December 14, 2021 Project No. 0818.02.01

Mary Monahan Washington State Department of Ecology 1250 W Alder Street Union Gap, Washington 98903-0009

Re: Draft July 2021 Supplemental Air Quality Assessment

Former Tiger Oil Site

Facility Site ID: 469, Cleanup Site ID: 4919

2312 W Nob Hill Boulevard, Yakima, Washington

Dear Mary Monahan:

Maul Foster & Alongi, Inc. (MFA) prepared this memorandum to describe results from the July 2021 supplemental air quality assessment conducted at the former Tiger Oil site, located at 2312 W Nob Hill Boulevard in Yakima, Washington (the Site) (see Figure 1). The air quality assessment was conducted to evaluate vapor intrusion potential from residual contamination associated with the former retail gasoline fueling station at the Site and halogenated volatile organic compound (HVOC)-impacted groundwater from upgradient, off-property releases. Activities were conducted in accordance with the Washington State Department of Ecology (Ecology) guidance (Ecology, 2009, 2018).

BACKGROUND

Prior to the July 2021 supplemental air quality assessment, MFA conducted two air quality assessments at the Site in 2019: an initial indoor air assessment in July, and a supplemental indoor and ambient (outdoor) air quality assessment in November (MFA, 2019, 2020a). During both assessments, indoor air samples were collected from businesses adjoining the Site, including the Xochimilco Mexican Restaurant; Barber HQ; and 1 Up Games. During the November 2019 assessment, an ambient air sample was collected from the north-northwestern portion of the Site.

In May 2020, the analytical laboratory notified MFA of HVOC detections in groundwater at the Site. Following this discovery, the laboratory provided HVOC results from the November 2019 semiannual groundwater monitoring event (MFA, 2020b). HVOCs, specifically tetrachloroethene (PCE) and vinyl chloride, are considered additional indicator hazardous substances for the Site and are now included in the semiannual groundwater monitoring. Due to these findings, PCE and its breakdown products (including trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichlorothene, 1,1-dichloroethene, and VC) were included in the July 2021 air quality assessment. Details of the July 2021 air quality assessment are provided below.

FIELD AND ANALYTICAL METHODS

On July 27, 2021, Yen-Vy Van of MFA conducted a walk-through of businesses adjoining the Site, including the Xochimilco Mexican Restaurant, Barber HQ, and 1 Up Games (see Figure 2). Yen-Vy Van did not observe materials in the businesses that could be sources of petroleum volatile organic compounds (VOCs) in indoor air (see attachments A and B). The Xochimilco Mexican Restaurant building has been closed for remodeling and unoccupied since October 2018. The heating, ventilation, and air conditioning (HVAC) system in the restaurant was not operating during the Site walk-through. The building containing Barber HQ and 1 Up Games was occupied and the HVAC system was operational during the Site walk.

On July 28, 2021, MFA collected indoor air samples from the same locations as the initial indoor air samples collected in July 2019. Air samples were collected from the following locations (see Figure 2 and Attachment A):

- Restaurant IA-3A—In the central dining area of the restaurant
- Restaurant IA-3B—In the kitchen area of the restaurant
- Barber IA-3—In the customer service area at the barber shop
- Video IA-3—In the customer service area at the video game shop
- UPG Outdoor-2—Outside in the north-northwest portion of the Site

The air samples were analyzed for the following chemicals by U.S. Environmental Protection Agency (EPA) Method Toxics Organics-15:

- VOCs, including HVOCs
- Oxygenates
- Naphthalene
- Petroleum hydrocarbons as gasoline-range organics (GRO)

Five 6-liter Summa® canisters (four indoor air canisters and one outdoor air canister) were individually certified by the analytical laboratory, H&P Mobile Geochemistry, Inc., and outfitted with 8-hour air flow controllers. The Summa canisters were placed at each sampling location in the breathing zone, approximately 3 to 5 feet above ground surface. The initial vacuum gauge was noted for each Summa canister, then the sample valve was opened to begin sample collection.

The Summa canisters were monitored throughout the sample collection period to ensure that the canisters were steadily collecting air. Indoor air samples were collected until the vacuum gauge of each canister read -5 inches of mercury, indicating that the canister was nearly full. Samples were shipped to H&P Mobile Geochemistry, Inc., in Carlsbad, California, following standard chain-of-custody procedures. The indoor air sampling durations ranged from

Page 3

approximately 6.5 hours to 8.5 hours based on the flow rate of the 8-hour flow controller. The ambient air sampling duration was slightly over 8 hours. The field sampling data sheet is provided in Attachment B.

RESULTS

Laboratory analytical results were screened against Ecology Model Toxics Control Act Method B indoor air cleanup levels (CULs) for both carcinogenic and non-carcinogenic chemicals of concern (see Figure 2 and the Table).

Analytical results produced during this supplemental air quality assessment were reviewed for usability and are qualified consistent with EPA procedures as well as appropriate laboratory and method-specific guidelines. This review was performed consistent with accepted EPA procedures for evaluating laboratory analytical data (EPA, 1986, 2020). Laboratory analytical reports and a data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods for the air data are provided as attachments C and D, respectively. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

Laboratory analytical data for the five air samples contained the following results:

- Xochimilco Mexican Restaurant.
 - Benzene was detected in both samples at concentrations of 0.52 and 0.58 micrograms per cubic meter (ug/m³), above the Method B cancer CUL of 0.32 ug/m³.
 - GRO were detected in both samples. The sample in the kitchen area (Restaurant IA-3B) contained a GRO detection of 170 ug/m³, above the total petroleum hydrocarbon (TPH) CUL of 140 ug/m³. The sample in the central dining area (Restaurant IA-3A) contained GRO detection of 130 ug/m³, below the CUL.
 - PCE and trans-1,2-dichloroethene were detected in one sample in the kitchen area of the restaurant (Restaurant IA-3B) below their respective Method B CULs.
- 1 Up Games.
 - Benzene was detected at a concentration of 0.32 ug/m³, at the Method B cancer CUL.
 - GRO were detected at a concentration of 630 ug/m³, above the TPH CUL of 140 ug/m³.
- Barber HQ.

- Benzene was detected at a concentration of 0.32 ug/m³, at the Method B cancer CUL.
- GRO were detected at a concentration of 130 ug/m³, below the TPH CUL of 140 ug/m³.
- Ambient air (north-northwest area of the Site).
 - Benzene was detected at a concentration of 0.65 ug/m³, above the Method B cancer CUL 0.32 ug/m³.
 - GRO was not detected.

CONCLUSIONS

Findings from the supplemental air quality assessment are as follows:

- The GRO detections from the July 2019, November 2019, and July 2021 air quality assessments and HVOC detections in July 2021 indicate that vapor intrusion from residual petroleum-contaminated soil and from the HVOC plume at the Site is likely occurring in the businesses adjoining the former Tiger Oil facility.
- Similar to the November 2019 air quality assessment, based on detections observed in the outdoor air sample, it appears that petroleum vapors emitted from constant traffic on the roads bordering to the Site to the north and west may be migrating into the adjacent businesses and contributing to benzene detections in indoor air.
- Concentrations of GRO have decreased since the initial July 2019 air monitoring event in all sample locations, with the exception of the indoor air sample collected in 1 Up Games.

Based on the results of the July 2021 indoor air quality assessment additional air sampling is likely warranted.

If you have any questions, please feel free to contact either of us.

Project No. 0818.02.01

Sincerely,

Maul Foster & Alongi, Inc.

Amanda Bixby, GIT Staff Geologist Michael Murray, LHG, PE Principal Hydrogeologist

Attachments: Limitations

References Table Figures

Attachment A—Site Photographs

Attachment B—Field Sampling Data Sheet Attachment C—Laboratory Analytical Report Attachment D—Data Validation Memorandum

cc: Bill Preston, City of Yakima

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Ecology. 2009. Draft: guidance for evaluating soil vapor intrusion in Washington State: investigation and remedial action. Washington State Department of Ecology, Lacey, Washington. Draft for public comment. November 2021.

Ecology. 2018. Implementation memorandum no. 18: petroleum vapor intrusion (VI): updated screening levels, cleanup levels, and assessing PVI threats to future buildings. Washington State Department of Ecology, Lacey, Washington. Revised January.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019).

EPA. 2020. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. November.

MFA. 2019. Memorandum (re: indoor air quality assessment: former Tiger Oil site, West Nob Hill, Yakima) to M. Monahan, Washington State Department of Ecology, from Y. Van, Maul Foster & Alongi, Inc., Seattle, Washington. August 16.

MFA. 2020a. Memorandum (re: supplemental air quality assessment 2019: former Tiger Oil site, West Nob Hill, Yakima) to M. Monahan, Washington State Department of Ecology, from Y. Van, Maul Foster & Alongi, Inc., Seattle, Washington. January 30.

MFA. 2020b. Memorandum (re: halogenated volatile organic compounds impacted groundwater, former Tiger Oil site, facility site ID: 469; cleanup site ID: 4919, 2312 West Nob Hill Boulevard, Yakima, Washington) to M. Monahan, Washington State Department of Ecology, from Y. Van and J. Maul, Maul Foster & Alongi, Inc., Seattle, Washington. June 25.

TABLE

G	
OSTER ALON	
MAULF	
_	

Location	Ecology Indoor Air		Barber HQ		Me	Mexican Restaurant 1	± 1	Mex	Mexican Restaurant 2	nt 2		1 Up Games		Northwest Are	Northwest Area Former Tiger Oil Facility
Sample Name	CUL, Method	Barber IA	Barber IA-2B	Barber-IA-3	Restaurant IA- 1	Restaurant IA, Restau	Restaurant IA- 3A	Restaurant IA- 2	Restaurant IA- 2B	Restaurant IA: 3B	Video IA	Video IA-2B	Video IA-3	UPG OUTDOOR	UPG Outdoor
Collection Date	B ^{(a)(1)}	07/10/2019	11/06/2019	07/28/2021	07/10/2019	11/06/2019	07/28/2021	07/10/2019	11/06/2019	07/28/2021	07/09/2019	11/06/2019	07/28/2021	11/06/2019	07/28/2021
VOCs (ug/m³)															
1,1,1,2-Tetrachloroethane	0.34	-		0.7 U	1	1	0.7 U	1		0.7 U	-	-	0.7 U		0.7 U
1,1,1-Trichloroethane	2,300	-		0.55 U	1	1	0.55 U	1		0.55 U			0.55 U		0.55 U
1,1,2,2-Tetrachloroethane	0.04	1	-	0.7 U		1	0.7 U			U 2.0	-	-	N 2'0	-	U 2.0
1,1,2-Trichloroethane	91.0	-		0.55 U	-	-	0.55 U		4	0.55 U	-		U 33.0	-	0.55 U
1,1-Dichloroethane	1.60		1	0.41 U	-	-	0.41 U		ł	0.41 U	1	1	0.41 U	-	0.41 U
1,1-Dichloroethene	16	-		0.4 U	-	-	0.4 U	-		0.4 U	1	-	U 4.0	1	0.4 U
1,2,4-Trichlorobenzene	0.91	1		1.9 U	-	-	1.9 U		-	U 6.1	1	-	N 6'1	1	U 6.1
1,2,4-Trimethylbenzene	27	1	-	0.5	-	-	2.5		-	3.4	-	-	U 5.0	-	9:0
1,2-Dibromoethane	0.0042	-		0.78 U	-	-	0.78 U			0.78 U	-		N 82'0	-	0.78 U
1,2-Dichlorobenzene	16	1	-	0.61 U	-	-	U 19:0	-		U 19:0	1	-	U 16.0	-	U 19:0
1,2-Dichloroethane	0.10			0.41 U	-	-	0.41 U	-		0.41 U		-	0.41 U		0.41 U
1,2-Dichloropropane	89.0	1		0.47 U		-	0.56	-		0.61	-	-	U 74.0	-	0.47 U
1,3,5-Trimethylbenzene	27	-		0.5 U	-	-	0.7		-	6.0			U 5.0		0.5 U
1,3-Dichlorobenzene	N	-		0.61 U	-	-	0.61 U	-		U 19:0	-		U 16.0	-	U 19:0
1,4-Dichlorobenzene	0.23	-	-	0.61 U	-	-	0.61 U	-		0.61 U			U 16.0		0.61 U
2-Butanone	2,300			4.6			3.2	1	-	3.6			3.6		1.2
2-Hexanone	14	-	-	0.83 U	-		0.83 U	-		0.83 U			0.83 U		0.83 U
4-Ethyltoluene	N	-	1	0.5 U	-	-	0.85	1	-	1.2	-	1	0.5 U	+	0.5 U
4-Methyl-2-pentanone	1,400	-		0.83 U	1		0.83 U		-	0.83 U	-	1	1.2	-	0.83 U
Benzene	0.32	0.32	1	0.32	0.49	1.6	0.52	0.45	1.7	0.58	0.32	1.2	0.32	1.8	0.65
Bromodichloromethane	0.07			0.68 U	-		U 89.0	-		0.68 U			U 89.0		0.68 U
Bromoform	2.30	-	-	U L		-	1 U	-		J U			Πl		J U
Bromomethane	2.3	-		0.39 U	1	-	0.39 U			0.39 U		-	0.39 U	-	0.39 U
Carbon disulfide	320	-		0.32 U	ł	-	0.32 U	1	:	0.32 U	-	1	0.32 U	-	0.32 U
Carbon tetrachloride	0.42	1	-	0.64 U		- 1	0.64 U	1	1	0.64 U	1	1	0.64 U	ł	0.64 U
Chlorobenzene	23	-	-	0.47 U		-	0.47 U	-		0.47 U	-	1	0.47 U	-	0.47 U
Chloroethane	4,600	1	-	0.27 U		1	0.27 U	1	-	0.27 U	-	1	0.27 U	-	0.27 U
Chloroform	0.11	-		0.25 U		-	0.25 U	-		0.25 U		-	0.25 U	-	0.25 U
Chloromethane	41	-		1.2		1	1.3	1		1.3	-	1	1.3	-	1.1
cis-1,2-Dichloroethene	N	1	1	0.4 U		-	0.4 U	-		0.4 U	1	+	0.4 U	1	0.4 U
cis-1,3-Dichloropropene	N	-	1	0.46 U	-	1	0.46 U	1	1	0.46 U	:	1	0.46 U	1	0.46 U
Dibromochloromethane	N	1	1	1.7 U	-	1	1.7 U	1	1	1.7 U	1	1	1.7 U	1	1.7 U
Dichlorodifluoromethane (Freon 12)	46	1	1	1.4	1	1	16	1	1	16	1	1	1.4	1	1.4
Diisopropyl ether	N	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U
Ethylbenzene	460	0.44 U	-	0.48	0.88	1.6	0.57	1.4	1.8	0.62	0.44 U	0.92	0.48	-	0.48

Location	Ecology Indoor Air		Barber HQ		Me	Mexican Restaurant 1	11	Mex	Mexican Restaurant 2	12		1 Up Games		Northwest Area Former Tiger Oil Facility	a Former Tiger cility
Sample Name		Barber IA	Barber IA-2B	Barber-IA-3	Restaurant IA- 1	Restaurant IA- 1B	Restaurant IA Restaurant IA Restaurant IA Restaurant IA Restaurant IA Restaurant IA 8 3	Restaurant IA- 2	Restaurant IA- 2B	Restaurant IA 3B	Video IA	Video IA-2B	Video IA-3	UPG OUTDOOR	UPG Outdoor
Collection Date	B(a)(1)	07/10/2019	11/06/2019	07/28/2021	07/10/2019	11/06/2019	07/28/2021	07/10/2019	11/06/2019	07/28/2021	07/09/2019	11/06/2019	07/28/2021	11/06/2019	07/28/2021
Freon 113	2,300	1	+	0.77 U	+		0.77 U	1		0.77 U	1	+	U 77.0	1	U 77.0
Freon 114	>N	1		0.71 U		-	0.71 U	-		0.71 U			0.71 U	-	U 17.0
Hexachlorobutadiene	0.11	1		2.7 U			2.7 U	-		2.7 U	1		2.7 U	-	2.7 U
m,p-Xylene	>N	1.5	4.2	1.9	3.8	6.5	2.4	6.2	7.7	2.3	0.92	3.6	2.3	4.1	1.8
Methyl tert-butyl ether	9.6	0.91 U	U 16.0	0.91 U	U 16.0	0.91 U	0.91 U	0.91 U	0.91 U	0.91 U	U 16.0	U 16:0	0.91 U	U 16:0	0.91 U
Methylene chloride	99	1	+	0.63			0.35 U		ř	0.35	1	+	0.46	1	0.39
Naphthalene	0.07	1	1	0.53 U		-	0.53 U			0.53 U	-	1	0.53 U	1	0.53 U
o-Xylene	>N	99'0	1.4	0.84	1.7	2.4	1.4	2.7	2.7	1.4	0.44	1.4	1.2	1.5	0.75
Styrene	460	1		0.65		-	35	-		49	1		0.47	-	0.43 U
tert-Amyl methyl ether	>N	0.85 U	U 28.0	0.85 U	U 58.0	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	U 28.0	0.85 U	0.85 U	0.85 U
tert-Butyl alcohol	>N	3.6	2.8	4.8	U 5.1	1.5 U	1.5 U	1.5 U	1.5 U	1.6	1.5 U	1.5 U	2.4	1.5 U	1.5 U
tert-Butyl ethyl ether	>N	0.85 U	0.85 U	0.85 U	U 28.0	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U	0.85 U
Tetrachloroethene	09.6	1		U 69:0			U 69:0			1.5	1		U 69.0	-	U 69.0
Toluene	2,300	1.6	4.2	1.9	2.6	5.6	2.9	2.3	5.7	2.7	1.5	4.7	2.7	5.2	2.6
trans-1,2-Dichloroethene	18			0.4 U			0.4 U		-	0.4	-		0.4 U	-	0.4 U
trans-1,3-Dichloropropene	N	-	-	0.46 U			0.46 U		-	0.46 U			0.46 U	+	0.46 U
Trichloroethene	0.33			0.55 U		=	0.55 U	-	-	0.55 U			0.55 U		0.55 U
Trichlorofluoromethane (Freon 11)	320	-		1.1	-		26			100			96'0		1
Vinyl chloride	0.28			0.13 U		-	0.13 U	-	1	0.13 U			0.13 U	-	0.13 U
Xylenes, total (b)	46	2.16	5.6	2.7	5.5	8.9	3.8	8.9	10.4	3.7	1.36	9	3.5	5.6	2.6
TPH (ug/m³)															
Gasoline-Range Hydrocarbons	140 ^(c)	180	160	130	150	100 U	130	190	100 U	170	110	160	630	100 U	100 U
NOTES:															

JTES: Shading indicates values that exceed Method B indoor air criteria; non-detect results ("U") were not compared with screening criteria. CUL = cleanup level.

NV = no value.

TPH = total petroleum hydrocarbon.

U = Result is non-detect to method reporting limit.

 ${\rm ug/m}^3$ = micrograms per cubic meter. ${\rm VOCs}$ = ${\rm volatile}$ organic compounds.

 $^{\rm [o]}{\rm CUL}$ applied is the lower of available cancer or noncancer Method B indoor air CULs.

^[b]Total xylenes is the sum of m,p- and o-xylene.

^[c]Generic TPH CUL.

REFERENCE:

¹¹⁾Ecology, Cleanup Levels and Risk Calculation (CLARC) table. February 2021.

Page2 of 2

FIGURES

2,000

1,000

MAULFOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

July 2021 Air Quality Assessment Results Figure 2

City of Yakima Former Tiger Oil Site Yakima, Washington

Legend

- Ambient Air Sample

- Sentry Monitoring Well
- Soil Vapor Probe Monitoring Well

- Sewer Line
- Stormwater Line Water Line
- Interim Remedial Action Area (May 2015)

Former Tiger Oil Property Boundary

Adjacent Tax Lot Boundaries

u 25

Sources:
Infinite photograph obtained from Esri Arcills Online.
Infinite allow delineated by MFA.
Sistommater line and parcels obtained from City of Yakima.
All other features obtained from PLSA Engineering &
Surveying.

M A U L FOSTER A LONGI p. 971 544 2139 | www.maulfoster.com

ATTACHMENT A

SITE PHOTOGRAPHS

PHOTOGRAPHS

Project Name: Former Tiger Oil Site—July 2021 Air Assessment

Project Number: 0818.02.01

Location: Yakima, Washington

Photo No. 1.

Description

6-liter Summa® canister placed in the 1 Up Games customer service area for indoor air sample collection (VideoIA-3).

Photo No. 2.

Description

6-liter Summa canister placed in the dining area at the Xochimilco Mexican Restaurant for indoor air sample collection (RestaurantIA-3A).

PHOTOGRAPHS

Project Name: Former Tiger Oil Site—July 2021 Air Assessment

Project Number: 0818.02.01

Location: Yakima, Washington

Photo No. 3.

Description

6-liter Summa canister in the kitchen area at the Xochimilco Mexican Restaurant for indoor air sample collection (RestaurantIA-3B).

Photo No. 4.

Description

6-liter Summa canister in the customer lounge area of Barber HQ for indoor air sample collection (Barber IA-3).

PHOTOGRAPHS

Project Name: Former Tiger Oil Site—July 2021 Air Assessment

Project Number: 0818.02.01

Location: Yakima, Washington

Photo No. 5.

Description

6-liter Summa canister placed outside in the north-northwest area of the former Tiger Oil facility for ambient air sample collection (UPG Outdoor-2).

ATTACHMENT B

FIELD SAMPLING DATA SHEET

Air Sampling into Summa (Indoor, Outdoor, Ambient)

Date: 7/18/21 Site Address: 2312 WET NOB HILL BLVD, YAKLMA, WA

Project Name: FORMER TIGGE DIL- INDOOR & AMBIENT AIR QUALITY ASSESSMENT Arrival Time:

Sample Collector: Y. VAN

Departure Time:

Sam	Sample Information	rmation		2	Sample Start	e Start	Sample Check	Check	Sample	Sample Check	Samn	Sample End	
Sample ID	Date	Summa ID#	Flow Controller ID #	Flow Rate (hrs or cc/min)	Start	Initial Vacuum (" Hg)	Check	Check Vacuum (" Hg)	Check	Check Vacuum (" Hg)	End	End Vacuum	Field Notes
RESTAURANT IA-3A 7128/11 881	1/28/21	1881	F225	115	0.08.1000		1348	20,5	1345	10,5	1628	-50	M dimin Money
BARBER IA-3		H18/4 892	F227	11.5	0852	30.0	1051	23,5	1350	12,0	1700	1 10	
RESTRUBANT IA38		7128 W897	F228	11,5	7080	-30,0	1049	0.11	1班上	-10,5	16.31	V	47 0 47
VENED IA-3	1/18/2	1/18/2 894	F230	11.5	0959-	30.0	7501	26.0	1352-15.0	-15.0		0.4-	Constitution of the consti
UPG DUTBOOK-2	1/18/11	836	F246	11.5	0532	30.5	0754 -	-24.0	1034	-13.8	I	-5.0	
		turi.	Ser.	· 0° · .									8
c		,									3 7		
5			2					1,20					-5
Weather Conditions	ions			Potential Outdoor Sources of Pollution	Outdoor	Source	s of Poll	ution			Hot	ployesr	Household Products
weather Summary:	*		7	Source Gust	6.55	27000	Location	100	1		Туре		Ingredient(s)
Barometric Pressure:	30.04	34 50				2	2007 01	1	I				
Ambient Temp Avg:	3	1							ı				
Ambient Temp High/Low: 95765	9/56	es		2 2									
Indoor Air Temp Avg: Variable	Japiel	رو	A CONTRACTOR AND A CONT		2 G								
Wind Speed/Direction: 4 mm/	1 mpl								1				
Other:			N. Marian			0.00				- P			
The distriction of the company of th			All Total to State of Contract				3						

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804,9678 F 760.804,9159

VAPOR / AIR Chain of Custody

DATE: 7/28/21 Page of

Sample Receipt (Lab Use Only)	Date Rec'd: Control #:	H&P Project#	Lab Work Order#	Sample Intact:	Receipt Gauge ID:	Outside Lab.	Receipt Notes/Tracking #:		ab DM Initials:			TO-15 Fractions Fractions TO-15m ound	8260SV	Nap TPH Aron Aron (Cash	XXX	*	× ×	y	×				Company: Date: Time:	Company: Date: Time:	Company: Date: Time:	Appendix 641, Rev
	S. S. O. S.	STATE FORTS			Eg : W	Sampler Information	VAP.	The second secon	1 1		js	Project Li	D VATAINER D USE ONLY: Seelpt Vac	AXO OOA BB IPT	XX X	X X A TOST	X X tox	×	896 X				Received by:	Received by:	Received by:	
ct Information	Project Name / #:	Project Location:	Report E-Mail(s):	1	ACADE TENEDO TOR		Sampler(s):	report) Signature:	Date: 7 28		Proposition of the second second		E S S S S S S S S S S S S S S S S S S S	Soil Vapor (SV) Tube, etc.	E.A. G.L. Onn	1.4	N.A.		**				Time:	Time:	Time:	
Lab Client and Project Info	TARC.	Proje	St. S	8141		Turnaround Time	Standard (7 days for preliminary	report, 10 days for final report)	Rush (specify):				TIME	mm/dd/yy 24hr clock Soil	V7128/2 1628	1700	1631	1719	J 1333 A				Company: Date.	Company: Date:	Company: Date:	s on back
	DSTEK S 4 LONGI	てなつ 、	THE ANE, SUITE	restruc, why	27:17:07	uirements	rel III);		- Independe	Labolatoly.	<i>please choose one):</i> □ ppbv □ ppmv	FIELD POINT NAME	(II applicable)	AFT		95									with analysis and acceptance of condition
	Lab Client/Consultant:		Lab Client Address:	State, Zip:	Phone Number:	Reporting Requirements	Standard Report Level III	☐ Excel EDD ☐ Other EDD:	CA Geotracker Global ID:	Additional Instructions to Laborateur		* Preferred VOC units (please choose one):	AMMAN TI TOWN	SAIMITE INAIME	RESTAURANT IA-3	64668 TA-3	SCRTAURANT TA-3	VIDED TA-3	U 300 00 1000 8 - 2			porovided Dollowing No.	pprovedinellinguis red by.	pproved/Kelinquished by:	pproved/Relinquished by:	Aproval constitutes as authorization to proceed with analysis and acceptance of conditions on back

ATTACHMENT C

LABORATORY ANALYTICAL REPORT

Yen-Vy Van Maul Foster & Alongi, Inc. 2815 2nd Avenue, Suite 540 Seattle, WA 98121

H&P Project: MFA080421-11

Client Project: Former Tiger Oil / 0818.02.01-27

Dear Yen-Vy Van:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 03-Aug-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Restaurant IA-3A	E108011-01	Vapor	28-Jul-21	03-Aug-21
Barber IA-3	E108011-02	Vapor	28-Jul-21	03-Aug-21
Restaurant IA-3B	E108011-03	Vapor	28-Jul-21	03-Aug-21
Video IA-3	E108011-04	Vapor	28-Jul-21	03-Aug-21
UPG Outdoor - 2	E108011-05	Vapor	28-Jul-21	03-Aug-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

DETECTIONS SUMMARY

nple ID: Restaurant IA-3A	Laboratory ID: E1				
A 1.0		Reporting	***		37.
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	16	1.0	ug/m3	EPA TO-15	
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	97	0.56	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.2	0.60	ug/m3	EPA TO-15	
Benzene	0.52	0.16	ug/m3	EPA TO 15	
1,2-Dichloropropane	0.56	0.47 0.76	ug/m3	EPA TO 15	
Toluene	2.9 0.57	0.76	ug/m3	EPA TO-15 EPA TO-15	
Ethylbenzene			ug/m3		
m,p-Xylene	2.4	0.44	ug/m3	EPA TO-15 EPA TO-15	
Styrene	1.4	0.43	ug/m3	EPA TO-15	
o-Xylene	0.85		ug/m3	EPA TO-15	
4-Ethyltoluene	0.85	0.50 0.50	ug/m3 ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	2.5	0.50	ug/m3	EPA TO-15	
TPHv (C5 - C12)	130	100	ug/m3	EPA TO-15	
mple ID: Barber IA-3	Laboratory ID: E1	08011-02 Reporting		_	
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.4	1.0	ug/m3	EPA TO-15	
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15	
Tertiary-butyl alcohol (TBA)	4.8	1.5	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.63	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	4.6	0.60	ug/m3	EPA TO-15	
Benzene	0.32	0.16	ug/m3	EPA TO-15	
Toluene	1.9	0.76	ug/m3	EPA TO-15	
Ed. II	0.48	0.44	ug/m3	EPA TO-15	
Ethylbenzene	1.9	0.44	ug/m3	EPA TO-15	
m,p-Xylene		0.40	ug/m3	EPA TO-15	
·	0.65	0.43	2		
m,p-Xylene	0.65 0.84	0.43 0.44	ug/m3	EPA TO-15	
m,p-Xylene Styrene			_	EPA TO-15 EPA TO-15	
m,p-Xylene Styrene o-Xylene	0.84	0.44	ug/m3		
m,p-Xylene Styrene o-Xylene 1,2,4-Trimethylbenzene	0.84 0.50 130	0.44 0.50	ug/m3 ug/m3	EPA TO-15	
m,p-Xylene Styrene o-Xylene 1,2,4-Trimethylbenzene TPHv (C5 - C12)	0.84 0.50 130	0.44 0.50 100	ug/m3 ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc.

Project: MFA080421-11

2815 2nd Avenue, Suite 540

Project Number: Former Tiger Oil / 0818.02.01-27

Seattle, WA 98121

Project Manager: Yen-Vy Van

12-Aug-21 13:43

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	16	1.0	ug/m3	EPA TO-15	
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	100	0.56	ug/m3	EPA TO-15	
Tertiary-butyl alcohol (TBA)	1.6	1.5	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.35	0.35	ug/m3	EPA TO-15	
trans-1,2-Dichloroethene	0.40	0.40	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.6	0.60	ug/m3	EPA TO-15	
Benzene	0.58	0.16	ug/m3	EPA TO-15	
1,2-Dichloropropane	0.61	0.47	ug/m3	EPA TO-15	
Toluene	2.7	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1.5	0.69	ug/m3	EPA TO-15	
Ethylbenzene	0.62	0.44	ug/m3	EPA TO-15	
m,p-Xylene	2.3	0.44	ug/m3	EPA TO-15	
Styrene	49	0.43	ug/m3	EPA TO-15	
o-Xylene	1.4	0.44	ug/m3	EPA TO-15	
4-Ethyltoluene	1.2	0.50	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	0.90	0.50	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	3.4	0.50	ug/m3	EPA TO-15	
TPHv (C5 - C12)	170	100	ug/m3	EPA TO-15	
e ID: Video IA-3					
o ib. Video IX-3	Laboratory ID: E	108011-04			
		Reporting	**		Mata
Analyte	Result	Reporting Limit	Units	Method	Notes
Analyte Dichlorodifluoromethane (F12)	Result 1.4	Reporting Limit 1.0	ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane	Result 1.4 1.3	Reporting Limit 1.0 0.21	ug/m3 ug/m3	EPA TO-15 EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11)	Result 1.4 1.3 0.96	Reporting Limit 1.0 0.21 0.56	ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA)	Result 1.4 1.3 0.96 2.4	Reporting Limit 1.0 0.21 0.56 1.5	ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane)	Result 1.4 1.3 0.96 2.4 0.46	Reporting Limit 1.0 0.21 0.56 1.5 0.35	ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK)	Result 1.4 1.3 0.96 2.4 0.46 3.6	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene 4-Methyl-2-pentanone (MIBK)	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32 1.2	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16 0.83	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene 4-Methyl-2-pentanone (MIBK) Toluene	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32 1.2 2.7	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16 0.83 0.76	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene 4-Methyl-2-pentanone (MIBK) Toluene Ethylbenzene	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32 1.2 2.7 0.48	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16 0.83 0.76 0.44	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene 4-Methyl-2-pentanone (MIBK) Toluene Ethylbenzene m,p-Xylene	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32 1.2 2.7 0.48 2.3	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16 0.83 0.76 0.44 0.44	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes
Analyte Dichlorodifluoromethane (F12) Chloromethane Trichlorofluoromethane (F11) Tertiary-butyl alcohol (TBA) Methylene chloride (Dichloromethane) 2-Butanone (MEK) Benzene 4-Methyl-2-pentanone (MIBK) Toluene Ethylbenzene	Result 1.4 1.3 0.96 2.4 0.46 3.6 0.32 1.2 2.7 0.48	Reporting Limit 1.0 0.21 0.56 1.5 0.35 0.60 0.16 0.83 0.76 0.44	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Sample ID: UPG Outdoor - 2 Laboratory ID: E108011-05 Reporting Analyte Result Limit Units Method Notes Dichlorodifluoromethane (F12) 1.0 ug/m3 EPA TO-15 1.4 Chloromethane 1.1 0.21 ug/m3 EPA TO-15 0.56 EPA TO-15 Trichlorofluoromethane (F11) 1.0 ug/m3 Methylene chloride (Dichloromethane) 0.39 0.35 ug/m3 EPA TO-15 2-Butanone (MEK) 1.2 0.60ug/m3 EPA TO-15 Benzene 0.65 0.16 EPA TO-15 ug/m3 Toluene 0.76 EPA TO-15 2.6 ug/m3 0.44 EPA TO-15 Ethylbenzene 0.48 ug/m3 0.44 m,p-Xylene 1.8 ug/m3 EPA TO-15 o-Xylene 0.75 0.44 ug/m3 EPA TO-15 0.50 1,2,4-Trimethylbenzene 0.60 ug/m3 EPA TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Restaurant IA-3A (E108011-01) Vapor	Sampled: 28-Jul-21	Received: 03-A	Aug-21		7				
Dichlorodifluoromethane (F12)	16	1.0	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	**	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	97	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40		"	"	"	**	"	
Tertiary-butyl alcohol (TBA)	ND	1.5	"	"	"	"	11	11	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	11	
Methylene chloride (Dichloromethane)	ND	0.35	"	"	"	"	**	11	
Carbon disulfide	ND	0.32	"	"	"	"	"	**	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	**	**	
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.2	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	0.85	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	0.85	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	**	**	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.52	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	0.85	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	0.56	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	u	"	"	
Toluene	2.9	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	***	"	**	**	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	**	"	"	"	
	112	0 0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Restaurant IA-3A (E108011-01) Vapor	Sampled: 28-Jul-21	Received: 03-A	Aug-21						
Chlorobenzene	ND	0.47	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Ethylbenzene	0.57	0.44	"	"	"	"	11	"	
m,p-Xylene	2.4	0.44	"	"	"	"	"	"	
Styrene	35	0.43	"		n n	"	n	"	
o-Xylene	1.4	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	и	"	"	"	
4-Ethyltoluene	0.85	0.50		"	"	"	"	"	
1,3,5-Trimethylbenzene	0.70	0.50		"	"	"	"	"	
1,2,4-Trimethylbenzene	2.5	0.50		"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	n	
Naphthalene	ND	0.53	"	"	"	"	"	n .	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	n	n .	
Hexachlorobutadiene	ND	2.7		"	"	"	n	TI .	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Barber IA-3 (E108011-02) Vapor Sam	pled: 28-Jul-21 Rece	96.8 % 100 % 102 % eived: 03-Aug-2	78- 77-	-134 -125 -127	" "	" "	" "	" "	
Dichlorodifluoromethane (F12)	1.4	1.0	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	m	**	n .	***	n	TI .	
Vinyl chloride	ND	0.13	"	"	"	**	"	"	
Bromomethane	ND	0.39	"	"	n .	11	n	TI .	
Chloroethane	ND	0.27	n	"	n	**	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	4.8	1.5	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.63	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"	"	"	"	"	"	
			"	,,	,,	"	,,	,,	
1,1-Dichloroethane	ND	0.41	"	"	"	"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Barber IA-3 (E108011-02) Vapor	Sampled: 28-Jul-21 Receiv	ved: 03-Aug-21	l						
cis-1,2-Dichloroethene	ND	0.40	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Diisopropyl ether (DIPE)	ND	0.85	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	0.85	"		"	"	"	n .	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	**	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	**	TI .	
Benzene	0.32	0.16	"	"	"	"	**	"	
Carbon tetrachloride	ND	0.64		"	"	"	**	"	
Tertiary-amyl methyl ether (TAME)	ND	0.85	"	n n	"	"	11	"	
Trichloroethene	ND	0.55	"	"	"	"	**	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	**	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	11	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.9	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	**	**	**	**	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.48	0.44	"	"	"	"	"	"	
m,p-Xylene	1.9	0.44	"	"	"	"	"	n .	
Styrene	0.65	0.43	"	"	"	"	"	n .	
o-Xylene	0.84	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	n	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	n	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	n .	
1,3,5-Trimethylbenzene	ND	0.50	"	"	**	"	"	n	
1,2,4-Trimethylbenzene	0.50	0.50	"	"	"	"	"	n .	
1,3-Dichlorobenzene	ND	0.61	"	"	**	"	**	n	
1,4-Dichlorobenzene	ND	0.61	"	"	***	"	11	11	
1,2-Dichlorobenzene	ND	0.61	"	"	**	"	**	n	
Naphthalene	ND	0.53	"	"	"	"	TI TI	TI .	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
	140	2.1							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

			e Geoche		,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Barber IA-3 (E108011-02) Vapor Sampled: 28	3-Jul-21 Received	l: 03-Aug-2	1						
Surrogate: 1,2-Dichloroethane-d4		94.1 %	76-13	4	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Surrogate: Toluene-d8		102 %	78-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	77-12	7	"	"	"	"	
Restaurant IA-3B (E108011-03) Vapor Sampl	ed: 28-Jul-21 Re	ceived: 03-A	Aug-21						
Dichlorodifluoromethane (F12)	16	1.0	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	,	n n	п	"	"	"	
Vinyl chloride	ND	0.13	m I	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	**	"	
Trichlorofluoromethane (F11)	100	0.56	"	"	"	"	**	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	1.6	1.5	II .	**	"	"	**	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.35	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	0.40	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.6	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	0.85	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	0.85	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	II.	"	"	"	"	"	
Benzene	0.58	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	0.85	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	0.61	0.33	n .	"	"	"	"	"	
Bromodichloromethane	ND	0.47	n .	"	"	**	"	"	
cis-1,3-Dichloropropene	ND ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.40	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND ND	0.65	"	"	"	"	"	"	
Toluene	2.7	0.46	"	"	"	"	"	"	
1,1,2-Trichloroethane	Z.7 ND	0.76	"	"	"	"	"	"	
1,1,4-111CHOIOCHIANC	טא	0.55							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Restaurant IA-3B (E108011-03) Vapor	Sampled: 28-Jul-21	Received: 03-A	Aug-21						
2-Hexanone (MBK)	ND	0.83	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Dibromochloromethane	ND	1.7	"	"	"	"	"	n .	
Tetrachloroethene	1.5	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"		"	"	"	n .	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	n .	
Chlorobenzene	ND	0.47	"	"	"	"	**	TI .	
Ethylbenzene	0.62	0.44	"	"		"	11	"	
m,p-Xylene	2.3	0.44		"	H,	"	**	"	
Styrene	49	0.43	"	"	"	"	11	"	
o-Xylene	1.4	0.44	"	"	"	"	**	"	
Bromoform	ND	1.0	"	"	"	"	11	11	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	**	"	
4-Ethyltoluene	1.2	0.50	"	"	"	"	**	"	
1,3,5-Trimethylbenzene	0.90	0.50	11	"	"	"	**	TI .	
1,2,4-Trimethylbenzene	3.4	0.50	"	"	"	"	**	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	**	TI .	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	**	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	**	"	
Naphthalene	ND	0.53	"	"	"	"	**	TI .	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	**	**	"	11	11	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		101 %	<i>78</i> -	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-	-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Video IA-3 (E108011-04) Vapor Sampled: 28-Jul-21	Receive	ed: 03-Aug-21							
Dichlorodifluoromethane (F12)	1.4	1.0	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	u,	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"		n n	"	n	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"	"	n .	"	u,	"	
1,1-Dichloroethene	ND	0.40		"	11	"	"	"	
Tertiary-butyl alcohol (TBA)	2.4	1.5	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.46	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32		"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"	"	"	"	U	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.6	0.60	"	"	"	"	T T	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	u,	"	
Diisopropyl ether (DIPE)	ND	0.85	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	U	"	
Ethyl tert-butyl ether (ETBE)	ND	0.85	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	**	**	"	T T	"	
1,2-Dichloroethane (EDC)	ND	0.41	n	"	"	"	TT .	"	
Benzene	0.32	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	"	"	"	"	U	"	
Tertiary-amyl methyl ether (TAME)	ND	0.85	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	TT TT	"	
1,2-Dichloropropane	ND	0.47	n	"	"	"	TT .	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	m	"	"	"	n	"	
4-Methyl-2-pentanone (MIBK)	1.2	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	TT TT	"	
Toluene	2.7	0.76	"	"	"	"	T T	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	TI .	"	
2-Hexanone (MBK)	ND	0.83	m	"	"	**	TI .	"	
Dibromochloromethane	ND	1.7	"	"	"	"	n	"	
Tetrachloroethene	ND	0.69	"	"	"	"	TI .	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Video IA-3 (E108011-04) Vapor Sampled: 28-	Jul-21 Receive	d: 03-Aug-21							
Chlorobenzene	ND	0.47	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Ethylbenzene	0.48	0.44	"	"	"	"	**	"	
m,p-Xylene	2.3	0.44	"	"	"	"	**	"	
Styrene	0.47	0.43	"		"	"	**	"	
o-Xylene	1.2	0.44	"	"	"	"	**	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50		"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.50		"	"	"	"	"	
1,3-Dichlorobenzene	ND .	0.61		"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	**	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	**	"	
Naphthalene	ND	0.53	"	"	"	"	T T	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	,,	"	"	"	"	"	
	112	2.7							
Surrogate: 1,2-Dichloroethane-d4		95.7 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		94.9 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	77	127	"	"	"	"	
UPG Outdoor - 2 (E108011-05) Vapor Sample	ed: 28-Jul-21 R	eceived: 03-A	ug-21						
Dichlorodifluoromethane (F12)	1.4	1.0	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	**	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	**	"	**	"	
Trichlorofluoromethane (F11)	1.0	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	1.5	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.39	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	m .	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	11	"	
2-Butanone (MEK)	1.2	0.60	"	"	"	"	"	"	
		0.00							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
UPG Outdoor - 2 (E108011-05) Vapor	Sampled: 28-Jul-21	Received: 03-A	ug-21						
cis-1,2-Dichloroethene	ND	0.40	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Diisopropyl ether (DIPE)	ND	0.85	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	n	
Ethyl tert-butyl ether (ETBE)	ND	0.85	"		"	"	**	11	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	**	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	**	TI .	
Benzene	0.65	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.64	.,	"	11	"	u u	"	
Tertiary-amyl methyl ether (TAME)	ND	0.85	"	"	"	"	T T	TI .	
Trichloroethene	ND	0.55	"	"	"	"	**	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	11	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	n .	
Toluene	2.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78		**	**	**	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.48	0.44	"	"	"	"	"	"	
m,p-Xylene	1.8	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.75	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	n	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	n	
4-Ethyltoluene	ND	0.50	"	**	"	"	"	n .	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	n .	
1,2,4-Trimethylbenzene	0.60	0.50	"	**	"	"	"	n .	
1,3-Dichlorobenzene	ND	0.61	"	"	**	"	"	n	
1,4-Dichlorobenzene	ND	0.61	"	"	11	**	17	n	
1,2-Dichlorobenzene	ND	0.61	"	"	**	"	"	n	
Naphthalene	ND	0.53	"	"	**	"	TI .	TI .	
1,2,4-Trichlorobenzene	ND	1.9	"	"	**	"	"	11	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
	ND	2.1							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
UPG Outdoor - 2 (E108011-05) Vapor	Sampled: 28-Jul-21	Received: 03-A	ug-21						
Surrogate: 1,2-Dichloroethane-d4		92.1 %	76-13	4	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	
Surrogate: Toluene-d8		103 %	78-12	5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	77-12	7	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Petroleum Hydrocarbon Analysis by EPA TO-15

Analyte Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
Restaurant IA-3A (E108011-01) Vapor Sampled: 28-Jul-21	Received: 03-A	Aug-21										
TPHv (C5 - C12) 130	100	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15					
Barber IA-3 (E108011-02) Vapor Sampled: 28-Jul-21 Rec	eived: 03-Aug-2	1										
TPHv (C5 - C12) 130	100	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15					
Restaurant IA-3B (E108011-03) Vapor Sampled: 28-Jul-21	Received: 03-A	Aug-21										
TPHv (C5 - C12) 170	100	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15					
Video IA-3 (E108011-04) Vapor Sampled: 28-Jul-21 Recei	ived: 03-Aug-21											
TPHv (C5 - C12) 630	100	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15					
UPG Outdoor - 2 (E108011-05) Vapor Sampled: 28-Jul-21	UPG Outdoor - 2 (E108011-05) Vapor Sampled: 28-Jul-21 Received: 03-Aug-21											
TPHv (C5 - C12) ND	100	ug/m3	1	EH10416	04-Aug-21	05-Aug-21	EPA TO-15	•				

Analyte

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Limit

Notes

Maul Foster & Alongi, Inc. Project: MFA080421-11

Result

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

Units

Reporting

Limit

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Batch EH10416 - TO-15											
Blank (EH10416-BLK1)				Prepared & Analyze	ed: 04-Aug-21						
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3								
Chloromethane	ND	0.21	"								
Dichlorotetrafluoroethane (F114)	ND	0.71	"								
Vinyl chloride	ND	0.13	"								
Bromomethane	ND	0.39	"								
Chloroethane	ND	0.27	"								
Trichlorofluoromethane (F11)	ND	0.56	"								
1,1-Dichloroethene	ND	0.40	"								
Tertiary-butyl alcohol (TBA)	ND	1.5	" '								
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"								
Methylene chloride (Dichloromethane)	ND	0.35	"	7							
Carbon disulfide	ND	0.32	"								
trans-1,2-Dichloroethene	ND	0.40	"								
Methyl tertiary-butyl ether (MTBE)	ND	0.91	"								
1,1-Dichloroethane	ND	0.41	"								
2-Butanone (MEK)	ND	0.60	"								
cis-1,2-Dichloroethene	ND	0.40	"								
Diisopropyl ether (DIPE)	ND	0.85	"								
Chloroform	ND	0.25	"								
Ethyl tert-butyl ether (ETBE)	ND	0.85	"								
1,1,1-Trichloroethane	ND	0.55	"								
1,2-Dichloroethane (EDC)	ND	0.41	"								
Benzene	ND	0.16	"								
Carbon tetrachloride	ND	0.64	"								
Tertiary-amyl methyl ether (TAME)	ND	0.85	"								
Trichloroethene	ND	0.55	"								
1,2-Dichloropropane	ND	0.47	"								
Bromodichloromethane	ND	0.68	"								
cis-1,3-Dichloropropene	ND	0.46	"								
4-Methyl-2-pentanone (MIBK)	ND	0.83	"								
trans-1,3-Dichloropropene	ND	0.46	"								
Toluene	ND	0.76	"								
1,1,2-Trichloroethane	ND	0.55	"								
2-Hexanone (MBK)	ND	0.83	"								

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:
Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyta	Dogult	Reporting	Linita	Lovel	Posult	0/DEC	%KEC Limita	DDD	KPD Limit	NT-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH10416 - TO-15					Δ					
Blank (EH10416-BLK1)				Prepared &	Analyzed:	04-Aug-21				
Dibromochloromethane	ND	1.7	ug/m3							
Tetrachloroethene	ND	0.69	"							
1,2-Dibromoethane (EDB)	ND	0.78	"							
1,1,1,2-Tetrachloroethane	ND	0.70	"							
Chlorobenzene	ND	0.47	"							
Ethylbenzene	ND	0.44	"							
n,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
,1,2,2-Tetrachloroethane	ND	0.70	"							
1-Ethyltoluene	ND	0.50	"							
,3,5-Trimethylbenzene	ND	0.50	"							
,2,4-Trimethylbenzene	ND	0.50	"							
,3-Dichlorobenzene	ND	0.61	"							
,4-Dichlorobenzene	ND	0.61	"							
,2-Dichlorobenzene	ND	0.61	"							
Naphthalene	ND	0.53	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	199		"	214		93.1	76-134			
Surrogate: Toluene-d8	202		"	208		97.2	78-125			
Surrogate: 4-Bromofluorobenzene	328		"	363		90.3	77-127			
LCS (EH10416-BS1)				Prepared: (04-Aug-21 <i>A</i>	Analyzed: 0	5-Aug-21			
Dichlorodifluoromethane (F12)	90.5	1.0	ug/m3	101	<u> </u>	89.8	59-128			
Vinyl chloride	51.1	0.13	"	52.0		98.4	64-127			
Chloroethane	51.0	0.27	"	53.6		95.2	63-127			
Frichlorofluoromethane (F11)	95.5	0.56	"	113		84.4	62-126			
,1-Dichloroethene	73.9	0.40	"	80.8		91.5	61-133			
,1,2-Trichlorotrifluoroethane (F113)	144	0.77	"	155		92.6	66-126			
Methylene chloride (Dichloromethane)	68.3	0.35	"	70.8		96.5	62-115			
rans-1,2-Dichloroethene	72.1	0.40	"	80.8		89.2	67-124			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540Project Number:Former Tiger Oil / 0818.02.01-27Reported:Seattle, WA 98121Project Manager:Yen-Vy Van12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH10416 - TO-15					X					
LCS (EH10416-BS1)				Prepared: 0)4-Aug-21 <i>A</i>	nalvzed: ()5-Aug-21			
1.1-Dichloroethane	76.4	0.41	ug/m3	82.4		92.7	68-126			
cis-1,2-Dichloroethene	71.4	0.40	"	80.0		89.3	70-121			
Chloroform	91.1	0.25	"	99.2		91.8	68-123			
1,1,1-Trichloroethane	100	0.55	."	111		90.2	68-125			
1,2-Dichloroethane (EDC)	71.4	0.41	"	82.4		86.7	65-128			
Benzene	59.4	0.16		64.8		91.7	69-119			
Carbon tetrachloride	118	0.64		128		92.4	68-132			
Trichloroethene	104	0.55	,,	110		94.6	71-123			
Toluene	71.3	0.76		76.8		92.8	66-119			
1,1,2-Trichloroethane	107	0.55	,,	111		96.6	73-119			
Tetrachloroethene	125	0.69	"	138		90.7	66-124			
1,1,1,2-Tetrachloroethane	160	0.70	"	140		114	67-129			
Ethylbenzene	89.7	0.44	"	88.4		102	70-124			
m,p-Xylene	89.4	0.44	,,	88.4		101	61-134			
o-Xylene	86.4	0.44	"	88.4		97.8	67-125			
1,1,2,2-Tetrachloroethane	151	0.70	"	140		108	65-127			
Surrogate: 1,2-Dichloroethane-d4	204		"	214		95.5	76-134			
Surrogate: Toluene-d8	208		"	208		100	78-125			
Surrogate: 4-Bromofluorobenzene	376		"	363		104	77-127			
LCS Dup (EH10416-BSD1)				Prepared: ()4-Aug-21 <i>A</i>	Analyzed: 0	05-Aug-21			
Dichlorodifluoromethane (F12)	89.7	1.0	ug/m3	101		89.0	59-128	0.947	25	
Vinyl chloride	50.4	0.13	"	52.0		96.9	64-127	1.48	25	
Chloroethane	49.2	0.10	"	53.6		91.8	63-127	3.63	25	
Trichlorofluoromethane (F11)	96.9	0.56	"	113		85.6	62-126	1.41	25	
1,1-Dichloroethene	73.2	0.40	"	80.8		90.6	61-133	0.984	25	
1,1,2-Trichlorotrifluoroethane (F113)	144	0.77	"	155		92.8	66-126	0.215	25	
Methylene chloride (Dichloromethane)	68.2	0.35	"	70.8		96.3	62-115	0.207	25	
trans-1,2-Dichloroethene	70.8	0.40	"	80.8		87.6	67-124	1.80	25	
1,1-Dichloroethane	75.9	0.41	"	82.4		92.1	68-126	0.593	25	
cis-1,2-Dichloroethene	69.7	0.40	"	80.0		87.2	70-121	2.39	25	
Chloroform	90.8	0.45	"	99.2		91.5	68-123	0.380	25	
1,1,1-Trichloroethane	100	0.55		111		90.0	68-125	0.220	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc.

Project: MFA080421-11

2815 2nd Avenue, Suite 540 Seattle, WA 98121 Project Number: Former Tiger Oil / 0818.02.01-27

Project Manager: Yen-Vy Van

Reported: 12-Aug-21 13:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH10416 - TO-15										
LCS Dup (EH10416-BSD1)				Prepared:	04-Aug-21 A	Analyzed: 0	5-Aug-21			
1,2-Dichloroethane (EDC)	70.5	0.41	ug/m3	82.4		85.6	65-128	1.27	25	
_		0.40								

LCS Dup (EH10416-BSD1)				Prepared: 04	-Aug-21 Analyzed: 0	lyzed: 05-Aug-21				
1,2-Dichloroethane (EDC)	70.5	0.41	ug/m3	82.4	85.6	65-128	1.27	25		
Benzene	58.5	0.16	"	64.8	90.3	69-119	1.59	25		
Carbon tetrachloride	118	0.64	"	128	92.3	68-132	0.108	25		
Trichloroethene	107	0.55	"	110	97.3	71-123	2.80	25		
Toluene	70.9	0.76	"	76.8	92.3	66-119	0.537	25		
1,1,2-Trichloroethane	108	0.55		111	97.4	73-119	0.869	25		
Tetrachloroethene	128	0.69	"	138	92.9	66-124	2.45	25		
1,1,1,2-Tetrachloroethane	161	0.70	"	140	115	67-129	1.04	25		
Ethylbenzene	88.5	0.44	"	88.4	100	70-124	1.33	25		
m,p-Xylene	87.5	0.44	"	88.4	99.0	61-134	2.19	25		
o-Xylene	86.7	0.44	"	88.4	98.0	67-125	0.254	25		
1,1,2,2-Tetrachloroethane	147	0.70	"	140	105	65-127	2.20	25		
Summarata 12 Diablem of mar 14	202		,,	214	05.1	76 124				
Surrogate: 1,2-Dichloroethane-d4	203			214	95.1	76-134				
Surrogate: Toluene-d8	208		"	208	99.9	78-125				
Surrogate: 4-Bromofluorobenzene	380		"	363	105	77-127				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc.

Project: MFA080421-11

2815 2nd Avenue, Suite 540 Seattle, WA 98121 Project Number: Former Tiger Oil / 0818.02.01-27

Project Manager: Yen-Vy Van

Reported: 12-Aug-21 13:43

Petroleum Hydrocarbon Analysis by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH10416 - TO-15

Blank (EH10416-BLK1) Prepared & Analyzed: 04-Aug-21

TPHv (C5 - C12) ND 100 ug/m3

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Maul Foster & Alongi, Inc. Project: MFA080421-11

2815 2nd Avenue, Suite 540 Project Number: Former Tiger Oil / 0818.02.01-27 Reported:

Seattle, WA 98121 Project Manager: Yen-Vy Van 12-Aug-21 13:43

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

Mobile Geochemistry, Inc.

DATE: 7/28/21 Page | of 1

VAPOR / AIR Chain of Custody 2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com Einfo@handpmg.com P 760.804.9678 F 760.804.9159

Sample Receipt (Lab Use Only)	Date Recd: 8/3 Control #: 210 M/ / /	A080421-1	Lab Work Order # F 10 \$0 11	Sample Intact: XYes \(\text{No.} \) \(\text{No.} \) See Notes Below	Receipt Gauge ID: 6030 C Temp: 27	Outside Lab:	ot Notes/T	12-13-11 619 0491 > 0601 12-93 TF 6190 5067 8173	1293TT 6190 4985 4789 Mittals: M		Fractions O-15m D-15e J15e	138ene	826 Naphth 826 826 826 826 826 826 0FA	X	X X X			× × ×		Compagn X Date Time	Date:	Company: Date: Time:
The state of the state of the state of	OKHEK TIGER OIL	1312 W. JOS HILL FULD			VAND MULTS LEK, COM	Sampler Information	Sampler(s): 7. KAN	Signature:	Date: 71 28 12V		III List O-15 Project List TO-15		NOCe : RSG RSG		2.3K ×	×	メ	€ 896.3.74 × ×		Received by: Am (RM)	Time: Received by:	Time: Received by:
ct Information	14	Project Location:	Report E-Mail(s):		YVAN	Turnaround Time	tys for preliminary	for final report)					Air (AA), Subslab (SS), Soil Vapor (SV)	8 HA		7.7	LA	3 AA		7/29/21	Date:	Date:
Lab Client and Project Information	NGI, INC.		क्टर्	78154		Turnaron	Standard (7 days for preliminary	report, 10 days for final re	Rush (specify):				mm/dd/yy 24hr clock	D7/28/12 1628	11400	1631	1719	1333		Company:	Сотрапу:	Company:
Fa	FOSTER A A LONGE,	王	AVE, SUITE	47、	5378	ents	☐ Level IV			ratory:	s (please choose one):	FIELD POINT	(if applicable)	1								Hivsis and acceptance of cor
	7	Lab Client Project Manager:	Lab Client Address: 28 5	Lab Client City, State, Zip: SEATTLE	Phone Number: 253 - 320 -	Reporting Requirements	Standard Report Level III	Excel EDD Other EDD:	CA Geotracker Global ID:	Additional Instructions to Laboratory:	* Preferred VOC units (please choose one):		SAMPLE NAME	RESTAURANT IA-3A -	BARBER TA-3	RESTAURANT IA-38	VIDED IA 3	Ufa 207000A-2		Approved/Relinquished Image	Approved/Relinquished by:	Approved Relinquished by: Approved Relinquished by: Approved consistence of conditions on back.

ATTACHMENT D

DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0818.02.01 | AUGUST 17, 2021 | CITY OF YAKIMA

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for indoor and outdoor air samples collected at the former Tiger Oil site, located at 2312 West Nob Hill Boulevard in Yakima, Washington. The samples were collected on July 28, 2021.

H&P Mobile Geochemistry, Inc. (HP) performed the analyses. HP report MFA080421-11 was reviewed. The analyses performed and the samples analyzed are listed below.

Analysis	Reference
Gasoline-Range Hydrocarbons (C5-C12)(a)	EPA TO-15
Volatile Organic Compounds	EPA TO-15
NOTES: EPA = U.S. Environmental Protection Agency. TO = toxic organics. (a) Reported by H&P Mobile Geochemistry, Inc., as volatile total poles.	etroleum hydrocarbons (C5-C12).

Samples Analyzed
Report MFA080421-11
Restaurant IA-3A
Barber IA-3
Restaurant IA-3B
Video IA-3
UPG Outdoor - 2

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (EPA, 1986, 1999; HP, 2021).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., TO-15).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were collected and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. All laboratory method blanks were non-detect at laboratory reporting limits.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples, with the exception of samples analyzed for gasoline-range hydrocarbons by EPA Method TO-15. All surrogate results were within percent recovery acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. As MSs/MSDs are not required for soil vapor methods, they were not analyzed for this report.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. No laboratory duplicates were reported.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. The reviewer confirmed that LCS/LCSD batch quality control samples were not reported for gasoline-range hydrocarbons analyzed by EPA Method TO-15. All LCS/LCSD results were within acceptance limits for percent recovery and relative percent difference.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were submitted for analysis.

REPORTING LIMITS

HP used routine reporting limits for non-detect results.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

According to report MFA080421-11, sample names were recorded on the chain of custody as RESTAURANT IA-3A, BARBER IA-3, RESTAURANT IA-3B, VIDEO IA-3, and UPG OUTDOOR-2, and were reported by HP as Restaurant IA-3A, Barber IA-3, Restaurant IA-3B, Video IA-3, and UPG Outdoor - 2. No action by the reviewer was required.

No additional issues were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), and VI phase II (2018), VI phase III (2019).

EPA. 1999. Compendium method TO-15. Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). U.S. Environmental Protection Agency, Office of Research and Development. January.

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

HP. 2021. Quality systems manual. Vers. 20. H&P Mobile Geochemistry, Inc., Carlsbad, California. July 11.