

May 4, 2022

Christopher Maurer, PE HQ – Toxics Cleanup Program P.O. Box 47600 Olympia, Washington 98504-7600

Re: 2022 Groundwater Monitoring and Asphalt Inspection

Darling-Tacoma Facility (aka Darling Delaware Co., Inc. and Puget Sound By-Products)

Facility No.: 25455514, Cleanup Site No.: 8475, VCP Project No.: SW1317

Dear Mr. Maurer,

Tetra Tech, Inc. (Tetra Tech) is submitting this groundwater monitoring and asphalt inspection report on behalf of Darling Ingredients, Inc. (Darling) for their facility located at 2041 Marc Avenue in Tacoma, Washington (**Figures 1** and **2**; **Attachment A**). Tetra Tech conducted these monitoring actions for Darling based on the No Further Action (NFA) designation received from Washington Department of Ecology (Ecology), dated September 3, 2021. The work was conducted as described in the Cleanup Action Plan (CAP; Tetra Tech 2020).

The following sections present a summary of the work conducted. Attachments to this report include figures (**Attachment A**), data tables (**Attachment B**), laboratory analytical report (**Attachment C**), and completed asphalt inspection form (**Attachment D**). Tetra Tech entered groundwater monitoring data collected during this event into Ecology's EIM database.

1.0 GROUNDWATER MONITORING

Tetra Tech initially conducted the 2022 groundwater monitoring event on February 3, 2022. Tetra Tech's project manager reviewed the February 3, 2022 field notes documenting the sampling event and laboratory report. It was discovered that the field technician had incorrectly sampled wells MFG-1 and MFG-2 by placing the tubing intake in bottom well screen and sump area of each well instead of within the mid- to upper-portion of the saturated well screen, as per U.S. Environmental Protection Agency (EPA) guidelines. This field error resulted in high sample turbidity, quality control concerns, and collection of unrepresentative samples. Tetra Tech's project manager re-sampled wells MFG-1 and MFG-2 on March 25, 2022. The results presented herein are for the March 25, 2022 sample event.

Field personnel purged and sampled both wells using new, dedicated disposable tubing and low flow purging and sampling methods with the tubing intake placed at a depth of approximately 6.5 feet below ground surface (bgs); within the upper 2 feet of saturated well screen, a sample zone which is consistent with prior sample events. The low flow purging rate was estimated at 0.1 liters per minute for each well.

Static Water Levels

Field personnel recorded the depth to water in each well after opening both wells and allowing the wells to vent and stabilize. **Table 1** (**Attachment B**) provides static water level data. Static water levels

recorded on March 25, 2022 were 5.12 feet in MFG-1 and 4.89 feet in MFG-2, which equate to elevations of 10.89 and 10.75 feet above mean sea level (amsl), respectively. Recorded water levels were consistent with prior sampling events and seasonal variations.

Field Parameters

Field personnel monitored field parameters of pH, temperature (°C), specific conductance (uS/cm), oxygen reduction potential (mV), turbidity (NTU), and dissolved oxygen (mg/L) during purging through an in-line low flow cell until parameters stabilized to limits specified in the CAP. Water levels were also recorded during purging to ensure minimal to no drawdown. **Table 2** (**Attachment B**) provides field parameter results. **Table 1-1**, below, summarizes the results from this event.

Results Range Field Parameter MFG-1 MFG-2 рΗ 6.7 6.7 Temperature (°C) 15.8 13.7 Specific Conductance (µS/cm) 1,610 3,140 Oxygen Reduction Potential -124 -132 (mV) Dissolved Oxygen (mg/L) 3.8 4.1

Table 1-1. Field Parameter Results

For this event, field personnel monitored turbidity, which was 2.1 for sample MFG-1 and 2.2 NTU for sample MFG-2. Field parameter results were relatively consistent with prior monitoring events, except for specific conductance in MFG-1. It is unclear why the value is greater than prior events.

Field personnel collected groundwater samples after field parameters stabilized. Field personnel transferred water from the wells by pumping directly from the sample tubing into laboratory-provided sample containers. Samples were preserved as required per laboratory and method requirements, then placed into a cooler containing a doubled-resealable bag filled with ice. Tetra Tech hand delivered the groundwater samples to Eurofins Test America in Tacoma, Washington for analysis within approximately 1 hour of collection of the second sample, MFG-1.

Table 2 (**Attachment B**) presents the laboratory analytical results. **Table 1-2**, below, summarizes the results.

Analytical Paramete	r (μg/L)	MFG-1	MFG-2
Diesel Range (C10-24)	Without SGT	1,000	590
	With SGT	91 J+	300J+/<65
Heavy Oil Range /	Without SGT	920 J+	860
Motor Oil Range (>C24-C36)	With SGT	<96	180 J+/ <96
J+ Result considered estimated and detection and/or laboratory control	,	•	d blank

Table 1-2. Analytical Results

The laboratory encountered quality control issues while analyzing samples MFG-1 and MFG-2. **Appendix C** includes the laboratory report and data validation checklist that discusses the issues encountered.

Previous analytical results have shown fluctuations in contaminant levels while overall maintaining a reducing trend. The results for the March 25, 2022 sampling event are consistent with those observed during prior sampling events.

Deviations from the CAP

As noted above, Tetra Tech initially sampled the wells on February 3, 2022 but re-sampled the wells on March 25, 2022 due to sampling errors and quality control issues related to the February event.

2.0 ASPHALT INSPECTION

Tetra Tech conducted an inspection of the asphalt surface across the facility at the time of the initial groundwater monitoring event on February 3, 2022. Prior to the inspection, Tetra Tech prepared an asphalt inspection form to help guide the inspection and document conditions observed. **Attachment D** includes a copy of the completed asphalt inspection form.

General asphalt surface conditions during the time of inspection were wet with rain falling during the asphalt inspection. Several areas were observed with pooled water from the rain but no evidence of asphalt degradation in or near those pooled areas. Slight alligator cracking was observed in an approximately 10-foot square area at a location about 40 feet north of the weigh scale. Overall condition of the asphalt was good with no ruts, cracks, or gaps observed at the time of the site visit.

3.0 CAP MONITORING SCHEDULE

The CAP (2020) and NFA letter from Ecology (2021) specify a general monitoring schedule for groundwater and asphalt inspection work. **Table 3-1**, below, presents a monitoring schedule for NFA compliance monitoring for the next three anticipated monitoring events. Groundwater monitoring will be conducted once every 3 years, unless modified by Darling and/or Ecology. Asphalt inspections will be conducted annually. More frequent monitoring or asphalt maintenance may be required if annual inspections indicate asphalt conditions of concern.

Table 3-1. NFA Compliance Monitoring

Monitoring Type	Tentative Schedule
Groundwater Monitoring	January/February – 2025 January/February – 2028 January/February - 2031
Asphalt Monitoring	January/February 2023 January/February 2024 January/February 2025

4.0 TPCHD VARIANCE

Tetra Tech has submitted a variance request for Tacoma-Pierce County Health Department's (TPCHD's) requirement for the yearly Underground Storage Tank (UST) Permit. Preliminary discussions with Rob Olsen of TPCHD indicates the variance request will be approved.

Please contact Natalie Morrow with questions or comments regarding this report or future monitoring events.

Sincerely,

Tetra Tech, Inc.

Natalie J. Morrow, LG, LHG

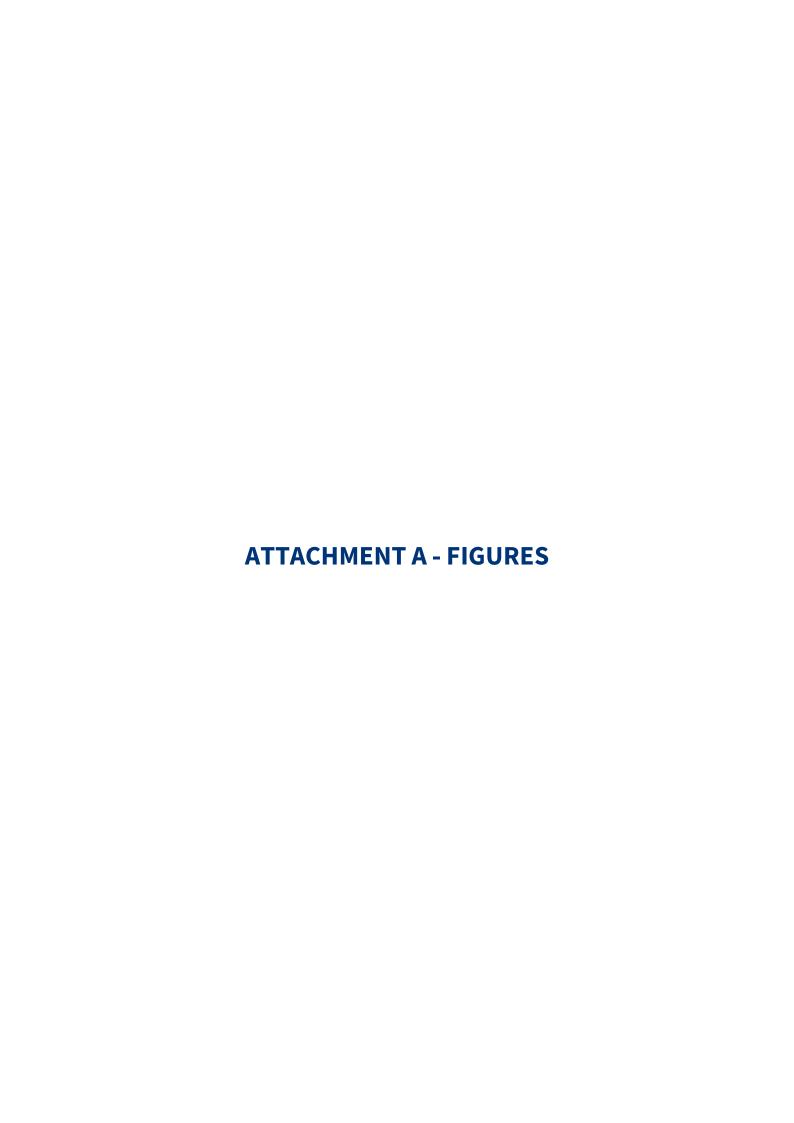
Project Manager/Sr. Environmental Geologist

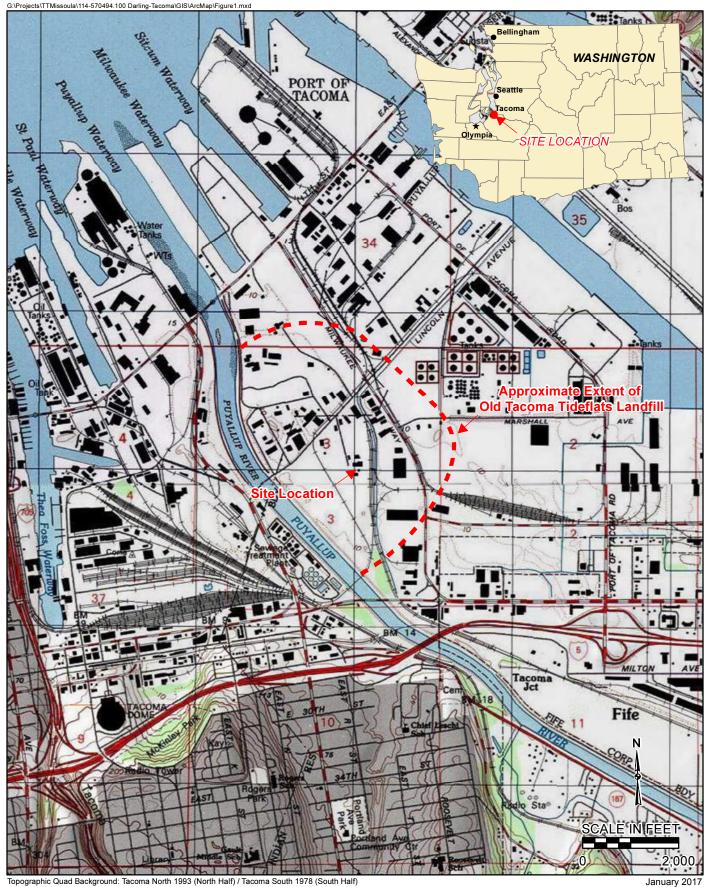
406-327-5235

natalie.morrow@tetratech.com

Cc: Bill McMurtry – VP of Environmental Affairs, Darling Ingredients, Inc.

Sarah Weeks - Port of Tacoma


Attachments:


Attachment A - Figures

Attachment B - Tables

Attachment C – Laboratory and Data Validation

Attachment D - Asphalt Inspection Form

Topographic Quad Background: Tacoma North 1993 (North Half) / Tacoma South 1978 (South Half)

Figure 1 **Location Map**

Darling-Tacoma 2041 Marc Avenue, Tacoma, WA

114-570494 4/5/2019

Groundwater Flow (estimated)

Groundwater Monitoring Well

Soil Boring Location

8.99 (10.54) 2017 (2019) Water Table Elevation (feet amsl)

× Fence Former USTs

Figure 2 **Site Map Darling-Tacome** 2041 Marc Avenue **Tacoma, Washington**

ATTACHMENT B - TABLES

TABLE 1 Water Table Elevation Data

Darling International, Inc. 2041 Marc Avenue, Tacoma, Washington

Well	Date	Measuring Point Elevation (ft AMSL)	Depth to Water (top of PVC)	Potentiometric Surface Elevation (ft AMSL)
MFG-1	2/8/2002		5.06	11.21
	2/13/2002		5.30	10.97
	2/26/2002		5.20	11.07
	6/19/2002		7.09	9.18
	9/26/2002	16.27	8.33	7.94
	12/19/2002	10.27	7.46	8.81
	9/3/2003		8.27	8.00
	12/9/2003		5.75	10.52
	3/4/2004		5.50	10.77
	6/8/2004		7.06	9.21
	7/20/2017		7.02	8.99
	1/24/2019	16.01	5.47	10.54
	2/3/2022		5.43	10.58
	3/25/2022		5.12	10.89
MFG-2	2/8/2002		4.59	11.21
	2/13/2002		4.82	10.98
	2/26/2002		4.72	11.08
	6/19/2002		6.63	9.17
	9/26/2002	15.8	7.86	7.94
	12/19/2002	15.6	7.00	8.80
	9/3/2003		7.81	7.99
	12/9/2003		5.30	10.50
	3/4/2004		5.06	10.74
	6/8/2004		6.63	9.17
	7/20/2017		6.83	8.81
	1/24/2019	15.64	5.25	10.39
	2/3/2022	13.04	5.25	10.39
	3/25/2022		4.89	10.75
MFG-3	2/8/2002	16.85	5.69	11.16
	2/13/2002		5.89	10.96
	2/26/2002		5.77	11.08
	6/19/2002		7.66	9.19
	9/26/2002		8.87	7.98
	12/19/2002		8.04	8.81
	9/3/2003		8.84	8.01
	12/9/2003		6.31	10.54
	3/4/2004		6.06	10.79
	6/8/2004		7.82	9.03
	7/20/2017		7.37	9.48 (9.22*)
MFG-4	2/8/2002	15.67	4.51	11.16
	2/13/2002		4.70	10.97
	2/26/2002		4.58	11.09
	6/19/2002	t l	6.49	9.18
	9/26/2002		7.71	7.96
	12/19/2002		6.86	8.81
	9/3/2003		7.67	8.00
	12/9/2003		5.16	10.51
	3/4/2004		4.91	10.76
	6/8/2004		6.46	9.21

Survey datum = NAVD88

Survey datum = NAVD88/2012B for 2017 elevations for MFG-1 and MFG-2

^{*}MFG-3 value adjusted to estimate NAVD88/2012B elevation.

MFG-3 - abandoned in 2017 due to destruction during asphalt paving.

MFG-4 - could not be found in 2017, likely desroyed and paved over.

TABLE 2 **GROUNDWATER ANALYTICAL RESULTS**

DARLING - TACOMA

2041 Marc Avenue, Tacoma, WA

Part	Monitoring Well	MTCA Method A						MFG-1											MFG-2					
Mart	Date Sample Collected		2/13/2002	6/19/2002	9/26/2002	12/19/2002	9/3/2003	12/9/2003	3/4/2004	6/8/2004	7/20/2017	1/24/2019	3/25/2022	2/13/2002	6/19/2002	9/26/2002	12/19/2002	9/3/2003	12/9/2003	3/4/2004	6/8/2004	7/20/2017	1/24/2019	3/25/2022
Mart	Field Measurements																							
Part			10.97	9 18	7 94	8.81	8.00	10.52	10.77	9 21	8 99	10.54	10.89	10.98	9 17	7 94	8 80	7 99	10.50	10.74	9 17	8.81	10.39	10.75
Section Control Co	,																							13.7
Seeding	pH (standard units)		6.1	6.0	5.9	5.9	6.7	6.7	6.7	7.4	6.5	6.5	6.7	6.2	6.1	5.9	6.0	6.5	6.6	6.7	7.5	6.7	6.5	6.7
Secretary Secr	Specific Conductivity (µS/cm)		1,043		1,133	1,081	1,830	1,284	787	751	1,980	1,258	3,140	992	1,181	982	1,111	1,693	1,434	815	1,200	1,281	989	1,610
The President Mysical Properties of Series (1964) (1965) (1966) (\ /											-												-132
Seed Seed Seed Seed Seed Seed Seed See	76 (6 /			-87	-87	-81	NM	NM	NM	NM	0.29	NM	3.81	-331	-93	-98	-96	NM	NM	NM	NM	0.31	NM	4.1
May 10 M	Total Petroleum Hydrocarbons (ug/L) without Acid	id/Silica Gel Treatm	nent												1						1			
Mare of Charge (CH) 190	Diesel Range (C10-24)	500	3,100	4,160	3,130	1,350	2,870	1,350	3,120	1,270	990	800	1,000	2,300	2,920	1,710	1,630	2,050	1,430	2,000	837	600 B	510	590
Contain Marken (Contain Marken (Contain Marken) Contain Marken (Contai	Heavy Oil Range / Motor Oil Range (>C24-C36)	500	730	763	612	514	<500	<500	666	<500	450	550	920 J+	<500		634	620	1,110	897	607	<500	290	430	860
Main Region (1944) 1969 2	• ,			2,390	1,970	949	2,300	976	2,100	852				2,500	1,750	1,120	1,160	1,790	1,130	1,390	615			
May no provided the Mange (1944-100) 100 1	Total Petroleum Hydrocarbons (ug/L) with Acid/S	ilica Gel Treatment	t																					
Marie Marie May	Diesel Range (C10-24)	500					<250	<250	<250	<250	220	120	91 J+					<250	<250	<250	<250	79 J	<65	300 J+/<65
Carbon Performance Perfo	Heavy Oil Range / Motor Oil Range (>C24-C36)	500					<500	<500	<500	<500	<77	<96	<96					<500	<500	<500	<500	<78	<96	180 J+/<96
Configuration Configuratio	5 ()	500					<500	<500	<500	<500								<500	<500	<500	<500			
Configuration Configuratio	Extractable Petroleum Hydrocarbons (ug/L)																							
C2-C16 Algebraice	C8-C10 Aliphatics		<100	<100	<50	<50	<50	<50	<50	<50	48 U			<100	<100	<50	<50	<50	<50	<50	<50	48 U		
Control Cont	C10-C12 Aliphatics		<100	<100	<50	<50	<50	<50	<50	<50	48 U			<100	<100	<50	<50	<50	<50	<50	<50	48 U		
## Cast Allaphabes	C12-C16 Aliphatics		<100	<100	<50	<50	<50	<50	<50	<50	48 U			<100	<100	<50	<50	<50	<50	<50	<50	48 U		
Control Cont	C16-C21 Aliphatics		<100	<100	<50	<50	<50	<50	<50	<50	<4.4			<100	<100	<50	<50	<50	<50	<50	<50	<4.4		
C12_C16_Annualicies	C21-C34 Aliphatics		126	<100	<50	<50	<50	<50	<50	<50	<10			<100	<100	<50	<50	<50	<50	<50	<50	<10		
C2-C16 Aromatics	C8-C10 Aromatics										<14											<14		
C1-C21 Aromatics	C10-C12 Aromatics		<100	<100	<50	<50	63.3	<50	<50	<50	47 J			<100	<100	<50	<50	<50	<50	<50	<50	12 J		
C21-C34 Aromatics	C12-C16 Aromatics		<100	<100	<50	82.1	<50	<50	<50	58.6	16 J			<100	<100	<50	79.9	<50	<50	<50	<50	6.2 J		
Total EPH	C16-C21 Aromatics		<100	<100	<50	<50	<50	<50	<50	<50	48 U			<100	<100	<50	<50	<50	<50	<50	<50	48 U		
Carcinogenic Polymuclear Aromatic Hydrocarbons (ug/L) Senzo(a)prince	C21-C34 Aromatics		<100	<100	<50	<50	<50	<50	<50	<50	<14			<100	<100	<50	<50	<50	<50	<50	<50	<14		
Benzo(a)anthracene	Total EPH		126	NA	NA	82.1	63.3	NA	NA	58.6	63			NA	NA	<50	79.9	NA	NA	NA	NA	38.2		
Benzo(a)pyrene 0.1 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 <	Carcinogenic Polynuclear Aromatic Hydrocarbons	s (ug/L)																						
Benzo(t) Tuoranthene <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100	Benzo(a)anthracene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Benzo(k)fluoranthene	Benzo(a)pyrene	0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Chrysene <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.	Benzo(b)fluoranthene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Dibenz(a,h)anthracene	Benzo(k)fluoranthene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Ideno(1,2,3-cd)pyrene	Chrysene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Total Carcinogenic PAHs 0.1 NA	Dibenz(a,h)anthracene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
Naphthalenes (ug/L) 1-Methylnaphthalene 1.0 2.51 1.08 0.738 3.04 0.343 0.904 <0.100 0.300 0.218 0.120 <0.10 <0.10 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.1	Ideno(1,2,3-cd)pyrene		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100			
1-Methylnaphthalene	Total Carcinogenic PAHs	0.1	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA	0.100	NA	NA	NA	NA	NA			
2-Methylnaphthalene < 0.10	Naphthalenes (ug/L)																							
Naphthalene < 0.10 0.277 < 0.100 < 0.100 < 0.100 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100 </td <td>1-Methylnaphthalene</td> <td></td> <td>1.0</td> <td>2.51</td> <td>1.08</td> <td>0.738</td> <td>3.04</td> <td>0.343</td> <td>0.904</td> <td><0.100</td> <td></td> <td></td> <td></td> <td>0.330</td> <td>0.218</td> <td>0.120</td> <td><0.10</td> <td><0.10</td> <td><0.100</td> <td><0.100</td> <td><0.100</td> <td></td> <td></td> <td></td>	1-Methylnaphthalene		1.0	2.51	1.08	0.738	3.04	0.343	0.904	<0.100				0.330	0.218	0.120	<0.10	<0.10	<0.100	<0.100	<0.100			
Total Naphthalenes 160 1.0 3.19 1.08 0.738 3.53 0.343 0.904 NA 0.54 0.218 0.12 NA NA<	2-Methylnaphthalene		<0.10	0.416	<0.100	<0.10	0.170	<0.100	<0.100	<0.100				0.21	<0.10	<0.10	<0.10	<0.10	<0.100	<0.100	<0.100			
BTEX (ug/L) Benzene 5 < 0.5 < 0.5 < 0.5 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500 < 0.500	Naphthalene		<0.10	0.277	<0.100	<0.10	0.321	<0.100	<0.100	<0.100				<0.10	<0.10	<0.10	<0.10	<0.10	<0.100	<0.100	<0.100			
Benzene 5 <0.5 <0.5 <0.50 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.5	Total Naphthalenes	160	1.0	3.19	1.08	0.738	3.53	0.343	0.904	NA				0.54	0.218	0.12	NA	NA	NA	NA	NA			
	BTEX (ug/L)																							
	Benzene	5	<0.5	<0.5	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500				<0.5	<0.5	<0.5	<0.500	<0.500	<0.500	<0.500	<0.500			
1,000 <0.5 <0.5 <0.50 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500	Toluene	1,000	<0.5	<0.5	<0.500	<2.00	<0.500	<0.500	<0.500	<0.500				<0.5	<0.5	<0.5	<2.00	<0.500	<0.500	<0.500	<0.500			
Ethylbenzene 700 <0.5 <0.5 <0.5 <0.50 <1.00 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500	Ethylbenzene	700	<0.5			<1.00			<0.500	<0.500				<0.5					<0.500					
Xylenes (total) 1,000 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1	Xylenes (total)	1,000	<1.00	<1.00	<1.00	<1.50	<1.00	<1.00	<1.00	1.08				<1.00	<1.00	<1.00	<1.50	<1.00	<1.00	<1.00	<1.00			

bgs = below ground surface

Bold=At or Above MTCA Method A Groundwater Cleanup Level

< =analyte was not detected at or above the method reporting limit

NM = Not Measured

NA = Not Applicable. --- Not Analyzed

U Qualified as non-detect at reporting limit due to blank contamination.

J+ - Result estimated and potentially biased high due to laboratory

quality control outside control limits and/or method blank detection. 2003-2004 PAHs results are for dissolved PAHs

Total/Semivolatile Petroleum Hydrocarbons NWTPH-Dx with acid/silica

gel clean-up and without acid/silica gel cleanup EPH by Modified WDOE Interim TPH Policy Method GC/MS-SIM

BTEX by EPA Method 8021B

SGT - Silica Gel Treatment

* Constituents detected in the method blank and LCS recoveries outside control limits; results were considered estimated and biased high. Sample was re-analyzed by the laboratory outside holding time. Both results presented.

ATTACHMENT C – LABORATORY AND DATA VALIDATION

Environment Testing America

ANALYTICAL REPORT

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-111862-1 Client Project/Site: Darling-Tacoma

For:

Tetra Tech, Inc. 2525 Palmer Street Suite 2 Missoula, Montana 59808-1744

Attn: Natalie Morrow

Shuid ony-

Authorized for release by: 4/18/2022 4:08:05 PM

Sheri Cruz, Project Manager I (253)922-2310

Sheri.Cruz@et.eurofinsus.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc. Project/Site: Darling-Tacoma Laboratory Job ID: 580-111862-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	7
Chronicle	11
Certification Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

6

8

9

10

4 2

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Job ID: 580-111862-1

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-111862-1

Comments

No additional comments.

Receipt

The samples were received on 3/25/2022 3:04 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 13.4° C.

Receipt Exceptions

The reference method requires samples to be preserved to a pH of <2. The following sample was received with insufficient preservation at a pH of >2: MFG-1 (580-111862-1). The sample was preserved to the appropriate pH in the laboratory. Reagent: 3036616

GC Semi VOA

Method NWTPH-Dx: The method blank for preparation batch 580-386548 and 580-387516 in analytical batch 387702 contained #2 Diesel (C10-C24) above the reporting limit (RL). None of the samples associated with this method blank contained the target compound above the reporting limit; therefore, re-extraction and/or re-analysis of samples were not performed. Sample MFG-2 (580-111862-2) was above the RL and was re-extracted and re-analyzed outside of holding time. Both sets of data have been reported.

Method NWTPH-Dx: Motor Oil (>C24-C36) and #2 Diesel (C10-C24) was detected above the reporting limit (RL) in the method blank associated with preparation batch 580-386838 and 580-387515 and analytical batch 580-387604 as well as in the following sample: MFG-2 (580-111862-2) and (MB 580-386838/1-D). All affected samples were re-extracted and re-analyzed outside of holding time. Both sets of data have been reported.

Method NWTPH-Dx: The laboratory control sample (LCS) for preparation batch 580-386838, 580-387515, 580-387707 and 580-387763 and analytical batch 580-387604 recovered outside control limits for the following analytes: #2 Diesel (C10-C24) and Motor Oil (>C24-C36). The associated sample was re-prepared and re-analyzed outside holding time. Both sets of data have been reported. MFG-2 (580-111862-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 580-386548.

Method 3510C: The following sample was re-prepared outside of preparation holding time due to out of volume during the analysis process. : MFG-2 (580-111862-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

3

- 4

6

8

9

10

1-

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.
В	Compound was found in the blank and sample.
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

MDA MDC MDL

EDL

LOD LOQ

MCL

Minimum Detectable Concentration (Radiochemistry) Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Seattle

Page 4 of 15 4/18/2022

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Client Sample ID: MFG-1 Lab Sample ID: 580-111862-1 Date Collected: 03/25/22 13:30

Matrix: Water

Date Received: 03/25/22 20:01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.0		0.11	0.065	mg/L		04/06/22 11:43	04/08/22 17:11	1
Motor Oil (>C24-C36)	0.92	В	0.35	0.096	mg/L		04/06/22 11:43	04/08/22 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	69		50 - 150				04/06/22 11:43	04/08/22 17:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.091	JB	0.11	0.065	mg/L		04/06/22 11:43	04/18/22 12:44	1
Motor Oil (>C24-C36)	ND		0.35	0.096	mg/L		04/06/22 11:43	04/18/22 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				04/06/22 11:43	04/18/22 12:44	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Client Sample ID: MFG-2 Lab Sample ID: 580-111862-2 Date Collected: 03/25/22 12:20

Matrix: Water

Date Received: 03/25/22 20:01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.59		0.11	0.066	mg/L		04/08/22 10:03	04/13/22 12:41	1
Motor Oil (>C24-C36)	0.86		0.35	0.097	mg/L		04/08/22 10:03	04/13/22 12:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82		50 - 150				04/08/22 10:03	04/13/22 12:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.30	*+ B	0.11	0.066	mg/L		04/08/22 10:03	04/15/22 12:33	1
#2 Diesel (C10-C24)	ND	Н	0.11	0.065	mg/L		04/18/22 09:36	04/18/22 14:02	1
Motor Oil (>C24-C36)	0.18	J *+ B *1	0.35	0.097	mg/L		04/08/22 10:03	04/15/22 12:33	1
Motor Oil (>C24-C36)	ND	Н	0.35	0.096	mg/L		04/18/22 09:36	04/18/22 14:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	140		50 - 150				04/08/22 10:03	04/15/22 12:33	1
o-Terphenyl	87		50 - 150				04/18/22 09:36	04/18/22 14:02	1

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-386548/1-A Client Sample ID: Method Blank

Matrix: Water

Matrix: Water

Analysis Batch: 386854

Analysis Batch: 386854

Lab Sample ID: LCS 580-386548/2-A

Prep Type: Total/NA

Prep Batch: 386548

MB MB Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte 0.11 04/06/22 11:43 04/08/22 14:35 #2 Diesel (C10-C24) ND 0.065 mg/L Motor Oil (>C24-C36) 0.157 J 0.35 0.096 mg/L 04/06/22 11:43 04/08/22 14:35

MB MB

%Recovery Qualifier Surrogate I imite Prepared Analyzed Dil Fac o-Terphenyl 54 50 - 150 04/06/22 11:43 04/08/22 14:35

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 386548

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec #2 Diesel (C10-C24) 50 - 120 4.00 2.92 mg/L 73 Motor Oil (>C24-C36) 4.00 2.93 73 64 - 120 mg/L

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 50 - 150 80

Lab Sample ID: LCSD 580-386548/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 386854

Prep Type: Total/NA **Prep Batch: 386548**

Spike LCSD LCSD %Rec **RPD** Result Qualifier Limits RPD Analyte Added Unit D %Rec Limit #2 Diesel (C10-C24) 4.00 2.65 50 - 120 mg/L 66 10 26 Motor Oil (>C24-C36) 4.00 2.66 67 64 - 120 mg/L 10 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150

Lab Sample ID: MB 580-386838/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 387299

Prep Type: Total/NA **Prep Batch: 386838**

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac #2 Diesel (C10-C24) ND 0.11 0.065 mg/L 04/08/22 10:03 04/13/22 11:42 Motor Oil (>C24-C36) ND 0.35 0.096 mg/L 04/08/22 10:03 04/13/22 11:42

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared o-Terphenyl 81 50 - 150

Lab Sample ID: LCS 580-386838/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 387299

Prep Type: Total/NA

LCS LCS Spike %Rec %Rec Added Result Qualifier Unit Limits Analyte D #2 Diesel (C10-C24) 4.00 3 15 mg/L 79 50 - 120 Motor Oil (>C24-C36) 4.00 3.57 mg/L 89 64 - 120

Eurofins Seattle

Page 7 of 15

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-386838/2-A

Lab Sample ID: LCSD 580-386838/3-A

Matrix: Water

Matrix: Water

#2 Diesel (C10-C24)

Motor Oil (>C24-C36)

Analyte

Analysis Batch: 387299

Analysis Batch: 387299

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 386838

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 90 50 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 386838

%Rec **RPD** RPD Limits Limit D %Rec 26

82 50 - 120 4 89 64 - 120 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 95 50 - 150

Method: NWTPH-Dx - Semi-Volatile Petroleum Products by NWTPH with Silica Gel Cleanup

Spike

Added

4.00

4.00

LCSD LCSD

3 27

3.54

Result Qualifier

Unit

mg/L

mg/L

Lab Sample ID: MB 580-386548/1-B

Matrix: Water

Analysis Batch: 387702

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 386548

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed #2 Diesel (C10-C24) 0.124 0.11 0.065 mg/L 04/06/22 11:43 04/18/22 11:45 Motor Oil (>C24-C36) 0.233 J 0.35 0.096 mg/L 04/06/22 11:43 04/18/22 11:45

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 68 50 - 150 04/06/22 11:43 04/18/22 11:45

Lab Sample ID: LCS 580-386548/2-B

Matrix: Water

Analysis Batch: 387702

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 386548

Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit %Rec Limits #2 Diesel (C10-C24) 4.00 3.46 87 50 - 120 mg/L Motor Oil (>C24-C36) 4.00 94 3.77 mg/L 64 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Lab Sample ID: LCSD 580-386548/3-B

Analysis Batch: 387702

Prep Type: Total/NA

Prep Batch: 386548 %Rec RPD

Spike LCSD LCSD Added Result Qualifier D %Rec Limits RPD Limit Analyte Unit #2 Diesel (C10-C24) 4.00 3.11 78 50 - 120 11 26 mg/L Motor Oil (>C24-C36) 4.00 3.27 mg/L 82 64 - 120 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 77

Eurofins Seattle

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Method: NWTPH-Dx - Semi-Volatile Petroleum Products by NWTPH with Silica Gel Cleanup (Continued)

Lab Sample ID: MB 580-386838/1-D

Matrix: Water

Analysis Batch: 387604

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 386838

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.162		0.11	0.065	mg/L		04/08/22 10:03	04/15/22 11:35	1
Motor Oil (>C24-C36)	0.125	J	0.35	0.096	mg/L		04/08/22 10:03	04/15/22 11:35	1
	MR	MB							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 110 50 - 150 04/08/22 10:03 04/15/22 11:35

Lab Sample ID: LCS 580-386838/2-D

Matrix: Water

Analysis Batch: 387604

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 386838**

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits #2 Diesel (C10-C24) 4.00 4.78 120 50 - 120 mg/L Motor Oil (>C24-C36) 4.00 5.24 *+ mg/L 131 64 - 120

LCS LCS

%Recovery Qualifier Surrogate Limits o-Terphenyl 50 - 150 114

Lab Sample ID: LCSD 580-386838/3-D

Matrix: Water

Analysis Batch: 387604

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 386838

		Spike	LCSD	LCSD				%Rec		RPD
Analy	te	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Die	esel (C10-C24)	4.00	6.24	*+	mg/L		156	50 - 120	26	26
Motor	Oil (>C24-C36)	4.00	6.81	*+ *1	mg/L		170	64 - 120	26	24

LCSD LCSD

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 148

Lab Sample ID: MB 580-387707/1-B

Matrix: Water

Analysis Batch: 387702

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 387707

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.11	0.065	mg/L		04/18/22 09:36	04/18/22 13:04	1
Motor Oil (>C24-C36)	ND		0.35	0.096	mg/L		04/18/22 09:36	04/18/22 13:04	1

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 93 50 - 150 04/18/22 09:36 04/18/22 13:04

Lab Sample ID: LCS 580-387707/2-B

Matrix: Water

Analysis Batch: 387702

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 387707

Spike LCS LCS %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits #2 Diesel (C10-C24) 4.00 4.15 mg/L 104 50 - 120 Motor Oil (>C24-C36) 4.00 64 - 120 4.46 mg/L 111

Eurofins Seattle

Page 9 of 15

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Method: NWTPH-Dx - Semi-Volatile Petroleum Products by NWTPH with Silica Gel Cleanup (Continued)

Lab Sample ID: LCS 580-387707/2-B

Lab Sample ID: LCSD 580-387707/3-B

Matrix: Water

Matrix: Water

Analysis Batch: 387702

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 387707

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 104

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 387702 Prep Batch: 387707 LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit #2 Diesel (C10-C24) 4.00 4.09 102 50 - 120 26 mg/L Motor Oil (>C24-C36) 4.00 4.21 mg/L 105 64 - 120 6 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 105

Eurofins Seattle

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Client Sample ID: MFG-1 Lab Sample ID: 580-111862-1 Date Collected: 03/25/22 13:30

Matrix: Water

Date Received: 03/25/22 20:01

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			386548	04/06/22 11:43	KLW	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	386854	04/08/22 17:11	JAE	FGS SEA
Total/NA	Prep	3510C			386548	04/06/22 11:43	KLW	FGS SEA
Total/NA	Cleanup	3630C			387516	04/14/22 15:50	Y1F	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	387702	04/18/22 12:44	JAE	FGS SEA

Lab Sample ID: 580-111862-2 **Client Sample ID: MFG-2**

Date Collected: 03/25/22 12:20 **Matrix: Water**

Date Received: 03/25/22 20:01

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			386838	04/08/22 10:03	KLW	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	387299	04/13/22 12:41	Y1F	FGS SEA
Total/NA	Prep	3510C			386838	04/08/22 10:03	KLW	FGS SEA
Total/NA	Cleanup	3630C			387515	04/14/22 15:47	Y1F	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	387604	04/15/22 12:33	JAE	FGS SEA
Total/NA	Prep	3510C			387707	04/18/22 09:36	JAE	FGS SEA
Total/NA	Cleanup	3630C			387763	04/18/22 12:37	Y1F	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	387702	04/18/22 14:02	JAE	FGS SEA

Laboratory References:

FGS SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Laboratory: Eurofins Seattle

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C788	07-13-22

1

3

4

8

4.6

10

Sample Summary

Client: Tetra Tech, Inc. Job ID: 580-111862-1

Project/Site: Darling-Tacoma

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-111862-1	MFG-1	Water	03/25/22 13:30	03/25/22 20:01
580-111862-2	MFG-2	Water	03/25/22 12:20	03/25/22 20:01

3

4

5

6

8

9

40

Chain of Custody Record

🔆 eurofins

Environment Testing America

- Color of Colorody	Sampler:	2 M.		Lat	PM:		Carrier Tracking No(s):	I COOL
Client Contact:	Phone;	Morr	ow		Shevi Crui Mail:	<u> 2</u>		COC No:
Client Coptact: Natalie Morrow Company:	Phone: 400 - 3	370-8	170		vali.		State of Origin: WA	Page: Page 1 of 1
Company: Tetra Tecy In C Address: 2525 Palmer St., Suite 2 City:						Analysis Re	equested	Job#:
2525 Palmer St. Suite 2	Due Date Reques	sted: 5 fand	and TR	+				Preservation Codes:
MISSOUIA	TAT Requested (days):		<u> </u>				A - HCL M - Hexane
M1550U1a State, Zip: MT59808	Sta Compliance Proje	ndard	!					B - NaOH N - None C - Zn Acetate O - AsNaO2
Phone: //d/ Data Final	Compliance Proje	ect: A Yes	∆ No					D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone: 406-327-5235 Email:	Purchase Orde	r not require	ed		1/587			F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
natalie, mo rrow etetratech.com Project Name.	wo#:				3/3			H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
Darling-Tacoma	Project #:	09000	'		- DX W/58T			J - Dt Water V - MCAA K - EDTA W - pH 4-5
Site:	ssow#:	10.000						L · EDA Z · other (specify) Other:
		<u> </u>	т	T	NWTPH NWYPH			Other:
			Sample	Matrix (w=water.	NWTPH NWTPH			Furmet EDD for
Sample Identification	į	Sample	Type (C≃comp,	S=solid, O=waste/oil,	3 3			WA EIM UPLOAD
Cample Identification	Sample Date	Time	G≕grab)					Special Instructions/Note:
MF6-1	3/25/22	122		ition Code	XXS			
MFG-2		1330	G	W	XX			
7/11.0	3/25/22	1223	ټ	W	X X			
			į					
					 	++++		
	1						Cooler Dec	FedEx: UPS: Lab Cour: Other:
	 				1-1-1-1-		Packing: But	FedEx:
	 					4-4-1-1	Cust. Seal: Ves No	UPS:
	 						Blue Ice, Wet Dry, None	Lab Cour:
Possible Hazard Identification								Other: Cff
Non-Hazard Flammable Skin Irritant Pois	on B Unknow	"			Sample Disposal (A fee may be as	sessed if samples are retained	l longer than 1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	On B Onkho	wii Ae	aulological		Return To Cli Special Instructions	ont Dis	sposal By Lab Archiv	e For Months
Empty Kit Relinquished by:	D	ate:		17	ime:		Method of Shipment:	
elinquished by: Nathlic Morron elinquished by:	Date/Time: 3/25/22	10	c	ompany	Recoved			
elinquished by	Date/Time:	1304	<u>_</u>	ompany			Date/Time: 3 / 22 / 22	1514 EFG8
elinquished by:	Date/Time:				received by.		Date/†ime:	Company
	Date Hille.		C	ompany	Received by:		Date/Time:	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			L	Page	Cooler Temperature(s) °C and Other Rema	rks:	4/1
1				raye	i - pi i3			4+/ 1 ·

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 580-111862-1

Login Number: 111862 List Source: Eurofins Seattle

List Number: 1

Creator: Greene, Ashton R

Creator: Greene, Ashton R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

0

9

10

11

DATA VALIDATION CHECKLIST

INTRODUCTION

	General Project Information					
Project Name:	Triumph Mine – Mine Water	Date Validated:	4/26/22			
Tetra Tech Project Number:	117-8090004	Data Validated By:	N.Morrow			
Sample Start and End Dates:	3-25-22	Laboratory Name:	Eurofins Test America			
Sample Matrix:	Aqueous	Laboratory Project ID#:	J111862-1			
Analytical Parameters:	NWTPH-Dx					
Name & Date of Approved SAP, QAPP, Work Plan, Etc.	Cleanup Action Plan, Darling- Sound By-Products) Facility r SW1317.Prepared by Tetra T 2020.	no.: 25455514, Cleanup Site N				

LIST OF SAMPLES REVIEWED IN THIS REPORT

List all samples in the sample delivery group that were validated in this report.

Validated Samples					
Field Sample ID#	Laboratory Sample ID#	Sample Type (Natural, Duplicate, Field Blank, Etc.)			
MFG-1	580-111862-1	Natural			
MFG-2	580-111862-1	Natural			

QC Review (Discuss any discrepancies or issues identified for each of the following)	Y	N	NA
FIELD COMPLIANCE WITH PROJECT REQUIREMENTS			
Were all the required samples collected as specified in the SAP/QAPP?	Х		
Were samples collected as per the field and analytical methods specified in the QAPP?	Х		
LABORATORY NARRATIVE, CHAIN-OF-CUSTODY, AND SAMPLE RECEIPT CHECKLIST			
Was a laboratory narrative provided?	Х		
Were any non-conformance issues identified with the analytical data? Discuss issues. Sample cooler temperature was 13.4°C upon receipt - The samples were hand delivered shortly after collection and were properly preserved on ic and the cooling process underway. No qualification is required. Sample MFG-1 had a pH of >2 upon receipt by the laboratory — The bottle was filled appropriately in the field and was not overfilled. The laboratory added additional acid to preserve the sample at the proper pH. The low pH may be due to sample water characteristics or a low volume of pH in the pre-preserved bottle. No qualification is required. One or more method blank contained #2 Diesel (C10-C24) or Motor OI (>C24-C36) - MFG-2 required reextraction and re-analysis but this was conducted outside holding time. Affected samples with detections above the MDL were qualified as estimated, J. Of note, LCS/LCSD %Rs were also outside control limits but not noted in the narrative. See below sections.		Х	
Were sample Chain-of-Custody (CoC) forms complete? Discuss discrepancies.	Х		
Were the requested analytical methods in compliance with project requirements (i.e., QAPP, SAP, etc.)?	Х		
Were samples received in good condition within method specified temperatures and holding times? One sample required additional acid to reduce sample pH to <2. Sample temperature was outside the control limit of <6°C; however, the samples were hand delivered to the laboratory shortly after collection, the sample cooler contained ice and the cooling process of the samples had begun. No qualifications for these conditions is required.	X		

QC Review (Discuss any discrepancies or issues identified for each of the following)	Y	N	NA
LABORATORY COMPLIANCE WITH PROJECT REQUIREMENTS			
Were samples extracted and analyzed within method-specified holding times? One exception includes re-analysis of sample MFG-2 due to method blank detection and LCS results	X		
Do the laboratory reports include all constituents requested to be analyzed on the COC or under the QAPP, SAP, or other applicable project document?	Х		
Were reported units appropriate for the associated sample matrix/matrices and method(s) of analysis?	X		
Did any samples require dilution?	Х		
Besides those samples that required dilution, were all other detection limits reported by the laboratory in accordance with project requirements?	Х		
Did the laboratory qualify any results based on the results falling between the laboratory reporting limit (laboratory practical quantitation limit) and the method detection limit?		Х	
LABORATORY QUALITY CONTROL			
CCVs			
Were continuing calibration verification (CCV) results reported?		Х	
If so, Were CCV results within control limits?	1		Х
Were any qualifications related to the CCV required?			Х
LCS/LCSD			
Were laboratory control samples (LCSs) used by the laboratory and of the same matrix as the natural samples?	Х		
Was the number of LCSs used equal to at least 5% (1 in 20) of the total number of samples submitted for analysis per analytical method?	Х		
Were all LCS and all LCS/LCSD recoveries and RPDs within control limits?	Х		
%R LCS and LCSD for SGT Motor Oil (>24-36) was above the upper control limit. %R LCSD for SGT #2 Diesel was above the upper control limit and LCS/LCSD RPD was above the control limit for Motor Oil (>C24-C36).			
The laboratory noted affected samples with a *+ and *1.			
Were any qualifications related to LCSs or LCS/LCSDs required? SGT #2 Diesel and SGT Motor Oil (<c24-c36) %rs="" 2022.="" 8,="" analysis="" and="" april="" as="" biased="" considered="" control="" date="" due="" estimated,="" for="" high="" holding="" initial="" j,="" lcs="" limits="" non-detect="" of="" outside="" potentially="" qualified="" re-analyzed="" re-extracted="" results="" samples="" td="" the="" time="" time;="" to="" uj.<="" were=""><td></td><td>X</td><td></td></c24-c36)>		X	
Laboratory Blanks			
Was the number of laboratory blanks analyzed equal to at least 5% (1 in 20) of the total number of samples submitted per analytical method?	Х		
Were laboratory blank samples free of analyte contamination? No. The laboratory denoted affected samples using a "B" in the report. Motor Oil (>C24-C36) was detected at 0.157 J mg/L for the non-SGT blank run on April 6, 2022.	Х		
The SGT blank run for April 18, 2022 detected #2 Diesel (C10-C24) at 0.124 mg/L and Motor Oil (>C24-C36) at 0.233 J mg/L.			

QC Review	Υ	N	NA
(Discuss any discrepancies or issues identified for each of the following) If not, did any samples require qualification as estimated (J) due to blank contamination?	Х		
MFG-1 – Motor Oil (>C24-C36) result of 0.92 mg/L was qualified as estimated and potentially biased high, J+, due to method blank contamination.			
MFG-1 - SGT #2 Diesel (C10-C24) result of 0.091 J mg/L was qualified as estimated and potentially biased high, J+, due to method blank contamination.			
MFG-2 – SGT#2 Diesel (C10-C24) result of 0.30 mg/L was qualified as estimated and potentially biased high, J+, due to method blank contamination.			
MFG-2-SGT~#2~Diesel~(C10-C24)~result~of~0.091~J~mg/L~was~qualified~as~estimated~and~potentially~biased~high,~J+,~due~to~method~blank~contamination.			
MS/MSDs			
Were project-specific samples used to prepare MS and MSD samples? The samples did not include enough volume to prepare project-specific MS/MSDs. LCS results were used to evaluate the samples.		X	
Was the number of MS/MSDs prepared equal to at least 5% (1 in 20) of the total number of samples submitted per analytical method?			Χ
Were any MS recoveries or MS/MSD RPDs outside control limits?			Х
Were any qualifications related to MS or MS/MSDs required?			Х
Laboratory Duplicates			
Were laboratory duplicates analyzed?		Х	
Were laboratory duplicate RPDs within laboratory-specified control limits?			Х
Were any qualifications related to laboratory duplicates required?			Х
Surrogates			
Were surrogate recoveries within laboratory QC limits?	Х		
Were any qualifications related to surrogates required?		Χ	
FIELD QUALITY CONTROL			
Field Blanks (Trip, Equipment Rinsate, Field)			
Were field blanks analyzed?		Х	
Were field blanks free of contamination?			
Field Duplicates			
Was a field duplicate analyzed?		X	
Were RPDs within contro limits?			
ADDITIONAL COMMENTS			
	1		

ATTACHMENT D – ASPHALT INSPECTION FORM	

ASPHALT INSPECTION FORM

Darling Ingredients - Tacoma, Washington Facility

Facility No.: 25455514, Cleanup Site No.: 8475, VCP Project No.: SW1317

Asphalt inspection is a requirement in the Corrective Action Plan (Tetra Tech 2020) and as part of Washington Department of Ecology's (Ecology's) No Further Action (NFA) designation for the Darling Ingredients facility at 2041 Marc Avenue in Tacoma, Washington.

This inspection form was developed as a basic guide for conducting an inspection of the asphalt cap at the facility to help identify areas that may be of potential concern. Areas identified may require more frequent monitoring, or additional inspection and possibly repair by a qualified asphalt contractor to maintain asphalt integrity. Maintenance of asphalt cracks is critical to prevent further damage and/or limit pathways for contaminant migration to, or mobilization of existing contaminants in, the subsurface.

GENERAL I	NSPECTION INFORM	ATION	
Company Conducting Inspection: YTetra Tech	Darling Ingredients	Date: 2/3/22	Time: 115
Inspection Conducted By:	Weather at Time of Inspe	1 212	11110: 1115
Name: Dylan Davi3	Temperature (*F)	_	
Signature:		SunnyMostly Cloudy	/Overcast
ASF	PHALT INSPECTION		- 1 2 -
Complete the following questions and document are condition(s) to the best of your ability. Additional cor a concern.	eas identified on the attached nsultation with an asphalt sp	d map. If unsure, docume ecialist may be needed fo	ent and describe the or areas identified as
1. General Asphalt Surface Conditions at Time	of Inspection:		
₩et Mostly Wet with Dry Patches [
Areas of Ponded Water, Indications Ponded Cracks? If yes, document these areas below a	nd on the attached map.		YesNo
How many areas were identified with ponded water staining, sediment accumulation, prior observations)	, or evidence of water?		# of Areas
For the areas identified, are there indications of asplasphalt, etc.)?			Yes X No
List the location(s) of the areas identified that indicat locations on the map.	e potential degradation and	describe the condition of	cerved. Locate the
 Cracking – Were any of the following types of if yes, document cracks below and on the attack 	hed map.		XYes No
Alligator Cracks? (Resemble chicken wire or alligatives, how many?	tor skin and are caused by r	ale.	YesNo
Shrinkage Cracks? (Caused by temperature variate leading to stress and cracking). If yes, how many? Edentified:			Yes _XNo
Reflective Cracks or Opening Along Joints? (Occursecured conditions, leading to openings of joints, aggregate and cause pavement damage).	which can allow water to ge	t to the underlying	YesNo
Edge Cracks? (Occur due to poor shoulder support as hairline cracks that can be seal coated.)	, frost action, or inadequate	drainage. Usually begin	YesNo
Cracks within Wheel Paths?			Yes KNo
Cracks from Swell?			YesNo
Edge Cracks/Failure?	35.		
Euge Clacks/Fallule!			Yes XNo

ASPHALT INSPECTION FORM

Darling Ingredients - Tacoma, Washington Facility

Facility No.: 25455514, Cleanup Site No.: 8475, VCP Project No.: SW1317

+
of Areas
Yes & No
of Areas
Yes XNo
YesNo
Yes _X No
Yes _K No
Yes <a>No
Yes _K No
YesNo
YesNo

FORM DISTRIBUTION

Provide a copy of this completed and signed inspection form to the following. A copy of the completed form will be submitted to Ecology as part of the NFA requirement.

<u>Darling Ingredients personnel:</u>
Tacoma Facility Manager – Charles Berg - <u>cberg@darlingii.com</u>

Martin Guthrie - Environmental Affairs Manager mguthrie@darlingii.com

Bill McMurtry - VP of Environmental Affairs - bmcmurtry@darlingii.com

Environmental Consultant

Tetra Tech, Inc.: Natalie Morrow natalie.morrow@tetratech.com

406-327-5235 direct 406-370-8170 cell

406-543-3045 main office

ASPHALT INSPECTION PHOTOGRAPH LOG DARLING-TACOMA 2041 MARC AVENUE February 3, 2025

