Checked By:	mcm		
Boring		Test #: K6			
Sample #:	0600-27 (28-Day)				
Depth:					
Visual Description:	Moist, gray sandy silt				

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample Type: intact						Permeant I	-luid:	de-aired tap wat	ter			
Orientat	ion:		Vertical				Cell #: P2		P2			
Sample Preparation:			Specimen moisture	weighed content.	and dimer	isions re	corded the	placed into	permeameter at	as-receiv	ved dens	ity and
				Paramete	er		Initial		Fi	nal		
			Height, in				2.36		2.	36		
			Diameter,	, in			2.99		2.	99		
			Area, in ²				7.02		7.	02		
			Volume, i	n ³			16.6		16	5.6		
			Mass, g				439		4	45		
			Bulk Dens	sity, pcf			101		1	02		
			Moisture	Content,	%		59.5	6		61.6		
			Dry Dens	ty, pcr	am 0/		63.1	6		3.1		
			Degree of	Saturati	01, %				98			
B COEF	FICIEN	T DETE	RMINATIC	ON								
Cell Pres	ssure. p	si:		90			Pressure Ir	ncrement, p	si:	9.7		
Sample	Pressur	e, psi:		80			B Coefficient: 97					
												
FLOW L												
							Elapsed		Permeability			Permeability
	Trial	Press	ure, psi	He	ead reading	js	Time,		К,	Temp,		K @ 20 °C,
Date	#	Cell	Sample	H_1	H_2	$H_{1}H_{2}$	sec	Gradient	cm/sec	°C	R _t	cm/sec
6/1	4	90	80	86.7	86.5	0.2	660	14.5	3.8E-08	21	0.976	3.7E-08
6/1	5	90	80	86.5	85.7	0.8	2700	14.4	3.7E-08	21	0.976	3.6E-08
6/1	7	90 90	80 80	85.0	85.0 84.1	0.7	3240	14.3 14.2	3.4E-08	21	0.976	3.3E-08 3.5E-08
-, -												

PERMEABILITY AT 20° C: 3.5×10^{-8} cm/sec (@ 10 psi effective stress)

ASTM D 2166

PROJECT: Washington Wood Prese	erving ISS
PROJECT No.: SH0600	
SAMPLE No.: 0600-028 (28-Da	y)
TESTING DATE: 19-May-16	
TESTED BY: DMC	

LOADING RATE: 0.0400 in./min TRACKING CODE: A847_US

	MOISTURE CONTENT (Dry Basis)							
1.	MOISTURE TIN NO.							
2.	WT MOISTURE TIN (tare weight)	118.52	g					
3.	WT WET SOIL + TARE	172.49	g					
4.	WT DRY SOIL + TARE	156.10	g					
5.	WT WATER, Ww	16.39	g					
6.	WT DRY SOIL, Ws	37.58	g					
7.	MOISTURE CONTENT, W	43.61	%					

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.00	in.	3.92	in.			
No. 2	1.99	in.	3.95	in.			
No. 3	1.99	in.	3.94	in.			
Average 1.99 in. 3.94 in.							

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	339.72	g				
Initial Area, Ao	3.12	in²				
Initial Volume, Vo	12.29	in³				
Initial Bulk Unit Weight,	105.3	lb/ft³				
Initial Dry Unit Weight	73.3	lb/ft³				
15 % Strain (0.15 Lo)	0.59	in.				
UCS	65.8	lb/in²				

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.122	0.0000	0.0
10	0.003	0.003	3.125	0.0008	3.2
18	0.005	0.005	3.126	0.0013	5.8
23	0.007	0.007	3.128	0.0018	7.4
30	0.010	0.010	3.130	0.0025	9.6
54	0.015	0.015	3.134	0.0038	17.2
76	0.020	0.020	3.138	0.0051	24.2
122	0.025	0.025	3.142	0.0064	38.8
164	0.030	0.030	3.146	0.0076	52.1
187	0.035	0.035	3.150	0.0089	59.4
202	0.040	0.040	3.154	0.0102	64.0
207	0.045	0.045	3.158	0.0114	65.5
208	0.050	0.050	3.162	0.0127	65.8
207	0.055	0.055	3.167	0.0140	65.4
201	0.060	0.060	3.171	0.0152	63.4
195	0.065	0.065	3.175	0.0165	61.4
189	0.070	0.070	3.179	0.0178	59.5
183	0.075	0.075	3.183	0.0191	57.5
178	0.080	0.080	3.187	0.0203	55.9
170	0.085	0.085	3.191	0.0216	53.3

UNCONFINED COMPRESSION TESTING Sample No. 0600-028 (28-Day)

UNCONFINED COMPRESSION TEST

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Washington Wood Preserving ISS

 PROJECT No.:
 SH0600

 SAMPLE No.:
 0600-028 (28-Day)

 TESTING DATE:
 5/19/2016

 TESTED BY:
 DMC

ER AND RESU	LTS	
43.6	%	
105.3	lb/ft ³	
73.3	lb/ft ³	
65.8	lb/in²	
	ER AND RESU 43.6 105.3 73.3 65.8	43.6 % 105.3 lb/ft ³ 73.3 lb/ft ³ 65.8 lb/in ²

* UCS - UNCONFINED COMPRESSIVE STRENGTH

Client:	Kemron Environmental				
Project Name:	Washington Wood Preservin	ig ISS			
Project Location:					
GTX #:	GTX-304790				
Start Date:	5/27/2016	Tested By:	jm		
End Date:	6/1/2016	Checked By:	mcm		
Boring		Test #: K3			
Sample #:	0600-028 (28-Day)				
Depth:					
Visual Description:	Moist, gray sandy silt				

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D5084 Increasing Tailwater

Sample [•]	Type:		intact				Permeant I	rmeant Fluid: de-aired tap water				
Orientat	ion:		Vertical				Cell #: P2					
Sample	Prepara	tion:	Specimen moisture	weighed content.	and dimen	sions re	corded the	placed into	permeameter at	as-receiv	ved dens	ity and
				Paramete	er		Initial		Fi	nal		
			Height, in				1.75		1.	75		
			Diameter,	in			2.99		2.	99		
			Area, in ²				7.02		7.	02		
			Volume, i	n ³			12.3		12	2.3		
			Mass, g				336		3	41		
			Bulk Dens	sity, pcf			104		1	06		
			Moisture (Content,	%		44.8		47			
			Dry Densi	ty, pcf	am 0/	72.0			72.0			
			Degree of	Saturati	011, %				95			
B COEF	FICIEN	T DETE	RMINATIC	DN								
Cell Pres	sure, p	si:		90			Pressure Ir	ncrement, p	si:	9.8		
Sample	Pressure	e, psi:		80			B Coefficient: 98					
FLOW D	ΔΤΑ											
							Elapsed		Permeability			Permeability
	Trial	Press	ure, psi	H	ead reading	S	Time,		К,	Temp,		к @ 20 °С,
Date	#	Cell	Sample	H_1	H ₂	$H_1 H_2$	sec	Gradient	cm/sec	°C	R _t	cm/sec
5/31	4	90	80	57.8	56.7	1.1	1500	13.0	1.0E-07	21	0.976	9.9E-08
5/31	5	90 90	80 80	56.0	55.2	0.7	1200	12.8	9.5E-08	21	0.976	9.3E-08
5/31	7	90	80	55.2	53.9	1.3	1980	12.5	9.6E-08	21	0.976	9.3E-08

PERMEABILITY AT 20° C: 9.8 x 10⁻⁸ cm/sec (@ 10 psi effective stress)

APPENDIX H LEAF METHOD 1315 DATA SHEETS

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-019 6/7/2016 TESTED BY: TRACKING CODE:

MOISTURE CONTENT (Dry Basis)	RESULTS	
1. MOISTURE TIN NO.		
2. WT MOISTURE TIN (tare weight)	114.98	g
3. WT WET SOIL + TARE	178.47	g
4. WT DRY SOIL + TARE	154.24	g
5. WT WATER, Ww	24.23	g
6. WT DRY SOIL, Ws	39.26	g
7. MOISTURE CONTENT, W	61.72	%

SOIL SPECIMEN DIMENSIONS					
TRIPLICATE	DIAMETER	LENGTH			
ANALYSES	RESULTS		RESULTS		
No. 1	2.01	in.	3.94	in.	
No. 2	2.00	in.	3.99	in.	
No. 3	1.99	in.	3.98	in.	
Average	2.00	in.	3.97	in.	

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	<mark>308.30</mark> g
Surface Area, Ao	31.22 in²
Volume, Vo	12.47 in ³
Bulk Unit Weight	94.2 pcf
Dry Unit Weight	58.2 pcf

EPA 1315 LEACHABILITY TESTING DATA

Sheet 2 of 2

PROJECT:	Washington Wood Preserving ISS	
PROJECT NO.:	SH0600	
SAMPLE NO:	0600-019	
START DATE:	6/7/2016	
TRACKING CODE:	A838	

						OF	VOLUME					
LEACH	TESTED	DA	TE	TI	ME	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	pН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					309.50	1813					initial
1	TNB	6/7/2.16	06/07/16	8:56	10:56	313.44	1813	26.39	31.8	0.089	10.39	2 hr
2	TNB	06/07/16	06/08/16	10:56	8:56	314.77	1813	18.26	127.8	0.570	8.54	24 hr
3	TNB	06/08/16	06/09/16	8:56	8:56	314.73	1813	19.83	20.4	0.397	10.91	48 hr
4	TNB	06/09/16	06/14/16	8:56	8:56	315.38	1813	26.03	-6.0	0.068	11.22	7 day
5	TNB	06/14/16	06/21/16	8:56	8:56	316.37	1813	20.31	-19.0	0.647	11.86	14 day
6	TNB	06/21/16	07/05/16	8:56	8:56	316.93	1813	23.24	-14.8	0.626	11.44	28 day
7	TNB	07/05/16	07/19/16	8:56	8:56		1813					42 day
8	TNB	07/19/16	07/26/16	8:56	8:56		1813					49 day
9	TNB	07/26/16	08/09/16	8:56	8:56		1813					63 day
10												

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-022 6/7/2016 TESTED BY: TRACKING CODE:

_			
	MOISTURE CONTENT (Dry Basis)	RESULTS	
1.	MOISTURE TIN NO.		
2.	WT MOISTURE TIN (tare weight)	113.96	g
3.	WT WET SOIL + TARE	162.69	g
4.	WT DRY SOIL + TARE	143.47	g
5.	WT WATER, Ww	19.22	g
6.	WT DRY SOIL, Ws	29.51	g
7.	MOISTURE CONTENT, W	65.13	%

SOIL SPECIMEN DIMENSIONS				
TRIPLICATE	DIAMETER	LENGTH		
ANALYSES	RESULTS		RESULTS	
No. 1	2.01	in.	3.96	in.
No. 2	2.00	in.	3.97	in.
No. 3	1.99	in.	3.97	in.
Average	2.00	in.	3.97	in.

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	<u>305.67</u> g
Surface Area, Ao	31.18 in²
Volume, Vo	12.44 in ³
Bulk Unit Weight	93.6 pcf
Dry Unit Weight	56.7 pcf

EPA 1315 LEACHABILITY TESTING DATA

Sheet 2 of 2

PROJECT:	Washington Wood Preserving ISS
PROJECT NO.:	SH0600
SAMPLE NO:	0600-022
START DATE:	6/7/2016
TRACKING CODE:	A841

						OF	VOLUME					
LEACH	TESTED	DA	TE	TI	ME	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	pН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					308.32	1811					initial
1	TNB	06/07/16	06/07/16	8:57	10:57	313.29	1811	26.41	47.5	0.051	10.16	2 hr
2	TNB	06/07/16	06/08/16	10:57	8:57	314.13	1811	19.43	103.9	0.654	9.29	24 hr
3	TNB	06/08/16	06/09/16	8:57	8:57	314.32	1811	21.98	8.6	0.437	11.54	48 hr
4	TNB	06/09/16	06/04/16	8:57	8:57	314.75	1811	22.85	29.5	0.673	10.89	7 day
5	TNB	06/14/16	06/21/16	8:57	8:57	315.56	1811	20.14	2.3	0.642	11.72	14 day
6	TNB	06/21/16	07/05/16	8:57	8:57	315.75	1811	23.36	-1.9	0.533	11.46	28 day
7	TNB	07/05/16	07/19/16	8:57	8:57		1811					42 day
8	TNB	07/09/16	07/26/16	8:57	8:57		1811					49 day
9	TNB	07/26/16	08/09/16	8:57	8:57		1811					63 day
10												

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-024 6/7/2016 TESTED BY: TRACKING CODE:

	MOISTURE CONTENT (Dry Basis)	RESULTS	
1.	MOISTURE TIN NO.		
2.	WT MOISTURE TIN (tare weight)	115.96	g
3.	WT WET SOIL + TARE	184.92	g
4.	WT DRY SOIL + TARE	163.00	g
5.	WT WATER, Ww	21.92	g
6.	WT DRY SOIL, Ws	47.04	g
7.	MOISTURE CONTENT, W	46.60	%

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAMETER		LENGTH					
ANALYSES	RESULTS		RESULTS					
No. 1	2.00	in.	3.96	in.				
No. 2	2.01	in.	3.92	in.				
No. 3	1.99	in.	3.92	in.				
Average	2.00	in.	3.93	in.				

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	344.70 g
Surface Area, Ao	30.97 in²
Volume, Vo	12.34 in ³
Bulk Unit Weight	106.4 pcf
Dry Unit Weight	72.6 pcf

EPA 1315 LEACHABILITY TESTING DATA

Sheet 2 of 2

PROJECT:	Washington Wood Preserving ISS
PROJECT NO.:	SH0600
SAMPLE NO:	0600-024
START DATE:	6/7/2016
TRACKING CODE:	A843

						OF	VOLUME					
LEACH	TESTED	DA	TE	TI	ME	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	рН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					347.60	1799					initial
1	TNB	06/07/16	06/07/16	8:58	10:58	352.42	1799	26.48	57.3	0.039	10.00	2 hr
2	TNB	06/07/16	06/08/16	10:58	8:58	353.41	1799	19.64	29.8	0.394	10.21	24 hr
3	TNB	06/08/16	06/09/16	8:58	8:58	352.49	1799	22.37	-28.3	0.271	11.39	48 hr
4	TNB	06/09/16	06/14/16	8:58	8:58	352.22	1799	21.69	-20.3	0.384	10.93	7 day
5	TNB	06/14/16	06/21/16	8:58	8:58	353.31	1799	20.07	-24.0	0.450	11.51	14 day
6	TNB	06/21/16	07/05/16	8:58	8:58	352.81	1799	23.49	-6.2	0.340	11.15	28 day
7	TNB	07/05/16	07/19/16	8:58	8:58		1799					42 day
8	TNB	07/09/16	07/26/16	8:58	8:58		1799					49 day
9	TNB	07/26/16	08/09/16	8:58	8:58		1799					63 day
10												
	•	•	•									·

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-027 6/7/2016 TESTED BY: _____ TRACKING CODE:

MOISTURE CONTENT (Dry Basis)	RESULTS	
1. MOISTURE TIN NO.		
2. WT MOISTURE TIN (tare weight)	111.81	g
3. WT WET SOIL + TARE	170.57	g
4. WT DRY SOIL + TARE	151.62	g
5. WT WATER, Ww	18.95	g
6. WT DRY SOIL, Ws	39.81	g
7. MOISTURE CONTENT, W	47.60	%
	47.00	

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAMETER	LENGTH						
ANALYSES	RESULTS	RESULTS						
No. 1	2.00 in.	3.96 in.						
No. 2	2.00 in.	3.94 in.						
No. 3	2.01 in.	3.96 in.						
Average	2.00 in.	3.95 in.						

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	<mark>331.97</mark> g
Surface Area, Ao	31.18 in²
Volume, Vo	12.46 in ³
Bulk Unit Weight	101.5 pcf
Dry Unit Weight	68.8 pcf

EPA 1315 LEACHABILITY TESTING DATA Sheet 2 of 2 PROJECT: Washington Wood Preserving ISS PROJECT NO .: SH0600 SAMPLE NO: 0600-027 START DATE: 6/7/2016 A846 TRACKING CODE: OF VOLUME LEACH TESTED SAMPLE + LEACHATE TEMP ORP DATE TIME Conduct. pН IN OUT IN OUT TARE (g) **INTERVAL** ΒY (ml)(°C) (mV) (mS/cm³) (s.u.) **OBSERVATIONS** 333.51 Initial TNB 1811 initial TNB 06/07/16 06/07/16 8:59 10:59 336.76 1811 27.31 53.2 0.044 10.24 2 hr 1 06/07/16 06/08/16 2 TNB 10:59 8:59 337.85 1811 21.09 35.1 0.448 10.53 24 hr 06/08/16 06/09/16 3 TNB 8:59 8:59 338.00 1811 22.66 -12.2 0.291 11.47 48 hr 8:59 7 day 4 06/09/16 06/14/16 8:59 337.93 1811 21.44 -10.6 0.405 11.15 TNB 5 06/14/16 06/21/16 8:59 8:59 338.31 1811 20.29 -3.4 0.464 11.58 14 day TNB 6 TNB 06/21/16 07/05/16 8:59 8:59 338.18 1811 23.38 -2.6 11.47 28 day 0.518 7 07/05/16 07/19/16 8:59 8:59 1811 42 day TNB 8 07/09/16 07/26/16 8:59 8:59 1811 TNB 49 day

1811

63 day

07/26/16 08/09/16

8:59

8:59

9

10

TNB

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-019B 6/8/2016 TESTED BY: _____ TRACKING CODE:

MOISTURE CONTENT (Dry Basis)	RESULTS
1. MOISTURE TIN NO.	
2. WT MOISTURE TIN (tare weight)	114.98 g
3. WT WET SOIL + TARE	178.47 g
4. WT DRY SOIL + TARE	154.24 g
5. WT WATER, Ww	24.23
6. WT DRY SOIL, Ws	39.26
7. MOISTURE CONTENT, W	61.72 %

SOIL SPECIMEN DIMENSIONS							
TRIPLICATE	DIAMETER	LENGTH					
ANALYSES	RESULTS		RESULTS				
No. 1	2.01	in.	3.91	in.			
No. 2	2.00	in.	3.90	in.			
No. 3	1.99	in.	3.92	in.			
Average	2.00	in.	3.91	in.			

SPECIMEN CONDITIONS	INITIAL	
Specimen WT, Wo	<u>307.79</u> g	3
Surface Area, Ao	30.82 ir	n²
Volume, Vo	12.26 ir	n³
Bulk Unit Weight	95.6 p	ocf
Dry Unit Weight	59.1 p	ocf

EPA 1315 LEACHABILITY TESTING DATA

Sheet 2 of 2

PROJECT:	Washington Wood Preserving ISS	
PROJECT NO.:	SH0600	
SAMPLE NO:	0600-019B	
START DATE:	6/8/2016	
TRACKING CODE:	A877	

						OF	VOLUME					
LEACH	TESTED	DA	TE	TI	ME	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	pН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					309.59	1790	25.42	161.2	0.006	8.06	initial
1	TNB	06/08/16	06/08/16	8:10	10:10	313.26	1790	21.02	82.4	0.080	9.96	2 hr
2	TNB	06/08/16	06/09/16	10:10	8:10	314.38	1790	17.84	95.6	0.525	9.83	24 hr
3	TNB	06/09/16	06/10/16	8:10	8:10	314.23	1790	21.87	86.5	0.305	9.77	48 hr
4	TNB	06/10/16	06/15/16	8:10	8:10	314.78	1790	20.33	-17.0	0.557	11.64	7 day
5	TNB	06/15/16	06/22/16	8:10	8:10	315.26	1790	20.36	-9.5	0.622	11.63	14 day
6	TNB	06/22/16	07/06/16	8:10	8:10	316.34	1790	23.63	-13.5	0.762	11.61	28 day
7	TNB	07/06/16	07/20/16	8:10	8:10		1790					42 day
8	TNB	07/20/16	07/27/16	8:10	8:10		1790					49 day
9	TNB	07/27/16	08/10/16	8:10	8:10		1790					63 day
10												

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-022B 6/8/2016 TESTED BY: TRACKING CODE:

MOISTURE CONTENT (Dry Basis)	RESULTS	
1. MOISTURE TIN NO.		
2. WT MOISTURE TIN (tare weight)	113.99	g
3. WT WET SOIL + TARE	162.69	g
4. WT DRY SOIL + TARE	143.47	g
5. WT WATER, Ww	19.22	g
6. WT DRY SOIL, Ws	29.48	g
7. MOISTURE CONTENT, W	65.19	%

SOIL SPECIMEN DIMENSIONS							
TRIPLICATE	DIAMETER		LENGTH				
ANALYSES	RESULTS		RESULTS				
No. 1	2.01	in.	4.00	in.			
No. 2	2.00	in.	3.99	in.			
No. 3	1.99	in.	4.00	in.			
Average	2.00	in.	4.00	in.			

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	312.36 g
Surface Area, Ao	31.37 in²
Volume, Vo	12.54 in³
Bulk Unit Weight	94.9 pcf
Dry Unit Weight	57.5 pcf

EPA 1315 LEACHABILITY DESTING DATA Sheet 2 of 2 Washington Wood Preserving ISS PROJECT NO.: SH0600 SAMPLE NO: 0600-022B START DATE: 6/8/2016 TRACKING CODE: OF VOLUME 08P CH TESTED DATE TIME SAMPLE + LEACHATE TEMP OF VOLUME SAMPLE + LEACHATE TEMP

LEACH	TESTED	DA	TE	TI	ИE	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	pН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					313.96	1822	25.42	161.2	0.006	8.06	initial
1	TNB	06/08/16	06/08/16	8:11	10:11	317.44	1822	21.43	51.1	0.118	10.69	2 hr
2	TNB	06/08/16	06/09/16	10:11	8:11	318.61	1822	18.18	119.2	0.556	9.34	24 hr
3	TNB	06/09/16	06/10/16	8:11	8:11	318.65	1822	21.82	69.6	0.341	10.08	48 hr
4	TNB	06/10/16	06/15/16	8:11	8:11	318.92	1822	20.12	-11.9	0.677	11.77	7 day
5	TNB	06/15/16	06/22/16	8:11	8:11	319.64	1822	20.29	2.2	0.582	11.63	14 day
6	TNB	06/22/16	7/62016	8:11	8:11	320.64	1822	23.62	-15.9	0.928	11.75	28 day
7	TNB	07/06/16	07/20/16	8:11	8:11		1822					42 day
8	TNB	07/20/16	07/27/16	8:11	8:11		1822					49 day
9	TNB	07/28/16	08/10/16	8:11	8:11		1822					63 day
10												

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-024B 6/8/2016 TESTED BY: ____ TRACKING CODE:

	MOISTURE CONTENT (Dry Basis)	RESULTS	
1.	MOISTURE TIN NO.		
2.	WT MOISTURE TIN (tare weight)	115.96	g
3.	WT WET SOIL + TARE	184.92	g
4.	WT DRY SOIL + TARE	163.00	g
5.	WT WATER, Ww	21.92	g
6.	WT DRY SOIL, Ws	47.04	g
7.	MOISTURE CONTENT, W	46.60	%

SOIL SPECIMEN DIMENSIONS							
TRIPLICATE	DIAMETER		LENGTH				
ANALYSES	RESULTS		RESULTS				
No. 1	2.01	in.	3.94	in.			
No. 2	2.00	in.	3.95	in.			
No. 3	1.99	in.	3.94	in.			
Average	2.00	in.	3.94	in.			

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	344.14 g
Surface Area, Ao	31.00 in ²
Volume, Vo	12.35 in³
Bulk Unit Weight	106.1 pcf
Dry Unit Weight	72.4 pcf

EPA 1315 LEACHABILITY TESTING DATA Sheet 2 of 2 PROJECT: Washington Wood Preserving ISS PROJECT NO .: SH0600 SAMPLE NO: 0600-024B START DATE: 6/8/2016 A879 TRACKING CODE: OF VOLUME LEACH TESTED LEACHATE TEMP ORP DATE TIME SAMPLE + Conduct. pН IN OUT IN OUT TARE (g) **INTERVAL** ΒY (ml)(°C) (mV) (mS/cm³) (s.u.) **OBSERVATIONS** 345.63 8.60 Initial TNB 1801 25.42 161.2 0.006 initial TNB 06/08/16 06/08/16 8:12 10:12 348.04 1801 21.70 52.0 0.058 10.52 2 hr 1 2 TNB 06/08/16 06/09/16 10:12 349.17 1801 19.95 53.7 0.350 10.08 24 hr 8:12 06/09/16 06/10/16 3 TNB 8:12 8:12 349.67 1801 23.48 -1.0 0.309 11.00 48 hr 7 day 4 06/10/16 06/15/16 8:12 8:12 350.21 1801 20.02 -35.0 0.470 11.60 TNB 5 06/15/16 06/22/16 8:12 8:12 350.61 1801 20.32 -12.9 0.371 11.38 14 day TNB 6 TNB 06/22/16 07/06/16 8:12 8:12 351.28 1801 23.26 -24.5 0.533 11.53 28 day 7 07/06/16 07/20/16 8:12 8:12 1801 42 day TNB 8 07/20/16 07/27/16 1801 TNB 8:12 8:12 49 day 9 TNB 07/27/16 08/10/16 8:12 8:12 1801 63 day 10

SAMPLE PREPARATION

Sheet 1 of 2

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Washington Wood Preserving ISS SH0600 0600-027B 6/8/2016 TESTED BY: ____ TRACKING CODE:

MOISTURE CONTENT (Dry E	Basis) RESULTS
1. MOISTURE TIN NO.	
2. WT MOISTURE TIN (tare weight)) 111.81
3. WT WET SOIL + TARE	170.57
4. WT DRY SOIL + TARE	151.62
5. WT WATER, Ww	18.95
6. WT DRY SOIL, Ws	39.81
7. MOISTURE CONTENT, W	47.60 %

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAMETER		LENGTH					
ANALYSES	RESULTS		RESULTS					
No. 1	2.00	in.	3.96	in.				
No. 2	2.00	in.	3.89	in.				
No. 3	1.99	in.	3.96	in.				
Average	2.00	in.	3.94	in.				

SPECIMEN CONDITIONS	INITIAL	
Specimen WT, Wo	<mark>334.8</mark> 9 g	
Surface Area, Ao	30.98 in ²	2
Volume, Vo	12.34 in ³	3
Bulk Unit Weight	103.4 pc	cf
Dry Unit Weight	70.1 pc	cf

EPA 1315 LEACHABILITY TESTING DATA Sheet 2 of 2 PROJECT: Washington Wood Preserving ISS PROJECT NO .: SH0600 0600-027B SAMPLE NO: START DATE: 6/8/2016 A880 TRACKING CODE: OF VOLUME i. •

LEACH	TESTED	DA	ATE		ИE	SAMPLE +	LEACHATE	TEMP	ORP	Conduct.	рН	
INTERVAL	BY	IN	OUT	IN	OUT	TARE (g)	(ml)	(°C)	(mV)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	TNB					336.21	1799	25.42	161.2	0.006	8.06	initial
1	TNB	06/08/16	06/08/16	8:13	10:13	338.06	1799	21.76	52.0	0.088	10.58	2 hr
2	TNB	06/08/16	06/09/16	10:13	8:13	339.21	1799	20.03	28.1	0.350	10.69	24 hr
3	TNB	06/09/16	06/10/16	8:13	8:13	339.16	1799	23.26	4.8	0.299	10.88	48 hr
4	TNB	06/10/16	06/15/16	8:13	8:13	339.65	1799	19.83	-24.8	0.562	11.73	7 day
5	TNB	06/15/16	06/22/16	8:13	8:13	339.66	1799	20.43	-11.3	0.505	11.64	14 day
6	TNB	06/22/16	07/06/16	8:13	8:13	340.31	1799	23.13	-12.7	0.595	11.58	28 day
7	TNB	7/6/206	07/20/16	8:13	8:13		1799					42 day
8	TNB	07/20/16	07/27/16	8:13	8:13		1799					49 day
9	TNB	07/27/16	08/10/16	8:13	8:13		1799					63 day
10												

APPENDIX I LEAF METHOD 1315 ANALYTICAL CHARACTERIZATION REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-105474-1 Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 6/21/2016 3:34:59 PM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	14
QC Association	17
Chronicle	19
Method Summary	22
Certification Summary	23
Chain of Custody	24
Receipt Checklists	27

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-105474-1	0600-019 (2 hour)	Water	06/08/16 10:35	06/10/16 08:50
490-105474-2	0600-022 (2 hour)	Water	06/08/16 10:45	06/10/16 08:50
490-105474-3	0600-024 (2 hour)	Water	06/08/16 10:55	06/10/16 08:50
490-105474-4	0600-027 (2 hour)	Water	06/08/16 11:05	06/10/16 08:50
490-105474-5	0600-019 (24 hr)	Water	06/09/16 10:10	06/10/16 08:50
490-105474-6	0600-022 (24 hr)	Water	06/09/16 10:20	06/10/16 08:50
490-105474-7	0600-024 (24 hr)	Water	06/09/16 10:25	06/10/16 08:50
490-105474-8	0600-027 (24 hr)	Water	06/09/16 10:30	06/10/16 08:50

TestAmerica Job ID: 490-105474-1

Job ID: 490-105474-1

Laboratory: TestAmerica Nashville

Client: Kemron Environmental Services, Inc.

Project/Site: Washington Wood Preserving ISS

Narrative

Job Narrative 490-105474-1

Comments

No additional comments.

Receipt

The samples were received on 6/10/2016 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS Semi VOA

Method(s) 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-347453 and analytical batch 490-347677.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) NWTPH-Dx: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-348104 and analytical batch 490-348824.

Method(s) NWTPH-Dx: The continuing calibration verification (CCV) associated with batch 348824 recovered above the upper control limit for C24-C40. The samples associated with this CCV were non-detects or were not detected above the reporting limit (RL) for the affected analytes; therefore, the data have been reported.

Method(s) NWTPH-Dx: There was insufficient contamination present for analyte C10-C24 to perform a pattern match for the following samples: 0600-019 (2 hour) (490-105474-1), 0600-022 (2 hour) (490-105474-2), 0600-027 (2 hour) (490-105474-4), 0600-022 (24 hr) (490-105554-A-1-A) and (490-105554-B-1-B DU).

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C10-C24 that most closely resembles a Diesel Fuel #2 product used by the laboratory for quantitative purposes: 0600-024 (2 hour) (490-105474-3), 0600-019 (24 hr) (490-105474-5), 0600-024 (24 hr) (490-105474-7) and 0600-027 (24 hr) (490-105474-8).

Method(s) 8151A: The %RPD between the primary and confirmation column exceeded 40% for Dichloroacetic acid(Surr) for the following samples: 0600-019 (24 hr) (490-105474-5). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: 0600-024 (2 hour) (490-105474-3), 0600-027 (2 hour) (490-105474-4), 0600-024 (24 hr) (490-105474-7) and 0600-027 (24 hr) (490-105474-8). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The following samples was diluted due to the nature of the sample matrix: 0600-024 (2 hour) (490-105474-3), 0600-027 (2 hour) (490-105474-4), 0600-024 (24 hr) (490-105474-7) and 0600-027 (24 hr) (490-105474-8). Elevated reporting limits (RLs) are provided.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-347993 and analytical batch 490-348600.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Qua	lifiers
Guu	

GC/MS Sem	i VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi VO	Α	J
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Х	Surrogate is outside control limits	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
		8
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- Toxicity Equivalent Quotient (Dioxin) TEQ

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (2 hour) Date Collected: 06/08/16 10:35

Date Received: 06/10/16 08:50

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-1

Matrix: Water

5 6

Method: 8270D - Semivolati	le Organic Co	mpounds	(GC/MS)			_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:05	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:05	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:05	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:05	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:05	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 20:05	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 20:05	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:05	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:05	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 20:05	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 20:05	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 20:05	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:05	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:05	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 20:05	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	42		29 - 120				06/14/16 08:19	06/14/16 20:05	1
Terphenyl-d14 (Surr)	75		13 - 120				06/14/16 08:19	06/14/16 20:05	1
Nitrobenzene-d5 (Surr)	40		27 - 120				06/14/16 08:19	06/14/16 20:05	1
Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.412	J	1.86	0.279	ug/L		06/15/16 15:38	06/17/16 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	101		10 - 150				06/15/16 15:38	06/17/16 15:53	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (GO	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	83.7	J	94.3	26.4	ug/L		06/16/16 08:20	06/19/16 13:48	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 13:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				06/16/16 08:20	06/19/16 13:48	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-022 (2 hour)

TestAmerica Job ID: 490-105474-1

5

6

Lab Sample ID: 490-105474-2 Matrix: Water

Date Collected: 06/08/16 10:45 Date Received: 06/10/16 08:50

Method: 8270D - Semivo	latile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:30	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:30	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:30	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:30	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:30	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 20:30	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 20:30	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:30	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:30	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 20:30	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 20:30	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 20:30	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:30	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:30	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 20:30	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	53		29 - 120				06/14/16 08:19	06/14/16 20:30	1
Terphenyl-d14 (Surr)	85		13 - 120				06/14/16 08:19	06/14/16 20:30	1
Nitrobenzene-d5 (Surr)	51		27 - 120				06/14/16 08:19	06/14/16 20:30	1
- Method: 8151A - Herbicio	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.314	J	1.86	0.279	ug/L		06/15/16 15:38	06/17/16 16:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	108		10 - 150				06/15/16 15:38	06/17/16 16:08	1
- Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C) - RED	L2			
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	44.7	J	94.3	26.4	ug/L		06/16/16 08:20	06/19/16 14:05	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		50 - 150				06/16/16 08:20	06/19/16 14:05	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-024 (2 hour)

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-3 Matrix: Water

5

6

Date Collected: 06/08/16 10:55 Date Received: 06/10/16 08:50

Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.522	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:54	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:54	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:54	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:54	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 20:54	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 20:54	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 20:54	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:54	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 20:54	1
Phenanthrene	1.22	J	1.72	0.362	ug/L		06/14/16 08:19	06/14/16 20:54	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 20:54	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 20:54	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:54	1
Fluorene	0.477	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 20:54	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 20:54	1
Naphthalene	0.678	J	1.72	0.319	ug/L		06/14/16 08:19	06/14/16 20:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		29 - 120				06/14/16 08:19	06/14/16 20:54	1
Terphenyl-d14 (Surr)	80		13 - 120				06/14/16 08:19	06/14/16 20:54	1
Nitrobenzene-d5 (Surr)	52		27 - 120				06/14/16 08:19	06/14/16 20:54	1
Method: 8151A - Herbicides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	47.6	J	93.0	14.0	ug/L		06/15/16 15:38	06/17/16 16:24	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1249	X	10 - 150				06/15/16 15:38	06/17/16 16:24	50
Method: NWTPH-Dx - Northw	est - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	369		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 14:22	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	84		50 - 150				06/16/16 08:20	06/19/16 14:22	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-027 (2 hour)

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-4 Matrix: Water

5

6

Date Collected: 06/08/16 11:05 Date Received: 06/10/16 08:50

Method: 8270D - Semivolati	le Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:19	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 21:19	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 21:19	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:19	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 21:19	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 21:19	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 21:19	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 21:19	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 21:19	1
Phenanthrene	0.630	J	1.72	0.362	ug/L		06/14/16 08:19	06/14/16 21:19	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 21:19	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 21:19	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:19	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:19	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 21:19	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 21:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2-Fluorobiphenyl (Surr)		Qualifier	Limits				Prepared 06/14/16 08:19	Analyzed 06/14/16 21:19	Dil Fac
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr)		Qualifier	Limits 29 - 120 13 - 120				Prepared 06/14/16 08:19 06/14/16 08:19	Analyzed 06/14/16 21:19 06/14/16 21:19	Dil Fac 1 1
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr)	%Recovery 48 75 45	Qualifier	Limits 29 - 120 13 - 120 27 - 120				Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19	Dil Fac 1 1 1
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides	<u>%Recovery</u> 48 75 45 (GC)	Qualifier	Limits 29 - 120 13 - 120 27 - 120				Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19	Dil Fac 1 1 1
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte	(GC)	Qualifier Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL	MDL	Unit	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 Prepared	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed	Dil Fac
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol	%Recovery 48 75 45 (GC) Result 27.0	Qualifier Qualifier J	Limits 29 - 120 13 - 120 27 - 120 RL 37.2	MDL 5.58	Unit ug/L	<u>D</u>	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 Prepared 06/15/16 15:38	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39	Dil Fac 1 1 1 Dil Fac 20
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate	(GC) %Recovery 48 75 45 (GC) Result 27.0 %Recovery	Qualifier Qualifier J Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits	MDL 5.58	Unit ug/L	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 Prepared 06/15/16 15:38 Prepared	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed	Dil Fac 1 1 1 Dil Fac 20 Dil Fac
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr)	%Recovery 48 75 45 (GC) Result 27.0 %Recovery 749	Qualifier Qualifier J Qualifier X	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150	MDL 5.58	Unit ug/L	D_	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39	Dil Fac 1 1 1 1 Dil Fac 20 Dil Fac 20
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr) Method: NWTPH-Dx - Northy	<u>%Recovery</u> 48 75 45 (GC) <u>Result</u> 27.0 <u>%Recovery</u> 749 west - Semi-V	Qualifier Qualifier J Qualifier X Volatile Pet	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150 roleum Prod	MDL 5.58	Unit ug/L	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 06/15/16 15:38	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39	Dil Fac 1 1 Dil Fac 20 Dil Fac 20
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr) Method: NWTPH-Dx - Northy Analyte	%Recovery 48 75 45 (GC) Result 27.0 %Recovery 749 west - Semi-V Result	Qualifier Qualifier J Qualifier X Volatile Pet Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150 roleum Prod RL	MDL 5.58 ucts (G(MDL	Unit ug/L C) Unit	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39	Dil Fac 1 1 1 Dil Fac 20 Dil Fac 20 Dil Fac
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr) Method: NWTPH-Dx - Northy Analyte C10-C24	%Recovery 48 75 45 (GC) Result 27.0 %Recovery 749 west - Semi-V Result 179	Qualifier J Qualifier J Qualifier X Olatile Pet Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150 roleum Prod RL 94.3	MDL 5.58 ucts (GC MDL 26.4	Unit ug/L Unit ug/L	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 Prepared 06/15/16 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39 Analyzed 06/19/16 14:40	Dil Fac 1 1 1 1 Dil Fac 20 Dil Fac 20 Dil Fac 1 1 1
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr) Method: NWTPH-Dx - Northy Analyte C10-C24 C24-C40	%Recovery 48 75 45 (GC) Result 27.0 %Recovery 749 west - Semi-V Result 179 ND	Qualifier J Qualifier X Volatile Pet Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150 roleum Prod RL 94.3 94.3	MDL 5.58 ucts (G0 MDL 26.4 47.2	Unit ug/L Unit ug/L ug/L	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/15/16 08:19 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 06/16/16 08:20 06/16/16 08:20	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39 Analyzed 06/19/16 14:40 06/19/16 14:40	Dil Fac 1 1 1 1 Dil Fac 20 Dil Fac 20 Dil Fac 1 1 1 1 1 1 1 1 1
Surrogate 2-Fluorobiphenyl (Surr) Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Method: 8151A - Herbicides Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr) Method: NWTPH-Dx - Northy Analyte C10-C24 C24-C40 Surrogate	<u>%Recovery</u> 48 75 45 (GC) <u>Result</u> 27.0 <u>%Recovery</u> 749 west - Semi-V Result 179 ND %Recovery	Qualifier J Qualifier Z Qualifier Qualifier Qualifier	Limits 29 - 120 13 - 120 27 - 120 RL 37.2 Limits 10 - 150 roleum Prod RL 94.3 94.3 94.3 Limits	MDL 5.58 ucts (GC MDL 26.4 47.2	Unit ug/L Unit ug/L ug/L	D	Prepared 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/14/16 08:19 06/15/16 08:19 06/15/16 15:38 Prepared 06/15/16 06/15/16 15:38 Prepared 06/16/16 06/16/16 08:20 06/16/16 08:20 06/16/16 08:20 Prepared 06/16/16	Analyzed 06/14/16 21:19 06/14/16 21:19 06/14/16 21:19 Analyzed 06/17/16 16:39 Analyzed 06/17/16 16:39 Analyzed 06/19/16 14:40 06/19/16 14:40	Dil Fac 1 1 1 1 20 Dil Fac 20 Dil Fac 1 1 Dil Fac

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (24 hr) Date Collected: 06/09/16 10:10 Date Received: 06/10/16 08:50

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-5

Matrix: Water

5

6

Method: 8270D - Semivolatile C	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:43	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 21:43	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 21:43	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:43	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 21:43	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 21:43	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 21:43	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 21:43	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 21:43	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 21:43	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 21:43	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 21:43	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:43	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 21:43	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 21:43	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 21:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	49		29 - 120				06/14/16 08:19	06/14/16 21:43	1
Terphenyl-d14 (Surr)	78		13 - 120				06/14/16 08:19	06/14/16 21:43	1
Nitrobenzene-d5 (Surr)	44		27 - 120				06/14/16 08:19	06/14/16 21:43	1
Method: 8151A - Herbicides (G	C)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.755	J	1.86	0.279	ug/L		06/15/16 15:38	06/17/16 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	109	p	10 - 150				06/15/16 15:38	06/17/16 16:54	1
Method: NWTPH-Dx - Northwe	st - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	216		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 15:32	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 15:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	77		50 - 150				06/16/16 08:20	06/19/16 15:32	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-022 (24 hr) Date Collected: 06/09/16 10:20 Date Received: 06/10/16 08:50 TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-6 Matrix: Water

Matrix: Water

Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:08	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:08	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:08	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:08	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:08	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 22:08	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 22:08	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:08	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:08	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 22:08	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 22:08	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 22:08	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:08	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:08	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 22:08	1
Naphthalene	0.334	J	1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	46		29 - 120				06/14/16 08:19	06/14/16 22:08	1
Terphenyl-d14 (Surr)	81		13 - 120				06/14/16 08:19	06/14/16 22:08	1
Nitrobenzene-d5 (Surr)	43		27 - 120				06/14/16 08:19	06/14/16 22:08	1
_ Method: 8151A - Herbicides (0	GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.640	J	1.86	0.279	ug/L		06/15/16 15:38	06/17/16 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	102		10 - 150				06/15/16 15:38	06/17/16 17:09	1
- Method: NWTPH-Dx - Northwe	est - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	182		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 15:50	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 15:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				06/16/16 08:20	06/19/16 15:50	1

RL

MDL Unit

D

Prepared

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-024 (24 hr) Date Collected: 06/09/16 10:25 Date Received: 06/10/16 08:50

Analyte

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-7 Matrix: Water

Analyzed

•							•	•	
Acenaphthene	0.786	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:32	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:32	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:32	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:32	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:32	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 22:32	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 22:32	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:32	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:32	1
Phenanthrene	1.40	J	1.72	0.362	ug/L		06/14/16 08:19	06/14/16 22:32	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 22:32	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 22:32	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:32	1
Fluorene	0.781	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:32	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 22:32	1
Naphthalene	2.10		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	42		29 - 120				06/14/16 08:19	06/14/16 22:32	1
Terphenyl-d14 (Surr)	83		13 - 120				06/14/16 08:19	06/14/16 22:32	1
Nitrobenzene-d5 (Surr)	38		27 - 120				06/14/16 08:19	06/14/16 22:32	1
Method: 8151A - Herbicic	les (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	92.6	J	93.0	14.0	ug/L		06/15/16 15:38	06/17/16 17:25	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	2185	X	10 - 150				06/15/16 15:38	06/17/16 17:25	50
Method: NWTPH-Dx - No	rthwest - Semi-V	/olatile Pet	roleum Prod	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	841		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 16:08	1
C24-C40	59.4	J	94.3	47.2	ug/L		06/16/16 08:20	06/19/16 16:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	109		50 - 150				06/16/16 08:20	06/19/16 16:08	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-027 (24 hr) Date Collected: 06/09/16 10:30 Date Received: 06/10/16 08:50

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

TestAmerica Job ID: 490-105474-1

Lab Sample ID: 490-105474-8 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.549	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:57	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:57	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:57	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:57	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 22:57	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 22:57	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 22:57	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:57	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 22:57	1
Phenanthrene	0.881	J	1.72	0.362	ug/L		06/14/16 08:19	06/14/16 22:57	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 22:57	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 22:57	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:57	1
Fluorene	0.510	J	1.72	0.276	ug/L		06/14/16 08:19	06/14/16 22:57	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 22:57	1
Naphthalene	1.40	J	1.72	0.319	ug/L		06/14/16 08:19	06/14/16 22:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	50		29 - 120				06/14/16 08:19	06/14/16 22:57	1
Terphenyl-d14 (Surr)	70		13 - 120				06/14/16 08:19	06/14/16 22:57	1
Nitrobenzene-d5 (Surr)	47		27 - 120				06/14/16 08:19	06/14/16 22:57	1
Method: 8151A - Herbicio	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	56.5	J	93.0	14.0	ug/L		06/15/16 15:38	06/17/16 17:40	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1296	X	10 - 150				06/15/16 15:38	06/17/16 17:40	50
- Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	364		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 16:25	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				06/16/16 08:20	06/19/16 16:25	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-347453/1-A	
Matrix: Water	
Analysis Batch: 347677	

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 347453

7

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Acenaphthylene	ND		2.00	0.350	ug/L		06/14/16 08:19	06/14/16 17:59	1
Anthracene	ND		2.00	0.380	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[a]anthracene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[a]pyrene	ND		2.00	0.380	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[b]fluoranthene	ND		2.00	0.360	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[g,h,i]perylene	ND		2.00	0.620	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[k]fluoranthene	ND		2.00	0.370	ug/L		06/14/16 08:19	06/14/16 17:59	1
Pyrene	ND		2.00	0.350	ug/L		06/14/16 08:19	06/14/16 17:59	1
Phenanthrene	ND		2.00	0.420	ug/L		06/14/16 08:19	06/14/16 17:59	1
Chrysene	ND		2.00	0.330	ug/L		06/14/16 08:19	06/14/16 17:59	1
Dibenz(a,h)anthracene	ND		2.00	0.450	ug/L		06/14/16 08:19	06/14/16 17:59	1
Fluoranthene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Fluorene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.410	ug/L		06/14/16 08:19	06/14/16 17:59	1
Naphthalene	ND		2.00	0.370	ug/L		06/14/16 08:19	06/14/16 17:59	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		29 - 120	06/14/16 08:19	06/14/16 17:59	1
Terphenyl-d14 (Surr)	74		13 - 120	06/14/16 08:19	06/14/16 17:59	1
Nitrobenzene-d5 (Surr)	48		27 - 120	06/14/16 08:19	06/14/16 17:59	1

Lab Sample ID: LCS 490-347453/2-A Matrix: Water Analysis Batch: 347677

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 347453

· · · · · , · · · · · · · · · · · · · · · · · · ·	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	40.0	27.38		ug/L		68	36 - 129
Acenaphthylene	40.0	26.37		ug/L		66	36 - 120
Anthracene	40.0	28.24		ug/L		71	42 - 130
Benzo[a]anthracene	40.0	30.11		ug/L		75	41 - 131
Benzo[a]pyrene	40.0	28.36		ug/L		71	45 - 131
Benzo[b]fluoranthene	40.0	28.11		ug/L		70	43 - 132
Benzo[g,h,i]perylene	40.0	31.84		ug/L		80	38 - 138
Benzo[k]fluoranthene	40.0	30.37		ug/L		76	44 - 129
Pyrene	40.0	27.33		ug/L		68	37 - 129
Phenanthrene	40.0	28.46		ug/L		71	39 - 126
Chrysene	40.0	29.67		ug/L		74	39 - 130
Dibenz(a,h)anthracene	40.0	30.79		ug/L		77	43 - 140
Fluoranthene	40.0	31.24		ug/L		78	31 - 132
Fluorene	40.0	28.43		ug/L		71	37 - 130
Indeno[1,2,3-cd]pyrene	40.0	30.18		ug/L		75	40 - 136
Naphthalene	40.0	22.97		ug/L		57	32 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	66		29 - 120
Terphenyl-d14 (Surr)	71		13 - 120

TestAmerica Nashville

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 490-347453/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Prep Batch: 347453 Analysis Batch: 347677 LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 (Surr) 27 - 120 60 Method: 8151A - Herbicides (GC) Lab Sample ID: MB 490-347993/1-A **Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water** Analysis Batch: 348600 Prep Batch: 347993 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D Pentachlorophenol ND 2.00 0.300 ug/L 06/15/16 15:38 06/17/16 15:23 1 MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 06/15/16 15:38 06/17/16 15:23 Dichloroacetic acid(Surr) 10 - 150 75 1 Lab Sample ID: LCS 490-347993/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 348600 **Prep Batch: 347993** Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit Limits D %Rec Pentachlorophenol 2.50 2.324 93 10 - 150 ug/L LCS LCS Surrogate Limits %Recovery Qualifier Dichloroacetic acid(Surr) 87 10 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-34 Matrix: Water Analysis Batch: 348824	8104/1-A	/B MB					Cli	ent Samp	ole ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 348104
Analyte	Res	ult Qualifier	RL	1	MDL Unit		D P	repared	Analyzed	Dil Fac
C10-C24		ND	100		28.0 ug/L		- 06/	16/16 08:20	06/19/16 13:30	1
C24-C40	I	ND	100		50.0 ug/L		06/1	16/16 08:20	06/19/16 13:30	1
	I	MB MB								
Surrogate	%Recove	ery Qualifier	· Limits				F	Prepared	Analyzed	Dil Fac
o-Terphenyl		95	50 - 150				06/1	16/16 08:20	06/19/16 13:30	1
– Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 348824	48104/2-A					Clie	nt Sa	mple ID:	Lab Control S Prep Type: To Prep Batch:	Sample otal/NA 348104
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C24			1000	868.1		ug/L		87	51 - 132	
	LCS I	LCS								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	87		50 - 150							

TestAmerica Nashville

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 490-1055 Matrix: Water	54-B-1-B DU						Cli	ent Sample ID: Dup Prep Type: Tot	licate al/NA
Analysis Batch: 348824	Sample	Sample		DU	DU			Prep Batch: 34	48104 RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
C10-C24	151			152.1		ug/L		0.5	41
C24-C40	ND			ND		ug/L		NC	41
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	83		50 - 150						

TestAmerica Nashville
QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method Blank

3510C

Water

Prep Batch

9 10 11

GC/MS Semi VOA	4			
Prep Batch: 347453				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
490-105474-1	0600-019 (2 hour)	Total/NA	Water	3510C
490-105474-2	0600-022 (2 hour)	Total/NA	Water	3510C
490-105474-3	0600-024 (2 hour)	Total/NA	Water	3510C
490-105474-4	0600-027 (2 hour)	Total/NA	Water	3510C
490-105474-5	0600-019 (24 hr)	Total/NA	Water	3510C
490-105474-6	0600-022 (24 hr)	Total/NA	Water	3510C
490-105474-7	0600-024 (24 hr)	Total/NA	Water	3510C
490-105474-8	0600-027 (24 hr)	Total/NA	Water	3510C
LCS 490-347453/2-A	Lab Control Sample	Total/NA	Water	3510C

Analysis Batch: 347677

MB 490-347453/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105474-1	0600-019 (2 hour)	Total/NA	Water	8270D	347453
490-105474-2	0600-022 (2 hour)	Total/NA	Water	8270D	347453
490-105474-3	0600-024 (2 hour)	Total/NA	Water	8270D	347453
490-105474-4	0600-027 (2 hour)	Total/NA	Water	8270D	347453
490-105474-5	0600-019 (24 hr)	Total/NA	Water	8270D	347453
490-105474-6	0600-022 (24 hr)	Total/NA	Water	8270D	347453
490-105474-7	0600-024 (24 hr)	Total/NA	Water	8270D	347453
490-105474-8	0600-027 (24 hr)	Total/NA	Water	8270D	347453
LCS 490-347453/2-A	Lab Control Sample	Total/NA	Water	8270D	347453
MB 490-347453/1-A	Method Blank	Total/NA	Water	8270D	347453

Total/NA

GC Semi VOA

Prep Batch: 347993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105474-1	0600-019 (2 hour)	Total/NA	Water	8151A	
490-105474-2	0600-022 (2 hour)	Total/NA	Water	8151A	
490-105474-3	0600-024 (2 hour)	Total/NA	Water	8151A	
490-105474-4	0600-027 (2 hour)	Total/NA	Water	8151A	
490-105474-5	0600-019 (24 hr)	Total/NA	Water	8151A	
490-105474-6	0600-022 (24 hr)	Total/NA	Water	8151A	
490-105474-7	0600-024 (24 hr)	Total/NA	Water	8151A	
490-105474-8	0600-027 (24 hr)	Total/NA	Water	8151A	
LCS 490-347993/2-A	Lab Control Sample	Total/NA	Water	8151A	
MB 490-347993/1-A	Method Blank	Total/NA	Water	8151A	

Prep Batch: 348104

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-105474-1	0600-019 (2 hour)	Total/NA	Water	3510C	
490-105474-2 - REDL2	0600-022 (2 hour)	Total/NA	Water	3510C	
490-105474-3	0600-024 (2 hour)	Total/NA	Water	3510C	
490-105474-4	0600-027 (2 hour)	Total/NA	Water	3510C	
490-105474-5	0600-019 (24 hr)	Total/NA	Water	3510C	
490-105474-6	0600-022 (24 hr)	Total/NA	Water	3510C	
490-105474-7	0600-024 (24 hr)	Total/NA	Water	3510C	
490-105474-8	0600-027 (24 hr)	Total/NA	Water	3510C	
490-105554-B-1-B DU	Duplicate	Total/NA	Water	3510C	

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS 5

8 9 10 11 12 13

GC Semi VOA (Continued)

Prep Batch: 348104 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 490-348104/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-348104/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 348600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105474-1	0600-019 (2 hour)	Total/NA	Water	8151A	347993
490-105474-2	0600-022 (2 hour)	Total/NA	Water	8151A	347993
490-105474-3	0600-024 (2 hour)	Total/NA	Water	8151A	347993
490-105474-4	0600-027 (2 hour)	Total/NA	Water	8151A	347993
490-105474-5	0600-019 (24 hr)	Total/NA	Water	8151A	347993
490-105474-6	0600-022 (24 hr)	Total/NA	Water	8151A	347993
490-105474-7	0600-024 (24 hr)	Total/NA	Water	8151A	347993
490-105474-8	0600-027 (24 hr)	Total/NA	Water	8151A	347993
LCS 490-347993/2-A	Lab Control Sample	Total/NA	Water	8151A	347993
MB 490-347993/1-A	Method Blank	Total/NA	Water	8151A	347993

Analysis Batch: 348824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105474-1	0600-019 (2 hour)	Total/NA	Water	NWTPH-Dx	348104
490-105474-2 - REDL2	0600-022 (2 hour)	Total/NA	Water	NWTPH-Dx	348104
490-105474-3	0600-024 (2 hour)	Total/NA	Water	NWTPH-Dx	348104
490-105474-4	0600-027 (2 hour)	Total/NA	Water	NWTPH-Dx	348104
490-105474-5	0600-019 (24 hr)	Total/NA	Water	NWTPH-Dx	348104
490-105474-6	0600-022 (24 hr)	Total/NA	Water	NWTPH-Dx	348104
490-105474-7	0600-024 (24 hr)	Total/NA	Water	NWTPH-Dx	348104
490-105474-8	0600-027 (24 hr)	Total/NA	Water	NWTPH-Dx	348104
490-105554-B-1-B DU	Duplicate	Total/NA	Water	NWTPH-Dx	348104
LCS 490-348104/2-A	Lab Control Sample	Total/NA	Water	NWTPH-Dx	348104
MB 490-348104/1-A	Method Blank	Total/NA	Water	NWTPH-Dx	348104

Lab Sample ID: 490-105474-1 Matrix: Water

Client Sample ID: 0600-019 (2 hour) Date Collected: 06/08/16 10:35 Date Received: 06/10/16 08:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 20:05	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	348600	06/17/16 15:53	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 13:48	A1B	TAL NSH

Client Sample ID: 0600-022 (2 hour) Date Collected: 06/08/16 10:45 Date Received: 06/10/16 08:50

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 20:30	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	348600	06/17/16 16:08	JML	TAL NSH
Total/NA	Prep	3510C	REDL2		1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx	REDL2	1	1060 mL	1 mL	348824	06/19/16 14:05	A1B	TAL NSH

Client Sample ID: 0600-024 (2 hour) Date Collected: 06/08/16 10:55 Date Received: 06/10/16 08:50

Lab Sample ID: 490-105474-3

Lab Sample ID: 490-105474-4

Lab Sample ID: 490-105474-2

Matrix: Water

Matrix: Water

Matrix: Water

Prep Type Total/NA	Batch Type Prep	Batch Method 3510C	Run	Dil Factor	Initial Amount 290 mL	Final Amount 1 mL	Batch Number 347453	Prepared or Analyzed 06/14/16 08:19	Analyst KB	Lab TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 20:54	T1C	TAL NSH
Total/NA Total/NA	Prep Analysis	8151A 8151A		50	1075 mL 1075 mL	10 mL 10 mL	347993 348600	06/15/16 15:38 06/17/16 16:24	JKG JML	TAL NSH TAL NSH
Total/NA Total/NA	Prep Analysis	3510C NWTPH-Dx		1	1060 mL 1060 mL	1 mL 1 mL	348104 348824	06/16/16 08:20 06/19/16 14:22	KB A1B	TAL NSH TAL NSH

Client Sample ID: 0600-027 (2 hour) Date Collected: 06/08/16 11:05 Date Received: 06/10/16 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 21:19	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		20	1075 mL	10 mL	348600	06/17/16 16:39	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 14:40	A1B	TAL NSH

TestAmerica Nashville

9

Lab Sample ID: 490-105474-5

Lab Sample ID: 490-105474-6

Lab Sample ID: 490-105474-7

Matrix: Water

Matrix: Water

Date Collected: 06/09/16 10:10 Date Received: 06/10/16 08:50

Client Sample ID: 0600-019 (24 hr)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 21:43	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	348600	06/17/16 16:54	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 15:32	A1B	TAL NSH

Client Sample ID: 0600-022 (24 hr) Date Collected: 06/09/16 10:20 Date Received: 06/10/16 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 22:08	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	348600	06/17/16 17:09	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 15:50	A1B	TAL NSH

Client Sample ID: 0600-024 (24 hr) Date Collected: 06/09/16 10:25 Date Received: 06/10/16 08:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 22:32	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	348600	06/17/16 17:25	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 16:08	A1B	TAL NSH

Client Sample ID: 0600-027 (24 hr) Date Collected: 06/09/16 10:30 Date Received: 06/10/16 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 22:57	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	347993	06/15/16 15:38	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	348600	06/17/16 17:40	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 16:25	A1B	TAL NSH

Lab Sample ID: 490-105474-8

Matrix: Water

TestAmerica Nashville

9

Lab Chronicle

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-105474-1

L	Laboratory: TestAmeric The certifications listed below are appl	a Nashville icable to this report.			
	Authority Washington	Program State Program	EPA Region	Cr89	Expiration Date

TestAmerica	
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM	490-10:5474 Chain of Custod
Cooler Received/Opened On6-10-16 @ 850	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #/A(last 4 digits, FedEx) Courier:bus	
IR Gun ID <u>97310166</u> pH Strip Lot <u>HC564992</u> Chlorine Strip Lot <u>1211515B</u>	
2. Temperature of rep. sample or temp blank when opened: <u>3.9</u> Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozer	1? YES NO. MA
4. Were custody seals on outside of cooler?	ESNONA
If yes, how many and where: () Trant	
5. Were the seals intact, signed, and dated correctly?	TESNONA
6. Were custody papers inside cooler?	YES NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	mom
7. Were custody seals on containers: YES No and Intact	YESNO
Were these signed and dated correctly?	YESNO NA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pa	per Other None
9. Cooling process: (Ice) Ice-pack Ice (direct contact) Dry i	ce Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YES NO NA
12. Did all container labels and tags agree with custody papers?	YES NO NA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO.
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, seque	ence #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	EP
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH leve	I? YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intia	
17. Were custody papers properly filled out (ink, signed, etc)?	YES NO NA
18. Did you sign the custody papers in the appropriate place?	YES NO NA
19. Were correct containers used for the analysis requested?	YES NO NA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	<u>KP</u>
I certify that I attached a label with the unique LIMS number to each container (intial)	- HD
21. Were there Non-Conformance issues at login? YES. NO Was a NCM generated? YES	

Test	Am	ieri	CC

THE LEADER IN ENVIRONMENTAL TESTING

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On6-10-16 @ 850	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #(last 4 digits, FedEx) Courier:bus	
IR Gun ID <u>97310166</u> pH Strip Lot <u>HC564992</u> Chlorine Strip Lot <u>1211515B</u>	
2. Temperature of rep. sample or temp blank when opened:Degrees Celsius	
3. If Item #2 temperature is 0° C or less, was the representative sample or temp blank frozen?	YES NO. MA
4. Were custody seals on outside of cooler?	ES.NONA
If yes, how many and where: <u>(I)<i>Fre</i> ハ</u> ナ	
5. Were the seals intact, signed, and dated correctly?	YES NONA
6. Were custody papers inside cooler?	YESNONA
certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNONA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: Ice lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YES NO NA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO(NA)
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	;e #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	_KP_
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	KP
21. Were there Non-Conformance issues at login? YES. (1) Was a NCM generated? YES.	#

ville	
Nash	
S	
eri	•
Ę	
St	L
e.	3

2960 Foster Creighton Drive Nashville, TN 37204 Phone (615) 726-0177 Fax (615) 726-3404	Chain of C	ustody Rec	cord		Ŭ	
Client Information	Sampler. TOWAYIG DOUL	M Baker, H	leather	Carrier Tracking No(s):	COC No: ADD_5A(11-17/08 1
Client Contact Mr. Tommy Jordan	Phone: 404-101-1027	J E-Mail: heather.	baker@testamericainc.com		Page.	of 📾
Company: Kemron Environmental Services, Inc.			Analysis	Requested	- 005 ;# qor	
Address: 1359A Ellsworth Industrial Blvd.	Due Date Requested: 6.24.1	8			Preserv	ation Codes:
City: Atlanta	TAT Requested (days): 10				A - HCL B - NaOF C - Zn Ac	M - Hexane H N - None tetate O - AsNaO2
State, Zip: GA, 30318		A I			D - Nitric	Acid P - Na204S
Phone: 404-516-3172(Tel)	PO#: Purchase Order Requested	<u>.</u> (a	s		G - Ame	H R - Na2S203 Nor S - H2SO4 Abic Acid T TED Podomendation
Email: tjordan@kemron.com	WO#	N 30 1	inodījā:		- 1- 100	uc Add to - 151 Douedailyulate U - Acetone ster V - MCAA
Project Name: Washington Wood Treating ReSCI WMA ISS	Project #: 49010102	ю)) (P	HÀqLOC		K, EDT	v V - ph 4-5 Z - other (specify)
Site:	:#MOSS	dimes	VTPH		other:	
Sample Identification	Sami Typ Sample (C=co Sample (C=co	ole Matrix to Ma	алоги (СУМ) 82700 - Ројуаго 8151А - РСР ИМТРН_DX - ИИ		Total Number	pecial Instructions/Note:
	Pres	ervation Code: X	X N N		X	
0600-019 (2 har)	6.8.16 1035 B	Water	XXX			
O600-022 (2 have)	I WHS G	Water	XXX			
, OLOU- 024 (2 her)	0 SS01	Water				
0000 - 027 (2 hur)	1105 6	Water				
01000-019(24m)	8 010 91.6.9	Water	×××		:	Loc: 490
0600-022 (24 M)	1 1020 9	Water	XXX		-	1054/4
CINH2) H20 - 0200	1 1025 61	Water	XXX		, X. K	
(m hz) too - 000 (V 1030 G	Water	XXX		a series	
		Water				
		Water			-	
		Water				
Possible Hazard Identification	son B Unknown Radiole	gical	Sample Disposal (A fee may	be assessed if samples ar	e retained long	er than 1 month) Months
Deliverable Requested: (Ii, yi, IV, Other (specify)			Special Instructions/QC Requin	ements:		
Empty Kit Relinquished by:	Date:	Tin	ē.	Method of Shipment:		
Relinquished by Derrificie frondler	Date/Time: 6-9.16 iu/36	Company KEMITON	Received by:	Date/Time:	-/6 /	FSC Company
Relinquished by: Bound the second s	Date/Time: 6-7-76 1606	Company	Received by A	Date/Time:	Zoilo OB	SO Company
remaindusteer by.	Late/Time:	Company	Received by:	Date/Time:	n	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) °C and Oth	er Remarks: 3, 6		
			11 12 13	3 9 10	6	

einsliA-f8a

Page 26/0127 10 95-10

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 105474 List Number: 1 Creator: Dawson, Keith M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-105474-1 SDG Number:

List Source: TestAmerica Nashville

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-105554-1 Client Project/Site: Washington Wood Treating

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 6/27/2016 1:54:19 PM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	13
Chronicle	15
Method Summary	16
Certification Summary	17
Chain of Custody	18
Receipt Checklists	20

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating TestAmerica Job ID: 490-105554-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	3
490-105554-1	0600-019 (48HR)	Water	06/10/16 08:27	06/11/16 15:54	
490-105554-2	0600-022 (48HR)	Water	06/10/16 08:35	06/11/16 15:54	
490-105554-3	0600-024 (48HR)	Water	06/10/16 09:35	06/11/16 15:54	5
490-105554-4	0600-027 (48HR)	Water	06/10/16 09:40	06/11/16 15:54	Ð
					8
					9
					13

1 2 3 4 5 6 7 8 9 10 11

Job ID: 490-105554-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-105554-1

Comments

No additional comments.

Receipt

The samples were received on 6/11/2016 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.4° C.

Receipt Exceptions

Method(s) 8151A: Insufficient sample volume was provided for the following samples for the 8151A analysis: 0600-019 (48HR) (490-105554-1) and 0600-027 (48HR) (490-105554-4).

GC/MS Semi VOA

Method(s) 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-347453 and analytical batch 490-347677.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: The continuing calibration verification (CCV) associated with batch 490-348600 recovered above the upper control limit for Pentachlorophenol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: 0600-022 (48HR) (490-105554-2).

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-348335 and analytical batch 490-348600.

Method(s) 8151A: Surrogate recovery for the following sample was outside control limits: 0600-024 (48HR) (490-105554-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The following sample was diluted due to the nature of the sample matrix: 0600-024 (48HR) (490-105554-3). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-348104 and analytical batch 490-348824.

Method(s) NWTPH-Dx: The continuing calibration verification (CCV) associated with batch 348824 recovered above the upper control limit for C24-C40. The samples associated with this CCV were non-detects or were not detected above the reporting limit (RL) for the affected analytes; therefore, the data have been reported.

Method(s) NWTPH-Dx: There was insufficient contamination present for analyte C10-C24 to perform a pattern match for the following samples: 0600-019 (48HR) (490-105554-1), 0600-022 (48HR) (490-105554-2) and (490-105554-B-1-B DU).

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C10-C24 that most closely resembles a Diesel Fuel #2 product used by the laboratory for quantitative purposes: 0600-024 (48HR) (490-105554-3), 0600-027 (48HR) (490-105554-4) and (490-105554-B-4-B DU).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

Relative error ratio

Qualifiers

ND PQL

QC

RL

RER

RPD

TEF

TEQ

GC/MS Semi	i VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi VO	Α	J
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Х	Surrogate is outside control limits	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	3
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	13
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	

Lab Sample ID: 490-105554-1 Matrix: Water

Dil Fac

1

Method: 8270D - Semivol	latile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:21	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 23:21	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 23:21	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:21	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 23:21	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 23:21	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 23:21	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 23:21	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 23:21	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 23:21	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 23:21	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 23:21	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:21	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:21	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 23:21	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	49		29 - 120				06/14/16 08:19	06/14/16 23:21	1
Terphenyl-d14 (Surr)	85		13 - 120				06/14/16 08:19	06/14/16 23:21	1
Nitrobenzene-d5 (Surr)	47		27 - 120				06/14/16 08:19	06/14/16 23:21	1
Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	151		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 16:43	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 16:43	1

				-		
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
o-Terphenyl	88		50 - 150		06/16/16 08:20	06/19/16 16:43

Client Sample ID: 0600-022 (48HR)

Lab Sample ID: 490-105554-2 Matrix: Water

5 6

Date Collected: 06/10/16 08:35 Date Received: 06/11/16 15:54

Method: 8270D - Semivolatil	e Organic Co	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:46	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 23:46	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 23:46	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:46	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/14/16 23:46	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/14/16 23:46	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/14/16 23:46	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 23:46	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/14/16 23:46	1
Phenanthrene	ND		1.72	0.362	ug/L		06/14/16 08:19	06/14/16 23:46	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/14/16 23:46	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/14/16 23:46	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:46	1
Fluorene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/14/16 23:46	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/14/16 23:46	1
Naphthalene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/14/16 23:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	43		29 - 120				06/14/16 08:19	06/14/16 23:46	1
Terphenyl-d14 (Surr)	76		13 - 120				06/14/16 08:19	06/14/16 23:46	1
Nitrobenzene-d5 (Surr)	42		27 - 120				06/14/16 08:19	06/14/16 23:46	1
Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	ND		1.86	0.279	ug/L		06/16/16 15:15	06/17/16 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	72		10 - 150				06/16/16 15:15	06/17/16 18:56	1
_ Method: NWTPH-Dx - Northy	vest - Semi-V	/olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	89.4	J	94.3	26.4	ug/L		06/16/16 08:20	06/19/16 17:18	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 17:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				06/16/16 08:20	06/19/16 17:18	1

Client Sample ID: 0600-024 (48HR)

Lab Sample ID: 490-105554-3 Matrix: Water

5

6

Date Collected: 06/10/16 09:35 Date Received: 06/11/16 15:54

Method: 8270D - Semivolatile C	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.889	J	1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:10	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/15/16 00:10	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/15/16 00:10	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:10	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/15/16 00:10	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/15/16 00:10	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/15/16 00:10	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/15/16 00:10	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/15/16 00:10	1
Phenanthrene	1.33	J	1.72	0.362	ug/L		06/14/16 08:19	06/15/16 00:10	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/15/16 00:10	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/15/16 00:10	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:10	1
Fluorene	0.794	J	1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:10	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/15/16 00:10	1
Naphthalene	2.08		1.72	0.319	ug/L		06/14/16 08:19	06/15/16 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	53		29 - 120				06/14/16 08:19	06/15/16 00:10	1
Terphenyl-d14 (Surr)	88		13 - 120				06/14/16 08:19	06/15/16 00:10	1
Nitrobenzene-d5 (Surr)	49		27 - 120				06/14/16 08:19	06/15/16 00:10	1
_ Method: 8151A - Herbicides (G	C)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	52.6	J	93.0	14.0	ug/L		06/16/16 15:15	06/20/16 21:48	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1362	X	10 - 150				06/16/16 15:15	06/20/16 21:48	50
- Method: NWTPH-Dx - Northwe	st - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	, Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	506		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 17:36	1
C24-C40	ND		94.3	47.2	ug/L		06/16/16 08:20	06/19/16 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	95		50 - 150				06/16/16 08:20	06/19/16 17:36	1

Client Sample ID: 0600-027 (48HR)

Lab Sample ID: 490-105554-4 Matrix: Water

5

6

Date Collected: 06/10/16 09:40 Date Received: 06/11/16 15:54

Surrogate

o-Terphenyl

Method: 8270D - Semivola	itile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.591	J	1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:34	1
Acenaphthylene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/15/16 00:34	1
Anthracene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/15/16 00:34	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:34	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		06/14/16 08:19	06/15/16 00:34	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		06/14/16 08:19	06/15/16 00:34	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		06/14/16 08:19	06/15/16 00:34	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		06/14/16 08:19	06/15/16 00:34	1
Pyrene	ND		1.72	0.302	ug/L		06/14/16 08:19	06/15/16 00:34	1
Phenanthrene	1.07	J	1.72	0.362	ug/L		06/14/16 08:19	06/15/16 00:34	1
Chrysene	ND		1.72	0.284	ug/L		06/14/16 08:19	06/15/16 00:34	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		06/14/16 08:19	06/15/16 00:34	1
Fluoranthene	ND		1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:34	1
Fluorene	0.551	J	1.72	0.276	ug/L		06/14/16 08:19	06/15/16 00:34	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		06/14/16 08:19	06/15/16 00:34	1
Naphthalene	1.32	J	1.72	0.319	ug/L		06/14/16 08:19	06/15/16 00:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	54		29 - 120				06/14/16 08:19	06/15/16 00:34	1
Terphenyl-d14 (Surr)	95		13 - 120				06/14/16 08:19	06/15/16 00:34	1
Nitrobenzene-d5 (Surr)	50		27 - 120				06/14/16 08:19	06/15/16 00:34	1
Method: NWTPH-Dx - Nor	thwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	309		94.3	26.4	ug/L		06/16/16 08:20	06/19/16 17:53	1
C24-C40	ND		94.3	47.2	ua/l		06/16/16 08.20	06/19/16 17:53	1

Limits

50 - 150

%Recovery Qualifier

95

Analyzed

06/16/16 08:20 06/19/16 17:53

Dil Fac

1

Prepared

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 49	0-347453/1-A
Matrix: Water	

Client Sample ID: Method Blank Prep Type: Total/NA 53

7

Analysis Batch: 347677								Prep Batch:	347453
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Acenaphthylene	ND		2.00	0.350	ug/L		06/14/16 08:19	06/14/16 17:59	1
Anthracene	ND		2.00	0.380	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[a]anthracene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[a]pyrene	ND		2.00	0.380	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[b]fluoranthene	ND		2.00	0.360	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[g,h,i]perylene	ND		2.00	0.620	ug/L		06/14/16 08:19	06/14/16 17:59	1
Benzo[k]fluoranthene	ND		2.00	0.370	ug/L		06/14/16 08:19	06/14/16 17:59	1
Pyrene	ND		2.00	0.350	ug/L		06/14/16 08:19	06/14/16 17:59	1
Phenanthrene	ND		2.00	0.420	ug/L		06/14/16 08:19	06/14/16 17:59	1
Chrysene	ND		2.00	0.330	ug/L		06/14/16 08:19	06/14/16 17:59	1
Dibenz(a,h)anthracene	ND		2.00	0.450	ug/L		06/14/16 08:19	06/14/16 17:59	1
Fluoranthene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Fluorene	ND		2.00	0.320	ug/L		06/14/16 08:19	06/14/16 17:59	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.410	ug/L		06/14/16 08:19	06/14/16 17:59	1
Naphthalene	ND		2.00	0.370	ug/L		06/14/16 08:19	06/14/16 17:59	1
	MB	МВ							

%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
58		29 - 120	06/14/16 08:19	06/14/16 17:59	1
74		13 - 120	06/14/16 08:19	06/14/16 17:59	1
48		27 - 120	06/14/16 08:19	06/14/16 17:59	1
	%Recovery 58 74 48	%RecoveryQualifier587448	%Recovery Qualifier Limits 58 29 - 120 74 13 - 120 48 27 - 120	%Recovery Qualifier Limits Prepared 58 29 - 120 06/14/16 08:19 74 13 - 120 06/14/16 08:19 48 27 - 120 06/14/16 08:19	%Recovery Qualifier Limits Prepared Analyzed 58 29 - 120 06/14/16 08:19 06/14/16 17:59 74 13 - 120 06/14/16 08:19 06/14/16 17:59 48 27 - 120 06/14/16 08:19 06/14/16 17:59

Lab Sample ID: LCS 490-347453/2-A **Matrix: Water** Analysis Batch: 347677

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 347453

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	40.0	27.38		ug/L		68	36 - 129	
Acenaphthylene	40.0	26.37		ug/L		66	36 - 120	
Anthracene	40.0	28.24		ug/L		71	42 - 130	
Benzo[a]anthracene	40.0	30.11		ug/L		75	41 - 131	
Benzo[a]pyrene	40.0	28.36		ug/L		71	45 - 131	
Benzo[b]fluoranthene	40.0	28.11		ug/L		70	43 - 132	
Benzo[g,h,i]perylene	40.0	31.84		ug/L		80	38 - 138	
Benzo[k]fluoranthene	40.0	30.37		ug/L		76	44 - 129	
Pyrene	40.0	27.33		ug/L		68	37 - 129	
Phenanthrene	40.0	28.46		ug/L		71	39 - 126	
Chrysene	40.0	29.67		ug/L		74	39 - 130	
Dibenz(a,h)anthracene	40.0	30.79		ug/L		77	43 - 140	
Fluoranthene	40.0	31.24		ug/L		78	31 - 132	
Fluorene	40.0	28.43		ug/L		71	37 - 130	
Indeno[1,2,3-cd]pyrene	40.0	30.18		ug/L		75	40 - 136	
Naphthalene	40.0	22.97		ug/L		57	32 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	66		29 - 120
Terphenyl-d14 (Surr)	71		13 - 120

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 490-347453/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Prep Batch: 347453 Analysis Batch: 347677 LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 (Surr) 27 - 120 60 Method: 8151A - Herbicides (GC) Lab Sample ID: MB 490-348335/1-A **Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water** Analysis Batch: 348600 Prep Batch: 348335 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared Pentachlorophenol ND 2.00 0.300 ug/L 06/16/16 15:15 06/17/16 18:26 1 MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 06/16/16 15:15 06/17/16 18:26 Dichloroacetic acid(Surr) 10 - 150 33 1 Lab Sample ID: LCS 490-348335/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 348600 **Prep Batch: 348335** Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit Limits D %Rec Pentachlorophenol 2.50 10 - 150 3.014 ug/L 121 LCS LCS Surrogate %Recovery Qualifier Limits Dichloroacetic acid(Surr) 103 10 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-34 Matrix: Water Analysis Batch: 348824	8104/1-A	MB	мв							(Clie	ent Samp	ole ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 348104
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analvzed	Dil Fac
C10-C24		ND			100		28.0	ug/L			06/1	6/16 08:20	06/19/16 13:30	1
C24-C40		ND			100		50.0	ug/L		(06/1	6/16 08:20	06/19/16 13:30	1
		ΜВ	МВ											
Surrogate	%Recov	/ery	Qualifier	Li	mits						PI	repared	Analyzed	Dil Fac
o-Terphenyl		95		50	- 150					Ū	06/1	6/16 08:20	06/19/16 13:30	1
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 348824	48104/2-A								Cli	ent	Sar	nple ID:	Lab Control Prep Type: T Prep Batch:	Sample otal/NA 348104
				Spike		LCS	LCS				_	~-	%Rec.	
Analyte				Added	l	Result	Qua	lifier	Unit		D	%Rec	Limits	
C10-C24				1000)	868.1			ug/L			87	51 - 132	
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
o-Terphenyl	87			50 - 150	2									

QC Sample Results

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 490-105554 Matrix: Water Analysis Batch: 348824	-1 DU	Samplo					Client Sam	ple ID: 0600-019 (4 Prep Type: Tot Prep Batch: 34	18HR) al/NA 18104
Analyta	Bocult	Ouglifier		Bocult	Ouslifier	Unit	р	PDD	Limit
		Quaimer		450.4	Quaimer		D		
010-024	151			152.1		ug/L		0.5	41
C24-C40	ND			ND		ug/L		NC	41
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	83		50 - 150						
Lab Sample ID: 490-105554 Matrix: Water Analysis Batch: 348824	-4 DU						Client Sam	ple ID: 0600-027 (4 Prep Type: Tot Prep Batch: 34	I8HR) al/NA 18104
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
C10-C24	309			298.5		ug/L		3	41
C24-C40	ND			ND		ug/L		NC	41
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	100		50 - 150						

13

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating

GC/MS Semi VOA	A				
Prep Batch: 347453					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105554-1	0600-019 (48HR)	Total/NA	Water	3510C	
490-105554-2	0600-022 (48HR)	Total/NA	Water	3510C	
490-105554-3	0600-024 (48HR)	Total/NA	Water	3510C	
490-105554-4	0600-027 (48HR)	Total/NA	Water	3510C	
LCS 490-347453/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-347453/1-A	Method Blank	Total/NA	Water	3510C	
nalysis Batch: 3476	577				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105554-1	0600-019 (48HR)	Total/NA	Water	8270D	347453
490-105554-2	0600-022 (48HR)	Total/NA	Water	8270D	347453
490-105554-3	0600-024 (48HR)	Total/NA	Water	8270D	347453
490-105554-4	0600-027 (48HR)	Total/NA	Water	8270D	347453
LCS 490-347453/2-A	Lab Control Sample	Total/NA	Water	8270D	347453
MB 490-347453/1-A	Method Blank	Total/NA	Water	8270D	347453
C Semi VOA					
rep Batch: 348104					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105554-1	0600-019 (48HR)	Total/NA	Water	3510C	
490-105554-1 DU	0600-019 (48HR)	Total/NA	Water	3510C	
490-105554-2	0600-022 (48HR)	Total/NA	Water	3510C	
490-105554-3	0600-024 (48HR)	Total/NA	Water	3510C	
490-105554-4	0600-027 (48HR)	Total/NA	Water	3510C	
490-105554-4 DU	0600-027 (48HR)	Total/NA	Water	3510C	
LCS 490-348104/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-348104/1-A	Method Blank	Total/NA	Water	3510C	
rep Batch: 348335					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105554-2	0600-022 (48HR)	Total/NA	Water	8151A	
490-105554-3	0600-024 (48HR)	Total/NA	Water	8151A	
LCS 490-348335/2-A	Lab Control Sample	Total/NA	Water	8151A	
MB 490-348335/1-A	Method Blank	Total/NA	Water	8151A	
nalysis Batch: 3486	500				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-105554-2	0600-022 (48HR)	Total/NA	Water	8151A	348335
LCS 490-348335/2-A	Lab Control Sample	Total/NA	Water	8151A	348335
MB 490-348335/1-A	Method Blank	Total/NA	Water	8151A	34833
nalysis Batch: 3488	324				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-105554-1	0600-019 (48HR)	Total/NA	Water	NWIPH-Dx	348104
490-105554-1 DU	0600-019 (48HR)	Total/NA	Water	NWTPH-Dx	348104
490-105554-2	0600-022 (48HR)	Total/NA	Water	NWTPH-Dx	348104
490-105554-3	0600-024 (48HR)	Total/NA	Water	NWTPH-Dx	348104
490-105554-4	0600-027 (48HR)	Total/NA	Water	NWTPH-Dx	348104
					0.40.40

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating

0600-024 (48HR)

TestAmerica Job ID: 490-105554-1

8151A

5

8

348335

GC Semi VOA (Continued)

490-105554-3

Analysis Batch: 348824 (Continued)

Lab Sample ID LCS 490-348104/2-A MB 490-348104/1-A	Client Sample ID Lab Control Sample Method Blank	Prep Type Total/NA Total/NA	Matrix Water Water	Method NWTPH-Dx NWTPH-Dx	Prep Batch 348104 348104
Analysis Batch: 349	9110				
I ah Sample ID	Client Sample ID	Pren Type	Matrix	Method	Pren Batch

Total/NA

Water

Lab Sample ID: 490-105554-2

Lab Sample ID: 490-105554-3

Lab Sample ID: 490-105554-1 Matrix: Water 4 Prepared or Analyzed Analyst Lab

Matrix: Water

Matrix: Water

9

Client Sample ID: 0600-019 (48HR)
Date Collected: 06/10/16 08:27
Date Received: 06/11/16 15:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 23:21	T1C	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 16:43	A1B	TAL NSH

Client Sample ID: 0600-022 (48HR) Date Collected: 06/10/16 08:35 Date Received: 06/11/16 15:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/14/16 23:46	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	348335	06/16/16 15:15	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	348600	06/17/16 18:56	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 17:18	A1B	TAL NSH

Client Sample ID: 0600-024 (48HR) Date Collected: 06/10/16 09:35 Date Received: 06/11/16 15:54

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/15/16 00:10	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	348335	06/16/16 15:15	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	349110	06/20/16 21:48	JML	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 17:36	A1B	TAL NSH

Client Sample ID: 0600-027 (48HR) Date Collected: 06/10/16 09:40 Date Received: 06/11/16 15:54

Lab Sample ID: 490-105554-4 Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	347453	06/14/16 08:19	KB	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	347677	06/15/16 00:34	T1C	TAL NSH
Total/NA	Prep	3510C			1060 mL	1 mL	348104	06/16/16 08:20	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1060 mL	1 mL	348824	06/19/16 17:53	A1B	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

* Certification renewal pending - certification considered valid.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Treating

Laboratory: TestAmerica Nashville The certifications listed below are applicable to this report.

_				
Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-16 *

Certification Summary

TestAmerica Job ID: 490-105554-1

TestAmerica	
Nashville, TN COOLER RECEIPT FORM	490-10:5554 Chain of Custody
Cooler Received/Opened On6-11-16 @1030	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #	
IR Gun ID97310166_ pH Strip Lot_HC564992_ Chlorine Strip Lot_1211515B_	
2. Temperature of rep. sample or temp blank when opened: <u>5.4</u> Degrees Celsius	
3. If Item #2 temperature is 0° C or less, was the representative sample or temp blank from the same set of the same set	ozen? YES NO
4. Were custody seals on outside of cooler?	(E) NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	NESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial) EbA	
7. Were custody seals on containers: YES NO and Intact	YESNONA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert	Paper Other None
9. Cooling process:	ry ice Other None
10. Did all containers arrive in good condition (unbroken)?	
11. Were all container labels complete (#, date, signed, pres., etc)?	EYESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YES. NONA
b. Was there any observable headspace present in any VOA vial?	YESNO, .NA
14. Was there a Trip Blank in this cooler? YESNO(NA) If multiple coolers, se	quence #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	- SC
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH ${\sf I}$	evel? YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNO. (NA)
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (in	tial) <u>Stv</u>
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	TES.NONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	<u> </u>
21. Were there Non-Conformance issues at login? YES NO Was a NCM generated? Y	'es

!

TestAmerica Nashville 2960 Foster Creighton Drive

i

12

681-Atlanta

Chain of Custody Record

TestAmerica

S.V I DI VIII	nd Other Remarks:	nperature(s) °C a	Cooler Tem							seal No.:	ntact: Custody S	Custody Seals I ∆ Yes ∆ I
Date/Time: 020 Company	C	y;	Received b		Company			Date/Time:			YOY	Relinquished by:
Company Company	R		Received b				19:21	Dated ime:	2	4	P	Relinquished
Determine /// 10:00 Company		, , , , , , , , , ,			Konrov			b-10.16		malley	moia, y	Kelinquisned by:
1 of Shipment	Method			Time:			Date:				ished by:	Empty Kit Relinqu
	equirements:	uctions/QC Re	cial Instru	Spe						Jtner (specity)		
f samples are retained longer than 1 month) / Lab Archive For Months	may be assessed it Disposal By	ro Client	Return	San		Radiologica	mown		Poise	Skin Irritant	Flammable	Non-Hazard
				·	Water							
	 				Water							
					Water							
					Water							
					Water							
105554					Water							
					Water							
		×	X X		Water	ଦ୍ର	qyo	K			HGH) FI	0600-D.
		×	X		Water	a	935				14 (48hr	<u>000-00</u>
		×	XX		Water	D	235				Z (UB hi)	50 - 000 J
		×	K. K		Water	D	E73	6-10-16			9 (48 mr)	0600-01
		N	X X ذ	Ŕ	ion Code:	Preserva	X	X	Share &	in the second		
Total Numbe Special Instructions/Note:		NWTPH_Dx - N	8270D - Polyar 8151A - PCP	Field Filtered Perform MS/	Matrix (W=water, S=solid, O=wasto/oil, BT=TIssue, A=Alr)	Sample Type (C=comp, G=grab)	Sample Time	Sample Date			ation	Sample Identific
of co Other		IWTPH	omatic	Samp VSD ()				SOW#				Site
ntaine A - EUTA W - Ph 4-5 vitaine A - EDA Z - other (specify)			Hydro	ole (Ye fes or				⁹ roject #: 49010102		ervins Is	Jaming Pres	Project Name: Washington Woo
I- Ice U - Acetone J - Di Water V - MCAA			carbor	s or N Noj				NO #			ЮШ	Email: tjordan@kemron.c
G - Amerior S - H2SO4 G - Amerior S - H2SO4 H - Assorbic Acid T - TSP Dodecahydrate		<u> </u>	15	lo)		ц	er Requeste	∘0# ⊃urchase Orde)	Phone: 404-516-3172(Tel
D - Ninic Acid P - Na204S							Ĩ			- -		State, Zip: GA, 30318
B - NaOH N - None C - Zn Acetate O - AsNaO2							days):	AT Requested (City: Atlanta
A - HCl M - Hevane						4 - Ib	ted: し・2	Due Date Reques			ndustrial Blvd.	Address: 1359A Ellsworth li
Job #	sis Requested	Analy								<i></i>	ental Services, Inc	Company: Kemron Environm
Page: { { }	-	mericainc.con	er@testa	ier.bake	(heath	FIR	y-100	hone: 404 -				Client Contact; Mr. Tommy Jorda
(ing No(s): COC No: 490-54011-17498.2	Carrier Track		ĭer	r, Heath	Lab PA Bake	Bradle	nacia ,	Sampler:			tion	Client Informa
The second structure system is the second structure of the second structure			2							6-3404	204 0177 Fax (615) 72	Nashville, TN 37 Phone (615) 726-1

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 105554 List Number: 1 Creator: Vest, Laura E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 490-105554-1

List Source: TestAmerica Nashville

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-107227-1 Client Project/Site: Washington Wood Preservir

Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 7/13/2016 1:46:29 PM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
QC Association	9
Chronicle	10
Method Summary	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	15

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID

0600-019 (48hr)

0600-027 (48hr)

Lab Sample ID

490-107227-1

490-107227-2

TestAmerica Job ID: 490-107227-1

Water Water	07/06/16 10:45	07/07/16 10:00	
Water			
	07/06/16 10:47	07/07/16 10:00	
			5

Job ID: 490-107227-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-107227-1

Comments

No additional comments.

Receipt

The samples were received on 7/7/2016 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

GC Semi VOA

Method(s) 8151A: Surrogate recovery for the following sample was outside the upper control limit: 0600-019 (48hr) (490-107227-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: Surrogate recovery for the following sample was outside control limits: 0600-027 (48hr) (490-107227-2). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-354103 and analytical batch 490-354350.

Method(s) 8151A: The following sample was diluted due to the nature of the sample matrix: 0600-027 (48hr) (490-107227-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

5

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107227-1

Client Sample ID: 0600-019 (48hr) Lab Sample ID: 490-107227-1 Date Collected: 07/06/16 10:45 Matrix: Water Date Received: 07/07/16 10:00 Method: 8151A - Herbicides (GC) Analyte **Result Qualifier** RL MDL Unit D Analyzed Dil Fac Prepared Pentachlorophenol 2.00 07/09/16 14:03 07/11/16 17:28 ND 0.300 ug/L 1 Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac Limits Dichloroacetic acid(Surr) 157 X 10 - 150 07/09/16 14:03 07/11/16 17:28 1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107227-1

Client Sample ID: 0600-027 (48hr) Lab Sample ID: 490-1072 Date Collected: 07/06/16 10:47 Matrix: V Date Received: 07/07/16 10:00 Matrix: V					227-2 Water				
Method: 8151A - Herbicide Analyte Pentachlorophenol	es (GC) Result 27.0	Qualifier J	RL 40.0	MDL 6.00	Unit ug/L	D	Prepared 07/09/16 14:03	Analyzed 07/12/16 12:21	Dil Fac
Surrogate Dichloroacetic acid(Surr)	%Recovery 574	Qualifier X	Limits				Prepared 07/09/16 14:03	Analyzed 07/11/16 17:43	Dil Fac

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8151A -	Herbicides	(GC)
-----------------	------------	------

Lab Sample ID: MB 490-35	64103/1-A						Cli	ent Samp	le ID: Method	d Blank
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 354350									Prep Batch:	354103
-	Ν	MB MB								
Analyte	Res	ult Qualifier	RL	М	DL Unit		DI	Prepared	Analyzed	Dil Fac
Pentachlorophenol	1	ND	2.00	0.3	300 ug/L		07/	09/16 14:03	07/11/16 16:57	1
	Л	MB MB								
Surrogate	%Recove	ery Qualifier	Limits				I	Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)		61	10 - 150				07/	09/16 14:03	07/11/16 16:57	1
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350	54103/2-A		Spike	LCS I	LCS	Clie	nt Sa	mple ID:	Lab Control S Prep Type: To Prep Batch: %Rec.	Sample otal/NA 354103
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350 Analyte	54103/2-A		Spike Added	LCS I Result (LCS Qualifier	Clie Unit	nt Sa D	mple ID:	Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Sample otal/NA 354103
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350 Analyte Pentachlorophenol	54103/2-A		Spike Added 2.50	LCS I Result (1.959 5	LCS Qualifier	Clie Unit ug/L	nt Sa	%Rec 78	Lab Control S Prep Type: To Prep Batch: %Rec. Limits 10 - 150	Sample otal/NA 354103
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350 Analyte Pentachlorophenol	54103/2-A		Spike Added 2.50	LCS I Result (1.959 5	LCS Qualifier J	Clie Unit ug/L	nt Sa	%Rec 78	Lab Control S Prep Type: To Prep Batch: %Rec. Limits 10 - 150	Sample otal/NA 354103
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350 Analyte Pentachlorophenol Surrogate	54103/2-A	LCS Qualifier	Spike Added 2.50	LCS I Result (1.959 5	LCS Qualifier J	Clie Unit ug/L	nt Sa	%Rec 78	Lab Control S Prep Type: To Prep Batch: %Rec. Limits 10 - 150	Sample otal/NA 354103
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354350 Analyte Pentachlorophenol Surrogate Dichloroacetic acid(Surr)	54103/2-A 	LCS Qualifier	Spike Added 2.50 Limits 10 - 150	LCS I Result (1.959 J	LCS Qualifier J	Clie Unit ug/L	nt Sa	weec 78	Lab Control S Prep Type: To Prep Batch: %Rec. Limits 10 - 150	Sample otal/NA 354103

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107227-1

GC Semi VOA

Dro	n P	ate	h٠	35	11	03
LIG	рБ	aic	н.	20	• •	05

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-107227-1	0600-019 (48hr)	Total/NA	Water	8151A	
490-107227-2	0600-027 (48hr)	Total/NA	Water	8151A	
LCS 490-354103/2-A	Lab Control Sample	Total/NA	Water	8151A	
MB 490-354103/1-A	Method Blank	Total/NA	Water	8151A	
Analysis Batch: 354	350				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107227-1	0600-019 (48hr)	Total/NA	Water	8151A	354103
490-107227-2	0600-027 (48hr)	Total/NA	Water	8151A	354103
LCS 490-354103/2-A	Lab Control Sample	Total/NA	Water	8151A	354103
MB 490-354103/1-A	Method Blank	Total/NA	Water	8151A	354103
Analysis Batch: 354	566				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107227-2	0600-027 (48hr)	Total/NA	Water	8151A	354103

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method
490-107227-2	0600-027 (48hr)	Total/NA	Water	8151A

Initial

Amount

1000 mL

1000 mL

Batch

Number

354103

354350

354566

Final

Amount

10 mL

10 mL

10 mL

Dil

1

20

Factor

Run

Client Sample ID: 0600-019 (48hr)

Batch

Туре

Prep

Client Sample ID: 0600-027 (48hr)

Analysis 8151A

Analysis

Batch

8151A

8151A

Method

Date Collected: 07/06/16 10:45

Date Received: 07/07/16 10:00

Prep Type

Total/NA

Total/NA

Date Date

Total/NA

Lab Sample ID: 490-107227-1

TAL NSH

07/12/16 12:21 JML

		Ма	trix: Water	
	Prepared			5
er	or Analyzed	Analyst	Lab	
	07/09/16 14:03	JKG	TAL NSH	
)	07/11/16 17:28	JML	TAL NSH	
La	ab Sample II	D: 490-	107227-2	
_		Ма	trix: Water	8
	Prepared			9
er	or Analyzed	Analyst	Lab	
	07/09/16 14:03	JKG	TAL NSH	

Date Collected: 07/06/16 10:47 Date Received: 07/07/16 10:00									Ма	trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			1000 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1000 mL	10 mL	354350	07/11/16 17:43	JML	TAL NSH
Total/NA	Prep	8151A			1000 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH

1000 mL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

10

Method	Method Description	Protocol	Laboratory
8151A	Herbicides (GC)	SW846	TAL NSH

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

* Certification renewal pending - certification considered valid.

Certification Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107227-1

Laboratory: Test	America Nashville w are applicable to this report.			
Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-16 *

	The Leader IN ENVIRONMENTAL TESTING Nashville, TN Cooler Received/Opened On 7/7/2016 @ 1000
anti di Antonio di Antonio Antonio di Antonio di Antonio Antonio di Antonio di Antonio Antonio di Antonio di Antonio	Time Samples Removed From Cooler Time Samples Placed In Storage 1615 (2 Hour Window) 1. Tracking # (last 4 digits, FedEx) Courier: _fedex
	IR Gun ID_97310166 pH Strip Lot_HC564992 Chlorine Strip Lot_072815A_ 2. Temperature of rep. sample or temp blank when opened: 1.3 Degrees Celsius
	 3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NOR 4. Were custody seals on outside of cooler? If yes, how many and where:
	5. Were the seals intact, signed, and dated correctly? VESNONA 6. Were custody papers inside cooler? VESNONA
9 6 -	I certify that I opened the cooler and answered questions 1-6 (initial) Cd 7. Were custody seals on containers: YES NO and Intact YESNO. NA Were these signed and dated correctly? YESNO. NA
	 8. Packing mat'l used? Bubble wap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: 10. Did all containers arrive in good condition (unbroken)?
	11. Were all container labels complete (#, date, signed, pres., etc)? Image: Container labels and tags agree with custody papers? 12. Did all container labels and tags agree with custody papers? Image: Container labels and tags agree with custody papers?
	13a. Were VOA vials received? YESNONA b. Was there any observable headspace present in any VOA vial? YESNONA 14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence #
	I certify that I unloaded the cooler and answered questions 7-14 (intial)
	b. Did the bottle labels indicate that the correct preservatives were used YESNO. (A) 16. Was residual chlorine present? YESNO. (A) L certify that L checked for chlorine and pH as per SQP and answered questions 15-16 (initial)
	17. Were custody papers properly filled out (ink, signed, etc)? 18. Did you sign the custody papers in the appropriate place?
	19. Were correct containers used for the analysis requested? YESNONA 20. Was sufficient amount of sample sent in each container? YESNONA
	I certify that I entered this project into LIMS and answered questions 17-20 (initial)

and the second of the second of the second s

. 3

4 5

1

. 8

Φ
_
1,000

_
S
æ
~
Æ
\U
1
<u> </u>
4
9
~
~
<u> </u>
-
•
_
ŝ
d)

Chain of Custody Record

2960 Foster Creighton Drive Nashville, TN 37204 Phone (615) 726-0177 Fax (615) 726-3404	Chain o	f Custody	Recor	σ						COST A	
Client Information	Sampler. TOMCUA B	radieu Ba	v PM: ker, Heathe	r clo P	ucran c	23	Carrier Tra	cking No(s)		COC No: 490-54011-1749	8.1
Client Contact Mr. Tommy Jordan	Phone: 404 - 601 -	190 × 200	fail: YOXON	De. CiS @testame	n €ru S aricaine.co	E				Page:	0f
Company: Kemron Environmental Services, Inc.					Anal	/sis Rec	luested			Job #:	
Address: 1359A Ellsworth Industrial Bivd.	Due Date Requested:	4.16							<u>189au</u>	Preservation Co	les: M - Havana
Oty: Atlanta	TAT Requested (days):								<u></u>	B-Na C-Zn Loc: 4	00
State, Zip: GA, 30318									<u></u>	E - Na 107	227
Phone: 404-516-3172(Tel)	PO #. P ur eha se Order Requested	SHUGOO	51 (0)						2-683	G-An H-As	scahydrate
Emait: tjordan@kemron.com	:# OM		104163 (1914) (1916)							1-10e J-DIV	
Project Name: Washington Wood Treating PYCSE vives TSS	Project #. 49010102		e)) ei	onfu						K - EUIA L - EDA	w - pn 4-5 Z - other (specify)
Site:	SSOW#.		sijem dines							5 Other:	
	Sample	Sample Matrix Type (w ^{-water} , S=comp, o-wasteloll.	jočnarija pi ekcilarnice mevica - OC							Jeguinni iei	
Sample Identification	Sample Date Time	S=grab) BT-TIBSUR, A=A Preservelion, Code		MN .Z 918 Z						Special Ir	structions/Note:
0000-019 (28 m)	2. 6.16 1045	6 Water		×							
0000-027 (48h)	4 10H3	G Water		\times							
		Water									
		Water									
	1	Water	1								
		Water									
		Water								56.9	
		Water									
		Water									
		Water									
		Water									
Possible Hazard Identification	ison B 🗌 Unknown 🗍 R	adiological	Samp	le Dispo Return T	sal (A fee o Client	may be a	ssessed Disposal E	if sampl 8v Lab	es are reta	ined longer than Ichive For	(month) Months
Deliverable Requested: I(I) III, IV, Other (specify)			Specie	al Instruct	ions/QC R	equiremer	its:				
Empty Kit Relinquished by:	Date:		Time:				Meth	od of Shipn	ent:		
Relinquished by.	Date/Time:	Company	S S S	comed by:		(2 /C	Time:	13:00	Company
Reindighted by: 7 and 7 161	10 Date/Time: 14	30 PW	8	ceived by:	R	Y	Л		17/16	1000	Company
	Later IIIIe.	Company	92 	iceived by:					:eu		Company
Custody Seals Intact: Custody Seal No.:			8	oler Tempe	rature(s) °C ;	and Other Re	marks:				

etneltA-f88

5 6

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 107227 List Number: 1 Creator: Stvartak, Anthony Q

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-107227-1

List Source: TestAmerica Nashville

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-105848-1 Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 6/27/2016 1:58:55 PM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	12
Chronicle	14
Method Summary	16
Certification Summary	17
Chain of Custody	18
Receipt Checklists	20

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

TestAmerica Job ID: 490-105848-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	D
490-105848-1	0600-019 (7 day)	Water	06/15/16 11:00	06/16/16 09:00	
490-105848-2	0600 - 022 (7 day)	Water	06/15/16 11:05	06/16/16 09:00	
490-105848-3	0600 - 024 (7 day)	Water	06/15/16 11:12	06/16/16 09:00	5
490-105848-4	0600 - 027 (7 day)	Water	06/15/16 11:20	06/16/16 09:00	
					8
					9
				1	2

Job ID: 490-105848-1

Laboratory: TestAmerica Nashville

Client: Kemron Environmental Services, Inc.

Project/Site: Washington Wood Preserving ISS

Narrative

Job Narrative 490-105848-1

Comments

No additional comments.

Receipt

The samples were received on 6/16/2016 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

GC/MS Semi VOA

Method(s) 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-348567 and analytical batch 490-349061.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: The %RPD between the primary and confirmation column exceeded 40% for Dichloroacetic acid(Surr) for the following samples: 0600-019 (7 day) (490-105848-1). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: 0600 - 024 (7 day) (490-105848-3) and 0600 - 027 (7 day) (490-105848-4). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The following samples was diluted due to the nature of the sample matrix: 0600 - 024 (7 day) (490-105848-3) and 0600 - 027 (7 day) (490-105848-4). Elevated reporting limits (RLs) are provided.

Method(s) 8151A: The %RPD between the primary and confirmation column exceeded 40% for Pentachlorophenol for the following samples: 0600-019 (7 day) (490-105848-1). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-349467 and analytical batch 490-349689.

Method(s) NWTPH-Dx: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-348568 and analytical batch 490-348824.

Method(s) NWTPH-Dx: The continuing calibration verification (CCV) associated with batch 348824 recovered above the upper control limit for C24-C40. The samples associated with this CCV were non-detects or were not detected above the reporting limit (RL) for the affected analytes; therefore, the data have been reported.

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C10-C24 that most closely resembles a Diesel Fuel #2 product used by the laboratory for quantitative purposes: 0600-019 (7 day) (490-105848-1), 0600 - 024 (7 day) (490-105848-3) and 0600 - 027 (7 day) (490-105848-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a sample duplicate (DUP) associated with 348568.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

1 2 3 4 5 6 7 8 9 9

Qualifiers

RPD

TEF

TEQ

GC/MS Sem	i VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi VO	Α	5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
Х	Surrogate is outside control limits	
		8
Glossary		
Abbroviation	These commonly used abbroviations may or may not be present in this report	9
	Listed under the "D" column to designate that the result is reported on a dryweight basis	
~ %R	Percent Recovery	
CEL	Contains Free Liquid	
CNE	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DI RA RE IN	Indicates a Dilution Re-analysis Re-extraction or additional Initial metals/anion analysis of the sample	
	Decision level concentration	
MDA	Minimum detectable activity	
FDI	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (7 day) Date Collected: 06/15/16 11:00 Date Received: 06/16/16 09:00

TestAmerica Job ID: 490-105848-1

Lab Sample ID: 490-105848-1 Matrix: Water

Water

5

Method: 8270D - Semivo	latile Organic Co	mpounds	(GC/MS)	мы	Unit	п	Prenared	Analyzod	Dil Fac
			1.85	0.296			06/17/16 11:49	06/21/16 18·13	
Acenaphthene			1.05	0.200	ug/L		06/17/16 11:49	06/21/16 18:13	1
Anthracene			1.85	0.352	ug/L		06/17/16 11:49	06/21/16 18:13	1
Benzolalanthracene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:13	
Benzolalpyrene	ND		1.85	0.352	ua/l		06/17/16 11:49	06/21/16 18:13	1
Benzo[b]fluoranthene	ND		1.85	0.333	ua/l		06/17/16 11:49	06/21/16 18:13	1
Benzola h ilpervlene	ND		1.85	0 574	ua/l		06/17/16 11.49	06/21/16 18:13	
Benzo[k]fluoranthene	ND		1.85	0.343	ua/l		06/17/16 11:49	06/21/16 18:13	1
Pyrene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 18:13	1
Phenanthrene	ND		1.85	0.389	ug/L		06/17/16 11:49	06/21/16 18:13	
Chrysene			1.85	0.306			06/17/16 11:49	06/21/16 18:13	1
Dibenz(a h)anthracene	ND		1.85	0.000	ug/L		06/17/16 11:49	06/21/16 18:13	1
Fluoranthene			1.00	0.417	ug/L		06/17/16 11:49	06/21/16 18:13	
Fluorene			1.05	0.200	ug/L		06/17/16 11:49	06/21/16 18:13	1
Indeno[1 2 3-cd]nyrene			1.05	0.200	ug/L		06/17/16 11:49	06/21/16 18:13	1
Naphthalene	ND		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	52		29 - 120				06/17/16 11:49	06/21/16 18:13	1
Terphenyl-d14 (Surr)	60		13 - 120				06/17/16 11:49	06/21/16 18:13	1
Nitrobenzene-d5 (Surr)	52		27 - 120				06/17/16 11:49	06/21/16 18:13	1
- Method: 8151A - Herbicio	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.390	Јр	1.86	0.279	ug/L		06/21/16 16:23	06/22/16 13:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	104	p	10 - 150				06/21/16 16:23	06/22/16 13:04	1
- Method: NWTPH-Dx - No	orthwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	532		93.5	26.2	ug/L		06/17/16 11:53	06/19/16 19:21	1
C24-C40	51.3	J	93.5	46.7	ug/L		06/17/16 11:53	06/19/16 19:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				06/17/16 11:53	06/19/16 19:21	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600 - 022 (7 day)

TestAmerica Job ID: 490-105848-1

5

6

Lab Sample ID: 490-105848-2 Matrix: Water

Date Collected: 06/15/16 11:05 Date Received: 06/16/16 09:00

Method: 8270D - Semivo	latile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:34	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 18:34	1
Anthracene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 18:34	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:34	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 18:34	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/17/16 11:49	06/21/16 18:34	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/17/16 11:49	06/21/16 18:34	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 18:34	1
Pyrene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 18:34	1
Phenanthrene	ND		1.85	0.389	ug/L		06/17/16 11:49	06/21/16 18:34	1
Chrysene	ND		1.85	0.306	ug/L		06/17/16 11:49	06/21/16 18:34	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/17/16 11:49	06/21/16 18:34	1
Fluoranthene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:34	1
Fluorene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:34	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/17/16 11:49	06/21/16 18:34	1
Naphthalene	ND		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	51		29 - 120				06/17/16 11:49	06/21/16 18:34	1
Terphenyl-d14 (Surr)	63		13 - 120				06/17/16 11:49	06/21/16 18:34	1
Nitrobenzene-d5 (Surr)	54		27 - 120				06/17/16 11:49	06/21/16 18:34	1
- Method: 8151A - Herbici	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.375	J	1.86	0.279	ug/L		06/21/16 16:23	06/22/16 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	128		10 - 150				06/21/16 16:23	06/22/16 13:20	1
- Method: NWTPH-Dx - No	orthwest - Semi-V	olatile Pet	troleum Prod	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	387		93.5	26.2	ug/L		06/17/16 11:53	06/19/16 20:14	1
C24-C40	ND		93.5	46.7	ug/L		06/17/16 11:53	06/19/16 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				06/17/16 11:53	06/19/16 20:14	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600 - 024 (7 day)

TestAmerica Job ID: 490-105848-1

Lab Sample ID: 490-105848-3 Matrix: Water

Date Collected: 06/15/16 11:12 Date Received: 06/16/16 09:00

Method: 8270D - Semivo	latile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.24	J	1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:56	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 18:56	1
Anthracene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 18:56	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:56	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 18:56	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/17/16 11:49	06/21/16 18:56	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/17/16 11:49	06/21/16 18:56	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 18:56	1
Pyrene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 18:56	1
Phenanthrene	1.04	J	1.85	0.389	ug/L		06/17/16 11:49	06/21/16 18:56	1
Chrysene	ND		1.85	0.306	ug/L		06/17/16 11:49	06/21/16 18:56	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/17/16 11:49	06/21/16 18:56	1
Fluoranthene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:56	1
Fluorene	0.928	J	1.85	0.296	ug/L		06/17/16 11:49	06/21/16 18:56	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/17/16 11:49	06/21/16 18:56	1
Naphthalene	4.13		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	36		29 - 120				06/17/16 11:49	06/21/16 18:56	1
Terphenyl-d14 (Surr)	43		13 - 120				06/17/16 11:49	06/21/16 18:56	1
Nitrobenzene-d5 (Surr)	39		27 - 120				06/17/16 11:49	06/21/16 18:56	1
- Method: 8151A - Herbicio	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	142		93.0	14.0	ug/L		06/21/16 16:23	06/22/16 14:05	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	2961	X	10 - 150				06/21/16 16:23	06/22/16 13:35	1
_ Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	troleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	1040		93.5	26.2	ug/L		06/17/16 11:53	06/19/16 20:32	1
C24-C40	70.1	J	93.5	46.7	ug/L		06/17/16 11:53	06/19/16 20:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				06/17/16 11:53	06/19/16 20:32	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600 - 027 (7 day)

TestAmerica Job ID: 490-105848-1

Lab Sample ID: 490-105848-4 Matrix: Water

Date Collected: 06/15/16 11:20 Date Received: 06/16/16 09:00

Method: 8270D - Semivolatil	e Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.08	J	1.85	0.296	ug/L		06/17/16 11:49	06/21/16 19:18	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 19:18	1
Anthracene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 19:18	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 19:18	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/17/16 11:49	06/21/16 19:18	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/17/16 11:49	06/21/16 19:18	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/17/16 11:49	06/21/16 19:18	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 19:18	1
Pyrene	ND		1.85	0.324	ug/L		06/17/16 11:49	06/21/16 19:18	1
Phenanthrene	1.17	J	1.85	0.389	ug/L		06/17/16 11:49	06/21/16 19:18	1
Chrysene	ND		1.85	0.306	ug/L		06/17/16 11:49	06/21/16 19:18	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/17/16 11:49	06/21/16 19:18	1
Fluoranthene	ND		1.85	0.296	ug/L		06/17/16 11:49	06/21/16 19:18	1
Fluorene	0.904	J	1.85	0.296	ug/L		06/17/16 11:49	06/21/16 19:18	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/17/16 11:49	06/21/16 19:18	1
Naphthalene	3.54		1.85	0.343	ug/L		06/17/16 11:49	06/21/16 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	48		29 - 120				06/17/16 11:49	06/21/16 19:18	1
Terphenyl-d14 (Surr)	60		13 - 120				06/17/16 11:49	06/21/16 19:18	1
Nitrobenzene-d5 (Surr)	50		27 - 120				06/17/16 11:49	06/21/16 19:18	1
Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	72.9	J	93.0	14.0	ug/L		06/21/16 16:23	06/22/16 14:21	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1695	X	10 - 150				06/21/16 16:23	06/22/16 13:50	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	873		93.5	26.2	ug/L		06/17/16 11:53	06/19/16 20:50	1
C24-C40	62.9	J	93.5	46.7	ug/L		06/17/16 11:53	06/19/16 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				06/17/16 11:53	06/19/16 20:50	1

5

6 7

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-348567/1-A	
Matrix: Water	

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 348567

Analysis Batch: 349061								Prep Batch:	348567
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.00	0.320	ug/L		06/17/16 11:49	06/21/16 14:35	1
Acenaphthylene	ND		2.00	0.350	ug/L		06/17/16 11:49	06/21/16 14:35	1
Anthracene	ND		2.00	0.380	ug/L		06/17/16 11:49	06/21/16 14:35	1
Benzo[a]anthracene	ND		2.00	0.320	ug/L		06/17/16 11:49	06/21/16 14:35	1
Benzo[a]pyrene	ND		2.00	0.380	ug/L		06/17/16 11:49	06/21/16 14:35	1
Benzo[b]fluoranthene	ND		2.00	0.360	ug/L		06/17/16 11:49	06/21/16 14:35	1
Benzo[g,h,i]perylene	ND		2.00	0.620	ug/L		06/17/16 11:49	06/21/16 14:35	1
Benzo[k]fluoranthene	ND		2.00	0.370	ug/L		06/17/16 11:49	06/21/16 14:35	1
Pyrene	ND		2.00	0.350	ug/L		06/17/16 11:49	06/21/16 14:35	1
Phenanthrene	ND		2.00	0.420	ug/L		06/17/16 11:49	06/21/16 14:35	1
Chrysene	ND		2.00	0.330	ug/L		06/17/16 11:49	06/21/16 14:35	1
Dibenz(a,h)anthracene	ND		2.00	0.450	ug/L		06/17/16 11:49	06/21/16 14:35	1
Fluoranthene	ND		2.00	0.320	ug/L		06/17/16 11:49	06/21/16 14:35	1
Fluorene	ND		2.00	0.320	ug/L		06/17/16 11:49	06/21/16 14:35	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.410	ug/L		06/17/16 11:49	06/21/16 14:35	1
Naphthalene	ND		2.00	0.370	ug/L		06/17/16 11:49	06/21/16 14:35	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	43		29 - 120	06/17/16 11:49	06/21/16 14:35	1
Terphenyl-d14 (Surr)	52		13 - 120	06/17/16 11:49	06/21/16 14:35	1
Nitrobenzene-d5 (Surr)	44		27 - 120	06/17/16 11:49	06/21/16 14:35	1

Lab Sample ID: LCS 490-348567/2-A Matrix: Water Analysis Batch: 349061

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 348567

Analysis Baton. 040001	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	40.0	23.04		ug/L		58	36 - 129
Acenaphthylene	40.0	22.59		ug/L		56	36 - 120
Anthracene	40.0	22.92		ug/L		57	42 - 130
Benzo[a]anthracene	40.0	21.91		ug/L		55	41 - 131
Benzo[a]pyrene	40.0	19.74		ug/L		49	45 - 131
Benzo[b]fluoranthene	40.0	20.04		ug/L		50	43 - 132
Benzo[g,h,i]perylene	40.0	15.91		ug/L		40	38 - 138
Benzo[k]fluoranthene	40.0	19.36		ug/L		48	44 - 129
Pyrene	40.0	21.82		ug/L		55	37 - 129
Phenanthrene	40.0	22.66		ug/L		57	39 - 126
Chrysene	40.0	21.77		ug/L		54	39 - 130
Dibenz(a,h)anthracene	40.0	17.23		ug/L		43	43 - 140
Fluoranthene	40.0	23.49		ug/L		59	31 - 132
Fluorene	40.0	23.33		ug/L		58	37 - 130
Indeno[1,2,3-cd]pyrene	40.0	17.59		ug/L		44	40 - 136
Naphthalene	40.0	21.05		ug/L		53	32 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	51		29 - 120
Terphenyl-d14 (Surr)	45		13 - 120

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 490-348567/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 348567** Analysis Batch: 349061 LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 (Surr) 27 - 120 52 Method: 8151A - Herbicides (GC) Lab Sample ID: MB 490-349467/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 349689 Prep Batch: 349467 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared Pentachlorophenol ND 2.00 0.300 ug/L 06/21/16 16:23 06/22/16 12:34 1 MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 06/21/16 16:23 06/22/16 12:34 Dichloroacetic acid(Surr) 10 - 150 32 1 Lab Sample ID: LCS 490-349467/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 349689 **Prep Batch: 349467** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Pentachlorophenol 2.50 1.987 J 79 10 - 150 ug/L LCS LCS Surrogate %Recovery Qualifier Limits Dichloroacetic acid(Surr) 70 10 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-34 Matrix: Water Analysis Batch: 348824	8568/1-A	MB	мв								Clie	ent Samp	le ID: Metho Prep Type: T Prep Batch:	d Blank otal/NA 348568
Analyte	Res	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
C10-C24		ND			100		28.0	ua/L		_	06/1	7/16 11:53	06/19/16 18:46	1
C24-C40		ND			100		50.0	ug/L			06/1	7/16 11:53	06/19/16 18:46	1
		ΜВ	MB											
Surrogate	%Recov	ery	Qualifier	L	imits						P	repared	Analyzed	Dil Fac
o-Terphenyl		71		5	0 - 150						06/1	7/16 11:53	06/19/16 18:46	1
Lab Sample ID: LCS 490-3 Matrix: Water	48568/2-A								Cli	ent	Sar	nple ID:	Lab Control S Prep Type: T	Sample otal/NA
Analysis Batch: 348824				Spik		1.00	1.00						Prep Batch:	348568
Analyta				Spike	4	Booult	0.00	lifior	Unit		_	% Baa	%Rec.	
				100	ג 	016 7	Qua	iiiiei					LIIIIIIS	
010-024				1000	J	010.7			ug/L			02	51-152	
	LCS	LCS	;											
Surrogate	%Recovery	Qua	lifier	Limits										
o-Terphenyl	88			50 - 15	0									

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

GC/MS Semi VOA

Prep Batch

Prep Batch

348567

348567

348567

348567

348567

348567

Prep Batch

Prep Batch

348568

348568

348568

348568

348568

348568

Prep Batch

9 10 11 12

8

13

Prep Batch: 348567 Lab Sample ID **Client Sample ID** Matrix Method Prep Type 490-105848-1 Total/NA Water 3510C 0600-019 (7 day) 490-105848-2 0600 - 022 (7 day) Total/NA Water 3510C 490-105848-3 0600 - 024 (7 day) Total/NA Water 3510C Total/NA Water 490-105848-4 0600 - 027 (7 day) 3510C LCS 490-348567/2-A Lab Control Sample Total/NA Water 3510C MB 490-348567/1-A Total/NA Method Blank Water 3510C Analysis Batch: 349061 Lab Sample ID **Client Sample ID** Matrix Method Prep Type 490-105848-1 Total/NA Water 8270D 0600-019 (7 day) 490-105848-2 0600 - 022 (7 day) Total/NA Water 8270D 490-105848-3 Total/NA Water 8270D 0600 - 024 (7 day) 490-105848-4 0600 - 027 (7 day) Total/NA Water 8270D LCS 490-348567/2-A Total/NA Water 8270D Lab Control Sample Total/NA MB 490-348567/1-A Method Blank Water 8270D GC Semi VOA **Prep Batch: 348568** Lab Sample ID **Client Sample ID** Prep Type Matrix Method 3510C Total/NA 490-105848-1 0600-019 (7 day) Water 0600 - 022 (7 day) 490-105848-2 Total/NA Water 3510C Water 490-105848-3 0600 - 024 (7 day) Total/NA 3510C 490-105848-4 Water 3510C 0600 - 027 (7 day) Total/NA Total/NA Water LCS 490-348568/2-A Lab Control Sample 3510C MB 490-348568/1-A Method Blank Total/NA Water 3510C Analysis Batch: 348824 Lab Sample ID **Client Sample ID** Prep Type Matrix Method 490-105848-1 0600-019 (7 day) Total/NA Water NWTPH-Dx 490-105848-2 Total/NA Water NWTPH-Dx 0600 - 022 (7 day) Water 490-105848-3 0600 - 024 (7 day) Total/NA NWTPH-Dx 490-105848-4 0600 - 027 (7 day) Total/NA Water NWTPH-Dx LCS 490-348568/2-A Total/NA Water Lab Control Sample NWTPH-Dx Method Blank Total/NA Water MB 490-348568/1-A NWTPH-Dx **Prep Batch: 349467** Lab Sample ID **Client Sample ID** Prep Type Matrix Method 490-105848-1 0600-019 (7 day) Total/NA Water 8151A 490-105848-2 Total/NA Water 8151A 0600 - 022 (7 day) 490-105848-3 0600 - 024 (7 day) Total/NA Water 8151A 490-105848-4 Total/NA Water 8151A 0600 - 027 (7 day) Water Total/NA LCS 490-349467/2-A Lab Control Sample 8151A MB 490-349467/1-A Method Blank Total/NA Water 8151A Analysis Batch: 349689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105848-1	0600-019 (7 day)	Total/NA	Water	8151A	349467
490-105848-2	0600 - 022 (7 day)	Total/NA	Water	8151A	349467
490-105848-3	0600 - 024 (7 day)	Total/NA	Water	8151A	349467

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-105848-1

GC Semi VOA (Continued)

Analysis Batch: 349689 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-105848-3	0600 - 024 (7 day)	Total/NA	Water	8151A	349467
490-105848-4	0600 - 027 (7 day)	Total/NA	Water	8151A	349467
490-105848-4	0600 - 027 (7 day)	Total/NA	Water	8151A	349467
LCS 490-349467/2-A	Lab Control Sample	Total/NA	Water	8151A	349467
MB 490-349467/1-A	Method Blank	Total/NA	Water	8151A	349467

Initial

Amount

270 mL

270 mL

1075 mL

1075 mL

1070 mL

1070 mL

Batch

Number

348567

349061

349467

349689

348568

348824

Final

Amount

1.0 mL

1.0 mL

10 mL

10 mL

1 mL

1 mL

Dil

1

1

1

Factor

Run

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (7 day)

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Client Sample ID: 0600 - 022 (7 day)

Batch

Method

3510C

8270D

8151A

8151A

3510C

NWTPH-Dx

Date Collected: 06/15/16 11:00

Date Received: 06/16/16 09:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prepared

or Analyzed Analyst

06/17/16 11:49 DHC

06/21/16 18:13 RP

06/21/16 16:23 JKG

Lab Sample ID: 490-105848-1 Matrix: Water TAL NSH TAL NSH

TAL NSH 06/22/16 13:04 JML 06/17/16 11:53 MRM TAL NSH 06/19/16 19:21 A1B TAL NSH Lab Sample ID: 490-105848-2 Matrix: Water

Lab

TAL NSH

Date Collected: 06/15/16 11:05 Date Received: 06/16/16 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1.0 mL	348567	06/17/16 11:49	DHC	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1.0 mL	349061	06/21/16 18:34	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	349467	06/21/16 16:23	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	349689	06/22/16 13:20	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	348568	06/17/16 11:53	MRM	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	348824	06/19/16 20:14	A1B	TAL NSH

Client Sample ID: 0600 - 024 (7 day) Date Collected: 06/15/16 11:12 Date Received: 06/16/16 09:00

Lab Sample ID: 490-105848-3 Matrix: Water

Lab Sample ID: 490-105848-4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1.0 mL	348567	06/17/16 11:49	DHC	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1.0 mL	349061	06/21/16 18:56	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	349467	06/21/16 16:23	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	349689	06/22/16 13:35	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	349467	06/21/16 16:23	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	349689	06/22/16 14:05	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	348568	06/17/16 11:53	MRM	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	348824	06/19/16 20:32	A1B	TAL NSH

Client Sample ID: 0600 - 027 (7 day) Date Collected: 06/15/16 11:20 Date Received: 06/16/16 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1.0 mL	348567	06/17/16 11:49	DHC	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1.0 mL	349061	06/21/16 19:18	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	349467	06/21/16 16:23	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	349689	06/22/16 13:50	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	349467	06/21/16 16:23	JKG	TAL NSH

TestAmerica Nashville

Matrix: Water

Lab Sample ID: 490-105848-4

Matrix: Water

5 6 7

9

Client Sample ID: 0600 - 027 (7 day) Date Collected: 06/15/16 11:20 Date Received: 06/16/16 09:00

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8151A		50	1075 mL	10 mL	349689	06/22/16 14:21	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	348568	06/17/16 11:53	MRM	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	348824	06/19/16 20:50	A1B	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Laboratory: TestAmerica Nashville The certifications listed below are applicable to this report.

Project/Site: Washington Wood Preserving ISS

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-16 *

TestAmerica Nashville

Client: Kemron Environmental Services, Inc.

TestAmerica Job ID: 490-105848-1

TestAmerica	
Nashville, TN COOLER RECEIPT FORM Cooler Received/Opened On 6/16/2016 @ 900 900	490-105848 Chain of Custoey
Time Samples Removed From Cooler Time Samples Placed In Storage	2 16 28 (2 Hour Window)
1. Tracking #////(last 4 digits, FedEx) Courier: _bu	ıs_
IR Gun ID_97310166 pH Strip Lot_ <u>HC564992</u> Chlorine Strip Lot_07	2815A
2. Temperature of rep. sample or temp blank when opened: $\frac{1}{2} \frac{2}{3}$ Degrees Celsiu	IS
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank	frozen? YES NOKA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	VESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	4
7. Were custody seals on containers: YES No and Intac	t YESNOMA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Inse	rt Paper Other None
9. Cooling process:	Dry ice Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YES)NONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YES. NONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers	, sequence #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	AOS
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct p	H level? YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNOAN
16. Was residual chlorine present?	YES., NO. (NA)
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16	<u>S (intial)</u>
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	A YES NO NA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	MFX
I certify that I attached a label with the unique LIMS number to each container (intial)	XVX
21. Were there Non-Conformance issues at login? YES. $\Delta N \Theta^2$ Was a NCM generated	1? YES100#///

Ð

R

9

10

12

×

Chain of Custody Record

FILMIE (010) 120-01/1 LAX (010) 120-0404	Samolar			li ah DM				retion Treating M	lo/eV	1000	Mc.		١
Client Information	10MG	ria B	radle	d Baker	Heather		3		n(s).	490-5	54011-17498	3,4	
Client Contact Mr. Tommy Jordan	Phone: 1404	- 109-	-10927	E-Mail: heath	er. baker@te	stamericainc.	com			Page: Page	∋40f4		
Company: Kemron Environmental Services, Inc.						An	alysis Requ	ested		∰ dol			
Address 1359A Ellsworth Industrial Blvd.	Due Date Request	ed: & \F	9/1/0		TC-TC-S					Prese	ervation Code	95: M - Hevane	Γ
City. Atlanta	TAT Requested (da	ays):								žγ nu	aOH n Acetate	N - None O - AsNaO2	
State, Zip: GA, 30318		A								ZZZ OWU	litric Acid laHSO4	P - Na204S Q - Na2S03 P N=25203	
Phone: 404-516-3172(Tel)	Po#: Purchase Order	Requested			SI					Υ Υ Υ Υ Υ Υ Υ	mehlor Loc scorbic. Loc	r - Nazozuo :: 490 'rat	
Email: tjordan@kemron.com	# OM									ם וכפ גפי	10 10 10	5848	
Project Name: Washington Wood Tecentry 7(ESCYVING ISS	Project #: 49010102				HÀQLOC HÀQLOC					aniisin 7 7 7 1 1 1 1 1 1	DA DA	•	
Site:	SSOW#:				opeuo Aliciai	натм				of cal	e		
Samula Identification	Sample Date	Sample Time	Sample Type (C=comp, G≡drab) ₇	Matrix (W=water, S=solid, O=waste/oil, MTTTSeuro A=Air)	articita Marca 2010 - Polyaro	имтрн_рх - Иср				iedinuv istoj	Snecial Inc	tructions/Note	
		X	Preserval	ion Code:	dXN N	N N				X			
0000 - 019 (7 day)	91.51.9	1100	6	Water		X X							
(mer - 022 (+ day)		5011	Ъ	Water	×	x X							
0600 - 024 (7 dav)		1112	ড	Water	Я	< X							
0600 - 027 (7dad)	~	0711	ତ		X	XX							
													T
													1
											-		-
													T
													7
Possible Hazard Identification	ison B		Radiological	_	Sample L	Disposal (A 1 turn To Client	fee may be ass	i essed if sa n posal By Lat	nples are r	etained Io Archive F	nger than 1 or	month) Months	
Deliverable Requested: I, II, III, IV, Other (specify)					Special In	structions/Q(Requirements						
Empty Kit Relinquished by:	-	Date:			lime:			Method of Si	hipment:				
Reinquished by: Nonuclea Anoughly	Date/Time: b.15.1b		513	Sompany KCM10Y	Keed -	A L	24		Date/Time:	11	13:21	Company	T
reindund D; Administration (1)		14:0	0	NA NA	Keoer					<u>ll</u> 6	JA SS		T
						ed oy.			Dater tilfie.			cuinpairiy	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				ļ	Cooler	Temperature(s)	C and Other Reme	irks: f					

einelita-f83

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 105848 List Number: 1 Creator: Stvartak, Anthony Q

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

Job Number: 490-105848-1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-106362-1 Client Project/Site: Washington Wood Preserving

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 7/7/2016 9:13:05 AM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	13
Chronicle	15
Method Summary	17
Certification Summary	18
Chain of Custody	19
Receipt Checklists	21

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving TestAmerica Job ID: 490-106362-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	3
490-106362-1	0600-019 (14 day)	Water	06/22/16 11:20	06/23/16 09:30	
490-106362-2	0600-022 (14 day)	Water	06/22/16 11:25	06/23/16 09:30	
490-106362-3	0600-024 (14 day)	Water	06/22/16 11:30	06/23/16 09:30	5
490-106362-4	0600-027 (14 day)	Water	06/22/16 11:35	06/23/16 09:30	J
					8
					9
					13

1 2 3 4 5 6 7 8 9 10 11

Job ID: 490-106362-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-106362-1

Comments

No additional comments.

Receipt

The samples were received on 6/23/2016 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC/MS Semi VOA

Method(s) 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-350294 and analytical batch 490-350954.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: 0600-024 (14 day) (490-106362-3) and 0600-027 (14 day) (490-106362-4). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-351426 and analytical batch 490-352839.

Method(s) NWTPH-Dx: The sample duplicate (DUP) precision for preparation batch 490-351735 was outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern which does not match a typical Total Petroleum Hydrocarbon (TPH) pattern used by the laboratory for quantitative purposes: 0600-019 (14 day) (490-106362-1), 0600-022 (14 day) (490-106362-2), 0600-024 (14 day) (490-106362-3), 0600-027 (14 day) (490-106362-4), (490-106597-C-1-A) and (490-106597-D-1-B DU).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Quaimers

TEQ

Toxicity Equivalent Quotient (Dioxin)

GC/MS Semi	i VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi VO	A	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
Х	Surrogate is outside control limits	
F3	Duplicate RPD exceeds the control limit	8
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	13
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Client Sample ID: 0600-019 (14 day) Date Collected: 06/22/16 11:20 Date Received: 06/23/16 09:30

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

TestAmerica Job ID: 490-106362-1

Lab Sample ID: 490-106362-1 Matrix: Water

⊦ac	
1	
1	6
1	
1	
1	_
1	8
1	
1	C
1	
1	
1	
1	
1	
1	
1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:07	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 16:07	1
Anthracene	ND		1.85	0.352	ug/L		06/24/16 09:29	06/27/16 16:07	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:07	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/24/16 09:29	06/27/16 16:07	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/24/16 09:29	06/27/16 16:07	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/24/16 09:29	06/27/16 16:07	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 16:07	1
Pyrene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 16:07	1
Phenanthrene	ND		1.85	0.389	ug/L		06/24/16 09:29	06/27/16 16:07	1
Chrysene	ND		1.85	0.306	ug/L		06/24/16 09:29	06/27/16 16:07	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/24/16 09:29	06/27/16 16:07	1
Fluoranthene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:07	1
Fluorene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:07	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/24/16 09:29	06/27/16 16:07	1
Naphthalene	ND		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	61		29 - 120				06/24/16 09:29	06/27/16 16:07	1
Terphenyl-d14 (Surr)	74		13 - 120				06/24/16 09:29	06/27/16 16:07	1
Nitrobenzene-d5 (Surr)	65		27 - 120				06/24/16 09:29	06/27/16 16:07	1
Method: 8151A - Herbicid	les (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.352	Jp	1.86	0.279	ug/L		06/28/16 16:47	07/05/16 15:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	105		10 - 150				06/28/16 16:47	07/05/16 15:22	1
Method: NWTPH-Dx - Nor	rthwest - Semi-V	olatile Pet	troleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	371		93.5	26.2	ug/L		06/29/16 14:52	06/30/16 14:48	1
C24-C40	49.0	J	93.5	46.7	ug/L		06/29/16 14:52	06/30/16 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	117		50 - 150				06/29/16 14:52	06/30/16 14:48	1
RL

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

1.85

Limits

29 - 120

13 - 120

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Date Received: 06/23/16 09:30

Analyte

Acenaphthene

Anthracene

Pyrene

Chrysene

Fluorene

Phenanthrene

Fluoranthene

Naphthalene

Surrogate

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

2-Fluorobiphenyl (Surr)

Terphenyl-d14 (Surr)

Client Sample ID: 0600-022 (14 day) Date Collected: 06/22/16 11:25

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

ND

0.353 J

%Recovery Qualifier

67

79

TestAmerica Job ID: 490-106362-1

Lab Sample ID: 490-106362-2 Matrix: Water

MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
0.296	ug/L	_	06/24/16 09:29	06/27/16 16:28	1	
0.324	ug/L		06/24/16 09:29	06/27/16 16:28	1	6
0.352	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.296	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.352	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.333	ug/L		06/24/16 09:29	06/27/16 16:28	1	8
0.574	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.343	ug/L		06/24/16 09:29	06/27/16 16:28	1	9
0.324	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.389	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.306	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.417	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.296	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.296	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.380	ug/L		06/24/16 09:29	06/27/16 16:28	1	
0.343	ug/L		06/24/16 09:29	06/27/16 16:28	1	1
			Prepared	Analyzed	Dil Fac	
			06/24/16 09:29	06/27/16 16:28	1	
			06/24/16 09:29	06/27/16 16:28	1	
			06/24/16 09:29	06/27/16 16:28	1	

Nitrobenzene-d5 (Surr)	68		27 - 120				06/24/16 09:29	06/27/16 16:28	1
- Method: 8151A - Herbicide	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.319	Jp	1.86	0.279	ug/L		06/28/16 16:47	07/05/16 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	105		10 - 150				06/28/16 16:47	07/05/16 15:38	1
_ Method: NWTPH-Dx - Nort	hwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	290		93.5	26.2	ug/L		06/29/16 14:52	06/30/16 15:05	1
C24-C40	ND		93.5	46.7	ug/L		06/29/16 14:52	06/30/16 15:05	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	120		50 - 150	06/29/16 14:52 06/30/16 15:0	5 1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Client Sample ID: 0600-024 (14 day) Date Collected: 06/22/16 11:30 Date Received: 06/23/16 09:30

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: 490-106362-3 Matrix: Water

TestAmerica Job ID: 490-106362-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.23		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:49	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 16:49	1
Anthracene	0.438	J	1.85	0.352	ug/L		06/24/16 09:29	06/27/16 16:49	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:49	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/24/16 09:29	06/27/16 16:49	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/24/16 09:29	06/27/16 16:49	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/24/16 09:29	06/27/16 16:49	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 16:49	1
Pyrene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 16:49	1
Phenanthrene	2.22		1.85	0.389	ug/L		06/24/16 09:29	06/27/16 16:49	1
Chrysene	ND		1.85	0.306	ug/L		06/24/16 09:29	06/27/16 16:49	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/24/16 09:29	06/27/16 16:49	1
Fluoranthene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:49	1
Fluorene	1.80	J	1.85	0.296	ug/L		06/24/16 09:29	06/27/16 16:49	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/24/16 09:29	06/27/16 16:49	1
Naphthalene	8.04		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	66		29 - 120				06/24/16 09:29	06/27/16 16:49	1
Terphenyl-d14 (Surr)	77		13 - 120				06/24/16 09:29	06/27/16 16:49	1
Nitrobenzene-d5 (Surr)	69		27 - 120				06/24/16 09:29	06/27/16 16:49	1
Method: 8151A - Herbicio	des (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	139		93.0	14.0	ug/L		06/28/16 16:47	07/06/16 11:03	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	2660	X	10 - 150				06/28/16 16:47	07/05/16 15:53	1
Method: NWTPH-Dx - No	orthwest - Semi-V	/olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	976		93.5	26.2	ug/L		06/29/16 14:52	06/30/16 15:23	1
C24-C40	53.8	J	93.5	46.7	ug/L		06/29/16 14:52	06/30/16 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	131		50 - 150				06/29/16 14:52	06/30/16 15:23	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Client Sample ID: 0600-027 (14 day)

TestAmerica Job ID: 490-106362-1

Lab Sample ID: 490-106362-4 Matrix: Water

Date Collected: 06/22/16 11:35 Date Received: 06/23/16 09:30

Method: 8270D - Semivol	latile Organic Co	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.63	J	1.85	0.296	ug/L		06/24/16 09:29	06/27/16 17:09	1
Acenaphthylene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 17:09	1
Anthracene	0.356	J	1.85	0.352	ug/L		06/24/16 09:29	06/27/16 17:09	1
Benzo[a]anthracene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 17:09	1
Benzo[a]pyrene	ND		1.85	0.352	ug/L		06/24/16 09:29	06/27/16 17:09	1
Benzo[b]fluoranthene	ND		1.85	0.333	ug/L		06/24/16 09:29	06/27/16 17:09	1
Benzo[g,h,i]perylene	ND		1.85	0.574	ug/L		06/24/16 09:29	06/27/16 17:09	1
Benzo[k]fluoranthene	ND		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 17:09	1
Pyrene	ND		1.85	0.324	ug/L		06/24/16 09:29	06/27/16 17:09	1
Phenanthrene	1.81	J	1.85	0.389	ug/L		06/24/16 09:29	06/27/16 17:09	1
Chrysene	ND		1.85	0.306	ug/L		06/24/16 09:29	06/27/16 17:09	1
Dibenz(a,h)anthracene	ND		1.85	0.417	ug/L		06/24/16 09:29	06/27/16 17:09	1
Fluoranthene	ND		1.85	0.296	ug/L		06/24/16 09:29	06/27/16 17:09	1
Fluorene	1.36	J	1.85	0.296	ug/L		06/24/16 09:29	06/27/16 17:09	1
Indeno[1,2,3-cd]pyrene	ND		1.85	0.380	ug/L		06/24/16 09:29	06/27/16 17:09	1
Naphthalene	5.03		1.85	0.343	ug/L		06/24/16 09:29	06/27/16 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		29 - 120				06/24/16 09:29	06/27/16 17:09	1
Terphenyl-d14 (Surr)	82		13 - 120				06/24/16 09:29	06/27/16 17:09	1
Nitrobenzene-d5 (Surr)	65		27 - 120				06/24/16 09:29	06/27/16 17:09	1
Method: 8151A - Herbicio	les (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	78.9	J	93.0	14.0	ug/L		06/28/16 16:47	07/06/16 11:18	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1590	X	10 - 150				06/28/16 16:47	07/05/16 16:08	1
Method: NWTPH-Dx - No	rthwest - Semi-V	/olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	731		93.5	26.2	ug/L		06/29/16 14:52	06/30/16 15:40	1
C24-C40	ND		93.5	46.7	ug/L		06/29/16 14:52	06/30/16 15:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	130		50 - 150				06/29/16 14:52	06/30/16 15:40	1

5

7

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-350294/1- Matrix: Water Analysis Batch: 350954	A	Client Sam						Die ID: Method Blank Prep Type: Total/NA Prep Batch: 350294		
•	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	ND		2.00	0.320	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Acenaphthylene	ND		2.00	0.350	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Anthracene	ND		2.00	0.380	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Benzo[a]anthracene	ND		2.00	0.320	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Benzo[a]pyrene	ND		2.00	0.380	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Benzo[b]fluoranthene	ND		2.00	0.360	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Benzo[g,h,i]perylene	ND		2.00	0.620	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Benzo[k]fluoranthene	ND		2.00	0.370	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Pyrene	ND		2.00	0.350	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Phenanthrene	ND		2.00	0.420	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Chrysene	ND		2.00	0.330	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Dibenz(a,h)anthracene	ND		2.00	0.450	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Fluoranthene	ND		2.00	0.320	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Fluorene	ND		2.00	0.320	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Indeno[1,2,3-cd]pyrene	ND		2.00	0.410	ug/L		06/24/16 09:29	06/27/16 15:04	1	
Naphthalene	ND		2.00	0.370	ug/L		06/24/16 09:29	06/27/16 15:04	1	
	МВ	МВ								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		29 - 120	06/24/16 09:29	06/27/16 15:04	1
Terphenyl-d14 (Surr)	77		13 - 120	06/24/16 09:29	06/27/16 15:04	1
Nitrobenzene-d5 (Surr)	58		27 - 120	06/24/16 09:29	06/27/16 15:04	1

Lab Sample ID: LCS 490-350294/2-A Matrix: Water Analysis Batch: 350954

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 350294

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	40.0	30.15		ug/L		75	36 - 129	
Acenaphthylene	40.0	29.76		ug/L		74	36 - 120	
Anthracene	40.0	30.54		ug/L		76	42 - 130	
Benzo[a]anthracene	40.0	32.81		ug/L		82	41 - 131	
Benzo[a]pyrene	40.0	31.60		ug/L		79	45 - 131	
Benzo[b]fluoranthene	40.0	32.04		ug/L		80	43 - 132	
Benzo[g,h,i]perylene	40.0	34.26		ug/L		86	38 - 138	
Benzo[k]fluoranthene	40.0	32.88		ug/L		82	44 - 129	
Pyrene	40.0	28.62		ug/L		72	37 - 129	
Phenanthrene	40.0	31.76		ug/L		79	39 - 126	
Chrysene	40.0	32.92		ug/L		82	39 - 130	
Dibenz(a,h)anthracene	40.0	34.11		ug/L		85	43 - 140	
Fluoranthene	40.0	34.50		ug/L		86	31 - 132	
Fluorene	40.0	31.43		ug/L		79	37 - 130	
Indeno[1,2,3-cd]pyrene	40.0	33.12		ug/L		83	40 - 136	
Naphthalene	40.0	27.34		ug/L		68	32 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	67		29 - 120
Terphenyl-d14 (Surr)	74		13 - 120

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-350294/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 350954 Prep Batch: 350294 LCS LCS %Recovery Qualifier Surrogate Limits Nitrobenzene-d5 (Surr) 27 - 120 68 Lab Sample ID: LCSD 490-350294/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 350954 Prep Batch: 350294 Spike LCSD LCSD %Rec. RPD Added **Result Qualifier** Limits RPD Analyte Unit D %Rec Limit Acenaphthene 40.0 25.77 ug/L 64 36 - 129 16 50 Acenaphthylene 40.0 36 - 120 25.22 ug/L 63 17 50 Anthracene 40.0 25.17 ug/L 63 42 - 130 19 50 Benzo[a]anthracene 40.0 27.67 69 41 - 131 50 ug/L 17 Benzo[a]pyrene 40.0 26.21 ug/L 66 45 - 131 19 50 Benzo[b]fluoranthene 40.0 27.41 ug/L 69 43 - 132 16 50 40.0 71 38 - 138 50 Benzo[g,h,i]perylene 28.36 ug/L 19 Benzo[k]fluoranthene 40.0 27.18 ug/L 68 44 - 129 19 50 37 - 129 Pyrene 40.0 23.96 ug/L 60 18 50 40.0 26.00 65 39 - 126 20 Phenanthrene ug/L 50 Chrysene 40.0 27.68 ug/L 69 39 - 130 17 50 Dibenz(a,h)anthracene 40.0 28.34 ug/L 71 43 - 140 18 50 Fluoranthene 40.0 29.15 ug/L 73 31 - 132 17 50 Fluorene 40.0 26.59 ug/L 66 37 - 130 17 50 40.0 27.30 ug/L 68 40 - 136 19 50 Indeno[1,2,3-cd]pyrene Naphthalene 40.0 23.96 ug/L 60 32 - 120 13 50 LCSD LCSD

%Recovery	Qualifier	Limits
60		29 - 120
66		13 - 120
63		27 - 120
	%Recovery 60 66 63	%RecoveryQualifier606663

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 490-3514 Matrix: Water Analysis Batch: 352839	426/1-A							Clie	ent Samp	ole ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 351426
	MB	МВ									
Analyte	Result	Qualifier	RL	I	MDL U	nit	D	Р	repared	Analyzed	Dil Fac
Pentachlorophenol	ND		2.00	0	.300 u	g/L		06/2	28/16 16:47	07/05/16 14:06	1
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits					Р	repared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	92		10 - 150					06/2	28/16 16:47	07/05/16 14:06	1
Lab Sample ID: LCS 490-351	426/2-A						Clien	t Sai	mple ID:	Lab Control S	Sample
Matrix: Water										Prep Type: To	tal/NA
Analysis Batch: 352839										Prep Batch:	351426
-			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualif	ier l	Unit	D	%Rec	Limits	
Pentachlorophenol			2.50	2.588		ī	ug/L		104	10 - 150	

TestAmerica Nashville

			QC	Sam	ple	Resı	ults								
Client: Kemron Environmenta Project/Site: Washington Wo	al Services, I od Preservin	nc. g			-					Т	estAme	rica	Job ID: 490-10)6362-1	2
Method: 8151A - Herbi	cides (GC) (C	ontinu	ed)											
Lab Sample ID: LCS 490-3 Matrix: Water	351426/2-A								CI	ient	Sample	ID:	Lab Control S Prep Type: To	Sample otal/NA	
Analysis Batch: 352839													Prep Batch:	351426	5
	LCS	LCS	5												J
Surrogate	%Recovery	Qua	lifier	Limits											
Dichloroacetic acid(Surr)	98			10 - 150	_										
Method: NWTPH-Dx - I	Northwest	- S	emi-Vo	latile	Petr	oleun	n Pr	odu	icts (GC)					7
_ Lab Sample ID: MB 490-3	51735/1-A										Client S	am	ple ID: Method	d Blank	8
Matrix: Water											_		Prep Type: To	otal/NA	0
Analysis Batch: 351893													Prep Batch:	351735	-9
		MB	MB												
Analyte	Re	sult	Qualifier		RL	I	MDL	Unit		D	Prepar	ed	Analyzed	Dil Fac	
C10-C24		ND			100		28.0	ug/L			06/29/16	14:52	2 06/30/16 13:38	1	
C24-C40		ND			100		50.0	ug/L			06/29/16	14:52	2 06/30/16 13:38	1	
		MВ	MB												
Surrogate	%Reco	very	Qualifier	Lin	nits						Prepar	ed	Analyzed	Dil Fac	
o-Terphenyl		109		50 -	. 150						06/29/16	14:52	2 06/30/16 13:38	1	13
_ Lab Sample ID: LCS 490-3	251735/2-0								CI	iont	Sample	יחו	Lab Control	Samplo	
Matrix: Water	51733/2-A									ient	Sample		Pren Type: T		
Analysis Batch: 351893													Pren Batch:	351735	
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D %Re	ec	Limits		
C10-C24				1000		814.7			ug/L		8	31 -	51 - 132		
	1.05	100													
Surrogate	%Pecoverv		blifior	l imite											
o-Terphenyl	106	Qua		50 - 150	_										
Lab Sample ID: 490-10659	97-D-1-B DU										Clie	ent \$	Sample ID: Du	plicate	
Matrix: Water													Prep Type: To	otal/NA	
Analysis Batch: 351893													Prep Batch:	351735	
	Sample	San	nple			DU	DU				_			RPD	
Analyte	Result	Qua	lifier			Result	Qual	ifier	Unit		D		RPI) Limit	
C10-C24	1190					741.7	F3		ug/L				4	3 41	
C24-C40	1240					/54.2	⊦3		ug/L				4	y 41	
	DU	DU													
Surrogate	%Recovery	Qua	lifier	Limits											
o-Terphenyl	80			50 - 150	_										

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Water

Water

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Client Sample ID

0600-019 (14 day)

0600-022 (14 day)

0600-024 (14 day)

0600-027 (14 day)

Method Blank

Client Sample ID

0600-019 (14 day)

0600-022 (14 day)

0600-024 (14 day)

0600-027 (14 day)

Method Blank

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample

Lab Control Sample Dup

GC/MS Semi VOA

Prep Batch: 350294

Lab Sample ID

490-106362-1

490-106362-2

490-106362-3

490-106362-4

LCS 490-350294/2-A

LCSD 490-350294/3-A

Analysis Batch: 350954

MB 490-350294/1-A

Lab Sample ID

490-106362-1

490-106362-2

490-106362-3

490-106362-4

TestAmerica Job ID: 490-106362-1

Method

3510C

3510C

3510C

3510C

3510C

3510C

3510C

Method

8270D

8270D

8270D

8270D

8270D

8270D

8270D

Prep Batch

Prep Batch

350294

350294

350294

350294

350294

350294

350294

8 9 10 11 12

GC Semi VOA

LCS 490-350294/2-A

MB 490-350294/1-A

LCSD 490-350294/3-A

Prep Batch: 351426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-106362-1	0600-019 (14 day)	Total/NA	Water	8151A	
490-106362-2	0600-022 (14 day)	Total/NA	Water	8151A	
490-106362-3	0600-024 (14 day)	Total/NA	Water	8151A	
490-106362-4	0600-027 (14 day)	Total/NA	Water	8151A	
LCS 490-351426/2-A	Lab Control Sample	Total/NA	Water	8151A	
MB 490-351426/1-A	Method Blank	Total/NA	Water	8151A	

Prep Batch: 351735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-106362-1	0600-019 (14 day)	Total/NA	Water	3510C	
490-106362-2	0600-022 (14 day)	Total/NA	Water	3510C	
490-106362-3	0600-024 (14 day)	Total/NA	Water	3510C	
490-106362-4	0600-027 (14 day)	Total/NA	Water	3510C	
490-106597-D-1-B DU	Duplicate	Total/NA	Water	3510C	
LCS 490-351735/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-351735/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 351893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-106362-1	0600-019 (14 day)	Total/NA	Water	NWTPH-Dx	351735
490-106362-2	0600-022 (14 day)	Total/NA	Water	NWTPH-Dx	351735
490-106362-3	0600-024 (14 day)	Total/NA	Water	NWTPH-Dx	351735
490-106362-4	0600-027 (14 day)	Total/NA	Water	NWTPH-Dx	351735
490-106597-D-1-B DU	Duplicate	Total/NA	Water	NWTPH-Dx	351735
LCS 490-351735/2-A	Lab Control Sample	Total/NA	Water	NWTPH-Dx	351735
MB 490-351735/1-A	Method Blank	Total/NA	Water	NWTPH-Dx	351735

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Client Sample ID

0600-019 (14 day)

0600-022 (14 day)

0600-024 (14 day)

0600-027 (14 day)

Client Sample ID

0600-024 (14 day)

0600-027 (14 day)

Method Blank

Lab Control Sample

GC Semi VOA (Continued)

Analysis Batch: 352839

Lab Sample ID

490-106362-1

490-106362-2

490-106362-3

490-106362-4

LCS 490-351426/2-A

MB 490-351426/1-A

Lab Sample ID

490-106362-3

490-106362-4

Analysis Batch: 353132

TestAmerica Job ID: 490-106362-1

Method

8151A

8151A

8151A

8151A

8151A

8151A

Method

8151A

8151A

Prep Batch

351426

351426 351426

351426

351426

351426

	8
Prep Batch 351426	9
351426	

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Lab Sample ID: 490-106362-1 Matrix: Water

Matrix: Water

5

9

Client Sample ID: 0600-019 (14 day) Date Collected: 06/22/16 11:20 Date Received: 06/23/16 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1 mL	350294	06/24/16 09:29	KB	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1 mL	350954	06/27/16 16:07	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	352839	07/05/16 15:22	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	351735	06/29/16 14:52	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	351893	06/30/16 14:48	MDW	TAL NSH

Client Sample ID: 0600-022 (14 day) Date Collected: 06/22/16 11:25 Date Received: 06/23/16 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1 mL	350294	06/24/16 09:29	KB	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1 mL	350954	06/27/16 16:28	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	352839	07/05/16 15:38	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	351735	06/29/16 14:52	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	351893	06/30/16 15:05	MDW	TAL NSH

Client Sample ID: 0600-024 (14 day) Date Collected: 06/22/16 11:30 Date Received: 06/23/16 09:30

Lab Sample ID: 490-106362-3 Matrix: Water

Lab Sample ID: 490-106362-4

Lab Sample ID: 490-106362-2

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1 mL	350294	06/24/16 09:29	KB	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1 mL	350954	06/27/16 16:49	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	352839	07/05/16 15:53	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	353132	07/06/16 11:03	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	351735	06/29/16 14:52	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	351893	06/30/16 15:23	MDW	TAL NSH

Client Sample ID: 0600-027 (14 day) Date Collected: 06/22/16 11:35 Date Received: 06/23/16 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			270 mL	1 mL	350294	06/24/16 09:29	KB	TAL NSH
Total/NA	Analysis	8270D		1	270 mL	1 mL	350954	06/27/16 17:09	T1C	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	352839	07/05/16 16:08	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	351426	06/28/16 16:47	JKG	TAL NSH

TestAmerica Nashville

Matrix: Water

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Lab Sample ID: 490-106362-4

Matrix: Water

Client Sample ID: 0600-027 (14 day) Date Collected: 06/22/16 11:35 Date Received: 06/23/16 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8151A		50	1075 mL	10 mL	353132	07/06/16 11:18	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	351735	06/29/16 14:52	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	351893	06/30/16 15:40	MDW	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving TestAmerica Job ID: 490-106362-1

Laboratory: TestA	America Nashville w are applicable to this report.			
Authority Washington	Program State Program	EPA Region	Certification ID	Expiration Dat

iration Date	
9-16 *	-

TestAmerica	Atlanta
IesiAmerica	
Cooler Received/Opened On_6/23/2016 @ 930490-106362 c	Chain of Queter
Time Samples Removed From Cooler Time Samples Placed In St	Clastody
1. Tracking #(last 4 digits, FedEx) Courier:fedex	1845
IR Gun ID_18290455 pH Strip Lot_HC564992_ Chlorine Strip Lot_072815A_	
2. Temperature of rep. sample or temp blank when opened: $1-0$ Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	(ES).NONA
6. Were custody papers inside cooler?	VES.NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	<u> </u>
7. Were custody seals on containers: YES 10 and Intact	YESNONA
Were these signed and dated correctly?	YESNO.ANA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: Ice-pack Ice (direct contact) Dry ice	e Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequen	ce #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNON
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	NMB
17. Were custody papers properly filled out (ink, signed, etc)?	FESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	ESNONA
20. Was sufficient amount of sample sent in each container?	YE8NONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	MUB
I certify that I attached a label with the unique LIMS number to each container (intial)	MMB
21. Were there Non-Conformance issues at login? YES. No Was a NCM generated? YES.	No#

1

2

3

4

5

12

13

ţ

TestAmerica Nashville

Ì

12

681-Atlanta

Chain of Custody Record

NOV.

Company	Date/Time:	Received by:	iny	Compa		Daty/Time:	Relinquished by:
Company TIAN	DateTTIME:	Received by:	A Contraction	Compe	16 1		remulummed by.
6 142 Company 74	DatesTime DatesTime	Received by:	MAU MAU	0 KO	2:2	6.22.16	manine by the analy frequency
	Method of Shipment:		Time:	5	Date:		Empty Kit Relinquished by:
	ts:	cial Instructions/QC Requiremen	spe				pennerapie (specify)
nive For Months	hisposal By Lab Arch	Return To Client		Radiological	(nown	pison B 📃 Uni	Non-Hazard Flammable Skin Initant Pe
ed longer than 1 month)	ssessed if samples are retaine	nple Disposal (A fee may be a	San]		Possible Hazard Identification
			ater	W			
			ater	W			
	· · · · · · · · · · · · · · · · · · ·		ater	W			
			ater	W			
			ater	W			
			ater	W			
			ater	W			
		XXX	ater	ନ ଜୁ	138	-	0600 - 027 (14deu)
		\times \times \times \times	ater	9 N	1130		000 - 024 (14 day)
		XXX	ater	5	1125		0600 - 022 (14 day)
		XXX	ater	6 1	1120	6-22.16	0600 - 019 (24 day)
			ode XX	Preservation C	X		
Special Instructions/Note:	Total Number	8270D - Polyar 8151A - PCP NWTPH_Dx - N	ue, A=Air) Fleid Filtered Perform MS/	Sample Ma Type (⊮= (C=comp, o=wa G=grab) вт=⊺1sa	Sample Time	Sample Date	Sample Identification
Other:	r of co	omatic	Sam; NSD (1			SSOW#:	U STRE
К - EUTA W - pn 4-5 L - EDA Z - other (specify)	ntaine	Hydro	le (Ye 'es or			Project #: 49010102	Project Name: Washington Wood-Incating Preserving
J - DI Water V - MCAA	16	carboi	s or N No)			WO #	Email: tjordan@kemron.com
G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	106362	15	(o)	SHOLOD	a Requested	PO #: Pu rchase Ord r	Phone 404-516-3172(Tel)
E - NaHSO4 Q - Na2SO3	Loc: 490						State, Zip: GA, 30318
B - NaOH N - None C - Zn Acetate O - AsNaO2					^{days):} (O	TAT Requested (City: Atlanta
A HCI M Hexano			9	1.5 July	ited:	Due Date Reques	Address: 1359A Ellsworth Industrial Blvd.
ALL DELY # 40L	uested	Analysis Req					Company: Kemron Environmental Services, Inc.
Page: Page State: 10f 1		er@testamericainc.com	E-Mail: heather.bak	6927	1- 1001-1	Phone:	vien contac: Mr. Tommy Jordan
COC No: 490-54011-17498.3	Carrier Tracking No(s):	ner	Lab PM: Baker, Heatl	yradicy	eua t	Sampler	Client Information
THE LEADER IN THERMOLENTA, TESTER							Phone (615) 726-0177 Fax (615) 726-3404
	Ċ	rd	ly Reco	of Custoc	Chain c		2960 Foster Creighton Drive Nashville TN 37204
TortArapina	5			I			

Custody Seals Intact: ∆ Yes ∆ No

Custody Seal No .:

Cooler Temperature(s) °C and Other Remarks:

6.

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 106362 List Number: 1 Creator: Ramos, Martina M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-106362-1

List Source: TestAmerica Nashville

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-107228-1 Client Project/Site: Washington Wood Preserving ISS

For:

Kemron Environmental Services, Inc. 1359A Ellsworth Industrial Blvd. Atlanta, Georgia 30318

Attn: Mr. Tommy Jordan

Authorized for release by: 7/13/2016 1:48:37 PM Jannel Franklin, Project Manager I (732)593-2551 jannel.franklin@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043 heather.baker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	12
Chronicle	14
Method Summary	16
Certification Summary	17
Chain of Custody	18
Receipt Checklists	21

Sample Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

TestAmerica Job ID: 490-107228-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	3
490-107228-1	0600-019 (28 day)	Water	07/06/16 10:50	07/07/16 10:00	
490-107228-2	0600-022 (28 day)	Water	07/06/16 10:55	07/07/16 10:00	
490-107228-3	0600-024 (28 day)	Water	07/06/16 11:00	07/07/16 10:00	5
490-107228-4	0600-027 (28 day)	Water	07/06/16 11:02	07/07/16 10:00	J
					8
					9
					13

Job ID: 490-107228-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-107228-1

Comments

No additional comments.

Receipt

The samples were received on 7/7/2016 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.3° C and 2.7° C.

GC/MS Semi VOA

Method(s) 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-353757 and analytical batch 490-353994.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8151A: Surrogate recovery for the following samples was outside control limits: 0600-019 (28 day) (490-107228-1), 0600-022 (28 day) (490-107228-2), 0600-024 (28 day) (490-107228-3) and 0600-027 (28 day) (490-107228-4). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8151A: The %RPD between the primary and confirmation column exceeded 40% for Pentachlorophenol for the following samples: 0600-019 (28 day) (490-107228-1). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8151A: The %RPD between the primary and confirmation column exceeded 40% for Pentachlorophenol for the following samples: 0600-022 (28 day) (490-107228-2). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 490-354103 and analytical batch 490-354350.

Method(s) 8151A: The following samples was diluted due to the nature of the sample matrix: 0600-024 (28 day) (490-107228-3) and 0600-027 (28 day) (490-107228-4). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern for analyte C10-C24 which does not match a typical Total Petroleum Hydrocarbon (TPH) pattern used by the laboratory for quantitative purposes: 0600-019 (28 day) (490-107228-1), 0600-022 (28 day) (490-107228-2), 0600-024 (28 day) (490-107228-3) and 0600-027 (28 day) (490-107228-4).

Method(s) NWTPH-Dx: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with 490-353933.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

1 2 3 4 5 6 7 8 9 9

Qualifiers

GC/MS Se	mi VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC Semi V	ΙΟΑ	
Qualifier	Qualifier Description	
Х	Surrogate is outside control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
Glossary	/	8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4.
%R	Percent Recovery	

%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (28 day)

TestAmerica Job ID: 490-107228-1

Lab Sample ID: 490-107228-1 Matrix: Water

5

6

Date Collected: 07/06/16 10:50 Date Received: 07/07/16 10:00

Method: 8270D - Semivolatile	e Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:04	1
Acenaphthylene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:04	1
Anthracene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:04	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:04	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:04	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		07/08/16 08:35	07/08/16 17:04	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		07/08/16 08:35	07/08/16 17:04	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:04	1
Pyrene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:04	1
Phenanthrene	ND		1.72	0.362	ug/L		07/08/16 08:35	07/08/16 17:04	1
Chrysene	ND		1.72	0.284	ug/L		07/08/16 08:35	07/08/16 17:04	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		07/08/16 08:35	07/08/16 17:04	1
Fluoranthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:04	1
Fluorene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:04	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		07/08/16 08:35	07/08/16 17:04	1
Naphthalene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	41		29 - 120				07/08/16 08:35	07/08/16 17:04	1
Terphenyl-d14 (Surr)	70		13 - 120				07/08/16 08:35	07/08/16 17:04	1
Nitrobenzene-d5 (Surr)	41		27 - 120				07/08/16 08:35	07/08/16 17:04	1
Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.344	Јр	1.86	0.279	ug/L		07/09/16 14:03	07/11/16 17:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	418	X	10 - 150				07/09/16 14:03	07/11/16 17:58	1
- Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pet	troleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
C10-C24	392		93.5	26.2	ug/L		07/08/16 12:33	07/09/16 13:47	1
C24-C40	ND		93.5	46.7	ug/L		07/08/16 12:33	07/09/16 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	59		50 - 150				07/08/16 12:33	07/09/16 13:47	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-022 (28 day)

TestAmerica Job ID: 490-107228-1

Lab Sample ID: 490-107228-2 Matrix: Water

5

6

Date Collected: 07/06/16 10:55 Date Received: 07/07/16 10:00

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:25	1
Acenaphthylene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:25	1
Anthracene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:25	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:25	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:25	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		07/08/16 08:35	07/08/16 17:25	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		07/08/16 08:35	07/08/16 17:25	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:25	1
Pyrene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:25	1
Phenanthrene	ND		1.72	0.362	ug/L		07/08/16 08:35	07/08/16 17:25	1
Chrysene	ND		1.72	0.284	ug/L		07/08/16 08:35	07/08/16 17:25	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		07/08/16 08:35	07/08/16 17:25	1
Fluoranthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:25	1
Fluorene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:25	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		07/08/16 08:35	07/08/16 17:25	1
Naphthalene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	54		29 - 120				07/08/16 08:35	07/08/16 17:25	1
Terphenyl-d14 (Surr)	76		13 - 120				07/08/16 08:35	07/08/16 17:25	1
Nitrobenzene-d5 (Surr)	56		27 - 120				07/08/16 08:35	07/08/16 17:25	1
- Method: 8151A - Herbicide	es (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.291	Jр	1.86	0.279	ug/L		07/09/16 14:03	07/11/16 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	175	X	10 - 150				07/09/16 14:03	07/11/16 18:13	1
- Method: NWTPH-Dx - Nort	thwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	450		93.5	26.2	ug/L		07/08/16 12:33	07/09/16 14:05	1
C24-C40	ND		93.5	46.7	ug/L		07/08/16 12:33	07/09/16 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				07/08/16 12:33	07/09/16 14:05	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-024 (28 day)

TestAmerica Job ID: 490-107228-1

Lab Sample ID: 490-107228-3 Matrix: Water

Date Collected: 07/06/16 11:00 Date Received: 07/07/16 10:00

Method: 8270D - Semivolatile C	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.97		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:46	1
Acenaphthylene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:46	1
Anthracene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:46	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:46	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 17:46	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		07/08/16 08:35	07/08/16 17:46	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		07/08/16 08:35	07/08/16 17:46	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:46	1
Pyrene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 17:46	1
Phenanthrene	1.85		1.72	0.362	ug/L		07/08/16 08:35	07/08/16 17:46	1
Chrysene	ND		1.72	0.284	ug/L		07/08/16 08:35	07/08/16 17:46	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		07/08/16 08:35	07/08/16 17:46	1
Fluoranthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:46	1
Fluorene	1.56	J	1.72	0.276	ug/L		07/08/16 08:35	07/08/16 17:46	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		07/08/16 08:35	07/08/16 17:46	1
Naphthalene	7.37		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	57		29 - 120				07/08/16 08:35	07/08/16 17:46	1
Terphenyl-d14 (Surr)	77		13 - 120				07/08/16 08:35	07/08/16 17:46	1
Nitrobenzene-d5 (Surr)	61		27 - 120				07/08/16 08:35	07/08/16 17:46	1
- Method: 8151A - Herbicides (G	C)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	144		93.0	14.0	ug/L		07/09/16 14:03	07/12/16 12:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	2860	X	10 - 150				07/09/16 14:03	07/11/16 18:29	1
- Method: NWTPH-Dx - Northwes	st - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	947		93.5	26.2	ug/L		07/08/16 12:33	07/09/16 14:22	1
C24-C40	48.6	J	93.5	46.7	ug/L		07/08/16 12:33	07/09/16 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	57		50 - 150				07/08/16 12:33	07/09/16 14:22	1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-027 (28 day)

TestAmerica Job ID: 490-107228-1

Lab Sample ID: 490-107228-4 Matrix: Water

Date Collected: 07/06/16 11:02 Date Received: 07/07/16 10:00

Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.57	J	1.72	0.276	ug/L		07/08/16 08:35	07/08/16 18:07	1
Acenaphthylene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 18:07	1
Anthracene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 18:07	1
Benzo[a]anthracene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 18:07	1
Benzo[a]pyrene	ND		1.72	0.328	ug/L		07/08/16 08:35	07/08/16 18:07	1
Benzo[b]fluoranthene	ND		1.72	0.310	ug/L		07/08/16 08:35	07/08/16 18:07	1
Benzo[g,h,i]perylene	ND		1.72	0.534	ug/L		07/08/16 08:35	07/08/16 18:07	1
Benzo[k]fluoranthene	ND		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 18:07	1
Pyrene	ND		1.72	0.302	ug/L		07/08/16 08:35	07/08/16 18:07	1
Phenanthrene	1.53	J	1.72	0.362	ug/L		07/08/16 08:35	07/08/16 18:07	1
Chrysene	ND		1.72	0.284	ug/L		07/08/16 08:35	07/08/16 18:07	1
Dibenz(a,h)anthracene	ND		1.72	0.388	ug/L		07/08/16 08:35	07/08/16 18:07	1
Fluoranthene	ND		1.72	0.276	ug/L		07/08/16 08:35	07/08/16 18:07	1
Fluorene	1.23	J	1.72	0.276	ug/L		07/08/16 08:35	07/08/16 18:07	1
Indeno[1,2,3-cd]pyrene	ND		1.72	0.353	ug/L		07/08/16 08:35	07/08/16 18:07	1
Naphthalene	4.79		1.72	0.319	ug/L		07/08/16 08:35	07/08/16 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	56		29 - 120				07/08/16 08:35	07/08/16 18:07	1
Terphenyl-d14 (Surr)	77		13 - 120				07/08/16 08:35	07/08/16 18:07	1
Nitrobenzene-d5 (Surr)	57		27 - 120				07/08/16 08:35	07/08/16 18:07	1
Method: 8151A - Herbicides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	89.1	J	93.0	14.0	ug/L		07/09/16 14:03	07/12/16 12:52	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dichloroacetic acid(Surr)	1773	X	10 - 150				07/09/16 14:03	07/11/16 18:44	1
Method: NWTPH-Dx - Northw	est - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C24	737		93.5	26.2	ug/L		07/08/16 12:33	07/09/16 14:39	1
C24-C40	ND		93.5	46.7	ug/L		07/08/16 12:33	07/09/16 14:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	61		50 - 150				07/08/16 12:33	07/09/16 14:39	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sam	ple ID: MB 490-353757/1-A
Matrix: W	/ater

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 353757

7

Analysis Batch: 353994								Prep Batch:	353757
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.00	0.320	ug/L		07/08/16 08:35	07/08/16 16:22	1
Acenaphthylene	ND		2.00	0.350	ug/L		07/08/16 08:35	07/08/16 16:22	1
Anthracene	ND		2.00	0.380	ug/L		07/08/16 08:35	07/08/16 16:22	1
Benzo[a]anthracene	ND		2.00	0.320	ug/L		07/08/16 08:35	07/08/16 16:22	1
Benzo[a]pyrene	ND		2.00	0.380	ug/L		07/08/16 08:35	07/08/16 16:22	1
Benzo[b]fluoranthene	ND		2.00	0.360	ug/L		07/08/16 08:35	07/08/16 16:22	1
Benzo[g,h,i]perylene	ND		2.00	0.620	ug/L		07/08/16 08:35	07/08/16 16:22	1
Benzo[k]fluoranthene	ND		2.00	0.370	ug/L		07/08/16 08:35	07/08/16 16:22	1
Pyrene	ND		2.00	0.350	ug/L		07/08/16 08:35	07/08/16 16:22	1
Phenanthrene	ND		2.00	0.420	ug/L		07/08/16 08:35	07/08/16 16:22	1
Chrysene	ND		2.00	0.330	ug/L		07/08/16 08:35	07/08/16 16:22	1
Dibenz(a,h)anthracene	ND		2.00	0.450	ug/L		07/08/16 08:35	07/08/16 16:22	1
Fluoranthene	ND		2.00	0.320	ug/L		07/08/16 08:35	07/08/16 16:22	1
Fluorene	ND		2.00	0.320	ug/L		07/08/16 08:35	07/08/16 16:22	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.410	ug/L		07/08/16 08:35	07/08/16 16:22	1
Naphthalene	ND		2.00	0.370	ug/L		07/08/16 08:35	07/08/16 16:22	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	50		29 - 120	07/08/16 08:35	07/08/16 16:22	1
Terphenyl-d14 (Surr)	75		13 - 120	07/08/16 08:35	07/08/16 16:22	1
Nitrobenzene-d5 (Surr)	53		27 - 120	07/08/16 08:35	07/08/16 16:22	1

Lab Sample ID: LCS 490-353757/2-A Matrix: Water Analysis Batch: 353994

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 353757

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	40.0	23.47		ug/L		59	36 - 129	
Acenaphthylene	40.0	23.71		ug/L		59	36 - 120	
Anthracene	40.0	29.62		ug/L		74	42 - 130	
Benzo[a]anthracene	40.0	30.75		ug/L		77	41 - 131	
Benzo[a]pyrene	40.0	27.44		ug/L		69	45 - 131	
Benzo[b]fluoranthene	40.0	29.47		ug/L		74	43 - 132	
Benzo[g,h,i]perylene	40.0	28.32		ug/L		71	38 - 138	
Benzo[k]fluoranthene	40.0	27.85		ug/L		70	44 - 129	
Pyrene	40.0	27.65		ug/L		69	37 - 129	
Phenanthrene	40.0	27.90		ug/L		70	39 - 126	
Chrysene	40.0	30.35		ug/L		76	39 - 130	
Dibenz(a,h)anthracene	40.0	28.27		ug/L		71	43 - 140	
Fluoranthene	40.0	36.72		ug/L		92	31 - 132	
Fluorene	40.0	26.28		ug/L		66	37 - 130	
Indeno[1,2,3-cd]pyrene	40.0	27.35		ug/L		68	40 - 136	
Naphthalene	40.0	22.39		ug/L		56	32 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	55		29 - 120
Terphenyl-d14 (Surr)	71		13 - 120

QC Sample Results

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 490-353757/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 353757** Analysis Batch: 353994 LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 (Surr) 27 - 120 60 Method: 8151A - Herbicides (GC) Lab Sample ID: MB 490-354103/1-A **Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water** Analysis Batch: 354350 Prep Batch: 354103 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D Pentachlorophenol ND 2.00 0.300 ug/L 07/09/16 14:03 07/11/16 16:57 1 MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 07/09/16 14:03 07/11/16 16:57 Dichloroacetic acid(Surr) 10 - 150 61 1 Lab Sample ID: LCS 490-354103/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 354350 Prep Batch: 354103 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Pentachlorophenol 2.50 1.959 J 78 10 - 150 ug/L LCS LCS Surrogate %Recovery Qualifier Limits Dichloroacetic acid(Surr) 63 10 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 490-35 Matrix: Water Analysis Batch: 354059					Cli	ent Samı	ole ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 353933		
Analyte	Res	ult Qualifier	RL		MDL Unit		DF	repared	Analyzed	Dil Fac
C10-C24		ND			28.0 ug/L		- 07/0	08/16 12:33	07/09/16 13:13	1
C24-C40	I	ND	100		50.0 ug/L		07/0	08/16 12:33	07/09/16 13:13	1
	I	MB MB								
Surrogate	%Recove	ery Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
o-Terphenyl		61	50 - 150				07/	08/16 12:33	07/09/16 13:13	1
Lab Sample ID: LCS 490-3 Matrix: Water Analysis Batch: 354059	53933/2-A		Snike		105	Cli	ent Sa	mple ID:	Lab Control S Prep Type: To Prep Batch: 3	Sample otal/NA 353933
Analyto				Result	Qualifier	Unit	п	%Rec	l imite	
C10-C24			1000	861.3		ug/L		86	51 - 132	
	LCS I	LCS								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	68		50 - 150							

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID

0600-019 (28 day)

0600-022 (28 day)

0600-024 (28 day)

GC/MS Semi VOA Prep Batch: 353757

Lab Sample ID

490-107228-1

490-107228-2

490-107228-3

Method

3510C

3510C

3510C

Prep Batch

8

490-107228-4	0600-027 (28 day)	Total/NA	Water	3510C	
LCS 490-353757/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-353757/1-A	Method Blank	Total/NA	Water	3510C	
Analysis Batch: 3539	994				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-1	0600-019 (28 day)	Total/NA	Water	8270D	353757
490-107228-2	0600-022 (28 day)	Total/NA	Water	8270D	353757
490-107228-3	0600-024 (28 day)	Total/NA	Water	8270D	353757
490-107228-4	0600-027 (28 day)	Total/NA	Water	8270D	353757
LCS 490-353757/2-A	Lab Control Sample	Total/NA	Water	8270D	353757
MB 490-353757/1-A	Method Blank	Total/NA	Water	8270D	353757
GC Semi VOA					
Prep Batch: 353933					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-1	0600-019 (28 day)	Total/NA	Water	3510C	
490-107228-2	0600-022 (28 day)	Total/NA	Water	3510C	
490-107228-3	0600-024 (28 day)	Total/NA	Water	3510C	
490-107228-4	0600-027 (28 day)	Total/NA	Water	3510C	
LCS 490-353933/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 490-353933/1-A	Method Blank	Total/NA	Water	3510C	
Analysis Batch: 3540)59				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-1	0600-019 (28 day)	Total/NA	Water	NWTPH-Dx	353933
490-107228-2	0600-022 (28 day)	Total/NA	Water	NWTPH-Dx	353933
490-107228-3	0600-024 (28 day)	Total/NA	Water	NWTPH-Dx	353933
490-107228-4	0600-027 (28 day)	Total/NA	Water	NWTPH-Dx	353933
LCS 490-353933/2-A	Lab Control Sample	Total/NA	Water	NWTPH-Dx	353933
MB 490-353933/1-A	Method Blank	Total/NA	Water	NWTPH-Dx	353933
Prep Batch: 354103					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-1	0600-019 (28 day)	Total/NA	Water	8151A	
490-107228-2	0600-022 (28 day)	Total/NA	Water	8151A	
490-107228-3	0600-024 (28 day)	Total/NA	Water	8151A	
490-107228-4	0600-027 (28 day)	Total/NA	Water	8151A	
LCS 490-354103/2-A	Lab Control Sample	Total/NA	Water	8151A	
MB 490-354103/1-A	Method Blank	Total/NA	Water	8151A	
Analysis Batch: 3543	350				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-1	0600-019 (28 day)	Total/NA	Water	8151A	354103
490-107228-2	0600-022 (28 day)	Total/NA	Water	8151A	354103
490-107228-3	0600-024 (28 day)	Total/NA	Water	8151A	354103
				TestAme	erica Nashville
		Page 12 of 21			7/13/2016

QC Association Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107228-1

GC Semi VOA (Continued)

Analysis Batch: 354350 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-107228-4	0600-027 (28 day)	Total/NA	Water	8151A	354103
LCS 490-354103/2-A	Lab Control Sample	Total/NA	Water	8151A	354103
MB 490-354103/1-A	Method Blank	Total/NA	Water	8151A	354103

Analysis Batch: 354566

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-107228-3	0600-024 (28 day)	Total/NA	Water	8151A	354103
490-107228-4	0600-027 (28 day)	Total/NA	Water	8151A	354103

Dil

1

1

1

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Client Sample ID: 0600-019 (28 day)

Date Collected: 07/06/16 10:50

Date Received: 07/07/16 10:00

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 490-107228-1

Prepared

or Analyzed Analyst

07/08/16 08:35 MRM

07/08/16 17:04 RP

07/09/16 14:03 JKG

07/11/16 17:58 JML

07/08/16 12:33 KB

07/09/16 13:47 GMH

Lab Sample ID: 490-107228-2 Matrix: Water

Matrix: Water

Lab

TAL NSH

TAL NSH

TAL NSH

TAL NSH

TAL NSH

TAL NSH

9

Prepared			
or Analyzod	Analyst	l ah	

Client Sample ID: 0600-022 (28 day) Date Collected: 07/06/16 10:55 Date Received: 07/07/16 10:00

Prep

Prep

Analysis

Analysis

— I	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	353757	07/08/16 08:35	MRM	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	353994	07/08/16 17:25	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	354350	07/11/16 18:13	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	353933	07/08/16 12:33	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	354059	07/09/16 14:05	GMH	TAL NSH

Client Sample ID: 0600-024 (28 day) Date Collected: 07/06/16 11:00 Date Received: 07/07/16 10:00

Lab Sample ID: 490-107228-3 Matrix: Water

Lab Sample ID: 490-107228-4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	353757	07/08/16 08:35	MRM	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	353994	07/08/16 17:46	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	354350	07/11/16 18:29	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH
Total/NA	Analysis	8151A		50	1075 mL	10 mL	354566	07/12/16 12:36	JML	TAL NSH
Total/NA	Prep	3510C			1070 mL	1 mL	353933	07/08/16 12:33	KB	TAL NSH
Total/NA	Analysis	NWTPH-Dx		1	1070 mL	1 mL	354059	07/09/16 14:22	GMH	TAL NSH

Client Sample ID: 0600-027 (28 day) Date Collected: 07/06/16 11:02 Date Received: 07/07/16 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			290 mL	1 mL	353757	07/08/16 08:35	MRM	TAL NSH
Total/NA	Analysis	8270D		1	290 mL	1 mL	353994	07/08/16 18:07	RP	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH
Total/NA	Analysis	8151A		1	1075 mL	10 mL	354350	07/11/16 18:44	JML	TAL NSH
Total/NA	Prep	8151A			1075 mL	10 mL	354103	07/09/16 14:03	JKG	TAL NSH

TestAmerica Nashville

Initial

Amount

290 mL

290 mL

1075 mL

1075 mL

1070 mL

1070 mL

Batch

Number

353757

353994

354103

354350

353933

354059

Final

Amount

1 mL

1 mL

10 mL

10 mL

1 mL

1 mL

Batch Batch Prep Type Method Туре Run Factor Prep 3510C 8270D Analysis

8151A

8151A

3510C

NWTPH-Dx

Matrix: Water

Lab Sample ID: 490-107228-4

Matrix: Water

5 6 7

9

Client Sample ID: 0600-027 (28 day) Date Collected: 07/06/16 11:02 Date Received: 07/07/16 10:00

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8151A	Run	Factor 50	Amount 1075 mL	10 mL	Number 354566	or Analyzed 07/12/16 12:52	Analyst JML	TAL NSH
Total/NA Total/NA	Prep Analysis	3510C NWTPH-Dx		1	1070 mL 1070 mL	1 mL 1 mL	353933 354059	07/08/16 12:33 07/09/16 14:39	KB GMH	TAL NSH TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
8151A	Herbicides (GC)	SW846	TAL NSH
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL NSH

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Kemron Environmental Services, Inc. Project/Site: Washington Wood Preserving ISS TestAmerica Job ID: 490-107228-1

Laboratory: Test/	America Nashville			
The certifications listed belo	w are applicable to this report.			
	Description			
Authority	Program	EPA Region	Certification ID	1

State Program 10 C789 07-19-16 *	Program	EPA Region	Certification ID	Expiration Date
	n State Program	10	C789	07-19-16 *

	I certify that I attached a label with the unique LIMS number to each container (intial)
804	
KESNONA	zu. vvas sumicient amount of sample sent in each container?
ANONSay	19. Were correct containers used for the analysis requested?
ANON	10 mit and sign the custody papers in the appropriate place?
	17. Were custody papers properly filled out (ink, signed, etc)?
Col	l certify that I checked for chlorine and pd as per SOP and answered questions 15-16 (intial)
YESNO	16. Was residual chlorine present?
AESNO.	b. Did the bottle labels indicate that the correct preservatives were used
AES. NO. AS	15ء. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?
-6	AAA (initial) +1-7 anoise of and answered questions 1.4 (initial)
	14. Was there a Trip Blank in this cooler? YES
KESNO	Slaiv AOV via i thesepte headsbed eldsvreado via shert is any vial? د الم
YES	13a. Were VOA vials received?
ANON.	12. Did all container labels and tags agree with custody papers?
ANONSA	۲۱. Were all container labels complete (#, date, signed, pres., etc)؟
ANON.(Par	10. Did all containers arrive in good condition (unbroken)?
enoN 'ther	9. Cooling process: 0. Cooling process:
r Other None	8. Packing mat'l used? Bubblewitap Plastic bag Peanuts Vermiculite Foam Insert Pape
	Were these signed and dated correctly؟
YESNO	7. Were custody seals on containers: YES (4) and Intact
b	l certify that I opened the cooler and answered questions 1-6 (intial)
ANON	6. Were custody papers inside cooler?
ANON	5. Were the seals intact, signed, and dated correctly?
	If yes, how many and where:
ALESNONA	4. Were custody seals on outside of cooler?
AN ON SAL	3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen'
	2. Temperature of rep. sample or temp blank when opened: 1, 3 Degrees Celsius
	IR Gun ID PH Strip Lot_HC564992 Chlorine Strip Lot_072815A
(4400) (440) (470) (470)	1. Tracking # 6934 (last 4 digits, FedEx) Courier: fedex
(wohniWhuoHS) 3	Time Samples Removed From Cooler_14 30
(100000 10 UPUO 977/01-0	Cooler Received/Opened On 7/7/2016 @ 1000 Cooler Received/Opened On 7/7/2016 @ 1000
Vboteu.2 10 niedo Booton o	тне сербея ім емуіромментас тебтілі
	Test →merica

ľ,

	1
	1
	<u> </u>
	0
	15
	1
	1
	1
	i
	10)
	\mathbf{P}
	1
	77
	1
	÷
	1
	1
_	1
	0
	\mathbf{v}_{-}
	1
	1
	1
	4
	1
	12
	1.00
	1
	12
	J
	1

21. Were there Non-Conformance issues at login? YES...(أم) Was a NCM generated? YES...(ألى الله المع I certify that I attached a label with the unique LIMS number to each container (intial) (leitni) 02-71 anoiteaup barewana bna 2ML otni toejorg aidt baratne I tadt vitrao I 20. Was sufficient amount of sample sent in each container? Were correct containers used for the analysis requested? 'ON 18. Did you sign the custody papers in the appropriate place? AN...ON 17. Were custody papers properly filled out (ink, signed, etc)? ΑN S37 'ON I certify that I checked for chlorine and pla se Hd bns anyered questions 15-16 (intial) 16. Was residual chlorine present? YES. (AN)...ON...SBY b. Did the bottle labels indicate that the correct preservatives were used 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YES..NO. (M) I certify that I unloaded the cooler and answered questions 7.14 (initial) AN. ON. SEY If multiple coolers, sequence # 14. Was there a Trip Blank in this cooler? b. Was there any observable headspace present in any VOA vial? VES...NO...(NA) YES. NO. NA 73a. Were VOA vials received? 12. Did all container labels and tags agree with custody papers? AN...ON. 11. Were all container labels complete (#, date, signed, pres., etc)? AN. 90. Did all containers arrive in good condition (unbroken)? AN...ON.CSE Dry ice-pack Ice (direct contact) Dry ice 9. Cooling process: Ofher None 8. Packing mat'l used? Bubble مُرْسَبُهُ Plastic bag Peanuts Vermiculite Foam Insert Paper Other None Were these signed and dated correctly? YON....SAY 7. Were custody seals on containers: VES...NO and Intact ÔŊ S∃Y I certify that I opened the cooler and answered questions 1-6 (intial) 6. Were custody papers inside cooler? 'SEY ON'/ 5. Were the seals intact, signed, and dated correctly? lf yes, how many and where:_ AN...ON...(SBY 4. Were custody seals on outside of cooler? ΥN) 3. If Item #2 temperature is $0^\circ C$ or less, was the representative sample or temp blank frozen? YES NO. ک. Temperature of rep. sample or temp blank when opened: کر کر کر suisleð seerged Chlorine Strip Lot 072815A PH Strip Lot. HC564992 [R Gun ID__18290455_ Time Samples Removed From Cooler 14 1. Tracking # 24 40 4 10 10 (x∃b97 ,etigib 4 teel) Courier: _fedex_ Time Samples Placed In Storage. (WobniW hour Vindow) Ó. 1000 Cooler Received/Opened On 7/7/2016 @ **COOLER RECEIPT FORM** NT , ellivnabN THE LEADER IN ENVIRONMENTAL TESTING lestAmerica 82270

Page 19 of 21

067:007

BIS = Broken in shipment Cooler Receipt Form.doc

TestAmerica Nashville					TactAmarica
2900 Foster Creignton Ditive Nashville, TN 37204 Phone (615) 726-0177 Fax (615) 726-3404	Chain of	Custody	Record		
	Sampler		PM: A ROXANC O	arrier Tracking No(s):	COC No:
Citerit 1111011144U011 Client Contact	Phone: OVICIA O		Addition to the Casheros		490-54011-1/498.4 Dame:
Mr. Tommy Jordan	0-109-10h	127 1	the state of the s		Page 4000 I CF
Company: Kemron Environmental Services, Inc.	•		Analysis Requ	lested	Job #:
Address: 1359A Ellsworth Industrial Blvd.	Due Date Requested: 7 · 2 C	91.0			Preservation Codes:
City: Atlanta	TAT Requested (days):				B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: GA, 30318	2				D - Nitric Acid P - Na2O4S E - NaHSO4
Phone: 404-516-3172(Tel)	PO#: P urchase Order Requested	SHUPCO	s 		F - МеОН LOC: 490 G - Amchlor H - Ascornic A (107538 345
Email: tjordan@kemron.com	WO#		N 10 s N 90 N 90 N 90 N 90 N 90 N 90 N 90 N 90	S ,	1- lee J - Di Water
Project Name: Washington Wood Treating Preserving ISS	Project#: 49010102		Hydrod		K - EDTA L - EDA
Site:	#MOSS		Igme2 (Y) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		Other:
	<i></i>	ample Matrix Type (W=water,	Filfered - Polyaro - Polyaro	jedmuN	
Sample Identification	Sample Date Time G	=comp, o=solia, ecomp, o=waste/oil egrab) BT=Tissue, A=/	()) ()) ()) ()) ()) ()) ()) ()) ()) ())	IBJOT	Special Instructions/Note:
	X	reservation Code			
(0000-019 (18 hr)	7-6-16 1025	G Water	×		* Limited Quantitul
BUCD - C27 (48 M)	2101 7	G Water			DO NOT DEVENTION NINTEH
0000-019 (28 day)	1.6.16 1050	G Water	× × ×		method dunkinatestion
0600-022 (28 day)	<u>3</u> .01	G Nelt	XXX		this hab *
DOCO-014 (28 day)	Q011	G Wate	××× ×××		0
0600-027 (28 day)	7 1102	G Wate		<u>.</u>	-
<i>,</i>					
Possible Hazard Identification	son B Unknown Rac	dioloaical	Sample Disposal (A fee may be ass	sessed if samples are retaine	ed longer than 1 month) ive For Months
Deliverable Requested: I.(II) III, IV, Other (specify)		0	Special Instructions/QC Requirements		
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment:	
Relinquished by: Democra Roadley	Date/Time: 7.6.16 /3://	Company Kerming	Received by	2/6/1/6	1346 Company
Relignished by Alegue	Date/Time: 14.30	Company	Received by A	Date/Time: 16	1000 Company
Custode Scools Janoe: Cistode Scool No -		(indiano)			Company
Δ Yes Δ No			cooler i emperature(s) 10 and other Kema	arks:	

etnsitA-188

Page 20 of 21

7/13/2016

12 13

- -

Login Sample Receipt Checklist

Client: Kemron Environmental Services, Inc.

Login Number: 107228 List Number: 1 Creator: Stvartak, Anthony Q

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-107228-1

List Source: TestAmerica Nashville
Appendix D Intertidal Sediment Conditioning Laboratory Reports

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Moisture Density Relationship

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Intertidal Soil Testing
Project #:	16T009
Client :	CRETE Consulting
Source:	IT-TTWP-N
MTC Sample#:	T16-0492

Date Received:	March 28, 2016
Sampled By:	Client
Date Tested:	April 8, 2016
Tested By:	AU / KO

CASE NARRATIVE

1. One sample was submitted for Testing on March 28, 2016.

2. The sample was submitted for grain size distribution according to ASTM D422. The sample was prepared according to ASTM D421.

3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.

4. A standard milkshake mixer type device was used to disperse the fine fraction sample for one minute.

5. The data is provided in summary tables and plots.

6. There were no noted anomalies in this project.

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval

Reviewed by:

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Intertidal Soil Testing

Client: CRETE Consulting

Project #: 16T009 Date Received: March 28, 2016 Date Tested: April 8, 2016

Sampled by: Client Tested by: AU / KO

Percent Finer (Passing) Than the Indicated Size

Sieve Size (microns)	3"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	13	9	7	3.2	1.3
IT-TTWP-N	100.0	100.0	100.0	100.0	91.9	91.9	91.3	86.8	81.4	72.6	59.1	45.7	37.7	31.8	20.6	16.8	13.1	11.2	10.3	6.5	4.7

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by: HBord

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Intertidal Soil Testing
Project #:	16T009
Date Received:	March 28, 2016
Date Tested:	April 8, 2016
Date Received: Date Tested:	March 28, 2016 April 8, 2016

Client: CRETE Consulting

Tested by: AU / KO

Sampled by: Client

Percent Retained in Each Size Fraction

Description		% Coars	se Gravel			% Gravel		% Coarse Sand	% Medi	um Sand	c	% Fine San	d	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt	% C	Clay
Particle Size (microns)	3-2"	2-1 1/2"	1 1/2"-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	4750- 2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	9-7	7-3.2	3.2-1.3	<1.3
IT-TTWP-N	0.0	0.0	0.0	8.1	0.0	0.7	4.5	5.4	8.8	13.5	13.4	8.0	5.9	11.2	3.7	3.7	1.9	0.9	3.7	1.9	4.7

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by: HBmg

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	Crete Consulting	Date:	May 15, 2015
Address:	Seattle, WA	Project:	Intertidal Soil Testing
		Project #:	16T009
Attn:	Grant Hainsworth	Sample #:	T16-0493

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
х	TVS	see attached		
	Minimum Resistivity			
	Organic Content			
	Atterberg Limits			
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBar

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Intertidal Soil Testing	
Project #:	16T009	-
ate Received:	March 28, 2016	Sam
Date Tested:	April 13, 2016	Те

Client: Crete Consulting

pled by: Others

Tested by: HB

Moisture Content - ASTM C-566, ASTM D-2216 & AASHTO T-265

Sample #	Location	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T16-0493	IT-TTWP-N	257.9	1486.0	1240.0	246.0	982.1	25.0%

Organic Content - ASTM D-2974, AASHTO T-267

Sample #	Location	Tare	Soil + Tare, Pre-Ignition	Soil + Tare, Post Ignition	% Organics
T16-0493	IT-TTWP-N	257.9	1240.0	1219.8	2.1%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

Project:

Project #: Date Received:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777

Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787

Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments: The sample contained large amounts of glass fragments which may have broked down during testing.

Reviewed by:

HBarg

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 206.241.1974

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Moisture Density Relationship

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

3% Portland Cement -

28 cure results

Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, ASTM D5084

Project: Intertidal Soils Project #: 16T009

Client: Crete Consultants

Date Received: June 15, 2016

Sampled By: client Date Tested: July 24, 2016 Tested By: H Benny

Test Results for Flexible Wall Hydraulic Conductivity Testing													
		Α	s Received S	Sample Paramete	rs		After Test Sa	ample Parameters	3		Hydraulic		
Sample Identification	Depth (ft)	Wet Density (lbs/ft ³)	Total Porosity	Saturation	Moisture ContentWet DensityTotal PorosityMoisture ContentGr.(%)(lbs/ft³)PorositySaturation(%)	Gradient (h/l)	Conductivity (cm/s)						
T16-1191	NA	115.0	0.38	0.55	13.0	125.4	0.39	0.99	23.5	1.38	1.84E-04		

Notes:

1. The samples were tested in general accordance with ASTM D-5084.

2. The tests were performed using tap water for the permeant.

3. The porosity and the saturation were calculated using assumed specific gravity values.

4. The soil was mixed with 3% Portland Cement and allowed to cure for 28 days.

	Sample Description and Dimensions													
Sample ID	Depth (ft)	Visual Description	Confining Pressure (psi)	Initial Average Length (cm)	Initial Average Diameter (cm)	Final Average Length (cm)	Final Average Diameter (cm)							
T16-1191	NA	Gray silty sand with 3% Portland Cement addition	3.0	13.23	7.29	13.25	7.29							

Comments:

Reviewed By:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	Crete Consultants	Date:	July 26, 2016
Address:	Seattle, WA	Project:	Intertidal Soils Testing
		Project #:	16T009
Attn:	Grant Hainsworth, PE	Sample #:	T16-1191

Testing Narrative

1. A three point Consolidated, Undrained triaxial shear test was performed in general accordance with ASTM D4767. The client specified consolidation stresses of 10, 20, and 25 psi.

The specimens were prepared from soil that had been amended with 3% Portland Cement on a dry weight basis and allowed to cure for 28 days.
 Because the diameter of the specimens was 2.40 inches, all material greater than 3/8-inch was removed. (No particle is to be more than 1/6th the diameter of a specimen).

4. The specimens were prepared by compacting the soil into a mold in 4 lifts of approximately 1.3 inches in height. The surface of each lift was scarified prior to compacting the next lift.

5. Each specimen was mounted in a triaxial cell; the cell was connected to the test panel, and saturation was initiated. The "B" value was measured. Once the "B" value had reached 0.95 or higher, the specimen was consolidated, in steps, to the specified consolidation pressure.

6. Once consolidation was complete, the test cell was positioned on the load frame the shear test was performed. All specimens had a shear failure, along a well defined shear plane. The strain rate used was calculated from the consolidation data, and all three tests were run at a speed of 0.007 inches per minute.

7. Each test was run to at least 12% strain.

8. Once the shear test was complete, the sample was taken down and a final moisture content was run on the test remains.

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBrog

Harold Benny WABO Supervising Laboratory Technician

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777

Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787

8.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Consolidated Undrained Triaxial Compression Test, ASTM D4767

										Induced					
				Strain	Corrected	Deviator	Corrected	Pore		Pore					
Project Number	16T009	LVDT	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΔU	Pressure	σ'3	σ'1	σ'1/σ'3	$(\sigma 1 - \sigma 3)/2$	(σ'1+σ'3)/2
Units		.001"	lbs		ft^2	psf	psf	psi	psi	psf	psf	psf			
Sample #	1	0	0	0	0.0287	0	0	28.0	0.0	0	1440	1440	1	0	1440
Depth	NA	5	28	0.001	0.0287	975	974	28.4	0.4	58	1382	2357	1.70	487	1869
Cell pressure	38	10	67	0.002	0.0288	2330	2329	28.9	0.9	130	1310	3639	2.78	1165	2475
Back Pressure	28	15	94	0.003	0.0288	3266	3264	29.3	1.3	187	1253	4517	3.61	1633	2885
Strain Rate	0.007	20	115	0.004	0.0288	3992	3989	29.5	1.5	216	1224	5213	4.26	1996	3219
Initial Platten Height	0	25	132	0.005	0.0288	4578	4574	29.6	1.6	230	1210	5784	4.78	2289	3497
Initial Load Cell Reading	0	54	216	0.011	0.0290	7448	7440	27.8	-0.2	-29	1469	8909	6.07	3724	5189
Initial Length	5.073	75	250	0.015	0.0291	8584	8574	25.8	-2.2	-317	1757	10331	5.88	4292	6044
Initial Area	0.0287	100	263	0.020	0.0293	8985	8972	24.2	-3.8	-547	1987	10959	5.51	4492	6473
Height after Saturation	5.070	125	268	0.025	0.0294	9110	9094	23.3	-4.7	-677	2117	11210	5.30	4555	6664
Height after Consolidation	5.070	150	272	0.030	0.0296	9199	9180	22.6	-5.4	-778	2218	11397	5.14	4599	6807
		175	271	0.035	0.0297	9118	9096	22.2	-5.8	-835	2275	11371	5.00	4559	6823
		200	271	0.039	0.0299	9072	9047	22.0	-6.0	-864	2304	11351	4.93	4536	6827
		225	272	0.044	0.0300	9059	9030	21.8	-6.2	-893	2333	11363	4.87	4529	6848
		250	274	0.049	0.0302	9078	9047	21.7	-6.3	-907	2347	11394	4.85	4539	6871
		275	275	0.054	0.0303	9064	9030	21.7	-6.3	-907	2347	11377	4.85	4532	6862
		300	277	0.059	0.0305	9082	9045	21.6	-6.4	-922	2362	11407	4.83	4541	6884
		325	279	0.064	0.0307	9100	9060	21.5	-6.5	-936	2376	11436	4.81	4550	6906
		350	281	0.069	0.0308	9117	9074	21.5	-6.5	-936	2376	11450	4.82	4558	6913
		375	284	0.074	0.0310	9165	9120	21.5	-6.5	-936	2376	11496	4.84	4583	6936
		415	290	0.082	0.0313	9279	9229	21.5	-6.5	-936	2376	11605	4.88	4640	6991
		425	291	0.084	0.0313	9291	9240	21.4	-6.6	-950	2390	11630	4.87	4646	7010
		450	294	0.089	0.0315	9337	9282	21.4	-6.6	-950	2390	11673	4.88	4668	7032
		515	303	0.102	0.0319	9487	9426	21.2	-6.8	-979	2419	11845	4.90	4744	7132
		550	306	0.108	0.0322	9507	9443	21.0	-7.0	-1008	2448	11891	4.86	4754	7169
		610	305	0.120	0.0326	9350	9280	20.7	-7.3	-1051	2491	11771	4.72	4675	7131
		650	306	0.128	0.0329	9297	9222	20.6	-7.4	-1066	2506	11728	4.68	4649	7117

Reviewed By: HBmg

3% Portland Cement - 28 cure results Date should be July 26, 2016, Traix 1

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Reviewed By: HBmg

Sample	Depth	Water (Content	Void I	Ratio	Satur	ation	Unit V	Veight		Pressure	
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Cell	Back
1.0	NA	7.3	18.5	0.491	0.361	0.399	1.111	121.3	106.6	10.0	38.0	28.0

Reviewed By: _______

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices ~ Bellingham, (360) 647-6061
 • Olympia, (360) 534-9777
 • Silverdale, (360) 698-6787
 • Tukwila, (360) 241-1974

 Visit our website: www.mtc-inc.net
 • Website: www.mtc-inc.net
 • Website: WWW.mtc-inc.net
 • Website: WWW.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Consolidated Undrained Triaxial Compression Test, ASTM D4767

										Induced					
				Strain	Corrected	Deviator	Corrected	Pore		Pore					
Project Number	16T009	LVDT	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΔU	Pressure	σ'3	σ'1	σ'1/σ'3	$(\sigma 1 - \sigma 3)/2$	(σ'1+σ'3)/2
Units		.001"	lbs		ft^2	psf	psf	psi	psi	psf	psf	psf			
Sample #	1	0	0	0	0.0301	0	0	28.0	0.0	0	2880	2880	1	0	2880
Depth	NA	5	19	0.001	0.0302	630	630	28.4	0.4	58	2822	3452	1.22	315	3137
Cell pressure	48	10	37	0.002	0.0302	1226	1225	29.3	1.3	187	2693	3918	1.45	613	3305
Back Pressure	28	15	55	0.003	0.0302	1821	1819	30.9	2.9	418	2462	4281	1.74	910	3372
Strain Rate	0.007	20	70	0.004	0.0302	2315	2313	32.4	4.4	634	2246	4559	2.03	1158	3403
Initial Platten Height	0	25	85	0.005	0.0303	2809	2806	33.9	5.9	850	2030	4836	2.38	1404	3433
Initial Load Cell Reading	0	50	150	0.009	0.0304	4933	4927	37.4	9.4	1354	1526	6453	4.23	2466	3990
Initial Length	5.333	75	222	0.014	0.0306	7266	7257	37.1	9.1	1310	1570	8827	5.62	3633	5198
Initial Area	0.0301	100	286	0.019	0.0307	9316	9305	34.7	6.7	965	1915	11220	5.86	4658	6568
Height after Saturation	5.327	125	313	0.023	0.0308	10147	10133	30.7	2.7	389	2491	12624	5.07	5074	7558
Height after Consolidation	5.334	150	321	0.028	0.0310	10357	10339	30.5	2.5	360	2520	12859	5.10	5178	7690
		175	323	0.033	0.0311	10371	10351	29.5	1.5	216	2664	13015	4.89	5185	7839
		200	322	0.037	0.0313	10289	10266	29.1	1.1	158	2722	12987	4.77	5144	7854
		225	322	0.042	0.0314	10239	10213	28.8	0.8	115	2765	12978	4.69	5119	7871
		250	321	0.047	0.0316	10157	10128	28.6	0.6	86	2794	12922	4.63	5078	7858
		275	320	0.052	0.0318	10075	10044	28.5	0.5	72	2808	12852	4.58	5038	7830
		300	321	0.056	0.0319	10057	10023	28.4	0.4	58	2822	12846	4.55	5028	7834
		325	321	0.061	0.0321	10007	9971	28.3	0.3	43	2837	12807	4.51	5004	7822
		350	321	0.066	0.0322	9957	9918	28.2	0.2	29	2851	12769	4.48	4979	7810
		375	321	0.070	0.0324	9907	9865	28.2	0.2	29	2851	12717	4.46	4954	7784
		400	320	0.075	0.0326	9826	9782	28.2	0.2	29	2851	12633	4.43	4913	7742
		425	322	0.080	0.0327	9838	9791	28.2	0.2	29	2851	12642	4.43	4919	7747
		450	321	0.084	0.0329	9757	9708	28.2	0.2	29	2851	12559	4.40	4879	7705
		500	323	0.094	0.0332	9718	9663	28.2	0.2	29	2851	12515	4.39	4859	7683
		550	327	0.103	0.0336	9736	9677	28.4	0.4	58	2822	12500	4.43	4868	7661
		610	330	0.114	0.0340	9702	9638	28.5	0.5	72	2808	12446	4.43	4851	7627
		650	334	0.122	0.0343	9737	9668	28.5	0.5	72	2808	12476	4.44	4868	7642

Reviewed By: HBarry

Reviewed By:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices ~ Bellingham, (360) 647-6061 • Olympia, (360) 534-9777 • Silverdale, (360) 698-6787 • Tukwila, (360) 241-1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection Testing • Environmental Consulting Materials Project: Intertidal Soils Testing Date Sampled: June 15, 2016 Project #: 16T009 Sampled By: Client Client: Crete Consultants Date Tested: June 26, 2016 Source: Site Stockpile Tested by: H Benny Sample #: T16-1191

Sample	Depth	Water C	Content	Void I	Ratio	Satur	ation	Unit V	Veight		Pressure	
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Cell	Back
1.0	NA	14.6	20.4	0.584	0.520	0.675	1.057	121.9	107.0	20.0	48.0	28.0

HBe Reviewed By:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices ~ Bellingham, (360) 647-6061
 • Olympia, (360) 534-9777
 • Silverdale, (360) 698-6787
 • Tukwila, (360) 241-1974

 Visit our website: www.mtc-inc.net
 • Website: www.mtc-inc.net
 • Website: WWW.mtc-inc.net
 • Website: WWW.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Consolidated Undrained Triaxial Compression Test, ASTM D4767

										Induced					
				Strain	Corrected	Deviator	Corrected	Pore		Pore					
Project Number	16T009	LVDT	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΔU	Pressure	σ'3	σ'1	σ'1/σ'3	$(\sigma 1 - \sigma 3)/2$	(σ'1+σ'3)/2
Units		.001"	lbs		ft^2	psf	psf	psi	psi	psf	psf	psf			· · · ·
Sample #	1	0	0	0	0.0300	0	0	28.0	0.0	0	3600	3600	1	0	3600
Depth	NA	5	72	0.001	0.0300	2399	2399	29.8	1.8	259	3341	5739	1.72	1200	4540
Cell pressure	53	10	97	0.002	0.0300	3229	3228	30.8	2.8	403	3197	6425	2.01	1615	4811
Back Pressure	28	15	120	0.003	0.0301	3991	3989	32.1	4.1	590	3010	6999	2.33	1996	5004
Strain Rate	0.007	20	141	0.004	0.0301	4685	4683	33.0	5.0	720	2880	7563	2.63	2343	5221
Initial Platten Height	0	25	161	0.005	0.0301	5345	5342	33.9	5.9	850	2750	8092	2.94	2672	5421
Initial Load Cell Reading	0	50	267	0.009	0.0303	8823	8817	35.7	7.7	1109	2491	11308	4.54	4411	6900
Initial Length	5.395	75	338	0.014	0.0304	11116	11107	34.2	6.2	893	2707	13815	5.10	5558	8261
Initial Area	0.0300	100	364	0.019	0.0306	11915	11903	32.4	4.4	634	2966	14869	5.01	5957	8918
Height after Saturation	5.391	125	371	0.023	0.0307	12086	12072	31.5	3.5	504	3096	15168	4.90	6043	9132
Height after Consolidation	5.373	150	375	0.028	0.0308	12158	12141	30.7	2.7	389	3211	15352	4.78	6079	9282
		175	378	0.033	0.0310	12197	12177	30.2	2.2	317	3283	15460	4.71	6099	9372
		200	380	0.037	0.0311	12203	12180	29.9	1.9	274	3326	15506	4.66	6101	9416
		225	381	0.042	0.0313	12176	12150	29.7	1.7	245	3355	15505	4.62	6088	9430
		250	382	0.047	0.0314	12148	12120	29.5	1.5	216	3384	15504	4.58	6074	9444
		275	382	0.051	0.0316	12089	12058	29.4	1.4	202	3398	15456	4.55	6044	9427
		300	382	0.056	0.0318	12030	11996	29.4	1.4	202	3398	15394	4.53	6015	9396
		325	380	0.060	0.0319	11908	11871	29.5	1.5	216	3384	15255	4.51	5954	9320
		350	379	0.065	0.0321	11818	11779	29.6	1.6	230	3370	15148	4.50	5909	9259
		375	380	0.070	0.0322	11790	11748	29.7	1.7	245	3355	15103	4.50	5895	9229
		400	382	0.074	0.0324	11793	11748	29.8	1.8	259	3341	15089	4.52	5896	9215
		425	386	0.079	0.0326	11856	11809	29.9	1.9	274	3326	15136	4.55	5928	9231
		450	388	0.084	0.0327	11857	11808	29.8	1.8	259	3341	15149	4.53	5929	9245
		500	392	0.093	0.0331	11858	11804	29.8	1.8	259	3341	15145	4.53	5929	9243
		550	397	0.102	0.0334	11886	11827	29.8	1.8	259	3341	15168	4.54	5943	9254
		610	401	0.114	0.0338	11856	11792	29.7	1.7	245	3355	15147	4.51	5928	9251
		650	406	0.121	0.0341	11903	11835	29.6	1.6	230	3370	15205	4.51	5952	9287
		700	410	0.130	0.0345	11893	11821	29.5	1.5	216	3384	15205	4.49	5947	9294

Reviewed By: HBarg

3% Portland Cement - 28 cure results Date should be July 26, 2016, Triax 3

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Reviewed By:

Sample	Depth	Water (Content	Void I	Ratio	Satur	ation	Unit V	Veight		Pressure	
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Cell	Back
1.0	NA	14.9	20.0	0.569	0.492	0.707	1.099	123.4	102.8	25.0	53.0	28.0

Axial Strain

0.08

0.1

0.12

0.14

0.06

Reviewed By: _______

0 + 0

0.02

0.04

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices ~ Bellingham, (360) 647-6061
 • Olympia, (360) 534-9777
 • Silverdale, (360) 698-6787
 • Tukwila, (360) 241-1974

 Visit our website: www.mtc-inc.net
 • Website: www.mtc-inc.net
 • Website: WWW.mtc-inc.net
 • Website: WWW.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

3% Portland Cement - 28 cure results Date should be July 26, 2016

Client:	Crete Consultants	Date:	May 15, 2015
Address:	Seattle Wa	Project:	Intertidal Soil Testing
		Project #:	16T009
Attn:	Grant Hainsworth, PE	Sample #:	T16-1191

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
х	Sieve-Hydrometer Analysis	See Attached	Sulfate Soundness	
х	Proctor	124.1 pcf at 10.6%	Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	рН			
	Minimum Resistivity			
	Organic Content			
х	Atterberg Limits	Non-Plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

3% Portland Cement - 28 cure results Date should be July 26, 2016

Proctor Report

1	Projec	et: In	tertida	al So	il Tes	sting			D	ate	Rec	eived	10-	Jun-	-16	Uni	fied S	Soils (Class	ifica	tion	Syste	em, A	STN	4 D-2	2487			Α	STM C-	136	
Pı	oject	#: 10	5T009							Sa	mple	ed By	Clie	ent		SW	, Wel	l-grad	ed Sa	and							Sie	ve	Size	Percent	: Specifi	cations
	Clien	nt: C	rete C	onsu	ltants	5				D٤	ate T	ested	15-	Jun-	-16	San	iple (Color									U	S	mm	Passing	Max	Min
G	Sourc	e: Si	te Sto	ckpil	e						Test	ed By	ΗE	Benn	ıy	Gra	У										12.	00"	300.00		100.0 %	0.0 %
S	ample	#: I	16-11	91					_																		10.	00"	250.00		100.0 %	0.0 %
					Sa	mple	e Prej	pare	d:			Moist	X						Manı	ial:							8.0	0"	200.00		100.0 %	0.0 %
												Dry						Mec	hani	cal:	Х						6.0	0"	150.00		100.0 %	0.0~%
						Tes	t Stai	ndar	d:	AS	STM	D698	X				A	ASHT	ΌΤ	99:					M	ethod	4.0	0"	100.00		100.0 %	0.0~%
									A	١ST	ΜD	1557					AA	SHT) T 1	80:						С	3.0	0"	75.00		100.0 %	0.0~%
	Assu	imed	Sp. 6	Fr.		_	Poir	nt		P	erce	nt		Dr	y			_	U	ncor	rect	ed Pr	octo	r Val	lue		2.5	0"	63.00		100.0 %	0.0~%
		2.6	5			1	Numb	ber		Μ	loist	ure]	Den	sity			1	Max.	Dry	Den	sity		Op	otimu	ım Mo	ist 2.0	0"	50.00		100.0 %	0.0~%
	6	\mathbf{T}					1				8.3 %	6		116	5.6			12	1.4]	lbs/ft	ť			11	.3 %	1.7	5"	45.00		100.0 %	0.0~%
		1	1				2			1	10.6	%		121	1.5												1.5	0"	37.50		100.0 %	0.0~%
		4		1			3			1	12.8	%		120	0.0			Va	lue v	w/ O	versi	ize Co	orrec	tion	App	lied	1.2	5"	31.50		100.0 %	0.0~%
2		1	5	-			4			1	14.9	%		114	1.7			I	Max.	Dry	Den	sity		Op	otimu	ım Mo	ist 1.0	0"	25.00	100 %	100.0 %	0.0~%
4	ACCR	RED	TED															12	4.1]	lbs/ft	t ^o			10	.5%	3/-	4"	19.00	92 %	100.0 %	0.0~%
C	ertificate #: 1	1366.01. 1	1566.02 & 13	66.04																							5/	8"	16.00		100.0 %	0.0~%
																											1/2	2"	12.50		100.0 %	0.0~%
ľ										N	Aois	ture I	ensi	ty R	elatio	onshij)										3/	8"	9.50	91 %	100.0 %	0.0 %
	130.0	F						1							<hr/>		1			T		1	1				1/-	4"	6.30		100.0 %	0.0 %
	128.0	Į														<u> </u>											#	4	4.75	87 %	100.0 %	0.0 %
	126.0	E															J	_					_				#	8	2.36		100.0 %	0.0 %
	124.0	L																Zei	o Air	Voids	5						#1	0	2.00		100.0 %	0.0 %
ţ,	122.0																										#1	6	1.18		100.0 %	0.0 %
ensi	122.0	1													•		<u> </u>										#2	20	0.850		100.0 %	0.0 %
q	120.0													_													#3	0	0.600		100.0 %	0.0 %
Ľ.	118.0		-	-									1					-	\times			1					#4	0	0.425		100.0 %	0.0%
	116.0	È															+					1					#4	50	0.300		100.0 %	0.0%
	114.0	÷									-/						+			-	<u></u>	+	~				#6	50	0.250		100.0 %	0.0%
	112.0	E									/																#8	80	0.180		100.0 %	0.0%
	110.0	ŧ		.				1				.	.									\			\sim		#1	00	0.150		100.0 %	0.0%
	0	%	1%	2%	3%	49	6 5	5%	6%	7	%	8%	9%	10%	% 11	% 1	2%	13%	14%	15%	6 1	6%	17%	18%	19	% 209	° #1	40	0.106		100.0 %	0.0%
												Per	ent N	loistu	ure												#1	70	0.090		100.0 %	0.0%
															٠	Data Po	ints			Zero Ai	r Voids	Curve			- Curv	e Fit	#2	00	0.075		100.0 %	0.0 %
			AST	'M D	-471	8, M	isc. C	overs	size C	Cori	rectio	on Va	lues						Spe	ecs:	No S	Specs								Mee	ts Specs?	N/A
┣───									0/ O	vor	cize	Matil	Q0/				_					0/ 0	Irote	1. 12	20/			c .	1.50		D .	0.547
0/ 0	voreiz	0	Com	roota	A	-)ntim		70 U	ver	size	viat	070									70 G	Sor	1. 13	.270			C [:]	6.00		$D_{(10)}$:	1 642
70 U	toin o 1	C	D-	ecte	u	,	Joint	um													0/	70 C:1+ 0	Sano	1. 00	.+70 40/			CU:	4.46		D ₍₃₀₎ :	2 282
Re			De	nsity		1	vioist	ure													70	51110	eClay	/: 1.4	+%0			FIVI:	4.40		$D_{(60)}$:	3.283
	5%		12	3.0			10.8	%0																				DI	,		DI	,
	0%		12	4.7			10.3	″∕0															LI	.: n/a	a			PL:	n/a		PI:	n/a
	5%		12	.6.5			9.7%	0												-		- ·										
2	20%		12	28.2			9.2%	0												S	sand	Equiv	valen	t: n/a	a			Keq'a	1 Sand Ec	quivalent	1	
2	25%		13	0.1			8.6%	0															F							(1 5		
3	50%		13	51.9			8.1%	0											-	Fra	cture	e %, 1	Face	e: n/a	a		Re	q'd F	racture %	6, 1 Face		
	Copyr	ight Spo	ars Engin	eering &	2 Techni	cal Servi	ces PS, 1	996-98								1 10 1		61	ŀ	racti	ure %	o, 2+ I	Faces	s: n/a	a		Req'o	I Fra	cture %,	2+ Faces		

apply only approval.

Comments: _____The sample contained shell fragments wich broke up during testing.

Reviewed by:_ 3

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Intertidal Soils

Client: Crete Consultants

Project #: T16-009 Date Received: June 15, 2016 Date Tested: July 25, 2016

Sampled by: Client Tested by: H Benny, J Benny

Percent Finer (Passing) Than the Indicated Size

Sieve Size (microns)	3"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	13	9	7	3.2	1.3
Cement Amended Soil	100.0	100.0	100.0	100.0	100.0	97.6	96.3	92.0	86.6	76.3	60.0	42.8	33.0	25.8	20.1	17.5	13.1	9.6	7.9	5.3	2.6

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by: _____

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Intertidal Soils
Project #:	T16-009
Date Received:	June 15, 2016
Date Tested:	July 25, 2016

Client: Crete Consultants

Sampled by: Client

Tested by: H Benny, J Benny

Percent Retained in Each Size Fraction

Description		% Coars	se Gravel			% Gravel		% Coarse Sand	% Medium Sand % Fine Sand			d	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt % Clay		Clay	
Particle Size (microns)	3-2"	2-1 1/2"	1 1/2"-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	4750- 2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	9-7	7-3.2	3.2-1.3	<1.3
Cement Amended Soil	0.0	0.0	0.0	0.0	2.4	1.3	4.3	5.3	10.4	16.3	17.1	9.8	7.2	5.7	2.6	4.4	3.5	1.8	2.6	2.6	2.6
		1	1		1	1	1		1												
			1		1	1			1			1									

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

APPENDIX C Sediment Cap and Groundwater Flow

Table of Contents

1.0	INTRODUCTION	.1
2.0	CAP PERFORMANCE MODELING OBJECTIVES	.1
3.0	MODELING EVALUATION	.2
	3.1.Approach	2
	3.2.Groundwater Flux Zones	2
	3.2.1. (Zone 1 [a & b]-High Flux) Nearshore Area	3
	3.2.2. (Zone 2 – Moderate to Low Flux) Lower-Intertidal/Shallow Subtidal Areas	3
	3.2.3. (Zone 3 – Minimal Flux) Offshore Diffusion-Dominant Areas	3
4.0	MODEL INPUTS	.3
	4.1.Porewater Concentrations	3
	4.2. Groundwater Velocity Distribution	4
	4.3.Input Parameter Summary	4
5.0	MODEL RESULTS	.5
	Zone 1a (High Flux Area, Within Excavation Limits)	5
	Zone 1b (High Flux Area, Outside Excavation Limits)	6
	Zone 2 (Moderate to Low Flux)	6
	Zone 3 (Minimal Flux, Diffusion-Dominated)	6
6.0	SENSITIVITY ANALYSIS FOR DIOXINS/FURANS	.7
7.0	REFERENCES	.7

LIST OF FIGURES

Figure C-1: Groundwater Flux Zones for Sediment Cap Modeling Figures C-2 through C-17: CAPSIM model output figures for Zones 1 through 3

LIST OF TABLES

Table C-1: Input Parameter Summary for Sediment Cap Model

- Table C-2: Modeled Cap Profiles
- Table C-3: CAPSIM Model Results

Table C-4: Dioxin/Furan Model Results

LIST OF ACRONYMS AND ABBREVIATIONS

2-MN	2-methylnaphthalene
AC	activated carbon
CAP	Cleanup Action Plan
cm/yr	centimeters per year
D/F	dioxins and furans
EDR	Engineering Design Report
EPA	U.S. Environmental Protection Agency
foc	fraction organic carbon
IHS	indicator hazardous substances
ISS	in-situ solidification
LNAPL	light non-aqueous phase liquid
µg/L	micrograms per liter
MLLW	mean lower low water
MNR	Monitored Natural Recovery
NAPL	non-aqueous phase liquid
OC	organoclay
PCP	pentachlorophenol
RI/FS	Remedial Investigation/Feasibility Study
Site	R.G. Haley Site
SSI	Supplemental Sediment Investigation
TLC	thin-layer cap
ТРН	total petroleum hydrocarbons
USACE	U.S. Army Corps of Engineers

1.0 INTRODUCTION

This appendix summarizes sediment cap performance modeling for chemical isolation and containment completed as part of the sediment cap design for the Marine Unit of the R.G. Haley Site (Site). As shown on Figure C-1, planned sediment cleanup actions for the Marine Unit include:

- Removing nearshore intertidal sediment that has been most heavily impacted by historic releases of non-aqueous phase liquid (NAPL) from the adjacent upland unit;
- Placing an amended sand cap in areas within and outside of the sediment removal area where needed to enhance chemical containment;
- Placing a non-amended thin-layer containment cap (TLC) of gravely sand seaward of the amended caps; and
- Monitoring expected natural recovery in the Monitored Natural Recovery (MNR) area seaward of the capping areas.

The sediment cap modeling described in this appendix was completed to support design of the nearshore amended sand caps. This modeling builds upon previous cap modeling done as part of the Haley Site Remedial Investigation/Feasibility Study (RI/FS; GeoEngineers 2016). The FS identified sediment cap alternatives that meet the cleanup action objectives for the Marine Unit, as further described in the Cleanup Action Plan (CAP; Washington State Department of Ecology 2018) and in Section 1.1 of the Engineering Design Report (EDR).

2.0 CAP PERFORMANCE MODELING OBJECTIVES

The objective of cap performance modeling is to identify sediment cap profiles that are capable of containing contaminants present in underlying sediment and associated porewater to the degree necessary to meet cleanup levels at the applicable points of compliance.

During the FS, indicator hazardous substances (IHS) were evaluated to identify those contaminants requiring the most robust cap design to achieve cleanup standards. Based on this analysis, pentachlorophenol (PCP) and 2-methylnaphthalene (2-MN) were selected for cap modeling, in part because of their higher dissolved-phase mobility in groundwater relative to other Site contaminants. The FS cap modeling also included total petroleum hydrocarbons (TPH) for nearshore locations where sediment contains residual light non-aqueous phase liquid (LNAPL). These same contaminants (2-MN, PCP and TPH) were the focus of evaluations discussed in this EDR. In addition, a sensitivity analysis was conducted to confirm that the cap design(s) developed based on PCP, 2-MN and TPH concentrations will also be protective of dioxins and furans (D/F). This analysis was conducted because of the exceptionally low cleanup level for D/F, even though this IHS group is significantly less mobile than the other modeled contaminants.

Since the FS-level cap modeling was completed, the groundwater cleanup level for PCP decreased from 3 micrograms per liter (μ g/L) to 0.04 μ g/L. This change triggered more rigorous cap modeling efforts to design an effective cap; however, much of the basis for cap modeling and design remains unchanged from that described in the FS report. The footprint of sediment capping at the Haley Site also expanded since

the FS was completed in response to post-FS sediment sampling (GeoEngineers 2018). Sediment capping needs in this expanded area were also evaluated during the modeling described in this appendix. The general cap modeling approach utilized to support this EDR is similar to that described in the FS report, except for the greater level of detail needed to support remedial design.

Cap modeling was completed to verify that the key IHSs driving cap design, PCP, 2-MN and TPH, are physically and chemically isolated, thereby achieving sediment and surface water cleanup levels during a 100-year design life for the remedy. The ability of the cap profiles to meet these cleanup levels over this time period was the guiding performance criterion for cap modeling. The sediment point of compliance for the cleanup action is discussed in Section 2.3 of the EDR text.

3.0 MODELING EVALUATION

3.1. Approach

A one-dimensional transient model was used to evaluate contaminant transport within cap material under selected cap design scenarios. Analyses were performed using the transient numerical modeling program CAPSIM[®] (Version 3.6) developed by Dr. Danny Reible and associates (Reible 2018). The CAPSIM program is a well-accepted model that is commonly used to evaluate the contaminant isolation capability of sediment caps. Application of the CAPSIM model also addresses cap design considerations for chemical containment described in the U.S. Environmental Protection Agency (EPA) and U.S. Army Corps of Engineers (USACE) guidance for contaminated sediment capping (Palermo et al. 1998).

The modeling was completed to support design of the cap over an area of approximately six acres in the Haley Marine Unit with varying contaminant concentrations, predicted groundwater flux rates at the mudline, and sediment organic carbon fractions. As noted above, PCP and 2-MN were considered to require the most robust cap design because of their prevalence and relative mobility in the aqueous phase. These contaminants are also closely associated with TPH and residual LNAPL at the Site. Iterative modeling runs supported development of several cap profiles (thickness and amendments) in different portions of the Marine Unit. Amendments are included in the cap designs where necessary to isolate contaminants and achieve compliance with sediment and porewater cleanup levels. The amendments include different dosing of organoclay (OC) and/or activated carbon (AC) in the chemical isolation layer. The modeling output estimates the proposed cap designs will contain 2-MN, PCP, TPH and D/F beyond the 100-year design life of the remedy. The resulting design is anticipated to also be protective of other Haley contaminants that are less mobile.

3.2. Groundwater Flux Zones

The most sensitive parameter affecting contaminant transport and modeling results is the rate of groundwater flow (flux) through underlying sediment and the resulting rate of upwelling at the sediment mudline. Groundwater flow modeling (using MODFLOW) was performed to estimate the distribution of groundwater flux in the Haley Marine Unit. Based on this modeling output, three main zones of groundwater flux were estimated to exist in the Marine Unit (Figure C-1). Cap design in each of these zones was evaluated separately using CAPSIM. These three groundwater flux zones are described below.

3.2.1. (Zones 1a and 1b - High Groundwater Flux) Nearshore Area

This zone generally encompasses the area shoreward of mean lower low water (MLLW) where the predicted groundwater and associated contaminant mass flux rates at the mudline are comparatively high. Within a portion of this high flux zone (Zone 1a), excavation is planned to depths ranging from about 2 to 4 feet below the existing mudline to remove sediment where residual LNAPL is most likely to be present along with associated elevated concentrations of TPH, PCP, 2-MN and other IHSs. The excavation will then be capped to address any residual LNAPL potentially remaining in sediment below the excavation depth.

This high flux zone also includes areas north and south of the excavation area where IHSs are present but residual LNAPL is less likely to occur (Zone 1b). The cap will be placed directly on contaminated sediment (no excavation) in this area, after debris removal and minor sediment grading as necessary for cap placement.

3.2.2. (Zone 2 – Moderate to Low Groundwater Flux) Lower-Intertidal/Shallow Subtidal Areas

This zone encompasses offshore areas where moderate to high concentrations of IHSs are present in sediment, but groundwater flux values are estimated to be approximately one-half of those in Zone 1. The cap will be directly placed on contaminated sediment, following removal of debris. This zone is located seaward of Zone 1. The inner margin of this zone is generally located near MLLW; the seaward margin varies in bathymetry based on the groundwater modeling estimates of flux.

3.2.3. (Zone 3 – Minimal Groundwater Flux) Offshore Diffusion-Dominant Areas

This zone encompasses areas farther offshore where advective transport is minimal because there is little or no groundwater flux at the mudline. In this area, contaminants migrate primarily by diffusion which is driven by concentration gradients between contaminated sediment and overlying clean cap materials.

4.0 MODEL INPUTS

4.1. Porewater Concentrations

The CAPSIM cap model relies on user-input values for dissolved-phase contaminant concentrations entering the cap. Several sources of data were considered for conservative input concentrations to the model, including the following:

- Measured groundwater concentrations in groundwater samples collected from upland and intertidal zone monitoring wells. This data set excluded samples collected from the future in-situ solidification (ISS) footprint and samples from intertidal wells located within the future sediment excavation area. Groundwater samples collected from wells with trace LNAPL at the time of sampling were also excluded, as were samples from wells in the Upland Unit more than approximately 100 feet upgradient from the shoreline.
- Calculated equilibrium porewater concentrations based on maximum sediment concentrations presented in the RI and the Supplemental Sediment Investigation (SSI; GeoEngineers 2018). This data set applied a conservative estimate of the sediment fraction organic carbon (foc). Sediment samples within the future excavation footprint, and samples greater than 4 feet below the existing mudline were excluded from evaluation.
- Maximum leachate concentrations from the ISS treatability study (see EDR Appendix B).

Conservative concentrations from the above data sets were used as input values in CAPSIM (Table C-1). Concentrations used in the model for PCP, 2-MN and TPH in all groundwater flux zones are based on the calculated equilibrium porewater concentrations except for 2-MN in Zone 1. These calculated porewater concentrations are higher, and therefore more conservative than concentrations derived from the other data sources described above. The input concentrations for 2-MN and TPH in Zone 1 are based on leachate concentrations from the ISS treatability study (EDR Appendix B). These values were used because they are higher than the highest porewater concentrations calculated for 2-MN and TPH using sediment data. The 2-MN and TPH concentrations used from the leachate test are very conservative values because the sample was manually spiked with LNAPL and is expected to overestimate the leachability of contaminants from ISS-treated soil. In addition, the leachate test results do not reflect the attenuation that will occur as a result of advective transport in groundwater outside of the ISS body, which itself has a low hydraulic conductivity.

The primary drivers of cap design are PCP and 2-MN because of their mobility, and TPH because it competes for the amendment sorption material in the cap. For modeling purposes, concentrations of constituents in porewater entering the cap from below were conservatively assumed to remain fixed over the 100-year design life that was modeled. This assumption simulates an infinite source of contamination to the overlying sediment cap. The following ranges of porewater concentrations were used for modeling:

- PCP: 136 μg/L to 7.8 μg/L
- 2-MN: 74.8 μg/L to 2.7 μg/L
- TPH: 1,321 μg/L to 17.9 μg/L

The higher concentrations for each constituent reflect conditions in Zone 1 and the lower concentrations reflect conditions in Zone 3. Refer to Table C-1 for the complete list of sediment and porewater model inputs.

4.2. Groundwater Velocity Distribution

Groundwater modeling was completed as part of the RI/FS. As part of this work, a three-dimensional MODFLOW model was created to evaluate groundwater flux rates to the Haley Marine Unit, as described in Section 4.2.2 and Appendix H of the RI. The model was then used to evaluate selected cleanup action elements for FS alternatives such as ISS and low permeability capping in the Upland Unit, and sediment excavation and capping in the Marine Unit.

The groundwater flow model was further refined during the EDR to develop groundwater velocity inputs for cap performance modeling of the cleanup action. The groundwater model was modified to consider the effects of the upland ISS, as well as the low-permeability upland cap on groundwater flow to capping areas in the Marine Unit. Groundwater flux at the mudline was contoured, leading to identification of the three zones described in Section 2.0 and shown on Figure C-1. Modeling results also provided associated porewater velocity inputs to the cap model to assess the influence of flux on contaminant mobility.

4.3. Input Parameter Summary

Table C-1 summarizes the input parameters used for the CAPSIM model and the basis for the input values. Input parameters are presented for each groundwater flux zone including chemical inputs and capping materials with amendments and other properties for containing contaminants over the 100-year design life. Additional model inputs included parameters for advection, diffusion, dispersion, bioturbation,

settlement, deposition, chemical retardation, porewater/sediment interaction, dissolved organic matter (organic carbon), and local equilibria. Input parameters were derived from previous site sampling and testing data, literature review, and communication with subject-matter experts, including Dr. Danny Reible, the CAPSIM model developer.

5.0 MODEL RESULTS

Sediment cap modeling using CAPSIM was completed for each of the three groundwater flux zones within the Marine Unit. CAPSIM model output includes porewater and solid concentration data along a onedimensional (vertical) profile through the sediment cap for the selected design period. Selected cap profiles and model results for Zones 1 through 3 are explained below and presented in Tables C-2 and C-3.

Figures C-2 through C-17 present CAPSIM model output graphs of PCP concentrations in solids (sediment cap material) and porewater versus depth within the cap profile. Output graphs of 2-MN and TPH in solids are also shown. Porewater graphs for 2-MN and TPH are not presented because their associated cleanup levels are applicable to sediment (as opposed to surface water). The output graphs illustrate the respective contaminant concentrations within the different cap profiles at 20-year increments over the modeled 100-year design lifespan. The key input parameters and modeling-derived cap profiles that achieve cleanup levels in each groundwater flux zone are summarized below.

In all cases the modeling results indicate that cleanup levels for PCP, 2-MN, and TPH are expected to be achieved over a 100-year period at depths within the caps well below their respective points of compliance.

5.1. Zone 1a (High Groundwater Flux Within Nearshore Sediment Excavation)

- Groundwater flux was estimated to be greatest in nearshore Zone 1a (and Zone 1b) at 537 centimeters per year (cm/yr).
- The input porewater concentration for of 136 µg/L for PCP was calculated based on the highest PCP concentration remaining in sediment immediately below the bottom of the excavation (4,000 µg/kg, sample COB-SC-01).
- The input porewater concentrations of 74.8 µg/L for 2-MN and 1,321 µg/L for TPH were based on the maximum leachate concentration from the ISS treatability study (sample 0600-024). The TPH concentration was used to conservatively model the influence of high TPH concentrations on competitive adsorption in cap material.
- Cap modeling results indicated that amendments would be needed to meet cleanup levels in Zone 1a. Modeling showed that AC effectively attenuates 2-MN, while OC is needed to attenuate PCP over a 100-year design life modeled. TPH is also attenuated with these amendments. Contaminant containment can be achieved by capping the excavation area using a 2-foot chemical containment horizon. The bottom 1-foot would be amended with 1 percent (by weight) OC and the top 1-foot would be amended with 1 percent (by weight) AC.
- There is some uncertainty regarding the vertical profile of residual LNAPL in the excavation area because it is located adjacent to the nearshore oil plume in the Upland Unit. The CAPSIM model does not account for petroleum in the form of LNAPL, therefore a more robust cap design is proposed for this area. Based on discussions with vendors that have experience with similar conditions, a 10 percent (by weight) OC amendment is proposed for the full 2-foot profile of the chemical containment horizon.

OC is the preferred amendment for this application because of its capacity to sorb residual LNAPL, if present beneath the excavation. Cap modeling shows that with this amount of OC amendment, AC is not needed to sequester 2-MN. Modeling output indicates this cap design is estimated to achieve sediment and porewater cleanup levels at the depths within the cap shown on Figures C-2 through C-5. The footprint of this sediment cap is shown in Figure C-1.

As discussed in Section 6.2.4 of this EDR, cap design for Zone 1a will be refined, if needed, based on the results of additional porewater and solids sampling in the nearshore organoclay cap constructed during the 2013 interim action and other Zone 1a locations to be determined.

5.2. Zone 1b (High Groundwater Flux Area, Outside Sediment Excavation Limits)

- The same elevated nearshore groundwater flux of 537 cm/yr described above for Zone 1a was estimated to be present in the Zone 1b area outside the limits of the excavation.
- To be conservative, input porewater concentrations were estimated to be the same as within the excavation limits as described above; 136 μg/L for PCP, 74.8 μg/L for 2-MN, and 1,321 μg/L for TPH.
- In Zone 1b, 2-MN was determined to be most effectively attenuated by AC, while OC is needed to address PCP. Contaminant containment can be achieved using a 1-foot thick sand layer with 1 percent (by weight) AC over another 1-foot thick sand layer with 1 percent OC. This cap profile applies to areas where residual LNAPL is unlikely to be present.
- Modeling results indicate this cap design will achieve sediment and porewater cleanup levels at the depths within the cap shown on Figures C-6 through C-9.

5.3. Zone 2 (Moderate to Low Groundwater Flux Area)

- Modeled conditions for this zone include moderate to low groundwater fluxes representative of conditions in the lower-intertidal to shallow subtidal areas. The highest estimated groundwater flux of 280 cm/yr at the mudline was used for this zone.
- Input porewater concentrations in Zone 2 are estimated to be generally one order of magnitude less than Zones 1a and 1b: 7.8 μg/L for PCP, 2.7 μg/L for 2-MN and 24.8 μg/L for TPH.
- Modeling results indicate that an OC-amended sand cap is required in this area to sequester PCP. Contaminant containment can be achieved using a 2-foot-thick horizon composed of sand with 1 percent OC. This profile applies to capping areas seaward of Zone 1 between approximately MLLW and -10 feet MLLW (Figure C-1).
- Modeling results indicate this cap design will achieve sediment and porewater cleanup levels at the depths within the cap shown in Figures C-10 through C-13.

5.4. Zone 3 (Minimal Groundwater Flux Area, Diffusion-Dominated)

- Modeled conditions for this zone include minimal groundwater flux seaward of Zone 2.
- Input porewater concentrations of PCP, 2-MN, and TPH are typically one to two orders of magnitude lower than those in Zone 1 based on available sediment data: 34 µg/L for PCP, 8.9 µg/L for 2-MN and 17.9 µg/L for TPH.
- Modeling results indicate that a sand cap containing a minimal amount of organic carbon is required for chemical containment in this zone. Considering the negligible groundwater flux at the mudline and

relatively low concentrations of PCP, contaminant containment can be achieved using a 1-foot-thick sand cap with 0.1 percent AC. Naturally occurring carbon sources may also be suitable for the purpose of achieving this organic carbon content.

Modeling results indicate this cap design is estimated to achieve sediment and porewater cleanup levels at the depths within the cap shown on Figures C-14 through C-17.

6.0 SENSITIVITY ANALYSIS FOR DIOXINS/FURANS

As previously described, the key contaminants used to evaluate cap performance were PCP and 2-MN because of their mobility, and TPH because it competes for sorption sites in the cap. However, a sensitivity analysis was performed to confirm that the proposed cap profiles will also be protective of D/F.

The CAPSIM model was run using conservative input D/F concentrations, the highest groundwater flux conditions, and a conservative cap amendment condition (Zone 1a 2-foot sand cap with 1-foot of sand amended with 1 percent OC overlain by 1-foot of sand amended with 1 percent AC). Input parameters used for sediment and porewater conditions are as described in Table C-1 for Zone 1 (mass transport properties and cap material/placement properties) and for cap materials are as presented in Table C-2 for Zone 1b. The model input parameters and results specific to D/F are presented in Table C-4.

The model run used the highest D/F concentration observed in shallow sediment within the nearshore zone affected by groundwater flux as a conservative estimate of D/F mobility. As presented in Table C-4, the results of the conservative model run for D/F indicates that D/F attenuates very quickly within the 1-percent OC amended sand cap and after 100 years, the concentrations of D/F exceeding cleanup levels would migrate only 8 cm into the cap material. Based on this result for the most conservative D/F mobility scenario, further cap modeling for D/F was not conducted.

7.0 REFERENCES

- Anchor QEA, LLC (Anchor) 2015. "Final Engineering Design Report, Whatcom Waterway Cleanup in Phase 1 Site Areas." February 2015.
- GeoEngineers 2016. "Final Remedial Investigation/Feasibility Study Report, R.G. Haley Site." Prepared for the City of Bellingham. February 1, 2016.
- GeoEngineers 2018. "Supplemental Sediment Investigation Report, R.G. Haley Site." Prepared for the City of Bellingham. January 10, 2018.
- Montgomery, J., 2000. Groundwater Chemicals Desk Reference 3rd Edition. CRC Press LLC, 2000.
- Palermo, M., S. Maynord, J. Miller, and D. Reible, 1998. Guidance for In-Situ Subaqueous Capping of Contaminated Sediments. EPA 905-B96-004, Great Lakes National Program Office, Chicago, Illinois.
- Reible, D., 2012. Model of 2 Layer Sediment Cap, Description and Parameters. Version 2 Layer Analytical Model v.1.18 and Active Cap Layer Model v 4.1. Accessed online at: <u>http://www.caee.utexas.edu/</u> <u>reiblegroup/downloads/2 layer analytical modeldescription.doc</u>.

- Reible, D., 2018. CapSim v. 3.6. Accessed online at: <u>https://www.depts.ttu.edu/ceweb/</u> groups/reiblesgroup/CapSim.html.
- Washington State Department of Ecology 2018. "Final Cleanup Action Plan, R.G. Haley International Corporation Site, Bellingham, Washington." April 2018.

TABLE C-1. INPUT PARAMETER SUMMARY FOR THE SEDIMENT CAP MODEL

Model Input Parameters		Unit	Zone 1	Zone 2	Zone 3	Data Source (Dationale	
			Value			Data Source/ Rationale	
Mass Transport Propertie	s						
Groundwater Darcy velocit	ty	cm/yr	537 280 0		0	Groundwater model (MODFLOW) output.	
Depositional velocity		cm/yr	0	0 0 0 Conservative assumption of no net sedim		Conservative assumption of no net sedimentation.	
Boundary layer mass trans	sfer coefficient	cm/hr	2.37	2.37 2.37 2.37 Conservative assumption consistent wit Manual guidance.		Conservative assumption consistent with CapSIM Manual guidance.	
Biodiffusion coefficients		cm²/yr	1 (particle), 100 (porewater)		rewater)	Typical values used for cap design (Reible 2012).	
Chemical Properties							
	PCP	L/kg	3.86				
Octonal-Water Partition	2-MN	L/kg	5.09				
Coemcient (Now)	ТРН	L/kg	7.23				
Organic Carbon-Water	PCP	L/kg	590 Literature (Montgomery 2000).			Literature (Montgomery 2000).	
Partition Coefficient	2-MN	L/kg	2,478				
(Koc)	TPH	L/kg	2,700,800				
	PCP	µg/kg (dw)	100 670			Cleanup Action Plan. As measured at bottom of biologically active zone.	
Sediment Cleanup Level (cap material)	2-MN	µg/kg (dw)					
	ТРН	µg/kg (dw)	260,000				
	PCP	µg/L	0.04 NA				
Surface Water Cleanup	2-MN	µg/L				Cleanup Action Plan. As measured at bottom of	
Levei	ТРН	µg/L	250) Diologi		Julogically active 2011e.	

Model Input Parameters		Unit	Zone 1	Zone 2	Zone 3	Data Sauraa (Batianala	
				Value		Data Source/ Rationale	
Source Properties							
Sediment fraction organic	carbon (f _{oc})		0.05	0.05	0.05	Conservative assumption based on sediment data collected during the RI and SSI.	
Underlying sediment	PCP	µg/kg	4,0001	230	210	¹ Sediment data collected during the RI and SSI.	
concentrations used to derive equilibrium	2-MN	µg/kg	NA ²	335	121	assumes constant source.	
porewater concentrations	ТРН	µg/kg	NA ²	3,360	2,430	² Sediment data not used, see note below for Zone 1 2- MN and TPH.	
	PCP	µg/L	136 ³	7.8	34	³ Equilibrium concentration calculated based on	
Underlying porewater	2-MN	µg/L	74.84	2.7	8.9	underlying sediment concentrations listed above.	
concentration	ТРН	µg/L	1,3214	24.8	17.9	* Maximum leachate concentration of ISS treatability test sample 0600-024.	
Cap Material/Placement	Properties						
Maximum consolidation depth		cm	55.88			Value derived from geotechnical analysis completed using SETTLE3D.	
Time to 90% consolidation		yr	3.8				
Cap thickness excluding erosion protection layer		ft	2	2	1	Cap thickness based on physical/chemical containment properties, constructability, and bathymetry considerations.	
Bioturbation zone thicknes	S	cm	12			Cited value for Bellingham Bay (Anchor 2015).	
Depositional velocity		cm/yr	0	0	0	Conservative assumption of no net sedimentation.	
Porosity			0.4 (sand), 0.5 (OC), 0.64 (AC)		0.64 (AC)	Literature and material vendor provided values.	
foc of sand before amending			0.01				
Bulk density		g/cm ³	1.6 (sand), 0.8 (OC), 0.49 (AC)		0.49 (AC)		
Chemical Isolation Sorption Isotherm			Linear Kd specified Freundlich (sand + OC) (AC)		Freundlich (AC)	Standard practice.	
Organoclay Partition Coefficients Kd L/kg 14,621 (2-MN), 437,522 (PCP), 161,800,000 (TPH)		22 (PCP),	CETCO (organoclay vendor).				

Model Input Parameters		Unit	Zone 1	Zone 2	Zone 3	Data Source (Pationale	
			Value			Data Source/ Rationale	
Activated Carbon Isotherm	$K_{F}(Freundlich)$	µg/kg/ (µg/L) ^N	$7.25 \ x \ 10^6 \ (2\text{-MN} \ and \ \text{PCP})$		PCP)	Communication with Dr. Reible and professional judgement.	
	N (Freundlich)		0.42 (2-MN and PCP)		0.42 (2-MN and PCP)		

Notes:

2-MN = 2-methylnaphthalene

PCP = pentachlorophenol

TPH = total petroleum hydrocarbons

 μ g/L = micrograms per liter

µg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

AC = activated carbon

cm = centimeters

CAP = cleanup action plan

CUL = cleanup level

ft= feet

foc = fraction organic carbon

FS = feasibility study

g/cm³ = grams per cubic centimeter

L/kg = liters per kilogram

Kf = Freundlich equation constant

 K_d = solid-water distribution coefficient

K_{oc} = dissolved organic carbon partitioning coefficient

K_{ow} = octanol-water partitioning coefficient

N=1/n= Freundlich equation constant

OC = organic carbon

NA = not applicable

RI = remedial investigation

yr = year

TABLE C-2. MODELED CAP PROFILES

	Modeled Cap Profile ¹					
Groundwater Flux Zone	Chemical Containment Layer(s)	Erosion Protection Layer(s)				
Zone 1a High Groundwater Flux Within Nearshore Sediment Excavation	2 ft (60.96 cm) Sand Amended with 10% OC					
Zone 1b High Groundwater Flux Area, Outside Sediment Excavation Limits	1 ft (30.48 cm) Sand Amended with 1% AC over 1ft (30.48 cm) Sand Amended with 1% OC	2 ft (30.48 cm) Armor Rock over 0.5 ft (15.24 cm) Gravel ²				
Zone 2 Moderate to Low Groundwater Flux Area	2 ft (60.96 cm) Sand Amended with 1% OC					
Zone 3 Minimal Groundwater Flux Area, Diffusion Dominated	1 ft (30.48 cm) Sand Amended with 0.1% AC	1 ft (30.48 cm) Gravelly Sand ³				
Notes:						

¹Amendment percentages by weight. Cap armor layers were selected based on the results of coastal engineering modeling (Appendix E).

² Plus small area of 1.5 ft Gravel Cobble erosion protection.

³ Modeled as representative case, noting 1.5 ft Gravel Cobble erosion protection also present.

AC = activated carbon

OC = organoclay

TABLE C-3. CAPSIM MODEL RESULTS

Modeled IHS	Cleanup Lev	Depth Below Which IHS Concentrations are < Cleanup Levels in 100 Years ¹				
	Concentration	Medium	Zone 1a	Zone 1b	Zone 2	Zone 3
PCP	0.04 µg/L	Porewater	0-113 cm	0-104 cm	0-109 cm	0-54 cm
1.01	100 µg /kg dw	Sediment	0-107 cm	0-97 cm	HS Concentration Is in 100 Years Zone 2 0-109 cm 0-109 cm 0-77 cm 0-125 cm	0-53 cm
0.000	NA	Porewater				
2-IVIIN	670 µg /kg dw	Sediment	0-76 cm	0-91 cm	Concentration in 100 Years Zone 2 0-109 cm 0-109 cm 0-77 cm 0-125 cm	0-55 cm
	NA	Porewater				
IPH	260 mg/kg dw	Sediment	0-119 cm	0-125 cm	S Concentrati in 100 Years Zone 2 0-109 cm 0-109 cm 0-77 cm 0-125 cm	0-49 cm

Notes:

¹O centimeters (cm) represents top of cap profile including erosion protection.

 μ g/L = micrograms per liter

µg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

dw = dry weight

IHS = indicator hazardous substance

2-MN = 2-methylnaphthalene

NA = not applicable

PCP = pentachlorophenol

TPH = total petroleum hydrocarbons

TABLE C-4. DIOXIN/FURAN MODEL RESULTS

D/F TEQ ¹ Sediment Concentration (ng/kg)	D/F Koc² (L/kg)	Calculated D/F Porewater Concentration ³ (pg/L)	First (deepest) Cap Layer	D/F - Organoclay Kd (L/kg)	Distance into first cap layer above mudline where sediment CUL ⁵ is exceeded after 100 years (cm)
550	4,786,301	2.30 4	1ft (30.48 cm) Sand Amended with 1% OC	23,442	8

Notes:

¹2,3,7,8-TCDD used as a surrogate value for D/F TEQ.

² Whatcom Waterway EDR (Anchor 2015).

 3 Porewater concentration calculated using the sediment concentration, K_{oc} value, and an f_{oc} of 0.05 for sediment.

 $^{\rm 4}$ Calculated Porewater concentration is lower than Cleanup Level of 32 pg/L

⁵ Sediment Cleanup Level for D/F TEQ = 15 ng/kg

cm = centimeters

D/F = dioxins and furans

 f_{oc} = fraction organic carbon

 K_d = solid-water distribution coefficient

 K_{oc} = dissolved organic carbon partitioning coefficient

L/kg = liters per kilogram

ng/kg = nanograms per kilogram

OC = organoclay

pg/L = picograms per liter

CAPSIM v3.6: Porewater Concentration Output Figures C-2 through C-17

Notes:

- AC Activated carbon
- OC Organoclay
- 2-MN 2-methylnaphthalene
- PCP Pentachlorophenol
- TPH Total Petroleum Hydrocarbons

Zone 1a (High Groundwater Flux Within Nearshore Sediment Excavation)

Chemical Containment Horizon: 2 ft Sand with 10% Organoclay

Erosion Protection: 2 ft Armor Rock over 0.5 ft Gravel

Figure C-2

Zone 1b (High Groundwater Flux Area, Outside Sediment Excavation Limits)

Chemical Containment Horizon: 1 ft Sand with 1% Activated Carbon over 1 ft Sand with 1% Organoclay

Erosion Protection: 2 ft Armor Rock over 0.5 ft Gravel

Zone 2 Moderate to Low Groundwater Flux Area

Chemical Containment Horizon: 2 ft Sand with 1% Organoclay

Erosion Protection: 2 ft Armor Rock over 0.5 ft Gravel*

*plus small area of 1.5 ft Gravel Cobble erosion protection

Figure C-10

Zone 3 Minimal Groundwater Flux Area, Diffusion Dominated

Chemical Containment Horizon: 1 ft Sand with 0.1% Activated Carbon

Erosion Protection: 1 ft Gravelly Sand*

*Modeled as representative case, noting 1.5 ft Gravel Cobble erosion protection also present

APPENDIX D Landfill Gas Evaluation

APPENDIX D

LANDFILL GAS CONTROL SYSTEM DESIGN

TABLE OF CONTENTS

LANDFILL GAS CONTROL SYSTEM DESIGN D-1
Landfill Gas Generation Modeling D-2
Modeling ApproachD-3
LFG Production Rate Modeling Results D-4
Landfill Gas Monitoring D-4
Volatile Organic CompoundsD-5
Discussion of Gas Monitoring Results D-5
Air Permitting Considerations D-5
Federal StandardsD-5
Northwest Clean Air AgencyD-6
Emission EstimatesD-6
Air Dispersion Modeling D-6
MTCA Method B Cleanup Standards D-7
Landfill Gas Control System – TreatmentD-7
Landfill Gas Control System – Design Elements D-8
References D-10

ATTACHMENTS

D.1 Landfill Gas Generation Modeling Repo	ort
---	-----

- D.2 Soil Vapor Monitoring Data
- D.3 Soil Vapor Emissions and MTCA Evaluation

LANDFILL GAS CONTROL SYSTEM DESIGN

This appendix provides design-basis information in support of developing the landfill gas (LFG) collection and control system for the Engineering Design Report (EDR). The LFG collection and control system is a component of an engineered containment cap to be constructed throughout the main portion of the Haley Upland Unit to isolate contaminated soil, as described in the body of the EDR. LFG will be collected beneath a low-permeable liner placed over contaminated soil, and then discharged to the atmosphere through vents extending through the sealed cap liner, drainage layer, and cap cover material to above the ground surface.

The R.G. Haley Cleanup site (Site) encompasses an area containing wood waste, and also includes a portion of the Cornwall Landfill that contains or is adjacent to municipal solid waste (MSW) – both of which are expected to continue generating gas during decomposition into the foreseeable future. The R.G. Haley Cleanup Site also contains other subsurface soil contaminants and non-aqueous in the free-phase liquid (NAPL) petroleum product form that could potentially release volatile organic compounds (VOCs) that impact soil vapor quality and must be considered in developing plans for controlled release. The low-permeability upland cap is designed to restrict the fugitive, non-point release of LFG and other VOCs from the subsurface, which is currently occurring naturally, through the soil cover.

Although only the southwestern portion of the Haley Site is includes the Cornwall landfill, the term 'LFG' is used in a general context to describe all potential emissions of subsurface gas and soil vapor from MSW, wood waste, and contaminant VOCs. This context is also consistent with terminology used for the LFG evaluation in the Cornwall site EDR. In the current condition, LFG is generated as waste breaks down and slowly ventilates through the existing permeable soil cover. LFG can be explosive at higher concentrations when allowed to accumulate in confined spaces, and can pose a threat to human health if it contains VOCs at concentrations exceeding applicable regulatory criteria. After constructing a low-permeability cap, the LFG and other VOCs contained in the soil vapors must be provided with a ventilation pathway, or increasing pressures and concentrations could potentially lead to unsafe levels or cause lateral migration. LFG must also be vented in a manner that does not pose an unacceptable risk to human health.

The design goals of the LFG control system, as part of the overall Site remedy, are the following:

- Prevent accumulation of LFG under the upland landfill cap by providing an LFG capture layer beneath the low-permeability cap that is connected to the atmosphere.
- Provide internal pressure relief to reduce the potential for cover system uplift and lateral migration.
- Provide controlled release of LFG through engineered vents to prevent fugitive emissions where exposure is uncontrolled, and vent LFG in a manner that is adequately protective of human health.
- Integrated the LFG control system with the adjacent Cornwall site system.

As part of this evaluation, Landau Associates relied on data developed for the adjacent Cornwall Avenue cleanup site (Cornwall site). This Cornwall site subsurface soil vapor data and LFG generation modeling was augmented by including the results of the soil vapor investigation conducted for the R.G. Haley Site, and by updating the LFG generation models to include the contribution of waste degradation occurring in the R.G. Haley footprint. This appendix further details the data evaluation in order to establish the engineering basis of design for controlling LFG and soil vapor emissions at the R.G. Haley Site, which will be controlled in conjunction with the LFG system for the adjacent Cornwall site.

Data from both cleanup sites include field investigation data, development of a model of the LFG generation rate, and an estimation of ambient air impacts through air dispersion modeling of the anticipated emissions through passive vents to be installed at the Site. These data were used to develop the conceptual design elements of the LFG control system included in the EDR. The design provided in the EDR is considered conservatively protective by using worst-case input parameters for potential hazards and weather conditions that might affect human exposure.

Some of the elements included in the design are viewed as exceeding the level of LFG control and environmental protection needed based on current property usage, since access to, and use of the Site are restricted. However, because future property usage is planned as a public park, the LFG control system design will include several considerations intended to provide adequate protection for park visitors and service and maintenance providers following completion of cleanup action construction.

The following sections describe the development of Site conditions relating to LFG production, gas quality, potential exposures, and design considerations.

Landfill Gas Generation Modeling

This section summarizes the LFG production rate evaluation for the Site. The LFG production rate was estimated using the US Environmental Protection Agency's (EPA) LandGEM spreadsheet model – the industry standard approach for estimating LFG emissions for regulatory compliance, and a tool for LFG control system design. The estimate is based on the quantity of buried waste, waste age, type, and physical factors related to the subsurface environment.

According to the EDR for the Cornwall site (Landau Associates 2017), and cross-sections presented in the EDR from the Site Remedial Investigation and Feasibility Study Report for the R.G. Haley cleanup Site (RI/FS; GeoEngineers 2016), the LFG generation modeling assumes the following volumes of MSW and wood waste were placed:

- Approximately 84,000 tons of wood waste deposited at the R.G. Haley and Cornwall sites from 1888 to 1946.
- Approximately 100,000 tons of refuse (MSW) was buried at the Cornwall site from 1953 to 1965.

• Non-aqueous phase liquid (NAPL) contamination that appears to be the source of subsurface VOCs.

The estimate of gas production will include contributions from both sites since the source of gas generation (buried waste) is present and continuous across the site boundaries and overlapping area between these cleanup sites.

Modeling Approach

LandGEM is a spreadsheet-based model prepared by EPA that estimates the overall flow rate of LFG from a MSW landfill based on user input regarding the amount of waste buried, the year of burial, and other parameters developed by EPA based on landfills across the US. Emissions factors used in the model are from the Compilation of Air Pollutant Emission Factors (AP-42; EPA 1998). The model allows variation of parameters affecting the overall LFG production capacity of the waste (given infinite time), and the rate at which the LFG is released – each constrained to typically observed ranges.

The total mass of buried waste that will produce LFG during its decomposition was is estimated for the purposes of modeling based on the thickness and lateral extent of waste observed during RI investigations at both the R.G. Haley and Cornwall cleanup sites. The gas-generation modeling for this design assumes that the following wastes are present in the subsurface: roughly 83,000 tons of wood waste deposited between 1888 and 1946, and 101,000 tons of MSW deposited between 1953 through 1965 based on information presented in the Cornwall EDR (LAI 2016). The modeling develops potential gas generation rates from wood waste observed at the R.G. Haley cleanup site, as well as wood waste and MSW buried at the adjacent Cornwall cleanup site. Modeling the combined gas generation from both cleanup sites provides for a conservatively high estimate for design purposes, which, due to the contiguity of the sites and the planned integration of cover systems is reasonable and warranted.

The moisture content (saturated) of the solid waste buried under water was accounted for by adjusting the rate constant (k) to match that of a landfill with more than 40 annual inches of precipitation [k = 0.12 year⁻¹, as referenced in EPA's Waste Reduction Model (WARM Version 13)], maximizing this variable parameter within the allowable range. Three individual modeling runs were executed so the parameters could be varied for three unique conditions: wood waste (both R.G. Haley and Cornwall cleanup sites), MSW in the overlapping marine portion of the sites, and MSW in the upland portion of the Site. It is assumed for the purposes of modeling a worst-case scenario that LFG generated by decomposition of MSW in the marine portion of the sites would migrate laterally toward the uplands and require capture and control at that location. The modeling output for the portions of the models updated for the R.G. Haley Site are provided in Attachment D.1. The results of this output, in combination with the modeling conducted for the Cornwall site, are discussed below. Note that, although LandGem can be used to estimate VOCs present in LFG emissions, site-specific data were developed through field investigations. The site-specific VOC data derived during field testing is discussed in a later section (Landfill Gas Monitoring: Volatile Organic Compounds).

LFG Production Rate Modeling Results

The modeling results indicate an approximate total LFG generation rate of 3.6 cubic feet per minute (cfm) for year 2020, which includes the combined contributions of LFG generated from the degradation of all wastes at both sites. Figure D.1 in Attachment D.1 presents the generation curve developed by combining the output from the three modeling scenarios discussed above. Based on this low estimated rate of LFG production, a safety factor greater than 2 will be applied to the production rate for design, and the capture and control system will be designed for a LFG flow rate of 10 cfm.

Landfill Gas Monitoring

Eight temporary soil vapor monitoring probes were installed at the R.G. Haley Site in 2005 near previous explorations where elevated concentrations of diesel-range petroleum hydrocarbons and VOCs including naphthalene and 2-methylnaphthalene had been identified in soil and groundwater samples within the petroleum smear zone (Figure D.2). Soil vapor samples were obtained at each probe location at a depth of approximately 5 feet below ground surface, corresponding to the lower portion of the vadose zone and the upper portion of the smear zone. The samples were analyzed by an accredited laboratory for petroleum hydrocarbon fractions, vinyl chloride, methyl tert-butyl ether, BTEX, naphthalene, and 2-methylnaphthalene. Tabulated analytical results are provided in Table D-2 in Attachment D.2.

Thirteen LFG probes were installed at the adjacent Cornwall site in 2015, where the greatest mass of the MSW is located. These probe locations were selected to characterize LFG in the areas where the greatest thickness of MSW was anticipated to be, and monitored for the field parameters listed below. These data are combined with the RG Haley data to provide a more comprehensive and environmentally conservative approach to gas control at the RG Haley Site, as discussed further in later sections of this report. The field-collected data corroborated the results of the LFG generation modeling effort, and supported the conclusion that, although present gas generation rates are low, installation of a surface cover necessitated proper LFG ventilation to prevent build-up of gases to unsafe or unhealthy levels (Cornwall Site EDR, Landau Associates 2016). The following parameters were monitored:

- Methane (CH₄)
- Oxygen (O₂)
- Carbon dioxide (CO₂)
- Carbon monoxide (CO)
- Hydrogen sulfide (H₂S)
- Hydrogen gas
- Static pressure
- Total VOCs by field-measurement with photoionization detector.

Volatile Organic Compounds

In addition to the field-analyzed parameters summarized above, gas samples were collected from both sites and analyzed by an accredited laboratory. The tabulated VOC results for both sites are provided in Table D-2 in Attachment D.2.

Discussion of Gas Monitoring Results

The landfilled material continues to generate at least small quantities of LFG, as evidenced by elevated levels of methane and carbon dioxide, and depressed concentrations of oxygen. The majority of the gas generated at the Site is likely due to natural decomposition of organics; however, some gas is generated from the volatilization of hydrocarbon contamination. The results of VOC testing indicate there are detectable concentrations of VOCs associated with LFG throughout most of the Cornwall site, and the slightly greater prevalence of VOCs associated with hydrocarbons within the R.G. Haley Site is likely due to volatilization of NAPL observed in the subsurface. The results of VOC testing are used further (as discussed in the evaluation below) to determine if LFG emissions will require an air permit, and to determine if control technology is required for the protection of human health and the environment prior to discharge.

Air Permitting Considerations

Construction of the containment system will include installation of new gas vents so that LFG and VOCs can discharge from the subsurface in a controlled manner, and not be trapped beneath the low-permeability cover. Although the emissions have been occurring for decades in an uncontrolled manner, installation of the vents requires an evaluation of these emissions as a new source.

Federal Standards

Activities and equipment associated with R.G. Haley are not found to be subject to New Source Performance Standards (NSPS) or National Emission Standards for Hazardous Air Pollutants (NESHAP). NSPS and NESHAP dictate reporting requirements and additional emission standards for sources found to be subject to its rulings. Potentially applicable NSPS and NESHAP were identified and applicability was evaluated.

- **40 Code of Federal Regulations (CFR) 60 Subpart WWW: Municipal Solid Waste Landfills.** The Haley Site was not found to be subject to this NSPS because the Cornwall Landfill stopped accepting waste in 1965. Affected sources are limited to landfills that commenced construction or modification after May 30, 1991. Although the Haley Site includes locations where MSW was placed, it was not operated as a landfill per se.
- **40 CFR Subpart AAAA: Municipal Solid Waste Landfills**. The Site was not found to be subject to this NESHAP because R.G. Haley and Cornwall Landfill stopped accepting waste in 1965. Affected sources are limited to landfills that have accepted waste since 1987.
- **40 CFR 63 Subpart GGGGG: Site Remediation**. The Site was not found to be subject to this NESHAP because it is not considered to be a major source of HAPs and is not co-located with any other stationary source of HAPs.

Northwest Clean Air Agency

The Site is subject to New Source Review pursuant to Northwest Clean Air Agency (NWCAA) Regulation 300. Emissions from the Site have been calculated and compared to *de minimis* values and small quantity emission rates (SQERs) (WAC 173-460) in consideration of a NWCAA permit. Our evaluation has shown that a NWCAA Notice of Construction (NOC) permit application should be submitted prior to construction of the landfill gas collection and venting system.

Emission Estimates

LFG emissions were calculated from sample results and LandGEM estimates. From monitoring efforts, the highest observed concentration of each constituent from any sample was used to calculate emissions. When reported concentrations were below the reporting limit, the reporting limit was used. Maximum observed concentrations were applied to the total estimated flow of LFG of 10 cfm. The safety factor applied to the LFG generation estimate discussed in the previous section was applied to these calculations. The estimated emissions of VOCs are presented in Table D-3 and compared to the SQERs and *de minimis* emission values (WAC Chapter 173-460). Source emissions are compared to SQERs and *de minimis* values to determine whether further permitting considerations or implementing treatment technology prior to discharge is necessary.

De minimis levels are considered to be "trivial levels of emissions that do not pose a threat to human health or the environment." Most constituents were found to be below *de minimis*. However, naphthalene was found to be above *de minimis* thresholds.

Carbon adsorption was considered as a control method for VOCs, including naphthalene. The design of carbon absorption will be further detailed later in this Appendix under "*landfill gas control system – treatment.*" Based on the estimated emissions, a removal efficiency of 44 percent would be required to reduce naphthalene emissions below the SQER. Naphthalene has a relatively high molecular weight (128 grams per mole), and thus a strong adsorption rate to activated carbon. Due to the low flow rate of LFG and high adsorption capacity (a typical vendor assumption for carbon adsorption capacity is 20 percent for naphthalene), we assume the carbon canisters can be sized for a design removal efficiency of 90 percent. As such, a VOC control factor of 90 percent for carbon adsorption was applied for the SQER evaluation, and naphthalene emissions were found to be below the SQER. Since all constituents were found to be below the SQER or *de minimis* thresholds, no further air dispersion modeling was conducted for air permitting purposes. Additional air dispersion modeling was conducted for this project to evaluate the VOC concentrations in comparison to Model Toxics Control Act (MTCA) cleanup levels for ambient air, as discussed in the following section.

Air Dispersion Modeling

Air dispersion modeling was conducted to estimate the ambient air impacts in the breathing zone expected from the proposed LFG vents. The dispersion model determines the reduction in contaminant concentration between the point of release, at the vent effluent, to the potential point

of exposure, where, in the future, park visitors or park workers could be exposed to vent emissions. An EPA-recommended air screening model, AERSCREEN (version 16216), was used to estimate maximum exposure concentrations using worst-case emissions; the model estimates worst-case concentrations at 1-hour, 24-hour, and annual averaging periods at the highest of the modeled receptors throughout the Site (not surprisingly, those are the nodes nearest the vents). All emissions were modeled to discharge from one LFG vent, assumed to be 12 feet tall and to have a diameter of 4 inches Meteorological data was created using the model's internal MAKEMET code (version 16216). MAKEMET inputs were based on Western Regional Climate Center meteorological data between 1988 and 2018 for Bellingham, Washington. Terrain data was not included in this model because the terrain was considered to be flat and because the maximum emissions scenarios used estimated that the highest concentrations of contaminants were relatively close (within 30 feet) to the modeled source. The land use was considered to be "grassland" to reflect the flattened and unoccupied characteristics of the site. The maximum modeled concentrations were compared to MTCA Method B Cleanup Standards, which are discussed below.

MTCA Method B Cleanup Standards

MTCA Method B criteria for air emissions from a cleanup project were evaluated for both cancer and non-cancer risks for all VOCs with toxicology data available on the Washington State Department of Ecology's (Ecology's) CLARC database (Ecology website 2019). The permissible concentrations protective of both cancer and non-cancer risks are presented in Table D-3 in Attachment D.3, along with the estimated ambient air concentration estimated at the breathing zone. Even with the conservatively high estimates of potential emissions and exposures, all compounds, except naphthalene, are below cleanup levels with the assumed vent height of 12 feet above ground surface. Modeled naphthalene concentrations are slightly greater than the MTCA Method B Cleanup Standards and will be treated prior to discharge. Post-construction emissions will be monitored to determine the need for continued treatment, in coordination with Ecology.

Landfill Gas Control System - Treatment

Based on the results of these evaluations, LFG emissions from the Site LFG will be treated with granular activated carbon (GAC) prior to release. However, based on the conservative nature of the models and the selection of conservative input at each opportunity when developing these estimates, it is considered likely that the actual emissions measured after construction would not pose an unacceptable risk to human health, or exceed air quality standards. Compliance monitoring will be conducted at the gas vents to confirm the discharge conditions and evaluate whether air quality emissions requirements are met, and also whether emissions meet the cleanup levels or will be below the cleanup levels in the breathing zone, in accordance with Ecology's guidance document for establishing and evaluating air cleanup standards under MTCA (Ecology 2005). If testing of actual conditions after construction indicate carbon filtration is not required to meet air quality standards or MTCA Method B Cleanup Levels in ambient air, the local air quality agency and Ecology will be consulted to determine if the carbon treatment can cease.
Landfill Gas Control System – Design Elements

Based on the analyses presented above, typical solid-waste design practices for passive collection of LFG will be used to control and mitigate LFG, as a component of the Site cleanup. Based on the low quantity of LFG being generated, an active LFG control system using blowers to extract LFG is not required. The design will include the following elements to meet the goals stated in the introduction to this appendix. The proposed design is presented in the EDR and includes the design elements summarized below.

Prevent accumulation of LFG under the landfill cap by providing a LFG capture layer beneath the low-permeability liner that is connected to the atmosphere

This will be accomplished by including an LFG capture layer of geocomposite material below the lowpermeability liner. Several design alternatives were considered including the use of a gravel/sand layer, the use of crushed concrete (which could be manufactured from concrete debris during Site grading), or the use of a combination of geocomposite materials and conveyance piping. The use of geocomposite material provided the most economical alternative based on significant savings in installation costs during construction by eliminating most earthwork associated with alternative LFG collection systems (trenching and pipe installation). This approach is also consistent with what is proposed for the neighboring Cornwall site, providing for ease of construction and simplifying longterm operations and maintenance.

The required transmissivity of this LFG capture layer was calculated for the Cornwall site, based on equations developed by Thiel (Thiel 2005). Because LFG generation is lower at the R.G. Haley Site, it is assumed that the similar required transmissivity within this layer of 1.2×10^{-5} square meters per second (m²/s) is more than adequate.

The geocomposite material evaluated for this application was Draintube[™], by AFITEX-Texel, which combines standard perforated pipes and geosynthetic products into one roll-out material. The product incorporates an integrated conveyance tubing that exceeds the transmissivity requirement with a lower cost than the other alternatives considered. The integrated perforated piping has a large ventilation capacity and is the primary source of vapor transport to the headers and, ultimately, the vents. Landau Associates has reviewed reference applications and confirmed this product has been used at over 1,000 projects world-wide including LFG capture and control at several dozen similar landfill projects, some here in the Pacific Northwest. A limited amount of additional earthwork and piping is required to connect the collection layer to the vents. The materials of construction are consistent with the anticipated emissions at the R.G. Haley Site.

Additionally, if stabilized sediment is placed at the Site in layers greater than 5-feet in thickness, stripdrain geocomposites will be placed beneath these layers with a spacing not to exceed 20 feet. The strip-drain geocomposites will provide lateral migration pathways for gases that rise up and are released from the stabilized sediment, which is anticipated to have a relatively low permeability, and could impede upward migration of gases. The strip-drain geocomposites will be connected to the header system and, ultimately, to the vents for treatment and controlled release.

Provide internal pressure relief to reduce the potential for lateral migration

Internal pressure relief will be provided by the installation of two passive ventilation wells extending vertically into the wood waste. In addition to the LFG collection layer discussed previously (which captures LFG that has migrated upwards), these vertical passive wells provide a ventilation pathway for LFG within the waste mass to minimize buildup of gas pressures that could cause lateral migration. Both of the passive wells will be located in areas where the potential for gas generation is thought to be the highest (in a representatively thick section of wood waste, where the waste thickness is greatest) to the east and just inland of the in-situ stabilization solidification area.

The passive wells will be connected through subsurface LFG lateral headers to the ventilation system and will include isolation valves and monitoring ports located in secure subsurface vaults.

Provide controlled release of LFG through engineered vents, to prevent fugitive emissions where exposure is uncontrolled

Gases collected from the passive wells and from the LFG capture layer in the cover system will be routed through subsurface LFG header piping to two passive vents. During development of the conceptual design, the number of vents and the need for potential ventilation assistance through the use of solar-powered fans and wind turbines were evaluated. Additional vents to a passive ventilation system are useful to keep the collection system clear of LFG, but they are not powerful enough to provide active extraction of LFG from the subsurface. The inclusion of ventilation assistance was determined to be advantageous in minimizing the number of passive vents, although it should be noted that dispersion modeling and the exposure assessment was conducted without the additional convection or dispersion assistance from a solar-powered blower or wind turbine.

Based on lower capital cost and maintenance, the wind turbine was preferable to the solar-assisted ventilation system evaluated. Wind turbines can provide a similar level of ventilation improvement at a small fraction of the cost and, as a result, each of the 2 vents will be outfitted with a wind turbine at the head, which will rotate in the wind to enhance ventilation.

Each vent will also include a subsurface vault that will be outfitted with GAC filtration canisters to treat the emissions prior to discharge. As noted previously, it may be determined through testing after construction, that carbon filtration would no longer be required to meet MTCA cleanup standard. However, based on the design basis calculations, the GAC filtration will be included as a necessary element of construction, and only removed later, if possible, in coordination with Ecology. It should also be noted that carbon filtration may provide effective treatment for odors, so may be advantageous to keep in place, even if emissions do not require carbon filtration to meet MTCA Method B Air Cleanup Levels.

The subsurface vaults will also contain flame arrestors, a safety device that prevents a flame from traveling through the LFG control system due to the anticipated presence of methane gas. This will be included based on the potential for methane to occasionally be present above the explosive limit, and the possibility of lightening striking the vents.

The vents will be constructed of stainless steel 4-inch-diameter pipe with a round concrete base, and an effluent point 12 feet above ground surface, so that the release of LFG is at a controlled location where exposures are not anticipated and ambient air will not be effected. The vent pipe will be metal to provide a long service life, and stainless steel will be used to provide corrosion protection from external elements and the moisture condensing from the LFG. The subsurface vault will be secured in concrete and will have a secure, spring-assisted metal access lid. The vent pipes could be integrated into light poles or other structures for aesthetic purposes during future Site use, if desired. The vent pipe height may need to be extended to accommodate potential increases in ground surface elevations from planned future park development.

References

Ecology. 2005. Focus on Developing Air Cleanup Standards Under the Model Toxics Control Act. Available at: <u>https://fortress.wa.gov/ecy/publications/publications/0109072.pdf</u>. Washington Data Department of Ecology Toxic Cleanup Program.

Ecology website. 2019. "Cleanup Levels and Risk Calculation (CLARC) web site". Available at: <u>https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx</u>. Accessed on June 27.

EPA. 2008. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. US Environmental Protection Agency Document EPA/600/R-08-116. September.

EPA. 1998. Compilation of Air Pollutant Emission Factors, AP-42, Volume 1: Stationary Point and Area Sources, 5th ed., Supplement E, Chapter 2.4: Municipal Solid Waste Landfills. US Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park, NC. November.

Landau Associates. 2018. Engineering Design Report, Cornwall Avenue Landfill Site, Bellingham, Washington. April 30.

Thiel, R.S. 2005. "Design Methodology for a Gas Pressure Relief Layer Below a Geomembrane Cover to Improve Slope Stability", *Geosynthetics International, Vol 23, Number 2.*

ATTACHMENT D.1

Landfill Gas Generation Modeling Report

Summary Report

Landfill Name or Identifier: RG Haley +CALF - Wood Waste

Date: Monday, January 14, 2019

Description/Comments:

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

- Q_{CH4} = annual methane generation in the year of the calculation (m^3 /year) i = 1-year time increment
- n = (year of the calculation) (initial year of waste acceptance)
- i = 0.1-vear time increment

k = methane generation rate (year⁻¹)

 L_0 = potential methane generation capacity (m^3/Mg)

 M_i = mass of waste accepted in the ith year (*Mg*) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (*decimal years*, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfillg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERIST	ICS		
Landfill Open Year		1888	
Landfill Closure Year (with 80)-year limit)	1946	
Actual Closure Year (without	limit)	1946	
Have Model Calculate Closur	re Year?	No	
Waste Design Capacity			megagrams
MODEL PARAMETERS			
Methane Generation Rate, k		0.050	year ⁻¹
Potential Methane Generatio	n Capacity, L₀	170	m³/Mg
NMOC Concentration		4,000	ppmv as hexane
Methane Content		50	% by volume
GASES / POLLUTANTS SEL	ECTED		
Gas / Pollutant #1:	Total landfill gas		
Cas / Dallutant #2	Mathana		

Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

WASTE ACCEPTANCE RATES

Veer	Waste Ac	cepted	Waste-In-Place		
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1888	1,295	1,424	0	0	
1889	1,295	1,424	1,295	1,424	
1890	1,295	1,424	2,589	2,848	
1891	1,295	1,424	3,884	4,272	
1892	1,295	1,424	5,178	5,696	
1893	1,295	1,424	6,473	7,120	
1894	1,295	1,424	7,767	8,544	
1895	1,295	1,424	9,062	9,968	
1896	1,295	1,424	10,356	11,392	
1897	1,295	1,424	11,651	12,816	
1898	1,295	1,424	12,945	14,240	
1899	1,295	1,424	14,240	15,664	
1900	1,295	1,424	15,535	17,088	
1901	1,295	1,424	16,829	18,512	
1902	1,295	1,424	18,124	19,936	
1903	1,295	1,424	19,418	21,360	
1904	1,295	1,424	20,713	22,784	
1905	1,295	1,424	22,007	24,208	
1906	1,295	1,424	23,302	25,632	
1907	1,295	1,424	24,596	27,056	
1908	1,295	1,424	25,891	28,480	
1909	1,295	1,424	27,185	29,904	
1910	1,295	1,424	28,480	31,328	
1911	1,295	1,424	29,775	32,752	
1912	1,295	1,424	31,069	34,176	
1913	1,295	1,424	32,364	35,600	
1914	1,295	1,424	33,658	37,024	
1915	1,295	1,424	34,953	38,448	
1916	1,295	1,424	36,247	39,872	
1917	1,295	1,424	37,542	41,296	
1918	1,295	1,424	38,836	42,720	
1919	1,295	1,424	40,131	44,144	
1920	1,295	1,424	41,425	45,568	
1921	1,295	1,424	42,720	46,992	
1922	1,295	1,424	44,015	48,416	
1923	1,295	1,424	45,309	49,840	
1924	1,295	1,424	46,604	51,264	
1925	1,295	1,424	47,898	52,688	
1926	1,295	1,424	49,193	54,112	
1927	1,295	1,424	50,487	55,536	

WASTE ACCEPTANCE RATES (Continued)

Veer	Waste Ace	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1928	1,295	1,424	51,782	56,960	
1929	1,295	1,424	53,076	58,384	
1930	1,295	1,424	54,371	59,808	
1931	1,295	1,424	55,665	61,232	
1932	1,295	1,424	56,960	62,656	
1933	1,295	1,424	58,255	64,080	
1934	1,295	1,424	59,549	65,504	
1935	1,295	1,424	60,844	66,928	
1936	1,295	1,424	62,138	68,352	
1937	1,295	1,424	63,433	69,776	
1938	1,295	1,424	64,727	71,200	
1939	1,295	1,424	66,022	72,624	
1940	1,295	1,424	67,316	74,048	
1941	1,295	1,424	68,611	75,472	
1942	1,295	1,424	69,905	76,896	
1943	1,295	1,424	71,200	78,320	
1944	1,295	1,424	72,495	79,744	
1945	1,295	1,424	73,789	81,168	
1946	1,295	1,424	75,084	82,592	
1947	0	0	76,378	84,016	
1948	0	0	76,378	84,016	
1949	0	0	76,378	84,016	
1950	0	0	76,378	84,016	
1951	0	0	76,378	84,016	
1952	0	0	76,378	84,016	
1953	0	0	76,378	84,016	
1954	0	0	76,378	84,016	
1955	0	0	76,378	84,016	
1956	0	0	76,378	84,016	
1957	0	0	76,378	84,016	
1958	0	0	76,378	84,016	
1959	0	0	76,378	84,016	
1960	0	0	76,378	84,016	
1961	0	0	76,378	84,016	
1962	0	0	76,378	84,016	
1963	0	0	76,378	84,016	
1964	0	0	76,378	84,016	
1965	0	0	76,378	84,016	
1966	0	0	76,378	84,016	
1967	0	0	76,378	84,016	

Pollutant Parameters

	Gas / Pollutant Default Parameters:		User-specified Pollutant Parameters:		
		Concentration		Concentration	
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	Total landfill gas		0.00		
ses	Methane		16.04		
Gase	Carbon dioxide		44.01		
0	NMOC	4,000	86.18		
	1,1,1-Trichloroethane	·			
	(methyl chloroform) -				
	HAP ´	0.48	133.41		
	1,1,2,2-				
	Tetrachloroethane -				
	HAP/VOC	1.1	167.85		
	1,1-Dichloroethane				
	(ethylidene dichloride) -				
	HAP/VOC	2.4	98.97		
	1,1-Dichloroethene				
	(vinylidene chloride) -				
	HAP/VOC	0.20	96.94		
	1,2-Dichloroethane				
	(ethylene dichloride) -				
	HAP/VOC	0.41	98.96		
	1,2-Dichloropropane				
	(propylene dichloride) -				
	HAP/VOC	0.18	112.99		
	2-Propanol (isopropyl				
	alcohol) - VOC	50	60.11		
	Acetone	7.0	58.08		
	Acryloniunie - HAP/VOC	6.3	53.06		
	Benzene - No or				
	Unknown Co-disposal -				
	HAP/VOC	1.9	78.11		
	Benzene - Co-disposal -				
s	HAP/VOC	11	78.11		
ant	Bromodichloromethane -				
lută	VOC	3.1	163.83		
llo	Butane - VOC	5.0	58.12		
	Carbon disulfide -				
	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
	Carbon tetrachloride -				
	HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -				
	HAP/VOC	0.49	60.07		
	Chlorobenzene -		110 50		
	HAP/VOC	0.25	112.56		
	Chlorodifluoromethane	1.3	86.47		
		10	64.50		
	Chloraform LLAD///OC	1.3	04.02		
	Chloromothana VOC	0.03	F0 40		
	Chloromethane - VOC	1.2	50.49		
	Dichlorobenzene - (HAP				
	for para isomer/VOC)	0.21	147		
		0.21	147		
	Dichlorodifluoromethane	16	120.01		
	Dichlorofluoromethane	10	120.91		
		2.6	102 92		
	Dichloromethane	2.0	102.52		
	(methylene chloride).				
	HAP	14	84 94		
	Dimethyl sulfide (methyl		01.07		
	sulfide) - VOC	7.8	62.13		
	Ethane	890	30.07		
	Ethanol - VOC	27	46.08		

Pollutant Parameters (Continued)

	Gas / Pol	User-specified Pollutant Parameters:			
		Concentration			
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	Ethyl mercaptan				
	(ethanethiol) - VOC	2.3	62.13		
	Ethylbenzene -				
	HAP/VOC	4.6	106.16		
	Ethylene dibromide -				
	HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -	0.70	407.00		
		U./b	137.38		
	Hexane - HAP/VUU	0.0	00.10		
	Marcury (total) - HAP	2 OF_04	200 61		
	Methyl ethyl ketone -	2.31-07	200.01		
		71	72 11		
	Methyl isobutyl ketone -	1.1	12.11		
	HAP/VOC	1.9	100.16		
			100.10		
	Methyl mercaptan - VOC	2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene				
	(tetrachloroethylene) -				
	HAP	3.7	165.83		
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene -				
	VOC	2.8	96.94		
	Toluene - No or				
	Unknown Co-disposal -				
	HAP/VOC	39	92.13		
	Toluene - Co-disposal -		66 40		
	HAP/VOC	170	92.13		
	Trichloroethylene				
its	(trichloroethene) -	2.0	121 10		
tan	HAP/VOC	Ζ.Ծ	131.40		
j,		73	62 50		
Ъ	MAF/VOU Vulanas HAP///OC	1.5	106.16		
	Aylenes - HAF/VOO	12	100.10		

<u>Graphs</u>

<u>Results</u>

V		Total landfill gas			Methane	
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1888	0	0	0	0	0	0
1889	2.687E+01	2.152E+04	1.446E+00	7.178E+00	1.076E+04	7.230E-01
1890	5.244E+01	4.199E+04	2.821E+00	1.401E+01	2.100E+04	1.411E+00
1891	7.676E+01	6.146E+04	4.130E+00	2.050E+01	3.073E+04	2.065E+00
1892	9.989E+01	7.998E+04	5.374E+00	2.668E+01	3.999E+04	2.687E+00
1893	1.219E+02	9.760E+04	6.558E+00	3.256E+01	4.880E+04	3.279E+00
1894	1.428E+02	1.144E+05	7.684E+00	3.815E+01	5.718E+04	3.842E+00
1895	1.627E+02	1.303E+05	8.755E+00	4.347E+01	6.515E+04	4.378E+00
1896	1.817E+02	1.455E+05	9.774E+00	4.853E+01	7.274E+04	4.887E+00
1897	1.997E+02	1.599E+05	1.074E+01	5.334E+01	7.995E+04	5.372E+00
1898	2.168E+02	1.736E+05	1.167E+01	5.791E+01	8.681E+04	5.833E+00
1899	2.331E+02	1.867E+05	1.254E+01	6.227E+01	9.333E+04	6.271E+00
1900	2.486E+02	1.991E+05	1.338E+01	6.641E+01	9.954E+04	6.688E+00
1901	2.634E+02	2.109E+05	1.417E+01	7.035E+01	1.054E+05	7.085E+00
1902	2.774E+02	2.221E+05	1.492E+01	7.410E+01	1.111E+05	7.462E+00
1903	2.907E+02	2.328E+05	1.564E+01	7.766E+01	1.164E+05	7.821E+00
1904	3.034E+02	2.430E+05	1.633E+01	8.105E+01	1.215E+05	8.163E+00
1905	3.155E+02	2.527E+05	1.698E+01	8.428E+01	1.263E+05	8.488E+00
1906	3.270E+02	2.618E+05	1.759E+01	8.735E+01	1.309E+05	8.797E+00
1907	3.379E+02	2.706E+05	1.818E+01	9.026E+01	1.353E+05	9.091E+00
1908	3.483E+02	2.789E+05	1.874E+01	9.304E+01	1.395E+05	9.370E+00
1909	3.582E+02	2.868E+05	1.927E+01	9.568E+01	1.434E+05	9.636E+00
1910	3.676E+02	2.944E+05	1.978E+01	9.819E+01	1.472E+05	9.889E+00
1911	3.766E+02	3.015E+05	2.026E+01	1.006E+02	1.508E+05	1.013E+01
1912	3.851E+02	3.083E+05	2.072E+01	1.029E+02	1.542E+05	1.036E+01
1913	3.932E+02	3.148E+05	2.115E+01	1.050E+02	1.574E+05	1.058E+01
1914	4.009E+02	3.210E+05	2.157E+01	1.071E+02	1.605E+05	1.078E+01
1915	4.082E+02	3.269E+05	2.196E+01	1.090E+02	1.634E+05	1.098E+01
1916	4.152E+02	3.324E+05	2.234E+01	1.109E+02	1.662E+05	1.117E+01
1917	4.218E+02	3.377E+05	2.269E+01	1.127E+02	1.689E+05	1.135E+01
1918	4.281E+02	3.428E+05	2.303E+01	1.143E+02	1.714E+05	1.152E+01
1919	4.341E+02	3.476E+05	2.335E+01	1.159E+02	1.738E+05	1.168E+01
1920	4.398E+02	3.522E+05	2.366E+01	1.175E+02	1.761E+05	1.183E+01
1921	4.452E+02	3.565E+05	2.395E+01	1.189E+02	1.783E+05	1.198E+01
1922	4.504E+02	3.606E+05	2.423E+01	1.203E+02	1.803E+05	1.212E+01
1923	4.553E+02	3.646E+05	2.450E+01	1.216E+02	1.823E+05	1.225E+01
1924	4.600E+02	3.683E+05	2.475E+01	1.229E+02	1.842E+05	1.237E+01
1925	4.644E+02	3.719E+05	2.499E+01	1.240E+02	1.859E+05	1.249E+01
1926	4.686E+02	3.753E+05	2.521E+01	1.252E+02	1.876E+05	1.261E+01
1927	4.726E+02	3.785E+05	2.543E+01	1.262E+02	1.892E+05	1.271E+01
1928	4.765E+02	3.815E+05	2.563E+01	1.273E+02	1.908E+05	1.282E+01
1929	4.801E+02	3.844E+05	2.583E+01	1.282E+02	1.922E+05	1.292E+01
1930	4.836E+02	3.872E+05	2.602E+01	1.292E+02	1.936E+05	1.301E+01
1931	4.869E+02	3.898E+05	2.619E+01	1.300E+02	1.949E+05	1.310E+01
1932	4.900E+02	3.924E+05	2.636E+01	1.309E+02	1.962E+05	1.318E+01
1933	4.930E+02	3.947E+05	2.652E+01	1.317E+02	1.974E+05	1.326E+01
1934	4.958E+02	3.970E+05	2.667E+01	1.324E+02	1.985E+05	1.334E+01
1935	4.985E+02	3.992E+05	2.682E+01	1.332E+02	1.996E+05	1.341E+01
1936	5.011E+02	4.012E+05	2.696E+01	1.338E+02	2.006E+05	1.348E+01
1937	5.035E+02	4.032E+05	2.709E+01	1.345E+02	2.016E+05	1.354E+01

V		Total landfill gas			Methane	
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1938	5.058E+02	4.050E+05	2.721E+01	1.351E+02	2.025E+05	1.361E+01
1939	5.080E+02	4.068E+05	2.733E+01	1.357E+02	2.034E+05	1.367E+01
1940	5.101E+02	4.085E+05	2.745E+01	1.363E+02	2.042E+05	1.372E+01
1941	5.121E+02	4.101E+05	2.755E+01	1.368E+02	2.050E+05	1.378E+01
1942	5.140E+02	4.116E+05	2.765E+01	1.373E+02	2.058E+05	1.383E+01
1943	5.158E+02	4.130E+05	2.775E+01	1.378E+02	2.065E+05	1.388E+01
1944	5.175E+02	4.144E+05	2.784E+01	1.382E+02	2.072E+05	1.392E+01
1945	5.192E+02	4.157E+05	2.793E+01	1.387E+02	2.079E+05	1.397E+01
1946	5.207E+02	4.170E+05	2.802E+01	1.391E+02	2.085E+05	1.401E+01
1947	5.222E+02	4.182E+05	2.810E+01	1.395E+02	2.091E+05	1.405E+01
1948	4.967E+02	3.978E+05	2.673E+01	1.327E+02	1.989E+05	1.336E+01
1949	4.725E+02	3.784E+05	2.542E+01	1.262E+02	1.892E+05	1.271E+01
1950	4.495E+02	3.599E+05	2.418E+01	1.201E+02	1.800E+05	1.209E+01
1951	4.275E+02	3.424E+05	2.300E+01	1.142E+02	1.712E+05	1.150E+01
1952	4.067E+02	3.257E+05	2.188E+01	1.086E+02	1.628E+05	1.094E+01
1953	3.869E+02	3.098E+05	2.081E+01	1.033E+02	1.549E+05	1.041E+01
1954	3.680E+02	2.947E+05	1.980E+01	9.829E+01	1.473E+05	9.899E+00
1955	3.500E+02	2.803E+05	1.883E+01	9.350E+01	1.401E+05	9.417E+00
1956	3.330E+02	2.666E+05	1.791E+01	8.894E+01	1.333E+05	8.957E+00
1957	3.167E+02	2.536E+05	1.704E+01	8.460E+01	1.268E+05	8.520E+00
1958	3.013E+02	2.413E+05	1.621E+01	8.048E+01	1.206E+05	8.105E+00
1959	2.866E+02	2.295E+05	1.542E+01	7.655E+01	1.147E+05	7.710E+00
1960	2.726E+02	2.183E+05	1.467E+01	7.282E+01	1.091E+05	7.334E+00
1961	2.593E+02	2.076E+05	1.395E+01	6.927E+01	1.038E+05	6.976E+00
1962	2.467E+02	1.975E+05	1.327E+01	6.589E+01	9.876E+04	6.636E+00
1963	2.346E+02	1.879E+05	1.262E+01	6.267E+01	9.394E+04	6.312E+00
1964	2.232E+02	1.787E+05	1.201E+01	5.962E+01	8.936E+04	6.004E+00
1965	2.123E+02	1.700E+05	1.142E+01	5.671E+01	8.500E+04	5.711E+00
1966	2.020E+02	1.617E+05	1.087E+01	5.394E+01	8.086E+04	5.433E+00
1967	1.921E+02	1.538E+05	1.034E+01	5.131E+01	7.691E+04	5.168E+00
1968	1.827E+02	1.463E+05	9.832E+00	4.881E+01	7.316E+04	4.916E+00
1969	1.738E+02	1.392E+05	9.352E+00	4.643E+01	6.960E+04	4.676E+00
1970	1.653E+02	1.324E+05	8.896E+00	4.417E+01	6.620E+04	4.448E+00
1971	1.573E+02	1.259E+05	8.462E+00	4.201E+01	6.297E+04	4.231E+00
1972	1.496E+02	1.198E+05	8.050E+00	3.996E+01	5.990E+04	4.025E+00
1973	1.423E+02	1.140E+05	7.657E+00	3.801E+01	5.698E+04	3.828E+00
1974	1.354E+02	1.084E+05	7.284E+00	3.616E+01	5.420E+04	3.642E+00
1975	1.288E+02	1.031E+05	6.928E+00	3.440E+01	5.156E+04	3.464E+00
1976	1.225E+02	9.809E+04	6.590E+00	3.2/2E+01	4.904E+04	3.295E+00
1977	1.165E+02	9.330E+04	6.269E+00	3.112E+01	4.665E+04	3.134E+00
1978	1.108E+02	8.875E+04	5.963E+00	2.961E+01	4.438E+04	2.982E+00
1979	1.054E+02	8.442E+04	5.672E+00	2.816E+01	4.221E+04	2.836E+00
1980	1.003E+02	8.031E+04	5.396E+00	2.6/9E+01	4.015E+04	2.698E+00
1981	9.540E+01	7.039E+04	5.133E+00	2.548E+01	3.819E+04	2.500E+00
1982	9.074E+01	7.200E+04	4.882E+00	2.424E+01	3.033E+04	2.441E+00
1983	0.032E+U1	0.912E+04	4.044E+UU	2.300E+01	3.400E+U4	2.322E+00
1984	8.211E+01	0.5/5E+04	4.418E+00	2.193E+01	3.287 E+04	2.209E+00
1985	7.010E+01	0.204E+04	4.202E+00	2.000E+01	3.127E+04	2.101E+00
1900	7.430E+01	5.949E+04	3.997 E+00	1.900E+01	2.970E+04	1.9995+00
1987	1.00/E+01	5.0090+04	3.802E+00	1.000E+U1	2.03000+04	1.901E+00
1988	6.723E+01	5.383E+04	3.017E+00	1.796E+01	2.092E+04	1.808E+00

Veer		Total landfill gas			Methane	
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1989	6.395E+01	5.121E+04	3.440E+00	1.708E+01	2.560E+04	1.720E+00
1990	6.083E+01	4.871E+04	3.273E+00	1.625E+01	2.435E+04	1.636E+00
1991	5.786E+01	4.633E+04	3.113E+00	1.546E+01	2.317E+04	1.557E+00
1992	5.504E+01	4.407E+04	2.961E+00	1.470E+01	2.204E+04	1.481E+00
1993	5.235E+01	4.192E+04	2.817E+00	1.398E+01	2.096E+04	1.408E+00
1994	4.980E+01	3.988E+04	2.679E+00	1.330E+01	1.994E+04	1.340E+00
1995	4.737E+01	3.793E+04	2.549E+00	1.265E+01	1.897E+04	1.274E+00
1996	4.506E+01	3.608E+04	2.424E+00	1.204E+01	1.804E+04	1.212E+00
1997	4.286E+01	3.432E+04	2.306E+00	1.145E+01	1.716E+04	1.153E+00
1998	4.077E+01	3.265E+04	2.194E+00	1.089E+01	1.633E+04	1.097E+00
1999	3.879E+01	3.106E+04	2.087E+00	1.036E+01	1.553E+04	1.043E+00
2000	3.689E+01	2.954E+04	1.985E+00	9.855E+00	1.477E+04	9.925E-01
2001	3.509E+01	2.810E+04	1.888E+00	9.374E+00	1.405E+04	9.441E-01
2002	3.338E+01	2.673E+04	1.796E+00	8.917E+00	1.337E+04	8.980E-01
2003	3.175E+01	2.543E+04	1.708E+00	8.482E+00	1.271E+04	8.542E-01
2004	3.021E+01	2.419E+04	1.625E+00	8.068E+00	1.209E+04	8.126E-01
2005	2.873E+01	2.301E+04	1.546E+00	7.675E+00	1.150E+04	7.730E-01
2006	2.733E+01	2.189E+04	1.471E+00	7.301E+00	1.094E+04	7.353E-01
2007	2.600E+01	2.082E+04	1.399E+00	6.945E+00	1.041E+04	6.994E-01
2008	2.473E+01	1.980E+04	1.331E+00	6.606E+00	9.902E+03	6.653E-01
2009	2.352E+01	1.884E+04	1.266E+00	6.284E+00	9.419E+03	6.328E-01
2010	2.238E+01	1.792E+04	1.204E+00	5.977E+00	8.959E+03	6.020E-01
2011	2.129E+01	1.704E+04	1.145E+00	5.686E+00	8.522E+03	5.726E-01
2012	2.025E+01	1.621E+04	1.089E+00	5.408E+00	8.107E+03	5.447E-01
2013	1.926E+01	1.542E+04	1.036E+00	5.145E+00	7.711E+03	5.181E-01
2014	1.832E+01	1.467E+04	9.857E-01	4.894E+00	7.335E+03	4.929E-01
2015	1.743E+01	1.396E+04	9.376E-01	4.655E+00	6.978E+03	4.688E-01
2016	1.658E+01	1.327E+04	8.919E-01	4.428E+00	6.637E+03	4.460E-01
2017	1.577E+01	1.263E+04	8.484E-01	4.212E+00	6.314E+03	4.242E-01
2018	1.500E+01	1.201E+04	8.070E-01	4.007E+00	6.006E+03	4.035E-01
2019	1.427E+01	1.143E+04	7.677E-01	3.811E+00	5.713E+03	3.838E-01
2020	1.357E+01	1.087E+04	7.302E-01	3.625E+00	5.434E+03	3.651E-01
2021	1.291E+01	1.034E+04	6.946E-01	3.449E+00	5.169E+03	3.473E-01
2022	1.228E+01	9.834E+03	6.607E-01	3.280E+00	4.917E+03	3.304E-01
2023	1.168E+01	9.354E+03	6.285E-01	3.120E+00	4.677E+03	3.143E-01
2024	1.111E+01	8.898E+03	5.979E-01	2.968E+00	4.449E+03	2.989E-01
2025	1.057E+01	8.464E+03	5.687E-01	2.823E+00	4.232E+03	2.844E-01
2026	1.005E+01	8.051E+03	5.410E-01	2.686E+00	4.026E+03	2.705E-01
2027	9.564E+00	7.659E+03	5.146E-01	2.555E+00	3.829E+03	2.573E-01
2028	9.098E+00	7.285E+03	4.895E-01	2.430E+00	3.643E+03	2.447E-01

Year		Carbon dioxide			NMOC	
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1888	0	0	0	0	0	0
1889	1.970E+01	1.076E+04	7.230E-01	3.085E-01	8.608E+01	5.784E-03
1890	3.843E+01	2.100E+04	1.411E+00	6.020E-01	1.680E+02	1.129E-02
1891	5.625E+01	3.073E+04	2.065E+00	8.812E-01	2.458E+02	1.652E-02
1892	7.321E+01	3.999E+04	2.687E+00	1.147E+00	3.199E+02	2.150E-02
1893	8.933E+01	4.880E+04	3.279E+00	1.399E+00	3.904E+02	2.623E-02
1894	1.047E+02	5.718E+04	3.842E+00	1.640E+00	4.575E+02	3.074E-02
1895	1.193E+02	6.515E+04	4.378E+00	1.868E+00	5.212E+02	3.502E-02
1896	1.331E+02	7.274E+04	4.887E+00	2.086E+00	5.819E+02	3.910E-02
1897	1.463E+02	7.995E+04	5.372E+00	2.293E+00	6.396E+02	4.297E-02
1898	1.589E+02	8.681E+04	5.833E+00	2.489E+00	6.945E+02	4.666E-02
1899	1.708E+02	9.333E+04	6.271E+00	2.676E+00	7.467E+02	5.017E-02
1900	1.822E+02	9.954E+04	6.688E+00	2.854E+00	7.963E+02	5.351E-02
1901	1.930E+02	1.054E+05	7.085E+00	3.024E+00	8.436E+02	5.668E-02
1902	2.033E+02	1.111E+05	7.462E+00	3.185E+00	8.885E+02	5.970E-02
1903	2.131E+02	1.164E+05	7.821E+00	3.338E+00	9.313E+02	6.257E-02
1904	2.224E+02	1.215E+05	8.163E+00	3.484E+00	9.719E+02	6.530E-02
1905	2.312E+02	1.263E+05	8.488E+00	3.622E+00	1.011E+03	6.790E-02
1906	2.397E+02	1.309E+05	8.797E+00	3.754E+00	1.047E+03	7.037E-02
1907	2.477E+02	1.353E+05	9.091E+00	3.880E+00	1.082E+03	7.273E-02
1908	2.553E+02	1.395E+05	9.370E+00	3.999E+00	1.116E+03	7.496E-02
1909	2.625E+02	1.434E+05	9.636E+00	4.113E+00	1.147E+03	7.709E-02
1910	2.694E+02	1.472E+05	9.889E+00	4.221E+00	1.177E+03	7.911E-02
1911	2.760E+02	1.508E+05	1.013E+01	4.323E+00	1.206E+03	8.104E-02
1912	2.822E+02	1.542E+05	1.036E+01	4.421E+00	1.233E+03	8.287E-02
1913	2.881E+02	1.574E+05	1.058E+01	4.514E+00	1.259E+03	8.461E-02
1914	2.938E+02	1.605E+05	1.078E+01	4.602E+00	1.284E+03	8.627E-02
1915	2.992E+02	1.634E+05	1.098E+01	4.686E+00	1.307E+03	8.785E-02
1916	3.043E+02	1.662E+05	1.117E+01	4.766E+00	1.330E+03	8.935E-02
1917	3.091E+02	1.689E+05	1.135E+01	4.843E+00	1.351E+03	9.077E-02
1918	3.137E+02	1.714E+05	1.152E+01	4.915E+00	1.371E+03	9.213E-02
1919	3.181E+02	1.738E+05	1.168E+01	4.984E+00	1.390E+03	9.342E-02
1920	3.223E+02	1.761E+05	1.183E+01	5.049E+00	1.409E+03	9.465E-02
1921	3.263E+02	1.783E+05	1.198E+01	5.112E+00	1.426E+03	9.581E-02
1922	3.301E+02	1.803E+05	1.212E+01	5.171E+00	1.443E+03	9.692E-02
1923	3.337E+02	1.823E+05	1.225E+01	5.227E+00	1.458E+03	9.798E-02
1924	3.371E+02	1.842E+05	1.237E+01	5.281E+00	1.473E+03	9.899E-02
1925	3.404E+02	1.859E+05	1.249E+01	5.332E+00	1.487E+03	9.994E-02
1926	3.434E+02	1.876E+05	1.261E+01	5.380E+00	1.501E+03	1.009E-01
1927	3.404E+02	1.892E+05	1.27 IE+01	5.420E+00	1.514E+03	1.017E-01
1928	3.492E+02	1.908E+05	1.282E+01	5.470E+00	1.526E+03	1.020E-01
1929	3.319E+UZ	1.922E+00	1.292E+01	5.512E+00	1.000000	1.033E-01
1930	3.044E+UZ	1.930E+03	1.301E+01	5.502E+00	1.049E+03	
1020	3.300E+UZ	1.949E+05	1.310E+01	5.390E+00	1.009E+03	
1032	3.0910702	1.902E+03	1.310ETUT	5.660E+00	1.5090+03	1.004E-01
103/	3.013E+02	1.974E+05	1 334E±01	5.000E+00	1.5790-03	1.0012-01
1025	3.0345702	1.905E+05	1.334E+01	5 723 =+00	1.500=+03	1.007 =-01
1036	3.672E+02	2 006E+05	1 348E+01	5.723E+00	1.605E+03	1.073E-01
1030	3 690 =+02	2.0002.00	1 354 F+01	5 781E+00	1.613E+03	1 08/ 4 -01
1301	0.00000102	2.0102.00	1.0072.01	0.7012100	1.0102.00	1.00-L-01

Veer		Carbon dioxide			NMOC	
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³/year)	(av ft^3/min)
1938	3.707E+02	2.025E+05	1.361E+01	5.807E+00	1.620E+03	1.089E-01
1939	3.723E+02	2.034E+05	1.367E+01	5.833E+00	1.627E+03	1.093E-01
1940	3.739E+02	2.042E+05	1.372E+01	5.857E+00	1.634E+03	1.098E-01
1941	3.753E+02	2.050E+05	1.378E+01	5.880E+00	1.640E+03	1.102E-01
1942	3.767E+02	2.058E+05	1.383E+01	5.901E+00	1.646E+03	1.106E-01
1943	3.780E+02	2.065E+05	1.388E+01	5.922E+00	1.652E+03	1.110E-01
1944	3.793E+02	2.072E+05	1.392E+01	5.942E+00	1.658E+03	1.114E-01
1945	3.805E+02	2.079E+05	1.397E+01	5.961E+00	1.663E+03	1.117E-01
1946	3.816E+02	2.085E+05	1.401E+01	5.978E+00	1.668E+03	1.121E-01
1947	3.827E+02	2.091E+05	1.405E+01	5.995E+00	1.673E+03	1.124E-01
1948	3.640E+02	1.989E+05	1.336E+01	5.703E+00	1.591E+03	1.069E-01
1949	3.463E+02	1.892E+05	1.271E+01	5.425E+00	1.513E+03	1.017E-01
1950	3.294E+02	1.800E+05	1.209E+01	5.160E+00	1.440E+03	9.673E-02
1951	3.133E+02	1.712E+05	1.150E+01	4.909E+00	1.369E+03	9.201E-02
1952	2.981E+02	1.628E+05	1.094E+01	4.669E+00	1.303E+03	8.752E-02
1953	2.835E+02	1.549E+05	1.041E+01	4.442E+00	1.239E+03	8.325E-02
1954	2.697E+02	1.473E+05	9.899E+00	4.225E+00	1.179E+03	7.919E-02
1955	2.565E+02	1.401E+05	9.417E+00	4.019E+00	1.121E+03	7.533E-02
1956	2.440E+02	1.333E+05	8.957E+00	3.823E+00	1.067E+03	7.166E-02
1957	2.321E+02	1.268E+05	8.520E+00	3.636E+00	1.014E+03	6.816E-02
1958	2.208E+02	1.206E+05	8.105E+00	3.459E+00	9.650E+02	6.484E-02
1959	2.100E+02	1.147E+05	7.710E+00	3.290E+00	9.179E+02	6.168E-02
1960	1.998E+02	1.091E+05	7.334E+00	3.130E+00	8.732E+02	5.867E-02
1961	1.900E+02	1.038E+05	6.976E+00	2.977E+00	8.306E+02	5.581E-02
1962	1.808E+02	9.876E+04	6.636E+00	2.832E+00	7.901E+02	5.309E-02
1963	1.720E+02	9.394E+04	6.312E+00	2.694E+00	7.516E+02	5.050E-02
1964	1.636E+02	8.936E+04	6.004E+00	2.563E+00	7.149E+02	4.803E-02
1965	1.556E+02	8.500E+04	5./11E+00	2.438E+00	6.800E+02	4.569E-02
1966	1.480E+02	8.086E+04	5.433E+00	2.319E+00	6.469E+02	4.346E-02
1967	1.408E+02	7.691E+04	5.168E+00	2.206E+00	6.153E+02	4.134E-02
1968	1.339E+02	7.316E+04	4.916E+00	2.098E+00	5.853E+02	3.933E-02
1969	1.274E+02	6.960E+04	4.676E+00	1.996E+00	5.568E+02	3.741E-02
1970	1.212E+02	6.620E+04	4.448E+00	1.898E+00	5.296E+02	3.558E-02
1971	1.153E+02	6.297E+04	4.231E+00	1.806E+00	5.038E+02	3.383E-02
1972	1.090E+02	5.990E+04	4.025E+00	1.718E+00	4.792E+02	3.220E-02
1973	0.021E+02	5.096E+04	3.020E+00	1.034E+00	4.000E+02	3.003E-02
1974	9.921E+01	5.420E+04	3.042E+00	1.554E+00	4.330E+02	2.913E-02
1975	9.430E+01	3.130E+04	3.404E+00	1.478E+00	4.123E+02 3.023E+02	2.771E-02
1970	8 530E±01	4.9042104	3.295E+00	1.400E+00	3 732E+02	2.030E-02
1078	8 123E+01	4.003E+04	2.082E±00	1.338E+00	3.732E+02	2.306E-02
1070	7 727E+01	4.4302+04	2.902L+00	1.210E+00	3.330E+02	2.3050-02
1979	7.727E+01	4.221E+04	2.030E+00	1.210E+00	3.212E+02	2.209L-02
1081	6 002E+01	3.810E+04	2.030E+00	1.095E+00	3.212L102	2.155E-02
1982	6.651E+01	3.633E+04	2.000E+00	1.033E+00	2 907E+02	1 953E-02
1983	6.326F+01	3 456F+04	2.322E+00	9.910F-01	2.307E+02	1.858E-02
1984	6 018F+01	3 287F+04	2 209F+00	9.427F-01	2.630F+02	1 767F-02
1985	5 724F+01	3 127F+04	2 101F+00	8.967F-01	2 502F+02	1 681F-02
1986	5.445F+01	2.975F+04	1.999F+00	8.530F-01	2.380F+02	1.599F-02
1987	5.179E+01	2.830E+04	1.901E+00	8.114E-01	2.264E+02	1.521E-02
1988	4.927E+01	2.692E+04	1.808E+00	7.718E-01	2.153E+02	1.447E-02
	-	i		1	-	-

Vaar		Carbon dioxide			NMOC	
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1989	4.687E+01	2.560E+04	1.720E+00	7.342E-01	2.048E+02	1.376E-02
1990	4.458E+01	2.435E+04	1.636E+00	6.984E-01	1.948E+02	1.309E-02
1991	4.241E+01	2.317E+04	1.557E+00	6.643E-01	1.853E+02	1.245E-02
1992	4.034E+01	2.204E+04	1.481E+00	6.319E-01	1.763E+02	1.185E-02
1993	3.837E+01	2.096E+04	1.408E+00	6.011E-01	1.677E+02	1.127E-02
1994	3.650E+01	1.994E+04	1.340E+00	5.718E-01	1.595E+02	1.072E-02
1995	3.472E+01	1.897E+04	1.274E+00	5.439E-01	1.517E+02	1.020E-02
1996	3.303E+01	1.804E+04	1.212E+00	5.174E-01	1.443E+02	9.698E-03
1997	3.142E+01	1.716E+04	1.153E+00	4.921E-01	1.373E+02	9.225E-03
1998	2.988E+01	1.633E+04	1.097E+00	4.681E-01	1.306E+02	8.775E-03
1999	2.843E+01	1.553E+04	1.043E+00	4.453E-01	1.242E+02	8.347E-03
2000	2.704E+01	1.477E+04	9.925E-01	4.236E-01	1.182E+02	7.940E-03
2001	2.572E+01	1.405E+04	9.441E-01	4.029E-01	1.124E+02	7.553E-03
2002	2.447E+01	1.337E+04	8.980E-01	3.833E-01	1.069E+02	7.184E-03
2003	2.327E+01	1.271E+04	8.542E-01	3.646E-01	1.017E+02	6.834E-03
2004	2.214E+01	1.209E+04	8.126E-01	3.468E-01	9.675E+01	6.501E-03
2005	2.106E+01	1.150E+04	7.730E-01	3.299E-01	9.203E+01	6.184E-03
2006	2.003E+01	1.094E+04	7.353E-01	3.138E-01	8.754E+01	5.882E-03
2007	1.905E+01	1.041E+04	6.994E-01	2.985E-01	8.327E+01	5.595E-03
2008	1.812E+01	9.902E+03	6.653E-01	2.839E-01	7.921E+01	5.322E-03
2009	1.724E+01	9.419E+03	6.328E-01	2.701E-01	7.535E+01	5.063E-03
2010	1.640E+01	8.959E+03	6.020E-01	2.569E-01	7.167E+01	4.816E-03
2011	1.560E+01	8.522E+03	5.726E-01	2.444E-01	6.818E+01	4.581E-03
2012	1.484E+01	8.107E+03	5.447E-01	2.325E-01	6.485E+01	4.358E-03
2013	1.412E+01	7.711E+03	5.181E-01	2.211E-01	6.169E+01	4.145E-03
2014	1.343E+01	7.335E+03	4.929E-01	2.103E-01	5.868E+01	3.943E-03
2015	1.277E+01	6.978E+03	4.688E-01	2.001E-01	5.582E+01	3.751E-03
2016	1.215E+01	6.637E+03	4.460E-01	1.903E-01	5.310E+01	3.568E-03
2017	1.156E+01	6.314E+03	4.242E-01	1.810E-01	5.051E+01	3.394E-03
2018	1.099E+01	6.006E+03	4.035E-01	1.722E-01	4.805E+01	3.228E-03
2019	1.046E+01	5.713E+03	3.838E-01	1.638E-01	4.570E+01	3.071E-03
2020	9.947E+00	5.434E+03	3.651E-01	1.558E-01	4.347E+01	2.921E-03
2021	9.462E+00	5.169E+03	3.473E-01	1.482E-01	4.135E+01	2.778E-03
2022	9.001E+00	4.917E+03	3.304E-01	1.410E-01	3.934E+01	2.643E-03
2023	8.562E+00	4.677E+03	3.143E-01	1.341E-01	3.742E+01	2.514E-03
2024	8.144E+00	4.449E+03	2.989E-01	1.276E-01	3.559E+01	2.391E-03
2025	7.747E+00	4.232E+03	2.844E-01	1.214E-01	3.386E+01	2.275E-03
2026	7.369E+00	4.026E+03	2.705E-01	1.154E-01	3.221E+01	2.164E-03
2027	7.010E+00	3.829E+03	2.573E-01	1.098E-01	3.063E+01	2.058E-03
2028	6.668E+00	3.643E+03	2.447E-01	1.045E-01	2.914E+01	1.958E-03

ATTACHMENT D.2

Soil Vapor Monitoring Data

Table D-2 Landfill Gas Monitoring Data - TO-15 Analytical Results Cornwall Avenue Landfill and RG Haley Bellingham, Washington

					Cornwall Site -	Sample ID, Labora	atory ID, Sample I	Date, and Results				R.G. Haley Site - Sample ID, Laboratory ID, Sample Date, and Results							
		CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-								
		BACKGROUND	MW-102	P-2	P-3	P-3	P-6	P-12	P-12	VENT-3	VENT-4	HS-SV-1	HS-SV-2	HS-SV-3	HS-SV-4	HS-SV-5	HS-SV-6	HS-SV-7	HS-SV-8
Analyto	MTCA Method B	P15024/3-001 6/15/2015	P15024/3-006	P1503343-03	P15024/3-003	P1503343-04 8/7/2015	P1503343-01 8/7/2015	P1502473-004 6/15/2015	P1503343-02 8/7/2015	P1502473-005 6/15/2015	P15024/3-002								
Analyte	Cleanup Level	0/13/2013	0/13/2013	6/7/2015	0/13/2013	6/7/2015	0/7/2015	0/13/2013	6/7/2015	0/13/2013	0/13/2013							<u>+</u>	1
Volatiles (µg/m³)																			
Propene	No Criteria	0.21.11	69 U	1300	190	120	540	84	26 11	6.5	0.21 U								
Dichlorodifluoromethane	10 0110110	0.22 0	0.5 0	1500	150	220	540		10.11	0.5	0.22 0							-	
(CFC 12)	45.71	2.3	8.4 U	45 J1	1.3 0	2.6 U	54	8.0 0	10 0	1.9	1.0								
Chloromethane	41.14	0.22 U	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.33 J1	0.49 J1								
1,2-Dichloro-1,1,2,2-	No Criteria	0.28 U	9.4 U	440	14	2.9 U	200	8.9 U	12 U	0.28 U	0.39 J1								
tetrafluoroethane (CFC 114)	0.28			170			150												-
1 3-Butadiene	0.28	0 33 11	 11 U	22 11	17 U	3311	20 11	 10 U	14 U	0 33 11	0.33 U	20 U	 50 U	20 11	20 11	20 U	20 11	20 U	20 U
Bromomethane	2.29	0.28 U	9.4 U	19 U	1.7 U	2.9 U	18 U	8.9 U	14 U	0.28 U	0.28 U								
Chloroethane	4571	0.25 U	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 U	10 U	0.25 U	0.25 U								
Ethanol	No Criteria	6.3 J1	270	79 U	79	12 U	74 U	860	49 U	100	60								
Acetonitrile	27.43	0.27 U	8.9 U	18 U	1.4 U	2.7 U	17 U	8.5 U	11 U	1.6	0.27 U								
Acrolein	0.01	0.25 U	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 U	10 U	3.2	0.25 U								
Acetone	14171	7.5	38 U	76 U	97	12 U	71 U	200 J1	47 U	180	40								
2 Propagal (Isopropyl Alcobal)	320 No Critoria	1.3 J	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 0	10 0	1.4 J	0.66 J, J1								
Acrylonitrile	0.04	0.83 0	84 U	42 U	5.4 JI 1 3 II	2.6 U	39 U	8011	10 11	0.25 11	0.25 11								
1,1-Dichloroethene	91.43	0.25 U	8.4 U	17 U	1.3 U	2.6 U	10 U	8.0 U	10 U	0.25 U	0.25 U								
Methylene Chloride	250	0.41 J1	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 U	10 U	0.48 J1	0.39 J1								
3-Chloro-1-propene	0.42	0.24.11	70.11	16 11	1211	2.4.11	15 11	7 5 11	0.0.11	0.24.11	0.24.11							1	1
(Allyl Chloride)	0.42	0.24 0	7.9 0	10.0	1.2 0	2.4 0	15 0	7.5 0	9.9 0	0.24 0	0.24 0								
Trichlorotrifluoroethane	No Criteria	0.52 J1	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 U	10 U	0.53 J1	0.25 U								
Carbon Disulfide	320	0.22 U	8.6 J1	15 U	29 J1	45 J1	20 J1	45 J1	9.2 U	4.9 J1	2.4 J1								
trans-1,2-Dichloroethene	No Criteria	0.28 U	9.4 U	19 0	1.5 U	2.9 0	18 U	8.9 0	12 0	0.28 U	0.28 U								
1,1-Dichloroethane	9.62	0.24 0	7.9 0	16 U	1.2 0	2.4 0	15 U	7.5 U	9.9 0	0.24 0	0.24 0	20 11	50 11	20 11	20 11	20.11	20 11	20.11	20 11
Vinvl Acetate	91 43	0.23 U	32 U	65 U	5.0 U	9.8 U	60 U	31 U	40 U	2.7 11	0.25 U								
2-Butanone (MEK)	2286	0.65 J1	10 U	21 U	4.4 J1	3.4 J1	19 U	9.9 U	13 U	42	14								
cis-1,2-Dichloroethene	No Criteria	0.24 U	7.9 U	24 J1	7.0	3.2 J1	25 J1	7.5 U	9.9 U	0.24 U	0.24 U								
Ethyl Acetate	32	1.4 J1	17 U	35 U	2.7 U	5.3 U	61 J1	16 U	22 U	4.8	3.0								
n-Hexane	320	0.79	86	5500	450	170	1000	84	110	1.4	25								
Chloroform	0.11	0.25 U	8.4 U	17 U	1.3 U	2.6 U	16 U	8.0 U	10 U	0.32 J1	10								
1 2 Disbloroothana	No Criteria	0.30 0	9.9 0	20 0	4.3	3.0 0	19 0	9.4 0	12 0	280	100								
1,2-Dichloroethane	2286	0.24 0	8411	18 0	1.2 0	2.4 0	15 U	7.3 0	9.9 0	0.24 0	0.24 0								
Benzene	0.32	0.61 J1	12 J1	60	120	16	100	7.5 U	9.9 U	2.8	3.2	3.1	22	97	3	210	65	130	49
Carbon Tetrachloride	0.42	0.53 J, J1	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.55 J, J1	0.22 U								
Cyclohexane	2743	0.43 U	51	570	180	65	850	120	130	4.5	8.7								
1,2-Dichloropropane	0.25	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
Bromodichloromethane	0.07	0.22 U	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.22 U	0.22 U								
Irichloroethene	0.37	0.21 U	6.9 U	14 U	1.9 J1	2.1 U	13 U	6.6 U	8.6 U	0.21 U	0.21 U								
1,4-Dioxane Methyl Methacrylate	0.50	0.24 0	7.9 0	16 U 31 II	1.2 0	2.4 0	29 11	7.5 U	9.9 0	0.24 0	0.24 0								
n-Heptane	No Criteria	1.0	210	2000	2.4 0	74	730	26	32	2.6	5.5								
cis-1,3-Dichloropropene	0.63	0.21 U	6.9 U	14 U	1.1 U	2.1 U	13 U	6.6 U	8.6 U	0.21 U	0.21 U								
4-Methyl-2-pentanone	1371	0.24 U	7.9 U	16 U	2.0 J1	2.4 U	15 U	7.5 U	9.9 U	1.8	0.82								
trans-1,3-Dichloropropene	No Criteria	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
1,1,2-Trichloroethane	0.09	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
Toluene	2286	5.6	98	36 J1	270	3.4 J1	30 J1	190	10 U	330	280	37	85	110	34	140	110	230	52
2-Hexanone	No Criteria	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
1 2-Dibromoethane	0.09	0.24 0	7.9 U	16 U	1.2 0	2.4 0	15 U	7.5 U	9.9 0	0.24 0	0.24 0								
n-Butyl Acetate	No Criteria	0.24 U	7.9 U	10 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	7.7	6.4								
n-Octane	No Criteria	0.57 J1	8.9 U	220	130	29	220	8.5 U	11 U	4.3	3.5								
Tetrachloroethene	9.62	0.21 U	6.9 U	14 U	1.1 U	2.1 U	13 U	6.6 U	8.6 U	0.21 U	0.21 U								
Chlorobenzene	22.86	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
Ethylbenzene	457.14	1.1	36	16 J1	55	2.5 J1	15 U	27	9.9 U	32	28	3.3	93	8,200 J	8.3	1,700	1,200	630	76
m,p-Xylenes	45.71	3.9	110	34 J1	77	9.2 J1	34 J1	55	18 U	49	43	12	510	350	18	4,100	980	9,500 J	140
Bromotorm	2.27	0.22 U	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.22 U	0.22 U								
	457.14	0.22 U 1 A	7.4 U 22	15 U 10 11	2.6 J1	2.3 U	14 U 79 I1	7.1 U 74	9.2 U 31 11	2./	4.2		140	100		3 300 1	270	5 400 1	
n-Nonane	+5.71 No Criteria	0.22 U	7.4 U	15 U	61	11	160	7.1 U	9.2 U	2.0	1.9			150		3,300 3			
1,1,2,2-Tetrachloroethane	0.04	0.22 U	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.22 U	0.22 U								

Table D-2 Landfill Gas Monitoring Data - TO-15 Analytical Results Cornwall Avenue Landfill and RG Haley Bellingham, Washington

		Cornwall Site - Sample ID, Laboratory ID, Sample Date, and Results												R.G. Haley Site -	- Sample ID, Labo	ratory ID, Sample D	ate, and Results		
		CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-	CL-LFG-								
		BACKGROUND	MW-102	P-2	P-3	P-3	P-6	P-12	P-12	VENT-3	VENT-4	HS-SV-1	HS-SV-2	HS-SV-3	HS-SV-4	HS-SV-5	HS-SV-6	HS-SV-7	HS-SV-8
	MTCA Method B	P1502473-001	P1502473-006	P1503343-03	P1502473-003	P1503343-04	P1503343-01	P1502473-004	P1503343-02	P1502473-005	P1502473-002								
Analyte	Cleanup Level	6/15/2015	6/15/2015	8/7/2015	6/15/2015	8/7/2015	8/7/2015	6/15/2015	8/7/2015	6/15/2015	6/15/2015								
Cumene	182.86	0.22 U	220	58	9.9	2.3 U	64	230	62	0.79	1.6								
alpha-Pinene	No Criteria	0.21 U	6.9 U	14 U	50	18	250	2,000	250	1.3	1.3								
n-Propylbenzene	457.14	0.24 U	270	16 U	5.2	2.4 U	15 U	140	9.9 U	2.4	2.6								
4-Ethyltoluene	No Criteria	0.30 J1	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	3.6	3.7								
1,3,5-Trimethylbenzene	No Criteria	0.30 J1	11 J1	17 J1	16	3.1 J1	19 J1	7.5 U	9.9 U	3.3	3.6								
1,2,4-Trimethylbenzene	3.2	0.98	25 J1	28 J1	29	5.6 J1	39 J1	17 J1	9.2 U	11	13								
Benzyl Chloride	0.05	0.16 U	5.4 U	11 U	0.85 U	1.7 U	10 U	5.2 U	6.8 U	0.16 U	0.16 U								
1,3-Dichlorobenzene	No Criteria	0.22 U	7.4 U	15 U	1.4 J1	2.3 U	14 U	7.1 U	9.2 U	1.3	0.90								
1,4-Dichlorobenzene	0.23	0.21 U	6.9 U	32 J1	1.1 U	2.1 U	13 U	6.6 U	8.6 U	0.21 U	0.21 U								
1,2-Dichlorobenzene	91.43	0.22 U	7.4 U	15 U	1.2 U	2.3 U	14 U	7.1 U	9.2 U	0.22 U	0.22 U								
d-Limonene	No Criteria	0.21 U	6.9 U	14 U	18	2.1 U	13 U	150	8.6 U	10	11								
1,2-Dibromo-3-chloropropane	0.0004	0.15 U	4.9 U	9.8 U	0.77 U	1.5 U	9.2 U	4.7 U	6.1 U	0.15 U	0.15 U								
1,2,4-Trichlorobenzene	0.91	0.24 U	7.9 U	16 U	1.2 U	2.4 U	15 U	7.5 U	9.9 U	0.24 U	0.24 U								
Naphthalene	0.07	0.27 U	8.9 U	18 U	2.7 J1	2.7 U	17 U	8.5 U	11 U	0.49 J1	2.2	10	100 U	1,700	14	11,000 J	26,000 J	850	410
2-Methylnaphthalene												15	100 U	250 U	10 U	1,600 J	1,500 J	120	100 U
Hexachlorobutadiene	0.11	0.21 U	6.9 U	14 U	1.1 U	2.1 U	13 U	6.6 U	8.6 U	0.21 U	0.21 U								
Volatiles (ug/m³)																			
FPA Method TO-15 SIM																			
Vinyl Chloride	0.28	0.011 U	0.37 U		0.68	0.67 J		0.36 U	1.5 U	0.061	0.039								
Hydrocarbons																			
C5 to C8 Aliphatic Hydrocarbons												1,000	780,000	1,600,000	230	920,000	450,000	1,100,000	210,000
C9 to C12 Aliphatic Hydrocarbons												1,100	260,000	760,000	230	620,000	980,000	470,000	55,000
C9 to C10 Aromatic Hydrocarbons												150	11,000	130,000	40 U	110,000	180,000	53,000	1,600
Total Petroleum Hydrocarbons	140	13	298	204	576	36	224	312	80	431	372	2,320	1,051,950	2,500,647	584	1,670,450	1,638,625	1,639,740	267,410

Notes:

Nondetected compound show the method detection limit (MDL) as the reporting limit.

J = Indicates the analyte was positively identified; the associated numerical value is

the approximate concentration of the analyte in the sample.

J1 = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

U = Indicates the compound was not detected at the reported concentration.

Bold = Detected compound.

Blue Shading = Laboratory reporting limit is above cleanup level for ambient air. Green Shading = Detected ab

Abbreviations and Acronyms: EPA = U.S. Environmental Protection Agency ID = identification µg/m³ = micrograms per cubic meter MTCA = Model Toxics Control Act -- = Not analyzed. SIM = selected ion monitoring VOC = volatile organic compound

ATTACHMENT D.3

Soil Vapor Emissions and MTCA Evaluation

Table D.3 Soil Vapor Emissions Cornwall Avenue Landfill and RG Haley Bellingham, Washington

				Dellin	gnam, washington					
			De Minimis ⁽¹⁾	SQER ⁽¹⁾	Maximum Emission Rate ⁽²⁾		SQER	MTCA Method B Cleanup Level ⁽³⁾	Maximum Modeled Concentration ⁽⁴⁾	MTCA Cleanup Level
Pollutant	CAS #	Averaging Period ⁽¹⁾	(lb/averaging period)	(lb/averaging period)	(lb/averaging period)	De Minimis Evaluation	Evaluation	(μg/m³)	(μg/m³)	Evaluation
Sampled Constituents - EPA Method TO-15				-		1			-	
Propene	115-07-1	24-hr	19.7	394	1.17E-03	Below		No Criteria	4.59E-02	
Dichlorodifluoromethane (CFC 12)	75-71-8				2.02E-06			45.71	1.91E-03	Below
Chloromethane	74-87-3	24-hr	0.591	11.8	1.35E-05	Below		41.14	5.30E-04	Below
Vinyl Chloride	75-01-4	year	0.123	2.46	5.58E-02	Below		0.28	6.01E-03	Below
1,3-Butadiene	106-99-0	year 24 hr	0.0564	1.13	1.64E-02	Below		0.08	1.77E-03	Below
Chloroothano	74-63-9	24-111	0.0629	0.657	1.712-05	Below		2.29	6.712-04	Below
	75-00-3	24-fir	197	3940	1.53E-05 5.01E.02	Below		45/1	6.265.04	Below
Acrolein	107.02.8	yeai 24 br	0.000304	0.00780	1 525 05	Below		0.01	6.015.04	Below
Acotono	107-02-8	24-111	0.000394	0.00789	1.55E-05	Below		0.01	7.075.02	Below
Trichlorofluoromethane	75 69 4				6.275.07			220	6.015.04	Below
2-Propagol (Isopropyl Alcobol)	67-63-0	1-hr	0.35	7.01	2 10E-06	Below		No Criteria	1 985-03	Below
Acrylonitrile	107-13-1	vear	0.0331	0.662	5.58E-03	Below		0.04	6.01E-04	Below
1,1-Dichloroethene	75-35-4	24-hr	1.31	26.3	1.53E-05	Below		91.43	6.01E-04	Below
Methylene Chloride	75-09-2	year	9.59	192	5.58E-03	Below		250	6.01E-04	Below
3-Chloro-1-propene (Allyl Chloride)	107-05-1	year	1.6	32	5.25E-03	Below		0.42	5.65E-04	Below
Carbon Disulfide	75-15-0	24-hr	5.26	105	4.05E-05	Below		320	1.59E-03	Below
1,1-Dichloroethane	75-34-3	year	6	120	5.25E-03	Below		1.56	5.65E-04	Below
Methyl tert-Butyl Ether	1634-04-4	year	36.9	739	1.64E-02	Below		9.62	1.77E-03	Below
Vinyl Acetate	108-05-4	24-hr	1.31	26.3	5.84E-05	Below		91.43	2.30E-03	Below
2-Butanone (MEK)	78-93-3	24-hr	32.9	657	3.78E-05	Below		2286	1.48E-03	Below
Ethyl Acetate	141-78-6				2.28E-06			32	2.16E-03	Below
n-Hexane	110-54-3	24-hr	4.6	92	4.94E-03	Below		320	1.94E-01	Below
Chloroform	67-66-3	year	0.417	8.35	5.58E-03	Below		0.11	6.01E-04	Below
1,2-Dichloroethane	107-06-2	year	0.369	7.39	5.25E-03	Below		0.10	5.65E-04	Below
1,1,1-Trichloroethane	71-55-6	24-hr	6.57	131	1.53E-05	Below		2286	6.01E-04	Below
Benzene	71-43-2	year	0.331	6.62	6.89E-02	Below		0.32	7.42E-03	Below
Carbon Tetrachloride	56-23-5	year	0.228	4.57	4.92E-03	Below		0.42	5.30E-04	Below
Lyclonexane	110-82-7	24-hr	39.4	/89	7.64E-04	Below		2/43	3.00E-02	Below
Bromodichloromethane	75-27-4	year	0.959	5 18	5.23E-03	Below		0.23	5.05E-04	Below
Trichloroethene	79-01-6	year	4.8	95.9	4.52E-03	Below		0.37	4 95F-04	Below
1.4-Dioxane	123-91-1	vear	1.25	24.9	5.25E-03	Below		0.50	5.65E-04	Below
Methyl Methacrylate	80-62-6	24-hr	4.6	92	2.79E-05	Below		320	1.10E-03	Below
cis-1,3-Dichloropropene	542-75-6	year	0.6	12	4.59E-03	Below		0.63	4.95E-04	Below
4-Methyl-2-pentanone	108-10-1	24-hr	19.7	394	1.44E-05	Below		1371	5.65E-04	Below
1,1,2-Trichloroethane	79-00-5	year	0.6	12	5.25E-03	Below		0.09	5.65E-04	Below
Toluene	108-88-3	24-hr	32.9	657	2.97E-04	Below		2286	1.17E-02	Below
Dibromochloromethane	124-48-1	year	0.355	7.1	5.25E-03	Below		0.09	5.65E-04	Below
1,2-Dibromoethane	106-93-4	year	0.135	2.71	5.25E-03	Below		0.00	5.65E-04	Below
Tetrachloroethene	127-18-4	year	1.62	32.4	4.59E-03	Below		9.62	4.95E-04	Below
Chlorobenzene	108-90-7	24-hr	6.57	131	1.44E-05	Below		22.86	5.65E-04	Below
Ethylbenzene	100-41-4	year	3.84	76.8	2.69	Below		457	2.90E-01	Below
m,p-Xylenes	1330-20-7				3.56E-04			45.71	3.36E-01	Below
Bromoform	75-25-2	year	8.72	174	4.92E-03	Below		2.27	5.30E-04	Below
Styrene	100-42-5	24-hr	5.91	118	1.35E-05	Below		457.14	5.30E-04	Below
0-Xylene	95-47-6	24-hr	1.45	29	4.85E-03	Below		45.71	1.91E-01	Below
	/9-34-5	year	0.165	3.3	4.92E-U3	Below		0.04	5.30E-04	Below
Cumene	98-82-8	24-nr	2.63	52.6	2.07E-04	Below		182.86	8.13E-03	Below
n-Propylbenzene	103-65-1				1.01E-05			457.14	9.54E-03	Below
1,2,4-Trimethylbenzene	95-63-6		0.105		1.46E-06			3.20	1.38E-03	Below
	100-44-7	year	0.196	3.91	3.01E-03	Below		0.05	3.89E-04	Below
1,4-Dichlorobenzene	106-46-7	year	0.872	17.4	1.05E-02	Below		0.23	1.13E-03	Below
1,2-Dichlorobenzene	95-50-1	NCOT	0.00505	0.101	5.02E-U/	Polow		91.43	5.3UE-U4	Below
1.2.4-Trichlorohenzene	120 02 1	year	0.00505	0.101	5,022E-03	DEIOW		0.00042	5.402-04	Below
Nanhthalana ⁽⁵⁾	01 20 2		0.202	E CA	J.39E-U/	About	Doless	0.91	0.105.02	About
Naphthalene	91-20-3	year	0.282	5.64	0.85	ADOVE	Below	0.07	9.19E-02	Above
Vinyl Chloride	07-00-3 75-01-4	year	0.457	0.75	4.59E-U3 2 97E-01	Below		0.11	4.93E-04 5 30E-05	Below
Hydrocarbons	/3-01-4	yea	0.123	2.70	4.721-04	Delow	<u> </u>	0.20	5.502-03	DEIOW
C5 to C8 Aliphatic Hydrocarbons	I				5.99E-02			No Criteria	5.65E+01	1
C9 to C12 Aliphatic Hydrocarbons					3.67E-02			No Criteria	3.46E+01	
C9 to C10 Aromatic Hydrocarbons					6.74E-03			No Criteria	6.36E+00	
*Total Petroleum Hydrocarbons					4.40E-04			140	9.75E+01	Below

Abbreviations and Acronyms lb = pound

(1) Values are based on Washington Administrative Code (WAC) Chapter 173-460-150

μg/m³ = micrograms per cubic meter 1-hr = 1-hour averaging period 24-hr = 24-hour averaging period

(2) Maximum emission rates for sampled pollutants are based on analytical data collected in from field collected samples. When no averaging period is provided, an averaging period of 1-hr is shown. (3) MTCA Method B Cleanup Levels are based on WAC 173-340.

SQER - small quantity emission rate

MTCA = Model Toxics Control Act

(4) Maximum modeled concentrations are based on a 24-hour averaging period and are based on AERSCREEN modeled estimates. (5) A control factor of 90% was applied to naphthalene based on estimated control efficiency of a carbon adsorption system.

* Total Petroleum Hydrocarbons represents the summation of the C5 to C8 and C9 to C12 aliphatic

hydrocarbons, the C9 to C10 aromatic hydrocarbons, benzene, toluene, ethylbenzene, xylenes,

Notes

and naphthalene. The MTCA Method B Cleanup Level shown is for exposure to TPH in indoor air.

ATTACHMENT D.4

Landfill Gas Monitoring Data

Table A-1 Landfill Gas Monitoring Data - June 15, 2015 Cornwall Avenue Landfill Bellingham, Washington

Location	Date	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	Balance (%)	H ₂ (ppm)	CO (ppm)	H ₂ S (ppm)	Static Pressure (inches WC)	TO-15 (Y/N)	VOCs (ppm)
Groundwater	Monitoring V	Vells									
AF-MW-1	6/15/2015	11.8	12.5	00.1	75.5	low	0	9	0.24	Ν	0
CL-MW-101	6/15/2015	9.3	10.3	00.4	80.0	low	0	2	0.20	Ν	0
CL-MW-102	6/15/2015	1.1	12.2	00.4	86.3	low	0	1	0.21	Y	8.7
CL-MW-103	6/15/2015	6.5	14.1	00.3	79.1	low	0	4	0.16	Ν	2.3
MW-1	6/15/2015	0	13.3	1.4	85.2	low	0	0	0.21	Ν	0
MW-11S	6/15/2015	0	4.3	14.6	81.0	low	0	0	0.25	Ν	0
MW-12S	6/15/2015	35.0	6.2	11.0	48.9	low	0	1	0.34	Ν	0.9
MW-13S	6/15/2015	52.2	11.3	5.7	30.3	low	0	0	0.35	Ν	0
MW-14S	6/15/2015	32.0	18.2	4.5	45.1	low	0	1	0.24	Ν	0
MW-15S	6/15/2015	58.2	16.9	0	24.1	low	0	6	0.24	Ν	2.0
MW-16S	6/15/2015	1.9	10.1	6.3	81.8	low	17 ^a	0	1.55	Ν	0.8
MW-6	6/15/2015	13.1	6.9	00.5	79.6	low	0	4	0.16	Ν	0.9
MW-9	6/15/2015	0	8.1	11.3	80.6	low	0	0	0.59	Ν	0
Landfill Gas Ve	ents										
VENT 1	6/15/2015	1.7	00.1	19.8	78.3	low	0	0	0.24	Ν	0
VENT 2	6/15/2015	0	0	20.4	79.4	low	0	0	0.25	Ν	0
VENT 3	6/15/2015	7.1	1.2	16.5	75.2	low	0	42	0.21	Y	0
VENT 4	6/15/2015	6.2	7.0	9.0	77.8	low	0	0	0.25	Y	0

Page 1 of 2

Table A-1 Landfill Gas Monitoring Data - June 15, 2015 Cornwall Avenue Landfill Bellingham, Washington

Location	Date	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	Balance (%)	H ₂ (ppm)	CO (ppm)	H ₂ S (ppm)	Static Pressure (inches WC)	TO-15 (Y/N)	VOCs (ppm)	
Temporary Landfill Gas Probes												
P-1	6/15/2015	1.6	1.4	19.4	77.5	low	0	1	0.25	Ν	0	
P-2	6/15/2015	87.5	12.3	00.1	00.2	low	0	1	0.25	Ν	0	
P-3	6/15/2015	51.9	35.7	1.6	10.8	low	0	1	4.79	Y	0	
P-4	6/15/2015	12.2	15.2	13.6	59.4	low	0	0	0.31	Ν	0	
P-5	6/15/2015	28.2	3.6	15.3	52.8	low	29	2	0.75	Ν	0	
P-6	6/15/2015	35.2	19.3	0	45.4	low	0	0	0.25	Ν	0.4	
P-7	6/15/2015	0	11.8	4.2	83.7	low	0	0	0.24	Ν	0	
P-8	6/15/2015	73.0	10.2	00.3	16.6	low	0	0	0.26	Ν	0	
P-9	6/15/2015	58.7	12.9	0	28.3	low	0	0	0.18	Ν	0.9	
P-10	6/15/2015	0	12.2	7.8	80.0	low	0 ^b	0	0.24	Ν	0	
P-11	6/15/2015	0	9.7	6.7	83.5	low	0	0	0.24	N	0	
P-12	6/15/2015	8.7	8.2	00.2	82.9	low	0	0	8.77	Y	1.8	
P-13	6/15/2015	0	12.0	3.0	85.1	low	0	0	0.16	N	1.5	

^a Peaked at 180 ppm.

^b Peaked at 210 ppm.

 CH_4 = methane

 CO_2 = carbon dioxide

H₂ = hydrogen

H₂S = hydrogen sulfide

N/A = not applicable.

O₂ = oxygen

ppm = parts per million

WC = water column

Y/N = yes/no

Barometric Pressure Data: Sample Event Number 1 - Monday, June 15, 2015

Page 2 of 2

Table A-2 Landfill Gas Monitoring Data - August 7, 2015 Cornwall Avenue Landfill Bellingham, Washington

Location	Date	Time (in seconds)	Purge Volume	CH4 (%)	CO ₂ (%)	O ₂ (%)	Balance (%)	H ₂ (ppm)	CO (ppm)	H₂S (ppm)	Static Pressure (inches WC)	TO-15 (Y/N)	VOCs (ppm)
Landfill Gas Ve	ents	<u>-</u>			-	-	· · · · · · · · · · · · · · · · · · ·			-			•
VENT 1	8/7/2015	53	~0.5817	0.2	0.4	20.3	79.1	low	0	0.0	0.01	N	4.3
VENT 2	8/7/2015	50	0.5817	3.1	0.5	20.1	76.3	low	0	0.0	0.03	N	3.0
VENT 3	8/7/2015	50	0.5817	24.7	8.3	9.1	57.9	low	0	0.0	0.01	N	0.0
VENT 4	8/7/2015	81	0.6103	4.8	10.7	7.8	76.7	low	0	0.0	0.03	Ν	2.0
Temporary Landfill Gas Probes													
P-1	8/7/2015	80	N/A	81.0	10.7	1.5	6.8	low	0	0.0	-1.01	Ν	0.0
P-2	8/7/2015	111	N/A	75.6	7.9	5.2	11.3	low	5	2.8	0.13	Y	0.0
P-3	8/7/2015	67	N/A	41.1	39.8	4.4	14.6	low	0	0.0	-0.04	Y	0.7
P-4	8/7/2015	108	N/A	34.7	24.4	8.9	32.0	low	0	0.0	0.08	N	0.1
P-5	8/7/2015	53	N/A	0.3	0.1	20.7	79.0	low	0	0.0	0.07	N	0.1
P-6	8/7/2015	60	N/A	29.7	19.8	0.3	50.3	low	0	0.0	0.02	Y	0.0
P-7	8/7/2015	53	N/A	0.3	12.0	8.8	78.9	low	0	0.0	-0.02	N	5.7
P-8	8/7/2015	93	N/A	77.4	14.0	0.1	8.5	low	0	0.0	-0.02	N	0.2
P-9	8/7/2015	160	N/A	59.0	17.3	0.1	23.7	low	0	4.5	-0.01	N	0.8
P-10	8/7/2015	55	N/A	0.2	12.1	9.2	78.5	low	0	0.0	0.02	N	10.0
P-11	8/7/2015	63	N/A	3.7	6.5	0.1	89.8	low	0	0.0	-0.01	N	0.0
P-12	8/7/2015	45	N/A	2.9	14.6	0.2	82.3	low	0	3.8	-0.01	Y	6.4
P-13	8/7/2015	80	N/A	0.00	9.6	8.1	82.3	low	0	0.0	-0.04	N	0.0

CH_4 = methane

 CO_2 = carbon dioxide

H₂ = hydrogen

H₂S = hydrogen sulfide

N/A = not applicable.

O₂ = oxygen

ppm = parts per million

WC = water column

Y/N = yes/no

Barometric Pressure Data: Sample Event Number 2 - Friday, August 7, 2015

APPENDIX E

Draft Basis of Design Report, Coast & Harbor Engineering Basis of Design Report R.G. Haley Shoreline and Bottom Slope Protection

Basis of Design Report R.G. Haley Shoreline and Bottom Slope Protection

1. Introduction

This technical report summarizes the engineering basis of design that was used by Coast & Harbor Engineering, a Division of Mott MacDonald (MM) to assist GeoEngineers with preliminary (30%) level design of the shoreline and bottom slope erosion protection for the R.G. Haley Project. Prior to preliminary design, MM developed and coordinated with the Project Team, the City of Bellingham, and GeoEngineers to determine the input data and design criteria for the preliminary design. Using the input data and design criteria, the shoreline erosion and bottom slope protection were designed by MM considering the remediated surfaces provided by GeoEngineers. The following remediated surfaces with caps to contain sediment contamination were provided by GeoEngineers: Organoclay Amended Sand Cap (OASC)¹; Activated Carbon Amended Sand Cap (ACASC); and Combined Gravelly Sand Thin-Layer Containment Cap and Seafloor Erosion Protection (GSTLC). The locations of the remediated surfaces within the project site can be found in Figure 1. As part of the design, MM determined the type, dimensions, and thickness of the material to be placed on top of the remediated surfaces (updated version transmitted by GeoEngineers on 07/01/2020) that will protect said remediated sediment cap surfaces from erosion during storm conditions, as defined by the design criteria.

¹ Also includes organoclay and activated carbon-amended cap shown in Figure 1.

Figure 1. Preliminary project design showing remediated sediment cap surfaces provided by GeoEngineers (preconstruction bathymetry)

This technical report focuses on the preliminary (30%) design of the shoreline and bottom slope erosion protection for the remediated surfaces of the R.G. Haley project. Shoreline and bottom slope erosion protection begins at the upper edge of the remediated bank along the shoreline crest and extends out to the waterward limit of the GSTLC. No protection is planned over the monitored natural recovery (MNR) surface based on continued net deposition conditions and relatively low concentrations of contaminants, as described in the Engineering Design Report.

2 Input Data and Major Design Criteria

The shoreline and bottom slope protection were designed considering the input data and design criteria, developed and coordinated with the Project Team through the previous and current phases of engineering and design. More details on input data and design criteria affecting the analysis can be found in the 2018 Mott MacDonald technical memorandum on Input Data and Analysis Criteria. The design data and criteria includes:

- Bathymetry: 2008 NOAA bathymetry, 2015 bathymetry provided by GeoEngineers, and 2016 Whatcom Waterway Project Bathymetry provided by the Port of Bellingham.
- Design Storm: 100-year return period storm event and corresponding waves. The 100year storm winds were determined for a spectrum of directions by performing extreme value analysis on the Bellingham Airport wind data (1948 – 2014) and fitting the extreme wind events to a Weibull distribution. These winds were then used to force a wave model to estimate the 100-year wave conditions at the project site.
- Maximum Design Water Surface Elevation and Sea Level Rise (SLR): Mean Higher High Water (MHHW) was identified as the maximum design water surface elevation and 50 inches was identified as extent of SLR. MHHW combined with SLR (50 inches), surge, and wave runup may occur during the design storm.
- Propeller Wash: Propeller wash was not considered in the design.

Additional design criteria for water levels, SLR, and current velocities are discussed below in Sections 2.1, 2.2, and 2.3 respectively.

2.1 Water Levels

A review of extreme waves from previous projects in Bellingham Bay has shown that wave heights are maximized when the water surface elevation (WSE) in the bay is at or above Mean Sea Level (MSL). To optimize the design, the shoreline and bottom slope protection was designed using revetment design rock sizing methods above the MSL wave breaking limit, and shoreline and bottom slope protection was designed for stability under wave bottom velocities below the MSL wave breaking limit.

2.2 Sea Level Rise

Multiple criterion for SLR were assessed to minimize the risk of erosion of the shoreline protection layer. The upper (higher) level of SLR criteria, 50 inches, was used for design of erosion protection and wave runup/overtopping at the upper part of the slope and shoreline, while a lower (smaller) level of SLR, 2.4 feet, was used for design of scour protection for the lower part of the slope and shoreline.

The higher level of SLR was obtained from the substantive requirements of the Bellingham Municipal Code (BMC) Chapter 16.30 Planned Actions and is an estimated SLR projection of 50 inches by 2120.

The lower level of SLR criteria, 2.4 feet, was selected based on a review of the available regional SLR estimates provided by the Washington Coastal Resilience Project (Miller et al. 2018, updated July 2019). An estimate of 1.8 feet to 2.4 feet of SLR represents the 50% exceedance SLR magnitudes reported for the two carbon emission scenarios included in

the report. This approach follows similar guidance for coastal structure design (50% chance of exceedance) within the United States Army Corps of Engineers Coastal Engineering Manual (CEM, 2002). The 2.4 feet of projected SLR was used to provide a more conservative design water surface elevation for scour protection for the lower part of the slope and shoreline.

2.3 Currents

Stability analysis of the sand cap containment layers under tidal current velocities was conducted based on results of previous three-dimensional (3-D) hydrodynamic modeling of flow circulation in Bellingham Bay. Figure 2 shows snapshots of depth-averaged maximum velocities in the modeling domain during normal tide conditions and extreme flow in Whatcom Creek.

Figure 2. Snapshot of depth-averaged maximum velocities in modeling domain during extreme flow in Whatcom Creek for (a) ebb; and (b) flood.

Figure 2 shows that the maximum velocities at the area adjacent to the R.G. Haley Project do not exceed 0.06 m/s or 0.2 ft/sec. Comparison of tidal flow velocities to wave orbital velocities over the project area indicate that wave orbital velocities at the seabed significantly exceed tidal current velocities that may occur in the sand cap containment layer in the project area. Therefore, for design of the cap erosion protection material, wave orbital velocity were considered the governing velocity design criteria.

Detailed wave analysis and numerical modeling was performed to establish the wave conditions prior to the project (existing conditions) and determine the stable material size for shoreline and bottom slope protection. It was assumed that any reduction in depth by the addition of the cap and protection layers has a negligible effect on waves at the project.

3. Wave Analysis

3.1. Methodology

Wave conditions at the project site were developed based on numerical modeling of wind-wave generation for the design (100-year) wind speeds from the south to west directions (180° through 330° TN), which correspond to the limiting wave fetches for the project location in Bellingham Bay. Wave modeling was conducted using the two-dimensional (2-D) Simulating Waves Nearshore Model (SWAN 40.72, Delft Technical University, 2008) in steady state mode. SWAN simulates the growth of waves due to wind forcing and accounts for wave shoaling, refraction, and bottom friction of waves as they approach the shoreline. To account for the large-scale windwave growth within Puget Sound (large-scale dynamics) and accurately represent wave propagation to the project site (small-scale dynamics), the SWAN numerical model utilized a large regional grid as well as a local nested grid to simulate wind-wave growth and propagation for the 100-year design winds. Figure 3 shows the model bathymetry for the large regional grid and the local nested grid. The SWAN wave modeling numerical grid was built using bathymetry data from various public sources (e.g., NOAA), provided project topography/bathymetry data, and bathymetry from an internal MM database.

The SWAN modeling results for the critical wind direction cases were extracted near the project site and applied as a boundary input condition for determining the stable materials to be used in shoreline and bottom slope protection design.

Figure 3. SWAN Wave modeling bathymetry grids: (a) large and (b) nested
3.2. Results

Modeling was conducted for the design storm event (100-year storm) using winds from the directions 180° through 330° TN and for water levels ranging from MLLW to MHHW plus 50 inches. Example SWAN modeling wave results for Bellingham Bay as well as a zoomed-in view at the project site, both under existing conditions, are shown in Figure 4 and Figure 5, respectively. Figure 4 shows a distribution (field) of significant wave heights during the 100-year design storm for various wind directions over the nested modeling domain in color format. Figure 5 shows significant wave heights at the project site during the 100-year design storm with winds from 230 degrees and a water surface elevation equal to MHHW plus 50 inches (governing case for overtopping). The wave field modeling outputs in terms of significant wave heights were extracted from the modeling results at points of interest throughout the project area and were used as the basis for analysis and optimization of the various components of the shoreline and bottom slope erosion protection, which are described in Section 4.

Figure 4. Example wave modeling outputs in Bellingham Bay; wave heights over modeling domain during design storms from different directions

Figure 5. Significant wave heights at the project site during the 100-yr design storm with winds from 230 degrees and a water surface elevation MHHW plus 50 inches. Locations of the provided sections (from GeoEngineers) are also shown in black for reference.

4. Material Sizing

4.1. Methodology

Based on the results of the wave analysis and numerical wave modeling, the shoreline and bottom slope erosion protection material were designed using two methods that account for the specific wave hydrodynamics in the nearshore and breaking areas. The first method considers the stability of armor material under the impact of breaking waves. This method was applied to the project area located at elevations of 0.0 feet NAVD88 or higher. The elevation of 0.0 feet NAVD88 corresponds approximately to the wave breaking elevation of the design wave storm at MSL. As previously mentioned, wave heights are maximized when the WSE is at or above MSL. To account for SLR, the wave breaking elevation when the WSE is at MSL plus 50 inches was determined. This approximate elevation is 3.5 feet NAVD88 relative to the existing ground surface. The method for stability analysis under breaking wave conditions (Method 1) is based on recommendations from the Coastal Engineering Manual and integrates well known and industry accepted methods such as van der Meer deep- and shallow-water (1988), Melby (2005), and van Gent (2004).

The second method for calculation of stable material considers stability of material under the impact of wave orbital velocities. This method was applied for the project area that is located below elevation 0.0 feet NAVD88. The method for stability analysis under wave orbital velocity (Method 2) is also based on recommendations from the Coastal Engineering Manual and integrates well known methods of Grant & Madsen (1979) and Maynord (1998).

It should be noted that the approach discussed above, in which different material sizing methods are used at differing elevations and regions of the shoreline, has been successfully applied to design the stable material under wave impact for various clean up and shoreline erosion protection projects both worldwide and in Puget Sound. Example projects that were designed using this methodology include: Port of Anacortes Former Scott Mill Cleanup Project; Wyman Property Habitat Restoration Project; Former Custom Plywood Site Cleanup Project; Whatcom Waterway Cleanup Project; and others.

4.2. Results

The results of the stable material size analysis calculations are shown in Table 1.

Range of Surface Elevation (NAVD88)	Range of Bottom Slope (Approx.)	Size of Material, D50
Max Upper Elev. Limit = Upland Crest Min Lower Elev. Limit = 0.0 ft	7H:1V to 20H:1V	0.8 feet
Max Upper Elev. Limit = 0.0 ft Min Lower Elev. Limit = -2 ft to -9.0 ft	7H:1V to 13H:1V	1.5 inches
Max Upper Elev. Limit = -2 ft to -9.0 ft Min Lower Elev. Limit = Seaward limit of site	3H:1V to 15H:1V	0.4 inches

Table 1. Results of material stability analysis.

Figure 6 shows the recommended design for the shoreline and bottom slope erosion protection materials in plan-view and their location within the project site.

Figure 6. Plan view of recommended design shoreline and bottom slope erosion protection materials

In addition to the plan view for the recommended design, results of the material sizing analysis were translated to cross-sections provided to MM by GeoEngineers and verified for accuracy by MM. A total of seven cross-sections, A-A' through G-G', were provided to MM by GeoEngineers and reviewed for accuracy by MM. MM found no issue with the provided cross sections from GeoEngineers, which incorporate the stability analysis results presented in this document.

5. Recommendations for the Design

5.1. General

As presented above, the recommended design to protect the slopes from erosion consists of three material types placed at varying elevations: armor rock, a cobble/gravel mix, and a gravel/sand mix. A description of each material type, their extents, and their function is provided in the sections below.

5.2. Armor Rock

The armor rock will be placed on the upper part of the existing shoreline from elevation 0.0 feet NAVD88 up to the approximate elevations provided in Table 2.

Section	Recommended Minimum Armor Rock Crest Elevation (NAVD88)	Design Criteria
A, B, C, D	15.5 ft.	Minimizes risk of overtopping and upland erosion
E	14 ft.	Allows potential overtopping; minimizes risk of upland erosion ²
F, G	Elevation of crest of existing riprap revetment	Allows potential overtopping; minimizes risk of upland erosion ²

Table 2. Armor Rock Crest Recommendations

A smooth rock crest transition will be necessary between the different minimum crest elevations provided in Table 2. The existing riprap along the northern shoreline of the project will need to be assessed to determine the required up-slope extents of the proposed armor rock (during the next phase of design). At the southernmost part of the project, the armor rock revetment will be transitioned into the proposed design surface of the Cornwall Cleanup Project south of R.G. Haley. The transition between the R.G. Haley site and Cornwall site will be designed upon completion of the Cornwall Cleanup Project design.

The revetment was designed to be placed on top of the final grade of the remediated OASC and a portion of the ACASC cap surfaces. Some grading of the existing shoreline is expected in order to allow for the installation of the armor rock up to the crest elevations provided in Table 2 and will be coordinated and refined by the project team in the next phase of design. The armor rock should be placed to a minimum thickness of 2.0 feet below approximate elevation 3.5 feet NAVD88 and a minimum thickness of 2.5 feet above approximate elevation 3.5 feet NAVD88 relative to the existing shoreline surface. A gravel bedding layer of 6 inches (minimum thickness) should be placed between the remediated surfaces and the armor rock to prevent piping of the remediated surface materials through the armor rock.

² Precludes erosion for paved and reinforced surfaces.

5.3. Cobble/Gravel Mix

The cobble/gravel mix will be placed on the existing shoreline from elevation 0.0 feet NAVD88 to lower elevations ranging from -2.0 feet NAVD88 to -9.0 feet NAVD88 and will provide the bottom slope protection from wave induced bottom velocities. At the northernmost part of the project, the cobble/gravel mix will be graded into the existing shoreline bottom slopes by employing a transition berm to help mitigate potential scour (Figure 7). At the southernmost part of the project, the cobble/gravel mix will be graded to ensure a smooth transition into the proposed design surface of the Cornwall Cleanup Project adjacent to the R.G. Haley Project (transition to be determined after the completion of the Cornwall Cleanup Project design).

The cobble/gravel mix was designed to be placed directly on top of the final grade of the ACASC and a portion of the OASC remediated cap surfaces. The cobble/gravel mix should be placed to a minimum thickness of 1.5 ft. No cut and fill of the existing bottom slopes are expected to allow for the installation of the cobble/gravel mix. No additional separation layer or bedding material is expected to be needed between the cobble/gravel mix and ACASC, OASC, and the seafloor to prevent piping.

5.4. Gravel/Sand Mix

The gravel/sand mix will be placed on the existing bottom slopes starting at elevations ranging from -2.0 feet NAVD88 to -9.0 feet NAVD88 and seaward to the offshore limit of the Thin-Layer Cap protecting the bottom slopes from wave induced bottom velocities. At the northernmost part of the project, the gravel/sand mix will grade to transition into the existing shoreline bottom slopes by employing a transition berm to help mitigate potential future scour. At the southernmost part of the project, the gravel/sand mix will be graded to ensure a smooth transition into the proposed design surface of the Cornwall Cleanup project adjacent to the R.G. Haley Project (transition to be determined after the completion of the Cornwall Cleanup Project design).

The gravel/sand mix was designed to be placed directly on top of the final grade of the AC Amended Sand Cap where it will perform as a single purpose layer (erosion protection only), and to be placed directly on top the existing sediment surface seaward of the AC Amended Sand Cap where it will perform as a dual purpose layer (capping and erosion protection). The gravel/sand mix should be placed to a minimum thickness of 1.0 ft. No cut and fill of the existing sediment surface are expected to allow for the installation of the gravel/sand mix.

5.5 Transition Berms

Transition berms will be placed at the transitions separating the Armor Rock and Cobble/Gravel Mix interface, as well as the Cobble/Gravel Mix and Gravel/Sand Mix interface. Transition berms are designed to prevent scour and allow natural adjustment at the interface between two different types of material on the bottom slope. The transition berms are designed to initially be 2.0 feet thick with a crest width of 4.0 feet. The transition berm side slopes for a given material at a given location during initial placement as part of construction will be the angle of repose to support the design thickness (2.0 feet) and crest width (4.0 feet). It is expected that the transition berm material will migrate and adjust to the bottom slope after placement. The design grades of the transition berm may not be achievable and are shown herein to estimate the volume of construction material and to define the specific placement of that material on the bottom slope.

5.6 North and South Transition Zones

The transitions at the north and south end of the R.G. Haley project site were designed to ensure a smooth and stable connection to the existing bathymetry (north transition) or adjacent Cornwall Cleanup project (south transition). Figure 7a and 7b show the recommended transition to the existing elevations at the north end of the R.G. Haley project. A transition berm is needed between the erosion protection layer (1.5-foot thick gravel/cobble and 1-foot gravel/sand layer) and uncapped seafloor. A transition berm is most likely not necessary between the armor rock and existing rock revetment. At the south end transition, the erosion protection layer will be graded to ensure a smooth transition into the proposed design surface of the Cornwall Cleanup Project adjacent to the R.G. Haley Project (transition to be determined after the completion of the Cornwall Cleanup Project design).

Figure 7a. Plan view showing transect location used to describe north transition of protection layers to existing bathymetry for R.G. Haley project

Figure 7b. Transition transect - North transition of protection layers to existing bathymetry

6. References

- Delft University. 2008. Simulating Waves Nearshore Model, SWAN 40.72, Delft Technical University.
- Grant, W.D. and Madsen, O.S. 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4), pp.1797-1808.
- Maynord, S. 1998. "Appendix A: Armor Layer Design for the Guidance for In-Situ Subaqueous Capping of Contaminated Sediment." EPA 905-B96-004, Great Lakes National Program Office, Chicago, IL.
- Melby J.A. 2005. Breakwater and Revetment Armor Stability. USACE ERDC/CHL MMTN-III-71. December 2005.
- Miller, I.M., Morgan, H., Mauger, G., Newton, T., Weldon, R., Schmidt, D., Welch, M., Grossman, E. 2018. Projected Sea Level Rise for Washington State – A 2018
 Assessment. A collaboration of Washington Sea Grant, University of Washington Climate Impacts Group, Oregon State University, University of Washington, and US Geological Survey. Prepared for the Washington Coastal Resilience Project.
- Mott MacDonald. 2018. Technical Memorandum, R.G. Haley 30% Design Assistance (CITY PROJECT # EC-0018) Input Data and Analysis Criteria. September 2018.
- Mott MacDonald. 2019. Technical Memorandum, Amendment 1 to R.G. Haley 30% Design Assistance (CITY PROJECT # EC-0018) Input Data and Analysis Criteria. September 2019.

United States Army Corps of Engineers. (2002) Coastal Engineering Manual.

- van Gent, M R A, Smale, AJ and Kuiper, C. 2004. Stability of rock slopes with shallow foreshores. IN: J A Melby (ed), Proc 4th int coastal structure conf., Portland, OR, 26-30 Aug 2003. ASCE, Reston, VA.
- van der Meer, J.W. 1988. Rock slopes and gravel beaches under wave attack. PhD thesis, Delft University of Technology, Delft. Also, Delft hydraulics Publication No. 396.

APPENDIX F Geotechnical Modeling and Analysis

Appendix F-1 Geotechnical Modeling and Analysis

APPENDIX F-1 GEOTECHNICAL MODELING AND ANALYSIS

1.0 INTRODUCTION

The appendix summarizes geotechnical analyses completed as part of the capping and in-situ solidification (ISS) design for the Upland and Marine Units of the R.G. Haley Site (Site). The long-term slope stability and potential settlement of the capping areas were evaluated for the geotechnical analysis.

2.0 SLOPE STABILITY

2.1. Design Criteria

Washington State Department of Transportation (WSDOT) Geotechnical Design Manual (GDM) Section 7.4, establishes the minimum required factors of safety (FS) for slope stability analysis of permanent cuts and fills as 1.25 and 1.05 for static and pseudo-static cases, respectively. In engineering practice these FSs are also commonly considered for comparative purposes for slopes that do not support structures or would not impact a structure during failure. The GDM FSs were used as general guidance in the Site geotechnical stability analysis and are presented for reference to evaluate the long-term performance of the upland and sediment caps and ISS mass.

2.2. Approach and Assumptions

2.2.1. Soil Properties

A Site Plan is presented on Figure F-1 presenting cross sections C-C' and D-D' used for the slope stability analyses. These cross sections align with upland and off-shore/bank cross sections presented in the body of the Engineering Design Report (EDR) with the same letter designations. The modeled slope stability analyses for these cross sections are shown on Figures F-2 through F-6 for C-C' and on F-7 through F-8 for D-D'.

Field observations and geotechnical laboratory test results from 13 explorations were reviewed to define the subsurface conditions in the analyses. The exploration locations are shown on Figure F-1 and include HD-MW-17, HS-MW-19, HS-MW8, HW-SB-18, RW-4, RW-5, RW-6, TL-MW-1, TL-MW-2, TL-MW-13, TL-MW-14, TL-MW15, and TL-MW16. Table F-1 below presents the soil and rock properties selected for the geotechnical analysis based on the field and laboratory testing information reviewed. Soil friction angles are based on correlations between N1₆₀ and friction angle per Table 5-1 in the WSDOT GDM, and GeoEngineers' engineering experience with similar soils in the vicinity. The cohesive strength for the ISS mass is based on laboratory testing information F-2.

	Total Unit	Stre	ngth
Material	Weight, y (pcf)	Ф (deg)	C (psf)
Gravel-Cobble Armor Rock	135	40	
Amended Sand Cap	120	32	
ISS (Treated Soil)	125		7,200
Existing Fill (Sand and Silt)	125	32	-

TABLE F-1. SOIL AND ROCK PROPERTIES FOR DESIGN

	Total Unit	Stre	ngth
Material	Weight, γ (pcf)	Ф (deg)	C (psf)
Wood Debris and Sawdust	75	30	
Native Marine Deposits	130	37	
Sandstone Bedrock (Chuckanut Formation)	130	45	

Notes:

\$\$\phi\$ = static friction angle
c = static cohesion
deg = degrees
pcf = pounds per cubic foot

psf = pounds per square foot

2.2.2. Seismic Parameters

The Haley Site seismic design evaluation follows the 2015 International Building Code (IBC) which is based on a seismic event with a 2 percent probability of exceedance in a 50-year period. This event is equivalent to the approximate 2,475-year return period. The 2015 IBC criteria were used as general guidance to develop seismic design parameters and are presented for reference to evaluate the long-term performance of the Haley upland and sediment caps under pseudo-static conditions. For comparison, the Cornwall site EDR (Landau 2018) provided seismic design parameters based on the 2012 IBC for the 2,475-year return period event.

The IBC references the 2008 United States Geological Survey (USGS) National Seismic Hazards Mapping Project for determining a peak ground (soft rock) acceleration (PGA) coefficient for design. The calculated PGA for a seismic event with this return period at the Site is:

PGA = 0.40 gravitational acceleration (g)

The soft rock PGA values are then modified for the site class, which accounts for the subsurface conditions within 100 feet of the ground surface. Site class was evaluated from a sampling of borings across the Haley Site using the measured blow count and the procedures outlined in the American Association of State Highway Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications (2017). Both Site Class D and E soils were at the Site. Site Class D was selected as representative for calculating the Site Class adjusted PGA, which is referred to as the PGA_M.

- Site amplification factor for Site Class D = 1.101
- PGA adjusted for Site Class amplification (PGA_M) = 0.439 g

For pseudo-static slope stability analyses, a seismic horizontal coefficient, kh, of 0.22 g was used, which is equal to one half of the PGA_M in accordance with the standard of practice.

2.2.3. Groundwater

Nearshore groundwater conditions were assumed to closely match the anticipated relative tidal fluctuations. For modeling purposes, the groundwater and sea level were modeled with a level piezometric line and were set at elevation 8.04 feet North American Vertical Datum of 1988 (NAVD88) corresponding to the mean higher high water (MHHW) in accordance with the standard of practice.

2.3. Analysis Runs

Slope stability was modeled using the commercial software Slope/W version 8.16.1.13452 produced by GeoStudio. The stability of the proposed critical sections was evaluated for temporary conditions during construction (i.e., sediment excavation seaward of ISS), and post-construction static and pseudo-static conditions. Section C-C' considers failure surfaces near the ISS as well as offshore where the sea floor becomes steeper.

2.3.1. Slope Stability Results

Slope stability results for modeled sections C-C' and D-D' are presented on Figures F-2 through F-6 and F-7 through F-8, respectively. A summary of the global stability results is presented in Table F-2, below.

Cross Section	Analysis Name	Minimum Required Factor of Safety	Calculated Factor of Safety
Temporary			
C-C'	Sediment Excavation (Post-ISS)	1.25	2.6
Post-Capping			
C-C'	Static – Near ISS	1.25	3.8
C-C'	Static – Offshore	1.25	1.5
C-C'	Pseudo-Static – Near ISS	*	1.1
C-C	Pseudo-Static –Offshore	*	0.6
D-D'	Static – Upland/Offshore Slope Transition	1.25	3.0
D-D'	Pseudo-Static – Upland/Offshore Slope Transition	*	0.9

TABLE F-2. SLOPE STABILITY ANALYSIS RESULTS

*Submerged portions of capped offshore slopes could potentially move in a seismic event.

3.0 SETTLEMENT

3.1. Approach/Assumptions

3.1.1. Soil Properties

The Existing Fill and Native Marine Deposits were modeled as cohesionless soil layers using elastic settlement properties with an elastic modulus recommend by AASHTO Table C10.4.6.3-1. The Wood Debris and Sawdust were modeled as cohesive and organic soil layers were modeled using consolidation settlement properties. The debris size in the Wood Debris and Sawdust soil unit varies from relatively large wood pieces to decomposing fibers considered to be similar to peat for modeling purposes. The compressibility of the wood debris soil unit was evaluated based on recommendations for peat/organic soils in accordance with recommendations set forth in the WDSOT GDM Section 5.13.2.

Settlement analyses were completed using the selected soil properties presented in Table F-3, below.

TABLE F-3. HALEY CONSOLIDATION PROPERTIES

			Consol		Elastic Settlement	
Soil Unit	Total Unit Weight, γ (pcf)	Cce	Cre	Cv (ft²∕da y)	Cαe	E₅ (ksf)
Wood Debris and Sawdust	75	0.4	0.04	0.2	0.024	
Existing Fill (Sand and Silt)	125					600
Native Marine Deposits	130					800
Notes: C_{Ce} = compression index C_v = coefficient of consolidation e_0 = initial void ratio ft^2 = square feet	C_{re} = recom $C_{\alpha e}$ = secor E_s = Young' pcf = pound	pression ir ndary comp s Modulus Is per cubio	ndex ression inc c foot	lex		

The ISS-treated soil and Chuckanut formation were considered incompressible. The ISS treated soil will be solidified by the cement mixed into the soil and the Chuckanut Formation is composed of sandstone bedrock.

3.1.2. Groundwater

Nearshore groundwater conditions were assumed to closely match the tidal fluctuations anticipated at the site. The groundwater and sea level were modeled at elevation 8 feet NAVD88 corresponding to the MHHW in accordance with the standard of practice.

3.2. Analysis Runs

Potential settlement was evaluated using the commercial software Settle3D Version 4.018 produced by Rocscience, Inc. The Terzaghi 1D consolidation theory was used to evaluate potential post-construction total and differential settlement of the upland cap and of the sediment cap by modeling the maximum fill loads in either area using two profiles were selected for estimating the potential range of settlements across the filled area.

The soil boring material profiles used to evaluate settlements for upland and sediment capping cases included:

Upland Cap: HS-SB-18 (more compressible) and TL-MW-1 (less compressible). Estimated upland cap settlement were based on the sum of cap loads and future upland park fill and parking lot pavement loads.

Cap Load = 3 feet of upland cap fill (or 375psf) estimated from the thickest anticipated upland fill section.

Future Park Fill and Pavement Loads = 3 feet of structural fill below parking lot, and 0.5 feet concrete asphalt (or 450 psf) based on cross section illustrations presented in the Cornwall Beach Park Master Plan Report (Anchor QEA 2014).

Sediment Cap: COB-SC-02 (more compressible) and COB-SC-09 (less compressible).

Load = 0.5-foot gravel base and 2-foot armor rock layer (645 psf total load) over 2-foot sand cap.

3.3. Settlement Results

The settlement analysis results are summarized in Table F-4, below.

TABLE F-4. SETTLEMENT ANALYSIS RESULTS

Representative Site Location	Representative Boring Profile	Estimated Settlement (inch)	Potential Differential Settlement (inch)*
	HS-SB-18	25	04
Upland Cap	TL-MW-1	About 1	24
	COB-SC-02	26	00
Sediment Cap	COB-SC-09	Less than 1	26

* Differential settlement will vary based on existing soil conditions and other factors.

For the sediment caps the time to reach 90 percent of the total estimated settlement is about 3.8 years.

4.0 REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO). AASHTO LRFD Bridge Design Specifications, 8th Edition. American Association of State Highway and Transportation Officials. 2017.
- Anchor QEA 2014, "Cornwall Beach Park Master Plan Report." Prepared for City of Bellingham. October 2014.
- Applied Technology Council. ATC Hazards by Location, Seismic. https://hazards.atcouncil.org/#/ Accessed December 2018.
- GeoEngineers 2016. "Final Remedial Investigation/Feasibility Study Report, R.G. Haley Site." Prepared for the City of Bellingham. February 1, 2016.
- GeoEngineers 2018. "Supplemental Sediment Investigation Report, R.G. Haley Site." Prepared for the City of Bellingham. January 10, 2018.
- Landau 2018. "MU1 and MU2 Engineering Design Report, Cornwall Avenue Landfill Site, Bellingham, Washington." Prepared for the Port of Bellingham. April 30, 2018.

Rocscience. Commercial Software Settle3D, Version 4.013.

Washington State Department of Transportation. 2015. Geotechnical Design Manual (GDM). M 46-03.11. May 2015.

Attachments:

Figure F-1. Site Plan

- Figure F-2. Section C-C' Temporary Excavation (Post ISS Install)
- Figure F-3. Section C-C' Static Post Construction Near ISS
- Figure F-4. Section C-C' Static Post Construction Off Shore

Figure F-5. Section C-C' Pseudo-Static - Post Construction - Near ISS

- Figure F-6. Section C-C' Pseudo-Static Post Construction Off Shore
- Figure F-7. Section D-D' Static Post Construction

Figure F-8. Section D-D' Pseudo-Static - Post Construction

Figures F-9 through F-12. Log of Explorations

	Color	Name Wood Debris and Sawdust Native Marine Sediments Chuckanut Formation (SSTN) ISS soil treatment	Unit Weight (pcf) 75 130 130 125	Cohesion' (psf) 0 0 0 7,200	Phi' (°) 30 37 45 0			
Factor of Safety: 2.6		Existing Fill soil (Sand and Silt)	125	0	32			
Elevation (NAVD 88)	*	MHHW (8.04ft NAVD88)	* * **	COB-ScCd4		↓ ↓	↓ ↓	
-25 -30 -30 125 135 145 155 165 175 185 195 205 215 225 235 245 255 265 275 Distance	285	295 305 315 325	335 34	15 355	365	375	385	395 4

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and context of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Section C-C' Temporary - Excavation (Post ISS Install) R.G. Haley Site Bellingham, Washington GEOENGINEERS
Figure F-2

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Gravel-Cobble Armor	135	0	40
	Amended Sand Cap	120	0	32
	Wood Debris and Sawdust	75	0	30
	Native Marine Sediments	130	0	37
	Chuckanut Formation (SSTN)	130	0	45
	ISS soil treatment	125	7,200	0
	Existing Fill soil (Sand and Silt)	125	0	32

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and context of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Section C-C' Static - Post Construction - Near ISS R.G. Haley Site Bellingham, Washington GEOENGINEERS Figure F-3

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Gravel-Cobble Armor	135	0	40
	Amended Sand Cap	120	0	32
	Wood Debris and Sawdust	75	0	30
	Native Marine Sediments	130	0	37
	Chuckanut Formation (SSTN)	130	0	45
	ISS soil treatment	125	7,200	0
	Existing Fill soil (Sand and Silt)	125	0	32

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and context of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Section C-C' Static - Post Construction - Off Shore R.G. Haley Site Bellingham, Washington GEOENGINEERS Figure F-4

	Color	Name Gravel-Cobble Armor Amended Sand Cap Wood Debris and Sawdust Native Marine Sediments Chuckanut Formation (SSTN)	Unit Weight (pcf) 135 120 75 130 130	Cohesion' (psf) 0 0 0 0 0 0 0	Phi' (°) 40 32 30 37 45	
Factor of Sofety 1.1		Existing Fill soil (Sand and Silt)	125	0	32	
(80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85 2	MHHW (8.04ft NAVD88)	335 3	45 355	365 375	
1. The locations of all features shown are		Psoudo-St	tatic -	Section	C-C'	n - Near I
approximate.		r Seudo-Si	lauc -	F 051 C0	instruction	
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.			F Belli	R.G. Hale ngham,	ey Site Washing	gton
 GeoEngineers, Inc. cannot guarantee the accuracy and context of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 		GEOEN	GIN	EERS	0	Figure I

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	
	Gravel-Cobble Armor	135	0	40	
	Amended Sand Cap	120	0	32	
	Wood Debris and Sawdust	75	0	30	
	Native Marine Sediments	130	0	37	
	Chuckanut Formation (SSTN)	130	0	45	
	ISS soil treatment	125	7,200	0	
Factor of Safety: 0.6	Existing Fill soil (Sand and Silt)	125	0	32	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MHHW (8.04ft NAVD88)	335 34	15 355	365 375	385 395 40
1. The locations of all features shown are	Pseudo-Stat	Se ic - Po	ection C st Cons	-C' truction	- Off Shore
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers. Inc. cannot guarantee the accuracy and 		R Bellii	R.G. Hale ngham,	ey Site Washing	gton
context of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.	GEOEN	GIN	EERS	Ø	Figure F-6

00180-356-02 Date Exported: 10/16/18

ſ	Drilled	7/1	<u>Start</u> 1/20 <i>1</i>	12	<u>En</u> 7/11/	<u>d</u> /2012	Total Depth	(ft) 2	20	Logged By CTB Checked By CEB	Driller Boart Longyear			Drilling Method	Hollow-stem	Auger
ľ	Surfac Vertica	e Elev Il Datu	atior/	n (ft)		13 NA\	.16 /D88		Ha Da	ammer ata 300 (lbs) / 30 (in) Drop	Drillin Equip	g ment		Truck-mour CME 75	nted
-	Easting Northir	g (X) ng (Y)				6395 1240	92.47 420.1		Sy Da	rstem atum	NAD83/98	<u>Grour</u> Date N	ndwate Neasure	er ed	Depth to <u>Water (ft)</u>	Elevation (ft)
l	Notes	: HS-I	MW-´	18 w	/ell wa	s not co	nstruct	ed. Auge	er Data: 4	¹ ⁄₄-inch I.D.; 81⁄₂-inch O.	D.					
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Testing	Water Level Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)		REMAR	ĸs
8DESKTOP035611406 HALEY.GPJ DBTemplate/LbTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	م م			6 6	2 6 7 5	HS- 10 HS- 15	MW-18- CA MW-18- CA MW-18- CA		GP Wood Wood	Coarse gravel (logg Coarse gravel (logg No recovery Cored with 30% silt Wood fragments wi coarse sand, da Wood fragments ar Silt, black, wet Refusal at 20 feet of	ed based on cuttings) y sand, petroleum-like odor, th 5% silty sand, fine to rk gray, moist to wet d shavings with 5% organic n bedrock	- SS - MS - SS - SS - SS	<1			
:C:\USERS\CVO:	Not	e: Ple	ases	see	Figure	e A-1 for	explan	ation of	symbols							
14/13 Path										Log of Bori	ng HS-SB-18					
Seattle: Date:3/	Ċ	E	ЪЕ	N	G	INE	ER	s	J	Project: Project Locatio Project Numbe	R.G. Haley Site n: Bellingham, Was r: 0356-114-06	hingto	on			Sheet 1 of 1

Sheet 1 of 1

Р	roject						Job Nu	mber	Location	Location						
		Douglas Manage	eme	ent				0275-002-00		DNR Property						
Da Dr	ate rilled	04/03/00				Logged By		JJO/SLM	Contractor	Cascade						
Di M	rill lethod	4.25" ID HS	SA			Equipm	oment Truck Mounted CME 75									
Sa M	Method 2" SPT/Split Spoon					Hamme Data	r	140 lb hammer/30" drop	X-coordinate: Y-coordinate:		Not Determined Not Determined					
To	otal Depth (f	ft) 33				Elevatio	n (ft)	15.57	Datum: System:		Not E	City Detern	nined			
To De	otal Well epth (ft)	19				Monum Stickup	ent Elevatic (ft) F	n lush mounted	Casing Elevatio Stickup (ft)	n	15.05					
DEPTH IN FEET	WE	ELL SCHEMATIC	Sample No.	Blows per foot	Sample	Graphic Log	USCS Group Symbol	Material Des	cription		Headspace Vapor (ppm)	Sheen	Other Tests And Notes	DEPTH IN FEET		
والمتعاولين والمحافظ والمحافظ والمحافظ والمحافظ ومحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	 Steel flush monument in concrete Bentonite seal 2-inch Schedule 40 PVC well casing 	1 2 3	7 9 2			SM SP-SM SP-SM	Brown silty sand with grav moist) (fill) Brown fine to medium sand occasional gravel (loose Dark gray fine to medium s and a trace of shells (ver	el (loose, d with silt and , moist) (fill) sand with silt ry loose, wet)	- - - - - - - - - - - - - - - - - - -	0	SS SS MS				
~ ~		2/12 Lone Star sand backfill 2-inch Schedule 40 PVC screen, 0.010-inch slot width	4	3			SP SP	Dark gray fine sand with ou large woody debris and loose, wet) Dark gray fine to medium s	ccasional shells (very sand with	-		SS SS		-10 - - - -15		
2	20 -	Base of well at 19.0 feet	7	6			SP	Dark gray fine to medium s medium woody debris a shells (loose, wet)	sand with nd occasional	- - -	- 0	SS SS NS		- - 		
2	25	Backfilled with	9 10	16 12		0	SP GP-GM SM	 Dark gray fine to medium so occasional medium woo shells and gravel (mediu wet) Dark gray sandy fine to coa with occasional shells a silt (medium dense, wet) 	sand with xdy debris, im dense, irse gravel nd a trace of	• • • •	0	NS NS		- - 25 -		
0 0275-002-00 M		Base of well at 19.0 feet	11 12 13	28 20 50/5"			ML ML	Dark gray silty fine to med with gravel and a trace of large woody debris (med dense, wet) Dark gray silt with gravel a shells (medium dense, v Dark gray silt with occasion shells (hard, moist to we Boring completed at a dent	ium sand of medium to dium dense to ind occasional vet) nal gravel and ct) h of 33.0 feet	-	- 0	NS NS		- 30 - -		
602TL.GPJ GEL_CORP.GDT 5/30/0 P	15 - - - - -							on 04/03/00. Ground water encountered 7.0 feet during drilling.	at a depth of					- 35 - - - - 40		
ELL LOG 0275		Geo	2i 1	ne	e1	rs		LOG OF MO	NITORING W	ELL .	TL-MV	V-1				
GEI W			0.			. ~			FIGURE B-2	1	Figu	re F	-10			

ſ	Drille	<u>9</u> d 8/2	<u>Start</u> 7/20	12	<u>En</u> 8/27/	<u>d</u> /2012	Total Depth	n (ft)	20		Logged By GRL Checked By SBS	Driller Cascade [Drilling, l	L.P.		Drilling Method	Sonic	
	Surfac Vertica	e Elev al Datu	atio m	n (ft)		N	4 AVD88			Ha Da	ammer ata N/A	- Sonic Drilling		Drilling Equipr	g nent		GeoProbe 814	0 LS
	Eastin Northi Notes	g (X) ng (Y) s: 5 foc	ot co	re ba	arrel, 3	639 1240 3-inch	563.301 0177.91 liner	4 3		Sy Da	ystem atum	NAD83/98		<u>Groun</u> Date M	dwate easure	<u>ed</u>	Depth to <u>Water (ft)</u>	Elevation (ft)
$\left(\begin{array}{c} \\ \end{array} \right)$						חח	٨٣٨											$ \longrightarrow$
	Elevation (feet)	 Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level Granhic Log	Group	Classification	M/ DES	TERIAL CRIPTION		Sheen	Headspace Vapor (ppm)		REMAR	Ś
-		- 0		46.8			0B-SC-02- 00-02			SM	Brown silty fine to c occasional debr fragments) (deb	barse sand with grave s (debris = glass and is <5% by volume)	vel and d brick	- NS	<1		No odor	
		-				r c	OB-SC-02- 02-04			000	inches long)	by volume, sawdust (up to 2	- ss	1.9		Petroleum oc	dor
-	۵	- 5 -		45.6		Т с	OB-SC-02- 04-06				(wood content decr becomes dark b	eases to ~50% by vol rown)	lume,	MS MS NS	12.5 12.9 8.5		No odor	
		-				↓					(wood content incre becomes light b	ases to >90% by volເ own)	ume,	- NS	3.5			
-	\$	-				¢ c	OB-SC-02- 08-10				-			NS				
-		- 10 —	_	44.4		L.					Wood becomes dar	k brown		NS NS	3.2 1.8			
RD -		-									Trace glass and bri	k fragments		- NS	1.8			
ENTAL_STANDA	10	-				r c	OB-SC-02- 12.5-14.5			SIVI	fragments (nativ	with abundant clam s e)	sneii	- NS	3.1			
EI8_ENVIRONM		15 —	-	58.8		*					Grades to with grav	el		NS	0.8			
JEERS8.GDT/G		_				_ c	OB-SC-02- 17-19			GM	Gray silty fine to co	arse gravel with sand	1	NS	1.3			
plate: GEOENGIN	<u>_</u> %	-				L.			$\sum_{i=1}^{n}$		-			NS	3.3			
DBTemplate/LibTen		20 —]		I			<u>1</u>		L			IN5	1.0	1		
06 HALEY.GPJ D																		
6/GINT/0356114(
00356114\0	No	te: Ple	ase	see	Figure	e A-1 f	or explar	nation c	fsyml	bols								
13 Path: P:\(Log of Borin	g COB-SC-(02					
Seattle: Date:6/25/	C	GEO	b	EN	IG	IN	EER	s/	D	Ĩ	Project: Project Locatio Project Numbe	R.G. Haley n: Bellingham : 0356-114-0	Site , Wash)6	ningto	n			Sheet 1 of 1

Sheet 1 of 1

Figure F-11

Drilled	<u>8</u> /1	6 <u>tart</u> /2012	<u>En</u> 8/1/	i <u>d</u> 2012	Total Depth	(ft)	1	10		Logged By C Checked By S	GRL SBS	Driller Cascade D	rilling, l	P.		Drilling Method Sonic
Surface Vertical	Eleva Datui	ation (fi n	:)	Unde	etermine	ed			Ha Da	immer ta	N/A	- Sonic Drilling		Drilling Equipr	l nent	GeoProbe 8140 LS
Easting Northing	(X) J (Y)			6394 1239	89.726 751.82	7 5			Sy Da	rstem atum				<u>Groun</u> Date M	<u>dwate</u> easure	<u></u>
Notes:	5 foo	t core l	oarrel, 3	-inch lir	ner											
\bigcap			FIEL	D DA	ATA											
ion (feet)	(feet)	ll ered (in)	foot	ed Sampl	e Name g	Level	ic Log	1	lication		M/ DES	ATERIAL CRIPTION			ace ppm)	REMARKS
Elevati	Depth	Interva Recov	Blows/	Collect	<u>Sampl</u> Testin	Water	Graphi	Group	Classif					Sheen	Headsp Vapor (I	
	0	60		A CO	OB-SC-09- 00-02			ML	L	Gray silt with = splinter	n trace v rs)	/ood (<5% by volume) ((wood	NS	1.3	Moderate hydrogen sulfide odor from 0 to feet bgs
	_			C	OB-SC-09-		\vdash	ML	L.	- One piece of	f clamsh	ell at 1.7 feet bgs	/	_ NS	1.9	
	-				02-04						uve)			NS	1.3	
	-			C	OB-SC-09- 04-06					_ Trace organi	ic mater	ial at 3.6 feet bgs		- NS	1.0	
	5 —	60								_			-	NS	1.8	Slight hydrogen sulfide odor from 5 to 10 fe bgs
	_									1 clam shell Trace clam s	at 6 feet shell pie	bgs ces to 10 feet bgs		NS	<1	
	_			t co	OB-SC-09-					-				NS	<1	
	_				08-10					-				- NS	<1	
	10 —		1	↓										115	<1	
Note	: Plea	ise see	Figure	A-1 for	explanat	tion	of sy	mbols	;							
										Log of E	Borin	g COB-SC-0	9			
										Project:		R.G. Haley S	Site			

eattie: Date://29/13 Path.C:/USERS/TNASHDESKTOP/035611406 HALEY.GPJ DBTemplate/LbTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Project:R.G. Haley SiteProject Location:Bellingham, WashingtonProject Number:0356-114-06

Sheet 1 of 1

Appendix F-2 Crete Memorandum - Detailed Calculation for Stability During Construction

TO:	Rick Moore – GeoEngineers, Inc.
FROM:	Mike Byers, PE – CRETE Consulting Inc., PC
PROJECT:	R.G. Haley
SUBJECT:	ISS Slope Stability Study
DATE:	April 17, 2019
ATTACHMENT:	Detailed Calculation for Stability during Construction

This memorandum provides a summary of the geotechnical evaluation of the stability of the Insitu Solidification (ISS) mass during remediation construction on the R.G. Haley site in Bellingham, Washington. Please refer to the attached calculation for specific details. The stability study was performed to evaluate the ability of the ISS mass to provide lateral support to upland portions of the site while shoreline and offshore excavations were completed as part of the overall site remediation. The ISS process results in an overall lower permeability of the processed soil which reduces the mobility of chemicals within the soil. It also results in an increase in the internal strength of the soil which has a significant effect on the ability of the ISS soil to resist surface loading and to perform as a stabilizing measure in an open excavation.

The attached calculations evaluate the slope stability of the ISS mass during remediation construction after the ISS has cured and when temporary remediation excavations are completed adjacent to the mass. The ISS contains a relatively small amount of cement or hardening agent when compared to a structural concrete mass, so it is modeled as a very stiff soil with a relatively high internal strength as opposed to a mass of concrete. The calculation used excavations adjacent to the ISS mass that are being planned to complete remediation of the bank and sediment areas. They also include a surface construction load near the edge of the ISS mass.

Recommendations that are based on the calculations include:

- The slope of the ISS in an excavation should be no steeper than ½ Horizontal to 1 Vertical (1/2H:1V).
- For excavations no deeper than elevation +5 (design depth), equipment should come no closer than 5 ft from the top of the ISS slope. The slope should be inspected during excavation activities to determine if additional setback distance is necessary.
- The equipment setback should be increased an addition foot for each foot of excavation depth below the design depth, and the excavation slope should be decreased to 1H:1V
- No excavation next to the ISS should be completed until the ISS has had at least 28 days to cure to gain strength, and achieved the required strength.

Attachment: Detailed calculations

MAPOSE To evaluate the slope stability of the ISS mass at the shore line during constructions of the project which involves impacted soil rouseal water word of the ISS Mass. Evaluate the stability of the mans during construction that includes an excavator on ten slope. REFERENCES 1. Boring logo from Geo Engineers : Exploration Location Sik Plan (Figure 3-2A) - Attachmont 1 (Sik Plan) Agachment 2 (Logo) 2. Preferred Cleanup Action Alternative Cross Sections D-D - Figure X Geo Engineers - Attachment 3 3. Slide Version 6.0, Rouscience, Inc., Toranto, CA. Slide 15 a 2-D limit equalibrium slope stability program Tabular results from Binch scale Testring - RG Haley Site - CRETE (AHachmut 4) 5. NAVFAC Soil Muchanics - 7.01, Figure 7, 7.1-149. (AHachant 5) 6. CAT 340 Compreach executor Spece ATTACHMENTS 1. Exploration Ste Plan 2. Boring logo. 3. Preferred Cleanup Action Alt X-see Train 4. Tables from don by Treaterbility Study Rosults-CRETE ZOIS 5. Fig 7. Ref 4. 6. CAT 340 Long Leach Excavator specification 7. Anilyses Figures ву_<u>MB</u> DATE <u>10/9/18</u> Sheet No ____ of _____ CHECKED BY_____ DATE _____ PROJECT NUMBER PROJECT RGHPley - Iss bank stability

CONSULTING, INC.

HECKED BY_	DATE_	abilit.			PR		1BER	
MB	DATE	0/9/18				Sheet	: No of	9-
						=		
						527		
						117 117 110		
	C Mation	Marrie	Gedimens	F - 10C	atect he	15 au +	the Mar	Ina
	WN he	present	helow	1h \$5	s prea fa	new la	1540	
	B) Mauine	F111- 2	evened 1	heet of	the man	1 - A		
	compared	to the p	arent f	1/.				
	lager to	rat here	very A	1; Aprer	s pro	MITIL	whi	ι
	Stabilitai	ng agen	A- 70 12	salt 1	in a m	eg fe d	su1	
	and up la	and All	5011	that 1	s myed	with	a	
	A) ±55 M	1×ture =	The TSS	Muxot	un 13	i Ma	The Fri	
	logo 112 Ada	la This	includ				-1-3	
	ave tober 1-		MITS +	1 Hang	Habilit	y and	Wy ces	
	TVGXVMED .					San		
1 Jack	1997 A - 495 A A & A & A							

TSS SUI The praties Attachement 4, Table 4 includes data from a number of Samples how the project ISS area that were avived with different stabilizating agents and tested for preliminum. Circening purposes. Density and mile of the DSS mass will be determined for the Stability study by taking an avoing of the results hom Table 4 Attachment 4. 8 = 102 lbs Bulk density ISS 92356g 942559 去 HAS REAL dry density 66 54% Moistan Confert MCZ Iss strongth is based on results from Att 4 which Show a range of shring the. A tranget of 25 psi will be used Cohision = 12 qu = 24CS lab test result. ву <u>MB</u> DATE <u>10/9/18</u> Sheet No <u>3</u> of <u>7</u> CHECKED BY _____ DATE _____ PROJECT RGH ISS BANK Stability PROJECT NUMBER

CONSULTING INC

BORING LOG 610m count analyses The borine logs were completed using a variety of different Samplers and hammers. In order to provide a rough direct comparison. The energy infut into the ground from the different comping trom needs to be standard in to 1004 & correction factors to compare to standard SPT Glow counts. used for the work include Typical Samplers Sampler ID (in) Sampler OD Cin Sampler SPT 1.375" 2" 3. 25" Dim 2,4" Mod fed CAL 2.5 3 To convert the two other samplers and the hammer Sizes to equivalent SPT valies energy a ratio of the deliveriel hst SPT samples with 140 16 hammen, 30" drop energy fe-165 30 Esp7-= 140 155 马(2-1.323) 142 fe-165 Pipt. 211.26 activity. 157 BY MB DATE 10/9/18 Sheet No <u>4</u> of <u>9</u> CHECKED BY _____ DATE ____ PROJECT NUMBER PROJECT RGH ISS Stahility

of 300 15 hammer, 30" drop Ejim using 300 (12) Epm AT Y (\$25 - 2.42) f= 165 168. 198.8 Em 30° dmp. Eche hammer 1404 asing a 140 127 TI J EAR = 5.52 132-FE-155 Ecre = 162.05 5 FROM TP Multoping Glows by =) SAT SPT t 198.3024.20 = 0.94DeM (300# SPT 162,05 = CAL CIHOM SPT 0.77 BY______ DATE_____ DATE_____ Sheet No $5_{of} 9$ CHECKED BY_____ DATE ____ PROJECT NUMBER PROJECT RGIT ISS Stahility RET ONSULTING, ING

Apply the SPT corrections factor to the boring logo depending on what was used to gather 570w Count for the burings Auracy SI Proporties Marine Fill - typically depended as a SP-SAN Finito nechium sand with van ing amounts of solt. There were occasional sitt layers within the SP-SM SPTN= 8 - 100x - Medium Danse Rd= 25-50% Ref 4, Fig 7 page 7.1 - 149 (Atrachants) for SP-SM, Rd 25-50% 8 From 95-109 pcf use 8 = 100 pcf 4 from 29° 40 32° ALL \$ = 30° 4=0 Native Marine - Typically alerihod as SIVAY poorly gradul Sand to Souly Silt - SP-SM-ML. SPTN = 20 med danse Attachment 5 & from 95 to 110 pcf - use &= 100 pcf ву <u>M. Byers</u> DATE 10/9/18 Sheet No <u>6</u> of <u>1</u> CHECKED BY_____ DATE _____ PROJECT NUMBER PROJECT RG. 4 ISS STABILITY GRET OMSULTING INC
Calculation: apequa tisin can have their only extends to elev The +5 immediately adjacent to the ISS Mass, Also the pop of the Iss mass is set at +12 which included the by of the ISS @ clev ty and 3 fect of fluff that is anticipated to be developed as the Mass is Mixed. The configuration is shown on Atrachment 30, A long reach ancavator will be used to remove sectiment for the share. This excaveto, and sit atop the ISS mass at the edge of the mass. Evaluate the surface load imposed by an excavator by looking at the areight of a suitable caravator and the footprint area of the excavator. Attachnent 6 shows a more gross vehicle weight of 96,700 165 for a fally loaded CAT 340 kirna long much boom The trache are 10 feet wich and & feet long, so the pressure of a unifim load 13: $\frac{76,700}{10 \times 2} = \frac{1208 \text{ psf}}{1208 \text{ psf}}$ BY MB DATE 4-4-2019 Sheet No 🔒 of 🧐 CHECKED BY______ DATE _____ PROJECT NUMBER PROJECT CRETE

CONSULTING, INC.

This load will be included in the stability evaluation as a distributed load with an intensity equal to 1208 × 1.5 = 1813 pst. The 1.5 factor is added to account for higher loading while digging and for unbrations. It will be added to a 10 ft long action of the edge of the ISS mass. If This results in an unstable situation, the load will be moviel query from the edge. 733 Strongth - The project specification are Funge try a: UCS of 30pset for a minimum 28 duy strongton. See Att 41. Assume that there will be some inconsistincing in mixing, so the stability analytes will assume a UCS = A 25psi 25 1/2 × 144 m 2 × 1 = 1,800 ps f Aur Suil Who sion to the Iss Mars. ву_<u>MB</u>_____ DATE <u>U-4-19</u>____ Sheet No ⁹ of ⁹ CHECKED BY_____ DATE _____ PROJECT NUMBER PROJECT RGH 255 stability - Reision CRETE

RESULTS Excavator load up to edged ISS Min FS = 1.665 5 ft set back for encavaber Min FS = 2.9 FS=7 Min B for no yecavate - back Conclusions A) Without any surface load ing, The vertical face of the JSS that oxfords Rom elev 5 to elev 12 13 prodicted to stand nearly vertical. Recommend "2 H: 14 as a maximum slope. B) A 5 fz minimum Setspech is recommanded from the edge of the ISS Mass. The cetback is recommended to account for digging vibrations that could regard t in 1002 Instability Results of the stability verys are attached as Attachment 7. ву_____ DATE______ Sheet No <u>9</u> of <u>9</u> CHECKED BY DATE PROJECT NUMBER PROJECT RGH - J-SS Skybillity - Repairin CRETE

	A I	IACHMENT 1	
7		nond	
	<u></u> SRI-1 ⊗	Supplemental Remedial Sediment Investigation Sampling Location	
	PS-1 🕅	Preliminary Sediment Quality Assessmer Sampling Location	nt
1	RI-1- \$	September 2004 Sediment Sample Loca	tion
	HS-MW-1 🔘	Monitoring Well	
	HS/SB/SP -	Boring	
1	HS-DP-4 ▣	Direct Push Boring	
-	HS-SV-1 🔳	Soil Vapor Sample Location	
	HS-HA-1 🛧	Hand Auger/Surface Soil Sample	
	RW-1 ⊕	Oil Recovery Well	
<u>~</u>	COB-SS-05 💿	Sediment Sample Location	
E 3-20	et <u>i</u> (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Grayed Monitoring Wells are Abandoned of 2012	as
SURI .	B-1)	Temporary Groundwater Sampling Point	
E	TP-15 🖶	Test Pit	
SE		Existing Sheet Pile Barrier	
		Estimated Extent of Upland Refuse	
SHL		Former Buildings and Structures	
JAT(⊜ ^>	2000 Petroleum Seep	
'		2001 Sediment Removal Area	
	\bigcirc	Sheen Emerging from Sediment (2012/20)13)
		Sheen Emerging from Sediment (2006)	
		City Owned Property, Former R.G. Haley International	
		Cornwall Property	
l	国家办会部外部委员会的关键的处理的处	Inner Harbor Line	
	ананта, анногият жинопада англаст	Drainage Ditch	
	All Prev	ious and Supplemental RI	
	Ex	ploration Locations	

R.G. Haley Site Bellingham, Washington

GEOENGINEERS

Figure 3-2A

M	AJOR DIVIS	IONS	SYM	BOLS	TYPICAL
		-	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS
KETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE	SILTS AND	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
GRAINED SOILS	GLAIS		hin	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
AORE THAN 50% ASSING NO. 200 SIEVE				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
	-		Linh	он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
нс	GHLY ORGANIC S	OILS	<u> </u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
Blowc	San 2.4-i Star She Pist Dire Sulk	n pler Symb inch I.D. split H idard Penetrat Iby tube on ct-Push c or grab	ol Desc parrel tion Test i n sampler mpler 12	ription (SPT) s as the inches (number or
distan	ce noted). S	ee exploration	1 log for h	nammer	weight
and dr	•				

ATTACHMENT 2

SYMI	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

Groundwater Contact

	Groundwater Contact
V	Measured groundwater level in exploration, well, or piezometer
$\overline{\sum}$	Groundwater observed at time of exploration
<u> </u>	Perched water observed at time of exploration
<u> </u>	Measured free product in well or piezometer
	Graphic Log Contact
	Distinct contact between soil strata or geologic units
	Approximate location of soil strata change within a geologic soil unit
	Material Description Contact
	Distinct contact between soil strata or geologic units
	Approximate location of soil strata change within a geologic soil unit
	Laboratory / Field Tests
%F AL CA CP CS DS HA MC	Percent fines Atterberg limits Chemical analysis Laboratory compaction test Consolidation test Direct shear Hydrometer analysis Moisture content
MD OC PM PI PF SA TX UC VS	Moisture content and dry density Organic content Permeability or hydraulic conductivity Plasticity index Pocket penetrometer Parts per million Sieve analysis Triaxial compression Unconfined compression Vane shear
	Sheen Classification
NS SS VIS HS NT	No Visible Sheen Slight Sheen Moderate Sheen Heavy Sheen Not Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLO	PRATION LOGS
GEOENGINEERS	FIGURE A-1

027502TL.GPJ GEL_CORP.GDT 5/30/00 0275-002-00 00 **MELL L**

2.5"/140#

2.5"/ 140#

Project Number: 0356-114-06

Sheet 1 of 2

CRETE PRAFT BENCH SCALE REPORT

ATTACHMENT 4

Treatability Study Results, R.G. Haley Site

Tables

Table 2 Untreated Physical Properties Characterization

Testing Parameter (1)	Test Mathod	l Init	Untreated	l Material
			ISS South	ISS North
Particle Size Distribution	ASTM D422			
Gravel		%	5.2	4.5
Sand		%	77.4	70.2
Sit		%	12.1	16.3
Clay		%	5.3	0'6
Sample Description	USCS ASTM D2487		Black Silty Sand	Black Silty Sand
Sample Classification	USCS ASTM D2487		SM	WS
Loss on Ignition Average ASTM Moisture Content	ASTM D2974	8	00 U	
Average Loss on Ignition @ 440°C		~ %	9.18	3.61
Material pH	EPA Method 9045	S.U.	6.44	6.26
Atterberg Limits	ASTM D4318 Method B			
Liquid Limit			N/A N/A	NA
Plasticity Index			N/A	N/A
Soluble Sulfate	ASTM C1580-15	g SO₄/	35.43	15.65
		kg soil		

Notes: Sample color determined by the Munsell Soil Color Charts %= Percent S.U. = Standard Units g SO₄/kg soil = grams of Sulfate per kilogram pf soil (1) = Testing was performed on homogenized material screen through a 0.5 inch sieve NP = Nonplastic NA = Not Applicable USCS = Unified Soil Clasification System

Parameter	Units	S	S Sout	ء	<u>0</u>	S Nort	ч	ISS N	orth Sp	oiked	d) N SSI	orth Sp uplicate	iked e)
		Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL	Results	Qual.	MDL
Polycyclic Aromatic Hydrocarb	ons (PAH)	8270D											
1-Methylnaphthalene	mg/Kg	4.47	ш	0.0140	24.8	ш	0.0699	226	ш	0.416	141	ш	0.422
2-Methylnaphthalene	mg/Kg	1.88		0.0160	34.8	ш	0.0799	359	ш	0.475	218	ш	0.482
Acenaphthene	mg/Kg	0.550		0.00998	1.62	F	0.00998	14.4		0.297	9.38		0.301
Acenaphthylene	mg/Kg	0.106		0.00899	QN		0.00899	1.69		0.0134	4.07		0.0136
Anthracene	mg/Kg	0.124		0.00899	0.342	F	0.00899	1.80		0.0134	1.30		0.0136
Benzo[a]anthracene	mg/Kg	ND		0.0150	0.0878		0.0150	0.350		0.0223	0.315		0.0226
Benzo[a]pyrene	mg/Kg	ND		0.0120	0.0661	ſ	0.0120	0.223		0.0178	0.191		0.0181
Benzo[b]fluoranthene	mg/Kg	0.0450	ſ	0.0120	0.0693		0.0120	0.276		0.0178	0.218		0.0181
Benzo[g,h,i]perylene	mg/Kg	ND		0.00899	0.0390	-	0.00899	0.139		0.0134	0.127		0.0136
Benzo[k]fluoranthene	mg/Kg	DN		0.0140	0.0470	ר	0.0140	0.125		0.0208	0.0910	ا	0.0211
Chrysene	mg/Kg	DN		0.00899	0.102		0.00899	0.575		0.0134	0.510		0.0136
Dibenz(a,h)anthracene	mg/Kg	ND		0.00699	ND		0.00699	QN		0.0104	DN		0.0105
Fluoranthene	mg/Kg	0.0658	r	0.00899	0.240		0.00899	1.10		0.0134	0.975		0.0136
Fluorene	mg/Kg	0.317		0.0120	1.32	F1	0.0120	13.3		0.356	8.24		0.362
Indeno[1,2,3-cd]pyrene	mg/Kg	ND		0.00998	ND		0.00998	0.101		0.0149	0.0793	ſ	0.0151
Naphthalene	mg/Kg	0.105		0.00899	1.09	F1	0.00899	7.73		0.267	5.16		0.0136
Phenanthrene	mg/Kg	0.597		0.00899	3.74		0.0449	33.0		0.267	21.0		0.271
Pyrene	mg/Kg	0.122		0.0120	0.438		0.0120	3.31		0.0178	2.64		0.0181
North West - Total Petroleum H	ydrocarboi	n Diesel (NV	N-TPH	Diesel)									
C10-C24	mg/Kg	452	m	6.98	859	8	13.8	18,700		293	9.580		300
C24-C40	mg/Kg	220		9.98	35.7		1.98	599		29.3	372		30.0
Pentachlorophenol 8151A													2122
Pentachlorophenol	mg/Kg	0.0488		0.0217	2.17		1.08	20.2		3.21	20.1		6.52
	the second se		-		-	-				- 1	- 51	-	12.2

Π Т Т

Table 3 Untreated Analytical Results

Notes:

mg/Kg = milligram per kilogram MDL = Method Detect Limit

E = Result exceeded calibration range

J = Results is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

B = Compound was found in the blank and sample F1 = Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) Recovery is outside acceptance limits

Table 4 Preliminary Screening Evaluation Results

KEMRON				Water	-				Unco	nfined Comp	oressive Stre	angth	Predicted	Strength	Axial
Sample	Untreated Material Type	Rearent Type and Identification Number(c)	Keagent	Addition %	Pocket	Penotro	meter	Cure -		ASTM	D2166		28-Day	Final	Strain
Number			Addition % by Wet Soil wt.	by Reagent wt.	1 Dav	(15F) 3 Dav 1	5 Dav	Day	Moisture content (%)	Bulk Density (Ib/H ³)	Dry Density (Ib/ft ³)	UCS (lb/in²)	UCS (lb/in ²)	UCS (lb/in ²)	(%)
0600-001	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	5.25/2.25	B0.0	2.00	3.75	4.25	2	61.66	, E.79	60.2	17.5	23,3	26.8	2.8%
0600-002	ISS South	Richmond Type I PC #1047/NewCern GGBFS 100 #1049	00,5,00,7	80.0	2.25	4.50	>4.50	~	63.91	98.3	60,0	24.6	32.8	37.7	2.2%
0600-003	ISS South	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	80.0	2.50	3.75	>4.50	~	64.81	96.8	58.7	28.0	37.3	42.9	1,9%
0600-004	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	2.75	3,00	3,75	~	65,27,	97.2	58,8	15.4	20,5	23.6	3.6%
0600-005	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8,00/2,00	80.0	2.50	>4.50	>4.50	~	64.52	98.2	59.7	22.2	29.6	34.0	2.8%
0600-006	ISS South	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	1.00	1,75	2.00	~	61.42	102.1 1	63.2	9.2	12.3	14.1	3.5%
00-0090	ISS South	Richmond Type I PC #1047/Tacoma LKD #919	4.00/10,00	80.0	0.00	0.75	1.25	~	58.93	100.0	62.9	7.2	9.6	11.0	5,9%
0600-008	ISS South	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4,00/8,00	80.0	1.75	3.75	>4.50	~	62.87	97.2	59.7	31,5	42.0	48.3	2.0%
0600-009	ISS South	Richmond Type I PC #1047/NewCern GGBFS 100 #1049/Myo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125.0	0.50	1.50	2.00	~	75.58	92,5	52,7	11.2	14.9	17.2	3.7%
0600-010	ISS North Spiked	Richmond Type I PC #1047/NewCern GGBFS 100 #1049	5.25/2.25	80.0	1.50	3,00	4.25	2	43.47	107.2	74.7	20.0	26.7	30.7	1.9%
0600-011	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049	7,00/3.00	80.0	2.00	4.50	>4.50	~	46.18	105.4	72.1	29.8	39.7	45.7	2.3%
0600-012	ISS North Spiked	Richmond Type I PC #1047/NewCern GGBFS 100 #1049	4.00/8.00	80,0	0.25	2.75	4,00	~	44.64	105.1	72.7	21.4	28.5	32.8	2.8%
0600-013	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	6.00/1.50	80.0	1.50	2,00	3.25	~	44.04	106,1	73.7	19.2	25,6	29.4	2.9%
0600-014	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	8.00/2.00	80.0	2.50	>4,5	>4.50	2	45,31	105.8 ₁	72.8	30.2	40,3	46.3	2.3%
0600-015	ISS North Spiked	Richmond Type I PC #1047/Centralia Class F Fly Ash #1048	4.00/10.00	80.0	0.00	0,75	1.25	7	47.14	106.1,	72.1	8.7	11.6	13.3	3.0%
0600-016	ISS North Spiked	Richmond Type I PC #1047/Tacoma LKD #919	4,00/10.00	80.0	00.0	0.00	0.00	~	46.07	107.8.	73.8	3.9	5.2	6.0	8,4%
0600-017	ISS North Spiked	LeHigh Type II/V PC #1042/NewCem GGBFS #1049	4,00/8,00	80.0	1.00	2.75	>4.50	~	42.18	106.3	74.8	27.1	36.1	41.6	1.2%
0600-018	ISS North Spiked	Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Myo-Ben Hydrogel Bentonite #807	5.25/2.25/1.00	125,0	0.25	2.75	3.25	~	49,15	103.3 -	69.3	19.1	25.5	29.3	3.5%
Notes: % = Percent						1	-			$\left \right\rangle$	\sum				***

Ibrit² = pounds per cubic foot Ibrit² = pounds per supare inch UCS = Unconfined Compressivo Strength UCS = Unconfined Compressivo Strength TSF = Tons per square foot Wie Weight Wie Weight GGBFS = Grangulated Ground Blast Furnace Slag PC = Portiand Cerrent LKD = Lime Kiln Dust

86 - 102 pcf. 21 - 66 pcf NC = 54%

Durity of IIS traded samples - 18 total

10/18/2016

R.G. Haley Site, Bellingham, Washington

Page 1 of 1

Screening
Advanced
of
Table 5 Summary

			IS	S South			ISS No.	th Sniked	
Reagent Type and Identification Number(s)	Reagent Addition % by Wet Soil wt.	KEMRON Sample ID	Axial Strain (%) 28 day	UCS (lb/in ²) 28 day	Hydraulic Conductivity (cm/sec) 28 day	KEMRON Sample ID	Axial Strain (%) 28 day	UCS (lb/in ²) 28 day	Hydraulic Conductivity (cm/sec) 28 day
	Performance Critiera			> 30 psi	< 1.0E-5			> 30 psi	< 1.0E-5
Richmond Type PC #1047/NewCem GGBFS 100 #1049	4.00/8.00	0600-019	1.32	61.0	2.4E-07	0600-024	1.53	51.5	1.4E-07
Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	6.00/8.00/1.00	0600-022	1.42	84.9	8.0E-08	0600-027	1.17	79.8	3.5E-08
		The following	mixtures were no	t carried forward for	leachability testing				
Richmond Type I PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	5.00/10.00/1.00	0600-020	1.40	80.1	1.5E-08	0600-025	1.17	44.1	Not Tested
Richmond Type PC #1047/NewCem GGBFS 100 #1049/Wyo-Ben Hydrogel Bentonite #807	8.00/4.00/1.00	0600-023	1.41	57.6	Not Tested	0600-028	1.27	65.8	9.8E-08
Richmond Type I PC #1047/NewCem GGBFS 100 #1049	6.00/6.00	0600-021	1.28	73.2	Not Tested	0600-026	1.03	59,9	Not Tested
	~								

Notes:

% = Percent

K = hydraulic conductivity cm/sec - Performace Critieria of 1x10-5 cm/sec

Ib/in² = pounds per square inch UCS = Unconfined Compressive Strength - Performace Critiera of 30 Ib/in2, based on site data of SPT logs of 10 to 24 psi. TSF = Tons per square foot GGBFS = Grangulated Ground Blast Furnace Slag PC = Portland Cerment

NAVFAC 7.01

FIGURE 7 Correlations of Strength Characteristics for Granular Soils

1.1-149

Attachment 5

340 Hydraulic Excavator

ATTACHMENT 6

Not all configurations shown available in all regions. Consult your Cat® dealer for details.

Technical Specifications

n	1	п	n	0
ш	ч	L	ш	G

Engine Model	C9.3B	
Net Power – ISO 9249	232 kW	311 hp
Net Power – SAE J1349	232 kW	311 hp
Gross Power – ISO 14396	234 kW	314 hp
Bore	115 mm	5 in
Stroke	149 mm	6 in
Displacement	9.3 L	568 in ³

- Meets U.S. EPA Tier 4 Final, EU Stage V, and Japan 2014 emission standards.
- Recommended for use up to 3300 m (10,830 ft) altitude with engine power derate above 2300 m (7,550 ft).
- Net power advertised is the power available at the flywheel when
- the engine is equipped with fan, air cleaner, muffler, and alternator. • Rating at 1,800 rpm.

Engine rpm

Operation	1,550 rpm
Travel	1,800 rpm

Swing MechanismSwing Speed8.75 rpmMaximum Swing Torque144 kN·m106,228 lbf-ft

Weights

Operating Weight	39 700 kg	87,600 lb				
• HD High Wide undercarriage, Reach GD 2.27 m ³ (2.97 yd ³) bucket, 600 m shoes, and 7.56 mt (16,700 lb) counter	h boom, R3.21 Im (24") HD ta erweight.	DB (10'6") stick, riple grouser				
Operating Weight	40 000 kg	88,200 lb				
• Long undercarriage, Straight boom, 2.27 m ³ (2.97 yd ³) bucket, 600 mm (2 and 9.0 mt (19,800 lb) counterweight	R3.2DB (10'6 4") HD triple t.	") stick, GD grouser shoes,				
Operating Weight	41 300 kg	91,100 lb				
• HD High Wide undercarriage, Mass boom, M2.55TB (8'4") stick, SD 2.41 m ³ (3.15 yd ³) bucket, 600 mm (24") DG shoes, and 7.56 (16,700 lb) counterweight.						
Operating Weight	43 900 kg	96,700 lb				
• HD High Wide undercarriage, LRE boom, LRE7.1B1 (23'4") stick, GD 0.93 m ³ (1.22 yd ³) bucket, 850 mm (33") triple grouser shoes, and 10.35 mt (22,800 lb) counterweight.						
Track						
Standard Track Shoes Width	600 mm	24 in				
Optional Track Shoes Width	700 mm	28 in				
Optional Track Shoes Width	850 mm	33 in				
Number of Shoes (each side)	49					
Number of Track Rollers (each side)	8					

Number of Carrier Rollers (each side) 2

340 Hydraulic Excavator Specifications

35°/70%

4.7 km/h

295 kN

2.9 mph

66,206 lbf

Drive Maximum Gradeability Maximum Travel Speed Maximum Drawbar Pull

Hydraulic System				
Main System – Maximum Flow – Implement	558 L/min (279 × 2 pumps)	147 gal/min (74 × 2 pumps)		
Maximum Pressure – Equipment – Implement	35 000 kPa	5,076 psi		
Maximum Pressure – Equipment – Lift Mode	38 000 kPa	5,511 psi		
Maximum Pressure – Travel	35 000 kPa	5,076 psi		
Maximum Pressure – Swing	29 400 kPa	4,264 psi		
Boom Cylinder – Bore	150 mm	6 in		
Boom Cylinder – Stroke	1440 mm	57 in		
Stick Cylinder – Bore	170 mm	7 in		
Stick Cylinder – Stroke	1738 mm	68 in		
DB Bucket Cylinder – Bore	150 mm	6 in		
DB Bucket Cylinder – Stroke	1151 mm	45 in		
TB Bucket Cylinder – Bore	160 mm	6 in		
TB Bucket Cylinder – Stroke	1356 mm	53 in		

Service Refill Capacities

Fuel Tank Capacity	600 L	158.5 gal		
Cooling System	40 L	10.5 gal		
Engine Oil (with filter)	32 L	8.5 gal		
Swing Drive	18 L	4.8 gal		
Final Drive (each)	8 L	2.1 gal		
Hydraulic System (including tank)	373 L	98.5 gal		
Hydraulic Tank (including suction pipe)	161 L	42.5 gal		
DEF Tank	80 L	21.1 gal		
Standards				
Brakes	ISO 10265:2008			
Cab/FOGS	ISO 10262:1998			
Cab/ROPS	ISO 12117-2:2008			
Sound Performance				
ISO 6395:2008 (external)	105 dB(A)			
ISO 6396:2008 (inside cab)	73 dB(A)			

• Hearing protection may be needed when operating with an open operator station and cab (when not properly maintained or doors/ windows open) for extended periods or in a noisy environment.

Air Conditioning System

The air conditioning system on this machine contains the fluorinated greenhouse gas refrigerant R134a (Global Warming Potential = 1430). The system contains 1.00 kg of refrigerant, which has a CO_2 equivalent of 1.430 metric tonnes.

Operating Weights and Ground Pressures

	600 mm (24") Double Grouser Shoes		600 mm Triple Gro	600 mm (24") HD Triple Grouser Shoes		700 mm (28") Triple Grouser Shoes		850 mm (33") Triple Grouser Shoes	
	Weight	Ground Pressure	Weight	Ground Pressure	Weight	Ground Pressure	Weight	Ground Pressure	
	kg (lb)	kPa (psi)	kg (lb)	kPa (psi)	kg (lb)	kPa (psi)	kg (lb)	kPa (psi)	
9.0 mt (19,800 lb) Counterweight + Long Undercarriage Base Machine									
Straight Boom + R3.9 m DB (12'10") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket			40 200 (88,500)	74.8 (10.9)	39 900 (87,900)	74.2 (10.8)	40 700 (89,800)	65.0 (9.4)	
Straight Boom + R3.2 m DB (10'6") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket			40 000 (88,200)	74.5 (10.8)	39 700 (87,500)	73.9 (10.7)	40 600 (89,400)	64.7 (9.4)	
9.0 mt (19,800 lb) Counterweight + Long Narrow Undercarriage Base Machine									
Straight Boom + R3.9 m DB (12'10") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket			40 000 (88,300)	74.6 (10.8)	39 700 (87,600)	74.0 (10.7)			
Straight Boom + R3.2 m DB (10'6") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket			39 900 (87,900)	74.3 (10.8)	39 600 (87,200)	73.7 (10.7)			
7.56 mt (16,700 lb) Counterweight + HD High Wide Undercarriage Base Machine									
Reach Boom + R3.2 m DB (10'6") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket	39 800 (87,800)	74.2 (10.8)	39 700 (87,600)	74.0 (10.7)	39 400 (86,900)	73.4 (10.6)	40 300 (88,800)	64.3 (9.3)	
Reach Boom + R2.8 m DB (9'2") Stick + 2.27 m ³ (2.97 yd ³) GD Bucket	39 700 (87,600)	74.0 (10.7)	39 600 (87,300)	73.8 (10.7)	39 300 (86,700)	73.2 (10.6)	40 200 (88,600)	64.1 (9.3)	
Mass Boom + M2.55 m TB (8'4") Stick + 2.41 m ³ (3.13 yd ⁸) SD Bucket	41 300 (91,100)	77.0 (11.2)	41 200 (90,900)	76.8 (11.1)	40 900 (90,200)	76.2 (11.1)	41 800 (92,100)	66.7 (9.7)	
10.35 mt (22,800 lb) Counterweight + HD High Wide Undercarriage Base Machine	كرر							>	
Long Reach Boom + LRE7.1 m B1 (234^{u}) Stick + 0.93 m^{2} (1.22 y^{3})	لرر		43 300 (95,000)	80.7 (11.7)	43 000 (94,800)	80.1 (11.6)	43 900 (96,700)	70.0 (10.2)	
GD Bucket			/	× /		(う ^ ^	

All operating weights include a 90% fuel tank with 75 kg (165 lb) operator.
Dimensions

All dimensions are approximate and may vary depending on bucket selection.

Boom Option LRE Boom 10.6 m (34'9") **Stick Option LRE Stick** LRE7.1B1 (23'4") 1 Machine Height: 11.2 ft Cab Height 3400 mm FOGS Height 3540 mm 11.6 ft Handrails Height 3390 mm 11.1 ft With Boom/Stick/Bucket Installed (with auxiliary lines) 12 ft 3670 mm With Boom/Stick Installed (with auxiliary lines) 3670 mm 12 ft With Boom Installed (with auxiliary lines) 3340 mm 11 ft **2** Machine Length: With Boom/Stick/Bucket Installed (with auxiliary lines) 15 310 mm 50.2 ft With Boom/Stick Installed (with auxiliary lines) 15 310 mm 50.2 ft 14 180 mm With Boom Installed (with auxiliary lines) 46.5 ft 9.9 ft **3** Upperframe Width without Walkways 3030 mm 4 Tail Swing Radius 3530 mm 11.6 ft **5** Counterweight Clearance 1470 mm 4.8 ft 6 Ground Clearance 720 mm 2.4 ft 7 Length to Center of Rollers 4040 mm 13.3 ft 8 Track Length 5030 mm 16.5 ft 9 Track Gauge - Extended (long undercarriage) 2930 mm 9.6 ft **10** Track Width: 600 mm (24") Shoes (long undercarriage) 3530 mm 11.6 ft 3630 mm 700 mm (28") Shoes (long undercarriage) 11.9 ft 850 mm (33") Shoes (long undercarriage) 3780 mm 12.4 ft Undercarriage Width (with steps/without steps): 600 mm (24") Shoes (long undercarriage) 3670 mm 12.0 ft 700 mm (28") Shoes (long undercarriage) 3670 mm 12.0 ft 850 mm (33") Shoes (long undercarriage) 3780 mm 12.4 ft GD Bucket Type Bucket Capacity 0.93 m³ 1.22 yd3 Bucket Tip Radius 1580 mm 5.2 ft

Working Ranges and Forces

Boom Option

Stick Option

All dimensions are approximate and may vary depending on bucket selection.

	LNE7.ID	(234)
1 Maximum Digging Depth	13 050 mm	42.8 ft
2 Maximum Reach at Ground Line	18 080 mm	59.3 ft
3 Maximum Cutting Height	15 620 mm	51.2 ft
4 Maximum Loading Height	12 770 mm	41.9 ft
5 Minimum Loading Height	3210 mm	10.5 ft
6 Maximum Depth Cut for 2440 mm (8 ft) Level Bottom	12 960 mm	42.5 ft
7 Maximum Vertical Wall Digging Depth	10 660 mm	35.0 ft
Bucket Digging Force (SAE)	125 kN	28,020 lbf
Bucket Digging Force (ISO)	141 kN	31,590 lbf
Stick Digging Force (SAE)	91 kN	20,470 lbf
Stick Digging Force (ISO)	92 kN	20,750 lbf
Bucket Type	GI)
Bucket Capacity	0.93 m ³	1.22 yd ³
Bucket Tip Radius	1580 mm	5.2 ft

ATTACHMENT 7 RESULTS - 25PSI LOAD AT EDGE

RESULTS - 25PSI 5 FT SETBACK

RESULTS - NO SURFACE LOAD

APPENDIX G WWHM and HELP Modeling

Haley Site Upland Capping Design - WWHM Modeling Summary

Drainage Areas and Model Assumptions

- Predeveloped Condition: Drainage were delineated based on the survey map prepared by Wilson Engineering & Surveying 10/28/15. See attached figure.

- Post-Development Condition: Drainage areas delineated based on GeoEngineers 30% capping design. See attached figure.

	On-site Ar	ea (acres)	Off-site Areas (acres)		Total Areas (acres)		s)	
Brodovolopod	Imporvious	Vegetated	Impervious -	Impervious -	Vegetated -	Total	Total	Total Drainage
Freuevelopeu	Impervious	vegetateu	BNSF RR	Cornwall	Cornwall	Impervious	Vegetated	Area
DB-E	1.30	0	0.32	0	0	1.62	0	1.62
DB-W	3.02	0.83	0	0	0	3.02	0.83	3.85
Total	4.32	0.83	0.32	0	0	4.64	0.83	5.47

Note: Impervious areas include asphalt, concrete and gravel areas.

	On-site Ar	On-site Area (acres)		Off-site Areas (acres)		Т	otal Areas (acre	s)
Post dovelonment	Imporvious	Vogotatod	Impervious -	Impervious -	Vegetated -	Total	Total	Total Drainage
Post-development	Impervious	vegetateu	BNSF RR	Cornwall	Cornwall	Impervious	Vegetated	Area
DB-E	0	1.17	0	0	0.14	0	1.31	1.31
DB-W	0	3.85	0	0	0.44	0	4.29	4.29
Total	0	5.02	0	0	0.58	0	5.60	5.60

Note: Impervious areas include asphalt, concrete and compact gravel surfaces.

WWHM Modeling Results

1. Upland Cap Surface Runoff Flow Rate:

WWHM report name: Upland Capping

	Surface Runoff Flow per Flow Frequency (cfs)				
Drainage Basin	DB-E		DB	-W	
		Post-		Post-	
Return Period	Predeveloped	Development	Predeveloped	Development	
2-Yr	0.68	0.00	1.28	0.04	
5-Yr	0.91	0.02	1.73	0.18	
10-Yr	1.06	0.05	2.02	0.39	
25-Yr	1.26	0.14	2.40	0.87	

2. Drainage Channel in Drainage Basin DB-E model inputs:

Channel Dimensions:

- Length = 1,000 feet

- Bottom width = 5 feet

- Channel side slope = 2H:1V

- Channel bottom slope = 1%

Post-Development Peak Flow and Stage in East Channel:

- Peak stage (ft) = 0.063

- Peak flow (cfs) = 0.25

<section-header>

General Model Information

Project Name:	Upland Capping
Site Name:	R.G. Haley Site
Site Address:	
City:	Bellingham
Report Date:	4/23/2019
Gage:	Blaine
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2018/10/10
Version:	4.2.16

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year

Landuse Basin Data Predeveloped Land Use

DB-E

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS FLAT	acre 1.62
Impervious Total	1.62
Basin Total	1.62
Element Flows To: Surface	Interflow

DB-W

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Flat	acre 0.83
Pervious Total	0.83
Impervious Land Use ROADS FLAT	acre 3.02
Impervious Total	3.02
Basin Total	3.85

Element Flows To: Surface Interflow

Mitigated Land Use

DB-E

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Flat	acre 1.31
Pervious Total	1.31
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.31

Element Flows To:	
Surface	Interflow
East Channel	East Channel

DB-W

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Flat	acre 4.29
Pervious Total	4.29
Impervious Land Use	acre
Impervious Total	0
Basin Total	4.29

Element Flows To: Surface Interflow

Routing Elements Predeveloped Routing

Mitigated Routing

East Channel

Bottom Length:	1000.00 ft.
Bottom Width:	5.00 ft.
Manning's n:	0.03
Channel bottom slope 1:	0.01 To 1
Channel Left side slope 0:	2 To 1
Channel right side slope 2:	2 To 1
Discharge Structure	
Riser Height:	0 ft.
Riser Diameter:	0 in.
Element Flows To:	
Outlet 1 Outlet	t 2

Channel Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.114 (0.000 ` ´	0.000	0.000 (
0.0111	0.115	0.001	0.013	0.000
0.0222	0.116	0.002	0.043	0.000
0.0333	0.117	0.003	0.086	0.000
0.0444	0.118	0.005	0.139	0.000
0.0556	0.119	0.006	0.201	0.000
0.0667	0.120	0.007	0.273	0.000
0.0778	0.121	0.009	0.354	0.000
0.0889	0.122	0.010	0.442	0.000
0.1000	0.124	0.011	0.539	0.000
0.1111	0.125	0.013	0.643	0.000
0.1222	0.126	0.014	0.755	0.000
0.1333	0.127	0.016	0.874	0.000
0.1444	0.128	0.017	1.000	0.000
0.1556	0.129	0.019	1.132	0.000
0.1667	0.130	0.020	1.272	0.000
0.1778	0.131	0.021	1.418	0.000
0.1889	0.132	0.023	1.571	0.000
0.2000	0.133	0.024	1.730	0.000
0.2111	0.134	0.026	1.895	0.000
0.2222	0.135	0.027	2.067	0.000
0.2333	0.136	0.029	2.245	0.000
0.2444	0.137	0.030	2.430	0.000
0.2556	0.138	0.032	2.620	0.000
0.2667	0.139	0.033	2.816	0.000
0.2778	0.140	0.035	3.019	0.000
0.2889	0.141	0.037	3.227	0.000
0.3000	0.142	0.038	3.441	0.000
0.3111	0.143	0.040	3.661	0.000
0.3222	0.144	0.041	3.888	0.000
0.3333	0.145	0.043	4,119	0.000
0.3444	0.146	0.045	4.357	0.000
0.3556	0.147	0.046	4.601	0.000
0.3667	0.148	0.048	4.850	0.000
0.3778	0.149	0.049	5.105	0.000
0.3889	0.150	0.051	5.365	0.000
0.4000	0.151	0.053	5.632	0.000
0.4111	0.152	0.054	5.904	0.000

0.153 0.154	0.056 0.058	6.182 6.465	0.000 0.000
0.155 0.156	0.060 0.061	6.754 7.049	$0.000 \\ 0.000$
0.157	0.063	7.349 7.655	0.000
0.159	0.067	7.967	0.000
0.160 0.161	0.068 0.070	8.284 8.607	0.000 0.000
0.162	0.072	8.935	0.000
0.164	0.076	9.609	0.000
0.165 0.166	0.077 0.079	9.954 10.30	0.000 0.000
0.167	0.081	10.66	0.000
0.169	0.085	11.39	0.000
0.170 0.171	0.087 0.089	11.76 12.14	0.000
0.172	0.091	12.52	0.000
0.174 0.175	0.093	13.31	0.000
0.176 0.177	0.096	13.71 14 12	0.000
0.178	0.100	14.53	0.000
0.179	0.102	14.95	0.000
0.181 0.182	0.106 0.108	15.80 16 24	0.000
0.183	0.110	16.68	0.000
0.184 0.185	0.112	17.13	0.000
0.186 0.187	0.117 0.119	18.04 18.50	0.000
0.188	0.121	18.97	0.000
0.189 0.190	0.123	19.45	0.000
0.191 0.192	0.127 0.129	20.41 20.91	0.000
0.193	0.131	21.41	0.000
0.194 0.195	0.134	22.42	0.000
0.196 0.197	0.138 0.140	22.94 23.46	0.000
0.198	0.142	23.98	0.000
0.199	0.144 0.147	24.52 25.06	0.000
0.201	0.149 0.151	25.60 26.15	0.000
0.203	0.153	26.71	0.000
0.204	0.158	27.84	0.000
0.206 0.207	0.160 0.163	28.41 28.99	0.000 0.000
	0.153 0.154 0.155 0.156 0.157 0.158 0.159 0.160 0.161 0.162 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.171 0.172 0.174 0.175 0.176 0.177 0.178 0.179 0.180 0.181 0.182 0.183 0.184 0.185 0.186 0.187 0.188 0.181 0.182 0.183 0.184 0.185 0.186 0.187 0.190 0.191 0.192 0.193 0.194 0.195 0.196 0.197 0.202 0.203 0.204 0.205 0.206 0.207	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for	POC #1
Total Pervious Area:	0	
Total Impervious Area:	1.62	

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.31 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

 Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.679872

 5 year
 0.909046

 10 year
 1.061542

 25 year
 1.25553

 50 year
 1.401206

 100 year
 1.548043

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.004269
5 year	0.021517
10 year	0.05287
25 year	0.143706
50 year	0.280531
100 year	0.52004

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

leal	Freuevelopeu	wiitiyate
1949	0.511	0.002
1950	1.182	0.001
1951	0.475	0.008
1952	0.465	0.001
1953	0.543	0.001
1954	0.963	0.006
1955	0.643	0.008
1956	0.860	0.002
1957	0.873	0.022
1958	0.817	0.001

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	0.500 0.864 0.383 1.046 0.908 0.949 1.136 0.918 0.616 0.638 0.571 0.474 0.434 0.805 0.434 0.511 0.598 0.813 1.514 0.835 0.825 0.733 1.015 0.697 0.484 1.088 0.683 1.074 0.850 0.652 1.557 0.703 0.536 0.549 0.525 0.400 0.525 0.400 0.525 0.400 0.738 0.354 0.744 0.560	0.001 0.003 0.002 0.001 0.042 0.145 0.064 0.015 0.010 0.004 0.001 0.003 0.000 0.003 0.006 0.156 0.001 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.003 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.004 0.0066 0.064 0.001 0.001
1997 1998 1999 2000 2001 2002 2003 2004	0.738 0.354 0.744 0.560 0.881 0.555 0.542 0.915	$\begin{array}{c} 0.060\\ 0.064\\ 0.000\\ 0.097\\ 0.001\\ 0.000\\ 0.003\\ 0.001\\ 0.001\\ 0.001\end{array}$
2005 2006 2007 2008 2009	0.683 0.738 0.731 0.362 0.478	0.018 0.009 0.012 0.000 0.001

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 1 5572 0 2277

1	1.5573	0.2377
2	1.5142	0.1563
3	1.1816	0.1453

456789 101123456789 101123456789 2012232456789 20122323 20031233456789 301423445678 30012233456789 30123345789 3012345789 30123345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 3012345789 301235789 30125785789 30125785789 30125785789 301257789 301257789 301257789 300	1.1365 1.0884 1.0737 1.0463 1.0152 0.9632 0.9485 0.9175 0.9175 0.9152 0.9084 0.8810 0.8732 0.8639 0.8602 0.8497 0.8354 0.8249 0.8171 0.8132 0.8051 0.7381 0.7376 0.7328 0.7310 0.7328 0.7310 0.7328 0.7310 0.7328 0.7310 0.7328 0.7310 0.7328 0.7310 0.7328 0.7310 0.7328 0.6834 0.6830 0.6516 0.6834 0.6830 0.6516 0.6430 0.6554 0.5554 0.5554 0.5554 0.5554 0.5490 0.5425 0.5357 0.5252 0.5108	0.1196 0.0975 0.0911 0.0874 0.0664 0.0639 0.0638 0.0424 0.0338 0.0220 0.0184 0.0155 0.0127 0.0184 0.0109 0.0097 0.0091 0.0092 0.0045 0.0041 0.0045 0.0041 0.0039 0.0038 0.0035 0.0034 0.0028 0.0021 0.0021 0.0021 0.0015 0.0015 0.0015 0.0013 0.0012 0.0007 0.0007
45 46 47 48 49 50 51 52 53 54 55 56 57 58	0.5357 0.5252 0.5108 0.4995 0.4838 0.4815 0.4780 0.4749 0.4741 0.4649 0.4343 0.4337 0.3995	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005
59 60 61	0.3832 0.3622 0.3542	0.0005 0.0004 0.0004

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.3399	1349	0	0	Pass
0.3507	1194	0	0	Pass
0.3614	1063	0	0	Pass
0.3/21	937	0	0	Pass
0.3828	845	0	0	Pass
0.3935	755	0	0	Pass
0.4043	669	0	0	Pass
0.4150	603	0	0	Pass
0.4257	553	0	0	Pass
0.4364	509	0	0	Pass
0.4471	450	0	0	Pass
0.4579	415	0	0	Pass
0.4000	3/4	0	0	Pass
0.4793	044 210	0	0	rass Dooo
0.4900	201	0	0	Pass
0.5007	291	0	0	rass Dass
0.5115	200	0	0	rass Dass
0.5222	230	0	0	r ass Dass
0.5529	230	0	0	r doo Doce
0.5430	10/	0	0	Pass
0.5651	183	0	0	Pass
0.5758	173	0	0	Pass
0.5865	159	Ő	0	Pass
0.5972	145	Ő	0	Pass
0.6079	139	õ	0	Pass
0.6187	130	Õ	Õ	Pass
0.6294	119	Õ	Õ	Pass
0.6401	112	Õ	Õ	Pass
0.6508	104	Ō	Ō	Pass
0.6615	98	Ō	0	Pass
0.6723	94	0	0	Pass
0.6830	89	0	0	Pass
0.6937	78	0	0	Pass
0.7044	65	0	0	Pass
0.7151	61	0	0	Pass
0.7259	60	0	0	Pass
0.7366	57	0	0	Pass
0.7473	51	0	0	Pass
0.7580	50	0	0	Pass
0.7687	48	0	0	Pass
0.7795	45	0	0	Pass
0.7902	42	0	0	Pass
0.8009	41	0	0	Pass
0.8116	39	0	0	Pass
0.8223	35	0	0	Pass
0.8331	33	0	0	Pass
0.8438	31	0	U	Pass
0.8545	29	U	U	Pass
0.8652	26	U	U	Pass
0.8759	25 22	U	U	Pass
0.000/	∠3 22	0	0	Pass
0.0974	∠ 3	U	U	rass

0.9081 0.9188	23 20	0 0	0 0	Pass Pass
0.9295	18	0	0	Pass
0.9403	17	0	0	Pass
0.9510	15	0	0	Pass
0.9617	15	0	0	Pass
0.9724	14	0	0	Pass
0.9831	12	0	0	Pass
0.9938	12	0	0	Pass
1 0153	12	Õ	0	Pass
1.0260	11	Õ	õ	Pass
1.0367	11	Ō	Ō	Pass
1.0474	10	0	0	Pass
1.0582	10	0	0	Pass
1.0689	9	0	0	Pass
1.0796	/ 	0	0	Pass
1.0903	5	0	0	Pass
1.1010	5	0	0	Pass
1 1225	5	0	0	Pass
1.1332	5	ŏ	õ	Pass
1.1439	4	0	0	Pass
1.1546	4	0	0	Pass
1.1654	4	0	0	Pass
1.1761	4	0	0	Pass
1.1868	3	0	0	Pass
1.1970	ა ვ	0	0	Pass
1 2190	3	0	0	Pass
1.2297	3	ŏ	õ	Pass
1.2404	3	Ō	Ō	Pass
1.2511	3	0	0	Pass
1.2618	3	0	0	Pass
1.2726	3	0	0	Pass
1.2833	3	0	0	Pass
1.2940	3	0	0	Pass
1.3047	3	0	0	Pass
1.3262	3	Ő	0	Pass
1.3369	3	Õ	Õ	Pass
1.3476	3	0	0	Pass
1.3583	3	0	0	Pass
1.3690	3	0	0	Pass
1.3/98	3	0	0	Pass
1.3905	う	U	U	Pass
1.4012	3	U	U	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.O cfs.0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
East Channel POC		0.63				0.00			1
Total Volume Infiltrated		0.63	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 0.83 Total Impervious Area: 3.02

Mitigated Landuse Totals for POC #2 Total Pervious Area: 4.29 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

2 year	1.281`966
5 year	1.72628
10 year	2.023507
25 year	2.403101
50 year	2.689116
100 year	2.978144
-	

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

2 year	0.044144
5 year	0.184662
10 year	0.390164
25 year	0.86634
50 year	1.450395
100 year	2.305635

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

i cai	Fieuevelopeu	iviitiyat
1949	0.953	0.019
1950	2.203	0.014
1951	0.891	0.078
1952	0.867	0.003
1953	1.012	0.006
1954	1.796	0.082
1955	1.219	0.103
1956	1.604	0.019
1957	1.661	0.244
1958	1.523	0.008
1959	0.932	0.008

1960 1961	1.611 0.714	0.039 0.060
1962	1.951	0.021
1963	1.694	0.005
1964	1.858	0.462
1965	2.240	0.646
1900	1.019	0.009
1967	1 1 8 9	0.105
1969	1.103	0.046
1970	0.884	0.003
1971	0.808	0.013
1972	1.502	0.085
1973	0.810	0.007
1974	0.954	0.051
1975	1.115	0.088
1970	1.0 4 0 2.823	0.070
1978	1 558	0.013
1979	1.555	0.087
1980	1.366	0.042
1981	1.893	0.011
1982	1.299	0.548
1983	0.902	0.031
1904 1985	2.190	0.070
1986	2 125	0.505
1987	1.584	0.088
1988	1.215	0.006
1989	2.903	0.124
1990	1.348	0.238
1991	0.999	0.035
1992	0.985	0.140
1994	0.745	0.020
1995	0.898	0.026
1996	1.531	0.453
1997	1.435	0.453
1998	0.661	0.003
1999	1.470	0.431
2000	1.044	0.011
2002	1.039	0.035
2003	1.011	0.003
2004	1.706	0.007
2005	1.273	0.139
2006	1.381	0.089
2007	1.303	0.130
2000	0.070	0.003
2003	0.031	0.000

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	2.9034	0.8700
2	2.8230	0.6703
3	2.2401	0.6479
4	2.2028	0.6460

5 6 7 8 9 10 11 12 13 14 15	2.1964 2.1252 1.9506 1.8932 1.8577 1.8187 1.7956 1.7064 1.6937 1.6610 1.6456	0.5593 0.5480 0.4620 0.4535 0.4534 0.4307 0.3833 0.2442 0.2377 0.1854 0.1405
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1.6427 1.6105 1.6038 1.5840 1.5575 1.5547 1.5234 1.5025 1.4701 1.4349 1.3806 1.3661 1.3628 1.3482 1.3481	0.1394 0.1298 0.1235 0.1107 0.1026 0.0889 0.0884 0.0883 0.0873 0.0851 0.0825 0.0775 0.0596 0.0567 0.0512 0.0460
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 42	1.2992 1.2732 1.2185 1.2151 1.1893 1.1531 1.1146 1.0640 1.0436 1.0235 1.0121 1.0113 0.9993 0.9846 0.9540	0.0419 0.0388 0.0352 0.0350 0.0310 0.0282 0.0261 0.0215 0.0192 0.0188 0.0145 0.0145 0.0140 0.0127 0.0108 0.0107 0.0081
48 49 50 51 52 53 54 55 56 57 58 59 60 61	0.9534 0.9319 0.9020 0.8977 0.8913 0.8911 0.8838 0.8666 0.8097 0.8085 0.7448 0.7143 0.6753 0.6607	0.0077 0.0075 0.0068 0.0065 0.0064 0.0036 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0033

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.6410	1300	8	0	Pass
0.6617	1146	6	0	Pass
0.6824	1018	5	0	Pass
0.7030	899	3	0	Pass
0.7237	<u>811</u>	3	0	Pass
0.7444	714	3	0	Pass
0.7651	631	3	0	Pass
0.7858	571	3	0	Pass
0.8065	527	3	0	Pass
0.8272	476	2	0	Pass
0.8479	430	2	0	Pass
0.8686	392	1	0	Pass
0.8892	359	0	0	Pass
0.9099	323	0	0	Pass
0.9306	299	0	0	Pass
0.9513	272	0	0	Pass
0.9720	260	0	0	Pass
0.9927	237	0	0	Pass
1.0134	217	0	0	Pass
1.0341	201	0	0	Pass
1.0547	184	0	0	Pass
1.0754	173	0	0	Pass
1.0961	164	0	0	Pass
1.1168	150	0	0	Pass
1.1375	140	0	0	Pass
1.1382	135	0	0	Pass
1.1709	124	0	0	Pass
1.1990	104	0	0	Pass
1.2203	104	0	0	rass Dooo
1.2409	100	0	0	rass Docc
1.2010	90 01	0	0	Pass
1.2025	83	0	0	r ass Dass
1.3030	76	0	0	Pass
1 3444	70	0	0	Pass
1 3651	62	0	0	Pass
1 3858	57	Ő	0	Pass
1 4064	55	Õ	0	Pass
1 4271	54	Õ	0 0	Pass
1 4478	51	Õ	0 0	Pass
1 4685	48	Õ	Ő	Pass
1.4892	44	Õ	Õ	Pass
1.5099	42	Õ	Õ	Pass
1.5306	40	Õ	Õ	Pass
1.5513	38	Õ	Õ	Pass
1.5720	34	Õ	Õ	Pass
1.5926	32	Õ	Õ	Pass
1.6133	30	Ō	Ō	Pass
1.6340	30	Ō	Ō	Pass
1.6547	27	Ō	Ō	Pass
1.6754	25	Ō	Ō	Pass
1.6961	23	Ō	Ō	Pass
1.7168	21	Ō	Ō	Pass

1.7375	20	0	0	Pass
1.7581	19	0	0	Pass
1.7788	19	0	0	Pass
1.7995	18	0	0	Pass
1.8202	17	0	0	Pass
1.8409	16	0	0	Pass
1.8616	15	0	0	Pass
1.8823	14	0	0	Pass
1.9030	12	0	0	Pass
1.9237	12	0	0	Pass
1.9443	12	0	0	Pass
1.9650	11	0	0	Pass
1.9857	10	0	0	Pass
2.0064	10	0	0	Pass
2.0271	9	0	0	Pass
2.0478	9	0	0	Pass
2.0685	9	0	0	Pass
2.0892	8	0	0	Pass
2.1098		0	0	Pass
2.1305	6	0	0	Pass
2.1312	6	0	0	Pass
2.1719	6	0	0	Pass
2.1920	0	0	0	Pass
2.2133	4	0	0	Pass
2.2340	4	0	0	Pass Dass
2.2547	3	0	0	Pass
2 2960	3	0	0	Pass
2 3167	3	0	Ő	Pass
2 3374	3	Õ	Õ	Pass
2 3581	3	õ	Õ	Pass
2 3788	3	õ	Õ	Pass
2.3995	3	õ	Õ	Pass
2.4202	3	Õ	Õ	Pass
2.4409	3	Ō	Ō	Pass
2.4615	3	Ō	Ō	Pass
2.4822	3	0	0	Pass
2.5029	3	0	0	Pass
2.5236	3	0	0	Pass
2.5443	3	0	0	Pass
2.5650	3	0	0	Pass
2.5857	3	0	0	Pass
2.6064	3	0	0	Pass
2.6271	3	0	0	Pass
2.6477	3	0	0	Pass
2.6684	2	0	0	Pass
2.6891	2	0	0	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.
LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation
 START
 1948 10 01
 END
 2009 09 30

 RUN INTERP OUTPUT LEVEL
 3
 0
 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Upland Capping.wdm MESSU 25 PreUpland Capping.MES 27 PreUpland Capping.L61 PreUpland Capping.L62 POCUpland Capping1.dat 28 30 POCUpland Capping2.dat 31 END FILES OPN SEQUENCE 1 7 INDELT 00:15 INGRP IMPLND PERLND COPY 501 COPY 502 DISPLY 1 2 DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 30 9 31 9 DB-E 1 MAX 1 2 2 DB-W MAX 1 2 31 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 1 502 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # K *** # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 7 A/B, Lawn, Flat 1 27 0 1 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 7 0 0 1 0 0 0 0 0 0 0 0 0 END ACTIVITY

PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ******** 7 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 7
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 7
 0
 5
 0.8
 400
 0.05
 0.3
 0.996
 <PLS > 5 END PWAT-PARM2 PWAT-PARM3 WAT-PARM3 <PLS > PWATER input info: Part 3 # - # ***PETMAX PETMIN INFEXP 7 0 0 2 PUPP PARM2 * * * INFILD DEEPFR BASETP AGWETP 2 0 0 0 END PWAT-PARM3 PWAT-PARM4 * * * <PLS > PWATER input info: Part 4
 # #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 7
 0.1
 0.5
 0.25
 0
 0.7
 0.25
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 3 1 GWVS 7 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** in out *** 1 ROADS/FLAT 1 1 27 0 1 END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** 1 0 0 1 0 0 0 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR
 # # ATMP SNOW IWAT
 SLD
 IWG IQAL

 1
 0
 0
 4
 0
 0
 1
 9
 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 1 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2*LSURSLSURNSURRETSC4000.010.10.1 <PLS > * * * # - # *** 1 END IWAT-PARM2

IWAT-PARM3 <PLS > IWATER input info: Part 3 *** # - # ***PETMAX PETMIN 1 0 0 1 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 1 0 0 1 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # DB-E*** 1.62 COPY 501 15 IMPLND 1 DB-W*** 0.83 COPY 502 12 0.83 COPY 502 13 3.02 COPY 502 15 PERLND 7 PERLND 7 IMPLND 1 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1
COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----- User T-series Engl Metr LKFG * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * END HYDR-PARM1 HYDR-PARM2 * * * DB50 # – # FTABNO LEN DELTH STCOR KS <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT

* * * RCHRES Initial conditions for each HYDR section Initial value of OUTDGT <---><---><---> *** <---><---> <----> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # *** 2 PREC ENGL 1 PERLND 1 999 EXTNL WDM PREC 2 PRECENGL1IMPLND1999EXTNLPREC1 EVAPENGL0.76PERLND1999EXTNLPETINP1 EVAPENGL0.76IMPLND1999EXTNLPETINP WDM 2 PREC WDM WDM END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL WDM 502 FLOW ENGL COPY 502 OUTPUT MEAN 1 1 48.4 REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> Name> <Name> # #<-factor-> MASS-LINK 12 <-Grp> <-Member->*** <Target> <Name> # #*** <Name> <Name> PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation
 START
 1948 10 01
 END
 2009 09 30

 RUN INTERP OUTPUT LEVEL
 3
 0
 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Upland Capping.wdm MESSU 25 MitUpland Capping.MES 27 MitUpland Capping.L61 MitUpland Capping.L62 POCUpland Capping2.dat 28 31 30 POCUpland Capping1.dat END FILES OPN SEQUENCE INDELT 00:15 INGRP 7 1 PERLND RCHRES COPY 502 COPY 1 COPY 501 DISPLY 2 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 2 DB-W 1 East Channel MAX 1 2 31 9 MAX 2 30 9 1 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 502 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 7 A/B, Lawn, Flat 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 7 0 0 1 0 0 0 0 0 0 0 0 0 END ACTIVITY

PRINT-INFO END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 7
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2
 NAI-PARM2

 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 7
 0
 5
 0.8
 400
 0.05
 0.3
 0.996
 END PWAT-PARM2 PWAT-PARM3 <PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD70022 INFILD DEEPFR BASETP 2 0 0 AGWETP 0 END PWAT-PARM3 PWAT-PARM4
 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 7
 0.1
 0.5
 0.25
 0
 0.7
 0.25
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPSSURSUZSIFWSLZSAGWS000031 GWVS 0 7 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 WAT-PARM2 <PLS > IWATER input info: Part 2 ** # - # *** LSUR SLSUR NSUR RETSC IWAT-PARM2 * * * END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3

END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # DB-E*** 1.31 RCHRES 1 1.31 RCHRES 1 PERLND 7 2 PERLND 7 3 DB-W*** 4.29 COPY 502 12 4.29 COPY 502 13 PERLND 7 PERLND 7 *****Routing***** COPY112COPY113COPY50116 PERLND 7 PERLND 7 1.31 1.31 RCHRES 1 1 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT TIMSER 1 COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out * * * 1 East Channel 1 1 1 1 28 0 1 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 1 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO * * * * * * * * * END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * *

 # - # VC A1 A2 A3 ODFVFG for each
 *** ODGTFG for each
 FUNCT for each

 FG FG FG FG possible exit
 *** possible exit
 possible exit

 1
 0 1 0 0 4 0 0 0 0
 0 0 0 0 0
 2 2 2 2 2

 1 END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * 1 0.19 0.0 0.0 0.5 0.0 1

	ENI HYI F	D HYDI DR-INI RCHRES	R-PA IT S J	ARM2 Initial	cond	litio	ns	for	ea	ch I	HYD	R se	ecti	on	_		_				c	* * *
	‡	‡ — ;	+ ** ***	** VOI * ac-ft		Ini for	tia eac	l v h po	val Sss	ue ible	of e e	COI xit	LIND	* * *	Ir for	niti c ea	al ch	va. pos	lue sibl	le Le	exit	TDGT
EN	Z 1 ENI ID F	L D HYDI RCHRE:	>< R-IN S	0 1IT	>	< 4	.0	0.0)	0.0	0	.0	0.0		< -	0.0	(0.0	0.0)	0.0	0.0
SE EN FI	PEC- ID S ABI FTZ	-ACTI SPEC-A LES ABLE	ONS ACTI	IONS																		
	FTZ 91 0.000 0.0000 0.0000 0.00000 0.00000 0.000000 0.000000 0.110000 0.110000 0.110000 0.110000 0.110000 0.110000 0.120000 0.120000 0.120000 0.1200000 0.1200000 0.1200000 0.1200000 0.12000000 0.12000000000 0.1200000000000000000000000000000000000	ABLE ABLE ABLE Deptl (ft 00000 01111: 02222: 03333: 04444 05555 06666 07777; 08888; 00000 11111: 122222; 13333; 14444; 15555 16666; 27777; 28888; 20000 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 20000 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25555; 26666; 27777; 28888; 200000; 21111: 22222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 24444; 25222; 23333; 2444; 25222; 23333; 2444; 25222; 23333; 2444; 25222; 23333; 2444; 25222; 25333; 2444; 25222; 25333; 254; 253; 253; 253; 253; 253; 253; 253; 253; 253; 253; 253; 254; 253; 253; 253; 253; 253; 254; 254; 255; 2		1 Area (acres)).114784).115809).116829).117849).118866).119886).120906).121927).122947).123967).124988).129068).129068).129068).129068).128049).128049).128049).123130 (.133150).134171).136211).136211).136211).136211).137232).138252).139272).138252).139272).138252).139272).138252).139272).138252).139272).138252).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).139272).135196).155598).156618).157638).158657).158657).158657).158679).160498).162740).162740).162740).162740).162740).162740).162740).162740).162740	a (ac) b (ac) c (ac) <td< td=""><td>Volu 000125 000125 000125 000125 000125 000125 0000000000</td><td>mt08779150632123605297780372965568161864568162976670 e)013729656815186670395322472285334716209025952112594</td><td>Out 0.00000000000000000000000000000000000</td><td>1 s003331345293453402228137390243206971135353535354022281373902432069711353535353540253924533024253124155353535353535353535353535353535353535</td><td></td><td>Ve (f</td><td>loci</td><td>ity ec)</td><td>Tra (</td><td>ve] Mir</td><td>L Ti ute</td><td>mess);</td><td>* * *</td><td></td><td></td><td></td><td></td></td<>	Volu 000125 000125 000125 000125 000125 000125 0000000000	mt08779150632123605297780372965568161864568162976670 e)013729656815186670395322472285334716209025952112594	Out 0.00000000000000000000000000000000000	1 s003331345293453402228137390243206971135353535354022281373902432069711353535353540253924533024253124155353535353535353535353535353535353535		Ve (f	loci	ity ec)	Tra (ve] Mir	L Ti ute	mess);	* * *				
	U.5 0.5 0.5	55555 56666' 577778	5 (7 (3 ().16580]).166822).167842	L 0. 2 0. 2 0.	0779 0797 0816	40 88 47	9.9 10. 10.	954 30 66	860 577 228												

Page	37
------	----

0.611111 0.170 0.622222 0.171 0.633333 0.172 0.644444 0.173 0.655556 0.174 0.666667 0.176 0.677778 0.177 0.688889 0.178 0.700000 0.179 0.711111 0.180 0.722222 0.181 0.733333 0.182 0.744444 0.183 0.755556 0.184 0.766667 0.185 0.777778 0.186 0.788889 0.187 0.800000 0.188 0.811111 0.189 0.822222 0.190 0.833333 0.191 0.844444 0.192 0.855556 0.193 0.866667 0.194 0.877778 0.195 0.88889 0.196 0.90000 0.197 0.91111 0.198 0.922222 0.199 0.93333 0.200 0.94444 0.201 0.955556 0.202 0.966667 0.203 0.977778 0.204 0.988889 0.205 1.00000 0.206 END FTABLE 1 END FTABLE 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.76550 12.14447 12.52906 12.91928 13.31512 13.71660 14.12372 14.53649 14.53649 14.53649 14.537898 15.37898 19.45145 19.93252 20.41933 20.91190 21.41024 21.91435 22.42426 22.93996 23.46146 23.98879 24.52194 25.06094 25.60578 26.71308 27.27555 27.84392 28.41819				
EXT SOURCES <-Volume-> <member <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></member 	r> SsysSgap <n # tem strg<-fa ENGL 1 ENGL 1 ENGL 0.76 ENGL 0.76</n 	Mult>Tran actor->strg 5	<-Target <name> PERLND IMPLND PERLND IMPLND</name>	vols> <-Grp # # 1 999 EXTNL 1 999 EXTNL 1 999 EXTNL 1 999 EXTNL	> <-Member <name> PREC PREC PETINP PETINP</name>	:-> *** ‡ # ***
END EXT SOURCES						
EXT TARGETS <-Volume-> <-Grp> <name> # RCHRES 1 HYDR RCHRES 1 HYDR COPY 1 OUTPUT COPY 501 OUTPUT COPY 501 OUTPUT COPY 502 OUTPUT END EXT TARGETS</name>	<-Member-> <member-><member-><member-><member-><member-><member-><member->RO1STAGE1MEAN1MEAN1MEAN1MEAN1MEAN1</member-></member-></member-></member-></member-></member-></member->	Mult>Tran actor->strg 1 48.4 48.4 48.4 48.4 48.4 48.4	<-Volume- <name> WDM 100 WDM 100 WDM 70 WDM 80 WDM 70 WDM 80</name>	<pre>> <member> # <name> 2 FLOW 3 STAG 1 FLOW 1 FLOW 2 FLOW 2 FLOW </name></member></pre>	Tsys Tgap tem strg ENGL ENGL ENGL ENGL ENGL ENGL	Amd *** strg*** REPL REPL REPL REPL REPL REPL REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS LINK</name></volume>	<-Member-> <n <name> # #<-fa 2 SURO 0.0</name></n 	Mult> actor-> 083333	<target> <name> RCHRES</name></target>	<-Grp INFLO	> <-Member <name> ‡ W IVOL</name>	?−>*** ‡ #***
END MASS-LINK MASS-LINK	∠ 3					

0.588889 0.168862 0.083518 11.02440 0.600000 0.169883 0.085400 11.39214

PERLND P END MASS-L	WATER INK	IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND P END MASS-L	WATER INK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK PERLND P END MASS-L	WATER INK	13 IFWO 13	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES R END MASS-L	OFLOW	16 16		СОРҮ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2019; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Haley Upland Cover System - HELP Model

Output File: HALEYCAP.OUT

Model Input Data:

Upland Top Cover Layers	HELP Layer	Layer Thickness (inches)	Layer Type	HELP Classification	USCS Classification	Hydraulic Conductivity, k (cm/sec)
Surface Layer (Top Soil)	1	6	Vertical Percolation	7	SM	0.00052
Protection Layer	2	18	Lateral Drainage	5	SM	0.001
Drainage Layer	3	0.2	Lateral Drainage	20	Geocomposite*	4.7
Geomembrane	4	0.06	GM Material	36	LDPE Liner	4.00E-13
Gas Collection Layer	5	0.2	Lateral Drainage**	20	Geocomposite*	4.7
Foundation Layer	6	6	Barrier Soil	23	ML	9.00E-06

* Geocomposite consists of double-sided geotextile and Geonet Core. The k value estimated based on GSE FabriNet 250 mil Geocomposite. ** The geocomposite in Layer 5 is intended for use as a gas collection layer.

- Landfill Area = 5 acres

- Curve Number = 69 (user specified)

- Average Annual Precipitation = 35.16 inches

Results:

- Drainage Length to Sink = 100 feet

- Maximum Head on Top of Geomembrane (Layer 4) = 11.06 inches Refer to the HELP output report for additional input data and results.

* * * * * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * * * * * * *

| PRECIPITATION DATA FILE: | C:\HELP3\haley\DATA4.D4 |
|----------------------------|-----------------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\haley\DATA7.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\haley\DATA13.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\haley\DATA11.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\haley\DATA10.D10 |
| OUTPUT DATA FILE: | C:\HELP3\haley\HALEYCAP.OUT |

TIME: 15:45 DATE: 5/ 8/2019

TITLE: Haley Upland Cap

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

| | Ν | ATERIAL 7 | ſEXTURE | NUMBER | 7 | | | |
|--------|-------------|------------|----------|----------|------|----------|--------|------|
| THIC | KNESS | | = | 6.0 | 0 | INCHES | | |
| PORO | SITY | | = | 0.4 | 730 | VOL/VOL | | |
| FIEL | D CAPACITY | | = | 0.2 | 220 | VOL/VOL | | |
| WILT | ING POINT | | = | 0.1 | 040 | VOL/VOL | | |
| INIT | IAL SOIL WA | ATER CONTE | ENT = | 0.2 | 2412 | VOL/VOL | | |
| EFFE | CTIVE SAT. | HYD. CONI |). = | 0.52000 | 0001 | L000E-03 | CM/SE | С |
| NOTE : | SATURATED | HYDRAULIC | C CONDUC | CTIVITY | IS N | ULTIPLIE | ED BY | 3.00 |
| | FOR ROOT | CHANNELS | S IN TOP | P HALF C | F EV | APORATI | /E ZON | Έ. |

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 5

| | iteriaan e |
|------|--------------------------|
| = | 18.00 INCHES |
| = | 0.4570 VOL/VOL |
| = | 0.1310 VOL/VOL |
| = | 0.0580 VOL/VOL |
| 1T = | 0.2490 VOL/VOL |
| = | 0.10000005000E-02 CM/SEC |
| | =
=
=
IT =
= |

layer 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0

| - | | | |
|---|-----------------------|---|--|
| = | 0.25 | INCHES | |
| = | 0.8500 | VOL/VOL | |
| = | 0.0100 | VOL/VOL | |
| = | 0.0050 | VOL/VOL | |
| = | 0.0866 | VOL/VOL | |
| = | 4.69999983 | L000 | CM/SEC |
| = | 2.00 | PERCENT | |
| = | 100.0 | FEET | |
| | =
=
=
=
= | = 0.25
= 0.8500
= 0.0100
= 0.0050
= 0.0866
= 4.69999983
= 2.00
= 100.0 | <pre>= 0.25 INCHES = 0.8500 VOL/VOL = 0.0100 VOL/VOL = 0.0050 VOL/VOL = 0.0866 VOL/VOL = 4.69999981000 = 2.00 PERCENT = 100.0 FEET</pre> |

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

| THICKNESS | = | 0.06 INCHES |
|----------------------------|---|---------------------------|
| POROSITY | = | 0.0000 VOL/VOL |
| FIELD CAPACITY | = | 0.0000 VOL/VOL |
| WILTING POINT | = | 0.0000 VOL/VOL |
| INITIAL SOIL WATER CONTENT | = | 0.0000 VOL/VOL |
| EFFECTIVE SAT. HYD. COND. | = | 0.399999993000E-12 CM/SEC |
| FML PINHOLE DENSITY | = | 1.00 HOLES/ACRE |
| FML INSTALLATION DEFECTS | = | 2.00 HOLES/ACRE |
| FML PLACEMENT QUALITY | = | 3 - GOOD |

LAYER 5 _____

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0

THICKNESS

| POROSITY | = | 0.8500 | VOL/VOL | |
|----------------------------|---|------------|---------|--------|
| FIELD CAPACITY | = | 0.0100 | VOL/VOL | |
| WILTING POINT | = | 0.0050 | VOL/VOL | |
| INITIAL SOIL WATER CONTENT | = | 0.0100 | VOL/VOL | |
| EFFECTIVE SAT. HYD. COND. | = | 4.69999983 | 1000 | CM/SEC |
| SLOPE | = | 2.00 | PERCENT | |
| DRAINAGE LENGTH | = | 100.0 | FEET | |

LAYER 6

| TYPE 3 - B. | ARRIER | SOIL LINER | | |
|--------------------------|--------|------------|----------|--------|
| MATERIAL T | EXTURE | NUMBER 23 | | |
| THICKNESS | = | 6.00 | INCHES | |
| POROSITY | = | 0.4610 | VOL/VOL | |
| FIELD CAPACITY | = | 0.3600 | VOL/VOL | |
| WILTING POINT | = | 0.2030 | VOL/VOL | |
| INITIAL SOIL WATER CONTE | NT = | 0.4610 | VOL/VOL | |
| EFFECTIVE SAT. HYD. COND | . = | 0.90000032 | 2000E-05 | CM/SEC |

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM A USER-SPECIFIED CURVE NUMBER OF 69.0, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 100. FEET.

| SCS RUNOFF CURVE NUMBER | = | 71.30 | |
|------------------------------------|---|-------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 5.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 12.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 2.879 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 5.580 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 0.972 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 8.720 | INCHES |
| TOTAL INITIAL WATER | = | 8.720 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BELLINGHAM WASHINGTON

| STATION | LATITUDE | | | | = | 47.50 | DEGREES |
|----------|-----------|---------|---------|--------|---|-------|---------|
| MAXIMUM | LEAF AREA | A INDEX | | | = | 2.00 | |
| START OF | F GROWING | SEASON | (JULIAN | DATE) | = | 126 | |

| END OF G | GROWI | ING SEASC | ON (JULIAN | N DATE) | = | 287 | |
|----------|-------|-----------|------------|----------|---|-------|--------|
| EVAPORAT | IVE | ZONE DEE | PTH | | = | 12.0 | INCHES |
| AVERAGE | ANNU | JAL WIND | SPEED | | = | 9.10 | MPH |
| AVERAGE | 1ST | QUARTER | RELATIVE | HUMIDITY | = | 75.00 | 00 |
| AVERAGE | 2ND | QUARTER | RELATIVE | HUMIDITY | = | 69.00 | 00 |
| AVERAGE | 3rd | QUARTER | RELATIVE | HUMIDITY | = | 70.00 | 00 |
| AVERAGE | 4 TH | QUARTER | RELATIVE | HUMIDITY | = | 79.00 | 00 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR OLYMPIA WASHINGTON

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 4.67 | 3.02 | 3.22 | 2.69 | 2.48 | 1.86 |
| 1.18 | 1.23 | 1.78 | 3.68 | 5.80 | 4.22 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SEATTLE WASHINGTON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 39.20 | 40.80 | 44.20 | 48.40 | 53.80 | 58.50 |
| 62.30 | 62.50 | 57.20 | 49.80 | 43.20 | 38.10 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SEATTLE WASHINGTON AND STATION LATITUDE = 47.50 DEGREES

| * | * * * * * * * * * | * * * * * * * * * | * * * * * * * * * * | * * * * * * * * * | * * * * * * * * * | * * * * * * * * * * | ۲ |
|---|-------------------|-------------------|---------------------|-------------------|-------------------|---------------------|---|
| AVERAGE MONTHLY | VALUES I | N INCHES | FOR YEARS | 1 THR | OUGH 30 | | |
| | | | | | | | |
| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |
| PRECIPITATION | | | | | | | |
| TOTALS | 4.52 | 3.19 | 3.16 | 3.09 | 2.52 | 1.64 | |
| | 1.07 | 0.97 | 1.65 | 3.62 | 5.51 | 4.23 | |
| STD. DEVIATIONS | 1.37 | 1.03 | 1.09 | 0.91 | 1.34 | 0.81 | |
| | 0.93 | 0.60 | 0.92 | 1.41 | 2.15 | 1.15 | |

| TOTALS | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.024 | 0.000
0.000 |
|------------------------|------------------|------------------|------------------|------------------|------------------|--------------------|
| STD. DEVIATIONS | 0.001
0.000 | 0.002 | 0.000 | 0.000
0.001 | 0.000
0.091 | 0.000
0.001 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 0.902
1.095 | 1.159
0.899 | 2.213
1.088 | 3.151
1.337 | 2.451
0.931 | 1.833
0.797 |
| STD. DEVIATIONS | 0.144
0.953 | 0.144
0.500 | 0.227
0.755 | 0.711
0.339 | 0.954
0.093 | 0.913
0.105 |
| LATERAL DRAINAGE COLLE | CTED FROM I | layer 3 | | | | |
| TOTALS | 3.3298
0.0865 | 2.2916
0.0506 | 1.3881
0.0485 | 0.6784
0.5561 | 0.2284
3.6463 | 0.2101
3.0741 |
| STD. DEVIATIONS | 1.1152
0.0337 | 0.9310
0.0114 | 0.8038
0.0922 | 0.4827
0.7872 | 0.1409
2.1469 | 0.3506
0.9666 |
| PERCOLATION/LEAKAGE TH | IROUGH LAYE | R 4 | | | | |
| TOTALS | 0.2820
0.0473 | 0.2203 | 0.1766
0.0297 | 0.1201
0.0663 | 0.0723
0.2934 | 0.0590
0.2680 |
| STD. DEVIATIONS | 0.0532
0.0100 | 0.0538
0.0045 | 0.0526
0.0139 | 0.0424
0.0582 | 0.0213
0.1665 | 0.0352
0.0468 |
| LATERAL DRAINAGE COLLE | CTED FROM I | layer 5 | | | | |
| TOTALS | 0.0164
0.0004 | 0.0108 | 0.0064
0.0002 | 0.0032
0.0025 | 0.0011
0.0314 | 0.0009
0.0144 |
| STD. DEVIATIONS | 0.0072
0.0002 | 0.0049
0.0001 | 0.0036
0.0004 | 0.0022
0.0035 | 0.0007
0.0547 | 0.0016
0.0060 |
| PERCOLATION/LEAKAGE TH | IROUGH LAYE | R 6 | | | | |
| TOTALS | 0.2656
0.0469 | 0.2095 | 0.1702
0.0295 | 0.1170
0.0638 | 0.0713
0.2620 | 0.0580
0.2536 |
| STD. DEVIATIONS | 0.0468
0.0098 | 0.0492
0.0045 | 0.0491
0.0135 | 0.0402
0.0549 | 0.0206
0.1188 | 0.0336
0.0416 |
| AVERAGES | OF MONTHLY | AVERAGED | DAILY HE | ADS (INCH | ES) | |
| | | | | | | |
| DAILY AVERAGE HEAD ON | TOP OF LAY | ER 4 | 0 0000 | 0 001- | 0 005 | 0 0000 |
| AVERAGES | 0.0265
0.0005 | 0.0171
0.0003 | 0.0084
0.0003 | 0.0042
0.0034 | 0.0014
0.0670 | $0.0013 \\ 0.0213$ |

RUNOFF

| STD. DEVIATIONS | 0.0180
0.0002 | 0.0110
0.0001 | 0.0049
0.0006 | 0.0030 0
0.0048 0 | .0009 0.0022
.1391 0.0139 |
|--|---------------------|------------------|-----------------------|-------------------------|------------------------------|
| DAILY AVERAGE HEAD ON 7 | OP OF LAY | ER 6 | | | |
| AVERAGES | 0.0014
0.0002 | 0.0012 | 0.0008
0.0001 | 0.0006 0
0.0003 0 | .0003 0.0003
.0015 0.0013 |
| STD. DEVIATIONS | 0.0003
0.0000 | 0.0003
0.0000 | 0.0003
0.0001 | 0.0002 0
0.0003 0 | .0001 0.0002
.0008 0.0002 |
| * | * * * * * * * * * * | * * * * * * * * | * * * * * * * * * * * | * * * * * * * * * * * * | ****** |
| * | * * * * * * * * * * | * * * * * * * * | * * * * * * * * * * * | * * * * * * * * * * * * | **** |
| AVERAGE ANNUAL TOTAI | S & (STD. | DEVIATI | ONS) FOR YE | EARS 1 TH | IROUGH 30 |
| | | INCHE |
S
 | CU. FEET | PERCENT |
| PRECIPITATION | 35 | .16 (| 4.518) | 638129.9 | 100.00 |
| RUNOFF | 0 | .025 (| 0.0912) | 455.2 | .9 0.071 |
| EVAPOTRANSPIRATION | 17 | .856 (| 2.0070) | 324082.2 | 50.786 |
| LATERAL DRAINAGE COLLECT
FROM LAYER 3 | TED 15 | .58856 (| 3.46509) | 282932.4 | 44.33774 |
| PERCOLATION/LEAKAGE THRO
LAYER 4 | DUGH 1 | .67192 (| 0.24460) | 30345.3 | 4.75535 |
| AVERAGE HEAD ON TOP
OF LAYER 4 | 0 | .013 (| 0.012) | | |
| LATERAL DRAINAGE COLLECT
FROM LAYER 5 | CED 0 | .08784 (| 0.05733) | 1594.3 | 02 0.24984 |
| PERCOLATION/LEAKAGE THRO | DUGH 1 | .58408 (| 0.20135) | 28751.0 | 08 4.50551 |
| AVERAGE HEAD ON TOP
OF LAYER 6 | 0 | .001 (| 0.000) | | |
| CHANGE IN WATER STORAGE | 0 | .017 (| 0.7175) | 314.5 | 4 0.049 |

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30

| | | • |
|--|---------------|-------------|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 2.36 | 42834.000 |
| RUNOFF | 0.365 | 6619.6719 |
| DRAINAGE COLLECTED FROM LAYER 3 | 1.41995 | 25772.02150 |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 | 0.240347 | 4362.29150 |
| AVERAGE HEAD ON TOP OF LAYER 4 | 9.019 | |
| MAXIMUM HEAD ON TOP OF LAYER 4 | 11.059 | |
| LOCATION OF MAXIMUM HEAD IN LAYER 3
(DISTANCE FROM DRAIN) | 42.0 FEET | |
| DRAINAGE COLLECTED FROM LAYER 5 | 0.13257 | 2406.12427 |
| PERCOLATION/LEAKAGE THROUGH LAYER 6 | 0.107778 | 1956.16711 |
| AVERAGE HEAD ON TOP OF LAYER 6 | 0.036 | |
| MAXIMUM HEAD ON TOP OF LAYER 6 | 0.049 | |
| LOCATION OF MAXIMUM HEAD IN LAYER 5
(DISTANCE FROM DRAIN) | 1.0 FEET | |
| SNOW WATER | 2.65 | 48108.9375 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.3 | 645 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.0 | 810 |
| *** Maximum heads are computed using Mc | Enroe's equat | ions. *** |
| Reference: Maximum Saturated Depth | over Landfil | l Liner |

by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| * | * | ************************************* |
|---|---|---------------------------------------|
|---|---|---------------------------------------|

|
LAYER | (INCHES) | (VOL/VOL) |
|------------|----------|-----------|
| 1 | 1.5111 | 0.2518 |
| 2 | 4.9139 | 0.2730 |
| 3 | 0.0459 | 0.1838 |
| 4 | 0.0000 | 0.0000 |
| 5 | 0.0025 | 0.0100 |
| 6 | 2.7660 | 0.4610 |
| SNOW WATER | 0.000 | |
| | | |

FINAL WATER STORAGE AT END OF YEAR 30

APPENDIX H Design and Construction Schedule

| Cleanup Action Engineering Design Report (EDR) Schedule | | | | | | | | | | | | | | | | | | |
|---|----------|-----------------|--------------|--------------|----------------|--------------|---|------|-------|-------|---------------|-------|-------|-------|---------------|---|----------|--------|
| R.G. Haley Site, Bellingham, Washington | | | | | | | | | | | | | | | | | | |
| ID Task Name | Duration | Start Fir | nish | Predecessors | Task 2
Mode | 020
Otr 1 | o | tr 2 | Otr 3 | Otr 4 | 2021
Otr 1 | Otr 2 | Otr 3 | Otr 4 | 2022
Otr 1 | | Otr 2 | Otr 3 |
| 50 Prepare Draft OMMP | 10 wks | Mon 12/5/22 Fr | ri 2/10/23 | 42 | | | | | | | | | | | | | | |
| 52 Prenare Ecology Review Draft OMMP | 2 wks | Mon 2/27/23 Fr | ri 3/10/23 | 51 | | | | | | | | | | | | | | |
| 53 Fcolopy Review of Draft OMMP and Issues Comments | 60 edays | Fri 3/10/23 | ue 5/9/23 | 52.60FF | | | | | | | | | | | | | | |
| 54 Prenare Final Draft OMMP and Submit to Ecology | 3 wks | Wed 5/10/23 Tu | ue 5/30/23 | 53 | | | | | | | | | | | | | | |
| 55 Final OMMAP Prenared After Cleanup Construction | 4 wks | Wed 5/31/23 | ue 6/27/23 | 54 | | | | | | | | | | | | | | |
| 56 90 Percent Design | 127 days | Mon 12/5/22 Tu | ue 5/30/23 | | | | | | | | | | | | | | | |
| 57 Prenare Draft 90% Design | 8 wks | Mon 12/5/22 Fr | ri 1/27/23 | 42 37FF | | | | | | | | | | | | | | |
| 58 City Paview of Draft 90% Design | 2 wks | Mon 1/30/23 Er | ri 2/10/23 | 57 | | | | | | | | | | | | | | |
| 59 Prenare Ecology Review Draft 90% Design | 2 wks | Mon 2/13/23 Er | ri 3/3/23 | 59 | | | | | | | | | | | | | | |
| 60 Ecology Review of 90% Design and Issues Comments | 50 edays | Eri 3/3/23 | ue 5/2/23 | 50 | | | | | | | | | | | | | | |
| 61 Prenare Permitting Agency Paview Draft 90% Design | 4 wks | Wed 5/3/23 | ue 5/20/23 | 60 | | | | | | | | | | | | | | |
| Frepare remitting Agency Keview Drait 50% Design | 4 WKS | Mag 12/5/23 | at 2/25/22 | 00 | | | | | | | | | | | | | | |
| 62 Water Quality Monitoring Plan (WQMP) | 80 days | Mion 12/5/22 Sa | at 3/25/23 | 12 | | | | | | | | | | | | | | |
| os Prepare Dratt WQMP | 4 WKS | Mion 12/5/22 Fr | ri 12/30/22 | 42 | | | | | | | | | | | | | | |
| 64 City Review of Draft WQMP | 2 wks | Mon 1/2/23 Fr | ri 1/13/23 | 63 | | | | | | | | | | | | | | |
| 65 Prepare Ecology Review Draft WQMP | 2 wks | Mon 1/16/23 Fr | ri 1/27/23 | 64 | -> | | | | | | | | | | | | | |
| 66 Ecology Review of Draft WQMP and Issues Comments | 30 edays | Fri 1/27/23 Su | un 2/26/23 | 65 | -> | | | | | | | | | | | | | |
| 67 Prepare Final WQMP and Submit to Ecology | 2 wks | Mon 2/27/23 Fr | ri 3/10/23 | 66 | | | | | | | | | | | | | | |
| 68 Ecology Reviews Final WQMP | 15 edays | Fri 3/10/23 Sa | at 3/25/23 | 67 | -> | | | | | | | | | | | | | |
| 69 100 Percent Design | 72 days | Wed 7/26/23 Th | hu 11/2/23 | | | | | | | | | | | | | | | |
| 70 Prepare Draft 100% Design | 4 wks | Wed 7/26/23 Tu | ue 8/22/23 | 94 | | | | | | | | | | | | | | |
| 71 City Review of 100% Design | 2 wks | Wed 8/23/23 Tu | ue 9/5/23 | 70 | | | | | | | | | | | | | | |
| 72 Prepare Ecology Review Draft 100% Design | 2 wks | Wed 9/6/23 Tu | ue 9/19/23 | 71 | | | | | | | | | | | | | | |
| 73 Ecology Review of 100% Design and Issues Comments | 30 edays | Tue 9/19/23 Th | hu 10/19/23 | 72 | -\$ | | | | | | | | | | | | | |
| 74 Prepare Permitting Agency Review Draft 100% Design | 2 wks | Fri 10/20/23 Th | hu 11/2/23 | 73 | -\$ | | | | | | | | | | | | | |
| 75 Final Design | 10 days | Fri 12/29/23 Th | hu 1/11/24 | | | | | | | | | | | | | | | |
| 76 Prepare Final (For Bid) Design | 2 wks | Fri 12/29/23 Th | hu 1/11/24 | 95 | | | | | | | | | | | | | | |
| 77 Submit Final (For Bid) Design to City, Ecology and Permitting
Agency | 0 days | Thu 1/11/24 Th | hu 1/11/24 | 76 | | | | | | | | | | | | | | |
| 78 Permitting | 607 days | Wed 9/22/21 Th | hu 1/18/24 | | -\$ | | | | | | | | | | | | | |
| 79 Marine Permitting | 546 days | Wed 9/22/21 W | /ed 10/25/23 | | | | | | | | | | | | | | | Marine |
| 80 Mitigation Approach Development | 12 wks | Wed 9/22/21 Tu | ue 12/14/21 | 18FF+5 days | -\$ | | | | | | | | | | • | | | |
| 81 Conceptual Mitigation Plan Development | 24 wks | Wed 12/15/21 Tu | ue 5/31/22 | 80 | - | | | | | | | | | | ¥ | | T | |
| 82 Pre-Application Meetings With Tribes and US Army Corps of
Engineers/Resource Agencies | 2 wks | Wed 6/8/22 Tu | ue 6/21/22 | 81FS+5 days | -, | | | | | | | | | | | T | L | |
| 83 Complete Mitigation Plan and Biological Evaluation (BE) | 5 wks | Wed 6/1/22 Tu | ue 7/5/22 | 81 | -3 | | | | | | | | | | | | | |
| 84 City Review of Mitigation Plan and BE | 2 wks | Wed 7/6/22 Tu | ue 7/19/22 | 83 | -, | | | | | | | | | | | | | |
| 85 Followup Coordination with Tribes and US Army Corps of
Engineers/Resource Agencies | 6 wks | Wed 6/22/22 Tu | ue 8/2/22 | 82 | -, | | | | | | | | | | | | | |
| 86 Prepare JARPA, Shoreline Exemption and Substantive
Requirements Submittals | 6 wks | Wed 7/20/22 Tu | ue 8/30/22 | 84 | - | | | | | | | | | | | | | h |
| 87 City Review of JARPA, Shoreline Exemption and Substantive
Requirements Submittals | 2 wks | Wed 8/31/22 Tu | ue 9/13/22 | 86 | -3 | | | | | | | | | | | | | |
| 88 Ecology Review of JARPA, Shoreline Exemption and Substantive
Requirements Submittals | 2 wks | Wed 9/14/22 Tu | ue 9/27/22 | 87 | | | | | | | | | | | | | | |
| Submit JARPA, BE, Mitigation Plan, Shoreline Exemption and Substantive Requirements Submittals to Federal and State | 1 day | Wed 9/28/22 W | /ed 9/28/22 | 88 | | | | | | | | | | | | | | |
| 90 Agency Review | 14 mons | Thu 9/29/22 W | /ed 10/25/23 | 89 | -\$ | | | | | | | | | | | | | 1 |
| 91 Marine Permit Approval | 0 wks | Wed 10/25/23 W | /ed 10/25/23 | 90 | -5 | | | | | | | | | | | | | |
| 92 Upland Land Use Permitting | 187 days | Wed 5/3/23 Th | hu 1/18/24 | | | | | | | | | | | | | | | |
| 93 Prepare Permit Application Documents | 4 wks | Wed 5/3/23 Tu | ue 5/30/23 | 60 | | | | | | | | | | | | | | |
| 94 Agency Review of Permit Documents and 90% Design | 8 wks | Wed 5/31/23 Tu | ue 7/25/23 | 93 | | | | | | | | | | | | | | |
| 95 Agency Review of Permit Documents and 100% Design | 8 wks | Fri 11/3/23 Th | hu 12/28/23 | 74 | -4 | | | | | | | | | | | | | |
| 96 Permits are drafted by Permitting Agency | 1 wk | Fri 1/12/24 Th | hu 1/18/24 | 77 | -3 | | | | | | | | | | | | | |
| 97 Upland Land Use Permit Issued | 0 days | Thu 1/18/24 Th | hu 1/18/24 | 96 | - | | | | | | | | | | | | | |
| | | | | | 1 I. | | | | | | 1 | | | | 1 | | | |

APPENDIX I

Marine Unit Recontamination Evaluation and Updated Cleanup Level for Dioxins and Furans

APPENDIX I R.G. HALEY MARINE UNIT RECONTAMINATION EVALUATION AND UPDATED CLEANUP LEVEL FOR DIOXINS AND FURANS

Introduction

The R.G. Haley Site (Haley Site or Site) is located on the northeastern shore of Bellingham Bay, Bellingham, WA (Figure 1). The Haley Site is comprised of an Upland Unit and a Marine Unit, and is currently undergoing cleanup planning and design according to the Model Toxic Control Act (MTCA; Chapter 173-340 WAC) and the Sediment Management Standards (SMS; Chapter 173-204 WAC) for contaminated upland soil, groundwater, air and sediment. Following completion of a remedial investigation and feasibility study, a cleanup action plan (CAP) was published by the Washington State Department of Ecology in April 2018. The CAP specified the cleanup standards (both the cleanup levels and points of compliance) for each medium along with areas requiring cleanup, what the cleanup action will be and how the cleanup will be implemented.

For dioxins and furans, the CAP set the sediment cleanup level (SCL) for the Marine Unit at the regional background-based Cleanup Screening Level (CSL) of 15 nanograms per kilogram (ng/kg), expressed as the toxic equivalent of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TEQ), without a recontamination evaluation to provide the rationale for adjusting the SCL up from the PQL-based Sediment Cleanup Objective (SCO) of 5 ng/kg TEQ. As part of Ecology's review of the Engineering Design Report (EDR), they requested a recontamination evaluation for dioxins and furans to attain consistency with the SMS.

This appendix presents the recontamination evaluation and an updated SCL for dioxins and furans based on the results of the evaluation. The following sections describe the regulatory framework for adjusting the SCL, how Ecology established regional background in Bellingham Bay and the lines of evidence that indicate post-construction recontamination of the Marine Unit. Additionally, the following sections describe the basis for adjusting the dioxin and furan SCL up from the SCO and the updated dioxin and furan SCL.

Regulatory Framework

According to SMS, the SCO is the sediment quality goal, but the SCL may be adjusted up to, but not higher than, the CSL based on an evaluation of technical possibility and net adverse environmental impact (WAC 173-204-560[2][a][ii]). SCUM (Chapter 7, Section 7.2.3.2) states that "technically possible" includes being implemented in a reliable and effective manner that is dependent on site-specific factors such as the ability to maintain the SCO after construction. SCUM (Chapter 7, Section 7.2.3.2) also states that, recontamination from diffuse sources not under the authority or responsibility of the PLP should be considered to determine if the SCO can be maintained.

Bellingham Bay Regional Background

Ecology established regional background concentrations for dioxins and furans (15 ng/kg TEQ) and several other contaminants in Bellingham Bay in 2015 in support of the Bellingham Bay Demonstration Pilot, a program addressing the comprehensive cleanup of the bay and involving eight sediment cleanup sites. Surface sediment samples were collected in the regional background Area of Interest (AOI) determined to be outside of the direct influence of known sources including cleanup sites, active or historical sources or dredge material disposal sites (Figure 2). Intertidal areas or those areas representative of natural

background concentrations were also excluded from the AOI. The resulting data underwent data quality evaluations and statistical analysis prior to calculating a background value according to Ecology procedures. Details of the derivation of regional background for Bellingham Bay are provided in Ecology's report (2015).

Lines of Evidence

There are multiple lines of evidence that establish the potential for recontamination at the Marine Unit including the potential for sediment erosion or resuspension from the regional background AOI outside of the Marine Unit boundary and transport to the Marine Unit by currents within Bellingham Bay. In addition, there is recent empirical evidence of recontamination in the vicinity of the Marine Unit.

Sediment Erosion, Resuspension and Transport

There are several natural forces that can erode or resuspend and transport sediment to the Marine Unit. Storm-generated waves are responsible for eroding shorelines and sediment in Bellingham Bay and causing transport of eroded materials. Both breaking waves and the orbital velocities from storm waves have sufficient energy to resuspend and move sediment. Both deep and shallow currents transport sediment either as suspended particles or bed load. Fine-grained sediment is frequently transported as suspended particles in currents where coarse-grained sediments are often moved by those same currents along the bottom.

Bottom currents in Bellingham Bay are relatively consistent throughout the year and velocities within the bay range from 4 to 18 centimeters per second (cm/sec) with a maximum velocity of 40 cm/sec (Colyer 1998 [In] RETEC 2006). A velocity of 20 to 30 cm/sec is generally required to erode fine-grained (i.e., clay, silts and fine sands) sediment particles (Downing 1983). Based on the regional background study, sediment in the AOI is predominantly in the clay and silt range¹ and susceptible to erosion and transport. Therefore, sediment present in the regional background AOI can be resuspended by bottom currents. See the Resuspension and Sedimentation section below for further discussion of resuspension.

Once fine-grained sediment particles are suspended, the particles can be transported by weaker currents. Transport distances are a function of the size of the particles and the strength and direction of the current.

Typical shallow surface currents in the inner bay are much slower ranging from 2 cm/sec to 10 cm/sec with a maximum of 16 cm/sec (Colyer 1998 [In] RETEC 2006). The typical, slower shallow surface currents within the inner bay allow deposition and accumulation of fine-grained sediment in this portion of the bay including the Marine Unit. The results from hydrodynamic modeling conducted by Coast & Harbors Engineers Division of Mott/McDonald (CHE) (EDR Appendix E) suggest that tidal currents in the Marine Unit do not exceed 6 cm/sec.

The forces created by storm-generated waves are primarily responsible for shoreline and nearshore erosion in Bellingham Bay. Winds from the prevailing storms typically originate from the south/southwest, creating waves up to three meters in height near the shore. Shoreline erosion from storm waves is evidenced by the

¹Thirty out of 34 surface sediment samples were characterized by greater than 90 percent fines.

historical migration of shorelines in Bellingham Bay and the need for shoreline armoring throughout the inner bay.

CHE conducted wave analysis and numerical modeling to support cap design for the Marine Unit (EDR Appendix E). The results of the modeling show that erosion and transport of sediment from storm-generated waves could occur up to the depths evaluated (approximately -20 feet NAVD88). CHE also evaluated changes in sea floor bathymetry at the Cornwall Landfill and Haley sediment units to support remedial design (CHE 2019). The results of the evaluation provide evidence of sediment transport along the bottom to depths greater than -20 feet NAVD88 (Figure 3). Elongated wave-like forms both parallel and perpendicular to the shoreline are evident in Figure 3 and are likely from bottom currents and storm-generated waves periodically moving sediment along the bottom. The evaluation also identified areas of accretion and erosion over an 8-year period between 2007 and 2015. Sediment appears to be accumulating over much of the area evaluated with limited areas of erosion.

The information pertaining to currents in Bellingham Bay and from wave modeling and sediment accretion in the vicinity of the Cornwall and Haley sediment units identifies that sediment erosion and transport are occurring. The regional background AOI is adjacent to the Marine Unit and extends into the inner bay. Because the AOI adjacent to the Marine Unit experiences similar hydrodynamic conditions and exposure to storms, sediment erosion and transport from the AOI to the Marine Unit is highly likely.

Resuspension and Sedimentation

There is additional evidence of sediment erosion, resuspension and transport based on the sedimentation and resuspension evaluation conducted as part of the 2000 RI/FS for Whatcom Waterway (Anchor and Hart Crowser 2000). Several sediment traps (HC-ST-100 and HC-ST-101) were deployed in the inner bay within the regional background AOI (Figure 4) for three, four-month periods to evaluate gross sedimentation rates under various conditions. Gross sedimentation ranged from 7.85 centimeters per year (cm/yr) to 21.8 cm/yr and averaged 13.8 cm/yr².

Two cores (HC-NR-100 and HC-NR-101), which were co-located with the sediment traps, were used to measure net sedimentation. Rates of sediment accumulation over time were based on decay rates of two radioisotopes (lead-210 and cesium-137). Mercury depth profiles and depth to native sediment in historical dredging prisms were two other lines of evidence evaluated to determine rates of accumulation. Results among the first three methods (two radioisotope dating methods and chemical profiling) to measure net sedimentation had reasonable agreement so results were averaged. Net sedimentation estimates ranged from 1.1 cm/yr to 3.4 cm/yr; the overall average was 1.6 cm/yr.

Resuspension rates (as a percent) were calculated using both gross sedimentation rates and net sediment accumulation over time measured at the co-located traps and cores (gross - net/gross = percent resuspension). Resuspension rates ranged from 81 to 93 percent with an average of 88 percent. These results confirm that bottom sediments in the regional background AOI are highly likely to be resuspended and transported to other locations including the Marine Unit.

² Based on five data points.

Current Patterns and Transport

The current direction in Bellingham Bay, both shallow and deep, is variable. Tidal exchanges³; wind direction, duration, magnitude and fetch; riverine discharges, water depth and shoreline configuration all influence the complex circulation of water in Bellingham Bay. Deep flow generally oscillates from inbound to outbound based on tide and nearshore currents flow in both clockwise and counterclockwise directions following shorelines depending on winds and river flows.

The dominant current direction has been reported to be an oscillating north-south longshore flow (USACE 1997) but has also been reported to be a dominant clockwise flow (Colyer 1998). Eddies have been reported to form, particularly in the inner bay, depending on wind speed and direction, freshwater input, and strength of the tidal exchange (Colyer 1998).

Modeling by CHE indicates current reversals with ebb and flood tides in the vicinity of the Marine Unit (Figure 2 of EDR Appendix E). The modeling by CHE indicates that a component of the current in and adjacent to the Marine Unit oscillates in a north-south longshore flow as a result of tides. Winds from the south and southwest entrain water at and near the surface, pushing it to the north/northeast towards the inner bay causing return flows that typically flow counterclockwise. Winds from the west and northwest cause surface currents to flow clockwise along the eastern shoreline (Shea et al 1981 [In] RETEC 2006). As a result of the oscillating current directions observed in Bellingham Bay, sediment transported to the Marine Unit is highly likely to originate from regional background AOI.

Sediment Conditions in Bellingham Bay

Dioxins and furans have been evaluated as part of various sediment investigations in Bellingham Bay over the last 20 years. More recently, Ecology conducted a sediment investigation in 2014 to establish regional background levels of dioxins and furans along with several other chemicals of concern in Bellingham Bay. Surface sediment samples were collected and analyzed for dioxins and furans from 23 locations (BB-08 through BB-30) that were outside the influence of known dioxin and furan sources as part of the investigation (Figure 4). Dioxin and furan concentrations ranged from 2.2 nanogram/kilogram (ng/kg) to 14.4 (average dioxin TEQ at BB-24) ng/kg TEQ. The data were evaluated to determine the representativeness of regional conditions and ultimately a value of 15 ng/kg TEQ was statistically derived (90/90 upper tolerance limit or UTL) from the data to represent regional background in Bellingham Bay (Ecology 2015).

Since that time, other samples have been collected as part of the long-term monitoring for the Whatcom Waterway cleanup (Anchor QEA 2019 and 2020). Five locations (MNR-03 through MNR-05, MNR-07 and MNR-09) in and adjacent to the regional background AOI that were designated monitored natural recovery (MNR) stations (Figure 4) have been sampled twice (2017 and 2019). Dioxin and furan concentrations at these locations were similar for both sampling years and to the regional background data set, ranging from 5.1 ng/kg TEQ to 14.5 ng/kg TEQ as summarized in the following table. The recent MNR data suggest some stability in prevailing conditions in Bellingham Bay in the regional background area.

³The tidal range (the difference in elevation between the highest high tide and lowest low tide) in Bellingham Bay is approximately 12 feet.

| Location | Year 1 | Year 3 |
|----------|-----------------------------|-----------------|
| MNR-03 | 6.1 | 6.6° (8.1, 5.1) |
| MNR-04 | 5.1 ^a (6.9, 3.3) | 9.3 |
| MNR-05 | 10.2 | 10.6 |
| MNR-07 | 14.5 | 12.1 |
| MNR-09 | 11.6 | 13.6 |

WHATCOM WATERWAY DIOXIN TEQ DATA AT MNR LOCATIONS FOR YEARS 1 AND 3

Note:

a. Value is an average of two field replicates

Sediment Conditions in the AOI Adjacent to the Marine Unit

Based on the lines of evidence discussed above, the regional background AOI⁴ adjacent to the Marine Unit represents the most likely source of resuspended sediment that may recontaminate surface sediment following remediation. The adjacent AOI area identified as the Recontamination Evaluation Area on Figure 5, was evaluated to determine the level of recontamination that may occur within the Marine Unit from the AOI. The area selected as the source of recontamination accounts for proximity of the Marine Unit to the AOI, current and storm wave resuspension in the shallower portion of the AOI adjacent to the Marine Unit, and transport vectors (i.e., from the southwest to the northeast) from the AOI to the Marine Unit based on current oscillation within the Bay adjacent to the Marine Unit.

A dioxin and furan surface-area weighted average concentration (SWAC) was calculated for the Recontamination Evaluation Area. The SWAC was prepared using GIS interpolation⁵ of dioxin and furan TEQ concentrations in Bellingham Bay. The data used are shown on Figure 4, and were compiled from Ecology's Environmental Information Management (EIM) database and published reports. The data consist of the most recent surface sediment (0 to 12 cm) data for each of the areas shown in Figure 4. The data set and study area boundaries are consistent with the data used for evaluation of dioxin and furans for the Whatcom Waterway Site. The entire data set underwent GIS interpolation which resulted in a dioxin and furan TEQ concentration being assigned to each square foot of area encompassed by the data set. Then the concentration values for each square foot comprising the Recontamination Evaluation Area shown in Figure 5 were "clipped" from the larger interpolation and used to calculate the SWAC for the Recontamination Evaluation Area. The resulting dioxin SWAC is 13.1 ng/kg TEQ and represents the most likely level to which surface sediment within the Marine Unit will be recontaminated by sediment from the Recontamination Evaluation Area.

Empirical Evidence of Recontamination

There is empirical evidence of recent recontamination based on the monitoring of a dredged and capped area in the Whatcom Waterway Site (Anchor QEA 2018, 2019 and 2020). Site Unit 1C near the mouth of the waterway and adjacent to the regional background AOI (Figure 5) was dredged to remove

⁵ Interpolation was conducted using an inverse-distance weighted geospatial model, with a power of 5, maximum number of neighbors of 4, minimum number of neighbors of 2, four sectors rotated 45 degrees and a 500-foot diameter search area (reach).

⁴ The regional background AOI overlaps with the outermost portion of the Marine Unit. The overlap area was not included in the recontamination evaluation area.

contamination. As with all dredging, a thin layer of contaminated dredge residuals settled on top of the clean dredged surface upon completion of dredging. The dioxin and furan concentrations in the dredged residuals ranged from 2.1 ng/kg to 26.2 ng/kg TEQ so a cap was placed over the dredged area to cover the residuals. Confirmation samples collected from the cap placed over the dredge residuals showed that the new surface was below natural background (5 ng/kg TEQ) at five of the six sampling locations with one location being slightly above regional background (16.3 ng/kg TEQ versus 15 ng/kg TEQ). Monitoring in the first (2017) and third (2019) years following dredging and placement of the residual cap measured concentrations of 13.2 ng/kg TEQ and 13.8 ng/kg TEQ at monitoring location P1CM-02 located near the center of the previously dredged area at the mouth of the waterway (Figure 5). Concentrations measured in Site Unit 1C are very similar to the upper values reported in the regional background data set and suggest that recontamination is occurring to levels similar to the regional background concentration at Site Unit 1C located adjacent to the regional background area.

Regional and Local Sources of Dioxins and Furans

The persistence and relative stability of dioxin and furan concentrations in surface sediment in the Bellingham Bay regional background area is likely due to the presence of uncontrolled or unknown sources within the surrounding area. The eastern and northern portions of the bay are within urban and industrial areas of the City. As with other urban and industrial areas, there are current and historical sources of dioxin and furans.

In Bellingham, current and/or historical sources include burning of wood (residential heating, hog fuel, forest fires), vehicle emissions, incineration of waste, pulp manufacturing, wood-treating operations, cement kilns, and other sources. Except for identified cleanup sites where dioxins and furans are a contaminant of concern, other current point sources are unknown. The existence of ubiquitous sources remains challenging for control of dioxins and furans in Bellingham Bay and throughout the Puget Sound region.

As a result of current and historical releases, dioxins and furans are a ubiquitous contaminant in soil in urban environments. A study of residential soil in Bellingham as part of the Oeser Site cleanup (START 2002) reported concentrations ranging from 2.7 ng/kg to 34.8 ng/kg TEQ in areas considered background. These concentrations fall within the range (7.5 ng/kg to 36 ng/kg) of dioxin and furan TEQs reported in residential soil from Seattle neighborhoods (Ecology 2011).

A historical investigation of the Little Squalicum Creek watershed that had been impacted by the Oeser Site suggests that riparian and wetland soils as well as stream sediment in the urban areas are a potential source of contamination to the bay. Background samples in the Little Squalicum stream corridor had dioxin and furan TEQ concentrations of 12.6 ng/kg and 14.0 ng/kg (data from EIM; accessed 4/29/21).

Numerous sources of dioxins and furans exist that are not under the control of the City including air emissions, surface water, non-municipal stormwater runoff and erosion of soil. Dioxin and furan emissions and transport from non-City sources likely represents a long-term source to the bay and contribution to dioxin and furan concentrations in regional background.

Updated Dioxin and Furan Cleanup Level for the Marine Unit

The evaluation of recontamination identifies that waves and currents within Bellingham Bay are sufficient to cause resuspension and transport of sediment to the Marine Unit from the Recontamination Evaluation

Area. The dioxin and furan concentrations in the regional background AOI adjacent to the Marine Unit range between approximately 6 ng/kg TEQ and 15 ng/kg TEQ based on recent data. Data from sediment samples collected in 2017 and 2019 suggest there is some temporal stability in the sediment quality conditions in the AOI when compared to the 2014 regional background study conducted by Ecology. Evaluation of the recontamination lines of evidence suggests that the regional background value established by Ecology continues to be reasonable upper bound concentration representing surface sediment conditions in the bay.

The resuspension and transport of sediment from the Recontamination Evaluation Area is sufficient to recontaminate sediment at the Marine Unit following remediation. The more detailed evaluation of the Recontamination Evaluation Area, which would contribute to recontamination of the Haley site, concludes that a value of 13 ng/kg TEQ represents a likely recontamination level from this portion of the AOI. Based on the results of the recontamination evaluation, the dioxin and furan PQL-based SCO of 5 ng/kg TEQ cannot be maintained following construction. Therefore, in accordance with the SMS and SCUM, the SCL for the Marine Unit is adjusted up to 13 ng/kg TEQ, slightly lower than the regional background-based SCL of 15 ng/kg TEQ previously identified in the CAP. There is uncertainty in any estimate of future concentrations in surface sediment at the Haley Site. The timing and duration of remediation of other sites in the bay will affect what can be maintained over time. Long-term monitoring will document compliance of the long-term goal for Bellingham Bay. The SCO remains the long-term goal to be attained through pollution prevention and toxics reduction initiatives over a longer timeframe than is applied to the cleanup of the Haley Site.

References

- Anchor QEA. 2020. Whatcom Waterway Cleanup in Phase 1 Areas. Year 3 Compliance Monitoring Report. Prepared for the Port of Bellingham. June.
- Anchor QEA. 2019. Whatcom Waterway Cleanup in Phase 1 Areas. Year 1 Compliance Monitoring Report. Prepared for the Port of Bellingham. April 2019.
- Anchor QEA. 2018. Final As-Built Report. Whatcom Waterway Cleanup in Phase 1 Areas. Prepared for the Port of Bellingham. September 2018.
- Anchor Environmental, LLC and Hart Crowser. 2000. Remedial Investigation and Feasibility Study for the Whatcom Waterway Site. Prepared for Georgia-Pacific Corporation. July 25, 2000.
- Colyer. 1998. Current Patterns and Suspended Sediment Transport through the Inner Harbor of Bellingham Bay. Master Thesis by Troy Colyer, Western Washington University, 1998. [In] RETEC 2006.
- Downing, J. 1983. The Coast of Puget Sound: Its Processes and Development. Washington State Sea Grant Publication; University of Washington Press, Seattle, WA.
- Ecology 2019. Sediment Cleanup User's Manual (SCUM). Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Publication No. 12-09-057. Second Revision December 2019.

- Ecology 2015. Bellingham Bay Regional Background Sediment Characterization, Bellingham WA. Final Data Evaluation and Summary Report. Publication No. 15-09-044. February 27, 2015.
- Ecology 2011. Urban Seattle Area Soil Dioxin and PAH Concentrations: Initial Summary Report Publication No. 11-09-049. September 2011.
- RETEC. 2006. Supplemental Remedial Investigation & Feasibility Study Whatcom Waterway Site. Prepared for the Port of Bellingham. October 10, 2006.
- Shea, G.B., C.C. Ebbesmeyer, Q.J. Stober, K. Pazera, J.M. Cox, S. Hemingway, J.M. Helseth, and L.R. Hinchey.
 1981. History and effect of pulp mill effluent discharges, Bellingham, Washington. Final Report to
 U.S. Department of Justice and U.S. Environmental Protection Agency. Northwest Environmental
 Consultants, Seattle, Washington.
- Superfund Technical Assessment and Response Team (START). 2002. The Oeser Company Superfund Site, Remedial Investigation Report, Bellingham, WA. Prepared for U.S. Environmental Protection Agency, Region 10 under Contract 68-S0-01-01. June 2002.

Attachments:

- Figure 1. Vicinity Map
- Figure 2. Regional Background Area of Interest
- Figure 3. Sediment Accretion 2007 to 2015
- Figure 4. Recent Dioxin/Furan Data Used in Recontamination Evaluation

Figure 5. Recontamination Evaluation Area

24 September 2021 Map Revised: Path: P:\0\0356114\GIS\MXDs\035611408_F01_VicinityMap.mxd

P:\0\0356114\GIS\MXDs\2018_EDRFigures\Fig_1-09_SedimentAccretion2007_2015.mxd Date Exported: 08/20/20 by glohrmeyer

Notes:

1. The locations of all features shown are approximate. 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 3. Modified from Mott MacDonald figure presented during April 10, 2019 coordination meeting with the City and the Port. Accretion determined by Mott MacDonald by subtracting 2007 depths to seafloor from 2015 depths. Haley Cleanup Area Boundary added for reference.

Projection: NAD 1983 StatePlane Oregon North FIPS 3601 Feet

<u>Legend</u>

----- Haley Cleanup Area Boundary

Feet

Figure 4

• 2013

GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Cap Area

RG Haley

Data Source: Aerial from Bing.

| ample Designation and
oxin/Furan TEQ (ng/kg)
ination Evaluation Area | Whatcom Waterway Site | Sample Year | | | | |
|--|--|-------------|------|---|------|-----|
| | South State Street Site Marine Unit | • | 1996 | 0 | 2014 | |
| | Regional Background Area of Interest (AOI) | • | 2004 | 0 | 2015 | |
| Site Marine Unit | Dioxin/Furan Exclusion Areas Site Unit 1C Dredge and Cap Area | • | 2008 | • | 2019 | |
| | | 0 | 2012 | 0 | 2020 | 500 |

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

500

Feet

R.G. Haley Site Bellingham Washington

Figure 5