

Draft Cleanup Action Plan Mossman Residence 3461 East Lake Sammamish Shore Lane Northeast Sammamish, Washington

Prepared for: Young and Larson c/o Mr. Mark Myers Williams Kastner 601 Union Street, Suite 4100 Seattle, WA 98101-2380

Prepared by: G-Logics 40 2nd Avenue SE Issaquah, WA 98027

Telephone:	(425) 391-6874
Facsimile:	(425) 313-3074

July 12, 2022

G-Logics Project 01-0864-C Copyright 2022 G-Logics All Rights Reserved

G-Logics has prepared this document only for our client's use, only for the purposes stated herein, and subject to any stated limitations. Use of this document by regulatory agencies is regarded as a "fair use" and is not a violation of our copyright. Regulatory agencies also may make additional copies of this document for their internal and public use, as required by law. All other copies or uses of this document must acknowledge our copyright and indicate that permission to copy/use has been received from G-Logics and our Client.

TABLE OF CONTENTS

1.0	INTI	RODU	CTION1
2.0	Back	groun	d1
	2.1]	Property Description and Site Designation1
	2.2	e e e e e e e e e e e e e e e e e e e	Site History
3.0	PRE	LIMP	JARY CLEANUP LEVELS AND POINTS OF COMPLIANCE
	3.1	e e e e e e e e e e e e e e e e e e e	Soil Cleanup Levels and Points of Compliance4
	3.2	(Groundwater Cleanup Levels and Points of Compliance
	3.3]	Indoor Air Cleanup Levels and Points of Compliance
4.0	DES	CRIP	FION OF THE AREAS OF CONCERN
	4.1	1	Areas of Concern for Soil
	4.2	1	Areas of Concern for Groundwater
5.0	DES	CRIP	FION OF REMEDIAL ALTERNATIVE
	5.1		Soil7
	5.2	(Groundwater7
6.0	CLE	ANUI	PACTION PLAN
	6.1	I	Monitoring Well Abandonment
	6.2]	Remedial Excavation9
		6.2.1	Remedial Excavation Preparation
		6.2.2	Remedial Excavation
		6.2.3	Soil Sample Laboratory Analysis10
		6.2.4	Application of ORC
		6.2.5	Remedial Excavation Report Preparation11
	6.3	l	Monitoring Well Installation and Groundwater Sampling11
		6.3.1	Monitoring Well Installation
		6.3.2	Groundwater Sample Collection
		6.3.3	Groundwater Analysis
		6.3.4	Groundwater Monitoring Report Preparation14
	6.4]	ndoor Air14
-	6.5		Remediation Completion Conditions
7.0	LIM	TATI	ONS
8.0	CLO	SING	

Mossman Residence Sammamish, Washington Draft Cleanup Action Plan G-Logics Project No. 01-0864-C

LIST OF FIGURES

- Figure 1. Property Location Maps
- Figure 2. Property Diagram, Sample Locations and Features
- Figure 3. DRO Concentrations in Soil, 2013 2021
- Figure 4. DRO in Groundwater Isocontours, October 2021
- Figure 4a. DRO Concentrations in Groundwater, Monitoring Wells
- Figure 5. Estimated Extent of Remedial Excavation

LIST OF TABLES

- Table 1.Soil Sample Analyses, Petroleum Hydrocarbons
- Table 2.Summary of Groundwater Analytical Results

LIST OF APPENDICES

Appendix A. 2021 Soil and Groundwater Sampling Report

1.0 INTRODUCTION

G-Logics has prepared this Cleanup Action Plan (CAP) to address a release of heating oil at the Mossman Residence at 3461 East Lake Sammamish Shore Lane Northeast in Sammamish, King County, Washington (Property). The location of the Property is shown in Figure 1, and relevant Property features are shown in Figure 2.

The Property was enrolled into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in July 2021 with the ultimate goal of obtaining a No Further Action (NFA) determination from Ecology through establishing compliance with the Model Toxics Control Act (MTCA, Chapter 173-340 Washington Administrative Code [WAC]). The purpose of the CAP is to develop and present a remediation plan designed to achieve this goal for the Property by establishing compliant conditions for the following contaminants of concern (COCs) in the following media:

<u> </u>				
LUL	Soil	Groundwater	Surface Water	Indoor Air
Diesel-Range Petroleum Hydrocarbons (DRO)	x	x	Х	
Benzene	Х			X
Total Xylenes	X			
Naphthalene	X	X	Х	Х

This CAP proposes the use of soil excavation and monitored natural attenuation to address the presence of petroleum impacted media at the Property. The remediation activities described in Section 6 of this CAP are tentatively expected to take place in late summer and fall of 2023, following the demolition of the current residential building on the Property.

This CAP includes a background discussion in Section 2.0, the cleanup levels and points of compliance used in this study in Section 3.0, the extent of contamination in soil and groundwater at this Property in Section 4.0, the recommended remedial alternative for the Property in Section 5.0, and a detailed scope of work for the selected remedy in Section 6.0. Limitations and a conclusion are included in Sections 7.0 and 8.0, respectively.

2.0 BACKGROUND

2.1 Property Description and Site Designation

The Property consists of one parcel (King County Tax Parcel Number 192506-9042) and is zoned as residential (R4). The Property is located on the eastern shore of Lake Sammamish and is occupied by a single-family home. The home was built as a slab-on-grade

construction in the late 1940s and is understood to have been heated by an oil-burning furnace. Oil for the furnace was stored in an underground storage tank (UST), previously located on the north side of the house at the location shown in Figure 2. The adjacent properties to the north, east, and south are single-family residences. The western boundary of the Subject Property borders Lake Sammamish.

A release of heating oil from the UST at the Property was identified at the Property in extends to the adjacent property to the north (Northern Property).

A site is typically defined by Ecology for MTCA cleanups as the extent of contaminated media associated with a release or releases from defined activities or infrastructure. The site at the Property includes portions of the Property and extends several feet onto the adjacent property to the north at 3463 E Lake Sammamish Shore Lane NE (Site). The Site corresponds to the areas of soil and groundwater contamination shown on Figures 3 and 4, respectively.). The property at 3463 E Lake Sammamish Shore Lane NE consists of one parcel (King County Tax Parcel Number 192506-9062) and is occupied by a single-family home.

2.2 Site History

The Property was purchased by the Mossmans in August 2012. It is understood that the Mossmans converted the home's heating system to natural gas in October 2012. In November 2012, Mr. Mossman observed an oily sheen on the surface of Lake Sammamish near his property. The Mossmans retained Environmental Partners Inc. (EPI) as an environmental consultant on their behalf to perform a UST Site Assessment in the same month. EPI identified that a release of heating oil had occurred at the UST on the Property that was likely the cause of the sheen observed on the lake. Based the results of the UST Site Assessment report, Mr. Mossman reported the release to the Ecology Spill Response Division. On November 28, 2012, during a visit to confirm the report, Ecology provided absorbent booms to contain the sheen to the area of the dock at the Property. Subsequently, the heating oil UST on the Mossman Property was removed and confirmed as the source of the heating oil release.

In May 2013, a Phase II Environmental Site Assessment (ESA) was performed by EPI to evaluate the extent of petroleum hydrocarbons in the soil and groundwater on the Property. The investigation found that heating oil contaminants were present in soil and groundwater on the Property and also had migrated into soil and groundwater on the property to the north. EPI concluded in their report that the migration pathway from groundwater to surface water in Lake Sammamish was complete (EPI, *Phase II Environmental Site Assessment*, dated July 1, 2013). Multiple Site characterization efforts were completed from 2013 through 2018. During the additional characterization efforts, measurable light non-aqueous phase liquid (LNAPL) was measured in monitoring well MW-1 in September 2015 and in well MW-2 from 2014 to 2018, as indicated in Figure 4a. LNAPL removal was conducted starting in 2014. By 2021, LNAPL had been eliminated in previously impacted wells except for a small (approximately 0.05 foot) accumulation in well MW-2. Using soil and groundwater quality data from the 2013 Phase II ESA and subsequent characterization efforts, EPI provided cost estimates to conduct a remedial excavation in a Technical Memorandum dated November 16, 2018.

G-Logics conducted an additional exploration in May 2020, with the results presented in the Additional Site Characterization report dated June 29, 2020. the results of the investigation, the report indicated petroleum concentrations in soil and groundwater had significantly decreased from the concentrations first detected in 2012. Additionally, the measurable LNAPL thickness had decreased in monitoring well MW-2 and no longer was detected in well MW-1. This reduction in LNAPL thickness is likely in part attributable to LNAPL recovery efforts conducted by EPI, which recovered a total of approximately 33 gallons of LNAPL as of April 2021.

EPI was acquired by TRC Companies (TRC) in 2019 and assumed that company name. On July 2, 2021, on behalf of the property owner, TRC submitted a *Remedial Investigation* (RI) report (dated June 28, 2021), a VCP application, and the VCP Agreement for the Site to Ecology. The Site was accepted into the VCP program on January 21, 2022. Data from the G-Logics June 29, 2020, report were incorporated into the 2021 TRC RI report.

G-Logics conducted additional groundwater and soil sampling at the Site in October 2021, with results presented in the 2021 Soil and Groundwater Sampling report included in Appendix A. During the 2021 investigation, additional soil samples were collected from near the water table along the shore of Lake Sammamish at locations seven to twelve feet apart and just above the designated ordinary high water mark (OHWM) for the lakeshore at the Property. Petroleum hydrocarbons were not detected or were detected at concentrations less than applicable MTCA Method A cleanup levels in the soil samples from these borings, delineating the extent of soil contamination to the west, and indicating that soil contamination requiring cleanup does not extend beyond (west of) the OHWM.

Based on the results of sediment sample analyses documented in the 2021 TRC RI, and email conversations with Ecology, we understand that no additional evaluation of sediment is required at the Site, nor is sediment further considered for remediation in this CAP.

Surface water is a medium of concern due to the assumption that groundwater at the Property is hydraulically connected to and discharges to the adjacent Lake Sammamish. Surface water sampling has not been and will not be performed in part due to potential false positives from incidental recreational watercraft releases on the lake. In addition, previous detection of LNAPL have been nearly eliminated in wells located between the former UST and the lakeshore, with only a 0.05 foot accumulation of LNAPL remaining in well MW-2 as of 2021. To address the potential for surface water quality impacts related to the Site, the program outlined in this CAP is designed to remediate COC concentrations in groundwater to cleanup levels that are protective of surface water. No additional investigation or remedial action related to surface water is considered as part of this CAP.

3.0 PRELIMINARY CLEANUP LEVELS AND POINTS OF COMPLIANCE

This section develops and presents the rationale for preliminary cleanup levels, remediation levels, and points of compliance. WAC 174-340-200 defines "cleanup level" as the concentration of a hazardous substance in soil, water, air, or sediment that is determined to be protective of human health and the environment under specified exposure conditions. A "point of compliance" is defined as the point or points where cleanup levels shall be attained. A "remediation level" means a concentration or other method of identification of a hazardous substance in soil, water, air, or sediment above which a particular cleanup action component will be required as part of a cleanup action at a site.

Since the Property and the surrounding properties are currently zoned Residential (R4), the Site is subject to MTCA Soil Cleanup Levels for Unrestricted Land Uses and MTCA Method A Groundwater Cleanup Levels, which have been selected as applicable for both soil and groundwater, respectively. Method B cleanup levels have been selected for indoor air. The determination of appropriate cleanup levels, including the evaluation of applicable exposure pathways, was included in the 2021 TRC RI, and is summarized in the following sections.

3.1 Soil Cleanup Levels and Points of Compliance

The following exposure pathways were considered to evaluate soil cleanup levels:

- Dermal exposure via direct contact with soil; and
- Soil impacts leaching to groundwater.

Based on the absence of sediment impacts, the soil to sediment pathway was not considered in evaluation of the soil cleanup levels. The table below summarizes the cleanup levels established for this project for each soil COC:

сос	Cleanup Level ¹	Basis for Cleanup Level
DRO	2,000	MTCA Method A Soil Cleanup Level for
Benzene	0.03	MTCA Method A Soil Cleanup Level for Unrestricted Land Uses
Total Xylenes	9	MTCA Method A Soil Cleanup Level for Unrestricted Land Uses
Naphthalene	5	MTCA Method A Soil Cleanup Level for Unrestricted Land Uses

¹Cleanup levels reported in milligrams per kilogram (mg/kg).

In accordance with the MTCA regulation, the point of compliance for soil is the entire soil column throughout the Site. The deepest observed contaminant concentration greater than soil cleanup levels has been identified at approximately 9 feet below the surface.

3.2 Groundwater Cleanup Levels and Points of Compliance

The following exposure pathways were considered to evaluate groundwater cleanup levels:

- Inhalation of COCs volatizing from groundwater to indoor air; and,
- Groundwater discharging to surface water.

As discussed in the TRC RI, there is not a current or potential future exposure pathway for groundwater for human ingestion. As such, the ingestion of groundwater pathway was not considered in evaluation of the groundwater cleanup levels. However, the cleanup levels selected are equal to or more stringent than the available MTCA Method A Groundwater Cleanup Levels for the COCs.

The table below summarizes the cleanup levels established for this project for each groundwater COC:

COC	Cleanup Level ¹	Basis for Cleanup Level
DRO	500	MTCA Method A Cleanup Level, Protective of Freshwater Surface Water
Naphthalene	8.9	Cleanup Levels and Risk Calculations – August 2020, Groundwater Screening Levels for Vapor Intrusion ²

¹Cleanup levels reported in micrograms per liter (μ g/L).

^{28.9} μ g/L is more conservative than the MTCA Method A Groundwater Cleanup Level of 160 μ g/L. As such, the cleanup level established for naphthalene also meets the Method A requirements.

As defined under MTCA in Chapter 173-340-720(8) WAC, the standard point of compliance for groundwater is throughout the Site.

3.3 Indoor Air Cleanup Levels and Points of Compliance

MTCA Method B cleanup levels have been selected for the indoor air exposure pathway. The standard MTCA Method B Indoor Air Cleanup Levels are based on a residential exposure scenario that includes an exposure frequency of 1 (i.e., 24 hours/day, 365 days/year) and includes considerations for juvenile exposures.

The table below summarizes the indoor air cleanup levels for each COC:

COC	Cleanup Level ¹	Basis for Cleanup Level
Benzene	0.32	MTCA Method B Soil Cleanup Level for Air
Naphthalene	0.0735	MTCA Method B Soil Cleanup Level for Air

¹Cleanup levels reported in micrograms per cubic meter ($\mu g/m^3$).

Following completion of remediation at the Site, if the sampling plan to evaluate the indoor air exposure pathway for the planned new residential building includes sampling soil vapor, additional cleanup levels will be selected. The points of compliance will be in accordance with MTCA guidance and will be dependent on the indoor air pathway sampling plan, as discussed in Section 6.4.

4.0 DESCRIPTION OF THE AREAS OF CONCERN

4.1 Areas of Concern for Soil

The identified lateral extent of DRO at concentrations greater than the cleanup level of 2,000 mg/kg in soils is shown in Figure 3. This figure also includes an interpretation of the area where DRO concentrations in soil are expected to be greater than 10,000 mg/kg. These areas largely exist within the yard and beach areas of the Property, downgradient of the former UST, but do not extend west beyond the OHWM. A small area of DRO in soil is present on the property to the north. The estimated maximum depth of the impacted soils varies from approximately 2 to 9 feet bgs.

Table 1 includes a summary of analytical results for soil samples collected from the Site in 2000 and 2021.

4.2 Areas of Concern for Groundwater

Figure 4 shows the results of groundwater samples collected during the October 2021 soil and groundwater sampling activities (Appendix A), with an interpretation of the area where DRO concentrations are expected to exceed 500 ug/L, the MTCA Method A CUL. The highest detected concentrations DRO in groundwater samples were generally collected from monitoring wells located within the interior of the interpreted area of the groundwater plume, with the highest detection in the samples collected from GLB-8, which is located in the yard area upslope of the rock wall. This figure includes both groundwater samples collected from monitoring wells and those collected as grab samples from the 2021 borings.

Figure 4a presents DRO groundwater concentrations measured in samples from monitoring wells located at the Site, with summarized results for samples collected over the past five years. For the most part, DRO concentrations remained relatively consistent over this comparison interval. A small thickness of measurable LNAPL was again detected in MW-2 in October 2021 (0.05 inches). A sample of groundwater was collected from MW-2, yielding a DRO concentration of 11,900 ug/L.

Refer to Table 2 for a summary of groundwater analytical results.

5.0 DESCRIPTION OF REMEDIAL ALTERNATIVE

The proposed remedial alternative is to use the Ecology Model Remedy 1 for sites with petroleum contaminated soil in the Ecology Model Remedies for Sites with Petroleum Contaminated Soils dated December 2017 and Model Remedy 1 for sites with petroleum impacted groundwater in the Ecology Model Remedies for Sites with Petroleum Impacts to Groundwater dated December 2017. This alternative involves:

- For soil with concentrations of DRO, benzene, total xylene, and naphthalene that are greater than the cleanup levels, excavation, removal and off-Site disposal at a landfill permitted to accept these materials;
- Application of Oxygen Releasing Compound (ORC) to enhance biodegradation of petroleum related compounds in groundwater; and
- Monitored natural attenuation (MNA) of DRO and naphthalene in the groundwater.

The proposed remedial alternative is intended to also address indoor air and surface water quality by removal of COCs from vadose zone soil and reduction of COC concentrations in groundwater that contribute to COCs in indoor air. The monitoring plan will include soil vapor and/or indoor air sampling to evaluate the effectiveness of remediation on indoor air quality. Groundwater sampling will be used to determine the efficacy of the remedy on potential impacts to surface water.

5.1 Soil

Application of the Ecology Soil Model Remedy 1 will entail excavation and off-Site disposal of vadose zone soils that exceed cleanup levels for DRO, benzene, total xylene, and naphthalene to a landfill permitted to accept petroleum-contaminated soils. Based on the estimated extent and depth of excavation shown in Figure 5, G-Logics estimates the removal and disposal of approximately 650 tons of contaminated soil. To improve the effectiveness of this remedy, excavations are planned to be performed during late summer or early autumn, when groundwater and lake levels are typically at annual low elevations. Limited dewatering may be warranted in areas where deeper soil contamination has been identified or is observed during remedial excavation.

Excavation limit soil sampling will be completed in compliance with requirements in the Ecology Guidance for Remediation of Petroleum Contaminated Sites dated June 2016. Soil samples for confirmation of conditions at excavation limits will be collected in the sidewalls of the excavation and at the excavation floor in locations where soil samples can be collected from areas that are dry or can be effectively dewatered. The soil samples will be analyzed for the COCs and the sample results will be used to determine whether Method A cleanup levels have been met at the point of compliance.

5.2 Groundwater

Application of the Ecology Groundwater Model Remedy 1 has been selected to address groundwater cleanup at the site. The remedial actions that will be included under

Groundwater Model Remedy 1 are enhanced biodegradation of COCs using an ORC material that effectively increases the oxygen content of the impacted area to stimulate biodegradation of petroleum-related compounds. The oxygen enhanced bioremediation processes will support an MNA program as the final remedy stage for petroleum in groundwater and saturated soils remaining below the zone of soil removal. MNA will be implemented at the Site in accordance with the Ecology Guidance on Remediation of Petroleum Contaminated Groundwater by Natural Attenuation dated July 2005.

Following completion of the soil excavation and prior to backfilling, ORC will be placed on the excavation floor within the zone of groundwater level fluctuation and may be mixed into the soils on the excavation floor using an excavator bucket and/or soil mixing screw attachment.

Natural attenuation is a reduction in mass or concentration of COCs in groundwater over time or distance from the source due to naturally occurring physical, chemical, and/or biological processes, such as biodegradation, dispersion, dilution, adsorption, and volatilization. The effectiveness of natural attenuation at a specific Site is evaluated by completion of a groundwater monitoring program.

Following backfilling, five new monitoring wells will be installed at locations appropriate for evaluating groundwater remedial progress and for eventual confirmation of groundwater conditions compliant with the cleanup levels. The monitoring program will at least four consecutive quarters of groundwater sample collection to evaluate progress to attainment of groundwater cleanup levels. Upon the completion of four consecutive quarters of groundwater monitoring where the COC concentrations in groundwater are equal to or less than the cleanup levels established in Section 3.2. Measurement of groundwater parameters and/or analysis for constituents useful for confirming conditions conducive to natural attenuation will be included in the performance groundwater monitoring. Section 6.3.3 of this report includes a description of these specific parameters.

Since Ecology Model Remedies are being used for remediation on this site, an evaluation of other remedial alternatives in a Feasibility Study was not performed.

6.0 CLEANUP ACTION PLAN

For this cleanup action, G-Logics proposes to perform remedial excavation activities to remove the contaminated soils above the water table, supplemented by biodegradation enhancement with the use of ORC and monitored natural attenuation to address impacted saturated soil and groundwater.

6.1 Monitoring Well Abandonment

Prior to excavation activities, monitoring wells MW-1 though MW-5 within the proposed excavation footprint will be properly decommissioned in compliance with requirements in Chapter173-160-381 WAC by a well driller licensed in the State of Washington.

Monitoring wells located outside of the excavation area (MW-6, MW-7, MW-8, and MW-9) will be preserved for potential inclusion in the groundwater remediation progress and confirmation monitoring network.

6.2 Remedial Excavation

G-Logics proposes to perform remedial excavation at the Site following the demolition of the current house. The proposed remedial excavation activities are detailed below.

6.2.1 Remedial Excavation Preparation

G-Logics will contact the public utility locating service to mark public utilities servicing the Site prior to commencing excavation activities.

G-Logics will prepare a Health and Safety Plan (HASP) in general accordance with the requirements of 29 CFR 1910.120 and Chapter 296-843 WAC that will apply to G-Logics staff and provide recommendations for other personnel and contractors that are present on the Site during field activities. G-Logics will not be held responsible for the health and/or safety of non-G-Logics staff.

6.2.2 Remedial Excavation

In order to facilitate the remedial excavation activities, the house on the Property will be demolished and the associated utilities will be disconnected prior to commencing excavation activities. G-Logics will confirm with the demolition contractor that utilities present in the planned excavation area are each de-energized and out of service prior to initiation of remedial excavation activities.

G-Logics will direct the remedial excavation activities at the Site. Necessary permits to complete the planned remedial excavation works will be obtained by G-Logics. the excavation contractor, or the client. Excavated soils will be screened for evidence of petroleum hydrocarbons in the field using visual and olfactory methods as well as a portable photoionization detector (PID) to qualitatively evaluate for the presence of volatile organic vapors. Soils with elevated PID response or odors indicative of petroleum contamination will be loaded directly onto a truck and transported off the Site to a licensed disposal facility. Excavation activities will cease at horizontal limits where evidence of petroleum contamination in the soil is no longer observed. Figure 5 shows the location where DRO-contaminated soil is anticipated to be excavated based on soil data.

Vertically, soil excavation will cease when groundwater is encountered or, in areas where field screening indicates elevated petroleum concentrations in soils below the water table, where there is no longer evidence of petroleum impacts or where further vertical excavation becomes impractical because of dewatering limitations. Excavation activities are anticipated to take place when groundwater and lake levels are near annual minimum levels. Groundwater containing petroleum that is recovered during dewatering efforts will be contained on Site and will be shipped to an appropriate treatment and/or disposal facility permitted to accept petroleum-contaminated water. Figure 5 shows the estimated extent of the planned remedial excavation and includes an estimate of the area and depth of soil to be removed that assumes the work is completed under seasonal low lake and groundwater elevation conditions. The actual average depths of the excavation may vary from those estimated on Figure 5, depending upon the observed depth of petroleum impacts and the groundwater and lake levels at the time the work is completed. The estimated weight of petroleumcontaminated soil to be removed is approximately 650 tons.

If necessary during excavation activities, dewatering will be completed using a vacuum extraction truck from the open excavation. Care will be taken to prevent water from the excavation from running directly into the lake using small earth dams, absorbent booms, or other features in compliance with the shoreline permitting anticipated to be required for the planned excavation work.

Upon completion of the remedial excavation activities, soil confirmation samples will be collected from the lateral extents of the excavation and at bottom elevations where groundwater conditions prevent collection of undisturbed soil samples even when dewatering is applied. Soil samples will be placed in laboratory-prepared containers for transport to the analytical laboratory. The actual number and locations of samples collected will ultimately depend on the dimensions of the remedial excavation. The soil samples will be analyzed for the contaminants of concern, as discussed in Section 6.2.3 below. The excavation will remain open pending receipt of the soil confirmation sampling results, and additional excavation may be completed to remove areas of remaining petroleum contamination identified from the sample results. Additional soil samples will be collected from the limits of these areas to confirm appropriate removal of the contaminated soil.

6.2.3 Soil Sample Laboratory Analysis

Soil samples collected from the limits of the excavation at the Site will be analyzed for the following:

- DRO using Ecology Method NWTPH-Dx.
- Benzene, total xylenes, and naphthalene using United States Environmental Protection Agency (USEPA) Method 8260D or similar approved method.

6.2.4 Application of ORC

Following excavation completion and before backfilling, ORC will be placed on the excavation floor and/or will be mixed into soils at the excavation limits using an excavator bucket and/or soil mixing screw attachment. The type, distribution, and total volume of ORC placed in the excavation will be recorded.

6.2.5 Remedial Excavation Report Preparation

G-Logics will prepare a report summarizing the results of the excavation cleanup action, including a summary of analytical test data, comparisons of the soil COC conditions to project cleanup levels, conclusions regarding the effectiveness of the soil cleanup action at the Site, and a Site plan showing the approximate excavation limits and excavation limit soil sample locations.

6.3 Monitoring Well Installation and Groundwater Sampling

Following backfilling of the remedial excavation and as part of the proposed MNA program, five permanent groundwater monitoring wells will be installed (MW-10 through MW-15) in the following locations:

- One monitoring well upgradient of the known area of petroleum in soil and groundwater to evaluate background water quality;
- One monitoring well at or near the former UST location;
- One well near the contaminated plume centerline between the former UST location and the shoreline OHWM; and
- Two wells immediately inland of the OHWM within the area of petroleum contaminated groundwater prior to the initiation of remedial excavation activities.

The five newly installed monitoring wells and the four pre-existing monitoring wells that are not planned for abandonment (MW-6, MW-7, MW-8, and MW-9) will compose the set of wells available for remedial progress and confirmation groundwater monitoring, as discussed below. Note that one or more of the previously existing monitoring wells may not be used for each of the planned post-excavation groundwater monitoring events. Monitoring wells for use for groundwater remediation progress and confirmation monitoring will be selected based on the available pre-remediation groundwater quality conditions and conditions observed during groundwater monitoring completed as part of the program in this CAP.

6.3.1 Monitoring Well Installation

The anticipated well construction will be completed in strict accordance with Chapter 173-160 WAC Minimum Standards for Construction and Maintenance of Wells. The groundwater monitoring wells will be constructed as follows:

- Ten feet of two-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap.
- A two-inch diameter, threaded, flush-joint PVC riser pipe from the top of the screened interval to ground surface.
- Pre-sieved 10/20 grade silica sand for annular sand pre-packed around the well screen from the bottom of the boring to approximately one- to two-feet above the top of the well screen and overlain by hydrated bentonite chips and concrete.
- A lockable plug secured with a ground surface flush monument plate.

The groundwater monitoring wells will be developed by G-Logics and/or its drilling subcontractor by surging with a decontaminated surge block or electric submersible pump and then pumped to remove turbid groundwater. Development water will be collected in labeled drums and left on the Property pending characterization and disposal.

Following installation, the top-of-casing elevations of the newly constructed wells will be measured using appropriate surveying tools relative to a common reference datum common to the existing on-Site wells. This scope of work does not include surveying of the wells by a licensed surveyor, which is not considered necessary to achieve the project objectives.

6.3.2 Groundwater Sample Collection

Groundwater samples will be collected from the selected remediation progress and confirmation monitoring wells at the Site as part of the proposed MNA program using the following methods:

- The groundwater monitoring well covers will be opened and the static water level will be allowed to equilibrate.
- The groundwater level will be measured in each well prior to initiation of sample collection activities.
- Prior to the collection of each sample, groundwater will be purged from the well using a submersible pump or peristaltic pump with dedicated disposable tubing. Groundwater quality parameters including temperature, electrical conductivity (EC), pH, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) will be measured at regular intervals using a water guality meter in combination with a flow-through cell. Purging at a given well will be considered complete either when three consecutive parameter readings for have stabilized $(\pm 3\%$ for EH, ± 0.2 units for pH, $\pm 10\%$ (for values greater than 1 NTU) for turbidity, $\pm 10\%$ or ± 0.2 mg/L (whichever is greater) for DO, $\pm 10\%$ or ± 10 millivolts (whichever is greater) for ORC) and once three well volumes are purged from the well, or once the monitoring well is purged dry twice, whichever occurs first. Alternately, lowflow sampling procedures may be used following the stabilization standards outlined above, and with a minimum purged groundwater volume of 5 liters from each well. The groundwater parameters measured during purging, pumping flow rates, total volume pumped, and instrument calibrations will be documented in the field by an G-Logics field representative.
- Following the purging activities, the well will be allowed to partially recover, and a groundwater sample will be collected from the well for laboratory analysis using the submersible or peristaltic pump.
- Each sample container will be labeled with the project number, date, time, and sample identification. Groundwater samples will be collected into appropriate sample containers provided by a third-party laboratory and immediately placed into a cooler containing ice or ice substitute. Samples will then be delivered to a

Washington State-accredited analytical laboratory in strict accordance with industry standard chain-of-custody procedures.

 Purge water will be collected into drums and to be stored at the Property pending characterization and removal for proper disposal.

This scope of work anticipates a minimum of four post-excavation quarterly groundwater sampling events, with quarterly monitoring events continuing until four consecutive quarters where COC concentrations in each groundwater sample from that period are less than the project cleanup levels. If some individual COC concentrations from the final four quarters of groundwater monitoring are greater than the project cleanup levels, compliance may still be demonstrated by use of statistical modeling compliant with MTCA requirements and approved by the Ecology project manager.

The performance and confirmation sampling schedule will be re-evaluated at any time after the initial four post-excavation quarterly monitoring events are completed to determine if any revisions to the frequency or scheduling of the events is warranted. If initial analytical results show that a change in the sampling schedule is necessary, adjustments will be made as appropriate, in consultation with and with approval from the Ecology project manager. Regardless of changes to the progress groundwater monitoring program, final groundwater compliance will still require four consecutive quarterly groundwater sampling events showing compliant COC concentrations in each groundwater sample.

6.3.3 Groundwater Analysis

The collected groundwater samples will be submitted to a subcontracted Ecologyapproved laboratory for analysis of one or more of the following analytes:

- DRO using Ecology Method NWTPH-Dx.
- Benzene, total xylenes, and naphthalene using USEPA Method 8260D or similar approved method.

The groundwater analyses will be performed and reported on a standard laboratory delivery schedule.

Note that benzene and total xylenes are not confirmed as COCs in groundwater; however, they are included in the groundwater remediation monitoring program because they have been identified as COCs in soil. If concentrations of these compounds remain less than the MTCA Method A Groundwater Cleanup levels for the first four quarterly groundwater monitoring events, analyses of these parameters may be suspended for the remaining duration of the groundwater monitoring program.

During at least two progress monitoring events per year, groundwater samples will be additionally analyzed for the following MNA indicator analytes in order to evaluate the performance and continued viability of the MNA approach:

Draft Cleanup Action Plan G-Logics Project No. 01-0864-C

- Anions (nitrate, nitrite, sulfate and chloride) using USEPA Method 300.0,
- Cations (calcium, sodium, potassium, and magnesium) using USEPA Method 6020B,
- Ferrous iron using USEPA Method SM3500,
- Dissolved methane, ethane, and ethene using USEPA Method RSK 175,
- Dissolved iron and manganese using USEPA Method 200.8,
- Total organic carbon by USEPA Method SM5310, and
- Alkalinity by USEPA Method SM2320B.

The groundwater analyses will be performed and reported on a standard laboratory delivery schedule.

Note that if the groundwater monitoring program extends beyond 18 months, after that time, the frequency and types of these additional analyses may be reduced subject to approval by the Ecology project manager.

6.3.4 Groundwater Monitoring Report Preparation

G-Logics will prepare a report summarizing the findings of each monitoring event, including a Site plan showing the monitoring well locations, a summary of analytical test data, laboratory test certificates, comparisons to MTCA Method A cleanup levels, and conclusions regarding the groundwater conditions at the Site. Conclusions will include an evaluation of groundwater quality at the Site with respect to project cleanup levels and, for progress monitoring events, with respect to the viability of continued application of an MNA remedy at the Site.

6.4 Indoor Air

The proposed remedial alternative is intended to address indoor air by removing the source from the vadose zone and by the enhancement and monitoring of natural attenuation processes in groundwater.

This exposure route will be reassessed either after the source area removal and MNA is complete or upon construction of a new house on the Subject Property, whichever is sooner. The monitoring plan will include soil vapor and/or air sampling to evaluate the effectiveness of remediation on indoor air quality in the future residence.

6.5 Remediation Completion Conditions

Once COC concentrations for soil, groundwater, and indoor air are demonstrated to be less than project cleanup levels or can be established as compliant with project cleanup levels using MTCA-compliant statistical methods approved by the Ecology project manager, G-Logics will submit a request to the Ecology VCP for a No Further Action (NFA) determination for the Site.

7.0 LIMITATIONS

Land use, site conditions (both on and off the Property), and other factors may change over time. Since activities and regulations beyond our control could change at any time after the completion of this CAP, our observations, findings, and opinions can be considered valid only as of the date of the exploration work completed and of the development of this report.

G Logics assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

G-Logics personnel performed this study in accordance with generally accepted standards of care that existed in the state of Washington at the time of this study. This report has been prepared in accordance with generally accepted professional practices in the area at this time. No other warranty, either express or implied, is made.

This report is based on conditions that existed at the time the study was completed. The findings of this report may be affected by the passage of time or events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, or groundwater fluctuations.

8.0 CLOSING

G-Logics personnel prepared this CAP in accordance with generally accepted industry practices within Washington State and in the Site vicinity at the time of this evaluation. Our findings and conclusions have been prepared in accordance with the agreed-upon scope of work and the current, generally accepted standard of care for this profession.

We appreciate the opportunity to be of service to you on this project. If you should have any questions or require additional information, please feel free to contact the undersigned.

Sincerely, G-LOGICS

DRAFT

Mike Arnold, LG, LHG Director of Technical Services

FIGURES

Mapping Reference: Delorme and King County iMap

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Measurements.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

TABLES

TABLE 1 Soil Sample Analyses, Petroleum Hydrocarbons Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, Washington

							- Still	to Stand	the property of the second	Cel Treatment							iner /		matura	Fraction	hartestion	setion to the set	action mates fr	settor	on co chan	c-10-12 apont	12.16) MID	1,C16211	52.34) 37001109	10 Stor Clark	nericies store creating
Exploration	n Sample Date	Sample Number	Surface Elevation ¹ (feet)	Sample Depth (feet)	Sample Elevation ¹ (feet)	Die	sel Range Ords	OI Range Combin	ed ORO 8. DROW	MIT SHOULD BEITE	ie Tolue	ne Ethyl	Jentene Mient	5 ² 10 ⁵⁷	httpalene Met	W Tor BUN	56 Allphalics	S Allphantes	APHIEC	NO-12 SHILLES	AD BROW HECH	A STO APHILE IS	13 ard Aupro	the Hydrocs	All Proces	e Hydroco Allphi	HE HYDROCO	ste Hydroco	Honote Hydro	oct Hydroct	ale Hydrocc Hydrocc
MTCA Meth	d A Cleanup	Level ²				2,000	2,000	2,000	2,000	0.03	7	6	9	5	0.1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE N	IE NE	NE	NE
Units in mill	igrams per kil	ogram																													
2020 Explo	rations																														
GB-1	5/14/2020 5/14/2020	GB-1-7 GB-1-9	33	7 9	26 24	1,540 947	174 <52.6	1,714 947						1 :		-			****												
GB-2	5/14/2020	GB-2-7	33	7	26	13,800 [D <68.3	13,800 D		<0.881	<1.03	2.81	16.26	45.6		<2.57	6.08	87.8	306	136											
	5/14/2020	GB-2-9		9	24	7,410 D) <137	7,410 D																							
GB-3	5/14/2020	GB-3-4	29	4	25	3,740 D	<51.8	3,740 D																							
	5/14/2020	GB-3-6		6	23	64.9	<49.5	64.9																							
	5/14/2020	GB-3-8		8	21	<21.3	<53.3	<53.3																							
GB-4	5/14/2020	GB-4-2	29	2	27	30,900	D <47.5	30,900 D		<0.719	<0.839	<0.839	<1.56	7.41		<2.10	<3.00	<1.68	35.6	<3.60											
	5/14/2020	GB-4-4		4	25	28,900 I	D <55.4	28,900 D																							
	5/14/2020	GB-4-8		8	21	<21.8	<54.5	<54.5																							
GB-5	5/14/2020	GB-5-4	28	4	24	<21.7	<54.3	<54.3																							
GB-6	5/14/2020	GB-6-1	28	1	27	105	<59.4	105																							
	5/14/2020	GB-6-4		4	24	<23.1	<57.7	<57.7																							
GB-7	5/14/2020	GB-7-6	33	6	27	<20.5	<51.2	<51.2																							
	5/14/2020	GB-7-8		8	25	1,530	<25.2	1,530																							
	5/14/2020	GB-7-9		9	24	<31.6	<79.0	<79.0																							
G-Logics M	Ionitoring We	ell																													
MW-9	5/14/2020	MW-9-7	33	7	26	<31.6	180	180																							
	5/14/2020	MW-9-10		10	23	<21.6	<54.0	<54.0																							
2021 Explo	rations					1								-									_								
GLB-8	10/20/2021	GLB-8-6	32	6	26	<56.0	<112	<168								I															
	10/20/2021	GLB-8-8		8	24	12,400 E	D <1,060	12,400 D	8,720	<0.0906 DH	I <0.136 DH	I <0.113 DH	0.564 DH	6.4		3.56 H	11.8 H	48.6 H	293 DH	111 H	735 DH	3,120 DH	102 H 🗧	315 HL	1,450 H	1,480 H	192 H	<19.0 H 10	4H 518H	H 1,190 H	<9.49 H
	10/20/2021	GLB-8-10		10	22	<59.2	<118	<178																							
GLB-9	10/20/2021	GLB-9-6	33	6	27	8,940	<96.8	8,940																							
	10/20/2021	GLB-9-8		8	25	27,600 [D <1,400	27,600 D	25,000 D	0.120	<0.224	1.54	5.97			6.12 H	29.2 H	185 DH	463 DH	212 H 1	,170 DH	4,750 DH	328 H	961 HL	3,800 DH	4,160 DH	495 H	82.4 H 40	1H 1,630	H 3,290 DH	591 H
	10/20/2021	GLB-9-10		10	23	215	<119	215																							
	10/20/2021	GLB-9-12		12	21	58.3 H	<105 H	58.3 H																							
GLB-10	10/20/2021	GLB-10-6	33	6	27	143 H	<118 H	143 H		-																					
	10/20/2021	GLB-10-8		8	25	498	342	839																							
	10/20/2021	GLB-10-10		10	23	<51.4 H	H <103 H	<103 H																							
	10/20/2021	GLB-10-12		12	21	<49.4 H	H <98.8 H	<98.8 H																							
	10/20/2021	GLB-10-14		14	19	<49.8 H	I <99.5 H	<99.5 H																							
	10/20/2021	CLR 10 16		16	17	<52.1 H	I <104 H	<104 H																							

TABLE 1 Soil Sample Analyses, Petroleum Hydrocarbons Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, Washington

Sammami	Lake Samir sh, Washing	gton	ore lane NE																														
Exploration Location	Sample Date	Sample Number	Surface Elevation ¹ (feet)	Sample Depth (fee	Sample Elevation ¹ t) (feet)	Ja ²	Starte Orbert	to Read Contraction	to Dec subscription	IN SHORE SHORE	est love	ne town	astress Hyper	\$ 	antrasere une	Interspect	Inst Less	a hippatte	brin allerates	Trailon 10-12 automatic	a traction	resion Assonatest	Bellon La Bonnaires	Freedon Street	on Case on Automation	c-10-12) sc-Hydrocatoon	Colorson Property Providences	on Creating	abon C21.34	BOR LES IN BOR LES INFORMATION	Huborston	icht 18	creat land
MTCA Metho	d A Cleanup	Level ²				2,000	2,000	2,000	2,000	0.03	7	6	9	5	0.1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
Units in mill	grams per kil	ogram																															
GLB-11	10/20/2021	1 GLB-11-8	33	8	25	259	980	1,240																									
	10/20/2021	1 GLB-11-10	1	10	23	<93.3 H	381 H	381 H																									
	10/20/2021	1 GLB-11-12		12	21	<87.2 H	I <174 H	<174 H																									
	10/20/2021	1 GLB-11-16	i	14	19	<56.1 H	I <112 H	<112 H																									
GLB-12	10/21/2021	1 GLB-12-2	30	2	28					<0.0271 H	- <0.0406 ⊢	I <0.0338 ⊦	I <0.0677 H	<0.135	Н																		
	10/21/2021	1 GLB-12-4		4	26	5,160	<105	5,160	6,250	<0.618 H	<0.515 H	<1.75 H	<0.515	3.89 H	<1.13 ⊢	3.80 H	<1.54 H	6.44 H	71.3 DH	22.5 H	253 DH	2,180 DH	<22.7	66.7 L	712	939	113	<22.7	12.9	103	477	99.5	
	10/21/2021	1 GLB-12-6		6	24	60.6	<98.6	60.6																									
GLB-13	10/21/2021	1 GLB-13-2	28	2	26	<47.2	<94.5	<94.5																									
	10/21/2021	1 GLB-13-4		4	24	<50.6	<101	<152																									
	10/21/2021	1 GLB-13-6		6	22	<51.5	<103	<154																									
	10/21/2021	1 GLB-13-8		8	20	<55.8	<112	<112																									
GLB-14	10/21/2021	1 GLB-14-2	28	2	26	<48.1	<96.1	<144																									
	10/21/2021	1 GLB-14-4		4	24	<55.1	<110	<165																									
	10/21/2021	1 GLB-14-6		6	22	<48.1	<96.1	<96.1																									
GLB-15	10/21/2021	1 GLB-15-2	28	2	26	<49.3	<98.6	<98.6																									
	10/21/2021	1 GLB-15-4		4	24	<48.8	<97.5	<146																									
	10/21/2021	1 GLB-15-6		6	22	<51.3	<103	<154																									
	10/21/2021	1 GLB-15-8		8	20	<51.3	<103	<103																									
GLB-16	10/21/2021	1 GLB-16-2	28	2	26	125	<103	125																									
	10/21/2021	1 GLB-16-4		4	24	<60.4	<121	<181																									
	10/21/2021	1 GLB-16-6		6	22	<49.2	<98.3	<98.3																									
	10/21/2021	1 GLB-16-8		8	20	<54.4	<109	<109																									
						_										-																	

Notes:

Surface elevations are estimated based on October 15, 2015 survey by Triad Associates based on NGVD 29 (provided by Environmental Partners Inc.)

² MTCA Method A Soil Cleanup Levels for Unrestricted Use, provided in the Ecology cleanup levels and risk calculation (CLARC) database

--- Sample not analyzed.

<1.07 The analyte was not detected at a concentration greater than the indicated reporting limit.

12.0 Bold value indicates contaminant detected.

419 Bold value and yellow shading indicates concentration greater than the applicable cleanup level.

D The Sample was diluted. Detection Limits were raised and surrogate recoveries may not be meaningful.

H Holding times for preparation or analysis exceeded

L Flagged value is not within established control limits

NE Cleanup level not established or not applicable

		т	otal Petroleum	Hydrocarbons	а					Volat	tile Organic	Compounds	b				Semivola	tile Organic Cor	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Units in microg	rams per liter																			mg/L
Method A C	leanup Level	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method B NC	Cleanup Level					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
B-1	5/20/2013	43,000	<2,500	43,000																
B-3	5/20/2013	<270	<430	<430																
B-4	5/20/2013	2,600	<430	2,600																
B-5	5/20/2013	3,900	<420	3,900																
B-6	5/20/2013	<260	<420	<260																
B-7	5/21/2013	<260	<420	<260																
B-8	11/20/2013	1,080	<100	1,080																
B-9	11/20/2013	<50	<100	<50																
B-10	11/20/2013	190	<100	190																
B-11	11/19/2013	959	<100	959																
B-12	11/19/2013	616	<100	616																
B-13	2/17/2014	170	270	440																
B-14	2/17/2014	3,200	570	3,770													0.1	0.026	0.031	
																				-
GLB-8	10/20/2021	22,600 D	<988	22,600 D																
GLB-9	10/20/2021	2,550	<99.3	2,550																
GLB-10	10/20/2021	1,080	<98.9	1,080																
GLB-11	10/20/2021	<99.8	167	242																
GLB-12	10/21/2021	7,750	<99.9	7,750																
GLB-13	10/21/2021	165	<99.3	165																
GLB-14	10/21/2021	534	<98.9	534																
GLB-15	10/21/2021	9,290	<99.2	9,290	7,950	<0.400 H	<1.00 H	<0.440 H				<0.750 H				<1.25 H				
GLB-16	10/21/2021	4,970	<98.6	4,970	5,120 B	<0.400 H	<1.00 H	<0.440 H				<0.750 H				<1.25 H				
															1				.	4
	5/21/2013	9,300	<950	9,300																
	11/21/2013	1,280	<100	1,280																
	3/4/2014	1,700	<250	1,700													3.2	7.0	6.0	
	8/5/2016	457	<100	457												5.35				
MW-1	11/30/2016	832	<99.5	832												3.32				
	10/9/2018	578	<99.6	578												<1.0				
	1/23/2020	651	<49.5	651												<1.0				
	5/19/2020	519	<99.4	519		<1	<1	<1				<1				<1				
	10/20/2021	944	<99.8	944																
I	10/20/2021	944	<99.8	944																

		r	Fotal Petroleum	n Hydrocarbons	a					Vola	tile Organic	Compounds	5 ^b				Semivola	tile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Units in microg	rams per liter																			mg/L
Method A C	Cleanup Level	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method B NC	Cleanup Level					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
-																				
	5/21/2013	LNAPL	PRESENT																	
	11/21/2013	LNAPL	PRESENT																	
	3/4/2014	LNAPL	PRESENT																	
	8/5/2016	LNAPL	PRESENT																	
MW-2	11/30/2016	LNAPL	PRESENT																	
	10/9/2018	LNAPL	PRESENT																	
	1/23/2020	LNAPL	PRESENT																	
	5/19/2020	LNAPL I	PRESENT**																	
	10/20/2021	LNAPL	PRESENT	11,900																
		-															-			
	5/20/2013	11,000	<570	11,000																
	11/21/2013	2,010	<100	2,010																
	3/4/2014	1,100	<250	1,100													0.067	0.35	0.069	
	9/15/2015	604	<99.8	604													<0.10	<0.10	<0.10	
	1/22/2016	895	<99.9	895												<1.0				
MW-3	8/5/2016	3,010	<99.9	3,010												<1.0				
	11/30/2016	439	<99.7	439												<1.0				
	10/9/2018	712	<99.7	712												<1.0	<0.0991	0.396	<0.0991	
	1/23/2020	425	<49.9	425												<1.0	<0.0993	0.145	<0.0993	
	5/19/2020	613	<99.7	613		<1	<1	<1				<1				<1				
	10/21/2021	2,270	<98.6	2,270																
								•	•			•	•	•	•	•		•		
	5/21/2013	22,000	<1,100	22,000																
	11/21/2013	29,800	185	29,985																
	3/4/2014	1,300	340	1,640													0.026	<0.020	<0.020	
	9/15/2015	3,860	<101	3,860													0.566	0.181	0.406	
	1/22/2016	255	<99.8	255												<1.0				
MW-4	8/5/2016	783	<99.5	783												1.50				
	11/30/2016	609	<99.5	609												<1.0				
	10/9/2018	5,130	<99.7	5,130												<1.0	0.575	0.498	0.106	
	1/23/2020	115	<49.8	115												<1.0	<0.0999	<0.0999	<0.0999	
	5/19/2020	1,060	<98.5	1,060		<1	<1	<1				<1				1.4				
	10/21/2021	2 650	<98.7	2 690	197	<0 400 H	<1.00 H	<0 440 H				<0.750 H				<1.25 H				11.2

		т	otal Petroleum	Hydrocarbons	a					Vola	tile Organic	Compounds	b				Semivola	tile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Units in microg	rams per liter																			mg/L
Method A C	Cleanup Level	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method B NC	Cleanup Level					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
MW-5 Recon	11/19/2013	2,080	<100																	
	11/21/2013	1,250	<100	1,250		1.59	3.7		4.29	2.92	4.44		1.88	22.4	2.34	9.66				
	3/4/2014																			
	9/15/2015	209	206	415													<0.0998	<0.0998	0.714	
	1/22/2016	377	<99.8	377												<1.0				
M\W_5	8/5/2016	160	<99.8	160												<1.0				
10100-5	11/30/2016	437	<99.4	437												<1.0				
	10/9/2018	764	<99.7	764												<1.0				
	1/23/2020																			
	5/19/2020	<49.4	<98.8	<49.4																
	10/20/2021	693	<98.2	693	340															
																	-			
MW-6 Recon	11/19/2013	1,450	<100	1,450																
	11/21/2013	1,120	<100	1,120		<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	6.04	<1.0	1.11				
	3/4/2014	400	<250	400																
	9/15/2015	117	261	378													<0.0999	<0.0999	0.568	
	1/22/2016	199	<100	199												<1.0				
MW-6	8/5/2016	126	<100	126												<1.0				
	11/30/2016	136	<99.5	136												<1.0				
	10/9/2018	642	<99.4	642												<1.0				
	1/23/2020	60.6	<49.9	60.6												<1.0				
	5/19/2020	51.2	<99.4	51.2																
	10/21/2021	541	<98.7	541	297															
																				<u> </u>
	3/4/2014	<130	<250	<130																
	10/9/2018	<49.9	<99.7	<49.9												<1.0				
MW-7	1/23/2020	<49.5	<98.9	<49.5												<1.0				
	5/19/2020	<48.8	<97.6	<48.8																
	10/21/2021	<99.8	<99.8	<99.8																

		т	otal Petroleum	Hydrocarbons	a					Vola	tile Organic	Compounds	b				Semivola	tile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Units in microg	grams per liter																			mg/L
Method A C	Cleanup Level	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method B NC	Cleanup Level					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
																	-			
	3/4/2014	<130	<250	<130																
	10/9/2018	<49.8	<99.7	<49.8												<1.0				
MW-8	1/23/2020	<49.5	<99.1	<49.5												<1.0				
	5/19/2020	<49.7	<99.5	<49.7																
	10/20/2021	<98.8	<98.8	<98.8																4.19

	10/0/2010		-00.1	-+0.0	 	I	I	 	 	I	1	I	
MW-8	1/23/2020	<49.5	<99.1	<49.5	 			 	 				
	5/19/2020	<49.7	<99.5	<49.7	 			 	 				
	10/20/2021	<98.8	<98.8	<98.8	 			 	 				
												1	

| MW-9 | 5/19/2020 | 125 | <98.7 | 125 |
 |
|------|------------|-----|-------|-----|------|------|------|------|------|------|------|------|
| | 10/21/2021 | 263 | <98.6 | 263 |
 |

Notes:

- а Analyzed by Method NWTPH-Dx/Dx Extended.
- b Analyzed by USEPA Method 8260 reporting only non-halogenated hydrocarbons (except naphthalenes as indicated).
- Analyzed by USEPA Method 8270 SIM. с
- Sample was not analyzed for this compound. ---
- * Not spplicable/ cleanup/screening level not established.
- ** Groundwater sample not collected from well because of LNAPL
- 125 Bold value indicates that the compound was detected.
- Bold value and yellow shading indicates concentration exceeds MTCA Methods A cleanup level. 642
- В Analyte was detected in the method blank
- LNAPL Light nonaqueous phase liquid
- Units in milligrams per liter mg/L
- NC Non-cancer

APPENDIX A

2021 SOIL AND GROUNDWATER SAMPLING REPORT

2021 Soil and Groundwater Sampling Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, WA 98074

Prepared for:	Mr. Mark Myers Williams Kastner 601 Union Street, Suite 4100 Seattle, WA 98101-2380
Prepared by:	G-Logics, Inc.

40 2nd Avenue SE Issaquah, WA 98027

> Telephone: (425) 391-6874 Facsimile: (425) 313-3074

January 11, 2022

G-Logics Project 01-0864-D Copyright 2022 G-Logics, Inc. All Rights Reserved

G-Logics has prepared this document only for our client's use, only for the purposes stated herein, and subject to any stated limitations. Use of this document by regulatory agencies is regarded as a "fair use" and is not a violation of our copyright. Regulatory agencies also may make additional copies of this document for their internal and public use, as required by law. All other copies or uses of this document must acknowledge our copyright and indicate that permission to copy/use has been received from G-Logics and our Client.

g-logics

January 11, 2022 G-Logics Project 01-0864-D

Mr. Mark Myers Williams Kastner 601 Union Street, Suite 4100 Seattle, WA 98101-2380

Subject: 2021 Soil and Groundwater Sampling Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, WA 98074

Dear Mr. Myers:

This report presents the purpose, approach, and results of G-Logics soil and groundwater sampling performed at the above-referenced property (the "Property"). We trust the information presented in this report meets your needs at this time. Should you require additional information or have any questions, please contact us at your convenience. Thank you again for this opportunity to be of service.

Sincerely, G-Logics, Inc.

Rory L. Galloway, LG, LHG Principal Pamela M. Fleming, GIT Project Geologist

> **G-Logics, Inc.** 40 2nd Avenue SE, Issaquah, WA 98027 T: 425-391-6874, F: 425-313-3074 01-0864-D-RT.docx
TABLE OF CONTENTS

1.0 INTRODUCTION	·1
2.0 BACKGROUND	-1
2.1 Regulatory Background	3
3.0 EXPLORATION ACTIVITIES	-3
3.1 Soil Borings	4
3.2 Groundwater Samples	5
3.3 Quality Assurance/Quality Control	5
3.4 Groundwater Depth Measurements	5
4.0 EXPLORATION OBSERVATIONS AND FINDINGS	-6
4.1 Soil Boring Findings	6
4.2 Soil Analytical Results	6
4.2.1 Petroleum Hydrocarbons	6
4.2.2 Volatile Organic Compounds	7
4.3 Groundwater Sampling Results	7
4.3.1 Petroleum Hydrocarbons	7
4.3.2 Additional Analyses	7
4.4 Groundwater Depth Measurement Findings	8
4.5 Quality Assurance/Quality Control Findings	8
5.0 CONCLUSIONS AND OPINIONS	.9
5.1 Soil Cleanup Levels	9
5.2 Groundwater Cleanup Levels	9
5.3 Extent of Property Contamination	10
6.0 REMEDIAL EXCAVATION	1
6.1 Soil Excavation Areas	12
6.2 Soil-Disposal Costs	13
6.3 Additional Remedial Costs	13
7.0 LIMITATIONS	14

TABLES

Table A:	EPI/TRC Data
Table 1:	Soil Sample Analyses, Petroleum Hydrocarbons
Table 2:	Summary of Groundwater Analytical
Table 3:	Groundwater Elevation Data

FIGURES

Figure 1:	Property Location Maps
Figure 2:	Property Diagram, Exploration Locations and Features
Figure 3:	Highest DRO Concentrations in Soil, 2013/14, 2020, and 2021
Figure 4:	DRO in Groundwater Isocontours, 10/20-10/21/2021
Figure 4a:	DRO Concentrations in Groundwater, Monitoring Wells
Figure 5:	Groundwater Contours, 10/21/2021

APPENDICES

Appendix A:	Field Exploration Methods
Appendix B:	Boring Logs
Appendix C:	Laboratory Data and Chain-of-Custody Documents

ATTACHMENTS

Attachment A: Permission and Conditions for Use and Copying

1.0 INTRODUCTION

G-Logics has completed an additional characterization at the Property located at 3461 East Lake Sammamish Shore Lane NE, in Sammamish, WA (Figures 1 and 2). The scope of this exploration was based on G-Logics review of the *Remedial Investigation Report*, *Mossman Residence*, dated June 28, 2021. This RI report was prepared by TRC Environmental Corporation (TRC, formerly Environmental Partners, Inc.).

This exploration work was requested due to the known presence of petroleum contaminated soil and groundwater at the Property resulting from previous releases from a home heatingoil tank. This report documents a subsurface exploration designed to provide additional characterization information before a final decision is made regarding remediation methods.

Explorations were conducted in the areas of the highest contamination, near the northwest corner of the home, along the northern-property border, and along the shoreline. With updated information, better decisions can be made where remedial excavations and/or treatment could be conducted.

Our work was performed in accordance with our workplan dated August 31, 2021. The results of our exploration are presented in this report and are subject to the report's limitations. The findings of this report can be used by both Mossman Parties and Rodden Parties (Users).

2.0 BACKGROUND

The Property is located on the eastern shore of Lake Sammamish and is occupied by a single-family home. The home was built as a slab-on-grade construction in the late 1940s and was understood to have been heated by an oil-burning furnace. Oil for the furnace was stored in an underground storage tank (UST), previously located on the north side of the house. It is understood that the Mossman's purchased the home in August 2012 and converted the home's heating system to natural gas in October 2012.

g-logics

In November 2012, Mr. Mossman observed an oily sheen on the surface of Lake Sammamish near his property. Based on a UST Site Assessment Report prepared by Environmental Partners Inc. (EPI), Mr. Mossman reported the sheen to the Spill Response Division of Washington State Department of Ecology (Ecology). On November 28, 2012, during a site visit to confirm the report, Ecology provided absorbent booms to contain the sheen to the dock area. Subsequently, the heating-oil UST on the Mossman Property was removed and the Mossman's retained EPI as an environmental consultant on their behalf.

In May 2013, an environmental site assessment was performed by EPI to assess the presence of petroleum hydrocarbons in the soil and groundwater on the Property. The assessment found that heating-oil contaminants were present on the Property and also had migrated onto the north-adjoining property. EPI concluded in their report that the exposure pathway from groundwater to surface water (freshwater, Lake Sammamish) was complete (EPI, *Phase II Environmental Site Assessment*, dated July 1, 2013). Using soil and groundwater data from the 2013 Phase II and subsequent characterization efforts, EPI provided cost estimates to conduct a remedial excavation in a *Technical Memorandum*, dated November 16, 2018.

G-Logics conducted an additional exploration in May 2020, with the results presented in our *Additional Site Characterization* report dated June 29, 2020. This report indicated petroleum concentrations in soil and groundwater had significantly decreased from when they were first detected in 2012. Reduction was attributed due to ongoing natural-attenuation processes. Measurable amounts of Light Non-Aqueous Phase Liquid (LNAPL) also were smaller, likely due to the same processes and the LNAPL-recovery efforts conducted by EPI.

EPI was acquired by TRC Companies (TRC) in 2019. On July 2, 2021, TRC submitted their *Remedial Investigation* (RI) report (dated June 28, 2021), their Voluntary Cleanup Program (VCP) application, and the VCP Agreement to Ecology. In their submittal, and based on email conversations with Ecology, the initial concerns with sediment contamination have been identified as resolved (for the time being), and the Property has been accepted into the VCP. In their RI report, TRC incorporated the data from the G-Logics June 29, 2020, report.

g-logics

Based on current Ecology backlog, at least six months will be required for a project manager to be assigned and the initial review to be completed. In this interim, additional soil and groundwater analytical data was generated, as presented in the following report sections. This data is intended to provide updated site-characterization data that Ecology can use for their review of remedial methods for the Property. The collected information, as described in this report, is anticipated to be provided to Ecology by TRC as a Supplement to their RI report. G-Logics also understands TRC will include these findings during their review of cost-effective remedial options for the Property, to be summarized in their *Feasibility Study* (FS).

2.1 Regulatory Background

The law that guides the soil remediation process at sites located within Washington State is the Model Toxics Control Act (MTCA). The regulations implementing MTCA are in the Washington Administrative Code (WAC), Chapter 173-340. This regulation is administered by the Washington Department of Ecology (Ecology). MTCA "establishes administrative processes and standards to identify, investigate, and cleanup facilities where hazardous substances have come to be located" (WAC 173-340-100). MTCA regulations also list prescriptive, numerical "Method A Cleanup Levels" that "provide conservative cleanup levels for sites undergoing routine cleanup actions or for sites with relatively few hazardous substances". However, the regulations also state that Method A Cleanup Levels should not automatically be used to define cleanup levels that must be met for financial, real estate, insurance coverage, or similar purposes. Additionally, exceeding MTCA published cleanup levels does not necessarily mean that a cleanup needs to meet those cleanup levels.

3.0 EXPLORATION ACTIVITIES

To provide updated information on soil and groundwater contamination on the Property, notably concentration and contaminant-location information, an additional exploration was conducted. A G-Logics geologist was present at the Property during the exploration to observe and document site conditions.

g-logics

The following tasks were performed by G-Logics under this scope of services:

- Performed utility locating services prior to conducting the borings at the Property.
- Completed nine-soil borings.
- Collected groundwater samples from temporary wells installed in the completed borings.
- Collected groundwater samples from the monitoring wells at the Property.
- Prepared this report to document our findings and recommendations.

Exploration work conducted at this Property is further described below. A description of our site-exploration methods is presented in Appendix A. The boring logs are presented in Appendix B. Each boring log presents soil types/field descriptions, sample-screening results, general observations, and sample-collection depths.

3.1 Soil Borings

On October 20 and 21, 2021, G-Logics completed nine direct-push borings (GLB-8 through GLB-16). Boring locations, shown on Figure 2, were selected based on the findings of the previously completed site explorations performed by EPI and G-Logics. Exploration locations were chosen to provide additional information regarding the lateral and vertical extent of petroleum contaminants. Samples also were collected to provide updated concentration information.

During drilling, soil samples were collected for soil identification and chemical analysis. A photoionization detector (PID) was used to screen for volatile-organic compounds (VOCs) in collected soil samples, with the results measured in parts per million by volume (ppmv) and noted on the boring logs. Soil conditions encountered during drilling are further descried in Section 4.1 below.

Collected at approximately two-foot intervals, numerous soil samples were submitted to the analytical laboratory and analyzed for diesel-range organics (DRO). Based on the DRO results, selected samples were analyzed for BTEX (benzene, toluene, ethylbenzene, and xylenes), DRO with silica gel cleanup, and/or petroleum fractionation. Results of these analyses are presented in Section 4.2 of this report.

3.2 Groundwater Samples

Groundwater samples were collected from monitoring wells located on the Property and from all nine of the completed soil borings. A groundwater sample was collected from MW-2, even though the presence of LNAPL was indicated.

Collected samples from each well were submitted to the analytical laboratory and analyzed for DRO and/or BTEX and total organic carbon. Analytical results are presented in Section 4.3 of this report.

3.3 Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) included accepted procedures for sample collection, storage, tracking, and documentation. All non-dedicated sampling equipment was washed and rinsed before the collection of the samples. All samples were labeled with a sample number, date, time, and sampler name, and were stored in an ice chest containing ice.

3.4 Groundwater Depth Measurements

The static water level was measured in each monitoring well (MW-1 through MW-9) on October 21, 2021. Groundwater-depth measurements were converted to elevations in order to prepare groundwater-elevation contours. Results of these measurements are presented in Section 4.4 of this report. Appendix A also presents details of the groundwater depth-measurement procedures.

g-logics

4.0 EXPLORATION OBSERVATIONS AND FINDINGS

The findings of this exploration are presented below. Analytical results obtained by EPI/TRC are attached as Table A. Analytical results obtained during this exploration are presented on Tables 1 through 3. The analytical laboratory reports for the analyzed samples are attached as Appendix C of this report. Chain-of custody forms also are included in Appendix C.

4.1 Soil Boring Findings

The borings completed during the exploration were advanced to depths ranging from 8 to 16 feet below the ground surface. These borings generally encountered brown and gray sands and gravels to the explored depths. Depths to groundwater above the retaining wall (near the Mossman residence) were approximately 5 to 6 feet below the ground surface, while below the retaining wall they were approximately 1 foot deep. Petroleum-hydrocarbon odors were noted in all borings.

4.2 Soil Analytical Results

Soil analytical results from this exploration are summarized in our Table 1 (prior analytical results are presented in EPI Table A). Findings from our work are summarized below.

4.2.1 Petroleum Hydrocarbons

Diesel-range organics were reported exceeding the MTCA Method A Cleanup Level (2,000 mg/kg) in soil samples from borings GLB-8, GLB-9, and GLB-12 (8', 8', and 4' deep respectively). The samples are located west of the home, downgradient of the former UST. DRO was not found above cleanup levels in the remaining borings. As seen on Table 1, these elevated concentrations were limited to a narrow band of soils approximate 2 to 4 feet thick.

Using the recently collected data, and the highest concentrations previously found in soil samples at each boring location, Figure 3 was prepared. This figure also includes an interpretation of the areas where DRO concentrations are expected to exceed 2,000 and 10,000 mg/kg. These areas largely exist within the yard and beach areas downgradient of the former UST, but do not extend beyond the Ordinary High Watermark.

4.2.2 Volatile Organic Compounds

After receiving the DRO results, three soil samples with the highest detected concentrations (from GLB-8, GLB-9, and GLB-12) also were analyzed for volatile organics (BTEX), petroleum fractions, and naphthalene. Detected concentrations also are presented on Table 1, only with benzene and naphthalene detected above their respective cleanup levels.

4.3 Groundwater Sampling Results

Analytical groundwater data collected from the groundwater-monitoring wells and the temporary wells placed into the soil borings is presented in Table 3. Groundwater analytical results are summarized below.

4.3.1 Petroleum Hydrocarbons

Figure 4 shows the results of groundwater samples collected during this exploration, with an interpretation of the area where concentrations are expected to exceed 500 ug/L, the MTCA Method A cleanup level. The highest detected concentrations were found in yard areas upslope of the rock wall. This figure includes groundwater samples collected from monitoring wells and those collected as grab samples from the recent borings.

Figure 4a presents DRO concentrations measured in monitoring wells located at the Property, with summarized results for samples collected over the past five years. For the most part, DRO concentrations remained relatively consistent over this comparison interval. Additionally, measurable LNAPL was again detected in MW-2 (0.05 inches). A sample of groundwater from this well also was analyzed, yielding a DRO concentration of 11,900 ug/L.

4.3.2 Additional Analyses

After receiving the DRO results, five groundwater samples with high concentrations also were analyzed for volatile organics (BTEX), DRO with silica gel treatment, naphthalene, and/or total organic carbon. BTEX and naphthalene were not detected in any of the analyzed samples.

g-logics

DRO concentrations after silica-gel treatment indicated drops in concentrations in four of the five analyzed samples, with three concentrations below the cleanup level of 500 ug/L. The largest reduction was in the noted in the sample from MW-4, which is located in the area of the former fuel tank. Also located in this area is a sump pump that transfers wastewater from the home to the sanitary-sewer line located in the street. During our field efforts, we noted an obvious leak from the discharge line, resulting in a release of wastewater in this area (TRC and the homeowner were notified). It is unknown to what extent the release of wastewater has been affecting the DRO concentrations in this area.

4.4 Groundwater Depth Measurement Findings

The depths to groundwater were measured in monitoring wells located at the Property. Measurements are presented in Table 3 of this report. Measured groundwater elevations for these wells have been plotted on Figure 5, which includes an interpretation of groundwaterflow directions. The plotted groundwater elevations indicate flow directions toward the southwest (into Lake Sammamish).

As seen in Table 3, LNAPL (as measurable thickness or sheen) now only remains in MW-2. Additionally, the thickness shows variability, but overall, the LNAPL presence is decreasing.

4.5 Quality Assurance/Quality Control Findings

The laboratory conducted matrix-spike analyses, matrix-spike duplicate analyses, laboratory-control, and method-blank analyses. These analyses indicated that analytical results were within acceptable limits. Laboratory QA/QC information is included (with the laboratory report) in Appendix C.

g-logics

5.0 CONCLUSIONS AND OPINIONS

Presented below are conclusions and opinions for the completed work, which also incorporates findings from previous explorations at the Property.

5.1 Soil Cleanup Levels

For this recent sampling, DRO concentrations were reported exceeding the MTCA Method A Cleanup Level (2,000 mg/kg) in soil samples from borings GLB-8, GLB-9, and GLB-12 (Figure 3). These samples are located west of the home, in downgradient areas from the former UST.

DRO was not found in soils above cleanup levels in the remaining borings, including samples collected from GLB-13 through 16, all located on the shoreline in the area of the ordinary high watermark. Additionally, hydrocarbons only were detected in a shallow sample from GLB-16, at a concentration of 125 mg/kg, well below the cleanup level.

5.2 Groundwater Cleanup Levels

In the RI report dated June 28, 2021, TRC presents a surface-water cleanup level for DRO as 500 ug/L. Given recent Ecology Guidance IM 23 (*Implementation Memorandum No. 23: Concentrations of Gasoline and Diesel Range Organics Predicted to be Protective of Aquatic Receptors in Surface Waters*, August 2021), we concur that 500 ug/L should be identified as the cleanup level. This is consistent with MTCA Method A Cleanup Levels for groundwater.

While IM 23 does not define the characteristics of "weathered" diesel, IM 23 references a 2020 toxicity study for "a release of diesel range organics that could be considered as an event that had happened in the past (significant time prior to investigation), and natural biologic process have influenced the original chemistry of the product, or what could be considered a "weathered" release of diesel."

For this Property, analytical laboratory reports for groundwater samples collected by EPI in 2014 indicate the DRO is weathered. Specifically, results for samples collected from monitoring wells MW-1 and MW-4 contained the following language "Chromatogram indicates that it is likely that sample contains weathered diesel." This finding is consistent with the expectation that the fuel has weathered further since 2014, now nine years since discovery of the release in November 2012.

IM 23 states that the groundwater protective value for freshwater, for diesel-range organics "weathered", is listed as 3,000 ug/L. Currently, only one monitoring well at the Property, MW-2, contains DRO concentrations greater than 3,000 ug/L (see Figure 4a). Including the groundwater samples collected from the recent soil borings (see Figure 4), four additional areas contain groundwater concentrations greater than 3,000 ug/L (groundwater samples collected from GLB-8, -12, -15, and -16). Given the findings that DRO contaminants at this Property are weathered, 3,000 ug/L should be considered when developing remedial alternatives for the Property groundwater.

5.3 Extent of Property Contamination

As can be seen on Figures 4 and 4a, the areas with elevated DRO concentrations are similar to those observed for soils (Figure 3), with a notable difference along area of the Ordinary High Watermark. In this location, groundwater data is represented by grab samples collected from the recent borings. As previously stated, petroleum contaminants were largely not detected in soil samples collected from this area. Accordingly, groundwater concentrations detected in the grab samples likely are transitory, due to upgradient sources and the effects of removing water from the borings prior to collection of groundwater samples. Grab samples typically also are biased high, due to turbidity in the samples (as they are not collected from a properly-developed monitoring well).

Information collected from this recent G-Logics exploration indicates that petroleum concentrations in soil and groundwater generally have decreased from when they were first detected approximately nine years ago. This reduction likely is due to ongoing natural-attenuation processes, which is degrading the fuel oil in the subsurface. Measurable amounts of LNAPL also are now smaller, likely due to the same processes and the LNAPL-recovery efforts conducted by EPI. However, petroleum contaminants still remain at concentrations greater than cleanup levels in yard and shoreline areas west of the home. Based on residual soil concentrations, remedial efforts are warranted.

With the discovered locations and depths of DRO contaminants, an additional cross-section has been prepared. Figure 6 presents a third cross-section that complements the two cross-sections previously provided in the RI report prepared by TRC (their Figure 3). In their cross-section B-B', data was extrapolated from inland areas (B-11, GB-3, MW-2 and MW-1) and projected westward toward the shoreline as much as 10+ feet. By including this inland data, the presented interpretation indicated that this contamination is physically

g-logics

present at the cross-section location, when factually it is not. Accordingly, G-Logics generated this new cross-section (Figure 6) using the same alignment, but only incorporating data points (old and new) for soil samples located in the cross-section location. Based on this updated cross-section, soil contamination does not extend beyond the Ordinary High Watermark.

6.0 **REMEDIAL EXCAVATION**

This section discusses G-Logics approach for the excavation of soils containing DRO contaminants at the Property. Planning-level estimates also have been prepared. These estimates update the budgeting information presented in our Draft letter dated July 15, 2020. This letter was prepared as a review of TRC's *Description of Remedial Alternative and Order-of-Magnitude Cost Estimate, Mossman UST Site*, dated November 16, 2018.

With the updated information collected for the Property, a remedial excavation is prudent. Specifically, this remedial work acknowledges the following.

- Demolition of the existing house would not be necessary. Instead, the foundations nearest the excavation could be shored with pin-piles (or helical piles) prior to the remedial excavation.
- Significant encroachment onto the north-adjoining property is not necessary.
- Soil excavation would not extend beyond the ordinary high watermark.
- In-water work is not needed, soil permitting, coffer dams, or sheet piling will not be needed.
- Excavation could be conducted with limited-access equipment (e.g., small track-mounted excavator and skid-steer equipment).
- Equipment can access the excavation area via the walkway area located along the southeast side of the home.
- A conveyor system would be used to move soils from the excavation area to truck/bins staged in front of the home. The conveyor system also would be used to move backfill soils to the excavated area.

g-logics

- In order to use pin piles to support the home in areas directly adjacent to the identified excavation areas, a structural evaluation would need to be conducted. This study would identify bearing capacities and the recommendations for structural reinforcement of the building. Using these findings, a structural engineer would need to design the layout for any structural reinforcement. In addition, the structural engineer should conduct site visits before and after all work activity to assess the structure for existing cracks and the general structural conditions of the foundation, walls, and roof. Accordingly, both a geotechnical engineer and structural engineer would need to be retained prior to and during the remedial excavations in order to provide assistance to the remediation contractor.
- In addition to the pin-piles protecting the building foundation in the areas near the excavation work, measures need to be taken to prevent sloughing of material from underneath the building. These precautionary steps are intended to mitigate failure of the slab and/or any sub-slab utilities. It is anticipated that slot-cut and/or trench box excavation methods can be used adjacent to the building, with the cuts backfilled using control density fill (CDF). However, based on site conditions, the contractor may need to coordinate with the geotechnical engineer to select a different excavation method (if slot-cut methods are not feasible).
- If contaminated soils are not excavated beneath the northwestern portion of the home, In-situ treatment methods (chemical oxidation and/or enhanced bioremediation) could be used to address remaining contaminants. If needed, it is anticipated that simple infiltration galleries can be used for the addition of treatment solutions.

6.1 Soil Excavation Areas

As seen on Table 1, elevated DRO concentrations are limited to a narrow band of soils approximate 2 to 4 feet thick, located at/near the water-table interface. Accordingly, a remedial excavation to address these soils is appropriate, with a more successful/complete excavation anticipated when water levels (lake levels) are lower. For soils that cannot be excavated due to overlying structures (residence and patio structures located on North-adjacent property), In-situ treatment may be appropriate. This combined remedial work should mitigate impacts to groundwater and subsequently the possible impacts to surface water.

g-logics

Figure 7 of this report, based on soil data presented on Figure 3, shows the location where DRO contaminants can be excavated. Square-footage calculations for upland areas (green shading) and shoreline areas (yellow shading) also are presented on Figure 7. For the upland area, an average soil thickness of 11 feet has been used for the calculations. A thickness of 6 feet has been used for the shoreline area. Given the small volumes of soils and the restricted space at the Property, no effort is assumed for segregation of clean soils from contaminated soils.

6.2 Soil-Disposal Costs

For the excavated soils, a conversion factor of 1.6 (yards to tons) is assumed, which yields a total of 651 tons of soil for off-site disposal. For estimating purposes, disposal of petroleum-contaminated soil is identified at \$75 per ton and transport is identified at \$20 per ton. These values have been used in the calculations presented in Table 4.

The interpretations presented on Figure 7 should not be taken to represent definitive locations or absolute volumes. Final excavated volumes also will not exactly match these estimated quantities, given actual excavated depths/areas, discovered site conditions, contractor capabilities, weather conditions, etc.

Prior to initiation of this approach for remedial work at the Property, further collaborative refinement and updating of the presented work scopes and budget estimates should be considered. This update would reflect current contractor rates, labor rates, equipment requirements, permitting issues/costs, soil-disposal costs, etc. With this update, edits to the discussed workscope may be required.

6.3 Additional Remedial Costs

Table 4 also includes preliminary estimates of additional costs for a typical soil-excavation project. These costs are for work associated with engineering, management, permitting, documentation, and contractor expenses necessary to address the subsurface contamination. Additional efforts include activities such as project-design modifications, contractor health and safety issues, sampling and chemical analyses, contaminated soil transportation and disposal, groundwater management and treatment, Ecology negotiations, and document preparation. These additional tasks have been included with "Placeholder Estimates" presented in Table 4. Refinement of these costs would be updated as the project is developed.

g-logics

7.0 LIMITATIONS

The scope of work on this project was presented in our identified workplan, as subsequently approved. Please be aware our scope of work was limited to those items specifically identified in the workplan. Other activities not specifically included in the presented scope of work (in the workplan, correspondence, or this report) are excluded and are therefore not part of our services.

Land use, site conditions (both on-site and off-site), and other factors will change over time. Since property activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the exploration work.

G-Logics assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

This report is prepared for the sole use of our client and the Users identified in Section 1.0 of this report. The scope of services performed during this effort may not be appropriate for the needs of other parties. Re-use of this document or the findings, conclusions, or recommendations presented herein, are at the sole risk of said party(ies). Our client and regulatory agencies also may make additional copies of this document for their internal and public use, or as required by law. All other users of this document must acknowledge our copyright and indicate that permission to use has been received from G-Logics and our Client. Any party other than our client who would like to use this report shall notify G-Logics of such intended use by executing the "Permission and Conditions for Use and Copying" contained in this document. Based on the intended use of the report, G-Logics may require that additional work be performed and that an updated report be issued. Noncompliance with any of these requirements will release G-Logics from any liability resulting from the use of this report by any unauthorized party.

g-logics

The planning-level costs presented in this report are based on our current understanding of site conditions, our professional experience, and Ecology requirements. Actual costs could differ by as much or more than -10% to +50%, depending upon a multitude of project variables. Presented budgeting estimates also do not include health testing, Ecology costs, attorney fees, public participation/notification issues, or other items not specifically described in this report or presented in the attached Table 4, which ultimately may be required. Data gaps also were identified and discussed in Section 6.1 and 6.2 of this report.

Presented planning estimates do not constitute a "not-to-exceed" bid or proposal for this work. Actual costs may change up or down based on discovered site conditions, actual provided services, and project deliverables. G-Logics does not warrant or guarantee presented estimates, especially if others conduct the soil-excavation coordination and sampling work.

G-Logics is not a cost estimator or contractor and does not have a cost estimator's or contractor's experience with factors such as the specific decisions of other consultants involved with the project; the means, methods, sequences, and operations of construction and related safety programs; the cost and extent of labor, equipment, and materials; cost estimators' and contractors' techniques for determining prices and market conditions; and other factors that cost estimators and contractors consider and over which G-Logics has no control. Accordingly, if project proponents choose to rely on our preliminary estimate rather than a cost estimator's or contractor's estimate, to the fullest extent permitted by law, any claim against G-Logics relative to the accuracy of G-Logics opinions and estimates shall be waived.

No warranty, either express or implied, is made.

g-logics

FIGURES

Mapping Reference: Delorme and King County iMap

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Measurements.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Measurements.

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

g S ဖ Ģ 2 File: **Project**

Mapping Reference: Environmental Partners Inc., Triad Associates, G-Logics Data.

TABLES

Table A, EPI/TRC Data Soil Sampling Analytical Results (in mg/kg) Remedial Investigation Report Mossman Residence 3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

			Total petroleum	Hydrocarbons ^(a)					Vola	atile Organic Co	mpounds ^(b)					
Report	Sample ID	Sample Date	Diesel-Range	Oil-Range	Benzene	Toluene	Ethylbenzene	Total xylenes	m,p-Xylene	n-Propylbenzene	1,3,5-Trimethylbenzene	sec-buylbenzene	4-Isopropyltoluene	n-Butylbenzene	1,2,4-Trimethylbenzene	Napthalene
	B-1:7.5	5/20/2013	27,000	ND (<1,500)												
	B-1:11	5/20/2013	ND (<29)	ND (<57)												
	B-2:5	5/20/2013	ND (<30)	ND (<60)												
	B-2:7.5	5/20/2013	4,800	ND (<400)												
	B-3:4	5/20/2013	ND (<27)	ND <53												
	B-3:6.5	5/20/2013	49	350												
	B-4:5	5/20/2013	ND (<29)	ND (<59)												
tion	B-4:6.5	5/20/2013	7,600	ND (<910)												
stigat	B-5:4	5/20/2013	ND (<27)	ND (<54)												
Inve	B-5:6.5	5/20/2013	6,700	ND (<350)												
ase II	B-6:3.5	5/20/2013	ND (<27)	ND (<53)												
Ph	B-6:5.5	5/20/2013	ND (<31)	ND (<61)												
	MW-1:1.3	5/21/2013	32,000	ND (<1,800)												
	MW-2:2	5/21/2013	13,000	ND (<890)												
	MW-2:3	5/21/2013	43,000	ND (<1,600)												
	MW-2:6	5/21/2013	300	1,000												
	B-7:6	5/21/2013	ND (<30)	ND (<60)												
	MW-4:5	5/21/2013	26,000	ND (<1,500)	0.14 ^c	0.4 ^c	3.1°	15.6°								7.2
	Footing:1.5	5/21/2013	ND (<27)	ND (<53)												

Table A, EPI/TRC DataSoil Sampling Analytical Results (in mg/kg)Remedial Investigation ReportMossman Residence3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

			Total petroleum	Hydrocarbons ^(a)					Vola	atile Organic Co	mpounds ^(b)					
Report	Sample ID	Sample Date	Diesel-Range	Oil-Range	Benzene	Toluene	Ethylbenzene	Total xylenes	m,p-Xylene	n-Propylbenzene	1,3,5-Trimethylbenzene	sec-buylbenzene	4-Isopropyltoluene	n-Butylbenzene	1,2,4-Trimethylbenzene	Napthalene
	B-8:8	11/20/2013	1,910	ND (<68.3)	ND (<0.0232)	ND (<0.0232)	ND (<0.0348)		ND (<0.0232)	ND (<0.0232)	ND (<0.0232)	0.258	0.0848	ND (<0.0232)	0.0322	ND (<0.0348)
	B-9:8	11/20/2013	372	ND (<71)												
	B-10:6	11/20/2013	502	ND (<65.7)												
ion	B-11:4	11/19/2013	3,480	ND (<49.4)												
stigat	B-12:7	11/19/2013	54.1	ND (<69.2)												
l Inve	B-13:7.7	2/17/2014	ND (<26)	ND(<53)												
nedia	B-14:7	2/17/2014	640	ND (<56)												
Rer	MW-5:2	11/19/2013	ND (<21.3)	ND (<53.2)												
	MW-6:4	11/19/2013	228	ND (<52.7)	ND (<0.0225)	ND (<0.0225)	ND (<0.0337)		0.0373	0.0735	0.0608	0.0537	0.0400	0.146	0.311	0.0852
	MW-7:5.5	2/17/2014	ND(<25)	ND(<50)												
	MW-8:3.5	2/17/2014	ND(<25)	ND(<50)												
Methoo U	d A Soil Clean nrestricted La	up Levels for nd Uses	2,000	2,000	0.03	7	6	9	9	NVE	NVE	NVE	NVE	NVE	NVE	5

Notes:

All samples collected during the November 2013 event analyzed at Fremont Analytical in Seattle, Washington

All samples collected during May 2013 and February/March 2014 events were analyzed at ALS Environmental Laboratories in Everett Washington

(a) Analyzed by Method NWTPH-Dx

(b) Analyzed by EPA Method 8260 reporting only non-halogenated hydrocarbons

(c) Analyzed by EPA Method 8021

Bold Bold results indicate that the compound was detected, but concentration is less than applicable cleanup level

Cells shaded gray indicate that the compound was detected at a concentration greater than the cleanup level

-- No analysis requested

NVE No value established

TABLE 1 Soil Sample Analyses, Petroleum Hydrocarbons Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, WA

Sammamis	sh, WA																																	
											as sheet							MIBE			Fiscilon	tracitor trac	son estrat	uon	Tothon	Lesciel a	Jorn Es	2161	618211	E2138	Estion .	Enorth C	2160 6167	an caran
Exploration Location	Sample Date	Sample Number	Surface Elevation† (i	Sample ft) Depth (ft)	Sample Elevation† (ft)	810	Reserved Barring	se Range Organi	OI POINTS COMPIL	StORO SHOD	B SHO COTTO	Touene	EINIDE	ntere tylere	5 Justit	colere weth	WI Ten BUN ETTE	Allphates	AND AND STREET	APHEC'	on allenate	APHIECON?	APHIEC 2	3 storesto	all Hydrocard	E HYDROGETON	e hydrocation w	Ne Hydrocattor	ale Hydrocatoon	Horato	Hydrocation Hydrocation	Natocation Nonation	Hybrocation Hybrogate Hy	Hocabon
MTCA Metho	d A Cleanup	Level (2)				*	2,000	2,000	2,000	2,000	0.03	7	6	9	5	0.1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
(units in mg/	kg)										_						_																	
2020 Explo	ration	0044	22		20																													
GB-1	5/14/2020 5/14/2020 5/14/2020	GB-1-4 GB-1-6 GB-1-7	33	4 6 7	29 27 26	0 33	 1,540	174	 1,714																									
	5/14/2020	GB-1-9		9	24	35	947	<52.6	947																									
GB-2	5/14/2020 5/14/2020 5/14/2020	GB-2-4 GB-2-7 GB-2-9	33	4 7 9	29 26 24	0 360 196	 13,800 [7,410 D	 <68.3 <137	 13,800 D 7,410 D		 <0.881 	 <1.03 	 2.81 	 16.26 	45.6		 <2.57 	6.08 	87.8	306 	136													
GB-3	5/14/2020	GB-3-2	29	2	27	1																												
	5/14/2020	GB-3-4		4	25	7	3,740 D	<51.8	3,740 D																									
	5/14/2020 5/14/2020	GB-3-6 GB-3-8		6 8	23 21	5	64.9	<49.5 <53.3	64.9 <53.3																									
GB-4	5/14/2020	GB-4-2	29	2	27	5	30,900 E	0 <47.5	30,900 D		<0.719	<0.839	<0.839	<1.56	7.41		<2.10	<3.00	<1.68	35.6	<3.60													
	5/14/2020 5/14/2020	GB-4-4 GB-4-8		4 8	25 21	242 8	28,900 E <21.8	<55.4 <54.5	28,900 D <54.5																									
GB-5	5/14/2020	GB-5-4	28	4	24	0	<21.7	<54.3	<54.3																									
GB-6	5/14/2020	GB-5-7	28	7	21	0			105																									
050	5/14/2020	GB-6-4	20	4	24	0	<23.1	<57.7	<57.7																									
	5/14/2020	GB-6-6		6	22	0																												
GB-7	5/14/2020 5/14/2020	GB-7-6 GB-7-8	33	6 8	27 25	3 63	<20.5 1.530	<51.2 <25.2	<51.2 1.530																									
	5/14/2020	GB-7-9		9	24	1	<31.6	<79.0	<79.0																									
G-Logics M	onitoring V	Vell																																
MW-9	5/14/2020	MW-9-4	33	4	29 26	0																												
	5/14/2020	MW-9-10		10	23	0	<21.6	<54.0	<54.0																									
2021 Explo	ration		20	2	20	00.0																												
GLD-0	10/20/202	1 GLB-8-2 1 GLB-8-4	32	2 4	28	20.8																												
	10/20/202	1 GLB-8-6		6	26	16.2	<56.0	<112	<168																									
	10/20/202	1 GLB-8-8 1 GLB-8-10		8 10	24 22	128.7	12,400 [<1,060<118	12,400 D	8,720	<0.0906 DH	<0.136 DH	<0.113 DH	0.564 DH	<u>6.4</u>		3.56 H	11.8 H	48.6 H	293 DH	111 H	735 DH 3	,120 DH	102 H	315 HL	1,450 H	1,480 H	192 H	<19.0 H 1	04 H 5	18 H 1 	1,190 H	<9.49 H	
	10/20/202	1 GLB-8-12		12	20	3.4																												
	10/20/202 ⁻ 10/20/202 ⁻	1 GLB-8-14 1 GLB-8-16		14 16	18 16	2.6 5.2																												
GLB-9	10/20/202	1 GLB-9-4	33	4	29	2.5																												
	10/20/202	1 GLB-9-6		6	27	25.1	8,940	<96.8	8,940																									
	10/20/202	1 GLB-9-8		8	25	168.2	27,600 E	> <1,400	27,600 D	25,000 D	0.120	<0.224	1.54	5.97			6.12 H	29.2 H	185 DH	463 DH	212 H	1,170 DH 4	,750 DH	328 H	961 HL	3,800 DH	4,160 DH	495 H	82.4 H 4	01 H 1,6	630 H 3,	,290 DH	591 H	
	10/20/202	1 GLB-9-10 1 GLB-9-12		10	23	52	58.3 H	<105 H	58.3 H																									
	10/20/202	1 GLB-9-14		14	19	9.5																												
	10/20/202	GLB-9-16	22	16	1/	1.1																												
GLB-10	10/20/202	I GLB-10-4	33	4 6	29 27	3.4 1.7	143 H	<118 H	143 H																									
	10/20/202	1 GLB-10-8		8	25	25.2	498	342	839																									
	10/20/202	GLB-10-10		10	23	4.7	<51.4 H	I <103 H	<103 H																									
	10/20/202	GLB-10-12 GLB-10-14		12	21 19	2.1	<49.4 H	-	<99.5 H																									
	10/20/202	1 GLB-10-16		16	17	2.5	<52.1 H	l <104 H	<104 H																									

TABLE 1 Soil Sample Analyses, Petroleum Hydrocarbons Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, WA

Sammami	sh, WA																														
Exploratio Location	Sample Date	Sample Number	Surface Sample Elevation† (ft) Depth (r	Sample Elevation† ft) (ft)	10	Res Hill Borning	C) Company Company	CITERE CORPE	and DRO MARCO	IS STORE OF TRANSPORT	Tours	e unite	noese men	2 Install	alere seemi	enauther to be	WINDES MILLES MILLES MILLES MILLES	APHE STORE	MECON BRY	Intering the service of the service	reader stratester	son son sol	Stern Harden	HARDEN DOLLAR	E-thoroadone	2216) Bite Hydrogatoo	I.C. 627)	Hybooster Kome	n Corio	CIPY29 C	1210 House and the second and a second and a second and the second and the second and a second a
MTCA Meth	d A Cleanup Le	evel (2)			*	2,000	2,000	2,000	2,000	0.03	7	6	9	5	0.1	*	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*
(units in mg	kg)																														
GLB-11	10/20/2021	GLB-11-4	33 4	29	0.2																										
	10/20/2021	GLB-11-6	6	27	3.2																										
	10/20/2021	GLB-11-8	8	25	9.5	259	980	1,240																							
	10/20/2021	GLB-11-10	10	23	1.6	<93.3 H	H 381 H	381 H																							
	10/20/2021	GLB-11-12	12	21	2.5	<87.2 H	H <174 H	<174 H																							
	10/20/2021	GLB-11-16	14	19	1.9	<56.1 H	H <112 H	<112 H																							
	10/20/2021	GLB-11-18	16	17	2.0																										
GLB-12	10/21/2021	GLB-12-2	30 2	28	1.4					<0.0271 H	<0.0406 H	<0.0338 H	<0.0677 H	<0.135 H																	
	10/21/2021	GLB-12-4	4	26	339.4	5,160	<105	5,160	6,250	<0.618 H	<0.515 H	<1.75 H	<0.515	3.89 H	<1.13 H	3.80 H <	1.54 H 6. 4	4 H 71.3	DH 22.5 H	1 253 DH	2,180 DH	<22.7	66.7 L	712	939	113	<22.7	12.9	103	477	99.5
	10/21/2021	GLB-12-6	6	24	59.8	60.6	<98.6	60.6																							
	10/21/2021	GLB-12-8	8	22	31.6																										
GLB-13	10/21/2021	GLB-13-2	28 2	26	7.5	<47.2	<94.5	<94.5																							
	10/21/2021	GLB-13-4	4	24	7.3	<50.6	<101	<152																							
	10/21/2021	GLB-13-6	6	22	10.3	<51.5	<103	<154																							
	10/21/2021	GLB-13-8	8	20	10.6	<55.8	<112	<112																							
CLP 14	10/21/2021	CI B 14 2	20 2	26	20.2	-40.1	-06.1	-1.1.1							- 1																
GLB-14	10/21/2021	GLD-14-2	20 2	20	162.0	<40.1	<90.1	<144																							
	10/21/2021	GLB-14-4 GLB-14-6	4	24	2 1	<48.1	<96.1	<96.1																							
	10/21/2021	GI B-14-8	8	20	12.1																										
	10/21/2021	OLD IF 0	0	20	12.0	_				_				_	_							_									
GLB-15	10/21/2021	GLB-15-2	28 2	26	4.2	<49.3	<98.6	<98.6																							
	10/21/2021	GLB-15-4	4	24	6.9	<48.8	<97.5	<146																							
	10/21/2021	GLB-15-6	6	22	1.7	<51.3	<103	<154																							
	10/21/2021	GLB-15-8	8	20	9.3	<51.3	<103	<103																							
GLB-16	10/21/2021	GLB-16-2	28 2	26	64.6	125	<103	125																							
	10/21/2021	GLB-16-4	4	24	1.9	<60.4	<121	<181																							
	10/21/2021	GLB-16-6	6	22	0.4	<49.2	<98.3	<98.3																							
	10/21/2021	GLB-16-8	8	20	0.1	<54.4	<109	<109																							
-																															

Notes: Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.

(1) Soil samples were field screened using a PID to record VOCs. Headspace VOC concentrations were recorded after placing the soil in a sealed plastic bag and allowing air inside the bag to equilibrate.

(2) MTCA Standard Method A Soil Cleanup Levels based on residential use, provided in the Ecology cleanup levels and risk calculation (CLARC) database

Surface elevations are estimated based on October 15, 2015 survey by Triad Associates based on NGVD 29 (provided by Environmental Partners Inc.)

* Not Applicable/ Cleanup/Screening Level Not Established.

--- Sample not analyzed.

nd Not Detected (data gathered from historical reports, lab analysis reporting limits not available).

<1.07 The analyte was not detected at a concentration above the indicated reporting limit.

12.0 Bold Number(s) indicates contaminant detected.

419 Bold Number(s) and Yellow Shading indicates concentration exceeds applicable cleanup level.

D The Sample was diluted. Detection Limits were raised and surrogate recoveries may not be meaningful.

H Holding times for preparation or analysis exceeded

L Flagged value is not within established control limits

		1	Total Petroleum	n Hydrocarbons	a a					Vola	atile Organic	Compounds	b				Semivola	ntile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Metho	d A CUL	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method I	B N-C CUL					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
B-1	5/20/2013	43,000	<2500	43,000																
B-3	5/20/2013	<270	<430	<430																
B-4	5/20/2013	2,600	<430	2,600																
B-5	5/20/2013	3,900	<420	3,900																
B-6	5/20/2013	<260	<420	<260																
B-7	5/21/2013	<260	<420	<260																
B-8	11/20/2013	1,080	<100	1,080																
B-9	11/20/2013	<50	<100	<50																
B-10	11/20/2013	190	<100	190																
B-11	11/19/2013	959	<100	959																
B-12	11/19/2013	616	<100	616																
B-13	2/17/2014	170	270	440																
B-14	2/17/2014	3,200	570	3,770													0.1	0.026	0.031	
GLB-8	10/20/2021	22,600 D	<988	22,600 D																
GLB-9	10/20/2021	2,550	<99.3	2,550																
GLB-10	10/20/2021	1,080	<98.9	1,080																
GLB-11	10/20/2021	<99.8	167	242																
GLB-12	10/21/2021	7,750	<99.9	7,750																
GLB-13	10/21/2021	165	<99.3	165																
GLB-14	10/21/2021	534	<98.9	534																
GLB-15	10/21/2021	9,290	<99.2	9,290	7,950	<0.400 H	<1.00 H	<0.440 H				<0.750 H				<1.25 H				
GLB-16	10/21/2021	4,970	<98.6	4,970	5,120 B	<0.400 H	<1.00 H	<0.440 H				<0.750 H				<1.25 H				
	5/21/2013	9,300	<950	9,300																
	11/21/2013	1,280	<100	1,280																
	3/4/2014	1,700	<250	1,700													3.2	7.0	6.0	
	8/5/2016	457	<100	457												5.35				
MW-1	11/30/2016	832	<99.5	832												3.32				
	10/9/2018	578	<99.6	578												<1.0				
	1/23/2020	651	<49.5	651												<1.0				
	5/19/2020	519	<99.4	519		<1	<1	<1				<1				<1				
1	10/20/2021	944	<99.8	944						T			I		I					

		ſ	Fotal Petroleum	Hydrocarbons	a					Vola	tile Organic	Compounds	b				Semivola	tile Organic Cor	npounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Metho	d A CUL	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method E	B N-C CUL					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
-																				
	5/21/2013	LNAPL	PRESENT																	
	11/21/2013	LNAPL	PRESENT																	
	3/4/2014	LNAPL	PRESENT																	
	8/5/2016	LNAPL	PRESENT																	
MW-2	11/30/2016	LNAPL	PRESENT																	
	10/9/2018	LNAPL	PRESENT																	
	1/23/2020	LNAPL	PRESENT																	
	5/19/2020	LNAPL F	PRESENT**																	
	10/20/2021	LNAPL P	RESENT (1)	11,900																
	5/20/2013	11,000	<570	11,000																
	11/21/2013	2,010	<100	2,010																
	3/4/2014	1,100	<250	1,100													0.067	0.35	0.069	
	9/15/2015	604	<99.8	604													<0.10	<0.10	<0.10	
	1/22/2016 & DUP1	895/532	<99.9/<100	895/532												<1.0/<1.0				
MW-3	8/5/2016	3,010	<99.9	3,010												<1.0				
	11/30/2016	439	<99.7	439												<1.0				
	10/9/2018	712	<99.7	712												<1.0	<0.0991	0.396	<0.0991	
	1/23/2020	425	<49.9	425												<1.0	<0.0993	0.145	<0.0993	
	5/19/2020	613	<99.7	613		<1	<1	<1				<1				<1				
	10/21/2021	2,270	<98.6	2,270																
							•													-
	5/21/2013	22,000	<1,100	22,000																
	11/21/2013	29,800	185	29,985																
	3/4/2014	1,300	340	1,640													0.026	<0.020	<0.020	
	9/15/2015	3,860	<101	3,860													0.566	0.181	0.406	
	1/22/2016	255	<99.8	255												<1.0				
N4\\\/_4	8/5/2016	783	<99.5	783												1.50				
10100-4	11/30/2016	609	<99.5	609												<1.0				
	10/9/2018	5,130	<99.7	5,130												<1.0	0.575	0.498	0.106	
	1/23/2020 & DUP1	115/96.9	<49.8/<49.8	115/96.9												<1.0/'<1.0	<0.0999	<0.0999	<0.0999	
	5/19/2020	1,060	<98.5	1,060		<1	<1	<1				<1				1.4				
	10/21/2021	2,650	<98.7	2,690	197	<0.400 H	<1.00 H	<0.440 H				<0.750 H				<1.25 H				11.2

		٦	Total Petroleum	Hydrocarbons	a a					Vola	tile Organic	Compounds	, b				Semivola	atile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Metho	d A CUL	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method	B N-C CUL					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
-																				
MW-5 Recon	11/19/2013	2,080	<100																	
	11/21/2013	1,250	<100	1,250		1.59	3.7		4.29	2.92	4.44		1.88	22.4	2.34	9.66				
	3/4/2014																			
	9/15/2015	209	206	415													<0.0998	<0.0998	0.714	
	1/22/2016	377	<99.8	377												<1.0				
	8/5/2016	160	<99.8	160												<1.0				
MW-5	11/30/2016	437	<99.4	437												<1.0				
	10/9/2018	764	<99.7	764												<1.0				
	1/23/2020																			
	5/19/2020 & Dup-1	<49.4/ 49.9	<98.8/<99.5	<49.4/ 49.9																
	10/20/2021	693	<98.2	693	340															
			•	•	•								4					•		. .
MW-6 Recon	11/19/2013	1,450	<100	1,450																
	11/21/2013	1,120	<100	1,120		<1.0	<1.0		<1.0	<1.0	<1.0		<1.0	6.04	<1.0	1.11				
	3/4/2014	400	<250	400																
	9/15/2015	117	261	378													<0.0999	<0.0999	0.568	
	1/22/2016	199	<100	199												<1.0				
	8/5/2016	126	<100	126												<1.0				
MW-6	11/30/2016	136	<99.5	136												<1.0				
	10/9/2018	642	<99.4	642												<1.0				
	1/23/2020	60.6	<49.9	60.6												<1.0				
	5/19/2020	51.2	<99.4	51.2																
	10/21/2021	541	<98.7	541	297															
																ł			<u>.</u>	. 4
	3/4/2014	<130	<250	<130																
	10/9/2018	<49.9	<99.7	<49.9												<1.0				
MW-7	1/23/2020	<49.5	<98.9	<49.5												<1.0				
	5/19/2020	<48.8	<97.6	<48.8																
	10/21/2021	<99.8	<99.8	<99.8															1	
l													1							

		1	Total Petroleum	n Hydrocarbons	a					Vola	tile Organic	Compounds	b				Semivola	atile Organic Co	mpounds ^c	
Sample ID	Sample Date	DRO	ORO	Combined DRO/ORO	DRO with Silica Gel Treatment	Ethyl- benzene	Total Xylenes	Benzene	n-Butyl- benzene	sec-Butyl- benzene	n-Propyl- benzene	Toluene	4- Isopropyl- toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Naphthalene	Naphthalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total Organic Carbon (d)
Metho	d A CUL	500	500	500	500	700	1,000	5	*	*	*	1,000	*	*	*	160	160	*	*	*
Method	B N-C CUL					800	1,600	32	400	800	800	640	*	80.0	80.0	160	160	560	32.0	*
	3/4/2014	<130	<250	<130																
	10/9/2018	<49.8	<99.7	<49.8												<1.0				
MW-8	1/23/2020	<49.5	<99.1	<49.5												<1.0				
	5/19/2020	<49.7	<99.5	<49.7																
	10/20/2021	<98.8	<98.8	<98.8																4.19
M\\/_Q	5/19/2020	125	<98.7	125																
10100-9	10/21/2021	263	<98.6	263																

Notes:

All results presented in micrograms per liter (µg/L).

- **Bold** Bold results indicate that the compound was detected.
- a Analyzed by Method NWTPH-Dx/Dx Extended.
- b Analyzed by EPA Method 8260 reporting only non-halogenated hydrocarbons (except Naphthalenes as indicated).
- c Analyzed by EPA Method 8270 SIM.
- d Units in mg/L
- 1 LNAPL detected at time of sampling.
- -- Sample was not analyzed for this compound.
- * Not Applicable/ Cleanup/Screening Level Not Established.
- ** Well containing LNAPL was not sampled
- 642 Bold Number(s) and Yellow Shading indicates concentration exceeds MTCA Methods A cleanup level.
- 10/20/2021 Most recent sampling event
 - B Analyte was Detected in the Method Blank

Table 3Groundwater Elevation DataMossman Residence3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

Well ID	Date	Ground Elevation	PVC Casing Elevation ^a	Depth to Water ^b	LNAPL Thickness ^c	Water Table Elevation ^d
MW-1	5/21/2013	28.02	27.74	0.01		27.73
	11/21/2013			0.80		26.94
	3/4/2014			0.25		27.49
	9/15/2015			1.89	0.01	25.85
	1/22/2016			0.50		27.24
	8/5/2016			1.68		26.06
	11/30/2016			0.50		27.24
	10/12/2018			1.62		26.12
	1/23/2020			0.30*		27.44
	5/19/2020			1.23	0.0	26.51
	10/21/2021			1.65	0.0	26.09
MW-2	5/21/2013	29.09	28.75	2.00		26.75
	11/21/2013			3.20		25.55
	3/4/2014				LNAPL ^e	
	9/15/2015			3.20	0.31	25.57
	1/22/2016			3.20	2.21	25.73
	8/5/2016			2.96	0.21	25.81
	11/30/2016			3.25	2.1	25.67
	10/12/2018			2.64	0.01	26.11
	1/23/2020			0.80*	Heavy Sheen	28.67
	5/19/2020			2.31	0.06	26.49
	10/21/2021			2.75	0.05	26.04
MW-3	5/21/2013	33.03	32.82	4.96		27.86
	11/21/2013			5.40		27.42
	3/4/2014			5.09		27.73
	9/15/2015			6.88		25.94
	1/22/2016			5.13		27.69
	8/5/2016			6.67		26.15
	11/30/2016			5.20		27.62
	10/12/2018			6.56		26.26
	1/23/2020			4.83		27.99
	5/19/2020			6.29	0.0	26.53
	10/21/2021			6.64	0.0	26.18
Table 3Groundwater Elevation DataMossman Residence3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

Well ID	Date	Ground Elevation	PVC Casing Elevation ^a	Depth to Water ^b	LNAPL Thickness ^c	Water Table Elevation ^d
	5/21/2013			3.88		29.42
	11/21/2013			5.19		28.11
	3/4/2014			3.38		29.92
	9/15/2015			5.91		27.39
	1/22/2016			3.73		29.57
MW-4	8/5/2016	33.40	33.30	6.05		27.25
	11/30/2016			4.14		29.16
	10/12/2018			5.75		27.55
	1/23/2020			4.08		29.22
	5/19/2020			5.24	0.0	28.06
	10/21/2021			5.89	0.0	27.41
	11/21/2013			0.40		26.96
	3/4/2014			^f		
MW-5	9/15/2015			1.51		25.85
	1/22/2016	27 57		0.10		27.26
	8/5/2016		27.36	1.32		26.04
1010 0-5	11/30/2016	21.51	27.50	0.00		27.36
	10/12/2018			1.27		26.09
	1/23/2020					
	5/19/2020			0.87	0.0	26.49
	10/21/2021			1.31	0.0	26.05
	11/21/2013			2.38		26.91
	3/4/2014			1.89		27.40
	9/15/2015			3.53		25.76
	1/22/2016			1.97		27.32
M\\/_6	8/5/2016	20.60	20.20	3.30		25.99
10100-0	11/30/2016	29.00	29.29	1.30	Sheen	27.99
	10/12/2018			3.27		26.02
	1/23/2020			1.82		27.47
	5/19/2020			2.87	0.0	26.42
	10/21/2021			3.31	0.0	25.98

Table 3 Groundwater Elevation Data Mossman Residence 3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

Well ID	Date	Ground Elevation	PVC Casing Elevation ^a	Depth to Water ^b	LNAPL Thickness ^c	Water Table Elevation ^d
	3/4/2014			4.46		27.43
	9/15/2015			6.07		25.82
	1/22/2016			4.54		27.35
	8/5/2016			5.85		26.04
MW-7	11/30/2016	32.10	31.89	4.53		27.36
	10/12/2018			5.79		26.10
	1/23/2020			4.42		27.47
	5/19/2020			5.42	0.0	26.47
	10/21/2021			5.84	0.0	26.05
	3/4/2014			1.60		27.45
	9/15/2015			3.21		25.84
	1/22/2016			1.71		27.34
	8/5/2016			3.98		25.07
MW-8	11/30/2016	29.30	29.05	1.68		27.37
	10/12/2018			2.95		26.10
	1/23/2020			1.57		27.48
	5/19/2020			2.58	0.0	26.47
	10/20/2021			3.00	0.0	26.05
M\\/_Q	5/19/2020		33 11	6.51	0.0	26.60
10100-3	10/21/2021	21	55.11	6.75	0.0	26.36

Notes:

а

All measurements are in feet. Elevations are in feet above mean sea level (AMSL).

- Polyvinyl chloride (PVC) casing elevation on the north side of the well casing.
 - □ Survey Coordinate System and Zone: Washington State Plane, North Zone coordinates.
 - □ Horizontal Datum: NAD 83(91) US feet (horizontal accuracy: 0.1').
 - □ Vertical Datum: NGVD 29 (vertical accuracy: 0.01').
 - To convert from NGVD 29 to NAVD 88, add 3.58 feet to elevations.
 - Survey completed October 5, 2015 by Triad Associates.
- b Depth to groundwater measured from top of well casing.
- c LNAPL thickness = [Depth to LNAPL] [Depth to Water]; measured from top of well casing using an electronic oil-water interface probe. Bold value indicates measurable thickness.
- d Water table elevations adjusted for the presence of LNAPL using the following formula and assumed LNAPL specific gravity of 0.8: [Water Table Elevation] = [PVC Casing Elevation] [Depth to Water] + [LNAPL Thickness x 0.80].
- e LNAPL present; however, thickness and depth to water not recorded.
- f Groundwater surface was greater than PVC casing at this location on the date measured.
- -- Not recorded.
- Depth to groundwater measurement is an estimate.
- LNAPL Light non-aqueous phase liquid.

10/20/2021 Information added by G-Logics, most recent measurements.

Elevation for MW-9 was derived from MW-3 casing elevation.

Table 4Budgeting Estimates, Excavation of DRO Contaminated SoilsMossman Residence

3461 E. Lake Sammamish Shore Lane, Sammamish, Washington

Classification	Bulk Cubic Yards (BCY)	Tons (1.6 tons per BCY)	Transport (per Ton)	Disposal (per Ton)	Totals For Soils	Placeholder Estimates	Totals	
Petroleum Contaminants								
Upland Area, Green Shaded Area on Figure 7	285	456	\$20	\$75	\$43,320		\$43,320	
Shoreline Area, Yellow Shaded Area on Figure 7	122	195	\$20	\$75	\$18,544		\$18,544	
Workscope Preparation, Pre-Remediation Permitting, Bid Requests						\$ 30,000	\$30,000	
Geotechnical and Structural Engineering						\$ 80,000	\$80,000	
Pin Pile Installation						\$ 50,000	\$50,000	
Well Decommissioning						\$ 10,000	\$10,000	
Excavation/Restoration Contractor						\$ 150,000	\$150,000	
Excavation-water Treatment for Discharge						\$ 10,000	\$10,000	
Groundwater Monitoring-well Installation						\$ 30,000	\$30,000	
Groundwater Sampling, 1 Year						\$ 30,000	\$30,000	
In-Situ System Installation and Treatment						\$ 50,000	\$50,000	
Vapor Monitoring						\$ 5,000	\$5,000	
Analytical Testing						\$ 30,000	\$30,000	
Bioremediation Treatment-System Installation and Treatments						\$ 50,000	\$50,000	
Environmental Consulting and Reporting						\$ 200,000	\$200,000	
Legal Assistance for Regulatory Compliance						\$ 40,000	\$40,000	
Totals	407	651			\$61,864	\$765,000	\$826,864	\$826,864
20% Contingency						20%	\$165,373	\$992.237

Notes:

Placeholder Estimates are Preliminary Only

These tables accompany a written report and should not be reviewed separately.

APPENDIX A

APPENDIX A FIELD EXPLORATION METHODS

G-Logics performed subsurface soil and groundwater sampling during the assessment conducted on the subject property. The sampling activities were conducted in general accordance with Washington Department of Ecology (Ecology) guidelines and regulations.

Health and Safety Plan

A site-specific Health and Safety Plan was developed for the field activities completed at the subject property. All field personnel reviewed the plan and implemented the procedures while conducting the on-site field activities. Health and safety procedures for COVID-19 pandemic issues also were followed.

Underground Utility Clearance

Before conducting the subsurface exploration, G-Logics contacted a service that notifies public utilities of proposed subsurface investigations. Additionally, on-site private utilities were located by a private locating company to identify on-site utilities as well as specific areas of concern. Consequently, the below-grade utility locations were identified by marking their inferred location on the ground surface. This information was used to aid in identifying sampling locations.

Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) for the presented scope of work included accepted procedures for sample collection, storage, tracking, and documentation. All sampling equipment was washed and rinsed before the collection of the samples. All samples were labeled with a sample number, date, time, and sampler name, and were stored in an ice chest containing frozen ice or ice substitute. Appropriate chain-of-custody documentation was completed.

g-logics

Direct-Push Technologies Soil Borings

A G-Logics employee was present during the drilling and assisted in obtaining samples of the subsurface materials, maintained a log of the borings, made detailed observations of site conditions, and provided technical assistance, as required. Soil borings were advanced using track-mounted direct-push probe equipment, provided by our drilling subcontractor. Soil samples were collected using a 2-inch diameter stainless steel sampler, in lengths of four feet. Continuous soil samples were obtained by driving/pushing this sampler, containing an acrylic liner, to the sampling depth. After reaching the required depth, the sampler was retrieved and opened.

Soil Sampling Procedures

During this effort, soil samples were collected for soil identification and chemical analysis. A photoionization detector (PID) was used during drilling to screen for volatile organic compounds (VOCs) in collected soil samples. A portion of each soil sample was placed into a plastic zip-lock bag and allowed to develop for 15 minutes (to allow contaminants to volatilize). Vapors then were drawn through the PID for qualitative screening of VOCs. The results were measured in parts per million by volume (ppmv) and noted on the boring logs. A new plastic bag was used each time a sample was screened.

The soils were then observed and categorized for grain-size, color, presence of artifacts, moisture, odor, staining, sheen, and any other indications of contamination and documented on boring logs (attached).

Samples were collected where indications of contamination were observed or from where contamination likely would be present (i.e., at the groundwater interface) and at a two-foot interval. The collected soils contained within the acrylic liner were removed and placed into laboratory-provided sample containers (prepared by the contract laboratory to conform to EPA-recommended preservation techniques for the analytes of concern).

Soil samples for volatile analyses were collected from the soil core using an Easy Draw Syringe and Powerstop Handle and extruded directly into a 40 ml VOA Vial containing methanol preservative. Sample containers were open only as long as necessary to collect the samples. The stainless-steel sampler then was washed, and new liners were used for each sampling attempt.

Upon completion of each soil boring, the resulting hole was backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original surface. All soil cuttings were collected and placed into a waste drum to be disposed at an off-site disposal facility (determined by analytical results).

Water Level Measurements in Wells

Water level measurements were referenced to the top of the well casing. The static water level was measured in each monitoring well using a conductivity type, water-level probe (Solonist, Mini Interface Meter). The conductivity probe on the water level meter was lowered into the well until the instrument detected water. The tape on the probe was used to obtain a depth-to-water measurement, from the reference point, to within 0.01 feet.

Measurement of LNAPL Thickness in Wells

In monitoring wells where light non aqueous phase liquid (LNAPL) was present, the thickness of the LNAPL was measured using an interface probe (Solinst Mini Interface Meter). When the interface probe reached LNAPL, a solid beep from the instrument sounded and continued as the probe passed through it. The probe was slowly lowered past the LNAPL until the constant beep stopped and an intermittent beeping occurred (indicating the probe is in water). The measurement to static water level was then recorded. The probe was then slowly pulled up from the static water level by pinching the measuring tape at the reference point. The tape was then pulled through the LNAPL until the solid beep was silenced and a thickness measurement was obtained from the tape at the reference point (depth to static water level subtracted by depth to LNAPL). Since passing the probe through LNAPL can coat the probe (thereby providing unreliable measurements), the thickness measurement was repeated multiple times until a confident field reading was obtained. The thickness was then recorded with a precision of 0.01 feet. If a constant beep occurred but no measurable thickness was present, the LNAPL thickness is considered as either trace amount, or considered to be a sheen.

g-logics

Monitoring Well Purging and Sampling, Low-Flow Purge and Sample Method

A G-Logics employee sample existing groundwater wells, and temporary wells installed in recently completed borings, using low-flow techniques in accordance with the following protocol.

- For this sampling event, a peristaltic pump was used to sample all on-site monitoring wells.
- During purging, the flow rate was set between 150 and 500 mL/minute in order to maintain minimal drawdown in the well.
- Once three well-casing volumes were removed from the well, groundwater samples were collected directly into laboratory-provided sample containers.
- Sample containers were open only as long as necessary to collect the samples.
- The contract laboratory prepared the sample containers to conform to EPA-recommended preservation techniques for the analytes of concern.
- All purge water was collected and placed into waste drums for proper disposal (determined by analytical results).
- Collected samples were labeled with a sample number, date, time, and sampler's name and stored in an ice chest containing frozen "blue ice". Chain-of-custody procedures were followed to document sample handling.
- Dedicated tubing was used at each sampling location.
- Before use, the sampling equipment was washed and rinsed.

g-logics

APPENDIX B

	Unified	Soil Classif	fication S	System (USCS)
PRIMARY DIV	ISIONS		SYMBOL	DESCRIPTIONS
	GRAVELS	CLEAN GRAVEL	GW	Well graded gravel, many different particle sizes, little or no fines
SOILS	Over 50% of coarse material retained on #4	Less than 5% passing #200 sieve	GP	Poorly graded, few different particle sizes, little or no fines
Sands & Gravels, Over 50% retained	sieve	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures
			GC	Clayey gravels, gravel-sand-clay mixtures
	SAND	CLEAN SANDS	SW	Well graded gravel, many different particle sizes, little or no fines
	Over 50% of coarse material passed #4	Less than 5% passing #200 sieve	SP	Poorly graded, few different particle sizes, little or no fines
	sieve	SAND WITH FINES	SM	Silty gravels, gravel-sand-silt mixtures
			SC	Clayey gravels, gravel-sand-clay mixtures
FINE GRAINED	SILTS AND CL	AYS	ML	Inorganic silts, slight to no plasticity
Silts & Clave, Over	Liquid limit is les	s than 50 %	CL	Inorganic clays, low to moderate plasticity
50% passing the #200 sieve			OL	Organic silts and clays of low plasticity
	SILTS AND CL	AYS	MH	Inorganic silts, moderate to high plasticity
	Liquid limit is mo	ore than 50 %	СН	Inorganic clays, high plasticity, fat clays
			ОН	Organic silts and clays of high plasticity
Highly Organic S	Soils		PT	Peat and other highly organic soils
<u>Soil Sa</u>	mples			Field Measurements
Disturbed,	bag, bulk, or gra	ab sample		Water Level Observed During Drilling
			PID	Photoionization Detector
Standard p	enetration split	spoon sample	ppmv	Parts Per Million by Volume
Cuttings			$\mathbf{\nabla}$	End of Boring (E.O.B)
Continuous	s-Core Sample		<u>Note:</u> Blows per spoon (2" OD) sa sampling attempt	foot is the number of blows used to drive a split- mpler through the last 12 inches of an 18-inch . One blow is a 30-inch fall of a 140-pound hammer.
ExplorationLogLegend.pub			Note: The line see boundaries only. provided as to the locations. Logs re location on the da	parating strata on the logs represents approximate The actual transition may be gradual. No warranty is e continuity of the strata between exploration epresent the soil section observed at the exploration ate of exploration only.
g-log	<i>pics</i>		Explo	oration Log Legend

	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0			0-3': Brow	n SAND, well graded, fine to coarse	grain,			'	No well Installed	0
			little grave	l, dry, no odor, fill material		70	500			
-	b . ₁	GB-1-4	3-7': Brow	n/gray SAND, poorly graded, mediun	n		SP	0		
5			grain, trac	e gravel, moist, slight petroleum odor	at 6	100				5
Ť		GB-1-6 GB-1-7	Teet	SAND poorly graded fine grain trac	<u>```</u>			33		
-		66-1-7	gravel we	t moderate odor	,e	≚		55		
-		GB-1-9	8-8.5': OR	GANICS with sand, trace gravel, wet	odor		PT	35		
_			8.5-9': Gra	y GRAVEL, well graded, fine to coar	se		\mathbf{r}			
10			grain, with	sand, clay lens, wet, odor						10
				Refusal at 9	feet					
5										1:
			-							
20										2(
25										2
			-							
30	Depth in		1							3(
	Drilling Met	hod: Direct-Pu	ısh	Date: 5/14/2020	0)ther In	formatio	n: lad with P	entonite	1
	Drilling Con	npany: Standar	d	Weather: Rain		Joing	DACKII	ieu with B		
	Boring Dian	neter: Two Inc	hes	Page1 of1						
	8	-/0	gic.	S Boring/Well Log Mossman Prope 3461 East Lake Sa Sammamish. Wa	rty mmam shingi	nish ton	Shor	e Ln. N	, _∉ GB-1	

	INTERVAL	SAMPLE NUMBER	SOIL	PTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0			0-3': Brown little gravel,	eSAND, well graded, fine to c dry, no odor, fill material	oarse grain,		SW		No well Installed	- 0
-			3-6': Brown/	gray SAND, poorly graded, r	nedium	70		0		
-	···· 💩 🖷 ····	GB-2-4	grain, trace	gravel, moist, slight petroleu	n odor at 6		SP	2		
5			6-7.5': Gray	SAND, poorly graded, fine g	rain, trace	100	·			5
_		GB-2-7	gravel, wet,	moderate odor				360		
		GB-2-9	8-8 5'' ORG	NICS with sand trace draw	al wat odor		PT	196		
-	•		8.5-9.5': Gra	y GRAVEL, well graded, find	e to coarse		GW			
10			grain, with s	and, wet, odor						10
				Refus	al at 9.5 feet					
15										15
-										
-										
20			+							- 2(
-										
-										
25			+							- 2!
-										
30	Depth in	 feet	L				L	L		30
	Drilling Met	hod: Direct-Pu	sh	Date: 5/14/2020		Other In	formatio	n: Iled with P	entonite	1
	Drilling Con	mpany: Standard	b	Weather: Rain		Doning	Judokin			
	Logged By:	JS	IES	гауе <u>і </u>						
	9	-109	gics	Boring/Well Mossman Pi 3461 East Lal Sammamish	Log operty te Sammar Washing	nish	Shor	re Ln. N	, _∉ GB-2	

	INTERVAL	SAMPLE NUMBER	SOIL	RIPTIC	DN					Recovery %	uscs	PID (ppmv in headspace)	N C	/ELL	RUCTIO	4
			Beach surf	ace												
0			0-2': Brow	n SAND	, poorly	graded	l, fine to	medi	um			1		– – – – Io well li	stalled	0
		GB-3-2	grain, little	gravel,	moist						SP	1			lotalica	
-			2-3': Gray	GRAVE	L, poorly	y grade	d, wet a	at 2 fe	et,	50		_				
-		GB-3-4	slight petro	leum oc	dor					50	GP	7				
5								— — -		100	SP					5
-		00-5-0	wet. slight	petroleu	um odor			00130	giani,			Ŭ				
		GB-3-8														
							Refu	usal at	8 feet			3				
																
																'
-																
_																
5																1
-																
-																
20			+													
-																
-																
-]						
_]						
25																2
-																
-																
30			L							J J	L	⊾	·			3
	Drilling Mat	hod: Dire - + D	ah	Data	E/4 4/00	220				Other	forme +! -	n.				
	Drilling Met	noa: Direct-Pu	sn 1	Weather	5/14/20	J20				Boring) backfi	lled with E	Bentor	ite		
	Boring Dian	neter: Two Inch	nes	Page _	<u>1</u>	of1_										
	Logged By:	JS														
	3	-10	gic.	5	Bor Mos 346	ring/\ ssma 1 Eas	Well an Pr st Lak mish	Log ope æ Sa W/=	rty mma shin	mish	Shoi	re Ln. I	VE	G	B-3	

1	go-4.vsa							-			٦
	INTERVAL	SAMPLE NUMBER	SOIL DESCRIP	TION		Recovery %	uscs	PID (ppmv in headspace)	WE CO	LL NSTRUCTION	
0			Beach surface								
		CB-4-2	little gravel, m	noist, no odor	ine to coarse grain,		GW	5	No	well Installed	ľ
-		GD-4-2	1-3': Grav. GF	RAVEL. well grade	d. with sand. wet at 2	50		Ŭ			
	_	GB-4-4	feet, slight pet	troleum odor			SP	242			
_			3-4': Gray SA	ND, poorly graded	medium to coarse			284			
5			grain, wet at 7	", moderate odor		100	SW				5
-			4-8': Gray SAN	ND, well graded, fi	ne to coarse grain,			44			
-	····•	GB-4-8	little gravel, w	et, moderate odor			$\overline{\mathbf{a}}$	8			
40											
10					Refusal at 8 feet						10
-						-					
-											
15											15
-											
20											20
20											
-											
-						-					
25											25
-											
-											
30	 Depth in		L]	L				30
	Drilling Met	hod: Direct-Pu	sh Da	ate: 5/14/2020		Other In	formatio	n:			1
	Drilling Con	npany: Standard	i w	eather: Overcast		Boring) backfi	lled with B	entonite		
	Boring Dian	neter: Two Inch	nes Pa	age <u>1</u> of <u>1</u>							
	Logged by:	JO	I	Roring							4
	9	-109	zics	Mossm 3461 Ea Samma	an Property st Lake Samma mish, Washing	mish aton	Shoi	re Ln. N	NE	GB-4	

	INTERVAL	SAMPLE NUMBER	SOIL DESCRI	PTION			Recovery %	USCS	PID (ppmv in headspace)	WELL CONS	TRUCTION	
0			Beach surfac 0-5': Gray Gl	æRAVEL, well grad	led, wet 1 foot, no	o odor		GW	-	No wel	I Installed	0
-		GB-5-4					50	011	0			
5			5-8': Grav SA		fine to coarse or		100	/				5
		GB-5-7	trace gravel,	wet, no odor		anı,		sw	0			
	·····•				Refusal at	8 feet			0			
10								$\mathbf{\mathbf{Y}}$			·	10
-											-	
15												15
20												20
23												20
30	Depth in		L					l				30
	Drilling Met	hod: Direct-Pu	sh r	Date: 5/14/2020			Other In	formatio	n:	lonto-it-		-
	Drilling Con	n pany: Standard	v k	Weather: Rain	1		Boring	Dackti	lied with E	sentonite		
	Logged By:	JS	ies i	Page of								
	8	-109	zics	Boring Mossi 3461 E Samn	g/Well Log man Prope Fast Lake Sa namish, Wa	rty mmar nshing	nish Iton	Shor	re Ln. N		GB-5	1

	INTERVAL	SAMPLE NUMBER	SOIL DESCRIP	TION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0		 GB-6-1	0-1': Gray SAN	ID, poorly graded	l, medium grain, w	et,	SP	2	No well Installed	0
			slight odor				GP			
-			2-3': Gray GRA	VEL, poorly grad	led, medium grain,	40				
-	···· 📥 👦 ····	GB-0-4	3-8': Grav SAN	et ID. poorly graded	, medium arain, litt	le	SP	0		
5		GB-6-6	gravel, wet, no	odor		90	+			5
_			Trace gravel					0		
								0		
10			+			· - -	+			
					Refusal at 8 fe	et				
					i torucar at o it					
_										
45										
15										
-										
20							+			20
_										
25				·		·				
23										
-										
							1			
30	Depth in	feet								30
	Drilling Met	thod: Direct-Pu	sh Dat	te: 5/14/2020		Other	Informatio	on:	×	
	Drilling Con	mpany: Standard	y We	ather: Rain		Bori	пд раскг	lied with E	sentonite	
	Boring Dian	meter: Two Inch	nes Pag	ge1 of	1					
	∟ogged By:	: JS								
	9	-105	zics	Boring Mossm 3461 Ea Samma	/Well Log nan Property nst Lake Sam namish, Wasl	r mamis hingtoi	h Sho 1	re Ln. N	GB-6	

	INTERVAL	SAMPLE NUMBER	SOIL	RIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
0			Concrete s	urface		+			- 6
			0-4': Brow	n/gray SAND, poorly graded, fine gra	n,			No well Installed	
			little grave	l, very poor recovery	<10	SP			
-	b . ₁₀						0		
5			4-8.5': Bro	wn/gray SAND, poorly graded, fine to		+			- 5
Ĭ		GB-7-6	medium gr	ain, few silt, wet at 7 feet, becomes g	ray at		3		ľ
-		GB-7-8	8 feet, slig	nt petroleum odor at 8 feet	····· È		63		
		GB-7-9	8.5-9': OR(GANICS, with Sand and silt, woody de	ebris	PT	1		
			and peat						Ĩ
0				Refusal at 9.	5 feet				10
-									
5									1
- 20 -									2
25					·				2
ō	Depth in	feet				±	• '		3
	Drilling Met	hod: Direct-Pu	ush	Date: 5/14/2020	Other Bori	Information	n: lled with F	Bentonite	1
	Drilling Con	npany: Standar		Weather: Rain		_			
ŀ	Logged By:	JS	1165	raye UT	———				
	9	-10	gic.	S Boring/Well Log Mossman Proper 3461 East Lake Sa Sammamish, Wa	ty mmamisi shingtor	h Sho	re Ln. N	<i>"</i> ∈ GB-7	Ī

		SAMPLE NUMBER	SOIL DESCE	RIPTION			Recovery %	NSCS	PID (ppmv in headspace)	WELL CONSTRI	JCTION
											2" Boring
0			<u>Grass surfa</u> 0-3': Brown little grave	n SAND, well gi I, dry, no odor	raded, fine to coa	rse grain,		SW		5" Well Box Well Cap Concrete Seal	
-		MW-9-4	3-7': Browr grain, trace	n/gray SAND, p e gravel, moist,	oorly graded, med wet_at_7', no odor	dium		SP	0	PVC Blank Bentonite	≁
Э 		MW-9-7	7-9': Gray gravel, mo wood), clay	SAND, poorly g ist, wet, no odo ⁄ lens	raded, fine grain, r, organics at 9' (r	trace beat/	100	PT	0	10/20 Sand	
10		_ <u>MW-9-10</u> _	9-10': <u>Gray</u> grain, with	GRAVEL, well sand, wet, no c	graded, fine to α dor E.O.B.	oarse		GW	0	10 Slot Well Screen	
15											
20											
25											
30	Depth in										
	Drilling Met Drilling Con Boring Dian Logged By:	hod: Direct-Pu npany: Standard neter: Two Inch	sh d nes	Date: 5/14/20 Weather: Rain Page1)20 of1		Other In Well T	formatio ag # B	n: JP-750		
	8	-109	gic.	S Bor Mos 346 Sar	ring/Well Lo ssman Proj 1 East Lake nmamish, N	og perty Sammai Nashing	mish gton	Shor	e Ln. I	NE M	N-9

			PROJECT/PROJECT NO:			ING DA	TE:	LOGGED BY:
	<u>5 – In</u>	orics	Mossman Residence		10/2	20/2021		PMF
3		3'00	DRILLING CONTRACTOR: Standard		вокі 2"			WEATHER: Rainy
	BORING/V	VELL ID:	DRILLING METHOD: Direct Push		тота 16'	L DEPTI	H:	DEPTH TO WATER: 6'
	GLB	-8	LOCATION:		1			1
		had to see to a	Jallinaniish, WA 980/4					
NOT	ES: Caved	, nad to push po	int for gw					
et)	il			pu	ery			
th (fe	CS So e/Grap			rval a	(ecov			
Dep	US(Typ	De	scription	Inte	r %	DIA	Sample ID	Well Construction
-		0-4': SAND, gravel and o topsoil.	, brown, medium-grained with organics, dry, no odor. Overlain by	25		26.8	GLB-8-2	Temporary boring. Backfilled with bentonite.
5 -		4-6': SAND, silt, dry, no	, tan, fine to medium grained with odor.	- 50		1.1	GLB-8-4	
		6-7': SAND, silt and orga	, dark gray, medium grained with anics (bark), moist, petroleum odor.	- 50		10.2	GLB-8-GW	
-	SW:	_				128.7	GLB-8-8	
10 -		7 401 0 0 0		90		6.4	GLB-8-10	
-		vith gravel, terminated	wet, petroleum odor. Boring at 16 ft.			3.4	GLB-8-12	
15 -				10	0	2.6	GLB-8-14	

,			PROJECT/PROJECT NO:			LING DA	TE:	LOGGED BY:
0		aice	Mossman Residence		10/2	20/202	1	PMF
15		503	DRILLING CONTRACTOR:		BORI	NG DIAN	IETER:	WEATHER:
<u> </u>		0	Standard		2"			Rainy
	BORING/\	VELL ID:	DRILLING METHOD:			L DEPT	H:	DEPTH TO WATER:
		•			10			7'
	GLB	-9	Sammamish WA 98074					
NOT	TES:							
et)	hic			pu				
h (fe	h (fe S Soi //Grap							
Dept	USC Type	De	escription	Inter	ž s	DIG	Sample ID	Well Construction
0	.		·					
-		0-4': SAND gravel, and by topsoil.	, brown, medium-grained with silt, organics, dry, no odor. Overlain	15				Temporary boring. Backfilled with bentonite.
5 -		4-6': SAND silt, dry, no	, tan, fine to medium grained with odor.	- 70		2.5	GLB-9-4 GLB-9-6	
		6-7': SAND silt and orga	, dark gray, medium grained with anics, moist, no odor.	- 10		20.1	GED-3-0	
-	SW:					168.2	GLB-9-8 GLB-9-GW	
10 -				10	D	30.4	GLB-9-10	
-		7-16': SANI with gravel, terminated	D, gray, medium to coarse grained wet, petroleum odor. Boring at 16 ft.			5.2	GLB-9-12	
15 -				10	D	9.5	GLB-9-14 GLB-9-16	

			PROJECT/PROJECT NO: DI			LING DA	TE:	LOGGED BY:
		aire	Mossman Residence		10/	20/202	1	PMF
15		5	DRILLING CONTRACTOR:		BOR	ING DIAN	METER:	WEATHER:
		~			2"			Overcast
	BORING/W	VELL ID:	Direct Push	16'			п.	DEPTH TO WATER:
		_10	LOCATION:					0.5
	GLD	-10	Sammamish, WA 98074					
NOT	FS [.]							
t	<u>.0</u>							
(fee	Soil Graph			alan	over			
epth	JSCS Jpe/(De	escription	terva	Rec	₽	Sample ID	Well Construction
0		De		<u> </u>	%	<u>د</u>		
		0-2' SAND	brown medium-grained with silt					
		gravel, and	organics, dry, no odor. Overlain					Temporary boring Backfilled with
		by topsoil.						bentonite.
				20				
		2 6'· SAND	tan, fine to medium grained with					
	SW:	silt, dry, no	odor.			3.4	GLB-10-4	
	•							
5 -								
				60		1.7	GLB-10-6	
	•							
		6-8': SAND	, dark gray, medium grained with					
		silt and orga	anics, moist, no odor.					
-							GLB-10-GW	
						25.2	GLB-10-8	
	0.0.							
	0.0.							
10 -	0			10	00	4.7	GLB-10-10	
	$0 \cdot 0 \cdot 0$							
	• • • •							
	$0 \cdot 0 \cdot 0$	8-16': GRA	VEL, gray, fine to medium with					
	• GW , •	sand, wet, p	petroleum odor. Boring terminated			2.1	GLB-10-12	
-		at 10 ft.						
	0.0.							
				50		2.6	GLB-10-14	
15 -								
	• • • • •							
	• • • • •					2.5	GLB-10-16	

Г

_			PROJECT/PROJECT NO:			LING DA	TE:	LOGGED BY:
		aicc	Mossman Residence		10/2	20/202 [,]	1	TQ
19	,-10	5105	DRILLING CONTRACTOR: Standard		BOR 2''	ING DIAI	METER:	WEATHER: Overcast
	BORING/\	VELL ID:	DRILLING METHOD: Direct Push		тот <i>і</i> 16	H:	DEPTH TO WATER: 6.5'	
	GLB	-11	LOCATION: Sammamish, WA 98074		1			
NOT	TES:							
)epth (feet)	USCS Soil Type/Graphic	De	escription	nterval and	6 Recovery	Q	Sample ID	Well Construction
0				<u> </u>	*			
-		0-4': SANE with some topsoil.), gray, medium to coarse grained, organics, dry, no odor. Overlain by	30				Temporary boring. Backfilled with bentonite.
5 -		4-6': SANE grained, dr), brown to gray, fine to medium y to moist, no odor.	60		0.2	GLB-11-4	
- 10	SW	6-10': SAN with silt an	D, brown, fine to medium grained d organics, moist, slight odor.	60		9.5	GLB-11-6 GLB-11-GW GLB-11-8	
10 -		10-11': SA grained wit 11-12': SA grained wit odor.	ND, gray, medium to coarse h some gravel, moist, no odor. ND, gray-green, fine to medium h trace gravel and silt, moist, no	- 10 -	U	1.6	GLB-11-10	
15 -		12-16': SA grained wit Boring tern	ND, gray, medium to coarse h gravel, wet, petroleum odor. ninated at 16 ft.	10	0	1.9 2.5	GLB-11-12 GLB-11-14 <u>GLB-11-16</u>	

PRC			PROJECT/PROJECT NO:		D	RILLING	G DA	TE:	LOGGED BY:
	r_/~	aice	Mossman Residence	_	_ 1	0/21/2	2021	l	PMF
14	-10	yics	DRILLING CONTRACTOR:		B	ORING	DIAN	IETER:	WEATHER:
		0	Standard			2"			Overcast
	BORING/\	WELL ID:	DRILLING METHOD:		Т	D JATC	DEPT	H:	DEPTH TO WATER:
		40	Direct Push			8.			5'
	σLΒ	-12	Sammamish WA 98074						
NOT									
	LJ.								
et)	ic				<u>ح م</u>				
ר (fee	S Soil Graph				'al ar cove				
Depth	USC: Type/	De	scription		nterv 6 Re	(Sample ID	Well Construction
0					= ~			eanipie iz	-
	•								
									Tomporony boring Destruited with
									bentonite.
	•	0-3': SAND,	brown, medium-grained with silt,	05					
		bv topsoil.	organics, dry, no odor. Ovenain	25					
		5 1							
	SW:					1	.4	GLB-12-2	
-									
		3-4' SAND	brown medium to coarse grained						
		with gravel	and silt, moist, no odor.						
		_							
	.					3	39	GLB-12-4	
	$0 \cdot 0 \cdot 0$								
	$0 \cdot 0 \cdot 0$			75					
_	• • • •								
5 -	$0 \cdot 0 \cdot 0$								
	$0 \cdot 0 \cdot 0$								
	0.0.								
	0.0.		El aroy fine around with malium						
	, • • • • • GW , •	grained san	L, gray, me gramed with molurn d, wet, mild odor. Boring			59	9.8	GLB-12-6	
		terminated	at 8 ft.					GLB-12-GVV	
	• • • •								
	• • • • •								
	$0 \cdot 0 \cdot 0$								
					100				
	0.0.								
-	0.000								
1	$b \bullet \circ \bullet \circ$								

31.6

GLB-12-8

• 0 • 0 0 • 0 • • 0 • 0

-	PROJECT/PROJECT NO:	DRILLING DATE:	LOGGED BY:	
	Mossman Residence	10/21/2021	PMF	
$Q^{-}IUQIUS$	DRILLING CONTRACTOR:	BORING DIAMETER:	WEATHER:	
5 5	Standard	2"	Overcast	
	DRILLING METHOD:	TOTAL DEPTH:	DEPTH TO WATER:	
DORING/WELLID.	Direct Push	8'	1'	
GI B-13	LOCATION:			
	Sammamish, WA 98074			
NOTES:				

Depth (feet)	USCS Soil Type/Graphic	Description	-	Interval and % Recovery	DIA	Sample ID	Well Construction
0			40		7.5	GLB-13-2	Temporary boring. Backfilled with bentonite.
	SW:	0-8': SAND, brown to gray, medium to coarse grained with gravel, wet, mild odor. Boring			7.3	GLB-13-4	
5 -			ε	0	10.3	GLB-13-6 GLB-13-GW GLB-13-8	

	PROJECT/PROJECT NO:	DRILLING DATE:	LOGGED BY:
a-logics	Mossman Residence	10/21/2021	PMF
$Q^{-1}UQUCS$	DRILLING CONTRACTOR:	BORING DIAMETER:	WEATHER:
5 5	Standard	2"	Overcast
	DRILLING METHOD:	TOTAL DEPTH:	DEPTH TO WATER:
BORING/WELLID.	Direct Push	8'	1'
GLB-14	LOCATION:		
	Sammamish, WA 98074		
NOTES:			

			1			
Depth (feet)	USCS Soil Type/Graphic	Description	% Recovery	OIA	Sample ID	Well Construction
5 -	SW	0-8': SAND, gray, coarse grained with fine gravel, wet, mild odor. Topsoil 0-6". Boring terminated at 8ft.	75	29.2	GLB-14-2 GLB-14-4 GLB-14-GW GLB-14-6	Temporary boring. Backfilled with bentonite.
-			100			
				12.8	GLB-14-8	

-	PROJECT/PROJECT NO:	DRILLING DATE:	LOGGED BY:					
a-logics	Mossman Residence	10/21/2021	PMF					
$Q^{-1}UQUCS$	DRILLING CONTRACTOR:	BORING DIAMETER:	WEATHER:					
5 5	Standard	2"	Overcast					
	DRILLING METHOD:	TOTAL DEPTH:	DEPTH TO WATER:					
DORING/WELLID.	Direct Push	8'	1'					
GI B-15	LOCATION:							
	Sammamish, WA 98074							
NOTES:								

	-					
Depth (feet)	USCS Soil Type/Graphic	Description	Interval and % Recovery	DIA	Sample ID	Well Construction
0			75	4.2	GLB-15-2	Temporary boring. Backfilled with bentonite.
	SW:	0-8': SAND, gray, coarse grained with fine gravel, wet, mild odor. Topsoil 0-6". Boring terminated at 8ft.		6.9	GLB-15-4	
5 -			75	1.7	GLB-15-GW GLB-15-6	
-				9.3	GLB-15-8	

	-		PROJECT/PROJECT NO:		DRIL	LING DA	TE:	LOGGED BY:	
		aice	Mossman Residence			21/202 [,]	1	TQ	
	$Q^{-}IOQICS$		DRILLING CONTRACTOR:		BOR	ING DIAN	METER:	WEATHER:	
\cup		5	Standard		2"			Overcast	
	POPINCA		DRILLING METHOD:		TOT	AL DEPT	H:	DEPTH TO WATER:	
	DOILING/V	VELLID.	Direct Push		8'			1'	
	GLB	-16	LOCATION:	I					
			Sammamish, WA 98074						
NO	TES:		1						
eet)	aphic			and	5				
oth (I	CS S e/Gr			rval					
Dep	US	De	escription	Inte % F	- ~	PIC	Sample ID	Well Construction	
0	۱								
								_	

SW	0-4': SAND, gray, coarse grained with fine gravel and trace organics, wet, mild odor. Topsoil 0-6".	80	64.6	GLB-16-2	Temporary boring. Backfilled with bentonite.
SM	4-5': SILTY SAND, brown, fine grained with trace gravel, wet, mild odor.		1.9	GLB-16-4	
5	5-8': SAND, gray, coarse grained with fine gravel, and pockets of brown silt, wet, no odor. Boring terminated at 8 ft.	95	0.4	GLB-16-GW	
			0.1	GLB-16-8	

APPENDIX C

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Pamela Fleming 40 Second Ave. SE Issaquah, WA 98027

RE: Mossman Work Order Number: 2110292

October 28, 2021

Attention Pamela Fleming:

Fremont Analytical, Inc. received 10 sample(s) on 10/20/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT: Project: Work Order:	G-Logics Mossman 2110292	Work Order Sample Summa				
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received			
2110292-001	MW-1	10/20/2021 12:15 PM	10/20/2021 5:55 PM			
2110292-002	MW-5	10/20/2021 12:43 PM	10/20/2021 5:55 PM			
2110292-003	MW-6	10/20/2021 12:00 AM	10/20/2021 5:55 PM			
2110292-004	MW-8	10/20/2021 10:36 AM	10/20/2021 5:55 PM			
2110292-005	MW-2	10/20/2021 11:30 AM	10/20/2021 5:55 PM			
2110292-006	GLB-8-GW	10/20/2021 11:05 AM	10/20/2021 5:55 PM			
2110292-007	GLB-9-GW	10/20/2021 12:20 PM	10/20/2021 5:55 PM			
2110292-008	GLB-10-GW	10/20/2021 1:25 PM	10/20/2021 5:55 PM			
2110292-009	GLB-11-GW	10/20/2021 2:30 PM	10/20/2021 5:55 PM			
2110292-010	Trip Blank		10/20/2021 5:55 PM			

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2110292** Date: **10/28/2021**

CLIENT:G-LogicsProject:Mossman

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

11/11/21: Revision 1 includes addition analysis requested by the client.

Qualifiers & Acronyms

WO#: **2110292** Date Reported: **10/28/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Work Order:
 2110292

 Date Reported:
 10/28/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110292-001 Client Sample ID: MW-1				Collection Date: 10/20/2021 12:15:00 PM			
				Matrix: Groundwater			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batc	h ID: 34	145 Analyst: MM		
Diesel (Fuel Oil)	944	99.8	µg/L	1	10/26/2021 9:28:10 AM		
Heavy Oil	ND	99.8	µg/L	1	10/26/2021 9:28:10 AM		
Total Petroleum Hydrocarbons	944	200	µg/L	1	10/26/2021 9:28:10 AM		
Surr: 2-Fluorobiphenyl	86.2	50 - 150	%Rec	1	10/26/2021 9:28:10 AM		
Surr: o-Terphenyl	102	50 - 150	%Rec	1	10/26/2021 9:28:10 AM		

Lab ID: 2110292-002

Collection Date: 10/20/2021 12:43:00 PM Matrix: Groundwater

Client Sample ID: MW-5		Matrix: Groundwater				vater
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	n ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	340	98.2	SGT	µg/L	1	11/9/2021 1:20:48 PM
Diesel (Fuel Oil)	693	98.2		μg/L	1	10/26/2021 9:53:51 AM
Heavy Oil	ND	98.2		μg/L	1	10/26/2021 9:53:51 AM
Total Petroleum Hydrocarbons	340	196	SGT	μg/L	1	11/9/2021 1:20:48 PM
Total Petroleum Hydrocarbons	693	196		μg/L	1	10/26/2021 9:53:51 AM
Surr: 2-Fluorobiphenyl	101	50 - 150	SGT	%Rec	1	11/9/2021 1:20:48 PM
Surr: 2-Fluorobiphenyl	89.1	50 - 150		%Rec	1	10/26/2021 9:53:51 AM
Surr: o-Terphenyl	113	50 - 150	SGT	%Rec	1	11/9/2021 1:20:48 PM
Surr: o-Terphenyl	98.2	50 - 150		%Rec	1	10/26/2021 9:53:51 AM
NOTES:						

SGT - Silica Gel Treatment

 Work Order:
 2110292

 Date Reported:
 10/28/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110292-003 Client Sample ID: MW-6			Collection	e: 10/20/2021 Iwater		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batcl	h ID: 3	4145 Analyst: MM
Diesel (Fuel Oil)	297	98.7	SGT	µg/L	1	11/9/2021 1:33:39 PM
Diesel (Fuel Oil)	541	98.7		µg/L	1	10/26/2021 10:06:52 AM
Heavy Oil	ND	98.7		µg/L	1	10/26/2021 10:06:52 AM
Total Petroleum Hydrocarbons	297	197	SGT	μg/L	1	11/9/2021 1:33:39 PM
Total Petroleum Hydrocarbons	541	197		μg/L	1	10/26/2021 10:06:52 AM
Surr: 2-Fluorobiphenyl	92.5	50 - 150	SGT	%Rec	1	11/9/2021 1:33:39 PM
Surr: 2-Fluorobiphenyl	92.2	50 - 150		%Rec	1	10/26/2021 10:06:52 AM
Surr: o-Terphenyl	108	50 - 150	SGT	%Rec	1	11/9/2021 1:33:39 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	10/26/2021 10:06:52 AM
NOTES: SGT - Silica Gel Treatment						

Lab ID: 2110292-004

Client Sample ID: MW-8

Collection Date: 10/20/2021 10:36:00 AM Matrix: Groundwater

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.		Batch	n ID: 3	34145 Analyst: MM
Diesel (Fuel Oil)	ND	98.8	µg/L	1	10/26/2021 10:19:43 AM
Heavy Oil	ND	98.8	μg/L	1	10/26/2021 10:19:43 AM
Total Petroleum Hydrocarbons	ND	198	μg/L	1	10/26/2021 10:19:43 AM
Surr: 2-Fluorobiphenyl	94.5	50 - 150	%Rec	1	10/26/2021 10:19:43 AM
Surr: o-Terphenyl	104	50 - 150	%Rec	1	10/26/2021 10:19:43 AM
Total Organic Carbon by SM 53	<u>10C</u>		Batch	n ID: F	R70840 Analyst: SS
Total Organic Carbon	4.19	0.500	mg/L	1	10/27/2021 5:46:00 PM

 Work Order:
 2110292

 Date Reported:
 10/28/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110292-005	Collection Date: 10/20/2021 11:30:00 AM				
Client Sample ID: MW-2			Matrix: Groundwater		
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	Batc	h ID: 34	Analyst: MM		
Diesel (Fuel Oil)	11,900	98.4	µg/L	1	10/26/2021 10:32:31 AM
Heavy Oil	ND	98.4	µg/L	1	10/26/2021 10:32:31 AM
Total Petroleum Hydrocarbons	11,900	197	µg/L	1	10/26/2021 10:32:31 AM
Surr: 2-Fluorobiphenyl	97.9	50 - 150	%Rec	1	10/26/2021 10:32:31 AM
Surr: o-Terphenyl	110	50 - 150	%Rec	1	10/26/2021 10:32:31 AM

Lab ID: 2110292-006

Client Sample ID: GLB-8-GW

Collection Date: 10/20/2021 11:05:00 AM Matrix: Groundwater

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.			Batch	h ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	22,600	988	D	µg/L	10	10/26/2021 2:32:39 PM
Heavy Oil	ND	988	D	µg/L	10	10/26/2021 2:32:39 PM
Total Petroleum Hydrocarbons	22,600	1,980	D	µg/L	10	10/26/2021 2:32:39 PM
Surr: 2-Fluorobiphenyl	96.0	50 - 150	D	%Rec	10	10/26/2021 2:32:39 PM
Surr: o-Terphenyl	51.0	50 - 150	D	%Rec	10	10/26/2021 2:32:39 PM

Collection Date: 10/20/2021 12:20:00 PM Matrix: Groundwater

Client Sample ID: GLB-9-GW	Matrix: Groundwater				
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batc	h ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	2,550	99.3	µg/L	1	10/26/2021 10:58:26 AM
Heavy Oil	ND	99.3	µg/L	1	10/26/2021 10:58:26 AM
Total Petroleum Hydrocarbons	2,550	199	µg/L	1	10/26/2021 10:58:26 AM
Surr: 2-Fluorobiphenyl	73.2	50 - 150	%Rec	1	10/26/2021 10:58:26 AM
Surr: o-Terphenyl	92.4	50 - 150	%Rec	1	10/26/2021 10:58:26 AM

 Work Order:
 2110292

 Date Reported:
 10/28/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110292-008	Collection Date: 10/20/2021 1:25:00 PM				
Client Sample ID: GLB-10-GW			Matrix: G	vater	
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batc	h ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	1,080	98.9	µg/L	1	10/26/2021 12:10:41 PM
Heavy Oil	ND	98.9	μg/L	1	10/26/2021 12:10:41 PM
Total Petroleum Hydrocarbons	1,080	198	μg/L	1	10/26/2021 12:10:41 PM
Surr: 2-Fluorobiphenyl	89.9	50 - 150	%Rec	1	10/26/2021 12:10:41 PM
Surr: o-Terphenyl	88.5	50 - 150	%Rec	1	10/26/2021 12:10:41 PM

Lab ID: 2	110292-009
-----------	------------

Collection Date: 10/20/2021 2:30:00 PM Matrix: Groundwater

Client Sample ID: GLB-11-GW		Matrix: Groundwater			
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.			Batch ID: 34145 Analyst: MM		
Diesel (Fuel Oil)	ND	99.8	µg/L	1	10/26/2021 12:23:34 PM
Heavy Oil	167	99.8	µg/L	1	10/26/2021 12:23:34 PM
Total Petroleum Hydrocarbons	242	200	µg/L	1	10/26/2021 12:23:34 PM
Surr: 2-Fluorobiphenyl	91.5	50 - 150	%Rec	1	10/26/2021 12:23:34 PM
Surr: o-Terphenyl	90.3	50 - 150	%Rec	1	10/26/2021 12:23:34 PM

Work Order:	2110292						QC	SUMMARY REPORT
CLIENT:	G-Logics						Total Org	anic Carbon by SM 5310C
Project:	Mossman							
Sample ID: MB-R	70840	SampType: MBLK			Units: mg/L		Prep Date: 10/27/2021	RunNo: 70840
Client ID: MBLK	Ŵ	Batch ID: R70840					Analysis Date: 10/27/2021	SeqNo: 1440962
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	ND	0.500					
Sample ID: LCS-F	70840	SampType: LCS			Units: mg/L		Prep Date: 10/27/2021	RunNo: 70840
Client ID: LCSW	1	Batch ID: R70840					Analysis Date: 10/27/2021	SeqNo: 1440963
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	5.02	0.500	5.000	0	100	93.1 106	
Sample ID: 21103	15-003CDUP	SampType: DUP			Units: mg/L		Prep Date: 10/27/2021	RunNo: 70840
Client ID: BATC	н	Batch ID: R70840					Analysis Date: 10/27/2021	SeqNo: 1440966
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	11.5	0.500				11.22	2.12 20
Sample ID: 21103	15-003CMS	SampType: MS			Units: mg/L		Prep Date: 10/27/2021	RunNo: 70840
Client ID: BATC	н	Batch ID: R70840					Analysis Date: 10/27/2021	SeqNo: 1440967
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	16.0	0.500	5.000	11.22	95.8	69.1 124	
Sample ID: 21103	15-003CMSD	SampType: MSD			Units: mg/L		Prep Date: 10/27/2021	RunNo: 70840
Client ID: BATC	н	Batch ID: R70840					Analysis Date: 10/27/2021	SeqNo: 1440968
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	15.8	0.500	5.000	11.22	91.6	69.1 124 16.01	1.30 30

Work Order: 2110292								QCS	SUMMAI	RY REF	PORT
CLIENT: G-Logics							Diesel	and Heavy	Oil by NW		Dx Ext
Project: Mossman							Dieser				
Sample ID: LCS-34145	SampType: LCS			Units: µg/L		Prep Dat	e: 10/22/2	2021	RunNo: 707	787	
Client ID: LCSW	Batch ID: 34145					Analysis Dat	ie: 10/26/2	2021	SeqNo: 14	39716	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	1,050	198	991.6	0	106	55	117				
Surr: 2-Fluorobiphenyl	17.3		19.83		87.0	50	150				
Surr: o-Terphenyl	23.0		19.83		116	50	150				
Sample ID: MB-34145	SampType: MBLK			Units: µg/L		Prep Dat	e: 10/22/2	2021	RunNo: 70	787	
Client ID: MBLKW	Batch ID: 34145					Analysis Dat	e: 10/26/2	2021	SeqNo: 14	39717	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	98.2									
Heavy Oil	ND	98.2									
Total Petroleum Hydrocarbons	ND	196									
Surr: 2-Fluorobiphenyl	17.5		19.64		89.1	50	150				
Surr: o-Terphenyl	20.4		19.64		104	50	150				
Sample ID: 2110292-001BMS	SampType: MS			Units: µg/L		Prep Dat	e: 10/22/2	2021	RunNo: 707	787	
Client ID: MW-1	Batch ID: 34145					Analysis Dat	ie: 10/26/2	2021	SeqNo: 14:	39721	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	2,170	199	994.8	944.0	123	37.1	131				
Surr: 2-Fluorobiphenyl	17.9		19.90		90.1	50	150				
Surr: o-Terphenyl	22.2		19.90		112	50	150				
Sample ID: 2110302-001ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 10/22/2	2021	RunNo: 707	787	
Client ID: BATCH	Batch ID: 34145					Analysis Dat	e: 10/26/2	2021	SeqNo: 14	39729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	99.0						0		30	
Heavy Oil	ND	99.0						0		30	
Total Petroleum Hydrocarbons	ND	198						0		30	

Work Order:	2110292									2.00	SUMMAI		PORT
CLIENT:	G-Logics												
Project:	Mossman								Diesel a	and Heavy	Oil by NW	TPH-Dx/	Dx Ext.
Sample ID: 21103	02-001ADUP	SampType	DUP			Units: µg/L		Prep Da	ite: 10/22/2	021	RunNo: 707	787	
Client ID: BATC	н	Batch ID:	34145					Analysis Da	ite: 10/26/2	021	SeqNo: 143	39729	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobi	phenyl		16.5		19.81		83.5	50	150		0		
Surr: o-Terphen	yl		17.9		19.81		90.6	50	150		0		
Sample ID: MB-34	145	SampType	BLK			Units: µg/L		Prep Da	ite: 10/22/2	021	RunNo: 707	787	
Client ID: MBLK	W	Batch ID:	34145					Analysis Da	ite: 11/9/20	21	SeqNo: 144	48762	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			124	98.2									SGT
Heavy Oil			429	98.2									SGT
Total Petroleum H	ydrocarbons		553	196									SGT
Surr: 2-Fluorobi	phenyl		18.6		19.64		94.6	50	150				SGT
Surr: o-Terphen	yl		22.3		19.64		114	50	150				SGT
NOTES: SGT - Silica Ge	I Treatment												
Sample ID: LCS-3	4145	SampType	LCS			Units: µg/L		Prep Da	ite: 10/22/2	021	RunNo: 707	787	
Client ID: LCSW	1	Batch ID:	34145					Analysis Da	ite: 11/9/20	21	SeqNo: 144	48763	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum H	ydrocarbons		1,190	198	991.6	0	120	55	117				BSSGT
Surr: 2-Fluorobi	phenyl		18.8		19.83		94.8	50	150				SGT
Surr: o-Terphen	yl		26.1		19.83		132	50	150				SGT
NOTES:													

SGT - Silica Gel Treatment

Sample Log-In Check List

Client Name: G	L	Work Order Numb	er: 2110292	
Logged by: J	ustine Mantz	Date Received:	10/20/202	1 5:55:00 PM
Chain of Custod	ly			
1. Is Chain of Cus	tody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sa	mple delivered?	<u>Client</u>		
Log In				
3. Coolers are pre	sent?	Yes 🗸	No 🗌	NA 🗌
4. Shipping contail	ner/cooler in good condition?	Yes 🖌	No 🗌	
5. Custody Seals (Refer to comm	present on shipping container/cooler? ents for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
6. Was an attempt	t made to cool the samples?	Yes 🖌	No 🗌	NA 🗌
7. Were all items r	received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
8. Sample(s) in pro	oper container(s)?	Yes 🔽	No 🗌	
9. Sufficient samp	le volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Are samples pro	operly preserved?	Yes 🖌	No 🗌	
11. Was preservativ	ve added to bottles?	Yes 🗹	No 🗌	NA 🗌 H2SO4
12. Is there headsp	ace in the VOA vials?	Yes	No 🗹	
13. Did all samples	containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwork	<pre>< match bottle labels?</pre>	Yes 🖌	No 🗌	
15. Are matrices co	rrectly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what a	analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding	times able to be met?	Yes 🗹	No 🗌	
Special Handling	<u>g (if applicable)</u>			
18. Was client notif	ied of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person No	tified: Date			
By Whom:	Via:	eMail Pho	one 🗌 Fax 🛛	In Person
Regarding	:			
Client Instr	ructions:			

Item Information

Item #	Temp ⁰C
Sample 1	4.5

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	-	~	e
	c	υ	
(
	ſ	D	
	2	2	2
	ς	2	
	1	1	٦
	ħ	Ļ	è

100
<
<
<
<
<
<
-
-
Ð
-
-
=
0
-
-
57
9
-
-
m
-
_
-
Ξ.
22
B
-
ò
0
0
-
-
_

2
8
-
Υ
-
0
2
0

	3600 Fremont Ave N.	Chain of Custody Re	cord & Laboratory Service	es Agreement
Fremo	Tel: 206-352-3790	Date: 10-20-21 Page:	of: / Laboratory Project No (interna	# 210292
Analyti	Fax: 206-352-7178	Project Name: MOSSMGM	Special Remarks:	
client G-LOQICS		Project No: 01-0864-D		
Address: U		collected by: Tillany & Porre	laf	
City, State, Zip:		Location: Lake Sommamish		
Telephone:		Report To (PM): Panela F	Sample Disposal: Return to c	lient Disposal by lab (after 30 days)
Fax:		PM Email: pomela Rog-/ 2010	. Lom	
	Sample Sample Type	e # of (5,1,5,4,5,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		
1-MM-1	10-20-21 1215 GW	د ر		
2 MW-5	1243			
3 MW-6		<		
8-MW*	1036	4	×	
5-MW-2	1130			
613-8-GW	105			
,GLB-9-GW	1220			
8 GLB-10 -GW	1305			
GLB-N-GN	× 1430 ×	*		
10 *Matrix: A = Air, AQ = Aqueous, B = Bulk, C	D = Other, P = Product, S = Soil, SD	= Sediment, SL = Solid, W = Water, DW = Drinking Water,	GW = Ground Water, SW = Storm Water, WW = Waste Wate	er Turn-around Time:
**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutants TAL Indivi	dual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K	Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti Ti V Zn	Standard Next Day
***Anions (Circle): Nitrate Nitrite	Chloride Sulfate Bror	nide O-Phosphate Fluoride Nitrate+Nitrite		3 Day Same Day
I represent that I am authorized to to each of the terms on the front a) enter into this Agreement wi nd backside of this Agreemen	th Fremont Analytical on behalf of the Client na t.	med above, that I have verified Client's agreemer	nt 🗌 2 Day (specify)
x while (Signature)	THE CITY (WOING	Date/Time Received (Signature)	2 Marine 10	2012/1720
Relinquisted (Sightstore)	Print Name	Date/Time Received (Signature)	Print Name	Date/Time

ť	10
	Ð.
	0
	-
	N

100
<
<
<
<
<
<
-
-
Ð
-
-
=
0
-
-
57
9
-
-
m
-
_
-
Ξ.
22
B
-
ò
0
0
-
-
_

	3600 Fre	mont Ave N.	Chain of Custody Record & La	boratory Services Agreement
	Tel: 2	e, WA 98103 06-352-3790	Date: 10-20-21 Page: 1 of: 1	Laboratory Project No (internal): 2210292
JII Analyti	Fax: 2	06-352-7178	Project Name: MUSSMGin	Special Remarks:
client G-LOQICS			Project No: 01-0864-D	edits per TQ, Std TAT 11/3/21 -CG
Address:			collected by Tiltany & & Parelaf	
City, State, Zip:			Location: Lake Sommamish	
Telephone:			REPORTO (PM): Panela F	Sample Disposal: Return to client Disposal by lab (after 30 days)
Fax:			PM Email: pomela Rog-/ 10 105. com	07
			160 20 20 20	
	Sample Sa	Sample Type	# of (2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
1-MM-1	10-20-21 12	15 GW		
2 MW-5	1 12	43		DX w/ Silica Gel Cleanup
3/MW-6		-	-	DX w/ Silica Gel Cleanup
8-MW*	10	86		
5-MW-Z		õ		
643-8-GW	110	G		
7.GUB-9-GW	12	20		
8 GLB-10 -GW	1	R		
GLB-IN-GW	4 /6	130 V	*	
10 *Matrix: A = Air, AQ = Aqueous, B = Bulk, C) = Other, P = Produc	t, S = Soil, SD = S	ediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water,	SW = Storm Water, WW = Waste Water Turn-around Time:
**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutants	TAL Individu	zi: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	Pb Sb Se Sr Sn Ti TI V Zn
***Anions (Circle): Nitrate Nitrite	Chloride Si	ulfate Bromid	e O-Phosphate Fluoride Nitrate+Nitrite	🗌 3 Day 🗌 Same Day
I represent that I am authorized to to each of the terms on the front a	o enter into this A nd backside of th	greement with is Agreement.	Fremont Analytical on behalf of the Client named above, that I	have verified Client's agreement
Relinquished (Signature)	TITCOM C	Nony 1	Date/Time C-20-21 × Language	Print Name 16/20/21 1755
Relingu(sted (signature)	Print Name	0	Date/Time Received (Signature)	Print Name Date/Time

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Pamela Fleming 40 Second Ave. SE Issaquah, WA 98027

RE: Mossman Work Order Number: 2110293

November 17, 2021

Attention Pamela Fleming:

Fremont Analytical, Inc. received 29 sample(s) on 10/20/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Organic Compounds by EPA Method 8260D Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v2

CLIENT: Project: Work Order:	G-Logics Mossman 2110293	Work Order Sample Summ						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
2110293-001	GLB-8-2	10/20/2021 9:50 AM	10/20/2021 5:55 PM					
2110293-002	GLB-8-4	10/20/2021 9:55 AM	10/20/2021 5:55 PM					
2110293-003	GLB-8-6	10/20/2021 10:00 AM	10/20/2021 5:55 PM					
2110293-004	GLB-8-8	10/20/2021 10:10 AM	10/20/2021 5:55 PM					
2110293-005	GLB-8-10	10/20/2021 10:15 AM	10/20/2021 5:55 PM					
2110293-006	GLB-8-12	10/20/2021 10:30 AM	10/20/2021 5:55 PM					
2110293-007	GLB-8-14	10/20/2021 10:35 AM	10/20/2021 5:55 PM					
2110293-008	GLB-8-16	10/20/2021 10:35 AM	10/20/2021 5:55 PM					
2110293-009	GLB-9-4	10/20/2021 11:25 AM	10/20/2021 5:55 PM					
2110293-010	GLB-9-6	10/20/2021 11:30 AM	10/20/2021 5:55 PM					
2110293-011	GLB-9-8	10/20/2021 11:40 AM	10/20/2021 5:55 PM					
2110293-012	GLB-9-10	10/20/2021 11:45 AM	10/20/2021 5:55 PM					
2110293-013	GLB-9-12	10/20/2021 11:55 AM	10/20/2021 5:55 PM					
2110293-014	GLB-9-14	10/20/2021 12:05 PM	10/20/2021 5:55 PM					
2110293-015	GLB-9-16	10/20/2021 12:10 PM	10/20/2021 5:55 PM					
2110293-016	GLB-10-4	10/20/2021 12:45 PM	10/20/2021 5:55 PM					
2110293-017	GLB-10-6	10/20/2021 12:50 PM	10/20/2021 5:55 PM					
2110293-018	GLB-10-8	10/20/2021 12:55 PM	10/20/2021 5:55 PM					
2110293-019	GLB-10-10	10/20/2021 1:00 PM	10/20/2021 5:55 PM					
2110293-020	GLB-10-12	10/20/2021 1:05 PM	10/20/2021 5:55 PM					
2110293-021	GLB-10-14	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-022	GLB-10-16	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-023	GLB-11-4	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-024	GLB-11-6	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-025	GLB-11-8	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-026	GLB-11-10	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-027	GLB-11-12	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-028	GLB-11-14	10/20/2021 12:00 AM	10/20/2021 5:55 PM					
2110293-029	GLB-11-16	10/20/2021 12:00 AM	10/20/2021 5:55 PM					

Case Narrative

WO#: **2110293** Date: **11/17/2021**

CLIENT:G-LogicsProject:Mossman

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

11/02/2021, Rev 1: Includes additional analyses requested by the client. 11/17/2021, Rev 2: Includes additional analyses requested by the client.

Qualifiers & Acronyms

WO#: 2110293 Date Reported: 11/17/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

G-Logics

CLIENT:

Analytical Report

 Work Order:
 2110293

 Date Reported:
 11/17/2021

Project: Mossman					
Lab ID: 2110293-003 Client Sample ID: GLB-8-6			Collection Matrix: So	o Date: Dil	10/20/2021 10:00:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.		Batch	ID: 34	211 Analyst: MM
Diesel (Fuel Oil)	ND	56.0	mg/Kg-dry	1	10/28/2021 3:05:24 PM
Heavy Oil	ND	112	mg/Kg-dry	1	10/28/2021 3:05:24 PM
Total Petroleum Hydrocarbons	ND	168	mg/Kg-dry	1	10/28/2021 3:05:24 PM
Surr: 2-Fluorobiphenyl	82.4	50 - 150	%Rec	1	10/28/2021 3:05:24 PM
Surr: o-Terphenyl	95.9	50 - 150	%Rec	1	10/28/2021 3:05:24 PM
Sample Moisture (Percent Moistu	<u>ıre)</u>		Batch	ID: R7	70839 Analyst: ALB
Percent Moisture	13.9	0.500	wt%	1	10/28/2021 9:39:47 AM

G-Logics

CLIENT:

Analytical Report

 Work Order:
 2110293

 Date Reported:
 11/17/2021

Project: Mossman						
Lab ID: 2110293-004 Client Sample ID: GLB-8-8				Collection Matrix: So	Date: oil	10/20/2021 10:10:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	ID: 34	131 Analyst: MM
Diesel (Fuel Oil)	12,400	532	D	mg/Kg-dry	10	10/22/2021 2:28:31 PM
Diesel (Fuel Oil)	8,720	53.2	SGT	mg/Kg-dry	1	11/9/2021 1:20:48 PM
Heavy Oil	ND	1,060	D	mg/Kg-dry	10	10/22/2021 2:28:31 PM
Heavy Oil	ND	106	SGT	mg/Kg-dry	1	11/9/2021 1:20:48 PM
Total Petroleum Hydrocarbons	8,720	160	SGT	mg/Kg-dry	1	11/9/2021 1:20:48 PM
Total Petroleum Hydrocarbons	12,400	1,600	D	mg/Kg-dry	10	10/22/2021 2:28:31 PM
Surr: 2-Fluorobiphenyl	107	50 - 150	SGT	%Rec	1	11/9/2021 1:20:48 PM
Surr: 2-Fluorobiphenyl	73.0	50 - 150	D	%Rec	10	10/22/2021 2:28:31 PM
Surr: o-Terphenyl	149	50 - 150	D	%Rec	10	10/22/2021 2:28:31 PM
Surr: o-Terphenyl	128	50 - 150	SGT	%Rec	1	11/9/2021 1:20:48 PM
NOTES:						
SGT - Silica Gel Treatment						
Extractable Petroleum Hydrocarl	oons by NWE	<u>эн</u>		Batch	ID: 34	312 Analyst: MM
Aliphatic Hydrocarbon (C8-C10)	102	19.0	н	mg/Kg-dry	1	11/15/2021 8:44:16 PM
Aliphatic Hydrocarbon (C10-C12)	315	9.49	*H	mg/Kg-dry	1	11/15/2021 8:44:16 PM
Aliphatic Hydrocarbon (C12-C16)	1,450	9.49	Н	mg/Kg-dry	1	11/15/2021 8:44:16 PM
Aliphatic Hydrocarbon (C16-C21)	1,480	9.49	Н	mg/Kg-dry	1	11/15/2021 8:44:16 PM
Aliphatic Hydrocarbon (C21-C34)	192	9.49	Н	mg/Kg-dry	1	11/15/2021 8:44:16 PM
Aromatic Hydrocarbon (C8-C10)	ND	19.0	Н	mg/Kg-dry	1	11/16/2021 4:46:01 AM
Aromatic Hydrocarbon (C10-C12)	104	9.49	Н	mg/Kg-dry	1	11/16/2021 4:46:01 AM
Aromatic Hydrocarbon (C12-C16)	518	9.49	Н	mg/Kg-dry	1	11/16/2021 4:46:01 AM
Aromatic Hydrocarbon (C16-C21)	1,190	9.49	Н	mg/Kg-dry	1	11/16/2021 4:46:01 AM
Aromatic Hydrocarbon (C21-C34)	ND	9.49	Н	mg/Kg-dry	1	11/16/2021 4:46:01 AM
Surr: 1-Chlorooctadecane	77.5	60 - 140	Н	%Rec	1	11/15/2021 8:44:16 PM
Surr: o-Terphenyl	90.0	60 - 140	Н	%Rec	1	11/16/2021 4:46:01 AM
NOTES:						
* - Associated LCS does not meet accep	tance criteria; refe	r to QC sumn	nary.			
Volatile Organic Compounds by	EPA Method 8	<u>3260D</u>		Batch	ID: 34	343 Analyst: CR
Benzene	ND	0.0906	DH	ma/Ka-drv	4	11/8/2021 1:38:11 PM
Toluene	ND	0.136	DH	ma/Ka-drv	4	11/8/2021 1:38:11 PM
Ethylbenzene	ND	0.100	DH	ma/Ka-drv	4	11/8/2021 1:38:11 PM
m.p-Xvlene	0.564	0.110	DH	ma/Ka-drv	4	11/8/2021 1:38:11 PM
o-Xvlene	ND	0.113	DH	ma/Ka-drv	4	11/8/2021 1:38:11 PM
Naphthalene	6.40	0.453	DH	mg/Ka-drv	4	11/8/2021 1:38:11 PM

98.3

75.5 - 119

DH

%Rec

4

Surr: Dibromofluoromethane

11/8/2021 1:38:11 PM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT:G-LogicsProject:Mossman						
Volatile Organic Compounds by E	EPA Method	<u>8260D</u>		Batch	ID: 34	343 Analyst: CR
Surr: Toluene-d8	105	82.4 - 115	DH	%Rec	4	11/8/2021 1:38:11 PM
Surr: 1-Bromo-4-fluorobenzene NOTES: Diluted due to matrix.	96.7	78.5 - 118	DH	%Rec	4	11/8/2021 1:38:11 PM
Volatile Petroleum Hydrocarbons	by NWVPH			Batch	ID: 34	320 Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	3.56	2.31	Н	mg/Kg-dry	1	11/11/2021 8:40:16 AM
Aliphatic Hydrocarbon (C6-C8)	11.8	1.39	Н	mg/Kg-dry	1	11/11/2021 8:40:16 AM
Aliphatic Hydrocarbon (C8-C10)	48.6	2.31	н	mg/Kg-dry	1	11/11/2021 8:40:16 AM
Aliphatic Hydrocarbon (C10-C12)	293	9.24	DH	mg/Kg-dry	20	11/11/2021 6:04:45 AM
Aromatic Hydrocarbon (C8-C10)	111	2.77	н	mg/Kg-dry	1	11/11/2021 8:40:16 AM
Aromatic Hydrocarbon (C10-C12)	735	9.24	DH	mg/Kg-dry	20	11/11/2021 6:04:45 AM
Aromatic Hydrocarbon (C12-C13)	3,120	46.2	DH	mg/Kg-dry	100	11/11/2021 6:07:12 PM
Surr: 1,4-Difluorobenzene	85.7	65 - 140	н	%Rec	1	11/11/2021 8:40:16 AM
Surr: Bromofluorobenzene	468	65 - 140	SH	%Rec	1	11/11/2021 8:40:16 AM
NOTES:						
S - Outlying surrogate recovery attributed	to TPH interfere	nce.				
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	ID: R7	70710 Analyst: MCH
Percent Moisture	11.7	0.500		wt%	1	10/21/2021 5:03:36 PM
Lab ID: 2110293-005				Collection	Date:	10/20/2021 10:15:00 AM
Client Sample ID: GLB-8-10				Matrix: So	oil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-I	Dx/Dx Ext.			Batch	ID: 34	211 Analyst: MM
Diesel (Fuel Oil)	ND	59.2		mg/Kg-dry	1	10/28/2021 3:18:07 PM
Heavy Oil	ND	118		mg/Kg-dry	1	10/28/2021 3:18:07 PM
Total Petroleum Hydrocarbons	ND	178		mg/Kg-dry	1	10/28/2021 3:18:07 PM
Surr: 2-Fluorobiphenyl	99.2	50 - 150		%Rec	1	10/28/2021 3:18:07 PM
Surr: o-Terphenyl	96.4	50 - 150		%Rec	1	10/28/2021 3:18:07 PM
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	ID: R7	70839 Analyst: ALB
Percent Moisture	21.6	0.500		wt%	1	10/28/2021 9:39:47 AM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110293-010	Collection	Collection Date: 10/20/2021 11:30:00 AM				
Client Sample ID: GLB-9-6			Matrix: So	oil		
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	ID: 34	4211 Analyst: MM	
Diesel (Fuel Oil)	8,940	48.4	mg/Kg-dry	1	10/28/2021 3:30:54 PM	
Heavy Oil	ND	96.8	mg/Kg-dry	1	10/28/2021 3:30:54 PM	
Total Petroleum Hydrocarbons	8,940	145	mg/Kg-dry	1	10/28/2021 3:30:54 PM	
Surr: 2-Fluorobiphenyl	55.4	50 - 150	%Rec	1	10/28/2021 3:30:54 PM	
Surr: o-Terphenyl	71.9	50 - 150	%Rec	1	10/28/2021 3:30:54 PM	
Sample Moisture (Percent Mois	<u>sture)</u>		Batch	ID: R	70839 Analyst: ALB	
Percent Moisture	9.27	0.500	wt%	1	10/28/2021 9:39:47 AM	

G-Logics

CLIENT:

Analytical Report

 Work Order:
 2110293

 Date Reported:
 11/17/2021

Analyses Result RL Qual Units DF Date Analyzed Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Batch ID: 34131 Analyst: MM Diesel (Fuel Oil) 27,600 700 DSGT mg/Kg-dry 10 10/22/2021 2:41:21 PM Heavy Oil ND 1,400 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Heavy Oil ND 1,400 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 61.0 50-150 D %Rec 10 10/22/2021 2:41:21 PM Sur: o-Terphenyl 91.0 50-150 D SGT %Rec 10 10/22/2021 2:41:21 PM Sur: o-Terphenyl 72.0 50-150 D %Rec 10 10/22/2021 2:41:21 PM Sur: o-Terphenyl 72.0 50-150 D %Rec 10 11/9/2021 6:42:52 PM Nortes: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH<	Lab ID: 2110293-011 Client Sample ID: GLB-9-8				Collection Matrix: So	Date:	10/20/2021 11:40:00 AN
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Bath D: 34131 Analys: MM Diesel (Fuel Oil) 27,600 700 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Heavy Oil ND 1,400 D mg/Kg-dry 10 11/9/2021 6:42:52 PM Heavy Oil ND 1,400 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 25,000 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 61.0 50 - 150 D mg/Kg-dry 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Sur: 2-Fluorobiphenyl 75.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 72.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 72.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Sur: 2-Fluorobiphenyl 72.0<	Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel (Fuel Oli) 27,600 700 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Diesel (Fuel Oli) 25,000 700 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Heavy Oli ND 1,400 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Heavy Oli ND 1,400 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 DSGT mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM NOTES: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C10-C12) 961 13.9 'H mg/Kg-dry 11/1/1/5/2021 11:25:24	Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	ID: 34	131 Analyst: MM
Diesel (Fuel Oli) 25,000 700 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Heavy Oil ND 1,400 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Total Petroleum Hydrocarbons 25,000 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 DS mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 91.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 72.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM NOTES: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C10-C12) 961 13.9 H mg/Kg-dry 1 </td <td>Diesel (Fuel Oil)</td> <td>27,600</td> <td>700</td> <td>D</td> <td>mg/Kg-dry</td> <td>10</td> <td>10/22/2021 2:41:21 PM</td>	Diesel (Fuel Oil)	27,600	700	D	mg/Kg-dry	10	10/22/2021 2:41:21 PM
Heavy Oil ND 1,400 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Total Petroleum Hydrocarbons 25,000 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 75.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 72.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 72.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 1	Diesel (Fuel Oil)	25,000	700	DSGT	mg/Kg-dry	10	11/9/2021 6:42:52 PM
Heavy Oil ND 1,400 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 25,000 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50-150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 91.0 50-150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 72.0 50-150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 72.0 50-150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry <t< td=""><td>Heavy Oil</td><td>ND</td><td>1,400</td><td>D</td><td>mg/Kg-dry</td><td>10</td><td>10/22/2021 2:41:21 PM</td></t<>	Heavy Oil	ND	1,400	D	mg/Kg-dry	10	10/22/2021 2:41:21 PM
Total Petroleum Hydrocarbons 25,000 2,100 DSGT mg/Kg-dry 10 11/9/2021 6:42:52 PM Total Petroleum Hydrocarbons 27,600 2,100 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/1/5/2021 11:25:24 PI Aliphatic Hydrocarbon (C10-C12) 961 13.9 "H mg/Kg-dry 1 11/1/5/2021 11:25:24 PI Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 1 11/1/5/2021 11:25:24 PI Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H <td>Heavy Oil</td> <td>ND</td> <td>1,400</td> <td>DSGT</td> <td>mg/Kg-dry</td> <td>10</td> <td>11/9/2021 6:42:52 PM</td>	Heavy Oil	ND	1,400	DSGT	mg/Kg-dry	10	11/9/2021 6:42:52 PM
Total Petroleum Hydrocarbons 27,600 2,100 D mg/Kg-dry 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Surr: 2-Fluorobiphenyl 75.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: 0-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment 8 8 10 10/22/2021 2:41:21 PM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C10-C12) 961 13.9 'H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C21-C34) 495 13.9 H mg/Kg-dry 1 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry<	Total Petroleum Hydrocarbons	25,000	2,100	DSGT	mg/Kg-dry	10	11/9/2021 6:42:52 PM
Sur: 2-Fluorobiphenyl 61.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM Sur:: 2-Fluorobiphenyl 75.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Sur:: 0-Terphenyl 72.0 50 - 150 DSGT %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment SGT - Silica Gel Treatment D %Rec 10 10/22/2021 2:41:21 PM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C10-C12) 961 13.9 'H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 1 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C8-C10) ND 27.7 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10	Total Petroleum Hydrocarbons	27,600	2,100	D	mg/Kg-dry	10	10/22/2021 2:41:21 PM
Sur: 2-Fluorobiphenyl 75.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Sur:: o-Terphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Sur:: o-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PF Aliphatic Hydrocarbon (C10-C12) 961 13.9 'H mg/Kg-dry 1 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10-C12) ND 27.7 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10-C12) ND	Surr: 2-Fluorobiphenyl	61.0	50 - 150	D	%Rec	10	10/22/2021 2:41:21 PM
Surr: o-Terphenyl 91.0 50 - 150 DSGT %Rec 10 11/9/2021 6:42:52 PM Surr: o-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment SGT SGT Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C10-C12) 961 13.9 "H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 10 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C2-C10) 82.4 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry	Surr: 2-Fluorobiphenyl	75.0	50 - 150	DSGT	%Rec	10	11/9/2021 6:42:52 PM
Surr: o-Terphenyl 72.0 50 - 150 D %Rec 10 10/22/2021 2:41:21 PM NOTES: SGT - Silica Gel Treatment SGT - Silica Gel Treatment Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aliphatic Hydrocarbon (C10-C12) 961 13.9 "H mg/Kg-dry 1 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C21-C34) 495 13.9 H mg/Kg-dry 10 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aromatic Hydrocarbon (C8-C10) ND 27.7 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry	Surr: o-Terphenyl	91.0	50 - 150	DSGT	%Rec	10	11/9/2021 6:42:52 PM
NOTES: SGT - Silica Gel Treatment Batch ID: 34312 Analyst: MM Miphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C10-C12) 961 13.9 "H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C21-C34) 495 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/16/2021 7:13:30 PM Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C8-C10) ND 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 Pf Aromatic Hydrocarbon (C10-C12) </td <td>Surr: o-Terphenyl</td> <td>72.0</td> <td>50 - 150</td> <td>D</td> <td>%Rec</td> <td>10</td> <td>10/22/2021 2:41:21 PM</td>	Surr: o-Terphenyl	72.0	50 - 150	D	%Rec	10	10/22/2021 2:41:21 PM
SGT - Silica Gel Treatment Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C10-C12) 961 13.9 "H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C12-C34) 495 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C21-C34) 495 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C12-C16) ND 13.9 H mg/Kg-dry </td <td>NOTES:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NOTES:						
Extractable Petroleum Hydrocarbons by NWEPH Batch ID: 34312 Analyst: MM Aliphatic Hydrocarbon (C8-C10) 328 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C10-C12) 961 13.9 *H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aliphatic Hydrocarbon (C12-C16) 3,800 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C16-C21) 4,160 139 DH mg/Kg-dry 10 11/16/2021 7:13:30 PM Aliphatic Hydrocarbon (C21-C34) 495 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C8-C10) 82.4 27.7 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C10-C12) ND 13.9 H mg/Kg-dry 1 <td< td=""><td>SGT - Silica Gel Treatment</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	SGT - Silica Gel Treatment						
Aliphatic Hydrocarbon (C8-C10)32827.7Hmg/Kg-dry111/15/2021 11:25:24 PIAliphatic Hydrocarbon (C10-C12)96113.9*Hmg/Kg-dry111/15/2021 11:25:24 PIAliphatic Hydrocarbon (C12-C16)3,800139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C16-C21)4,160139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C21-C34)49513.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,29013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND </td <td>Extractable Petroleum Hydrocarl</td> <td>oons by NWEF</td> <td><u>РН</u></td> <td></td> <td>Batch</td> <td>ID: 343</td> <td>312 Analyst: MM</td>	Extractable Petroleum Hydrocarl	oons by NWEF	<u>РН</u>		Batch	ID: 343	312 Analyst: MM
Aliphatic Hydrocarbon (C10-C12)96113.9*Hmg/Kg-dry111/15/2021 11:25:24 PIAliphatic Hydrocarbon (C12-C16)3,800139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C16-C21)4,160139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C21-C34)49513.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND<	Aliphatic Hydrocarbon (C8-C10)	328	27.7	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aliphatic Hydrocarbon (C12-C16)3,800139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C16-C21)4,160139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C21-C34)49513.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND <td>Aliphatic Hydrocarbon (C10-C12)</td> <td>961</td> <td>13.9</td> <td>*H</td> <td>mg/Kg-dry</td> <td>1</td> <td>11/15/2021 11:25:24 PM</td>	Aliphatic Hydrocarbon (C10-C12)	961	13.9	*H	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aliphatic Hydrocarbon (C16-C21)4,160139DHmg/Kg-dry1011/16/2021 7:13:30 PMAliphatic Hydrocarbon (C21-C34)49513.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13	Aliphatic Hydrocarbon (C12-C16)	3,800	139	DH	mg/Kg-dry	10	11/16/2021 7:13:30 PM
Aliphatic Hydrocarbon (C21-C34)49513.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)59113.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PISurr: 1-Chlorooctadecane78.260 - 140H%Rec111/15/2021 11:25:24 PISurr: o-Terphenyl0.52060 - 140<	Aliphatic Hydrocarbon (C16-C21)	4,160	139	DH	mg/Kg-dry	10	11/16/2021 7:13:30 PM
Aromatic Hydrocarbon (C8-C10)82.427.7Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/16/2021 3:38:50 PMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PMAromatic Hydrocarbon (C21-C34)59113.9Hmg/Kg-dry111/15/2021 11:25:24 PMSurr: 1-Chlorooctadecane78.260 - 140H%Rec111/15/2021 11:25:24 PMSurr: o-Terphenyl0.52060 - 140SH%Rec111/15/2021 11:25:24 PM	Aliphatic Hydrocarbon (C21-C34)	495	13.9	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aromatic Hydrocarbon (C8-C10)ND27.7Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry1011/16/2021 3:38:50 PMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C21-C34)59113.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PISurr: 1-Chlorooctadecane78.260 - 140H%Rec111/15/2021 11:25:24 PISurr: o-Terphenyl0.52060 - 140SH%Rec111/15/2021 11:25:24 PI	Aromatic Hydrocarbon (C8-C10)	82.4	27.7	н	mg/Kg-dry	1	11/16/2021 7:26:23 AM
Aromatic Hydrocarbon (C10-C12)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/16/2021 3:38:50 PMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PIAromatic Hydrocarbon (C21-C34)59113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PISurr: 1-Chlorooctadecane78.260 - 140H%Rec111/15/2021 11:25:24 PISurr: o-Terphenyl0.52060 - 140SH%Rec111/15/2021 11:25:24 PI	Aromatic Hydrocarbon (C8-C10)	ND	27.7	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aromatic Hydrocarbon (C10-C12)40113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)1,63013.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/15/2021 7:26:23 AMAromatic Hydrocarbon (C12-C16)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PMAromatic Hydrocarbon (C16-C21)3,290139DHmg/Kg-dry1011/16/2021 3:38:50 PMAromatic Hydrocarbon (C16-C21)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PMAromatic Hydrocarbon (C21-C34)59113.9Hmg/Kg-dry111/16/2021 7:26:23 AMAromatic Hydrocarbon (C21-C34)ND13.9Hmg/Kg-dry111/15/2021 11:25:24 PMSurr: 1-Chlorooctadecane78.260 - 140H%Rec111/15/2021 11:25:24 PMSurr: o-Terphenyl0.52060 - 140SH%Rec111/15/2021 11:25:24 PM	Aromatic Hydrocarbon (C10-C12)	ND	13.9	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aromatic Hydrocarbon (C12-C16) 1,630 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C12-C16) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aromatic Hydrocarbon (C16-C21) 3,290 139 DH mg/Kg-dry 10 11/16/2021 3:38:50 PM Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PM Surr: o-Terphenyl 0.520 60 - 140 SH	Aromatic Hydrocarbon (C10-C12)	401	13.9	н	mg/Kg-dry	1	11/16/2021 7:26:23 AM
Aromatic Hydrocarbon (C12-C16) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C16-C21) 3,290 139 DH mg/Kg-dry 10 11/16/2021 3:38:50 PM Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 10 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PI Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PI	Aromatic Hydrocarbon (C12-C16)	1,630	13.9	н	mg/Kg-dry	1	11/16/2021 7:26:23 AM
Aromatic Hydrocarbon (C16-C21) 3,290 139 DH mg/Kg-dry 10 11/16/2021 3:38:50 PM Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PM Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PM	Aromatic Hydrocarbon (C12-C16)	ND	13.9	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aromatic Hydrocarbon (C16-C21) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PI Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PI	Aromatic Hydrocarbon (C16-C21)	3,290	139	DH	mg/Kg-dry	10	11/16/2021 3:38:50 PM
Aromatic Hydrocarbon (C21-C34) 591 13.9 H mg/Kg-dry 1 11/16/2021 7:26:23 AM Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PM Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PM Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PM	Aromatic Hydrocarbon (C16-C21)	ND	13.9	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Aromatic Hydrocarbon (C21-C34) ND 13.9 H mg/Kg-dry 1 11/15/2021 11:25:24 PI Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 PI Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PI	Aromatic Hydrocarbon (C21-C34)	591	13.9	н	mg/Kg-dry	1	11/16/2021 7:26:23 AM
Surr: 1-Chlorooctadecane 78.2 60 - 140 H %Rec 1 11/15/2021 11:25:24 Pt Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 Pt	Aromatic Hydrocarbon (C21 C24)	ND	13.9	н	mg/Kg-dry	1	11/15/2021 11:25:24 PM
Surr: o-Terphenyl 0.520 60 - 140 SH %Rec 1 11/15/2021 11:25:24 PM	Alomatic Hydrocarbon (621-634)	78.2	60 - 140	Н	%Rec	1	11/15/2021 11:25:24 PM
	Surr: 1-Chlorooctadecane			сн	%Rec	1	11/15/2021 11·25·24 PM
Surr: o-Terphenyl 93.4 60 - 140 H %Rec 1 11/16/2021 7:26:23 AM	Surr: 1-Chlorooctadecane Surr: o-Terphenyl	0.520	60 - 140	011	,		11/10/2021 11.20.2111

Volatile Organic Compounds by EPA Method 8260D

Batch ID: 34227 Analyst: CR

Benzene 0.120 0.0747 D mg/Kg-dry 4 10/25	10/29/2021 5:20:15 PM	

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman

Volatile Organic Compounds by	EPA Method	8260D		Batch	ID:	34227	Analyst: CR
Toluene	ND	0.224	D	mg/Kg-dry	4	10/2	29/2021 5:20:15 PM
Ethylbenzene	1.54	0.187	D	mg/Kg-dry	4	10/2	9/2021 5:20:15 PM
m,p-Xylene	5.55	0.374	D	mg/Kg-dry	4	10/2	9/2021 5:20:15 PM
o-Xylene	0.424	0.187	D	mg/Kg-dry	4	10/2	9/2021 5:20:15 PM
Surr: Dibromofluoromethane	96.0	75.5 - 119	D	%Rec	4	10/2	9/2021 5:20:15 PM
Surr: Toluene-d8	104	82.4 - 115	D	%Rec	4	10/2	9/2021 5:20:15 PM
Surr: 1-Bromo-4-fluorobenzene	97.6	78.5 - 118	D	%Rec	4	10/2	9/2021 5:20:15 PM
NOTES:							
Diluted due to matrix, benzene is reported	ed to MDL.						
Volatile Petroleum Hydrocarbon	<u>s by NWVPH</u>			Batch	ID:	34320	Analyst: SLL
Aliphatic Hydrocarbon (C5-C6)	6.12	3.26	н	mg/Kg-dry	1	11/1	1/2021 8:01:23 AM
Aliphatic Hydrocarbon (C6-C8)	29.2	1.96	н	mg/Kg-dry	1	11/1	1/2021 8:01:23 AM
Aliphatic Hydrocarbon (C8-C10)	185	65.2	DH	mg/Kg-dry	20	11/1	1/2021 6:43:41 AM
Aliphatic Hydrocarbon (C10-C12)	463	13.0	DH	mg/Kg-dry	20	11/1	1/2021 6:43:41 AM
Aromatic Hydrocarbon (C8-C10)	212	3.91	н	mg/Kg-dry	1	11/1	1/2021 8:01:23 AM
Aromatic Hydrocarbon (C10-C12)	1,170	13.0	DH	mg/Kg-dry	20	11/1	1/2021 6:43:41 AM
Aromatic Hydrocarbon (C12-C13)	4,750	65.2	DH	mg/Kg-dry	100) 11/1	1/2021 6:46:06 PM
Surr: 1,4-Difluorobenzene	76.7	65 - 140	н	%Rec	1	11/1	1/2021 8:01:23 AM
Surr: Bromofluorobenzene	326	65 - 140	SH	%Rec	1	11/1	1/2021 8:01:23 AM
NOTES: S - Outlying surrogate recovery attribute	d to TPH interfere	ence.					
Sample Moisture (Percent Moist	ure)			Batch	ID:	R70710	Analyst: MCH
Percent Moisture	28.9	0.500		wt%	1	10/2	21/2021 5:03:36 PM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110293-012		Collection	Date:	10/20/2021 11:45:00 AM	
Client Sample ID: GLB-9-10			Matrix: So	oil	
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batch	ID: 34	131 Analyst: MM
Diesel (Fuel Oil)	215	59.3	mg/Kg-dry	1	10/22/2021 12:27:22 PM
Heavy Oil	ND	119	mg/Kg-dry	1	10/22/2021 12:27:22 PM
Total Petroleum Hydrocarbons	215	178	mg/Kg-dry	1	10/22/2021 12:27:22 PM
Surr: 2-Fluorobiphenyl	122	50 - 150	%Rec	1	10/22/2021 12:27:22 PM
Surr: o-Terphenyl	126	50 - 150	%Rec	1	10/22/2021 12:27:22 PM
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID: R7	70710 Analyst: MCH
Percent Moisture	20.5	0.500	wt%	1	10/21/2021 5:03:36 PM

Lab ID: 2110293-013

Client Sample ID: GLB-9-12

Collection Date: 10/20/2021 11:55:00 AM Matrix: Soil

Analyses	Result	RL	Qual	Units	D	F Date	e Analyzed	
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.			Batch	ID:	34305	Analyst: MM	
Diesel (Fuel Oil)	58.3	52.7	Н	mg/Kg-dry	1	11/4	/2021 10:38:26 PM	
Heavy Oil	ND	105	н	mg/Kg-dry	1	11/4/	/2021 10:38:26 PM	
Total Petroleum Hydrocarbons	ND	158	н	mg/Kg-dry	1	11/4/	/2021 10:38:26 PM	
Surr: 2-Fluorobiphenyl	115	50 - 150	Н	%Rec	1	11/4/	/2021 10:38:26 PM	
Surr: o-Terphenyl	113	50 - 150	Н	%Rec	1	11/4/	/2021 10:38:26 PM	
Sample Moisture (Percent Mois	ture)			Batch	ID:	R71006	Analyst: cb	
Percent Moisture	12.5	0.500		wt%	1	11/4/	/2021 9:42:20 AM	

 Work Order:
 2110293

 Date Reported:
 11/17/2021

Project:	Mossman	
CLIENT:	G-Logics	

Lab ID: 2110293-017	Collection Date: 10/20/2021 12:50:00 PM							
Client Sample ID: GLB-10-6			Matrix: Soil					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batch	ID: 34	4305 Analyst: MM		
Diesel (Fuel Oil)	143	59.2	Н	mg/Kg-dry	1	11/4/2021 11:17:14 PM		
Heavy Oil	ND	118	Н	mg/Kg-dry	1	11/4/2021 11:17:14 PM		
Total Petroleum Hydrocarbons	ND	177	Н	mg/Kg-dry	1	11/4/2021 11:17:14 PM		
Surr: 2-Fluorobiphenyl	128	50 - 150	Н	%Rec	1	11/4/2021 11:17:14 PM		
Surr: o-Terphenyl	130	50 - 150	Н	%Rec	1	11/4/2021 11:17:14 PM		
Sample Moisture (Percent Mois	<u>ture)</u>			Batch	ID: R	71006 Analyst: cb		
Percent Moisture	15.7	0.500		wt%	1	11/4/2021 9:42:20 AM		

Lab ID: 2110293-018

Client Sample ID: GLB-10-8

Collection Date: 10/20/2021 12:55:00 PM Matrix: Soil

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.		Batch	ID: 34	131 Analyst: MM
Diesel (Fuel Oil)	498	82.6	mg/Kg-dry	1	10/22/2021 12:53:10 PM
Heavy Oil	ND	165	mg/Kg-dry	1	10/22/2021 12:53:10 PM
Heavy Oil Range Organics (C24-37)	342	165	mg/Kg-dry	1	10/22/2021 12:53:10 PM
Total Petroleum Hydrocarbons	839	248	mg/Kg-dry	1	10/22/2021 12:53:10 PM
Surr: 2-Fluorobiphenyl	122	50 - 150	%Rec	1	10/22/2021 12:53:10 PM
Surr: o-Terphenyl	127	50 - 150	%Rec	1	10/22/2021 12:53:10 PM
NOTES:					
Heavy Oil Range Organics - Indicates un	resolved compour	nds in the Oil range ir	nconsistent with a k	nown pe	etroleum standard.
Sample Moisture (Percent Moistu	<u>ıre)</u>		Batch	ID: R	70710 Analyst: MCH

<u>ample Moisture (Percent Moisture)</u>			Batch	ID: R <i>i</i>	0710	Analyst: MCH
Percent Moisture	44.7	0.500	wt%	1	10/21	I/2021 5:03:36 PM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110293-019 Client Sample ID: GLB-10-10				Collection Matrix: So	Date:	10/20/2021 1:00:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>x/Dx Ext.</u>			Batch	ID: 34	305 Analyst: MM
Diesel (Fuel Oil)	ND	51.4	н	mg/Kg-dry	1	11/4/2021 11:30:11 PM
Heavy Oil	ND	103	Н	mg/Kg-dry	1	11/4/2021 11:30:11 PM
Total Petroleum Hydrocarbons	ND	154	Н	mg/Kg-dry	1	11/4/2021 11:30:11 PM
Surr: 2-Fluorobiphenyl	107	50 - 150	Н	%Rec	1	11/4/2021 11:30:11 PM
Surr: o-Terphenyl	110	50 - 150	Н	%Rec	1	11/4/2021 11:30:11 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID: R7	1006 Analyst: cb
Percent Moisture	14.8	0.500		wt%	1	11/4/2021 9:42:20 AM

Lab ID: 2110293-020

Client Sample ID: GLB-10-12

Collection Date: 10/20/2021 1:05:00 PM Matrix: Soil

Analyses	Result	RL (Qual	Units	D	F Date	e Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ID:	34305	Analyst: MM
Diesel (Fuel Oil)	ND	49.4	Н	mg/Kg-dry	1	11/4	/2021 11:43:23 PM
Heavy Oil	ND	98.8	н	mg/Kg-dry	1	11/4	/2021 11:43:23 PM
Total Petroleum Hydrocarbons	ND	148	н	mg/Kg-dry	1	11/4	/2021 11:43:23 PM
Surr: 2-Fluorobiphenyl	97.7	50 - 150	Н	%Rec	1	11/4	/2021 11:43:23 PM
Surr: o-Terphenyl	97.9	50 - 150	Н	%Rec	1	11/4	/2021 11:43:23 PM
Sample Moisture (Percent Mois	<u>sture)</u>			Batch	ID:	R71006	Analyst: cb
Percent Moisture	14.9	0.500		wt%	1	11/4	/2021 9:42:20 AM

Work Order: 2110293 Date Reported: 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110293-021 Collection Date: 10/20/2021 Client Sample ID: GLB-10-14 Matrix: Soil							
Analyses	Result	RL	Qual	Units	D	Date Analyzed	
Diesel and Heavy Oil by NWTPH-D	<u>k/Dx Ext.</u>			Batch	ID:	34305 Analyst: MM	
Diesel (Fuel Oil)	ND	49.8	н	mg/Kg-dry	1	11/4/2021 11:56:19 PM	
Heavy Oil	ND	99.5	н	mg/Kg-dry	1	11/4/2021 11:56:19 PM	
Total Petroleum Hydrocarbons	ND	149	н	mg/Kg-dry	1	11/4/2021 11:56:19 PM	
Surr: 2-Fluorobiphenyl	97.8	50 - 150	н	%Rec	1	11/4/2021 11:56:19 PM	
Surr: o-Terphenyl	98.6	50 - 150	Н	%Rec	1	11/4/2021 11:56:19 PM	
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R71006 Analyst: cb	
Percent Moisture	12.9	0.500		wt%	1	11/4/2021 9:42:20 AM	

Lab ID: 2110293-022

Lab ID: 2110293-022				Collection	n Dat	e: 10/20/2	2021
Client Sample ID: GLB-10-16				Matrix: S	oil		
Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batch	n ID:	34305	Analyst: MM
Diesel (Fuel Oil)	ND	52.1	н	mg/Kg-dry	1	11/5/	2021 12:09:12 AM
Heavy Oil	ND	104	н	mg/Kg-dry	1	11/5/	2021 12:09:12 AM
Total Petroleum Hydrocarbons	ND	156	н	mg/Kg-dry	1	11/5/	2021 12:09:12 AM
Surr: 2-Fluorobiphenyl	95.2	50 - 150	н	%Rec	1	11/5/	2021 12:09:12 AM
Surr: o-Terphenyl	96.9	50 - 150	Н	%Rec	1	11/5/	2021 12:09:12 AM
Sample Moisture (Percent Moist	ure)			Batch	n ID:	R71006	Analyst: cb
Percent Moisture	11.8	0.500		wt%	1	11/4/	2021 9:42:20 AM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman							
Lab ID: 2110293-025 Client Sample ID: GLB-11-8				Collection Matrix: So	Date:	10/20/	2021
Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Diesel and Heavy Oil by NWTPH-I	Dx/Dx Ext.			Batch	ID: 34	131	Analyst: MM
Diesel (Fuel Oil)	259	136		mg/Kg-dry	1	10/22	2/2021 1:18:52 PM
Heavy Oil	ND	273		mg/Kg-dry	1	10/22	2/2021 1:18:52 PM
Heavy Oil Range Organics (C24-37)	980	273		mg/Kg-dry	1	10/22	2/2021 1:18:52 PM
Total Petroleum Hydrocarbons	1,240	409		mg/Kg-dry	1	10/22	2/2021 1:18:52 PM
Surr: 2-Fluorobiphenyl	117	50 - 150		%Rec	1	10/22	2/2021 1:18:52 PM
Surr: o-Terphenyl	117	50 - 150		%Rec	1	10/22	2/2021 1:18:52 PM
NOTES:							
Heavy Oil Range Organics - Indicates unr	esolved compour	nds in the Oil	range incor	nsistent with a k	nown pe	troleum s	standard.
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	ID: R7	0710	Analyst: MCH
Percent Moisture	66.3	0.500		wt%	1	10/21	1/2021 5:03:36 PM
Lab ID: 2110293-026				Collection	Date:	10/20/	2021
Client Sample ID: GLB-11-10				Matrix: So	oil	10/20/	
Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Diesel and Heavy Oil by NWTPH-I	Dx/Dx Ext.			Batch	ID: 34	305	Analyst: MM
Diesel (Fuel Oil)	ND	93.3	н	mg/Kg-dry	1	11/5/	2021 12:22:08 AM
Heavy Oil	ND	187	н	mg/Kg-dry	1	11/5/	2021 12:22:08 AM
Heavy Oil Range Organics (C24-37)	381	187	н	mg/Kg-dry	1	11/5/	2021 12:22:08 AM
Total Petroleum Hydrocarbons	381	280	н	mg/Kg-dry	1	11/5/	2021 12:22:08 AM
Surr: 2-Fluorobiphenyl	120	50 - 150	н	%Rec	1	11/5/	2021 12:22:08 AM
Surr: o-Terphenyl	121	50 - 150	н	%Rec	1	11/5/	2021 12:22:08 AM
NOTES:							
Heavy Oil Range Organics - Indicates unr	esolved compour	nds in the Oil	range incor	nsistent with a k	nown pe	troleum s	standard.
Sample Moisture (Percent Moistu	<u>re)</u>			Batch	ID: R7	1006	Analyst: cb
Percent Moisture	47.8	0.500		wt%	1	11/4/	2021 9:42:20 AM

 Work Order:
 2110293

 Date Reported:
 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110293-027 Client Sample ID: GLB-11-12				Collection Matrix: So	Da oil	te: 10/20/2021
Analyses	Result	RL	Qual	Units	D	F Date Analyzed
Diesel and Heavy Oil by NWTPH-D	x/Dx Ext.			Batch	ID:	34305 Analyst: MM
Diesel (Fuel Oil)	ND	87.2	н	mg/Kg-dry	1	11/5/2021 12:48:12 AM
Heavy Oil	ND	174	н	mg/Kg-dry	1	11/5/2021 12:48:12 AM
Total Petroleum Hydrocarbons	ND	262	н	mg/Kg-dry	1	11/5/2021 12:48:12 AM
Surr: 2-Fluorobiphenyl	103	50 - 150	н	%Rec	1	11/5/2021 12:48:12 AM
Surr: o-Terphenyl	107	50 - 150	н	%Rec	1	11/5/2021 12:48:12 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R71006 Analyst: cb
Percent Moisture	48.3	0.500		wt%	1	11/4/2021 9:42:20 AM

Lab ID: 2110293-028

Collection Date: 10/20/2021 Matrix: Soil

Client Sample ID: GLB-11-14	Matrix: Soil							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH-D	x/Dx Ext.			Batch	ID: 34	305 Analyst: MM		
Diesel (Fuel Oil)	ND	56.1	Н	mg/Kg-dry	1	11/5/2021 1:14:00 AM		
Heavy Oil	ND	112	Н	mg/Kg-dry	1	11/5/2021 1:14:00 AM		
Total Petroleum Hydrocarbons	ND	168	Н	mg/Kg-dry	1	11/5/2021 1:14:00 AM		
Surr: 2-Fluorobiphenyl	116	50 - 150	Н	%Rec	1	11/5/2021 1:14:00 AM		
Surr: o-Terphenyl	117	50 - 150	Н	%Rec	1	11/5/2021 1:14:00 AM		
Sample Moisture (Percent Moistur	<u>·e)</u>			Batch	ID: R7	1006 Analyst: cb		
Percent Moisture	18.3	0.500		wt%	1	11/4/2021 9:42:20 AM		

Fremont
Analytical

Work Order:	2110293									00 3	SUMMA		PORT
CLIENT:	G-Logics								Discol				
Project:	Mossman								Diesei	and neavy			DX EXI.
Sample ID: MB-34	131	SampType	e: MBLK			Units: mg/Kg		Prep Date	e: 10/21/2	2021	RunNo: 707	729	
Client ID: MBLK	S	Batch ID:	34131					Analysis Date	e: 10/22/2	2021	SeqNo: 14	38609	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	50.0									
Heavy Oil			ND	100									
Total Petroleum Hy	drocarbons		ND	150									
Surr: 2-Fluorobip	ohenyl		10.8		10.00		108	50	150				
Surr: o-Terpheny	yl		11.1		10.00		111	50	150				
Sample ID: LCS-3	4131	SampType	e: LCS			Units: mg/Kg		Prep Date	e: 10/21/2	2021	RunNo: 707	729	
Client ID: LCSS		Batch ID:	34131					Analysis Date	e: 10/22/2	2021	SeqNo: 14	38610	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	drocarbons		603	150	500.0	0	121	77.2	122				
Surr: 2-Fluorobip	ohenyl		9.34		10.00		93.4	50	150				
Surr: o-Terpheny	yl		14.0		10.00		140	50	150				
Sample ID: 21103	10-001ADUP	SampType	e: DUP			Units: mg/Kg-	dry	Prep Date	e: 10/21/2	2021	RunNo: 707	729	
Client ID: BATCH	н	Batch ID:	34131					Analysis Date	e: 10/22/2	2021	SeqNo: 14	38612	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	46.2						0		30	
Heavy Oil			ND	92.4						0		30	
Total Petroleum Hy	drocarbons		ND	139						0		30	
Surr: 2-Fluorobip	ohenyl		9.86		9.239		107	50	150		0		
Surr: o-Terpheny	yl		9.88		9.239		107	50	150		0		
Sample ID: MB-34	211	SampType	e: MBLK			Units: mg/Kg		Prep Date	e: 10/28/ 2	2021	RunNo: 708	870	
Client ID: MBLK	S	Batch ID:	34211					Analysis Date	e: 10/28/ 2	2021	SeqNo: 14	41798	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	50.0									

Work Order:2110293CLIENT:G-LogicsProject:Mossman							Diesel a	QC S and Heavy (SUMMAF Oil by NW	RY REF	PORT Dx Ext.
Sample ID: MB-34211	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 10/28/2	021	RunNo: 708	370	
Client ID: MBLKS	Batch ID: 34211					Analysis Dat	e: 10/28/2	021	SeqNo: 144	1798	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	150									
Surr: 2-Fluorobiphenyl	7.76		10.00		77.6	50	150				
Surr: o-Terphenyl	10.0		10.00		100	50	150				
Sample ID: LCS-34211	SampType: LCS			Units: mg/Kg		Prep Dat	e: 10/28/2	021	RunNo: 708	370	
Client ID: LCSS	Batch ID: 34211					Analysis Dat	e: 10/28/2	021	SeqNo: 144	1799	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	595	150	500.0	0	119	77.2	122				
Surr: 2-Fluorobiphenyl	8.96		10.00		89.6	50	150				
Surr: o-Terphenyl	12.6		10.00		126	50	150				
Sample ID: 2110293-010AMS	SampType: MS			Units: mg/Kg-	dry	Prep Dat	e: 10/28/2	021	RunNo: 708	370	
Client ID: GLB-9-6	Batch ID: 34211					Analysis Dat	e: 10/28/2	021	SeaNo: 144	1805	
	-										
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Total Petroleum Hydrocarbons	Result 7,700	RL 165	SPK value 549.4	SPK Ref Val 8,943	%REC -227	LowLimit 68	HighLimit 132	RPD Ref Val	%RPD	RPDLimit	Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl	Result 7,700 8.46	RL 165	SPK value 549.4 10.99	SPK Ref Val 8,943	%REC -227 77.0	LowLimit 68 50	HighLimit 132 150	RPD Ref Val	%RPD	RPDLimit	Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	Result 7,700 8.46 14.1	RL 165	SPK value 549.4 10.99 10.99	SPK Ref Val 8,943	%REC -227 77.0 129	LowLimit 68 50 50	HighLimit 132 150 150	RPD Ref Val	%RPD	RPDLimit	Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to	Result 7,700 8.46 14.1 vo high for accurate spike red	RL 165 covery(ies)	SPK value 549.4 10.99 10.99	SPK Ref Val 8,943	%REC -227 77.0 129	LowLimit 68 50 50	HighLimit 132 150 150	RPD Ref Val	%RPD	RPDLimit	Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to Sample ID: 2110293-010AMSD	Result 7,700 8.46 14.1 20 high for accurate spike red SampType: MSD	RL 165 covery(ies)	SPK value 549.4 10.99 10.99).	SPK Ref Val 8,943 Units: mg/Kg-	%REC -227 77.0 129 dry	LowLimit 68 50 50 Prep Dat	HighLimit 132 150 150 e: 10/28/2	RPD Ref Val	%RPD RunNo: 708	RPDLimit	Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to Sample ID: 2110293-010AMSD Client ID: GLB-9-6	Result 7,700 8.46 14.1 to high for accurate spike red SampType: MSD Batch ID: 34211	RL 165 covery(ies)	SPK value 549.4 10.99 10.99	SPK Ref Val 8,943 Units: mg/Kg-	%REC -227 77.0 129 dry	LowLimit 68 50 50 Prep Dat Analysis Dat	HighLimit 132 150 150 e: 10/28/2 e: 10/28/2	RPD Ref Val 021 021	%RPD RunNo: 708 SeqNo: 144	RPDLimit 870	Qual
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to Sample ID: 2110293-010AMSD Client ID: GLB-9-6 Analyte	Result 7,700 8.46 14.1 bo high for accurate spike red SampType: MSD Batch ID: 34211 Result	RL 165 covery(ies)	SPK value 549.4 10.99 10.99). SPK value	SPK Ref Val 8,943 Units: mg/Kg- SPK Ref Val	%REC -227 77.0 129 dry %REC	LowLimit 68 50 50 Prep Dat Analysis Dat LowLimit	HighLimit 132 150 150 e: 10/28/2 e: 10/28/2 HighLimit	RPD Ref Val 021 021 RPD Ref Val	%RPD RunNo: 708 SeqNo: 144 %RPD	RPDLimit 870 11806 RPDLimit	Qual S Qual
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to Sample ID: 2110293-010AMSD Client ID: GLB-9-6 Analyte Total Petroleum Hydrocarbons	Result 7,700 8.46 14.1 too high for accurate spike red SampType: MSD Batch ID: 34211 Result 5,760	RL 165 covery(ies) RL 159	SPK value 549.4 10.99 10.99). SPK value 529.4	SPK Ref Val 8,943 Units: mg/Kg- SPK Ref Val 8,943	%REC -227 77.0 129 dry %REC -601	LowLimit 68 50 50 Prep Dat Analysis Dat LowLimit 68	HighLimit 132 150 150 e: 10/28/2 e: 10/28/2 HighLimit 132	RPD Ref Val 021 021 RPD Ref Val 7,697	%RPD RunNo: 708 SeqNo: 144 %RPD 28.8	RPDLimit 870 11806 RPDLimit 30	Qual S Qual S
Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl Surr: o-Terphenyl NOTES: S - Analyte concentration was to Sample ID: 2110293-010AMSD Client ID: GLB-9-6 Analyte Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl	Result 7,700 8.46 14.1 bo high for accurate spike red SampType: MSD Batch ID: 34211 Result 5,760 8.68	RL 165 covery(ies) RL 159	SPK value 549.4 10.99 10.99). SPK value 529.4 10.59	SPK Ref Val 8,943 Units: mg/Kg- SPK Ref Val 8,943	%REC -227 77.0 129 dry %REC -601 82.0	LowLimit 68 50 50 Prep Dat Analysis Dat LowLimit 68 50	HighLimit 132 150 150 e: 10/28/2 e: 10/28/2 HighLimit 132 150	RPD Ref Val 021 021 RPD Ref Val 7,697	%RPD RunNo: 708 SeqNo: 144 %RPD 28.8 0	RPDLimit 870 11806 RPDLimit 30	Qual S Qual S

Work Order:2110293CLIENT:G-LogicsProject:Mossman						QC Diesel and Heav	SUMMARY REPORT
Sample ID: 2110293-010AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date: 10/28/2021	RunNo: 70870
Client ID: GLB-9-6	Batch ID: 34211					Analysis Date: 10/28/2021	SeqNo: 1441806
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
NOTES: S - Analyte concentration was too	o high for accurate spike re	covery(ies)).				
Sample ID: MB-34305	SampType: MBLK			Units: mg/Kg		Prep Date: 11/4/2021	RunNo: 71057
Client ID: MBLKS	Batch ID: 34305					Analysis Date: 11/4/2021	SeqNo: 1446132
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Diesel (Fuel Oil)	ND	50.0					
Heavy Oil	ND	100					
Total Petroleum Hydrocarbons	ND	150					
Surr: 2-Fluorobiphenyl	10.6		10.00		106	50 150	
Surr: o-Terphenyl	10.9		10.00		109	50 150	
Sample ID: LCS-34305	SampType: LCS			Units: mg/Kg		Prep Date: 11/4/2021	RunNo: 71057
Client ID: LCSS	Batch ID: 34305					Analysis Date: 11/4/2021	SeqNo: 1446133
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Total Petroleum Hydrocarbons	553	150	500.0	0	111	77.2 122	
Surr: 2-Fluorobiphenyl	10.7		10.00		107	50 150	
Surr: o-Terphenyl	13.4		10.00		134	50 150	
Sample ID: 2110293-013AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date: 11/4/2021	RunNo: 71057
Client ID: GLB-9-12	Batch ID: 34305					Analysis Date: 11/4/2021	SeqNo: 1446135
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Total Petroleum Hydrocarbons	1,020	160	1,067	58.27	89.7	68 132	н
Surr: 2-Fluorobiphenyl	11.4		10.67		106	50 150	Н
Surr: o-Terphenyl	14.5		10.67		136	50 150	Н

Work Order: 211	0293									00.9	SUMMA		ORT
CLIENT: G-L	ogics									901			
Project: Mos	ssman								Diesel	and Heavy	Oil by NW	TPH-Dx/[Ox Ext.
Sample ID: 2110293-013	BAMSD Sa	ampType	e: MSD			Units: mg/Kg	g-dry	Prep Da	te: 11/4/20)21	RunNo: 710)57	
Client ID: GLB-9-12	В	atch ID:	34305					Analysis Da	te: 11/4/20)21	SeqNo: 144	6136	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydroca	arbons		899	158	1,055	58.27	79.7	68	132	1,016	12.2	30	Н
Surr: 2-Fluorobiphenyl	l		10.7		10.55		101	50	150		0		Н
Surr: o-Terphenyl			12.4		10.55		117	50	150		0		Н
Sample ID: 2111088-001	1ADUP Sa	ampType	e: DUP			Units: mg/Kg	g-dry	Prep Da	te: 11/4/20)21	RunNo: 710)57	
Client ID: BATCH	В	atch ID:	34305					Analysis Da	te: 11/5/20)21	SeqNo: 144	6155	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	66.0						0		30	
Heavy Oil			319	132						222.8	35.6	30	
Total Petroleum Hydroca	arbons		319	198						222.8	35.6	30	
Surr: 2-Fluorobiphenyl	l		12.7		13.21		96.2	50	150		0		
Surr: o-Terphenyl			11.7		13.21		88.6	50	150		0		
Sample ID: MB-34131	Si	ampType	e: MBLK			Units: mg/Kg)	Prep Da	te: 10/21/2	2021	RunNo: 707	729	
Client ID: MBLKS	В	atch ID:	34131					Analysis Da	te: 11/9/20)21	SeqNo: 144	18935	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	50.0									SGT
Heavy Oil			ND	100									SGT
Total Petroleum Hydroca	arbons		ND	150									SGT
Surr: 2-Fluorobiphenyl	l		9.82		10.00		98.2	50	150				SGT
Surr: o-Terphenyl			12.1		10.00		121	50	150				SGT
NOTES:													

SGT - Silica Gel Treatment

Work Order: CLIENT: Project:	2110293 G-Logics Mossman								Diesel	QC S and Heavy	SUMMA Oil by NW	RY REF	PORT Dx Ext.
Sample ID: LCS-3	4131	SampType: L	_CS			Units: mg/Kg		Prep Dat	te: 10/21/2	2021	RunNo: 707	729	
Client ID: LCSS		Batch ID:	34131					Analysis Da	te: 11/9/20	21	SeqNo: 144	19093	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum H	ydrocarbons	Ę	575 ·	150	500.0	0	115	77.2	122				SGT
Surr: 2-Fluorobi	phenyl	1	0.7		10.00		107	50	150				SGT
Surr: o-Terphen	iyl	1	2.7		10.00		127	50	150				SGT
NOTES: SGT - Silica Ge	I Treatment												

Work Order:	2110293									009			
CLIENT:	G-Logics							_					
Project:	Mossman							Extra	actable Pe	etroleum I	Hydrocarb	ons by N	WEPH
Sample ID: MB-34	312	SampType	BLK			Units: mg/Kg		Prep Dat	e: 11/4/202	1	RunNo: 713	338	
Client ID: MBLK	S	Batch ID:	34312					Analysis Dat	e: 11/15/202	21	SeqNo: 14	52490	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarl	bon (C8-C10)		ND	20.0									
Aliphatic Hydrocarl	bon (C10-C12)		ND	10.0									*
Aliphatic Hydrocarl	bon (C12-C16)		ND	10.0									
Aliphatic Hydrocarl	bon (C16-C21)		ND	10.0									
Aliphatic Hydrocarl	bon (C21-C34)		ND	10.0									
Surr: 1-Chlorood	tadecane		77.1		100.0		77.1	60	140				
NOTES:													
* - Associated L	CS does not meet	acceptance	criteria; refe	er to QC sur	nmary.								
Sample ID: 21102	93-004AMS	SampType	: MS			Units: mg/Kg-	dry	Prep Dat	e: 11/4/202	1	RunNo: 713	338	
Client ID: GLB-8	-8	Batch ID:	34312					Analysis Dat	ie: 11/15/202	21	SeqNo: 145	52672	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarl	bon (C8-C10)		187	19.0	238.1	102.1	35.6	10.3	130				Н
Aliphatic Hydrocarl	bon (C10-C12)		407	9.52	119.0	315.4	77.2	70	130				Н
Aliphatic Hydrocarl	bon (C12-C16)		1,550	9.52	119.0	1,446	88.1	70	130				Н
Aliphatic Hydrocarl	bon (C16-C21)		1,590	9.52	119.0	1,476	94.5	70	130				Н
Aliphatic Hydrocarl	bon (C21-C34)		312	9.52	119.0	192.5	100	70	130				Н
Surr: 1-Chlorooc	tadecane		83.5		95.22		87.7	60	140				Н
Sample ID: MB-34	312	SampType	BLK			Units: mg/Kg		Prep Dat	e: 11/4/202	1	RunNo: 713	339	
Client ID: MBLK	s	Batch ID:	34312			- •		Analysis Dat	e: 11/16/20 2	21	SeqNo: 14	53005	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C8-C10)		ND	20.0									
Aromatic Hydrocar	bon (C10-C12)		ND	10.0									
Aromatic Hydrocar	bon (C12-C16)		ND	10.0									
Aromatic Hydrocar	bon (C16-C21)		ND	10.0									
Aromatic Hydrocar	bon (C21-C34)		ND	10.0									
Surr: o-Terphen	yl		79.7		100.0		79.7	60	140				

Work Order:	2110293									00.5		?Y RFF	ORT
CLIENT:	G-Logics							_					
Project:	Mossman							Extra	actable I	Petroleum H	Hydrocarb	ons by N	WEPH
Sample ID: MB-34	312	SampType	: MBLK			Units: mg	/Kg	Prep Da	te: 11/4/20	21	RunNo: 713	39	
Client ID: MBLK	S	Batch ID:	34312					Analysis Da	te: 11/16/2	021	SeqNo: 145	3005	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: 21102	93-004AMS	SampType	: MS			Units: mg	/Kg-dry	Prep Da	te: 11/4/20	21	RunNo: 713	;39	
Client ID: GLB-8	-8	Batch ID:	34312					Analysis Da	te: 11/16/2	021	SeqNo: 145	3007	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C8-C10)		125	19.0	238.1	10.60	48.1	11.8	130				Н
Aromatic Hydrocar	bon (C10-C12)		189	9.52	119.0	103.7	72.0	70	130				Н
Aromatic Hydrocar	bon (C12-C16)		571	9.52	119.0	517.7	44.5	70	130				SH
Aromatic Hydrocar	bon (C16-C21)		1,200	9.52	119.0	1,186	10.7	70	130				SH
Aromatic Hydrocar	bon (C21-C34)		321	9.52	119.0	0	270	70	130				SH
Surr: o-Terphen	yl		88.9		95.22		93.4	60	140				Н
NOTES:													
S - Outlying spik	ke recovery(ies) o	bserved. A du	uplicate and	alysis was pe	rformed with s	similar results inc	licating a poss	ible matrix e	effect.				
Sample ID: 21102	93-004AMSD	SampType	: MSD			Units: mg/	/Kg-dry	Prep Da	te: 11/4/20	21	RunNo: 713	39	
Client ID: GLB-8	8-8	Batch ID:	34312					Analysis Da	te: 11/16/2	021	SeqNo: 145	3008	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C8-C10)		125	19.1	238.7	10.60	47.9	11.8	130	125.1	0.205	30	Н
Aromatic Hydrocar	bon (C10-C12)		167	9.55	119.3	103.7	52.8	70	130	189.4	12.7	30	SH
Aromatic Hydrocar	bon (C12-C16)		448	9.55	119.3	517.7	-58.8	70	130	570.6	24.2	30	SH
Aromatic Hydrocar	bon (C16-C21)		926	9.55	119.3	1,186	-218	70	130	1,198	25.7	30	SH
Aromatic Hydrocar	bon (C21-C34)		276	9.55	119.3	0	232	70	130	320.8	14.9	30	SH
Surr: o-Terphen	yl		85.5		95.46		89.6	60	140		0		Н
NOTES:													

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order:2110293CLIENT:G-LogicsProject:Mossman						Extra	ctable P	QC S etroleum I	SUMMAI Hydrocarb	RY REF	PORT IWEPH
Sample ID: LCS-34312	SampType: LCS			Units: mg/Kg		Prep Date	11/4/202	21	RunNo: 71:	339	
Client ID: LCSS	Batch ID: 34312					Analysis Date	: 11/16/20	021	SeqNo: 14	53011	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	126	20.0	250.0	0	50.5	16.9	130				
Aromatic Hydrocarbon (C10-C12)) 89.2	10.0	125.0	0	71.3	70	130				
Aromatic Hydrocarbon (C12-C16)) 94.3	10.0	125.0	0	75.5	70	130				
Aromatic Hydrocarbon (C16-C21)) 102	10.0	125.0	0	81.3	70	130				
Aromatic Hydrocarbon (C21-C34)) 122	10.0	125.0	0	97.5	70	130				
Surr: o-Terphenyl	108		100.0		108	60	140				
Sample ID: LCS-34312	SampType: LCS			Units: mg/Kg		Prep Date	11/4/202	21	RunNo: 71:	338	
Client ID: LCSS	Batch ID: 34312					Analysis Date	: 11/16/20	021	SeqNo: 14	52498	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	98.5	20.0	250.0	0	39.4	15.7	130				
Aliphatic Hydrocarbon (C10-C12)	79.0	10.0	125.0	0	63.2	70	130				S
Aliphatic Hydrocarbon (C12-C16)	97.7	10.0	125.0	0	78.2	70	130				
Aliphatic Hydrocarbon (C16-C21)	100	10.0	125.0	0	80.4	70	130				
Aliphatic Hydrocarbon (C21-C34)	89.5	10.0	125.0	0	71.6	70	130				
Surr: 1-Chlorooctadecane	99.8		100.0		99.8	60	140				

NOTES:

S - Outlying spike recovery observed (C10-C12). Samples will be qualified with a *.

Fremont
Analytical

Work Order: 2110293							00	SUMMARY REP	ORT
CLIENT: G-Logics							40		
Project: Mossman						Volatile C	Drganic Compou	nds by EPA Method	82601
Sample ID: LCS-34227	SampType: LCS			Units: mg/Kg		Prep Date	: 10/29/2021	RunNo: 70883	
Client ID: LCSS	Batch ID: 34227					Analysis Date	: 1 0/29/2021	SeqNo: 1442218	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	1.01	0.0200	1.000	0	101	80	120		
Toluene	1.02	0.0300	1.000	0	102	80	120		
Ethylbenzene	1.08	0.0250	1.000	0	108	80	120		
m,p-Xylene	2.07	0.0500	2.000	0	103	80	120		
o-Xylene	1.02	0.0250	1.000	0	102	80	120		
Naphthalene	1.01	0.100	1.000	0	101	80	120		
Surr: Dibromofluoromethane	1.32		1.250		106	75.5	120		
Surr: Toluene-d8	1.24		1.250		99.5	80	120		
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	78.5	120		
Sample ID: MB-34227	SampType: MBLK			Units: mg/Kg		Prep Date	: 10/29/2021	RunNo: 70883	
Client ID: MBLKS	Batch ID: 34227					Analysis Date	: 10/29/2021	SeqNo: 1442212	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	ND	0.0200							
Toluene	ND	0.0300							
Ethylbenzene	ND	0.0250							
m,p-Xylene	ND	0.0500							
o-Xylene	ND	0.0250							
Naphthalene	ND	0.100							
Surr: Dibromofluoromethane	1.16		1.250		92.6	75.5	119		
Surr: Toluene-d8	1.24		1.250		99.2	82.4	115		
Surr: 1-Bromo-4-fluorobenzene	1.21		1.250		96.9	78.5	118		
Sample ID: 2110372-007BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	: 1 0/29/2021	RunNo: 70883	
Client ID: BATCH	Batch ID: 34227					Analysis Date	: 10/29/2021	SeqNo: 1442215	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	ND	0.0256					0	30	

Fremont
Analytical

Work Order: 2110293								2.00	SUMMAR		PORT
CLIENT: G-Logics								~~~~			
Project: Mossman						Volatile C	organic	: Compoun	ds by EPA	Method	8260D
Sample ID: 2110372-007BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	10/29/2	021	RunNo: 708		
Client ID: BATCH	Batch ID: 34227					Analysis Date:	10/29/2	021	SeqNo: 144	2215	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	ND	0.0384						0		30	
Ethylbenzene	ND	0.0320						0		30	
m,p-Xylene	ND	0.0640						0		30	
o-Xylene	ND	0.0320						0		30	
Naphthalene	ND	0.128						0		30	
Surr: Dibromofluoromethane	1.49		1.601		93.2	75.5	119		0		
Surr: Toluene-d8	1.60		1.601		99.7	82.4	115		0		
Surr: 1-Bromo-4-fluorobenzene	1.56		1.601		97.2	78.5	118		0		
Sample ID: 2110372-006BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	10/29/2	021	RunNo: 708	383	
Client ID: BATCH	Batch ID: 34227				-	Analysis Date:	10/29/2	021	SeqNo: 144	12216	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.44	0.0272	1.358	0	106	75.3	131				
Toluene	1.45	0.0407	1.358	0	107	79.2	130				
Ethylbenzene	1.55	0.0339	1.358	0	114	79.7	133				
m,p-Xylene	2.95	0.0679	2.716	0	108	81.2	125				
o-Xylene	1.47	0.0339	1.358	0	108	76.9	130				
Naphthalene	1.29	0.136	1.358	0	94.9	72.3	141				
Surr: Dibromofluoromethane	1.75		1.697		103	75.5	119				
Surr: Toluene-d8	1.68		1.697		99.0	82.4	115				
Surr: 1-Bromo-4-fluorobenzene	1.74		1.697		103	78.5	118				
Sample ID: LCS-34343	SampType: LCS			Units: mg/Kg		Prep Date:	11/8/20	21	RunNo: 711	20	
Client ID: LCSS	Batch ID: 34343					Analysis Date:	11/8/20	21	SeqNo: 144	17527	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.08	0.0200	1.000	0	108	80	120				
Toluene	1.07	0.0300	1.000	0	107	80	120				

Fren	nont malytical
-------------	-------------------

Work Order: 2110293											
CLIENT: G-Logics											
Project: Mossman						Volatile C	Drganic	Compoun	ds by EPA	Method	8260D
Sample ID: LCS-34343	SampType: LCS			Units: mg/Kg		Prep Date	: 11/8/202	21	RunNo: 711	20	
Client ID: LCSS	Batch ID: 34343					Analysis Date	: 11/8/202	21	SeqNo: 144	7527	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	1.12	0.0250	1.000	0	112	80	120				
m,p-Xylene	2.11	0.0500	2.000	0	105	80	120				
o-Xylene	1.05	0.0250	1.000	0	105	80	120				
Naphthalene	0.941	0.100	1.000	0	94.1	80	120				
Surr: Dibromofluoromethane	1.31		1.250		105	75.5	120				
Surr: Toluene-d8	1.26		1.250		101	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	78.5	120				
Sample ID: MB-34343	SampType: MBLK			Units: mg/Kg		Prep Date	: 11/8/202	21	RunNo: 711	20	
Client ID: MBLKS	Batch ID: 34343					Analysis Date	: 11/8/202	21	SeqNo: 144	7501	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0300									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Naphthalene	ND	0.100									
Surr: Dibromofluoromethane	1.19		1.250		95.0	75.5	119				
Surr: Toluene-d8	1.27		1.250		101	82.4	115				
Surr: 1-Bromo-4-fluorobenzene	1.24		1.250		99.2	78.5	118				
Sample ID: 2111050-014BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 11/8/202	21	RunNo: 711	20	
Client ID: BATCH	Batch ID: 34343					Analysis Date	: 11/8/202	21	SeqNo: 144	7506	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0337						0		30	
Toluene	0.0959	0.0506						0.09552	0.402	30	
Ethylbenzene	ND	0.0421						0		30	

Fremont
Analytical

Work Order: 2110293											
CLIENT: G-Logics											
Project: Mossman						Volatile C	Drganic	Compoun	ds by EPA	Method	8260D
Sample ID: 2111050-014BDUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Date	: 11/8/20	21	RunNo: 711	120	
Client ID: BATCH	Batch ID: 34343					Analysis Date	: 11/8/20	21	SeqNo: 144	47506	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0843						0		30	
o-Xylene	ND	0.0421						0		30	
Naphthalene	ND	0.169						0		30	
Surr: Dibromofluoromethane	2.03		2.107		96.2	75.5	119		0		
Surr: Toluene-d8	2.13		2.107		101	82.4	115		0		
Surr: 1-Bromo-4-fluorobenzene	2.13		2.107		101	78.5	118		0		
Sample ID: 2111102-001BDUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Date:	: 11/8/20	21	RunNo: 71 1	120	
Client ID: BATCH	Batch ID: 34343				Analysis Date: 11/8/2021		21	SeqNo: 1447510			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0312						0		30	
Toluene	ND	0.0468						0		30	
Ethylbenzene	ND	0.0390						0		30	
m,p-Xylene	ND	0.0781						0		30	
o-Xylene	ND	0.0390						0		30	
Naphthalene	ND	0.156						0		30	
Surr: Dibromofluoromethane	1.83		1.951		93.9	75.5	119		0		
Surr: Toluene-d8	1.96		1.951		101	82.4	115		0		
Surr: 1-Bromo-4-fluorobenzene	1.96		1.951		100	78.5	118		0		
Sample ID: 2111050-020BMS	SampType: MS			Units: mg/	/Kg-dry	Prep Date:	: 11/8/20	21	RunNo: 71 1	120	
Client ID: BATCH	Batch ID: 34343					Analysis Date	: 11/8/20	21	SeqNo: 144	47514	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.17	0.0225	1.123	0	104	75.3	131				
Toluene	1.16	0.0337	1.123	0	103	79.2	130				
Ethylbenzene	1.22	0.0281	1.123	0	108	79.7	133				
m,p-Xylene	2.32	0.0561	2.246	0	103	81.2	125				

Work Order:	2110293
CLIENT:	G-Logics
Project:	Mossman

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2111050-020BMS	SampType: MS			Units: mg/Kg-dry		Prep Date: 11/8/2021		RunNo: 71120			
Client ID: BATCH	Batch ID: 34343				Analysis Date: 11/8/2021		21	SeqNo: 144			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	1.15	0.0281	1.123	0	103	76.9	130				
Naphthalene	1.09	0.112	1.123	0	97.4	72.3	141				
Surr: Dibromofluoromethane	1.43		1.404		102	75.5	119				
Surr: Toluene-d8	1.41		1.404		101	82.4	115				
Surr: 1-Bromo-4-fluorobenzene	1.46		1.404		104	78.5	118				

Fremont
Analytical

Work Order: 2110293 CLIENT: G-Logics							QC	SUMMARY REPO	ORT
Project: Mossman						Vo	latile Petroleum	Hydrocarbons by NV	VVPH
Sample ID: LCS-34320	SampType: LCS			Units: mg/Kg		Prep Date:	11/4/2021	RunNo: 71224	
Client ID: LCSS	Batch ID: 34320					Analysis Date:	11/11/2021	SeqNo: 1449959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	29.3	2.50	30.00	0	97.6	70	130		
Aliphatic Hydrocarbon (C6-C8)	9.97	1.50	10.00	0	99.7	70	130		
Aliphatic Hydrocarbon (C8-C10)	9.19	2.50	10.00	0	91.9	70	130		
Aliphatic Hydrocarbon (C10-C12)	9.79	0.500	10.00	0	97.9	70	130		
Aromatic Hydrocarbon (C8-C10)	40.8	3.00	40.00	0	102	70	130		
Aromatic Hydrocarbon (C10-C12)	9.66	0.500	10.00	0	96.6	70	130		
Aromatic Hydrocarbon (C12-C13)	9.92	0.500	10.00	0	99.2	70	130		
Surr: 1,4-Difluorobenzene	2.42		2.500		96.9	65	140		
Surr: Bromofluorobenzene	2.40		2.500		96.0	65	140		
Sample ID: MB-34320	SampType: MBLK			Units: mg/Kg		Prep Date:	11/4/2021	RunNo: 71224	
Client ID: MBLKS	Batch ID: 34320					Analysis Date:	11/11/2021	SeqNo: 1449960	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.50		0	0				
Aliphatic Hydrocarbon (C6-C8)	ND	1.50		0	0				
Aliphatic Hydrocarbon (C8-C10)	ND	2.50		0	0				
Aliphatic Hydrocarbon (C10-C12)	ND	0.500		0	0				
Aromatic Hydrocarbon (C8-C10)	ND	3.00		0	0				
Aromatic Hydrocarbon (C10-C12)	ND	0.500		0	0				
Aromatic Hydrocarbon (C12-C13)	ND	0.500		0	0				
Surr: 1,4-Difluorobenzene	1.89		2.500		75.5	65	140		
Surr: Bromofluorobenzene	2.37		2.500		94.7	65	140		
Sample ID: 2110293-004BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	11/4/2021	RunNo: 71224	
Client ID: GLB-8-8	Batch ID: 34320					Analysis Date:	11/11/2021	SeqNo: 1449950	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	3.43	2.31		0	0		3.555	3.56 25	Н

Work Order: 2110293

CLIENT: G-Logics

Project: Mossman

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 2110293-004BDUP	SampType: DUP			Units: mg	/Kg-dry	Prep Da	te: 11/4/20	21	RunNo: 712	224	
Client ID: GLB-8-8	Batch ID: 34320					Analysis Da	te: 11/11/2	2021	SeqNo: 144	19950	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C6-C8)	12.6	1.39		0	0			11.77	7.01	25	Н
Aliphatic Hydrocarbon (C8-C10)	45.5	2.31		0	0			48.60	6.60	25	Н
Aliphatic Hydrocarbon (C10-C12)	215	0.462		0	0			202.6	6.08	25	EH
Aromatic Hydrocarbon (C8-C10)	107	2.77		0	0			110.6	3.26	25	н
Aromatic Hydrocarbon (C10-C12)	433	0.462		0	0			441.6	1.96	25	EH
Aromatic Hydrocarbon (C12-C13)	763	0.462		0	0			767.7	0.548	25	EH
Surr: 1,4-Difluorobenzene	1.97		2.309		85.1	65	140		0		н
Surr: Bromofluorobenzene	10.5		2.309		456	65	140		0		SH

NOTES:

S - Outlying surrogate recovery attributed to TPH interference.

E - Estimated value. The amount exceeds the calibrated range of the instrument.

Sample ID: 2110314-002BMS	SampType: MS			Units: mg/ I	Kg-dry	Prep Dat	te: 11/4/20	21	RunNo: 712	24	
Client ID: BATCH	Batch ID: 34320					Analysis Dat	te: 11/11/2	021	SeqNo: 144	9954	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	34.1	2.57	30.89	3.803	98.2	70	130				Н
Aliphatic Hydrocarbon (C6-C8)	12.9	1.54	10.30	1.289	113	70	130				Н
Aliphatic Hydrocarbon (C8-C10)	11.3	2.57	10.30	6.440	47.2	70	130				SH
Aliphatic Hydrocarbon (C10-C12)	77.7	0.515	10.30	69.73	77.6	70	130				EH
Aromatic Hydrocarbon (C8-C10)	75.1	3.09	41.19	22.48	128	70	130				Н
Aromatic Hydrocarbon (C10-C12)	207	0.515	10.30	193.2	136	70	130				SEH
Aromatic Hydrocarbon (C12-C13)	705	0.515	10.30	691.0	133	70	130				SEH
Surr: 1,4-Difluorobenzene	2.54		2.574		98.7	65	140				Н
Surr: Bromofluorobenzene	3.59		2.574		140	65	140				Н

NOTES:

S - Outlying spike recoveries were associated with this sample.

E - Estimated value. The amount exceeds the calibrated range of the instrument.

Sample Log-In Check List

Client Name: GL	Work Order Numb	oer: 2110293	
Logged by: Gabrielle Coeuille	Date Received:	10/20/2027	1 5:55:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No	Not Present
2. How was the sample delivered?	<u>Client</u>		
Log In			
3. Coolers are present?	Yes 🗸	No 🗌	NA 🗌
4. Shipping container/cooler in good condition?	Yes 🖌	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes 🖌	No 🗌	Not Present
6. Was an attempt made to cool the samples?	Yes 🖌	No 🗌	NA 🗌
7. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🔽	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Are samples properly preserved?	Yes 🗹	No 🗌	
11. Was preservative added to bottles?	Yes	No 🗹	NA 🗌
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗸
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Person Notified: Date	e:		
By Whom: Via:	eMail Pho	one 🗌 Fax 🛛	In Person
Regarding:			
Client Instructions:			

Item Information

Item #	Temp ⁰C
Sample 1	12.8

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 1		.com	montanalytical	www.fre				OC 1 3 - 11 06 20
	0		X veceived (biBuaroie)	2/ Ilme	Date	C	Uprint Name	telingüßhed (Signature)
are/Time	TINT Name	A Carlo	Received (Signature)	20-24	/0-2	12ma	Tiffenny ON	elinguished (Signature)
2 Day (specify)	ve verified Chent's agreemen	med above, that I hav	behalf of the Client na	emont Analytical on	cement.	his Agreen of this Agr	rized to enter into t front and backside	I represent that I am authou to each of the terms on the f
3 Day Same Day			oride Nitrate+Nitrite	O-Phosphate Flu	Bromide	Sulfate	Nitrite Chloride	**Anions (Circle): Nitrate
Standard U Next Day	Sb Se Sr Sn Ti Ti V Zn	Mg Mn Mo Na Ni Pb	Cd Co Cr Cu Fe Hg K	Ag Al As B Ba Be Ca	Individual: 1	nts TAL	RA-8 Priority Polluta	*Metals (Circle): MTCA-5 RCF
Turn-around Time:	= Storm Water, WW = Waste Water	GW = Ground Water, SW =	ter, DW = Drinking Water,	nent, SL = Solid, W = Wat	Soil, SD = Sedin	Product, S = S	= Bulk, O = Other, P = I	Matrix: A = Air, AQ = Aqueous, B =
					* *	1136	¢	° Grb- 1-6
					_	5241		648-9-4
					_	1035		GUB-8-16
						SEDI		GLB-S-14
					_	1030		GUS-8-12
					-	510/		GUB-8-10
			X			100		GLB-8-8
						1000	10-20-21	G13-8-6
					_	10-20-20	0955	GL8-8-4
					81 3	10-20-21	Ogo	GLB-8-2
Comments				A CS CORPORED CORP	Sample Type # c	Sample	Sample Date	Sample Name
	111111	Lom	09-1091CS.	Email: painelaf	PM			ax:
ent Disposal by lab (after 30 days)	Sample Disposal: 🗍 Return to cli		a Fleming	DORT TO (PM): Pand	Rep			elephone:
			GMM omish	ation: Lake S	Loc			City, State, Zip:
			L Fleming	lected by: Pamelo	Col			Address: U'
			Q-1-98	Ject No: 01-05	Pro			lient G-logics
	Special Remarks:		man	ject Name: MOSS	1-7178 Pro	Fax: 206-352	a Milleri A	And And
2110293	Laboratory Project No (internal)	۔ ٩	Page:	10-20-21	98103 -3790 Dat	Tel: 206-352		Ten Sur
s Agreement	oratory Service	cord & Labo	Custody Re	Chain of	Ave N.	00 Fremont /	36	

COC 1 3 - 11.06 20

Page 33 of 41

Page 1 (.com	nontanalytical	www.frem				OC 1 3 - 11 06 20	~ *
ite/Time	int Name Da	Pr	Received (Signature) x	ate/Time		0	Print Name	elingdished (Signature)	×
70-21 17:55	Thex Trade 10-	Japp 1	Received (Signature)	ate/Time	// >-	pular	TIFFCONUS	elinguished (Signaturg)	× -
2 Day (specify)	e verified Client's agreement	med above, that I hav	half of the Client na	Fremont Analytical on be	ment with I reement.	his Agree of this Ag	zed to enter into t ont and backside	I represent that I am authoriz to each of the terms on the fr	
3 Day Same Day			ide Nitrate+Nitrite	O-Phosphate Fluor	Bromide	Sulfate	trite Chloride	**Anions (Circle): Nitrate Ni	Tra
Standard I Next Day	Sb Se Sr Sn Ti TI V Zn	Mg Min Mo Na Ni Pb S	1 Co Cr Cu Fe Hg K	: Ag Al As B Ba Be Ca Co	Individual	nts TAL	-8 Priority Polluta	*Metals (Circle): MTCA-5 RCRA	1.2
Turn-around Time:	Storm Water, WW = Waste Water	GW = Ground Water, SW =	, DW = Drinking Water,	diment, SL = Solid, W = Water	Soil, SD = Se	roduct, S =	sulk, O = Other, P = F	Matrix: A = Air, AQ = Aqueous, B = B	
				4	4	1305	¢	. GLB-10-12	-
					_	1300		GUB-10-10	10
			×			1255		GLB-10-8	00
						1250		GU3-10-6	2
						1245		G12-10-4	0
						1210		GLB-9-16	Un I
						1205		GLB-9-14	4
						1155		GLB-9-12	642
						IFS	-	GLB-9-16	N
				2	1105	1140	2-92-01	GLB-9-8	
Comments				# of 4.05 1.07 0.08 1.07 0.00	Sample Type (Matrix)* (Sample	Sample Date	Sample Name	
	11111	Lan	39-logics.	PM Email: pomelati		1		ax:	1-
ant Disposal by lab (after 30 days)	Sample Disposal: Return to clie		da F	Report To (PM): Home				elephone:	1.
			momish	Location: Lake Som				ity, State, Zip:	1.
	1		4	collected by: Pamel				vidress:	12
			4-0	Project No: 01-086				tient G-LOGIUS	1.
	Special Remarks:		man	Project Name: MOSS	52-7178	Fax: 206-35	Vilent	- I - Ana	_
2110293	Laboratory Project No (internal)	2 * 3	Page:	0ate:/()-20-2)	98103	eattie, WA Tel: 206-35			
5 Agreement	pratory Service:	cord & Labo	ustody Re	Chain of C	Ave N.	0 Fremont	360		-

	R	5	
1		5	
ì	L	4	
ŝ			
ŝ	5	2	į
ŝ		Ē.	
1	Þ		

-
>
<
_
-
<
<
-
_
•
-
_
-
m l
10
-
-
_
-
0
-
_
-
-
a
_
_
-
01
-
BARREN
~
_
-
_
0
0
_
-
0
-
0
~
_
-
-
_

_
0
0
-
ŝ
1.0
11
90
20

Image: Second		3600 Fremont Ave	Chain of Cu	Istody Record &	Laboratory Services	Agreement
Image: Second lensing Fair 300 535 / 707 Inspective Machine / Machine	remo	Tel: 206-352-33	90 Date: 10-20-21	Page: 3 of:	Caboratory Project No (internal):	2110293
const. Current of Charles	Analy	Fax: 206-352-7	78 Project Name: MOSSW	ian i	Special Remarks:	
name Of Converter, Carbon C Carbon C Served A FT reprime non-rise non-rise non-rise non-rise non-rise non-rise reprise non-r	cient G-Logics		Project No: 01-08	64-D		
One man Zin: useries (useries) (Latk: Sommaria,Sin) Image: Sample Name Samond Name Sample Name Sample Name	Address: U'		collected by: PCMela	F+Tiffany Q		
response Regent To (NM) Parenda F Sample To (NM)	City, State, Zip:		Location: Locke SOM	imamish		
Not Notanit Operation for Grant f	Telephone:		Report To (PM): Pawal	1	Sample Disposal: Return to client	Disposal by lab (after 30 days)
Sample Name Sample Samp	Fax:		PM Email: panelas	feg-logics.com	2	
Sample Name One Time Namich Cam. Sol		Sample Sample .	mple # of			
2. (JLB,-1)D-1/b	1.GUS-10-14					
3 <u>GUB- -4</u> <u>4 GUB- -6</u> <u>5 GUB- -8</u> <u>5 GUB- -8</u> <u>6 GUB- -10</u> <u>7 GUB- -10</u> <u>8 GUB- -10</u> <u>9 GUB- -10 <u>9 GUB- -10</u> <u>9 GUB- -10 <u>9 GUB- -10 <u>9 GUB- -10</u> <u>9 GUB- -10 <u>9 G</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	2 GUB-10-16					
a. GLB-II-G IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 GUS-11-4					
5 GLB-II-8 X<	4 GLB-11-6					
6 CUS_H_HO I<	5 GLB-11-8					
1 CLB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ 2 CLB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ 3 CLB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ 4 CLB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ Image: ClB-II-IQ 5 CLB-II-IQ Image: ClB-II-II-IQ Image: ClB-II-II-II-II-II-II-II-II-II-II-II-II-II	, GUB-11-10					
B GLB-II-IY Image: Construct of the second state of the second st	, GUB-11-12					
g GLB-II-16 Turn-cround Time: 10 ***Anisk: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Waste Water Turn-cround Time: ***Matais (Circle): MITA-S RCRA-8 Priority Pollutants TAL Individual: Ag AI As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti Ti V Zn Standard I standard Next Day ***Anions (Circle): Nitrate Nitrate Choride Sulfate Bromide O-Phosphate Fluoride Nitrate-Nitrite I standard I standard Next Day ***Anions (Circle): Nitrate Nitrate Circle Standard Daty Standard Next Day ***Anions (Circle): Nitrate Nitrate Circle Standard Daty Standard Next Day ***Anions (Circle): Nitrate Nitrate From and backside of this Agreement. From ont Analytical on behalf of the Cilent named above, that I have verified Client's agreement I Date/Time relinquished Signature) Print Name Date/Time X Aud Y Aud Y Aud Y I Date/Time Relenquished Signature) Print Name<	8 GLB-11-14					
10 *Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Waste Water Turn-cround Time: **Metals (Circle): NITCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag AL As B Be Ca Cd C Cr C Ise Hig K Mg Mn Mo Na NI Pb Sb Sb Ss Sr Tit V Zn Image: Standard Image: Standard Image: Nitrate Nitrate Image: Standard Image: Standar	, GLB-11-16					
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soli, SD = Sediment, SI = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Waste Water Turn-cround Time: **Metals (Circle): MTCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag AI As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti TI V Zn I standard Standard I standard Next Day ***Anions (Circle): Ntrate Nitrate Choride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite I and I an authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement I and	10					
•••Metals (Circle): MTCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag A is B able Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti TV Zn Standard Next Day •••Anions (Circle): Nitrate Nitrate Nitrite Chloride Suffate Bromide O-Phosphate Fluoride Nitrate-Nitrite I aby	*Matrix: A = Air, AQ = Aqueous, B = Bulk	, O = Other, P = Product, S = Soil,	SD = Sediment, SL = Solid, W = Water, [OW = Drinking Water, GW = Ground Wa	ter, SW = Storm Water, WW = Waste Water	Turn-around Time:
***Anions (Circle): Nitrate Nitrite Nitrite Outride Sulfate Bromide Outposphate Fluoride Nitrate-Mitrite □ 3 Day □ 3 Day </td <td>**Metals (Circle): MTCA-5 RCRA-8</td> <td>Priority Pollutants TAL /</td> <td>dividual: Ag Al As B Ba Be Ca Cd (</td> <td>Co Cr Cu Fe Hg K Mg Mn Mo Na</td> <td>Ni Pb Sb Se Sr Sn Ti Tl V Zn</td> <td>Standard Next Day</td>	**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutants TAL /	dividual: Ag Al As B Ba Be Ca Cd (Co Cr Cu Fe Hg K Mg Mn Mo Na	Ni Pb Sb Se Sr Sn Ti Tl V Zn	Standard Next Day
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement □ 2 Day to each of the terms on the front and backside of this Agreement. □ 2 Day □ 2 Day Relinquished (Signature) Print Name Date/Time Received (Signature) Print Name Date/Time x July Theory Owny 10-2C-21 × August Signature) Print Name Date/Time Relinquished (Signature) Print Name Date/Time × August Signature) Print Name Date/Time x Print Name Date/Time × August Signature) Print Name Date/Time	***Anions (Circle): Nitrate Nitrit	e Chloride Sulfate	Bromide O-Phosphate Fluoride	Nitrate+Nitrite		3 Day Same Day
Relinquished (Signature) Print Name Date/Time Received (Signature) Print Name Date/Time x July 11 Hory Querry 10-20-21 × Querry Avery Tresson 10/20/21 Relinquished (Signature) Print Name Date/Time Received (Signature) Print Name Date/Time	I represent that I am authorized to each of the terms on the front	to enter into this Agreemen and backside of this Agreet	with Fremont Analytical on beha ent.	If of the Client named above, th	at I have verified Client's agreement	2 Day (specify)
×	Relinquished (Signature)	Print Name	Date/Time 他-20-21 Date/Time	Received (Signature)	Print Name Date/	ADAL 17:55
				x		

Page 1		al.com	fremontanalytic	www.				COC 1 3 - 11.06 20
in the second second		nel	x vecetted foilung	ate/ Iime	c	0	Uprint Nam	Relingfuished (Signature)
Unite/Time	Alax Tul	The Dida	Received (Signatu	-20-24	10	5mer	TIFE Print Nam	Relinguished (Signature)
Coment 2 Day (specify)	have verified Chent's agre	named above, that I	on behalf of the Client	remont Analytical	ment with I greement.	of this Agree	rized to enter into front and backside	I represent that I am autho to each of the terms on the
🗆 3 Day 🗍 Same Day		ite	Fluoride Nitrate+Nitr	O-Phosphate	Bromide	Sulfate	Nitrite Chloride	***Anions (Circle): Nitrate
Standard U Next Day	Pb Sb Se Sr Sn Ti Ti V Zn	K Mg Mn Mo Na Ni	Ca Cd Co Cr Cu Fe Hg	Ag Al As B Ba Be	Individual	ants TAL	RA-8 Priority Pollut	**Metals (Circle): MTCA-5 RC
e Water Turn-around Time:	SW = Storm Water, WW = Waste	er, GW = Ground Water,	Water, DW = Drinking Wat	diment, SL = Solid, W =	= Soil, SD = Se	Product, S :	= Bulk, O = Other, P =	Matrix: A = Air, AQ = Aqueous, B
			×	4	*	1136	4	6LB-9-6
						5211		648-9-4
					_	1035		GUB-8-16
						SED 1		GUB-8-14
						1030		GUS-8-12
			×			510/		GUB-8-10
			×			1010		GLB-8-8
			×			1000	10-20-2)	G1B-8-6
					-	10-20-20	0955	GL8-8-4
				ω	8	10-20-21	Ogo	GLB-8-2
Comments				# of 105-045 -0	Sample Type (Matrix)* 0	Sample	Sample Date	Sample Name
	11111	.Lom	willeg-1091	M Email: poime		1		Fax:
urn to client Disposal by lab (after 30 days)	Sample Disposal: 🗍 Retu		ula Fleming	leport To (PM): PON	-			Telephone:
			Sammomish	ocation: Lake				City, State, Zip:
			la Fleming	ollected by: Pcma				Address:
			6-4980	roject No: 01-				client G-logics
10/27/21- gac	Special Remarks:		ssman	roject Name: Mb	52-7178 F	Fax: 206-3	alylical	An An
nternal): 2110293	Laboratory Project No (in	3 %	C) Page:	10-20-	98103 52-3790	Seattle, WA Tel: 206-35	Ont	FIGH
ices Agreement	boratory Serv	ecord & La	of Custody R	Chain c	t Ave N.	00 Fremont	36	

COC 1 3 - 11.06 20

Page 36 of 41

Page 1		.com	nontanalytical	www.fren			DC 1 3 - 11 06 20	8
te/Time	int Name Da Da	Pri Pri	Received (Signature) ×	Date/Time	d lo	Print Name	Indukted (Signature)	× Re
te/Time	The Da	ALLON PH	Received (Signature)	bate/Time	~ ~ ~	Print Name	inquished (Signaturg)	× Re
2 Day (specify)	e verified Client's agreement	med above, that I have	ehalf of the Client na	Fremont Analytical on b	preement with Agreement.	enter into this A d backside of thi	I represent that I am authorized to to each of the terms on the front an	
3 Day Same Day			ride Nitrate+Nitrite	e O-Phosphate Fluo	fate Bromid	Chloride Su	*Anions (Circle): Nitrate Nitrite	1:
Standard 🗌 Next Day	Sb Se Sr Sn Ti TI V Zn	Mg Mn Mo Na Ni Pb S	d Co Cr Cu Fe Hg K	1: Ag Al As B Ba Be Ca C	TAL Individuo	Priority Pollutants	Metals (Circle): MTCA-5 RCRA-8	:
Turn-around Time:	Storm Water, WW = Waste Water	GW = Ground Water, SW =	r, DW = Drinking Water,	diment, SL = Solid, W = Wate	, S = Soil, SD = Si	= Other, P = Product	fatrix: A = Air, AQ = Aqueous, B = Bulk, C	*
				8	4 50	V 13	GLB-10-12	10
					8	13	GUB-10-10	9
			\times		3	17	G48-10-8	00
					0	125	GU3-10-6	7
					5	12	GU3-10-4	6
					0	12	GLB-9-16	5
					20	21	GLB-9-14	4
					Ŭ	3/1	GLB-9-12	3
					5	1 1	GUB-9-10	N
			×	×	10 501	10-26-21 14	6LB-9-8	11
Comments				# of	Sample Type Type me (Matrix)*	Sample Sar Date Ti	ample Name	Ś
	11111	.com	38-logics	PM Email: pomelati			191	Fa
int Disposal by lab (after 30 days)	Sample Disposal: Return to clie		ela F	Report To (PM): Ham			lephone:	Te
			momish	Location: Lake Son			ty, State, Zip:	lg
	1		4 F	collected by: Pame			Idress:	A
			9-H-D	Project No: 01-086			ent G-Logics	9
	Special Remarks:		man	Project Name: MOS	06-352-7178	Fax: 2	Analyti	
2110293	Laboratory Project No (internal)	2 # 3	Page:	Date: 10-20-2)	, WA 98103 06-352-3790	Seattle Tel: 2	FIGHIO	_
5 Agreement	pratory Services	cord & Labc	Custody Re	Chain of (nont Ave N.	3600 Fre		

	R	5	
1		5	
ì	L	4	
ŝ			
ŝ	5	2	į
ŝ		Ē.	
1	Þ		

-
>
<
_
-
<
<
-
_
•
-
_
-
m l
10
-
-
_
-
0
-
_
-
-
a
_
_
-
01
-
BARREN
~
_
-
_
0
0
_
-
0
-
0
~
_
-
-
_

_
0
0
-
ŝ
1.0
11
90
20

	3600 Fremont Ave N. Seattle, WA 98103	Chain of Cu	stody Record &	Laboratory Serv	ices Agreement
	Tel: 206-352-3790 Fax: 206-352-7178	Date: 10-20-21	Page: 3 of:	Special Remarks:	itemati - LTC - KTS
		Project Name: /VIDSSM	an		
dient G-Logics		Project No: 01-082	54-D		
Address: U'		collected by: POMela	F+ Tiffany Q		
City, State, Zip:		Location: Lake Som.	mamish		
Telephone:		Report To (PM): Pamal	F	Sample Disposal: 🗌 Retu	n to client Disposal by lab (after 30 days)
Fax:		PMEmail: paynelat	@q-logics.co	3	
	Samp	e 27 0 100 100 100			
Sample Name	Date Time (Matri)* Cont. 1 4 8 60 48 00	1 or 10 10 10 15		Comments
, GUR-10-16					
3 (CLB-11-4					
4 GLB-11-6					
5 GLB-11-8					
, GUB-11-10					
, GUB-11-12					
8 GLB-11-14					
, GLB-11-16					
10					
*Matrix: A = Air, AQ = Aqueous, B = Bulk, (D = Other, P = Product, S = Soil, SD	= Sediment, SL = Solid, W = Water, D	W = Drinking Water, GW = Ground V	Water, SW = Storm Water, WW = Waste	Water Turn-around Time:
**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutants TAL Indiv	dual: Ag Al As B Ba Be Ca Cd Cc	D Cr Cu Fe Hg K Mg Mn Mo I	Na Ni Pb Sb Se Sr Sn Ti Tl V Zn	Standard Next Day
***Anions (Circle): Nitrate Nitrite	Chloride Sulfate Bro	nide O-Phosphate Fluoride	Nitrate+Nitrite		3 Day Same Day
I represent that I am authorized to to each of the terms on the front a	o enter into this Agreement w nd backside of this Agreemen	ith Fremont Analytical on behal t.	f of the Client named above,	that I have verified Client's agree	ment 2 Day (specify)
Relinquished (Signature)	Frint Name	Date/Time }-20-21 Date/Time	Received (Signature)	Print Name	Date/Time
			×	1.000	

Page 1		m	tanalytical.co	www.fremon				CC 1 3 - 11.06 20
	((received (biBuginie)	~ 2	Date/ Ime	C	Uprint Name	telingfüßhed (Signature)
0414/Time	Name	Didy Au	eceived (Signature)	2	Date/Time	But	THENH ON	Part Land WMA
Determined 2 Day (specify)	verified Client's agreem	d above, that I have	of the Client name	t Analytical on behalf	with Fremon ent.	is Agreement f this Agreem	zed to enter into th ont and backside o	I represent that I am authoriz to each of the terms on the fr
🗌 3 Day 🗍 Same Day			Nitrate+Nitrite	Phosphate Fluoride	romide O-	Sulfate B	trite Chloride	**Anions (Circle): Nitrate N
Standard Next Day	Se Sr Sn Ti Ti V Zn	Mn Mo Na Ni Pb Sb	Cr Cu Fe Hg K Mg	As B Ba Be Ca Cd Co	tividual: Ag Al	s TAL In	-8 Priority Pollutan	*Metals (Circle): MTCA-5 RCRA
ater Turn-around Time:	torm Water, WW = Waste Wa	= Ground Water, SW = S	<pre>/ = Drinking Water, GW</pre>	SL = Solid, W = Water, DW	SD = Sediment,	oduct, S = Soil,	ulk, O = Other, P = Pr	Matrix: A = Air, AQ = Aqueous, B = B
				×	4	1136	4	0-6-8-3-6
					_	5211		GUS-9-4
						1035		GUB-8-16
						SED		GLB-8-14
						1030		GUB-8-12
				×		5101		GUB-8-10
	X DX w/ SG	×		X		1010		GLB-8-8
				×		1000	10-20-21	G13-8-6
					-	10-20-21	0955	GL8-8-4
					ω	10-20-21 Sa	ogeo	GLB-8-2
Comments	EPH, VPH	64. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10			pple # of	Sample Try Time (Ma	Sample Date	Sample Name
	1111	and l	-100103.40	pamelaligg	PM Email			ax:
o client Disposal by lab (after 30 days)	Sample Disposal: 🗌 Return t		leming	(PM): Poinda F	Report To			relephone:
			1 omish	Lake Somm	Location:			City, State, Zip:
			ening	by Pamela Fl	Collected			Address:
TAT 11/3/21 -CG	Edits per TQ, Std		-0	-1080-10 ×	Project N			Clent G-logics
'27/21- gac	Special Remarks: Update per PF 10/		2	me: Mossman	8 Project Na	ix: 206-352-717	WARANA F	Ana
not: 2110293	Laboratory Project No (inter	۽ بر	Page:	0-20-21	Date:	attle, WA 9810 el: 206-352-379		Freme
es Agreement	ratory Servic	rd & Laboi	tody Reco	hain of Cus		Fremont Ave N	3600	

COC 1 3 - 11.06 20

Page 1 (.com	nontanalytical	www.frer				OC 1 3 - 11.06 20	
e/Time	nt Name J Dat	Pri	Received (Signature) x	Date/Time		ne C	Print Nar	telindoshed (Signature)	
20-21 17:55	Hex Trado 10-	Trep t	Received (Signature)	Date/Time		Som	Fifferny (elingyished (Signaturg)	
2 Day (specify)	e verified Client's agreement	med above, that I have	chalf of the Client na	Fremont Analytical on b	eement with Agreement.	o this Agr c of this /	zed to enter into ont and backsid	I represent that I am authoriz to each of the terms on the fre	
🛛 3 Day 🗌 Same Day			ride Nitrate+Nitrite	O-Phosphate Fluc	te Bromidi	Sulfa	trite Chloride	**Anions (Circle): Nitrate Ni	-
Standard Next Day	sb Se Sr Sn Ti TI V Zn	Mg Mn Mo Na Ni Pb S	Cd Co Cr Cu Fe Hg K	1: Ag Al As B Ba Be Ca (AL Individuo	itants T.	-8 Priority Pollu	*Metals (Circle): MTCA-5 RCRA	
Turn-around Time:	Storm Water, WW = Waste Water	GW = Ground Water, SW =	er, DW = Drinking Water,	diment, SL = Solid, W = Wate	S = Soil, SD = Se	= Product,	ulk, 0 = Other, P	Matrix: A = Air, AQ = Aqueous, B = B	
			×	8	4	130	4	. GLB-10-12	
			×			130		GUB-10-10	10
			×		5	G		G4B-10-8	1.64
			×			1250		GU3-10-6	
					5	124		GU3-10-4	-
						1210		GLB-9-16	1.0
					2	120		GLB-9-14	
			×		0.	115		GLB-9-12	443
			×			IPH	-	GLB-9-16	
	X DX w/ SGC		×	×	1105 0	21 114	10-26	GLB-9-8	
Comments	EPH, VPH			# of	Sample le Type (Matrix)*	Samp	Sample	Sample Name	
		Lan	Og-logics	PM Email: pmelat				ax:	-
nt Disposal by lab (after 30 days)	Sample Disposal: CReturn to clier		da F	Report To (PM): Hom				relephone:	-
			nmamish	Location: Lake Son				City, State, Zip:	-
	1		4	collected by: Pame				Address:	-
			9-4-D	Project No: 01-08				Tient G-LOGIUS	-
	Special Remarks:		sman	Project Name: MOS	-352-7178	Fax: 206	SVATACIA	Ana	_
2110293	Laboratory Project No (internal):	2 # 3	Page:	Date: /()-20-2)	VA 98103 -352-3790	Tel: 206	OIIC		_
Agreement	oratory Services	cord & Labc	Custody Re	Chain of	ont Ave N.	600 Fremo			_

	R	5	
1		5	
ì	L	4	
ŝ			
ŝ	5	2	į
ŝ		Ē.	
1	Þ		

5
5
5
5
<
<
•
-
-
(D)
-
Ξ.
0
≤
-
-
0
=
_
a
-
~
+
-
0
a
-
-
0
0
-
-
-

0
0
0
-
w
-
-
0
6
N
0

36	00 Fremont Ave N.	Chain of Custody Record & Lab	oratory Services Agreement
Fremont	Seattle, WA 98103 Tel: 206-352-3790	Date: 10-20-21 Page: 3 of: 3	Laboratory Project No (internal): 2110293
Analytical	Fax: 206-352-7178	Project Name: MOSSMON	Special Remarks:
dient & - Logics		Project No: 01-0864-D	
Address:		collected by: PENELAF + Jiffary Q	
City, State, Zip:		wattom (CKe Sommanish	
Telephone:		REPORT TO (PM): PGAROLA F	Sample Disposal: Return to client Disposal by lab (after 30 days)
Fax:		PMEmail: papelaf@g-logics.com	
Sample Name Date	Time (Matrix)*	cont. 1 30 62 39 30 30 30 30 30 30 30 30 30 30 40	Comments
1.GU3-10-14		×	
2 GUB-10-16		×	
3 GLB-11-4			
4 GLB-11-6			
5 GLB-11-8		×	
6-LB-11-10		×	
, GLB-1)-12		×	
» GLB-11-14		×	
, GLB-11-16			
10			
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other, P =	Product, S = Soil, SD = S	Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW	= Storm Water, WW = Waste Water Turn-ground Time:
**Metals (Circle): MTCA-5 RCRA-8 Priority Pollut.	ants TAL Individu	ad: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb	sb se sr sn Ti TI V Zn
***Anions (Circle): Nitrate Nitrite Chloride	Sulfate Bromic	de O-Phosphate Fluoride Nitrate+Nitrite	🗌 3 Day 🗌 Same Day
I represent that I am authorized to enter into to each of the terms on the front and backside	of this Agreement with	h Fremont Analytical on behalf of the Client named above, that I hav	e verified Client's agreement
Relinquished (Signature)	-01 Knuar	Date/Time Received (Signature)	AVEXTICAD 10/20101 17:55
Relinquished (Signature) V Print Nam	, and a second se	Date/Time Received (Signature) p	rint Name Date/Time

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Pamela Fleming 40 Second Ave. SE Issaquah, WA 98027

RE: Mossman Work Order Number: 2110314

November 17, 2021

Attention Pamela Fleming:

Fremont Analytical, Inc. received 21 sample(s) on 10/21/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Extractable Petroleum Hydrocarbons by NWEPH Gasoline by NWTPH-Gx Sample Moisture (Percent Moisture) Volatile Organic Compounds by EPA Method 8260D Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT: Project: Work Order:	G-Logics Mossman 2110314	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2110314-001	GLB-12-2	10/21/2021 9:10 AM	10/21/2021 4:35 PM
2110314-002	GLB-12-4	10/21/2021 9:20 AM	10/21/2021 4:35 PM
2110314-003	GLB-12-6	10/21/2021 9:15 AM	10/21/2021 4:35 PM
2110314-004	GLB-12-8	10/21/2021 9:25 AM	10/21/2021 4:35 PM
2110314-005	GLB-13-2	10/21/2021 10:10 AM	10/21/2021 4:35 PM
2110314-006	GLB-13-4	10/21/2021 10:15 AM	10/21/2021 4:35 PM
2110314-007	GLB-13-6	10/21/2021 10:25 AM	10/21/2021 4:35 PM
2110314-008	GLB-13-8	10/21/2021 10:30 AM	10/21/2021 4:35 PM
2110314-009	GLB-14-2	10/21/2021 11:30 AM	10/21/2021 4:35 PM
2110314-010	GLB-14-4	10/21/2021 11:50 AM	10/21/2021 4:35 PM
2110314-011	GLB-14-6	10/21/2021 11:55 AM	10/21/2021 4:35 PM
2110314-012	GLB-14-8	10/21/2021 12:00 PM	10/21/2021 4:35 PM
2110314-013	GLB-15-2	10/21/2021 12:40 PM	10/21/2021 4:35 PM
2110314-014	GLB-15-4	10/21/2021 12:45 PM	10/21/2021 4:35 PM
2110314-015	GLB-15-6	10/21/2021 12:50 PM	10/21/2021 4:35 PM
2110314-016	GLB-15-8	10/21/2021 12:25 PM	10/21/2021 4:35 PM
2110314-017	GLB-16-2	10/21/2021 1:15 PM	10/21/2021 4:35 PM
2110314-018	GLB-16-4	10/21/2021 1:15 PM	10/21/2021 4:35 PM
2110314-019	GLB-16-6	10/21/2021 1:20 PM	10/21/2021 4:35 PM
2110314-020	GLB-16-8	10/21/2021 1:22 PM	10/21/2021 4:35 PM
2110314-021	Trip Blank	10/18/2021 9:56 AM	10/21/2021 4:35 PM

Case Narrative

WO#: **2110314** Date: **11/17/2021**

CLIENT:G-LogicsProject:Mossman

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

11/17/21: Revision 1 includes additional analysis requested by the client.

Qualifiers & Acronyms

WO#: 2110314 Date Reported: 11/17/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110314-001 Client Sample ID: GLB-12-2				Collection Matrix: So	Da oil	te: 10/21/	2021 9:10:00	AM
Analyses	Result	RL	Qual	Units	D	F Date	e Analyzed	
Volatile Organic Compounds by	EPA Method	<u>8260D</u>		Batch	ID:	34343	Analyst: CR	R
Benzene	ND	0.0271	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PN	Λ
Toluene	ND	0.0406	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PM	Λ
Ethylbenzene	ND	0.0338	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PM	Λ
m,p-Xylene	ND	0.0677	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PM	Λ
o-Xylene	ND	0.0338	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PM	Λ
Naphthalene	ND	0.135	н	mg/Kg-dry	1	11/8	/2021 1:07:11 PM	Λ
Surr: Dibromofluoromethane	98.1	75.5 - 119	н	%Rec	1	11/8	/2021 1:07:11 PM	Λ
Surr: Toluene-d8	103	82.4 - 115	н	%Rec	1	11/8	/2021 1:07:11 PM	Λ
Surr: 1-Bromo-4-fluorobenzene	100	78.5 - 118	Н	%Rec	1	11/8	/2021 1:07:11 PN	/
Sample Moisture (Percent Moistu	<u>ıre)</u>			Batch	ID:	R71006	Analyst: cb	
Percent Moisture	10.6	0.500		wt%	1	11/4	/2021 9:42:20 AN	Λ

CLIENT: G-Logics

Analytical Report

 Work Order:
 2110314

 Date Reported:
 11/17/2021

Project: Mossman						
Lab ID: 2110314-002 Client Sample ID: GLB-12-4				Collection	Date:	10/21/2021 9:20:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	1D: 34	184 Analyst: MM
Diesel (Fuel Oil)	5,160	52.6		mg/Kg-dry	1	10/26/2021 8:35:07 PM
Diesel (Fuel Oil)	6,250	52.6	SGT	mg/Kg-dry	1	11/9/2021 2:25:08 PM
Heavy Oil	ND	105		mg/Kg-dry	1	10/26/2021 8:35:07 PM
Heavy Oil	ND	105	SGT	mg/Kg-dry	1	11/9/2021 2:25:08 PM
Total Petroleum Hydrocarbons	6,250	158	SGT	mg/Kg-dry	1	11/9/2021 2:25:08 PM
Total Petroleum Hydrocarbons	5,160	158		mg/Kg-dry	1	10/26/2021 8:35:07 PM
Surr: 2-Fluorobiphenyl	74.1	50 - 150		%Rec	1	10/26/2021 8:35:07 PM
Surr: 2-Fluorobiphenvl	107	50 - 150		%Rec	1	11/9/2021 2:25:08 PM
Surr: o-Terphenyl	126	50 - 150		%Rec	1	11/9/2021 2:25:08 PM
Surr: o-Terphenyl	118	50 - 150		%Rec	1	10/26/2021 8:35:07 PM
NOTES:						
SGT - Silica Gel Treatment						
Extractable Petroleum Hydrocarb	ons by NWE	<u>PH</u>		Batch	n ID: 34	312 Analyst: MM
Aliphatic Hydrocarbon (C8-C10)	ND	22.7		mg/Kg-dry	1	11/16/2021 12:18:55 AM
Aliphatic Hydrocarbon (C10-C12)	66.7	11.3	*	mg/Kg-dry	1	11/16/2021 12:18:55 AM
Aliphatic Hydrocarbon (C12-C16)	712	11.3		mg/Kg-dry	1	11/16/2021 12:18:55 AM
Aliphatic Hydrocarbon (C16-C21)	939	11.3		mg/Kg-dry	1	11/16/2021 12:18:55 AM
Aliphatic Hydrocarbon (C21-C34)	113	11.3		mg/Kg-dry	1	11/16/2021 12:18:55 AM
Aromatic Hydrocarbon (C8-C10)	ND	22.7		ma/Ka-drv	1	11/16/2021 8:20:04 AM
Aromatic Hydrocarbon (C10-C12)	12.9	11.3		ma/Ka-drv	1	11/16/2021 8:20:04 AM
Aromatic Hydrocarbon (C12-C16)	103	11.3		ma/Ka-drv	1	11/16/2021 8:20:04 AM
Aromatic Hydrocarbon (C16-C21)	477	11.3		ma/Ka-drv	1	11/16/2021 8:20:04 AM
Aromatic Hydrocarbon (C21-C34)	99.5	11.3		ma/Ka-drv	1	11/16/2021 8:20:04 AM
Surr: 1-Chlorooctadecane	81.7	60 - 140		%Rec	1	11/16/2021 12:18:55 AM
Surr: o-Terphenyl	83.9	60 - 140		%Rec	1	11/16/2021 8:20:04 AM
NOTES:	00.0	00 110		,01100		
* - Associated LCS does not meet accept	ance criteria; refe	er to QC summ	nary.			
Volatile Petroleum Hydrocarbons	by NWVPH			Batch	n ID: 34	320 Analyst: SLL
Aliphatic Hydrocarbon (CE CE)	2 80	2.57	L	ma/Ka day	1	11/11/2021 A.46.55 AM
Aliphatic Hydrocarbon (CS-CO)	3.0U	2.3/ 1 E 4	П 	mg/Kg-ury	1	11/11/2021 4:40.00 AM
Aliphatic Hydrocarbon (C9 C10)		1.54	П 	mg/Kg-ury	1	11/11/2021 4:40:00 AM
Aliphatic Hydrocarbon (C10, C12)	0.44	2.3/ E1 F		mg/Kg-ury	100	11/11/2021 4:40:00 AM
Aniphatic Hydrocarbon (CTU-CT2)	11.0	0.10		mg/Kg-dry	100	11/11/2021 7.24:00 MM
Aromatic Hydrocarbon (C8-C10)	22.5	3.09		mg/Kg-ary	1 100	11/11/2021 4:40:33 AM
Aromatic Hydrocarbon (C12 C12)	200 2 190	51.5	חט	mg/Kg-dry	100	11/11/2021 7.24.30 FM
ATOMATIC HYDROGADON (CTZ-CT3)	∠,160	5.16	νH	mg/r/g-ury	100	11/11/2021 / 24.30 PN

Work Order: 2110314 Date Reported: 11/17/2021

CLIENT: G-Logics **Project:** Mossman

Volatile Petroleum Hydrocarbons by N	<u>IWVPH</u>			Batch	ID:	34320	Analyst: SLL
Benzene	ND	0.618	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
Toluene	ND	0.515	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
Ethylbenzene	ND	1.75	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
m,p-Xylene	ND	1.03	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
o-Xylene	ND	0.515	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
Naphthalene	3.89	2.68	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
Methyl tert-butyl ether (MTBE)	ND	1.13	н	mg/Kg-dry	1	11/11	/2021 4:46:55 AM
Surr: 1,4-Difluorobenzene	72.4	65 - 140	н	%Rec	1	11/11	/2021 4:46:55 AM
Surr: Bromofluorobenzene	129	65 - 140	Н	%Rec	1	11/11	/2021 4:46:55 AM
Sample Moisture (Percent Moisture)				Batch	ID:	R70800	Analyst: MCH
Percent Moisture	14.4	0.500		wt%	1	10/26	6/2021 3:14:00 PM

Lab ID: 2110314-003 Client Sample ID: GLB-12-6	Collection Date: 10/21/2021 9:15:00 AM Matrix: Soil					
Analyses	Result	RL Qual	Units DF Date Analy			Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batch	n ID:	34184	Analyst: MM
Diesel (Fuel Oil)	60.6	49.3	mg/Kg-dry	1	10/26	5/2021 9:26:42 PM
Heavy Oil	ND	98.6	mg/Kg-dry	1	10/26	6/2021 9:26:42 PM
Total Petroleum Hydrocarbons	ND	148	mg/Kg-dry	1	10/26	6/2021 9:26:42 PM
Surr: 2-Fluorobiphenyl	88.4	50 - 150	%Rec	1	10/26	6/2021 9:26:42 PM
Surr: o-Terphenyl	103	50 - 150	%Rec	1	10/26	6/2021 9:26:42 PM
Sample Moisture (Percent Mois	sture)		Batch	ID:	R70800	Analyst: MCH
Percent Moisture	13.7	0.500	wt%	1	10/26	6/2021 3:14:00 PM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110314-005 Client Sample ID: GLB-13-2	Collection Date: 10/21/2021 10:10:00 AM Matrix: Soil				
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.		Batch	ID: 34	4305 Analyst: MM
Diesel (Fuel Oil)	ND	47.2	mg/Kg-dry	1	11/5/2021 2:05:50 AM
Heavy Oil	ND	94.5	mg/Kg-dry	1	11/5/2021 2:05:50 AM
Total Petroleum Hydrocarbons	ND	142	mg/Kg-dry	1	11/5/2021 2:05:50 AM
Surr: 2-Fluorobiphenyl	115	50 - 150	%Rec	1	11/5/2021 2:05:50 AM
Surr: o-Terphenyl	119	50 - 150	%Rec	1	11/5/2021 2:05:50 AM
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID: R	71006 Analyst: cb
Percent Moisture	6.73	0.500	wt%	1	11/4/2021 9:42:20 AM

Lab ID: 2110314-006

Client Sample ID: GLB-13-4

Collection Date: 10/21/2021 10:15:00 AM Matrix: Soil

Analyses	Result	RL Qual	Units	D	F Date	e Analyzed
Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.		Batch	ID:	34184	Analyst: MM
Diesel (Fuel Oil)	ND	50.6	mg/Kg-dry	1	10/2	6/2021 9:52:36 PM
Heavy Oil	ND	101	mg/Kg-dry	1	10/2	6/2021 9:52:36 PM
Total Petroleum Hydrocarbons	ND	152	mg/Kg-dry	1	10/2	6/2021 9:52:36 PM
Surr: 2-Fluorobiphenyl	97.1	50 - 150	%Rec	1	10/2	6/2021 9:52:36 PM
Surr: o-Terphenyl	112	50 - 150	%Rec	1	10/2	6/2021 9:52:36 PM
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID:	R70800	Analyst: MCH
Percent Moisture	9.61	0.500	wt%	1	10/2	6/2021 3:14:00 PM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110314-007	Collection	Collection Date: 10/21/2021 10:25:00 AM Matrix: Soil				
Client Sample ID: GLB-13-6	Matrix: So					
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTP	Batch ID: 34184 Analyst: MM					
Diesel (Fuel Oil)	ND	51.5	mg/Kg-dry	1	10/26/2021 10:18:21 PM	
Heavy Oil	ND	103	mg/Kg-dry	1	10/26/2021 10:18:21 PM	
Total Petroleum Hydrocarbons	ND	154	mg/Kg-dry	1	10/26/2021 10:18:21 PM	
Surr: 2-Fluorobiphenyl	91.2	50 - 150	%Rec	1	10/26/2021 10:18:21 PM	
Surr: o-Terphenyl	103	50 - 150	%Rec	1	10/26/2021 10:18:21 PM	
Sample Moisture (Percent Mois	sture)		Batch	ID: R7	0800 Analyst: MCH	
Percent Moisture	9.85	0.500	wt%	1	10/26/2021 3:14:00 PM	

Lab ID: 2110314-008

Client Sample ID: GLB-13-8

Collection Date: 10/21/2021 10:30:00 AM Matrix: Soil

Analyses	Result	RL Qual	Units	DF	Date	Analyzed
Diesel and Heavy Oil by NWTP	Batch	1D: 34	1305	Analyst: MM		
Diesel (Fuel Oil)	ND	55.8	mg/Kg-dry	1	11/5/2	2021 2:18:42 AM
Heavy Oil	ND	112	mg/Kg-dry	1	11/5/2	2021 2:18:42 AM
Total Petroleum Hydrocarbons	ND	167	mg/Kg-dry	1	11/5/2	2021 2:18:42 AM
Surr: 2-Fluorobiphenyl	91.4	50 - 150	%Rec	1	11/5/2	2021 2:18:42 AM
Surr: o-Terphenyl	92.1	50 - 150	%Rec	1	11/5/2	2021 2:18:42 AM
Sample Moisture (Percent Mois	<u>sture)</u>		Batch	ID: R	71006	Analyst: cb
Percent Moisture	11.1	0.500	wt%	1	11/4/2	2021 9:42:20 AM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110314-009				Collection Date: 10/21/2021 11:30:00 AM				
Client Sample ID: GLB-14-2	Matrix: Soil							
Analyses	Result	RL Qual	Units	Date Analyzed				
Diesel and Heavy Oil by NWTP	Batch ID: 34184 Analyst: MM							
Diesel (Fuel Oil)	ND	48.1	mg/Kg-dry	1	10/26/2021 10:44:06 PM			
Heavy Oil	ND	96.1	mg/Kg-dry	1	10/26/2021 10:44:06 PM			
Total Petroleum Hydrocarbons	ND	144	mg/Kg-dry	1	10/26/2021 10:44:06 PM			
Surr: 2-Fluorobiphenyl	84.9	50 - 150	%Rec	1	10/26/2021 10:44:06 PM			
Surr: o-Terphenyl	98.8	50 - 150	%Rec	1	10/26/2021 10:44:06 PM			
Sample Moisture (Percent Mois	sture)		Batch	ID: R	70800 Analyst: MCH			
Percent Moisture	7.62	0.500	wt%	1	10/26/2021 3:14:00 PM			

Lab ID: 2110314-010

Client Sample ID: GLB-14-4

Collection Date: 10/21/2021 11:50:00 AM Matrix: Soil

Analyses	Result	RL Qual	Units	D	F Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	ID:	34184 Analyst: MM
Diesel (Fuel Oil)	ND	55.1	mg/Kg-dry	1	10/26/2021 11:10:02 PM
Heavy Oil	ND	110	mg/Kg-dry	1	10/26/2021 11:10:02 PM
Total Petroleum Hydrocarbons	ND	165	mg/Kg-dry	1	10/26/2021 11:10:02 PM
Surr: 2-Fluorobiphenyl	91.2	50 - 150	%Rec	1	10/26/2021 11:10:02 PM
Surr: o-Terphenyl	102	50 - 150	%Rec	1	10/26/2021 11:10:02 PM
Sample Moisture (Percent Mois	sture)		Batch	ID:	R70800 Analyst: MCH
Percent Moisture	10.5	0.500	wt%	1	10/26/2021 3:14:00 PM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110314-011		Collection Date: 10/21/2021 11:55:00 AM					
Client Sample ID: GLB-14-6							
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.		Batch ID: 34305 Analyst: MM				
Diesel (Fuel Oil)	ND	50.1	mg/Kg-dry	1	11/5/2021 2:31:35 AM		
Heavy Oil	ND	100	mg/Kg-dry	1	11/5/2021 2:31:35 AM		
Total Petroleum Hydrocarbons	ND	150	mg/Kg-dry	1	11/5/2021 2:31:35 AM		
Surr: 2-Fluorobiphenyl	97.9	50 - 150	%Rec	1	11/5/2021 2:31:35 AM		
Surr: o-Terphenyl	98.9	50 - 150	%Rec	1	11/5/2021 2:31:35 AM		
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID: R	71006 Analyst: cb		
Percent Moisture	12.9	0.500	wt%	1	11/4/2021 9:42:20 AM		

Lab ID: 2110314-012

Client Sample ID: GLB-14-8

Collection Date: 10/21/2021 12:00:00 PM Matrix: Soil

Analyses	Result	Result RL		Units		F Date Analyzed	
Gasoline by NWTPH-Gx				Batch	ID:	34343 Analyst: CR	
Gasoline	ND	6.55	н	mg/Kg-dry	1	11/8/2021 12:36:02 PM	
Gasoline Range Organics (C6-C12)	8.00	6.55	н	mg/Kg-dry	1	11/8/2021 12:36:02 PM	
Surr: Toluene-d8	98.3	65 - 135	н	%Rec	1	11/8/2021 12:36:02 PM	
Surr: 4-Bromofluorobenzene	105	65 - 135	н	%Rec	1	11/8/2021 12:36:02 PM	
NOTES: Gasoline Range Organics - Chromatogra	ohic pattern indica	tes that detec	tion is due	to a single non	-targ	jet compound.	

Sample Moisture (Percent Moisture)			Batch	n ID:	R71006	Analyst: cb
Percent Moisture	10.4	0.500	wt%	1	11/4/202	1 9:42:20 AM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110314-013 Client Sample ID: GLB-15-2			Collection Matrix: So	Date:	: 10/21/2021 12:40:00 PM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.		Batch	4305 Analyst: MM	
Diesel (Fuel Oil)	ND	49.3	mg/Kg-dry	1	11/5/2021 2:44:25 AM
Heavy Oil	ND	98.6	mg/Kg-dry	1	11/5/2021 2:44:25 AM
Total Petroleum Hydrocarbons	ND	148	mg/Kg-dry	1	11/5/2021 2:44:25 AM
Surr: 2-Fluorobiphenyl	107	50 - 150	%Rec	1	11/5/2021 2:44:25 AM
Surr: o-Terphenyl	111	50 - 150	%Rec	1	11/5/2021 2:44:25 AM
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID: R	71006 Analyst: cb
Percent Moisture	9.41	0.500	wt%	1	11/4/2021 9:42:20 AM

Lab ID: 2110314-014

Client Sample ID: GLB-15-4

Collection Date: 10/21/2021 12:45:00 PM Matrix: Soil

Analyses	Result	RL Qual	Units DF		F Date	e Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.		Batch	ID:	34184	Analyst: MM
Diesel (Fuel Oil)	ND	48.8	mg/Kg-dry	1	10/2	6/2021 11:35:49 PM
Heavy Oil	ND	97.5	mg/Kg-dry	1	10/2	6/2021 11:35:49 PM
Total Petroleum Hydrocarbons	ND	146	mg/Kg-dry	1	10/2	6/2021 11:35:49 PM
Surr: 2-Fluorobiphenyl	90.7	50 - 150	%Rec	1	10/2	6/2021 11:35:49 PM
Surr: o-Terphenyl	105	50 - 150	%Rec	1	10/2	6/2021 11:35:49 PM
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	ID:	R70800	Analyst: MCH
Percent Moisture	10.9	0.500	wt%	1	10/2	6/2021 3:14:00 PM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110314-015 Client Sample ID: GLB-15-6			Collection Matrix: So	Date:	10/21/2021 12:50:00 PM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	Batch ID: 34184 Analyst:		
Diesel (Fuel Oil)	ND	51.3	mg/Kg-dry	1	10/27/2021 12:01:42 AM	
Heavy Oil	ND	103	mg/Kg-dry	1	10/27/2021 12:01:42 AM	
Total Petroleum Hydrocarbons	ND	154	mg/Kg-dry	1	10/27/2021 12:01:42 AM	
Surr: 2-Fluorobiphenyl	93.6	50 - 150	%Rec	1	10/27/2021 12:01:42 AM	
Surr: o-Terphenyl	110	50 - 150	%Rec	1	10/27/2021 12:01:42 AM	
Sample Moisture (Percent Mois	<u>sture)</u>		Batch	ID: R7	70800 Analyst: MCH	
Percent Moisture	11.0	0.500	wt%	1	10/26/2021 3:14:00 PM	

Lab ID: 2110314-016

Client Sample ID: GLB-15-8

Collection Date: 10/21/2021 12:25:00 PM Matrix: Soil

Analyses	Result	RL Qual	Units	DF	Date	Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	ID: 34	1305	Analyst: MM
Diesel (Fuel Oil)	ND	51.3	mg/Kg-dry	1	11/5/2	2021 2:57:28 AM
Heavy Oil	ND	103	mg/Kg-dry	1	11/5/2	021 2:57:28 AM
Total Petroleum Hydrocarbons	ND	154	mg/Kg-dry	1	11/5/2	021 2:57:28 AM
Surr: 2-Fluorobiphenyl	101	50 - 150	%Rec	1	11/5/2	021 2:57:28 AM
Surr: o-Terphenyl	99.5	50 - 150	%Rec	1	11/5/2	2021 2:57:28 AM
Sample Moisture (Percent Mois	<u>sture)</u>		Batch	ID: R	71006	Analyst: cb
Percent Moisture	12.8	0.500	wt%	1	11/4/2	2021 9:42:20 AM

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT: G-Logics Project: Mossman

Lab ID: 2110314-017 Client Sample ID: GLB-16-2			Collection Matrix: So	Dat bil	te: 10/21/2021 1:15:00 PM
Analyses	Result	RL Qual	Units	DF	F Date Analyzed
Diesel and Heavy Oil by NWTPH-D	x/Dx Ext.		Batch	ID:	34184 Analyst: MM
Diesel (Fuel Oil)	125	51.3	mg/Kg-dry	1	10/27/2021 12:27:28 AM
Heavy Oil	ND	103	mg/Kg-dry	1	10/27/2021 12:27:28 AM
Total Petroleum Hydrocarbons	ND	154	mg/Kg-dry	1	10/27/2021 12:27:28 AM
Surr: 2-Fluorobiphenyl	95.7	50 - 150	%Rec	1	10/27/2021 12:27:28 AM
Surr: o-Terphenyl	108	50 - 150	%Rec	1	10/27/2021 12:27:28 AM
Sample Moisture (Percent Moistur	<u>e)</u>		Batch	ID:	R70800 Analyst: MCH
Percent Moisture	6.90	0.500	wt%	1	10/26/2021 3:14:00 PM

Lab ID: 2110314-018

Client Sample ID: GLB-16-4

Collection Date: 10/21/2021 1:15:00 PM Matrix: Soil

Analyses	Result	RL Qual	Units	D	F Date	Date Analyzed	
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	ID:	34184	Analyst: MM	
Diesel (Fuel Oil)	ND	60.4	mg/Kg-dry	1	10/2	7/2021 12:53:11 AM	
Heavy Oil	ND	121	mg/Kg-dry	1	10/2	7/2021 12:53:11 AM	
Total Petroleum Hydrocarbons	ND	181	mg/Kg-dry	1	10/2	7/2021 12:53:11 AM	
Surr: 2-Fluorobiphenyl	96.3	50 - 150	%Rec	1	10/2	7/2021 12:53:11 AM	
Surr: o-Terphenyl	105	50 - 150	%Rec	1	10/2	7/2021 12:53:11 AM	
Sample Moisture (Percent Mois	sture)		Batch	ID:	R70800	Analyst: MCH	
Percent Moisture	20.5	0.500	wt%	1	10/2	6/2021 3:14:00 PM	

 Work Order:
 2110314

 Date Reported:
 11/17/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110314-019 Client Sample ID: GLB-16-6			Collection Date: 10/21/2021 1:20:00 PM Matrix: Soil				
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH	Dx/Dx Ext.		Batch	ID: 34	305 Analyst: MM		
Diesel (Fuel Oil)	ND	49.2	mg/Kg-dry	1	11/5/2021 3:10:19 AM		
Heavy Oil	ND	98.3	mg/Kg-dry	1	11/5/2021 3:10:19 AM		
Total Petroleum Hydrocarbons	ND	147	mg/Kg-dry	1	11/5/2021 3:10:19 AM		
Surr: 2-Fluorobiphenyl	98.9	50 - 150	%Rec	1	11/5/2021 3:10:19 AM		
Surr: o-Terphenyl	100	50 - 150	%Rec	1	11/5/2021 3:10:19 AM		
Sample Moisture (Percent Moiste	<u>ure)</u>		Batch	ID: R7	71006 Analyst: cb		
Percent Moisture	12.3	0.500	wt%	1	11/4/2021 9:42:20 AM		

Lab ID: 2110314-020

Client Sample ID: GLB-16-8

Collection Date: 10/21/2021 1:22:00 PM Matrix: Soil

Analyses	Result	RL Qual	Units	D	F Date	e Analyzed	
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch ID: 34305 Analyst: MM				
Diesel (Fuel Oil)	ND	54.4	mg/Kg-dry	1	11/5	/2021 3:23:12 AM	
Heavy Oil	ND	109	mg/Kg-dry	1	11/5	/2021 3:23:12 AM	
Total Petroleum Hydrocarbons	ND	163	mg/Kg-dry	1	11/5	/2021 3:23:12 AM	
Surr: 2-Fluorobiphenyl	96.8	50 - 150	%Rec	1	11/5/	/2021 3:23:12 AM	
Surr: o-Terphenyl	97.5	50 - 150	%Rec	1	11/5	/2021 3:23:12 AM	
Sample Moisture (Percent Mois	sture)		Batch	ID:	R71006	Analyst: cb	
Percent Moisture	13.0	0.500	wt%	1	11/4,	/2021 9:42:20 AM	

Work Order:	2110314									00.9	SUMMAI		PORT
CLIENT:	G-Logics												
Project:	Mossman								Diesel a	and Heavy	Oil by NW	TPH-Dx/I	Dx Ext.
Sample ID: MB-34	184	SampType	: MBLK			Units: mg/Kg		Prep Dat	e: 10/26/2	021	RunNo: 708	307	
Client ID: MBLK	S	Batch ID:	34184					Analysis Dat	te: 10/26/2	021	SeqNo: 144	40172	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	50.0									
Heavy Oil			ND	100									
Total Petroleum Hy	ydrocarbons		ND	150									
Surr: 2-Fluorobip	phenyl		10.5		10.00		105	50	150				
Surr: o-Terpheny	yl		11.5		10.00		115	50	150				
Sample ID: LCS-3	4184	SampType	: LCS			Units: mg/Kg		Prep Dat	e: 10/26/2	:021	RunNo: 708	307	
Client ID: LCSS		Batch ID:	34184					Analysis Dat	te: 10/26/2	:021	SeqNo: 144	40173	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	ydrocarbons		507	150	500.0	0	101	77.2	122				
Surr: 2-Fluorobip	phenyl		11.6		10.00		116	50	150				
Surr: o-Terpheny	yl		14.0		10.00		140	50	150				
Sample ID: 21103	14-002AMS	SampType	: MS			Units: mg/Kg	-dry	Prep Dat	e: 10/26/2	021	RunNo: 708	307	
Client ID: GLB-1	2-4	Batch ID:	34184					Analysis Dat	te: 10/26/2	021	SeqNo: 144	40238	
Analyte		l	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	ydrocarbons		5,840	162	540.8	5,159	127	68	132				
Surr: 2-Fluorobip	ohenyl		8.31		10.82		76.8	50	150				
Surr: o-Terpheny	yl		11.8		10.82		109	50	150				
Sample ID: 21103	14-002AMSD	SampType	: MSD			Units: mg/Kg	-dry	Prep Dat	e: 10/26/2	021	RunNo: 708	307	
Client ID: GLB-1	2-4	Batch ID:	34184					Analysis Dat	ie: 10/26/2	021	SeqNo: 144	40239	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	ydrocarbons		5,830	160	532.4	5,159	126	68	132	5,843	0.241	30	
Surr: 2-Fluorobip	phenyl		8.97		10.65		84.2	50	150		0		
Surr: o-Terpheny	yl		11.8		10.65		110	50	150		0		

Work Order: 2110314								QC S	SUMMA	RY REF	PORT
CLIENT: G-Logics							Diesel a	nd Heavy	Oil by NW	TPH-Dx/I	Ox Ext.
Project: Mossman											
Sample ID: 2110314-002AMSD	SampType: MSD			Units: mg/Kg·	dry	Prep Date	e: 10/26/20)21	RunNo: 708	307	
Client ID: GLB-12-4	Batch ID: 34184					Analysis Date	e: 10/26/20)21	SeqNo: 144	40239	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: 2110340-003ADUP	SampType: DUP			Units: ma/Ka	drv	Prep Date	e: 10/26/20)21	RunNo: 70	807	
Client ID: BATCH	Batch ID: 34184					Analysis Dat	e: 10/27/20)21	SeaNo: 14	40189	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	195	53.2						584.5	100	30	R
Heavy Oil	ND	106						0		30	
Total Petroleum Hydrocarbons	195	159						584.5	100	30	R
Surr: 2-Fluorobiphenyl	10.2		10.63		95.9	50	150		0		
Surr: o-Terphenyl	11.6		10.63		109	50	150		0		
NOTES:											
R - High RPD due to sample in	homogeneity.										
Sample ID: MB-34305	SampType: MBLK			Units: mg/Kg		Prep Date	e: 11/4/202	21	RunNo: 710	057	
Client ID: MBLKS	Batch ID: 34305					Analysis Dat	e: 11/4/202	21	SeqNo: 144	46132	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	150									
Surr: 2-Fluorobiphenyl	10.6		10.00		106	50	150				
Surr: o-Terphenyl	10.9		10.00		109	50	150				
Sample ID: LCS-34305	SampType: LCS			Units: mg/Kg		Prep Date	e: 11/4/202	21	RunNo: 710	057	
Client ID: LCSS	Batch ID: 34305					Analysis Dat	e: 11/4/202	21	SeqNo: 144	46133	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	553	150	500.0	0	111	77.2	122				
Surr: 2-Fluorobiphenyl	10.7		10.00		107	50	150				
Surr: o-Terphenyl	13.4		10.00		134	50	150				

Work Order: CLIENT: Project:	2110314 G-Logics Mossman								Diesel	QC S and Heavy	SUMMAI Oil by NW	RY REF	PORT Dx Ext.
Sample ID: LCS-3	4305	SampType	: LCS			Units: mg/K	g	Prep Da	te: 11/4/20)21	RunNo: 71	057	
Client ID: LCSS		Batch ID:	34305					Analysis Da	te: 11/4/20)21	SeqNo: 14	46133	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: 21102	93-013AMS	SampType	e: MS			Units: mg/K	g-dry	Prep Da	te: 11/4/20)21	RunNo: 71	057	
Client ID: BATC	н	Batch ID:	34305					Analysis Da	te: 11/4/20	021	SeqNo: 14	46135	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	ydrocarbons		1,020	160	1,067	58.27	89.7	68	132				Н
Surr: 2-Fluorobi	ohenyl		11.4		10.67		106	50	150				н
Surr: o-Terphen	yl		14.5		10.67		136	50	150				Н
Sample ID: 21102	02 0124M6D	CompTure	MCD				o	Dran Da	to: 11/1/20	121	RunNo: 71	157	
Sample ID. ZIIUZ	93-013AW3D	Samprype): MISD			Units: mg/r	g-ary	Prep Da	le. 11/4/20	21	Runno. 7 R	557	
Client ID: BATC	93-013AM3D H	Batch ID:	34305			Units: mg/K	g-ary	Analysis Da	te: 11/4/20)21	SeqNo: 14	46136	
Client ID: BATC	H	Batch ID:	34305 Result	RL	SPK value	SPK Ref Val	g-dry %REC	Analysis Da LowLimit	te: 11/4/20 HighLimit	021 RPD Ref Val	SeqNo: 14 %RPD	46136 RPDLimit	Qual
Client ID: BATCI Analyte	ydrocarbons	Batch ID:	34305 Result 899	RL 158	SPK value 1,055	SPK Ref Val	9-019 %REC 79.7	Analysis Da LowLimit 68	te: 11/4/20 te: 11/4/20 HighLimit 132	021 RPD Ref Val 1,016	SeqNo: 14 %RPD 12.2	46136 RPDLimit 30	Qual H
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobij	ydrocarbons bhenyl	Batch ID:	34305 34305 Result 899 10.7	RL 158	SPK value 1,055 10.55	SPK Ref Val	%REC 79.7 101	Analysis Da LowLimit 68 50	te: 11/4/20 HighLimit 132 150	221 RPD Ref Val 1,016	SeqNo: 144 %RPD 12.2 0	46136 RPDLimit 30	Qual H H
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobij Surr: o-Terphen	ydrocarbons bhenyl	Batch ID:	34305 34305 Result 899 10.7 12.4	RL 158	SPK value 1,055 10.55 10.55	SPK Ref Val	%REC 79.7 101 117	Analysis Da LowLimit 68 50 50	te: 11/4/20 HighLimit 132 150 150	221 RPD Ref Val 1,016	SeqNo: 144 %RPD 12.2 0 0	46136 RPDLimit 30	Qual H H H
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110	ydrocarbons bhenyl yl 88-001ADUP	SampType	2: MSD 34305 Result 899 10.7 12.4 2: DUP	RL 158	SPK value 1,055 10.55 10.55	SPK Ref Val 58.27 Units: mg/K	%REC 79.7 101 117 g-dry	Analysis Da LowLimit 68 50 50 Prep Da	te: 11/4/20 HighLimit 132 150 150	021 RPD Ref Val 1,016	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 0	46136 RPDLimit 30	Qual H H H
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110 Client ID: BATCI	ydrocarbons ohenyl yl 88-001 ADUP	SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305	RL 158	SPK value 1,055 10.55 10.55	SPK Ref Val 58.27 Units: mg/K	%REC 79.7 101 117 g-dry	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20	021 RPD Ref Val 1,016 021	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 RunNo: 710 SeqNo: 144	46136 RPDLimit 30 057 46155	Qual H H H
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110 Client ID: BATCI Analyte	ydrocarbons phenyl yl 88-001 ADUP H	SampType Batch ID: SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305 Result	RL 158 RL	SPK value 1,055 10.55 10.55 SPK value	SPK Ref Val 58.27 Units: mg/K	%REC 79.7 101 117 g-dry %REC	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da LowLimit	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20 HighLimit	221 RPD Ref Val 1,016 221 221 RPD Ref Val	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 8 RunNo: 710 SeqNo: 144 %RPD	46136 RPDLimit 30 057 46155 RPDLimit	Qual H H H Qual
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110 Client ID: BATCI Analyte Diesel (Fuel Oil)	ydrocarbons ohenyl yl 88-001ADUP H	SampType Batch ID: SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305 Result ND	RL 158 RL 66.0	SPK value 1,055 10.55 10.55 SPK value	SPK Ref Val 58.27 Units: mg/K SPK Ref Val	%REC 79.7 101 117 g-dry %REC	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da LowLimit	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20 HighLimit	221 RPD Ref Val 1,016 221 221 RPD Ref Val 0	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 RunNo: 710 SeqNo: 144 %RPD	46136 RPDLimit 30 057 46155 RPDLimit 30	Qual H H Qual
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110 Client ID: BATCI Analyte Diesel (Fuel Oil) Heavy Oil	ydrocarbons phenyl yl 88-001ADUP H	SampType Batch ID: SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305 Result ND 319	RL 158 RL 66.0 132	SPK value 1,055 10.55 10.55 SPK value	SPK Ref Val 58.27 Units: mg/K SPK Ref Val	%REC 79.7 101 117 g-dry %REC	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da LowLimit	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20 HighLimit	221 RPD Ref Val 1,016 221 221 221 RPD Ref Val 0 222.8	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 8 0 8 8 0 8 8 8 8 8 8 9 8 8 9 8 8 9 8 8 9 144 8 8 9 8 9 144 9 8 9 144 9 144 9 12.2 144 9 12.2 144 9 12.2 144 9 12.2 144 9 12.2 144 9 12.2 144 12.2 144 12.2 144 12.2 14 12.2 14 14 12.2 14 12.2 14 14 12.2 14 14 12.2 14 14 12.2 14 14 12.2 14 14 12.2 14 14 14 14 14 14 14 14 14 14 14 14 14	46136 RPDLimit 30 057 46155 RPDLimit 30 30	Qual H H Qual
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terphen Sample ID: 21110 Client ID: BATCI Analyte Diesel (Fuel Oil) Heavy Oil Total Petroleum Hy	H ydrocarbons ohenyl yl 88-001 ADUP H	SampType Batch ID: SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305 Result ND 319 319 319	RL 158 RL 66.0 132 198	SPK value 1,055 10.55 10.55 SPK value	Units: mg/K SPK Ref Val Units: mg/K SPK Ref Val	%REC 79.7 101 117 g-dry %REC	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da LowLimit	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20 HighLimit	221 RPD Ref Val 1,016 221 221 RPD Ref Val 0 222.8 222.8 222.8	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 0 RunNo: 710 SeqNo: 144 %RPD 35.6 35.6	46136 RPDLimit 30 057 46155 RPDLimit 30 30 30 30	Qual H H Qual
Client ID: BATCI Analyte Total Petroleum Hy Surr: 2-Fluorobig Surr: o-Terpheny Sample ID: 21110 Client ID: BATCI Analyte Diesel (Fuel Oil) Heavy Oil Total Petroleum Hy Surr: 2-Fluorobig	H ydrocarbons ohenyl yl 88-001 ADUP H	SampType Batch ID: SampType Batch ID:	2: MSD 34305 Result 899 10.7 12.4 2: DUP 34305 Result ND 319 319 12.7	RL 158 RL 66.0 132 198	SPK value 1,055 10.55 10.55 SPK value	Units: mg/K SPK Ref Val Units: mg/K SPK Ref Val	%REC 79.7 101 117 g-dry %REC 96.2	Analysis Da LowLimit 68 50 50 Prep Da Analysis Da LowLimit	te: 11/4/20 HighLimit 132 150 150 te: 11/4/20 te: 11/5/20 HighLimit	221 RPD Ref Val 1,016 021 021 RPD Ref Val 0 222.8 222.8	RunNo: 710 SeqNo: 144 %RPD 12.2 0 0 0 RunNo: 710 SeqNo: 144 %RPD 35.6 35.6 0 0	46136 RPDLimit 30 057 46155 RPDLimit 30 30 30 30	Qual H H Qual

Fremont
Analytical

Work Order:	2110314									00.5			PORT
CLIENT:	G-Logics												
Project:	Mossman								Diesel a	and Heavy	Oil by NW	TPH-Dx/I	Dx Ext.
Sample ID: MB-34	184	SampType	BLK			Units: mg/Kg		Prep Dat	e: 10/26/2	021	RunNo: 70	807	
Client ID: MBLK	S	Batch ID:	34184					Analysis Dat	ie: 11/9/20	21	SeqNo: 144	48668	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			98.6	50.0									SGT
Heavy Oil			303	100									SGT
Total Petroleum Hy	drocarbons		401	150									SGT
Surr: 2-Fluorobip	ohenyl		12.2		10.00		122	50	150				
Surr: o-Terpheny	yl		14.0		10.00		140	50	150				
NOTES:													
SGT - Silica Gel	Treatment												
Sample ID: LCS-3	4184	SampType	LCS			Units: mg/Kg		Prep Dat	e: 10/26/2	021	RunNo: 70 8	807	
Client ID: LCSS		Batch ID:	34184					Analysis Dat	ie: 11/9/20	21	SeqNo: 144	48669	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	/drocarbons		542	150	500.0	0	108	77.2	122				BSGT
Surr: 2-Fluorobip	ohenyl		12.6		10.00		126	50	150				SGT
Surr: o-Terpheny	yl		14.8		10.00		148	50	150				SGT
NOTES:													
SGT - Silica Gel	Treatment												
Sample ID: 21103	14-002AMS	SampType	: MS			Units: mg/Kg-	dry	Prep Dat	e: 10/26/2	021	RunNo: 708	807	
Client ID: GLB-1	2-4	Batch ID:	34184					Analysis Dat	te: 11/9/20	21	SeqNo: 144	48671	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	/drocarbons		7,460	162	540.8	6,248	225	68	132				SSGT
Surr: 2-Fluorobip	ohenyl		12.1		10.82		112	50	150				SGT
Surr: o-Terpheny	yl		16.0		10.82		148	50	150				SGT

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

SGT - Silica Gel Treatment

Work Order: 211 CLIENT: G-L	0314 .ogics							Diosol	QC S			
Project: Mos	ssman							Diesei	and neavy			
Sample ID: 2110314-002	2AMSD	SampType: MSD			Units: mg/	′Kg-dry	Prep Da	te: 10/26/2	2021	RunNo: 70	807	
Client ID: GLB-12-4		Batch ID: 34184					Analysis Da	te: 11/9/20	21	SeqNo: 14	48672	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydroca	arbons	7,740	160	532.4	6,248	280	68	132	7,463	3.60	30	SSGT
Surr: 2-Fluorobiphenyl		11.5		10.65		108	50	150		0		SGT
Surr: o-Terphenyl		14.6		10.65		137	50	150		0		SGT

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

SGT - Silica Gel Treatment

Work Order:	2110314									00	SUMMA		
CLIENT:	G-Logics							_					
Project:	Mossman							Extra	actable Pet	roleum	Hydrocarb	ons by N	IWEPH
Sample ID: MB-34	312	SampType	: MBLK			Units: mg/Kg		Prep Dat	e: 11/4/2021		RunNo: 713	38	
Client ID: MBLK	S	Batch ID:	34312					Analysis Dat	e: 11/15/2021		SeqNo: 145	2490	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocart	bon (C8-C10)		ND	20.0									
Aliphatic Hydrocart	bon (C10-C12)		ND	10.0									*
Aliphatic Hydrocart	bon (C12-C16)		ND	10.0									
Aliphatic Hydrocart	bon (C16-C21)		ND	10.0									
Aliphatic Hydrocart	bon (C21-C34)		ND	10.0									
Surr: 1-Chlorooc	tadecane		77.1		100.0		77.1	60	140				
NOTES:													
* - Associated L	CS does not meet	t acceptance	criteria; refe	er to QC sun	nmary.								
Sample ID: 211029	93-004AMS	SampType	: MS			Units: mg/Kg-	dry	Prep Dat	e: 11/4/2021		RunNo: 713	38	
Client ID: BATCH	н	Batch ID:	34312					Analysis Dat	e: 11/15/2021		SeqNo: 145	2672	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocart	bon (C8-C10)		187	19.0	238.1	102.1	35.6	10.3	130				Н
Aliphatic Hydrocart	bon (C10-C12)		407	9.52	119.0	315.4	77.2	70	130				Н
Aliphatic Hydrocart	bon (C12-C16)		1,550	9.52	119.0	1,446	88.1	70	130				Н
Aliphatic Hydrocart	bon (C16-C21)		1,590	9.52	119.0	1,476	94.5	70	130				Н
Aliphatic Hydrocart	bon (C21-C34)		312	9.52	119.0	192.5	100	70	130				Н
Surr: 1-Chlorood	tadecane		83.5		95.22		87.7	60	140				Н
Sample ID: MB-34	312	SampType	: MBLK			Units: mg/Kg		Prep Dat	e: 11/4/2021		RunNo: 713	39	
Client ID: MBLK	S	Batch ID:	34312					Analysis Dat	e: 11/16/2021		SeqNo: 145	3005	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C8-C10)		ND	20.0									
Aromatic Hydrocar	bon (C10-C12)		ND	10.0									
Aromatic Hydrocar	bon (C12-C16)		ND	10.0									
Aromatic Hydrocar	bon (C16-C21)		ND	10.0									
Aromatic Hydrocar	bon (C21-C34)		ND	10.0									
Surr: o-Terpheny	yl		79.7		100.0		79.7	60	140				

Work Order:	2110314									00.5			ORT
CLIENT:	G-Logics												
Project:	Mossman							Extra	actable I	Petroleum H	Hydrocarb	ons by N	WEPH
Sample ID: MB-34	1312	SampType	: MBLK			Units: mg/K	g	Prep Da	te: 11/4/20	21	RunNo: 713	39	
Client ID: MBLK	S	Batch ID:	34312					Analysis Da	te: 11/16/2	021	SeqNo: 145	3005	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Comple ID: 04400		Computing						Dres De	hay 44/4/00		Durables 740		
	93-004AMS	Samprype	. 1015			Units: mg/K	g-ary	Piep Da	ie: 11/4/20	121	Runno: 713		
Client ID: BATC	н	Batch ID:	34312					Analysis Da	te: 11/16/2	2021	SeqNo: 145	3007	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydroca	rbon (C8-C10)		125	19.0	238.1	10.60	48.1	11.8	130				Н
Aromatic Hydroca	rbon (C10-C12)		189	9.52	119.0	103.7	72.0	70	130				Н
Aromatic Hydroca	rbon (C12-C16)		571	9.52	119.0	517.7	44.5	70	130				SH
Aromatic Hydroca	rbon (C16-C21)		1,200	9.52	119.0	1,186	10.7	70	130				SH
Aromatic Hydrocar	rbon (C21-C34)		321	9.52	119.0	0	270	70	130				SH
Surr: o-Terphen	yl		88.9		95.22		93.4	60	140				Н
NOTES:													
S - Outlying spil	ke recovery(ies) ol	bserved. A du	uplicate ana	lysis was pe	rformed with s	similar results indic	ating a pose	sible matrix e	effect.				
Sample ID: 21102	93-004AMSD	SampType	: MSD			Units: mg/K	g-dry	Prep Da	te: 11/4/20	21	RunNo: 713	39	
Client ID: BATC	н	Batch ID:	34312					Analysis Da	te: 11/16/2	021	SeqNo: 145	3008	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydroca	rbon (C8-C10)		125	19.1	238.7	10.60	47.9	11.8	130	125.1	0.205	30	Н
Aromatic Hydroca	rbon (C10-C12)		167	9.55	119.3	103.7	52.8	70	130	189.4	12.7	30	SH
Aromatic Hydrocar	rbon (C12-C16)		448	9.55	119.3	517.7	-58.8	70	130	570.6	24.2	30	SH
Aromatic Hydrocar	rbon (C16-C21)		926	9.55	119.3	1,186	-218	70	130	1,198	25.7	30	SH
Aromatic Hydrocar	rbon (C21-C34)		276	9.55	119.3	0	232	70	130	320.8	14.9	30	SH
Surr: o-Terphen	yl		85.5		95.46		89.6	60	140		0		Н
NOTES:													

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: CLIENT: Project:	2110314 G-Logics Mossman							Extra	actable I	QC S Petroleum I	SUMMAI Hydrocarb	RY REF	PORT IWEPH
Sample ID: LCS-34	4312	SampType	LCS			Units: mg/Kg		Prep Da	te: 11/4/20	21	RunNo: 71	339	
Client ID: LCSS		Batch ID:	34312					Analysis Da	te: 11/16/2	2021	SeqNo: 14	53011	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocart	bon (C8-C10)		126	20.0	250.0	0	50.5	16.9	130				
Aromatic Hydrocart	bon (C10-C12)		89.2	10.0	125.0	0	71.3	70	130				
Aromatic Hydrocart	bon (C12-C16)		94.3	10.0	125.0	0	75.5	70	130				
Aromatic Hydrocart	bon (C16-C21)		102	10.0	125.0	0	81.3	70	130				
Aromatic Hydrocart	bon (C21-C34)		122	10.0	125.0	0	97.5	70	130				
Surr: o-Terpheny	/I		108		100.0		108	60	140				
Sample ID: LCS-34	4312	SampType	LCS			Units: mg/Kg		Prep Da	te: 11/4/20	21	RunNo: 71:	338	
Client ID: LCSS		Batch ID:	34312					Analysis Da	te: 11/16/2	2021	SeqNo: 14	52498	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarb	oon (C8-C10)		98.5	20.0	250.0	0	39.4	15.7	130				
Aliphatic Hydrocarb	oon (C10-C12)		79.0	10.0	125.0	0	63.2	70	130				S
Aliphatic Hydrocarb	oon (C12-C16)		97.7	10.0	125.0	0	78.2	70	130				
Aliphatic Hydrocarb	oon (C16-C21)		100	10.0	125.0	0	80.4	70	130				
Aliphatic Hydrocarb	oon (C21-C34)		89.5	10.0	125.0	0	71.6	70	130				
Surr: 1-Chlorooc	tadecane		99.8		100.0		99.8	60	140				

NOTES:

S - Outlying spike recovery observed (C10-C12). Samples will be qualified with a *.

Work Order:	2110314									QCS	SUMMA	RY REF	ORT
CLIENT:	G-Logics										Gasolina		
Project:	Mossman										Gasonne		FH-GX
Sample ID: LCS-3	4343	SampType	LCS			Units: mg/Kg		Prep Dat	e: 11/8/20	21	RunNo: 711	21	
Client ID: LCSS		Batch ID:	34343					Analysis Dat	e: 11/8/20	21	SeqNo: 144	17529	
Analyte		F	≷esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			29.6	5.00	25.00	0	118	65	135				
Surr: Toluene-d	8		1.23		1.250		98.4	65	135				
Surr: 4-Bromoflu	uorobenzene		1.33		1.250		107	65	135				
Sample ID: MB-34	1343	SampType	MBLK			Units: mg/Kg		Prep Dat	e: 11/8/20	21	RunNo: 711	21	
Client ID: MBLK	S	Batch ID:	34343					Analysis Dat	e: 11/8/20	21	SeqNo: 144	i7530	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	5.00									
Surr: Toluene-d	8		1.23		1.250		98.3	65	135				
Surr: 4-Bromoflu	uorobenzene		1.30		1.250		104	65	135				
Sample ID: 21110	50-014BDUP	SampType	DUP			Units: mg/Kg-	dry	Prep Dat	e: 11/8/20	21	RunNo: 711	21	
Client ID: BATC	н	Batch ID:	34343					Analysis Dat	e: 11/8/20	21	SeqNo: 144	17534	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline							/orceo						
			ND	8.43			JUNEO			0		30	
Gasoline Range O	rganics (C6-C12)		ND 18.9	8.43 8.43						0 24.19	24.8	30 30	
Gasoline Range O Surr: Toluene-d	rganics (C6-C12) 8		ND 18.9 2.03	8.43 8.43	2.107		96.5	65	135	0 24.19	24.8 0	30 30	
Gasoline Range O Surr: Toluene-d Surr: 4-Bromoflu	rganics (C6-C12) 8 Jorobenzene		ND 18.9 2.03 2.24	8.43 8.43	2.107 2.107		96.5 106	65 65	135 135	0 24.19	24.8 0 0	30 30	
Gasoline Range O Surr: Toluene-di Surr: 4-Bromoflu NOTES:	rganics (C6-C12) 8 Jorobenzene		ND 18.9 2.03 2.24	8.43 8.43	2.107 2.107		96.5 106	65 65	135 135	0 24.19	24.8 0 0	30 30	
Gasoline Range O Surr: Toluene-d Surr: 4-Bromofiu NOTES: GRO - Indicates	rganics (C6-C12) 8 Jorobenzene 5 the presence of u	nresolved co	ND 18.9 2.03 2.24 mpounds in	8.43 8.43 the gasolin	2.107 2.107 ie range.		96.5 106	65 65	135 135	0 24.19	24.8 0 0	30 30	
Gasoline Range O Surr: Toluene-d Surr: 4-Bromoflu NOTES: GRO - Indicates Sample ID: 21111	rganics (C6-C12) 8 Jorobenzene 5 the presence of u 02-001BDUP	Inresolved co	ND 18.9 2.03 2.24 mpounds in	8.43 8.43 the gasolin	2.107 2.107 ie range.	Units: mg/Kg-	96.5 106	65 65 Prep Dat	135 135 e: 11/8/20	0 24.19 21	24.8 0 0 RunNo: 711	30 30 21	
Gasoline Range O Surr: Toluene-di Surr: 4-Bromoflu NOTES: GRO - Indicates Sample ID: 21111 Client ID: BATC	rganics (C6-C12) 8 uorobenzene 5 the presence of u 02-001BDUP H	nresolved co SampType Batch ID:	ND 18.9 2.03 2.24 mpounds in : DUP 34343	8.43 8.43 the gasolin	2.107 2.107 ie range.	Units: mg/Kg-	96.5 106 dry	65 65 Prep Dat Analysis Dat	135 135 e: 11/8/20 e: 11/8/20	0 24.19 21 21	24.8 0 0 RunNo: 711 SeqNo: 144	30 30 21 -7538	
Gasoline Range O Surr: Toluene-di Surr: 4-Bromoflu NOTES: GRO - Indicates Sample ID: 21111 Client ID: BATC Analyte	rganics (C6-C12) 8 Jorobenzene 8 the presence of u 02-001BDUP H	nresolved co SampType Batch ID: F	ND 18.9 2.03 2.24 mpounds in : DUP 34343 Result	8.43 8.43 the gasolin RL	2.107 2.107 ie range. SPK value	Units: mg/Kg -	96.5 106 dry %REC	65 65 Prep Dat Analysis Dat LowLimit	135 135 e: 11/8/20 e: 11/8/20 HighLimit	0 24.19 21 21 RPD Ref Val	24.8 0 0 RunNo: 711 SeqNo: 144 %RPD	30 30 21 I7538 RPDLimit	Qual
Gasoline Range O Surr: Toluene-di Surr: 4-Bromofit NOTES: GRO - Indicates Sample ID: 21111 Client ID: BATC Analyte Gasoline	rganics (C6-C12) 8 Jorobenzene 5 the presence of u 02-001BDUP H	Inresolved co SampType Batch ID: F	ND 18.9 2.03 2.24 mpounds in : DUP 34343 Result ND	8.43 8.43 the gasolin RL 7.81	2.107 2.107 ie range. SPK value	Units: mg/Kg- SPK Ref Val	96.5 106 dry %REC	65 65 Prep Dat Analysis Dat LowLimit	135 135 e: 11/8/20 e: 11/8/20 HighLimit	0 24.19 21 21 RPD Ref Val 0	24.8 0 0 RunNo: 711 SeqNo: 144 %RPD	30 30 121 17538 RPDLimit 30	Qual
Gasoline Range O Surr: Toluene-di Surr: 4-Bromoflu NOTES: GRO - Indicates Sample ID: 21111 Client ID: BATC Analyte Gasoline Surr: Toluene-di	rganics (C6-C12) 8 Jorobenzene 5 the presence of u 02-001BDUP H	Inresolved co SampType Batch ID: F	ND 18.9 2.03 2.24 mpounds in : DUP 34343 Result ND 1.93	8.43 8.43 the gasolin RL 7.81	2.107 2.107 ie range. SPK value 1.951	Units: mg/Kg- SPK Ref Val	96.5 106 dry %REC 98.8	65 65 Prep Dat Analysis Dat LowLimit 65	135 135 e: 11/8/20 e: 11/8/20 HighLimit 135	0 24.19 21 21 RPD Ref Val 0	24.8 0 0 RunNo: 711 SeqNo: 144 %RPD 0	30 30 121 17538 RPDLimit 30	Qual

Work Order: CLIENT: Project:	2110314 G-Logics Mossman					(QC SUMMARY REPORT Gasoline by NWTPH-Gx
Sample ID: 211110 Client ID: BATCH Analyte	02-001BDUP 1	SampType: DUP Batch ID: 34343 Result	RL S	SPK value	Units: mg/Kg-dry SPK Ref Val %F	Prep Date: 11/8/2021 Analysis Date: 11/8/2021 EC LowLimit HighLimit RPD Re	RunNo: 71121 SeqNo: 1447538 ef Val %RPD RPDLimit Qual
Sample ID: 211108 Client ID: BATCH	34-012BMS 1	SampType: MS Batch ID: 34343			Units: mg/Kg-dry	Prep Date: 11/8/2021 Analysis Date: 11/8/2021	RunNo: 71121 SeqNo: 1447542

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	88.1	6.05	30.26	51.26	122	65	135				
Surr: Toluene-d8	1.49		1.513		98.6	65	135				
Surr: 4-Bromofluorobenzene	1.60		1.513		106	65	135				
Fremont											

Analytical											

Work Order: 2110314							00		ORT
CLIENT: G-Logics									
Project: Mossman						Volatile C	Organic Compour	nds by EPA Method	8260D
Sample ID: LCS-34343	SampType: LCS			Units: mg/Kg		Prep Date:	11/8/2021	RunNo: 71120	
Client ID: LCSS	Batch ID: 34343					Analysis Date:	11/8/2021	SeqNo: 1447527	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	1.08	0.0200	1.000	0	108	80	120		
Toluene	1.07	0.0300	1.000	0	107	80	120		
Ethylbenzene	1.12	0.0250	1.000	0	112	80	120		
m,p-Xylene	2.11	0.0500	2.000	0	105	80	120		
o-Xylene	1.05	0.0250	1.000	0	105	80	120		
Naphthalene	0.941	0.100	1.000	0	94.1	80	120		
Surr: Dibromofluoromethane	1.31		1.250		105	75.5	120		
Surr: Toluene-d8	1.26		1.250		101	80	120		
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	78.5	120		
Sample ID: MB-34343	SampType: MBLK			Units: mg/Kg		Prep Date:	: 11/8/2021	RunNo: 71120	
Client ID: MBLKS	Batch ID: 34343					Analysis Date:	: 11/8/2021	SeqNo: 1447501	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	ND	0.0200							
Toluene	ND	0.0300							
Ethylbenzene	ND	0.0250							
m,p-Xylene	ND	0.0500							
o-Xylene	ND	0.0250							
Naphthalene	ND	0.100							
Surr: Dibromofluoromethane	1.19		1.250		95.0	75.5	119		
Surr: Toluene-d8	1.27		1.250		101	82.4	115		
Surr: 1-Bromo-4-fluorobenzene	1.24		1.250		99.2	78.5	118		
Sample ID: 2111050-014BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	11/8/2021	RunNo: 71120	
Client ID: BATCH	Batch ID: 34343					Analysis Date:	: 11/8/2021	SeqNo: 1447506	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	ND	0.0337					0	30	

Fremont
Andryticu

Work Order: 2110314								QC S	SUMMA	RY REF	PORT
Project: Mossman						Volatile	Organic	Compoun	ds by EPA	Method	82600
Sample ID: 2111050-014BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 11/8/20	21	RunNo: 71	120	
Client ID: BATCH	Batch ID: 34343					Analysis Dat	e: 11/8/20	21	SeqNo: 14	47506	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	0.0959	0.0506						0.09552	0.402	30	
Ethylbenzene	ND	0.0421						0		30	
m,p-Xylene	ND	0.0843						0		30	
o-Xylene	ND	0.0421						0		30	
Naphthalene	ND	0.169						0		30	
Surr: Dibromofluoromethane	2.03		2.107		96.2	75.5	119		0		
Surr: Toluene-d8	2.13		2.107		101	82.4	115		0		
Surr: 1-Bromo-4-fluorobenzene	2.13		2.107		101	78.5	118		0		
Sample ID: 2111102-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 11/8/20	21	RunNo: 71	120	
Client ID: BATCH	Batch ID: 34343					Analysis Dat	e: 11/8/20	21	SeqNo: 14	47510	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0312						0		30	
Toluene	ND	0.0468						0		30	
Ethylbenzene	ND	0.0390						0		30	
m,p-Xylene	ND	0.0781						0		30	
o-Xylene	ND	0.0390						0		30	
Naphthalene	ND	0.156						0		30	
Surr: Dibromofluoromethane	1.83		1.951		93.9	75.5	119		0		
Surr: Toluene-d8	1.96		1.951		101	82.4	115		0		
Surr: 1-Bromo-4-fluorobenzene	1.96		1.951		100	78.5	118		0		
Sample ID: 2111050-020BMS	SampType: MS			Units: mg/	Kg-dry	Prep Dat	e: 11/8/20	21	RunNo: 71	120	
Client ID: BATCH	Batch ID: 34343					Analysis Dat	e: 11/8/20	21	SeqNo: 144	47514	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.17	0.0225	1.123	0	104	75.3	131				
Toluene	1.16	0.0337	1.123	0	103	79.2	130				

CLIENT: G-Logics

Project: Mossman

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2111050-020BMS SampType: MS				Units: mg/	Kg-dry	Prep Da	te: 11/8/20	21	RunNo: 711	120	
Client ID: BATCH	Batch ID: 34343					Analysis Da	te: 11/8/20	21	SeqNo: 144	17514	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	1.22	0.0281	1.123	0	108	79.7	133				
m,p-Xylene	2.32	0.0561	2.246	0	103	81.2	125				
o-Xylene	1.15	0.0281	1.123	0	103	76.9	130				
Naphthalene	1.09	0.112	1.123	0	97.4	72.3	141				
Surr: Dibromofluoromethane	1.43		1.404		102	75.5	119				
Surr: Toluene-d8	1.41		1.404		101	82.4	115				
Surr: 1-Bromo-4-fluorobenzene	1.46		1.404		104	78.5	118				

Work Order:	2110314	
CLIENT:	G-Logics	
Project:	Mossman	
Sample ID: I CS-3	4320	SampType: LCS

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-34320	SampType: LCS			Units: mg/Kg		Prep Dat	te: 11/4/20	21	RunNo: 712	224	
Client ID: LCSS	Batch ID: 34320					Analysis Dat	te: 11/11/2	021	SeqNo: 144	9959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	29.3	2.50	30.00	0	97.6	70	130				
Aliphatic Hydrocarbon (C6-C8)	9.97	1.50	10.00	0	99.7	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.19	2.50	10.00	0	91.9	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.79	0.500	10.00	0	97.9	70	130				
Aromatic Hydrocarbon (C8-C10)	40.8	3.00	40.00	0	102	70	130				
Aromatic Hydrocarbon (C10-C12)	9.66	0.500	10.00	0	96.6	70	130				
Aromatic Hydrocarbon (C12-C13)	9.92	0.500	10.00	0	99.2	70	130				
Benzene	9.82	0.600	10.00	0	98.2	70	130				
Toluene	9.90	0.500	10.00	0	99.0	70	130				
Ethylbenzene	9.97	1.70	10.00	0	99.7	70	130				
m,p-Xylene	20.5	1.00	20.00	0	103	70	130				
o-Xylene	10.2	0.500	10.00	0	102	70	130				
Naphthalene	9.38	2.60	10.00	0	93.8	70	130				
Methyl tert-butyl ether (MTBE)	10.6	1.10	10.00	0	106	70	130				
Surr: 1,4-Difluorobenzene	2.42		2.500		96.9	65	140				
Surr: Bromofluorobenzene	2.40		2.500		96.0	65	140				

Sample ID: MB-34320	SampType: MBLK			Units: mg/Kg		Prep Date: 11/4/2021	RunNo: 71224
Client ID: MBLKS	Batch ID: 34320					Analysis Date: 11/11/2021	SeqNo: 1449960
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.50		0	0		
Aliphatic Hydrocarbon (C6-C8)	ND	1.50		0	0		
Aliphatic Hydrocarbon (C8-C10)	ND	2.50		0	0		
Aliphatic Hydrocarbon (C10-C12)	ND	0.500		0	0		
Aromatic Hydrocarbon (C8-C10)	ND	3.00		0	0		
Aromatic Hydrocarbon (C10-C12)	ND	0.500		0	0		
Aromatic Hydrocarbon (C12-C13)	ND	0.500		0	0		
Benzene	ND	0.600		0	0		
Toluene	ND	0.500		0	0		

Fremont
Analytical

Work Order: 2110314								00.9			
CLIENT: G-Logics											
Project: Mossman						V	olatile l	Petroleum	Hydrocarb	ons by N	IMAbh
Sample ID: MB-34320	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 11/4/20	21	RunNo: 71	224	
Client ID: MBLKS	Batch ID: 34320					Analysis Dat	e: 11/11/2	021	SeqNo: 14	49960	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	ND	1.70		0	0						
m,p-Xylene	ND	1.00		0	0						
o-Xylene	ND	0.500		0	0						
Naphthalene	ND	2.60		0	0						
Methyl tert-butyl ether (MTBE)	ND	1.10		0	0						
Surr: 1,4-Difluorobenzene	1.89		2.500		75.5	65	140				
Surr: Bromofluorobenzene	2.37		2.500		94.7	65	140				
Sample ID: 2110293-004BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 11/4/20	21	RunNo: 71	224	
Client ID: BATCH	Batch ID: 34320					Analysis Dat	e: 11/11/2	:021	SeqNo: 14	49950	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	3.43	2.31		0	0			3.555	3.56	25	Н
Aliphatic Hydrocarbon (C6-C8)	12.6	1.39		0	0			11.77	7.01	25	н
Aliphatic Hydrocarbon (C8-C10)	45.5	2.31		0	0			48.60	6.60	25	н
Aliphatic Hydrocarbon (C10-C12)	215	0.462		0	0			202.6	6.08	25	EH
Aromatic Hydrocarbon (C8-C10)	107	2.77		0	0			110.6	3.26	25	н
Aromatic Hydrocarbon (C10-C12)	433	0.462		0	0			441.6	1.96	25	EH
Aromatic Hydrocarbon (C12-C13)	763	0.462		0	0			767.7	0.548	25	EH
Benzene	ND	0.554		0	0			0		25	н
Toluene	ND	0.462		0	0			0		25	Н
Ethylbenzene	ND	1.57		0	0			0		25	Н
m,p-Xylene	ND	0.924		0	0			0		25	н
o-Xylene	0.764	0.462		0	0			0.8075	5.57	25	н
Naphthalene	31.7	2.40		0	0			32.61	2.98	25	Н
Methyl tert-butyl ether (MTBE)	ND	1.02		0	0			0		25	н
Surr: 1,4-Difluorobenzene	1.97		2.309		85.1	65	140		0		н
Surr: Bromofluorobenzene	10.5		2.309		456	65	140		0		SH

Work Order:	2110314						00 9	
CLIENT:	G-Logics							
Project:	Mossman						Volatile Petroleum F	hydrocarbons by NWVPH
Sample ID: 21102	93-004BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date: 11/4/2021	RunNo: 71224
Client ID: BATCI	н	Batch ID: 34320					Analysis Date: 11/11/2021	SeqNo: 1449950
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

NOTES:

S - Outlying surrogate recovery attributed to TPH interference.

E - Estimated value. The amount exceeds the calibrated range of the instrument.

Sample ID: 2110314-002BMS	SampType:	MS			Units: mg	/Kg-dry	Prep Da	te: 11/4/20	21	RunNo: 712	24	
Client ID: GLB-12-4	Batch ID:	34320					Analysis Da	te: 11/11/2	021	SeqNo: 144	9954	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	(34.1	2.57	30.89	3.803	98.2	70	130				Н
Aliphatic Hydrocarbon (C6-C8)		12.9	1.54	10.30	1.289	113	70	130				Н
Aliphatic Hydrocarbon (C8-C10)		11.3	2.57	10.30	6.440	47.2	70	130				SH
Aliphatic Hydrocarbon (C10-C12)	-	77.7	0.515	10.30	69.73	77.6	70	130				EH
Aromatic Hydrocarbon (C8-C10)	-	75.1	3.09	41.19	22.48	128	70	130				Н
Aromatic Hydrocarbon (C10-C12)		207	0.515	10.30	193.2	136	70	130				SEH
Aromatic Hydrocarbon (C12-C13)		705	0.515	10.30	691.0	133	70	130				SEH
Benzene		10.2	0.618	10.30	0	99.5	70	130				н
Toluene		10.7	0.515	10.30	0	104	70	130				н
Ethylbenzene		11.6	1.75	10.30	0	113	70	130				Н
m,p-Xylene		23.2	1.03	20.60	0	113	70	130				Н
o-Xylene		12.1	0.515	10.30	0	118	70	130				Н
Naphthalene		13.2	2.68	10.30	3.887	90.1	70	130				н
Methyl tert-butyl ether (MTBE)	ç	9.77	1.13	10.30	0	94.9	70	130				н
Surr: 1,4-Difluorobenzene		2.54		2.574		98.7	65	140				н
Surr: Bromofluorobenzene	:	3.59		2.574		140	65	140				н

NOTES:

S - Outlying spike recoveries were associated with this sample.

E - Estimated value. The amount exceeds the calibrated range of the instrument.

Sample Log-In Check List

Client Name: GL	Work Order Numb	er: 2110314	
Logged by: Clare Griggs	Date Received:	10/21/2021	4:35:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
Log In			
3. Coolers are present?	Yes 🖌	No 🗌	NA 🗌
4. Shipping container/cooler in good condition?	Yes 🖌	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present 🗹
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
7. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🖌	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
10. Are samples properly preserved?	Yes 🗹	No 🗌	
11. Was preservative added to bottles?	Yes	No 🔽	NA 🗌
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14. Does paperwork match bottle labels?	Yes 🗹	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Date:			
By Whom: Via:	eMail Pho	one 🗌 Fax 🗌	In Person
Regarding:			
Client Instructions:			

Item Information

Item	#	Temp ⁰C
Sample		5.5

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 1 c	montanalytical.com	www.fre			COC 1 3 - 11 06 20
	Received (Signature)	Date/Time		Print Name	Relinquished (Signature) ×
1X TK40 10-21-21 16:35	* Alex Totas Ad	Date/Time 121/21 1625	1.th 10	Print Name	Relinquished (Signature)
verified Client's agreement 2 Day (specify)	behalf of the Client named above, that I have v	h Fremont Analytical on	is Agreement with f this Agreement	to enter into th and backside c	I represent that I am authorized to each of the terms on the front
3 Day Same Day	oride Nitrate+Nitrite	ide O-Phosphate Flu	Sulfate Brom	Chloride	***Anions (Circle): Nitrate Nitrite
Se Sr Sn Ti Ti V Zn	cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb	uol: Ag Al As B Ba Be Ca	ts TAL Individ	Priority Pollutan	**Metals (Circle): MTCA-5 RCRA-8
torm Water, WW = Waste Water I urn-dround nine:	er, DW = Drinking Water, GW = Ground Water, SW = St	Sediment, SL = Solid, W = Wat	oduct, S = Soil, SD =	O = Other, P = P	Matrix: A = Air, AQ = Aqueous, B = Bulk,
There exercised There		¢	1150 4	Ý	4 - HI-B-14 - 4
	X		N20		E-H1- 879°
			1030		8-51-9-08
	×		1025		, GLB- 13-6
	×		101S		6GLB-13-4
			1010		5 GUB - 13 - 2
			SCBO		· GUD-12-8
	\times		2115		3 GLB-12-6
	×		CA20	181	2 GLB-12-4
		3	0910 5	10/21/21	2-21-5175
Comments		# of	Sample Sample Time (Matrix)	Sample	Sample Name
111111	11121211111	PM Email:			Fax:
		Report To (PM):			Telephone:
enved nimonal. Bature to clear Disposal by 1sh (after 30 days)	amish, with	Location: SUMM	LC08b	5 WA	City, State, Zip: 1550 gua
iener	a Mening/TiBanyau	Collected by: PCom a		OSE	Address: 40 2nd Av
	364-0	Project No: 01-0			dient G-LOURIES
Special Remarks:	man	Project Name: MOS	ix: 206-352-7178	TRATA P	Analyt
Laboratory Project No (internal): 2119314) Page: 1 of: 2	Date: 10/21/2	attle, WA 98103 el: 206-352-3790	as Du	Fremo
ratory Services Agreement	Custody Record & Labor	Chain of (Fremont Ave N.	3600	

of 2

	ŝ	1	ī	
1		۲	١.	
	ť	1	5.	
	1	-	-	
	ł	ċ	5	
	į	i	÷	•
	t	6	۵	

www.fremontanalytical.com

00
~
-
w
4
-
-
66
20

	x x xeceived (signature)	ate/Time		Print Name	telinquished (Signature)	×R
SX (104 10/21/21 (6:35	NY COCLORD ×	21/21 1625	13/ 13/	Chry Smit	1 de	X×
Name Date/Time	Received (Signature)	ate/Time		Print Name	telinquished (Signature)	2
erified Client's agreement	ehalf of the Client named above, that I have ve	Fremont Analytical on b	s Agreement with this Agreement.	zed to enter into thi ont and backside of	I represent that I am authori to each of the terms on the fr	
□ 3 Day □ Same Day	ride Nitrate+Nitrite	O-Phosphate Fluor	Sulfate Bromide	itrite Chloride	**Anions (Circle): Nitrate N	1 *
Se Sr Sn Ti TI V Zn WStandard U Next Day	d Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb S	: Ag Al As B Ba Be Ca C	s TAL Individua	-8 Priority Pollutant	*Metals (Circle): MTCA-5 RCRA	
orm Water, WW = Waste Water Iurn-around Time:	r, DW = Drinking Water, GW = Ground Water, SW = Stor	diment, SL = Solid, W = Wate	oduct, S = Soil, SD = Se	3ulk, O = Other, P = Pro	Matrix: A = Air, AQ = Aqueous, B = E	-
		5	1322 J	E	64B-16-8	10
			06 E)		GLB-16-6	9
			2151		GLB-16-4	00
	×		5151		GUB-16-2	7
			1255		GLB-15-8	6
			1250		613-15-6	UT .
			1245		GUB-15-4	4
			1240		GLB-15-2	ω
			1200		G-B-14-8	2
		3	155 5	12/12/21	G-B-14-6	1
Comments		ant social crant	Sample Sample Type Time (Matrix)* i	Sample Date	Sample Name	10
~//////	2 Fall-Layies can	PM Email: PCerrelo			ax:	27
Sample Disposal: 🗌 Return to client 📄 Disposal by lab (after 30 days)	emina s	Report To (PM): P. M			elephone:	T
	mish wh	location: Seevena			lity, State, Zip:	0
	1720	collected by: TMF			ddress:	R
	64-2	Project No: 0 - 0 B		ies	lient G-Log	Q
Special Remarks:	Sman	Project Name: Mos	x: 206-352-7178	WIRON Fa	Ana Ana	_
Laboratory Project No (internal): 2110314	21 Page: 2 of: 2 4	Date: 10/21/	ttle, WA 98103 1: 206-352-3790		Frem	
atory Services Agreement	Custody Record & Labora	Chain of (Fremont Ave N.	3600		

Page 1 c	w.fremontanalytical.com	ww			COC 1 3 - 11 06 20
	Received (Signature)	Date/Time		Print Name	Relinquished (Signature) x
1X THO 10-21-21 16:35	25 × allex Tog Al	Date/Time	with Is	Print Name	Relinquished (Signature)
verified Client's agreement 2 Day (specify)	tical on behalf of the Client named above, that I have t	th Fremont Analyt 1.	is Agreement wi of this Agreemen	to enter into th and backside o	I represent that I am authorized to each of the terms on the front t
3 Day Same Day	Fluoride Nitrate+Nitrite	nide O-Phosphate	Sulfate Bror	Chloride	***Anions (Circle): Nitrate Nitrite
Se Sr Sn Ti TI V Zn	Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb	dual: Ag Al As B Ba	ts TAL Indivi	Priority Pollutar	**Metals (Circle): MTCA-5 RCRA-8
torm Water, WW = Waste Water I urn-ordund inne:	W = Water, DW = Drinking Water, GW = Ground Water, SW = St	= Sediment, SL = Solid,	roduct, S = Soil, SD	O = Other, P = P	*Matrix: A = Air, AQ = Aqueous, B = Bulk,
		¢	1150 4	¥	10 GLB-14-4
	×		USU1		E-H1-879°
	×		1030		8-51-910:
			1025		, GLB- 13-6
	*		1015		6 GLB-13-4
			010		5 GUB - 13 - 2
			SEBO		· GUD-12-8
	×		2110		3-CI-B-12-6
X DX w/ SGC	×		CA20	18)	2 GLB-12-4
		S	0910 5	10/21/21	5-C1-5175
EPH, VPH	State 1	# of Local Brack	Sample Sample Type (Matrix)	Sample Date	Sample Name
	11112121111	PM Email:			Fax:
Sample Disposa: 🗌 Kesuri to cirent 📄 utaposai oy iau tarkei so vaya)		Report To (PM):			Telephone:
	mmanish, war	Location: Sci	LCOSD	h WA	City, State, Zip: 1550 gua
iener	meta Meniner MBanerau	Collected by: PCO		OSE	Address: ill and An
	-0864-D	Project No: 0			cient G-Lockies
special Remarks: Edits per TQ, Std TAT, 11/3/21 -CG	Jossman	Project Name:	ax: 206-352-7178	TRET & F	Analyti
Laboratory Project No (internal): 2110314	1/2/ Page: 1 of: 2	Date 10/2	attle, WA 98103 el: 206-352-3790		Fremo
atory Services Agreement	of Custody Record & Labor	Chair	Fremont Ave N.	360	

of 2

age 1 of					۰	
ge 1 of			3	ï		
e 1 of	1		۲			
1 of		ľ	1	5		
of		,	ĥ	1	•	
4		,		ś		
		ì	ì	4	•	
N		i	6		5	

www.fremontanalytical.com

8
ň
-
ω.
-
1
6
20

MAY NAM	3600 Fremont Ave N.	Chain of Custody R	ecord & Laboratory Ser	vices Agreement
-remo	Seattle, WA 98103 Tel: 206-352-3790	Date: 10/21/21 Page:	a of: 1 Laboratory Project No	o (internal): 2110314
JI Analy	Fax: 206-352-7178	Project Name: MOSSMan	Special Remarks:	
client G-Log	es	Project No: 01-0864-D		
Address:		collected by: PM F/TLQ		
City, State, Zip:		Location: Seemanni Sh	AUX	
Telephone:		REPORT TO (PM): P. MENINA	Sample Disposal: C	Return to client Disposal by lab (after 30 days)
Fax:		PMEmail: Poernela Fala	-Locyics can	
Sample Name	Sample Sample Type Date Time (Matrix)	$ \begin{array}{c} \# \text{ of } & \left[\begin{array}{c} \left\{ \begin{array}{c} \left\{ 0 \right\} \\ \# \text{ of } \end{array} \right] & \left\{ \begin{array}{c} \left\{ 0 \right\} \\ \left\{ 0 \right\} \\ \left\{ \begin{array}{c} \left\{ 0 \right\} \\ \left\{ 0 \right\}$		Comments
1 GLB-14-6	W21/21 1155 5	3 R X		
2 GLB-14-8	1200	×		
3 GLB-15-2	1240	×		
4 GUB-15-4	1245	*		
5 GLB - 15-6	1250	X		
8-51-979°	1255	×		
GUB-16-2	2121	X		
8 GLB-16-4	1315	X		
GLB-16-6	(3 3C)	×		
5-91-819 10	U 1322 U	X		
*Matrix: A = Air, AQ = Aqueous, B = Bull	c, O = Other, P = Product, S = Soil, SD =	Sediment, SL = Solid, W = Water, DW = Drinking Wate	rr, GW = Ground Water, SW = Storm Water, WW = Wa	aste Water Turn-around Time:
**Metals (Circle): MTCA-5 RCRA-8	Priority Pollutants TAL Individ	lual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg	K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti TI V	Zn Standard Next Day
***Anions (Circle): Nitrate Nitri	te Chloride Sulfate Brom	ide O-Phosphate Fluoride Nitrate+Nitri	te	🗌 3 Day 🗌 Same Day
I represent that I am authorized to each of the terms on the fron	d to enter into this Agreement wit t and backside of this Agreement	h Fremont Analytical on behalf of the Client	named above, that I have verified Client's ag	zreement 2 Day (specify)
Relinquished (Signature) x	Chrd Smith	Date/Time Date/Time Received (Signatu	Print Name	Date/Time
Relinquished (Signature)	Print Name	Date/Time Received (Signatu	rej Print Name J	Date/Time
×		×		

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Pamela Fleming 40 Second Ave. SE Issaquah, WA 98027

RE: Mossman Work Order Number: 2110315

November 11, 2021

Attention Pamela Fleming:

Fremont Analytical, Inc. received 10 sample(s) on 10/21/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Total Organic Carbon by SM 5310C Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT: Project: Work Order:	G-Logics Mossman 2110315	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2110315-001	MW-9	10/21/2021 9:27 AM	10/21/2021 4:35 PM
2110315-002	MW-3	10/21/2021 9:59 AM	10/21/2021 4:35 PM
2110315-003	MW-4	10/21/2021 11:48 AM	10/21/2021 4:35 PM
2110315-004	MW-7	10/21/2021 12:32 PM	10/21/2021 4:35 PM
2110315-005	GLB-12-GW	10/21/2021 11:00 AM	10/21/2021 4:35 PM
2110315-006	GLB-13-GW	10/21/2021 11:15 AM	10/21/2021 4:35 PM
2110315-007	GLB-14-GW	10/21/2021 11:55 AM	10/21/2021 4:35 PM
2110315-008	GLB-15-GW	10/21/2021 12:15 PM	10/21/2021 4:35 PM
2110315-009	GLB-16-GW	10/21/2021 1:40 PM	10/21/2021 4:35 PM
2110315-010	Trip Blank		10/21/2021 4:35 PM

Case Narrative

WO#: 2110315 Date: 11/11/2021

CLIENT:G-LogicsProject:Mossman

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

11/11/21: Revisoin 1 includes additional analysis requested by the client.

Qualifiers & Acronyms

WO#: 2110315 Date Reported: 11/11/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Work Order:
 2110315

 Date Reported:
 11/11/2021

CLIENT:G-LogicsProject:Mossman

Lab ID: 2110315-001				Collection Date: 10/21/2021 9:27:00 AM			
Client Sample ID: MW-9			Matrix: G	roundw	ater		
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batc	n ID: 34	145 Analyst: MM		
Diesel (Fuel Oil)	263	98.6	µg/L	1	10/26/2021 1:02:10 PM		
Heavy Oil	ND	98.6	µg/L	1	10/26/2021 1:02:10 PM		
Total Petroleum Hydrocarbons	263	197	µg/L	1	10/26/2021 1:02:10 PM		
Surr: 2-Fluorobiphenyl	80.8	50 - 150	%Rec	1	10/26/2021 1:02:10 PM		
Surr: o-Terphenyl	91.0	50 - 150	%Rec	1	10/26/2021 1:02:10 PM		

Lab ID: 2110315-002	Lab	ID:	2110315-002
---------------------	-----	-----	-------------

Client Sample ID: MW-3

Collection Date: 10/21/2021 9:59:00 AM Matrix: Groundwater

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batch	n ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	2,270	98.1	µg/L	1	10/26/2021 1:15:08 PM
Heavy Oil	ND	98.1	µg/L	1	10/26/2021 1:15:08 PM
Total Petroleum Hydrocarbons	2,270	196	µg/L	1	10/26/2021 1:15:08 PM
Surr: 2-Fluorobiphenyl	82.6	50 - 150	%Rec	1	10/26/2021 1:15:08 PM
Surr: o-Terphenyl	92.4	50 - 150	%Rec	1	10/26/2021 1:15:08 PM

 Work Order:
 2110315

 Date Reported:
 11/11/2021

Lab ID: 2110315-003				Collection	n Date:	10/21/	2021 11:48:00 AM
Client Sample ID: MW-4				Matrix: G	Groundw	vater	
Analyses	Result	RL	Qual	Units	DF	Date	e Analyzed
Diesel and Heavy Oil by NWTPH-	Batc	Batch ID: 34145 Analyst: MI					
Diesel (Fuel Oil)	197	98.7	SGT	μg/L	1	11/9	/2021 1:46:29 PM
Diesel (Fuel Oil)	2,650	98.7		µg/L	1	10/2	6/2021 1:28:00 PM
Heavy Oil	ND	98.7		µg/L	1	10/2	6/2021 1:28:00 PM
Total Petroleum Hydrocarbons	2,690	197		µg/L	1	10/2	6/2021 1:28:00 PM
Total Petroleum Hydrocarbons	197	197	SGT	µg/L	1	11/9,	/2021 1:46:29 PM
Surr: 2-Fluorobiphenyl	34.2	50 - 150	SSGT	%Rec	1	11/9	/2021 1:46:29 PM
Surr: 2-Fluorobiphenyl	103	50 - 150		%Rec	1	10/2	6/2021 1:28:00 PM
Surr: o-Terphenyl	38.4	50 - 150	SSGT	%Rec	1	11/9,	/2021 1:46:29 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	10/2	6/2021 1:28:00 PM
S - Outlying spike recovery(ies) observed SGT - Silica Gel Treatment Volatile Organic Compounds by I	EPA Method 8	3260D		Batc	h ID: 34	-341	Analyst: CR
Benzene	ND	0 440	н	ug/l	1	11/8	/2021 5:50:36 PM
Toluene	ND	0.750	н	µg/L	1	11/8	/2021 5:50:36 PM
Ethylbenzene	ND	0.400	н	µg/=	1	11/8	/2021 5:50:36 PM
m.p-Xvlene	ND	1.00	Н	µ=9= ua/L	1	11/8	/2021 5:50:36 PM
o-Xvlene	ND	0.500	н	ua/L	1	11/8	/2021 5:50:36 PM
Naphthalene	ND	1.25	н	ua/L	1	11/8	/2021 5:50:36 PM
Surr: Dibromofluoromethane	107	80 - 120	Н	%Rec	1	11/8	/2021 5:50:36 PM
Surr: Toluene-d8	103	80 - 120	н	%Rec	1	11/8	/2021 5:50:36 PM
Surr: 1-Bromo-4-fluorobenzene	102	80 - 120	Н	%Rec	1	11/8	/2021 5:50:36 PM
Total Organic Carbon by SM 5310	<u>)C</u>			Batc	h ID: R7	' 0840	Analyst: SS
Total Organic Carbon	11.2	0.500		mg/L	1	10/2	7/2021 6:19:00 PM

 Work Order:
 2110315

 Date Reported:
 11/11/2021

CLIENT:	G-Logics
Project:	Mossman

Lab ID: 2110315-004			Collection	n Date:	10/21/2021 12:32:00 PM	
Client Sample ID: MW-7			Matrix: Groundwater			
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.		Batcl	n ID: 34	145 Analyst: MM	
Diesel (Fuel Oil)	ND	99.8	µg/L	1	10/26/2021 1:40:55 PM	
Heavy Oil	ND	99.8	µg/L	1	10/26/2021 1:40:55 PM	
Total Petroleum Hydrocarbons	ND	200	µg/L	1	10/26/2021 1:40:55 PM	
Surr: 2-Fluorobiphenyl	87.1	50 - 150	%Rec	1	10/26/2021 1:40:55 PM	
Surr: o-Terphenyl	99.2	50 - 150	%Rec	1	10/26/2021 1:40:55 PM	

Lab ID: 2110315-005	10315-005
---------------------	-----------

Client Sample ID: GLB-12-GW

Collection Date: 10/21/2021 11:00:00 AM Matrix: Groundwater

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.		Batch	n ID: 34	145 Analyst: MM
Diesel (Fuel Oil)	7,750	99.9	µg/L	1	10/26/2021 1:53:49 PM
Heavy Oil	ND	99.9	µg/L	1	10/26/2021 1:53:49 PM
Total Petroleum Hydrocarbons	7,750	200	µg/L	1	10/26/2021 1:53:49 PM
Surr: 2-Fluorobiphenyl	69.8	50 - 150	%Rec	1	10/26/2021 1:53:49 PM
Surr: o-Terphenyl	81.4	50 - 150	%Rec	1	10/26/2021 1:53:49 PM

Lab ID: 2	110315-006
-----------	------------

Collection Date: 10/21/2021 11:15:00 AM Matrix: Groundwater

Client Sample ID: GLB	-13-GW		Matrix: Groundwater				
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by	NWTPH-Dx/Dx Ext.		Batcl	n ID: 34	145 Analyst: MM		
Diesel (Fuel Oil)	165	99.3	µg/L	1	10/26/2021 2:06:44 PM		
Heavy Oil	ND	99.3	µg/L	1	10/26/2021 2:06:44 PM		
Total Petroleum Hydrocarbons	ND	199	µg/L	1	10/26/2021 2:06:44 PM		
Surr: 2-Fluorobiphenyl	85.6	50 - 150	%Rec	1	10/26/2021 2:06:44 PM		
Surr: o-Terphenyl	96.0	50 - 150	%Rec	1	10/26/2021 2:06:44 PM		

 Work Order:
 2110315

 Date Reported:
 11/11/2021

Lab ID: 2110315-007		Collection Date: 10/21/2021 11:55:00 AM					
Client Sample ID: GLB-14-GW	I		Matrix: G	Matrix: Groundwater			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.		Batc	h ID: 34	162 Analyst: MM		
Diesel (Fuel Oil)	534	98.9	µg/L	1	10/26/2021 5:47:28 PM		
Heavy Oil	ND	98.9	µg/L	1	10/26/2021 5:47:28 PM		
Total Petroleum Hydrocarbons	534	198	µg/L	1	10/26/2021 5:47:28 PM		
Surr: 2-Fluorobiphenyl	104	50 - 150	%Rec	1	10/26/2021 5:47:28 PM		
Surr: o-Terphenyl	102	50 - 150	%Rec	1	10/26/2021 5:47:28 PM		

 Work Order:
 2110315

 Date Reported:
 11/11/2021

Lab ID: 2110315-008				Collection	n Date:	10/21/2021 12:15:00 PM
Client Sample ID: GLB-15-GW	,			Matrix: O	Ground	vater
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	h ID: 34	162 Analyst: MM
Diesel (Fuel Oil)	9,290	99.2		µg/L	1	10/26/2021 6:13:16 PM
Diesel (Fuel Oil)	7,950	99.2	SGT	µg/L	1	11/10/2021 10:16:57 AM
Heavy Oil	ND	99.2		µg/L	1	10/26/2021 6:13:16 PM
Heavy Oil	ND	99.2	SGT	µg/L	1	11/10/2021 10:16:57 AM
Total Petroleum Hydrocarbons	7,950	198	SGT	μg/L	1	11/10/2021 10:16:57 AM
Total Petroleum Hydrocarbons	9,290	198		μg/L	1	10/26/2021 6:13:16 PM
Surr: 2-Fluorobiphenyl	81.1	50 - 150	SGT	%Rec	1	11/10/2021 10:16:57 AM
Surr: 2-Fluorobiphenyl	84.8	50 - 150		%Rec	1	10/26/2021 6:13:16 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	10/26/2021 6:13:16 PM
Surr: o-Terphenyl	77.8	50 - 150	SGT	%Rec	1	11/10/2021 10:16:57 AM
NOTES:						
SGT - Silica Gel Treatment						
Volatile Organic Compounds by	EPA Method 8	<u>3260D</u>		Batc	h ID: 34	I341 Analyst: CR
Benzene	ND	0.440	Н	µg/L	1	11/8/2021 6:20:37 PM
Toluene	ND	0.750	н	μg/L	1	11/8/2021 6:20:37 PM
Ethylbenzene	ND	0.400	н	μg/L	1	11/8/2021 6:20:37 PM
m,p-Xylene	ND	1.00	н	μg/L	1	11/8/2021 6:20:37 PM
o-Xylene	ND	0.500	н	μg/L	1	11/8/2021 6:20:37 PM
Naphthalene	ND	1.25	н	μg/L	1	11/8/2021 6:20:37 PM
Surr: Dibromofluoromethane	103	80 - 120	н	%Rec	1	11/8/2021 6:20:37 PM
Surr: Toluene-d8	100	80 - 120	н	%Rec	1	11/8/2021 6:20:37 PM
Surr: 1-Bromo-4-fluorobenzene	100	80 - 120	н	%Rec	1	11/8/2021 6:20:37 PM

 Work Order:
 2110315

 Date Reported:
 11/11/2021

Lab ID: 2110315-009	Collection Date: 10/21/2021 1:40:00 PM						
Client Sample ID: GLB-16-GW	I			Matrix: G	Groundv	vater	
Analyses	Result	Result RL		Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	h ID: 34	162 Analyst: MM	
Diesel (Fuel Oil)	5,120	98.6	SGT	µg/L	1	11/9/2021 4:20:49 PM	
Diesel (Fuel Oil)	4,970	98.6		µg/L	1	10/26/2021 6:51:58 PM	
Heavy Oil	ND	98.6		µg/L	1	10/26/2021 6:51:58 PM	
Heavy Oil	ND	98.6	SGT	µg/L	1	11/9/2021 4:20:49 PM	
Total Petroleum Hydrocarbons	5,120	197	BSGT	µg/L	1	11/9/2021 4:20:49 PM	
Total Petroleum Hydrocarbons	4,970	197		µg/L	1	10/26/2021 6:51:58 PM	
Surr: 2-Fluorobiphenyl	90.3	50 - 150		%Rec	1	10/26/2021 6:51:58 PM	
Surr: 2-Fluorobiphenyl	105	50 - 150	SGT	%Rec	1	11/9/2021 4:20:49 PM	
Surr: o-Terphenyl	99.8	50 - 150		%Rec	1	10/26/2021 6:51:58 PM	
Surr: o-Terphenyl	123	50 - 150	SGT	%Rec	1	11/9/2021 4:20:49 PM	
NOTES:							
SGT - Silica Gel Treatment							
Volatile Organic Compounds by	<u>y EPA Method 8</u>	<u>3260D</u>		Batc	h ID: 34	341 Analyst: CR	
Benzene	ND	0.440	н	µg/L	1	11/8/2021 6:50:43 PM	
Toluene	ND	0.750	н	μg/L	1	11/8/2021 6:50:43 PM	
Ethylbenzene	ND	0.400	н	μg/L	1	11/8/2021 6:50:43 PM	
m,p-Xylene	ND	1.00	н	μg/L	1	11/8/2021 6:50:43 PM	
o-Xylene	ND	0.500	н	μg/L	1	11/8/2021 6:50:43 PM	
Naphthalene	ND	1.25	н	μg/L	1	11/8/2021 6:50:43 PM	
Surr: Dibromofluoromethane	102	80 - 120	н	%Rec	1	11/8/2021 6:50:43 PM	
Surr: Toluene-d8	100	80 - 120	н	%Rec	1	11/8/2021 6:50:43 PM	
Surr: 1-Bromo-4-fluorobenzene	100	80 - 120	н	%Rec	1	11/8/2021 6:50:43 PM	

Work Order: 2110315					QC SUMMARY REPORT
CLIENT: G-Logics					Total Organic Carbon by SM 5310C
Project: Mossman					
Sample ID: MB-R70840	SampType: MBLK			Units: mg/L	Prep Date: 10/27/2021 RunNo: 70840
Client ID: MBLKW	Batch ID: R70840				Analysis Date: 10/27/2021 SeqNo: 1440962
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	ND	0.500			
Sample ID: LCS-R70840	SampType: LCS			Units: mg/L	Prep Date: 10/27/2021 RunNo: 70840
Client ID: LCSW	Batch ID: R70840				Analysis Date: 10/27/2021 SeqNo: 1440963
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	5.02	0.500	5.000	0	100 93.1 106
Sample ID: 2110315-003CDUP	SampType: DUP			Units: mg/L	Prep Date: 10/27/2021 RunNo: 70840
Client ID: MW-4	Batch ID: R70840				Analysis Date: 10/27/2021 SeqNo: 1440966
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	11.5	0.500			11.22 2.12 20
Sample ID: 2110315-003CMS	SampType: MS			Units: mg/L	Prep Date: 10/27/2021 RunNo: 70840
Client ID: MW-4	Batch ID: R70840				Analysis Date: 10/27/2021 SeqNo: 1440967
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	16.0	0.500	5.000	11.22	95.8 69.1 124
Sample ID: 2110315-003CMSD	SampType: MSD			Units: mg/L	Prep Date: 10/27/2021 RunNo: 70840
Client ID: MW-4	Batch ID: R70840				Analysis Date: 10/27/2021 SeqNo: 1440968
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Total Organic Carbon	15.8	0.500	5.000	11.22	91.6 69.1 124 16.01 1.30 30

Work Order: 211031	5							20	SUMMA	RY REF	PORT
CLIENT: G-Logic	S						Discol				
Project: Mossma	an						Diesei	anu neavy			
Sample ID: LCS-34145	SampType: LCS			Units: µg/L		Prep Dat	e: 10/22/2	:021	RunNo: 707	787	
Client ID: LCSW	Batch ID: 34145					Analysis Dat	ie: 10/26/2	:021	SeqNo: 143	89716	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	s 1,050	198	991.6	0	106	55	117				
Surr: 2-Fluorobiphenyl	17.3		19.83		87.0	50	150				
Surr: o-Terphenyl	23.0		19.83		116	50	150				
Sample ID: MB-34145	SampType: MBLK			Units: µg/L		Prep Dat	e: 10/22/2	:021	RunNo: 707	787	
Client ID: MBLKW	Batch ID: 34145					Analysis Dat	ie: 10/26/2	021	SeqNo: 143	89717	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	98.2									
Heavy Oil	ND	98.2									
Total Petroleum Hydrocarbons	s ND	196									
Surr: 2-Fluorobiphenyl	17.5		19.64		89.1	50	150				
Surr: o-Terphenyl	20.4		19.64		104	50	150				
Sample ID: 2110292-001BMS	SampType: MS			Units: µg/L		Prep Dat	e: 10/22/2	021	RunNo: 707	787	
Client ID: BATCH	Batch ID: 34145					Analysis Dat	ie: 10/26/2	:021	SeqNo: 143	39721	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydrocarbons	s 2,170	199	994.8	944.0	123	37.1	131				
Surr: 2-Fluorobiphenyl	17.9		19.90		90.1	50	150				
Surr: o-Terphenyl	22.2		19.90		112	50	150				
Sample ID: 2110302-001ADU	P SampType: DUP			Units: µg/L		Prep Dat	e: 10/22/2	021	RunNo: 707	787	
Client ID: BATCH	Batch ID: 34145					Analysis Dat	te: 10/26/2	021	SeqNo: 143	39729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	99.0						0		30	
Heavy Oil	ND	99.0						0		30	
Total Petroleum Hydrocarbons	s ND	198						0		30	

Work Order: 2110315							QC SUMMARY REPORT
CLIENT: G-Logics						Diosol and I	
Project: Mossman						Diesei allu i	
Sample ID: 2110302-001ADUP	SampType: DUP			Units: µg/L		Prep Date: 10/22/2021	RunNo: 70787
Client ID: BATCH	Batch ID: 34145					Analysis Date: 10/26/2021	SeqNo: 1439729
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD	Ref Val %RPD RPDLimit Qual
Surr: 2-Fluorobiphenyl	16.5		19.81		83.5	50 150	0
Surr: o-Terphenyl	17.9		19.81		90.6	50 150	0
Sample ID: MB-34162	SampType: MBLK			Units: µg/L		Prep Date: 10/25/2021	RunNo: 70822
Client ID: MBLKW	Batch ID: 34162					Analysis Date: 10/26/2021	SeqNo: 1440575
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD	Ref Val %RPD RPDLimit Qual
Diesel (Fuel Oil)	ND	98.9					
Heavy Oil	ND	98.9					
Total Petroleum Hydrocarbons	ND	198					
Surr: 2-Fluorobiphenyl	20.0		19.79		101	50 150	
Surr: o-Terphenyl	22.3		19.79		113	50 150	
Sample ID: LCS-34162	SampType: LCS			Units: µg/L		Prep Date: 10/25/2021	RunNo: 70822
Client ID: LCSW	Batch ID: 34162					Analysis Date: 10/26/2021	SeqNo: 1440576
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD	Ref Val %RPD RPDLimit Qual
Total Petroleum Hydrocarbons	923	196	981.8	0	94.1	55 117	
Surr: 2-Fluorobiphenyl	19.1		19.64		97.3	50 150	
Surr: o-Terphenyl	24.9		19.64		127	50 150	
Sample ID: 2110315-008BMS	SampType: MS			Units: µg/L		Prep Date: 10/25/2021	RunNo: 70822
Client ID: GLB-15-GW	Batch ID: 34162					Analysis Date: 10/26/2021	SeqNo: 1440583
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD	Ref Val %RPD RPDLimit Qual
Total Petroleum Hydrocarbons	9,770	198	988.5	9,287	48.6	37.1 131	
Surr: 2-Fluorobiphenyl	19.3		19.77		97.4	50 150	
Surr: o-Terphenyl	20.1		19.77		102	50 150	

Work Order: 21	110315									QC S	SUMMA	RY REF	PORT
CLIENT: G	-Logics								Diesel	and Heavy	Oil by NW	TPH-Dx/I	Dx Fxt
Project: M	ossman								Dicoci				
Sample ID: 2110315-0	09BDUP	SampType:	DUP			Units: µg/L		Prep Da	te: 10/25/2	2021	RunNo: 708	322	
Client ID: GLB-16-G	w	Batch ID:	34162					Analysis Da	te: 10/26/2	2021	SeqNo: 144	40585	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		2	4,350	99.5						4,968	13.4	30	
Heavy Oil			ND	99.5						0		30	
Total Petroleum Hydro	carbons	2	4,350	199						4,968	13.4	30	
Surr: 2-Fluorobiphen	nyl		16.8		19.91		84.5	50	150		0		
Surr: o-Terphenyl			19.6		19.91		98.4	50	150		0		
Sample ID: MB-34145		SampType:	MBLK			Units: µg/L		Prep Da	te: 10/22/2	2021	RunNo: 707	787	
Client ID: MBLKW		Batch ID:	34145					Analysis Da	te: 11/9/20	021	SeqNo: 144	48762	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			124	98.2									SGT
Heavy Oil			429	98.2									SGT
Total Petroleum Hydro	carbons		553	196									SGT
Surr: 2-Fluorobiphen	nyl		18.6		19.64		94.6	50	150				SGT
Surr: o-Terphenyl			22.3		19.64		114	50	150				SGT
NOTES:													
SGT - Silica Gel Tre	atment												
Sample ID: LCS-3414	5	SampType:	LCS			Units: µg/L		Prep Da	te: 10/22/2	2021	RunNo: 707	787	
Client ID: LCSW		Batch ID:	34145					Analysis Da	te: 11/9/20	021	SeqNo: 144	48763	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hydro	carbons	1	1,190	198	991.6	0	120	55	117				BSSGT
Surr: 2-Fluorobiphen	nyl		18.8		19.83		94.8	50	150				SGT
Surr: o-Terphenyl			26.1		19.83		132	50	150				SGT
NOTES:													
SGT - Silica Gel Tre	atment												

Fremont
Analytical

Work Order:	2110315									QCS	SUMMAI		PORT
CLIENT:	G-Logics								Discol			ייייייי	
Project:	Mossman								Diesei	and neavy			DX EXI.
Sample ID: LCS-3	4162	SampType	LCS			Units: µg/L		Prep Da	te: 10/25/2	2021	RunNo: 708	322	
Client ID: LCSW	,	Batch ID:	34162					Analysis Da	te: 11/9/20)21	SeqNo: 14	48846	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	drocarbons		860	196	981.8	0	87.6	55	117				BSGT
Surr: 2-Fluorobip	ohenyl		17.5		19.64		89.1	50	150				SGT
Surr: o-Terphen	yl		24.0		19.64		122	50	150				SGT
NOTES:													
SGT - Silica Gel	Treatment												
Sample ID: MB-34	162	SampType	BLK			Units: µg/L		Prep Da	te: 10/25/2	2021	RunNo: 708	322	
Client ID: MBLK	w	Batch ID:	34162					Analysis Da	te: 11/9/20)21	SeqNo: 144	48847	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			143	98.9									SGT
Heavy Oil			477	98.9									SGT
Total Petroleum Hy	/drocarbons		620	198									SGT
Surr: 2-Fluorobip	ohenyl		21.6		19.79		109	50	150				SGT
Surr: o-Terphen	yl		25.2		19.79		127	50	150				SGT
NOTES:													
SGT - Silica Gel	Treatment												
Sample ID: 21103	15-008BMS	SampType	: MS			Units: µg/L		Prep Da	te: 10/25/2	2021	RunNo: 708	322	
Client ID: GLB-1	5-GW	Batch ID:	34162					Analysis Da	te: 11/9/20)21	SeqNo: 144	48848	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Petroleum Hy	/drocarbons		9,410	198	988.5	7,946	148	37.1	131				SSGT
Surr: 2-Fluorobip	ohenyl		20.8		19.77		105	50	150				SGT
Surr: o-Terphen	yl		18.1		19.77		91.5	50	150				SGT

NOTES:

S - Analyte concentration was too high for accurate spike recovery(ies).

SGT - Silica Gel Treatment

Work Order:	2110315								2.00	SUMMAR	RY REF	PORT
CLIENT:	G-Logics							D ¹ · · · · I				
Project:	Mossman							Diesel	and Heavy		IPH-DX/I	JX EXt.
Sample ID: 21103	15-009BDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 10/25/2	021	RunNo: 708	322	
Client ID: GLB-1	6-GW	Batch ID: 34162					Analysis Dat	ie: 11/9/20	21	SeqNo: 144	18850	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		3,890	99.5						5,118	27.2	30	SGT
Heavy Oil		ND	99.5						0		30	SGT
Total Petroleum H	ydrocarbons	3,890	199						5,118	27.2	30	BSGT
Surr: 2-Fluorobi	phenyl	17.2		19.91		86.4	50	150		0		SGT
Surr: o-Terphen	yl	17.2		19.91		86.2	50	150		0		SGT
NOTES:												
SGT - Silica Ge	Treatment											

İ	Fremont Analytical
---	------------------------------

Work Order:	2110315									QC S		RY REF	PORT
CLIENT:	G-Logics							Valatila	Oracnia	Compour	da hv ED/	Mothod	02600
Project:	Mossman							volatile	Organic	Compoun		1 method	020UD
Sample ID: LCS-3	4341	SampType	LCS			Units: µg/L		Prep Date	e: 11/8/20)21	RunNo: 71	118	
Client ID: LCSW		Batch ID:	34341					Analysis Date	e: 11/8/20)21	SeqNo: 14	47446	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene			20.8	0.440	20.00	0	104	80	120				
Toluene			20.4	0.750	20.00	0	102	80	120				
Ethylbenzene			20.9	0.400	20.00	0	104	80	120				
m,p-Xylene			40.3	1.00	40.00	0	101	80	120				
o-Xylene			20.6	0.500	20.00	0	103	80	120				
Naphthalene			21.4	1.25	20.00	0	107	80	120				
Surr: Dibromoflu	oromethane		26.0		25.00		104	80	120				
Surr: Toluene-d8	3		26.0		25.00		104	80	120				
Surr: 1-Bromo-4	-fluorobenzene		26.4		25.00		106	80	120				
Sample ID: MB-34	341	SampType	BLK			Units: µg/L		Prep Date	e: 11/8/20)21	RunNo: 71	118	
Client ID: MBLK	w	Batch ID:	34341					Analysis Date	e: 11/8/20)21	SeqNo: 14	47445	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene			ND	0.440									
Toluene			ND	0.750									
Ethylbenzene			ND	0.400									
m,p-Xylene			ND	1.00									
o-Xylene			ND	0.500									
Naphthalene			ND	1.25									
Surr: Dibromoflu	oromethane		27.2		25.00		109	80	120				
Surr: Toluene-d8	3		26.3		25.00		105	80	120				
Surr: 1-Bromo-4	-fluorobenzene		24.1		25.00		96.2	80	120				
Sample ID: 21105	12-008ADUP	SampType	DUP			Units: µg/L		Prep Date	e: 11/8/20)21	RunNo: 71	118	
Client ID: BATCI	Н	Batch ID:	34341					Analysis Dat	e: 11/8/20)21	SeqNo: 14	47432	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene			0.724	0.440						0.8784	19.3	30	

Work Order: 2110315

CLIENT: G-Logics

Project: Mossman

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2110512-008ADUP	SampType: DUP			Units: µg/L			te: 11/8/20	21	RunNo: 711		
Client ID: BATCH	Batch ID: 34341					Analysis Da	te: 11/8/20	21	SeqNo: 144	17432	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	ND	0.750						0.8535	18.1	30	
Ethylbenzene	ND	0.400						0.7428	200	30	R
m,p-Xylene	1.54	1.00						1.872	19.3	30	
o-Xylene	0.618	0.500						0.7353	17.4	30	
Naphthalene	ND	1.25						0		30	
Surr: Dibromofluoromethane	25.2		25.00		101	80	120		0		
Surr: Toluene-d8	25.1		25.00		100	80	120		0		
Surr: 1-Bromo-4-fluorobenzene	23.7		25.00		94.9	80	120		0		

NOTES:

R - High RPD due to low analyte concentration. In this range, high RPD's may be expected.

Sample ID: 2111047-002ADUP	ID: 2111047-002ADUP SampType: DUP			Units: µg/L	Prep Date: 11/8/20		21	RunNo: 71118			
Client ID: BATCH	Batch ID: 34341					Analysis Da	te: 11/9/20)21	SeqNo: 144	17442	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.621	0.440						0.6147	1.06	30	
Toluene	ND	0.750						0		30	
Ethylbenzene	ND	0.400						0.6275	200	30	R
m,p-Xylene	1.48	1.00						1.464	1.26	30	
o-Xylene	ND	0.500						0		30	
Naphthalene	ND	1.25						0		30	
Surr: Dibromofluoromethane	26.4		25.00		106	80	120		0		
Surr: Toluene-d8	25.6		25.00		102	80	120		0		
Surr: 1-Bromo-4-fluorobenzene	25.3		25.00		101	80	120		0		

NOTES:

R - High RPD due to low analyte concentration. In this range, high RPD's may be expected.

Work Order: 2110315

CLIENT: G-Logics

Project: Mossman

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2111047-001AMS	SampType: MS			Units: µg/L		Prep Da	te: 11/8/20	21	RunNo: 71 1	118	
Client ID: BATCH	Batch ID: 34341					Analysis Da	te: 11/9/20	21	SeqNo: 144	47698	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	23.2	0.440	20.00	0	116	76.9	135				
Toluene	22.2	0.750	20.00	0.6056	108	76.2	131				
Ethylbenzene	20.2	0.400	20.00	0	101	82.1	129				
m,p-Xylene	43.1	1.00	40.00	0	108	84.3	123				
o-Xylene	20.8	0.500	20.00	0	104	83.5	122				
Naphthalene	20.3	1.25	20.00	0	102	60.3	141				
Surr: Dibromofluoromethane	28.7		25.00		115	80	120				
Surr: Toluene-d8	27.0		25.00		108	80	120				
Surr: 1-Bromo-4-fluorobenzene	26.5		25.00		106	80	120				

Sample Log-In Check List

С	lient Name:	GL	Work Or	der Numb	per: 2110315	
Lo	ogged by:	Gabrielle Coeuille	Date Re	ceived:	10/21/202	1 4:35:00 PM
<u>Cha</u>	nin of Cust	ody				
1.	Is Chain of C	Custody complete?	Yes	✓	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Clien</u>	<u>t</u>		
Log	<u>. In</u>					
3.	Coolers are	present?	Yes	✓	No 🗌	NA 🗌
4.	Shipping cor	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.	Custody Sea (Refer to cor	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗌	Not Present 🗹
6.	Was an atter	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌
7.	Were all iten	ns received at a temperature of >2°C to 6°C *	Yes	✓	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes		No 🗌	
9.	Sufficient sa	mple volume for indicated test(s)?	Yes	✓	No 🗆	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserv	ative added to bottles?	Yes		No 🗹	NA 🗌
12.	Is there head	Ispace in the VOA vials?	Yes		No 🗹	
13.	Did all samp	les containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperv	vork match bottle labels?	Yes	✓	No 🗔	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear wh	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ling times able to be met?	Yes	✓	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)				
18.	Was client n	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date				
	By Who	om: Via:	🗌 eMa	il 🗌 Ph	one 🗌 Fax [In Person
	Regard	ing:				
	Client I	nstructions:				
19	Additional re	marks:				

Item Information

Item #	Temp ⁰C
Sample 1	5.5

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	ć	ś	ĩ
		ç	į.
	ł		ş.
			4
	2		2
			2
		l	
		2	

2	•
	2
<	5
5	5
5	•
-	
-	5
n	D
=	5
2	2
ç	2
=	3
5	•
0	2
=	3
۵	J
-	-
2	1
5	
C	2
2	J
0	2
C	2
-	3
-	2

-	
2	
0	
0	
-	
ŝ	
۰.	
1	
96	
20	

31-31 16-30	int Name 10-1 Date	Jain Hu	x allow Received (Signature) x	1625	Date/Time		Smith	Print Name	N.	Jished (Signature)	Relinqu
☐ 2 Day (s /Time	int Name Date	. Pr	Received (Signature)		Date/Time	reement.	of this Ag	d backside	on the front an	ished (Signature)	Relingu
	e verified Client's agreement	ied above, that I hav	half of the Client nam	alytical on bel	Fremont An	ment with	his Agree	enter into t	n authorized to	present that I ar	In
3 Dav Sa			de Nitrate+Nitrite	hate Fluoric	de O-Phos	Bromi	Sulfate	Chloride	rate Nitrite	ions (Circle): Nit	***An
Standard D N	Sb Se Sr Sn Ti Tl V Zn	g Mn Mo Na Ni Pb	Co Cr Cu Fe Hg K M	B Ba Be Ca Cd	al: Ag Al As I	Individu	nts TAL	Priority Polluta	-5 RCRA-8 P	als (Circle): MTCA	**Met
Turn-around	= Storm Water, WW = Waste Water	W = Ground Water, SW =	DW = Drinking Water, G	olid, W = Water,	Sediment, SL = S	: Soil, SD =	^p roduct, S =	= Other, P = I	Jeous, B = Bulk, O	x: A = Air, AQ = Aqu	*Matri
											10
				E	5	e	134	K	- CW	7LB-16	9
						-	218		-Gw	51-970	°
							1155		-90	1-13-14	0
							1115	_	GW	1-13-13-	6 0
						Ē	liac		GC	1B-12-	S Co
					7		1232			10-7	4
		X		X	5		8411			NW-4	3
				X	4		0951			NW-3	2
				×	4	Gw	1660	1921/2		18-17	1 7
Comments					# of Log	Sample Type (Matrix)*	Sample	Sample Date		ple Name	Sam
					PM Email:	1	1				Fax:
nt Disposal by lab (afte	Sample Disposal: Return to clier		-	0:	Report To (PM					ione:	Telept
	(16086 AC	mish, 4	ecome	Location:		11803	WAG	equaly a	tate, Zip: 1550	City, S
	lamine	Ramelo	of Querr	TIFEen	Collected by:			NE	rd Are	5 UD 21	Addre
			64-0	80-10	Project No:				sources	Cortic	Client
	Special Remarks		Smarr	Masi	Project Name:	52-7178	Fax: 206-3	ROL	Analytic		
21031	Laboratory Project No (internal):	l of:	Page:	12/12	Date: 01	52-3790	Tel: 206-3	-			_
Agreeme	oratory Services	cord & Lab	ustody Rec	ain of C	с Р	t Ave N.	00 Fremon	36			(A)

	ŝ	à	ĩ
ţ		Ī	ŝ.
	f		\$
		2	4
		1	
			2
			1
	ļ	1	۲

•	5
5	5
5	5
2	>
٠	
2	
0	Ď
-	3
ē	5
:	3
5	J,
Ξ	5
2	υ
÷	-
5	7
ē	5
2	U
ē	
5	2
5	2
2	₹
-	_

000	
0.1	
ω,	
11.0	
6.20	
~	

J Date/Time	rint Name	P	gnature)	Received (Sig x		Date/Time			Print Name		Relinquished (Signatur	
Date/Time 10-31-31 16-35	ex Tre	to A		Received (Sig	5291	G / 21/21		Smith	Chris	N.V.	Relinquished (Signatur	
ient's agreement	e verified CI	bove, that I hav	ient named al	half of the Cli	lytical on beh	Fremont Ana	nent with reement.	his Agreei of this Agi	enter into t id backside	I am authorized to rms on the front au	I represent that to each of the te	
🗌 3 Day 🗌 Same Day			Nitrite	de Nitrate+	ate Fluorid	e O-Phosph	Bromid	Sulfate	Chloride	Nitrate Nitrite	***Anions (Circle):	_
Ti Ti V Zn Standard 🗆 Next Day	Sb Se Sr Sn	Mo Na Ni Pb	Hg K Mg Mn	Co Cr Cu Fe	Ba Be Ca Cd	1: Ag Al As B	Individuo	nts TAL	Priority Polluta	ITCA-S RCRA-8	**Metals (Circle): N	
WW = Waste Water Turn-ground Time:	= Storm Water,	ound Water, SW	Water, GW = Gr	DW = Drinking	lid, W = Water,	ediment, SL = Sc	Soil, SD = S	roduct, S =	= Other, P = F	= Aqueous, B = Bulk, C	Matrix: A = Air, AQ	
											10	
DX w/ Silica Gel Cleanup	×			0	E	5	¢	134	K	6-00	GLB-1	
DX w/ Silica Gel Cleanup	×							Siel		5-90	GUD-1	
								1155		04-40	GLB-10	
								1115		3-600	GLB-13	
							_	lind		1-60	GLB-12	_
						7		1232			MW-7	-
DX w/ Silica Gel Cleanup	×	X			×	S		8411			MW-4	1
				\sim	X	4		0951	-		MW-3	_
					×	4	Gw	1660	RICHI		MER	1
Comments	BTEX&Naph					# of Cont.	Sample Type (Matrix)*	Sample	Sample Date		Sample Name	
						PM Email:	1	1	1		Fax:	
posal: Return to client Disposal by lab (after 30 days)	Sample Dis					Report To (PM)					Telephone:	-
		18021	1 WA	mish	uma	Location: S		11803	WAG	sagualy	City, State, Zip: 1.5	
inc	flan	Rumele	iener	a qu	17 Fren	Collected by:			SE	and Are	Address: 40	_
oer IQ, Std IAI, 11/3/21 -CG	Edits			64-0	80-10	Project No:				Samo	Client:	
marks:	Special Rer	9.	J Lake.	Smar	Mas	Project Name:	52-7178	Fax: 206-35	ल्ता	Analyti		
Project No (internal): 211 0315	Laboratory	2	Dapp.		21/21	Date: 10/	98103	Tel: 206-3		GUIO		
y Services Agreement	orator	d & Lab	/ Recor	ustody	ain of C	Cha	Ave N.	00 Fremont	36		ANN ANN	_

ATTACHMENTS

Permission and Conditions for Use and Copying Form

2021 Soil and Groundwater Sampling Mossman Residence 3461 East Lake Sammamish Shore Lane NE Sammamish, WA 98074

G-Logics Project 01-0864-D January 11, 2022

G-Logics prepared the above-identified Document only for our Client and/or other User(s), as identified in Section 1.0 of this Document, for the purposes stated and subject to any identified and contractual limitations. Regulatory agencies may make additional "fair use" copies for internal and public use based on state and federal laws that do not violate copyright laws.

All other Requestors must obtain permission from G-Logics and our Client in order to avoid copyright violations. To request authorization for a copy of the Document, please read our conditions listed below, complete the Requestor section, and fax to G-Logics at 425-313-3074 for approval review.

- I recognize that G-Logics has prepared this Document only for their Client and/or other user(s), only for the purposes stated in the Document and subject to any identified and contractual limitations.
- My intended use of the Document is for general informational purposes only.
- I understand and accept that there may be limitations to the reliability of the Document's findings due to circumstances beyond the control of G-Logics, the limited scope of funding, and/or limitations inherent in the nature of the performed services.
- I agree not to rely on the Document as being comprehensive or inclusive of all possible site hazards and agree to defend, indemnify, and hold G-Logics harmless from and against any and all claims, damages, or liability which arise from, or which are alleged to arise from my use of the Document. I also will compensate G-Logics for any time spent or expenses incurred by G-Logics in defense of any such claim.
- I agree not to provide the Document to any other person or organizations without prior authorization from G-Logics and their Client.

I, the Requestor, have reviewed the above-identified conditions for copying/use of the Document, am familiar with the presented limitations of the provided services, and acknowledge my understanding and concurrence, as indicated by my signature below.

Requestor's Company Mailing Address City, State, Zip Code Contact Name & Title Signature & Date Telephone & Fax Numbers Planned Use of Document

With your information and signature above, please fax to G-Logics (425-313-3074) for approval review. G-Logics will share your request with our Client for their approval.

Client Review and Acknowledgment of Use and Copying Request

Per the notification of G-Logics, I, the Client, have reviewed this request for copying/use of this Document, have discussed the request with G-Logics, and grant my consent as indicated by my signature below.

Client Company	
Client Contact Name & Title	
Signature & Date	
Telephone & Fax Numbers	

G-Logics review and Acknowledgment of Use and Copying Request

Based on your concurrence with the above-presented conditions, approval of our Client, and our review of the information, G-Logics allows the Requestor to copy/use the above referenced Document for purposes stated. Additional fees may apply.

G-Logics Signature	
Title	
Date	

g-logics